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Abstract

Materialized XML views are a popular technique for integrating data from possibly dis-

tributed and heterogeneous data sources. However, the problem of the incremental main-

tenance of such XML views poses new challenges which to date remain unaddressed.

One, XML views not only filter the data, but may radically restructure it to construct new

XML nested document structures. Moreover, order is inherent in the XML model, and

XML views reflect both the implicit document order of the underlying sources and the

order explicitly imposed in the view definition. Therefore, order also has to be preserved

at view maintenance time.

In this thesis we present an algebraic approach for the incremental maintenance of

XQuery views, called VOX (View maintenance for Ordered XML). To the best of our

knowledge, this is the first solution to order-preserving XML view maintenance. Our

strategy correctly transforms an update to source XML data into sequences of updates

that refresh the view. Our technique is based on an algebraic representation of the XQuery

view expression using an XML algebra. The XML algebra has ordered bag semantics;

hence most of the operators logically are order preserving. We propose an order-encoding

mechanism that migrates the XML algebra to (non-ordered) bag semantics, no longer re-

quiring most of the operators to be order-aware. Furthermore, this now allows most of

the algebra operators to become distributive over update operations. This transformation

brings the problem of maintaining XML views one step closer to the problem of maintain-

ing views in other (unordered) data models. We are thus now able to adopt some of the

existing (relational) maintenance techniques towards our goal of efficient order-sensitive

XQuery view maintenance. In addition we develop a full set of rules for propagating

updates through XML specific operations. We have proven the correctness of the VOX



view maintenance approach. A full implementation of VOX on top of RAINBOW, the

XML data management system developed at WPI, has been completed. Our experimental

results, performed using the data and queries provided by the XMark benchmark, confirm

that incremental XML view maintenance indeed is significantly faster than complete re-

computation in most cases. Incremental maintenance is shown to outperform recomputa-

tion even for large updates.
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Chapter 1

Introduction

1.1 Problem Description

XML views are a popular technique for integrating data from distributed and heteroge-

neous data sources. Many systems employing XML views, often specified by the XML

query language XQuery [27], have been developed in recent years [4, 15, 30, 31]. Mate-

rialization of the view content has many important applications including providing fast

access to complex views, optimizing query processing based on cashed results, and in-

creasing availability. Materialization however raises the issue of how to efficiently refresh

the content of views in this new context of XML in response to base source changes. It has

been shown for relational views that it is often cheaper to apply incremental view main-

tenance strategies instead of full recomputation [9]. However the problem of incremental

maintenance of XQuery views has not yet been addressed in the literature.

The problem of incremental XML view maintenance poses unique challenges com-

pared to the incremental maintenance of relational or even object-oriented views. The

work in [17] classifies XML result construction as being a non-distributive function which

in general is not incrementally computable. Also, unlike relational or even unlike object-
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oriented data, XML data is ordered. Supporting XML’s ordered data model is crucial for

applications like content management, where document data is intrinsically ordered and

where queries may need to rely on this order [22]. In general, XQuery expressions return

sequences that have a well-defined order [27]. The resulting order is determined both by

the implicit XML document order possibly overwritten by other orders explicitly imposed

in the XQuery definition by the Order By clauses or by nested subclauses [27]. As a con-

sequence, a view has to be refreshed correctly not only concerning the view content but

also concerning the order of the view result document.

<bib>
<book>

<price> 65.95 </price>
<title> Advanced Programming

in the Unix environment </title>
</book>
<book>

<title> TCP/IP Illustrated </title>
</book>

<book>
<price>39.95</price>
<title> Data on the Web </title>

</book>
</bib>

<result>
for $b in document("bib.xml")/bib/book
where $b/price/text() < 60
return

<cheap_book>
$b/title

</cheap_book>
</result>

<result>
<cheap_book>

<title>Data on the Web</title>
</cheap_book>

</result>

(a)

(b)

(c)

Figure 1.1: Example (a) XML data, (b) XQuery view definition and (c) initial extent of
view

Incremental view maintenance strategies for data models that preserve order remain

an open problem to date. In the relational context, for example, order is of interest only if

the Order By operation is explicitly present in the view definition. Even then, a possible

solution is to maintain an unordered auxiliary view, and only recompute the ordered view

on demand. Such approach does not apply to the XML context, where all operations have

to be order sensitive. Even if explicit reordering occurs (due to an Order By clause in

the view definition) it does not necessary completely reorder the XML view result, as the

elements deeper than the element(s) on which the ordering was performed still have to be

2



returned in document order.

1.2 Motivating Example

In this paper, we use the XML document ����������� � shown in Figure 1.1.a as running ex-

ample. It contains a list of book titles and optionally their prices. The XQuery definition

of the example view, which lists the titles of all books that cost less than $60, is shown

in Figure 1.1.b and the initial content of that view in Figure 1.1.c. Suppose that the price

has been left out of the second book by mistake. Hence, the update as in Figure 1.2.a

is specified to insert a price element with value $55.48. As to date there is no one stan-

dard Update XQuery syntax, we express this update using the update XQuery syntax

introduced in [22]. The affected book now passes the selection condition and should be

inserted into the view extent, resulting in the content in Figure 1.2.b. Even though the

view definition XQuery does not explicitly refer to the document order in this example,

this new book has to be inserted before the one already in the view, to preserve document

order.

FOR $book IN document("bib.xml")//book[position()=2],
$title IN $book/title

UPDATE $book
{

INSERT <price>55.48</price> BEFORE $title
}

(a)

<result>
<cheap_book>

<title>TCP/IP Illustrated</title>
</cheap_book>
<cheap_book>

<title>Data on the Web</title>
</cheap_book>

</result>

(b)

Figure 1.2: (a) Update XQuery and (b) extent of the view defined in Figure 1.1.b after the
update in (a)

3



1.3 State-of-the-art on View Maintenance

Early work on relational view maintenance [3, 10, 5] when considering rather simple

views took an algorithmic approach, that is, they propose a fixed procedure to compute the

changes to the view given the changes to the base relations. Later efforts on more complex

view definitions including duplicates [8] or aggregations [19, 16] and also object-oriented

views [2] often have instead taken an algebraic approach. Unnesting and restructuring of

data is core even in the simplest XQuery view definitions due to the nested structure of

XML data. Thus any practical solution for XQuery views should support a rather large

set of complex operations including unnesting, aggregation and tagging. The algebraic

approach, illustrated in Figure 1.3, is therefore the appropriate foundation for tackling

incremental view maintenance in the XML context.

XML

Source

XML

Source

XML

Source

XML

View

Update

Update

Algebra

Tree

XQuery

Definition

Operator

D1

D2

Operator

D1 Update

D2 Update

Execution View Maintenance

time

Figure 1.3: Illustration of algebraic approach to XML view maintenance

As pointed out in [8], the main advantages of an algebraic approach to view mainte-

nance include:

� It is independent from the view definition language syntax. This is critical for

XML given that XQuery is still a working draft, and changes to its syntax are likely

to occur. Experience with SQL also has shown that even for standardized query
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languages, commercial database management systems introduce proprietary mod-

ifications. The same may happen for XQuery as well. Hence we favor a syntax

independent solution.

� The modularity of the algebraic approach enables us with ease to extend our algebra

with more operators. Also, if the semantics of any one of the existing XML algebra

operators should change, the approach can easily be adapted to incorporate the

change by locally adjusting some propagation rules.

� As the update rules are defined independently for each operator, existing propaga-

tion rules for operators in other data models that now also are present in the XML

algebra can be reused here. This could for example include most relational algebra

operators.

� The algebraic approach naturally leads itself towards establishing a proof of cor-

rectness. If all individual rules for the different operators lead to correct output of

the corresponding operator, then the final output in terms of the maintained view

can easily be shown to be correct as well.

1.4 VOX Approach

In this work, we propose VOX (View maintenance for Ordered XML), an algebraic XML

view maintenance strategy that is order sensitive. VOX covers the core subset of the

XQuery language. Our approach is based on the XML algebra called XAT [32]. For each

operator in the algebra and for each type of update, we define update propagation rules

that specify the modification of the operator’s output as a response to the modification of

its input. We provide a scalable order-preserving strategy to minimize the overhead of

maintaining order during view maintenance. Also, VOX significantly reduces the amount

5



of intermediate data to be kept. By using node identity in intermediate results and storing

the actual data in a shared storage, it minimizes the auxiliary maintenance information re-

quirements and decreases the computational effort for maintaining such auxiliary views.

Our solution is flexible providing both an order-preserving and a non-order-preserving

mode. Even though order is inherit to XML, there are XML applications where the order-

ing is not important and our solution also serves these applications.

Contributions of this work include:

� We identify and analyze new challenges imposed on incremental view maintenance

by the ordered hierarchical nature of the XML data model.

� We propose an order-encoding mechanism that migrates the XML algebra from

ordered bag semantics to (non-ordered) bag semantics, thus making most of the

operators distributive with respect to the bag union and bag set difference.

� We give the first order-sensitive algebra-based solution for incremental view main-

tenance of XML views defined with the XQuery language.

� We prove the correctness of the approach.

� We have successfully implemented our proposed solution in the XML data man-

agement system Rainbow.

� We describe the experiments we have conducted to gain insight into the perfor-

mance of our strategy. In the experiments the cost of view maintenance is compared

to the cost of recomputation.

6



1.5 Outline

In the next chapter we briefly review related research. Chapter 3 introduces the XML

algebra XAT. In Chapter 4 we describe the VOX strategy for maintaining order in the

presence of updates using a scalable order encoding mechanism. In Chapter 5 we present

the order-sensitive incremental view maintenance strategy for XQuery views. The correc-

ntess of our approach is proven in Chapter 6. Chapter 7 gives an overview of the system

implementation of VOX. Chapter 8 describes our experimental evaluation while Chapter

9 concludes the document.

7



Chapter 2

Related Work

The incremental maintenance of materialized views has been extensively studied for rela-

tional databases [3, 9, 10, 33, 14, 5, 8, 16, 19]. In [8], an algebraic approach for maintain-

ing relational views with duplicates, i.e., for bag semantics, has been proposed. This work

emphasizes the advantages of an algebraic over an algorithmic solution. These advantages

also equally hold for the XML context as we have emphasized in Section 1.3. The work in

[19] extends [8] for views with aggregation. Being algebraic, our approach is closely re-

lated to [8, 19]. However, our work targets the richer XML setting. In [16] the problem of

making aggregate views self maintainable by also maintaining additional relations, called

auxiliary views, is investigated. Palpanas and others [17] propose an incremental mainte-

nance algorithm that maintains views whose definition includes aggregate functions that

are not distributive over all operations. They perform selective recomputation to maintain

such views.

To a lesser degree, view maintenance has also been studied for object-oriented views.

In the MultiView system [12, 11], incremental maintenance of OQL views exploits object-

oriented properties such as inheritance, class hierarchy and path indexes. [2] proposes a

solution for maintaining materialized OQL views that yields incremental maintenance

8



plans on an algebraic level. Alike our technique of storing only node identity encodings

rather than actual data, they store OID-s with the same aim of avoiding access to base

data.

[34] proposes methods for the maintenance of select-project graph structured views

defined as collections of objects. Maintenance for such materialized views over semi-

structured data based on the graph-based data model OEM and the query language Lorel

is studied in [1]. Unlike our work, they consider only atomic update operations: insertion

or deletion of an edge between existing objects, or the change of the value of an atomic

object. Also, more importantly, they do not consider order. In [18], an efficient mainte-

nance technique for materialized views over dynamic web data was proposed, but based

on XPath, thus excluding result restructuring. They have developed a path structure to in-

dex the view, tracking the data items that meet path branch conditions of the view query.

They also do not consider order.

An architecture for defining and maintaining views over hierarchical semistructured

data is proposed in [13]. Their work is on maintaining views defined with their query

language called WHAX-QL which is based on XML-QL. Similar to the concept of dis-

tributiveness with regard to the bag union that we exploit, they base their work on the

distributiveness with respect to a deep tree union operation that they define (they call

that multi-linearity). They pose restrictions to the expressiveness of the view definition

language, considering only multi-linear views and not considering order.

An algebraic approach for incremental maintenance of XQuery views has recently

been proposed here at WPI [7]. The ideas as well as the shortcomings from that project

have motivated this current work as follow-on effort. Unlike VOX, that work does not

address the problem of maintaining order. Rather, it assumes that all intermediate data

is physically stored in order, and that insertions can be done at specified positions. Also,

it requires maintenance of large auxiliary data for the purpose of the next propagation.

9



Unlike VOX, the work in [7] has no notion of node identity. Thus it may potentially

need to keep and maintain same source or constructed XML nodes multiple times as

intermediate results.

The problem of encoding XML structure as well as XML order has lately been stud-

ied for the purpose of storing XML documents (either in relational databases, or in a

proprietary XML storage systems). Several explicit order encoding techniques for such

XML documents once shredded into pieces have been proposed [23, 6] and experimen-

tally compared. The technique from [6] is used in this work. However, the focus of our

work is different from that of [6] (and [23]), as we target views and consider constructed

XML nodes in addition to base data XML nodes.

10



Chapter 3

Background: XML Query Model

3.1 Notation

We adopt standard XML [26] as data model. In this paper, an XML node refers to either

an element, attribute, or text node in a document. XML nodes are considered duplicates

based on their equality by node identity denoted by � ����� ��� [25].

Definition 3.1 Given � sequences of XML nodes, let �	��
� � ��������������� � ��������� � , �������

� ,
� �� "! , ��#$� is an XML node,

��� � � � � . Order sensitive bag union of such sequences

is defined as:
%&('�*)�� �	��
*�,+

*.-� �����/�%�����*�%� � � �0���21.�%������� � � � �����*34� � � � �	����� ' � � � �0���65 ' � . Union of such

sequences is defined as: 7 '�8)�� �	��
�� +
*�-�:9 
	�#� 
,� � � � � ��
 $�;=< �?>���#@� , �A�B�C� � ,

�D� � � � �+�#��E�F 
,G ,
��� � � ���%���H#@� ��� 
G � .

Order sensitive bag union of sequences concatenates the sequences into one result-

ing sequence. Union basically creates a set all the unique nodes contained in the input

sequences, i.e., duplicates are removed.

We use
&

to denote bag union of sequences of XML nodes,
.I to denote monus (bag

difference) of sequences of XML nodes. When a single XML node appears as argument

for
%&
, 7 ,

&
or

.I , it is treated as a singleton sequence [28].

