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Abstract

Security for medical devices has gained some attractions in the recent years following some well-

publicized attacks on individual devices, such as pacemakers and insulin pumps. This has resulted

in solutions being proposed for securing these devices, usually in stand-alone mode. Medical

devices are however becoming increasingly interconnected and interoperable as a way to improve

patient safety, decrease false alarms, and reduce clinician cognitive workload. Given the nature of

interoperable medical devices (IMDs), attacks on IMDs can have devastating consequences. This

work outlines our e↵ort in understanding the threats faced by IMDs, an important first step in

eventually designing secure interoperability architectures.

A useful way of performing threat analysis of any system is to use attack trees. Attack trees

are conceptual, multi-leveled diagrams showing how an asset, or target, might be attacked. They

provide a formal, methodical way of describing the threats to a system. Developing attack trees

for any system is however non-trivial and requires considerable expertise in identifying the various

attack vectors. IMDs are typically deployed in hospitals by clinicians and clinical engineers who

may not posses such expertise. We therefore develop a methodology that will enable the automated

generation of attack trees for IMDs based on a description of the IMD operational workflow and list

of safety hazards that need to be avoided during its operation. Additionally, we use the generated

attack trees to quantify the security condition of the IMD instance being analyzed. Both these

pieces of information can be provided by the users of IMDs in a care facility. The contributions of

this paper are: (1) a methodology for automated generation of attack trees for IMDs using process

modeling and hazard analysis, and (2) a demonstration of the viability of the methodology for a

specific IMD setup called Patient Controlled Analgesia (PCA- IMD), which is used for delivering

pain medication to patients in hospitals.
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Chapter 1

Introduction

Recent years have seen rapid growth in the field of interoperable medical devices (IMDs) [2]. IMDs

are medical cyber-physical systems that enable e↵ective patient care by coordinating patient side

medical devices in a clinically meaningful manner. IMDs have the potential to provide many

clinical benefits such as a decrease in false alarms and real-time medication interaction checking [2].

Given the safety-critical nature of the IMDs, understanding the security threats that IMDs can be

subjected to is essential. In the IMD context each threat has the potential to cause physical harm

to the patients either in the short-term (untimely actuation) or long-term (incorrect diagnosis and

treatment).

A standard useful way to performing security analysis of any system is to use attack trees.

Attack trees are a systematic way of characterizing the security of a system based on varying

attacks [30]. They describe the attacks on a system by first identifying the goal of the attack as

a root node of a tree. The way the adversary reaches this goal interactively and incrementally is

expressed using the intermediate leaf nodes in the three. Each path in the attack tree from the

leaf node all the way to the root node describes a unique attack on the system [23]. The advantage

of attack trees is that it provides a graphical view of the threats on the system that can be easily

understood and acted upon by engineers. However, identifying the security threats to any system

using attack trees requires considerable expertise in threat analysis. IMDs are typically deployed

in hospitals by clinicians and clinical engineers who may not posses such expertise. Therefore, it

is imperative to develop solutions that can generate attack trees for IMDs automatically.

Methods for automatically generating attack trees has been studied before, mostly in the con-
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text of network security [28], [31]. The typical approach is to develop a model of the system using

formal methods tools (e.g, SPIN) and to generate attack trees from the resultant specification.

These approaches were designed for security experts who manage large-scale enterprise networks

and require considerable knowledge of formal methods. Using such approaches for IMDs is not very

practical, as it essentially replaces the need for area of expertise (i.e, threat analysis) with the need

to develop expertise in another area (i.e., formal methods). As IMDs are deployed on-demand and

managed by clinicians and clinical engineers in a care facility, existing approaches for attack tree

generation may not be viable. We therefore need a methodology that is easy for clinical engineers

and clinicians to understand use.

In this work, we present a methodology for generating attack trees for IMDs that takes two

inputs: operational workflow of the IMD and a hazard analysis of the IMD in question. To describe

the operational workflow of the IMD, we use a process modeling tool. Hazards can be thought

of as system states that are inherently unsafe for the user. Hazard analysis involves identifying

system states that will eventually lead to physical harm for the patient. Both these inputs can

be easily described by the clinical sta↵, as opposed to an abstract mathematical representation of

the workflow that formal methods based approaches require. Once the process model is built and

hazards identified, we generate a number of faults trees for the system with the goal of enabling

the hazards. A fault tree is a top down deductive failure analysis in which an undesired state

of a system is analyzed using Boolean logic to combine a series of lower level events. Each fault

tree generated in the last step indicates a path to one specific hazard. We therefore combine the

hazards in various ways to create an attack tree that meets a specific attack goal. Attack trees

are similar to fault trees except they connect one or more attack (instead of faults) toward an

attack goal (i.e., over-infusion of medication). Once the attack tree is available, we quantify the

IMD’s security condition that describes how vulnerable the IMD is. This helps us identify the most

vulnerable component(s) throughout the whole IMDs system. In order to validate the e↵ectiveness

of our methodology, we apply it to a specific IMD setup for performing pain management using

patient controlled analgesia (PCA). There are couples of reasons that make us choose PCA as

our case-study. First, PCA is responsible for a large number of treatment errors in real hospital

settings. One study estimated that there are between 600,000 to 2,000,000 million adverse events

in U.S. hospitals every year related to PCA [40]. Second, another research indicates that patient

controlled analgesia pumps are one of the most insecure medical devices ever seen [8]. It is therefore
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necessary to understand PCA operations and find a way to improve its security. Third, security

has to be accurately guaranteed in medical device environment. Without security, patient safety

might be severely a↵ected. Finally, PCA-IMD security has never systematically been explored.

In addition, we also developed an IMD-Security Analysis Tool (IMD-SAT). IMD-SAT is an

application we developed to help a user understand and go through our methodology. IMD-SAT

simulates our methodology and is integrated into a software application for other people to use.

Given the potential importance of IMDs, they have never been systematic analyzed in terms

of security. IMD security is very important for overall reasons. First, IMD transfer and process

sensitive patient health information. If the data from within IMDs gets disclosed, patients’ privacy

is in jeopardy. Second, without security, IMD operation might inadvertently cause patient harm.

For example, consider on IMD for delivering insulin to Type-1 diabetics. However, if adversaries

could alter the infusion rate at the insulin pump in the IMD, an episode of diabetic ketoacidosis

might occur due to lack of insulin [37]. This can lead to severe health issue including death. Fur-

thermore there are additional security issues related to medical device connectivity. Homogeneous

device environments facilitate rapid spread of computer malware; medical devices often operate

with commercial central processing units, operating systems, or o↵-the-shelf software, which place

them at risk of cyber threats [38]. Therefore it is reasonable to believe that IMD security is very

significant and has to be understood and enforced.

1.1 IMDs Architecture

Before we delve into the details of this work, it is useful to present a short overview of interoperable

medical devices and their basic deployment architecture. The predominant standard in enabling

medical device interoperability is the integrated clinical architecture (ICE) standard, which was

created to enable diverse medical devices to talk to one another [11]. ICE was designed to act as a

middleware to enable interaction of legacy, stand-alone medical devices and the applications using

the medical devices. It has the potential to provide anything from data aggregation to closed-loop

control over the patients health. The architecture of ICE typically consists of three entities (see

Figure 1.1):

• A collection of Medical Devices on or around a single patient that can perform monitoring

and actuation.
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• The Supervisor which receives data from the various medical devices, processes it, and initi-

ates action from the medical devices. The Supervisor runs clinical applications (referred to

as apps from now on) that use the connected devices to support a clinical scenario selected

by the caregiver.

• The Network Controller which interfaces with one or more medical devices and the supervisor.

It is responsible for collecting data from the individual devices. It also connects the entire

setup to an external network, such as the Healthcare Information System (HIS). The network

controller also records all the actions of the entire system in a data logger (not shown) for

future analysis.

Figure 1.1: ICE Architecture

Normally ICE supervisor and network controller are combined together to a central processing

unit called the coordinator. This coordinator has following functionalities: 1) receive medical data

from medical devices, 2) process received data and detect if anything within IMD goes wrong, 3)

send command to control each individual medical device, and 4) raise alarm to inform clinicians

under emergent circumstances.

1.2 IMDs for Patient Controlled Analgesia

Patient Controlled Analgesia (PCA) uses an infusion pump to allow patients in pain to admin-

ister their own pain relief. The infusion pumps are programmable by the clinicians. If they are

programmed and functioning as intended, the pumps are designed to prevent overdose of the pain
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medication. Figure 1.2 shows a example is real hospital PCA. IMDs could be used to automate

PCA safety management by setting up a PCA-IMD. After PCA-IMD setup is successfully de-

ployed, clinician types in relevant parameter (medication does needed, patient previous record

etc.) to start infusion pump. During this treatment process, all medical devices keep sending data

to central coordinator. Coordinator processes received data to monitor that patient. However, if

the coordinator finds out the patient is not behaving well, it will immediately command infusion

pump to stop, raise an alarm and wait for clinician. During this entire process, IMD guarantees

PCA safety by real-time checking. It does not involve with any clinicians activities. The following

shows detail about three medical components.

Figure 1.2: Patient Controlled Analgesia Setting Example

For a typical PCA-IMD hospital setting, it consists of three major components: an analgesic

infusion pump, a capnography and a pulse-oximeter. Here are some brief discussions about those

medical devices.

Analgesic infusion pumps (often referred to as PCA pumps) are electronic micro processing

machines which can be programmed to deliver a prescribed amount of medication on demand,

at specified intervals, by activation (pressing) of a button. Figure 1.3 shows an example of PCA

pump.

Capnography is a medical device that helps monitor the concentration or partial pressure of

carbon dioxide (CO2) in the respiratory gases. Its main development is to be used as a monitoring

tool for use during anesthesia and intensive care. It is usually presented as a graph of respiratory

CO2 (measured in millimeters of mercury, “mmHg”) plotted against time, or, less commonly, but

more usefully, expired volume. The capnography is a direct monitor of the inhaled and exhaled
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Figure 1.3: Patient Controlled Analgesia Pump Example

concentration or partial pressure of CO2, and an indirect monitor of the CO2 partial pressure in

the arterial blood. Figure 1.4 shows a example of capnography in reality.

Figure 1.4: Patient Controlled Analgesia Capnography Example

Pulse-oximetry is a non-invasive device to monitor human’s oxygen O2 saturation. It is a sensor

device to attach on a thin part of the patient’s body, usually a fingertip or earlobe, or in the case

of an infant, across a foot. The device passes two wavelengths of light through the body part to

a photo detector. It measures the changing absorbance at each of the wavelengths, allowing it to

determine the absorbance due to the pulsing arterial blood alone, excluding venous blood, skin,

bone, muscle, fat, and (in most cases) nail polish. Figure 1.5 shows a example of pulse-oximeter.

