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Abstract 

Learning maps have been used to represent student knowledge for many years. These maps are usu-

ally hand made by experts in a given domain. However, these hand-made maps have not been found 

to be predictive of student performance. Several methods have been proposed to find better fitting 

learning maps. These methods include the Learning Factors Analysis (LFA) model and the Q-matrices. 

In this thesis I report on the application of one of the proposed operations in the LFA method to a 

small section of a skill graph and develop a greedy search algorithm for finding better fitting models 

for this graph. Additionally an investigation of the factors that influence the search for better data 

fitting models using the proposed algorithm is reported. I also present an empirical study in which 

PLACEments, an adaptive testing system that employs a skill graph, is modified to test the strength of 

prerequisite skill links in a given learning map and propose a method for refining learning maps based 

on those findings. 

It was found that the proposed greedy search algorithm performs as well as an original skill graph but 

with a smaller set of skills in the graph. Additionally it was found that, among other factors, the num-

ber of unnecessary skills, the number of items in the graph, and the guess and slip rates of the items 

tagged with skills in the graph have an impact on the search. Further, the size of the evaluation data 

set impacts the search. The more data there is for the search, the more predictive the learned skill 

graph.  

Additionally, PLACEments, an adaptive testing feature of ASSISTments, has been found to be useful 

for refining skill graphs by detecting the strengths of prerequisite links between skills within a graph. 
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Chapter 1: Introduction 

Several learning maps, representing a set of skills in a domain and the prerequisite skill relationship 

between the skills, have been developed to represent what a person knows. The learning maps are some-

times called skill graphs or prerequisite skill graphs (in view of this these three terms will be used 

interchangeably). Many of these learning maps are hand designed by experts in the domain for which 

the map is made. However, can we detect any defects in these learning maps with data collected from 

students? Can these defects be removed? What methods are effective for determining these defects and 

for improving the search? The Learning Factors Analysis method has been proposed to answer some of 

these questions, however, not much has been reported on its effectiveness. Additionally it does not 

present any information the strength of the prerequisite skill links. In this thesis an attempt has been 

made to answer these questions.  

This thesis presents a number of approaches that I have taken to solve this problem. The approaches 

vary from the use of data-mining techniques to empirical studies performed to detect problems with 

skill graphs. One of the approaches proposed is a greedy search algorithm that applies a portion of the 

Learning Factors Analysis method to the search. The other approach involves the use of an adaptive 

testing system to augment the search for more predictive data fitting prerequisite skill graphs, or learn-

ing maps. 

The thesis is organized as follows: The first chapter presents a description of the main problem that my 

work has attempted to solve. Chapter 2 presents one approach that was used to refine a leaning map. 

The approach involves the use of a greedy search algorithm together with Bayesian networks to improve 

learning maps. Chapter three presents a set of factors that need to be considered if the algorithm pro-

posed and used in Chapter 2 is used to search for learning maps. In other words, the factors that the 

algorithm is susceptible to are presented and analyzed. In Chapter 3, a completely different approach is 

presented. This approach uses an adaptive testing system, PLACEments (Belhumeur, 2013), which was 

developed in ASSISTments for testing students’ knowledge of the certain skills in a given domain. We 

report on a few modifications of this tool and how it was used to detect parts of a skill graph that needs 

improvement. 
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Chapter 2: Refining Learning Maps with Data Fitting Techniques: 
Searching for Better Fitting Learning Maps 

The learning sciences need quantitative methods for comparing alternative theories of what students are 

learning, represented as learning maps. This study investigated the accuracy of a learning map and its 

utility to predict student responses. Our data included a learning map detailing a hierarchical prerequi-

site skill graph and student responses to questions developed specifically to assess the concepts and 

skills represented in the learning map. Each question was aligned to one skill in the map, and each skill 

had one or more prerequisite skills. Our research goal was to test if the knowledge representation in the 

learning map could be improved upon in an iterative way. To this end we applied a greedy iterative 

search algorithm to simplify the learning map by merging nodes together.  Each successive merge re-

sulted in a model with one skill less than the previous model. We share the results of the revised model, 

its reliability, reproducibility, and discuss the validity of the most significant merges.  

 

Portions of this work were published at the following venue:  

Adjei, S. A., Selent, D., Heffernan, N. T., Broadus, A, Kingston, N. (2014) Refining Learning 

Maps with Data Fitting Techniques: Searching for Better Fitting Learning Maps. In Stamper, 

J., Pardos, Z., Mavrikis, M., McLaren, B.M. (eds.) Proceedings of the 7th International Con-

ference on Educational Data Mining pp. 413-414 

 

Introduction 
Cognitive models are used to represent how a person’s knowledge may be organized (Gierl, Wang, & 

Zhou, 2008). They contain descriptions of component pieces of knowledge and connections among the 

components to indicate how understanding develops in a specified domain (Gierl, Wang, & Zhou, 

2008). Different authors have described various cognitive models, including learning maps (Popham, 

2011), learning trajectories (Clements & Sarama, 2004), and learning hierarchies (Gagné, 1968). Learn-

ing maps use linear sequences of learning goals and are useful for instructional planning (Popham, 

2011). A learning trajectory includes a learning goal, a developmental progression defining the levels 

of thinking that students pass through as they work toward the defined goal, and a set of learning activ-

ities or experiences that assist students in reaching the defined goal (Clements & Sarama, 2004). As 

their name implies, learning hierarchies model prerequisite knowledge components in hierarchies, al-

lowing multiple pathways to extend from one prerequisite skill to multiple learning goals (Gagné, 

1968).  

 

The learning map extends the notion of a learning hierarchy by representing domain knowledge as a 

network of component skills and connections, allowing for multiple paths from prerequisites to learning 

goals. While multiple paths add complexity to the cognitive model, they allow the learning map to 

represent the potential learning of a broad range of individuals who may experience difficulties travers-

ing certain pathways due to disabilities or particular learning preferences. As such, the learning map 

provides a flexible model of learning that is consistent with recent advances in universal design for 

learning (Center for Applied Special Technology [CAST], 2012).  

In the present study we examine a small section of a learning map and investigate the effects of permut-

ing the topology of the hierarchy. Skills and concepts are represented by latent nodes in the learning 

map, while directed edges represent the prerequisite relationship among latent nodes and between those 

nodes and their associated test items. We present a simple method for improving the predictive power 

of the learning map by combining latent nodes, our initial results on the fit improvement, stability of 

the resulting map, and interpretation of the algorithms chosen node combinations. 

This work connects with literature on searching for better fitting cognitive models. Several non-hierar-

chical cognitive models have been developed to represent the relationship between knowledge compo-

nents (KCs) in the form of prerequisite skill maps.  These cognitive models have been developed to 

help intelligent tutors, as well as experts, determine student mastery of KCs.  A number of technical 
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approaches have been developed to evaluate cognitive models developed by domain experts. One ap-

proach is Learning Factors Analysis (LFA), developed by Cen, Koedinger and Junker (2006) to help 

the Educational Data Mining (EDM) community evaluate different cognitive models. 

There are several different methods for analyzing skills. Tatsuoka (1983) introduced the rule space 

method for representing and determining how well students understood the underlying skills (or rules 

as termed in the paper) for test items. Additionally, the method is used to identify any erroneous classi-

fication or misconceptions of students in responding to test items.  Barnes (2005) utilized the Q-matrix 

method from Tatsuoka’s rule space method to organize combinations of skills into distinct latent classes 

and assign students to latent classes based on level of mastery.  Additive Factor Models (AFM) also 

utilize the Q-matrix but with a multiple logistic regression model which predicts student performance 

based on a number of factors, primarily the number of opportunities a students has to demonstrate a 

particular skill.  However Cen (2009) reported that AFM did not accurately predict items involving 

conjunctive skills and hence introduced the Conjunctive Factor Model (CFM) to improve predictions 

in this area. In addition to latent skill cognitive models, item to item knowledge structures have also 

been learned from empirical data using Bayesian Network structure learning and partial order 

knowledge structures (Desmarais, Gagnon 2006). 

Our approach to simple merging of skills was inspired by Learning Factors Analysis, which uses a 

combinatorial search to determine which model best fits student data. The combinatorial search consists 

of three different types of operations: splitting, merging, or adding existing KCs. Splits occur when a 

knowledge component is determined to be composed of more than one skill, and hence splits into mul-

tiple skills. One or more skills are merged if they are determined to be inseparable skills, given student 

data. The add operation involves the inclusion of a completely new skill to the original map (Cen, 2009). 

Other researchers have tried to extend LFA to other subject domains. Leszczenski and Beck (2007) 

introduced a scalable application of the LFA framework in the context of reading knowledge transfer. 

The problem with this approach is that the search was unstable and could give different results each 

time the search was run.  Instead of determining a student model given an initial human generated 

model, Li, Cohen, Noboru, and Koedinger (2011) proposed a method for automatically generating the 

KCs from student responses to individual items. Although their method resulted in the best fit among 

the other candidates, it may not generalize for models with less coarse grained KCs.  

Other models have focused on the determination of a student’s knowledge of certain skills. Logistic 

regression has been used to trace multiple sub-skills of a given skill (Xu and Mostow, 2011).  Pavlik, 

Cen, and Koedinger (2009) proposed a method for automatically deriving a cognitive model by gener-

ating a Q-matrix, which provides a representation of the KCs required for each test item.  

