
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2001-01-04

FEM Mesh Mapping to a SIMD Machine Using
Genetic Algorithms
John S. Dunkelberg, Jr.
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Dunkelberg, Jr., John S., "FEM Mesh Mapping to a SIMD Machine Using Genetic Algorithms" (2001). Masters Theses (All Theses, All
Years). 1154.
https://digitalcommons.wpi.edu/etd-theses/1154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212999638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/1154?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

FEM Mesh Mapping to a SIMD Machine

Using Genetic Algorithms

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

John S. Dunkelberg, Jr.

May 1996

Approved:

Dr. Lee A. Becker, Primary Advisor, CS Department, WPI

Dr. William R. Michalson, Co-Advisor, ECE Department, WPI

Dr. Robert E. Kinicki, Head of the Department of Computer Science

Abstract

 The Finite Element Method is a computationally expensive method used to perform

engineering analyses. By performing such computations on a parallel machine using a SIMD

paradigm, these analyses’ run time can be drastically reduced. However, the mapping of the

FEM mesh elements to the SIMD machine processing elements is an NP-complete problem. This

thesis examines the use of Genetic Algorithms as a search technique to find quality solutions to

the mapping problem. A hill climbing algorithm is compared to a traditional genetic algorithm,

as well as a "messy" genetic algorithm. The results and comparative advantages of these

approaches are discussed.

Table of Contents

Abstract .. 1
Organization.. 1
Chapter 1: Motivation .. 2

1.1: The Finite Element Method.. 2
1.2: The SIMD parallel computer.. 4
1.3: The Genetic Algorithm Approach... 9
1.4: The Problem in Summation.. 12

Chapter 2: Background .. 13
2.1: The Method of Genetic Algorithms... 13

2.1.1: Biological Background... 13
2.1.2: General Genetic Algorithm Theory.. 15
2.1.3: Messy Genetic Algorithms.. 18

2.2: SIMD Machines and the MasPar ... 20
2.3: Related Historical Work ... 24

Chapter 3: Approach .. 26
3.1: Problem Applicability ... 26
3.2: Genetic Algorithm Approach... 26

3.2.1: Objective and Fitness Functions ... 27
3.2.2: Selection Methods and Population Dynamics.. 28
3.2.3: Genetic Operators... 29
3.2.4: Sizing of Populations and Length of Run ... 31

3.3: Messy Genetic Algorithm Approach .. 31
3.3.1: Scheduling a Messy Genetic Algorithm Era ... 32
3.3.2: Other Messy Genetic Algorithm Variables ... 33
3.3.3: Technical Limits of the Messy Genetic Algorithm....................................... 34

3.4: Bokhari’s Algorithm Approach ... 35
3.4.1 Description of Approach .. 36
3.4.2 Performance ... 36
3.4.3 Limitations and Subsequent Modifications ... 37

Chapter 4: Evaluation... 39
4.1: De Jong Performance Measures... 39
4.2: Hardware and Software Platforms of the Tests .. 40
4.3: Test Meshes and their Results.. 40

4.3.1: Tower25 ... 40
4.3.2: Mesh33... 44
4.3.3: ThreeD33 ... 47

Chapter 5: Conclusions .. 50
Chapter 6: Future Directions ... 52

6.1: Parallel Solution of the Mapping problem... 52
6.2: Decompositional Methods.. 53
6.3: N-dimensional crossover.. 54

Bibliography .. 56
Appendix A: Test Problems... 56
Appendix B: Bokhari 2 Code... 56
Appendix C: GA2 Code ... 56
Appendix D: mGA Code ... 56
Appendix E: SimpleGA Code ... 56
Index ... 57
Endnotes... 58

Table of Figures

Figure 1: A cantilever beam problem.. 3
Figure 2: Subdivision of the problem into elements ... 3
Figure 3: Neighboring nodes of the FEM model ... 4
Figure 4: Initial Condition of Thermal FEM Model .. 5
Figure 5: Implementation of our Thermal FEM on a SIMD machine 6
Figure 6: Condition of Thermal FEM Model after 10 Steps ... 7
Figure 7: Condition of Thermal FEM Model after 50 Steps ... 8
Figure 8: Condition of Thermal FEM Model after 100 Steps ... 8
Figure 9: SimpleGA: Initial Population... 10
Figure 10: SimpleGA: Generation 1... 11
Figure 11: SimpleGA: Generation 9... 12
Figure 12: Miniature MasPar Xnet Connectivity ... 22
Figure 13: Cantilever Problem with numbered Elements .. 23
Figure 14: A simple mapping of FEM Mesh to miniature MasPar PEs.................................... 24
Figure 15: Messy Genetic Algorithm Scheduling .. 32
Figure 16: Performance of Bokhari2 Algorithm on Tower25... 41
Figure 17: Performance of GA2 Algorithm on Tower25... 42
Figure 18: Performance of mGA Algorithm on Tower25 ... 43
Figure 19: Performance of Bokhari2 Algorithm on Mesh33... 44
Figure 20: Performance of GA2 Algorithm on Mesh33, size 30 population 45
Figure 21: Performance of GA2 Algorithm on Mesh33, size 50 population 45
Figure 22: Performance of mGA Algorithm on Mesh33... 46
Figure 23: Performance of Bokhari2 Algorithm on ThreeD33 ... 47
Figure 24: Performance of GA2 Algorithm on ThreeD33... 48
Figure 25: Performance of mGA Algorithm on ThreeD33 ... 49

 1

Organization

 This thesis presents an exploration of this specific mapping problem, using the genetic

algorithm approach. To this end, the thesis is organized into seven sections. First it is necessary

that we explain why the problem we are exploring is interesting and applicable to the real world,

which we will do in the chapter titled Motivation. Then in the Background chapter, we will

present the general introduction to the field. This is necessary in order to understand what we

have done, why we have done it, and what our results have been. From that, we will proceed to a

description of our exploration of the problem, in the Approach chapter. Having done some

exploration of the problem, we will then explain how we have analyzed the results of this

exploration, in Evaluation. From there we draw Conclusions as to the meaning and indications of

our evaluations. Finally, we consider some Future Directions that research could take in tackling

further aspects of this problem. The Appendices to this thesis provide bibliographical references

as well as C++ code and results data.

 2

Chapter 1: Motivation

 As the engineering community has come to rely on CAD/CAE1 for the design and

analysis of high technology products, it has found a need for an automated method to calculate a

variety of properties of the parts that make up these products. No practical engineer wants to

work out the calculus, for instance, to determine the electromagnetic field around a highly

irregularly shaped part consisting of a complex set of antennae and wave guides. Such an

automated process does exist, through a technique called the Finite Element Method, hereafter

referred to as FEM. Evaluation of real-world problems via FEM does, however, have a high

computational cost. The time element of this cost can be reduced by employing a parallel

computer. In this study we look particularly at a class of computer referred to as a SIMD2

machine. To implement our FEM problem on a SIMD machine, we must solve the problem of

how to map the topology of the FEM problem to the topology of the SIMD machine. To that end,

we have studied the effectiveness of a class of computational algorithms known as genetic

algorithms.

1.1: The Finite Element Method

 The Finite Element Method works by decomposing the problem geometry into smaller,

more regular geometric regions that can be attacked by simple mathematical models. Thus, as a

first step, the problem is divided into a large number of regular two or three-dimensional

geometric regions. A simple two-dimensional example of this method of subdivision of a

problem is shown below (see Figures 1 - 3). Each of these elements can then be solved with a

relatively simple set of equations. This process lends itself to conventional serial computational

attack, being implementable as a highly iterated manipulation of large matrices. But FEM is an

approximation, and one that becomes more accurate as the problem space is divided into smaller

and smaller elements. As our target parts become more complex, and our need for accuracy

increases, the cost in computational time increases greatly.

 3

20 Lbs

Figure 1: A cantilever beam problem

 In this example, a force is applied to the end of a support member which is firmly affixed

to an unmovable surface (referred to as "ground"). The cantilever beam problem is the basis of

many mechanical stress analyses that might be solved using the Finite Element Method.

Figure 2: Subdivision of the problem into elements

 4

 The first step in solving such a problem is to break the target solid into a number of

elements. Here we have broken the cantilever beam into 22 elements. In general, subdivision

into smaller, more numerous elements provides a more accurate solution. However, the more

elements a problem is comprised of, the longer it will take to solve.

Figure 3: Neighboring nodes of the FEM model

 The FEM model formulates a node at the center of each element. The nodes interact with

each other along the element edges. In this case, the interaction is the application of force at our

upper right-most node, which will convey that force onto its neighbors. To over-simplify the

process, think of the force upon the upper, right-most node as a vector. Some of the magnitude of

that vector is calculated to act upon that node, and a component of that vector is passed on to its

neighbors. As we will discuss later, this communication between nodes is very similar to the

methodology of a SIMD computer.

1.2: The SIMD parallel computer

 Fortunately the Finite Element Method lends itself very well to parallelization.3 Each

node of the FEM mesh does the same set of operations, and passes the result of this operation on

to its neighbor nodes. Thus, a potentially very powerful method by which to attack this problem

is to run the analysis on a SIMD machine such as the MasPar MP-14, which has 1024 processors

that are logically connected in a wrapped toroidal mesh. Each Processing Element (PE) of the

 5

MasPar is connected by a direct (and low time-cost) communication link to its eight nearest

neighbors, and by higher cost communication methods to any other given PE in the MasPar. This

allows the computation of our FEM model, which is regular and repetitive in nature, to be quite

elegantly solved on a SIMD machine.

 A simple example of a Finite-Element problem on a SIMD machine can be shown using a

thermal model. Consider a plate under thermal stress that can be modeled as a two dimensional

brick 5 elements by 5 elements large. Along the left hand side, we apply a constant condition, a

temperature of zero degrees. At the bottom left hand corner, we apply a constant conditions of

one hundred degrees. Our computation for the change in temperature of our brick is very simple.

At any time step n, the temperature of a given point will be given the average of its neighbors'

temperatures at time n-1. Thus our initial condition can be represented as shown in Figure 4.

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Thermal Ground
to Zero Degrees

Thermal Ground
to 100 Degrees

Figure 4: Initial Condition of Thermal FEM Model

 6

 We have initialized the model so that every processing element contains the initial

condition, i.e. zero degrees. Consider a SIMD machine that is 7 by 7 processing elements, built on

the same principles as the MasPar. We can embed our FEM problem inside of this machine as is

shown in Figure 5. While each PE has the memory capacity to hold many datawords, here we

only will use a floating point number and a flag in each PE. Our active problem elements are the

central 5x5 PEs. In the border PEs we have stored a negative value, and where there is a

constantly held condition we have stored a flag, represented in the figure by a 'C'.

-1 C

0.0

0.0

0.0

0.0

-1 C

0.0

0.0

0.0

0.0

-1 C

0.0

0.0

0.0

0.0

-1 C

0.0

0.0

0.0

0.0

-1 C

0.0 C

0.0 C

0.0 C

0.0 C

-1 C

-1 C

-1 C

-1 C

-1 C

-1 C

0.0

0.0

0.0

0.0

0.00.00.00.00.0 C -1 C0.0

-1 C-1 C-1 C-1 C-1 C -1 C100.0 C

Figure 5: Implementation of our Thermal FEM on a SIMD machine

 At each time step, each PE in the SIMD machine will execute the same instructions

simultaneously. First, if it carries the 'C' flag, then it is marked as inactive and does no further

action. Then, each active PE asks of each of its neighbors what their value is. This

communication is simultaneous, with every element requesting the value of its northern neighbor

in lockstep, then its western, and so forth. After gathering all this, then each processing element

 7

changes its own value to be the average of its neighbors. After ten such time steps, the status of

our model can be shown by Figure 6, below.

1.74

4.08

11.14

22.79

48.53

1.13

3.26

6.54

14.66

22.79

0.87

1.29

3.90

6.53

11.13

0.19

0.71

1.26

3.16

4.06

0.10

0.12

0.55

0.81

1.62

Thermal Ground
to Zero Degrees

Thermal Ground
to 100 Degrees

Figure 6: Condition of Thermal FEM Model after 10 Steps

 A SIMD machine can do these calculations very quickly due to the rigid definition of the

actions of each processing element. As our modeled plate is heated on its corner, this

temperature is transmitted throughout the nodes. Figures 7 and 8 show out model at 50 steps

and 100 steps respectively. Notice that we have begun to come close to a static state solution,

with increasingly small incremental changes in the temperature of individual nodes.

 8

9.21

16.15

24.58

36.75

57.72

11.47

15.22

20.85

28.49

36.40

10.50

12.41

15.94

19.97

23.52

7.61

8.74

10.51

12.69

14.18

4.01

4.42

5.26

6.10

6.79

Thermal Ground
to Zero Degrees

Thermal Ground
to 100 Degrees

Figure 7: Condition of Thermal FEM Model after 50 Steps

10.36

17.93

26.43

38.52

58.87

13.13

17.04

22.83

30.31

38.09

12.11

14.21

17.67

21.77

25.13

8.95

10.07

11.93

14.03

15.53

4.71

5.19

6.00

6.87

7.46

Thermal Ground
to Zero Degrees

Thermal Ground
to 100 Degrees

Figure 8: Condition of Thermal FEM Model after 100 Steps

 9

 This example has shown a simple problem that is easily mapped to a sample machine.

However, we are by no means guaranteed that the FEM mesh representing our problem will have

the same topology as our machine. Consider the example of a cantilever beam that was discussed

earlier. The FEM meshes of our target problems will be two- or three-dimensional and irregular

in shape, while the array of PEs in a SIMD machine such as the MasPar is best represented as a

two-dimensional surface of a wrapped toroid. We are faced by the problem of the best way in

which to map the nodes of the FEM mesh to the PEs of the SIMD machine. Each PE can be

assigned multiple FEM nodes, within the limits of the local memory at that PE5. Obviously, the

communications costs could be minimized by having all of the FEM nodes assigned to single PE,

at which point we regress to the single-processor computer model. Thus, in order to fully utilize

the power of such a SIMD multiprocessor machine we must also seek to minimize the load on

each PE. A tight mapping that provides low communication costs and evenly distributes the

processing load could greatly reduce total computation time.

1.3: The Genetic Algorithm Approach

 This mapping problem is not a simple one, with these two heuristics of minimized

communication and maximized distribution in conflict. This mapping is essentially an extension

of graph theory, and specifically the graph partitioning problem. Unfortunately, this problem,

and our mapping problem, is NP-complete.6,7 We need to find a method by which we can resolve

these competing constraints. In this work, we draw from an algorithm which has demonstrated

its ability to produce solutions in highly complex environments of constraints: evolution.

Evolutionary computation defines a class of algorithms, with genetic algorithms being the

particular method we are working with8. Genetic algorithms take a large pool of potential

solutions, in our case representations of mappings of FEM nodes to PEs, and breed from them

progressively better solutions. Each solution to our mapping problem is subjected to a test of

how well it fulfills our need for distribution and communication, and how well it fares in this test

 10

is termed its "fitness". Solutions with high fitness ratings are preserved and recombined with

other successful solutions. This gives us an ability to act as a preprocessor to the actual FEM

problem in which we can, at any time in the process, retrieve the most fit solution to date.

 Let us present a cursory example of a genetic algorithm, the details of which we will

discuss in Section 3.2. This example, the SimpleGA program9, has been created to approximate

solutions to quadratic equations. We envision a possible solution to a quadratic equation being

represented as 5 binary values. The first bit shows sign, and the final four bits are a big-endian

binary representation of an integer value. Thus a potential solution might be shown by the string

"10110", or the value -6.

 For any representation of a solution to a genetic algorithm, we need to be able to

formulate an objective function. In this case, we wish to minimize the equation Ax2 + Bx + C,

ideally finding the solution to Ax2 + Bx + C=0. Thus a fitness of zero is an ideal solution to the

problem.

 We initially create a population. In this case the population is created entirely randomly,

though this is not necessary to genetic algorithms. We have made a population of 20 potential

solutions. In this case, the equation we will attempt to solve is x2 + 3x - 54=0.

11100 10011
11101 00110
01000 00000
11011 10010
11111 01111
11100 11110
10101 01100
11110 01101
10101 01011
10011 11101

Figure 9: SimpleGA: Initial Population

 11

 In the first generation, we find the best 10 of these solutions. These 10 will be the parents

of the next generation. Note that we already have found both of the solutions to the equation.

However, a genetic algorithm needs to also have a method by which to find solutions that were

not within the initial population. These are called genetic operators, and the simple genetic

operator that we have implemented for the SimpleGA is a crossover. The crossover operation

works much in the same way that chromosomes recombine in biology. We choose two parents

from our "best of" group, and a crossover point on the solution string. The new child is composed

of the first parent's solution up to the crossover point, and the second parent's solution after the

crossover point. For instance, if we take the last two solutions in the initial population as parents

("01011" and "11101"), and choose a crossover point of three, then the child would be "01001". We

will discuss more details of the genetic algorithm later in Section 3.2.

 We can thus create a new population from this initial set of strings, such as that shwon in

Figure 10. We apply our objective function to each string. We then take the ten members of that

population with the best fitness and set them aside. We then use these ten to create the next

population, and repeat the process.

Number Solution Value Fitness
0 01101 6 0
1 10010 -9 0
2 11101 -14 100
3 01100 6 0
4 10011 -9 0
5 01111 7 16
6 10101 -10 16
7 01011 5 -14
8 10101 -10 16
9 10011 -9 0

Figure 10: SimpleGA: Generation 1

 By the ninth generation, the population consists entirely of solutions for which the fitness

function is zero. A genetic algorithm could be written to stop upon such a condition (as this one

was) or it could continue to attempt to find more solutions.

 12

Number Solution Value Fitness
0 10010 -9 0
1 10011 -9 0
2 10011 -9 0
3 01101 6 0
4 10010 -9 0
5 01100 6 0
6 10010 -9 0
7 10010 -9 0
8 01101 6 0
9 10011 -9 0

Figure 11: SimpleGA: Generation 9

1.4: The Problem in Summation

 We have applied genetic algorithms to the problem of mapping large FEM meshes to a

SIMD architecture such as the MasPar series. The problems that we have tackled are related to a

larger body of work currently in progress at WPI. It is desired that eventually users should be

able to create a design problem in a common CAD/CAM package, and then have their problem

analyzed automatically for them. This analysis consists of several steps. The geometry of the

problem must be converted from a solid model form to a three-dimensional mesh. This mesh will

then be mapped to the elements of a SIMD machine (such as the MasPar MP-1 used by the WPI

ECE Department). The mapped mesh will then be computationally solved using a parallel FEM

algorithm.10 This work fits into the overall structure as the second step mentioned above.

 13

Chapter 2: Background

 There are three major aspects we will present in the background of this project. Thus, we

will first discuss more detailed concepts of genetic algorithms, the computational paradigm used

in this thesis. Then we provide some more detailed background on SIMD machines, which define

aspects of the end target of our problem. A brief description of previous work in related areas

will be given, which also provides a basis for evaluation of our work.

2.1: The Method of Genetic Algorithms

 One way in which this mapping of FEM problem mesh to SIMD processor topology

might be done is with Genetic Algorithms. Genetic Algorithms show a robust capability to drive

towards optima when faced with a complex environment.11 Genetic Algorithms are based upon

biological theories of evolution in nature, and their mechanisms reflect this parentage. A number

of potential solutions compete in a pool that weeds out the poorer and pushes along the better

over time. By deciding how much time and resources we wish to dedicate to the Genetic

Algorithm, we can choose to get a "quick and dirty" solution, or to find a more optimal solution.

2.1.1: Biological Background

 The theory of genetic algorithms is based on theory from biology, namely the modern

refinement of Darwin’s Theory of Evolution. The characteristics of an organism are determined

on the basis of the genes in its chromosomes. A complex organism commonly has many thread-

like chromosomes, in the case of normal humans, 46. Each of these chromosomes has many genes

in linear order along them12. Each gene has several different forms, called alleles. A computer

scientist might benefit from an analogy to computer storage to aid in conceptualizing this.

Consider memory divided into pages (chromosomes), each of which has many addressable

datawords (genes). At any addressable dataword there may be a number of values (alleles).

 14

 A typical vertebrate has tens of thousands of genes in its chromosomes. This description

would allow there to be about 103000 possibilities, yet even a large population (say, 10 billion

individuals), does not show any significant fraction of this diversity13. Not all of those

combinations produce viable organisms that can compete in the natural world. In biology the

phenomenon that keeps all the possibilities from evidencing is called epistasis. John Holland, one

of the more influential fathers of modern genetic algorithms, draws an analogy:

 “The problem is like the problem of adjusting the ‘height’, ‘vertical
linearity’, and ‘vertical hold’ controls on a television set. A ‘best setting’ for
‘height’, ignoring the settings of the other two controls, will be destroyed as soon
as one attempts to better the setting of either of the other two controls. The
problem is vexing enough when there are three interdependent controls, as
anyone who has attempted these adjustments can testify, but it pales in
comparison to the genetic case when dozens or hundreds of interdependent
alleles can be involved.”14

 This combination of alleles which together yield beneficial results are called “co-

adapted”, and later we will refer to them as schemata. The characteristics evidenced by an

organism through its genetic material is called a phenotype.

 The mechanisms by which new genes are created from are called genetic operators. In

biological organisms, a common operator is called “crossing-over” (or simply crossover). Given

two chromosomes (in sexual reproduction, one from each parent), the chromosomes cross and

break at one point, one ‘header’ picking up the other’s ‘trailer’ and vise-versa. Thus two child

chromosomes are created, each with genes of both parents. Another common operator is

mutation, where the allele of a gene is changed due to a random variation caused by the influence

of chemicals, radiation, or the like.

 Children which are well adapted to survive in their environment have a better chance to

go on and produce more offspring than their less well adapted siblings. Thus incremental

changes occur throughout the population which yield more fit individuals. Individuals

introduced into an environment have their fitness tested for survival and propagation in that

environment. Being a well adapted phenotype does not guarantee that you will not meet an

 15

untimely death before you can reproduce. The pressure of competition and the environmental

problem will cause a shift towards more optimal solutions.

 Thus, in summary, algorithms based on genetics and natural evolution function as

follows. Working from a pool of possible solutions (or genes), the most optimal (best fitness) of

these solutions are chosen to create the next generation pool of genes. These new organisms

(child solutions) may be created through a number of operators such as the crossover of the

chromosomes of successful parents or random variation (mutation).

2.1.2: General Genetic Algorithm Theory

 Modern genetic algorithm research was pioneered by John Holland, and is described in

Adaptation in Natural and Artificial Systems [1975]. In this work Holland provides a

mathematical model for the process of adaptation of a generalized organism through

evolutionary mechanisms. This model introduces a method of representing the genetic material

or chromosome, and an abstraction of logical groups of these chromosomes: schemata. Holland’s

schema theory is the basis for the genetic algorithms we will consider in this work.15

 Consider that there are a number of structures, that can define potential solutions to a

problem, and call this the set A$ = {A1, A2, A3, ...}. For these structures, we have a finite number

of detectors which we can use to distinguish the members of the set A$. Let us call these

detectors ∂l = {∂1, ∂2, ∂3, ... ∂l}. Each of these detectors can have an output of the set Vi = {v1, v2,

v3, ... vi}.

 Consider also that we have a set of genetic operators Ω = {w1, w2, w3, ... } that can be

used to change state from one structure in A$ to another. For these operators, we have a plan by

which to select operators to apply to our current state (T$), and an objective function by which to

compare structures (X$).

 In the term of genetic algorithms, these structures (A$) are the chromosomes. The

chromosomes are represented by a sequence of genes (∂) which lie at given positions along the

 16

chromosome. The alleles are the values that these genes can take (V). We must have some

methods by which to change the state of our chromosome (Ω). These are our genetic operators,

and the genetic algorithm determines when each genetic operator is used. We also need a

selection method by which to choose our structures (T$) to operate on. We need to be able to

evaluate the optimality of a given structure with an objective function, and from that derive a

fitness function to compare one structure with another (X$). Given these definitions, Holland

shows that genetic algorithms will converge upon an optimal solution.16

 To create a genetic algorithm, we must decide on a representation of a potential solution,

which will be our chromosome. Consider then, a chromosome in our structure space. It is

represented by a string of gene-allele pairs, where the alleles might be defined to be of the set

{0,1} so as to show the presence or absence of a certain feature. Most genetic algorithm work only

uses one chromosome to represent an individual organism, and many use binary allele values for

ease of representation. A chromosome with three genes might be expressed then as (0 1 0). We

can evaluate this chromosome with our fitness function, and arrive at a value of its optimality.

The problem is thus, how can we manipulate this chromosome so that it retains good qualities

while shedding less favorable qualities.

 Consider a set of chromosomes whose first gene has the value of 0, and whose last gene

has a value of 0. We don’t care what the value is of the second gene. We can express this as (0 *

0) where the asterisk is a wildcard or “don’t care”. This is a schema, a set of solution structures

which share common features to attain greater cooperative fitness. The major point of Holland’s

work is that a large number of these schemata are created with each individual chromosome.

Each chromosome, once evaluated, represents a data point for each of these schemata. Since we

then take effort to preserve schemata in our genetic operators, Holland describes the GA

algorithm is “intrinsically parallel”17. A large number of these schemata exist within a

chromosome population, and each schemata is constantly being tested and adapted

simultaneously. This parallelism of adaptation supplies the argument for why genetic algorithms

 17

offer benefits beyond that of simple probabilistic or hill-climbing searches alone. Such searches

are only attempting to prove or disprove one particular solution at a time, and thus do not have

the breadth of search that genetic algorithms possess.

 An important point to consider of genetic algorithms is that they are deterministic.