When the whole system is successfully deployed, clinician programs above the three medical
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Figure 1.5: Patient Controlled Analgesia Pulse Oximeter Example

devices with patient-related information (medication dose needed, patient previous record etc.).

Then the clinician starts to load safety app on coordinator, this app contains work logic of coordi-

nator. During this treatment process, all medical devices keep sending data to central coordinator.

Pulse-oximeter shows the oxygen level, capnography indicates carbon dioxide level in blood while

infusion pump sends medication does injected so far. The coordinator receives and triggers the

safety app to process these data in order to monitor that patient. However, if coordinator finds out

the patient is not behaving well, it will immediately command the infusion pump to stop, raise an

alarm and wait for clinician. During this entire process, IMD guarantees PCA safety by real-time

checking.

1.3 Contributions

To the best of our knowledge, this is the first e↵ort in providing attack tree generation and

quantification for IMDs. The main contributions of this thesis are as follows:

1. We develop a methodology for automatically generating attack trees in the context of inter-

operable medical devices (IMDs) used for PCA. We use process modeling, hazard analysis,

and fault tree analysis to generate a comprehensive attack tree for IMDs.
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2. We then use the attack trees generated to quantify the security condition of the IMD. The

quantification enables us to compare the security condition of di↵erent configuration of the

same IMD.

3. We also implement a tool called IMD-Security Analysis Tool (IMD-SAT). This tool enables

users to construct their own attack trees for their target systems, and quantify security

condition for that system.

1.4 Thesis Structure

This thesis report will be organized as follows: Chapter 2 discusses about all prerequisite knowledge

of this work, including techniques and tools being used in our work. Chapter 3 presents the system

model, adversary model for PCA-IMD. Also we discuss related work about automated attack tree

generation and process modeling etc. In Chapter 4 we talk about our methodology, and introduce

each step in detail. In order to make the discussion of the methodology concrete, we describe it by

illustrating how it works for an IMD setup for enabling PCA-IMD. In Chapter 5 we analyze the

results and share the lessons from our approach. Chapter 6 shows our conclusions as well as some

future work.
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Chapter 2

Background

In this chapter we provide an overview of the principal concept plus tools that we use in this thesis

work. In particular we discuss process modeling, fault trees and attack trees.

2.1 Process Modeling

Process modeling is a technique that has been widely used to describe real-world processes. A

model is an abstract representation of reality that excludes much of the world’s infinite detail. The

purpose of a model is to reduce the complexity of understanding or interacting with a phenomenon

by eliminating details that do not influence it much. Therefore a model reveals what its creator

believes is important in understanding the system. Mapping steps from a real system to a model

is called process modeling [7].

From a theoretical point of view, process modeling explains the key concepts needed to describe

what happens in the development process, on what, when it happens, and why. From an operational

point of view, process modeling is aimed at providing guidance for system designers and application

developers. In general, process modeling has many uses [7]:

• Facilitate human understanding of a phenomena: It requires that a group of people be able

to share a common representational format.

• Process improvement: It defines the desired process and how they should/could/might be

performed. If the behaviors of desired process are di↵erent from expected, then it demon-

strates some aspects within the process should be improved.
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• Process management: It keeps track of what actually happens during a process run.

• Automated execution: It provides automated tools for manipulating the process translations.

Many process-modeling tools are available, such as little-JIL, ARIS Express and BPMN. Little-

JIL is the visual process modeling language we choose to use for our work [26]. Little-JIL is chosen

as the process definition language in the implementation of our process analysis framework because

it is well suited to capture the full complexity inherent in human-intensive processes. It provides

support for abstraction, composition, and restricted, well-formed control flow constructs that are

able to capture the rich control models needed for human behaviors. It also has extensive support

for exception handling, a major aspect of many processes, particularly human-intensive processes.

2.1.1 Process Modeling with Little-JIL

In our research, we choose Little-JIL process definition language [4] to define processes. Little-JIL

provides supports for the complex behaviors that often arise in processes, such as concurrency

and exception handling, and has well-defined semantics that facilitate the kinds of analysis that

we want to apply. In addition, Little-JIL has a visual representation that can be relatively easily

understood by domain experts, including those outside of computer science.

Little JIL is a graphic language used to define real-world processes [15]. It is extremely expres-

sive in capturing real-world processes and has well-defined semantics. We will provide a detailed

introduction to little-JIL, a visual process modeling language in this section [26].

A Little-JIL process definition consists of three components, an artifact specification, a resource

specification, and a coordination specification. The artifact specification contains the items that

are the focus of the activities carried out by the process. The resource specification specifies the

agents and capabilities that support performing all activities. The coordination specification ties

these together by specifying which agents and supplementary capabilities perform which activities

on which artifacts at what time. A Little-JIL coordination specification has a visual representation,

but is precisely defined by finite state automata, which makes it amenable to definitive analyses.

Several features of Little-JIL that make it suitable compared with other process languages are

(1) using abstraction to support scalability and clarity, (2) using scope to make step parameter-

ization clear, (3) faciliting for specifying parallelism, (4) capabilities for dealing with exceptional

conditions, and (5) clarity in specifying iteration.
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Figure 2.1: Little-JIL Step Example

A coordination specification consists of hierarchically decomposed steps (see Figure 2.1), where

a step represents a task to be done by an assigned agent [5]. Each step has an interface specifying

the input/output artifacts, the required resources and the thrown exception. A step with no sub-

steps is called a leaf step and represents an activity to be performed by an agent, without any

guidance from the process. Non-leaf Little-JIL steps can be decomposed into two kinds of sub

steps, ordinary sub steps and exception handlers. Ordinary sub steps define how the steps are

executed and connected to their parents by edges that may be annotated by specifications of the

artifacts that flow between parents and sub steps and also by cardinality specifications. Cardinality

specifications define the number of times the sub step is instantiated, and may be a fixed number,

a Kleene * (greater than or equal to 0), a Kleene + (greater than or equal to 1), or a Boolean

expression (indicating whether the sub step is to be instantiated). Exception handlers define how

exceptions thrown by the step descendants are handled [5].

A non-leaf step has a sequencing badge (an icon on the left of the step bar; e.g., the right

arrow in Figure 2.1) that defines the order of sub step execution. For example, a sequential step

(right arrow) indicates that sub steps should execute from left to right. A parallel step (equal

sign) indicates that sub steps execute in any (possibly interleaved) order, although the order may

be constrained by such factors as the lack of needed inputs. A choice step (circle slashed with a

horizontal line) indicates a choice among alternative sub steps. A try step (right arrow with an

X on its tail) indicates the sequence in which sub steps are executed as alternatives. A Little-JIL

step can be optionally preceded or succeeded by a prerequisite, represented by a down arrowhead

to the left of the step bar, or a post-requisite, represented by an up arrowhead to the right of the

step bar. Pre-requisites check if the step execution context is appropriate before execution of the

step, and post-requisites check if the completed step execution satisfied its goals. The failure of a
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requisite triggers a corresponding exception [4].

Channels are message passing bu↵ers, directly connecting specified source step(s) with specified

destination step(s). Channels are used to synchronize and pass artifacts among concurrently

executing steps. In a Little-JIL process, each step is defined exactly once. A step, however,

may be used multiple times. These uses are represented by step references. A step reference is

represented as a step bar without arrowheads that represent prerequisite and post-requisite.

Although originally developed to define software development and maintenance processes,

Little-JIL can also be used to define process in other domains. For example, it has been ap-

plied to define medical processes [6], labor-management negotiation processes [24], and scientific

data processing processes [20]. The work in each domain has exposed several inadequacies of

Little-JIL, such as the lack of good support for specifying timing constraints and transactions, but

has confirmed the general applicability of this language.

2.2 Hazard Analysis

A human-intensive process consists of tasks that are performed by various agents, including hard-

ware devices and human agents. The process modeling technique discussed in the previous section

primarily describes the way a real-world system operates. It assumes that the processes are done

correctly and is concerned with the ordering of events occurred at some events, as specified by

the given temporal properties. Due to hardware failure or human error, however, faults may be

introduced during the execution of a task. If not detected and corrected, such a fault may propa-

gate to the successors without violating those temporal properties and eventually lead to hazards.

Hazard is a term used in the system safety analysis community. It is defined as “a state or set

of conditions of the system that, together with certain other conditions in the environment, will

lead inevitably to an accident” [20]. The accident usually results in harm to people or damage to

property. For example, a hazard for IMD process could be “the alarm unit to alert clinician is

broken.” This hazard could prevent clinician from knowing patients’ situations and eventually lead

to patients’ deaths. Developing such a safety critical process also requires to prevent or control

potential hazards. This can be achieved by incorporating various mechanisms to prevent or control

faults that could lead to the hazards. For instance, a failure-resistant agent could be assigned to

some tasks where major faults could occur. Additionally, consistency checks could be added to
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well-chosen places in the process to stop the propagation of faults. To add such mechanisms into

the process, the process developers need to identify the potential hazards that could occur in the

process, as well as the faults that could lead to those hazards. Due to resource limitations or other

constraints, the process developers are usually only able to apply the fault prevention mechanisms

to the most important faults, which requires assessing and prioritizing the faults. This kind of

analysis (i.e. identifying and assessing hazards and faults) is called hazard analysis in the system

safety analysis community.

Hazard analysis is used as the first step in a process used to assess risk. The result of a hazard

analysis is the identification of di↵erent type of hazards. Seldom does a single hazard cause an

accident or a functional failure. More often an accident or operational failure occurs as the result

of a sequence of causes. The main goal of hazard analysis is to provide the best selection of means

of controlling or eliminating the risk. The term is used in several engineering specialties, including

avionics, chemical process safety, safety engineering, reliability engineering and food safety [5].

Hazards may be realized or unrealized. A realized hazard has happened in the past and

can therefore be identified from experience. An unrealized hazard is a potential for a hazardous

situation that has not happened in the past but can be recognized by analyzing the characteristics

of an environment or failure modes of equipment items. Hazard analysis techniques include:

• Function Failure Analysis

• Event Tree Analysis

• Failure Modes and E↵ects Analysis

• Fault Tree Analysis

In our work, we choose fault tree analysis as our hazard analysis tool. We will talk more about

fault tree analysis tool in the next section.

