
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2004-01-22

Proportional Integrator with Short-lived flows
Adjustment
Minchong Kim
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Kim, Minchong, "Proportional Integrator with Short-lived flows Adjustment" (2004). Masters Theses (All Theses, All Years). 127.
https://digitalcommons.wpi.edu/etd-theses/127

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212999599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/127?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Proportional Integrator with Short-lived flow Adjustments

By

Minchong Kim

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

In

Computer Science

by

Jan 2004

APPROVED:

Dr. Robert Kinicki, Major Advisor

Dr. Mark Claypool, Reader

Dr. Michael Gennert, Head of Department

 i

ABSTRACT

The number of Web traffic flows dominates Internet traffic today and most Web

interactions are short-lived HTTP connections handled by TCP. Most core Internet

routers use Drop Tail queuing which produces bursts of packet drops that contribute to

unfair service. This thesis introduces two new active queue management (AQM)

algorithms, PISA (PI with Short-lived flows Adjustment) and PIMC (PI with Minimum

Cwnd). These AQMs are built on top of the PI (Proportional Integrator). To evaluate the

performance of PISA and PIMC, a new simple model of HTTP traffic was developed for

the NS-2 simulation. TCP sources inform PISA and PIMC routers of their congestion

window by embedding a source hint in the packet header. Using the congestion window,

PISA drops packets from short-lived Web flows less than packets from long-lived flows.

Using a congestion window, PIMC does not drop a packet when congestion window is

below a fixed threshold. This study provides a series of NS-2 experiments to investigate

the behavior of PISA and PIMC. The results show fewer drops for both PISA and PIMC

that avoids timeouts and increases the rate at which Web objects are sent. PISA and

PIMC improve the performance of HTTP flows significantly over PI. PISA performs

slightly better than PIMC.

 ii

ACKNOWLEDGEMENTS

Throughput my graduate student career, I have been fortunate enough to have the help
and support from many people. I would especially like to thank:

 Professor Robert Kinicki, my major advisor, for giving me a chance to have an
insight in his research field of network congestion control, and for his patience,
advice and guidance for helping me finish this thesis.

 Professor Mark Claypool, my thesis reader, for his insightful comment and

advice on this thesis, and for his congo server.

 CC (congestion control) group members for their many useful and insightful
discussions about network congestion control mechanisms. Special thanks to Jae
Chung, Choong-Soo Lee, Huahui Wu, James Nichols, Mingzhe Li for their
technical and academic help.

 Michael Voorhis, and Jesse Banning for providing enough disk space on CS and

q1 machines.

Finally, I would most like to thank my parents, my brother and sister for their continual
encouragement, guidance and support.

 iii

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………………

ACKNOWLEDGEMENTS…………………………………………………………

LIST OF TABLES…………………………………………………………………..

LIST OF FIGURES…………………………………………………………………

Chapter 1 Introduction……………………………………………………………....

Chapter 2 Background and Related Work…………………………………………..

 2.1 Network Performance Metrics………………………………………………..

 2.2 TCP …………………………………………………………………………..

2.2.1 Versions of TCP…………………………………………………………

2.2.2 Details of TCP Congestion Control………………………………….….

 2.3 AQM for Congestion Control ………………………………………………...

 2.3.1 Drop Tail (FIFO)………………………………………………………...

 2.3.2 RED……………………………………………………………………..

 2.3.3 SHRED………………………………………………………………….

 2.3.4 RIO and RIO-PS………………………………………………………..

 2.3.5 PI………………………………………………………………………..

 2.3.6 REM…………………………………………………………………….

 2.3.7 AVQ…………………………………………………………………….

 2.4 Modeling Web Traffic………………………………………………………..

 2.4.1 Web Traffic Model in SHRED…………………………………………

 2.4.2 Web Traffic Model in RIO-PS…………………………………………

 2.4.3 ON/OFF Pareto…………………………………………………………

 Chapter 3 Design of Web Traffic Model and Two AQM Algorithms……………..

3.1 Web Traffic Model……………………………………………………………

3.2 PISA…………………………………………………………………………..

 i

 ii

 v

 vi

 1

 4

 4

 5

 5

 6

 8

 8

 8

 9

10

11

13

13

13

14

14

14

16

16

17

 iv

 3.3 PIMC…………………………………………………………………………..

Chapter 4 Experimental Methodology and Tools…………………………………...

4.1 Network Simulator ns-2……………………………………………………….

4.2 Simulation Input………………………………………………………………

4.3 Simulation Output Traces………………………………………………….….

4.4 Data Extraction ……………………………………………………………….

4.5 Data Analysis………………………………………………………………….

4.6 Experimental Setup and Validations……………………………………….….

4.7 Simulation Scenarios………………………………………………………….

 Chapter 5 Performance Evaluation and Analysis…………………………………...

 5.1 PI compared to Drop Tail………………………..……………………………

5.2 Drop Rate……………………………………………………………………...

5.3 Queue Length………………………………………………………………….

5.4 Packet Delay and Object delay…………………………………………….….

5.5 Utilization……………………………………………………………………..

5.6 Experiments with Heavier Congestion………………………………………..

 5.6.1 Increased FTP flows……………………………………………….…….

 5.6.2 Reduced bandwidth……………………………………………………...

5.7 Various RTTs of HTTP flows…………………………………………………

Chapter 6 Conclusions and Future work……………………………………………

 6.1 Conclusions……………………………………………………………………

 6.2 Future Research……………………………………………………………….

Bibliography…………………………………………………………………………

 19

22

22

23

23

24

25

25

27

29

29

30

33

34

35

37

38

41

44

47

47

47

49

 v

LIST OF TABLES

Table 3.1 MinCwnd……………………………………………………………………

Table 4.1 Variance of Packet Drop Rate…………………………………………...…

Table 5.1 Average Drop Rate of PI and Drop Tail …………………………………....

Table 5.2 Average Cwnd and Drop Rate with 10 FTP and 100 HTTP flows……….....

Table 5.3 Utilization of Link Capacity of 10 Mbps…………………………………...

Table 5.4 Number of Web Objects transmitted during Standard Experiment………..

Table 5.5 Heavier Congestion Scenarios……………………………………………...

Table 5.6 Average Cwnd and Drop Rate with 50 FTP flows and 100 HTTP flows on

Capacity of 10 Mbps.…………………………………………………….……….…...

Table 5.7 Number of Web Objects transmitted with 50 FTP and 100 HTTP flows ….

Table 5.8 Average Cwnd and Drop Rate with 10 FTP and 100 HTTP flows on

Capacity of 5 Mbps……………………………………………………………………

Table 5.9 Number of Web Objects transmitted with 10 FTP and 100 HTTP flows on

Capacity of 5 Mbps……………………………………………………………………

Table 5.10 The Number of Web Objects with of FTP RTT of 200 ms……………….

Table 5.11 The Number of Web Objects with of FTP RTT of 2000 ms………….……

21

25

30

31

36

37

37

39

41

42

43

44

45

45

 vi

LIST OF FIGURES

Figure 2.1 Congestion Control………………………………………………………..

Figure 2.2 IP Header…………………………………………………………………..

Figure 2.3 PI Algorithm……………………………………………………………….

Figure 2.4 Pareto Parameter Setting…………………………………………………...

Figure 3.1 PI Algorithm………………………………………………………………..

Figure 3.2 PISA Algorithm…………………………………………………………….

Figure 3.3 Weighted Cwnd Average…………………………………………………...

Figure 3.4 PIMC Algorithm …………………………………………………………...

Figure 3.5 CDF of Object Delay ……………………………………………………....

Figure 4.1 The Simulation Procedure with NS-2……………………………………...

Figure 4.2 A Sample of NS-2 Output Trace…………………………………………..

Figure 4.3 Packet Drops……………………………………………………………….

Figure 4.4 Queue Length………………………………………………………………

Figure 4.5 Standard Simulation Topology………………………………………….…

Figure 5.1 Packet Drops with PI and Drop Tail…………………….………………….

Figure 5.2 PISA FTP Flow Packet Drops with 10 FTP and 100 HTTP flows…………

Figure 5.3 PISA HTTP Flow Packet Drops with 10 FTP and 100 HTTP flows………

Figure 5.4 PIMC FTP Flow Packet Drops with 10 FTP and 100 HTTP flows………..

Figure 5.5 PIMC HTTP Flow Packet Drops with 10 FTP and 100 HTTP flows……...

Figure 5.10 CDF of CWND for when Packets are Dropped …………………………..

Figure 5.11 CWND of FTP Packets Dropped with 10 FTP and 100 HTTP flows…….

Figure 5.12 CWND of HTTP Packets Dropped with 10 FTP and 100 HTTP flows….

Figure 5.13 Queue Length …………………………………………………………….

Figure 5.14 CDF of Queue Length of Packets Dropped with 10 FTP and 100 HTTP

flows……………………………………………………………………………………

Figure 5.15 CCDF o Queue Length of Packets Dropped with 10 FTP and 100 HTTP

flows……………………………………………………………………………………

Figure 5.16 Packet Delay of a FTP flow with 10 FTP and 100 HTTP flows………….

Figure 5.17 Packet Delay of a HTTP flow with 10 FTP and 100 HTTP flows………..

7

9

12

15

18

18

19

20

21

22

24

26

26

27

29

30

30

31

31

32

32

32

33

34

34

35

35

 vii

Figure 5.18 CDF of Web Object Delay with 10 FTP and 100 HTTP flows……….…..

Figure 5.19 CCDF of Web Object Delay with 10 FTP and 100 HTTP flows…………

Figure 5.20 PI Utilization……………………………………………………………...

Figure 5.21 PISA Utilization……………………………………………………….….

Figure 5.22 PIMC Utilization………………………………………………………….

Figure 5.23 Drop Tail Utilization………………………………………………………

Figure 5.24 PISA FTP Flow Packet Drops with 50FTP and 100 HTTP flows…….….

Figure 5.25 PISA HTTP Flow Packet Drops with 50FTP and 100 HTTP flows……...

Figure 5.26 PIMC FTP Flow Packet Drops with 50FTP and 100 HTTP flows……….

Figure 5.27 PIMC HTTP Flow Packet Drops with 50FTP and 100 HTTP flows……..

