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Abstract 
 
 

The focus of this thesis is formulation and development of a mathematical framework 

for the solution of the contingency constrained optimal power flow (OPF) based on 

sequential quadratic programming. The contingency constrained optimal power flow 

minimizes the total cost of a base case operating state as well as the expected cost of 

recovery from contingencies such as line or generation outages. The sequential quadratic 

programming (SCP) OPF formulation has been expanded in order to recognize 

contingency conditions and the problem is solved as a single entity by an efficient interior 

point method. The new formulation takes into account the system corrective capabilities 

in response to contingencies introduced through ramp-rate constraints. Contingency 

constrained OPF is a very challenging problem, because each contingency considered 

introduces a new problem as large as the base case problem. By proper system reduction 

and benefits of constraint relaxation (active set) methods, in which transmission 

constraints are not introduced until they are violated, the size of the system can be 

reduced significantly Therefore, restricting our attention to the active set constraint set 

makes this large problem significantly smaller and computationally feasible. 



  ii 

 
 

Acknowledgements 
 
 
 
I would like to thank my advisor, Dr Kevin A. Clements for his support and guidance 

without which this work would not have been possible. Working with you Dr. Clemens 

has opened the whole new world of optimization in power systems to me and has 

certainly been my most memorable experience at WPI. 

 
My research at WPI was funded by the National Science Foundation. I greatly appreciate 

the financial support they provided. 

 
I also would like to thank Dr Alexander Emanuel and Dr Paul Davis. It has always been a 

pleasure working with you. 

 
Professor Alexander Emanuel has been a great personal support and comfort in the good 

and bad times that a graduate student might encounter coming to the foreign country. 

 
Last but not least, I would like to thank Professor Paul Davis for his assistance in 

problem definition and preparation of this manuscript. 

 
This acknowledgement would not be complete if I would not mention the endless support 

I received from my mother and sister through my whole life. 

 



  iii 

Contents 
 

 

Abstract ................................................................................................................................ i 

Acknowledgements............................................................................................................. ii 

1   Introduction.................................................................................................................... 1 

1.1  Background and Motivation .................................................................................... 1 

1.2  Contribution of the Thesis ....................................................................................... 4 

1.3  Outline of the Thesis................................................................................................ 4 

2   Sequential Quadratic Programming Based Optimal Power Flow.................................. 5 

2.1  Introduction.............................................................................................................. 5 

2.2  Operational objectives ............................................................................................. 5 

2.3  Constraints ............................................................................................................... 6 

2.4  Mathematical formulation of the OPF ..................................................................... 7 

2.5  Interior Point Method............................................................................................. 11 

2.6  Constraint Relaxation Method ............................................................................... 13 

2.7  Full AC case........................................................................................................... 13 

2.8  Fast Decoupled case............................................................................................... 18 

3   Contingency Constrained OPF via Sequential Quadratic Programming..................... 28 

3.1  Introduction............................................................................................................ 28 

3.2  Mathematical formulation of the contingency constrained OPF ........................... 32 

3.3  Forming a quadratic subproblem ........................................................................... 37 

3.4  Solving reduced system ......................................................................................... 47 

3.5  General contingency constrained OPF formulation............................................... 55 

3.6  Algorithm Description ........................................................................................... 57 

4   Simulation results......................................................................................................... 61 

4.1  IEEE 14 bus network case ..................................................................................... 61 

4.2   IEEE 30 bus network case .................................................................................... 62 

5   Conclusion and Future Work ....................................................................................... 63 

5.1  Conclusion ............................................................................................................. 63 

5.2  Future work............................................................................................................ 63 

Appendix I:   Power Balance, Jacobian and Hessian Equations....................................... 64 



  iv 

Appendix II:   Fast Decoupled Power Flow...................................................................... 69 

Appendix III:   Matrix Calculation Details ....................................................................... 72 

Appendix IV:   Implementation of the Active Set Method............................................... 80 

References......................................................................................................................... 82 



  1 

1   Introduction 
 
 

1.1  Background and Motivation 
 
 
 

Optimal power flow (OPF) as an optimization method for an energy management 

system (EMS) control center was developed in the 1960s and 1970’s and since then has 

been an important function as a standard application. The classical OPF formulations 

were pioneered by Carpentier [1] and Dommel and Tinney [2]. Since then a great deal of 

research has been done and various optimization techniques have been used in order to 

find efficient solutions to this non-linear optimization problem. 

 
OPF is a tool used for both the operation and planning of a power system. It can be 

intuitively explained in the following way. If we are to supply a given demand, and if we 

have generation units committed (participating in the dispatch), OPF gives an answer as 

to how much power each unit has to produce (dispatch) as well as how to adjust 

transformer settings in order to supply demand most economically, while respecting all 

the constraints imposed on the system. 

 

 
Fig. 1. Five-bus power system 



  2 

 

The five bus network Fig. 1. will be considered as an example. Generators Pg1, Pg2 Pg3 are 

dispatchable sources of active and reactive power. For now let’s assume that control 

variables are just active power generation Pg1, Pg2 Pg3. Buses 3 and 5 are purely load 

buses PL1, PL2. The OPF problem is to minimize total cost of generation (Pg1, Pg2 and Pg3) 

while satisfying the scheduled load, voltage, line flow and generation limits. 

 

OPF is a computationally intensive tool when analyzing many generation plants, 

transmission lines and demands. Finally the engineering constraints and economic 

objectives for system operations are combined by formulating and solving the optimal 

power flow problem. OPF is used in economic analysis of the power system as well. 

Also, the OPF problem, besides generation dispatch, computes short-run marginal costs 

for each resource used in providing power as well as at each bus, which can be helpful in 

the design of transmission pricing and expansion policies. Marginal cost is considered an 

important concept in the design of emerging markets. However, it must be recognized 

that OPF marginal costs are static snapshots of the system conditional on one assumed set 

of supply and demand. In order to reflect multiple time periods (even for a few hours) 

OPF marginal prices would be calculated very often. 

 
A contingency is a loss of one or more transmission equipment and/or generation units. 

Loss of a transmission line is usually due to a storm or automatic relaying action. The 

occurrence of a contingency is unpredictable; therefore it is of great importance for a 

system to operate in a such a way that corrective actions can be taken. Contingency 

analysis is often the most time-consuming function in an Energy Management System 

(EMS). A transmission system is said to be “secure” if it could continue to provide power 

that meets demand even if a contingency were to occur. 

 

In the case of a generation outage, the lost generation will be supplied by the remaining 

generators, according to some specified redistribution pattern. Some plants need 

significant time to increase power and can not respond promptly to the contingency 

occurrence. It may be not possible to rely entirely on the economically most attractive 
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plant to increase the output as fast as necessary; thus other, more expensive plants must 

be used at least temporarily. 

 

The OPF formulation can include constraints that represent operation of the system after 

the occurrence of contingencies. Contingency constrained OPF tells how to dispatch 

power capacities and controlled components of the system if serious disturbances were to 

occur anywhere in the system. This solution of the OPF problem takes into account the 

security of the system and also allows the OPF to dispatch the system in defensive 

manner. 

 

The list of all possible contingencies is very long, and considering all of those would be 

demanding in time as well as computational sense. Therefore it is important to distinguish 

those contingencies which produce post-contingency violations, and reduce the constraint 

list to those that results in violation. Most of the cases have no violations and can be 

disregarded. We have to find a way to select contingencies in such a way that only those 

that are likely to result in an overload or voltage limit violation will actually be studied in 

detail. The other cases will go unanalyzed. 

 

Contingency constrained OPF may have many different scenarios, and involve simulation 

of system flows for each possible major disruption to the system, including an unplanned 

power outage, or a line outage (caused by lightning strike for example). If some 

disruptive event would be particularly problematic, special dispatch patterns including 

load shedding should be considered. In that case load shedding can be incorporated as a 

control as long as it is given an artificially high cost. Otherwise, the cheapest solution 

would be to shed as much load as possible. 

 

If K is the total number of contingencies considered, each step of the algorithm requires 

solution of K+1 quadratic programming problems (one for each contingency and base 

case). Therefore efficient solution of this very large optimization problem is crucial. 
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1.2  Contribution of the Thesis 
 
 

A mathematical framework for the sequential quadratic programming-based 

contingency constrained OPF is given. A potentially big problem is solved as a single 

entity using an interior point method and constraint relaxation (active set) method. This 

formulation takes into account the system corrective capabilities in response to 

contingencies. A program based on the proposed framework was written and contingency 

cases that consider line outages have been studied. 

 

1.3  Outline of the Thesis 
 
 

• Chapter 2 starts with an overview of the OPF. In particular, it defines basic 

terms associated with the OPF problem like operation objective, constraints, 

interior point method, and constraint relaxation. A sequential quadratic 

programming algorithm for base case OPF is reviewed. The chapter concludes 

with the formulation of a fast decoupled version of sequential quadratic 

programming. 

• Chapter 3 gives a step by step formulation of sequential quadratic 

programming-based contingency constrained OPF. The chapter concludes with 

an outline of the algorithm. 

• Chapter 4 presents numerical results, from applying the algorithm to the IEEE 

14 and 30 bus networks, with concentration on line outages. 

• Chapter 5 summarizes the thesis and discusses directions for future work. 
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2   Sequential Quadratic Programming Based Optimal Power 
Flow 
 
 

2.1  Introduction 
 
 

In this chapter, an overview of the OPF problem formulation will be given and 

methods used in its solution will be explained. The sequential quadratic programming 

(SQP) approach to the base case OPF as presented in [5], [6] will be briefly reviewed and 

a formulation based on decoupled power flow will be derived. The major feature of the 

SQP formulation is that the algorithm is divided into an outer linearization and an inner 

optimization loop. The system to be solved in the inner loop is of the size of the active 

set, which is potentially small. 

The main benefit of the fast decoupled formulation is that the Jacobian matrix and some 

of the terms calculated through the iterative process are constant, greatly reducing the 

computational effort in factorization. 

 
 

2.2  Operational objectives 
 
 

As mentioned at the beginning, the OPF formulation has a single objective function. 

The most common objective functions are: minimum cost of operation, minimum active 

power transmission losses, minimum deviation from the specified point, minimum 

number of controls rescheduled. The most common objective function to be minimized is 

the cost of operation, which will be our objective function as well. The objective function 

usually depends on variables with direct cost (power generation) and variables without 

direct cost (voltage magnitude). Load shedding can be incorporated in the objective as 

well. It must be incorporated via a very high cost; otherwise the cheapest solution would 

be to shed as much load as possible. 
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The minimum cost of generation objective function is a sum of the costs of the generators 

participating in the dispatch. A critical part of this formulation is modeling the cost 

curves. The cost of thermal units is derived from the heat-rate curves which are quite 

often far from convex. Because convexity of the objective function is one of the 

assumptions for optimization methods employed in the solution of the OPF problem, a 

first approach is to approximate cost curves as convex polynomials. Other 

approximations, such as using an arbitrary number of linear segments are acceptable as 

well. 

In our formulation cost curves are approximated by a quadratic polynomial of the form: 
 
  cbpap)p(c gggg ++= 2  
 
where pg is in MW (or per unit) output of the generator and a, b, c are constant 

coefficients. 

 
 

2.3  Constraints 
 
 

As we stated, the OPF is a constrained optimization problem. The set of constraints 

can be divided into equality constraints and inequality constraints. The equality constraint 

set typically consists of power balance (active and reactive) at each node of the network 

which result from Kirchhoff’s current law. 