In this work we follow the combinatorial search described by Cen, Koedinger and Junker (2006). This 

technique can be used to analyze hypothesized learning maps and consider whether small improvements 

to the model result in a better fit to the data. Cen, Koedinger, and Junker (2006) suggested three types 

of operations, i.e., merges, splits, and adds. However, in this study, we used only merge operations 

because the initial learning map had high granularity. 

Initial Learning Map  

This study examined a section of the learning map containing 15 concepts and skills related to under-

standing integers. The map was developed using educational literature describing how students learn to 

understand and operate with integers. The set of integers includes whole numbers and their opposites, 

presenting many students their first exposure to negative numbers (Van de Walle, Bay-Williams, Karp, 

& Lovin, 2014). Although many students have prior knowledge of negative values within contexts such 

as debt or temperatures below freezing, they often struggle when first learning to work with negative 

numbers.  Proficiency with integers includes understanding opposite numbers, comparing integers, rep-

resenting integers on number lines and graphs, and using integers in real world problem contexts. The 

learning map shown in Figure 1 illustrates the component concepts and skills that comprise such un-

derstanding. This map suggests that students should learn to identify opposite numbers (M-1104) and 
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integers (M-1289) in preparation for comparing and ordering integers (M-1133, M-1135, M-1140) as 

well as representing integers on number lines (M-1118, M-1120, M-1108, M-1126) and coordinate 

planes (M-1122, M-1124). Because integers challenge the initial counting strategies students learned 

for positive numbers, it is beneficial for students to work with integers in real-world contexts (M-1106, 

M-1105, M-1127, M-1128) (Van de Walle, Bay-Williams, Lovin, & Karp, 2014) 

.  

Figure 1: The initial learning map that researchers created.  Each ellipse represents a “skill” and each rectangle represents a 
test item.  For easy reference, the links are labeled. The labels do not have any specific meaning. 

The data for this study was gathered from student responses to 25 test items aligned to the 15 skills 

shown in the learning map in Figure 1. All of the test items were multiple choice questions, with four 

answer options per question. Each skill was assessed by at least one test item, in many cases two items. 

As part of the test development process, subject matter experts confirmed the alignment of each item to 

its associated skill, meaning that the item was judged by experts to evoke the intended skill. Therefore, 

when a student answered a test item correctly, we assumed in this study that the student had mastered 

the skill associated with that test item. Furthermore, due to the hierarchical structure of the learning 

map, items associated with skills lower in the learning map were assumed to be more difficult, i.e., 

require more skills, than items associated with skills higher in the learning map. 

In addition to the graph, we utilized a data-set containing the responses of 2,846 students answering the 

same sequence of 25 items in the learning map.  All the students were chosen from middle schools in a 

mid-western state from grades 6 (8%), 7 (49%), 8 (39%) and 10 (4%). The students’ responses were 

dichotomous, ‘1’ for correct and ‘0’ otherwise. 

Methodology 

This section describes the methods used for the study. We describe the merge operation and the evalu-

ation procedure used in the search. We subsequently describe the search algorithm. 

Merge Operation 

In all the experiments described in this chapter, our sole change made to the map was to merge latent 

nodes.  A merge operation occurred when two skills adjacent to each other in the map were combined 

into one skill.  Items from both skills that were merged were reattached to the new single skill.  The 

prerequisites of the constituent skills became prerequisites of the merged skill and the same applied to 
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the post-requisites.  An example of the merge operation on a section of the skill map is shown below in 

figure 2 and 3.  The figures show a skill map before and after the merge operation.  M-1289 and M-

1133 are the skills that were merged into a single skill, named “M-1289XM-1133”. Note that the names 

of the skill hold no meaning of their own, just as the labels of the arcs between the skills.  

  

Figure 2 The graph before the merge of skills M1289 and M1133 

  

Figure 3 After the merge of the arc between M-1289 and M1133. Note that after the merge, all the items mapped to both 
M1289 and M1133 are now mapped to the joint skill labeled “M1289xM1133”. 

Evaluation Procedure 

Each graph that is to be evaluated is modeled as a Bayesian Network of nodes. Each latent node in the 

network represents a skill in the graph, and the observables represent the items that are tagged with the 

skills in the graph. Expectation Maximization was used to learn the parameters for the Bayesian Net-

work representation of the skill graph. These parameters were then used to predict unseen student data. 

We used student-item cross validation with 5 student folds and 3 item folds for evaluating the mod-

els.  Our student and item folds were chosen randomly for the evaluation. More details about how the 

cross-validation was done can be found in the technical document1. We used the Root Mean Squared 

Error (RMSE) metric to evaluate the results of the experiments. RMSE is calculated by squaring the 

differences between each actual value and predicted value and then finding the average value of the 

                                                           
1 The dataset, evaluation algorithm, and a technical report describing the algorithm in detail can be found at 

https://sites.google.com/site/assistmentsdata/kansas-project 

https://sites.google.com/site/assistmentsdata/kansas-project
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differences.  Taking the square root of the average will give the RMSE value for the model. The closer 

the RMSE is to 0, the better the model.  

Experiment 1:  The Search Algorithm 

This section describes the greedy search algorithm as well as the experiment that was run to 

evaluate the algorithm. Using Bayesian networks, a model of an initial skill graph is cre-

ated. Starting with this original graph, we programmatically find all possible skill pairs that can 

be merged.  We consider merging adjacent skills as described in the section describing the 

merge operation.  Each possible merge is evaluated with the evaluation procedure just de-

scribed and the best merge is chosen.  We apply the best possible merge to the skill graph to 

create a new skill graph, which will have one less skill than the graph from the previous itera-

tion.  The new skill graph is used as the input to the next iteration of the algorithm.  This 

technique is iteratively applied until all the skills are merged into a single skill. Figure 4 is a 

listing of the algorithm designed for the study. 

 
 

 

 

 

 

 

 

 

 

Additional details of the search algorithm can be found in the technical documents referenced above. 

Results and Analysis 

Figures 5 and 6 respectively show a table and a graph of the results from the iterative search.  The search 

started at iteration 0, which was the initial skill map consisting of 15 skills before any merges were 

applied.  The search ended at iteration 14, which is a graph consisting of just one skill with all items 

attached to that one skill. The best models from each iteration are shown below. We recorded the Area 

under ROC, Root Mean Square Error (RMSE) and accuracy metrics, although we only used RMSE to 

choose the best models at each iteration and to guide our search. Ultimately, we chose RMSE as the 

deciding metric since this metric penalizes more for errors in prediction and is a more accurate measure 

of the goodness of a model.                   

Input: initialGraph, dataSet 

Output: bestGraph 

Algorithm: 

currentIterationBest = initialGraph; 

currentBestGraphs = empty; 

for noOfNodes = noOfNodesInInitialGraph-1 downto 1; 

 currentGraphs = generate all possible graphs with noOfNodes from the cur-
rentIterationBest; 

 curentIterationBest = select the best from the currentGraphs by fitting 
each to dataSet; 

 currentBestGraphs << currentIterationBest; 
 
return the best from currentBestGraphs; 

 

Figure 4 Greedy Search Algorithm 
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Figure 5 Search Results 

 

Figure 6 The graph of the best skill model 

The results show that the best RMSE obtained was from the 11-skill map (shown in Figure 6) at iteration 

4 with an RMSE of 0.37238.  This is slightly better than the original skill map with RMSE of 

0.37451.  The 11-skill map has a small but significant improvement (p <= 0.001) from the original skill 

map.  The graph shown in Figure 5 also shows that the models consisting of between 9 and 12 skills 

have similar RMSE values and are alternative choices for a best model depending on the level of skill 

granularity desired.  Those models are also significantly better than the original model.  

In addition to looking at which model best predicted actual responses, we examined which skills were 

being merged throughout our iterative search to see if we could find any general trends.  The individual 

skills are represented by their original numbers and a merged skill is represented by the numbers of 

each skill concatenated with an ‘x’.  The numbering is in topological order, meaning that the skill high-

est up on the skill map was listed first for a merged skill.  The first merge occurred for skills M-1128 

and M-1127.  Since skill M-1128 was a parent of skill M-1127, it is listed first in the combined skill 

name M-1128xM-1127. The listing in Figure 7 shows the order in which the merges occurred for all 

the iterations and the skills involved in the merge for each iterations. 
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Figure 7 The Sequence of Merges performed for the best skill graph 

One observation is that the skills that are chosen to be merged in the first few iterations tend to be near 

the bottom of the skill graph.  This suggests that the skills near the top of the skill graph are really 

separate skills compared to the skills near the bottom of the skill graph. Since the skills near the bottom 

are merged first based on best RMSE, those skills are better predicted with one skill parameter.  There-

fore those skills are not really distinct, as they are better modeled with one skill parameter compared to 

skills near the top of the skill graph. 

The last skills to be merged are more likely to be distinct skills from the other skills.  Our last merge 

was the merge between the skill group of 1104x1289x1233 and the rest of the skills in the skill 

graph.  Since this was the last merge chosen resulting in the worst RMSE, it is likely that the group of 

skills 1104x1289x1233 is a separate group from the rest of the skills. 