Individual decisions within the algorithm are probabilistic, such as the selection of parents for a

new child chromosome. However by using known genetic operators and selection methods, the

overall action of the genetic algorithm is deterministic18.

 To evaluate these organisms (or potential solutions), we must determine the objective that

we wish our solutions to converge on. The expression of this is called the objective function. Our

objective function, for instance, might be to minimize the value of a multi-variable equation.

These are our detectors (∂). This objective function may produce a result which is then modified

by another function to create a number manipulated directly by the genetic algorithm, the fitness

function. For instance, our fitness function will normalize the above mentioned result to a real

value in the range from 0 to 1, with a rating of 1.00 being an optimally minimized solution.

 Given a population of solutions (from A$), and a rated fitness, we now choose an

operator to use to modify the solution. For instance, the previously mentioned crossover evident

in biology might be used to split and recombine two chromosomes. Which individuals are

chosen to reproduce in this manner is determined probabilistically by their fitness values. There

are a number of these selection methods used in genetic algorithm research, as well as a number

of genetic operators. Many of these methods and operators have their proponents in the GA

community, and which are appropriate for a given problem is a matter of debate. These

operators must be shown to maintain the deterministic nature of the genetic algorithm.

 The genetic algorithms forwarded by Holland in 1975, encompass a strategy for solution

of complex problems. Holland's schemata theory mathematically shows that GAs converge on

their optimal solution. The genetic algorithm researcher must make several decisions, namely to

 18

decide on a representation, an objective function, a fitness function, a selection method, and

genetic operators.

2.1.3: Messy Genetic Algorithms

 Messy Genetic Algorithms (mGAs) are an extension of Holland's concepts, and differ

from the usual GA approach in three major ways. Firstly, they use variable-length chromosomes

that may have overspecified or underspecified values. Secondly, they use a costly initialization

procedure to secure all the useful building blocks needed in a problem into the population. This

initialization causes the algorithm to be broken into two stages termed the primordial stage and

the juxtapositional stage. Thirdly, they attack the problem over several “eras” of populations,

each of which has a separately initialized population. This initial discussion of mGAs is drawn

from “Don’t Worry, be Messy” [1991] and “Messy Genetic Algorithms Revisited: Studies in

Mixed Size and Scale” [1990] by Goldberg, Deb, and Korb.

 A messy genetic algorithm uses individuals with variable length chromosomes. Consider

a chromosome that has 3 genes with binary values. A standard GA chromosome might express

this as (1 0 1), with the unstated assumption that the first value corresponds to the first gene, etc.

A fully-specified GA might express this chromosome as ((1 1) (2 0) (3 1)). This chromosome

describes the alleles at each of the three gene sites, and gives one and one value for each site.

However, for a messy genetic algorithm, the chromosomes ((1 1) (2 0) (3 1) (1 0)), ((1 1) (2 1)), and

even () are also valid. The first is considered "overspecified", since it has two possible alleles

given for gene number 1. The second is considered "underspecified" since it contains no allele for

gene number 3, with the third example being a rather more dramatic example of

underspecification. Both overspecification and underspecification must be handled by the messy

genetic algorithm. Overspecification is handled simply by first-come-first-serve left-to-right

processing of the allele-gene pairings. In other words, repetitious attempts to assign an allele to a

gene beyond the first found are ignored. Note however that this "ignored" information continues

 19

to reside in the chromosome and may be passed on to children19. Underspecification is a more

devious problem covered by the existence of a competitive template. Any unspecified alleles are

drawn from the template to create a full chromosome that can be evaluated by the objective

function. The creation and modification of this template will be discussed later.

 Messy genetic algorithms claim more robustness than general genetic algorithms in part

through the use of an expensive primordial stage. The primordial stage guarantees the

production of the optimal building blocks of a given order (k). In other words, since we create all

the chromosomes that differ by only k genes, we know that the best schemata of length k exists in

our solution pool. If our problem is defined by a chromosome of length l, we work in each era on

a succession of current working strings of size (l-k). Thus the primordial phase needs to create a

population of size n, where n= 2k

l
kℜ

�ℜ ℜ
ℜ

.

 A major part of the appeal of mGAs is that they are supposed to be “noise-free”. This

means that each competitive template is guaranteed, as shown by Goldberg et al20, to be optimal

to building block order k. This is because we’ve already guaranteed that the best building block

of length k has been created, and we only create new children by tournament selection, a one-on-

one deterministic fitness trial. Since each subsequent era of the evaluation uses the previous era’s

winning solution as the new competitive template, you are given a ready answer that continues to

approach the global optima. This also means that the mGA can be halted, and the best

chromosome is always available, optimal to a specific order of building block. The reason that

Goldberg and his colleagues are enthusiastic about this multi-era system is that it can defeat

"deception" of a given order less that k. Consider a problem whose solution looks like a saddle

function. It has two major peaks where the optimal answers might be found, and a hill-climbing

algorithm or a genetic algorithm, might be misled by the lower peak having a higher slope. This

is a deception of order 1. Messy genetic algorithms defeat this deception on the second era. This

predictable optimality is a major selling point for Goldberg in the use of messy genetic

algorithms.

 20

 The next stage is the juxtapositional stage. This stage uses two genetic operators (cut and

splice) to create the competitive template for that order. This is another argument for generality

in mGAs, since general genetic algorithms have been found by some to require a large amount of

tuning of the genetic operators to provide good results. mGAs avoid this problem by not dealing

with the plethora of available operators, mutation, or variable population sizing. Instead, there

are only two operators in mGAs: cut and splice. Mutation is not used in the mGA projects

described by Goldberg21, and was not used in our implementation.

 Further details on the implementation of a messy genetic algorithm is given in section

3.3.1 of this paper. However, to understand the needs of our implementation, we must also

consider the hardware target that we are attempting to map to.

2.2: SIMD Machines and the MasPar

 In order to be able to define an objective function for our Genetic Algorithm comparisons,

we must be able to find a measure of how well our mappings will actually work in solving the

FEM problems. There are several factors that contribute to the effective speed of a program

running on a SIMD machine, and thus a further description of the SIMD paradigm is necessary at

this point. SIMD is an acronym which stands for “Single Instruction, Multiple Data” in Flynn’s

taxonomy22. A single program instruction is carried out simultaneously by multiple processing

elements on different elements of the data set. All the processing elements in the active set do the

exact same instruction at the exact same time. SIMD machines are generally produced with a

large number of relatively simple processing elements (PEs), each of which are loaded separately.

The processing elements of the SIMD machine can communicate their neighbors during

processing, at a defined constant cost. So we have three major factors influencing the speed of

code execution on a SIMD machine, in our case, the MasPar. While we discuss here constructs

that are specific to the MasPar, the same or similar constructs would affect implementation on

other SIMD machines.

 21

 Firstly, we consider the complications of the synchronization inherent in a SIMD

machine. Synchronization plays a large part in the efficiency of code written for SIMD machines.

All the processors operate in lockstep synchronization on the same instruction. For instance, if

the code included an If-Then-Else construct, then the processor’s local data might cause them to

need to execute either the Then block or the Else block. As the program executes, all the

processors using the Then block would become part of the active set, and those not using the

Then block would be excluded from the active set. All the processors in the active set then

execute the Then block of code, while the other processors are idle. The roles are then reversed as

the Else block of code is executed. Thus, the way in which the code is written for a SIMD

machine is critical. For our purposes, we can largely ignore this primary source of SIMD

problems, as we wish to make the mapping independent of solver implementation.23 However,

the nature of synchronization will show up in other considerations.

 Secondly, we consider the raw loading of the processors. The most obvious measure of

speed on a multi-processor machine is the loading of the tasks. The potential computational

penalties for loads of varied weights on individual PEs is even more critical on a SIMD machine

than on other kinds of multiprocessing paradigms due to synchronization. If one worst-case

processor has to loop and do n jobs, then all the processors will spend the same amount of time

either taking care of their jobs or remaining idle outside the active set waiting for the worst-case

processor to finish. As an additional complication, the individual PEs have limited local memory.

If the problem assigned to the PE is larger than the local memory, then it will need to retrieve the

remainder from the controlling machine when that information is accessed. The entire machine

will then go idle while the communication with the controller24 takes place. Thus, there are a

number of issues in loading the PEs with problem elements from the FEM mesh. The basic thrust

is that we wish to have an evenly distributed load across the PEs.

 Thirdly, we consider the communication costs of solving the mapped problem. There are

two constructs which can be used for the communications between PEs in the MasPar, the Xnet

 22

and the router. The Xnet is a high speed hardware communication system which connects each

PE with its eight neighbors. The MasPar-1 is laid out in a grid of 1024 elements, 32 rows by 32

columns. The Xnet wraps around this grid vertically and horizontally, which makes the MasPar

more properly considered a wrapped toroidal topology. Figure 12 shows the hardware

connectivity as if the MasPar were only five by five rather than 32 by 32 in size. Note that this

connectivity does not change if only a smaller subset of the nodes is active. The router construct

allows communication between any two elements in the MasPar. The router is slower than the

Xnet, and as mentioned before, if one PE needs to make a call to the router, then all PEs will go

idle waiting for that to be completed.

Figure 12: Miniature MasPar Xnet Connectivity
(grayed elements show wrap-around)

 Consider the FEM Mesh of a cantilever beam that was illustrated earlier. If we take that

mesh, and number the nodes for easier recognition, then we get Figure 13, below. Our problem

contains an aspect that provides a simple challenge to mapping, namely that it is wider than our

 23

example miniature MasPar. Thus we cannot simply place the problem down upon the surface of

the MasPar, but must make room for the nodes at the end of the cantilever.

1 2

9

3 4 5 6 7 8

10 11 12 13 14 15 16

17 18 19 20

21 22

Figure 13: Cantilever Problem with numbered Elements

 One way that a mapping might be created is shown in Figure 14 below. In this mapping,

we mange to utilize 88% of our processors, without overloading any of them. Our

communication costs is only slightly higher, since node 13 needs to make two jumps to reach

node 14. Node 5 exploits the wrapped toroidal geometry, and reaches Node 6 in one step.

However, the fact that we have to wait for nodes 13 and 14 to communicate means that every

processor will go idle for the time it takes for the MasPar to make one Xnet communication.

5

678

13

141516

1 2

9

3 4

10 11 12

17 18 19 20

21 22

Figure 14: A simple mapping of FEM Mesh to miniature MasPar PEs

 24

 This is, of course, a very simple example of a mapping problem. A real world problem

might well have a three dimensional mesh, which presents similar problem, but in much greater

complexity. These larger problems quickly escalated beyond what it is desirable to do by hand.

It is to handle this complexity that we turn to other algorithms, including genetic algorithms.

2.3: Related Historical Work

 One related work is that of Storøy and Sørevik [1992], who describe a solution to a similar

problem, the Dense Linear Assignment Problem (LAP). The LAP maps members of a

connectivity graph onto a cost-metric graph in such a way that the cost is minimized. They

implemented two different schemes of the Hungarian algorithm for solving the LAP, primarily

using a MasPar MP-1. While they report that their results are arguably optimal, the time required

is bounded by O(n2) when using this parallel algorithm, which is reduced from O(n3) in the serial

algorithm.

 Bokhari [1981] tackled the problem of mapping FEM nodes to the processors of a parallel

machine. He used a Monte Carlo search method that initialized with a random allocation of

processors to problem elements. The algorithm then modified the current working mesh by

swapping one node-PE pair in the way that most increased his fitness function, performing an

exhaustive search of all such swaps. When his algorithm reached the top of the hill thus climbed,

it checked to see whether this was better or equal to the last saved result. If it was, it saved this

new result and took a random jump to another space. Bokhari's algorithm is discussed in more

depth in Section 3.4. As we will discuss later, his original algorithm does not fully handle the

problem as we desire. However, a modified form of this algorithm was used as our test case

which we could compare our genetic algorithm work to.

 25

Chapter 3: Approach

 The genetic algorithm is applicable to our problem, as we will show. We will then

describe how the details of the genetic algorithm and messy genetic algorithm are implemented.

We will also describe our implementation of Bokhari’s algorithm, which will be used for

comparative purposes.

3.1: Problem Applicability

 One important qualification must be made concerning the algorithms we used for

mappings. The original Bokhari algorithm called for mappings of at most one problem node to a

processing node. In our first exploration of the genetic algorithm approach, we retained this

limitation. This, however, limits the problem size to the size of our parallel machine. Seeing as

we wish to find an algorithm capable of mapping very large problems, this needed to be

modified. In the following discussions, thus our primary data comes from the multiple-mapping

modification of the Bokhari and GA approaches.

 Our general problem can be applied to the GA approach in the following manner. An

evolutionary organism with one chromosome consists of a number of genes equal to the number

of elements in the problem mesh. Each of these genes can take on a value corresponding to any

one of the processing elements of the SIMD machine. Thus we can represent any mapping of

problem elements to SIMD processing elements.

3.2: Genetic Algorithm Approach

 We have a number of parameters to work with in designing our genetic algorithm for a

given task. We must determine what our objective function is, and how our fitness function

expresses this. Given this, we choose a selection method to produce the candidates for

parenthood of the next generation. If there are any controls on the dynamics of the population,

this may place an additional constraint on the production of new candidates. Next, we decide

 26

what genetic operators are available to create this generation. Finally, we implement the details

of how large each population is, and for how many generations we will seek our answer.

3.2.1: Objective and Fitness Functions

 While it is necessary to have some knowledge of how the MasPar works to make an

appropriate objective function, the key word is appropriate. We realized immediately that the

objective function would not, for instance, return the time necessary to solve the target mapped

mesh. We are not interested in taking the solver code and developing a profile specifically for it.

Considering that this objective function must be run on every potential solution, it must not be, an

expensive computation. If our object function takes an excessive amount of time to compute, the

advantage gained by creating the mapping will be lost in the resources necessary to create the

mapping in the first place. Instead, we wish to find a good estimatator for code which has not

even been written yet by considering the overall problem on a more abstract level.

 As an example of a basic objective function, Bokhari [1981] used a comparison of edges.

If there was an edge in the graph of the problem mesh, there should be an edge in the graph of

the processor mapping. His fitness function was the maximization of the cardinality of these

correlating edges. But this only measures full “hits” on the solution. For instance, it does not

consider that replacing a problem edge with two processor graph edges is better than five

processor graph edges. As we have mentioned, if 69 out of 70 edges correlate correctly, but the

seventieth edge requires 10 Xnet communications, then all the processors will wait while the slow

edge is being dealt with. Thus it would not be better than if all of the processors had to do five

communications on the Xnet, reliably and consistently.

 Bokhari also allowed a single problem element to be mapped to any single processor

element. Since this would be required to do the kind of problems we are targeting, this also adds

the issue of processor loading. What we wish to avoid is overloading one processor while leaving

others to idle.

 27

 We do not necessarily seek an optimal solution. We only have an estimator of the final

performance of the solver, and so to spend a large amount of processor time optimizing the

estimator may not pay off in great gains in performance. Instead, we wish to act as a pre-

processor for the problem which will result in a reduction of the overall time necessary to solve

the FEM mesh. So the computational time required in making the mapping should not exceed

the gains in actual solving time (compared to an unintelligent) mapping.

 Our concerns were handled by our final objective function, which computed the sum of

the variance of the communication costs and the variance of the processor load across all of the

problem nodes. Thus we seek the minimization of this objective function. To create a fitness

function, we inverted the objective function and normalized it over the range {0,1}. Thus a fitness

rating of 0 indicates the absolute worst case possible for both processor loading and

communication costs, while 1 indicates that all of the processor elements have the exact same

loading and the communication costs are all equal. Note that it is quite likely that the optimal

possible solution is less than 1.

3.2.2: Selection Methods and Population Dynamics

 Our GA uses roulette wheel selection, which means that the chance of any given

individual being chosen is proportional to its fitness. This selection method has been shown to

work within the constraints of Holland's theory25. Consider a roulette wheel in which the slots

are not of equal size. Each of the slots is of a size corresponding to its fitness. Thus the ball might

fall in the narrow slot of a unfit solution, but more likely to fall in the wider slot of a solution

judged to have a higher fitness. In our research, we found that it was useful to actually

exaggerate a given organism's advantage by making the roulette wheel slot the size of the square

of the fitness. The downside of this is a loss of diversity, as it makes it easier for the slightly more

fit solutions (which may be identical) to dominate the wheel.

 28

 Our GA uses generational reproduction, which means that all the individuals in a

population are replaced at once.26 We do not use elitism, a method which allows a fit solution to

move on to the next generation unchanged, potentially providing immortality. We also do not

forbid duplication of a solution in the solution pool, potentially allowing clones to take over the

pool. Both of these are factors that can influence the time to solution, but we leave them out of

this work primarily to control the already large number of variables inherent in this research.

3.2.3: Genetic Operators

 The GA code that we have produced is setup to easily switch between two kinds of

crossover operators: partially matched cross-over (PMX) and order crossover (OX). These are the

two primary kinds of genetic operators identified by Goldberg [1989] as falling within Holland's

schemata theory. We used mutation in our final version of the GA, with there being a one in one

hundred chance of a chromosome having one gene’s allele changed.

 Partially matched crossover was first used in the blind traveling salesman problem. In

the traveling salesman class of problems, the primary concern is the order in which individual

problem nodes (in this case, cities) are traveled. Also, no node can be traveled through more than

once. This is similar to the original single-mapping approach that we used to tackle the mapping

problem, where each processing element could only be assigned one problem element. Simple

two-point crossover would violate that condition.

 In the PMX method, two points are chosen along the length of the chromosome. Both of

the parents are divided at these points, and interchange the middle segment thus cut. The pairs

in the exchanged segment, however, now may be repeated more than once in the new child

chromosomes. To rectify this, the original nodes which are being repeated are switched with

their opposite mate. For instance, we have two parent chromosome strings with two division

points chosen, A and B. Within the chosen cut string, the 1 in A and 4 in B and exchange, along

 29

with the 9 and 7. However, this leaves repetition in each chromosome, so in the uncut string the 4

in A is switched with the 1 in B, and the 7 with the 9, leaving:

 A: 3 7 4 2 | 1 9 | 6 5 8 A’: 3 9 1 2 | 4 7 | 6 5 8

 B: 1 8 9 3 | 4 7 | 6 2 5 B’: 4 8 7 3 | 1 9 | 6 2 5

 This tends to keep the general order of the chromosome from being disrupted, while

maintaining the number of references to a given node.

 By contrast, the order crossover works somewhat differently upon the chromosome. Like

PMX, the order crossover chooses two division points and thus a segment to be exchanged.

However, instead of swapping the inner segment, OX removes all of the nodes that correspond to

the mate’s inner segment. This leaves “holes” in each of the chromosome. These holes are then

filled by sliding the genes together from the second selection point and moving the “holes” to the

cut segment. Then the cut values are exchanged as in the partially matched crossover. For

instance, consider our previous example chromosomes. In chromosome A the 4 and 7 are

replaced by holes, as are the 1 and 9 in B. Then the uncut strings are slid together, and the cut

segments exchanged, as shown by A’ and B’, below.

 A: 3 7 4 2 | 1 9 | 6 5 8 A’: 5 8 3 2 | 4 7 | 1 9 6

 B: 1 8 9 3 | 4 7 | 6 2 5 B’: 2 5 8 3 | 1 9 | 4 7 6

 This tends to maintain relative ordering of one node to another, rather that the absolute

position maintained by partially matched crossover. However, for our purposes we expected that

PMX would produce more constructive juxtaposition of mapping sequences. Small problem

testing appeared to back up this decision, so we proceeded.27

 Mutation is currently considered only a minor actor in biological evolution of sexually

reproducing organisms. In general for our purposes, it provides a disruptive effect and adds

some measure of diversity to the population.

 30

3.2.4: Sizing of Populations and Length of Run

 There currently is much argument in the GA community about the sizing of populations.

As might be expected, there is a critical tradeoff between time to solution and the quality of the

solution. Small populations are more quickly dominated by above-average fitness schemata.

This could potentially shut out schemata that, if given time to co-adapt fully, could produce

better results. The larger populations have more room for these locally suboptimal but globally

more optimal schemata to develop and recombine. The larger the population, the more

computational work that must be done to complete each generation, but the more diversity is

maintained. Goldberg has produced work that encourages smaller population sizes.28

 The flip side of the problem is how long a GA trial is allowed to run. In this work we

have tried a variety of population sizes and run lengths to see the effects on the result. We

emphasize that in our particular problem we are acting as a preprocessor to another

computational processor, the actual FEM solver. We envision that the final version of such a

preprocessor would have a more dynamic halting condition, where computational time expended

would be balanced against the slowing gain in solution quality. As we have mentioned in our

problem definition, the mapping problem will be driven to a quick and dirty solution rather than

concern in finding the elusive global optima.

3.3: Messy Genetic Algorithm Approach

 One of the original intentions of the messy genetic algorithms is that it should have a

minimum of parameters that need be determined by the researcher.29 However, there still are a

number of decisions that need to be made. We first take a more detailed look at the scheduling of

an mGA era, and determine the open parameters there. We then look at the other variables

required for the mGA, particularly concerning the genetic operators. Finally, we show the

technical limits which placed a real-world boundary on our mGA work.

 31

3.3.1: Scheduling a Messy Genetic Algorithm Era

 As mentioned earlier in Section 2.1.3, the mGA process passes through two phases during

an era, the primordial phase and the juxtapositional phase. At the beginning of the

juxtapositional phase, the population consists of all the possible building blocks of the order

appropriate to the era. This is potentially a large number (see Section 3.3.3), and the population

needs to be trimmed down before it reaches the juxtapositional phase. Figure 15, below,

illustrates the control flow of the messy genetic algorithm.

Juxtapositional
Phase

Primordial
Phase

init_select_gen

tournament
selection
without

shuffling

tournament
selection

with
shuffling

cut_every_other_gen prim_gen

cutpop_gen

population
size does
not change

population
size halved
every other
generation

population
size halved
at every
generation

population
size does
not change

Figure 15: Messy Genetic Algorithm Scheduling30

 Initially, the population does not change, and neighboring chromosomes are tested

against each other with the winner taking both slots in the population. Then this selection

method (called tournament selection) is modified by randomly shuffling the participants in the

tournament. At this time, the population is cut in size every other generation, with only the

winners of the tournament selections surviving to the next generation. Note that at this point, no

genetic operators are being used to modify the building blocks. Then the population pressure

changes again, with only the tournament winners proceeding at every generation. Then, at the

end of the primordial phase, the population size is held constant again.

 32

 The placement of the signal events (init_select_gen, cut_every_other_gen, cutpop_gen,

and prim_gen) determine the population pressure placed on building blocks, and the final

population size that must be carried through the juxtapositional phase.

 After brief experimentation, we used a constant set of these values for all of our runs.

Tournament shuffling and population reduction was begun by the init_select_gen flag after one

generation. The reduction of population at every other generation was ended (and accelerated to

every generation) at the cut_every_other_gen flag on the third generation. After six generations,

the population size was stabilized by the cut_pop_gen flag. The primordial phase ended after the

9th generation, and the juxtapositional stage then ran until the 50th generation.

3.3.2: Other Messy Genetic Algorithm Variables

 During the juxtapositional phase, the population size does not change. Now the genetic

operators come into play, recombining the culled building blocks. As mentioned before, there are

only two genetic operators in the mGA algorithm, cut and splice. Cut takes place on a given

chromosome with probability pc = (l’ - 1)/l •pk , thus becoming more likely as the chromosome

string (of length l’) gets longer and closer to the problem size (length l). Splice joins together the

resulting strings with fixed probability ps. For our experimentation pk was fixed at 0.5, so that a

full size chromosome would thus have about a 50/50 chance of being split. We kept ps fixed at

1.0, which kept the population handling simpler since two parents always produced two children,

a method also used by Deb and Goldberg in their “mGA in C” work.31

 Mutation in mGAs could be applied either to the gene value or the allele value, unlike a

normal GA where one can only mutate the allele. However, Goldberg does not use mutation, and

neither do we in our work.

 33

3.3.3: Technical Limits of the Messy Genetic Algorithm

 Earlier we alluded to difficulties in implementing our problem using a messy genetic

algorithm. Until now, our major concern about complexity was time complexity. After all, this is

the general measure of choice when deciding is one algorithm is superior to another. Let us look

briefly at the complexity of the mGA approach to our problem.

 The complexity of the overall mGA operation is O(lk)32, which is driven entirely by the

initialization phase. So further work by Goldberg, et al. was motivated in reducing the

primordial phase to produce a probabilistically complete initialization (PCI) of the population33.

 The methods for PCI draws on another paper, “Genetic Algorithms, Noise, and the Sizing

of Populations”, by Goldberg, Deb and Clark. In this paper, mathematical evaluation of the

objective function is used to create formula to determine the needed population size. Using this,

Goldberg's GALab research group went on to create fast messy genetic algorithms (fmGA), which

are distinguished from mGAs in that they have a much shorter primordial phase. In fact, the new

primordial phase is O(l log l), just like the other phases34.

 Now, if we could draw directly on the fmGA methodology, then our prospects would be

blindingly bright. However, there appear to be some points of concern with the application of

mGAs and fmGAs to our problem. Firstly, the mGA predictions are based on the apparent

assumption that function evaluations are done in constant time. However, the best methods by

which a mesh mapping could be evaluated are done in O(l) time. This modification will take our

execution time to O(l2 log l). Secondly, it appears to be assumed that the number of iterations of

the whole mGA mechanism is done a constant number of times. However, in the paper text it

seems to me that we need to iterate k from 1 to l. In practical application this iteration is made

with steps greater than 1, which places another O(l) loop around the whole mechanism. So now

the expected complexity stands at O(l3 log l). This, however, only describes the time complexity.