Another set of constraints are inequality constraints, which are usually limits resulting 

from network component limitations. A common set of inequality constraints consists of: 

• Generator power constraints (P and Q) 

• Line power constraints (P) 

• Voltage, tap ratios, and phase shifter angle constraints 

 
Generators are rated by maximum apparent power (Smax) which they can produce. The 

combination of P, Q produced by a generator must obey the apparent circle equation 
2
max

22 SQP ≤+ . The maximum active power (Pmax) produced by generator is limited by 
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the turbine’s physical limits, while maximum reactive power (Qmax) is often determined 

so that heating of the rotor is within a prespecfied tolerance. Likewise, a minimum 

generation level is usually specified. Therefore for each generator in the network is 

subject to the following constraints: 

 
   maxmin

kkk PPP ≤≤  

   max
kk

min
k QQQ ≤≤  

 
Besides generators, transformers provide an additional means of control of the flow of 

both active and reactive power. There are two types of controllable transformers: tap 

changers and phase shifters, although some transformers regulate both the magnitude and 

phase angle. Controllable transformers are those which provide a small adjustment of 

voltage magnitude, usually in the range ±10% or which shift the phase angle of the line 

voltages. A type of transformer designed for small adjustments of voltage rather than for 

changing voltage levels is called a regulating transformer. 

 
 

2.4  Mathematical formulation of the OPF 
 
 

Optimal power flow is formulated mathematically as the following constrained 

nonlinear optimization problem: 

 

   
0
0

≤
=

)u,x(f
)u,x(gtosubject
)u,x(cimizemin

     (1) 

 
The objective function is a scalar function. Two types of variables appear in the above 

optimization problem: x is a set of state variables (voltage magnitudes v and phase angles 

θ for each node in the network) and u is the set of controllable quantities in the system 

(generator outputs, adjustable transformers)  

 

   nx
v

x 2ℜ∈







θ

=  
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where n denotes the number of nodes (buses) in the network. 
 

   un

b

g

g

u
t
q
p

u ℜ∈



















ϕ

=  

 
where nu is the number of control variables: active power (pg) reactive power (qg) tap 

changing transformers (tb) phase shifting transformers(ϕ). 

 

The equality constraints g(x,u) are power balance equations (active and reactive) for each 

node in the network, occasionally augmented by a few special equality constraints such 

as specifying voltage at voltage controlled buses. 

Inequalities f(x,u) are the limits on the control variables u, and the operating limits on the 

power system. Limits on the control variables are known as a “hard” limits (i.e., violation 

of these limits is not allowed) and operating limits are known as “soft” limits (i.e., small 

violations are tolerable). The set of inequality constraints prevent of dispatching 

generation that will lead to violating system limits. 

 
In the past three decades, various optimization techniques have been proposed to solve 

the nonlinear OPF problem expressed in (1). A few implementations have been very 

successful. Difficulties with various techniques usually either from unacceptable time 

consumption for a problems involving large power networks. Techniques that are 

proposed can be categorized as: 

• Gradient methods – these were the first approach to solving OPF and showed 

very slow convergence properties 

• Sequential linear programming (SLP) algorithms based on the linearization of the 

original OPF problem. In an outer linearization loop the objective function and 

constraints ( power flow equation ) are linearized. The SLP problem is of the 

form: 
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fuFxF
guGxGtosubject

ucxcimizemin

ux

ux

T
u

T
x

−≤∆+∆
−=∆+∆

∆+∆
 

 
• Sequential quadratic programming (SQP) algorithms use the second order 

derivatives to improve the convergence rate. At each outer iteration the objective 

is approximated as a quadratic with a linear constaraint set. This SQP problem is 

solved iteratively until convergence is attained. 

The above techniques vary in speed, cost of computation, and convergence properties. 

 
In order to solve the optimization problem stated in (1), we have to develop necessary 

conditions for a minimum of the objective function subject to the given constraints. 

Therefore we will form the Lagrange function. The Lagrange function is formed by 

adding constraint functions multiplied by an undetermined multiplier vector (Lagrange 

multiplier λ and π) to the objective function. It is very important that Lagrange 

multipliers can be viewed as the optimization variables of auxiliary optimization 

problems, called dual problems, which will be helpful in applying interior point methods. 

The dual problem objective has the same optimal value and has as optimal solutions the 

Lagrange multipliers of the original problem. 

Before defining the Lagrange function, we will convert the inequality constraint to 

equality constraint by adding a nonnegative slack variable (s). With the introduction of a 

slack variable the OPF is formulated as: 

 

   

0
0

0

≥
=+

=

s
s)u,x(f

)u,x(gtosubject
)u,x(cimizemin

 

 
The Lagrangian function for this problem is: 
 

)s)u,x(f()u,x(g)u,x(cL TT +π+λ+=  
 
The necessary conditions for an extreme value of the objective function results when we 

take the partial derivative of the Lagrange function with respect to each variable and set 

those derivatives to zero. Those conditions are known as Karush-Kuhn-Tucker (KKT) 
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conditions. Convergence is attained when the Karush-Kuhn-Tucker necessary conditions 

for optimality have been satisfied within practical accuracy. 

 
 
   0=π+λ+∇=∇ T

x
T
xxx FG)u,x(cL  

   0=π+λ+∇=∇ T
u

T
uuu FG)u,x(cL  

   0==∇λ )u,x(gL  

   0=+=∇π s)u,x(fL  

   0=Π=∇ sLs   {complementary slackness condition} 

   0≥π,s  

 
where:  )(diag iπ=Π  
 

 
x

)u,x(gGx ∂
∂

=   nn
xG 22 ×ℜ∈  

 

 
u

)u,x(gGu ∂
∂

=   unn
uG ×ℜ∈ 2  

 

 
x

)u,x(fFx ∂
∂

=   nn
x

cF 2×ℜ∈  

 

 
u

)u,x(fFu ∂
∂

=   uc nn
uF ×ℜ∈  

 
The structure of the above Jacobian matrices is discussed in Appendix I 
 
The complementary slackness condition means that whenever the constraint f(x,u) ≤ 0 is 

slack (meaning that f(x,u) < 0 and consequently s > 0) the constraint π ≥ 0 must not be 

slack (meaning that π = 0) and vice versa. 

Although a first idea to solve the above system of KKT conditions might be by direct 

application of Newton’s method, experience shows that the domain of convergence can 

be quite small in many cases, a condition that ultimately leads to failure to converge. A 

more reliable and powerful is idea that of a barrier function and an interior point method. 
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2.5  Interior Point Method 
 
 

The interior point method was developed by Nerendras Karamarkar in 1984 for linear 

programming, although many of the component ideas were known earlier. Experience 

indicates that the interior point method is algorithm of choice when solving large-scale 

problems, which OPF definitely is. The algorithm used for years for solving linear 

programming problems is the simplex method, which moves from one vertex of the 

feasible region to another while constantly attempting to improve the value of the 

objective function. An interior point method implies that progress towards a solution is 

made through the interior of the feasible region rather than its vertices. Karamarkar 

discovered how to trace such a path quickly. 

There are three versions of the interior point method algorithm, the primal, the dual and 

the primal-dual. The primal-dual algorithm has been found to be very robust and is the 

method we use in this work. 

The framework for developing an interior point method consists of three important parts: 

• A barrier method for optimization with inequalities 

• The Lagrange method for optimization with equalities 

• Newton’s method for solving the KKT conditions 

After the transformation of inequality into equality constraints and introducing slack 

variables, one expands the cost function with a barrier function. The barrier or penalty 

function accommodates nonnegativity constraints on slack variables. A barrier function is 

continuous and grows without bound as any of the slack variables approach 0 from 

positive values (from the interior of their feasible region). The most common example of 

barrier function and the form we will use is 

 

     ∑
=

µ−=µ
n

i
isln)s,(b

1
 

 

where µ is a scalar parameter called the barrier parameter. The value of µ is varied as the 

solution of the OPF progresses. 

After introducing the barrier function, we can write the modified OPF formulation: 
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0

0
1

=+
=

µ− ∑
=

s)u,x(f
)u,x(gtosubject

sln)u,x(cimizemin
n

i
i

 

 

The Lagrange function for this problem is: 

   )s)u,x(f()u,x(gsln)u,x(cL TT
n

i
i +π+λ+µ−= ∑

=1

 

 

and the KKT conditions are: 

 

   π+λ+∇=∇ T
x

T
xxx FG)u,x(cL  

   π+λ+∇=∇ T
u

T
uuu FG)u,x(cL  

   )u,x(gL =∇λ  

   s)u,x(fL +=∇π  

   nifor
s

L i
i

s K11
=π+µ−=∇  

The complementary slackness condition in the primal-dual interior point formulation is 

replaced by: 

   es µ=Π  

where e is a vector of ones of appropriate dimension. 

In general terms, the next step would be to apply Newton’s method to the KKT 

conditions, in other words to linearize the KKT conditions. Those linearized KKT 

conditions can be interpreted as KKT conditions of the quadratic Lagrangian function, 

and that is the origin of the name “sequential quadratic programming” (SQP). At each 

iteration the linearized KKT conditions are the KKT conditions of a quadratic 

subproblem. More details about the solution process will be deferred to later chapters. 

While the concentration will be on the SQP techniques presented in [5], [6]. 
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2.6  Constraint Relaxation Method 
 
 

In order to make the OPF algorithm efficient another very important method known 

as a constraint relaxation or an active set method will be employed. In this technique, we 

ignore constraints until they are violated. Thus the set of active inequality constraints is 

identified by the set of indices of the constraints that are satisfied as equations (i.e. 

0=)u,x(f ). The set of inequality constraints whose indices lie in the active set are said 

to be active or binding while the remainder are inactive. The inactive constraints may be 

ignored. The Lagrange multipliers for inequality constraints become nonzero only when 

the inequalities become active (binding) or all in the active set. 

Generally, only a small percentage of the total transmission constraints become 

active, greatly reducing the size of the system. Numerical examples presented in [14] 

show significant reduction in problem size achieved in practice by the active set method. 

The aim of the algorithm must be to discover which constrains are active. A heruristic 

such as adding to the active set just the most violated of the newly constraints and 

discarding the remaining violations has proven to be very efficient. Thus, the algorithm to 

be explained in chapter 3 will rely on an active set method, one of the key tools in 

building an efficient algorithm. For the contingency constrained OPF active set is built 

for each contingency as well as for the base case. 

 
 

2.7  Full AC case 
 
 

The OPF formulation considered is: 
 

0
0

1

=+
=

µ− ∑
=

s)u,x(f
)u,x(gtosubject

sln)u,x(cimizemin
n

i
i

 

 
The Lagrangian function for this problem is: 
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   )s)u,x(f()u,x(gsln)u,x(cL TT
n

i
i

c

+π+λ+µ−= ∑
=1

 

 
and the KKT conditions are: 

 

   0=π+λ+∇=∇ T
x

T
xxx FG)u,x(cL  

   0=π+λ+∇=∇ T
u

T
uuu FG)u,x(cL  

   0==∇λ )u,x(gL  

   0=+=∇π s)u,x(fL  

   ci
i

s nifor
s

L K101
==π+µ−=∇  

In the general AC case the matrix Gx has following block matrix form: 
 

  







=

QaQv

PaPv
x GG

GG
G  

 
Including a power balance equation for the reference bus (subscript r denotes the 

reference bus), and linearizing the above KKT conditions will produce 

 
  x

T
xr

T
rx

T
xxuxx bFGGuWxW =π+λ+λ+∆+∆     (2) 

  u
T

ur
T
ru

T
uuuux bFGGuWxW =π+λ+λ+∆+∆     (3) 

  λ=∆+∆ buGxG ux        (4) 

  rrurx buGxG =∆+∆        (5) 

  π=+∆+∆ bsuFxF ux        (6) 

  eSe µ=Π         (7) 

 
The right hand side is: 
 
  )u,x(cb uu −∇=  

  )u,x(cb xx −∇=  

  )u,x(gb −=λ  
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  )u,x(gb rr −=  

  )u,x(fb −=π  

 
The Hessian matrix (Wxx, Wxu, Wux, Wuu) is a symmetric matrix of second partial 

derivatives. Each element of the Hessian terms is a linear combination of the second 

partial derivatives of the power flow equation. The elements of the Hessian matrix 

represent the coupling between the variables θ, V, transformer turns ratio against each 

other and are usually very small. This property is exploited in the decoupled formulation 

of OPF [9] where second order terms are set to zero. The formula for the Hessian 

elements follows: 

 

  ∑ ∑
= =

π
∂
∂

+









λ

∂

∂
+λ

∂

∂
+∇=

n

i

n

i
i

i
qi

qi
pi

pi
xxxx

c

x
f

x
g

x
g

uxcW
1 1

2

2

2

2

2

2
2 ),(  

  ∑ ∑
= =

π
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∂
+










λ

∂∂

∂
+λ

∂∂

∂
+∇=

n

i

n

i
i

i
qi

qi
pi

pi
xuxu

c

ux
f

ux
g

ux
g

uxcW
1 1

222
2 ),(  

  T
xuux WW =  

  ∑ ∑
= =

π
∂
∂

+









λ

∂

∂
+λ

∂

∂
+∇=

n

i

n

i
i

i
qi

qi
pi

pi
uuuu

c

u
f

u
g

u
g

uxcW
1 1

2

2

2

2

2

2
2 ),(  

 
In the above system the reference bus power balance equation is included through terms 

Grx, Gru, and λr. Recall that the power flow Jacobian is singular; therefore the power 

balance equality for the reference bus is replaced with an equality constraint forcing the 

reference bus angle to be zero (see Appendix I). 