11



We use the term path to refer to a path expression [27] consisting of any combination

of forward steps, including ��� and � . Position refers to a path that uniquely locates a

single node in an XML tree, containing the element names and the ordering positions of

all elements from the root to that node, e.g., ������� ��� � �%��� � ��� � ����� � ���	� ��� .
The sequence of children of the XML node � located by the path 
�� �� and arranged

in document order is denoted as
%� ��
�� ���� � � . The notation

%� ��
��(���� � ��� � � represents

the ����� element in that sequence. The number of children of the XML node � that can

be reached by following the path 
�� �� is denoted as <
%� ��
�� ���� � � < . Hence,

%� ��
�� ����
� � + *.-� ��� �%����� � � � ������� < ���H# � %� ��
�� ���� � ��� � � � � � � � � ��� � � � <

%� ��
�� ���� � � < � . For

example, for � being the XML node ����� from Figure 1.1, and 
�� �� � � ����
� ���
,�"! , then%� ��
�� ��#� � � � �%$&
� ���
 �('*),+ �.-,+/$0��
� ���
,�1' �"$2
� ���
 �('*��- �.-,+/$3�4
� ���
 �(' � .
The sequence of extracted children located by the path 
�� �� from each of the nodes

in the sequence �	��
 � �5 ���6 �� � � � �. ��� respectively is denoted as
%� ��
�� ��7� �	��
(� . That is,%� ��
�� ��#� �	��
(� + *.-�

%& �# )��
%� ��
�� ��#�, #-� . The notation

%� ��
�� ��#� �	��
 ��� � � stands for the � ��� element

of that sequence, and <
%� ��
��(��8�=�	��
(� < ��9 �# )�� <

%� ��
�� ��:�� #-� < . The notation
� ��
��(��:� �	��
(�

stands for the corresponding unordered sequence. As < � ��
�� ��:� �	��
 � < � <
%� ��
�� ��8� �	��
(� < ,

for convenience we also use the notation < � ��
�� ��;� �	��
 � < for the cardinality of
%� ��
�� ��<�

�	��
(� in later sections.

For a position 
 � � and a path 
�� �� , we use the notation 
 � �>=?
�� �� to denote that


 � � is “contained” in the node set implied by 
�� �� . More precisely, an ancestor of

the node � located by 
 � � or the node � itself must be among the nodes located by


�� �� , if both 
 � � and 
�� �� are applied on the same XML data. For example, we have

� �#��� � � ��� �@�(� �� �A B��� � � �C� �C�	� ��� =D� �%��� � �@�(� �� �A and � �%��� � ��� � �@�(� �� �� B�0� � �4
E � ���	� ��� =F���@�(� �� �A .
When 
 � �&=G
�� �� , we define 
 � � I 
��(�� as the remainder position that starts from � ’s

ancestor located by 
�� �� . For example, � �#��� � � ��� �@�(� �� �A B��� � ��
E � � �	� ��� I � �#��� � �@�(� �� �� �

��
E � � �	� ��� and � �%��� � ��� � �@�(� �� �� B�0� � �4
E � ���	� ��� I ���@�(� �� �A � �4
E � ���	� ��� . Similarly, if some
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(but not necessarily all) descendants of the node located by 
 � � may be located by 
�� ��
we note this as 
 � ��� 
�� �� , e.g., � �#��� � � ��� � � �#��� � �@�(� �� �� . Then 
��(�� I 
 � � gives the path

that starting from the node located by 
 � � would locate all the nodes located by 
�� �� that

have the node located by 
 � � as an ancestor, e.g., � �#��� � �@�(� �� �� I � �#��� � � ����� �@�(� �� �� .

3.2 View Definition Language and the XML Algebra XAT

We use XQuery [27], a World Wide Web Consortium working draft for an XML query

language, as the view definition language. The XQuery expression defining the XML

view is translated into an XML algebraic representation that is used for both the initial

computation of the view extent and for the incremental maintenance. Given that to date

no standard XML algebra for query processing purposes has emerged, for the purpose of

describing and evaluating our approach, we select the XML algebra called XAT [32].

The XAT algebra defines a set of operators used to explicitly represent the semantics

of XQuery. The data model for the XAT algebra is a tabular model called XAT table.

Typically, an XAT operator takes as input one or more XAT tables and produces an XAT

table as output.

An XAT table � is an order-sensitive table of 
 tuples ��� , � � � � 
 , 
  ! that

is � � � ���%��� �+� � �	��� ! � 1. The column names in an XAT table � represent either a variable

binding from the user-specified XQuery, e.g., � � , or an internally generated variable name,

e.g., ��
����4� . Each tuple �4� (1
�

j
�

p) is a sequence of
�

cells 
,#$� (1
�

i
�

k), that is

��� � �-
�������
��� � � � �	��
�/�+� , where
�

is the number of columns. Each cell 
 #$� (1
�

i
�

k, 1
�

j
�

p) in a tuple �4� can store an XML node or a sequence of nodes. Note that atomic

values are treated as text nodes. To refer to the cell 
 #@� in a tuple ��� that corresponds to the
1More precisely, an XAT table supports order preservation of the tuples. That is, when there is meaning

of the order the XAT tables preserve it. Otherwise, when the order is undefined, then it is not guaranteed to
be preserved.
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column 
�����# we use the notation �4�@� 
%����# � .
The XAT algebra tree for the XQuery view definition for the running example (Figure

1.1.b) is presented in Figure 3.1.

The XAT algebra has order sensitive bag semantics: (1) The order among the tuples

��� may be of significance, (2) The order among the XML nodes contained in a single cell

may be of significance, and (3) Duplicate tuples in a table or nodes in a single cell are

allowed.

f $s6, /book
$b

S “bib.xml”
$s6

F$b, title
$col3

F$b, price/text()
$col5

T<cheap_book>$col3</cheap_book>
$col2

C $col2

T <result>$col2</ result >
$col1

bib.xml

s ($col5 < 60.0)

e$col1

view

<title> Data on ..</title>

<book>
<price> 39.95  </price>
<title> Data on ..</title>

</book>

<book>
<title> TCP/IP …</title>

</book>

<book>
<price> 65.95   </price>
<title>Advanc ..</title>

</book>

$b

<title> TCP/IP …</title>

<title> Advanc ..</title>

$col3

<title> Data on ..</title>

<book>
<price> 39.95  </price>
<title> Data on ..</title>

</book>

<book>
<title> TCP/IP …</title>

</book>

<book>
<price> 65.95   </price>
<title>Advanc ..</title>

</book>

$b

<title> TCP/IP …</title>

<title> Advanc ..</title>

$col3

39.95<title> Data on ..</title>

<title>TCP/IP …</title>

65.95

$col5

<title>Advanc ..</title>

$col3

39.95<title> Data on ..</title>

<title>TCP/IP …</title>

65.95

$col5

<title>Advanc ..</title>

$col3

F $b, price/text()
$col5 Output

Input

Figure 3.1: The XAT algebra tree for the running example

In general, an XAT operator is denoted as � 
 "�� �# � ����� , where � 
 is the operator type’s

symbol, ��� represents the input parameters, �� � the newly produced output column and �
the input source(s) for that operator, which for all operators except for

� ���  �
 � are XAT

tables. We restrict ourselves to the core subset of the XAT algebra operators [32]. We

omit operators only used temporarily during XQuery optimization, such as before decor-

relation. The XAT operators are classified into two general categories: XML operators
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and XAT SQL operators.

XAT SQL operators correspond to the relational complete subset of the XAT algebra

and include Select ���%� � � , Cartesian Product � � � � � � , Theta Join ��� � � � � � , Left Outer

Join
%
��� � � � � � � , Distinct

� � � � , Group By 	
� " G�� ��� ��� � � ��� � � 
 � and Order By ��� " G�� ��� ��� � � � ,
where � and

�
denote XAT tables. Those operators are equivalent to their relational

counterparts2, with the additional responsibility to reflect the order among the tuples in

their input XAT table(s) to the order among the tuples in their output XAT table. In the

output XAT table of
� � ��� 
#� , the relative order between each pair of tuples corresponds to

the relative order between those two tuples in its input XAT table, as illustrated in Figure

3.2. The Join family of operators (Cartesian Product, Theta Join, Left Outer Join) outputs

the tuples sorted by the left input table as major order and the right input table as minor

order. � �/�+����� 
#� and Group By are the only operators in the XAT algebra that always

output an unordered XAT table, following the specification in [27]. Order By, alike its

relational counterpart, orders the tuples by the values in the columns given as arguments.

<title> Data on the Web</title>

<title> Advanced Programming in the
Unix environment </title>

$col3

<title> Data on the Web</title>

<title> Advanced Programming in the
Unix environment </title>

$col3

39.95

25.95

$col5

<title> Data on the Web </title>

<title> TCP/IP Illustrated </title>

<title>

Advanced Programming in
the Unix environment

</title>

$col3

39.95

25.95

$col5

<title> Data on the Web </title>

<title> TCP/IP Illustrated </title>

<title>

Advanced Programming in
the Unix environment

</title>

$col3

s ($col5 < 60.0)

Figure 3.2: Example of XAT Select operator

2The operator Group By may take any arbitrary subquery or function, but we only consider the MIN,
MAX, COUNT, AVERAGE and POS(), the last being used for outputting for each tuple its absolute order
in its group.
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The XML operators, used to represent the XML specific operations, are defined below.

Source
� � " G��� ' G�� " � is always a leaf node in an algebra tree. It takes the XML document

��� � � ��
 and outputs an XAT table with a single column 
%��� � and a single tuple � �� �2� �

�-
��/��� , where 
	�/� contains the entire XML document.

Navigate Unnest
� � " G �� " G  !�� ��� � � � unnests the element-subelement relationship. For each

tuple ���4� � from the input XAT table � , it creates a sequence of � output tuples � �� �
� G
	� ,

where
� � � � � , � � < � ��
�� �� � ����� � � 
%��� � � < , � �� �

� G�	� � 
���� � � �
%� ��
�� ��G� ���4� �@� 
%��� � ��� � � . The

tuples � ��� �
� G�	� are ordered by major order on

�
and minor order on � .

Navigate Collection � � " G��� " G  !�� ��� � � � is similar to Navigate Unnest, except it places all

the extracted children of one input tuple into one single cell. Thus it outputs only one

single output tuple for each tuple in the input. For each tuple �����H� from � , it creates one

output tuple � ��� �4� , where � ��� ����� 
%��� � � �
%� ��
�� �� � ����� ��� 
���� � � . For an example see Figure

3.1.

Combine �� " G-� � � groups the content of all cells corresponding to 
%��� into one se-

quence (with duplicates). Given the input � with � tuples �����H� , � � � � � , Combine

outputs one tuple � ��� � � �-
 � , where � ��� � � 
���� � � 
 �
%&('�8)�� ����� � � 
���� � . Note that  � � �������

has only column 
%��� in its output XAT table.

Tagger � � " G! � � � constructs new XML nodes by applying the tagging pattern 
 to each

input tuple. A pattern 
 is a template of a valid XML fragment [26] with parameters being

column names, e.g., $ result ' $col2 $ /result ' . For each tuple ���4�H� from � , it creates

one output tuple � �� �4� , where � �� �4��� 
���� � contains the constructed XML node obtained by

evaluating the pattern 
 for the values in ���4� � .
XML Union

�� � " G
� " G �  � " G�� � � � is used to union multiple sequences into one sequence. For

each tuple ����� � from � , it creates one output tuple � �� ��� , where � ��� ���@� 
%��� � is a sequence

containing the members of the set �����=� � 
���� ��� � ���4� � � 
%����� � arranged in document order (un-

less that set contains constructed nodes, then the ordering is not defined). The other two
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XML set operators, XML Intersection
�� � " G
� " G �  � " G�� � � � and XML Difference

�I � " G
� " G �  � " G0� � � � ,

perform intersection and difference between two sequences and also arrange the result-

ing set in document order. Note that the operators XML Union, XML Intersection and

XML Difference perform set operations on columns in a single single XAT table, not on

multiple XAT tables.

Expose � � " G�� � � appears as a root node of an algebra tree. Its purpose is to output the

content of column 
%��� into XML data in textual format.

$b $col5$s6 $col3$b $col5$s6 $col3

$b$s6 $b$s6

$col2$col5$col3$b $col1$s6 $col2$col5$col3$b $col1$s6

$s6$s6

$b $col5$s6 $col3$b $col5$s6 $col3

$col5$col3$b $col2$s6 $col5$col3$b $col2$s6

$b$s6 $col3$b$s6 $col3

f $s6, /book
$b

S “bib.xml”
$s6

F$b, title
$col3

F$b, price/text()
$col5

T<cheap_book>$col3</cheap_book>
$col2

C $col2

T <result>$col2</ result >
$col1

bib.xml

s ($col5 < 60.0)

e$col1

view

Minimum Schema

$col5$col3$b $col2$s6 $col5$col3$b $col2$s6

Figure 3.3: Full and Minimum Schema for running example

By definition, all columns from the input table are retained in the output table of

an operator (except for the Combine operator), plus an additional one may be added.

Such schema of a table is called Full Schema (FS). However, not all the columns may

be utilized by operators higher in the algebra tree. Minimum Schema (MS) of the output

XAT table of an operator is defined as the subsequence of all columns, retaining only the
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columns needed later by the ancestors of that operator [31]. The process of determining

the Minimum Schema for the output XAT table of each operator in the algebra tree, called

Schema Cleanup, is described in [31].

The Full and the Minimum Schema for the running example view definition XQuery

are shown in Figure 3.3.

For two tuples in an XAT table, we define the expression �,� � �� �(� �,�%��� �%� to be �  ��H� if

the tuple �2� semantically should be ordered before the tuple �*� , �C� ���	� if � � is semantically

before �2� and �H� � � � ����� � if the order between the two tuples is irrelevant. For example,

for any two tuples in the output XAT table of the Distinct the relative order is undefined.

Similarly, for two XML nodes � � and ��� in the same cell in a tuple in an XAT table,

we define the expression �,� � �� �(��� �%������� to be �  ��H� if the node � � should semantically be

ordered before the node � � , �C� ���	� if ��� is before ��� and � � � � � ����� � if the order between

the two nodes is irrelevant. For example, let us consider any two XML nodes in the output

XAT table of the Combine algebra operator that are derived from two different tuples in

the input XAT table, when the  � � ������� operator takes as input the output of the � �/�+����� 
#�
operator. The order among the tuples in the output XAT table of the � �/�+���4� 
�� operator

is irrelevant, and the order among the nodes in the output XAT table of the  � � ����� �
operator reflects the order of the input tuples they derived from. Thus the relative order

among the any two XML nodes derived from different input tuples is undefined.
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Chapter 4

The VOX Approach for Maintaining

Order

4.1 Preserving Order in the Context of the XML Algebra

The requirement of preserving document order makes the maintenance of XML views

significantly different from the maintenance of relational views. We note that the basic

notion enabling efficient incremental maintenance of relational select-project-join views

is that such views are distributive with regard to the union. For example, for any two

relations � and � , any joining condition 
 and any delta set ��� of inserted tuples into � ,

the equation � � ����� � ��� � � � � ����� � � � � ������� � holds. Thus, when the relation �

is updated by inserting the delta set ��� , only the newly inserted tuples need to be joined

with the tuples in � , that is � ������� needs to be calculated. The updated view extent

can be obtained as union of the the view extent before the update � � ��� , and the newly

computed � � ����� . More generally, the distributiveness of the operators over different

operations is often exploited. Relational views that contain non-distributive operators are

maintained by performing selective recomputation [17], for example by recomputing only
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the set of groups affected by an update, or by maintaining auxiliary views derived from

the intermediate results of the view computation [16].

It is important to note here that with the requirement of maintaining the order among

the tuples, none of the XAT operators is distributive over any update operation, as due to

an update tuples may be inserted at arbitrary positions. For example, assume a new j-th

tuple ����� � is inserted in the input XAT table � of the operator Navigate Unnest. As a

result, a sequence of new zero or more XAT tuples � �� �
� G�	� may have to be inserted into

the output XAT table. However, these tuples must be placed after the tuples derived from

all �����H# , � $ �
and before the tuples derived from all ���4��� , � ' �

.