2.3 Fault Tree Analysis (FTA)

During execution, faults might occur in components of a system due to many possible reasons: soft-

ware failures, human errors, etc. Those faults might propagate through the system and eventually

cause hazards to occur. In the context of security analysis, a hazard refers to an unsafe/unexpected
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state of the system that will inevitably lead to a serious accident if certain conditions in the en-

vironment are present. In order to prevent the potential hazards from happening, one needs to

understand what kind of hazards could potentially occur in the system and how they could happen.

A variety of hazard analysis techniques have been developed to identify potential hazards, assess

their e↵ect, and identify and evaluate the causal factors related to the hazards [20].

Fault Tree Analysis is a hazard analysis technique used to systematically identify and evaluate

all possible causes of a given hazard. It is a top down, deductive analysis in which an undesired

state of a system is analyzed using Boolean logic to combine a series of lower-level events.

This analysis method has been widely used in many di↵erent industries. It is mainly used

in the fields of safety engineering and reliability engineering to understand how systems can fail,

to identify the best ways to reduce risk or to determine (or learn about) event rates of a safety

accident or a particular system level (functional) failure. FTA is used in the aerospace, nuclear

power, chemical and process, pharmaceutical, petrochemical and other hazard prone industries;

but is also used in fields as diverse as risk factor identification relating to social service system

failure. FTA is also used in software engineering for debugging purposes and is closely related to

cause-elimination technique used to detect bugs.

2.3.1 Fault Tree

Given a hazard, a fault tree is produced to show all the parallel and sequential combinations of

events that could lead to the hazard. The basic elements of a fault tree are events and gates.

Figure 2.2: Fault Tree Elements

Events are used to represent faults, such as component failures, human errors, or other pertinent

conditions in the system or environment. Figure 2.2 shows symbols of several commonly used events

and gates. Basic events are basic initiating faults or conditions. Undeveloped events are events
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that are not developed any further, either because necessary information for deriving the fault tree

leading to these events is unavailable or because these events are considered to have insignificant

consequence. Basic events and undeveloped events are also called primary events because they

require no further development. As opposed to primary events, intermediate events are events

that need to be developed. Investigating the system to identify the immediate, necessary, and

su�cient events that cause this event, and then connecting those events to it via a proper gate

develop an intermediate event. In a fault tree, events are connected using gates. Each gate connects

one or more input events to a single output event. The output event of an AND gate occurs if all

of the input events occur. While the output event of an OR gate occurs if any of the input events

occurs. Figure 2.3 shows an example fault tree. Complete explanations of three di↵erent gates

could refer to the following:

• AND gates: the output event occurs if and only if all the input events occur which implies

that the occurrence of all the input events causes the output event.

• OR gates: the output event occurs if and only if at least one of the input events occur which

implies that the occurrence of any of the input events causes the output event.

• NOT gates: the output event occurs if and only if the (only) input event does not occur.

Figure 2.3: Fault Tree Example
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2.4 Attack Tree

Attack trees are conceptual, multi-leveled diagrams showing how an asset, or target, might be

attacked. It provides a formal, methodical way of describing the security of a system.

Similar to many other types of trees (e.g., fault trees), the attack trees are usually drawn

inverted, with the root node at the top of the tree and branches descending from the root. The

top or root node represents the attacker’s overall goal. The nodes at the lowest levels of the tree

(leaf nodes) represent the activities performed by the attacker. Nodes between the leaf nodes and

the root node depict intermediate states or attacker sub-goals. Although the attacker may gain

benefits (and the victim su↵er impacts) at any level of the tree, the impacts usually increase at

higher levels of the tree. Non-leaf of sub-goal nodes in an attack tree are designated as either AND

or OR nodes, and usually represented by the familiar Boolean Algebra AND/OR shapes. AND

nodes represent processes or procedures. All of the activities or states represented by the nodes

immediately beneath an AND node must be achieved to attain the goal or state represented by

the AND node. OR nodes represent alternatives. If any of the nodes directly beneath an OR are

attained then the OR state is also attained. Certain combinations of leaf level events will satisfy

the tree’s AND/OR logic and result in one or more paths leading to the root goal of the tree.

These sets of events are known as attack scenarios [29].

Figure 2.4: Attack Tree Example

Figure 2.4 is about classic attack tree model, however in our work, we might need to expand

or update the attack tree to meet our requirements. The biggest change is that each attack leaf

may include one or more “defense nodes” that are direct successors of the attack leaf. Defense

nodes provide descriptions of countermeasures. In Figure 2.5 and 2.6, the box labeled c1 is a

countermeasure for attack leaf on the left side. An attack leaf can be an element of di↵erent
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Figure 2.5: Attack Leaf With “AND” Figure 2.6: Attack Leaf With “OR”

intrusion scenarios, depending on the node connectivity associated with it.
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Chapter 3

System Model and Related Work

In order to make the discussion of the methodology concrete, we describe it by illustrating how

it works for an IMD setup for enabling patient controlled analgesia, referred to as PCA-IMD (see

Figure 3.1). In this section, we describe the system model of the PCA-IMD setup followed by a

description of the adversary who is expected to attack this system. The adversary model essentially

scopes the eventual attack tree that is generated by our methodology.

3.1 PCA-IMD System Model

The aim of PCA-IMD is to allow patients to inject themselves with pain medication (e.g., morphine)

in a safe manner. PCA-IMD consists of an infusion pump programmed to infuse pain medication

(e.g., morphine) to the patient at a specific (basal) rate in a hospital or care-facility. As pain

medications tend to suppress respiration, we also have a pulse-oximeter measures level of O2 in

the blood) and a capnograph (measures level of CO2 in the blood) to determine how the patient

is responding to the pain medication. The pulse-oximeter and the capnograph are collectively

referred to as sensors, in the rest of the paper (see Figure 3.1). The details of the network

controller and supervisor are abstracted out into a coordinator entity in our analysis to keep the

discussion simple. The coordinator (through the network controller) interfaces with the hospital

electronic health record (EHR) system. It can update and query the EHR when needed. For

example, a medical application running on the coordinator can be used to perform a sanity check

on the nurse’s programming of the infusion pump based on medication orders in the EHR.
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PCA-IMD is configured for each patient according to his or her individual needs. This means:

(1) deploying the pump, oximeter and capograph on the patient, (2) scanning the patient id for

indexing the patient data into hospital EHR system, (3) connecting the three medical devices to

the network controller and the supervisor, (4) deploying an app on the supervisor for enabling

safe delivery of pain medication, and (5) monitoring the patient’s well-being during the treatment.

The caregiver monitors the patient through the patient display (dashed arrow in Figure 3.1).

The coordinator receives status updates from the individual medical devices, and it displays the

information to the caregiver via the patient display. If the blood oxygen level of the patient goes

below a certain threshold, a medical application on the coordinator will raise an alarm to the

caregivers. The infusion pump and the sensors are programmed directly by the caregiver using a

computer-on-wheels PC based on the patient status information on the patient display, which the

coordinator provides.

In this typical setting, the ultimate threat we would like to consider is patient being over-infused.

As long as patient does not receive excessive doses of medicine, patient will not be killed by an

attacker, thus over infusion should be considered to be the highest priority attack.

Figure 3.1: System Model for PCA-IMD Setup
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3.2 PCA-IMD Adversary Model

In our interoperability setup, we consider the coordinator and the associated logging and alarms

to be the only members of the trusted computing base (TCB). These components are trusted (they

do not have malicious intent) and trustworthy (they will operate as expected). The dashed box in

Figure 3.1 signifies the TCB in our system model. Further, we assume that the caregiver is not

necessarily trustworthy, in that the caregiver can make mistakes in programming the devices, but

does not have malicious intent. We further assume that the infusion pump in our system model is

verifiably safe as described in [14].

For our work, we consider active adversaries who may interfere with communication links, as

per the Yao-Dolev model of an adversary [9]. In addition, the adversary may also physically alter

the infusion pump, the coordinator, the pulse oximeter, and capnograph, and their individual

settings, respectively. Another possible situation is that attackers can impersonate the caregiver

to send malicious commands to kill the patient if attackers have caregivers’ credentials. Note

that, while adversaries may simply inject the patient directly and induce a medical emergency, we

consider such attacks outside the scope of interoperable medical device security. Finally, we only

consider adversaries whose attack goal is over-infusion (for pain medication under-infusion does

not hamper patient safety) through the infusion pump in the PCA-IMD setup.

3.3 Related Work

Before we present our work, it is necessary to take a look at the achievements that have been done

and those that have not been done in all the domains our work uses. In that case, we could learn

from other researches’ work to enhance ours.

3.3.1 Security Analysis with Attack Tree

Using attack trees for analyzing the security has been studied before for a variety of systems.

Prominent examples include Supervisory Control And Data Acquisition (SCADA) [34], Cyber-

Physical Systems [19], and interoperable medical devices [33]. However, none of these approaches

provide any systematic means of generating the attack trees. Their focus rather is on using the

generated attack trees for detailed analysis of the system.
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3.3.2 Automated Attack Tree Quantification

Chee-Wooi Ten et al. [34] came up with a quantification mechanism based on attack trees and

applied it to SCADA systems to validate the e↵ectiveness of the approach. However, there are

several issues with this approach. First of all, this paper provides an attack tree without demon-

strating the particular process of generating that attack tree. Readers have no clues how to get

an attack tree like that simply based on a SCADA system. Secondly, the approach proposed by

this paper, only helps assess the vulnerability conditions for one particular SCADA system. The

author does not demonstrate whether this approach has the ability to be extended to other similar

systems. However, in this work, our methodology will help eliminate the above issues.

What’s more, Xie et al. [41] used attack trees to focus on Cyber-Physical System security

analysis. However, through the whole paper, they neither helped prove their methodology nor

provided any validation examples. Therefore, the results of this work are not quite convincing.

Robert et al. [1], their work tried to consider how to identify, monitor and estimate risk impact

and probability for di↵erent smart grid stakeholders. There are many other research papers that are

very similar to this paper; all these approaches require considerable knowledge of formal methods

and model checking which IMD users, who are domain experts in healthcare systems, may not

possess.

3.3.3 Automated Attack Tree Generation

Stephane Paul et al. [25] find their own way to construct attack tree based on given system model.

They also validate their own approach by running a example. However, the process is manually

and is very unlikely to be replicated in practice. There are a few other commercial products

related to automated attack trees construction. The two most significant ones are SecurITree [22]

and AttackTree+ [18]. However, none of these tools support the automated construction of attack

trees. The scientific community is engaged in the construction of attack graphs [21] and [3].

However, attack graphs essentially focuses on attacker attempts to penetrate well-defined systems,

rather than addressing medical device systems, especially when poorly or partially defined.

Some research papers do address this similar issue. For example, [36] and [27] propose formal

approaches to generate attack trees, respectively based on system goals, and security policies.