We believe the structure of the initial skill graph also has influence on the distinct skill groups.  Since 

our merge operation only merges adjacent skills, it takes several merges for a skill at the top of the 

graph to merge with a skill at the bottom of the graph.  A separation will naturally occur between the 

different levels of the graph.  This implies that the original skill graph would need to be somewhat 

correct in terms of network topology.  If non-adjacent skills were in fact the same or similar skills, there 

would be no easy way for our iterative algorithm to merge them, because our merge operation can only 

merge adjacent skills.  Three distinct skill groups can be seen after iteration 12 in a 3-skill graph (See 

figure 8).  These skills show the influence of the original network topology.  The skills tend to group 

by their locations in the original network.  The topmost skill group consists of the skills at the top of the 

graph, the middle group of skills consists of the skills in the middle of the graph, and the bottommost 

group of skills consists of the skills at the bottom of the original skill graph. 

 

Merge 1:  1128 and 1127 

Merge 2:  1140 and 1118 

Merge 3:  1140x1118 and 1120 

Merge 4:  1105 and 1106 

Merge 5:  1122 and 1124 

Merge 6:  1140x1118x1120 and 1105x1106 

Merge 7:  1135 and 1140x1118x1120x1105x1106 

Merge 8:  1289 and 1233 

Merge 9:  1135x1140x1118x1120x1105x1106 and 1108 

Merge 10:  1126 and 1128x1127 

Merge 11:  1135x1140x1118x1120x1105x1106x1108 and 1122x1124 

Merge 12:  1104 and 1289x1233 

Merge 13:  1135x1140x1118x1120x1105x1106x1108x1122x1124 and 1126x1128x1127 

Merge 14:  1104x1289x1233 and 1135x1140x1118x1120x1105x1106x1108x1122x1124x1126x1128x1127 
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Figure 8 Skill Graph after Merge 12 (3 skills) 

An additional observation is that, some of the skills tend to merge by pairing up with one and only one 

adjacent skill before RMSE starts to decline.  Before merge 5, the merges are all pairwise with the 

exception of merge 3.  After merge 5, the skills tend to keep merging into the same skill.  The graph 

generated after merge 4 corresponds to the best skill graph.  This suggests that the adjacent skills tend 

to be similar skills.  It also suggests that skills 1140 and 1120 are similar although they are not adja-

cent.  This is a stronger relationship for several reasons.  Firstly, the merges that culminated in the 

merger of M1140, M1118, and M1120 all took place before the best skill graph was reached.  This 

indicates that those three skills give better predictive performance when represented as one skill.  Sec-

ondly, this was the first 3-skill group to be merged and the only 3-skill group in the best model before 

RMSE declines.  Lastly the three skills took two iterations of the search algorithm to merge together 

because skills 1140 and M1120 were not adjacent skills.  Despite the initial graph topology our search 

decided to merge these three skills.  The combination of all these factors give stronger reasoning that 

the three skills M1140, M1118, and M1120 are not really distinct skills. 

 

Experiment 2:  Stability Experiment 

In the previous experiment, every model was evaluated once and only once, which lead to the question 

of whether or not our results were stable.  Our model evaluation used the Expectation Maximization 

(EM) algorithm, which is known to be affected by the starting value. In general, the EM algorithm does 

converge to the correct value, but there are cases where it can converge to incorrect values or to the 

“opposite” value.  Considering the range to be between 0-1, if the actual true value of a parameter was 

0.3, EM could converge to (1 - 0.3) = 0.7 instead, if the initial starting point was too far from the true 

value. 

 

Our research question was: if we were to run the iterative search experiment several times would we 

end up with the same results using different starting values for EM?  Since it takes several hours just to 

evaluate a single model, running the entire search consisting of over 100 models to evaluate would take 

too long.  Therefore the purpose of this experiment was to evaluate just the first iteration of the search 

ten times to see if the results converged to a single best graph. 

For the first iteration of the algorithm there were sixteen possible merges that could occur.  For each of 

these possible merges we evaluated the resulting model ten times.  The evaluation used was the same 

evaluation as the iterative search experiment for which we tested stability.  For each of the ten runs we 

set the random seed in MatLab to correspond to the run number.  This gave us a different set of random 

numbers for each run of the 16 possible merges, where each merge got the same random seed within a 

run.  Manually setting the random seed also meant our results for the stability experiment would be 

reproducible 
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Results and Analysis 

After evaluating all sixteen models from the first iteration ten times, we kept a count of how many times 

a model was the best model and how many times a model was in the top 3 best models.  RMSE was 

used to choose the best models since it was used to determine the best model in the iterative search 

experiment (figure 4).  The results are shown in the figure 9 below. 

 

 

Figure 9 Stability Results 

Merge ‘g’2 was in the top 3 the most times (6) and was also the best model the most times (3).  Merge 

‘x’ and merge ‘q’ also did well.  Merge ‘x’ was in the top 3, five times and was the best model two 

times.  Merge ‘q’ was in the top 3, three times and was the best model three times.  Merges ‘t’ and ‘o’ 

also did well.  The general observation was that there was separation between good and bad merges but 

the best merge was not stable and did not converge. 

We compared the graphs to our original iterative search experiment.  In the original iterative search the 

first two skills that were merged were skills M-1128 and M-1127, corresponding to merge ‘x’ in our 

stability experiment.  The second two skills that were merged in the iterative search experiment were 

skills M-1140 and M-1118, corresponding to merge ‘g’ in the stability experiment.  Both merges ‘x’ 

and ‘g’ were the best two graphs in the stability experiment.  Although merge ‘g’ did slightly better in 

the stability experiment, the order in which the merges took place did not matter.  The best model in the 

iterative search took place after 4 merges, which included merges ‘x’ and ‘g’.  Although we could not 

run the stability experiment 10 times for all possible merges and merge paths, we believe that it has a 

decent chance to converge to the same best model, which occurred after the fourth merge in the iterative 

search. 

Discussion 

When analyzing each merge, we considered the skills or concepts described by the affected skills as 

well as the test items associated to those skills. The descriptions below discuss the three groups of skills 

merged in experiment 1 and shown in the Best Model Skill Map (Figure 3b) and the two additional 

pairs of skills merged in experiment 2. In each case, the merges point to commonalities in the skills 

themselves or among the test items used to assess different skills. 

Merge ‘x’ affected skills M-1127 and M-1128. These skills represent “the ability to represent inequal-

ities from real world contexts” and “explain inequalities from real-world contexts,” respectively. The 

test items associated with these skills required students to read problems and identify inequality state-

ments that matched the problems. In this case the test items did not distinguish between two unique 

skills, i.e., representing a problem or explaining a problem, as was suggested by the two skills. 

                                                           
2 See Figure 1 for the edges that correspond to the named merges. 
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Merges ‘g’ and ‘k’ affected skills M-1118xM-1140 and M-1120.  These skills represent the abilities to 

“locate integers on a number line,” “represent integers on a number line,” and “order integers from least 

to greatest,” respectively.  The test items associated with these skills required students to select lists of 

correctly ordered integers or identify the correct number line graph of a particular integer.  In this case 

the test items did not adequately distinguish between locating and representing integers on a number 

line (i.e., M-1118 and M-1120) because all of the items were multiple choice, and none provided stu-

dents the opportunity to construct their own number line representations of integers. The inclusion of 

ordering integers from least to greatest (i.e., M-1140) with the other two skills is possibly due to the 

fact that using a number line is inherently, cognitively connected to ordering numbers from least to 

greatest. 

Merge ‘t’ affected skills M-1105 and M-1106. These skills represent the abilities to “use positive and 

negative numbers in real-world contexts” and “relate the meaning of zero to positive and negative num-

bers in real-world contexts,” respectively. The test items associated with these skills required students 

to interpret problems involving integers and choose integer answers or verbal statements about integers. 

Two of the four test items included references to zero either as freezing point or sea level. In this case 

the items were designed to distinguish between the two skills, i.e., using integers and relating integers 

to zero. However, the relationship between zero and positive or negative numbers is so critical for un-

derstanding integers, it is likely that one cannot compare integers without considering their values in 

relation to zero.  

Merge ‘q’ affected skills M-1120 and M-1108. These skills represent the abilities to “represent integers 

on a number line” and “recognize opposite numbers on a number line,” respectively. The test items 

associated with these skills required students to identify the correct number line graph of a particular 

integer or the opposite of a given integer. In this case, the two skills are inherently connected by the 

very definition of an integer as the opposite of a whole number. Consequently, it is likely that once 

students understand the definitions of integers and opposites and can use a number line, the act of gra-

phing an integer is the same as graphing an opposite.  

Merge ‘o’ affected skills M-1122 and M-1124. These skills represent the abilities to “recognize integer 

coordinate pairs” and “graph integer coordinate pairs,” respectively. The test items associated with these 

skills required students to identify the graph of a given integer ordered pair or to select the description 

of how to graph a given ordered pair on a coordinate plane. In this case, the items did not clearly dis-

tinguish between the two skills because the items associated with recognizing integer coordinate pairs 

included graphs. Furthermore, the skills themselves are difficult to distinguish in a practical sense be-

cause when students learn to graph integer ordered pairs, they routinely associate the numerical repre-

sentation (i.e., the ordered pair) with its graphical representation (i.e., the point graphed in the coordi-

nate plane). 

An additional observation is that some of the skills tended to merge by pairing up with one and only 

one adjacent skill before RMSE started to decline.  Before merge 5, the merges were all pairwise with 

the exception of merge 3.  After merge 5, the skills tended to keep merging into the same skill.  The 

best skill map was generated after merge 4, suggesting that adjacent skills tended to be similar skills 

and skills M-1140 and M-1120 were similar although they were not adjacent.  This was a stronger 

relationship for several reasons.  The merges that culminated in the merger of M-1140, M-1118, and 

M-1120 all took place before the best skill map was reached.  This indicated that those three skills give 

better predictive performance when represented as one skill.  This was also the first and only 3-skill 

group to be merged in the best model before RMSE declines.  Finally, the three skills took two iterations 

of the search algorithm to merge together because skills M-1140 and M-1120 were not adjacent 

skills.  Despite the initial graph topology, our search decided to merge these three skills.  The combina-

tion of all these factors provided strong reasoning that the three skills M-1140, M-1118, and M-1120 

were not really distinct skills. 