A similar issue arises due to the requirement of maintaining order among XML nodes

contained in a single cell. When insertions or deletions of XML nodes from a cell occur

as a result of an update, then they have to be done at specific positions. The essence of

this problem is the same as that for tuples in an XAT table, as again the new sequence

cannot be obtained as union (or difference) of the old sequence and the new member.

The two obvious solutions are: (1) relying on physical sequential storage medium that

allows for insertions or deletions at specified positions and that is always kept sorted, or

(2) consecutively numbering the XAT tuples and the members of sequences. For (1), the

tuples in a table and the nodes in a cell would be stored sequentially in correct order.

However, in most cases iterations over the tuples in the input or the output XAT tables

would have to be done for determining the correct position where the update should be

done. Also, such storage system that supports insertions and deletions at specific posi-

tions would have to be provided. For (2), insertions and deletions would lead to frequent

renumbering. Hence, these obvious solutions would not be practical, as both would re-

quire extra processing and distributiveness over update operations would again not be

achieved.

Thus an explicit order encoding technique suitable for both expressing the order
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among the XAT tuples and among XML nodes within one cell in the presence of up-

dates is needed. Such order encoding technique should allow for deriving updates to

the output given the updates to the input while minimizing the requirement for accessing

other information.

4.2 Techniques for Encoding XML Order

We observe that in most cases the order among the tuples in an XAT table (and among

nodes in a sequence) is dependent on the document order of the XML nodes present in

these tuples (cell). Hence, the concept of node identity can serve the dual purpose of

encoding order, if the node identity encodes the unique path of that node in the tree and

captures the order at each level along the path. We have thus considered techniques pro-

posed in the literature for encoding order in XML data in the presence of updates [23, 6].

The work in [23] proposes three encoding methods: (1) global order encoding, where each

node is assigned a globally unique number that represents the node’s absolute position in

the document, (2) local (sibling) ordering, where each node is assigned a locally unique

number that represents its relative position among its siblings and (3) Dewey ordering,

where each node is assigned a vector of numbers that represents the path from the docu-

ment’s root to that node. From these three techniques, only the Dewey ordering captures

the hierarchical structure among the nodes, but like the other two ordering encodings, it

also requires partial renumbering in the presence of inserts. Such renumbering is clearly

undesirable for view maintenance.

In [6] a lexicographical order encoding technique that does not require reordering on

updates is proposed. It is analogous to the Dewey ordering, except rather than using

numbers in the encoding, it uses variable length strings. First, for each document node a

variable length byte string key is assigned, such that lexicographical ordering of all sibling
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Figure 4.1: Lexicographical ordering of the XML document presented in Figure 1.1

nodes yields their relative document ordering. The identity of each node is then equal to

the concatenation of all keys of its ancestor nodes and of that node’s own key (see Figure

4.1 for example).

This encoding is well suited for our purpose of view maintenance for the following

reasons. It does not require reordering on updates, identifies a unique path from the root to

the node and embeds the relative order on each level. These order-reflecting node identity

encodings are called LexKey-s. We use the notation
� ��� � � to note that LexKey

� �
lexicographically precedes LexKey

� � .
The LexKeys node identity encoding for nodes in an XML document has the following

properties: If
� � and

� � are the LexKeys of nodes � � and ��� respectively, then:

�
� ��� � � if and only if ��� is before ��� in the document.

�
� � is a prefix of

� � if and only if ��� is an ancestor of � � .

For insertion and deletion of nodes the following properties hold:

� It is always possible to generate a LexKey for newly inserted nodes at any position

in the document without updating existing keys.

� The deletion of any node does not require modification of the LexKeys of other

existing nodes.
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Figure 4.2: LexKeys as references to source XML nodes

4.3 Using LexKeys in the Context of XML Algebra

We use LexKeys for encoding the node identities of all nodes in the source XML docu-

ment. That is, we assume that any given XML document used as source data has LexKeys

assigned to all of its nodes. For reducing redundant updates and avoiding duplicated stor-

age we only store references (that is LexKeys) in the XAT tables rather than actual XML

data. This is sufficient as the LexKeys serve as node identifiers and capture the order.

From here on, when saying a cell in a tuple we mean the LexKeys or the collection of

LexKeys stored in that cell. The actual XML data is stored only once in a shared storage,

called Storage Manager. Given a LexKey, the Storage Manger supports access to its value

and to its children nodes. Figure 4.2 illustrates the usage of LexKeys as references to

source XML nodes.

As LexKeys are references to the base data, they can be used for accessing that data
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when needed by ceratin operator. For example, the Select operator needs to access the

XML node values in order to evaluate a condition, and it does so by retrieving the needed

nodes referenced by the LexKeys in the tuple it is evaluating. Similarly, the Navigate

Collection operator shown in Figure 4.2, for processing the first tuple from the input,

retrieves the children of ���  which are of type title from the Storage Manger, and places

their LexKeys in the output XAT table.

We also use LexKeys to encode the node identity of any constructed nodes either in

intermediate states of the view algebra tree or in the final view extent. The LexKeys

assigned to constructed nodes are algebra-tree-wide unique. They can be reproduced by

the operator ( � ����� �" ) that created them initially based on information about the input

tuple they were derived from. Rather than instantiating the actual XML fragments in

our system, we only store a skeleton representing their structure in the Storage Manager,

and instead reference through LexKeys the other source data or constructed nodes that

are included in the newly constructed node, e.g., $ cheap book ' b.t.r $ � cheap book ' as

shown in Figure 4.3.

b.t.r

b.n.m

$col3

b.t.r

b.n.m

$col3

y.c

y.b

$col2

y.c

y.b

$col2

Constructed Nodes

SkeletonLexKey

y.b

y.c

cheap_book

b.t.r

cheap_book

b.n.m

T<cheap_book>$col3</cheap_book>
$col2

f $s6, /book
$b

S “bib.xml”
$s6

F$b, title
$col3

F$b, price/text()
$col5

T<cheap_book>$col3</cheap_book>
$col2

C $col2

T <result>$col2</ result >
$col1

bib.xml

s ($col5 < 60.0)

e$col1

view
Storage Manager

bib.xml
bib

book book

book

b

b.h

b.n

b.t

title
b.t.r

Figure 4.3: LexKeys as references to constructed XML nodes

24



In addition to the LexKeys described above, we also use LexKeys created as a com-

position of such keys. The purpose of this is for maintaining any order that is different

than the document order in sequences of XML nodes, as in more detail is explained in

Section 4.4.2. This follows the logic of treating keys as symbols and composing them

into higher-level keys. For example, the LexKey
� � � ��� 
 � � 
 � �	! is a composition of

the LexKeys
� � � � ��� 
4! and

� � � � 
 � �	! and “..” is used as delimiter. We denote this

by
� � 
�� � 
 � � �(� � �%� � �%� . Note that the way LexKeys are composed guarantees that

given two composed LexKeys,
� � � � � �/�#� � � � � � � and

� � � � � �*�%� � � � � ' � , it holds that:
� � � � ��� �&��E � � � � � � � �4� ��� � � ���#� > �&� � � � $ � �#� � ��# � � � �.#��@� � � ��� � � ��� �&��� �����:$
� � � � > �&� � � � � � �#� � ��# ��� � �.#-�&� . Basically the composed LexKey

� � precedes the

composed LexKey
� � in two cases: (1) if the first

� I �
LexKeys from which both

� � and
� � are composed are equal and the

� I �� LexKey from which
� � is composed precedes

the
� I �� LexKey from which

� � is composed, or (2) if
� � is composed of less LexKeys

than
� � and

� � is prefix of
� � .

4.4 Maintaining Order Using LexKeys

Our order encoding scheme using LexKeys as explained above allows for transforming

the XAT algebra from ordered bag to (unordered) bag semantics, as we will show bellow.

4.4.1 Maintaining Order Among XAT Tuples

The order among the tuples in an XAT table can now be determined by comparing the

LexKeys stored in cells corresponding to some of the columns. For example, consider

the tuples ��� � � ���  � � �  �. � and � � � � ����� � ����� � � � in the input XAT table of the operator

�
� � " G�����  	 � # � G * in Figure 4.5. Here �2� should be before �6� , that is �,� � �� �(� ���%��� ��� is true. This

can be deduced by comparing the LexKeys in �� � � � � and �6��� � � � lexicographically. We will
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show that this is not a coincidence. That is, the relative order among the tuples in an XAT

table is indeed encoded in the keys contained in certain columns and can be determined

by comparing those LexKeys. Such columns are said to compose the Order Schema of

the table.

Definition 4.1 The Order Schema � ��� � �-� ���#��� ��� � � � � � � ' � of an XAT table � in an

algebra tree is a sequence of column names � � # , � � � � � , computed following the

rules in Table 4.1 in a postorder traversal of the algebra tree.

We now formally define how two tuples are compared lexicographically.

Definition 4.2 For two tuples �2� and �6� from an XAT table � with � ��� � �-� ������� ��� � � � � � � ' � ,
the comparison operation � is defined by:

��� � � � � ��E � � � � �B� � �#���&� > ��� � � � $ � �#� ��� � � ��# ����� � ��� � �H# � ��� � � ��� � � � � � �
� ��� � � � � ���

The rules presented in Table 4.1 guarantee that cells corresponding to the Order

Schema never contain sequences, only single keys. The rules are derived from the se-

mantics of the operators and rely on the properties of the LexKeys.

For example, let us consider the rule for computing the Order Schema of the operator

Navigate Unnest
� � " G �� " G  !�� ��� � � � , when the column 
%��� is the last column in the Order Schema

of the input XAT table � . An example of such a case is presented in Figure 4.4. By

the semantics of this operator presented in Section 3.2, it processes one tuple at time.

However, it may produce zero or more tuples in its output XAT table � for each tuple

in � . The order of any two tuples in � derived from two different tuples in � should

be same as of those they derived from in � . For example, the order among the tuples

marked as
�

and � in the output XAT table in Figure 4.4 should correspond to the order
1The column �����	� � by definition is responsible for holding keys such that (I) and (II) hold.
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Cat. Operator ��� �������
	������������	�����	����� ������ �����
I !"

	���
	���$#%� 	���'& ����� ���)(
!*
	���
	���$#%� 	���'& �����
!+
	���
	���$#%� 	����& �����, 	 �����

� 	�����
!.-
$/0�1	

II 2 	��� ����� 34 	��� �5���6 	����7 #�898 :<; ���>=1?A@ABC�D �5�>=�EF�
III G 	 ���>=�EF� � � BIH (AJ# = � BIH (AJ& =.K$KLK � BIH (AJ-NM = � BIHPO

J# = � BIH�O J& =�KLK$K � BIH�O J- � �Q
GSR 	 ���>=1EF� TVU�WYX ��� ( X , T � WYX ��� O X

IV Z 	�����	����� ������ ����� � � B H (AJ#[= � B H (AJ&[=.K$KLK � B H (AJ� = � ��� � �
if � B H (AJ- W ����� then � W\T +^] , else � W_T .

V ` 	����7 #%898 :<; �5��� ( ����� � � ), �����	� � is new column1

VI a 	��� ����� N/A
* b W ��� ��c �d : ����� , ��� ( We� � B (# = � B (& =�KLK$K � B (

-
�

Table 4.1: Rules for computing Order Schema

of the tuples marked as
�

and � in the input XAT table in that figure, as the output tuples

marked as
�

and � are derived form the input tuples
�

and � correspondingly. The order

among two tuples derived from the same tuple in � should correspond to the document

order of the nodes present in their cells corresponding to 
���� � . In Figure 4.4, for example,

the output tuples marked as � and � are both derived from the input tuple marked as � .

Thus, the order between them should correspond to the relative document order between

the XML nodes referenced by � �0� �
�

and � �0� � � .
The corresponding rule from Table 4.1 specifies that the Order Schema of the output

XAT table � should be composed of all the columns that compose the Order Schema

of � except for 
%��� and of the newly produced column 
���� � . The column 
���� � should be

added as last column into the Order Schema of � . That is, 
%��� � subsumes 
%��� in terms of

ordering capabilities.
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Figure 4.4: Example of Order Schema computation for Navigate Unnest

For the example in Figure 4.4, that means that given that Order Schema of the input

� is � � � � � ��
� � �+� , the Order Schema of the output � should be � ��� � � ��
� ��
%���5+(� .
The column ��
%���5+ is added to capture the order among tuples derived from the same tuple

in � , as by the properties of the LexKeys, the LexKeys present in that column reflect the

document order of the nodes they reference. Also, by the properties of the LexKeys, all

the LexKeys contained in ��
%���5+ have the LexKeys from � � as prefixes. Thus column ��
%���5+
automatically captures the order references of the column � � , and thus column � � need no

longer be retained in the Order Schema of � .

Some of the rules presented in Table 4.1 can be further optimized, that is, they do

not necessarily produce the minimal Order Schema. In particular, for the operators Select

and Theta Join if any of the columns present in the selection or joining condition are not

in the Minimum Schema of the output XAT table � , and are last columns in sequence of

columns composing the Minimum Schema of the input XAT table � , they can be dropped

from the Order Schema of � even if they are present in the Order Schema of � .
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For any two tuples �2� and � � in any XAT table in an XAT algebra tree, if tuple �,� should

semantically be before tuple �8� , then the lexicographical comparison from Definition 4.2

of the tuples always yields ���� � � . And vice versa, if �2��� � � , then either �2� should really

semantically be before �8� or otherwise the order between these two tuples is irrelevant.

This means that the relative order among the tuples is correctly preserved in the Order

Schema, but the Order Schema may impose order among the tuples, when such order is

semantically irrelevant. In the following theorem, we state this observation more formally

and we prove its correctness.

Theorem 4.1 For every two tuples ��%�&� ��� � , where � is an XAT table in an XAT algebra

tree, with �� � �A �(� �2�%�&� ��� defined as in Section 3.2, (I) �� � �A �(� ��#��� �+��� � ����� � �+� , and (II)

� ����� � �+��� � �� � �� �(� ���%�&� ��� � � �� � �A �(� ���#��� �+� � �H� � � � ����� � �&� .
Proof: We prove (I) by induction over the height  of the algebra tree, i.e., the maximum

number of ancestors of any leaf node. To simplify the proof, we consider any algebra tree

even if it does not have an � �,
 � �	� operator as a root, i.e., a superset of what is necessary.

Base Case: For  � ! , the algebra tree has a single operator node, which is both a

root and a leaf. That node must be a
� ���  �
 � operator, as each leaf in a valid XAT algebra

tree is a
� ��  �
,� operator. As the input of

� ��  �
,� is an XML document, the output XAT

table is the only table in the tree. Since the
� ���  �
 � operator outputs only one tuple � , the

expression �� � �� �(� �#�&� � is never true. Thus the theorem trivially holds.

Induction Hypothesis: For every two tuples ��%��� ��� � , where � is any XAT table in

an XAT algebra tree with height � , ��� � �  , it is true that �,� � �� �(� ��%��� �+��� � ��� � � �+� .
Induction Step: We now consider an XAT algebra tree of height �� �

. Let � 
 be the

operator at the root of such algebra tree. All children nodes of the root must themselves

be roots of algebra trees each of a height not exceeding  . By the induction hypothesis, (I)

must hold for all XAT tables in those algebra trees. Thus, (I) holds for all the XAT table(s)
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that are sources for the operator � 
 . It is only left to show that �� � �A �(� �,�%��� ����� � ����� � �+�
holds for any two tuples �2� and � � in the output XAT table � of the operator � 
 .
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Figure 4.5: Order Schema computation example

The operator ��� can be any XAT operator, excluding the �������
	�� operator, as ��������

and �������
	�� can only appear as a leaf node in an XAT algebra tree. We proceed by

inspecting the different cases depending on the type of the operator ��� , following the

classification presented in Table 4.1.