If we express λ and ∆x from equations (2) and (4) we will get 

 










∆−
π−λ−∆−









=








λ
∆

λ

−

uGb
FGuWb

G
GWx

u

T
xr

T
rxxux

x

T
xxx

1

0
   (8) 

 
Substituting equation (8) into the equations (3), (5), (6), (7) yields the following reduced 

system: 

 



  16 

 u
T

ur
T

ruuu bFGuW =π+λ+∆  

 rru buG =∆  

 π=+∆ bsuFu  

 eSe µ=Π  
 
The definitions of the terms in the reduced system and the computational procedure for 

their calculation can be found in Appendix III. A more detailed derivation can be found 

in [6]. 

If we expand the above system of equations about s and π we get: 

 
π−=π∆+λ+∆ T

uu
T

ur
T

ruuu FbFGuW  

rru buG =∆  

SebsuFu −=∆+∆ π  

SeeSs Π−µ=π∆+Π∆  

 
If we eliminate ∆s from the last equation 
 

( )π∆−Π−µΠ=∆ − SSees 1  
 
The system in matrix form will be: 
 

















Πµ−

π−
=

















π∆
λ
∆

















Π− −
π

− eb
b
Fbu

SF
G

FGW

r

T
uu

r

u

ru

T
u

T
ruuu

110
00      (9) 

 
In order to compute with this system, the following factorization will be performed 
 









=

0ru

T
ruuuT

G
GW

DUU  

 
and following variables introduced: 
 









=

0

T
uT F

F  
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λ
∆

=
r

u
y  

 









=

r

u

b
b

b1  

 
 ebb 1ˆ −

ππ Πµ−=  
 
The system (9) can be rewritten in the following way: 
 








 π−
=








π∆









Π− π
− b

Fby
SF

FDUU TTT

ˆ
1

1
 

 
Its solution can be written: 
 

)( 1
11 π∆−π−= −−− TTT FFbUDUy       (10) 

 

π
− =π∆Π− bSyF ˆ1         (11) 

 
after substitution of equation (10) into (11) and some algebra we get: 
 

( ) )(ˆ
1

11111 π−−=π∆−Π− −−−
π

−−−− TTTT FbUDFUbFUDFUS   (12) 
 
To calculate ∆π from the above equation, introduce 
 

TT FUF −=  
 
where F is calculated by fast forward substitution 
 

TT FFU =  
 
Now equation (12) can be solved by writing it as 
 
 

( ) π+−=π∆−Π− −−−
π

−− FDFbUDFbFDFS TTTT 1
1

111 ˆ  
 

( ) π+−=π∆−Π− −
π

− CbDFbCS T
1

11 ˆ      (13) 
 
where 
 

FDFC T 1−=  
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11 bUb T−=  

 
In order to calculate ∆π from equation (13), a UTDU factorization of the symetric matrix 

Π-1S – C must be performed. The latter is potentially a small dense matrix with the size of 

the active constraint set. When we have calculated ∆π, we can obtain ∆s  

 
( )π∆−Π−µΠ=∆ − SSees 1  

 
and y can be calculated in three steps (forward/backward substitution and division by 

diagonal) from the equation (10). 

Now that we have ∆u and λr , therefore ∆x and λ can be calculated as well from equation 

(8). The complete algorithm can be found in [6]. 

 
 

2.8  Fast Decoupled case 
 
 

What the decoupled power flow does is decomposes the load flow problem into real 

and reactive subproblems. A fast and reliable load flow calculation based on the 

decoupling of the active and reactive subproblems may be essential for the 

computationally intensive contingency constrained OPF. This section will give 

formulation of the sequential quadratic programming OPF based on fast decoupled power 

flow. 

 
The formulation of the fast decoupled OPF is the same as for the AC case 
 

   
0

0
1

=+
=

µ− ∑
=

s)u,x(f
)u,x(gtosubject

sln)u,x(cimizemin
n

i
i

 

 
where power balance equations g(x,u)=0 are defined according to fast decoupled power 
flow [9] approach: 
 
   PB ∆=θ∆′  
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   QVB ∆=∆′′  
 
The matrices B′  and B ′′  are defined in Appendix I 
 
The problem Lagrangian with logarithm barrier function is: 
 

  )s)u,x(f()u,x(gsln)u,x(c),,u,x(L TT
n

i
i

c

+π+λ+µ−=πλ ∑
=1

 

 
The KKT conditions from the problem Lagrangian are given by: 
 
   0=π+λ+∇=∇ T

x
T
xxx FG)u,x(cL  

   0=π+λ+∇=∇ T
u

T
uuu FG)u,x(cL  

   0),( ==∇λ uxgL  

   0=+=∇π s)u,x(fL  

   esLs µ=Π=∇  

 
Recall that in the general case, the matrix Gx has form: 
 

  







=

QaQv

PaPv
x GG

GG
G  

 
while in the decoupled power flow case the matrix Gx can be written in the 2×2 block 

matrix form 

 

  







′′

′
=








=

0
0

0
0

B
B

G
G

G
QV

Pa
X  

 
The linearized KKT conditions with respect to x and u only are: 
 

u
T

ur
T
ru

T
uuxuu bFGGxWuW =π+λ+λ+∆+∆      

x
T

xr
T
rx

T
xxxxu bFGGxWuW =π+λ+λ+∆+∆      

λ=∆+∆ bxGuG xu         

rrurx buGxG =∆+∆         

π=+∆+∆ bsxFuF xu         
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eSe µ=Π          

 
where right hand side is: 
 

)u,x(cb uu −∇=  

)u,x(cb xx −∇=  

)u,x(gb −=λ  

)u,x(gb rr −=  

)u,x(fb −=π  

 
The Hessian terms as defined for general case can be further simplified in the decoupled 

case. The second order derivatives corresponding to both equality and inequality 

constraints are zero. Therefore: 

 
 ),(2 uxcW xxxx ∇=  

 ),(2 uxcW xuxu ∇=  

 T
xuux WW =  

 ),(2 uxcW uuuu ∇=  

 
The generator cost function as defined is quadratic and depends just on the control 

variables u; thus the only nonzero term is ),(2 uxcW uuuu ∇= , and it is constant due to the 

quadratic cost function. 

 
Our system will have following form: 
 

u
T

ur
T
ru

T
uuu bFGGuW =π+λ+λ+∆      (14) 

x
T

xr
T
rx

T
x bFGG =π+λ+λ       (15) 

λ=∆+∆ bxGuG xu        (16) 

rrxru bxGuG =∆+∆        (17) 

π=+∆+∆ bsxFuF xu        (18) 

eSe µ=Π         (19) 
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System reduction will be conducted first with the expression for λ and ∆x from equations 

(15) and (16). That process yields: 

 










π−λ−
∆−

=







λ
∆








 λ
T
xr

T
rx

)k(
x

u
)k(

T
x

x

FGb
uGbx

G
G
0

0
 

 











π







−λ








−∆








−















=







λ
∆ λ

−

T
x

rT
rx

u

x
T
x

x

FG
u

G
b
b

G
Gx 00

00
0 1

   (20) 

 
 

The matrix 







T
x

x

G
G
0

0
 in the fast decoupled model is a constant matrix and is factored 

only once. 
 
Substitution of (20) into the remaining equations of the system is the next step. Equation 

(14) can be rewritten as: 

 

( ) u
T

ur
T
ru

T
uuu bFG

x
GuW =π+λ+








λ
∆

+∆ 0  

 
After substituting equation (20) it has form: 
 
 

( )

u
T

ur
T
ru

T
x

rT
rx

u

x
T
x

xT
uuu

bFG

FG
u

G
b
b

G
G
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=π+λ+











π
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+∆ λ

− 00
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0
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1

 

 
 
The following variables are introduced 
 

 ( ) uu
u

T
x

xT
uuuuu W

G
G

G
GWW =
















−=

−

00
0

0
1

 

 

( ) 















−=

−

u
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x
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G
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0
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0
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( ) 















−=

−

u
T
x

x
rxruru GG

G
GGG

0
0

0
0

1

 

 

 ( ) 















−= λ

−

x
T
x

xT
uuu b

b
G

G
Gbb

1

0
0

0  

 
Equation (14) can be rewritten 
 
  u

T
ur

T
ruuu bFGuW =π+λ+∆  

 
 
Next, equation (17) can be rewritten in the matrix form: 
 

  ( ) rrxru b
x

GuG =







λ
∆

+∆ 0  

 
substituting equation (20) into (17) gives 
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( ) ( ) 
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rT
rx

T
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x
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x
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b
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G
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G

G
G
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0
0

0
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0
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0
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0
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The following variables for the modified equation (17) can be introduced 
 

 ( ) 
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−
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0
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u
T
x

x
rxruru

G
G

G
GGG  

 

 ( ) 















−= λ

−

x
T
x

x
rxrr b

b
G

G
Gbb

1

0
0

0  

 
and following two terms are equal to zero 
 

 ( ) 















−

T
rx

T
x

x
rx GG

G
G

0
0

0
0

1
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 ( ) 















−

T
x

T
x

x
rx FG

G
G

0
0

0
0

1

 

 
With terms defined above equation (17) can be rewritten 
 
  rru buG =∆  
 
 
Equation (18) in the matrix form can be rewritten in the following way: 
 

( ) π=+







λ
∆

+∆ bs
x

FuF xu 0  

 
Substituting equation (20) into (18) yields 
 
 

( ) ( )

( ) ( ) 
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T
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xT

x
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x
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x
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G
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0
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0
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The following variables can be defined: 
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−=

−
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0
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u
T
x

x
xuu

G
G

G
FFF̂  

 

( ) 















−= λ

−

ππ
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T
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x
x b

b
G

G
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1

0
0

0  

 
and following two terms are zero 
 

( ) 















−

T
x

T
x

x
x FG

G
F

0
0

0
0
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 ( ) 















−

T
rx

T
x

x
x GG

G
F

0
0

0
0

1

 

 
With terms defined above equation (18) can be rewritten 
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 π=+∆ bsuF̂u  
 
In order to prove that our system is symmetric we have to show that T

u
T

u FF̂ = .  
From the definition of term uF  follows 
 

 ( ) 















−=

−

−

u
T

x

x
xuu GG

G
FFF

0
0

0
0

1

 

 
applying block multiplication yields 
 
 u

T
xxuu GGFFF −−=  

 
and taking transpose of the above term yields 
 
 T

xx
T
u

T
u

T
u FGGFF 1−−=  

 
The same set of operations can be performed on term uF̂  
 

 ( ) 