 Space complexity of the messy Genetic Algorithm is also problematic. Consider our

space complexity algorithm parameterized by three values: the number of nodes in the problem

 34

mesh (the problem size, or prob_size); the number of processor elements to which the mesh will

the mapped (the machine size, or mach_size); and the order of the building blocks which we are

solving for, which is also the era of the mGA approach. The number of unique genes in our

problem is thus prob_size • mach_size, and the number of unique chromosomes (building blocks)

of order (order) is

prob _ size • mach _ size
order

ℜ

ℜ
�ℜ ℜ

ℜ
. And in the mGA methodology, we must

create all unique building blocks in the setup of the primordial phase.

 Now this does look bad, but consider a sample problem with a trivial two-dimensional

mesh of 24 problem mesh nodes on 6x6 FEM machine. This yields (24 • 36) = 864 unique genes.

So, in the first era (with order 1 building blocks) we’ll generate 864 chromosomes. Once that is

completed, we make a new competitive template, and run era #2 (order 2 building blocks) of

372816 chromosomes. Then we have era #3 (order 3 building blocks) with 107 x 106

chromosomes, era #4 (order 4 building blocks) with 2.3 x 1010 chromosomes, and so on.

 Now when one tries to allocate memory for this space, as one might innocently try to do

for an order 3 problem in such a trivial test, we find that if each chromosome requires a mere 32

byte header and 12 bytes per gene-allele pair, we need: 107x106 chromosomes * (32 bytes + 3(12

bytes)) = 7 Gigabytes of memory. Unfortunately, the hardware available to us (see Section 4.2)

does not include seven gigabytes of swap space. And again, this is a trivial 24 node, two-

dimensional problem. Thus there exists a serious difficulty in using messy genetic algorithms on

reasonable sized problems with our current technology.

3.4: Bokhari’s Algorithm Approach

 In a 1981 paper, Shahid Bokhari introduced a method by which to solve the mapping

problem. He proposed a method to map a FEM mesh to an “eight-nearest neighbor” FEM

machine having communication connectivity much like the MasPar. This problem is very close to

the problem that we describe, and thus, we have chosen it as a baseline by which to compare our

work.

 35

3.4.1 Description of Approach

 Bokhari’s algorithm begins with an adjacency matrix for the FEM machine. We then map

nodes from the problem mesh to the processing elements of the FEM, first node to first element,

second node to second element, etc. Given this mapping, we evaluate it for fitness. In the

original algorithm, a mapping gets a fitness point for every pair of nodes which are adjacent in

the problem which are mapped to adjacent processing elements. Thus, we are trying to maximize

this mapping cardinality value.

 The main loop of the algorithm then takes each individual problem node, and consider

exchanging it with each other mapping position in turn. Thus all of the current mappings

“neighbors” are explored. We select the change which leads to the greatest gain in fitness. If this

gain is nonnegative, then we make the exchange. This new mapping becomes our current

mapping, and we again check all the nodes for possible advantageous exchanges.

 If the mapping finds that the best possible exchange gain is negative, then the exchange is

not made and the current mapping is saved as the best mapping found. We then take a random

jump in our mapping space, exchanging randomly n pairs of nodes, where n is the length on the

side of the FEM machine. If one of these jumps leads us to new best position that is at least equal

to the previous best mapping found, then we will continue to jump in search for better mappings.

If a jump cannot climb to at least an equally fit mapping, then the algorithm terminates.35

3.4.2 Performance

 Bokhari’s work centered on 25 to 39 node problems, and running on a CDC Cyber 175, he

had no problem getting back timely results. However, his algorithm executes in O(n2) time,

which he admits in this article "will probably not be suitable for very large arrays (say 32x32). For

such arrays, entirely different heuristics will need to be developed."36 The work planned to target

 36

such larger arrays, and in fact 32x32 is the size of the MasPar available to WPI for solving these

problems.

3.4.3 Limitations and Subsequent Modifications

 Bokhari’s algorithm also depends on the problem being smaller than, or of equal size to,

the FEM machine. As we have mentioned above, we desired a multiple mapping algorithm.

Thus, the Bokhari algorithm needed to be modified. This was done by simply wrapping around

the initial mapping when the problem is bigger than the target machine. Nodes are still handled

singly, and thus can still be swapped in the original manner.

 The fitness function used within the Bokhari method had to be changed to bring it into

line with the GA and mGA. The same function was thus used in all three methods.

 Note that the Bokhari method is also capable of finding itself in an infinite loop. Consider

a problem space whose fitness function has a number of equally fit local solutions. Bokhari’s

solution could find itself in one of these mesa-like areas, and randomly jump to another such

plateau. Since the new best fitness is neither better nor worse than the previous solution, the

algorithm randomly jumps again... back to the original location. This pattern could be repeated,

potentially infinitely, depending on the topology of the fitness function space. In our work, a

"timeout" value was introduced to the Bokhari algorithm. A counter was initialized when the

Bokhari algorithm began the jumping stage. This counter was incremented every time that a

jump resulted in no increase in fitness. If the counter reached the timeout value, then the Bokhari

algorithm terminated and reported this fitness as its best. If a better solution was found, then the

counter was reset.

 With these modifications, the Bokhari algorithm was comparable to the genetic

algorithms in capability of handling our problem. As a more standard hill-climbing algorithm,

Bokhari became our test case that we might compare our results to.

 37

Chapter 4: Evaluation

 In this chapter we examine the actual performance of our algorithms. In doing so we

need metrics with which to measure performance. We explain the performance measures

forwarded by De Jong, which are widely accepted among the genetic algorithm community, and

which we used in this work. We note the hardware and software platform on which the tests

were run. We present the test meshes that we used in testing our algorithms, and the results that

were obtained.

4.1: De Jong Performance Measures

 Within this paper, we refer to two measures of performance in evaluating a given trial, or

run. These measures are the De Jong online performance and the De Jong offline performance,

drawn from De Jong’s dissertation, “An Analysis of the Behavior of a Class of Genetic Algorithm

Systems”37. The De Jong online value is the running average of the fitness of chromosomes up to

and including the current trial chromosome. The De Jong offline value is the running average of

the best, or most fit, chromosome that has ever been seen at the current time. De Jong’s

differentiation of the two was to emphasize the difference in applications, in the offline case

where the best solution can be saved for use at the end of the run. In the online case, the value is

placed on the larger experimental whole of the evaluation run.38

 In our work, both De Jong values are calculated. We do save the best chromosome in the

GA, mGA, and Bokhari algorithms for our final solution, and thus the offline value is effectively

the final measure of performance for our problem. However, the online value is useful in

providing a measure of the ongoing performance of the total chromosome pool.

 38

4.2: Hardware and Software Platforms of the Tests

 Our tests were run on Sun SparcStation 2’s in the WPI CAD Lab. These SparcStations

were running the SunOS 4.1.3 flavor of the UNIX operating system. The program development

was done using C++, with compilation done with GNU C++ version 2.5.839.

 These machines were not dedicated solely to making these test runs, but were under use

by the CAD Lab’s students and staff. Thus, to keep performance of the CAD Lab at an acceptable

level, most of these runs were run with low process scheduling priority ("nice'd") during the day,

and raised to a higher priority during the night. Complete run data is given to provide further

information on this condition. CPU utilization was given via a function call to the getrusage()

function. In general, the more valuable of the two CPU usage values is the time spent in user

mode, which excludes time spent in kernel calls such as process swapping, as well as I/O. This

value is thus less affected by the presence or absence of competing jobs on the computer.

4.3: Test Meshes and their Results

 A number of test cases were run against our algorithms to judge performance. The

modified Bokhari algorithm (noted as Bokhari2) is used by which to compare the genetic

algorithm (note as GA2) and the messy genetic algorithm (mGA). Some test cases were drawn

from Bokhari [1981], and some were created to better emphasize the needs of our problem.

Discussion of important elements of the results are given.

4.3.1: Tower25

 The Tower25 test is a 25-node representation of a two-dimensional tower taken from

Bokhari [1981]. The Tower25 test has a maximum connectivity of 8, by which we mean that any

given node might be connected to as many as 8 other nodes in the problem mesh. This was

mapped to a 5x5 target SIMD machine.

 39

Generation

F
i
t
n
e
s
s

V
a
l
u
e

0.68

0.73

0.78

0.83

0.88

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Online
Offline

Figure 16: Performance of Bokhari2 Algorithm on Tower25

 This test shows the kind of results that we expect from Bokhari. It shows a continual rise

in fitness over the duration of the run. This is since by definition the Bokhari algorithm will never

replace its current "best" solution with an inferior solution with the "one step away" method.

However, in the end condition the Bokhari algorithm begins to "jump" to random locations in the

solution space, which may be inferior to the previous generation's best solution. The beginning of

this jumping can be seen where the De Jong online and offline values diverge. Soon after

jumping begins, the algorithm finds that it can no longer find better results and terminates. This

test ran in 80.120 seconds.

 40

0.5

0.55

0.6

0.65

0.7

0

2.
2

4.
4

6.
6

8.
8 11

13
.2

15
.4

17
.6

19
.8 22

24
.2

26
.4

28
.6

30
.8 33

35
.2

37
.4

39
.6

41
.8 44

46
.2

48
.4

Generation

F
i
t
n
e
s
s

V
a
l
u
e

Online
Offline

Figure 17: Performance of GA2 Algorithm on Tower25

 This graph shows the genetic algorithm performance on the same two-dimensional tower

that was just analyzed by the modified Bokhari's method. Distinctive differences from Bokhari

are three-fold. Firstly, the GA2 has a very brief rise to a plateau and then remains flat, unlike the

constant improvement of the Bokhari algorithm. Secondly, the De Jong online value begins

distinctly lower than the offline value, and remains and quickly falls to a lower plateau. Thirdly,

the GA performance is not only initially lower than the Bokhari, but it is unable to find a better

solution. If this were because the GA was becoming trapped at a local optima, then we might

expect the entire population to become full of this sub-optimal solution. This would be noticeable

as the online value converges with the offline. Instead, our online and offline values show that

there appears to be diversity in the population. This might indicate that any fit solutions are

quickly being broken up by the genetic operators and returned to a average lack of fitness. This

test ran in 25.57 seconds.

 41

Generation

F
i
t
n
e
s
s

V
a
l
u
e

0.3

0.35

0.4

0.45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Online
Offline

Figure 18: Performance of mGA Algorithm on Tower25

 The messy genetic algorithm, or mGA, has a pattern that is different from both the

Bokhari algorithm and the conventional GA. Most noticeable are the four points in time where

the parameters of the algorithm change, noted in the mGA section as init_select_gen,

cut_every_other_gen, cutpop_gen, and prim_gen. Once the algorithm passes the prim_gen state,

it is essentially behaving as a normal genetic algorithm. As soon as this occurs, the improvement

plateaus. Note that when we start the mGA, we are using building blocks of only one mapping

(order one), which unsurprisingly has a very low fitness. Notice also that the online De Jong

value remains in flux, probably indicating that there is a large degree of diversity in the solution

pool. As is noted later, there is a possibility that if the points in time when the algorithm changed

were better tuned, a better solution might have been reached. We found that longer intervals

were not necessarily better (see Data), and were discouraged from long intervals because of the

massive time cost of processing the early generations. Run data was not available for the mGA

 42

runs, however it can subjectively be said to be considerably longer than the comparable Bokhari

run in every case.

4.3.2: Mesh33

 This test is also taken from Bokhari [1981]. Mesh33 is a roughly 3x11 latticework, with a

maximum connectivity of 6. It is mapped to a 5x5 target machine. Note that unlike the Tower25

test, this means that the mapping algorithm will be forced to place multiple problem nodes on an

individual machine node.

Generation

F
i
t
n
e
s
s

V
a
l
u
e

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

Online

Offline

Figure 19: Performance of Bokhari2 Algorithm on Mesh33

 This test shows a behavior very similar to the Tower25 test above. Note that in this case

the jumping stage of the Bokhari algorithm was held for a longer period of time before it was

unable to improve. This test ran in 682.93 seconds.

 43

Generation

F
i
t
n
e
s
s

V
a
l
u
e
0.65

0.66

0.67

0.68

0.69

0.7

0.
5

2.
11

4.
17

6.
23

8.
29

11
.5

13
.1

15
.2

17
.2

19
.3

22
.5

24
.1

26
.2

28
.2

30
.3

33
.5

35
.1

37
.2

39
.2

41
.3

44
.5

46
.1

48
.2

Online

Offline

Figure 20: Performance of GA2 Algorithm on Mesh33, size 30 population

Generation

F
i
t
n
e
s
s

V
a
l
u
e

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.
9

2.
19

4.
29

6.
39

8.
49

11 13
.2

15
.3

17
.4

19
.5

22 24
.2

26
.3

28
.4

30
.5

33 35
.2

37
.3

39
.4

41
.5

44 46
.2

48
.3

Online
Offline

Figure 21: Performance of GA2 Algorithm on Mesh33, size 50 population

 Here we present two different runs of the GA2 against the 33-node two-dimensional

mesh. The difference between the two runs is an increase in population size from 30 to 50.

 44

Again, the genetic algorithm follows a relatively flat fitness path, with the more populated run

producing a solution that is only a small fraction more fit than the smaller run. The same basic

behavior is seen as in the Tower25 test, with the exception that in the smaller run the online value

is rising towards the end of the run. This may indicate that the population pool is becoming more

homogeneous. This test ran in 32.51 seconds for the size 30 population and 59.14 seconds for the

size 50 population.

Generation

F
i
t
n
e
s
s

V
a
l
u
e

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Online
Offline

Figure 22: Performance of mGA Algorithm on Mesh33

 While not as clear cut as in the Tower25 test, the messy genetic algorithm is here also

exhibiting signs of the switch-over points. Another notable feature of this run is that the offline

value can be seen to rise and fall. Unlike the Bokhari algorithm, the mGA (and GA) do not

necessarily keep the most fit solution in the gene pool. Thus the average of the best solutions in

every generation can here be seen to rise and fall. Run data is not available for the mGA runs,

however it can subjectively be said to be considerably longer than the comparable Bokhari run in

every case.

 45

4.3.3: ThreeD33

 The ThreeD33 test was formulated by us to create a test example that would be three-

dimensional in nature. This is a block consisting of two interconnected slabs each of 3x3 size. If

you visualize only have two rows of an Rubik's cube, then you will see what we have modeled.

In this case, the number 33 in the name corresponds to the number of interconnections that exist

in the test, not the number of problem nodes. This problem mesh was mapped to a 6x6 machine.

Generation

F
i
t
n
e
s
s

V
a
l
u
e
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Online
Offline

Figure 23: Performance of Bokhari2 Algorithm on ThreeD33

 Again, the Bokhari algorithm showed a characteristic performance curve. It was capable

of handling this basic three dimensional problem without any great change in performance than

the two dimensional problems before.

 46

Generation

F
i
t
n
e
s
s

V
a
l
u
e

0.6

0.65

0.7

0.75

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Online
Offline

Figure 24: Performance of GA2 Algorithm on ThreeD33

 This is perhaps one of the more telling examples of the problems of disruption of

schemata in our tests. The genetic algorithm was unable to make any progress against the three

dimensional problem set. The initial solution pool provided the best mapping for the entire run,

as can be seen by the flat De Jong offline value.

 47

Generation

F
i
t
n
e
s
s

V
a
l
u
e

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Online

Offline

Figure 25: Performance of mGA Algorithm on ThreeD33

 The messy genetic algorithm fared even worse against the three dimensional problem.

This is unfortunate, since the unordered nature of the messy GA representation offers some

potential to keep 3D schemata together. However, perhaps due to the slow build from small

building blocks, the mGA was unable to keep these schemata together enough to formulate a

good solution.

 48

Chapter 5: Conclusions

 Genetic algorithms presented the promise of ameliorating a difficult problem facing the

engineering community, namely how to perform FEM analyses on structurally complex problems

using SIMD parallel computers. By harnessing the powerful evolutionary force that has

produced highly fit solutions to the problems of natural environments, we hoped to produce

highly fit solutions to our artificial environment.

 An overview of the data we have presented makes the general result fairly clear. Genetic

algorithms did not provide the great results that we had envisioned. In practically all cases, the

simpler Bokhari process discovered more fit solutions to the mapping problem, and often did so

in time superior to the GA and mGA solutions. The messy genetic algorithms proved themselves

far too unwieldy to run on serious problems on available equipment.

 Why, then, did the ambitions of the genetic algorithms fall short in execution? We

believe the answer can be found in the nature of our genetic representation of the mapping

problem. Biological genetic material is one dimensional in nature, a strand of DNA. This is well

matched to the strand of RNA, and to the serial nature by which DNA and RNA work together to

pass biochemical instructions. The mapping problem, however, is not a one-dimensional process.

Our mappings have involved two or three dimensional structures that represent volumes, not

strands.

 The matching of representation to problem is one that we underestimated the gravity of.

A genetic algorithm relies upon locality of data, and our genetic operators are specifically created

to preserve the adjacency of these effective schemata, assuming a linear representation and

problem. Every time that we undertook a genetic operator, we destroyed effective three

dimensional schemata far too often, while recognizing too few new good schemata. The messy

genetic algorithm has a somewhat better chance of maintaining these schemata in theory, since it

is not bound to the linear order of the standard genetic algorithm. It is hard to see any such

advantage from our runs, however.

 49

 Consider the computer monitor that you are probably familiar with. The image you see

upon the screen is composed of hundreds of thin scan lines, firing individual colored pixels upon

the screen surface. As a two-dimensional representation, the image is easily recognizable to the

viewer. Imagine if one were to capture these scan lines, and stretch them out like a long strand of

yarn, dotted with red, green, and blue dots. Laid out in a line, it would not be at all recognizable.

The real correlation of the semantics of a video screen is two-dimensional like a grid, not one-

dimensional like a string.

 In short, we used a tool for a task for which it was not designed. This is not to say that

genetic algorithms and messy genetic algorithms are not effective at solving problems. The mass

of academic work in this class of methods shows considerable utility in these approaches.

Indeed, in the next chapter, we'll discuss how a genetic algorithm could be designed to handle

multi-dimensional problems more effectively.

 50

Chapter 6: Future Directions

 In our work we have come across several options that future research might take. We

have not taken these directions ourselves either due to time restraints, or because they began to

leave the scope of the problem we intended to pursue. However, these directions offer promise

to make genetic algorithms successful where ours were unsuccessful.

6.1: Parallel Solution of the Mapping problem

 This project is attempting to best utilize a SIMD machine for an FEM problem. To do so,

we are using a serial machine. Worse, we are running our actual tests on machines that are

generally outclassed in the workstation market. It would make a lot of sense to modify this

algorithm to run a SIMD machine. The algorithm is highly parallelizable, and the theory is

modifiable to make the algorithm fit a SIMD machine even better. For instance, if organisms only

bred with neighboring organisms, then chromosome creation could be highly parallelized. We

could put as many organisms as would fit on a PE, and then only breed with the organisms of the

local PE and its eight neighbor PEs. Fitness testing (suspected to be the major bottleneck in our

algorithm) could be highly parallelized, as no inter-PE communication would be needed. Highly

fit solutions would appear in spreading pockets that are topographically spread. This would aid

in keeping diversity since highly fit (but suboptimal) solutions could not immediately reach the

entire organism pool. The advantages to a parallel algorithm for genetic algorithms are

promising.

 However, in this project we have been concerned with seeing whether genetic algorithms

are a reasonable approach to the mapping problem. If this is considered to be viable, then we

could quickly proceed to optimize the actual workings of our approach by such methods as

parallelization.

 51

6.2: Decompositional Methods

 During our work with FEM meshes and the problems of mapping them, we considered a

decompositional approach. This approach is based on the heuristic that we should preserve the

locality of mesh elements. The problem mesh could be divided into supergroups of elements,

each of which would be assigned to a processor or group of processors as a block. These

supergroups could then be further broken into subgroups and assigned, and so forth until the

final mapping had been made. This approach is an interesting one, but it does not fit in our

original proposal to apply genetic algorithms to the mapping problem.

6.3: N-dimensional crossover

 Originally brought up in our research by Marton-Erno Balazcs, n-dimensional crossover

takes advantage of the argument that all problem solutions are not naturally expressed in a one-

dimensional string. In expressing a two-dimensional matrix as a gene-string, for instance, one

might create the string by concatenating each row of the matrix. However, the vertical

connections of the matrix are then disrupted. Cross-over operators that act on the string cannot

then preserve these vertical relations. Some work on the effect on n-dimensional representations

on the base theory of genetic algorithms has been done at this point, and will be further explored

in papers by Balazcs. N-dimensional representations may have promise in our mapping

problem, as no part of our problem is naturally one-dimensional, but perhaps better represented

as a 2-D, 3-D, or even k-D, where k is the connectivity of the mesh.

 52

Bibliography

Bokhari, Shahid H., "On the Mapping Problem," IEEE, March 1981, pp. 207-214.

Buckles, Bill P., and Fredrick E. Petri, eds., Genetic Algorithms, IEEE Computer Society Press: Los

Alamitos, CA 1992.

Davis, Lawrence (eds.), Handbook of Genetic Algorithms, Van Nostrand Reinhold: New York

NY, 1991.

Dawkins, Richard, The Blind Watchmaker, WW Norton and Company: New York NY, 1986.

Deb, Kalyanmoy and David E. Goldberg, “mGA in C: A Messy Genetic Algorithm in C”,

University of Illinois, IlliGAL Report No. 91008, September 1991.

De Jong, Kenneth A., "An Analysis of the Behavior of a Class of Genetic Adaptive Systems",

Doctoral Dissertation, University of Michigan, 1975. Dissertation Abstracts International,
36(10), 5140B. (University Microfilms No. 76-9381).

Farhat, Charbel, "On the Mapping of Massively Parallel Processors onto Finite Element Graphs,"

Computers & Structures, Vol. 32, No. 2, pp. 347-353.

Garey, M.R. and Johnson, D.S., "Computers and intractability: A guide to the theory of NP-

completeness". Freeman, San Francisco, 1979.

Goldberg, David A., “Sizing populations for Serial and Parallel Genetic Algorithms”, The

Proceedings of the Third International Conference on Genetic Algorithms, Eds. J.D. Schaffer.,
Morgan-Kaufmann, Palo Alto:California, 1989

Goldberg, David A.,“Don’t Worry, be Messy”, The Proceedings of the Third International Conference

on Genetic Algorithms, Eds. J.D. Schaffer., Morgan-Kaufmann Publishing:Palo Alto,
California, 1989, p 24-30.

Goldberg, David E., Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley: New York NY, 1989.

Grefenstette, John J. “Optimization of Control Parameters for Genetic Algorithms”, IEEE

Transactions on Systems, Man, and Cybernetics, vol. 16, Number 1, 1986, pages 122-128.

Heitkötter, Jörg, "The Hitch-Hiker's Guide to Evolutionary Computation," available via ftp:

lumpi.informatik.uni-dortmund.de (129.217.36.140) and on comp.ai.genetic of USENET
News.

Hill, Jonathan. "Electromagnetic Analysis using Finite Difference Time Domain Technique and

Orthogonal Mesh Generation for Massively Parallel SIMD Architectures". Worcester
Polytechnic Institute, 1996.

Holland, John H., Adaptation in Natural and Artificial Systems, University of Michigan Press:

Ann Arbor MI, 1975.

Levy, Stephen, Artificial Life, Pantheon Books: New York NY, 1992

 53

Michalson, William R. and R. James Duckworth, "Using Estimated Performance to Optimize Task

Allocation in a Distributed Computer System". WPI Technical Report.

Stone, Harold S. High Performance Computer Architecture, Addison-Wesley: Reading,

Massachusetts, 1990, pp. 202-441.

Storøy, S and T. Sørevik, "An SIMD, Fine-grained, Parallel Algorithm for the Dense Linear

Assignment Problem". Department of Informatics, University of Bergen, Thormøhlensgt.
55, 5020 Bergen, Norway. January 10, 1992

Talbi, E-G. and Muntean, T., "A New Approach to the Mapping Problem: A Parallel Genetic

Algorithm". Laboratory de Génie Informatique / Intitut IMAG. BP 53X F-38041
Grenoble, Cedex, France. 1993.

Talbi, E-G. and Muntean, T., "General Heuristics for the Mapping Problem". Laboratory de Génie

Informatique / Intitut IMAG. BP 53X F-38041 Grenoble, Cedex, France. 1993.