Contributions, Conclusions and Future Work 
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Our contribution is that we provide a search algorithm to reduce the complexity of a given learning map 

while improving its fit to real student data.  Since merging skills increased accuracy, these results sug-

gest that the original skill map was too fine-grained (given the amount of questions per skill and the 

amount of students who took the test.)    In some cases the test items did not adequately distinguish 

between the skills that were merged; hence such skills were merged.  The results of algorithms like this 

can help content experts that are creating such skill maps and questions either reconsider thinking of 

the two skills as separate, or spur them to write some new questions that might better distinguish stu-

dents that have one of the skills mastered but not the subsequent skill.   In this work, those that created 

the learning map thought that item 11 was a prerequisite for items 12 and 13, but our stability results 

presented suggest that of all the arcs, this arc is the most unsupported by the data (see Figure 4, arc 

“g”).   In fact, due to this work, we asked an unbiased teacher who did know what our mapping was, to 

create a hierarchy between items 11, 12 and 13. Surprisingly, she suggested that 12 and 13 were pre-

requisites to item 11, suggesting that the arc should point in the exact opposite direction.  We think that 

this means that our method is helpful in using the data to suggest places in the skill graph that require 

additional attention.     

This work relates to additional research by our team.  Heffernan’s ASSISTments project is attempting 

to track and improve students’ knowledge across middle school mathematics.  About a decade ago we 

had a learning map with over 300 skills but we now have reduced that complexity to 147 skills.  Cur-

riculum designers are correctly thinking about the subtle ways in which problems are different from 

one another, which cause them to want to add skills to the skill maps to make more subtle distinctions 

between questions.  However if you also want to use the hierarchy to track knowledge, having more 

skills is bad, as fewer questions remain for each skill making fitting quantitative models harder.    

All of the work we have done in this paper has a very small number of questions per skill.  This naturally 

would cause us to think that many merges would be necessary, but if we had a large number of ques-

tions, and all students answered that large number of questions, we could probably justify more com-

plicated models.   

In our experiments we examined the effects of merging skills on an existing learning map.   There are 

many other ways we could have used the existing map to create alternatives.  For instance, Cen, 

Koedinger and Junker (2006) have explored ways of splitting skills or adding new skills, but all of those 

make more complicated models.  What was not examined were the split and add operations.  Possible 

future work could examine those operations to see if a better model can be obtained with them.  

To verify that our algorithm works correctly, applying it to synthetic learning maps and synthetic data 

could be useful to determine if our algorithm converges to a true learning map. 
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Chapter 3: Refining Learning Maps with Data Fitting Techniques: 
What Factors Matter? 

Cognitive models/Learning maps (skill graphs) have been identified as potentially improvable through 

the use of data mining techniques. However the factors that affect this improvement/refining process 

are not so clear. In an earlier paper we presented a method for improving these cognitive models. The 

purpose of this paper is to present the factors to consider when using our initial algorithm to refine 

learning maps. We present a simulation study that shows how important each of the factors are for this 

refinement process.  

Introduction 

Learning maps have been used as a tool to depict the set of skills in a cognitive domain and the rela-

tionship between these skills. A number of studies have been conducted to find and represent the rela-

tionships between the skills (Embretson, 1998; Mislevy, Steinberg, & Almond, 2002; Sheehan, 1997; 

Tatsuoka, 1983). Tatsuoka introduced the Rule-space method for identifying skills/knowledge compo-

nents in a given cognitive domain whereas (Leighton, Gierl & Hunka, 2004) present another approach 

called the Attribute Hierarchy Method (AHM). The rule-space method (RSM) does not present the 

relationship of the skills/knowledge components as a hierarchy. However AHM, which is a variation of 

Tatsuoka’s RSM, considers the hierarchical relationship between the components (Tatsuoka, 1995). 

Gierl et. al. (2008) used the AHM approach to make inferences of students’ cognitive assessment. None 

of these approaches dealt with methods for improving the item response models developed using the 

methods proposed. The Learning Factors Analysis (LFA) method by Cen, and colleagues (2006) was 

introduced to deal with this problem. In that paper three different operations for improving the predic-

tive abilities of learning maps or cognitive models are introduced. In (Adjei, et al. 2014) an attempt was 

made to solve this problem by presenting the results of a number of experiments that showed that learn-

ing maps can be refined using just one (the merge operation) of the three possible operations within the 

LFA method. It was shown that there were significant improvements in RMSE for the best model cho-

sen, starting off with a pre-defined learning map.  

We realize that, to generalize the method for refining learning maps, there are a number of questions 

that still need to be answered. These include: “What are the factors that can determine when a model 

can be best refined?” and “Do the number of skills, the number of items per skills, the number of levels 

in the skill hierarchy and the number of data points have any effect in determining the best refined 

model?” Whilst the LFA methods use a set of factors to determine whether to merge, add or split skills 

to generate better models from an existing one, all the factors used are based on expert knowledge and 

are independent of data. In order to answer the above questions, we present a number of simulation 

experiments.  

Problem Statement 

The LFA model uses three operations (splits, merges, and adds) to refine knowledge components. In 

each of the operations, learning factors were included in the model refinement process. These factors 

did not include the number of skills in the model, the levels in the hierarchy of skills in the model, the 

number of items per skill and the guess and slip parameter values for the items. We hypothesize that 

these factors are important in generating an optimal model from a given learning map (pre-requisite 

skill hierarchy). Hence we set out in this paper to present a series of experiments that help in determining 

the impact of the above mentioned factors in refining a given learning map or cognitive model. 

 

 

Methodology 
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To be able to answer our research questions, we started off with a 3-skill graph. We inserted a fake skill 

at different locations of the graph and ran our evaluation code to determine when the original skill-

graph is learned back and what factors determine when this occurs. We examined the following factors 

and determined which of these factors have the most impact on using the greedy algorithm presented in 

the earlier paper to refine a given model: guess and slip parameter values, the number of levels in the 

skill graph hierarchy, and the number of data points (i.e. students and items). For each randomly chosen 

skill graph we generate a set of simulated data, one each for the number of student and item pairs used. 

We then evaluate the models using Expectation Maximization to determine the factors that have the 

most impact. The following section presents the random graph generation, Bayesian network creation, 

fake skill creation, and the evaluation code. 

Random Skill Hierarchy Generation.  

To generate a skill graph randomly we began by choosing a random skill hierarchy. Our algorithm to 

generate the skill hierarchy took a range of skills and a graph depth as input parameters. The output of 

the algorithm was a valid skill hierarchy where the number of vertices was within the skill range and 

the number of levels was within the depth range. We order our vertices from 1 to N and use the con-

straint that a vertex cannot have a directed edge pointing to a smaller numbered vertex. We also enforce 

the constraint that a vertex cannot have any self-edges.  

To generate a random graph we chose a random number within the range of possible graphs. We then 

converted this number to binary form and added the correct number of leading zeros (we knew the 

number of skills from the random number chosen). Then we simply inserted the bits of the binary num-

ber into the varying spots of the matrix form of the graph in order. 

The result was a directed acyclic graph with no self-edges. It will not necessarily be connected. The 

final step was to check if the graph is connected. If the graph was connected, we kept it; otherwise we 

discarded it and repeated the generation process. This method allowed us to instantly generate valid 

graphs. An example is shown in Table 1 and Fig 10 for a graph with three skills.  

 

Table 1. Example Matrix.  Matrix generated by the random number 5. A ‘Y’ represents that this 

cell is ignored because it must be a zero since a vertex cannot have directed edges pointing to 

vertices with larger numbers. An ‘X’ indicates that this cell is ignored because it must be a zero 

since a vertex cannot have self-edges. 

Vertex / 
Vertex 

1 2 3 

1 X (0) 1 0 

2 Y (0) X (0) 1 

3 Y (0) Y (0) X (0) 

 

 

 

Figure 10 A Sample 3-skill graph generated for the experiments 
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Create Bayesian Network 

The Bayesian network used for the analysis was generated from the skill graph selected from the pre-

vious step. To generate the items for the skills an item range was specified. A random number of items 

was chosen within the item range for each skill. In our experiments we restricted our range to be a single 

value so all skills would have an equal number of items. We set our Bayesian network up like knowledge 

tracing, where every skill had one or more items and every item had a guess and slip node (Colbert and 

Anderson, 1995). An item was tagged with only one skill. The skill nodes were latent nodes since we 

could not observe whether or not a student knows the skill. Each item node was an observable node, 

which is a ‘1’ if the student answered the item correctly and a ‘0’ if the student did not answer the item 

correctly. Both the guess and slip nodes were also latent nodes representing whether or not the student 

guessed or slipped on the item. A student was considered to have guessed when she answered correctly 

but did not know the skill. A student was considered to have slipped when she answered incorrectly but 

knew the skill. Using the previous skill graph example we added the item, guess, and slip nodes to the 

graph.  