−=

−

−

00
0

0
1

u
T

x

x
xuu

G
G

G
FFF̂  

 
 uxxuu GGFFF̂ 1−−=  
 
 T

x
T

x
T
u

T
u

T
u FGGFF̂ −−=  

 
xG  is symmetric matrix therefore follows T

xx GG −− =1  which ultimately leads to the 

conclusion that T
u

T
u FF̂ =  

Now the reduced quadratic problem will have the same form as in the AC case but with 

terms uuW  and ruG  that will remain constant during iteration process. 

 
 u

T
ur

T
ruuu bFGuW =π+λ+∆  

 rru buG =∆  

 π=+∆ bsuFu  

 eSe µ=Π  
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Detailed computational procedure for calculation of terms in the reduced system can be 

found in Appendix III. Expand this system of equations about s and π 

 
 π−=π∆+λ+∆ T

uu
T

ur
T

ruuu FbFGuW  

 rru buG =∆  

 SbsuFu −=∆+∆ π  

 SeeSs Π−µ=π∆+Π∆  

 
Eliminate ∆s from the last equation 
 

( )π∆−Π−µΠ=∆ − SSees 1  
 
and substitute in the rest of the system to obtain: 
 

















Πµ−

π−
=

















π∆
λ
∆

















Π− −
π

− eb
b
Fbu

SF
G

FGW

r

T
uu

r

u

ru

T
u

T
ruuu

110
00      (21) 

 
The next step is the same as for the full AC case explained before, with the observation 

that the UTDU factorization is performed just once because the matrices uuW  and ruG  are 

constant 

 









=

0ru

T
ruuuT

G
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DUU  

 
and following variables introduced: 
 
 









=
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T
uT F

F  
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=
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=

r

u

b
b

b1  

 
 ebb 1ˆ −

ππ Πµ−=  
 
Then, system (21) can be rewritten on following way 
 








 π−
=








π∆









Π− π
− b̂

Fby
SF

FDUU TTT
1

1
 

 
Following the same steps as in full AC case ∆π is solved from the following equation 
 

( ) π+−=π∆−Π− −
π

− CbDFbCS T
1

11 ˆ  
 
When we have calculated ∆π, we can obtain ∆s 
 

( )π∆−Π−µΠ=∆ − SSees 1  
 
and y. 
 
Finally, ∆x and λ can be calculated as well from equation (20): 
 

 









π
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−∆








−







=







λ
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 λ
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x
rT

rx
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u
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G 00
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Partitioning ∆x and λ as shown below. Call the right hand side of the equation a vector q, 

and partition it similarly: 

 

 







θ∆

∆
=∆

v
x   








λ
λ

=λ∆
q

p   



















=

4

3

2

1

q
q
q
q

q  

 
Because we are dealing with decoupled power flow equations, we need only to find LU 

factors of the blocks B′ and B″ in above block matrix. This simplification is another 

computational savings. 

This computation can be conducted as follows 
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111 UDUB T=′  
 

222 UDUB T=′′  
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λ
λ
θ∆
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′
′′

′′
′
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3

2

1

000
000

000
000

q
q
q
qv

B
B

B
B

q

p
 

 
 

11111 qUDUqB T =θ∆⇔=θ∆′  

22222 qvUDUqvB T =∆⇔=∆′′  

32223 qUDUqB q
T

q =λ∆⇔=λ∆′′  

41114 qUDUqB p
T

p =λ∆⇔=λ∆′  

 
Each of the unknowns ∆θ, ∆v, ∆λp, ∆λq is calculated by forward/backward substitution 

and division by the diagonal. 
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3   Contingency Constrained OPF via Sequential Quadratic 
Programming 
 
 

3.1  Introduction 
 
 

A contingency is an unpredictable disturbance to the transmission or generation 

facilities. Contingency constrained OPF recognizes the need to operate the system 

successfully, i.e. within operating limits when a contingency occurs. It has been 

recognized that with the basic OPF formulation it may not be possible to keep the system 

in a normal state after a contingency occurs. 

By introducing contingencies into the problem we are introducing uncertainty. 

Contingency constrained OPF answers how to dispatch power capacities and control 

components of the system to accommodate serious disturbances anywhere in the system. 

This optimization problem is a cumbersome computational problem when all possible 

contingencies are considered. 

Contingency constrained OPF can be formulated on two ways: 

• so called ‘safe’ or ‘preventive’ contingency constrained OPF, which does not 

allow any rescheduling in response to a contingency 

• contingency constrained OPF with corrective rescheduling which allows control 

actions shortly after the occurrence of a contingency 

A first possible approach to contingency constrained OPF is the following framework, in 

which the base case is simply expanded to include contingency constraints. 
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k,...,)u,x(g
)u,x(f
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where: x is the pre-contingency (base case) state vector, xω is the post-contingency state 

vector for contingency ω and u is the control vector for the base case as well as for each 

contingency case. Solution of this constrained optimization problem is so-called ‘safe’ 

solution, which means that the control vector u is calculated such that the system operates 

successfully under all contingencies. This formulation, does not take into account the 

ability to change control settings in the event of a contingency. An approach which 

allows adjustment of control variables after the occurrence of a contingency is known as 

a corrective rescheduling method. 

The importance of corrective rescheduling will be illustrated in the following simple 

example presented in [4]. In a simple power system shown on Fig. 2.1. generators 1 and 2 

are participating in a dispatch to supply a 200 MW load at bus 2. 

 
 

Generator Min. Generation [MW] Max Generation [MW] Incremental cost [$/MW] 
1 50 200 1 
2 0 120 2 

Table 2.1. Generator data 
 
 

Line Max. line flow [MW] 
1 100 
2 120 

Table 2.2. Line data 
 
 

 
Fig. 2.1. Two-bus System 

 
 
Since generator 1 has the lower incremental cost, a pure economic dispatch yields 

following solution: 
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Fig. 2.2. Pure economic dispatch 

 
 
Now consider a contingency in which line 2 (notice that line 2 has higher capacity) is out. 

Performing ‘safe’ contingency constrained OPF will result in the dispatch shown in Fig. 

2.3. That dispatch guarantees that the system will operate successfully under the base 

case and the contingency case. 

 
 

 
Fig. 2.3. ‘safe’ solution 

 
 
It can be seen from Fig. 2.3. that an increase in security comes with an increase in cost, 

because the more expensive generator 2 participates in the dispatch and the less 

expensive generator 1 has a lower output than if the contingency did not occur.  

Finally, consider a corrective rescheduling method. Suppose that the corrective 

capabilities of generators 1 and 2 are 40 MW and 35 MW respectively, meaning that each 

can increase its generation by these amounts in response to a contingency occurrence. 

This expression is known as a generator ramping constraint and can be formulated as the 

constraints 

 
   MWpp c

gg 4011 ≤−  
 
   MWpp c

gg 3522 ≤−  
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This situation will allow the cheaper generator 1 to dispatch at a higher generation value 

than that obtained by the ‘safe’ solution; the preventive dispatch will produce lower 

operating cost. This scenario is presented in Fig. 2.4. 

 
 

 
Fig. 2.4. Contingency constrained dispatch with corrective rescheduling 

 
 
It is easy to demonstrate that contingency constrained dispatch with corrective 

rescheduling will not lead to overloads in the case of a line outage because generator 1 

can be redispatched to a lower value according to its ramp rate constraint. Therefore the 

same level of security is obtained with a lower production cost (265 instead of 300). 

From the previous example it can be noticed that the formulation without redispatch is a 

conservative formulation. That formulation is conservative because it forbids post-

contingency changes in control settings. 

 
Contingency constrained OPF with rescheduling is implemented by adding additional set 

of constraints to the base case problem formulation. Each additional set describes a 

contingency by a set of power balance equations, inequality constraints, and a new type 

of constraint known as ramp-rate (or coupling or intertemporal) constraints. These ramp-

rate constraints take into account the system’s corrective capabilities after the outage has 

occurred. 

The problem formulation that includes ramp-rate constraints is known as OPF with post-

contingency corrective rescheduling. The post contingency state of the power system is 

that immediately after a contingency occurs in which some line limits, bus limits or other 

constraints might be violated. In this state some corrective actions must be taken, which 

place the system in a secure state. This problem was first presented in [4] using Bender’s 

decomposition, although without modeling the probability of occurrence of the different 

contingencies.  
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3.2  Mathematical formulation of the contingency constrained OPF 
 
 

The contingency constrained OPF problem may be formulated as a single 

optimization problem which includes a base case and a set of contingency cases coupled 

with intertemporal constraints (ramp-rate generator limits). 

The mathematical formulation of contingency constrained OPF with corrective 

rescheduling is as follows: 
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ucE)u,x(cimizemin

  (1) 

 
where: 
 g (x,u) – power balance equations for base case 

 f (x,u) – set of inequality constraints for base case 

 gω (xω , uω) – power balance equations for each contingency case 

 fω (xω , uω) – set of inequality constraints for contingency case 

 h (u, uω) – ramp-rate constraints 

 Eω – denotes expected value 

 ω – is the set of possible contingencies ω=1…k 

 
The objective function in (1) includes the total cost of operation in the pre-contingency or 

base case as well as the expected cost of recovery from all contingencies. The additional 

set of state and control variables (xω,uω) consists of the state variables under contingency 

and the control actions (post-contingency control adjustments) taken in response to 

contingency ω. 
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As mentioned before, the number of possible contingencies (including multiple outages) 

can be enormous. Not all contingencies have the same likelihood of occurrence, which 

leads us to assigning a probability to each contingency considered. Thus, by modeling 

contingency probabilities we can formulate the optimal power flow as a stochastic 

programming problem. This formulation is also called the stochastic OPF. We may 

assign a probability of an outage which in general is not a uniform; e.g., some lines are 

more prone to outages due to lightning than others. 

Because we are dealing with a finite set of events, the expected value is computed by 

summation 

 

  ( ){ } ( )∑
=ω

ωωωωωω =
k

ucpucE
1

 

 
Furthermore, if we assume a linear cost function for each contingency, we have 
 

  ( ){ } ∑
=ω

ωωωωωω =
k

T udpucE
1

 

 
Now let us introduce ramp-rate constraints. Ramp-rate limits are inequality constraints of 

the following form: 

 
  kuu K1=ω∆≤−≤∆ ω  
 
where ∆  and ∆  are lower and upper ramp-rate limits on change in generation level. The 

ramping constant ∆ is usually defined as a percentage of generator capacity (i.e. 10% – 

15%) 

 
The set of ramp-rate constraints on each contingency can be organized on following way: 
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 with dimension (2ng×1) 

 
 
The contingency constrainted OPF will be solved as a single entity by an interior point 

method. The general OPF formulation can be transformed by introducing slack variables 

(s, sω, σ) and transforming inequality constraints into equality constrains. 
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 (2) 

 
The slack variables must be non-negative; these non-negativity constraints will be 

imposed by adding a logarithmic barrier function to the objective 
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The barrier parameter µ is a positive number that is forced to decrease to zero iteratively;  

nc, ncω are the number of inequality constraints for the base and contingency cases 

respectively; and nr is the number of ramp-rate constraints. 