Figure 5.28 Packet Delay of a FTP flow with 50 FTP and 100 HTTP flows………….

Figure 5.29 Packet Delay of a HTTP flow with 50 FTP and 100 HTTP flows………..

Figure 5.30 CDF of Web Object Delay with 50 FTP and 100 HTTP flows…………...

Figure 5.31 CCDF of Web Object Delay with 50 FTP and 100 HTTP flows…………

Figure 5.32 PISA FTP Flow Packet Drops with Capacity of 5 Mbps…………….…...

Figure 5.33 PISA HTTP Flow Packet Drops with Capacity of 5 Mbps…………….…

Figure 5.34 PIMC FTP Flow Packet Drops with Capacity of 5 Mbps………………...

Figure 5.35 PIMC HTTP Flow Packet Drops with Capacity of 5 Mbps………….…...

Figure 5.36 Packet Delay of a FTP flow with Capacity of 5 Mbps……………………

Figure 5.37 Packet Delay of a HTTP flow with Capacity of 5 Mbps…………….……

Figure 5.38 CDF of Web Object Delay with Capacity of 5 Mbps………………..……

Figure 5.39 CCDF of Web Object Delay with Capacity of 5 Mbps…………………...

35

35

36

36

36

36

38

38

38

38

40

40

40

40

41

41

42

42

43

43

43

43

1

1. Introduction

Traffic generated by the World Wide Web (WWW) dominates the Internet today. Web

traffic is transmitted by the Hypertext Transfer Protocol (HTTP) flows via the

Transmission Control Protocol (TCP). HTTP flows introduce most of the TCP

connections on the Internet. Although the number of HTTP flows on the Internet is

dominant, Web traffic occupies a relatively smaller portion of Internet traffic volume

when compared to the volume associated with FTP (File Transfer Protocol) traffic and

Peer-to-Peer traffic. Empirical data indicates that the average size of each Web object is

about 8 – 12KB [GM01] and 2KB [CKS03]. This is tiny compared to huge file transfers,

and each embedded object in a Web page is downloaded via a separate TCP connection.

Thereby, Web traffic is considered primarily as short-lived flows and FTP traffic often

involves long-lived flows.

As Internet traffic volume continues to grow, network congestion is more likely to occur

and it becomes more challenging to provide good throughput to millions of Web users

under congestion. When multiple input streams from a number of senders arrive at a

router whose output capacity is less than the sum of the inputs, the router can be

congested. Bursty traffic, ACK compression, and flash crowds cause congestion. The

most common router on the Internet, the Drop Tail router, reacts to congestion by

dropping a packet due to lack of buffer space no matter what kind of Internet traffic. The

result of Drop Tail behavior produces bursts of packet drops that contribute to unfair

service, especially when the mixture of long and short flows is transmitted. This causes

unfairness for the share of throughput of short-lived flows.

Most active queue management (AQM) techniques do not focus on short flows. Web

traffic is one type of traffic transferred on top of TCP. Other kinds of traffic transferred

via UDP (User Datagram Protocol) such as video and audio streams are not covered in

this thesis. The HTTP traffic, short-lived flows, does not get a fair share of the throughput

compared to long-lived FTP flows with the existing AQMs. That is, the short-lived flows

are more likely to be less competitive in the war of throughput against long-lived flows

2

when a mixture of short-lived and long-lived flows is transferred on the Internet [GM01].

To reduce the unfairness to Web traffic, a few AQMs have focused on short flows. RIO-

PS (RIO with Preferential treatment to Short flows) [GM01] and SHRED (Short-lived

flows friendly RED) [HCK02] attempt to improve fairness for short flows by providing

less delay and more throughput. However, RED (Random Early Detection) with dropping

has a negative effect on the transmission latencies of short-lived (web) flows [CJO01].

This thesis proposes two new AQMs, PISA (PI with Short-lived flow Adjustments), and

PIMC (PI with Minimum Cwnd) based on PI to improve Web traffic performance. The

Short-lived flow Adjustments (SA) is decoupled from SHRED (Short-lived flows

friendly RED) [HCK02] and the minimum threshold idea from RIO-PS (RIO with

Preferential treatment to Short flows), is applied to TCP congestion windows and

combine with PI (Proportional Integrator) scheme to yield PIMC. Using TCP congestion

window (cwnd) from a TCP source, PISA controls the drop probability based on the ratio

of a packet’s cwnd to average cwnd. The objective is help short-lived flows by dropping

fewer HTTP flow packets while dropping FTP flow packets more aggressively. Relying

also on the cwnd source hint, PIMC does not drop packets with cwnd below a fixed

threshold and drops packets with cwnd larger than the threshold based the PI algorithm.

To conduct thorough comparison of PISA and PIMC with existing AQMs, this

investigation developed a new simple Web traffic model that accurately characterize the

behavior of TCP congestion window for HTTP short-lived flows.

The performance of PISA and PIMC are investigated with standard experiment setting

and three other sets of experiment providing heavy congestion. The NS-2 simulation

results using the simple Web traffic model presented in this investigation show that PISA

performs better than PI and PIMC. By avoiding timeouts, PISA improves object

transmission rate by 22% over PI in moderate congestion and by up to 40% in heavy

congestion. PIMC outperforms PIMC, PI, and Drop Tail.

3

This thesis is organized as follows. Chapter 2 reviews the background of TCP and

previous AQM research. Definitions of measurement criteria are presented, various

versions of TCP are described with congestion control mechanisms in TCP/IP networks,

and a summary of the related work in congestion control schemes is given. Additionally

previous Web traffic models are also reviewed. Chapter 3 presents a new simple Web

traffic model and introduces PISA, and PIMC. Chapter 4 introduces the simulation

methodology deployed in this investigation with the simulation tool NS-2, and described

experimental procedures used throughout this study. This chapter also briefly describes

preliminary experiments with PI (Proportional Integrator) and simulation scenarios.

Chapter 5 presents results and evaluates the performance of PISA and PIMC compared to

PI and Drop Tail schemes. The conclusions of this thesis and the future work are

presented in Chapter 6.

4

Chapter 2 Background and Related Work

This chapter provides definitions and background information required for a better

understanding of AQM and congestion control issues. Topics discussed include

performance measurement criteria, TCP versions and the details of TCP congestion

control, pertinent previous AQM research, and a review of previous attempts to model

Web traffic via simulations.

2.1 Network Performance Metrics

The performance of AQM in this investigation is evaluated by network performance

indicators. The performance measures used in this investigation such as utilization,

packet delay, object delay, queue length in a router, packet drop rate, and fairness are

defined in this section.

Throughput is defined as the rate at which the packets are sent by a network source in

megabits/sec (Mbps). Goodput is the effective data rate received at destination in

megabits/sec (Mbps), which does not include retransmitted packets. Throughput includes

retransmitted packets so throughput is normally a little higher than goodput. Utilization is

defined as the fraction of link capacity being used for transferring data. Utilization can be

expressed as a decimal point between 0 and 1 or as a percentage (%).

Delay is the one-way end-to-end transmission time of a packet from a TCP source to a

TCP destination. It includes transmission time, propagation delay and queuing delay. In

the experiments presented in this thesis, both packet delay and object delay are measured

since the performance of HTTP is a key part of this study, delay is measured in the

direction from a Web server to a Web client. Packet delay is the elapsed time a packet is

sent from a source to a destination. Object delay is the delay of a HTTP object, and

measured from a transmission start time to transmission end time. As another time

measurement, round-trip time (RTT) is defined as the time required for a data packet to

travel from the source to the destination and the time for the responding ACK packet to

5

return to the source. While delay is the time taken in one way, RTT includes transmission

time in both directions.

Queue length is defined as the number of packets in the queue for a router outgoing link

and is considered as an important performance measurement related to delay.

Packet drop rate is the rate at which the packets are dropped at a router queue in packets

per second (packets/sec). Drop rate represents the difference between goodput and

throughput. It can be used to compute fairness. Drop ratio is the ratio of the number of

packets dropped to total number of packets sent and is used to compare with different

router AQMs.

Fairness is defined as how fairly all flows are treated as they traverse a router. There is

formal fairness such as Jain’s fairness Index and max-min fairness. The fairness in this

investigation is considered by FTP and HTTP group measurements. Due to offtime

characteristic per HTTP flows, in this study capturing fairness was difficult (see section

5.5).

2.2 TCP

2.2.1 Versions of TCP

Multiple versions of TCP have been developed. TCP Tahoe, known as BSD Network

Release 1.0, corresponds to the original implementation of Jacobson’s congestion control

mechanism [PD00]. Tahoe uses a basic go-back-n model using slow start, congestion

avoidance and fast retransmit algorithm. With fast retransmit, after receiving a small

number of duplicate ACKs for the same TCP packet, the data sender infers that the

packet has been lost and retransmits the packet without waiting for the retransmission

timer to expire. Tahoe eliminated the Internet congestion collapse of 1986.

TCP Reno, known as BSD Network Release 2.0, adds the fast recovery mechanism

[PD00]. A TCP sender enters fast recovery after receiving three duplicate ACKs. The

sender retransmits one packet and reduces its congestion window by half. Instead of slow

6

start, the Reno sender uses additional incoming duplicate ACKs to clock subsequent

outgoing packets. This prevents the pipe from going empty after fast retransmit, thereby

avoiding the need to slow start after a single packet loss. TCP Reno greatly improves

performance in the face of single packet loss, but can suffer when multiple packets are

lost. In addition, TCP Reno includes an optimization known as header prediction that

optimizes for the common case that segments arrive in order. TCP Reno also supports

delayed ACKs acknowledging every other segment rather than every segment although

this is a selectable option.

While a partial ACK (an ACK for some but not all of the packets that were outstanding at

the start of the fast recovery period) takes TCP out of Fast Recovery in Reno, in TCP

New Reno, partial ACKs do not take TCP out of fast recovery. Partial ACKs received

during fast recovery are treated as an indication that the packet immediately following the

acknowledged packet has been lost and should be retransmitted. Thus, when multiple

packets are lost, New Reno can recover without a retransmission timeout.