Category I. These operators process one tuple at a time, without requiring to access

other tuples nor modifying the order among the tuples. Moreover, for each tuple in the

input table they produce exactly one tuple in the output table, except for the ��������	�� , which

may filter out some tuples. The later is not of significance, as only the relative order

among tuples is addressed in this theorem. Hence, if the theorem holds for the tuples in

their input XAT table � and ����� �!�"�$# , it must also hold for the tuples in their output

XAT table % .
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To prove that formally, we consider any two tuples � ��� �,� , � ��� � ��� � . Let ������� , ���4���
� � , such that � ��� ��� derived from ������� and � �� � � derived from ���4� � . By the induc-

tion hypothesis, (I) holds for any two tuples in � , hence also for ����� � and ������� . As

�� � �A �(� �������%�&�������+� � �� � �A �(� � ��� ���%��� �� � ��� , in order to prove �� � �A �(� � �� ������ ��� � ��� �
� � �� ��� � � �� � ��� we only need to show that � ���4� � � �������+� � � � �� ��� � � �� � ��� .

As the operators considered do not modify any values in the columns retained from

the input tuple, but may only append new columns, it holds that �?> ��� � � � � < � � � < �
� � �� ��� � � �H# � ��� ����� ��� � ��# � � . Therefore, by Definition 4.2, we have � ����� � � ���4���+� �
� � �� ��� � � �� � ��� .

Category II. For the operator  � � �#�4� � , there is at most one tuple in the output XAT

table. Hence the reasoning is same as presented for the operator
� ���  �
 � in the proof for

the base case. The operator � �/�+���4� 
�� by definition outputs an unordered XAT table � .

Hence for any two tuples �2�#��� ��� � , �� � �A �(� ���%��� ��� � � � � � � ��� � � . Thus the left hand side

of (I) is never �  ��H� , so (I) trivially holds.

Category III. All the operators in this category belong the Join family of operators

and regarding order have the same behavior. Their output is sorted by the left input table

� as major order and the right table
�

as minor order ( see Section 3.2). Consider any

two tuples � ��� �2� and � �� �6� from the output XAT table � . Let � �� �2� be derived from �����
� � 	�

and ���4�
��� 	� and � ��� � � be derived from ���4�

� � 	� and �����
��� 	� , where �����

� � 	� �&�����
� � 	� � � and

�����
��� 	� �����4�

��� 	� � �
. Thus, by the definition of these operators: �� � �A �(� � ��� ��#��� �� � �%� �

�� � �A �(� �����
� � 	� �������

� � 	� � � ��� ���4�
� � 	� � �����

� � 	� �/� �� � �A �(� �����
��� 	� �������

��� 	� ��� . Note that for the
� � � � � � �6�" �� ���� operator there could exist zero to many output tuples that are not derived

from any tuple in
�

. But, as there could be at most one such tuple derived from each tuple

in � , the above statement is still valid.

There are two cases: (1) �����
� � 	� and �����

� � 	� are two different tuples from � , or (2) both

� �� ��� and � �� � � are derived from the same tuple ���4� � � 	 , i.e., �����
� � 	� � �����

� � 	� � ����� � � 	 .

31



For case (1) it holds that �� � �A �(� � �� �2�#�&� ��� � ��� � �� � �A �(� �����
� � 	� �������

� � 	� � . Hence, this

case can be easily reduced to that for the operators in Category I.

For case (2), when �����
� � 	� � �����

� � 	� � ���4� � � 	 , as �� � �A �(� � ��� ���%��� �� � �%� �

�� � �A �(� �����
��� 	� �������

��� 	� � and by the induction hypothesis �� � �� �(� ���4�
��� 	� �����4�

��� 	� � �

� ���4�
��� 	� � �����

��� 	� � , in order to prove �,� � �� �(� � �� �2�#��� �� � �%� � � � �� ��� � � ��� � ��� , it is

sufficient to show � ���4�
��� 	� � ���4�

��� 	� � � � � ��� ��� � � ��� � ��� . By the rules in Table 4.1,

the Order Schema of � contains all the columns from the Order Schema of � , fol-

lowed by all the columns from the Order Schema of
�

. As the operators considered

do not modify any values in the columns retained from the input tuples, it holds that

� > �&� � � � � < � � � < �#��� � �� ����� � �
� � 	# ����� ���4� � � 	 � � �

� � 	# � �B� � � ��� � �A� � �
� � 	# �H��� ���4� � � 	 � � �

� � 	# � �&�
and �?> � � � � � � < � � � < �%��� � ��� ��� � � �

��� 	# � ��� �����
��� 	� � � �

��� 	# � �>� � � ��� � �A� � �
��� 	# � ���

�����
��� 	� � � �

��� 	# � �&� . Thus, � > �&� � � � � < � ��� < �%� � �� ��� � � �
� � 	# ����� � ��� � �A� � �

� � 	# � � and then

by Definition 4.2 � �����
��� 	� � ���4�

��� 	� ��� � � �� ����� � �� � �+� .
Category IV. The operator Navigate Unnest

� � " G �� " G  !�� ��� � � � by its definition presented in

Section 3.2 processes one tuple at time. However, it may produce zero or more tuples in

its output XAT table � for each tuple in � . Consider any two tuples � ��� �,� and � �� � � from

� . There are two cases: (1) Both � ��� �� and � ��� � � are derived from the same tuple ����� , or

(2) � �� ��� is derived from ���4� � and � ��� � � is derived from ������� , ����� ���� ���4��� .
For case (1), let ��� and �?� be indexes such that � ��� �2� � 
���� � � � � ��
�� ���� ���4� � 
���� � �4� ��� �

and � �� � �A� 
%��� � � � � ��
�� �� � ���4� � 
���� � �4� �?� � . As � ��� $ �?�+� � �,� � �� �(� � �� ���%��� ��� � ��� , in order

to prove �,� � �� �(� � �� �2�%��� �� � ��� � � � �� ��� � � �� � �%� , it is sufficient to show � �4� $ ���+� �
� � �� ��� � � �� � �+� . Suppose ��� $ �?� . Then, due to the properties of the LexKeys we have

� �� ����� 
%��� � � � � �� � �A� 
���� � � . By the rule in Table 4.1, 
���� � is now part of the Order Schema

for the output table � . The fact that � �� �� and � ��� � � are derived from the same tuple ���4�
implies that � > �&� � � 
 �%� � �� �2� � � ��# ��� � � �� � ��� � ��# � � , with 
 the maximum index of the

Order Schema (basically the new column) as defined in Table 4.1. Thus, by Definition
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4.2, � � � � 
���� and � �� ����� � ��� � � .
For case (2), because �� � �A �(� �������+�&�������%� � �� � �A �(� � ��� ���%��� �� � ��� and by the

induction hypothesis �� � �A �(� ����� �������4����� � � ������� � ���4��� � , in order to prove

�� � �A �(� � ��� ���#��� �� � ��� � � � �� ��� � � �� � ��� , it is sufficient to show � ������� � ���4���+� �
� � �� ��� � � �� � ��� . Suppose ������� � ���4��� . Thus a

�
as specified in Definition 4.2 must

exist. There are two sub-cases: (2.a)
� � 
 , and (2.b)

� 'G
 , with 
 as in Table 4.1. Case

(2.a) can be easily reduced to that for the operators in Category I, as the cells correspond-

ing to all the
�

columns belonging to the Order Schema from ���4� � ( ���4��� ) are present in an

unmodified format in � ��� �2� ( � ��� � � ).
For (2.b), when � � '�
 � , it must be that 
 � � I �

(which also implies � � '
�


%��� ) and
� � � by the rules in Table 4.1. This is because ���4� � � ������� , and thus they

must differ on cells corresponding to columns that are in the Order Schema of the input

XAT table, but are not retained in the output XAT table. Thus, ���4� ��� 
%��� � � ��������� 
%��� � .
The two output tuples � ��� �2� and � �� � � on the other hand differ only in the keys in their

cells corresponding to 
%��� � . By the definition of the Navigate Unnest (see Section 3.2):

��E����%�����8' !(� < � � ��� ���4� 
%��� � �A� � ��
�� �� � ����� ��� 
%��� � ��� ��� � � , and ��E��?� �����<' ! � < � � �� � �A� 
���� � � �
� ��
�� �� � ��������� 
%��� � ��� �?� � � . As the LexKey assigned to a node always has the keys of all its

ancestors as prefixes, � �� �2� � 
%��� � � has the key in ��������� 
%��� � as prefix and � �� � �A� 
%��� � � has the

key in ��������� 
���� � as prefix. Therefore ���4� ��� 
���� � � ��������� 
%��� � � � �� ��� � 
���� � � � � ��� � ��� 
���� � � and

consequentially � ���4� � � �������+��� � � �� ��� � � �� � �+� .
Category V. The theorem holds by definition.

Category VI. If �4
 is the operator � �,
 � �	� , the theorem has been proven. The � �,
 � �	�
outputs an XAT document rather then an XAT table. Thus all the XAT tables in the algebra

tree have already been covered.

We have shown that (I) holds for the output XAT table of the operator � 
 , when �4
 is

any operator and thus completed the proof for (I). Using that result, we can easily prove
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(II), that when � �2� � � �+� either �� � �A �(� �2����� �+� is �  ��H� or the order between the tuples is

irrelevant. Suppose the opposite holds, that there exist two tuples � � and � � in an XAT

table in the algebra tree such that � �� � � �%� � �� � �A �(� � � ������� . By (I), which has been

proven, �� � �� �(� � � ����� ��� � � � ��� . But � � � ��� and ����� � � cannot be true simultaneously,

and thus we get a contradiction. �

Theorem 4.1 shows that the relative position among the tuples in an XAT table is cor-

rectly preserved by the cells in the Order Schema of that table. This enables more efficient

order-sensitive view maintenance because for most operators insertions and deletions of

tuples in their output XAT table can be performed without accessing other tuples, nor

performing any reordering.

Note that all columns contained in the Order Schema of any table are also contained

in the Full Schema of that table, except for the column in the Order Schema of the output

table of the Order By operator. Thus, no extra computation is needed for evaluating the

Order Schema. Moreover, they are often present even in the Minimum Schema. The order

among the tuples in the output XAT table of the Order By operator depends on the values

present in the tuples. Thus it is not captured by any of the LexKeys present in the tuple

and we explicitly encode it a new column created for the purpose of encoding the order.

The schema composed of all the columns present in the Minimum Schema (as defined

in Section 3.2) or in the Order Schema (as per Definition 4.1) for an XAT table � is called

the Real Schema (RS) of � . The Real Schema of an XAT table is the schema assumed

for that table for view maintenance. The Real Schema for each XAT table present in the

running example is composed of all the columns shown for each table in Figure 4.5.

4.4.2 Maintaining Order in Sequences of XML Nodes

For sequences of XML nodes contained in a single cell that have to be in document order,

as those created by the XML Union, XML Difference, XML Intersection and Navigate
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Collection, the LexKeys representing the nodes accurately reflect their order. This is due

to the fact that the LexKeys capture the correct document order among the base data XML

nodes and the semantics of these operators does not specify the order among constructed

nodes. However, the  � � ������� algebra operator creates a sequence of XML nodes that

are not necessarily in document order and whose relative position depends on the relative

position of the tuples in the input XAT table that they originated from. Thus it may be

different from the order captured by the node identity LexKeys of these XML nodes. We

thus must provide a different scheme of maintaining this order.

function ����� ���	��
 (Sequence
�	�

, Tuple � , ColumnName ���� )
Sequence ����������������� �����
if ( ��������! �#" �%$ 2, &(' �#)+* �, � * )

for all - in �����
-�./��0 
2131��546�	��7 � 1849
:1 �;�����<���3= 
 �%>@?BA�C � � � ��D:.E.EDF>@?BA�C � # � � �

else if ( ����HGI �! � )
for all - in �����

-�./��0 
2131��546�	��7 � 1849
:1 �J�%>K?BA�C � � � �LD:.E.EDF>@?BA�C � ' � ��D��
134M
:1 �N- �O� , �P� * �, � *

return ���Q�

Figure 4.6: The function combine

To represent an order that is different than the one encoded in the LexKey
�

serving

as the node identity of the node, we attach an additional LexKey to
�

(called Overriding

Order) which reflects the node’s proper order. We denote that as
�
� �SR �" � ��-� �4� � �  �� �" and

we use �A �� �" � � � to refer to the order represented by
�

. When the LexKey
�

has overrid-

ing order
� " it is denoted as

� � � " � . If the overriding order of
�

is set, then �� �� �" �� � � �
�
� �SR �" � ��-�(��� � �2 �� �" , otherwise �A �� �" � � � � �

. When comparing lexicographically two

LexKeys
� � and

� � , �A �� �" � � � � and �A �� �" � � �%� are really being compared. Thus
� � � � � is

equivalent to �A �� �" � � ��� � �� �� �" �� � �%� .
The  � � ����� � operator sets the overriding order to the LexKeys that it places in its

2 ���)( , the Order Schema of the input XAT table � , is known to the 2 � TUTWV B�X operator performing the
��� TUTWV B�X function.
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Figure 4.7: Example of setting overriding order by Combine

output XAT table, as described in Figure 4.6. Thus, assuming that the input � contains


 tuples ���4� � , � � �:� 
 , then the output of  � � ���4� � �� " G-� � � can now be denoted as

 � " G � � � � � �� � � � & ! �8)�� 
�� � ����� �(� ����� �,� 
%��� � �����4� ���
�������� .
How  � � ���4� �  � " G-� � � sets the overriding order depends on the presence of the col-

umn 
���� in the Order Schema � � �
of the input XAT table � . For example, let us consider

the case when the column 
���� is not part of the Order Schema of � . Such a case is pre-

sented in Figure 4.7. Then the overriding order should capture the complete tuple order

encoded in all the cells corresponding to the Order Schema. Thus the overriding order of

the LexKeys in the output XAT table is composed of the order references present in all

columns in the Order Schema of the input. In the example in Figure 4.7, � � is the only

column in the Order Schema of the input. Thus, when the input XML node referenced by

� � � is placed in the output XAT table it gets overriding order equal to the order represented

by the LexKey present in column � � in the tuple it derived from, that is ��� � . Thus � � � after

being processed by  � � �#�4� � becomes � � ��� ��� � � .
The XML set operators XML Union, XML Difference, XML Intersection remove the

overriding order (if present) of the node identity LexKeys that they place in their output

XAT tables, as by definition (see Section 3.2) they produce a column in which the nodes
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are in document order.