These studies can be seen as upstream complements, but they also require specific frameworks.

Our approach attempts to base most of its attack tree extraction on an industrially used framework.
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3.3.4 Process Modeling and Model Checking

Huong et al. [26] described a systematic approach for incrementally improving the security of

election processes by using a model of the process to develop attack plans and then incorporating

each attack plan into the process model. This could help determine whether or not the attack plan

can be completed successfully. This paper takes advantage of formal methods to improve system

security in a more consistent way. The tools and technologies associated with this paper turn

out very useful and could be incorporated into our work. Unfortunately, this paper has several

limitations as well. The authors did not quantify the security condition for the voting process,

therefore there is no way for users to value the e�ciency of this approach. In other words, they

failed to measure security conditions.

In [28], model checking is applied to the analysis of system security for a long time. This paper

uses network system as an example. Known vulnerabilities on network hosts, connectivity between

hosts, initial capabilities of the attacker are described as states and exploits as transitions between

states. This model is given to a model checker as its input and the reachability in terms of given

goal states is given as a query. The model checker then produces a counterexample if a sequence

of exploits can lead to goal states. In [31] and [12], model checking is used for a di↵erent purpose,

that is to enumerate all attack paths. A modified model checker is used to take as input the finite

state machine created from network information. The model checker provides all counterexamples

to a query about the safety of the goal states. Those are essentially the possible attack paths.
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Chapter 4

Methodology

An overview of the methodology for attack tree generation is shown in Figure 4.1. It has four

elements. First, the user (deployer) of the IMD takes an abstract description of the workflow

of IMD and develops a process modeling representation for it. This representation essentially

describes the operation of the IMD, which in our case is PCA-IMD. Once the process model is

developed, the IMD user identifies the various hazards that can occur due to the operation of the

system. The hazards are essentially unsafe states of the IMD, which can harm the system itself

or the user. In our case the unsafe states of interest with respect to hazard analysis are those that

eventually lead to over-infusion of pain medication when using PCA, our attack goal. Given the

hazards that lead to over-infusion and the process model of the IMD, we derive several fault-trees

for the system. The fault-trees essentially provide a representation of the means by which the

hazards can be realized due to faults within the system. Once the fault-trees have been extracted,

we combine them in a meaningful fashion to generate a global attack tree for the IMD setup such

that the root node of the tree is the attack goal. Finally, we construct a countermeasure database

to prevent all kinds of attacks that could happen in IMD specifically. We then use the attack

trees generated to quantify the security condition of the IMD given countermeasure database. The

quantification enables us to compare the security condition of di↵erent configuration of the same

IMD. The rest of the section describes these steps in more detail.
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Figure 4.1: Attack Tree Generation Methodology

4.1 IMD Workflow Description

The first step in our approach is to use process modeling to describe the workflow of the IMD. To

model the workflow we use a tool called Little-JIL [5]. Little JIL provides a graphical language

used to define real-world processes. It is very expressive in capturing the nuances of the workflow

and has well-defined semantics. Figure 4.2 shows the coordination specification of our PCA-IMD

setup defined in Little-JIL. A Little-JIL process definition consists of three components, an artifact

specification, a resource specification, and a coordination specification. The artifact specification

contains the items that are the focus of the activities carried out by the process. In our case

this means the information exchanged between the various entities PCA-IMD e.g., Ox Ctrl (the

settings for pulse-oximeter) or Cap Data (the output of the capnograph). The resource specification

describes the agents and capabilities they have to execute the workflow. For example, the caregiver,

coordinator, capnograph etc. Finally, the coordination specification ties everything together by

specifying which agents and supplementary capabilities perform which activities on which artifacts

at which time(s). This is what is essentially represented in Figure 4.2.

In describing the operational workflow of the PCA-IMD using process modeling we tend to be

end-to-end, beginning at the time when the devices in the IMD are deployed around the patient all

the way to dismantling the PCA-IMD. For space reason we do not describe the entire specification,
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Figure 4.2: Little-JIL-Based Process Modeling of PCA-IMD Workflow

rather only some of the important modeling elements. The root step Interoperable Medical Device

System is a sequential step containing three sub-steps that need to be carried out in an order

from left to right. This means that the left-most sub-step Caregiver Initializes IMD Process

is executed first. Caregiver Initializes IMD Process is also a sequential step (as indicated by

the unidirectional blue arrow in the box representing the step), which means each of its sub-

steps Caregiver scans barcode to generate Patient-ID, Caregiver scans barcode to generate Device

Type and EHR database checks Patient ID matches Device Type have to execute in order for it to

complete. The step Capnograph ... generates Cap Data, on the other hand, is a parallel step ((as

indicated by the bidirectional blue arrow in the box representing the step) where each of its three

sub-steps are expected to execute concurrently. During the execution, each Little-JIL step has an

artifact declaration defining the artifacts it will be accessing or providing. Artifacts are passed

through the coordination hierarchy between steps and their sub-steps. For example, Caregiver ...

generates Ox Ctrl step will produce an artifact named Ox Ctrl. Caregiver Receives Patient-Out

will receive an artifact named Pump-Out. Finally, for each of these steps, exception handlers are

defined (as indicated by the red “X” in the box representing the step), which are thrown when

the inputs to a certain step are not defined. For example, in Caregiver scans barcode to generate

25



Patient ID, if Patient ID is not in the EHR, then exception Patient ID Unavailable is thrown.

4.2 Hazard Analysis and Fault Tree Extraction

Once the process modeling is complete, we derive fault-trees for it. The fault-trees represent the

various ways in which the system being modeled can fail. In our context, a hazard is the occurrence

of unsafe/unexpected states within the system that will inevitably lead to patient harm. In the

PCA-IMD setup all the hazards essentially focus on preventing over-infusion of pain medication

to a patient. Table 4.1 shows the list of possible hazards considered for the PCA-IMD that may

cause over-infusion. We derive a fault-tree for each of these hazards. Fault-trees are essentially a

systematic way to identify and evaluate all possible causes for them. A fault-tree consists of two

basic elements events and gates. At the top (root) of the fault-tree is the hazard. In the fault-tree,

intermediate events are expanded further, and leaf events are not. Events are connected to each

other by Boolean-logic (AND, OR and NOT) gates [5].

Table 4.1: Possible Hazards in PCA-IMDs Leading to Over-infusion

No. Possible Hazard Description
1 Patient ID scanned is Erroneous
2 Device Type scanned is Erroneous
3 Device Type match withPatient ID Erroneous
4 Cap Data Erroneous
5 Ox Data is Erroneous
6 Pump Out is Erroneous
7 Patient Out is Erroneous
8 Care Out is Erroneous
9 EHR Data In is Erroneous
10 EHR Data Out is Erroneous

We again use the Little-JIL modeling tool, which takes in as inputs a list of hazards along

with the process model to generate the fault-trees [5]. To derive a fault-tree, a given hazard

is represented as an intermediate event called the TOP event. Starting with a fault-tree that

only has the TOP event, the fault-tree derivation procedure expands the fault-tree by developing

intermediate events in it. An intermediate event is developed by analyzing the process model to

identify the immediate, necessary, and su�cient events that cause this event, and then connecting

those events to it via a proper gate. The new events may also be intermediate events that need to

be developed further. The derivation procedure terminates when no intermediate events exist in

the fault-tree that can be described further [5].
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Consider the following example of the aforementioned fault-tree extraction process. One class

of the requirements is that patient medical data collected by the sensors should never be modified,

as this might mislead the caregiver who can then incorrectly program the infusion pump leading

to over-infusion. In this regard, we define a hazard EHR Data In is Erroneous, which describes

the situation when the EHR data sent to the caregiver detailing the current and the past state

of the patient is incorrect. Using this hazard definition, we wish to describe various scenarios

during the operation of the PCA-IMD that may lead to the EHR being modified or the data being

corrupted during transit. Figure 4.3 shows the fault-tree generated for the hazard EHR Data In

is Erroneous. Here, the EHR Data In is the artifact of interest, which is the label for the data

provided by the EHR to the caregiver who uses it to program the pump. The hazard in the fault-

tree (which is shown as the root node) indicates that the artifact EHR Data In is incorrect. The

error is caused when the EHR receives the Patient ID it produces the wrong EHR Data In value

associated with the patient as indicated by the OR-gate underneath root node. The reason for

producing the wrong EHR Data In given Patient ID can be one of three conditions as shown in

the partial fault-tree in Figure 4.3: (1) the data associated with the patient EHR is erroneous,

(2) Patient ID doesn’t exist in the EHR database, or (3) the Patient ID scanned was erroneous.

As the EHR Data In is transmitted over a communication medium, we actually have additional

conditions to consider where the data is modified during transit, which we don’t show for keeping

the discussion simple.

4.3 Attack Tree Generation

The availability of fault-trees allows us to convert it to an attack tree, which can be thought

of fault-trees where the faults are caused deliberately by adversaries. The attack trees indicate

di↵erent attack paths to make di↵erent hazards happen during system execution. It is important to

note that fault-trees, in additional to describing how hazards manifest themselves; provide us with

description of the relationship between the various artifacts. For instance, EHR Data In is related

to Ox Data, therefore if Ox Data is modified, the value of EHR Data In may not be accurate any

more. This incorrect EHR data may eventually lead to over-infusion. In generating the attack

tree from fault-trees we preserve such associations between artifacts, when we analyze the e↵ects

of attacks mounted by adversaries in terms of the hazards they may eventually cause. We use a
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Figure 4.3: Example Partial Fault Tree for a Specific Hazard (EHR Data Incorrect)

three-step process in converting a fault-tree into an attack tree:

• Step 1: Classify the di↵erent fault-trees based on whether their artifacts have associations.

For example, if artifact A is associated with artifact B, then fault-trees using A and B should

be classified into one group. For example consider the hazard Care Out is Erroneous. The

artifact Care Out, the value sent by the coordinator to the caregiver’s PC representing the

state of the patient and her treatment, is made up of three other artifacts namely Cap Data,

Ox Data, and Pump Out. Therefore, the fault-trees that a↵ect Cap Data, Ox Data, and

Pump Out are combined in the attack tree generated.

• Step 2: Concatenate di↵erent groups with appropriate logical AND or OR operators. If two

fault-trees share a root node then the OR operation is used to connect them, otherwise an

AND operator is used, and a new parent node is created for the groups in the attack tree.

• Step 3: The node descriptions are modified from faults that materialize in the system to

attacks where they are deliberately induced by the adversary.
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Algorithm 1 shows the pseudo code we used to convert all fault trees into one attack tree.