2.2.2 Details of TCP Congestion Control

TCP congestion control was introduced into the Internet in the late 1980s by Van

Jacobson [PD00]. The TCP congestion control algorithms are designed to share a

bottleneck link’s bandwidth among the TCP connections traversing that link. The idea of

TCP congestion control is for each source to determine how much capacity is available in

the network, so that it knows how many packets it can have in transit. This section

describes the predominant end-to-end congestion control in use today, that implemented

by TCP.

The TCP sender is not able to open a new connection to transmit a large burst of data at

once. The TCP sender is limited by a small initial value of the congestion window

(cwnd). During slow start, the TCP sender increases its cwnd by one for every

acknowledgement (ACK) received in a round-trip time. This effectively doubles the

cwnd per round-trip time. When the sender’s congestion window exceeds the slow start

threshold (ssthresh), slow start ends and TCP enters congestion avoidence. Slow start is

7

used at the beginning of a transfer or after a packet loss detected by retransmission

timeout (RTO). TCP uses slow start to determine the available capacity for the purpose of

avoiding congestion of the network. During congestion avoidance, TCP increments cwnd

by one packet per round-trip time (RTT). When an RTO occurs, congestion avoidance

ends with setting ssthresh to half of the current cwnd value and then TCP Tahoe enters

slow start again. This procedure is repeated until the transmission ends. Figure 2.1 shows

an example of how TCP Slow start and Congestion avoidance works.

Figure 2.1 Congestion Control [WLOO]

TCP uses fast retransmit to detect packet loss. Once TCP receives three duplicate

acknowledgements, TCP assume a packet has been lost. Then TCP retransmits the

missing packet without waiting for RTO to expire. After sending the missing packet, TCP

Reno sets cwnd to half of current cwnd and performs congestion avoidance, but not slow

start. This is the fast recovery algorithm after fast transmit for TCP Reno. It improves

throughput under congestion because TCP does not have to transmit with beginning

window size from 1. Before sending, TCP sender sets a retransmit timer to determine if a

packet has been lost in the network. If TCP does not receive acknowledgement for the

packet until the retransmit timer expires, the sender considers it as a packet loss, and sets

cwnd

5

Congestion
avoidance

Slow
start

ssthresh

ssthrshold

Congestion
occurs

10

15

20

Round-trip times

Slow
start

Congestion
avoidance

Slow
start

Congestion
occurs

8

slow start threshold to half of the current cwnd, and then performs slow start and

retransmit the lost packet. If the TCP does not receives acknowledgement for the

retransmitted packet before the retransmit timer expires, the retransmit timer uses

exponential backoff. That is, the value of the next retransmit timeout increases. Initial

time out (ITO) is typically conservatively set to three seconds and RTO is gradually

adjusted based on RTT estimates.

2.3 AQM for Congestion Control

A study of short-lived flows [GM01] shows that short-lived flows receive less service

compared to long-lived flows due to the conservative nature of the TCP Reno congestion

control algorithm described above. Under congestion, short-lived flows tend to receive

less than their fair share of throughput without differentiated treatment from an AQM

policy. Routers interact with TCP sources to deal with congestion control. Active queue

management provides special actions to be taken at router queue. In this section, we

present AQMs that classify flows and treat the class of short-lived flows differently than

the long-lived flows along with a few well-known AQMs.

2.3.1 Drop Tail (FIFO)

Drop tail, commonly used in most Internet routers, implements first-come-first-served

(FCFS) queuing and drop-on-overflow buffer management. The first packet that arrives

at a router is the first packet to be transmitted. If a packet arrives at a router whose

outgoing link queue is full, then the router discards the packet regardless of which flow

the packet belongs to or how important the packet is. Under congestion, drop tail has high

utilization, but high delay because of long queuing delay. High delay is not good for Web

applications that provide interactive communication.

2.3.2 RED

RED (Random Early Detection) [FJ93], a well-known AQM scheme, detects incipient

congestion using average queue length. RED uses the parameter set: minimum threshold

(minthresh), maximum threshold (maxthresh), maximum drop probability (maxp), and

weight parameter in order to probabilistically drop packets arriving at a router. RED

9

maintains an average queue size, which is computed as an exponentially weighted

moving average of the instantaneous queue size. If the average queue length is smaller

than minthresh, no packet is dropped. If the average queue length is between minthresh

and maxthresh , RED’s packet drop probability varies linearly between zero and maxp

and the packet could be early dropped depending on the drop probability. If the average

queue length is greater than maxth, the drop probability equals one and the packet is

dropped. By dropping the packet or marking using ECN (Explicit Congestion

Notification), the router indicates incipient congestion to the source. Early dropping helps

the RED router keep the average queue level low during congestion periods. However,

increasing the maximum drop probability leads the instantaneous queue length to large

oscillations. In the results of the Christiansen et al. [CJO01] their investigation of RED

for Web traffic shows queuing delay and throughput in RED is sensitive to RED

parameters. So an appropriate parameter setting is important to performance. However,

finding the optimal RED parameter setting is shown to be problematic.

2.3.3 SHRED

SHRED (SHort-lived flows friendly RED) [HCK02] attempts to give preferential

treatment to short-lived flows using a source hint. The source hint, fetched from TOS

(Type of Service) field in the IP (Internet Protocol) header in a packet, contains the

current congestion window size of a flow.

4-bit
Version

4-bit
IHL

8-bit
Type of service 16-bit Total length

16-bit
Identification

3-bit
Flags 13-bit Fragment offset

8-bit Time to live 8-bit Protocol 16-bit Header checksum

32-bit Source address

32-bit Destination address

32-bit Option + Padding

Figure 2.2 IP Header

10

The SHRED queue is managed in the same way as RED does except that minimum

threshold and maximum drop probability are computed based on cwnd for each packet.

The ratio of a cwnd to the weighted average cwnd is used to adjust drop probability,

called short-lived flow adjustments (SA). When the average queue length is between

minimum and maximum thresholds, if the ratio is greater than one, that is, cwnd is

greater than average cwnd, minimum threshold decreases pushing up a maximum drop

probability. Otherwise, minimum threshold increases, pushing down a maximum drop

probability, which helps short-lived flows to be treated more fairly with fewer dropping

packets by router. Although preferential treatment for short flows has been accomplished,

SHRED still has the instability problem on instantaneous queue length and lots of

parameters to control since it is rooted in RED.

2.3.4 RIO and RIO-PS

Both RIO and RIO-PS are extensions of RED. RIO (RED routers with In/Out bit)

[CW97] is based on the idea of tagging packets as either in or out and treating them

differently based on the tags. RIO uses the same mechanism as in RED but is employed

with two sets of parameters for dropping packets, one set for in packets and the other set

for out packets. Upon each packet arrival at the router, the router checks whether the

packet is tagged as in or out. If it is an in packet, the router calculates the average queue

length (avg_in) for in packets. If the arriving packet is an out packet, the router computes

the average queue length (avg_total) for all both in and out arriving packets. The

probability of dropping an in packet depends on avg_in, and the probability of dropping

an out packet depends on avg_total. As in RED, the three parameters the minimum

threshold (min_in), the maximum threshold, and the maximum drop probability

(P_max_in) for in packets defines normal operation [0, min_in], congestion avoidance

[min_in, max_in], and congestion control [max_in,∞] phases for in packets. Similarly,

three corresponding phases for out packets are defined. With these two sets of parameters

and phases, RIO decides whether or not it drops a packet. By classifying packets into in

and out, RIO discriminates against out packets in times of congestion.

11

RIO-PS (RIO with Preferential treatment to Short flows) [GM01] is inspired by RIO.

RIO-PS works with edge routers maintaining all the per-flow information and core

routers managing per-class flows. Specifically, a counter in an edge router tracks how

many packets have been currently transferred for each flow. If the counter exceeds a

certain threshold, called minimum threshold (MinThresh), RIO considers the flow to be

long and classifies the packets as long packets. This method classifies packets within the

threshold as packets from a short flow. To detect the end of a flow, the per-flow state

information is maintained and updated periodically. If no packets from the flow is

observed in the period of time units, a core router considers the flow terminated and

removes its information entry. The threshold can be a static or dynamic value. In RIO-PS,

per-flow state information is used to adjust the threshold dynamically to balance the

number of short and long flows. That is, the ratio of the number of short flows to that of

long flows is controlled by an edge router.

2.3.5 PI (Proportional Integrator)

While RED uses average queue length, PI (Proportional Integrator) [HMT+01] uses

instantaneous queue length and regulates queue length to a desired queue reference value

(qref). The drop probability of PI is proportional to queue length mismatches. The

difference between the current queue length and a desired target queue length, and

difference between a previous queue length and a desired target queue length determines

drop probability and the drop probability is accumulated. That is, weighted subtraction of

the previous queue mismatch from current queue mismatch is added to the previous drop

probability. If the result of the subtraction is positive, drop probability gets larger than

previous drop probability and smaller otherwise. Figure 2.3 gives the basics of the PI

algorithm.

12

PI coeffieients : a = 0.00001822, b = 0.00001816

Once every period

calculate probability P with qref and qlen

P = a * (qlen – qref) - b * (qold – qref) + Pold

 drop(P)

 Pold = P

 qold = qlen

Figure 2.3 PI Algorithm

qref is a desired queue reference value and qlen is an instaneous queue length. P and qlen

are saved for the next PI drop probability calculation. By adjusting drop probability based

on queue length, PI keeps queue length close to the desirable target queue length and

maintains a stable queue length. Moreover, it prevents the queue in a router from

overflowing. However, PI can result in low queuing delay at the expense of large number

of packets dropped. As shown in [HMT+01], PI shows better utilization and lower

queuing delay.

However, preliminary PI simulations run early in this investigation demonstrate that PI

overacts when there are many flows by dropping many packets. That is, to keep the

queue length at a targeted queue reference value, PI drops more packets than other AQM

schemes. Moreover, while drop probability is computed at each packet arrival epoch in

other AQM schemes, PI uses a frequency rate to change the drop probability once per

period. Hence during this period all flows have the same drop probability instead of

having the drop probability that reflects the characteristics of the flow, which does not

help fairness. Since the link capacity remains constant, drop probability must be

increased. By dropping, queuing delay become lower and round trip time delay gets

reduced. However, for PI this results in higher numbers of retransmissions due to

timeouts. This should yield higher transmission completion time for PI.