 
The resulting Lagrangian function for the above problem, with a logarithmic barrier 

function for the interior point method, is: 
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udp)s)u,x(f()u,x(g

)s)u,x(f()u,x(g)u,x(cL

1111

1
 (3) 

 
 
The stationary point of the Lagrangian function (3) is the solution of following system of 

KKT conditions: 

 
 

0=π+λ+∇=∇ T
x

T
xxx FG)u,x(cL       (4) 

0=γ+π+λ+∇=∇ T
u

T
u

T
uuu HFG)u,x(cL      (5) 

0=π+λ=∇ ωωωω ωωω

TT
x xx

FGL        (6) 

0=+γ+π+λ=∇ ωωωωωω ωωωω
dpHFGL T

u
TT

u uu
     (7) 

0==∇λ )u,x(gL         (8) 

0=+=∇π s)u,x(fL         (9) 

0==∇ ωωωλω
)u,x(gL        (10) 

0=+=∇ ωωωωωπ s)u,x(fL        (11) 

0=σ+=∇ ωγ )u,u(hL        (12) 

01 =µ−π=∇ − eSLs         (13) 

01 =µ−π=∇ −
ωωω

eSLs         (14) 

01 =Σµ−γ=∇ −
σω

eL         (15) 

000 ≥σ≥≥ ω ,s,s  

 kfor K1=ω  
 
where: )s(diagS =  )s(diagS ωω =  , )(diag σ=Σ  and e is vector of ones of 

appropriate dimension; i.e. ( )Te 11K=  

Any point that satisfies above (KKT) conditions is said to be a first-order critical point 

for the problem The last three of these conditions (13), (14), (15) are known as 
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complementary slackness conditions. The KKT conditions represent a system of 

nonlinear equations. 

The first step in a solution process is to apply Newton linearization; therefore, the KKT 

conditions will be expanded about x, u, xω uω 

 
 

)u,x(cFGxWuW x
T

x
T
xxxxu −∇=π+λ+∆+∆      (16) 

)u,x(cHFGxWuW u
T
u

T
u

T
uuxuu −∇=γ+π+λ+∆+∆     (17) 

0=π+λ+∆+∆ ωωωωωω ωωωωωω

TT
xxux xx

FGxWuW      (18) 

ωωωωωωωω −=γ+π+λ+∆+∆
ωωωωωωω

dpHFGxWuW T
u

TT
xuuu uu

   (19) 

)u,x(gxGuG xu −=∆+∆        (20) 

)u,x(fsxFuF xu −=+∆+∆        (21) 

)u,x(guGxG
ux ωωωωωωω −=∆+∆
ωω

      (22) 

)u,x(fsuFxF
ux ωωωωωωωω −=+∆+∆
ωω

     (23) 

)u,u(huHuH uu ωω −=σ+∆+∆
ω

      (24) 

eSe µ=Π          (25) 

eeS µ=Π ωω          (26) 

ee µ=ΓΣ          (27) 
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3.3  Forming a quadratic subproblem 
 
 

Now we will pose the question: For which optimization problem are these the KKT 

conditions? First take a look at a Lagrangian that gives the above KKT conditions 

 

( ) ( ) +
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∆
∆
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∆∆∆∆+



















∆
∆
∆
∆

∇∇=

ω

ω
ωω

ω

ω
ωω

ωωωω

ωωωω

u
x
u
x

WW
WW

WW
WW

uxux

u
x
u
x

dpccL

uuxu

uxxx

uuux

xuxx

TTTTTT
u

T
x

00
00

00
00

2
10  

( ) ( )+++∆+∆π++∆+∆λ+ )u,x(fsxFuF)u,x(gxGuG xu
T

xu
T  

( ) ( )+++∆+∆π++∆+∆λ+ ωωωωωωωωωωωωωωωωω ωωωω
)u,x(fsuFxF)u,x(guGxG

uxux

TT  

( ))u,u(huHuH uu
T

ωω +σ+∆+∆γ+
ω
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Now we can formulate a quadratic programming subproblem given the above Lagrangian 

function. The linearized KKT conditions given in (16) – (27) are the KKT conditions for 

the quadratic programming (QP) problem: 
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lnslnsln

u
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u
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u
x
u
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1111
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00
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)u,u(huHuH

)u,x(fuFxF

)u,x(guGxG
)u,x(fxFuF
)u,x(gxGuGthatsuch

uu

xu

xu

ux

ux

ωω

ωωωωωωω

ωωωωωωω

−≤∆+∆

−≤∆+∆

−=∆+∆
−≤∆+∆
−=∆+∆

ω

ωω

ωω
 

 
 
Because the Jacobian matrix is defined as in Appendix I without a power balance 

equation corresponding to the reference bus, we have to include that power balance 

equation as well. Therefore, we will add an additional term reference bus in both the base 

case and the contingency cases. 

Base case: 

 λr Lagrangian multiplier for reference bus active power balance 

 Grx row vector (1×2n) – gradient of active power balance equation at reference 

  bus with respect to state variables 

 Gru row vector (1×nu) - gradient of active power balance equation at reference  

  bus with respect to control variables 

 
Contingency case: 

 λωr Lagrangian multiplier for reference bus active power balance 

 
ωω xrG  row vector (1×2n) - gradient of active power balance equation at reference 

  bus with respect to state variables 

 
ωω ur

G  row vector (1×nuω) - gradient of active power balance equation at   

  reference bus with respect to control variables 

 
 

x
T

xr
T
rx

T
xxxxu bFGGxWuW =π+λ+λ+∆+∆      (28) 

u
T
u

T
ur

T
ru

T
uuxuu bHFGGxWuW =γ+π+λ+λ+∆+∆     (29) 

ωωωωωωωω
=π+λ+λ+∆+∆ ωωωωωωωω x

T
r

T
r

T
xxux bFGGxWuW

xxx
   (30) 

ωωωωωωωωω
=γ+π+λ+λ+∆+∆ ωωωωωωωω u

T
u

T
r

T
r

T
xuuu bHFGGxWuW

uuu
  (31) 

λ=∆+∆ bxGuG xu         (32) 
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rrxru bxGuG =∆+∆         (33) 

π=+∆+∆ bsxFuF xu         (34) 

ωωω λωωωω =∆+∆ buGxG
ux

       (35) 

rrr buGxG
ux ωωωωω =∆+∆
ωω

       (36) 

ωωω πωωωωω =+∆+∆ bsuFxF
ux

       (37) 

γω =σ+∆+∆
ω

buHuH uu        (38) 

eSe µ=Π          (39) 

 eeS µ=Π ωω          (40) 

 ee µ=ΓΣ          (41) 

 
 
The right hand sides of the above system can be denoted: 
 

)u,x(cb xx −∇=  

)u,x(cb uu −∇=  

0=
ωxb  

ωω−=
ω

dpbu  

)u,x(gb −=λ  

)u,x(gb rr −=  

)u,x(fb −=π  

)u,x(gb ωωωλ −=
ω

 

)u,x(gb rr ωωωω −=  

)u,x(fb ωωωπ −=
ω

 

)u,u(hb ωγ −=  

 
We notice that introducing the reference bus resulted in two more equations, (33) for the 

base case and (36) for the contingency cases. Equations (28) to (41) form a system of 

nonlinear equations for the interior point formulation. 



  40 

The above system will be solved in a way similar to [6] and reviewed in chapter 1. The 

approach is to eliminate ∆x, λ,  for the base case and ∆xω , λω for each contingency case. 

 
Equations (28) and (32) can be rewritten in the matrix form: 
 










∆−
π−λ−∆−

=







λ
∆










λ uGb
FGuWbx

G
GW

u

T
xr

T
rxxux

x

T
xxx

0
    (42) 

 
 
The corresponding contingency equations (30) and (35) can also be rewritten in the 

matrix form: 

 












∆−
π−λ−∆−

=







λ
∆












ωωλ

ωωωωω

ω

ω

ω

ω

ωω

ωωωωω

ω

ωωω

uGb
FGuWbx

G
GW

u

xx

x

x

T
r

T
ruxx

T
xx

0
   (43) 

 
Before we embark on equation solving we should keep in mind that the inverse of the 

2×2 block matrix from equations (41) and (42) has the following structure. 

 

 







=








−

FE
D

C
BA 0
0

1

 

 
With this property many of the terms in the following derivation will be zero. Now 

substitute equations (42) and (43) in the rest of the system equations. 

 
First equation to be rewritten is equation (29) 
 

 ( ) )k(
u

T
u

T
ur

T
ru

T
uuxuu bHFG

x
GWuW =γ+π+λ+








λ
∆

+∆  

 
Substituting equation (42) into above yields 
 

 
( )

u
T
u

T
ur

T
ru

T
x

r

T
rx

u

xux

x

T
xxxT

uuxuu

bHFG

FG
u

G
W

b
b

G
GW

GWuW

=γ+π+λ+

+











π







−λ








−∆








−
















+∆

λ

−

000

1
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 ( ) ( ) +
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−

λ

−−

b
b

G
GW

GWu
G
W

G
GW

GWW x

x

T
xxxT

uux
u

xu

x

T
xxxT

uuxuu

11

00
 

 

( )

( ) u
T
u

T
x

x

T
xxxT

uux
T

u

r

T
rx

x

T
xxxT

uux
T
ru

bH
F

G
GW

GWF

G
G

GW
GWG

=γ+π




























−+

+λ




























−+

−

−

00

00

1
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In the previous equation, the following variables can be introduced: 
 

( ) 















−=

−

u

xu

x

T
xxxT

uuxuuuu G
W

G
GW

GWWW
1

0
 

 

( ) 















−=

λ

−

b
b

G
GW

GWbb x

x

T
xxxT

uuxuu

1

0
 

 

 ( ) 















−=

−

u

xu

x

T
xxx

rxruru G
W

G
GW

GGG
1

0
0  

 

( ) 















−=

−

u

xu

x

T
xxx

xuu G
W

G
GW

FFF
1

0
0  

 
 
with these terms, equation (29) can be rewritten as: 
 

u
T
u

T
ur

T
ruuu bHFGuW =γ+π+λ+∆       (44) 

 
 
equation (31) in the matrix form: 
 

 ( )
ωωωωωωωωω

=γ+π+λ+







λ
∆

+∆ ωωωω
ω

ω
ωω u

T
u

T
r

T
r

T
xuuu bHFG

x
GWuW

uuu
 

 
Similarly, substituting equation (43) into above yields 
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The following matrices are introduced: 
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−
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T
xxT
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 ( ) 
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ω
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ωωω

ωωω
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−
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ω
ωωω
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W
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GW
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 ( ) 



















−=

ω

ωω

ω

ωωω

ωωω
ω

−

ω

ω
ωωω

ux

x

xuu G
W

G
GW

FFF ux
T

xx

1

0
0  

 
 
Finally equation (31) can be rewritten as 
 
 

ωωωωωωω
=γ+π+λ+∆ ωωωω u

T
u

T
r

T
uu bHFGuW

uur
     (45) 
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Next equation is (33): 
 

 ( ) rrxru b
x

GuG =







λ
∆

+∆ 0  

 
Substituting (42) into (33) gives 
 

 ( ) r

T
x

r

T
rx

u

xux

x

T
xxx

rxru b
FG

u
G
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b
b

G
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GuG =











π







−λ








−∆
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λ
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000
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0

0
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−
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The following matrices are introduced: 
 

 ( ) 
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u

xu

x

T
xxx
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0
0  

 

 ( ) 















−=
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Gbb x

x

T
xxx
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0
0  

 
following matrix inversion structure following two terms are zero 
 

 ( ) 















−

00
0

1 T
rx

x
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xxx

rx
G
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GW

G  
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−
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x
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T
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F
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G  

 
Finally equation (33) can be rewritten as 
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 rru buG =∆          (46) 
 
 
equation (34) in the matrix form: 
 

 ( ) π=+







λ
∆

+∆ bs
x

FuF xu 0  

 
following the substitution of (42) yields 
 

 ( ) π
λ
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The following matrices are introduced: 
 

 ( ) 















−=

−

u

xu

x

T
xxx

xuu G
W

G
GW

FFF
1

0
0  

 

 ( ) 















−=

λ

−

ππ b
b

G
GW

Fbb x

x

T
xxx

x

1

0
0  

 

Because of the structure of 
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finally equation (34) can be rewritten as 
 
 π=+∆ bsuFu          (47) 
 
 
The equation (36) is written as: 
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substituting (43) into (36) gives 
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The following matrices are introduced: 
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Furthermore since 
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Equation (36) can be rewritten as 
 
 rr buG

u ωωω =∆
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        (48) 

 
 
The last equation to be modified is (37) 
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substituting (43) into (37) yields 
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The following matrices are introduced: 
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FFF ux
T

xx

1

0
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 ( ) 

















−=

ω

ω

ω

ωωω

ωωω
λ

−

ω

ω
ωππ b

b
G

GW
Fbb x

T
xx

x

x

x

1

0
0  

 
Since 
 

 ( ) 0
00

0
1

=

















ω

ω

ωωω

ω

ω

−

ω

ω
ω

T
r

T
xx

x

x

x

x

G
G

GW
F  

 
and 
 

 ( ) 0
00

0
1

=

















ω

ω

ωωω

ω

ω

−

ω

ω
ω

TT
xx

x

x

x

x

F
G

GW
F  

 
 
Equation (37) reduces to: 
 

ωω πωωω =+∆ bsuF
u

        (49) 

 
Equations (44) – (49) together with unmodified equations (38) – (41) form reduced 
system. 
 