 

The final step to create the Bayesian network was to create the conditional probability tables (CPT) for 

the nodes. For our experiments we defined each skill node as AND nodes. This means that a student 

could only know a post-requisite skill if the student knew all of the prerequisite skills. Therefore if a 

student does not know one of the prerequisite skills then the student cannot know the post-requisite 

skill. If the student does know all the prerequisite skills (or there are no prerequisite skills), we picked 

a random probability that the student will know the post-requisite skill between 0.3 – 0.7. Our guess 

and slip parameters had varying probabilities since that was one of the parameters we experimented 

with. All the item nodes had a deterministic (0% chance or 100% chance of correctness) CPT based off 

of the skill, guess, and slip nodes (which were not deterministic). 

Creation of Fake Skill 

We exported our Bayesian network to MATLAB and used Kevin Murphy’s Bayes Net Toolkit (Mur-

phy, 2001) to generate the ground truth data. Once the ground truth data was generated we randomly 

generated “fake” skills from the original graph. We defined a fake skill as one that does not belong in 

the graph. The intention was to test the algorithm’s ability to detect that fake skill. A fake skill was 

generated by randomly choosing a real skill. Once a real skill was chosen, a random number of items 

was chosen from the real skill. These items were then detached from the real skill and attached to the 

fake skill. The fake skill was then randomly chosen to be either a parent or a child of the real skill. Fig 

11 shows the creation of a fake skill. 

 

 

 

 

Figure 11 Creation of Fake Skill. The left skill graph shows the original skill graph before the creation of the 

fake skill. The skill graph on the right shows the skill graph after the creation of the fake skill. The fake skill was 

created from Skill_1 where item two was removed from skill 1 and attached to the fake skill. 

 
Evaluation 
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In order to evaluate our Bayesian Network we used a similar process as that found in (Adjei, et. al. 

2014). We used Expectation Maximization (EM) to learn parameters and fit our model. To evaluate our 

model we used per student per item cross validation with 5 student folds and 3 item folds. Our student 

and item folds were chosen randomly for our evaluation. In (Adjei, et. al. 2014) the item folds were 

chosen randomly but kept the same for each student. The only difference between the evaluations in 

this experiment is that each student is assigned a different set of random item folds instead of all students 

having the same set of random item folds. 

Experiments 

This section describes the set of experiments that we run to determine the factors that impact the search 

of better predictive skill graphs. These include determining the factors that matter, investigating the 

impact of student and item numbers on the search, and a final experiment that checked the stability of 

the search after fixing a number of factors.   

Experiment 1: Determining the Factors that Matter 
In this first experiment, we started with a set of skill graphs randomly generated from a set of chosen 

factors. These factors included the number of fake skills, the number of original skills, the number of 

items attached per shill, and the guess and slip rates for the items used in the skill graph.  For each of 

the graphs, we insert a number of fake skills. We define a fake skill as one that is broken off of an 

existing skill. The fake skill has a random number of items chosen from the original skill and the fake 

skill is either a pre-requisite or post-requisite of the original skill. If the fake skill is a pre-requisite of 

the original skill, all the previous pre-requisites of the original skill become the pre-requisites of the 

new fake skill and the original skill becomes the post-requisite of the fake skill. The idea is to figure 

out if this fake skill will be easily identified and merged with the skill from which it was created from. 

This is to validate our merge operations and to determine what factors influence the determination of a 

better skill-model /skill map than the original. 
 

Analysis 

We analyzed the results of the experiment and looked at how the number of students, number of items, 

guess/slip values, and the number of fake skills impacted RMSE of our predictions and the percent of 

correct graphs learned back. Figure 12 shows the relationship between the probability a student 

guessed/slipped and the RMSE as well as the percent of the correct skill graph being learned back. We 

paired guess and slip values to lower the number of variables in our experiment.  Our guess/slip pairings 

are as follows {(0, 0), (0.1, 0.08), (0.3, 0.16), (0.5, 0.25)}. It shows that the higher chance the student 

has to guess the answer the less accurate and harder it is to learn back the true original graph. The 

percent of graphs learned back with a guess/slip probability of 0 is significantly better than the percent 

of graphs learned back with a guess probability of .5 (p < .001). A realistic guess probability is around 

0.14 calculated by Pardos and Heffernan (2010). At this point the percentage of graphs learned is some-

where between 0.25 and 0.33. These are not great percentages to learn back a correct graph under real-

istic guess and slip values. Not much can be done to lower the guess probability on typical questions 

middle school math students would see. However more student data can be used to increase model 

performance. 
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Figure 12 Effect of guess/slip on learning back the original graph 

The guess/slip probability is the biggest factor that affects model accuracy followed by the number of 

students. Table 2 shows how both the guess/slip probability and the number of students affects the 

percentage of correct graphs learned back and average RMSE. A cell is broken up into two columns 

where the first column in the cell is the percentage of correct graphs learned back and the second column 

in the cell in the average RMSE value. 

Table 2. Student/Guess Impact on Evaluation 

 Students 

Guess 50 100 150 200 

PLB RMSE PLB RMSE PLB RMSE PLB RMSE 

0 0.33 0.09 0.64 0.08 0.7 0.1 0.67 0.02 

0.1 0.25 0.36 0.33 0.33 0.33 0.32 0.38 0.31 

0.3 0.25 0.46 0.33 0.44 0.08 0.44 0.38 0.43 

0.5 0.08 0.49 0.08 0.48 0.08 0.48 0 0.46 

 

For a guess probability of 0.3, the percentage of correct graphs (PLB) increases from 25% for 50 students 

to 38% for 200 students (p = 0.2). This shows that under a realistic worst case guess probability, in-

creasing the number of students can increase the percentage of correct skill graphs learned back. The 

number of fake skills seemed to have little effect on RMSE, however a large effect on learning the 

correct graph. With more than one fake skill the percentage of correct graphs drops significantly from 

0.6 for 1 fake skill to 0 for 3 fake skills (p < .002) for guess values of 0.1. This can be seen for the three 

points with an x-axis value of 0.1 in Fig 4. No additional findings are presented here as there were no 

strong trends. 
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Figure 13 Effect of Number of Fake Skills on model improvements 

Experiment 2: Impact of Item/Student counts on Recoverability  
In experiment 1 multiple randomly chosen graphs were used as the ground truth. In this experiment we 

chose to try each possible 3-skill graph to see if the graph structure had an effect on whether or not the 

correct skill graph was learned back. The methodology was the same as experiment 1 except instead of 

randomly choosing graphs we ran each of the four graphs for each possible number of students and 

items per skill. Figure 12 shows all four possible 3-skill graphs. After determining that the major factor 

impacting performance were guess/slip values, a reasonable pair of values were chosen for the guess 

and slip values (guess=0.1 and slip=0.08). Additionally we fixed the number of fake skills to one in 

order to reduce the variability of the factors. 

 

Figure 14 Different graph types for experiment 2 

 

Figure 15 Effect of students/items on the model simplification. 
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The general observation from this experiment is clear from Fig 15 above. As the number of data points 

increases, the level of accuracy in recovering the original graph increases. This is despite the fact that 

the location of the fake skill was not fixed. Moreover, for any given number of students, an increase in 

the number of items results in a slight decrease in RMSE and hence better chance of learning back the 

original graph. This experiment shows that the data points (i.e. student and item numbers) have an 

impact on improving on the determination of the best model from a given model. The more data points 

there are, the more accurate the search. 

Experiment 3: Stability Experiment 
The main purpose of this experiment was to determine whether the results we found in the earlier ex-

periments were stable. In this experiment we fixed all the variables except for the number of students 

and the number of items per skill. We wanted to see how stable our search was and how well it per-

formed for a small example with reasonable parameter values. We fixed guess at 0.10 and slip at 0.08 

with three skills and one fake skill. For the fake skill we took the first half of items from the original 

skill. We ran our algorithm for 50, 100, 150, and 200 students for 2 and 8 items per skill. For each pair 

of parameters we ran the experiment 10 times with different random seeds and took an average of the 

number times the correct graph was learned back. Figure 14 shows the results of this experiment.  We 

found that the results are very stable for graphs that had two items per skill.  The results were less stable 

for graphs with eight items per skill although the percent of graphs learned back was much batter.  The 

graphs that had two items per skill were learned back correctly 8% of the time, where graphs with eight 

items per skill were learned back correctly 43% of the time, which is a significant improvement (n=40, 

p<.001). 

 

 

Figure 16 Percent of graphs learned back for student ranges 50-200 and 2+8 items per skill 

Experiment 4: Impact of Student Numbers on Initial Graph Recoverability 
We ran experiment 4 to confirm that the number of students has an impact on the recoverability of the 

original graph, fixing all other parameters at reasonable values and varying the number of students. For 

this experiment, guess and slip values were set at 0.1 and 0.08 respectively. We used graph type 4 

(Figure 14), set the number of items to 4 and fake skills at 1, varying the location of the fake skill. The 

student numbers were varied from 10 to 100. For each student number, the evaluation was run 10 times. 