13

Due to lack of time marks were not considered for new algorithms. PI with ECN

[HMT+01] shows that the performance of PI is better than that of RED in high utilization

and low delay but it may not result in more efficient performance with dropping,

especially in the case of short lived flows.

2.3.6 REM

REM (Random Exponential Marking) [ALL+01] maintains a variable, price to measure

congestion. Price is updated periodically and determines the marking probability based

on rate mismatch and queue mismatch. Rate mismatch is the difference between input

rate and link capacity, and queue mismatch is the difference between queue length and

target. When either the input rate exceeds the link capacity or the queue length is greater

than target queue length, the weighted sum is positive. When the number of users grows,

the input rate mismatch and queue mismatch increases, raising price and finally marking

probability. When the source rates are small, the mismatches become negative, reducing

price and marking probability. REM stabilizes queue length around a small target.

2.3.7 AVQ

As a rate-based scheme, AVQ (Adaptive Virtual Queue) [KS01] maintains a virtual queue

whose capacity is less than the actual capacity of the link and updated by link utilization

and packet arrival rate. On a packet arrival, the packet is marked if it overflows the

virtual buffer and is enqueued in the virtual queue otherwise. The motivation behind AVQ

is that when the link utilization is below the desired utilization, the virtual queue

increases and marking gets less aggressive. Otherwise, the virtual queue decreases and

marking gets more aggressive. AVQ regulates utilization instead of queue length as RED,

PI, and REM and governs the queue without an explicit drop probability unlike the other

AQM schemes.

2.4 Modeling Web Traffic

Web traffic models used in AQMs that attempt to treat HTTP flows differently from FTP

flows are surveyed in this section.

14

2.4.1 Web Traffic Model in SHRED

The Web traffic simulator used in SHRED [HCK02] uses the built in Pareto II function

[NS201] to generate Web reply object size with the Pareto shape parameter of 10 Kbytes,

the maximum object size of 2 Mbytes, and the minimum object size of 12 bytes. The

model sends Web pages, composed of multiple Web objects, to a traffic sink and waits

for an amount of time determined by page generation rate before sending the next page. It

modeled HTTP version 1.0 where each object in the Web page is a separate TCP

connection. Unlike the standard HTTP procedure that the client first requests the primary

container page and then subsequently issues separate requests to transfer each embedded

object, all the objects in a Web page in this model are downloaded concurrently.

2.4.2 Web Traffic Model in RIO-PS

The Web traffic model used in RIO-PS randomly selects clients to initiate sessions to

reflect surfing several Web pages of different sizes of randomly chosen Web sites. It

models HTTP 1.0 such that each page containing several objects requires a TCP

connection for delivery. To request a page, the client sends a request packet to the server,

the server responds with an acknowledgement and then start to transmit the web page

requested by the client. Exponential distributions are used for interpage and interobject

arrivals and bounded Pareto distribution is used for object size with a shape parameter of

1.2.

2.4.3 ON/OFF Pareto

Another way to construct Web traffic is to use the Pareto On/Off Traffic [NS201]. This

model is an application embodied in the OTcl class Application/Traffic/Pareto of NS-2. It

generates traffic according to a Pareto On/Off distribution. Packets are sent at a fixed rate

during “ON” periods, and no packets are sent during “OFF” periods. Both on and off

periods are taken from a Pareto distribution with constant size packets. A Pareto On/Off

traffic generator can be created with the following NS settings.

15

set p [new Application/Traffic/Pareto]

$p set burst_time_ 500ms

$p set idle_time_ 500ms

$p set rate_ 200k

$p set packetSize_ 210

$p set shape_ 1.5

Figure 2.4 Pareto Parameter Setting

Burst_time is a mean burst time, idle_time is a mean idle time, rate_ is a sending rate

during burst transmission, packetSize_ is a fixed application packet size, and shape_ is

Pareto shape parameter. Given the mean burst time and the Pareto shape parameter, the

next burst length in units of a packet is computed. Using the mean idle time and the

Pareto shape parameter, the next idle time is computed and the generator goes to sleep for

the next idle time. This procedure is repeated.

The PI paper [HMT+01] use this On/Off Pareto to model HTTP flows in their

experiments. As preliminary experiments with Pareto On/Off Pareto were run, it was

observed that a new TCP connection is not established for each new on burst

transmission and is not disconnected when the transmission is completed. Moreover, the

congestion window is not reset to one for a new burst transmission, which does not

realistically model HTTP behavior. The modeling of timeouts is not completely accurate

during off time periods. In this study, cwnd needs to behave as it would for real Web

traffic so that AQMs developed in this investigation can apply an accurate cwnd.

After reviewing, the Web traffic models above it was decided that a more accurate and

realistic Web traffic model was needed for this investigation. In the version 1.0 of HTTP

traffic modeled in this study, each web object is transferred with a separate TCP

connection and the cwnd of each new connection is always set to an initial value of 1.

AQMs in this study use cwnd to classify short-lived flows from long-lived flows. Hence,

correctly modeling cwnd is important to this investigation. To deal with the timeouts

properly, a Web object transmission time is used instead of the Pareto on time.

16

Chapter 3 Design of Web Traffic Model and

 Two AQM Algorithms

The goal of this thesis is to investigate new congestion control algorithms at core routers

that cooperate with TCP sources to provide good performance, and fair treatment for long

and short flows when congestion occurs at bottlenecked links. To reach the goal two new

algorithms and a simple Web traffic Model were developed. This chapter describes a

simple Web traffic model and introduces two new AQM techniques.

3.1 Web Traffic Model

While FTP traffic can include very large files, HTTP traffic typically consists of

relatively small objects embedded in a Web page. HTTP traffic is classified as short-lived

TCP flows. Typically a short TCP flow has less than 20 packets to transmit [GM01]. Mah

[MB97] reports the maximum object sizes are rather large (over 1 MB) and the mean

object reply size between 8 and 10 KB are much larger than the median object reply

sizes. Mah claims that these characteristics of Web object size distributions are consistent

with heavy-tailed (with a large amount of the probability mass in the tail of the

distribution). He found the distributions of Web object sizes above 1KB are reasonably

well-modeled by Pareto distributions with Pareto shape parameter ranging from 1.04 to

1.14. Guo and Matta [GM01] uses a bounded Pareto function with shape parameter of 1.2

to generate Web replies.

The Web traffic model developed for this investigation models HTTP 1.0 that opens and

closes a new TCP connection for each object embedded in a Web page and one object per

a Web page. Each TCP connection is established resetting cwnd to 1. Once a

transmission of a single object is completed, TCP disconnects. The variable size of an

object is randomly generated by Pareto II function in NS-2. The Web traffic model

implements ontime and offtime. Ontime is the time taken to transfer a single object and

offtime is the object interarrival time. Object size distribution is modeled using a Pareto

distribution because it has been shown that object size distribution are heavy-tailed.

17

While offtime in SHRED uses exponential interarrival times, the model in this study uses

deterministic interarrival time. This makes it easier to analyze the impact of many HTTP

flows. It is important to model many HTTP flows which more accurately affects the real

world.

In the first version of the simple Web traffic model, clients sent a HTTP request to a Web

server and then the Web server responded to the client and sent the object requested in

the same way standard HTTP does. This is a more than realistic model of Web traffic

than the newer version. However, as we ran experiments with this model, the amount of

Web traffic transmitted for the whole simulation time was small and not enough to

compare performance with FTP traffic. Even though the number of HTTP flows were

increased from 50 to 100 and the number of FTP flows were decreased to 10, the load

generated by the Web traffic did not still reach a sufficient amount needed for

investigation. Because of the time taken by clients and the server to establish each TCP

connections, actual HTTP transmit rate for the simulation duration was too small. To

produce more HTTP traffic in the limited time, the Web traffic model was modified to

send only one object per connection from the servers to the clients without modeling the

HTTP request-response mechanism.

3.2 PISA

The AQMs investigated in this thesis are PISA (PI with Short-lived flow Adjustments)

and PIMC (PI with Minimum Cwnd) based on PI. PISA (PI with Short-lived flow

Adjustments) decouples short-lived flow adjustments (SA) from SHRED and employs it

with PI. The initial thought was that PISA would be an improvement over PI, but PIMC

was also evaluated as an alternative scheme.

To create PISA, the cwnd source hint and average cwnd calculation from SHRED is

added to PI to create PISA. A TCP source adds a hint of its current congestion window

size to the packet. When the packet arrives at a PISA router, the source hint is taken from

the IP header in the same manner SA does. The hint is used with average cwnd to classify

short-lived flows and long-lived flows. The ratio of current cwnd to average cwnd

18

classifies short-lived flows and differentiates treatment from long-lived flows. If the

congestion window is greater than average congestion window PISA increases the PI

drop probability by as much as the ratio. Otherwise, it yields a lower probability than the

PI drop probability. The drop probability is calculated based on the ratio of cwnd to

average cwnd and PI drop probability. The PI drop probability is computed every period

and the PISA drop probability is calculated by referring to the PI drop probability, a

global variable, on each packet arrival.

PI coefficients : a = 0.00001822, b = 0.00001816

Once each period

 calculate drop probability, P, with qlen (instaneous

queue length), qref, qold (previous queue length), and

Pold (previous PI drop probability) :

 P = a * (qlen – qref) - b * (qold – qref) + Pold

 Pold = P;

 qold = qlen;

Figure 3.1 PI Algorithm

PISA coefficient : α is in rage {0.1, 3.0}

for each packet arrival

updateAvg(cwnd)

calculate probability Psa with probability P:

Psa = α * P * (cwnd / cwnd_avg)

If (Psa > 1) Psa = 1

drop(Psa)

Figure 3.2 PISA Algorithm

PISA always refers to the same value as the PI drop probability within a period. Figure

3.1 and 3.2 presents the PISA algorithm. The important idea to note is that the PISA drop

19

probability, Psa, is not saved by PI in Pold. This means that PISA will be a little weaker at

keeping the queue size close to qref.