Theorem 4.2 Let
� ��� �2� and

� �� �6� be two LexKeys in the output XAT table of an operator

 � � �������  � " G � � � , with their overriding order set as described in Figure 4.6. Let these

LexKeys serve as node identities of the XML nodes � � and ��� respectively. Then with

�� � �A �(�����%������� defined as in Section 3.2, �� � �A �(��� �%�����+� � � � ��� ��� � � ��� � ��� , and (II)

� � ��� ����� � ��� � ����� � �� � �A �(�����%������� � � �,� � �� �(��� �#�����+� � �H� � � � ����� � �&� .
Proof: For proving (I), we inspect the possible cases depending on the presence of the

column 
%��� in the Order Schema � ���
of the input XAT table � : (1) 
���� � � � � � ��� , (2)


%��� � � � � � � � , � $ � � < � � � < , or (3) 
%��� �� � � �
.

Let
� �4��� and

� ����� be the LexKeys from which
� �� �2� and

� �� � � are derived. Thus both
� �4��� and

� ��� ��� (
� ����� and

� �� �6� ) are node identities for � � ( ��� ), but may have different

overriding order. Let �2� and �6� be the tuples in � such that
� ��� � � ����� 
%��� � and

� �4��� �
� ��� 
���� � .

For both case (1) and case (2), when the column 
%��� is part of the Order Schema of

� , it must be that
� ����� � ����� 
%��� � and

� �4��� � � ��� 
%��� � , as cells corresponding to the Order

Schema never contain sequences, only single keys.

For case (1), we observe that �,� � �� �(��� �%������� can only hold if �2��� 
���� � � � ��� 
%��� � . The

function 
%� � ������� does not modify the overriding order in this case, thus
� ��� � � � � �� � � .

Note that if �2� � � � but �2��� 
%��� � � � �A� 
���� � does not hold, then by Definition 4.2 it must be

that ����� 
%��� ����� � ��� 
���� � . In such case
� ����� ��� � ����� implying

� �� ��� ��� � �� � � , which in

turn yields ��� ��� ��� . Hence, in such case the order between � � and ��� is irrelevant.

Similarly, for case (2), given that the Order Schema of � is � � � � �-� ������� ��� � � � � � � ' � ,
�� � �A �(�����%������� can only hold if ��E � � �A� �C� ���#�����?> ��� � � � $ � �%� �2� � � �H# � ��� � ��� � ��# � �&�1�
� ����� � � � � � � �A� � � � � �&� . As shown in Figure 4.6, the function 
%� � ���4� � sets the overriding

order of
� ��� ��� and

� �� �6� as a concatenation of all �2��� � � � � and � ��� � � � � respectively,
� �

�:� � . Thus, �� � �� �(�����%������� � � � ��� ��� � � �� � �%� . Again, if �2� � � � but � > �&� ��� � �

37



���%� ����� � ��# �D��� � ��� � �H# � � , then as
� ����� ��� � ����� , and � � ����� ��� � �4���+� � � � ��� ��� ���

� �� � ����� ����� � � ����� , the order between � � and ��� is irrelevant.

For case (3), the column 
���� may also hold sequences of XML nodes. Therefore,

there are two subcases: (3.a)
� ��� � and

� ����� are in the same tuple � , i.e., �� � � � � � , or

(3.b) �2� and � � are two different tuples. For case (3.a), �A �� �" � � �� �,��� and �� �� �" �� � �� � �#�
are composed of the same keys except for the last key that represents the order of

� ��� �
and

� ����� within the collection contained in � � 
���� � . As in this case �� � �A �(��� �%������� for

��� and ��� in the output XAT table may only hold when it holds for � � and ��� in the

input XAT table, the overriding order is correctly set. For case (3.b), �� � �A �(� � �%��� �%� �

�� � �A �(�����%������� , as illustrated in Figure 4.7. As the overriding order of
� �� �,� and

� ��� � �
is composed of all the keys corresponding to the Order Schema in � � and �6� respectively,

�� � �A �(� ���%��� ��� � � � �� ��� � � ��� � ��� . By transitivity, �� � �� �(� ���%��� ��� � �� � �� �(��� �%�����%� and

�� � �A �(� ���%��� ����� � � �� ����� � �� � ��� imply �� � �A �(�����%�����+��� � � ��� ����� � ��� � �+� .
We have proven (I) for all the cases. Using that result, (II) can be proven by contra-

diction, using the same arguments used for proving (II) in Theorem 4.1. �

4.4.3 Migration of XML Algebra to (Non-Ordered) Bag Semantics

We can thus conclude that the technique of encoding order with LexKeys enables mi-

gration of the XAT algebra semantics from ordered bag semantics to (non-ordered) bag

semantics. That is, (1) the physical order among the tuples is no longer of significance

and (2) the physical order among the nodes in a cell is not of significance.

Figure 4.8 illustrates the execution of the running example XQuery using LexKeys as

references and for encoding order. It shows all the intermediate results and the content of

the Storage Manager.

The execution starts at the
� ��E �
,� operator at the bottom of the algebra tree, which

gets the LexKey � representing the XML document ������� ��� � from the Storage Manager
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Figure 4.8: Reference-based execution for running example

and places it in its output XAT table. This table now becomes input for the operator
� ���� $��� 	 � "�" � , which extracts the book elements that are children of the nodes in column

� � ) . The node identified by � is the only such node, thus the LexKeys of its children of

type �#��� � are retrieved from the Storage Manager and placed in the output XAT table

of
� ���� $��� 	 � "�" � . Next, the �

� � " G ����  � # � G * processes the input tuples extracting the title elements.

Note that the order in which the input tuples are processed and the output is generated is

irrelevant, as the order is preserved in the Order Schema of that table, that is the LexKeys

in column � � in this case. The next operator �
� � " G�����  	 ! ) # � *�	 � * � � � 	 extracts the prices from the
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nodes present in � � . The second book does not have a price, thus the content of the

cell corresponding to ��
%���5+ of the respective output tuple is empty. In order to evaluate

the selection condition, the
� � ��� 
�� operator retrieves the values of the nodes identified

by the LexKeys present in ��
%����+ , over which the selection condition is specified. Only

the book with price � ��- �.-,+ passes the selection condition, thus only one tuple is output.

Next, the title of this book is tagged and the newly constructed node is passed to the

Storage Manager along with the LexKey � � � assigned to it by the � ����� �" operator. This

LexKeys is tree-wide unique, serves as reference to the node, but does not encode order.

The  � � ����� � operator sets the overriding order of � � � to reflect the order of the tuple it

derived from. The next � ����� �" tags this node, creating the node identified by � , which is

also passed to the Storage Manager.

The result of the XQuery is obtained by dereferencing the LexKey � . First, the skele-

ton of the constructed node identified by � is retrieved and then the LexKeys contained in

that skeleton are dereferenced. The process continues recursively, and finally the resulting

XML document is obtained. Generally, the dereferencing may require partial reordering

of sibling LexKeys that are children of the same constructed node based on their order.

However, in this example that is not the case, thus no reordering is needed.

40



Chapter 5

Rules for Incremental Maintenance of

XML Views

5.1 Update Operations and Format of the Delta

When an update XQuery is being applied to one of the input sources, a sequence of

XML updates as presented in Table 5.1 is produced by the XQuery processor. Each

such update is then applied to the document. Note that an insertion or deletion of a

complex element is specified as a single XML update. For the position parameter 
 � �
to which an XML update refersto, rather then including integer ordering positions (as

specified in the definition of position in Section 3.1), the LexKeys of the correspond-

ing nodes are given. The LexKey
�

represents the root element of the document af-

fected by the update. As illustration, the update presented in Figure 1.2 is specified

as
� ���	�" ���� ����� � � � �#��� � � � �0� � ��
� ���
,�	� � �0� � � � � �+� which corresponds to

� ��  �  -  � "�" ��� �  ��� 	 ! ) # � * � �  �  - � �
when using the shorter notation introduced in Table 5.1.

We also define a set of update operations over XAT tables, referred to as � � � � � . The

format of the � � � � � , that is, the set of possible intermediate updates on XAT tables is
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Update Operation Description Notation
Insert (n, pos, k) Insert node with LexKey B at position � ���

starting at
�

into node with LexKey
� 4��: � � ��� �

Delete (n, pos, k) Delete node with LexKey B at position � ���
starting at

�
from node with LexKey

� 4��: � � ��� �
Replace(new, pos, k) Replace value at position � ��� starting at

�
with B�X	� from node with LexKey

� 4
M� �
�1� :��� �

Table 5.1: XML update operations (
���

)

described in Table 5.2. The intermediate XAT updates specify modifications of an XAT

table, whereas the intermediate XML updates only carry information that a node refer-

enced by the specified LexKey has been modified.

All the intermediate updates except for � � need to specify the tuple(s) to which the

update applies, that is which tuple(s) have to be deleted or modified. A popular approach

in relational view maintenance work is for the update to specify the full tuple to which the

update applies. In the context of the XML algebra this is not necessarily the best choice,

as often recomputation would have to be performed for that purpose. For example, for

the Combine operator to meet such a requirement of being able to completely specify a

tuple, the  � � �#�4� � would either have to perform full recomputation for each update it

produces, or have its output XAT table materialized, because it always outputs only one

tuple derived from all the tuples in the input. In both cases it would have to propagate the

entire content of its output XAT table each time.

Intermediate XAT Updates
@I���V��� Insertion of tuples �V� into XAT table R � :����� �����V�
@I���V��� Deletion of tuples �V� from XAT table R � :����� � .+ �e�
@I����� � = � ��� =��%V�� � Insertion of LexKeys into the cell ��� ������� , ��� ������� :����� ��� � ��� � ����� �

�%V�� identifies the tuple � 1

@I����� � = � ��� =��%V�� � Deletion of LexKeys from the cell ��� ����� � , ��� ������� :����� ��� � ��� � .+ ��� �
�%V�� identifies the tuple �

Intermediate XML Updates
@I� 4 � = ����� =
�%V�� � Modification of LexKey

�
in cell ��� ����� � by

4 �
, where4 �

is any updates from Table 5.1, �%V�� identifies tuple �
Table 5.2: The format of the intermediate updates

1In this section, we consistently use � for the tuple identified by �%V�� .
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We thus instead choose to assign to each tuple � in each XAT table � an integer

identifier, tid, unique within that table. Thus, even though here we use � � to represent

the deleted tuples, the actual update in fact only carries the ����� -s of the deleted tuples.

Given an XAT table � , the function � � � �+� � �,
 ���(� ���-��� returns the tuple � identified by

tuple id ����� .

5.2 Update Propagation Algorithm

We augment each algebra operator with incremental propagation functionality in addition

to its primary computation functionality needed for query execution. The view main-

tenance process is triggered by an XML update as in specified in Table 5.1. Our update

propagation algorithm performs a bottom-up postorder traversal of the tree, invoking each

operator with a sequence of zero or more updates. The
� ��  �
,� operator accessing the up-

dated XML document is invoked first with the sequence of XML updates resulting from

the update XQuery2. The
� ��  �
,� operator then translates the update into an intermediate

update (Table 5.2). From there onwards, each operator in the algebra tree, processes one

intermediate update at a time and translates it into a sequence of zero or more intermedi-

ate output updates. After the node has processed the entire sequence of its input updates,

it outputs the sequence of updates it has generated. Due to the post-order traversal, each

node processes the updates only after all of its children have processed their updates first.

After all nodes have been visited at most once the view is refreshed.

Figure 5.1 gives an overall illustration of the update propagation process.

Below we define update propagation rules for pairs of each algebra operator and each

type of update. Some operators can process any update without requiring any auxiliary

information beyond the input update notification (the � � � � � ). But for certain operators,
2If the algebra tree contains more � � @AU � X operators accessing the updated XML document, then they

are invoked in a postorder manner.

43



XML Source XML Source XML Source

XML ViewUpdateUpdate

XAT

Intermediate

updates

dkdk

Storage ManagerRainbow

Update

XQuery

Figure 5.1: Update propagation illustration

the output delta cannot always be calculated using only the input delta, but additional

auxiliary information is required, in particular subsets of either the respective input or

output XAT tables. In this case our system stores the needed columns of the input or

the output XAT tables extracted from the intermediate results of the initial computation

of the view extent as auxiliary views. That is, these extra (partial) XAT tables kept as

auxiliary views now must be also incrementally maintained. These auxiliary views only

store LexKeys, thus are compact. Each column in an XAT table is materialized if and only

if its materialization is required by at least one of the operators having that XAT table as

input or output.

While propagating an update, the operators may also access XML nodes that are part

of an inserted (deleted) complex element. In such case, the operators request the children

(or the value) of an inserted (deleted) node.

The operators need to be able to identify the respective output tuples affected by an
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update or a delete of an input tuple. By associating parent-child relationships between

the tuples in the input table � and the tuples in the output XAT table � we are always

able to identify the ����� of the output tuple(s) given the ���-� of the input tuple that they

are derived from. We denote that as � � � �+� � �" ��5R � � � ������� . For the operators that for each

tuple in � produce at most one tuple in � , such as
� � ��� 
#� for example, the tid of any

output tuple always corresponds to the tid of the input tuple it derived from, that is ���-� �

� � � �+� � �" �� R � � � ���-� � . For such operators, the parent-child relationship is implicit and is not

explicitly kept. For the operators which may produce several output tuples corresponding

to one input tuple (the Join family of operators and Navigate Unnest) we maintain an

index of tuple parent-child relationships. This index is created at the same time as when

the auxiliary views are created, that is while initially evaluating the view extent, and is

stored as part of the corresponding XAT table. The tuple parent-child relationship is not

meaningful for the operators Combine, Source and Expose. Combine produces only one

output tuple derived from all the tuples in the input XAT table. Since tuple identifiers are

only unique within an XAT table, we always assign it tid = 1. The Source operator does

not have an input XAT table. The Expose operator does not have an output XAT table.

5.3 Propagation Rules for Individual Operators

Our mechanism of encoding order using LexKeys empowers most XAT operators to be-

come distributive over update operations. For example, for operators with only one input

that means that (1) the result after the modification can be obtained by performing bag

union or difference of the old result and the computed delta, and (2) the output delta can

be computed using only the update, without requiring extra information beyond the input

update.

When the view maintenance process is triggered by an XML update
���

over the XML
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document ��� � � ��
 , the respective
� ��  �
,� operator

� � " G �� ' G � " � translates it into � � ��� ��
%��� � � � � .
From there on, only intermediate (XAT and XML) updates are propagated, thus the rules

below are defined for such updates.

5.3.1 Propagation of Updates through XAT SQL Operators

The migration from ordered bag semantics to bag semantics makes our XAT SQL opera-

tors equivalent to their relational counterparts, i.e., relational bag algebra [8, 19]. We can

now adopt the update propagation rules for those SQL-like operators from the respective

relational view maintenance work ([8], [19]). Thus we do not discuss them further.

5.3.2 Propagation of Updates through XAT XML Operators

Propagating Insertions and Deletions of Tuples

All XAT XML operators become distributive over insertions and deletions of tuples. In

particular, if �4
 is any of the operators: Tagger, Navigate Collection, Navigate Unnest,

XML Union, XML Intersect or XML Difference, the following propagation equations hold:

�4
 " � �# � � � & � � � � � 
 " � �# � � � � & � 
 " � �# � ��� � � , and

�4
 " � �# � � � .I � � � � � 
 " � �# � � � � .I � 
 " � �# � ��� � � .
The Combine operator has the equivalent property, but at the cell level. Let � �� � " G + �

�-
 " G + � and � ��� � � * , � � 
 �+*-, � denote the results of �� " G-� � � and  � " G � � �+*-, � correspondingly.