 54

The following Appendices are supplied on the diskettes provided with this document:

Appendix A: Test Problems

 tower25 (from Bokhari [1981]), two-dimensional, on 5x5 machine)

 mesh33 (from Bokhari [1981], two-dimensional, on 5x5 machine)

 threed33 (two-dimensional block, 3x11, on 6x6 machine

 elem98 (three-dimensional block, 7x7x2, on 5x5 machine)

 elem500 (three-dimensional block, 10x5x10, on 7x7 machine)

Appendix B: Bokhari 2 Code

Appendix C: GA2 Code

Appendix D: mGA Code

 55

Index

alleles 13, 16
alleles, binary 16
analogy to computer storage 13
Balazcs 53
Bokhari 24, 26, 35, 50
building blocks, mGA 19, 32, 35
CAD/CAE 2
cantilever beam 3, 23
chromosomes 13, 16
chromosomes, underspecified 18
chromosomes, variable-length 18
co-adapted 14
communication costs 22
competitive template 19
complexity, space 35
complexity, time 34
crossover 11, 14
cut and splice 20, 33
Darwin’s Theory of Evolution 13
De Jong 39
De Jong offline performance 39
De Jong online performance 39
deception 19
decompositional approach 53
deterministic 17
diversity 31, 42
elitism 29
epistasis 14
evolutionary computation 9
FEM (Finite Element Method)
finite element method 2, 50
fitness function 10, 16, 17, 27, 28
fmGA (fast messy genetic algorithm)
future research 51
generational reproduction 29
genes 13, 16
genetic Algorithms 9,26,13, 50
genetic algorithms, fast messy 34
genetic algorithms, messy 18, 31
genetic operators 14, 15, 16, 29
Goldberg 29, 31, 34
graph edges 27
hill-climbing searches 17
Holland 15
intrinsically parallel 16
jumps, in Bokhari's algorithm 36, 37
juxtapositional phase 32
juxtapositional stage 18, 20

linear assignment problem 24
MasPar MP-1 4, 22, 35
mutation 14, 20, 30, 33
n-dimensional crossover 53
noise-free 19
objective function 10, 15, 16, 17, 27, 28
order crossover 29, 30
overspecified 18
OX (order crossover)
parallel algorithm 52
partially matched cross-over 29
PCI (probabilistically complete initialization)
performance 39
PEs (processing elements) 20
phenotype 14
PMX (partially matched crossover)
population dynamics 28
potential solutions 15
primordial phase 32
primordial stage 18, 19
probabilistic 17
probabilistically complete initialization 34
processing elements 20
processor idle 21
processor loading 21, 28
representation 16, 50
roulette wheel selection 28
router 22
scheduling 32
schema theory 14, 15, 16, 29, 50
selection methods 16, 17, 28
selection methods, tournament 32
SIMD 2, 4, 20, 50
SimpleGA program 10
sizing of populations 31
Storøy and Sørevik 24
synchronization 21
test cases 40, 44, 47
thermal model 5
timeout, in Bokhari's algorithm 37
topology, wrapped toroidal 22
WPI CAD Lab 40
Xnet, MasPar 22

 56

Endnotes

1CAD/CAE: Computer Aided Design/Computer Aided Engineering
2SIMD: Single Instruction, Multiple Data. A further description of the SIMD paradigm will be

given.
3Bokhari [1981]; Farhat [1989]
4MasPar is a trademark of MasPar, Co.
5If the number of FEM nodes exceeds the number of processing elements, as we expect it to for
most real-world problem, then this will be required. It is also allowable that the number of FEM
nodes will exceed the capacity of all of the PEs to hold in memory. In this case the additional
FEM nodes would have to be "paged" in and out of active memory, much as modern computers
handle virtual memory. Such details are beyond the central thrust of this paper, but are explored
in a related work by Jonathan Hill, referenced in the bibliography.
6Talbi and Muntean [1993]
7Garey and Johnson [1979]
8Genetic Algorithms are a subclass of paradigms generally known as “Evolutionary Algorithms”,
or “Evolutionary Computation”. Other subclasses include Evolutionary Programming, Evolution
Strategies, Genetic Programming, as well as other new or hybrid paradigms. For a good
overview, see Jörg Heitkötter’s "The Hitch-Hiker's Guide to Evolutionary Computation,"
available via ftp: lumpi.informatik.uni-dortmund.de (129.217.36.140) and on comp.ai.genetic of
USENET News.
9The SimpleGA program is given in the Appendix.
10Hill, Jonathan [1996]
11Goldberg [1989], pp. 2-10.
12Dawkins, Richard [1986], pg. 118.
13Holland [1975], pg. 9.
14Holland [1975], pg. 11.
15Holland [1975]
16 Holland [1975],
17Holland [1975], pg. 74.
18Holland [1975]
19Note that such ignored information appears in great quantity in biological organisms. See
Dawkins [1986], pg. 174 for a discussion of such introns and extrons in biological genetic code.
20Goldberg, David A.,“Don’t Worry, be Messy”, Proc. of the Third International Conference on
Genetic Algorithms (1989), Eds. J.D. Schaffer., Morgan-Kaufmann, Palo Alto:California, 1989, p
24-30.
21Kalyanmoy Deb and David E. Goldberg, “mGA in C: A Messy Genetic Algorithm in C”,
University of Illinois, IlliGAL Report No. 91008, September 1991.
22Flynn, M.J., "Very High Speed Computing Systems." Proc. IEEE, 54, pp. 1901-1909, 1966
23Actual implementation of such a solver is the subject of a related paper by Jonathan Hill [1996],
also at WPI.
24In the case of our MasPar, the controller is a DECstation 3100.
25Davis, Handbook of Genetic Algorithms, pg. 13.
26In contrast to steady-state reproduction, where one or two individuals are replaced at a time,
This is described in the Handbook of Genetic Algorithms, p. 35.
27see also comments in the Conclusions section on genetic operators.
28Goldberg, David A., “Sizing populations for Serial and Parallel Genetic Algorithms”, Proc. of
the Third International Conference on Genetic Algorithms (1989), Eds. J.D. Schaffer., Morgan-
Kaufmann, Palo Alto:California, 1989
29Goldberg, David A., “Don’t worry, be messy”, [ICGA89], p 24.

 57

30Diagram and flag naming conventions are taken from Deb and Goldberg’s “mGA in C: A Messy
Genetic Algorithm in C” [1991], p 6.
31Kalyanmoy Deb and David E. Goldberg, [1991].
32Goldberg, Deb, Kargupta, and Harik, “Rapid, Accurate Optimization of Difficult Problems
Using Fast Messy Genetic Algorithms” [1993]
33Goldberg, Deb, Kargupta, and Harik, [1993]
34Goldberg, Deb, Kargupta, and Harik, [1993]
35Bokhari, Shahid H., "On the Mapping Problem," IEEE, March 1981, p. 214.
36Bokhari [1981]
37De Jong, [1975]
38Goldberg, David A., Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, New York:New York, 1989, pp. 106-120
39GNU C++ is available for a number of platforms. It is available at ftp.gnu.ai.mit.edu, and
copyleft by the Free Software Foundation, Inc.

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

//appendix-a

//elem50

Elem50: 5x5x2 block
machine side length
5
mesh elements
50
mesh connectivity
6
5 5 2
-1 1 -1 5 -1 25
0 2 -1 6 -1 26
1 3 -1 7 -1 27
2 4 -1 8 -1 28
3 -1 -1 9 -1 29
-1 6 0 10 -1 30
5 7 1 11 -1 31
6 8 2 12 -1 32
7 9 3 13 -1 33
8 -1 4 14 -1 34
-1 11 5 15 -1 35
10 12 6 16 -1 36
11 13 7 17 -1 37
12 14 8 18 -1 38
13 -1 9 19 -1 39
-1 16 10 20 -1 40
15 17 11 21 -1 41
16 18 12 22 -1 42
17 19 13 23 -1 43
18 -1 14 24 -1 44
-1 21 15 -1 -1 45
20 22 16 -1 -1 46
21 23 17 -1 -1 47
22 24 18 -1 -1 48
23 -1 19 -1 -1 49
-1 26 -1 30 0 -1
25 27 -1 31 1 -1
26 28 -1 32 2 -1
27 29 -1 33 3 -1
28 -1 -1 34 4 -1
-1 31 25 35 5 -1
30 32 26 36 6 -1
31 33 27 37 7 -1
32 34 28 38 8 -1
33 -1 29 39 9 -1
-1 36 30 40 10 -1
35 37 31 41 11 -1
36 38 32 42 12 -1
37 39 33 43 13 -1
38 -1 34 44 14 -1
-1 41 35 45 15 -1

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

40 42 36 46 16 -1
41 43 37 47 17 -1
42 44 38 48 18 -1
43 -1 39 49 19 -1
-1 46 40 -1 20 -1
45 47 41 -1 21 -1
46 48 42 -1 22 -1
47 49 43 -1 23 -1
48 -1 44 -1 24 -1

//elem98

98 element problem
7x7x2
#
side length
5
mesh elements
98
mesh connectivity
6
edges
-1 1 -1 7 -1 49
0 2 -1 8 -1 50
1 3 -1 9 -1 51
2 4 -1 10 -1 52
3 5 -1 11 -1 53
4 6 -1 12 -1 54
5 -1 -1 13 -1 55
-1 8 0 14 -1 56
7 9 1 15 -1 57
8 10 2 16 -1 58
9 11 3 17 -1 59
10 12 4 18 -1 60
11 13 5 19 -1 61
12 -1 6 20 -1 62
-1 15 7 21 -1 63
14 16 8 22 -1 64
15 17 9 23 -1 65
16 18 10 24 -1 66
17 19 11 25 -1 67
18 20 12 26 -1 68
19 -1 13 27 -1 69
-1 22 14 28 -1 70
21 23 15 29 -1 71
22 24 16 30 -1 72
23 25 17 31 -1 73
24 26 18 32 -1 74
25 27 19 33 -1 75
26 -1 20 34 -1 76
-1 29 21 35 -1 77
28 30 22 36 -1 78
29 31 23 37 -1 79
30 32 24 38 -1 80

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

31 33 25 39 -1 81
32 34 26 40 -1 82
33 -1 27 41 -1 83
-1 36 28 42 -1 84
35 37 29 43 -1 85
36 38 30 44 -1 86
37 39 31 45 -1 87
38 40 32 46 -1 88
39 41 33 47 -1 89
40 -1 34 48 -1 90
-1 43 35 -1 -1 91
42 44 36 -1 -1 92
43 45 37 -1 -1 93
44 46 38 -1 -1 94
45 47 39 -1 -1 95
46 48 40 -1 -1 96
47 -1 41 -1 -1 97
-1 50 -1 56 0 -1
49 51 -1 57 1 -1
50 52 -1 58 2 -1
51 53 -1 59 3 -1
52 54 -1 60 4 -1
53 55 -1 61 5 -1
54 -1 -1 62 6 -1
-1 57 49 63 7 -1
56 58 50 64 8 -1
57 59 51 65 9 -1
58 60 52 66 10 -1
59 61 53 67 11 -1
60 62 54 68 12 -1
61 -1 55 69 13 -1
-1 64 56 70 14 -1
63 65 57 71 15 -1
64 66 58 72 16 -1
65 67 59 73 17 -1
66 68 60 74 18 -1
67 69 61 75 19 -1
68 -1 62 76 20 -1
-1 71 63 77 21 -1
70 72 64 78 22 -1
71 73 65 79 23 -1
72 74 66 80 24 -1
73 75 67 81 25 -1
74 76 68 82 26 -1
75 -1 69 83 27 -1
-1 78 70 84 28 -1
77 79 71 85 29 -1
78 80 72 86 30 -1
79 81 73 87 31 -1
80 82 74 88 32 -1
81 83 75 89 33 -1
82 -1 76 90 34 -1
-1 85 77 91 35 -1
84 86 78 92 36 -1

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

85 87 79 93 37 -1
86 88 80 94 38 -1
87 89 81 95 39 -1
88 90 82 96 40 -1
89 -1 83 97 41 -1
-1 92 84 -1 42 -1
91 93 85 -1 43 -1
92 94 86 -1 44 -1
93 95 87 -1 45 -1
94 96 88 -1 46 -1
95 97 89 -1 47 -1
96 -1 90 -1 48 -1

//elem500

500 element problem
10x5x10
#
side length
7
mesh elements
500
mesh connectivity
6
edges
-1 1 -1 10 -1 50
0 2 -1 11 -1 51
1 3 -1 12 -1 52
2 4 -1 13 -1 53
3 5 -1 14 -1 54
4 6 -1 15 -1 55
5 7 -1 16 -1 56
6 8 -1 17 -1 57
7 9 -1 18 -1 58
8 -1 -1 19 -1 59
-1 11 0 20 -1 60
10 12 1 21 -1 61
11 13 2 22 -1 62
12 14 3 23 -1 63
13 15 4 24 -1 64
14 16 5 25 -1 65
15 17 6 26 -1 66
16 18 7 27 -1 67
17 19 8 28 -1 68
18 -1 9 29 -1 69
-1 21 10 30 -1 70
20 22 11 31 -1 71
21 23 12 32 -1 72
22 24 13 33 -1 73
23 25 14 34 -1 74
24 26 15 35 -1 75
25 27 16 36 -1 76
26 28 17 37 -1 77
27 29 18 38 -1 78

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

28 -1 19 39 -1 79
-1 31 20 40 -1 80
30 32 21 41 -1 81
31 33 22 42 -1 82
32 34 23 43 -1 83
33 35 24 44 -1 84
34 36 25 45 -1 85
35 37 26 46 -1 86
36 38 27 47 -1 87
37 39 28 48 -1 88
38 -1 29 49 -1 89
-1 41 30 -1 -1 90
40 42 31 -1 -1 91
41 43 32 -1 -1 92
42 44 33 -1 -1 93
43 45 34 -1 -1 94
44 46 35 -1 -1 95
45 47 36 -1 -1 96
46 48 37 -1 -1 97
47 49 38 -1 -1 98
48 -1 39 -1 -1 99
-1 51 -1 60 0 100
50 52 -1 61 1 101
51 53 -1 62 2 102
52 54 -1 63 3 103
53 55 -1 64 4 104
54 56 -1 65 5 105
55 57 -1 66 6 106
56 58 -1 67 7 107
57 59 -1 68 8 108
58 -1 -1 69 9 109
-1 61 50 70 10 110
60 62 51 71 11 111
61 63 52 72 12 112
62 64 53 73 13 113
63 65 54 74 14 114
64 66 55 75 15 115
65 67 56 76 16 116
66 68 57 77 17 117
67 69 58 78 18 118
68 -1 59 79 19 119
-1 71 60 80 20 120
70 72 61 81 21 121
71 73 62 82 22 122
72 74 63 83 23 123
73 75 64 84 24 124
74 76 65 85 25 125
75 77 66 86 26 126
76 78 67 87 27 127
77 79 68 88 28 128
78 -1 69 89 29 129
-1 81 70 90 30 130
80 82 71 91 31 131
81 83 72 92 32 132

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

82 84 73 93 33 133
83 85 74 94 34 134
84 86 75 95 35 135
85 87 76 96 36 136
86 88 77 97 37 137
87 89 78 98 38 138
88 -1 79 99 39 139
-1 91 80 -1 40 140
90 92 81 -1 41 141
91 93 82 -1 42 142
92 94 83 -1 43 143
93 95 84 -1 44 144
94 96 85 -1 45 145
95 97 86 -1 46 146
96 98 87 -1 47 147
97 99 88 -1 48 148
98 -1 89 -1 49 149
-1 101 -1 110 50 150
100 102 -1 111 51 151
101 103 -1 112 52 152
102 104 -1 113 53 153
103 105 -1 114 54 154
104 106 -1 115 55 155
105 107 -1 116 56 156
106 108 -1 117 57 157
107 109 -1 118 58 158
108 -1 -1 119 59 159
-1 111 100 120 60 160
110 112 101 121 61 161
111 113 102 122 62 162
112 114 103 123 63 163
113 115 104 124 64 164
114 116 105 125 65 165
115 117 106 126 66 166
116 118 107 127 67 167
117 119 108 128 68 168
118 -1 109 129 69 169
-1 121 110 130 70 170
120 122 111 131 71 171
121 123 112 132 72 172
122 124 113 133 73 173
123 125 114 134 74 174
124 126 115 135 75 175
125 127 116 136 76 176
126 128 117 137 77 177
127 129 118 138 78 178
128 -1 119 139 79 179
-1 131 120 140 80 180
130 132 121 141 81 181
131 133 122 142 82 182
132 134 123 143 83 183
133 135 124 144 84 184
134 136 125 145 85 185
135 137 126 146 86 186

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

136 138 127 147 87 187
137 139 128 148 88 188
138 -1 129 149 89 189
-1 141 130 -1 90 190
140 142 131 -1 91 191
141 143 132 -1 92 192
142 144 133 -1 93 193
143 145 134 -1 94 194
144 146 135 -1 95 195
145 147 136 -1 96 196
146 148 137 -1 97 197
147 149 138 -1 98 198
148 -1 139 -1 99 199
-1 151 -1 160 100 200
150 152 -1 161 101 201
151 153 -1 162 102 202
152 154 -1 163 103 203
153 155 -1 164 104 204
154 156 -1 165 105 205
155 157 -1 166 106 206
156 158 -1 167 107 207
157 159 -1 168 108 208
158 -1 -1 169 109 209
-1 161 150 170 110 210
160 162 151 171 111 211
161 163 152 172 112 212
162 164 153 173 113 213
163 165 154 174 114 214
164 166 155 175 115 215
165 167 156 176 116 216
166 168 157 177 117 217
167 169 158 178 118 218
168 -1 159 179 119 219
-1 171 160 180 120 220
170 172 161 181 121 221
171 173 162 182 122 222
172 174 163 183 123 223
173 175 164 184 124 224
174 176 165 185 125 225
175 177 166 186 126 226
176 178 167 187 127 227
177 179 168 188 128 228
178 -1 169 189 129 229
-1 181 170 190 130 230
180 182 171 191 131 231
181 183 172 192 132 232
182 184 173 193 133 233
183 185 174 194 134 234
184 186 175 195 135 235
185 187 176 196 136 236
186 188 177 197 137 237
187 189 178 198 138 238
188 -1 179 199 139 239
-1 191 180 -1 140 240

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

190 192 181 -1 141 241
191 193 182 -1 142 242
192 194 183 -1 143 243
193 195 184 -1 144 244
194 196 185 -1 145 245
195 197 186 -1 146 246
196 198 187 -1 147 247
197 199 188 -1 148 248
198 -1 189 -1 149 249
-1 201 -1 210 150 250
200 202 -1 211 151 251
201 203 -1 212 152 252
202 204 -1 213 153 253
203 205 -1 214 154 254
204 206 -1 215 155 255
205 207 -1 216 156 256
206 208 -1 217 157 257
207 209 -1 218 158 258
208 -1 -1 219 159 259
-1 211 200 220 160 260
210 212 201 221 161 261
211 213 202 222 162 262
212 214 203 223 163 263
213 215 204 224 164 264
214 216 205 225 165 265
215 217 206 226 166 266
216 218 207 227 167 267
217 219 208 228 168 268
218 -1 209 229 169 269
-1 221 210 230 170 270
220 222 211 231 171 271
221 223 212 232 172 272
222 224 213 233 173 273
223 225 214 234 174 274
224 226 215 235 175 275
225 227 216 236 176 276
226 228 217 237 177 277
227 229 218 238 178 278
228 -1 219 239 179 279
-1 231 220 240 180 280
230 232 221 241 181 281
231 233 222 242 182 282
232 234 223 243 183 283
233 235 224 244 184 284
234 236 225 245 185 285
235 237 226 246 186 286
236 238 227 247 187 287
237 239 228 248 188 288
238 -1 229 249 189 289
-1 241 230 -1 190 290
240 242 231 -1 191 291
241 243 232 -1 192 292
242 244 233 -1 193 293
243 245 234 -1 194 294

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

244 246 235 -1 195 295
245 247 236 -1 196 296
246 248 237 -1 197 297
247 249 238 -1 198 298
248 -1 239 -1 199 299
-1 251 -1 260 200 300
250 252 -1 261 201 301
251 253 -1 262 202 302
252 254 -1 263 203 303
253 255 -1 264 204 304
254 256 -1 265 205 305
255 257 -1 266 206 306
256 258 -1 267 207 307
257 259 -1 268 208 308
258 -1 -1 269 209 309
-1 261 250 270 210 310
260 262 251 271 211 311
261 263 252 272 212 312
262 264 253 273 213 313
263 265 254 274 214 314
264 266 255 275 215 315
265 267 256 276 216 316
266 268 257 277 217 317
267 269 258 278 218 318
268 -1 259 279 219 319
-1 271 260 280 220 320
270 272 261 281 221 321
271 273 262 282 222 322
272 274 263 283 223 323
273 275 264 284 224 324
274 276 265 285 225 325
275 277 266 286 226 326
276 278 267 287 227 327
277 279 268 288 228 328
278 -1 269 289 229 329
-1 281 270 290 230 330
280 282 271 291 231 331
281 283 272 292 232 332
282 284 273 293 233 333
283 285 274 294 234 334
284 286 275 295 235 335
285 287 276 296 236 336
286 288 277 297 237 337
287 289 278 298 238 338
288 -1 279 299 239 339
-1 291 280 -1 240 340
290 292 281 -1 241 341
291 293 282 -1 242 342
292 294 283 -1 243 343
293 295 284 -1 244 344
294 296 285 -1 245 345
295 297 286 -1 246 346
296 298 287 -1 247 347
297 299 288 -1 248 348

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

298 -1 289 -1 249 349
-1 301 -1 310 250 350
300 302 -1 311 251 351
301 303 -1 312 252 352
302 304 -1 313 253 353
303 305 -1 314 254 354
304 306 -1 315 255 355
305 307 -1 316 256 356
306 308 -1 317 257 357
307 309 -1 318 258 358
308 -1 -1 319 259 359
-1 311 300 320 260 360
310 312 301 321 261 361
311 313 302 322 262 362
312 314 303 323 263 363
313 315 304 324 264 364
314 316 305 325 265 365
315 317 306 326 266 366
316 318 307 327 267 367
317 319 308 328 268 368
318 -1 309 329 269 369
-1 321 310 330 270 370
320 322 311 331 271 371
321 323 312 332 272 372
322 324 313 333 273 373
323 325 314 334 274 374
324 326 315 335 275 375
325 327 316 336 276 376
326 328 317 337 277 377
327 329 318 338 278 378
328 -1 319 339 279 379
-1 331 320 340 280 380
330 332 321 341 281 381
331 333 322 342 282 382
332 334 323 343 283 383
333 335 324 344 284 384
334 336 325 345 285 385
335 337 326 346 286 386
336 338 327 347 287 387
337 339 328 348 288 388
338 -1 329 349 289 389
-1 341 330 -1 290 390
340 342 331 -1 291 391
341 343 332 -1 292 392
342 344 333 -1 293 393
343 345 334 -1 294 394
344 346 335 -1 295 395
345 347 336 -1 296 396
346 348 337 -1 297 397
347 349 338 -1 298 398
348 -1 339 -1 299 399
-1 351 -1 360 300 400
350 352 -1 361 301 401
351 353 -1 362 302 402

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

352 354 -1 363 303 403
353 355 -1 364 304 404
354 356 -1 365 305 405
355 357 -1 366 306 406
356 358 -1 367 307 407
357 359 -1 368 308 408
358 -1 -1 369 309 409
-1 361 350 370 310 410
360 362 351 371 311 411
361 363 352 372 312 412
362 364 353 373 313 413
363 365 354 374 314 414
364 366 355 375 315 415
365 367 356 376 316 416
366 368 357 377 317 417
367 369 358 378 318 418
368 -1 359 379 319 419
-1 371 360 380 320 420
370 372 361 381 321 421
371 373 362 382 322 422
372 374 363 383 323 423
373 375 364 384 324 424
374 376 365 385 325 425
375 377 366 386 326 426
376 378 367 387 327 427
377 379 368 388 328 428
378 -1 369 389 329 429
-1 381 370 390 330 430
380 382 371 391 331 431
381 383 372 392 332 432
382 384 373 393 333 433
383 385 374 394 334 434
384 386 375 395 335 435
385 387 376 396 336 436
386 388 377 397 337 437
387 389 378 398 338 438
388 -1 379 399 339 439
-1 391 380 -1 340 440
390 392 381 -1 341 441
391 393 382 -1 342 442
392 394 383 -1 343 443
393 395 384 -1 344 444
394 396 385 -1 345 445
395 397 386 -1 346 446
396 398 387 -1 347 447
397 399 388 -1 348 448
398 -1 389 -1 349 449
-1 401 -1 410 350 450
400 402 -1 411 351 451
401 403 -1 412 352 452
402 404 -1 413 353 453
403 405 -1 414 354 454
404 406 -1 415 355 455
405 407 -1 416 356 456

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

406 408 -1 417 357 457
407 409 -1 418 358 458
408 -1 -1 419 359 459
-1 411 400 420 360 460
410 412 401 421 361 461
411 413 402 422 362 462
412 414 403 423 363 463
413 415 404 424 364 464
414 416 405 425 365 465
415 417 406 426 366 466
416 418 407 427 367 467
417 419 408 428 368 468
418 -1 409 429 369 469
-1 421 410 430 370 470
420 422 411 431 371 471
421 423 412 432 372 472
422 424 413 433 373 473
423 425 414 434 374 474
424 426 415 435 375 475
425 427 416 436 376 476
426 428 417 437 377 477
427 429 418 438 378 478
428 -1 419 439 379 479
-1 431 420 440 380 480
430 432 421 441 381 481
431 433 422 442 382 482
432 434 423 443 383 483
433 435 424 444 384 484
434 436 425 445 385 485
435 437 426 446 386 486
436 438 427 447 387 487
437 439 428 448 388 488
438 -1 429 449 389 489
-1 441 430 -1 390 490
440 442 431 -1 391 491
441 443 432 -1 392 492
442 444 433 -1 393 493
443 445 434 -1 394 494
444 446 435 -1 395 495
445 447 436 -1 396 496
446 448 437 -1 397 497
447 449 438 -1 398 498
448 -1 439 -1 399 499
-1 451 -1 460 400 -1
450 452 -1 461 401 -1
451 453 -1 462 402 -1
452 454 -1 463 403 -1
453 455 -1 464 404 -1
454 456 -1 465 405 -1
455 457 -1 466 406 -1
456 458 -1 467 407 -1
457 459 -1 468 408 -1
458 -1 -1 469 409 -1
-1 461 450 470 410 -1