α is a PISA parameter to determine how much of the ratio is applied in adjusting the PI

probability, P, to yield the PISA drop probability Psa. α can vary between 0.1 and 3.0

Preliminary experiments show that PI reduces cwnd under congestion which causes the

ratio of cwnd and average cwnd to be smaller. To make bigger impact of the ration, 3 is

selected for α in this investigation. α should not be zero because α of zero makes PISA

work as Drop Tail. In PISA, packets of short-lived flows are dropped less than those of

long-lived flows. The average cwnd used in this scheme is a weighted average that

weighs cwnds of new arrival packets and the previous cwnd average with a weight

parameter. Based on the parameter, the average cwnd can be controlled to reflect the

impact of a new cwnd on the weighted average. A stable value of the weight parameter,

0.002, is found in SHRED experiments [HCK02] and after several preliminary PISA

experiments the value of 0.02 was selected because the average cwnd value does not

fluctuate as much with this setting.

Figure 3.3 Weighted Cwnd Average

3.3 PIMC

Most of the time, HTTP, short-lived flows, have only a few packets per object and thus

these flows reach only a small TCP congestion window (cwnd) size for each connection.

Flows with a small number of packets have no available sampling data to estimate an

appropriate RTO value for the first control packets such as SYN, SYN-ACK, and the first

data packet. With this characteristic of short-lived flows, losing SYN or SYN-ACK

packets costs an initial timeout (ITO) value as RTO. This large timeout period decreases

throughput. If cwnd is less than four, a dropped packet will be unable to trigger three

duplicate ACKs for fast retransmit. Thus in this situation, a packet loss will always

require a timeout. This causes the flows to experience longer response times and yield

high delays. For these reasons, flows need a minimum size of four for cwnd to use fast

 cwndavg = ((1.0 - weight) * cwndavg) + (weight * cwndnew)

20

retransmit instead of RTO. For MinCwnd of PIMC, MinCwnd should be greater than 4,

the minimum cwnd size for fast retransmit. Moreover, if one of the last three packets of

short-lived flows is dropped, the TCP source does not send enough additional packets to

trigger three duplicate ACKs and an RTO occurs.

PIMC uses the same cwnd source hint as PISA but does not compute an average cwnd.

To keep the performance of all TCP flows high, PIMC has a cwnd threshold. If the cwnd

is less than the threshold, a packet is not dropped. Otherwise, a packet gets dropped based

on the PI drop probability. PIMC does not drop packets whose cwnd is less than a

threshold, MinCwnd, which causes the queue length to grow. However, the PIMC drop

probability for packets with cwnd exceeding a threshold is the same as the PI drop

probability without a new value for qold. By doing so, packets with a small cwnd are

protected from dropping so that high throughput is expected. PIMC uses PI coefficients, a

= 0.00001822 and b = 0.00001816, implemented in PI experiments [HMT+01]. Figure 3.4

gives the PIMC algorithm.

Figure 3.4 PIMC Algorithm

Starting with MinCwnd at 4, preliminary experiments were conducted for a MinCwnd =

4,5,6, and 7. Figure 3.4 shows that 95% of objects have a 7 delay second in an

experiment with a MinCwnd of 7 while 88% of objects have an object delay of 7

seconds with MinCwnd of 4. Median of object delay with MinCwnd of 7 is 0.42, which

is slightly higher than median of 0.40 of object delay with MinCwnd of 4 in Table 3.1.

The experiment with MinCwnd of 7 shows better results in object delay, so 7 was

selected as the value for MinCwnd.

for each packet arrival

if (cwnd <= MinCwnd) then

enque packet

else

 use PI calculation to decide whether to drop a packet

 Pmc = a * (qlen – qref) – b * (qold – qref) + pold

21

Figure 3.5 CDF of Object Delay

MinCwnd Drop rate (packets/second) Median object delay

4 7.286 0.40

7 7.126 0.42

Table 3.1 MinCwnd

22

Chapter 4 Experimental Methodology and Tools

This chapter includes NS-2 (Network Simulator), simulation input and output traces, data

extraction and analysis, experimental setup and validations, and simulation scenarios with

simulation network topology and simulation design specification

The experiments in this study are performed through procedure. The simulation script

written in OTcl is run in NS-2 and trace files are generated as a result of the simulation.

The data is extracted from the trace files and is plotted in a graph to analyze the

performances. The simulation process is presented in Figure 4.1

Simulation

input script

in OTcl

⇒

Simulation

execution in

NS-2

⇒

Simulation

output trace

⇒

Data

extraction

⇒

Data

Analysis

Figure 4.1 The Simulation Procedure with NS-2

For the simulation processes, the Network Simulator is used.

4.1 NS-2 Network Simulator

The Network simulator version 2 (NS-2) [NS201], written in C++ and Otcl, is an object-

oriented, and discrete event driven network simulator. NS-2 developed as the VINT

(Virtual InterNetwork Tested) project at Lawrence Berkeley National Laboratory (LBL),

Xerox PARC, the University of California, Berkeley, and the University of Southern

California/ISI [NS201] and is mainly used in the network research community. NS-2

simulates a variety of IP networks and including network protocols such as TCP, and

UDP (User Datagram Protocol), traffic source behavior such as FTP, Telnet, Web, CBR

and VBR, router queue management mechanisms such as Drop Tail, RED, PI and AVQ.

NS-2 also supports simulation of TCP, routing, and multicast protocols over wired and

wireless (local and satellite) networks.

23

4.2 Simulation Input

To run a simulation in NS-2, configuration and behaviors expected to be simulated are

described in the form of an OTcl script. Basically, the topology is defined and nodes,

agents, applications are instantiated and attached in the input script. These simulation

objects in OTcl script are mirrored in classes in C++, the compiled hierarchy. The

applications such as FTP, and Telnet traffic sources and the traffic distributions such as

CBR (Constant Best Rate), Pareto, and exponential are specified. The start time and end

time of the simulation are set in the script. During the simulation time, the events are

generated and scheduled by time. Each event includes a packet arrival from a source to a

router queue, drop, enqueue, dequeue, an arrival at a destination, a generation of an ACK

packet, and timeouts. The input script also sets trace files keeping track of packets and

other specific information such as instantaneous queue length.

4.3 Simulation Output Traces

The simulation is traced during the simulation time by using trace objects and monitor

objects. The monitor objects collect data for basic information about the simulation. For

example, the monitor objects are implemented as counters to count total number of

packets, drops, and bytes received. In contrast, the trace objects collect the data for

specific information. It keeps track of packets in the process of transmission and contains

event number, time, source node, destination node, packet type, packet size, flow id,

source address, destination address, sequence number and packet id for each packet

arrival at a queue in a router, drop or en-queue, de-queue and departure. In this study,

packet-based traces are needed to understand the simulation comprehensively so the data

is collected by using the trace object. An output trace generated by the trace object in NS-

2 has a fixed format shown in Figure 4.2

24

r : receive (at to_node)

+ : enqueue (at queue)

- : dequeue (at equeu)

d : drop (at queue)

 : src addr node.port (ex.3.0)

 : dest addr node.port (ex. 0.0)

event time From

node

To

node

Pkt

type

Pkt

Size

flags fid Src

addr

Dest

addr

Seq

num

Pkt

id

r 10.000512 0 56 http 1040 ------- 119 57.0 56.0 1 2911

+ 10.000512 56 0 ack 40 ------- 119 56.0 57.0 1 2911

+ 10.002041 1 17 ack 40 ------- 8 16.0 17.0 18 2871

- 10.002041 1 17 ack 40 ------- 8 16.0 17.0 18 2871

+ 10.002114 0 2 tcp 1040 ------- 1 3.0 2.0 19 2454

- 10.002114 0 2 tcp 1040 ------- 1 3.0 2.0 19 2454

r 10.006009 85 1 http 1040 ------- 133 85.0 84.0 25 2878

r 10.006286 85 1 http 1040 ------- 133 85.0 84.0 26 2879

r 10.006681 18 0 ack 40 ------- 9 18.0 19.0 19 2880

r 10.00853 1 15 ack 40 ------- 7 14.0 15.0 18 2843

+ 10.00853 15 1 tcp 1040 ------- 7 15.0 14.0 23 2912

- 10.00853 15 1 tcp 1040 ------- 7 15.0 14.0 23 2912

r 10.008832 0 138 http 1040 ------- 160 139.0 138.0 7 2427

+ 10.008832 138 0 ack 40 ------- 160 138.0 139.0 7 2913

- 10.008832 138 0 ack 40 ------- 160 138.0 139.0 7 2913

Figure 4.2 A Sample of NS-2 Output Trace

4.4 Data Extraction

Once the simulation is done, the traced data is extracted for computation of performance

metrics. The data extraction modules developed in C and perl generate reports on

utiliazation, drop rate, delay and other statistical data such as drop ratio and average

congestion window size for each type of flows.

25

4.5 Data Analysis

The data extracted from the traced files are fed into the data analysis tools, Gnuplot and

MS excel to produce graphs based on the data. The graphs show the performance of the

simulation results clearly so that the performance metrics are compared and analyzed.

4.6 Experimental Setup and Validations

In Figure 4.3 and 4.4, packet drops and instantaneous queue length with PIMC are shown

for 2400 seconds of an experiment. Table 4.1 presents the variances in the drop rate for

PIMC over a variety of interval ranges. Notice that the variances are each 500 second

interval range from about 1.70 to 1.81 for FTP flows and from about 0.61 to 0.70 for

HTTP flows. The differences between the variances of the 500 second intervals are

smaller than the differences in variance of the first five 100 second intervals. Table 4.1

shows that by 500 seconds of simulation, the variance has settled down. Thus, each

simulation experiment in this investigation was run for 500 seconds.