Then:

 � " G-� � & � � � � � �� � �+*-, � �-
 � * , � � ��� � " G  � " G-� � � & � � " G  � " G ��� � �&� �

�-
 " G + & � � " G  � " G ��� � ��� , and

 � " G-� � .I � � � � � �� � � *-, � �-
 � * , � � ��� � " G  � " G � � � .I � � " G  � " G-��� � �&� �

�-
 " G + .I � � " G  � " G ��� � ��� .
These propagation equations are derived directly from the semantics of the operators
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defined in Section 3.2, when the order among tuples and nodes is explicitly maintained.

The propagation rules for the XML operators on insertions and deletions of tuples can

be directly deduced from these maintenance equations. For example, if the output of an
� � " G �� " G  !�� ��� � � � is denoted as � � � � " G �� " G  !�� ��� � � � , then for an input update � ��� � � , the operator
� � " G �� " G  !�� ��� � � � propagates � ��� � � , where � � � � � " G �� " G  !�� ��� ��� � � .

Propagating Insertions and Deletions of LexKeys in a Cell

Operator Propagate Info Accessed
@I��� b ��X'��� � ��� � b �

Z 	���'�	���P� � �%�� �5��� ����� � B � � � � X � B��W ����� � �%� � � � � B � W ��� � B � ��� �
��� B � Z � �
	 ���� ��� � ���%����� � � � � b �%� � � � ����� � � W BC���	�����	����� ������ �5��� @I����� � � = ����� � =��%V�� � X ��� ��� W Z � ��	 ���� ��� � � none
��� � ��	 ��� X Z � � ��	 ���� � � W � ��� �%���AB � ��� � � none� 	������ �5��� @I� 4 �: � �1������ � � = �����	� =
�%V � �� � is the key reproduced from �%V��

2 	��� ����� @I����� � � = ����� = ] ��X � � ��� W ��� T TOV B�X � � � � =
��= ����� � ��� � B � ��� ( ����� � B �
!"
	�����
	���$#%� 	����& ����� 3 @I����� � � = ����� =
�%V�� ��X ��� ��� W��.B X$� B � ��� � ��� ��� ����� ] � =
��� ������� �

� B��� ��� ����� ] � ��� � B��� ��� ������� � ���
!*
	�����
	���$#%� 	����& ����� @I����� � � = ����� =
�%V�� ��X ��� ��� W��.B X$� B � ��� � ���

��� ����� W � ��� ] ��� ��B��� ��� ����� ] � ��� � B � ��� ������� � ����� ��� ����� ] � =
��� ������� �
��� ����� W � ����� ��� ��B � ��� ����� ] � ��� � B��� ��� ������� � �����

!+
	�����
	���$#�� 	����& ����� if (col=col1)

@I����� � � = ����� =
�%V�� ��X ��� ��� W��.B X$� B � ��� � ���
� B��� ��� ����� ] � ��� � B��� ��� ������� � ��� ��� ����� ] � =
��� ������� �
if (col=col2)
@I����� � � = ����� =
�%V�� ��X ��� ��� W��.B X$� B � ��� � ���
� B � ��� ����� ] � ��� � B��� ��� ������� � ���

Table 5.3: Propagation rules for �����	��
��
�������������� for XAT XML operators

The rules for propagating ����� � 
��
�������������� when 
%��� is among the input columns of the

corresponding operator are shown in Table 5.3. In that table, when a rule needs to access

the tuple � identified by the tuple identifier ����� , it is assumed that it can read the state of

that tuple before the incoming update � ��� � 
�� 
�������������� has been applied. This is achieved
3The rule assumes that either ����� W ����� ] or ����� W ������� holds.
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Operator Propagate Info Accessed
@I��� b � X$��� �%V�� ��� � b �%� �%V�� ��� b K �8X ��� X U�V��3X � � �%V � ����� � � � �����	� �

Z 	�����	����� ������ ����� ���AB � Z � �
	 ���  ��� � ��� ����� �%V�� � � � b � �%V � index
� � � � �����	� � W_B0=�� � W b K �8X	� � @ � � X � �%V�� � �����	�����	����� ������ ����� @I����� ��� = �����	� =
�%V�� ��X ��� ��� W Z � �
	 ��� �� � � � none
��� � �
	 ���CX Z � � �
	 ���  � �0W ����� �%��� B � ��� � ��
	������ ����� @I� 4 �: � �������� � � = ����� � =��%V�� � none� � is the key reproduced from �%V �

2 	��� ����� @I����� ��� = ����� = ] � X ��� � � W ��� TUTWV B�X ����� � =���= ����� � ��� � B � ��� ( ����� � B �
!"
	�����
	���$#%� 	����& ����� @I����� ��� = ����� =��%V�� � X ��� � � W � B X'��B � ��� � ���

��� ����� W ����� ] ��� � B��� � ��� � ��� ] � .+ � � � ����� � B��� ��� � ����� � ����� ��� ����� ] � , ��� � ����� �
��� ����� W ������� ��� � B��� ��� ����� ] � ����� � B��� � ��� ������� � .+ � � � �����

!*
	�����
	���$#%� 	����& ����� @I����� ��� = ����� =��%V�� � X ��� � � W � B X'��B � ��� � ���

��� ����� W ����� ] ��� � B��� � ��� � ��� ] � .+ � � � ����� � B � ��� � ����� � ����� ��� ����� ] � =���� ������� �
��� ����� W ������� ��� � B � ��� ����� ] � ��� ��B��� � ��� ������� � .+ ��� � �������

!+
	�����
	���$#%� 	���'& ����� if (col=col1)

@I����� ��� = ����� =��%V�� � X ��� � � W � B X'��B � ��� � ���
��B��� ��� ����� ] � .+ ��� � ����� ��B��� ��� ������� � ��� ��� ����� ] � =���� ������� �
if (col=col2)
@I����� ��� = ����� =��%V�� � X ��� � � W � B X'��B � ��� � ���
��B � ��� ����� ] � ��� ��B��� ��� � ����� � .+ ��� � �����

Table 5.4: Propagation rules for �����	��
��
�������������� for XAT XML operators

by applying the updates only after they have been propagated. The rules presented in

Table 5.3 are directly derived from the corresponding maintenance equations and they

can easily be proven correct.

For example, consider the rule for � � " G �� " G  !�� ��� � � � when 
���� in � ��� � 
��
%���������-� � matches

column 
���� , which is the input column 
%��� for � � " G �� " G  !�� ��� � � � . Let � � �-
��#��
� � � � � 
�� � � � 
 � �
and � � *-, � � 
	����
,� � � � � 
 & � � 
�� � � � 
 � � be the state of the tuple � before and after the update

respectively. Let � ��� � and � ��� � � * , be the corresponding derived tuples in the output table,

where � �� � �+*-, is obtained by recomputation over � �+*-, . Let the last cells of � �� � and

� �� � �+*-, correspond to 
%��� � . Then:

� �� � � � � " G �� " G  !�� ��� � � �
� � � " G �� " G  !�� ��� �-
��%��
� � � � � 
�� � � � 
 � �

� �
� A � 
	�%� 
,� � � � � 
� � � � 
 � � � ��
�� �� �(
 �&�

� �� � �+*-, � � � " G �� " G  !�� ��� � �
�+*-, � � � � " G �� " G  !�� ��� �-
��%��
� � � � � 


& � � 
� � � � 
 � � � �
� A �-
��#��
� � � � � 
 & � � 
�� � � � 
 � �
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� ��
�� ��#�(
 & � � 
 ��� � �
� A �-
��%��
� � � � � 
 & � � 
� � � � 
 � � � ��
�� �� �(
 � & � ��
�� ��#� �	� 
 ���

By comparing � ��� � and � �� � � *-, , we can conclude that on � ��� � 
�� 
�������������� , � � " G��� " G  !�� ��� � � �
should propagate � ��� � 
 � ��
%��� � ��������� , where � � 
 � � � ��
�� ��#� � � 
 � . In addition (as explained

below), the original update � ��� � 
�� 
�������������� should be propagated if 
%��� is in the Minimum

Schema of the output XAT table. In this case, the update propagation can be done without

any additional information, i.e., the output updates are directly derived from the LexKeys

contained in the original update and the XML nodes that they identify.

The rules for ����� � 
���
%�����&������� are similar and are presented in Table 5.4. Again, when

a rule needs to access the tuple � identified by the tuple identifier ����� , the state of that

tuple before the incoming update � ��� � 
��
%���������-� � has been applied is assumed to be still

accessible by the maintainer.

Propagating Intermediate XML Updates

The intermediate XML update operations only affect the XAT XML operators Navigate

Collection and Navigate Unnest because they require accessing keys at a level deeper

than the updated node
�

. The other XAT XML operators do not require accessing the

children nor the values of the nodes identified by the LexKeys in their input XAT table.

Thus, if the structure or the value of a certain input LexKey has changed, their output is

not modified. Also, if the affected LexKey is present in their output XAT table, the node it

identifies has already been updated, as the XML nodes are stored only once in the Storage

Manager, and two equal LexKeys even in different XAT tables always identify the same

XML node. This is a major gain from having only LexKeys in XAT tables and storing

the nodes only once in the Storage Manager, as when a certain XML node is updated, the

update is done only once.

The propagation rules for Navigate Collection and Navigate Unnest on � � � ��� !#"�$ � ��
�������������� ,
� � � '�� !#"�$ � ��
%���������-��� and � � � �!#"�$� � * , � ��
%���������-� � are given in Tablew 5.5, 5.6 and 5.7 corre-
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Operator Cases Propagate Info Accessed
@ � � b � X$��� � ��� � b �%��� � B � � � � X � B �W �����	� �

Z 	�����	����� ������ �5��� � ����� ��	 ��� � � � � � B � W ��� � B � ��� ��� B � � Z � �
	 ��� + � ���  BC��� �
����� � � � � b � � � � � �����	� � W B � �
@ � 4 �: � � �
� � ������ � � = � ��� � =
�%V�� � � X �%V � index

� ����� ��	 ��� � �%V�� � � b K �8X ��� X U�V �3X � � �%V�� �����
� � � W b K �8X	� � @ � � X � �%V�� � ��� � � � � � ����� � � W � � � � � � ����� � ���	���'�	���P� � �%�� �5��� � ����� ��	 ��� @ � ��� � � = ����� � =��%V�� � X ��� ��� W Z � ��	 ��� + � ���  BC� none

� ����� ��	 ��� @ � 4 �: � � �
� � ������ � � = � ��� � =
�%V�� � none
When � �����V�
	 ��� ,

� � is name of first forward step in � ��� that is not in � ��� + �
	 ��� .

Table 5.5: Propagation rules for � � � ��� !#"�$ � � 
�������������� for XAT XML operators

Operator Cases Propagate Info Accessed
@I��� b ��X'��� �%V�� ��� � b � � �%V�� ��� b K �3X ��� X U�V���X �A� �%V�� ����� � � � ����� � �

Z 	���'�	���P� � �%�� �5��� � ����� ��	 ��� ��� B � � Z � �
	 ��� + � ���  BC��� ����� �%V�� � � � b � �%V�� index
� � � � ����� � � W B � =
� � W b K �8X � � @ � � X � �%V�� � ���
@I� 4 �: � � �
� � � �%�� � � = � ��� � =��%V�� � � X �%V�� index

� ����� ��	 ��� � �%V�� � � b K �3X ��� X U�V���X �A� �%V�� �����
� � � W b K �8X	� � @ � � X � �%V�� � ��� � � � � � ����� � � W � � � � � � ����� � ���	�����	����� ������ �5��� � ����� ��	 ��� @I����� ��� = ����� � =��%V�� � X	� � ��� W Z � �
	 ��� + � ���  BC� none

� ����� ��	 ��� @I� 4 �: � � �
� � � �%�� � � = � ��� � =��%V�� � none
When � �����V�
	 ��� ,

� � is name of the first forward step in � ��� that is not in � ��� + ��	 ��� .

Table 5.6: Propagation rules for � � �('�� !#"�$ � � 
�������������� for XAT XML operators

spondingly.

How an intermediate XML update is propagated depends on the mutual containment

of the position 
 � � to which the update refers and the navigation path 
�� �� of the con-

sidered Navigate Unnest or Navigate Collection operator. The two cases of interest are


 � � = 
�� �� and 
 � � � 
�� �� .

Operator Cases Propagate Info Accessed
@I� 4 M� ��� � ������ � :��� � � = �����	� =
�%V � � � X

Z 	�����	����� ������ ����� � �����V�
	 ��� � �%V�� � � b K �3X ��� X U�V���X �A� �%V�� ����� �%V�� index
� � � W b K �8X � � @ � � X � �%V � � ��� � � � � � �����	� � W � � � � � � � ��� � ���	�����	����� ������ ����� � �����V�
	 ��� @I� 4 M� ��� � ������ � :��� � � = �����	� =
�%V � � none� � is name of the first forward step in � ��� that is not in � ��� + ��	 ��� .

Table 5.7: Propagation rules for ��� ��)!#"�$� � * , � ��
%���������-��� for XAT XML operators
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The case 
 � � =&
�� �� arises when a node that has already been located by 
�� �� is being

updated, that is, either its descendant is added or deleted or that node’s value is changed.

The last may only occur if the located node is an attribute or a text node. Therefore, when


 � �&= 
�� �� , the transformed update is of the same type as the original update, only the

position of the update is rewritten. For example, consider the update � � � '�� !#"�$ � ��
%���������-���
for the operator

� � " G �� " G  !�� ��� � � � . The LexKey
�

being updated must have previously been

present in � � 
���� � , where � � � � � �+� � �,
 ���(� ������� . Thus, if 
 � �C=D
��(�� , the node
� �

(as in Table

5.6) that is a ascendent of the node located by 
 � � must have already been located by 
�� ��
either during the initial view extent computation or during a prior update propagation and

is present in a cell corresponding to column 
���� � of a tuple � � derived from � . Thus an

update specifying the deletion of the descendant � of
� �

, located at position 
 � � I 
�� �� is

generated, as shown in Table 5.6.

The case 
 � ���D
�� �� can only occur when the intermediate XML update is an insertion

or a deletion, but not for a replacement. This is due to the fact that a replacement may

only be specified on leaf XML nodes, i.e., text nodes or attribute nodes. Leaf nodes do

not have descendants and 
 � � � 
�� �� can only hold if 
 � � locates a node that has one or

more descendants. In this case, the inserted (deleted) node could also be located by 
�� �� .

Therefore, such an insert (delete) may cause insertion or deletion of LexKeys or even full

tuples from the output XAT table.

Note that the remaining case when neither 
 � � = 
�� �� nor 
 � � � 
��(�� holds is not of

interest. This last case arises when an update on an irrelevant position occurs. As a con-

crete example, consider the update � � � ��  �  -� ! ) # � * � �  �  - � ����� � � � ��(� for the operator �
� � " G ����  	 � # � G * .