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

460 462 451 471 411 -1
461 463 452 472 412 -1
462 464 453 473 413 -1
463 465 454 474 414 -1
464 466 455 475 415 -1
465 467 456 476 416 -1
466 468 457 477 417 -1
467 469 458 478 418 -1
468 -1 459 479 419 -1
-1 471 460 480 420 -1
470 472 461 481 421 -1
471 473 462 482 422 -1
472 474 463 483 423 -1
473 475 464 484 424 -1
474 476 465 485 425 -1
475 477 466 486 426 -1
476 478 467 487 427 -1
477 479 468 488 428 -1
478 -1 469 489 429 -1
-1 481 470 490 430 -1
480 482 471 491 431 -1
481 483 472 492 432 -1
482 484 473 493 433 -1
483 485 474 494 434 -1
484 486 475 495 435 -1
485 487 476 496 436 -1
486 488 477 497 437 -1
487 489 478 498 438 -1
488 -1 479 499 439 -1
-1 491 480 -1 440 -1
490 492 481 -1 441 -1
491 493 482 -1 442 -1
492 494 483 -1 443 -1
493 495 484 -1 444 -1
494 496 485 -1 445 -1
495 497 486 -1 446 -1
496 498 487 -1 447 -1
497 499 488 -1 448 -1
498 -1 489 -1 449 -1

//mesh33

Bokhari 33 node test problem
machine side length
6
mesh elements
33
mesh connectivity
6
-1 -1 1 3 5 -1
-1 -1 0 2 3 4
-1 -1 1 4 7 -1
0 1 5 6 -1 -1
1 2 6 7 -1 -1

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

0 3 6 8 10 -1
3 4 5 7 8 9
2 4 6 9 12 -1
5 6 10 11 -1 -1
6 7 11 12 -1 -1
5 8 11 13 15 -1
8 9 10 12 13 14
7 9 11 14 17 -1
10 11 15 16 -1 -1
11 12 16 17 -1 -1
10 13 16 18 20 -1
13 14 15 17 18 19
12 14 16 19 22 -1
15 16 20 21 -1 -1
16 17 21 22 -1 -1
15 18 21 23 25 -1
18 19 20 22 23 24
17 19 21 24 27 -1
20 21 25 26 -1 -1
21 22 26 27 -1 -1
20 23 26 28 30 -1
23 24 25 27 28 29
22 24 26 29 32 -1
25 26 30 31 -1 -1
26 27 31 32 -1 -1
25 28 31 -1 -1 -1
28 29 30 32 -1 -1
27 29 31 -1 -1 -1

//threed33

Super Simple Test Problem
side length
6
mesh elements
18
mesh connectivity
5
mesh edges
1 3 9 -1 -1
0 2 4 10 -1
1 5 11 -1 -1
0 4 6 12 -1
1 3 5 7 13
2 4 8 14 -1
3 7 15 -1 -1
4 6 8 16 -1
5 7 17 -1 -1
0 10 12 -1 -1
9 11 1 13 -1
2 10 14 -1 -1
3 9 13 15 -1
10 12 4 16 14
5 11 13 17 -1

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

12 6 16 -1 -1
7 13 15 17 -1
14 8 16 -1 -1

//tower25

Ship Radar Tower, 25 nodes
from Bokhari [1981]
#
machine side length needed
5
number of nodes
25
maximum connectivity
8
edge array
4 5 11 -1 -1 -1 -1 -1
5 6 7 -1 -1 -1 -1 -1
7 8 9 -1 -1 -1 -1 -1
9 10 11 -1 -1 -1 -1 -1
0 5 11 12 -1 -1 -1 -1
0 1 4 6 7 9 11 -1
1 5 7 12 13 14 -1 -1
1 2 5 6 8 9 -1 -1
2 7 9 14 -1 -1 -1 -1
2 3 5 7 8 10 11 -1
3 9 11 12 14 15 -1 -1
0 3 4 5 9 10 -1 -1
4 6 10 13 15 16 17 19
6 12 14 17 -1 -1 -1 -1
6 8 10 13 15 17 18 19
10 12 14 19 -1 -1 -1 -1
12 17 19 20 -1 -1 -1 -1
12 13 14 16 18 20 21 22
14 17 19 22 -1 -1 -1 -1
11 14 15 16 18 20 22 23
16 17 19 21 23 24 -1 -1
17 20 22 24 -1 -1 -1 -1
16 17 19 21 23 24 -1 -1
19 20 22 24 -1 -1 -1 -1
20 21 22 23 -1 -1 -1 -1

//appendix-b

//infomap.C

#include <iostream.h>
#include <fstream.h>

#define MAXLINE 80
#define DEBUG 0
extern "C"
{
 long random();

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 int atoi(char *);
 int abs(int);
 char *strdup(const char *);
}

#include "matrix.H"

main(int argc, char **argv)
{
 int gen=0;

 // Arguments: problem_defintion_filename output_filename
 char *mesh_fname;
 mesh_fname = new char[MAXLINE];

 if (argc > 1)
 {
 mesh_fname = strdup(argv[1]);
 }
 else
 {
 cout << "\nMesh filename? ";
 cin >> mesh_fname;
 cout << endl;
 }

 if (DEBUG)
 {
 cout << "Target Problem File: " << mesh_fname << endl;
 }

 Matrix Mat(mesh_fname);
 Mat.Fitness();
 Mat.Info();
}

//Makefile

CFLAGS = -g
SRCS = mapper.C
HDRS = matrix.H
COMP = g++

bokhari: $(SRCS) $(HDRS)
 $(COMP) $(CFLAGS) -o bokhari $(SRCS)

infomap: infomap.C matrix.H
 $(COMP) $(CFLAGS) -o infomap infomap.C

debug: $(SRCS) $(HDRS)
 $(COMP) $(CFLAGS) -DDEBUG -o debug $(SRCS)

lint: $(SRCS)
 lint $(SRCS)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

//mapper.C

// Mapper Algorithm
// Translated from psuedocode to C++
// Original Algorithm:
// Dr. Shahid H. Bokhari, _On the Mapping Problem_,
// IEEE Trans. on Comp., Vol C-30, No 3, pp 207-214, March 1981
// C++ Implementation:
// John Dunkelberg, Worcester Polytechnic Institute, March 1994

// Version #2
// This version handles the mapping of multiple problems nodes onto a
// single processing element
// it also uses a more complex fitness function based on both
// communication costs and processor loading that is taken from
// Talbi, E-G. and Muntean, T. "General Heuristics for the Mapping Problem"
//

#include <iostream.h>
#include <fstream.h>
#include <string.h>

#define MAXLINE 80
#define DEBUG 0
extern "C"
{
 long random();
 int atoi(char *);
 int abs(int);
 char *strdup(const char *);
}

#include "matrix.H"

main(int argc, char **argv)
{
 int gen; // generation running marker
 double online,offline; // online, offline fitness sums
 int rand_seed;

 // Arguments: problem_defintion_filename output_filename
 char *mesh_fname, *out_fname;
 mesh_fname = new char[MAXLINE];
 out_fname = new char[MAXLINE];

 if (argc > 3)
 {
 mesh_fname = strdup(argv[1]);
 out_fname = strdup(argv[2]);
 rand_seed = atoi(argv[3]);
 }
 else
 {

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cout << "\nMesh filename? ";
 cin >> mesh_fname;
 cout << "\nOutput filename? ";
 cin >> out_fname;
 cout << "\nRandom seed? ";
 cin >> rand_seed;
 cout << endl;
 }

 if (DEBUG)
 {
 cout << "Target Problem File: " << mesh_fname << endl;
 cout << "Output Filename: " << out_fname << endl;
 }

 srandom(rand_seed);

 Matrix Mat(mesh_fname);
 Matrix Best;

 fstream out_fp(out_fname,ios::out);
 delete mesh_fname; // we no longer need the mesh's filename
 delete out_fname; // we no longer need the mesh's filename

 if (DEBUG)
 cout << "Started\n";

 /* Intialize the Best with the Mesh definition */
 Best = Mat;
 Mat.Fitness();
 Best.Fitness();

 if (DEBUG)
 {
 cout << "Initialized\n";
 Mat.Info();
 Best.Info();
 }

 // Bokhari's MAIN loop
 int alpha, beta;
 int best_alpha, best_beta;
 double gain, best_gain;
 int done,flag;
 done = 0;

 /* Some commonly called, unchanging values */
 int mach_size, prob_size;
 mach_size = Mat.Get_Mach_Size();
 prob_size = Mat.Get_Size();

 gen = 0;
 online = offline = 0.0; // online and offline fitness values
 while (!(done))

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 {
 if (DEBUG > 10)
 cout << "MAIN\n";
 // Bokhari's SEARCH loop
 if (DEBUG > 10)
 cout << "SEARCH \n";
 do
 {
 flag = 0;
 // Bokhari's AUGMENT loop : for each node do
 best_alpha = best_beta = -1;
 best_gain = -1.0;

 for(alpha=0;(alpha < prob_size);alpha++)
 {
 // ALPHA LOOP
 for(beta=0;(beta < prob_size);beta++)
 {
 // BETA LOOP
 if (DEBUG > 20)
 cout << "AUGMENT: [" << alpha << "," << beta << "]\n";
 // What if we set alpha's mapping to beta
 gain = Mat.If_Set(alpha,beta);
 if (DEBUG > 20)
 cout << "Gain = " << gain << endl;
 if (gain > best_gain)
 {
 // New best exchange found
 best_gain = gain;
 best_alpha = alpha;
 best_beta = beta;
 }
 }
 }
 if (best_gain >= 0.0)
 {
 Mat.Set(best_alpha,best_beta);
 if (DEBUG > 10)
 {
 cout << "Best Gain = " << best_gain;
 cout << " Alpha " << best_alpha;
 cout << " Beta " << best_beta << endl;
 }
 if (best_gain > 0)
 {
 flag = 1;
 if (DEBUG > 10)
 Mat.Info();
 }
 }

 // Output information
 // This is not truely De Jong information, as Bokhari does not
 // have "populations" as such. i.e. the "population" does not

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 // follow a real trend
 gen++;
 online += Mat.Fitness();
 offline += ((Best.Fitness() > Mat.Get_Fit())
 ? Best.Fitness() : Mat.Get_Fit());
 out_fp <<gen <<" " <<(online/((double) gen));
 out_fp <<" " <<(offline/((double)gen)) <<endl;

 // END AUGMENT
 if (DEBUG > 10)
 cout << "END AUGMENT\n";
 } while (flag); // END SEARCH

 if (DEBUG > 10)
 cout << "END SEARCH\n";
 if ((Mat.Fitness() < Best.Fitness()) ||
 (Mat.Fitness() == Mat.Get_Max_Edges()))
 done = 1; // right, that's it, let's quit this program
 else
 {
 // Bokhari's JUMP
 if (DEBUG > 10)
 cout << "JUMP\n";
 Best = Mat;
 // randomly interchange fem_size pairs of nodes of Mat
 // in an attempt to find a better locale
 Mat.Randomize();
 if (DEBUG > 10)
 Mat.Info();
 }
 } // END MAIN (done)

 if (DEBUG > 10)
 cout << "END MAIN\n";
 Best.Info();
}

//matrix.H

// Bokhari Adjacency Matrix

class Matrix
{
 int size; // number of nodes in the mapping problem
 int connect; // maximum connectivity of any given node

 int max_edges; // number of edges in the problem

 int mach_side; // length of a side of the target machine
 int mach_size; // total size of the target machine (# PEs)

 double fitness; // connectivity fitness (modified manhattan)

 // What problem elements are mapped to what machine elements

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 int *map;

 // What are the connections of the problem
 int *edge;

public:
// Construction and Destruction
 Matrix(char *);
 ~Matrix()
 { delete map; };
 Initialize(fstream);
 Matrix& operator=(const Matrix&);

// Internal Actions Functions
 int Randomize(); // randomly swap around mach_side nodes
 double If_Swap(int,int); // return the gain if we did this swap
 int Swap(int,int); // do this swap
 double If_Set(int,int); // return the gain if we did this set
 int Set(int,int); // do this set
 double Fitness(); // get a fitness number

// General Information Functions
 int Get_Map(int) const; // get a particular mapping
 int Get_Edge(int,int) const; // get a particular edge of the problem
 inline double Get_Fit(void) const
 { return fitness; } // return the fitness
 inline int Get_Size(void) const
 { return size; } // get the size of the mesh (nodes)
 inline int Get_Connect(void) const
 { return connect; } // get the connectivity of the mesh
 inline int Get_Mach_Side(void) const
 { return mach_side; } // get the machine side length
 inline int Get_Mach_Size(void) const
 { return mach_size; } // get the machine size
 inline int Get_Max_Edges(void) const
 { return max_edges; } // get the number of edges
 void Info(void);
};

// Constructor calls the Problem constructor with the fstream
Matrix::Matrix(char *fname=(char *)NULL)
{
 size = connect = mach_side = mach_size = max_edges = -1;
 fitness = -1.0;
 map = (int *) NULL;
 edge = (int *) NULL;

 if (DEBUG > 30)
 cout << "Matrix::Matrix\n";

 if (fname != (char *) NULL)
 {
 fstream fp(fname,ios::in);
 if (fp.good())

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 Initialize(fp);
 else
 {
 cout << "Matrix::Matrix Def'n File cannot be opened \n";
 exit(1);
 }

 // Now that we've loaded the file, finish construction
 // Make a default mapping of the problem
 // Which just layers them onto the machine, left to right, up to down
 int x,y;
 for(x=0;(x<size);x++)
 map[x] = x % mach_size;

 // Figure the number of edges in the problem
 max_edges = 0;
 for(x=0;(x<size);x++)
 for(y=0;(y<connect);y++)
 if (Get_Edge(x,y) != -1)
 max_edges++;
 max_edges = max_edges /2;
 return;
 }
 else
 {
 if (DEBUG)
 cout << "Matrix::Matrix Def'n File is NULL \n";
 }

}

// Initialization of problem via file desription
Matrix::Initialize(fstream fp)
{
 int node,side;
 char *com_buf,c;

 com_buf = new char[MAXLINE];

 // problem initializer
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> mach_side;
 fp.get(c);
 mach_size = mach_side * mach_side;
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> size;
 fp.get(c);
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> connect;
 fp.get(c);

 if (DEBUG > 20)
 cout << "ms:"<<mach_side<<" s:"<<size<<" c:"<<connect <<endl;

 mach_size = mach_side*mach_side;
 // Now that we know how big the problem is, allocate space for it
 edge = new int[size*connect];
 map = new int[size];

 for(node=0;(node<size);node++)
 {
 for(side=0;(side<connect);side++)
 {
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> edge[(node*connect)+side];
 fp.get(c);
 }
 }

 // Stop that memory leak
 delete com_buf;
}

// Copy operator
Matrix& Matrix::operator=(const Matrix& from)
{
 size = from.Get_Size();
 connect = from.Get_Connect();
 mach_side = from.Get_Mach_Side();
 mach_size = from.Get_Mach_Size();
 max_edges = from.Get_Max_Edges();
 fitness = from.Get_Fit();

 // Reassign Memory for the target

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 if (map != (int *) NULL)
 delete map;
 if (edge != (int *) NULL)
 delete edge;
 map = new int[size];
 edge = new int[size*connect];

 int x,y;

 // Transfer the mapping for the machine
 for(x=0;(x<size);x++)
 map[x] = from.Get_Map(x);

 // Transfer the problem description
 for(x=0;(x<size);x++)
 for(y=0;(y<connect);y++)
 edge[(x*connect)+y] = from.Get_Edge(x,y);
 return *this;
}

int Matrix::Randomize()
{
 int count,a,b;
 for(count=0;(count<mach_side);count++)
 {
 a = ((int) random()) % size;
 b = ((int) random()) % size;
 Swap(a,b);
 }
 Fitness();
 return(count);
}

// If we were to swap alpha and beta, then return the gain in fitness
double Matrix::If_Swap(int alpha,int beta)
{
 double gain;

 static Matrix temp;
 temp = *this;

 if (DEBUG > 50)
 {
 cout << "If_Swap Temp:\n";
 temp.Info();
 }

 temp.Swap(alpha,beta);

 gain = temp.Get_Fit() - Get_Fit();
 return(gain);
}

// actually do the swap of alpha and beta in the mapping

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

int Matrix::Swap(int alpha,int beta)
{
 int temp;
 temp = map[beta];
 map[beta] = map[alpha];
 map[alpha] = temp;
 Fitness();

 if (DEBUG>50)
 {
 cout << "After the Swap\n";
 Info();
 }
 return(1);
}

// If we were to set alpha's mapping to beta, then return the gain in fitness
double Matrix::If_Set(int alpha,int beta)
{
 double gain;

 static Matrix temp;
 temp = *this;

 if (DEBUG > 50)
 {
 cout << "If_Set Temp:\n";
 temp.Info();
 }

 temp.Set(alpha,beta);

 gain = temp.Get_Fit() - Get_Fit();
 return(gain);
}

// actually do the set of alpha's mapping to beta
int Matrix::Set(int alpha,int beta)
{
 int temp;
 map[alpha] = beta;
 Fitness();

 if (DEBUG>50)
 {
 cout << "After the Set\n";
 Info();
 }
 return(1);
}

// Fitness function
// determines the fitness of a particular mapping
// this uses both a loading and a communication system given equal weight

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

double Matrix::Fitness()
{
 int cur_node,cur_edge;
 int node,target;
 double maxfit;
 double comm_fit = 0.0;
 double load_fit = 0.0;

 // Communication Fitness Section
 int x1,x2,y1,y2,dx,dy,temp;
 for(cur_node=0;(cur_node < size);cur_node++)
 for(cur_edge=0,node=Get_Map(cur_node);(cur_edge < connect);cur_edge++)
 {
 if (Get_Edge(cur_node,cur_edge) != -1)
 {
 target = Get_Map(Get_Edge(cur_node,cur_edge));

 // Modified Manhattan Distance
 x1 = map[node]%mach_side;
 x2 = map[target]%mach_side;
 dx = abs(x1 - x2);
 temp = ((x1>x2) ? x2+abs(mach_side-x1) :
 x1+abs(mach_side-x2));
 dx = ((dx>temp) ? temp : dx);

 y1 = map[node]/(mach_side);
 y2 = map[target]/(mach_side);
 dy = abs(y1 - y2);
 temp = ((y1>y2) ? y2 + abs((mach_side)-y1) :
 y1 + abs((mach_side)-y2));
 dy = ((dy>temp) ? temp : dy);
 comm_fit += (double) ((dx>dy) ? dy : dx) + abs(dx-dy);
 }
 }
 comm_fit = comm_fit / 2.0;
 maxfit = (double) (max_edges * (mach_side/2));
 comm_fit = 1.0 - (comm_fit/maxfit);

 // Loading Fitness Section
 double avg_load, run_total;
 double tmp_load;
 int *map_total;

 // Compile the load on each processor
 map_total = new int[mach_size];
 // Intialize temporary totalling array
 for(target=0;(target < mach_size);target++)
 map_total[target] = 0;
 // increment the appropos map_total for each mapping of a node
 for(node =0;(node < size);node++)
 map_total[Get_Map(node)]++;

 // figure the average load on a given PE
 avg_load = (double) size / (double) mach_size;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 // figure the variance of each PE's load, keep a running total
 for(target=0, run_total=0.0;(target < mach_size);target++)
 {
 tmp_load = (double) map_total[target];
 run_total += (tmp_load*tmp_load) - (avg_load*avg_load);
 }
 load_fit = run_total / (double) mach_size;
 // Figure worst case
 tmp_load = (double) (size*size) - ((double) mach_size - 1.0) * avg_load;
 load_fit = (tmp_load - load_fit)/tmp_load;
 delete map_total; // reclaim memory of map loading array

 // fitness is equal weighting of load fitness and communication fitness
 fitness = (comm_fit + load_fit) / 2.0;

// cout <<fitness <<"= comm:" <<comm_fit <<" & load:" <<load_fit <<endl;

 return(fitness);
}

// Get a particular mapping... a bit too large for an inline
int Matrix::Get_Map(int x) const
{
 if ((x >=0) && (x < size))
 return(map[x]);
 else
 return(-1); // no such machine node to map
}

// Get a particular edge of the problem... a bit too large for an inline
int Matrix::Get_Edge(int x,int y) const
{
 if ((x >= 0) && (x < size) &&
 (y >= 0) && (y < connect))
 {
 return(edge[(x*connect) + y]);
 }
 else
 return(-1); // no such edge
}

void Matrix::Info()
{
 int x,y;

 cout << "Fitness: "<< fitness<< " Max Fitness (edges): "<< max_edges<< endl;
 cout << "Size: " << size << " Connect: " << connect << endl;
 if (map == (int *) NULL)
 cout << "Mapping: NULL\n";
 else
 {
 for(x=0, cout << "Mapping: ";(x<size);x++)
 cout << "[" << Get_Map(x) << "] ";

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cout << endl;
 }
 if (DEBUG > 50)
 if (edge == (int *) NULL)
 cout << "Edge: NULL\n";
 else
 {
 for(x=0, cout << "Edges: ";(x<size);x++)
 for(y=0, cout << endl;(y<connect);y++)
 cout << "[" << Get_Edge(x,y) << "] ";
 cout << endl;
 }
}

//problem.H

/*
 * Problem Class Definition File
 * holds mesh info, also holds other problem information
 * as a method, this also figures the fitness of a chromosone (as a friend)
 */

class Problem
{
 // Mesh information
 int size; // size of the problem mesh (# nodes)
 int connect; // max connectivity of the mesh
 int *edge; // array[][] of edges masquerading as a 1-D

 // Machine Definition Information (assumes toroidal wrap SIMD)
 int mach_side; // number of nodes on a side
 int mach_size; // number of nodes total

public:
 // Functions
 Problem(char *);
 ~Problem(void)
 { delete edge; }
 Initialize(fstream);

 // General Info Functions
 inline int Get_Size(void) const
 { return size; } // get the size of the mesh (nodes)
 inline int Get_Connect(void) const
 { return connect; } // get the connectivity of the mesh
 inline int Get_Mach_Side(void) const
 { return mach_side; } // get the machine side length
 inline int Get_Mach_Size(void) const
 { return mach_size; } // get the machine size
 int Get_Edge(int x,int y); // get a particular edge (node x, con y)
 void Show();
 void Show(int);
};

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// Constructor for Problem
Problem::Problem(char *fname=(char *)NULL)
{
 size = connect = mach_side = mach_size = -1;
 edge = (int *) NULL;
 if (fname != (char *) NULL)
 {
 fstream fp(fname,ios::in);
 if (fp.good())
 Initialize(fp);
 else
 {
 cout << "Problem::Problem Def'n File cannot be opened \n";
 exit(1);
 }
 return;
 }
 else
 {
 cout << "Problem::Problem Def'n File is NULL \n";
 exit(1);
 }
}

// Initialization of problem via file desription
Problem::Initialize(fstream fp)
{
 int node,side;
 char *com_buf,c;

 com_buf = new char[MAXLINE];

 // problem initializer
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> mach_side;
 fp.get(c);
 mach_size = mach_side * mach_side;
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> size;
 fp.get(c);
 while (fp.peek() == '#')
 {

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> connect;
 fp.get(c);

 if (DEBUG > 20)
 cout << "ms:"<<mach_side<<" s:"<<size<<" c:"<<connect <<endl;

 edge = new int[size*connect];

 for(node=0;(node<size);node++)
 for(side=0;(side<connect);side++)
 {
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> edge[(node*connect)+side];
 fp.get(c);
 }
}

// Get a particular edge of the problem... a bit too large for an inline
int Get_Edge(int x,int y)
{
 if ((x >= 0) && (x < size) &&
 (y >= 0) && (x < connect))
 {
 return edge[(x*connect) + y];
 }
 else
 return(-1); // no such edge
}

// Information output (primarily for debugging)
void Problem::Show(int debug_level)
{
 if (debug_level > 0)
 {
 int node,side;
 cout << "\nS:"<<size<<" C:"<<connect;
 for(node=0;(node<size);node++)
 for(side=0,cout<<endl;(side<connect);side++)
 cout << edge[(node*connect)+side] << " ";
 cout << endl;
 }
}

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// default Show
void Problem::Show(void)
{
 Show(0);
}

//probtest.C

#include <iostream.h>
#include <fstream.h>
#include <string.h>

extern "C"
{
 char *strdup(char *);
}

#define MAXLINE 80
#define DEBUG 11

#include "problem.H"

main(int argc, char **argv)
{
 // Arguments: problem_defintion_file
 char *mesh_fname;
 mesh_fname = new char[MAXLINE];

 if (argc > 1)
 {
 mesh_fname = strdup(argv[1]);
 }
 else
 {
 cout << "\nMesh filename? ";
 cin >> mesh_fname;
 }

 cout << "Target Problem File: " << mesh_fname << endl;

 Problem Mesh(mesh_fname);

 Mesh.Show(11);
}

//test.C

#include <iostream.h>
#include <fstream.h>

#include "problem.H"

class Test
{

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

public:
 int x;
 int y;

 Test(int,int);
 Times(Test);
} test1,test2;

Test::Test(int ix=2, int iy=3)
{
 x =ix;
 y =iy;
}

main()
{
 Test alpha;
 Test beta(3,5);

 Test& delta = alpha;

 cout << alpha.x << " " << alpha.y << endl;
 cout << beta.x << " " << beta.y << endl;
 cout << delta.x << " " << delta.y << endl;