Time Interval FTP HTTP

0 – 100 sec 2.037106 0.588126

100 – 200 sec 1.781901 0.866419

200 – 300 sec 1.557411 0.759637

300 – 400 sec 1.772006 0.434962

400 – 500 sec 1.758998 0.700268

0 – 500 sec 1.788308 0.668003

500 – 1000 sec 1.704418 0.703262

1000 – 1500 sec 1.814922 0.616865

1500 – 2000 sec 1.739448 0.675673

0 – 1000 sec 1.743351 0.686251

1000 – 2000 sec 1.773690 0.640179

Table 4.1 Variance of Packet Drop Rate

26

Figure 4.3 Packet Drops

Figure 4.4 Queue Length

27

4.7 Simulation Scenarios

Figure 4.5 Standard Simulation Topology

The simulation network topology (see Figure 4.5) consists of two routers, a number of

sources and sinks. The two routers, router A and router B are connected by a link of

bandwidth of 10 Mbps and a propagation delay of 10msec. The link from router B to

router A is managed by AQMs such as PI, PISA, and PIMC with a queue size of 800

packets and from router A to router B managed by Drop Tail with a queue size of 800

packets. 10 FTP receivers, 100 HTTP clients, and 1 CBR server are linked to router A at

bandwidth of 35 Mbps and propagation delay of 45 ms. 10 FTP sources, 100 HTTP

servers and 1 CBR receiver are linked to router B with a bandwidth of 30 Mbps and

propagation delay of 45 ms. CBR traffic goes from router A to router B while FTP and

HTTP traffic goes from router B to router A. 10 FTP flows and 100 HTTP flows travels

on the topology. To make a realistic model of congestion on the bottleneck, different

types of congestion such as reverse traffic of CBR is transmitted to create realistic

congestion for ACKs. Through preliminary experiment with Reno and Newreno, it was

shown that Newreno provided better performance. Thus TCP Newreno is used. The

maximum cwnd is set unlimited, the default value of NS-2 and ssthreshold is initially set

to 50 in all the experiments.

The Web traffic model in this experiment sets the maximum size of object to 2 Mbytes,

average size of object to 10 Kbytes, referenced from SHRED [HCK02], and minimum

Router B Router A 10 msec

10 Mbps

45 msec
30 Mbps

45 msec
35 Mbps

45 – 495 msec
35 Mbps

45 – 495 msec
35 Mbps

10 FTP
receivers

100
HTTP
clients

1 CBR
server

10 FTP
sources

100
HTTP
servers

1 CBR
receiver Router

A
Router

B

28

size of object to 1 Kbyte in this experiment and uses 1.2 as the Pareto shape parameter

based on findings in [GM01] and [MB97]. Offtime is set to 0.5 seconds and ontime is the

one burst time taken to transfer one object.

Experiments in this investigation use exactly the same settings used in PI experiments

[HMT+01] to be fair. PISA and PIMC algorithms use PI coefficients a = 1.822(10)-5 and b

= 1.816(10)-5, a queue size of 800, and a desired queue reference value of 200 packets. As

we experimented with various values of α between 0 and 3, the value of 3 showed

slightly better performance with a bigger impact on short-lived flows. These setups are

for standard experiments and other simulations were run with heavier congestion with

their setups (see section 5.6).

29

Chapter 5 Performance Evaluation and Analysis

In this chapter, the performance of PISA and PIMC is evaluated by comparison with PI

and Drop Tail. PI is observed with Drop Tail, and the behaviors of PISA and PIMC are

analyzed. Except for experiments under heavier congestion, all the other experiments are

run with 10 FTP flows and 100 HTTP flows, link capacity of 10 Mbps, queue reference

of 200 packets, and a queue size of 800 packets. This is the standard experimental setting.

5.1 PI compared to Drop Tail

PI is a stable AQM with low queue length and low delay, but it has high drops to keep the

queue at the target queue reference. An experiment with PI and Drop Tail counts packets

dropped per second and Figure 5.1 depicts that the number of packet drops of HTTP

flows on PI is distinguishably higher than that of Drop tail. While the average drop rate

of Drop Tail is almost zero, PI drops about 4.5 packets out of 1260.22 packets a second

(0.38%). Dropping more packets is unfair to short-lived flows because dropping causes

timeouts with short-lived flows.

Figure 5.1 Packet Drops with PI and Drop Tail

30

 FTP flows
(packets/sec)

HTTP flows
(packest/sec)

All flows
(packest/sec)

Drop tail 0.004 0.010 0.014

PI 2.024 2.412 4.436

Table 5.1 Average Drop Rate of PI and Drop Tail

5.2. Drop Rate

Drop rate is measured using the standard experimental setting. Figure 5.2, and 5.3 present

the number of packet drops every second with PISA compared to PI. PISA drops FTP

flows slightly more aggressively but HTTP flows less aggressively than PI, which helps

HTTP flows to attain lower delay.

Figure 5.2 PISA FTP Flow Packet Drops
with 10 FTP and 100 HTTP flows

Figure 5.3 PISA HTTP Flow Packet Drops
with 10 FTP and 100 HTTP flows

In Figure 5.4 and 5.5, PIMC drops both FTP and HTTP flows less than PI. While PIMC

drops FTP flow packets at a similar rate to PI, for HTTP flows PIMC decreases the drop rate

significantly. Since the drop rate decrement of HTTP flows is relatively higher than that of

FTP flows, PIMC also helps HTTP.

31

Figure 5.4 PIMC FTP Flow Packet Drops
With 10 FTP and 100 HTTP flows

Figure 5.5 PIMC HTTP Flow Packet Drops
With 10 FTP and 100 HTTP flows

As seen in Table 5.2, PISA compared to PI increases the drop rate of FTP flows by 0.2

packets per second and decreases that of HTTP flows by 0.7 packets per second. PIMC

decreases drop rates of FTP and HTTP flows. The PIMC drop rate of HTTP is decreased

by 65% of PI’s drop rate. PISA has the smallest queue length. For average cwnd of FTP

flows, PIMC has higher than PI and PISA and PISA is lower than PI. PIMC has a slightly

higher average cwnd of HTTP flows than those of PI and PISA and an HTTP flow

average cwnd of PISA higher than that of PI.

 FTP
cwnd

HTTP
cwnd

FTP
packets
dropped
(packets/sec)

HTTP
packets
dropped
(packets/sec)

ALL
packets
dropped
(packets/sec)

FTP
Drop
Ratio
(%)

HTTP
Drop
Ratio
(%)

Average
Queue
Length
(packet)

PI 24.99 11.20 2.024 2.412 4.436 0.35 0.35 197.01

PISA 23.95 13.83 2.258 1.468 3.726 0.35 0.22 162.16

PIMC 28.89 14.35 1.792 0.830 2.622 0.26 0.14 194.88

Drop Tail 193.15 20.52 0.004 0.010 0.014 0.00 0.00 505.01

Table 5.2 Average Cwnd and Drop Rate with 10 FTP and 100 HTTP flows

32

Figure 5.10 CDF of TCP CWND for when Packets are Dropped

As seen in Figure 5.10, PIMC does not drop any packets with cwnd less than MinCwnd

of 7. 100 % of packets dropped have cwnd greater than 7. Since PISA does not

differentiate packets with a fixed threshold such as MinCwnd, there are about 0.05% of

packets dropped that have cwnd less than 7. Except for the 5% of all packets, PISA

behaves similar to PIMC. In PI, more packets dropped have a smaller cwnd than other

AQMs. Drop Tail has only 5 HTTP packet drops and 2 FTP packet drops that are

presented at each point in Figure 5.10.

Figure 5.11 CWND of FTP Packets Dropped
with 10 FTP and 100 HTTP flows

Figure 5.12 CWND of HTTP Packets
Dropped with 10 FTP and 100 HTTP flows

33

The two FTP packets have cwnds of 217, much higher than that of other AQMs. For this

reason, the cwnd of FTP packets dropped in Drop Tail are not included in Figure 5.11.

The cwnd of Drop Tail includes only 5 packets dropped. Their cwnds are 1, 2, 8,

60.084805, and 60.101448 and the five points are connected in Figure 5.12 as a CDF. PI,

PISA, and PIMC behave similarly and PIMC maintains slightly larger cwnd than others,

which indicates that PIMC drops packets with larger cwnd more aggressively. Figure

5.12 implies that PISA and PIMC drop more HTTP packets with larger cwnd. This

behavior should help improve the throughput for HTTP flows.

5.3. Queue Length

Figure 5.13 Queue Length

Figure 5.13 shows PI, PISA, and PIMC have stable queue lengths and PISA has a lower

queue length than the other three algorithms. PISA drops fewer HTTP packets and drops

more aggressively FTP packets. More packets belonging to FTP flows get sacrificed to

keep the queue length stable. In PIMC, queue length is increased by packets with cwnd

less than minimum threshold of 7 because they are always queued. If a number of packets

34

with small cwnd arise fast, then the queue length grows fast. When packets with cwnd

larger than minimum threshold come in, the queue length could be reduced because

PIMC drops strongly the packets based on current queue length to keep the queue length

close to the desired queue reference value.

Figure 5.14 CDF of Queue Length of
Packets Dropped with 10 FTP and 100

HTTP flows

Figure 5.15 CCDF of Queue Length of
Packets Dropped with 10 FTP and 100 HTTP

flows

PISA keeps the queue length smallest of the three AQMs. 95% of packets’ queue length

is within 300 with PISA in Figure 5.14 and the largest queue length of packets dropped is

smaller than those of PIMC and PI in Figure 5.15. With this smallest queue length, low

delay is expected with PISA.

5.4 Packet Delay and Object delay

Figure 5.16 and 5.17 shows packet delays for PI, PISA, and PIMC for FTP and HTTP

flows respectively. As expected from the previous section, PISA has the lowest packet

delay for both FTP and HTTP flows. This is due to its exhibiting the smallest queue

length. In contrast, Drop Tail has the longest packet delay for FTP and HTTP flows

because of a large queue length. PIMC has similar behavior for packet delay with FTP

flows to PI while PIMC has lower packet delay than PI for most of the HTTP flows.

35

Figure 5.16 Packet Delay of a FTP flow
with 10 FTP and 100 HTTP flows

Figure 5.17 Packet Delay of a HTTP flow
with 10 FTP and 100 HTTP flows

In addition to packet delay, PISA has the smallest object delay as seen in Figure 5.18.

Specifically, 90% of packets’ delay in PISA are within about 1 second. Because PISA

drops fewer packets with a small cwnd, those packets can avoid time outs, which results

in short response time and low delay. A few, heavy-tailed flows have higher delay with

PISA in Figure 5.19.