We now walk through one example to demonstrate how this attack tree conversion algorithm

works. The fault tree we are looking at is called “Care Out in Caregiver Receives Patient Out

Has Wrong Output.” The original fault tree contains three child nodes. However, Care out con-

sists of Cap data, Ox data, and Pump out. So these three artifacts are combined together to

generate care out, they should be connected. According to our algorithm, since those artifacts

are associated, we should merge these fault trees. We concatenate all three Cap data, Ox data

and Pump out fault trees into Care out with logic OR-gate. Also we paraphrase some of nodes if

needed. Originally we have four individual fault trees, after conversion, we get only one fault tree.

Algorithm 1 Attack Tree Convertion Algorithm

1: procedure ConvertionProcess

2: Map<K,V> map = new HashMap<K,V>() . K = Artifact, V = list of fault trees
3: for each fault tree Fi Œ F do
4: if map.contains(Fi.artifact) == true then
5: map.get(Fi.artifact).add(Fi)
6: else
7: map.put(Fi.artifact,Fi)
8: end if
9: end for

10: for each parentTree in map do
11: for each other childTree in map do
12: if childTree.K belongs to parentTree.K then
13: Connect parentTree.V with childTree.V with logic “AND”
14: else
15: Create a new branch, connect with other branch with logic “OR”
16: Paraphase parentTree.V to make description based on attacks
17: end if
18: end for
19: end for
20: end procedure

Figure 4.4 shows the entire attack tree of our PCA-IMD system. Instead of using explicit AND

and OR operator symbols in the tree as is customary, we use the shape of the node to describe

the operation. A rounded rectangle node indicates that all its children are ORed, while a regular

(unfilled) rectangle node indicates that all its children are ORed. The leaf nodes are denoted by the

filled rectangle boxes and numbers G1 to G22. Each path in the tree from the leaf node all the way

to the root node denotes a way to attack the PCA-IMD, which needs to be protected. In general

all attacks on PCA-IMD can be divided into two general categories: (1) those where the adversary

directly manipulates the pump settings provided by the caregiver Pump Ctrl by mounting attacks
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on the pump or the communication between the PC and the pump (G1-G3), and (2) those where

the adversary indirectly causes incorrect Pump Ctrl settings in the pump by delaying, tampering,

or loosing sensor measurements, pump status information, or EHR data (G4-G22).
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Figure 4.4: Attack Tree for PCA-IMD

4.4 Quantification

In this section, we will discuss the quantification mechanism we used to calculate the security

condition for PCA-IMDs. Similar approach can be used for other systems. Our quantification

approach has the following steps: (1) develop a definition of security condition, a variable that

defines how secure or insecure the system is; (2) list a set of countermeasures that can be applied;

(3) attach the countermeasures to the attack tree leaf nodes; (4) compute the value of the security

condition based on the countermeasures attached on the attack tree.
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4.4.1 Security Condition

A system security condition is a score to define how secure or insecure the system is. It ranges

from 0 to 1, from the most insecure (0 value) to the most secure (1 value). This variable enables us

to compare security situation among di↵erent systems. The higher the system security condition

is, the more secure the system is behaving against all possible attacks.

4.4.2 Construct Countermeasure Data Set

To complete the security condition of an attack tree, we first come up with a set of countermeasures

for various attacks possible in our systems. In our case, we divide our countermeasure data set

into five types. Table 4.2 demonstrates those five types. We select countermeasures from di↵erent

types to each attack leaf, depending on what level of security we want to achieve as well as whether

this countermeasure is related. In order to compare security conditions, we make an assumption

here that all of these countermeasures are equally e↵ective, which means if a countermeasure is

deployed then the attack specified by the attack leaf is completely mitigated.

Table 4.2: 5 General Types of Countermeasures

Access Protection Backup Cryptography Detection
Update Secure

Authentication Patches Recovery Cryptography Auditing
Access Control Anti-virus Integrity Intrusion Detection
Physical Access Physical Detection

Firewall

From Table 4.2, one can see that the countermeasures we consider are of five general types.

Under each general type, we have distinct subtypes. Furthermore, under each subtype, we have

specific countermeasures. The countermeasures in each sub type share some features in common.

Appendix E.1 provides the list of countermeasures for each general type and sub type combination.

For example: “Access” is one general type, under which has four subtypes: “Authentication”,

“Access Control”, “Physical Examination” and “Fire Wall”. Under subtype “Authentication”,

there are several countermeasures: such as (1) Use user ID and password to authenticate clinic

sta↵, (2) Implement a biometric technology like fingerprint for authentication and others. Below

Figure 4.5 shows the complete attack tree with corresponding countermeasures attached. Those

countermeasure numbers and their meaning could be found in the Appendix E.1. The more

countermeasures an attack leaf has, the higher its initial attack potential on the system.
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Figure 4.5: Complete Attack Tree With Attached Countermeasures

4.4.3 Quantification and Security Condition

After adding relevant countermeasures into attack leaves, the attack tree is complete. Now we

could start to quantify security condition for PCA-IMDs. This section describes the procedure to

evaluate the security condition.

In this regard, we first compute a security coe�cient !. The security coe�cient is based on

how many relevant types of countermeasures attack leaf implements divided by the total number

of relevant countermeasure types available. The security coe�cient ranges from 0 to 1. The value

1 indicates the highest security level while value 0 represents the lowest security level. There are

five general countermeasure types in total; however, not all general types are applicable to all

leaves. Therefore when we consider relevant countermeasures, we only consider those that apply

to the attack leaf could help secure the system. For instance, a countermeasure installing anti-virus

software is not suitable for medical devices like pulse oximeter, and hence is not relevant. In the

attack tree in Figure 5.2, attack leaf 19 is “G19: Adversary Exploits Wireless Transmission <PC,
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Coordinator> to Modify Care Out.” This leaf describes attacks on the wireless communications

between PC and Coordinator. In this case, use “Access” to help prevent unauthorized access,

install “Detection” tools to monitor abnormal circumstances, take “Protection” actions to defend

against attacker, and we can use “Cryptography” to secure content delivered in between. In our

case, we implement all of these 4 types, so the security coe�cient, !, for this leaf is 4 / 4 = 1.

A vulnerability index is a measure of the di�culty faced by hackers in compromising an attack

leaf given implemented countermeasures. The vulnerability index ranges from 0 to 1, from the

most vulnerable (0 value) to the most invulnerable (1 value). The whole procedures to evaluating

the vulnerability index for each attack leaf are as follows:

• Calculate the percentage (P) of countermeasures implemented for each general type on an

attack leaf. For each general type P k = 1 / Ti ( Ai1 / Bi1 + Ai2 / Bi2 . . . Ain / Bin). Ti

represents the total number of one subtype. Ain stands for the number of countermeasures

implemented under that subtype while Bin shows total number of countermeasures available

under that subtype. Finally K is the index of the attack leaf.

• Choose the minimum Pmin so that Pmin = min { P 1, P 2 . . . pn }, where n is the total number

of attack leaves in the tree.

• We define vulnerability index of a lead as V i = Pmin * !, where i is the index of attack leaf.

Figure 4.6 shows a process of computing security condition for G19 attack leaf. General type

“Access” has 4 subtypes. G19 implements two countermeasures from subtype “Authentication”,

two countermeasures from subtype “Access Control” and nothing from other subtypes. So the

percentage P19 “Access” P19 (Access) is 1/4 * (2/4 + 2/4 + 0 + 0) = 1/4. It works exact the

same for other general types. In the end, vulnerability index for G19 leaf is Pmin = min (1/4, 1/1,

1/1, 4/9) * ! = 1/4 (As we discussed earlier ! is 1).

From the previous steps, each attack leaf has already associated with one vulnerability index.

This index shows how di�culty of compromising an attack leaf. The system security condition

should take the least secure leaf node into consideration, so system security condition would be

determined by the minimum vulnerability index. Vmin = min { V 1, V 2 . . .V n }, where n is the

total number of attack leaves.

Algorithm 2 shows the pseudo code we used to quantify IMDs security conditions. It tells

almost the same story as the steps above.
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Figure 4.6: Quantification Example

Algorithm 2 Quantification Algorithm

1: function Quantification(List<Node> nodes)
2: Double result = 0.0
3: List<Node> pivotalNodes
4: for each node in nodes do
5: Double temp = 0.0
6: Calculate Security Coe�cient !
7: ! = node.ImplementedCMT / node.TotalRelevantCMT . CMT :

CounterMeasureType
8: for each general Type under node do
9: Initialize Calculate percentage (P) of countermeasures implemented

10: P = 0
11: P += node.generalType.implmented / node.generalType.total
12: end for
13: P = P / node.generalTypeNumber
14: temp = temp > P ? P : temp . Choose minimal
15: if result > temp * ! then
16: pivotalNodes.add(node)
17: result = temp * !
18: end if
19: end for
20: return result,pivotalNodes
21: end function
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Chapter 5

Results

In this section, we would like to discuss the results we obtained when applying our methodology

to analyze PCA-IMDs security.

5.1 Experiment Description

In our experiment, we choose two PCA-IMDs scenarios for validation purpose to illustrate the

comparative analysis capability of our approach. Both scenarios have same types and numbers of

medical devices. The only di↵erence here is the intelligence level of coordinator and how caregiver

programs medical devices as well as the way caregiver receives feedback from each medical device

during the operation. More specifically:

• Human-Involved Loop; This is the standard system model of PCA-IMD that we have

assumed thus far. In this scenario, a caregiver uses a PC and uses that PC to send/receive

information about decision in PCA-IMD. The caregiver sends a request to retrieve the pa-

tients’ health records if exist. Based on patients’ health information, the caregiver programs

the infusion pump, the capnograph and the pulse ox though the PC. All medical devices

involved are connected to the coordinator via wines. The coordinator keeps receiving status

updates from the individual medical device. The coordinator itself is connected wirelessly

to PC. Coordinator collects all medical data and sends them back to PC upon request.

Caregivers monitor the PC to observe whether patients are doing well or not. If anything

unexpected happens, caregiver can send commands to execute the weak therapy provided.
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Below 5.1 is the system description for this test case.

Figure 5.1: System Model for Human-Involved Loop

Based on this model, we generate the corresponding attack tree. Since we have already

discussed that in the previous chapter, we will skip the generation process description here.

In Figure 5.2 shows the attack tree for this particular setting.

• Closed Loop: This scenario involves a very intelligent coordinator. In this case, caregiver

still uses PC to send/receive information, but all change in therapy of device is done by

the coordinator. Coordinator processes the message and sends commands to each medical

device. At the same time, coordinator gathers all medical data from three medical devices.

Every so often the coordinator sends all information back to PC that the caregiver observes.