}

//appendix-c

//ga.C

// GA.C
// Genetic Algorithm, mapper problem
// John Dunkelberg, 1994

#include<stdlib.h>
#include<iostream.h>
#include<fstream.h>

#ifndef DEBUG
#define DEBUG 0
#else
#define DEBUG 1
#endif

#include "ga.H"
#include "meshmap.H"
#include "genemap.H"

extern "C"
{
 long random(void);
 void srandom(int);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 double drand48(void);
 void srand48(long);
 char *sprintf(const char *fmt, ...);
}

main(int argc,char **argv)
{
 int MAX_POP,MAX_ERA;
 long gene_count;
 float fitness,best_fit,best_of_era;
 double de_jong_online, de_jong_offline;
 int count;
 char *outname;

 if (argc != 5)
 {
 cout << "not right arguments" << endl;
 cout << "maxpop maxera meshfile seed" << endl;
 exit(1);
 }

 if (DEBUG)
 cout << "\nDebug level: "<<DEBUG<<endl;

 MAX_POP = atoi(argv[1]);
 MAX_ERA = atoi(argv[2]);
 srand48(atol(argv[4]));
 srandom(atol(argv[4]));

 if (DEBUG)
 {
 cout<<argv[0]<<" "<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<" ";
 cout<<argv[4]<<" "<<endl;
 }

 fstream meshfile(argv[3],ios::in);

 outname = new char[80];
 sprintf(outname,"./res.%d.%d.%s.%d",
 MAX_POP,MAX_ERA,argv[3],atoi(argv[4]));

 fstream outfile(outname,ios::out);

 if (meshfile.bad())
 {
 cout << "Cannot open file" << argv[3] << endl;
 exit(1);
 }

 if (DEBUG)
 {
 cout << "opened file "<<argv[3]<<endl;
 cout << "opened file "<<outname<<endl;
 }

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 Meshmap mesh(meshfile);

 if (DEBUG)
 {
 cout << "constructed mesh\n";
 mesh.Info();
 }

 Genemap alpha[MAX_POP],beta[MAX_POP];

 if (DEBUG)
 cout << endl << "Gene created" << endl;

 gene_count =0;
 de_jong_online = de_jong_offline = best_fit = best_of_era = 0.0;

 for(count=0;(count<MAX_POP);count++)
 {
 alpha[count].Randomize(&mesh);
 alpha[count].Mutate();
 alpha[count].Fitness();
 //alpha[count].Info();
 gene_count++;
 fitness = alpha[count].Get_Fit();
 if (fitness > best_fit)
 best_fit = fitness;
 de_jong_online += (double) fitness;
 de_jong_offline += (double) best_fit;
 }

 int a,b,era;
 float aval,bval;
 float *wheel;
 for(era=0;(era<MAX_ERA);era++)
 {
 // Create the wheel
 wheel = new float[MAX_POP];
 float sum,weight,prod;
 //cout << "\n\nWheel";
 for(count=0,sum=0;(count<MAX_POP);count++)
 {
 for(weight=WHEEL_WEIGHT,prod=1;(weight>0);weight--)
 prod *= alpha[count].Get_Fit();
 sum += prod;
 wheel[count] = sum;
 //cout << " " << wheel[count];
 }
 //cout << endl;

 int which_best;
 for(count=0,which_best=-1,best_of_era=0.0;(count<MAX_POP);count++)
 {
 aval = ((float) drand48()) * sum;
 bval = ((float) drand48()) * sum;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 int in_cnt;
 for(in_cnt=0;(wheel[in_cnt]<aval);in_cnt++);
 a = in_cnt;
 for(in_cnt=0;(wheel[in_cnt]<bval);in_cnt++);
 b = in_cnt;

 //cout << "\nCrossing "<<a<<"("<<aval<<") and "<<b<<"("<<bval<<")\n";
 beta[count].Cross(alpha[a], alpha[b], &mesh);
 beta[count].Mutate();
 beta[count].Fitness();

 beta[count].Info();

 gene_count++;
 fitness = alpha[count].Get_Fit();
 if (fitness > best_fit)
 best_fit = fitness;
 if (fitness > best_of_era)
 {
 best_of_era = fitness;
 which_best = count;
 }
 de_jong_online += (double) fitness;
 de_jong_offline += (double) best_fit;

 if (!(gene_count % (MAX_POP/5)))
 {
 outfile<<era<<"."<<count;
 outfile<<" "<<(de_jong_online/ (double) gene_count);
 outfile<<" "<<(de_jong_offline/ (double) gene_count)<<endl;
 }
 }
 delete wheel;

 if ((DEBUG) && (which_best != -1))
 {
 cout << "\nBest in era "<<era<<":"<<which_best;
 beta[which_best].Info();
 }

 for(count=0;(count<MAX_POP);count++)
 alpha[count] = beta[count];
 }

 outfile<<MAX_ERA<<".00";
 outfile<<" "<<(de_jong_online/ (double) gene_count);
 outfile<<" "<<(de_jong_offline/ (double) gene_count)<<endl;

 if (DEBUG)
 cout << "End of Run" << endl;
}

//ga.H

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// ga.h
// header file for mapping problem
// defines parameters and the defaults

// various kinds of crossover methods:
// PMX: partial matching cross-over
// OX: order crossover
#define PMX 1
#define OX 2
int CROSS_TYPE = PMX;

// various kinds of fitness methods:
// BOKHARI: if there is a direct edge map then 1, else 0
// MANHATTAN: sum of distances that edges must cover are base value
// then figure variance
#define BOKHARI 0
#define MANHATTAN 1
int FITNESS_TYPE = MANHATTAN;

// Wheel weighting
#define NORMAL 1;
#define SQUARE 2;
#define CUBED 3;
int WHEEL_WEIGHT = NORMAL;

// how many passes should be make to randomize the genes
int MIX_FACTOR=3;

// What are the chances of a one-swap mutation
float MUT_FACTOR=0.01;

// What are the chances of a cross-over breeding
float CROSS_RATE=1.0;

//ga.txt

// Bokhari Mapping Problem
// John Dunkelberg

/* Bokhari, Shahid H.
* IEEE, 1981
* Concerns the mappings of a FEM Mesh onto a 6x6 8-way connected FEM machine
* Bokhari considers only the cases where the number of nodes in the mesh
* are less than the number of nodes in the FEM machine.
*
* We will consider the same problem set, but instead of the random swapping
* method that Bokhari uses, we will use a genetic algorithm.
*
*/

/* Methods Variables: (stored in bokhari.data)
* 1 Original Pool: Randomly Generated (no seeding)
 take all elements, mix 3n times over num of nodes

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

* 2 Selection: Roulette Wheel Methodology
 Note we have to invert fitness for it to work
* 3 Crossover Rate: 0.1 to 1.0 (define'd: CROSS_RATE)
* 4 Crossover: Twist them and rectify duplicates
* 5 Mutation Rate: 0.01 to 0.001 (define'd: MUTATE_RATE)
* if true, two vertexes are swapped
* 6 Population: Constant Population Number
* (define'd: MAX_POP)
* 7 Problem Mesh: stored as adjacency matrix?
*/

/* Statistics:
* 1 Value and Fitness of best individual in generation
* 2 Average Fitness of each generation
* 3 De Jong Online: running average of fitness of
* all past individuals
* 4 De Jong Offline: running average of fitness of
* best individual at all times
*/

/* Fitness Functions:
* if dx = (x1+x2)%max(x), dy = (y1+y2)%max(y)
*
* 1 Manhattan Distance:
* minimize dist = dx+dy
* 2 Mod. Manhattan Distance:
* minimize dist = min(dx,dy) + abs(dx - dy)
* (modified distance considers the diagonal connections)
* fitness (for the roulette wheel) is normalized 0 to 1 (float)
* and inverted as r(n) = 1 - f(n)
*/

/* Objects: Statistics: carries statistical information
* construct, destruct
* update(gene): updates De Jong online and offline information (3,4)
* update(pop): updates population avergaing (1,2)
* de_jong(int *online,int *offline): returns de jong online,offline
*/

/* Objects: Problem Mesh
* contruct, destruct
* load_mesh():
*/

/* Objects: Mapping
* construct, destruct
* swap_elem(a,b): swap verticies a and b
*/

//gene.H

// gene.H
// Gene header file for the Bokhari problem
// a mapping from the problem to the mesh

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// John Dunkelberg

// Note: also defines the << operator on the Gene

class Gene
{
protected:
 int size;
 int edges;
 double fitness;
 int *map;

public:
 Gene(void);
 virtual void Set_Fit(float);
 virtual int Get_Map(int) const; // get a particular mapping
 virtual inline double Get_Fit(void) const
 { return fitness; } // return the fitness
 virtual inline int Get_Size(void) const
 { return size; } // get the size of the mesh (nodes)
 virtual void Info();
};

// Constructs a Gene
Gene::Gene()
{
 size = 0;
 edges = 0;
 map = (int *) NULL;
 fitness = -1.0;
}

// Set the fitness value of the mapping gene
void Gene::Set_Fit(float newfit)
{
 fitness = newfit;
}

// Get a particular mapping... a bit too large for an inline
int Gene::Get_Map(int x) const
{
 if ((x >=0) && (x < size))
 return(map[x]);
 else
 return(-1); // no such machine node to map
}

// Primarily for debugging, prints the gene mapping
void Gene::Info()
{
 int count;
 cout << endl << "S:"<< size << " F:" << fitness << " E:" << edges;
 for(count=0, cout << " G:";(count<size);count++)
 cout << count << "(" << map[count] << ") ";

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cout << endl;
}

//genemap.H

// genemap.H
// Bokhari Gene Mapping Object header file
// super of the gene object
// does the problem specific handling

#include "gene.H"

#define MINIMAL_MUTATION 10000
#define MINIMAL_CROSS 100

extern int CROSS_TYPE;
extern int FITNESS_TYPE;
extern int MIX_FACTOR;
extern float MUT_FACTOR;
extern float CROSS_RATE;

class Genemap : public Gene
{
public:
 Meshmap *mesh; // pointer to problem defintion

 // Construct and Destruct
 Genemap(void);
 ~Genemap(void);

 // Initialize new Genemap from source
 void operator=(const Genemap&);
 int Randomize(Meshmap *);
 int Cross(Genemap&, Genemap&, Meshmap *);
 int CrossPMX(Genemap&, Genemap&);
 int CrossOX(Genemap&, Genemap&);

 // Internal information and modification
 double Fitness();
 int Mutate(void);

 // Information
 //int Get_Map(int) const; // get a particular mapping
 //inline double Get_Fit(void) const
 //{ return fitness; } // return the fitness
 //inline int Get_Size(void) const
 //{ return size; } // get the size of the mesh (nodes)
};

// Constructs a Gene
Genemap::Genemap(void)
{
 size = 0;
 edges = 0;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 map = (int *) NULL;
 fitness = 0.0;
}

// Deconstructs a Gene
Genemap::~Genemap(void)
{
 delete map;
}

// Copy operator
void Genemap::operator=(const Genemap& from)
{
 int count;

 // copy over basic values
 size = from.size;
 fitness = from.fitness;
 mesh = from.mesh;

 map = new int[size]; // find space for the map

 // copy over the mapping
 for(count=0;(count<size);count++)
 map[count] = from.map[count];
}

// Initializes and randomizes a Gene for a given problem size
int Genemap::Randomize(Meshmap *targ_mesh)
{
 mesh = targ_mesh;

 // Construct the internal map array
 size = mesh->Get_Size();
 map = new int[size];

 // temp holder for mach_size... (this really needs to be redesigned
 int mach_size;
 mach_size = mesh->Get_Mach_Size();

 // Create a random mapping of the problem elements to the PEs
 int count;
 for(count=0;(count < size);count++)
 map[count] = ((int) random()) % mesh->Get_Mach_Size();

 return(1);
}

// Fitness function
// determines the fitness of a particular mapping
// this uses both a loading and a communication system given equal weight
double Genemap::Fitness()
{
 int cur_node,cur_edge;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 int node,target;
 double maxfit;
 double comm_fit = 0.0;
 double load_fit = 0.0;

 // commonly used but from another object
 int mach_size, mach_side;
 mach_size = mesh->Get_Mach_Size();
 mach_side = mesh->Get_Mach_Side();

 // Communication Fitness Section
 int x1,x2,y1,y2,dx,dy,temp;
 for(cur_node=0;(cur_node < size);cur_node++)
 for(cur_edge=0,node=Get_Map(cur_node);
 (cur_edge < mesh->Get_Connect());cur_edge++)
 {
 if (mesh->Get_Edge(cur_node,cur_edge) != -1)
 {
 target = Get_Map(mesh->Get_Edge(cur_node,cur_edge));

 // cout << "node: "<<node<< " target: "<<target<< " ";

 // Modified Manhattan Distance
 x1 = node%mach_side;
 x2 = target%mach_side;
 dx = abs(x1 - x2);
 temp = ((x1>x2) ? x2+abs(mach_side-x1) :
 x1+abs(mach_side-x2));
 dx = ((dx>temp) ? temp : dx);

 y1 = node/(mach_side);
 y2 = target/(mach_side);
 dy = abs(y1 - y2);
 temp = ((y1>y2) ? y2 + abs((mach_side)-y1) :
 y1 + abs((mach_side)-y2));
 dy = ((dy>temp) ? temp : dy);

 // cout <<"x1 "<<x1<<" x2 "<<x2<<" y1 "<<y1<<" y2 "<<y2;
 // cout <<"dx "<<dx<<" dy "<<dy<<endl;
 comm_fit += (double) ((dx>dy) ? dy : dx) + abs(dx-dy);
 }
 }
 comm_fit = comm_fit / 2.0;
 maxfit = (double) (mesh->Get_Max_Edges() * (mach_side/2));
 comm_fit = 1.0 - (comm_fit/maxfit);

 // cout << "comm: " << comm_fit << " max " << maxfit << endl;

 // Loading Fitness Section
 double avg_load, run_total;
 double tmp_load;
 int *map_total;

 // Compile the load on each processor

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 map_total = new int[mach_size];
 // Intialize temporary totalling array
 for(target=0;(target < mach_size);target++)
 map_total[target] = 0;
 // increment the appropos map_total for each mapping of a node
 for(node =0;(node < size);node++)
 map_total[Get_Map(node)]++;

 // figure the average load on a given PE
 avg_load = (double) size / (double) mach_size;

 // figure the variance of each PE's load, keep a running total
 for(target=0, run_total=0.0;(target < mach_size);target++)
 {
 tmp_load = (double) map_total[target];
 run_total += (tmp_load*tmp_load) - (avg_load*avg_load);
 }
 load_fit = run_total / (double) mach_size;
 // Figure worst case
 tmp_load = (double) (size*size) - ((double) mach_size - 1.0) * avg_load;
 load_fit = (tmp_load - load_fit)/tmp_load;
 delete map_total; // reclaim memory of map loading array

 // fitness is equal weighting of load fitness and communication fitness
 fitness = (comm_fit + load_fit) / 2.0;

 // cout <<fitness <<"= comm:" <<comm_fit <<" & load:" <<load_fit <<endl;
 // Info();

 return(fitness);
}

int Genemap::Cross(Genemap& mom, Genemap& dad, Meshmap *targ_mesh)
{
 // Construct the internal map array
 mesh = targ_mesh;
 size = mesh->Get_Size();
 map = new int[size];

 int val=0;
 switch(CROSS_TYPE)
 {
 case PMX:
 val = CrossPMX(mom, dad);
 break;
 case OX:
 val = CrossOX(mom, dad);
 break;
 default:
 val = CrossPMX(mom, dad);
 break;
 }

 // will we cross-over... yes we\'ve already done the effort, but this

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 // keeps my twin markers going

 int chance,count;
 chance = ((int) random()) % MINIMAL_CROSS;
 if (chance > (MINIMAL_CROSS * CROSS_RATE))
 {
 // if no cross over, then clone mom into the next generation
 fitness = mom.Get_Fit();
 for(count=0;(count<size);count++)
 map[count] = mom.map[count];
 val = 1;
 }

 return(val);
}

// Cross Breeding function by order crossover operator (Goldberg[1989])
// returns 1 if the gene is cross bred
int Genemap::CrossOX(Genemap& mom, Genemap& dad)
{
 // The twins and the twin born flag
 int john[size], jane[size];

 int start,stop,dist,count;
 int work_john[size],work_jane[size];

 for(count=0;(count<size);count++)
 {
 work_john[count] = mom.map[count];
 work_jane[count] = dad.map[count];
 }

 // choose two random crossover points
 start = ((int) random()) % size;
 stop = ((int) random()) % size;
 if (start>stop)
 {
 dist = stop;
 stop = start;
 start = dist;
 }
 dist = (stop - start)+1;

 // cut out the splice of john and jane
 int splice;
 int cut_john[dist], cut_jane[dist];
 for(splice=0,count=start;(count<=stop);count++,splice++)
 {
 cut_john[splice] = work_john[count];
 cut_jane[splice] = work_jane[count];
 }
 for(count=0;(count<size);count++)
 for(splice=0;(splice<dist);splice++)
 {

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 if (work_john[count] == cut_jane[splice])
 work_john[count] = -1;
 if (work_jane[count] == cut_john[splice])
 work_jane[count] = -1;
 }

 // slide the holes together at the start point
 for(count=start;(count<=stop);count++)
 john[count] = jane[count] = -1;
 for(splice=0,count=0;(count<size);count++)
 {
 if (work_john[count] != -1)
 {
 john[splice] = work_john[count];
 splice++;
 splice=((splice==start) ? (stop+1) : splice);
 }
 }
 for(splice=0,count=0;(count<size);count++)
 {
 if (work_jane[count] != -1)
 {
 jane[splice] = work_jane[count];
 splice++;
 splice=((splice==start) ? (stop+1) : splice);
 }
 }

 // patch the splice holes
 for(count=start;(count<=stop);count++)
 {
 john[count] = cut_jane[(count-start)];
 jane[count] = cut_john[(count-start)];
 }

 // set the current child to the john twin
 for(count=0;(count<size);count++)
 map[count] = john[count];

 return(1);
}

// Cross Breeding function by partial matching
// returns 1 if the gene is cross bred
int Genemap::CrossPMX(Genemap& mom, Genemap& dad)
{
 int start, stop, count, mach_size;
 // Initialize the child gene to a null map
 for(count=0;(count<size);count++)
 map[count]=-1;

 // make a local version of the mesh->mach_size
 mach_size = mesh->Get_Mach_Size();

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 // Choose a start and stop point for the twist
 start = ((int) random()) % size;
 stop = ((int) random()) % size;

 //cout << "\nstart:"<<start<<" stop:"<<stop<<endl;

 // replicate mom over to the child
 for(count=start;(count!=((stop+1)%size));count = (count+1)%size)
 map[count] = mom.map[count];

 // replicate dad over to the child
 for(count=(stop+1)%size;(count!=start);count = (count+1)%size)
 map[count] = dad.map[count];

 // Where there is a duplication, replace with other parent
 int *fill,temp,done,monitor=0;
 fill = new int[mach_size];
 do
 {
 done = 1;
 for(count=0;(count<mach_size);count++)
 fill[count] = -1;
 for(count=0;(count<size);count++)
 {
 temp = map[count];
 if (fill[temp] == -1)
 fill[temp] = count;
 else
 {
 if (monitor>size)
 {
 // We musta hit a loop, try to break out
 map[count] = ((int) random())%size;
 monitor = size/2;
 //cerr << "Monitor Break!\n";
 }
 else
 {
 // gotta swap one and recheck
 if (map[count] == mom.map[count])
 map[count] = dad.map[count];
 else
 map[count] = mom.map[count];
 done = 0;
 monitor++;
 }
 }
 }
 } while (!done);
 delete fill;
 return(1);
}

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// Mutation function, returns 1 if mutated
int Genemap::Mutate()
{
 int chance, a, b, temp;
 chance = ((int) random()) % MINIMAL_MUTATION;
 if (chance < (MINIMAL_MUTATION * MUT_FACTOR))
 {
 a = ((int) random()) % size;
 b = ((int) random()) % size;
 temp = map[a];
 map[a] = map[b];
 map[b] = temp;
 return(1);
 }
 else
 return(0);
}

//genetest.C

// test program for gene.hpp

#include<stdlib.h>
#include<iostream.h>
#include<fstream.h>
#include "meshmap.h"
#include "genemap.h"

extern "C"
{
 long random(void);
 void srandom(int);
}

int MESH_SIZE, MACH_SIZE, MACH_SIDE;
int CONNECTIVITY;
int MIX_FACTOR=3;
float MUT_FACTOR=0.01;
float CROSS_RATE=1.0;

main(int argc,char **argv)
{
 int MAX_POP;
 int fitness;

 if (argc != 5)
 {
 cout << "not right arguments" << endl;
 cout << "maxpop machine_side meshfile seed" << endl;
 exit(1);
 }

 MAX_POP = atoi(argv[1]);
 MACH_SIDE = atoi(argv[2]);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 MACH_SIZE = MACH_SIDE * MACH_SIDE;
 srandom(atoi(argv[4]));

 cout <<argv[0]<<" "<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<" "<<argv[4]<<endl;

 fstream meshfile(argv[3],ios::in);

 if (meshfile.bad())
 {
 cout << "Cannot open file" << argv[3] << endl;
 exit(1);
 }

 cout << "opened file"<<argv[3]<<endl;
 Meshmap mesh(meshfile);
 cout << "constructed mesh\n";
 mesh.Info();

 cout << endl << "Size of Machine: " << MACH_SIZE;

 Genemap alpha[MAX_POP],beta[MAX_POP];

 cout << endl << "Gene created" << endl << "Mesh size: " << MESH_SIZE;

 int count;
 for(count=0;(count<MAX_POP);count++)
 {
 cout << endl << count;
 alpha[count].Randomize();
 alpha[count].Info();
 alpha[count].Mutate();
 alpha[count].Info();
 alpha[count].Fitness(mesh);
 alpha[count].Info();
 }
 cout << endl << "Complete Stage Alpha" << endl;

 int a,b;
 for(count=0;(count<MAX_POP);count++)
 {
 a = ((int) random()) % MAX_POP;
 b = ((int) random()) % MAX_POP;

 cout << "\nCrossing "<<a<<" and "<<b<<"\n";
 beta[count].Cross(alpha[a], alpha[b]);
 beta[count].Info();
 beta[count].Fitness(mesh);
 beta[count].Info();
 }
 cout << endl << "Complete Stage Beta" << endl;

}

//genmesh.c

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

#include<stdio.h>

main()
{
 int n,elem;
 for(n=0,elem=0;(n<7);n++)
 {
 printf("\n%d %d %d %d %d %d",
 (elem-5),(elem-2),(elem+1),(elem+3),(elem+5),-1);
 elem++;
 printf("\n%d %d %d %d %d %d",
 (elem-3),(elem-2),(elem-1),(elem+1),(elem+2),(elem+3));
 elem++;
 printf("\n%d %d %d %d %d %d",
 (elem-5),(elem-3),(elem-1),(elem+2),(elem+5),-1);
 elem++;
 printf("\n%d %d %d %d %d %d",
 (elem-3),(elem-2),(elem+2),(elem+3),-1,-1);
 elem++;
 printf("\n%d %d %d %d %d %d",
 (elem-3),(elem-2),(elem+2),(elem+3),-1,-1);
 elem++;
 }

}
//appendix-d

//chromosone.H

/*
 * Chromosone Definition File
 * The chromosone is defined as a object, with a pointer to a list
 * of genes (Gene objects, see Gene.h)
 * Methods include Cut and Splice
 *
 * Chromosone is an instance of a Chromosone
 * PChromosone is a pointer to an instance of a Chromosone
 *
 * John Dunkelberg
 * created: 19 Feb 1994
 */

#include "gene.H"

extern int DEBUG;

class Chromosone
{
 long chrom_id; // identification tag of the chromosone

 int genelen; // length of the gene-string (number of genes)
 int uniqlen; // number of unique genes
 int mark; // has this chromosone already been tourney'd

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 double fitness; // fitness of the chromosone

 Gene *first_gene; // first gene in the chromosone
 Gene *last_gene; // last gene in the chromosone

 Chromosone *next_chrom; // next chromosone in line

public:
// Construct and Destruct Functions
 Chromosone(void); // constructor for the chromosone
 ~Chromosone(void); // destructor for the chromosone
 int Kill(void); // kill all Chromosones in our list
 int Assign(long, Gene *); // assign a gene sequence to the chromosone

// Fitness setting function (friend of problem)
 double Fitness(Problem *, Chromosone *);

// Meta Functions
 int Connect(Chromosone *); // add another chrom to our list
 Chromosone *Disconnect(); // cut off our tail and pass it back
 Chromosone *Next(); // pass back location of our tail

// Private Info Functions
 int Get_Len(void)
 { return genelen; } // returns the genelen of the chromosone
 int Get_Uniq(void)
 { return uniqlen; } // returns the number of unique genes
 double Get_Fit(void)
 { return fitness; } // returns the fitness of the chromosone
 int Get_Mark(void)
 { return mark; } // returns the tourney marker on the chromosone
 int Mark(void)
 { mark = 1; return mark; } // mark the chromosone
 int Unmark(void)
 { mark = 0; return mark; } // unmark the chromosone
 int Unmark_All(void); // unmark all the chromosones

// Internal Functions
 Chromosone *Copy(void); // creates a copy of this chromosone
 int Threshold(Chromosone *); // checks to see that we can threshold
 Chromosone *Cut(long); // returns the new cut half of the chromosone
 void Splice(Chromosone *); // make spliced chromosone
 void Show(int); // provide information of variable depth on chrom.
 void Show(void); // overload of above, with 0 debug_level
};

typedef Chromosone *PChromosone;

// Construct a Chromosone
 Chromosone::Chromosone()
{
 genelen = 0;
 uniqlen = 0;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 fitness = -1.0;
 mark = 0;

 first_gene = last_gene = (Gene *) NULL;
 next_chrom = (Chromosone *) NULL;
}

// Destroy a Chromosone
 Chromosone::~Chromosone(void)
{
 if (first_gene != (Gene *) NULL)
 {
 first_gene->Kill();
 delete(first_gene);
 }
}