 

3.4  Solving reduced system 
 
 

Reduced system of equations is: 
 
 u

T
u

T
ur

T
ruuu bHFGuW =γ+π+λ+∆  

 
ωωωωωωω

=γ+π+λ+∆ ωωωω u
T
u

T
r

T
uu bHFGuW

uur
 

 rru buG =∆  

 π=+∆ bsuFu  

 rr buG
u ωωω =∆
ω

 



  48 

 
ωω πωωω =+∆ bsuF

u
 

 γω =σ+∆+∆
ω

buHuH uu  

 eSe µ=Π  

 eeS µ=Π ωω  

 ee µ=ΣΓ  

 
where: 
 
 )(diag iγ=Γ  

 )(diag iσ=Σ  
 
 
The first step in solution of the reduced system is to expand system about s, sω, π, πω and 

σ which yields: 

 
 π−=γ+π∆+λ+∆ T

uu
T
u

T
ur

T
ruuu FbHFGuW  

 ωωωωωωω π−=γ+π∆+λ+∆
ωωωωωωω

T
u

T
u

T
r

T
ruu uuu

FbHFGuW  

 rru buG =∆  

 SebsuFu −=∆+∆ π  

 rr buG
u ωωω =∆
ω

 

 eSbsuF
u ωπωωω −=∆+∆

ωω
 

 ebuHuH uu Σ−=σ∆+∆+∆ γωω
 

 SeeSs Π−µ=π∆+Π∆  

 eSeSs ωωωωωω Π−µ=π∆+∆Π  

 ee ΣΓ−µ=γ∆Σ+σ∆Γ  

 
Variables ∆s, ∆sω, ∆σ can be expressed from the last three equations 
 
 ( )π∆−Π−µΠ=∆ − SSees 1  

 ( )ωωωω
−
ωω π∆−Π−µΠ=∆ SeSes 1  
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 ( )γ∆Σ−ΣΓ−µΓ=σ∆ − ee1  
 
The next step is to eliminate the slack variables ∆s, ∆sω, ∆σ  from the above reduced 
system 
 
After performing that operation the reduced system will have following matrix form: 
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λ
∆
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∆
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Π−
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−
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ωω
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ωω

−

ω

ω

ω

ω

ω

ωωωωω

b̂
b̂
b
b̂
b̂
b
b̂

u

u

HH
SF

G
HFGW

SF
G

HFGW

r

u

r

u

r

r

uu

r

T
u

TT
ruu

u

ru

T
u

T
u

T
ruuu

u

u

uu

1

1

1

0000
00000
000000

000
00000
000000

000

 

 
 
where the right hand side vectors are: 
 
 π−= T

uuu Fbb̂  

 ωω π−=
ωωω

T
uu u

Fbb̂  

 ebb̂ 1−
ππ Πµ−=  

 ebb̂ 1−
ωππ Πµ−=

ωω
 

 ebb̂ 1−
γγ Γµ−=  

 
 
The above reduced system is still unacceptably large due to significant number of control 

variables (u,uω). It would be computationally easier to express each of control variables 

∆u and ∆uω and further reduce the size of the system. As mentioned before, it is well 

known that only a small number of the total inequality constraints become active, which 

makes system significantly smaller. The size of the active constraint set is the size of the 

Lagrange multiplier vectors π and πω respectively, therefore reduced system after 

eliminating control variables (u, uω) will be the size of active sets corresponding to each 

contingency. 
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Solving above system is conducted in two stages. First consider base case block 
 
 

 
















=γ∆
















+
















π∆
λ
∆

















Π− π
− b̂

b
b̂Hu

SF
G

FGW

r

u
T
u

r

u

ru

T
u

T
ruuu

0
0

0
00

1

 

 









=

0ru

T
ruuuT

G
GW

DUU  

 
Define 
 









=

0

T
uT F

F   







=

0

T
uT H

Ĥ  

 









λ
∆

=
r

u
y  

 









=

r

u

b
b

b0  

 
 ebb 1ˆ −

ππ Πµ−=  
 

 








 π−
=γ∆








+







π∆











Π− π
− b̂

FbĤy
SF

FUDU TTTT
0

1 0
 

 
 
Above system is solved on following way: 
 

)FĤFb(UDUy TTTT π∆−γ∆−π−= −−−
0

11      (50) 
 

π
− =π∆Π− bSyF ˆ1         (51) 

 
after substitution of equation (50) into (51) and some algebra we get: 
 

 
( )

( )π−−=

=γ∆−π∆−Π−
−−−

π

−−−−−−−

TT

TTTT

FbUDFUb̂

ĤUDFUFUDFUS

0
11

11111

   (53) 

 
to calculate ∆π from the above equation we introduce following: 
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TT FUF −=  or 1−= FUF T  
 

TT FFU =  
 
Since F is sparse, F  calculated by fast forward substitution. 
 
Equation (53) can be calculated as follows 
 

( ) )Fb(UDFb̂ĤUDFFDFS TTTTTTT π−−=γ∆+π∆−Π− −−
π

−−−−
0

1111  
 

( ) π+−=γ∆+π∆−Π− −−−−
π

−−−− TTTTTTTTT FUDFbUDFb̂ĤUDFFDFS 1
0

1111  
 

( ) π+−=γ∆+π∆−Π− −−−
π

−−−− FDFbUDFb̂ĤUDFFDFS TTTTTTT 1
0

1111  
 

( ) π+−=γ∆+π∆−Π− −
π

−− Rb~DFb̂H~DFRS TT
0

111     (54) 
 
where 
 

FDFR T 1−=  
TT ĤUH~ −=  

00 bUb~ T−=  

 
Therefore H~  is calculated by performing column by column forward substitution and b~  
is calculated by a single forward substitution 
 
For the general formulation we define following terms 
 
 RSC −Π−= −1

0  

 H~DFV TT 1
0

−=  

 π+−= −
π Rb~DFb̂r T

0
1

0  

 
Each contingency block can be analyzed in the same fashion 
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∆

















Π−
ω

ωω

ω

ω

ωωωω

π

ω

ω

ω

ω

ω
−
ωω

ω

ωω

b̂
b
b̂Hu

SF
G

FGW

r

u
T
u

rr

TT
ruu

u

u

uu

0
0

0
00

1
 

 

 









=
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T
ruuT
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u

G
GW

UDU  

 
Define: 
 

 







= ωω

ω 0

T
T u

F
F   








= ω

ω 0

T
uT H

Ĥ  

 

 







λ
∆

=
ω

ω
ω

r

u
y  

 

 







=

ω
ω

ω

r

u

b
b

b  

 
 ebb̂ 1−

ωππ Πµ−=
ωω

 
 
Then 
 

 








 π−
=γ∆








+







π∆









Π−
ωπ

ωωω

ω

ω

ω
−
ωω

ωωωω

b̂
FbĤy

SF
FUDU TTTT

01  

 
The above system is solved in the following way: 
 

)FĤFb(UDUy TTTT
ωωωωωω

−
ω

−
ω

−
ωω π∆−γ∆−π−= 11     (55) 

 

ωπωω
−
ωωω =π∆Π− b̂SyF 1       (56) 

 
after substitution of equation (55) into (56) and some algebra we get: 
 

( )
( )π−−=

=γ∆−π∆−Π−

ωω
−
ω

−
ω

−
ωωπ

ω
−
ω

−
ω

−
ωωωω

−
ω

−
ω

−
ωωω

−
ω

ω

TT

TTTTT

FbUDUFb̂

ĤUDUFFUDUFS
11

11111

   (57) 

 
To calculate ∆πω from the above equation we introduce following: 
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TT FUF ω

−
ωω =  or 1−

ωωω = UFF T  
 

TT FFU ωωω =  ωF  is calculated by fast forward substitution 
 
now equation (57) can be calculated as follows 
 

( ) ( )ωωω
−
ω

−
ωωπω

−
ω

−
ωωωω

−
ωωω

−
ω π−−=γ∆+π∆−Π−

ω

TTTTTTT FbUDFb̂ĤUDFFDFS 1111  
 
 
( ) ωω

−
ω

−
ωωω

−
ω

−
ωωπω

−
ω

−
ωωωω

−
ωωω

−
ω π+−=γ∆+π∆−Π−

ω

TTTTTTTTT FUDFbUDFb̂ĤUDFFDFS 11111  
 
 
( ) ωω

−
ωωω

−
ω

−
ωωπω

−
ω

−
ωωωω

−
ωωω

−
ω π+−=γ∆+π∆−Π−

ω
FDFbUDFb̂ĤUDFFDFS TTTTTTT 11111  

 
( ) ωωω

−
ωωπω

−
ωωωωω

−
ω π+−=γ∆+π∆−Π−

ω
Rb~DFb̂H~DFRS TT 111    (58) 

 
 
where 
 
 ω

−
ωωω = FDFR T 1  

 TT ĤUH~ ω
−
ωω =  

 ω
−
ωω = bUb~ T  

 
As in the base case ωH~  is calculated by performing column by column forward 

substitution and ωb~  is calculated by a single forward substitution 

 
Contingency terms for the general formulation are 
 
 kRSC K11 =ω−Π−= ωω

−
ωω  

 kH~DFV TTT K1=ω= ωωωω  

 kRb~DFb̂r T K11 =ωπ+−= ωωω
−
ωωπω  

 
 
The last equation of the reduced system is: 
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 γ
−

ω =γ∆ΣΓ−∆+∆
ω

b̂uHuH uu
1  

 
can be rewritten as 
 
 γ

−
ωω =γ∆ΣΓ−+ b̂yĤyĤ 1  

 
substituting (50) and (55) into above equation yields 
 

 
γ

−
ωωωωωω

−
ω

−
ω

−
ωω

−−−

=γ∆ΣΓ−π∆−γ∆−π−+

+π∆−γ∆−π−

b̂)FĤFb(UDUĤ

)FĤFb(UDUĤ
TTTT

TTTT

111

0
11

 

 
 

( )
ωω

−
ω

−
ω

−
ωω

−−−
ω

−
ω

−
ω

−
ωω

−−−
γ

−
ω

−
ω

−
ω

−
ωω

−−−

ωω
−
ω

−
ω

−
ωω

−−−

π+π+−−=

=γ∆ΣΓ++−

−π∆−π∆−

TTTTTT

TTTT

TTTT

FUDUĤFUDUĤbUDUĤbUDUĤb̂

ĤUDUĤĤUDUĤ

FUDUĤFUDUĤ

111111
0

11

11111

1111

 

 
 