Figure 5.3 is the system description for this scenario. And Figure 5.4 shows the detailed

attack tree for closed loop setting.

5.2 IMDs-Security Analysis Tool (IMD-SAT)

In order to make our methodology more accessible, we provide a tool to automatically gener-

ate security condition reports based on attack tree. Here is a brief introduction of the tool we

implemented to compute the system security condition. IMD-SAT consists of three main modules:
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Figure 5.2: Complete Attack Tree for Human-Involved Loop

Figure 5.3: System Model for Closed Loop
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Figure 5.4: Complete Attack Tree for Closed Loop

• Attack Tree Editor: Like other editors, IMD-SAT attack tree editor has most of the

functions as an editor, such as “Create a node,” “Move a node” or “Connect two nodes.”

This feature could enable users to edit attack trees.

• Countermeasures Editor: This countermeasure editor does all this logic, users could

use this to customize countermeasure as they want. Also this editor could add or delete the

corresponding countermeasures to or from a leaf node. For PCA-IMDs, we produce 5 general

types and several sub types. Five general types are: “Access”, “Protection”, “Backup”,

“Cryptography” and “Detection.” In the appendix Table D.1, we have clearly stated all those

countermeasures in detail. We divide all nodes into several types, they are: (1) Compromise

Medical Device, (2) Compromise PCs and EHR database, (3) Exploit Wireless Connection

Between Two components, (4) Delay/Loose data, and (5) Incorrect data. Basically these

5 types can cover all the nodes in attack trees. Therefore, we traverse all countermeasures

available, and if that countermeasure is applicable, we add that countermeasure to that leaf
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node. In Appendix Table D.1, we also have clear descriptions for countermeasure for each

node type.

• System Security Analysis: This analysis function implements the quantification mecha-

nism. Once it is done with analyzing, IMD-SAT will generate a security report, informing

users of system security conditions.

More information about this tool, the design, UML diagram and implement details are available

in the Appendix C.1.

5.3 Result Analysis

In this section, we describe the security condition computation for our two PCA-IMD scenarios

using IMD-SAT. Table 5.1 shows a example of what the content looks like for this scenario:

Table 5.1: Security Condition Analysis Results for Human-Involved Loop

Node Score
Increase Flow(Basal) Rate 0.4375

Decrease SPO2 Sampling Rate 0.4375
Increase Drug Concentration 0.4375
Increase Bolus Flow Rate 0.4375

Delay/Loose Cap msr/Ox msr 0.4375
Delay Measurement of Pump(VTBI) 0.1875
Physical Compromise EHR Database 0.375

Exploit Wireless Transmission <EHR, Coordinator> 0.375
Delay/Loose EHR query 0.1875

Exploit Wireless Transmission <PC, Coordinator> 0.25
Incorrect Pump ctrl 0.3̇

Delay/Loose Pump ctrl 0.3̇
Exploit Wireless Transmission <Pump, Coordinator> 0.1875

Incorrect Measurement of Pump(VTBI) 0.16̇
Exploit Wireless Transmission <Cap/Ox, Coordinator> 0.375

Incorrect Cap msr/Ox msr 0.3̇
Physical Compromise EHR Database 0.375

Incorrect EHR query 0.125
Exploit Wireless Transmission <EHR, Coordinator> 0.3̇
Exploit Wireless Transmission <PC, Coordinator> 0.3̇

System Security Condition is 0.125
(With 0 to be the most insecure, while 1 to be the most secure)

The least secure node is Incorrect EHR query

We can see from above table (dot above the number represents infinite decimals), the highest
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vulnerable index of this human-involved loop scenario is 0.4375 which means it is most secure.

However, the most vulnerable leaf is 0.125, which is “Incorrect EHR query”. EHR database is

the most vulnerable part of this scenario. Please note that vulnerability indexes for the wireless

connection are very low, thus if we are able to enhance security condition for EHR database and

wireless connection, transmission, then the whole system will become more secure. The reason

to make wireless communication and EHR database related leaves have low vulnerability index

values is that these two components are very complicated. Complicated means there are so many

ways to break into the components. The more complicated one component is, the more di�cult

to secure one component. Even though we attach as many countermeasures to those leaves, there

still have some negligence.

In the closed loop setting, the coordinator plays a very important role. This is a more complex

model compared with the previous model. Table 5.2 shows a example of the IMD-SAT output for

closed loop setting:

One can see from above table, the highest vulnerable index of this closed loop setting could

only reach 0.41667 (not as high as previous model 0.4375). Since this scenario has higher intelligent

level, then the requirement for each medical device has also increased in order to guarantee security.

Thus almost all leaves vulnerabilities decreases more or less. And the most vulnerable leaves

are only 0.1, which are “Exploit Wireless Transmission <EHR, Coordinator>” and “Incorrect

EHR query”. EHR database and wireless connection again become the most vulnerable parts for

closed loop setting. The reason is similar to the human-involved loop setting.

5.4 Comparative Analysis

Below Table 5.3 compares the security condition and vulnerability of the two scenarios. We can

clearly see the dynamic changes depending on the functionality of the system given the same

countermeasures:

From the Table 5.3, we see the security condition decreases when system becomes more intel-

ligent. From those results, we conclude:

• Trade-o↵ between functionality and security. Human-involved loop is slightly more

secure compared with a closed loop setting. It is true that people want to design a more

intelligent system to avoid mistakes by humans. However, the sophisticated system is still
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Table 5.2: Security Condition Analysis Results For Closed Loop Setting

Node Score
Increase Flow(Basal) Rate 0.3̇

Decrease SPO2 Sampling Rate 0.3̇
Increase Drug Concentration 0.3̇
Increase Bolus Flow Rate 0.3̇

Delay/Loose Cap msr/Ox msr 0.416̇
Exploit Wireless Transmission <Capnograph

/Pulse Ox, Coordinator> 0.16̇
Exploit Wireless Transmission <Pump, Coordinator> 0.1875

Delay Measurement of Pump(VTBI) 0.1875
Physical Compromise EHR Database 0.3125

Exploit Wireless Transmission <EHR, Coordinator> 0.375
Delay/Loose EHR query 0.16̇

Exploit Wireless Transmission <PC, Coordinator> 0.3̇
Incorrect Pump ctrl 0.3̇

Delay/Loose Pump ctrl 0.3̇
Exploit Wireless Transmission <Pump, Coordinator> 0.16̇

Incorrect Measurement of Pump(VTBI) 0.416̇
Exploit Wireless Transmission <Cap/Ox, Coordinator> 0.375

Incorrect Cap msr/Ox msr 0.3̇
Physical Compromise EHR Database 0.375

Incorrect EHR query 0.1
Exploit Wireless Transmission <EHR, Coordinator> 0.1
Exploit Wireless Transmission <PC, Coordinator> 0.3̇
Exploit wireless Transmission <PC, Coordinator> 0.3̇

Physically Compromise PC 0.3̇
Physically Modified Input 0.1875

System Security Condition is 0.1
(With 0 to be the most insecure, while 1 to be the most secure)

The least secure node is Exploit Wireless Transmission
<EHR, Coordinator>

The least secure node is Incorrect EHR query

designed by humans. And people are not machines, and can make errors which could turn out

to be a disaster [13]. Meanwhile, all the internal connections or associations between any two

components within the system end up being more complex. Therefore, the more complicated

(human-involved loop is simpler than closed loop) the system, the more functionality for it

to have, and the more likely for it to have security vulnerabilities.

• Database and secure communication within the IMD setup is paramount. For

the least vulnerable nodes, we can see all of them are more or less associated with EHR
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database or wireless connections and transmissions. In this case, this should inform us that

EHR database as well as wireless transmission should be treated seriously in order to enhance

security condition for particular PCA-IMDs.

• IMD security is always decided by its most vulnerable part. When designers are

working on constructing a new IMD setup, they have to make sure they are protecting every

component.

• Individual medical device security does not equate to interoperability security.

A device can be formally defined as “safe” if and only if none of its execution paths invoke a

particular set of negative actions. However, the safety of any particular medical device and

the coordinator are insu�cient to ensure that it remains safe during the entire execution on

the interoperable setting. In our system model, adversary induced misinformation or bad

input can cause an infusion pump to over-infuse medication, endangering patient safety. This

condition can occur even if the infusion pump is guaranteed to be secure.

• Attacks from compromised entities in the interoperability are di�cult to prevent.

If any of the three main types of entities in the interoperability setup, namely the sensors, the

caregiver, and pump can be compromised, then the traditional information security solutions

described for securing the inputs are rendered moot. One can use redundancy to attempt to

detect events of compromise, but this requires at least one uncompromised device.

Table 5.3: Comparative System Security Condition Analysis Results

Scenario Security Score Least Vulnerable Node
Human-involved loop 0.125 Incorrect EHR query
Closed loop 0.1 Incorrect EHR query

Exploit Wireless Transmission
<EHR and Coordinator>
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Chapter 6

Conclusions and Future Work

Security for medical devices has gained some attention in recent years following some well-publicized

attacks on individual devices, such as pacemakers and insulin pumps. This has resulted in solutions

being proposed for securing these devices, usually in a stand-alone mode. However, medical devices

are becoming increasingly interconnected and interoperable as a way to improve patient safety, de-

crease false alarms, and reduce clinician cognitive workload. Given the nature of interoperable

medical devices (IMDs), attacks on IMDs can have devastating consequences. This work shows

the importance of securing IMDs system and outlines our e↵ort in understanding the threats faced

by IMDs, an important first step in eventually designing secure interoperability architectures.

In this work, we develop a methodology for generating attack trees based on PCA-IMD workflow

modeling and hazard analysis. In general this brand new process contains four steps: (1) process

modeling, (2) fault tree analysis (FTA), (3) attack tree generation and (4) quantification. First,

the user (deployer) of the PCA-IMD takes an abstract description of the workflow of PCA-IMD

and develops a process modeling representation for it. This representation essentially describes

the operation of the PCA-IMD. Once the process model is developed, the IMD user identifies the

various hazards that can occur due to the operation of the system. The hazards are essentially

unsafe states of the PCA-IMD, which can harm the system itself or the user. In our case, the unsafe

state of interest with respect to azard analysis are those that eventually lead to over-infusion of

pain medication, our attack goal. Given the hazards that lead to over-infusion and the process

model of the IMD, we derive several fault-trees for the system. The fault-trees essentially provide a

representation of the means by which the hazards can be realized due to faults within the system.
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Once the fault-trees have been extracted, we combine them in a meaningful fashion to generate a

global attack tree for the PCA-IMD setup such that the root node of the tree is the attack goal.