Figure 5.18 CDF of Web Object Delay
with 10 FTP and 100 HTTP flows

Figure 5.19 CCDF of Web Object Delay
with 10 FTP and 100 HTTP flows

5.5 Utilization

As seen previously, PISA has a higher drop rate on FTP flows and a lower drop rate on

HTTP flows compared to PI. Nonetheless, utilization of PISA for HTTP flows is lower

than that of PI and utilization of PISA for FTP flows is higher than that of PI. Similarly,

36

PIMC shows higher utilization with FTP flows and lower utilization with HTTP flows

than PI although they drop fewer packets of both FTP and HTTP flows than PI.

Utilizations of a link capacity of 10 Mbps with AQMs are shown in Figure 5.20, 5.21,

5.22, and 5.23.

Figure 5.20 PI Utilization Figure 5.21 PISA Utilization

Figure 5.22 PIMC Utilization Figure 5.23 Drop Tail Utilization

 FTP flows HTTP flows Total flows

PI 0.479 0.520 0.999

PISA 0.522 0.477 0.999

PIMC 0.568 0.431 0.999

Table 5.3 Utilization of Link Capacity of 10 Mbps

37

Utilization is not a good measure to compare with FTP flows because HTTP flows spend

time on connections and are idle for offtimes. Moreover, object delays are not much

larger than the 0.5 seconds of idle time as shown in Figure 5.18. As seen in Table 5.4,

PISA transmitted 6261 more Web objects than PI did in 500 seconds, which means PISA

spends more time to establish 6261 more connections and idle 6261 times. This decreases

utilization for HTTP flows and FTP flows gain more share of bandwidth. PIMC had 18%

more objects and PISA had 22% more objects than PI in 500 seconds.

 Number of Object Improvement

PI 28313 0%

PISA 34574 22%

PIMC 33357 18%

Table 5.4 Number of Web Objects transmitted during Standard Experiment

5.6 Experiments with Heavier Congestion

To investigate the behavior of the new AQMs when the bottlenecked link becomes more

congested, two additional scenarios were simulated. Table 5.5 scenarios the setting used

in these additional NS simulations.

 FTP flows HTTP flows Bandwidth Queue

Reference

Queue size

Increased

FTP flows 50 flows 100 flows 10 Mbps 200 packets 800 packets

Reduced

Bandwidth 10 flows 100 flows 5 Mbps 80 packets 320 packets

Table 5.5 Heavier Congestion Scenarios

38

5.6.1 Increased FTP flows

Figure 5.24 PISA FTP Flow Packet Drops
with 50 FTP and 100 HTTP flows

Figure 5.25 PISA HTTP Flow Packet Drops
with 50 FTP and 100 HTTP flows

Figure 5.26 PIMC FTP Flow Packet Drops

with 50 FTP and 100 HTTP flows
Figure 5.27 PIMC HTTP Flow Packet Drops

with 50 FTP and 100 HTTP flows

By increasing the number of FTP flows from 10 to 50, PISA and PIMC drop more FTP

packets than PI and fewer HTTP packets than PI. PIMC does perform better than PISA.

Since most HTTP flows have a small cwnd, they are not dropped even in congestion so

the drop rate of HTTP flows with PIMC is the lowest. For FTP traffic, PIMC has the

highest drop rate. The increased number of FTP flows increases the queue length because

PIMC does not drop initial packets belonging to the increased FTP flows. That is, no

matter what type of TCP flows, increasing the number of TCP flows increases queue

length. Increased queue length increases the drop probability of packets with cwnd larger

than MinCwnd for PIMC.

39

 FTP
cwnd

HTTP
cwnd

FTP
packet
dropped
(packets/sec)

HTTP
packet
dropped
(packets/sec)

All
packet
dropped
(packets/sec)

FTP
Drop
Ratio
(%)

HTTP
Drop
Ratio
(%)

Average
Queue
length
(packet)

PI 7.72 5.47 26.654 17.166 43.820 3.4 3.3 207.93

PISA 7.34 6.03 27.038 13.084 40.122 3.4 2.6 202.41

PIMC 7.28 6.28 30.616 12.372 42.988 3.9 2.4 218.48

Drop Tail 21.78 11.44 8.440 6.862 15.302 0.3 0.8 691.05

Table 5.6 Average Cwnd and Drop Rate with 50 FTP and 100 HTTP flows on Capacity
of 10 Mbps

PISA drops 0.5 more packets/second of FTP flows and 4 fewer packet/seconds of HTTP

flows. PIMC drops 4 more packets/second of FTP flows and 5 fewer packets/second of

HTTP flows. In total flows, PISA reduces 3.7 packets/second of drop rate and PIMC

decreases 1 packet/second of drop rate.

The results in Table 5.6 are sums for all FTP flows and all HTTP flows. All AQMs with

50 FTP and 100 HTTP flows have higher drop rates than those with standard experiment.

PISA with 50 FTP and 100 HTTP flows behaves similarly to PISA with standard

experiment while PIMC with congestion behaves differently from PIMC with standard

experiment. Unlike PIMC with standard experiment, PIMC with 50 FTP and 100 HTTP

flows has a higher drop rate for FTP flows and a lower drop rate for HTTP flows.

Although the queue length with 50 FTP and 100 HTTP flows increases, PISA still has the

lowest queue length and queue length of PIMC is higher than that of PI. When compared

to Table 5.2 increases of 5 times in FTP flows has higher rate more than 5 times for 50

FTP flows but more than 8 times for HTTP flows.

40

Figure 5.28 Packet Delay of a FTP flow

with 50 FTP and 100 HTTP flows
Figure 5.29 Packet Delay of a HTTP flow

with 50 FTP and 100 HTTP flows

For packet delay, PISA has similar packet delay to PI for a FTP and a HTTP flow. 99% of

FTP flow packets’ delay with PISA and PI is within 0.3 seconds while 90% of those with

PIMC is within 0.3 seconds. Packet delays with 50 FTP and 100 HTTP flows for both a

FTP and a HTTP flow are higher than those with standard experiment. PISA with 50FTP

and 100 HTTP flows still have the lowest packet delay among other AQMs. As analysis, it

appears that packet delay improvement of PISA and PIMC is less compared to PI, but

Drop Tail is terrible.

Figure 5.30 CDF of Web Object Delay
with 50 FTP and 100 HTTP flows

Figure 5.31 CCDF of Web Object Delay
with 50 FTP and 100 HTTP flows

Object delays of PISA and PIMC are mostly smaller than PI and Drop Tail. PISA and

PIMC have similar object delay. In Figure 5.30 70% of jobs with PISA and PIMC are

transmitted within 1 second while the same percentage of jobs with PI is transferred

41

within 1.2 seconds. PISA has the smallest object delay in heavy-tailed flows in Figure

5.31. Even though there are 40 more FTP flows, object delay of PISA with 50 FTP and

100 HTTP flows does not make much of a difference from PISA with standard

experiment. For heavy-tailed flows, PISA with 50 FTP and 100 HTTP flows has the

lowest object delay while PISA with standard experiment has a higher object delay than

PIMC.

 Number of Object Improvement

PI 20777 0%

PISA 27580 32.7%

PIMC 27597 32.8%

Table 5.7 Number of Web Objects transmitted with 50 FTP and 100 HTTP flows

The number of Web objects transmitted with 50FTP and 100 HTTP flows is reduced

compared to that in standard experiment because of heavy congestion. Even under heavy

congestion both PISA and PIMC are able to increase the object transmission rate by about

33%. PISA and PIMC improve the performance of HTTP flows about even.

5.6.2 Reduced Bandwidth

Figure 5.32 PISA FTP Flow Packet Drops
with Capacity of 5 Mbps

Figure 5.33 PISA HTTP Flow Packet Drops
with Capacity of 5 Mbps

42

Figure 5.34 PIMC FTP Flow Packet Drops

with Capacity of 5 Mbps
Figure 5.35 PIMC HTTP Flow Packet

Drops with Capacity of 5 Mbps

 FTP
cwnd

HTTP
cwnd

FTP
Packet
dropped
(packets/sec)

HTTP
Packet
dropped
(packets/sec)

All
Packet
dropped
(packets/sec)

FTP
Drop
Ratio
(%)

HTTP
Drop
Ratio
(%)

Average
Queue
Length
(packet)

PI 7.36 4.94 6.188 21.148 27.336 4.1 4.1 87.53

PISA 7.06 5.68 6.356 16.614 22.970 3.9 3.2 81.90

PIMC 7.66 6.19 6.948 13.292 20.240 4.3 2.6 104.03

Table 5.8 Average Cwnd and Drop Rate with 10 FTP and 100 HTTP flows on Capacity of
5 Mbps

In the next set of simulations, the link capacity of the bottleneck is decreased to 5 Mbps

with a queue size of 320 packets and the desired queue reference to 80 packets. In this

scenario, PISA and PIMC decrease the drop rate of both FTP slightly and that of HTTP

flows aggressively.

PISA increases drop rates of FTP flows by 0.17 packets/sec and decreases that of HTTP

flows by 4.53 packets/second respectively. PIMC increases drop rates of FTP by 0.76

packets/second and decreases significantly that of HTTP flows by 7.86 packets/second

respectively. For total flows, PIMC has the smallest drop rate. All AQMs with 5 Mbps

link capacity have about three times higher drop rates than AQMs with standard

experiment. PIMC with 5 Mbps link capacity drops more FTP flows than PI while PIMC

with the standard experiment drops fewer packets from FTP flows than PI. PIMC has

43

20% more queue length.

For a FTP flow, PISA, PIMC and PI show similar packet delays. For a HTTP flow, PISA

is slightly better than other AQMs. For both a FTP and a HTTP flow, 90% of packets’

delays of PISA and PIMC with 5 Mbps are within 0.5 seconds while those with the

standard experiment are within 0.3 so packet delay is increased by reduced bandwidth of

5 Mbps. PIMC behaves more similarly to PIMC with 5 Mbps than that with the standard

experiment. Like the standard experiment with 10 Mbps, PISA has the lowest packet

delay for the 5 Mbps link capacity.