The navigation path specifies the extraction of children of type ���-� ��� from the nodes in the

column � � . The update position specifies that a node element of type 
� ���
,� is inserted as

a child of a node in � � . Thus, this insertion is irrelevant for �
� � " G�����  	 � # � G * .
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Additional Rules Common for all XAT XML Operators

Several propagation rules are common to all operators, and have thus not been repeated in

the propagation tables. Most importantly, the operators are optimized to never propagate

updates on cells corresponding to columns that are not in the Minimum Schema of their

output. The reasons for this are the following. First, the operators should not propagate

any updates on cells that are not in the Real Schema of their output, as such updates would

always be irrelevant for the operators later in the algebra tree. Second, if the column on

which the update is specified is in the Real Schema, but not in the Minimum Schema,

then that column is only in the Order Schema of the output. As the columns that make up

the Order Schema never contain collections, but only single LexKeys, only intermediate

XML updates can be specified on such columns, but not intermediate XAT updates. As

none of the operators later in the algebra tree have such column as their input column

(otherwise they would have been in the Minimum Schema)), intermediate XML updates

on columns that are only in the Order Schema of the output are irrelevant and thus are

never propagated.

Also, each received � ��� � 
��
%���������-� � , ����� � 
���
%�����&������� and ��� ��� ��
�������������� is always prop-

agated in addition to the transformed update, if the column 
%��� is in the Minimum Schema

of that operator.

Updates on columns that are not in the input parameters of the operator do not trigger

the operator to propagate a transformed update.

The propagation rules show that for columns containing a single LexKey rather than

a collection of LexKeys, the LexKey cannot be modified, nor deleted, nor replaced. As

the Order Schema always includes only columns in which single LexKeys are stored, the

LexKeys that contribute to the order preserving process are never modified. Therefore, it

is never needed to modify the overriding order of the LexKeys.
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Auxiliary Information

Table 5.8 summarizes the auxiliary information that is required by the XAT XML oper-

ators for the purpose of the update propagation. The information in this table is derived

from the requirements of accessing auxiliary information of the individual update propa-

gation rules.

Operator Input Columns Output Columns tid Index
Z 	�����	����� ������ �5��� all ����� � yes��	�����	����� ������ �5��� none none no� 	������ �5��� none none no
2 	��� ����� � U ��X.U � � �SX T 	 none no

!"
	�����
	���$#%� 	����& ����� � ��� ] , � ����� none no

!*
	�����
	���$#%� 	����& ����� � ��� ] , � ����� none no

!+
	�����
	���$#�� 	����& ����� � ��� ] , � ����� none no

Table 5.8: Auxiliary Information for XAT XML Operators

5.3.3 Exposing the Updated View

When a sequence of update operations reaches the root � �,
 � �	� operator of the algebra

tree, a partial reordering is performed to determine the absolute positions of the updates.

The reordering is done only for correctly placing the nodes that have been added (or

whose order has been modified) among their siblings. Thus the overhead of preserving

order is greatly minimized.

5.4 Propagation Example

Figure 5.2 shows the update propagation for our running example. The XAT tables shown

in the figure are the needed auxiliary views have been materialized when the view extent

was initially computed. Not all of the materialized auxiliary views are necessarily needed
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Figure 5.2: Update propagation for running example

in this particular update propagation process. However, they may be needed when a dif-

ferent update is propagated, thus must be maintained by each update propagation process

including this one.

While the update XQuery presented in Figure 1.2 is being applied to the input XML

document ������� ��� � presented in Figure 1.2, the XML update
� ��  �  -� � "�" ��� �  ��� 	 ! ) # � * � �  �  - � � speci-

fying the position from the root XML node to the updated element is produced and passed

to the Source operator
� $��

� � # �  � ' G � .
� $��

� � # �  � ' G � transforms the incoming update into the inter-

mediate update � � � ��  �  -� � "�" ��� �  ��� 	 ! ) # � * � �  �  - � � � � � ) � � � as described in Section 5.3.
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� ���� $��� 	 � "�" � compares the position �#��� � � ����� � �4
� ���
 �	� ����� � � � of the update to its path

( � �%��� � ), and as �#��� � � � �0� � ��
� ���
,�	� � �0� � � � = � �#��� � , it rewrites the position for the output

update to �%��� � �����0� � ��
� ���
,�	�����0� � � � I � �#��� � � 
� ���
,�	�����0� � � � . It then generates a transformed

update which is now over the output column � � . In order to determine the tuple identi-

fier for the transformed update, it accesses the ����� index and the output column � � and

by comparing the LexKey ����� from the input update to the LexKeys in the column � � , it

figures out that the tuple identifier for the transformed update should be � . Thereafter, the

transformed update � � � ��  �  -  ! ) # � * � �  �  - � ���0��� � � �� � is propagated up. However, the original

input update is not propagated, as the column � � ) on which it was originally specified is

not in the Minimum Schema (and not even in the Real Schema) of the output.

Next, the propagated update is received by �
� � " G ����  	 � # � G * . The navigation path specifies the

extraction of children of type ���-� ��� from the nodes in the column � � . The update position

specifies that a node element of type 
� ���
 � is inserted as a child of a node in � � . Thus, this

insertion is irrelevant for �
� � " G�����  	 � # � G * . However, this time the column � � on which the input

update is specified is in the Minimum Schema of the output XAT table. Thus the input

update is propagated.

When the update reaches �
� � " G ����  	 ! ) # � *�	 � * � � � 	 , which extracts the prices of the books, the

position of the update 
� ���
 �	� ����� � � � and the navigation path ��
� ���
,�A���6� � ����� are compared.

As 
� ���
,�	� � �0� � � � �7��
� ���
,�A���6� � ����� the operator requests the children of ����� � � that are of

type �6� � � from the Storage Manager and gets the LexKey ����� � ��� � . The update is trans-

lated into an intermediate XAT update specifying insertion of the LexKey ���0� � � ��� into

the cell corresponding to tuple with tuple identifier � (equal to the tuple identifier of the

input update) and column ��
����5+ . The output XAT table of �
� � " G ����  	 ! ) # � * 	 � * � � � 	 is materialized,

thus the update is applied to that XAT table. The column � � over which the input update

is specified is not in the Minimum Schema of the output. Thus it is not further propa-

gated. The intuition is that � � is not an input column for any of the operators following
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�
� � " G ����  	 ! ) # � *�	 � * � � � 	 , thus such update is irrelevant for all subsequent operators.

The newly inserted price now makes the corresponding book pass the selection con-

dition. The � � � � " G���� ��� 	 operator recognizes that by first noting that the column ��
%���5+ on

which the update is specified is in the selection condition, and then reevaluating the se-

lection condition over the updated tuple. As the affected tuple now passed the selection

condition, but its tuple identifier is not not among the tuple identifiers that were previ-

ously passing the selection condition, a tuple insertion is generated by � � � � " G ��� ��� 	 . The

tuple identifier � is inserted in the output ���-� index, which is also materialized.

The new title is tagged by the � ����� �" �
� � " G0�
�
� � * � ! � "�" ��� � � " G���� 	 � � * �-! � "�" ��� operator, and the

constructed node is assigned the LexKey � � 
 , as � is the LexKey identifying this � ��� � �" .
The skeleton of the newly constructed node is passed to the Storage Manager and an in-

termediate XAT update � ��� � � , where � � � � ����� � � � 
 � specifying the insertion of the

new tuple is output. The overriding order of this key is set by  � " G0� to reflect the order of

the tuple from which has been derived. An update specifying the insertion of � � 
 � ����� � into

the cell corresponding to column ��
������ and the tuple identified by
�

is generated, as the

only tuple in the output XAT table of the  � � ������� operator always has tuple identifier
�
.

When the final � ����� �" operator receives this update, it recognizes that the input interme-

diate XAT update is on the column ��
%����� that is present in its tagging pattern. Thus, the

constructed XML node derived from the input tuple identified by ����� � �
needs to be cor-

respondingly updated. It therefore generates the XML update
� �
�  ��� �  ���  ) *�$ � G � � � � 	 � � " G�� � where

the position from the root of the constructed node to the location of ��
������ is specified.

This update is passed to the Storage Manager, which applies it to the node identified by

the LexKey � . It is also propagated upwards in the form of an intermediate update, that

is, � � � ��  ��� �  ���  ) *�$ � G � � � � 	 � � " G�� � � ��
%���
� � � � .

When this final update is passed to � � " G � , it refreshes the view as shown in Figure

5.3. The process of exposing the updated view is performed in a sequence of steps, as
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Figure 5.3: Example of exposing updated view

shown in Figure 5.3. First, the LexKey � representing the result is dereferenced, that is,

the skeleton of the constructed node it identifies is retrieved (step 1 in the figure). Next,

as this constructed node has been updated, a reordering is performed over the LexKeys

� � 
@�����0� � and � � ��� ��� � � . �A �� �" � � � 
@� � �0� � � � ����� , �A �� �" � � � ��� � � � � � � ��� � and ����� � � � � imply

that � � 
 � ����� � � � � ������� � � . Thus the new constructed node identified by � � 
@�����0� � is put before

the one already in the view (step 2 in the figure). After the reordering is performed, the

LexKeys � � 
 and � � � are dereferenced, as shown in steps 3 and 4 in the figure correspond-

ingly and the updated view is obtained.
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Chapter 6

Correctness

The VOX approach is composed two key mechanisms, one, the order preservation mech-

anism and two, the update propagation strategy. Thus its correctness derives from the

correctness of these two parts. The correctness of the order preservation has been proven

in Chapter 4. Thus we now focus on the correctness of the propagation strategy.

Theorem 6.1 Let � 
 " � �# � �4��� be any operator excluding the
� ��E �
,� operator in an XAT

algebra tree outputting the output � . Let an intermediate update operation as defined

in Table 5.2 be applied to one of its input XAT tables. Let � ) *��
be the output of � 
 after

recomputation. Let the propagation rules as defined in Section 5.3 generate a sequence of

intermediate updates over � that would transform � into view � # � � . Then � # � � ��� � ) *��

( � # � � and � ) *��
are equal based on equality by node identity), � # � � � � ) *��

( � # � � and

� ) *��
are equal based on equality by value), and the sequence of generated intermediate

updates carries the information about all the modifications of nodes referenced by the

keys present in the columns of the Minimum Schema of � , that are specified by the input

update.

The correctness of some propagation rules, i.e., that they yield � # � � ��� � ) *��
and

produce a correct output sequence of update primitives, has been shown in Section 5.3
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by deriving them from the respective propagation equations. The propagation equations

are derived algebraically from the definitions of the operators, when the order among

the tuples and the nodes in a collection is explicitly maintained and thus are correct.

Following the same procedure, the remaining rules can also be shown correct. As the

actual XML nodes are stored only once in the shared storage, and the same LexKey

present even in different tables always references the same XML node, � # � � ��� � ) *��

always implies � # � � � � ) *��
. The completeness of the output update sequence can also be

derived from the respective propagation equations.

Corollary 6.1 The propagation of any intermediate update defined on an input XAT table

� through any operator � 
 " � �# � ����� produces an update sequence containing exactly all and

no other modifications caused over the output XAT table � as a consequence of the update

on � .

This corollary states that not only the update sequence is complete, but it does not

contain any updates of � that are not consequence from the input update on � .

Theorem 6.2 Let V be a view defined over input XML data sources �4� � , ����� , ..., �4� � .

Let an XML update operation
���

as defined in Table 5.1 be applied to one source ��� # ,
�C� � � � . Let

� ) *��
be the view extent after recomputation. Let the VOX algorithm as

defined in Chapter 5 transform the view V into view
� # � � . Then

� # � � � � ) *��
.

Proof: The proof is over the height  of the XAT algebra tree representing the view
�

,

i.e., the maximum of the numbers of ancestors of any leaf node. To simplify the proof,

we prove a generalization of the theorem that covers not only algebra trees that represent

an XML view, that is, have an � �,
 � �	� operator as a root, but also algebra trees that

have other operators as a root. Thus, the generalized statement is the same as that in

the theorem, only the view
�

now refers to the output of the root operator of an XAT

59



algebra tree, which may be an XAT table or XML data. The statement in this theorem is

a corollary of such a generalized theorem.

Base Case: The base case is for  � ! . The algebra tree has a single operator node,

which must be a
� ��  �
,� operator

� � " G �# ��� , and whose output XAT table is the view of inter-

est
�

. Before the update,
�

has a single tuple � consisting of a single cell � � 
���� � � , which

contains the LexKey
�

of the root node of the XML document. After the update
���

, if

recomputation is performed, again � � 
���� � � would contain
�

, as the update cannot modify

the LexKey identifying the root node of the document. Any single XML update is prop-

agated through a
� ���  �
 � operator by simply rewriting it into an equivalent intermediate

XML update (see Section 5.3). Thus no modification in terms of inserting or deleting

LexKeys from the output
�

is specified. Hence, for  � ! we have
� # � � ��� � ) *��

and

consequentially
� # � � � � ) *��

.

Induction Hypothesis: Let V be the output of the root node of an algebra tree with

height � , � � � �  , defined over the set of input XML data sources ��� � , �4��� ,..., �4� � .

Let an XML update operation
���

as defined in Table 5.1 be applied to one source �4� # ,
� � � � � . Let

� ) *��
be the view extent after recomputation. Let the VOX algorithm as

defined in Chapter 5 transform the view V into view
� # � � . Then

� # � � � � ) *��
.

Induction Step: It is to show that
� # � � � � ) *��

for the output
�

of an XAT algebra

tree of height  � �
.

Let �4
 be the operator at the root node of such algebra tree. � 
 can be any operator,

excluding
� ��E �
,� , as

� ��  �
,� can only appear as a leaf node. All the children nodes of

the root must themselves be roots of algebra trees each of height not exceeding  . Let
�

of

these algebra trees have the updated source as a leaf. Noting their output as � # , � � � � �
,

by the induction hypothesis � # � �# � �
) *��# ,

� � � � �
. The sequences of updates on all

� # will propagate a sequence of intermediate updates to the node representing � 
 . Let

the number of updates in that sequence be � . That sequence of updates will cause � 
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to transform its output
�

into a sequence of � intermediate (temporary) XAT tables
� # � �� ,

� # � �� , ...,
� # � �
' , each of which is equivalent to the corresponding state

� ) *��� ,
� ) *��� ,

...,
� ) *��
' that would be reached by recomputing the output of �4
 after each update in the

sequence. Note that
� ) *�� � � ) *��

' . After the application of all � updates to
�

we have
� # � � � � # � �

'
� � ) *��

' . If any update gets propagated correctly (valid by Corollary 6.1), the

sequence of updates propagated to �4
 in particular must also be correctly propagated, and

thus
� # � � � � ) *��

. �
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Chapter 7

Implementation

The VOX system (see Figure 7.1) has been implemented in Java on top of the XQuery

engine Rainbow [30, 29] also developed at WPI.

The Storage Manager is a repository for storing the XML data over which the view is

defined, the constructed nodes and the auxiliary views. It assigns the LexKeys and sup-

ports efficient value-based and reference-based access to the data it stores. Two different

implementations of the Storage Manager have been carried out: (1) Main-memory-based,

and (2) Storage Manager relying on the native XML storage system called MASS [6] also

developed at WPI.

The initial main-memory-based Storage Manager has been implemented as part of

this thesis for the purpose of evaluating VOX. This main-memory Storage Manager accu-

rately provides the basic functionality expected from a secondary-storage-based Storage

Manager, as it supports efficient access to any XML node and its direct children given the

LexKey identifier of that node. That is achieved by storing both the base data as well as

the constructed nodes in a tree-structure, and also maintaining hashtables having LexKeys

as keys and the XML nodes as values.