The results in Figure 17 show that as we intuitively assumed, the number of students has a huge impact 

on the algorithm’s ability to learn back the true graph. The results show that as the number of students 

increases the probability of a skill graph being learned back increases whilst the RMSE reduces. These 

results are significant with p-values below 0.01. This finding confirms that student numbers is an im-

portant factor that needs to be considered when refining learning maps. 
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Figure 17 Impact of Student Numbers 

Conclusion 

Many learning maps/cognitive models are built from expert knowledge. With the production of a pleth-

ora of educational data on student performance, it has become imperative to find data centered methods 

of improving upon these expert-designed learning maps. In our earlier studies we designed and pre-

sented an algorithm for simplifying/improving the predictive accuracy of these models. In this paper 

we have presented a number of factors that influence the data centered model improvement process we 

initially published. We have shown with our simulation studies that the guess/slip values, number of 

items per skill, the number of students and the number of fake skills in the graph affect the simplification 

of the skill models. We also explored many parameters to see how much data is needed to recover the 

true learning maps. For future work we plan to continue to evaluate our algorithm on larger examples 

to see how well our algorithm can scale up and test it on well-known real data sets. 
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Chapter 4: Searching for Learning Maps using Adaptive Testing Sys-
tem: Placements  

 
In our earlier work in the search for better fitting models, we showed that skill graphs can easily be 

improved by considering just one of the three operations proposed in the Learning Factors Analysis. 

(Adjei, et. al. 2014) In chapter one, we proposed a greedy search algorithm for searching data fitting 

models with equally accurate predictive power as the original skill graph but with fewer nodes in the 

graph. Additionally it has been shown that a number of factors need to be considered in order to improve 

upon the search. In chapter 3, it was explained that the number of students and items also has an impact 

on the search. Similarly the choice of the problem with which the skills are tagged also impacts the 

search. 

 

However, this chapter is meant to answer the following research question: are there more dynamic ways 

of determining the strength of the relationship between skills in the skill graph? In this chapter, PLACE-

ments, an adaptive testing system is presented and used to determine different portions of a skill graph 

that need to be looked at. The tool identifies the prerequisite relationships in a skill graph that need to 

be maintained and those that should not exist.  

 

Introduction 

In order to improve upon student learning, a number of approaches have been studied to determine ways 

of improving the effectiveness of the skills teachers transfer to students and the order in which these 

skills need to be taught. Learning Factors Analysis, Q-Matrices and a few other methods have been 

proposed and used to improve upon learning maps. Some have shown promising results, though many 

have not been applied to different subject domains. 

 

However, none of the approaches that have been used have studied the ways in which to determine the 

strength of the relationships in a prerequisite skill graph. In our quest to find the best methods for im-

proving upon learning maps, could we use empirical studies to find the best order in which students 

must learning certain skills? Can we determine the strength of the relationships between learning maps 

are their effectiveness? This chapter presents an adaptive testing system that traverses a prerequisite 

skill graph based on a student’s performance. We present a brief description of how the system works, 

the design of the study, and the results we found. The chapter concludes with a discussion of the findings 

of the paper as well as the limitations of this approach. 

 

PLACEments, an Adaptive Testing Systems 

PLACEments is a computer aided adaptive testing system. This system is a feature of an intelligent 

tutoring system, ASSISTments, that mainly provides teachers a means of creating and assigning exer-

cises and tests to their students. (Razzaq, et. al., 2009) ASSISTments also has a feature that allows 

students to do the exercises and tests assigned by their teachers.  

 

The PLACEments system has a number of components: item pool, item selection, termination rules (a 

skill graph for the knowledge domain in which the students’ knowledge will be assessed and three 

modules (test creation, test taking (Tutor), and remediation creation)). The item pool for placements is 

chosen from a list of skill builders used extensively in ASSISTments. The choice of problems for the 

placements test was made based on the difficulty of the item. The difficulty was determined by calcu-

lating the percent correct for all responses of students in ASSISTments to that item and subtracting that 

value from 1. (see equation 1 below) To ensure that PLACEments does not present overly easy or overly 
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difficult problems, the items for each of the skills tested were chosen such that their difficulty is between 

.4 and .6 (the smaller the number, the more difficult the item is).  

 
𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖 = 1 − Pr(𝑖𝑡𝑒𝑚𝑖 = 1)                            (1) 

 

As noted earlier, PLACEments uses a predefined skill graph to guide test item selection. Though we 

currently use a prerequisite skill graph developed based on the Massachusetts Common Core State 

Standards for Mathematics (2010), the system is designed such that it can use any prerequisite skill 

graph from which tests can be drawn. The initial set of problems is chosen from the initial set of skills. 

Each skill has one problem chosen from the item pool. When students get an item for a skill incorrect, 

implying that the student does not have that cognitive skill, the test is expanded by including the prob-

lems from the prerequisite skills of each of the skills the student has gotten incorrect. The test bank 

increases until the grade boundaries chosen at test creation are reached. For a given student, the test 

terminates when all the skills in the initial set of skills have been tested, and the student gets all the 

items for that skill correct. If the student is not able to answer any of the initial problems correctly, then 

the test terminates when there are no prerequisites remaining to be tested.  

 

The following diagram, figure 18 shows a hypothetical graph that explains how the test proceeds. The 

correctness indicator attached to each node in the graph is a particular representation of a given student’s 

performance. The nodes in the graph represents the skills, the arrows between the skills represents the 

prerequisite relationship between the skills (thus, skill ‘D’ is one of the prerequisites of skill ‘A’). In 

this configuration, the students are assigned skills ‘A’, ‘B’ and ‘C’ as the initial skills. This student is 

adaptively assigned questions D, E, and H in that order, because he performed poorly on A and E.  

 

Figure 18 A sample skill graph and a sample student’s response configuration 

 
The size of the test is affected by the students’ performance as well as the structure of the skill graph. 

 

Once the students complete the test, remediation assignments are created based on the skills they per-

formed poorly on. Each student is assigned a different set of remediation. The remediation assignments 

on the lowest grade level skills are released before those of the higher grade levels. In the example 

shown in fig 18, the student will be assigned a skill builder assignment in the following sequence: H, E 

and then A. Once the prerequisite skill is completed, the next skill inline is released. 

Research Question 

As was stated earlier, this study is meant to determine whether a skill graph can be improved using an 

empirical studies. To be specific we want to determine the strength of prerequisite skill relationships 

between skills and hence determine which of such relationships to remove or maintain in a skill graph. 

Methodology 

To answer our research question, we run a study in which the navigation of a skill graph in a PLACE-

ments test is modified for a random sample of students. Figure 19 demonstrates the modifications made 

to PLACEments in order to answer this question. For those randomly chosen students, a random initial 
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skill (skill ‘A’ in figure 19) is selected and the students get to answer questions from the prerequisite 

skills (‘B’ and ‘C’) of the chosen skill if the students get the initial skill correct. 

 

Figure 19 Sample navigation of the graph for this study 

In order not to overload the chosen students with work, in a given assignment and for those students, 

only one initial skill is used in the study. Additionally, if any of the chosen students gets the prerequisite 

skill incorrect, they are not assigned remediation assignments as is the case with all the other assign-

ments, and the navigation does not continue to the second level of prerequisite skills (i.e. those of ‘B’ 

and ‘C’ in figure 19) for the chosen initial skill.  

 

It is hoped that if a higher percentage of the students in the study answer the prerequisite skills of a 

given skill correctly, this would suggest a strong relationship between the skills, and hence maintain the 

skill in the graph. On the other hand, if the percentage is low then it would suggest that that prerequisite 

link in the graph would either require further scrutiny or must be removed.  

Dataset 

The dataset includes a prerequisite skill graph developed by a Mathematics domain expert. This graph 

contains skills from the Common Core Standards (2010) spanning grades K-9. The graph, which is the 

graph used in PLACEments, has a total of 495 prerequisite relationship. A portion of the graph is shown 

in Figure 20 below. The green lines in the graph indicate that the prerequisite skills are in a lower grade 

level, whiles the black arrows between the nodes show prerequisite link between skills of the same 

grade level as the post-requisite skill. The node names represent the skill codes from the Common Core  

 

 

Figure 20 A portion of the prerequisite skill graph designed by a math expert and based on standards from the 

Common Core Mathematics Standards 

Standards for Mathematics. Each of these nodes has a complete description and examples of what stu-

dents need to be taught. See http://www.corestandards.org/Math/ for a complete listing and a detailed 

description of the standards. 

http://www.corestandards.org/Math/
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The dataset additionally includes 1272 problem logs from ASSISTments. Each row in the dataset rep-

resents a student’s response to a placements test item. That dataset also includes a matrix of item to skill 

tagging. These logs were from 601 distinct students whose grades ranged between 6 and 12. Each of 

these students was assigned at least one of the 119 placements assignments used in the study. The data 

set represented 60 of the 495 prerequisite relationships in the skill graph. 

Results and Analyses 

As of the time of reporting this study, data had been collected on 60 of the 495 relationships/prerequisite 

skill links. Of these 60, 35 had at least 10 responses. (See table 3 for the complete list of 35 links) We 

limit the number of responses per relationship to 10 in order to achieve some generalization of the 

results. The graph in figure 21 shows that three (3) of the relationships had link strength of 0, since none 

of the students had the prerequisite questions correct even though the new the post-requisite. Two (2) 

were of the maximum strength (1). A larger proportion of the links examined so far has strengths rang-

ing between 0 and 1. As many as 24 of the links have a significantly low link strength as the figure 

shows.  