 ( )
ωω

−
ωω

−
ω

−
ωω

−
γ

−
ω

−
ωω

−

ωω
−
ωω

−

π+π+−−=

=γ∆ΣΓ++−

−π∆−π∆−

FDH~FDH~b~DH~b~DH~b̂

H~DH~H~DH~
FDH~FDH~

TTTT

TT

TT

111
0

1

111

11

 

 
 

 
( )

ωωω
−
ωω

−
γ

−
ω

−
ωω

−
ωω

π−π−++−=

=γ∆ΣΓ+++π∆+π∆

VVb~DH~b~DH~b̂

H~DH~H~DH~VV
TT

TT

0
1

0
1

111
0

 

 
For the general formulation it will be useful to define following terms 
 

  ∑
=ω

−
ω

−
ωω

− ΣΓ++=
k

TT H~DH~H~DH~M
1

111  

 
 

  ω
=ω

ωω
−
ω

=ω
ω

−
γγ π−π−++−= ∑∑

kk
TT VVb~DH~b~DH~b̂r

1
0

1

1
0

1  

 
if we denote base case as a case with index zero (ω = 0) above terms can be written in 
more compact form 
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  ∑
=ω

−
ω

−
ωω ΣΓ+=

k
T H~DH~M

0

11  

 
 

  ω
=ω

ωω
−
ω

=ω
ωγγ π−+−= ∑∑

kk
T Vb~DH~b̂r

0

1

0

 

 
therefore last equation can be rewritten as: 
 
  krMVV K10 =ω=γ∆+π∆+π∆ γωω  
 
 

3.5  General contingency constrained OPF formulation 
 
 

The general formulation with block matrices defined above can be written: 
 

 



























=



























γ∆
π∆

π∆
π∆
π∆



























γr
r

r
r
r

MVVVV
VC

VC
VC
VC

kk

k

T
kk

T

T

T

MM

L

MO

2

1

0

2

1

0

210

22

11

00

 

 
A procedure for the solution of the above bordered diagonal system suggested in [7] is 

the following 

Since the first K+1 equations have form 
 
 ωωωω =γ∆+π∆ rVC T  
 
we can express ∆πω as 
 
 ( )γ∆−=π∆ ωω

−
ωω

TVrC 1         (59) 
 
The last equation can be written: 
 

 ∑
=ω

γωω =γ∆+π∆
k

rMV
0

 

 
substituting equation (59) into above equation, results in 
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 ( )∑
=ω

γωω
−
ωω =γ∆+γ∆−

k
T rMVrCV

0

1  

 

 ∑ ∑
=ω

γω
=ω

−
ωωω

−
ωω =γ∆+γ∆−

k
T

k

rMVCVrCV
0 0

11  

 

 ∑∑
=ω

ω
−
ωωγ

=ω
ω

−
ωω −=γ∆








−

kk
T rCVrVCVM

0

1

0

1      (60) 

 
To calculate ∆γ from the above equation we have to introduce following operations: 
 
first factor each diagonal block by: 
 
 ωωωω = UDUC T  
 
therefore 
 
 ω

−
ωωω

−
ω

−
ω

−
ωω = KDKVUDUV TTT 111  

 
where TTVUK ω

−
ωω = is calculated by column by column back substitution and term 

ω
−
ωω = rUr T  is calculated by single back substitution 

 
 ω

−
ωωω

−
ω

−
ω

−
ωω = rDKrUDUV TT 111  

 
therefore equation (60) can be rewritten: 
 

 ∑∑
=ω

ω
−
ωωγ

=ω
ω

−
ωω −=γ∆








−

k
T

k
T rDKrKDKM

0

1

0

1  

 
∆γ can now be easily solved and then the ∆πi is solved from (59) 
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3.6  Algorithm Description 
 
 
The outer loop algorithm can be outlined as: 
 
Initialize x, u, xω, uω  

while (KKT conditions > ε) 

 Calculate c, f, g, G, W for base and each contingency 

 Do the inner loop algorithm 

 Calculate KKT conditions 

end 

 

 

The inner loop algorithm can be outlined as: 
 
 
Initialize s, π, sω, πω for enforced violations 

Build kr,V,C,b~,H~,R,F K0=ωωωωωωωω  

Build γr,M  

kUDUC T K0=ω= ωωωω  

kVUK TT K0=ω= ω
−
ωω  

Initialize µ 

while µ>ε 
 
 Calculate ∆γ from  

  ∑∑
=ω

ω
−
ωωγ

=ω
ω

−
ωω −=γ∆








−

k
T

k
T rDKrKDKM

0

1

0

1  

 
 Calculate ∆π, ∆πω from 
 
  ( ) γ∆−π+−=π∆−Π− −−

π
− H~DFRbDFb̂RS TT 1

0
11  

  ( ) γ∆−π+−=π∆−Π− ω
−
ωωωωω

−
ωωπωωω

−
ω ω

H~DFRb~DFb̂RS TT 111  
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 Calculate ∆s ∆sω and σ from 
 
  ( )π∆−Π−µΠ=∆ − SSees 1  

  ( )ωωωω
−
ωω π∆−Π−µΠ=∆ SeSes 1  

  ( )γ∆Σ−ΣΓ−µΓ=σ∆ − ee1  
 
 Update π, s and σ 
 

 Update µ ( )2
1

g

T
k

nn
s

+
π

=µ +  

 
 Update following terms 
 
  kRSC K01 =ω−Π−= ωω

−
ωω  

  kebb̂ K01 =ωΠµ−= −
ωππ ωω

 

  kRb~DFb̂r T K01 =ωπ+−= ωωω
−
ωωπω  

   

  ∑
=ω

−
ω

−
ωω ΣΓ+=

k
T H~DH~M

0

11  

 

  ω
=ω

ωω
−
ω

=ω
ωγγ π−+−= ∑∑

kk
T Vb~DH~b̂r

0

1

0
 

 
 
end 
Calculate ∆u , λr , ∆uω , λωr  from 
 

  )FĤFb(UDU
u TTTT

r

π∆−γ∆−π−=







λ
∆ −−−

0
11  

 

  )FĤFb(UDU
u TTTT

r
ωωωωωω

−
ω

−
ω

−
ω

ω

ω π∆−γ∆−π−=







λ
∆ 11  

 
Calculate ∆x and ∆xω from 
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G
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T
xr

T
rxxux

x

T
xxx

1

0
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=








λ
∆

ωωλ

ωωωωω

−

ω

ω

ω

ω

ωω

ωωωωω

ω

ωωω

uGb
FGuWb

G
GWx

u

xx

x

x

T
r

T
ruxx

T
xx

1

0
 

 
Check for new violations 

while new violations≠0 
 
 Initialize s, π, sω, πω 

 Build kF K0=ωω   for the new violations 

 Build columns 0000 r,V,C,b~,H~,R,F  

 Build kr,V,C,b~,H~,R,F K0=ωωωωωωωω  

 Build γr,M  

 kUDUC T K0=ω= ωωωω  

 kVUK TT K0=ω= ω
−
ωω  

 Initialize µ 
 while µ>ε 
 
  Calculate ∆γ from  
 
  Calculate ∆π, ∆πω from 
 
  Calculate ∆s ∆sω and σ from 
 
  Update π , s and σ 
 
  Update µ 
 
  Update following terms 
 
  kRSC K01 =ω−Π−= ωω

−
ωω  

  kebb̂ K01 =ωΠµ−= −
ωππ ωω

 

  kRb~DFb̂r T K01 =ωπ+−= ωωω
−
ωωπω  



  60 

   

  ∑
=ω

−
ω

−
ωω ΣΓ+=

k
T H~DH~M

0

11  

  ω
=ω

ωω
−
ω

=ω
ωγγ π−+−= ∑∑

kk
T Vb~DH~b̂r

0

1

0

 

   
 end 

 Calculate ∆x and ∆xω from 

 Check for new violations 

end while new violations 
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4   Simulation results 
 
 

The algorithm was tested on two cases the IEEE14 and IEEE 30 bus networks. The 

ramp-rate constraints coefficient, ∆, is defined as 10% of the generating capacity of each 

generator. In performing the contingency constrained algorithm, only line outages have 

been considered. The results of the algorithm are presented by comparing the total cost of 

a base case solution with the total cost of the contingency case solution for the various of 

contingency cases considered. The total cost of each contingency case is normalized by 

the cost of the base case. 

4.1  IEEE 14 bus network case 
 
 
 

 
Fig. 4.1. IEEE 14 bus network 

 
 
 IEEE 14 bus network 

Case Number of contingencies nc CC OPF cost [p.u] Cost increase [%] 
1 5 1.0458 4.58 
2 7 1.0634 6.34 
3 12 1.0892 8.92 

Table 4.1. Cost comparison for IEEE 30 bus. “CC OPF” is contingency constrained OPF. 
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4.2   IEEE 30 bus network case 
 
 
 
 

 
Fig. 4.2. IEEE 30 bus network 

 
 
 
 IEEE 30 bus network 

Case Number of contingencies nc CC OPF cost [p.u] Cost increase [%] 
1 10 1.0521 5.21 
2 14 1.0773 7.73 
3 21 1.1196 11.96 

Table 4.2. Cost comparison for IEEE 30 bus 



  63 

5   Conclusion and Future Work 
 
 

5.1  Conclusion 
 
 

Contingency constrained OPF is a very challenging and computationally demanding 

optimization problem. The number of contingency cases considered can be very large. 

Each contingency considered introduces a new problem as large as the base case. 

Therefore, efficient solution of CC OPF is crucial. This work presents a new formulation 

based on sequential quadratic programming. The algorithm is based on an interior point 

method and constraint relaxation or active set method. Restricting our attention to the 

active constraint set makes this large problem significantly smaller and computationally 

feasible. 

 
 

5.2  Future work 
 
 

There are several directions in which the research presented here can be extended. 

• Include load shedding as a control variable 

• From chapter 3 it can be seen that the decomposition technique applied in 

the development of CC OPF produces promising framework for solving 

large power system cases. In order to apply the proposed algorithm to 

practical size networks (118 bus, 300 bus test cases and larger) we need to 

improve computational efficiency by employing sparse matrix techniques. 

• Develop a fast-decoupled implementation of the algorithm 

• Monte Carlo simulation with importance sampling combined with CC 

OPF in large networks shows promise to be a good technique in analyzing 

multiple contingencies 
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Appendix I:   Power Balance, Jacobian and Hessian Equations 
 
 
 
 
 
 

 
 
 
For power flow equations: 
 
Active power flow 
 
 θ−θ−= sincos2

jiijjiijiijij VVbVVgVgP  
 
Reactive power flow 
 
 θ−θ+−= sincos2

jiijjiijiijij VVgVVbVbQ  
 
If we denote θ=θ1-θ2 (angle difference) 
 
P1=f(V1,V2,θ) 
 
Power flow Jacobian and Hessian have following form: 
 

` 
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∂
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where: 
 

 θ−θ−=
∂

∂
sinVbcosVgVg

V
P

jijjijiij
i

ij 2  
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 θ−θ−=
∂
∂

sinVbcosVg
V
P

iijiij
j

ij  

 

 θ−θ=
θ∂

∂
cosVVbsinVVg

P
iiijjiij

ij  

 

In can be shown that element 2
2

1
2

V
P

∂
∂  is zero, so that Hessian matrix has following form: 

 

























θ∂
∂

∂θ∂
∂

∂θ∂
∂

θ∂∂
∂

∂∂
∂

θ∂∂
∂

∂∂
∂

∂
∂

=θ∇

2
1

2

1
2

1

1
2

2

1
2

12

1
2

1

1
2

21

1
2

2
1

1
2

211
2 0),,(

P
V
P

V
P

V
P

VV
P

V
P

VV
P

V
P

VVP  

 
The same set of equations can be written for the reactive power flow Q1=f(V1,V2,θ)   
 
Similar equations can be written for the to end of the line P2=f(V1,V2,θ) 
 

























θ∂
∂

∂θ∂
∂

∂θ∂
∂

θ∂∂
∂

∂
∂

∂∂
∂

θ∂∂
∂

∂∂
∂

=θ∇

2
2

2

2
2

1

2
2

2

2
2

2
2

2
2

12

2
2

1

2
2

21

2
2

212
2

0

),,(

P
V
P

V
P

V
P

V
P

VV
P

V
P

VV
P

VVP  

 
The same set of equations can be written for the reactive power flow Q2=f(V1,V2,θ)   
 
Power balance equation 
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     0=−+∑ gl
j

ij PPP  

 
Let’s denote above power balance equation for node i as gi(x,u)=0 and form vector of 

dimension 2n whose elements are power balance equations for active and reactive power 

at each node in the network. 