The Storage Manager relying on the native XML storage system called MASS [6] is
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Figure 7.1: System architecture

being implemented as a separate project by an undergraduate Major Qualifying Project

team. The MASS system is a storage and indexing solution for large XML documents

based also on the XML node identity encoding using LexKeys.

Due to time constraints (the implementation of the MASS-based Storage Manager

was not completed at the time this thesis was completed) the evaluation presented in this

document is based on the main-memory-based Storage Manager.

As shown in Figure 7.1, the tasks performed by the VOX system can be divided into

two categories: tasks that are carried out once per each XML view at initialization time,

and tasks that are carried out for maintaining the view when source updates occur.

Initially, Rainbow’s Query Engine translates the XQuery view definition into an XML

algebra tree and optimizes it [31]. The optimization is done by applying rewrite rules,

which swap and combine the operators, while still preserving the validity of the algebra
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tree. Then, the Minimum Schema for all the XAT tables is determined [31].

Next, the Order Schema is computed for each intermediate XAT table (see Section

4.4.1). The VM Initializer determines the needed auxiliary views by doing a postorder

traversal of the algebra tree (see Section 5.2). Each column in an XAT table or ���-� index

is materialized if and only if its materialization is required by at least one of the operators

having that particular column of that XAT table or that ����� index as input or output.

The initial view extent is evaluated by the Executer. Prior to this project, Rainbow’s

Executer supported only value-based execution. That is, it did not account for node iden-

tity. Thus, implementing reference-based execution was inevitable for the purpose of

evaluating the VOX approach. However, we note that reference-based execution rely-

ing on the order encoding technique presented in this thesis is not only suitable for view

maintenance, but also preferable compared to value-based execution for several reasons.

First, it creates smaller intermediate results. Second, it allows for the evaluation of queries

over large data by sharing references over base data instead of copying that data repeat-

edly. Finally, the concept of Order Schema allows for different physical operators. For

example, without explicit order encoding the Theta Join operator was implemented as a

nested-loop join, as only such implementation outputs the result in the order specified

by the semantics of the Theta Join operator. Now, however, different algorithms for the

implementation of the Theta Join operator are feasible, like Hash Join [20] or Sort-Merge

Join [20], for example.

While evaluating the initial view extent, the Executer communicates with the VM

Initializer which takes the intermediate results from the Executer and materializes the

content of the needed auxiliary views.

When an update XQuery is issued by the user, it gets processed by the Rainbow’s Up-

date Manager, applied to the sources, and in the form of XML updates passed to the XML

View Maintainer. The later, using the update propagation rules, incrementally refreshes
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the XML view, as described in this document (see Chapter 5). The update propagation

rules are implemented as methods, one for each type of operator and each type of inter-

mediate update. These methods implement the logic of the update propagation rules and

create the output update sequence. In addition, they are responsible for invoking the mod-

ule that applies the updates to the materialized auxiliary views. That way, each rule can

access the state of the auxiliary view both before and after the update if needed. Upon in-

voking an operator, the sequences of updates output by its children, that are now input for

this operator are traversed in an arbitrary order and the corresponding method is invoked

for each update in these sequences. Only when all the input updates for a certain operator

have been processed and the complete output update sequence has been produced, the

next operator is invoked.

Once the update propagation process finished, the LexKey(s) identifying the result are

dereferenced. The partial reordering currently relies on the merge-sort algorithm.
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Chapter 8

Evaluation

8.1 Experimental Set-up

We have performed a performance evaluation of VOX on a Pentium III PC with 512MB

of RAM running Windows 2000. For the experiments we use data and queries provided

by the XMark benchmark [21]. The relationship among the elements of interest is shown

in Figure 8.1. The queries we use extract data from “person” elements. Hence we show

the number of such elements in the charts shown in this section.

site

catgraphcategories open_auctionspeople closed_auctionsregions

name

person

profileemailaddress phone creditcardhomepageaddress watches@id

? ? ? ? ? ?

*

* – 0 to many

? – optional

*

…… ………. …street

Figure 8.1: Relationship between queried elements
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In the experiments we vary the size of the data source, the type of the update, the

size of the update relative to the original size of the base data, the selectivity of the view

definition query and the location of the update. The performance of incremental view

maintenance is compared to the performance of full recomputation. We also compare the

costs of the different update operations.

<Result>
FOR $b IN document("auction.xml")/people/person
WHERE $b/@id > 317
RETURN $b/name

</Result>

Figure 8.2: Example view definition

In most of the experiments we use the query shown in Figure 8.2. This query is rather

simple, but it is suitable for varying a single parameter at a time while guaranteeing that

the other parameters stay constant. Thus it allows us to isolate effects of individual experi-

mental variables. Also, it does contain the typical XML operations, including in particular

XML structure navigation (the operators Navigate Unnest and Navigate Collection) and

node construction (the operator Tagger). The XAT algebra tree for this query is given in

Figure 8.3.

8.2 Cost of Different Update Operations

Figure 8.4 shows that incremental maintenance significantly outperforms recomputation

for all three types of updates. In this experiment, each type of the update targets a single

“person” element, that is, one “person” element with
� ��� less than 317 is inserted or

deleted or the “id” of one person element is replaced from a value greater than 317 to value

less than 317, thus making it to pass the selection condition. The cost of recomputation

shown in Figure 8.4 is averaged over 5 runs for each type of update. Clearly, the cost of
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f $s, /people/person
$b

S “auction.xml”
$s

F $b, @id
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F $b, name
$col2

C $col2

T
<result>$col2</ result >

$col1

bib.xml

s ($col3 < 317)

e
$col1

view

Figure 8.3: The XAT algebra tree for the view in Figure 8.2

recomputation for the different types of updates in this experiment differs very slightly,

as the update is small compared to the size of the base data, which originally consists of

637 “person” elements.
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Figure 8.4: Cost of different update operations

Figure 8.4 also shows that that different update operations have different costs. In

particular, deletions are more expensive to propagate than insertions or replacement. The
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cost of propagating replacement and insertion is similar. As a result of a deletion and

replacement often intermediate updates that require locating the tuple that has to be up-

dated are produced. Such an overhead is less present when an insertion is propagated.

Replacement on the other hand usually leads to less updates on the materialized auxiliary

views compared to insertion and deletion. In this example, it leads to the same effect on

the view as the insert, but still to less auxiliary view updates than the insert. Therefore,

the deletion is most expensive to propagate, and replacement and insertion have a similar

cost.
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Figure 8.5: Varying database size

8.3 Varying Database Size

Figure 8.5 compares the performance of our solution to recomputation when a new “per-

son” element is inserted for different base XML data sizes. The cost is presented on a

logarithmic scale. The chart shows that the cost of recomputation follows the growth of

the data size. While the cost of incremental maintenance also increases, it does so at

a lower rate. For example, the cost of recomputation when there are 3825 “person” el-
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ements in the base data is 3 times greater than when there are 1275 “person” elements.

That is expected, as the size of the data is 3 times larger in the first case. However, the cost

of incremental maintenance when there are 3825 “persons” elements is approximately 1.5

times larger than when there are 1275 such elements. The reason the cost of incremental

maintenance increases even though always the insertion of a single “person” element is

propagated, is because the size of the auxiliary views is larger for larger base data, and

thus locating the position of the update is more expensive.

8.4 Varying Update Size

Figures 8.6, 8.7, 8.8 and 8.9 show that incremental maintenance is much faster even for

large updates. In this experiment we vary the size of the inserted (deleted) element. We

insert or delete a “people” element that contains a different number of “person” elements.

Figure 8.6 shows the results for variable size insertions on a logarithmic scale. The results

from the same experiment are shown in Figure 8.7 on a linear scale for a clearer view of

when the lines showing the cost of view maintenance and recomputation cross. For the

same reason, the experiments for variable size deletions are shown in two charts (Figures

8.8 and 8.9). For the experiment of varying the size of the inserted element, the original

size of the base data is constant. However, for the experiments of varying the size of

the delete, we start from different initial sizes, and after the delete is performed, we get

the same size of the updated base data for different sizes of the delete. Therefore, the

recomputation line is constant.

In Figures 8.6 and 8.7 the number of inserted “person” elements ranges from 1% to

being 400% of the number of “person” nodes already in the database. As the size of

the inserted nodes increases, the cost of view maintenance approaches the cost of re-

computation. In particular, when the size of the update is 200% of the original size of the
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Figure 8.6: Varying size of insert (logarithmic scale)
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data, view maintenance becomes more expensive than recomputation. This means that for

this setting, the cost of incremental view maintenance per “person” element is 1.5 times

higher than the cost of recomputation, as recompuation evaluates base data with size 3

times larger the original base data, and view maintenance is performed for an update that

is twice the original base data.

Figures 8.8 and 8.9 show that view maintenance outperforms recomputation for dele-

tions of size up to 33% of the original data. This shows that propagating deletions is more

expensive than propagating insertions. The reason is that propagating deletions often re-

quires accessing additional information, as deletions trigger more intermediate updates

for which the tuples (LexKeys) that have to be updated have to be located. In particu-

lar, for this setting the cost of view maintenance per “person” element is 2 times higher

then the cost of recomputation per “person” element, as the size the deleted element is

33% of the original database size and the size of the date over which the recomputation is

performed is 67% of the original database size.
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8.5 Varying Selectivity

Figure 8.10 shows that view maintenance performs well regardless of the selectivity of

the view query. For this experiment the size of the delete is 20% of the size of the base

data. In this experiment the selectivity of 50% is not only over the base data, but also over

the deleted elements. This means that only half of the deleted “person” elements pass the

selection condition and were initially present in the view. When the selectivity of the view

query grows both the times for performing recomputation and view maintenance increase

with a similar rate.
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8.6 Varying Location of Update

Figure 8.11 compares the cost of view maintenance for different locations of the update.

The view query used for this experiment is similar to that shown in Figure 8.2, however

it only extracts addresses rather than names. Thus the deletion of both “homepage” and

“catgraph” does not affect the result. The experiments confirm the cost of propagating

such irrelevant updates is very small. The deletion of “homepage” is slightly more expen-
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sive to propagate than the deletion of “catgraph”. This is due to the fact that “homepage”

is child of “person”, whereas “catgraph” is a sibling of “person”, and thus the irrelevance

of the deletion of “catgraph” is detected faster than the irrelevance of the deletion of

“homepage”.

The deletion of the element “street” affects the content of the view, as it is a descen-

dant of a node present in the view. However, it does not affect any of the intermediate

results. Therefore such update is cheaper to propagate than deletion of elements that are

“exposed” by the query, such as “person” and “address”.

8.7 Overhead of Maintaining Order

We have measured the overhead of maintaining order by also running the system in a

non-order-sensitive mode, that is, without performing partial reordering upon refreshing

the view. The cost of maintaining order was not noticeable compared to the overall cost

of incremental view maintenance. Intuitively, that is expected, as the partial sorting is

only done on the LexKeys when exposing the updated view.
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Chapter 9

Conclusion

9.1 Summary and Conclusions

We have presented VOX, the first solution for order-preserving maintenance of XQuery

views. Our solution takes an algebraic approach, and shows how by using an lexico-

graphical order encoding technique, the XML algebra can be transformed from ordered

bag to (non-ordered) bag semantics, thus enabling efficient view maintenance. Our solu-

tion handles complex updates, that is insertions and deletions of complete subtrees as well

as replacement of an atomic value. The techniques proposed in this thesis are general and

are not not bound only to our particular system.

Our experiments have confirmed that VOX outperforms recomputation in most cases.

When the size of the update is relatively small compared to the size of the base data,

which is a common case in the reality, VOX is significantly faster than recomputation for

all three types of updates. Our solution has also proven to be feasible for large updates. In

particular, incremental view maintenance is faster then recomptuation for inserts of size

up to 200% of the base data and deletes for up to 33% of the base data. This means that

deletions are slightly more expensive to propagate then insertions. Our solutions performs
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well regardless of the database size and the selectivity of the view query. Also, it is able

to efficiently detect irrelevant updates, thus the cost of propagating such updates is very

low. Most importantly, the overhead of maintaining order has shown to be unnoticeable.

9.2 Contributions

Contributions of this work include:

� We have identified and analyzed new challenges imposed on incremental view

maintenance by the ordered hierarchical nature of the XML data model.

� We have proposed an order-encoding mechanism that migrates the XML algebra

from ordered bag semantics to (non-ordered) bag semantics, thus making most of

the operators distributive with respect to the bag union and bag set difference.

� Using LexKeys as references to XML nodes and for explicit order-encoding not

only enables efficient view maintenance, but also leads to more scalable XQuery

execution compared to naive value-based execution. First, it creates smaller inter-

mediate results. Second, it allows for the evaluation of queries over large data by

sharing references over base data instead of copying that data repeatedly. Finally,

the concept of Order Schema allows for different physical operators to be incorpo-

rated into a physical plan, without concern of the order preservation.

� We have given the first order-sensitive algebra-based solution for incremental view

maintenance of XML views defined with the XQuery language. We have proposed

an overall update propagation strategy and have developed a full set of rules for

propagating updates through XML specific operations.

� We have proven the correctness of the approach.
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� We have successfully implemented our proposed solution in the XML data man-

agement system Rainbow.

� We have experimentally evaluated our approach. In the experiments the cost of

view maintenance is compared to the cost of recomputation, and in most cases

view maintenance is cheaper than recomputation.

9.3 Future Work

We believe that this work forms a solid basis for enabling view maintenance for XML

views. The work carried out in this thesis can be extended in two directions: optimizing

the incremental view maintenance for materialized XQuery views and optimizing the

reference-based XQuery execution.

Regarding the incremental view maintenance, VOX can be optimized to perform

batching of concurrent updates coming from possibly different sources and by consid-

ering algebra tree rewrites, as we now explain below.

The current approach can further be optimized to take into account the interrelation-

ships between concurrent updates derived from base updates on different data sources.

In particular, currently the system takes one XML update at a time, and assumes that the

sources remain in the same state while that update is being propagated. Thus, while a

single XML update is propagated, another update cannot be propagated. However, it is

expected that propagating simultaneously concurrent updates would lead to cheaper prop-

agation, especially in a large scale distributed environment. The updates may cancel each

other out or may share reads of auxiliary data.

Also, VOX does not address the issue of reshaping the algebra tree for optimizing

the update propagation process. The algebra tree is generated by the Rainbow system,

which optimizes it for one-time query execution [31]. However, such shape of the tree
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may not be optimal for performing the view maintenance. By rewriting the algebra tree

it may be possible for example to decrease the auxiliary information requirements and

reduce the computation costs for update propagation. The goal would be to explore al-

gebra tree rewrite algorithms that lead to decreased intermediate result materialization

and/or to faster update propagation. As enumerating all the alternative query plans is pro-

hibitively expensive [20], heuristics would be applied for narrowing the set of considered

alternatives. An optimal query plan would then be chosen based on cost estimations.

The reference-based XQuery execution with explicit order encoding allows for flex-

ibility in choosing different physical implementations of the algebra operators. Thus,

different strategies for evaluating individual operators can be developed. Also, currently

Rainbow does not support all the access axes specified by the World Wide Web Consor-

tium [24]. However, the MASS system [6], on the top of which an implementation of our

Storage Manager is build, supports efficient access to all access axs. This functionality

can thus be exploited by the Rainbow system to expand the set of covered XQueries.
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