// Kill all the Chromosones in the list after this one
int Chromosone::Kill(void)
{
 if (next_chrom == (Chromosone *) NULL)
 return(0);

 next_chrom->Kill();
 delete(next_chrom);
 next_chrom = (Chromosone *) NULL;
 return(1);
}

// Assign a gene sequence to a blank chromosone
int Chromosone::Assign(long name_id, Gene *new_gene)
{
 if (first_gene != (Gene *) NULL)
 {
 cout << "Attempt to Assign to a non-blank chromosone, Blocked\n";
 return(0);
 }
 if (new_gene == (Gene *) NULL)
 {
 cout << "Attempt to Assign a NULL gene, Blocked\n";
 return(0);
 }

 Gene *cur_gene;
 int gene_count;

 // name the chromosone
 chrom_id = name_id;

 // attach the new gene sequence
 first_gene = new_gene;

 // pace thru the new gene sequence to find the end
 for(cur_gene = new_gene, gene_count = 1;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 (cur_gene->Next() != (Gene *) NULL);
 cur_gene = cur_gene->Next(), gene_count++);

 // assign the last_gene marker
 last_gene = cur_gene;
 // assign the value of the gene length
 genelen = gene_count;

 return(gene_count);
}

// Fitness calculation functions
// Assigns internal fitness and returns value
double Chromosone::Fitness(Problem *problem, Chromosone *tplate)
{
 Chromosone *temp_chrom; // temporary chromosone
 int *map; // fixed size mapping

 // Make temp_chrom a composite of the tplate and test_chrom
 temp_chrom = tplate->Copy();
 temp_chrom->Splice(this);

 // DEBUG
 // cout << "Temp_chrom\n";
 // temp_chrom->Show(DEBUG);

 // make the mapping from the test_chromosone
 int count, maxlen;
 Gene *cur_gene;
 maxlen = temp_chrom->Get_Len();
 if ((map = (int *) malloc(maxlen * sizeof(int))) == (int *) NULL)
 {
 cout << "Chromosone::Fitness memory allocation failed for map\n";
 exit(0);
 }
 for(count=0,cur_gene = temp_chrom->first_gene;
 (count < maxlen);
 count++, cur_gene = cur_gene->Next())
 {
 if (cur_gene == (Gene *) NULL)
 {
 cout << "Problem::Fitness got an unexpected NULL gene\n";
 exit(0);
 }
 map[cur_gene->Gene_id()] = cur_gene->Allele();
 }

 // DEBUG
 // for(count=0;(count<maxlen);count++)
 // cout << "[" << count << "," << map[count] << "]" << endl;

 // Now we have a completed mapping array, so now let's use it
 // to get the fitness

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 int node,side,target;
 int x1,x2,y1,y2,dx,dy,temp;
 double maxfit,newfit=0;
 int edges = 0;

 for(node=0;(node < problem->Get_Size());node++)
 for(side=0;(side < problem->Get_Connect());side++)
 {
 // edge[node][side]
 target = problem->Get_Edge(node,side);

 // if it's not a null edge, then compute change in fitness
 if (target != -1)
 {
 edges++; // realize the mapping has an edge

 // Modified Manhattan Distance
 x1 = map[node]%(problem->Get_Mach_Side());
 x2 = map[target]%(problem->Get_Mach_Side());
 dx = abs(x1 - x2);
 temp = ((x1>x2) ? x2+abs((problem->Get_Mach_Side())-x1) :
 x1+abs((problem->Get_Mach_Side())-x2));
 dx = ((dx>temp) ? temp : dx);

 y1 = map[node]/(problem->Get_Mach_Side());
 y2 = map[target]/(problem->Get_Mach_Side());
 dy = abs(y1 - y2);
 temp = ((y1>y2) ? y2 + abs((problem->Get_Mach_Side())-y1) :
 y1 + abs((problem->Get_Mach_Side())-y2));
 dy = ((dy>temp) ? temp : dy);
 newfit += ((dx>dy) ? dy : dx) + abs(dx-dy);

 //cout << "\n ("<<x1<<","<<y1<<") ("<<x2<<","<<y2<<") ";
 //cout << "dx"<<dx<<" dy"<<dy<<" tot"<<newfit;
 }
 }
 fitness = newfit/2.0; // We count every edge twice, so rectify
 edges = edges/2; // ditto

 // squash our fitness into the range [0,1]
 maxfit = (double) (edges * ((problem->Get_Mach_Side())/2));

 // DEBUG
 // cout << "maxfit " << maxfit << " fitness " << fitness << endl;

 if (maxfit == ((double) edges))
 fitness = 1.0;
 else
 fitness = 1.0 - (fitness / maxfit);
 return(fitness);
}

// add another chrom to our list
int Chromosone::Connect(Chromosone *new_tail)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

{
 if (new_tail == (Chromosone *) NULL)
 return(0);

 next_chrom = new_tail;
 return(1);
}

// cut off our tail and pass it back
Chromosone *Chromosone::Disconnect()
{
 Chromosone *tail;

 tail = next_chrom;
 next_chrom = (Chromosone *) NULL;
 return(tail);
}

// pass back location of our tail
Chromosone *Chromosone::Next()
{
 return(next_chrom);
}

// Unmark all the Chromosones in the list after this one
int Chromosone::Unmark_All(void)
{
 if (next_chrom == (Chromosone *) NULL)
 return(0);
 next_chrom->Unmark_All();
 mark = 0;
 return(1);
}

// Make a copy of the Chromosone
// A copied Chromosone looks just like the original except it is
// not marked and has a NULL next pointer
Chromosone *Chromosone::Copy(void)
{
 Chromosone *new_chrom;

 // create space for the cloned chromosone
 new_chrom = new Chromosone;

 // Copy over constant values to the clone
 new_chrom->chrom_id = chrom_id;
 new_chrom->genelen = genelen;
 new_chrom->uniqlen = uniqlen;
 new_chrom->fitness = fitness;
 new_chrom->next_chrom = (Chromosone *) NULL;

 // Copys are not MARKed from their original!

 // copy over all the genes to the cloned chromosone

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 Gene *cur_gene, *eugene;

 new_chrom->first_gene = first_gene->Copy();
 for(cur_gene=first_gene->Next(), eugene = new_chrom->first_gene;
 (cur_gene != (Gene *) NULL);
 cur_gene=cur_gene->Next())
 {
 eugene->Connect(cur_gene->Copy());
 eugene = eugene->Next();
 }
 new_chrom->last_gene = eugene;

 return(new_chrom);
}

// Threshold checking to make sure two chromosones are similar enough
// to be competing in the tournament
int Chromosone::Threshold(Chromosone *)
{
 return(1);
}

// Cut the Chromosone in two, and return the old tail section
Chromosone *Chromosone::Cut(long new_id)
{
 int cut_point;
 Gene *cur_gene, *tail_gene;
 Chromosone *new_chrom;

 new_chrom = new Chromosone;
 if (new_chrom == (Chromosone *) NULL)
 {
 cout << "Failure to Allocate Memory for Chromosone" << new_id << endl;
 exit(1);
 }

 // Choose a cut_point, make sure the target gene will be nonzero length
 cut_point = ((int) random()) % (genelen-1);

 // rectify the length values of the parent chromosones
 genelen = cut_point+1;

 // run through this chromosone's genes to the cut_point
 for(cur_gene= first_gene;
 (cut_point);
 cut_point--, cur_gene=cur_gene->Next());

 // assign our new last, find the new tail gene sequence
 last_gene = cur_gene;
 tail_gene = cur_gene->Disconnect();

 // Assign values to the new chromosone
 new_chrom->Assign(new_id,tail_gene);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 // Mark Fitness value as invalid
 fitness = -1.0;

 // create new uniq mask for each...

 return(new_chrom);
}

// Splice another Chromosone to the tail of this one
void Chromosone::Splice(Chromosone *new_tail)
{
 if (new_tail == (Chromosone *) NULL)
 {
 // hey, we gotta null tail
 return;
 }

 genelen += new_tail->genelen; // combine their length values

 // connect the gene sequences together, change last_gene marker
 last_gene->Connect(new_tail->first_gene);
 last_gene = new_tail->last_gene;

 // Mark Fitness values as invalid
 fitness = -1.0;

 // refigure uniq masks
}

// Show gives a description of the Chromosone
void Chromosone::Show(int debug_level)
{
 if (debug_level >= 0)
 {
 cout << "[c" << chrom_id << ", f" << fitness << ", m" << mark;
 cout << ", g" << genelen << ", u" << uniqlen << "]\n";
 }
 if (debug_level > 10)
 {
 Gene *cur_gene;
 for(cur_gene = first_gene;
 (cur_gene != (Gene *) NULL);
 cur_gene = cur_gene->Next())
 {
 cout << "**";
 cur_gene->Show((debug_level - 10));
 }
 cout << endl;
 }
}

// Show gives a description of the Chromosone
// this is an overload for the debug_level = 0 version
void Chromosone::Show(void)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

{
 Show(0);
}

//chromtest.C

// Testing program for the Gene class
// John Dunkelberg

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

#include "config.H"
#include "problem.H"
#include "chromosone.H"

extern "C"
{
 long random(void);
 void srandom(int);
 char *sprintf(const char *fmt, ...);
 char *strdup(char *);
}

main(int argc, char **argv)
{
 Problem *problem;
 Chromosone *tplate, *real, *test;
 Gene *fgene, *lgene;
 Gene *eugene, *phosgene;
 char *mesh_fname;

 double fitness;

 problem = new Problem;
 mesh_fname = new char[MAXLINE];

 if (argc > 0)
 {
 mesh_fname = strdup(argv[1]);
 }
 else
 {
 cout << "\nMesh filename? ";
 cin >> mesh_fname;
 }

 fstream in_fp(mesh_fname,ios::in);

 cout << "got " << mesh_fname << endl;

 problem->Initialize(in_fp);
 problem->Show(DEBUG);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 {
 tplate = new Chromosone;

 fgene = new Gene;
 fgene->Assign(0,0);
 lgene = new Gene;
 lgene->Assign(1,1);
 fgene->Connect(lgene);

 eugene = new Gene;
 eugene->Assign(2,2);
 lgene->Connect(eugene);
 lgene = eugene;

 eugene = new Gene;
 eugene->Assign(3,3);
 lgene->Connect(eugene);
 lgene = eugene;

 eugene = new Gene;
 eugene->Assign(4,4);
 lgene->Connect(eugene);
 lgene = eugene;

 tplate->Assign(100,fgene);

 cout << "Template \n";
 tplate->Show(DEBUG);
 }

 {
 real = new Chromosone;

 fgene = new Gene;
 fgene->Assign(0,12);
 lgene = new Gene;
 lgene->Assign(1,15);
 fgene->Connect(lgene);

 eugene = new Gene;
 eugene->Assign(2,22);
 lgene->Connect(eugene);

 real->Assign(113,fgene);

 cout << "Real Chromosone\n";
 real->Show(DEBUG);
 }

 {
 test = new Chromosone;

 test = tplate->Copy();

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 test->Splice(real);

 cout << "Test Chromosone\n";
 test->Show(DEBUG);
 }

 fitness = real->Fitness(problem,tplate);
 cout << "fitness " << fitness << endl;
 real->Show(DEBUG);
}

//config.H

/*
 ** Problem Definition File
 ** mGA test-of-principle
 **
 ** John Dunkelberg
 */

// Generation Breakpoints
int init_select_gen = 1; // tournament selection without shuffling
 // now cut the population in half every other gen
int cut_every_other_gen = 2; // tournament selection with shuffling
 // now cut the population in half every gen
int cut_pop_gen = 5; // tournament selection with shuffling
 // population size is held stable
int prim_gen = 8; // tournament selection with shuffling
 // population size is held stable
int max_gen = 50; // tourney w/shuffle and geneic operators

// DEBUG level for test
int DEBUG = 8;

// Random Seed
int random_seed = 42;

// Maximum size of a line of input
#define MAXLINE 80

// the multiple of the popsize used to shuffle the population is
#define SHUFFLE_MULT 3

// the chance of a splice is
#define P_SPLICE 1.0

// the chance of a cut is (genelen - 1)/problem.size times
#define P_CUT 1.0

//fitness.H

// Fitness calculation functions
// Assigns internal fitness and returns value
double Problem::Fitness(Chromosone *template, Chromosone *test_chrom)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

{
 double Fix_Fitness(long *);

 Chromosone *temp_chrom; // temporary chromosone
 long *map; // fixed size mapping
 double fitness; // fitness value

 // Make temp_chrom a composite of the template and test_chrom
 temp_chrom = template->Copy();
 temp_chrom->Splice(test_chrom);

 // make the mapping from the test_chromosone
 int count, maxlen;
 Gene *cur_gene;
 maxlen = temp_chrom->Get_Len();
 if ((map = (long *) malloc(maxlen * sizeof(long))) == (long *) NULL)
 {
 cout << "Problem::Fitness memory allocation failed for map\n";
 exit(0);
 }
 for(count=0,cur_gene = temp_chrom->first_gene;
 (count < maxlen);
 count++, cur_gene = cur_gene->Next())
 {
 if (cur_gene == (Gene *) NULL)
 {
 cout << "Problem::Fitness got an unexpected NULL gene\n";
 exit(0);
 }
 map[(int) cur_gene->Gene_id()] = cur_gene->Allele();
 }

 // Now we have a completed mapping array, so now let's use it
 // to get the fitness

 int node,side,target;
 int x1,x2,y1,y2,dx,dy,temp;
 double maxfit,newfit=0;
 edges = 0;

 for(node=0;(node < size);node++)
 for(side=0;(side < connect);side++)
 {
 target = edge[(node*connect)+side]; // edge[node][side]

 // if it's not a null edge, then compute change in fitness
 if (target != -1)
 {
 edges++; // realize the mapping has an edge

 // Modified Manhattan Distance
 x1 = map[node]%mach_side;
 x2 = map[target]%mach_side;
 dx = abs(x1 - x2);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 temp = ((x1>x2) ? x2+abs(mach_side-x1) :
 x1+abs(mach_side-x2));
 dx = ((dx>temp) ? temp : dx);

 y1 = map[node]/mach_side;
 y2 = map[target]/mach_side;
 dy = abs(y1 - y2);
 temp = ((y1>y2) ? y2 + abs(mach_side-y1) :
 y1 + abs(mach_side-y2));
 dy = ((dy>temp) ? temp : dy);
 newfit += ((dx>dy) ? dy : dx) + abs(dx-dy);

 //cout << "\n ("<<x1<<","<<y1<<") ("<<x2<<","<<y2<<") ";
 //cout << "dx"<<dx<<" dy"<<dy<<" tot"<<newfit;
 }
 }
 fitness = newfit/2.0; // We count every edge twice, so rectify
 edges = edges/2; // ditto

 // squash our fitness into the range [0,1]
 maxfit = (double) (edges * (mach_side/2));
 if (maxfit == ((double) edges))
 fitness = 1.0;
 else
 fitness = 1 - ((fitness-((double) edges))/(maxfit-((double) edges)));
 return(fitness);
}

//gene.H

/*
 * Gene Definition File
 * Gene is an instance of a Gene
 * PGene is a pointer to an instance of a Gene (typedef'd)
 *
 * John Dunkelberg
 * created: 19 Feb 1994
 */

extern int DEBUG;

class Gene
{
 int gene_id; // which gene am I? (mesh element)
 int allele; // single allele (MasPar PE node)
 Gene *next_gene; // next gene in sequence

public:
// Construct and Destruct Functions
 Gene(void); // construct a gene
 ~Gene(void); // destroy the gene
 int Kill(void); // recursively kill all genes in the list
 void Assign(int, int); // assign a gene_id and allele value

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// Meta Functions
 int Connect(Gene *); // add another gene onto our tail
 Gene *Disconnect(); // terminate our tail, pass tail back
 Gene *Next(); // pass back location of our tail

// Private Info Functions
 int Gene_id(void)
 { return gene_id; } // returns gene_id value
 int Allele(void)
 { return allele; } // returns allele value

// Internal Functions
 Gene *Copy(); // create a copy of this gene
 void Show(int); // provide information on the Gene
 void Show(void); // overload of above, with 0 debug_level
};

typedef Gene *PGene;

Gene::Gene(void)
{
 gene_id = 0;
 allele = 0;
 next_gene = (Gene *) NULL;
}

Gene::~Gene(void)
{
 next_gene = (Gene *) NULL;
}

/* Recursively sends the Kill down the chain, deleting all genes */
int Gene::Kill(void)
{
 if (next_gene == (Gene *) NULL)
 return(0);

 next_gene->Kill();
 delete(next_gene);
 next_gene = (Gene *) NULL;
 return(1);
}

/* Assign actual values to the gene */
void Gene::Assign(int id, int val)
{
 gene_id = id;
 allele = val;
}

/* Add another Gene (or Gene list) on behind the current gene */
int Gene::Connect(Gene *newgene)
{
 if (newgene == (Gene *) NULL)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 return(0);

 next_gene = newgene;
 return(1);
}

// break off the tail of the gene chain here, pass back the tail pointer
Gene *Gene::Disconnect()
{
 Gene *tail;

 tail = next_gene;
 next_gene = (Gene *) NULL;
 return(tail);
}

// Pass back the location of our tail, without breaking it off
Gene *Gene::Next()
{
 return(next_gene);
}

// Create a clone copy of this Gene
Gene *Gene::Copy(void)
{
 Gene *new_gene;
 new_gene = new Gene;

 new_gene->next_gene = (Gene *) NULL;
 new_gene->gene_id = gene_id;
 new_gene->allele = allele;

 return(new_gene);
}

// describe the Gene to cout
// with the debug_level indicating depth of description
void Gene::Show(int debug_level)
{
 if (debug_level >= 0)
 {
 cout << "[" << gene_id << "," << allele << "]";

 if (debug_level >= 10)
 {
 cout << ":" << next_gene;
 if (next_gene != (Gene *) NULL)
 cout << ":" << next_gene->gene_id;
 else
 cout << ":NULL";
 }
 cout << "\n";
 }
}

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// Show(void), assumed debug level of 0
void Gene::Show(void)
{
 Show(0);
}

//genetest.C

// Testing program for the Gene class
// John Dunkelberg

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

#include "config.H"
#include "gene.H"

main()
{
 Gene Uno;
 Gene Dos;
 Gene Tres;

 PGene PTres;
 Gene *Gene_ptr;

 PTres = &Tres;

 Uno.Assign(12,20);
 Uno.Show(10);

 Dos.Assign(8,10);
 Uno.Connect(&Dos);
 Uno.Show(10);

 Gene_ptr = Uno.Next();
 Gene_ptr->Show(10);
 Gene_ptr->Assign(9,11);
 Uno.Show(11);

 Gene_ptr->Connect(PTres);
 Gene_ptr->Show(10);

 PTres = Gene_ptr->Disconnect();
 Gene_ptr = PTres;
 Gene_ptr->Show();
 Gene_ptr->Assign(13,1300);
 Gene_ptr->Show(10);

 Uno.Kill();
 Uno.Show(10);
}

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

//mGA.C

/*
 * Messy Genetic Algorithm
 * Proof of Principle Program (one era)
 *
 * John Dunkelberg
 */

main()
{
 /* Control Variables that we need to know:
 *
 * Problem definition:
 * prob_size: number of FEM elements in the problem (also chromosone length)
 * mach_size: number of processing elements in the SIMD machine
 * mach_side: the length of a side of the SIMD (sqrt(mach_size))
 *
 * Algorithmic definition:
 * order: length of the building blocks targetted
 *
 * Population Controls:
 * init_pop_size: size of the full population (all BBs)
 * juxt_pop_size: size of the population during the juxtapositional phase
 *
 * Time line (end markers):
 * 0 time (init_pop_size) BBs are created
 * init_select_gen: stop the no-shuffle, start shuffle,
 * cut init_pop_size every other gen
 * cut_every_other_gen: shuffle tournament continues,
 * switch to every gen cut pop_size in half
 * cut_pop_gen: shuffle tournament continues,
 * keep population size stable at juxt_pop_size
 * prim_gen: end of the primordial phase, start cut & splice
 * population size remains constant
 * max_gen: this is the end
 */

 int gen, max_gen;
 long pop_size;

 Pop Cur_Pop;
 PPop Pcur_Pop = &Cur_Pop;

 /* Master loop (all generations) */
 for(gen=0;(gen<max_gen);gen++)
 {
 if (gen==0)
 init_pop_size = pop_size = Pcur_Pop.Initialize(prob_size,
 mach_size,order);
 else if (gen < init_select_gen)
 pop_size = Pcur_Pop.Init_Select(pop_size);
 else if (gen < cut_every_other_gen)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 if (gen % 2)
 pop_size = Pcur_Pop.Select((pop_size /2));
 else
 pop_size = Pcur_Pop.Select(pop_size);
 else if (gen < cutpop_gen)
 pop_size = Pcur_Pop.Select((pop_size/2));
 else if (gen < prim_gen)
 pop_size = Pcur_Pop.Select(pop_size);
 else
 pop_size = Pcur_Pop.Juxta(juxt_pop_size);

 if (DEBUG != 0)
 Pcur_Pop.Debug(DEBUG);
 }
 Pcur_Pop.Show();
}

//poptest.C

// Testing program for the Gene class
// John Dunkelberg

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/resource.h>

#include "config.H"
#include "population.H"

extern "C"
{
 void srandom(int);
 long random(void);
 void srand48(long);
 double drand48(void);
 char *sprintf(const char *fmt, ...);
 char *strdup(char *);

 struct rusage usage_info;
}

main(int argc, char **argv)
{
 Pop Alpha;

 long pop_size;
 int order;
 int generation;
 char *mesh_fname;
 char *output_fname;

 double best_fit, avg_fit;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 mesh_fname = new char[MAXLINE];
 output_fname = new char[MAXLINE];

 if (argc > 1)
 {
 mesh_fname = strdup(argv[1]);
 order = atoi(argv[2]);
 }
 else
 {
 cout << "\nMesh filename? ";
 cin >> mesh_fname;
 cout << "\nOrder ? ";
 cin >> order;
 }

 srandom(random_seed);
 srand48((long) random_seed);

 fstream in_fp(mesh_fname,ios::in);

 sprintf(output_fname,"res.%s.%d.%d.%d.%d.%d.%d",mesh_fname,order,
 init_select_gen,cut_every_other_gen,cut_pop_gen,prim_gen,max_gen);
 fstream out_fp(output_fname,ios::out);

 cout << Alpha.Init_File(in_fp) << endl;
 pop_size = Alpha.Initialize(order);
 cout << "Initialization Done, pop_size = " << pop_size << endl;
 Alpha.Init_Tplate();
 // Alpha.Show();

 for(generation=0;(generation < init_select_gen);generation++)
 {
 cout << "\nGeneration : " << generation << endl;
 pop_size = Alpha.Init_Select(pop_size);
 avg_fit = Alpha.Statistics();
 best_fit = Alpha.Get_Best_Fit();
 cout << "Average Fitness: " << avg_fit << endl;
 cout << "Best Fitness : " << best_fit << endl;
 out_fp << generation << " " << avg_fit << " " << best_fit << endl;
 cout << "Best Chromosone: \n";
 Alpha.Show_Best(11);
 // Alpha.Show();
 }
 for(;(generation < cut_every_other_gen);generation++)
 {
 cout << "\nGeneration : " << generation << endl;
 if (generation %2)
 pop_size = Alpha.Select(pop_size/2);
 else
 pop_size = Alpha.Select(pop_size);
 avg_fit = Alpha.Statistics();
 best_fit = Alpha.Get_Best_Fit();

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cout << "Average Fitness: " << avg_fit << endl;
 cout << "Best Fitness : " << best_fit << endl;
 out_fp << generation << " " << avg_fit << " " << best_fit << endl;
 cout << "Best Chromosone: \n";
 Alpha.Show_Best(11);
 // Alpha.Show();
 }
 for(;(generation < cut_pop_gen);generation++)
 {
 cout << "\nGeneration : " << generation << endl;
 pop_size = Alpha.Select(pop_size/2);
 avg_fit = Alpha.Statistics();
 best_fit = Alpha.Get_Best_Fit();
 cout << "Average Fitness: " << avg_fit << endl;
 cout << "Best Fitness : " << best_fit << endl;
 out_fp << generation << " " << avg_fit << " " << best_fit << endl;
 cout << "Best Chromosone: \n";
 Alpha.Show_Best(11);
 // Alpha.Show();
 }
 for(;(generation < prim_gen);generation++)
 {
 cout << "\nGeneration : " << generation << endl;
 pop_size = Alpha.Select(pop_size);
 avg_fit = Alpha.Statistics();
 best_fit = Alpha.Get_Best_Fit();
 cout << "Average Fitness: " << avg_fit << endl;
 cout << "Best Fitness : " << best_fit << endl;
 out_fp << generation << " " << avg_fit << " " << best_fit << endl;
 cout << "Best Chromosone: \n";
 Alpha.Show_Best(11);
 // Alpha.Show();
 }
 for(;(generation < max_gen);generation++)
 {
 cout << "\nGeneration : " << generation << endl;
 pop_size = Alpha.Juxta(pop_size);
 avg_fit = Alpha.Statistics();
 best_fit = Alpha.Get_Best_Fit();
 cout << "Average Fitness: " << avg_fit << endl;
 cout << "Best Fitness : " << best_fit << endl;
 out_fp << generation << " " << avg_fit << " " << best_fit << endl;
 cout << "Best Chromosone: \n";
 Alpha.Show_Best(11);
 // Alpha.Show();
 }