With the attack tree available, we construct the countermeasure data set and attach some of the

countermeasures to attack leaf element. We calculate the security condition for PCA-IMD setup

to get an overall understanding of IMDs security conditions.

Finally, we develop a IMD-Security Analysis Tool (IMD-SAT). IMD-SAT simulates our method-

ology and is integrated into one software application, so anyone could use this application to help

test and verify the security condition of an IMD setup.

6.1 Future Work

We demonstrate that this work has its own value. However, there are still some limitations we can

address in the near future to make it more applicable. In general, we plan to extend our work as

follows:

• Automatic attack tree generation. Currently, we have pseudo code to convert fault trees

into an attack tree. However, it is still a manual process to generate the attack trees. In

the future, one could develop a tool that automatically helps convert the process model and

hazard description into attack trees.

• Quantification. Currently quantification is based on how many countermeasures an attack

leaf implements. In the future, one could come up with a more rigorous way to quantify

our attack trees. This quantification method has to be based on mathematics model of the

countermeasure e�cacy.

• Generalize the methodology. Currently, our approach is only applicable for IMDs sys-

tems, but we may be able to extend our methodology to other domains.
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Appendix A

Little-JIL

A.1 Little-JIL

If users want to use this visual Little-JIL tool, they could refer to [16] to download and install.
Visual Little-JIL is built upon the Eclipse IDE for Java Developers [10]. If you do not have this
version of Eclipse (or a superset), you must install it first. Visual Little-JIL is distributed using
the Eclipse Update Manager.

Once we download and install visual Little-JIL, we need to create a new Little-JIL project.
Above is exactly one example of how to create a Little-JIL project. We set “Resource Model” as
“Stub Resource Model” and “Stub Artifact Model” as artifact model, which is based on LASER [35]
tutorial. Once we create a new Little-JIL project, we could create a new module with extension of
“.ljx” under each module. Inside of each module, they should be able to create individual diagram
to simulate target systems. User could click and editor that diagram. Below Figure A.3 shows
how it looks like. More details about little-JIL can be found in the Little-JIL language report [39].

Figure A.1: Little-JIL Initialization I
Figure A.2: Little-JIL Initialization
II
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Figure A.3: Little-JIL User Interface
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Appendix B

Fault Tree

B.1 Fault Tree Derivation

The automation tool to derive fault tree we used is developed by [17], it is called “Visual Little-JIL
Analyzer”. The visual Little-JIL Analyzers are built upon Visual-JIL and the Eclipse IDE for Java
Developers [10]. If you have not installed Visual Little-JIL you will have to install it first. The
visual Little-JIL Analyzers are distributed using the Eclipse Update Manager.

Once we download visual Little-JIL analyzer, we need to create a new fault tree analysis
project like the above example Figure B.1. And then you click “next” and enter “Project Name”
and “Analysis Type”. A new analysis project is set, and now user should expand the project, fill
in “Process Information” with you target Little-JIL project, module and root step, then submit
by clicking “Save” button down.

To derive a fault tree specific to one hazard, the user should just right click “Top Event
Settings”, and choose “New Setting”. This top new event is defining what hazard user wants
to know about the system. A new window like Figure B.4 will pop out. For this “Top Event
Definition”, we need to specify “Step Pattern”, “Artifact Name” and “Error Type”. “Step Pattern”
is exactly the name of the step, “Artifact Name” tells what artifact you want to examine, and
“Error Type” has two options: “Wrong Output” or “Wrong Input”. Fill out proper information
for your system and save the changes. After this, user completes defining a hazard, so now user
simply just click “Derive Fault Tree” button, then little-JIL analyzer will return you one fault
tree demonstrating how that hazard will happen. These fault trees are files with “dot” extensions.

Figure B.1: Visual Little-JIL Analysis IFigure B.2: Visual Little-JIL Analysis II
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Figure B.3: Fill in Process Information

There is a recommended application that could help us to open and view those dot files in a
diagram format: Graphviz [32].

Figure B.4: Hazard (Top Event) Definition
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Appendix C

Tool

C.1 IMDs-Security Analysis Tool (IMD-SAT)

In order to make our tool more and more accessible, we would provide an automated tool called
IMDs-Security Analysis Tool (IMD-SAT). Here is a brief introduction of the tool we implemented to
simulate our methodology of assessing system security condition. For the default countermeasures
in IMD-SAT, they are exactly the same as shown in our case study.

C.2 Application Design

IMD-SAT consists of three main modules: (1) attack tree editor, (2) countermeasures editor and
(3) system security analysis.

C.2.1 Attack Tree Editor

The paramount functionality IMD-SAT should have is attack tree editor. All of the subsequent
events have to be done based on an attack tree model, thus attack tree editor becomes prerequisites
in this case. Originally we plan to integrate visual Little-JIL, fault tree analysis and attack tree
conversion into IMD-SAT, however due to licenses and other copyright issues, we decided to move
on to attack tree directly. Our application could perform attack tree editor function, so users could
use IMD-SAT to build their own attack trees directly.

Initialize Attack Tree

When user opens IMD-SAT, it should pop up a select menu asking user which attack tree model
they want to choose and edit. If user has never used it before, just clicks drop-down menu and
selects “Others”. If not, the menu should list all previous saved attack tree models available for
user to pick, user could either click saved model or click “Others” to create a new one. Figure C.2
and Figure C.1 shows two initializing menu examples. Second example, user has already got one
model (System Model I).

Attack Tree Editor

Like other editors, IMD-SAT attack tree editor has most of the functions as an editor. Let’s briefly
go through those features:

• Create Nodes: User clicks button “Create” in the interface, a menu will pop up and ask user
what is new node’s name and what type is the new node. For the type, user could choose
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Figure C.1: Menu Initialization I Figure C.2: Menu Initialization II

four relations “AND”, “OR”, “NOT” and “LEAF”. The first three relations represent this
is an intermediate node, while “LEAF” tells this node is a leaf node. Also di↵erent relations
are all linked to di↵erent colors to help user distinguish which node belongs to which type.
Figure C.4 shows what create a new node looks like.

• Move Nodes: After that node is created, system will place that node in a default location of
the interface, user is able to move that node to wherever the user want the node to stay. The
way to do this is: user first clicks to select one particular node and drag the selected word to
target place and stop. During user is dragging the whole, the whole canvas will auto-adjust
the size dynamically.

• Connect Nodes. Once user clicks “Connect”, and then user clicks two nodes continuously,
system will connect two nodes with a line. From system’s perspective, the first clicked node
is going to be treated as parent node, and second clicked one will stay as child node. If user
clicks to connect two nodes in reversed order (Trying to connect intermediate node to a leaf
node), system will pop out an exception indicating this action is not allowed. Below Figure
C.3 shows an example of connecting two nodes.

Figure C.3: Connecting Two Nodes

• Delete Nodes: User clicks button “Delete” in the interface, a jump-out menu will pop out and
let user select which node the system is going to remove. Once user submit the information
and system will wipe out that node from the interface. If user tries to delete a node before
creating it, system will throw an exception saying this action is not allowed. Figure C.5
shows the menu window for deleting a node.

• Save Model: If all of sudden, user has to stop editing the current model, but user doesn’t want
to discard all those changes, just click exit on the left corner, system will automatically save
whatever current model to the directory, then user should be able to see one configuration
file with extension “.storage”. This configuration is auto-saved model, next time when users
want to load back, what they need to do is to choose select under initialize drop-down menu.
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Figure C.4: Create a New Node
Figure C.5: Delete an Existing Node

C.2.2 Countermeasure Editor

The next functionality is countermeasure editor. After we have our attack tree model, what we
need is to attach applicable countermeasures to each attack leaf. However, before this, we have to
construct a countermeasure database for the target system.

Construct countermeasures

IMD-SAT reads all countermeasures from an XML configuration file. Thus as long as users finish
researching about countermeasures, they could just simply insert those entries into a file called
“Countermeasures.xml”. Below Figure C.6 shows one “Countermeasures.xml” example we used
for our case study PCA-IMDs. Di↵erent systems could have di↵erent sets of countermeasures.

Figure C.6: Countermeasures.xml example

Display Countermeasures

After our application starts, it will find “Countermeasures.xml” file in current directory, if that
file exists, then IMD-SAT will import all data in “Countermeasures.xml” file and show it to the
user with the following format. As we can see from Figure C.7, there are two parts: one is a
text field showing all detailed description of a countermeasure; the other one is a table indicating
countermeasure type, sub type and value (value equals to the description here). If user clicks one
of the entries, then that entry’s description will show up automatically in the text field for user to
see all information.

Attach/Detach Countermeasures

As we discussed in methodology chapter, before we tries to assess system security, what we need
to do is to calculate security condition “!”. In order to calculate that number, we have to set
relevant countermeasure types first. Figure C.8 shows the window to set relevant countermeasures.
User double clicks one node, there should have two noticeable changes. One is text-field with value
“name” will update to show node’s name, second one is the window should automatically be
updated to show what is current setting for relevant countermeasures is. If user wants to reset,
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Figure C.7: Countermeasures Display Window

user could choose to tick or unpick corresponding boxes, and click “Set Relevant Countermeasures”
button, and those information will be entered into IMD-SAT for future usage.

Figure C.8: Relevant Countermeasures Edition Window

According to our quantification, after user decides relevant countermeasures, then user could
start to add/delete countermeasures to a specific attack leaf. User could accomplish this by right
click any leaf nodes, it will pop out a menu. Since countermeasure is multi-level architecture, the
menu shown here shares the same feature. Click one menu then this specific countermeasure will
be added into that leaf, if user clicks that specific countermeasure again, then it will be removed
from that node. Figure C.9 shows how that multi-level menu looks like.

56



Figure C.9: Attach/Detach Countermeasures

View Added Countermeasures

User could double click attack leaf node to see how many countermeasures have already been
added and what are those countermeasures. There will be 2 noticeable changes here to inform
user above information. Firstly, the countermeasures display window, all countermeasure entries
that have been added will change background color from gray to green, so user could click those
entries to examine more detailed messages. Second one, user could see in the rightmost part of
interface, we have a window called “Added Countermeasures”. Basically, this window could tell
user what countermeasures have been added. Figure C.10 is one example of hot to check all added
countermeasures.

Figure C.10: View Implemented Countermeasures

C.2.3 System Security Analysis

After all these operations are done, we are ready to quantify and assess systems security conditions.

System Security Calculation

Once we attach all suitable countermeasures to each attack leaf, we should be able to quantify
system. User simply just clicks “Calculate” button on the interface, IMD-SAT will automatically
calculate that score based on our quantification mechanism (Again this could be changed to the
most suitable quantification for di↵erent systems). You will see that score in the window, with 0
standing for most insecure and 1 for perfect secure.