 

 

Figure 21 Prerequisite Link Strength 

As the graph indicates, we can make general statements about the relationships. For three of the rela-

tionships, none of the students knew the prerequisite skills even though they performed well on the 

post-requisite skill. Similarly two of the links can be believed since all the students who knew the post-

requisite skills also knew the pre-requisite, suggesting that the link belongs in the graph. There was a 

larger number of the links for which strengths were inconclusive. Of particular interest are the skill links 

with strength below 0.5. Those strength values show that a big percentage of students did not know the 

prerequisite skill even though they all got the post-requisite skills correct. These low numbers suggest 

that the prerequisite relationship between the skills need to be looked at extensively, and may warrant 

a removal from the skill graph. It may be safe to assume that the skills with a link strength above 0.5 

may be valid and the reason for which the strength is not 1 may be because the items used in the test 

have high slip rates. However this assertion needs further studies to ascertain. 

 

To help us understand how the link strength is affected by the knowledge level of the students who 

participated in the study, the results were sub-divided into the different knowledge levels. The 

knowledge level of a student was determined by the student’s prior percent correct, i.e. the percent of 

correctness of a student’s previous performance on problems in ASSISTments. All students with a per-

cent correct value below 0.5 were assigned to the low knowledge group, while those students with 
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percent correct values between 0.5 and 0.75 were tagged as medium level students. Any student whose 

prior percent correct was above 0.75 was tagged as a high knowledge student.  

 
Table 3 A Subset of the List of Skill Links in the prerequisite skill graph. 

Link 
Code Skill Prerequisite Skill 

A Ordering Fractions Equivalent Fractions 

B Subtracting fractions like denominator Adding mixed numbers like denominator 

C Comparing Positive Decimals Read & write decimals 

D Subtraction Mixed Numbers  Addition Mixed Numbers  

E Word problems with fractions as division Multiplication Fractions 

F Multiplication Fractions Area of rectangle word problems 

G Line Plot Real world fraction multiplication 

H Line Plot Line Plot with fractions 

I Expressing unit rate in words Finding The Ratio 

J Expressing unit rate in words Word problems with fractions as division 

K Solve unit rate problems Expressing unit rate in words 

L Percent of Expressing unit rate in words 

M Divide multi-digit numbers Division Whole Numbers 

N Division of  Positive Decimals Multiplication Positive Decimals 

O Comparing integers on number line Plot on coordinate plane 

P Evaluate exponents Multiply by Powers of 10 (number of zeros) 

Q Deviations in measures of center & spread Median 

R Identify constant of proportionality Unit Conversions with ratios 

S Identify constant of proportionality Unit rate with fractions 

T Identify constant of proportionality Solve unit rate problems 

U Identify constant of proportionality Percent of 

V Identify constant of proportionality Expressing unit rate in words 

W Identify constant of proportionality Percent- finding whole 

X Divide Integers Multiply Integers 

AA Word problems all operations w/ integers Word problems with fractions as division 

AB Word problems all operations w/ integers Divide Integers 

Y Word problems all operations w/ integers Multiply and Divide non integer rationals 

Z Word problems all operations w/ integers Multiply Integers 

AC Combining Like Terms Distributive Property 

AD Equation Solving Two or Fewer Steps Word problems all operations w/ integers 

AE Scale drawings Identify constant of proportionality 

AF Operations with scientific notation Dividing Monomials 

AG Operations with scientific notation Power of Powers 

AH Operations with scientific notation Multiplying Monomials 

AI Transversal Sum of angles 
 

Figures 22 and 23 present a breakdown of the results by knowledge level. Table 3 lists the 35 links 

considered in this study. Of the 35 skill links studied, there were 12 of the skills for which we had data 

for all three knowledge levels. Twenty-three (23) of these links were examined for both medium and 

high knowledge students. 
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Figure 22. Prerequisite Skill Link Strength by knowledge level 

The results show some variations in the link strength when the data is split into different knowledge 

levels. The results for links J and K clearly show an agreement in the results across knowledge levels. 

The results for J suggest a very weak link and hence that link must be removed from the skill graph. 

For all knowledge groups, link K is strong, suggesting that the link is believable and hence belong in 

the graph.  

Links I, L, M, N and AC show that the different knowledge levels contributed differently to the strength. 

While for links I, M and AC, both high and low knowledge students demonstrate that those links are 

strong, there is a different result for the medium knowledge students. Apart from links I and AC, all the 

other links in that group have a link strength above 0.8.  The other interesting link is C. Though the 

results shows link C as a weak link, it is a much weaker link for medium knowledge students than for 

high knowledge students, and worse for low knowledge students. Another set of interesting results was 

that for links A, B, E and O.  In all of these, it would be expected that medium knowledge students will 

do poorly on a prerequisite skill than high knowledge students, however the results show that this is not 

the case for those skills. The medium knowledge students performed better than expected. Link O is 

even more interesting. The data for both low and high knowledge students suggest that the link should 

be removed from the skill graph. However, this is a much weaker statement to make for medium 

knowledge students, suggesting that there should be different prerequisite skill graphs for students with 

different knowledge levels. 

0

0.2

0.4

0.6

0.8

1

1.2

A B C E I J K L M N O AC

P
ec

en
t 

C
o

rr
ec

t

Prerequisite Skill Links

Prerequisite Skill Link Strength By Knowledge Level

Low Knowledge Medium Knowledge High Knowledge



27 
 

 

Figure 23 Medium and High Knowledge Students' contribution to link strength 

 

In the data set, there were 23 of the links for which we did not have responses from low knowledge 

skills. The medium and high knowledge level students are compared in Figure 23 and we can see that 

each of the two knowledge groups contributed differently to the results of the study. Links AG and AH 

appear to be non-existent since the results show that none of the students in the two knowledge groups 

could know the prerequisites in that link even though they knew the post requisite skill. These links 

appear to be other candidates for removal from the skill graph. The results in figure 23 show a set of 

interesting variations in the link strengths across the knowledge levels. 

Overall, these results suggest a number of the prerequisite skills that need to be assessed in the graph: 

some may require complete removal from the skill graph and others suggest a different skill graph for 

different students with different knowledge levels. Additionally breaking the results down into the dif-

ferent knowledge levels has resulted in one minor finding: Students with different knowledge levels 

have different representation of knowledge and hence different skill graphs need to be designed for 

student with different knowledge levels.  

Limitations of the Approach 

The approach described in this chapter has a number of limitations. The first limitation is about the 

choice of questions for the skills in the skill graph. Since the current implementation of PLACEments 

uses just one item (or question) to represent a skill in the test, a poorly chosen problem will affect the 

performance of the search. If a problem chosen to represent a skill in the test has a very high slip or 

guess rate, the performance of the students (the basis of which is used to determine the strength of links 

in the graph) will be affected. In other words, if a problem has a high slip rate, PLACEments will assume 

that students do not know a skill because most of the students will not perform well on that problem, 

even though there might be a high probability of the students knowing the skill tagged by the problem. 

Another limitation that relates to the choice of the questions for skills in the graph is about the number 

of questions used in the test to assess a student’s knowledge of a skill. Since PLACEments currently 

uses just one question per skill, the choice of problems has to be such that it is a good representation of 

problems tagged by that skill. In other words it has to be an almost perfect determinant of a student’s 

knowledge of the skill. One way to deal with this limitation is to use multiple problems with varying 

guess and slip rates for a given skill.  
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Another limitation of this approach is that the fact that we start the search by believing the initial set of 

skills and their ordering. In fact the approach does not help in determining whether the ordering of the 

skills in a skill graph is problematic or not. A new ordering of skills cannot be suggested by using this 

approach. Finally, a large number of student data is needed in order to make reasonable conclusions. 

Contribution 

In this paper we have proposed an intuitive but novel method for improving prerequisite skill graphs. 

The freely available adaptive testing system, PLACEments, can be used to collect and analyze student 

performance data on the items tagged by the skills in a skill graph in order to determine the appropri-

ateness of some of the skill links in a given prerequisite skill graph. Of course with the limitations 

mentioned earlier, we think that the educational data mining community can take a good look at this 

process and augment the search for better fitting models with this new technique.  

We have also shown that students of different knowledge levels learn differently and as such there 

should be a different representation of the skills they have in a given domain. Our results suggest that 

curriculum designers may want to think about the needs of these different knowledge levels in the de-

sign of curricula.  

Conclusion and Future Work  

Several methods have been proposed and used to improve upon the predictive power of learning maps. 

These methods include the Learning Factors Analysis, Q-Matrices and the greedy search algorithm 

proposed and reported upon by the authors in an earlier paper. Many of them have shown promise, 

especially with the greedy search algorithm showing that an equally predictive model can be found 

which is different from the initial skill graph but with fewer skill-nodes. However, we have not found 

any empirical studies that have been conducted with the aim of determining the flaws in a given skill 

graph/learning map and fixing them. The present study set out to solve this issue. The initial research 

question was: Can we do a better job at determining the deficiencies of a skill graph with empirical data 

and improving upon the skill graph? 

To answer that question, we built an adaptive testing feature, PLACEments, in ASSISTments and used 

that to collect data on prerequisite skill graphs. The results of the study showed that deficiencies of a 

skill graph can be determined. Some relationships can be identified as un-necessary and hence be re-

moved from the system. This finding is true irrespective of the knowledge level of the students involved. 

Additionally, we found that students with different knowledge levels of a given domain require different 

skill graphs. This was from the fact that some of the relationships appeared to be stronger for students 

of one knowledge level than for those of another. 

There were a few limitations of this approach requiring further studies to make the method more robust. 

It was mentioned that just one item was used to test a students’ knowledge of a skill, and so our estimate 

of the students’ knowledge of a skill may be biased by either the difficulty of the item or the guess and 

slip rates of the item. This requires further studies. One particular future study to perform in this regard 

is to vary the number and difficulty of the items used to estimate a student’s knowledge of the skill. 