Figure 5.36 Packet Delay of a FTP flow
with Bandwidth of 5 Mbps

Figure 5.37 Packet Delay of a HTTP flow
with Bandwidth of 5 Mbps

Figure 5.38 CDF Web Object Delay with
Bandwidth of 5 Mbps

Figure 5.39 CCDF Web Object Delay with
Bandwidth of 5 Mbps

PISA and PIMC behave similarly for object delay except for heavy-tailed flows. PISA is

44

significantly better for heavy-tailed flows. All AQMs with 5 Mbps link capacity have

longer object delays than that those with the standard experiment. In PISA and PIMC,

90% of Web object with 5 Mbps has object delay of 2.5 seconds while that with standard

experiment the 90% performance has all 1.5 seconds. For heavy-tailed flows, object

delay of PISA with 5 Mbps is less than 10 seconds while that of PISA with 10 Mbps is

about 10 seconds.

 Number of Object Improvement

PI 20256 0%

PISA 28644 41%

PIMC 28421 40%

Table 5.9 Number of Web Objects transmitted with 10 FTP and 100 HTTP flows on
Capacity of 5 Mbps

Due to heavier congestion, the number of objects transmitted with capacity of 5Mbps is

fewer than that with standard experiment. However, by avoiding timeout of dropped

packets, PISA improves object sending rate significantly by 41% and PIMC does by 40%.

Thus, PIMC and PISA outperform PI in a higher congested situation. PISA performs

slightly better than PIMC.

5.7 Varying the RTTs of HTTP flows

In this set of simulation, 10 different groups of HTTP flows were run with 10 FTP flows

with RTT of 200 ms. Each HTTP group has different RTTs ranging from 200 ms to 2000

ms. A group with RTT of 100 ms is called robust flows and the other group with RTT of

2000 ms is called fragile flows because robust flows send packets to the router much

quicker than the fragile flows. Fragile flows need larger cwnd to send packets than robust

flows. Most AQMs are inherently unfair to fragile flows without information on RTTs at

routers. This experiment is run to see if PIMC with MinCwnd of 7 would be more unfair

to fragile flows that are very far away versus PI and PISA.

The number of Web objects transmitted in each group is shown in Table 5.10. Robust

flows with PIMC sends 0.3% more Web objects than PI and fragile flows with PIMC

45

transfer 5.7% of total Web objects, the same as PI’s and PISA’s. PIMC does not make

HTTP flow performance worse.

RTT PI (Object) PI(%) PISA(object) PISA(%) PIMC(Object) PIMC(%)

200 ms

400 ms

600 ms

800 ms

1000 ms

1200 ms

1400 ms

1600 ms

1800 ms

2000 ms

3606

2884

2387

2092

1783

1620

1462

1341

1210

1115

18.4

14.7

12.2

0.7

9.1

8.3

7.4

6.8

6.2

5.7

4614

3710

3019

2573

2305

2039

1835

1589

1472

1410

18.7

15.1

12.2

10.4

9.3

8.3

7.4

6.4

5.9

5.7

4152

3352

2852

2411

2101

1949

1734

1589

1447

1346

18.7

15.1

12.2

10.4

9.3

8.3

7.4

6.4

5.9

5.7

Total 19500 100.0 24566 100.0 22933 100.0

Table 5.10 The Number of Web Objects with of FTP RTT of 200 ms

RTT PI (Object) PI(%) PISA(object) PISA(%) PIMC(Object) PIMC(%)

200 ms

400 ms

600 ms

800 ms

1000 ms

1200 ms

1400 ms

1600 ms

1800 ms

2000 ms

3603

2841

2370

2078

1823

1623

1446

1316

1138

1121

18.6

14.6

12.2

10.7

9.4

8.3

7.4

6.7

5.6

5.7

4639

3635

2971

2600

2253

1966

1823

1626

1514

1375

19.0

14.8

12.1

10.6

9.2

8.0

7.4

6.6

6.2

5.6

4153

3380

2868

2413

2210

1926

1732

1583

1451

1331

18.0

14.6

12.4

10.4

9.5

8.3

7.5

6.8

6.2

5.7

Total 19359 100.0 24402 100.0 23047 100.0

Table 5.11 The Number of Web Objects with of FTP RTT of 2000 ms

46

Table 5.11 shows the experiment with 10 FTP flows with RTT of 2000 ms and 10

different groups of HTTP flows Each HTTP group has the same various RTTs as in

previous experiment. Fragile flows of PIMC have 5.7 %, the same as that of PI and do

not decrease the performance of fragile flows.

47

Chapter 6 Conclusions and Future Research

6.1 Conclusions

The majority of the traffic on the Internet is Web traffic, made up of short HTTP 1.0

connections that are short-lived flows. Since typical AQM schemes do not consider the

duration of TCP flows, dropping is more likely to cause retransmission timeouts and high

response time with short-lived flows. This thesis presents two AQMs, PISA (PI with

Short-lived flow Adjustments) and PIMC (PI with Minimum Cwnd) based on PI to

improve Web traffic performance. Using a cwnd source hint, PISA computes the ratio of

current cwnd to average cwnd and adjusts the drop probability based on the cwnd ratio.

Using cwnd as a minimum threshold, PIMC does not drop when a flow’s cwnd is small.

Simulations were conducted with a standard experiment setting and three other

experimental setting to provide heavy congestion to evaluate the performance of PISA

and PIMC versus PI and Drop Tail schemes.

The results of this thesis show that PISA performs better than PIMC and PI. Under

moderate congestion, PISA sends 22% more objects with a drop rate of 3.73

packets/second and PIMC transmit only 18% more objects with a drop rate of 2.62

packets/second. Under heavy congestion conditions, PI drops packets at the rate of 27.34

packets/second. Since PISA only drops packets at 22.97 packets/second and PIMC only

drops packets at 20.24 packets/second, PISA and PIMC are able to transmit HTTP

objects at a significantly higher rate. PISA sends 41 % more objects while PIMC

transmits 40 % more objects than PI. All of experiments show that PISA performs better

with HTTP flows than PIMC and PI by avoiding timeouts for packet drops. Thus, this

thesis recommends PISA for a HTTP flow friendly AQM.

6.2 Future Research

The basic algorithms of PISA and PIMC have been demonstrated in the simulation

topology with FTP flows and HTTP flows along with reverse traffic of CBR for all 500

seconds. The investigation and development of the simple Web traffic model in NS for

48

this research took much longer than was anticipated. Thus, this left much less time to

conduct experiments. The following is a list of possible directions for future research.

1. To further investigate the performance of PISA and PIMC in more complicated

network configurations.

2. To further refine PISA and PIMC by employing ECN. The expectation is that

ECN will only improve PISA and PIMC even more than this study showed.

3. To evaluate the adaptability of PISA and PIMC to sudden changes in traffic

profile. Rather than all flows starts at the same time and run together until the end

of simulation, sudden drops or increases in the number of flows should be

considered.

4. To refine the PISA algorithm for setting proper values of PISA’s parameter α,

which may need to be adjusted according to the number of flows.

5. To investigate the idea of using a variable MinCwnd in PIMC.

6. To investigate the period of PI drop probability computation.

7. To implement and study SA and MC with AVQ and REM.

8. To make object arrival times variable using exponential and other non-

deterministic distribution.

9. To enhance the simple Web traffic model to be more realistic in terms of multiple

number of objects per Web page and to consider container pages.

49

Bibliography

[ALL+01]S. Athuraliya, V. H. Li, Steven H. Low and Qinghe Yin, “REM: Active Queue

Management,” IEEE Network, Vol. 15, No. 3, May/June 2001, pp. 48 – 53.

[CJO01] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, "Tuning RED for Web

Traffic," IEEE/ACM Transactions on Networking, Vol. 9, No. 3, (June 2001), pp. 249-

264.

[CKS03] Félix Hernández-Campos, Kevin Jeffay, F. Donelson Smith, “Tracking the
Evolution of Web Traffic”, 1995-2003. MASCOTS 2003, pp 16-25

[CW97] D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet Delivery

Service”, IEEE/ACM Transactions on Networking, Vol. 6, NO. 4, August 1998, pp.362 –

372.

[FJ93] S. Floyd and V. Jacobson, "Random Early Detection Gateways for Congestion

Avoidance," IEEE/ACM Tractions on Networking, Vol. 1 No. 4, August 1993, pp. 397 –

413.

[GM01] L. Guo and I. Matta, "The War between Mice and Elephants," In Proceedings of

the 9th IEEE International Conference on Network Protocols, Nov. 2001.

[HCK02] M. Hartling, M. Claypool and R. Kinicki, "Active Queue Management for Web

Traffic," Technical Report WPI-CS-TR-02-20, Worcester Polytechnic Institute, May

2002.

[HMT+01] C. V. Hollot, V Misra, D. Towsley and W. Gong, "On Designing Improved

Controllers for AQM Routers Supporting TCP Flows," IEEE/INFOCOM, Vol. 3, April

2001, pp. 1726 – 1734.

50

[JA91] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley and

Sons, 1991.

[KS01] S. Kunniyur and R. Srikant, "Analysis and Design of an Adaptive Virtual Queue

(AVQ) Algorithm for Active Queue Management," ACM SIGCOMM, (San Diego

California, Aug. 2001), pp. 123-134.

[MB97] B.A Mah, “An Empirical Model of HTTP Network Traffic,” In Proceedings of

INFOCOM, pp. 592-600, Apr. 1997.

[NS201] ns-2 Network Simulator. http://www.isi.edu/nsnam/ns, September 2001.

[NS2HTTP] HTTP/1.0 traffic Generator for ns-2.

http://www.isi.edu/nsnam/ns/WWW.html, September 2001.

[PD00] L. L. Peterson and B. S. Davie, Computer Networks, a Systems Approach, 2nd

Ed., Morgan Kaufmann, San Francisco, 2000.

[WL00] Leon-garcia Windjaja, Communication Networks, 2nd Ed., Mc GrawHill, Boston,

2000.

[WW02] C. Williamson and Q.Wu, “A Case for Context-Aware TCP/IP,” 2002

	Worcester Polytechnic Institute
	Digital WPI
	2004-01-22

	Proportional Integrator with Short-lived flows Adjustment
	Minchong Kim
	Repository Citation

	Microsoft Word - thesis.doc