 Alpha.Show();

 getrusage(RUSAGE_SELF,&usage_info);
 cout << "\n CPU time, user : "<< usage_info.ru_utime.tv_sec<< " sec ";
 cout << usage_info.ru_utime.tv_usec << " usec";
 cout << "\n CPU time, system: "<< usage_info.ru_stime.tv_sec <<" sec ";
 cout << usage_info.ru_stime.tv_usec <<"usec";

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cout << "\n Involuntary Context Switches: " << usage_info.ru_nivcsw;
 cout << "\n Voluntary Context Switches : " << usage_info.ru_nvcsw;
 cout << "\n Major Page Faults : " << usage_info.ru_majflt;
 cout << "\n Minor Page Faults : " << usage_info.ru_minflt;
 cout << endl;

 out_fp << "\n CPU time, user : "<< usage_info.ru_utime.tv_sec<< " sec ";
 out_fp << usage_info.ru_utime.tv_usec << " usec";
 out_fp << "\n CPU time, system: "<< usage_info.ru_stime.tv_sec <<" sec ";
 out_fp << usage_info.ru_stime.tv_usec <<"usec";
 out_fp << "\n Involuntary Context Switches: " << usage_info.ru_nivcsw;
 out_fp << "\n Voluntary Context Switches : " << usage_info.ru_nvcsw;
 out_fp << "\n Major Page Faults : " << usage_info.ru_majflt;
 out_fp << "\n Minor Page Faults : " << usage_info.ru_minflt;
 out_fp << endl;

 cout << "End of Simulation\n";
 out_fp.close();

}

//population.H

/*
 * Population Class Definition Header File
 *
 * Pop is an instance of a population group
 * PPop is a pointer to an instance of a population group
 *
 * John Dunkelberg
 * created: 22 Feb 1994
 */

#include "problem.H"
#include "chromosone.H"

extern int DEBUG;

class Pop
{
 int generation;
 long pop_size;

 // The chromosones in the population
 Chromosone *first_chrom;
 Chromosone *last_chrom;
 Chromosone *best_chrom;
 Chromosone *tplate;

 // The mesh and machine definitions
 Problem problem;

public:
// Construct and Destruct Functions

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 Pop(); // constructor (doesn't assign anything serious)
 ~Pop(); // destructor (kill all chromosones)

 int Init_File(fstream); // Initializes the problem desc.
 int Init_Tplate(void); // Assigns a basic tplate
 long Initialize(int); // Assigns values to the population

// Private Info Functions
 long Pop_Size(void)
 { return pop_size; } // returns the size of the population
 double Get_Best_Fit(void); // returns fitness of best chrom
 void Show_Best(int); // Show information on the best chromosone
 void Show_Best();

// Selection Functions
 void Fit_All();
 int Shuffle(); // randomly shuffle the population
 long Init_Select(long);
 long Select(long);
 long Juxta(long);

// Internal Functions
 // Permutate the forms & create the chromosones
 void Permutate(Chromosone *,long *,int *,int,Gene *,int,int);
 double Statistics(); // returns average fitness value of pop
 void Show(int);
 void Show(void);
};

typedef Pop *PPop;

/*
* functions for the population class
*
*/

// Construct a void population
Pop::Pop()
{
 first_chrom = last_chrom = best_chrom = tplate = (Chromosone *) NULL;
 pop_size = 0;
};

// Destroy all chromosones and values
Pop::~Pop()
{
 if (first_chrom != (Chromosone *) NULL)
 {
 first_chrom->Kill();
 delete first_chrom;
 }

 if (tplate != (Chromosone *) NULL)
 delete tplate;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

}

// Initialize the problem definition
int Pop::Init_File(fstream in_fp)
{
 // initialize the problem
 problem.Initialize(in_fp);
 problem.Show(DEBUG);

 in_fp.close();
 return(1);
}

// Initialize the tplate
int Pop::Init_Tplate()
{
 if (problem.mach_size == 0)
 {
 cout <<"Pop::Init_Tplate Problem must be defined prior to tplate\n";
 cout <<"Initialization...\n";
 exit(0);
 }

 tplate = new Chromosone;
 int cur_gene, cur_allele;
 Gene *fgene, *lgene, *eugene;
 {
 fgene = new Gene;
 fgene->Assign(0,0);
 lgene = fgene;
 }
 for(cur_gene=1;(cur_gene < problem.size);cur_gene++)
 {
 eugene = new Gene;
 eugene->Assign(cur_gene,cur_allele);
 lgene->Connect(eugene);
 lgene = eugene;

 cur_allele = (++cur_allele)%(problem.mach_size);
 }

 cout << "And now assign...\n";

 tplate->Assign((long) 0,fgene);

 cout << "Assigned" << endl;

 if (DEBUG > 50)
 tplate->Show(DEBUG);

 return(1);
}

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// Initialize sets up the original population (all BBs)
// it returns the new population_size
long Pop::Initialize(int order)
{
 long real_pop_size = 0; // actual pop_size count
 int prob_size, mach_size; // problem size variables
 long pool_size; // size of the gene pool
 Gene *pool; // the gene pool
 Chromosone *init_pop; // initial population
 int count; // dummy loop variable

 prob_size = problem.Get_Size();
 mach_size = problem.Get_Mach_Size();

 // We determine the size gene pool of all the possible genes
 pool_size = ((long) prob_size) * ((long) mach_size);

 if (DEBUG)
 {
 cout << "Gene Pool size: " << pool_size;
 cout << " Mem: " << (pool_size*sizeof(Gene)) << endl;
 }

 if (order > pool_size)
 {
 cout << "It is not possible to create unique chromosones of order\n";
 cout << order << "in this problem, maximum is " << pool_size << endl;
 return(0);
 }

 // Allocate space for the gene pool
 pool = new Gene[pool_size];
 if (pool == (Gene *) NULL)
 {
 cout << "Pop::Initialize was unable to create a gene_pool\n";
 cout << "Attempted Gene Pool size: " << pool_size << " Genes\n";
 cout << "memory: " << (pool_size * sizeof(Gene)) << endl;
 exit(1);
 }

 // Determine the size of the total population
 // pop size is (pool_size choose order) p_s C ord
 for(count=0,pop_size=1;(count < order);count++)
 pop_size *= (pool_size-count);
 for(count=2;(count <= order);count++)
 pop_size /= count;

 if (DEBUG)
 {
 cout << "Init Population Size: " << pop_size;
 cout << " Mem: " << (pop_size * sizeof(Chromosone)) << endl;
 }

 // Allocate space for the chromosone population

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 init_pop = new Chromosone[pop_size];
 if (init_pop == (Chromosone *) NULL)
 {
 cout << "Pop::Initialize was unable to create a initial population\n";
 cout << "Attempted Population size: " << pop_size << " Chroms\n";
 cout << "memory: " << (pop_size * sizeof(Chromosone)) << endl;
 exit(1);
 }

 cout << "init_pop &=" << init_pop;

 // Assign values to the genes in the pool
 unsigned int cur_ps,cur_ms; // counters
 for(cur_ps=0; (cur_ps < (unsigned int) prob_size) ;cur_ps++)
 for(cur_ms=0; (cur_ms < (unsigned int) mach_size) ;cur_ms++)
 {
 pool[((mach_size * cur_ps)+cur_ms)].Assign(cur_ps,cur_ms);
 if (DEBUG > 50)
 {
 cout << "PS: " << cur_ps << " MS: " << cur_ms << endl;
 pool[((mach_size * cur_ps)+cur_ms)].Show();
 }
 }

 // create all the chromosones we want
 int *form; // gene format for chromosone

 form = new int[order];
 for(count=0;(count<order);count++) // initialize our form for the
 form[count] = count; // chromosones

 // recursively make them all
 Permutate(init_pop,&real_pop_size,form,0,pool,pool_size,order);

 if (DEBUG > 10)
 cout << "real_pop_size " << real_pop_size << endl;

 // clean up some memory
 delete pool;
 delete form;

 return(real_pop_size);
}

// Permutate
// This is done recursively, which is NOT the best way when one considers
// that we're going to be storing thousands of functions on the stack
// (But it works... for now)
void Pop::Permutate(Chromosone *pop, long *size,
 int *form, int level,
 Gene *pool, int pool_size, int order)
{
 int value, init_val, max_val;
 max_val = pool_size - (order - level);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 if (level == 0)
 init_val = 0;
 else
 init_val = form[level-1]+1;
 for(value=init_val;(value <= max_val);value++)
 {
 form[level] = value;
 if (level < (order-1))
 {
 Permutate(pop,size,form,(level+1),pool,pool_size,order);
 }
 else
 {
 // Create the Chromosone
 int count;
 Chromosone *new_chrom;

 // get new space from prev. allocated block, increment *size
 new_chrom = &(pop[(*size)++]);
 if (new_chrom == (Chromosone *) NULL)
 {
 cout << "Pop::Initialize:Permutate failed to allocate space ";
 cout << "for new chromosone\n";
 cout << "Chrom: " << (*size) << endl;
 exit(1);
 }

 if (DEBUG > 50)
 cout << "new Chrom " << *size << ":";

 // Creation variables
 Gene *base_gene; // the first gene for the Chrom
 Gene *new_gene; // newly created gene
 Gene *last_gene; // the current addition point for new genes
 int pool_id; // the id of a gene in the pool
 unsigned int new_gene_id, new_allele; // the vals of the gene

 // The base gene (first_gene of chrom)
 base_gene = new Gene;
 if (base_gene == (Gene *) NULL)
 {
 cout << "Permutate failed to get room for a Gene\n";
 exit(1);
 }
 pool_id = form[0];
 new_gene_id = pool[pool_id].Gene_id();
 new_allele = pool[pool_id].Allele();
 base_gene->Assign(new_gene_id,new_allele);
 last_gene = base_gene;

 if (DEBUG > 50)
 base_gene->Show(DEBUG);

 // Subsequent Genes (for order > 1)

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 for(count=1;(count<order);count++)
 {
 new_gene = new Gene;
 if (new_gene == (Gene *) NULL)
 {
 cout << "Permutate failed to get room for a Gene\n";
 exit(1);
 }

 pool_id = form[count];
 new_gene_id = pool[pool_id].Gene_id();
 new_allele = pool[pool_id].Allele();
 new_gene->Assign(new_gene_id,new_allele);
 last_gene->Connect(new_gene);
 last_gene = last_gene->Next();

 if (DEBUG > 50)
 new_gene->Show(DEBUG);
 }

 // Assign gene_sequence and id to the chromsone
 new_chrom->Assign((*size),base_gene);

 if (DEBUG >10)
 new_chrom->Show(DEBUG);

 // Add the new chromosone to the population
 if ((*size) == 1)
 {
 // 1st chromosone
 first_chrom = new_chrom;
 last_chrom = new_chrom;
 }
 else
 {
 // nth chromosone
 last_chrom->Connect(new_chrom);
 last_chrom = last_chrom->Next();
 }

 if (DEBUG > 40)
 cout << "new Chrom " << (*size) << " added to pop\n";
 }
 }
 return;
}

// TEST function to place fitness on all chromosones
void Pop::Fit_All()
{
 Chromosone *cur_chrom;

 for(cur_chrom = first_chrom;
 (cur_chrom != (Chromosone *) NULL);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cur_chrom = cur_chrom->Next())
 {
 cur_chrom->Fitness(&problem,tplate);
 }
}

// Shuffle the population randomly
int Pop::Shuffle()
{
 // Create Shuffle chain
 Chromosone *sfirst_chrom, *slast_chrom;
 Chromosone *cur_chrom,*tmp_chrom,*tail_chrom,*new_chrom;
 long shuffle_dist;

 long cur_pop;
 sfirst_chrom = first_chrom->Copy();
 slast_chrom = sfirst_chrom;
 for(cur_chrom = first_chrom->Next(), cur_pop = 2;
 (cur_chrom != (Chromosone *) NULL);
 cur_chrom = cur_chrom->Next(), cur_pop++)
 {
 // choose a distance to shuffle it in
 shuffle_dist = random() % cur_pop;

 for(tmp_chrom = sfirst_chrom;(shuffle_dist);shuffle_dist--)
 {
 if (tmp_chrom->Next() != (Chromosone *) NULL)
 tmp_chrom = tmp_chrom->Next();
 }

 new_chrom = cur_chrom->Copy();

 if (tmp_chrom == sfirst_chrom)
 {
 // put new element on the head of the shuffle chain
 new_chrom->Connect(tmp_chrom);
 sfirst_chrom = new_chrom;
 }
 else
 {
 // put the chromosone in the middle
 tail_chrom = tmp_chrom->Disconnect();
 tmp_chrom->Connect(new_chrom);
 new_chrom->Connect(tail_chrom);
 }

 if (tmp_chrom->Next() == (Chromosone *) NULL)
 {
 // this is a last in the shuffle chain
 slast_chrom = tmp_chrom;
 }

 }
 // get rid off the old chromosone population

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 first_chrom->Kill();

 // put back in the shuffled population
 first_chrom = sfirst_chrom;
 last_chrom = slast_chrom;

 return(1);
}

// Init_Select does the initial selection routine, which does non-shuffle
// tournament selection, without geneic operators
// This assumes that all of the chromosones have been fittness tested
long Pop::Init_Select(long targ_pop_size)
{
 // the new chromosone chain for the population
 Chromosone *nfirst_chrom, *nlast_chrom;
 nfirst_chrom = nlast_chrom = (Chromosone *) NULL;

 long cur_pop;
 Chromosone *first, *second, *fittest;
 first = second = fittest = (Chromosone *) NULL;

 for(cur_pop = 0; (cur_pop < targ_pop_size); cur_pop++)
 {
 // Choose the next two population chromosones
 {
 // Choose first of the two chromosone
 if (first == (Chromosone *) NULL)
 first = first_chrom;
 else
 {
 // Get next unmarked chromosone
 for(first = first->Next();
 ((first != (Chromosone *) NULL) && (first->Get_Mark()));
 first = first->Next());
 if (first == (Chromosone *) NULL)
 {
 // We've gone through all the chroms and need more
 first = first_chrom; // so reset
 first->Unmark_All(); // unmark everything
 Shuffle(); // and shuffle 'em
 }
 if (first->Get_Fit() == -1.0)
 {
 // chromosone has not been fitness tested.. doit
 first->Fitness(&problem, tplate);
 }
 }

 if (DEBUG>40)
 {
 cout << "first chromosone is: ";
 first->Show(DEBUG-20);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 }

 // Choose second chromosone from unmarked chromosones
 // Make sure they meet requirements for thresholding
 for(second = first->Next();
 ((second != (Chromosone *) NULL) &&
 (second->Threshold(first)) &&
 (second->Get_Mark()));
 second = second->Next());
 } // end of the first,second block (not a loop construct!)

 // Determine the best Get_Fitness of them
 if (second == (Chromosone *) NULL)
 {
 if (DEBUG > 30)
 cout << "no second found... proceeding\n";

 // there is no threshold match for first, so pass through?
 fittest = first->Copy();
 first->Mark();
 }
 else
 {
 // mark them as tested
 first->Mark();
 second->Mark();

 if (second->Get_Fit() == -1.0)
 {
 // chromosone has not been fitness tested.. doit
 second->Fitness(&problem, tplate);
 }

 if (DEBUG>40)
 {
 cout << "second chromosone is: ";
 second->Show(DEBUG-20);
 }

 if (first->Get_Fit() == second->Get_Fit())
 {
 if (first->Get_Len() < second->Get_Len())
 fittest = second->Copy();
 else
 fittest = first->Copy();
 }
 else if (first->Get_Fit() > second->Get_Fit())
 fittest = first->Copy();
 else
 fittest = second->Copy();
 }

 // Put the best Get_Fitness in the new population

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 if (nfirst_chrom == (Chromosone *) NULL)
 {
 nfirst_chrom = fittest;
 nlast_chrom = fittest;
 }
 else
 {
 nlast_chrom->Connect(fittest);
 nlast_chrom = nlast_chrom->Next();
 }
 } // end of selection block

 // replace current chromosone string with the new chromosone string
 Chromosone *temp_chrom;

 // swap in the new chromosone population
 temp_chrom = first_chrom;
 first_chrom = nfirst_chrom;
 last_chrom = nlast_chrom;

 // Clear up memory of the old chromosone population
 temp_chrom->Kill();

 pop_size = targ_pop_size;
 return(pop_size); // this->pop_size
}

// Select does shuffle tournament selection, without geneic operators
long Pop::Select(long targ_pop_size)
{
 Shuffle();
 Init_Select(targ_pop_size);
 return(targ_pop_size); // this->pop_size
}

// Juxta does shuffle tournament selection with cut and splice operators
long Pop::Juxta(long targ_pop_size)
{
 // Do the Cutting and Splicing
 // We're going to try to cut up all of the chromosones
 double cut_chance;
 Chromosone *cur_chrom, *new_chrom, *tail_chrom;
 for(cur_chrom = first_chrom;
 (cur_chrom != (Chromosone *) NULL);
 cur_chrom = cur_chrom->Next())
 {
 cut_chance = P_CUT * (((double) cur_chrom->Get_Len() -1.0) /
 ((double) problem.size));
 if (drand48() < cut_chance)
 {
 // And now we CUT
 new_chrom = cur_chrom->Cut(0);

 // And insert the newly cut chromosone into the population

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 tail_chrom = cur_chrom->Disconnect();
 cur_chrom->Connect(new_chrom);
 new_chrom->Connect(tail_chrom);
 cur_chrom = new_chrom;
 }
 }

 // Then rearrange all of them
 Shuffle();

 // Then try to splice all of them back together
 for(cur_chrom = first_chrom;
 (cur_chrom != (Chromosone *) NULL);
 cur_chrom = cur_chrom->Next())
 {
 // And we see if we can SPLICE
 if (drand48() < P_SPLICE)
 {
 if (cur_chrom->Next() != (Chromosone *) NULL)
 {
 new_chrom = cur_chrom->Next();
 tail_chrom = new_chrom->Disconnect();
 cur_chrom->Splice(new_chrom);
 cur_chrom->Connect(tail_chrom);
 }
 }
 }

 // Then do the actual tournament
 Init_Select(targ_pop_size);
 return(pop_size); // this->pop_size
}

// Return the fitness of the best chromosone
double Pop::Get_Best_Fit()
{
 if (best_chrom == (Chromosone *) NULL)
 return(-1.00);
 else
 return(best_chrom->Get_Fit());
}

// Return the Info of the best chromosone
void Pop::Show_Best(int debug_level)
{
 best_chrom->Show(debug_level);
}
// overloaded for null debug_level
void Pop::Show_Best(void)
{
 best_chrom->Show(0);
}

// Statistics figures average and best values of the population

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// returns average fitness value of pop
double Pop::Statistics()
{
 double best_fit, cur_fit, sum_fit;
 Chromosone *cur_chrom;

 best_chrom = first_chrom;
 best_fit = best_chrom->Get_Fit();

 for(cur_chrom = first_chrom->Next();
 (cur_chrom != (Chromosone *) NULL);
 cur_chrom = cur_chrom->Next())
 {
 cur_fit = cur_chrom->Get_Fit();
 sum_fit += cur_fit;

 if (cur_fit > best_fit)
 {
 best_chrom = cur_chrom;
 best_fit = cur_fit;
 }
 }
 return(sum_fit / pop_size);
}

// Show provides documentation information in mid-flight
void Pop::Show(int debug_level)
{
 if (debug_level < 0)
 return;

 Chromosone *cur_chrom;
 cout << "\nPopulation size: " << pop_size << endl;
 if (debug_level > 10)
 {
 cout << "first_chrom &=" << first_chrom << endl;
 cout << "last_chrom &=" << last_chrom << endl;
 cout << "tplate &=" << tplate << endl;
 }
 for(cur_chrom=first_chrom;
 (cur_chrom != (Chromosone *) NULL);
 cur_chrom = cur_chrom->Next())
 {
 cur_chrom->Show(debug_level);
 }
 cout << endl;
}

// Show provides a description of the population (overload d_l=0)
void Pop::Show(void)
{
 Show(0);
}

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

//problem.H

/*
 * Problem Class Definition File
 * holds mesh info, also holds other problem information
 * as a method, this also figures the fitness of a chromosone (as a friend)
 */

extern int DEBUG;

class Problem
{
public:
 // Mesh information
 int size; // size of the problem mesh (# nodes)
 int connect; // max connectivity of the mesh
 int *edge; // array[][] of edges masquerading as a 1-D

 // Machine Definition Information (assumes toroidal wrap SIMD)
 int mach_side; // number of nodes on a side
 int mach_size; // number of nodes total

 // Functions
 Problem(void);
 ~Problem(void)
 { delete edge; }
 Initialize(fstream);

 // General Info Functions
 inline int Get_Size(void)
 { return size; } // get the size of the mesh (nodes)
 inline int Get_Connect(void)
 { return connect; } // get the connectivity of the mesh
 inline int Get_Mach_Side(void)
 { return mach_side; } // get the machine side length
 inline int Get_Mach_Size(void)
 { return mach_size; } // get the machine size
 inline int Get_Edge(int x,int y)
 { return edge[(x*connect) + y]; } // get a particular edge
 void Show();
 void Show(int);
};

// Constructor for Problem
Problem::Problem(void)
{
 size = connect = mach_side = mach_size = 0;
 edge = (int *) NULL;
}

// Initialization of problem via file desription
Problem::Initialize(fstream fp)
{
 int node,side;

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 char *com_buf,c;

 com_buf = new char[MAXLINE];

 // problem initializer
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> mach_side;
 fp.get(c);
 mach_size = mach_side * mach_side;
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> size;
 fp.get(c);
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> connect;
 fp.get(c);

 if (DEBUG > 20)
 cout << "ms:"<<mach_side<<" s:"<<size<<" c:"<<connect <<endl;

 edge = new int[size*connect];

 for(node=0;(node<size);node++)
 for(side=0;(side<connect);side++)
 {
 while (fp.peek() == '#')
 {
 fp.get(com_buf,MAXLINE,'\n');
 if (DEBUG > 50)
 cout << "Disregard: " << com_buf << endl;
 fp.get(c);
 }
 fp >> edge[(node*connect)+side];
 fp.get(c);
 }
}

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

// Information output (primarily for debugging)
void Problem::Show(int debug_level)
{
 if (debug_level > 0)
 {
 int node,side;
 cout << "\nS:"<<size<<" C:"<<connect;
 for(node=0;(node<size);node++)
 for(side=0,cout<<endl;(side<connect);side++)
 cout << edge[(node*connect)+side] << " ";
 cout << endl;
 }
}

// default Show
void Problem::Show(void)
{
 Show(0);
}

//test.C

// test program

#include<stdlib.h>
#include<iostream.h>

#define MAXLEN 24;

class testy
{
public:
 union masque
 {
 unsigned uniqlist : MAXLEN;
 unsigned headlist : 1;
 } alpha, beta;
};

main()
{
 testy Foobar;

 Foobar.alpha.uniqlist = 0x666666;
 Foobar.beta.uniqlist = 0x555555;

 cout.flags(ios::hex);
 cout << Foobar.alpha.uniqlist << " " << Foobar.beta.uniqlist << endl;
 cout << Foobar.alpha.headlist << " " << Foobar.beta.headlist << endl;

 Foobar.alpha.uniqlist = Foobar.alpha.uniqlist << 1;
 Foobar.beta.uniqlist = Foobar.beta.uniqlist << 1;

 cout.flags(ios::hex);

file:///R|/etd0104101102839.txt[7/8/2018 10:53:14 AM]

 cout << Foobar.alpha.uniqlist << " " << Foobar.beta.uniqlist << endl;
 cout << Foobar.alpha.headlist << " " << Foobar.beta.headlist << endl;

}

	Worcester Polytechnic Institute
	Digital WPI
	2001-01-04

	FEM Mesh Mapping to a SIMD Machine Using Genetic Algorithms
	John S. Dunkelberg, Jr.
	Repository Citation

	dunkelberg
	FRONT MATTER
	Abstract
	Table of Contents
	Table of Figures
	Organization

	Chapter 1: Motivation
	1.1: The Finite Element Method
	1.2: The SIMD parallel computer
	1.3: The Genetic Algorithm Approach
	1.4: The Problem in Summation

	Chapter 2: Background
	2.1: The Method of Genetic Algorithms
	2.1.1: Biological Background
	2.1.2: General Genetic Algorithm Theory
	2.1.3: Messy Genetic Algorithms

	2.2: SIMD Machines and the MasPar
	2.3: Related Historical Work

	Chapter 3: Approach
	3.1: Problem Applicability
	3.2: Genetic Algorithm Approach
	3.2.1: Objective and Fitness Functions
	3.2.2: Selection Methods and Population Dynamics
	3.2.3: Genetic Operators
	3.2.4: Sizing of Populations and Length of Run

	3.3: Messy Genetic Algorithm Approach
	3.3.1: Scheduling a Messy Genetic Algorithm Era
	3.3.2: Other Messy Genetic Algorithm Variables
	3.3.3: Technical Limits of the Messy Genetic Algorithm

	3.4: Bokhari’s Algorithm Approach
	3.4.1 Description of Approach
	3.4.2 Performance
	3.4.3 Limitations and Subsequent Modifications

	Chapter 4: Evaluation
	4.1: De Jong Performance Measures
	4.2: Hardware and Software Platforms of the Tests
	4.3: Test Meshes and their Results
	4.3.1: Tower25
	4.3.2: Mesh33
	4.3.3: ThreeD33

	Chapter 5: Conclusions
	Chapter 6: Future Directions
	6.1: Parallel Solution of the Mapping problem
	6.2: Decompositional Methods
	6.3: N-dimensional crossover

	Bibliography
	Appendices
	Index
	Endnotes

	etd0104101102839