Also you should see the most vulnerable nodes of all attack nodes will be emphasized with a
bold face font. So user could clearly see which one threats current system most, then user could
take relevant measures to enhance it, so that system will become more and more robust.

Report Generation

Also after user gets all data available and clicks “Calculate” button, and an alert window will
appear and inform user that a security report has been generated under the current directory. For
the security report, it contains vulnerability indexes for all attack nodes. We will give descriptions
of security report later.
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C.3 Implementation

The architecture is shown in Figure C.11. We follow Model-View-Controller (MVC for short)
pattern principle and apply it to IMD-SAT designs and implementations. MVC divides a given
software application into three interconnected parts, so as to separate internal representations of
information from the ways that information is presented to or accepted from the user.

MVC Pattern

The central component of MVC, the model directly manages the data, logic and rules of the
application. A view can be any output representations of information, such as a chart or a diagram;
multiple views of the same information are possible, such as a bar chart for management and a
tabular view for accountants. The third part, the controller, accepts inputs and converts them to
commands for the model or view.

In addition to dividing the application into three kinds of components, the MVC design defines
the interactions between them:

• Controller: A controller can send commands to the model and update the model’s state (e.g.,
editing a document). It can also send commands to its associated view to change the view’s
presentation of the model (e.g., by scrolling through a document). Thus a controller is the
link between a user and the system. It provides the user with input by arranging for relevant
views to present themselves in appropriate places on the screen. It provides means for user
output by presenting the user with menus or other means of giving commands and data. The
controller receives user output, translates it into the appropriate messages and passes these
messages on to one or more of the views.

• Model: Models represent knowledge. A model stores data that is retrieved to the controller
and displayed in the view. Whenever there is a change to the data it is updated by the
controller. A model could be a single object (rather uninteresting), or it could be some
structure of objects.

• View: A view requests information from the model that it uses to generate an output repre-
sentation to the user. It is a (visual) representation of its model. It would ordinarily highlight
certain attributes of the model and suppress others. It is thus acting as a presentation filter.
It may also update the model by sending appropriate messages. All these questions and
messages have to be in the terminology of the model, the view will therefore have to know
the semantics of the attributes of the model it represents.

MVC Design

Figure C.11 shows MVS models for IMD-SAT. At the top of Figure C.11, we have “User Interface”
box. The user interface consists of three major parts: attack tree editor view, countermeasure
view and calculation view. The user interfaces are responsible for delivering the state information
of the system. It might not necessary for user to understand what is happening behind the screen,
however users should be able to observe the information and changes from these interfaces directly.
In our case, we are trying to make our user interface convey as much information as possible in a
clear way. Also the user interfaces are waiting and receiving users’ interactions. These interactions
are users’ commands to change or update the system. All our three views keep waiting and
listening for some events, like button click event, mouse click event and others events. And based
on the received events, the system itself will react with the corresponding functions. Once the
systems finished the executions, all information gets updated and user interfaces should capture
the renewed data and reflect back to users.

In the middle of Figure C.11, we have four di↵erent controllers as long as their related logic
functions. The process for controller is as follows: based on user request, one controller gets
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Figure C.11: MVC Design of IMD-SAT

activated, finds suitable functions to execute, update models with updated data and renew the user
interface for users to understand the latest information. In our case, four controllers are “Loadstate
Controller”, “Savestate Controller”, “MouseEvent Controller” and “Button Controller”. When the
user first time uses this application, the system will rely on “Loadstate Controller” to load all user
interfaces for users. “Loadstate Controller” will call “DictionaryParser” function to analyze state
configuration file. The function finds state configuration empty and knows this user never use
this software before, it will create a brand new state, initialize all models and show a clean user
interface.

Eventually at the end of Figure C.11, we have the class models. Class models keep track of all
information at the run time. In our case, we have plenty of class models, “Node Class”, “Position
Class” and “Countermeasure Class” etc. During run time, if any state gets changed, a relevant
message will send by the controller to update the related models. For instance, user moves one
node, the current location of that node changes. System needs to replace the old position with the
current one, so system could know the location for that particular node after date gets renewed.
Meanwhile models could have dependency on other models if one contains the other. A node
should know its own location as well as the countermeasures implemented therefore “Node Class”
is the top-level class here. It contains “Position Class” and “Countermeasure Class”.
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Appendix D

Countermeasure Type

D.1 Countermeasure Types

This section shows the details of all countermeasures for five general types and some other sub-
types. For 6 general types, they are access, protection, backup, cryptography and detection.

Table D.1: Access

No. SubType Countermeasure
1 Authentication Use user ID and password to authenticate clinic sta↵
2 Authentication Use smart card to authenticate users
3 Authentication Implement a biometric technology fingerprint to authenticate
4 Authentication Implement personal challenges to authenticate users
5 Access Control Use automatic timed methods to terminate sessions within

the systems where appropriate for the use environment
6 Access Control Eliminate hard-coded passwords in medical devices
7 Access Control Eliminate guest accounts
8 Access Control Set the rule of IP address that is allowed that di↵erent range

of IP could be used to do di↵erent things
9 Physical Access Physical examination of devices to make sure medical devices

are not damaged or broken
10 Physical Access Control physical access to areas around devices
11 Physical Access Secure device and information physically include securing

machines in locked rooms
12 Firewall Enhance firewall policy to prevent outsider break in system

Table D.2: Protection

No. SubType Countermeasure
13 Update Security Patch Implement patch management system to update security

patches on time
14 Update Security Patch Restrict software, hardware security patches to

authenticated code
15 Anti-virus Install antivirus software to detect/eliminate malwares
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Table D.3: Backup

No. SubType Countermeasure
16 Recovery Install a redundant system in case of urgent need to switch
17 Recovery Implement a back-up policy for a particular period of time
18 Recovery Database backup is physically secured (locked) and remains unreadable

Table D.4: Cryptography

No. SubType Countermeasure
19 Cryptography Implement an encryption/decryption algorithm to protect data
20 Integrity Implement integrity checker to protect data from being compromised

Table D.5: Detection

No. SubType Countermeasure
21 Auditing Document/audit the behaviors of medical device and database
22 Auditing Increase auditing frequency to get more data
23 Auditing Auditing user rights that contain critical privileges
24 Intrusion Detection Install intrusion detection system to monitor abnormal tra�c
25 Physical Detection Physically secure machines in locked rooms
26 Physical Detection Control physical access to areas around devices
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Appendix E

Countermeasure Association Table

E.1 Countermeasure Association Table

This section shows details concerning all countermeasures associated with di↵erent types of nodes.
The di↵erent types are compromise medical devices, compromise PCs and EHR database, Exploit
Wireless Connection Between Two components, delay/loose data and incorrect data.

Table E.1: Compromised Medical Devices

No. Type Countermeasure
1 Detection Increase auditing frequency to get more information about user behavior
2 Detection Auditing user rights that contain privileges accessing critical commands
3 Detection Document and audit recent behavior of medical device, and database
4 Detection Secure devices and information physically include securing

machines in locked rooms
5 Access Use smart card to authenticate users
6 Access Control physical access to areas around devices
7 Access Eliminate guest account
8 Access Eliminate hard-coded passwords in medical devices
9 Access Use user ID and password to authenticate clinic sta↵
10 Access Physical examination of devices to make sure medical devices are not

damaged or broken
11 Backup Install a redundant system in case of urgent need to switch
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Table E.2: Compromise PCs and EHR Data

No. Type Countermeasure
1 Detection Increase auditing frequency to get more information about user behavior
2 Detection Auditing user rights that contain privileges accessing critical commands
3 Detection Document and audit recent behavior of medical device, and database
4 Detection Secure devices and information physically include securing machines in

locked rooms
5 Access Use smart card to authenticate users
6 Access Control physical access to areas around devices
7 Access Eliminate guest accounts
8 Access Use user ID and password to authenticate clinic sta↵
9 Access Use automatic timed methods to terminate sessions within the system

where appropriate for the use environment
10 Backup Back-up schedule is regular and timely, implement a back-up policy for

a particular period of time
11 Backup Install a redundant system in case of urgent need to switch
12 Backup Database backup is physically secured (locked) and use cryptography to

make it unreadable

Table E.3: Exploit Wireless Connection Between Two components

No. Type Countermeasure
1 Access Set the rule of IP address that is allowed that di↵erent range

of IP could be used to do di↵erent things
2 Access Enhance and strict firewall policy in Router and database to

prevent outsider break into our system
3 Access Use user ID and password to authenticate clinic sta↵
4 Protection Implement patch management system to update security patches

once available
5 Protection Restrict software and hardware security patches update to

authenticated code
6 Detection Document and audit recent behavior of medical device

and database
7 Detection Install intrusion detection system to monitor abnormal tra�c

within network
8 Detection Implement challenges/personal questions to authenticate users
9 Cryptography Implement a encryption/decryption algorithm to protect data

transmitted in the whole system
10 Cryptography Install integrity checkers to monitor any alternations done

to database system
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Table E.4: Data Gets Delay or Loose

No. Type Countermeasure
1 Detection Increase auditing frequency to get more information about

user behavior
2 Detection Auditing user rights that contain privileges accessing

critical commands
3 Detection Secure devices and information physically include securing

machines in locked rooms
4 Detection Document/audit recent behavior of medical device and database
5 Detection Control physical access to areas around devices
6 Access Use smart card to authenticate users
7 Access Eliminate guest account
8 Access Eliminate hard-coded passwords in medical devices
9 Access Use user ID and password to authenticate clinic sta↵
10 Access Physical examination of devices to make sure medical devices are

not damaged or broken
11 Backup Install a redundant system in case of urgent need to switch

Table E.5: Data Gets Manipulated

No. Type Countermeasure
1 Access Set the rule of IP address that is allowed that di↵erent range

of IP could be used to do di↵erent things
2 Access Eliminate guest account
3 Access Implement challenges/personal questions to authenticate users
4 Access Eliminate hard-coded passwords in medical devices
5 Access Use automatic timed methods to terminate sessions within the system

where appropriate for the use environment
6 Access Use user ID and password to authenticate clinic sta↵
7 Protection Implement patch management system to update security patches

once available
8 Protection Restrict software and hardware security patches update to

authenticated code
9 Detection Document/audit recent behavior of medical device and database
10 Dtection Install intrusion detection system to monitor abnormal tra�c

within network
11 Cryptography Implement an encryption/decryption algorithm to protect

data transmitted in the whole system
12 Cryptography Install integrity checkers to monitor any alternations done

to database system
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