The results would be made even stronger with more student data. So far we have looked at only 35 of 

the over 400 different links in the graph. More data is needed to test different links in the graph. We 

have therefore proposed an alternative method for improving upon prerequisite skill graphs. This 

method can be used to augment the results from the other three methods mentioned earlier.  
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Appendix: Questions Used for Experiments in Chapter 1 

Questions 
 
1. Which statement about 3+ (-2) and 3 2 best describes the meaning of the symbols "+" and " "? 
A) 3 + (-2) and 3 2 both mean subtracting 2 from 3 
B) 3 + (-2) and 3 2 both mean adding 3 to the opposite of 2 
C) 3 + (-2) means subtracting 2 from 3, and 3 2 means adding 3 to the opposite of 2 
D) X 3 + (-2) means adding 3 to the opposite of 2, and 3 2 means subtracting 2 from 3 
QuestionId: 50049, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
2. Which statement about 6 (-5) and 6 + 5 best describes the meaning of the symbols "+" and " "? 
 
A) 6 (-5) and 6 + 5 both mean adding 6 and 5 
B) 6 (-5) and 6 + 5 both mean subtracting the opposite of 5 from 6 
C) X 6 (-5) means subtracting the opposite of 5 from 6, and 6 + 5 means adding 6 and 5 
D) 6 (-5) means adding 6 and 5, and 6 + 5 means subtracting the opposite of 5 from 6 
QuestionId: 50050, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
3. Which statement about integers is true? 
A) X -3 is an integer because 3 is an integer 
B) is an integer because both 1 and 2 are integers 
C) 0.75 is an integer because 75 is an integer 
D) -1.26 is an integer because both -1 and 26 are integers 
QuestionId: 50051, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
4. Which is always an integer? 
A) positive fraction 
B) negative decimal 
C) improper fraction 
D) X zero 
QuestionId: 50052, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
5. Which correctly explains why -5 is the opposite of 5? 
A) X -5 added to 5 equals 0 
B) 0 is to the left of 5 on a number line 
C) -5 is to the left of 5 on a number line 
D) they are located on different sides of 0 
QuestionId: 50053, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
6. Which choice contains a pair of opposite numbers? 
 
A) -5, 
B) -5, 
C) -5, -5 
D) X -5, 5 
QuestionId: 50054, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
7. Which statement comparing two integers is correct? 
 
A) -1,537 > 1,576 
B) -1,537 < -1,576 
C) 1,537 < -1,576 
D) X -1,537 > -1,576 
QuestionId: 50055, Standard 6 "NS", Benchmark 7 "7", Indicator "a", Sub Indicator "" 
 
8. Which expression comparing two integers is correct? 
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A) -2,789 > 2,980 
B) X -2,789 > -2,980 
C) 2,789 < -2,980 
D) -2,789 < -2,980 
QuestionId: 50056, Standard 6 "NS", Benchmark 7 "7", Indicator "a", Sub Indicator "" 
 
9. Which list of temperatures is in order from highest to lowest? 
 
A) X 45 degrees F, 2 degrees F, -32 degrees F, -38 degrees F, -40 degrees F 
B) 45 degrees F, -40 degrees F, -38 degrees F, -32 degrees F, 2 degrees F 
C) 2 degrees F, -32 degrees F, -38 degrees F, -40 degrees F, 45 degrees F 
D) -40 degrees F, -38 degrees F, -32 degrees F, 2 degrees F, 45 degrees F 
QuestionId: 50057, Standard 6 "NS", Benchmark 7 "7", Indicator "b", Sub Indicator "" 
 

10. A business's net daily income for five days is shown in the table below. 

 
Which list of incomes is in order from least to greatest? 
 
A) -$220, $185, $170, -$140, $125 
B) $125, -$140, $170, $185, -$220 
C) X -$220, -$140, $125, $170, $185 
D) $185, $170, $125, -$140, -$220 
QuestionId: 50058, Standard 6 "NS", Benchmark 7 "7", Indicator "b", Sub Indicator "" 
 
11. The school's band members are selling cookies to raise money. The band members need to pay for unsold 

boxes.  The table below shows the total sales, including fees for unsold boxes of each member. 
 

 

QuestionId: 50059, Standard 6 "NS", Benchmark 6 "6", Indicator "c", Sub Indicator "" 
 
12. Each graph displays points L and 0 on a number line. On which number line is point L positioned at the 

value of  

 



33 
 

 

 
QuestionId: 50060, Standard 6 "NS", Benchmark 6 "6", Indicator "c", Sub Indicator "" 
 

13. Which graph correctly represents the integer shown? 
 

 

QuestionId: 50061, Standard 6 "NS", Benchmark 6 "6", Indicator "c", Sub Indicator "" 
 

14. Point P is plotted in the graph shown below.  Which coordinate pair lists the correct values for P? 
 

 

A) (-2, 4) 
B) (-5, 4) 
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C) X (4, -2) 
D) (4, -5) 
QuestionId: 50062, Standard 6 "NS", Benchmark 6 "6", Indicator "c", Sub Indicator "" 
 

15. Which number line shows that I is the opposite of J? 
 

 

 
QuestionId: 50063, Standard 6 "NS", Benchmark 6 "6", Indicator "a", Sub Indicator "" 
 
16. Which procedure describes correctly how to graph the ordered pair (-2, 3) on the coordinate plane? 
A) X Starting from the origin, move 2 units to the left, and move 3 units up. 
B) Starting from the origin, move 2 units to the right, and move 3 units up. 
C) Starting from the origin, move 2 units to the left, and move 3 units down. 
D) Starting from the origin, move 2 units to the right, and move 3 units down. 
QuestionId: 50064, Standard 6 "NS", Benchmark 6 "6", Indicator "c", Sub Indicator "" 
 
17. The freezing point of water is 0 degrees C. Which temperature is 10 degrees below the freezing point of wa-

ter? 
A) 10 degrees C 
B) 100 degrees C 
C) X -10 degrees C 
D) -100 degrees C 
QuestionId: 50065, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
18. Antonio's account had a $5 balance before he went to the bank to make a deposit. What is his balance after 

putting $25 into this account? 
A) $0 
B) -$20 
C) $25 
D) X $30 
QuestionId: 50066, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
19. Points R and T are plotted on the number line shown below.   

 
    Which sentence correctly explains the relationship between R and T? 
 
A) X R is less than T, because R is to the left of T on the number line 
B) T is less than R, because T is to the right of R on the number line 
C) R is greater than T, because the number line extends to the left and right of R 
D) T is greater than R, because the number line extends to the left and right of T 
QuestionId: 50067, Standard 6 "NS", Benchmark 7 "7", Indicator "a", Sub Indicator "" 
 

20. Bob owed $50 to a business. Then Bob paid $50 to the business. Which statement is true? 
A) X Bob now owes the business $0. 
B) Bob now owes the business $100. 
C) The business now owes Bob $50. 
D) The business now owes Bob $100. 
QuestionId: 50068, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
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21. The elevation of Village A is 5 meters below sea level. Village B is 4 meters above Village A. What is Vil-

lage B's elevation, in relation to sea level? 
A) 1 meter above sea level 
B) X 1 meter below sea level 
C) 9 meters above sea level 
D) 9 meters below sea level 
 
QuestionId: 50069, Standard 6 "NS", Benchmark 5 "5", Indicator "", Sub Indicator "" 
 
22. Which sentence correctly explains why a temperature of 3 degrees below 0 is warmer than a temperature of 

7 degrees below 0? 
A) X -3 is greater than -7 
B) -3 is not equal to -7 
C) -3 is equal to -7 
D) -3 is less than -7 
QuestionId: 50070, Standard 6 "NS", Benchmark 7 "7", Indicator "b", Sub Indicator "" 
 
23. Which sentence below correctly explains why 6 meters below sea level is lower than 2 meters below sea 

level? 
A) -6 is greater than -2 
B) -6 is not equal to -2 
C) X -6 is less than -2 
D) -6 is equal to -2 
QuestionId: 50071, Standard 6 "NS", Benchmark 7 "7", Indicator "b", Sub Indicator "" 
 
24.  Family J spent 3 1/2 hours traveling to a campsite. Departing from the same place, Family K spent 3 5/6 hours 

traveling to the same campsite. Which statement correctly compares the two families' traveling time? 
 
A) Family J spent more time traveling because 3 1/2 > 3 5/6. 
B) X Family J spent less time traveling because 3 1/2 < 3 5/6. 
C) Family K spent more time traveling because 3 1/2 > 3 5/6. 
D) Family K spent less time traveling because 3 1/2 < 3 5/6. 
QuestionId: 50072, Standard 6 "NS", Benchmark 7 "7", Indicator "b", Sub Indicator "" 
 
25.  Two gas pipelines are being placed in a town. Pipeline A is placed at a depth of 2 3/7 meters below the 

ground and pipeline B is placed at a depth of 3 1/4 meters below the ground. Which statement is correct? 
A) Pipeline A is deeper than pipeline B because -2 3/7 < -3 1/4. 
B) X Pipeline B is deeper than pipeline A because -2 3/7 > -3 1/4. 
C) Pipeline A is deeper than pipeline B because -2 3/7 > -3 1/4. 
D) Pipeline B is deeper than pipeline A because -2 3/7 < -3 1/4. 
QuestionId: 50073, Standard 6 "NS", Benchmark 7 "7", Indicator "b", Sub Indicator "" 
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