Therefore power balance Jacobian can be defined as a matrix of first partial derivatives of 

power balance equation with respect of state variables. Mathematicaly this is: 

 

 
x

)u,x(gGx ∂
∂

=   nn
xG 22 ×ℜ∈  

 
The number of rows is 2n because we have active and reactive power balance at each 

node, and the number of columns is 2n because we have 2n state variables (voltage 

magnitude and phase angle at each bus) 

 

  







=

QaQV

PaPV
X GG

GG
G  

 
Block matrices GPv GPa GQv GQa have dimension n×n (and have bus admittance sparsity 

structure). 

 

  



































=

∑

∑

∑

∑

i n

i

j

njnn

n

jn

i j

ijj

n

n

j

j

i

i

n

n

j

j

i

i

Pv

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

dV
dP

G

LL

MOMMMM

LL

MMMOMM

LL

LL

2

2

1

1

2

2

1

1

22

21

21

11

2

12

1

 

 
Because of the property of power network, most of the partial derivatives in the above 
matrix would be zero. 
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θθθθ

θθθθ

θθθθ

θθθθ

=

∑

∑

∑

∑

i n

i

j

njnn

n

jn

i j

ijj

n

n

j

j

i

i

n

n

j

j

i

i

Pa

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

d
dP

G

LL

MOMMMM

LL

MMMOMM

LL

LL

2

2

1

1

2

2

1

1

22

21

21

11

2

12

1

 

 
The above matrices are singular, therefore reference bus must be introduced. Every 

network has a reference bus (bus with phase angle equal to zero). For reference bus 

instead of equality constraint for active power balance, we impose constraint which says 

reference angle equal to zero, therefore if we chose bus one to be reference bus (common 

case although any bus can be reference), first row in matrix GPv instead a form 

 

  









∑

n

jn

j

j

i dV
dP

dV
dP

dV
dP

dV
dP

LL
1

2

12

1

1  

 
has a following form: 
 

 ( )0000 LL  
 
Also first row in matrix GPa instead a form 
 

 










θθθθ∑
n

jn

j

j

i d
dP

d
dP

d
dP

d
dP

LL
1

2

12

1

1  

 
has a following form (where 1 stays for a reference bus) 
 

 ( )0001 LL  
 
 
Power balance Jacobian with respect of control variables (u) can be defined as follows: 
 

  
u

uxgGu ∂
∂

=
),(   unn

uG ×ℜ∈ 2  

 
and written in following block matrix structure: 
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∂

∂

∂

∂

=

b

jl

b

lj

pu

t
P

t
P

G

1

 

 







=

Qu

Pu
u G

G
G  

 
where 

   
u

)u,x(gG P
Pu ∂

∂
=   unn

PuG ×ℜ∈  

   
u

)u,x(g
G Q

Qu ∂

∂
=   unn

QuG ×ℜ∈  

 
 
Block matrices GPu and GQu are build on following way: 
 
 
    (i,j)  i- generator bus 
       j – position of Pg in nu vector 
    
    (l,k) l – transformer line from bus 
     k – tb control in nu vector 
    
    (j,k) j – transformer line to bus 
     k – tb control in nu vector 
 
 
 
 
 

  (i,j)  i- generator bus 
   j– position of  Qg in nu vector 
 
  (l,k) l – transformer line from bus 
   k – tb control in nu vector 
 
  (j,k) j – transformer line to bus 
   k – tb control in nu vector 
 
 

















∂

∂

∂

∂

=

b

jl

b

lj

qu

t
Q

t
Q

G

1
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Appendix II:   Fast Decoupled Power Flow 
 
 
 
 
 
Applying Newton’s method to the power flow equation results in the most robust power 

flow algorithm. Drawback to its use is the fact that the terms in the Jacobian matrix must 

be recalculated each iteration. Linearized power balance equations can be stated as 

follows: 

   k

N

k

N

k k

i
k

k

i
i V

V
PPP ∆

∂
∂

+θ∆
θ∂
∂

=∆ ∑ ∑
= =1 1

   (1) 

 

   k

N

k

N

k k

i
k

k

i
i V

V
QQQ ∆
∂
∂

+θ∆
θ∂
∂

=∆ ∑ ∑
= =1 1

   (2) 

or in the matrix form 
 

   







∆
θ∆









=








∆
∆

VLJ
NH

Q
P

 

 
Fast decoupled formulation [9] is obtained by neglecting the coupling submatrices N and 

J according to the following assumptions: 

• real power is little influenced by changes in voltage magnitude 
V
P
∂
∂  

• insensitivity of reactive power to changes in phase angle 
θ∂

∂Q  

Recall power flow equations for both active and reactive power: 
 
  θ−θ−= sinVVbcosVVgVgP kiikkiikiikik

2  
 
  θ−θ+−= sinVVgcosVVbVbQ kiikkiikiikik

2  
 
where θ=θi-θk is a angle difference 
 
Partial derivatives of the power balance equation are as follows: 
 

  ( )θ−θ=
θ∂

∂ cosbsingVVP
ikikki

ik      (3) 
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  ( )θ−θ−=
∂
∂ cosbsingV

V
Q

ikiki
k

ik      (4) 

 
In practical power system following assumptions are almost always valid: 
 
  1≈θcos  and ikik bsing <<θ  
 
Therefore following equations are a good approximation of (3) and (4) 
 

  ikki
ik bVVP

−=
θ∂

∂        (5) 

 

  ikki
kj

ik bVV
VV

Q
−=

∂
∂        (6) 

 
The power flow adjustment according to (1) and (2) can be written 
 

  k
k

i
i

PP θ∆
θ∂
∂

=∆  

 

  
k

k

kk

i
i V

V
VV

QQ ∆
∂
∂

=∆  

 
After substituting (5) and (6) in the above equations 
 
  kikkii bVVP θ∆−=∆        (7) 
 

  
k

k
ikkii V

VbVVQ ∆
−=∆        (8) 

 
Following simplification will be made: 

• Equations (7) and (8) will be divided by Vi 

• We will assume Vk ≅ 1 

 
Therefore equations (7) and (8) will have following form 
 

  kik
i

i b
V
P

θ∆−=
∆         (9) 
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  kik
i

i Vb
V
Q

∆−=
∆        (10) 

 
Equations (9) and (10) can be generalized in a following matrix form 
 

  



















θ∆

θ∆
θ∆



















−−−

−−−
−−−

=



























∆

∆

∆

nnnnn

n

n

n

n bbb

bbb
bbb

V
P

V
P

V
P

M

L

MOMM

L

L

M

2

1

21

22221

11211

2

2

1

1

    (11) 

 

  



















∆

∆
∆



















−−−

−−−
−−−

=



























∆

∆

∆

nnnnn

n

n

n

n V

V
V

bbb

bbb
bbb

V
Q

V
Q
V
Q

M

L

MOMM

L

L

M

2

1

21

22221

11211

2

2

1

1

    (12) 

 
Matrix equation (11) can be simplified with a assumption rik<<xik  Finally equations (11) 
and (12) can be written as: 
 

  θ∆′=
∆

B
V
P

 

  kVB
V
Q

∆′′=
∆

 

 
Terms in the B′ matrix are: 

  
ik

ik x
B 1

−=′  assuming a branch from i to k (zero otherwise) 

  ∑
=

=′
N

k ik
ii x

B
1

1  

 
Terms in the B″ matrix are: 

  22
ikik

ik
ikik xr

xBB
+

−=−=′′  

  ∑
=

−=′′
N

k
ikii BB

1
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Appendix III:   Matrix Calculation Details 
 
 
 
This appendix will present efficient way to calculate variables which appear in both base 

and contingency case as well as terms which appear in fast-decouple formulation. 

 
AC Case 
 
Let’s group terms which we have to calculate into two groups. 
 

( ) 















−=

−

u

xu

x

T
xxxT

u
T
xuuuuu G

W
G

GW
GWWW

1

0
     (1) 

 

( ) 















−=

−

u

xu

x

T
xxx

rxruru G
W

G
GW

GGG
1

0
0      (2) 

 

( ) 















−=

−

u

xu

x

T
xxx

xuu G
W

G
GW

FFF
1

0
0       (3) 

 
Next set of equations: 
 

( ) 















−=

λ

−

b
b

G
GW

GWbb x

x

T
xxxT

u
T

xuuu

1

0
     (4) 

 

( ) 















−=

λ

−

b
b

G
GW

Gbb x

x

T
xxx

rxrr

1

0
0       (5) 

 

( ) 















−=

λ

−

ππ b
b

G
GW

Fbb x

x

T
xxx

x

1

0
0       (6) 

 
if we perform LU factorization of the following block matrix 
 









=

0x

T
xxxT

G
GW

DUU   U has dimension (4n×4n) 

 
and define following variables 
 



  73 

  







=

u

xu

G
W

K  

 

  







=

λb
b

b x  

 
  ( )0rx

T Gg =   of dimension (1×4n) 
 
  ( )0xFF =   of dimension (nc×4n) 
 
equations (1) – (6) can be rewritten 
 

KUDUKWW TT
uuuu

−−−−= 11  
 
 KUDUgGG TT

ruru
−−−−= 11  

 
 KUDUFFF T

uu
−−−−= 11  

 
 bUDUKbb TT

uu
−−−−= 11  

 
 bUDUgbb TT

rr
−−−−= 11  

 
 bUDUFbb T−−−

ππ −= 11  
 
let’s simplify calculation by introducing following variables: 
 

KUM T−=  
 
 1−= Ugx TT  
 
 1−= UFRT  
 
 bUy T−=  
 
Matrices M and R can be calculated by performing column by column forward 

substitution and vector x and y by forward substitution through following equations: 

 
 KMU T =  
 
 gxU T =  
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 TT FRU =  
 
 byU T =  
 
Therefore equations (1) - (6) can be finally calculated by: 
 

MDMWW T
uuuu

1−−=  
 
 MDxGG T

ruru
1−−=  

 
 MDRFF T

uu
1−−=  

 
 yDMbb T

uu
1−−=  

 
 yDxbb T

rr
1−−=  

 
 yDRbb T 1−

ππ −=  
 
 
Fast-decouple case 
 
 
The following matrices are considered in the fast-decoupled case: 
 
 

( ) 















−=

−

u
T
x

x
xuu GG

G
FFF

0
0

0
0

1

      (7) 

 

( ) 















−=

−

u
T
x

x
rxuu GG

G
GGG

0
0

0
0

1

     (8) 

 

 ( ) 















−= λ

−

x
T
x

xT
uuu b

b
G

G
Gbb

1

0
0

0       (9) 

 

 ( ) 















−= λ

−

x
T
x

x
rxrr b

b
G

G
Gbb

1

0
0

0       (10) 
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( ) 















−= λ

−

ππ

x
T
x

x
x b

b
G

G
Fbb̂

1

0
0

0       (11) 

 
Matrix Fx can be written in the following block matrix form 
 
  ( )avx FFF =  
 
where 

  
v

)u,x(fFv ∂
∂

=   nn
v

cF ×ℜ∈  

 

  
θ∂

∂
=

)u,x(fFa   nn
a

cF ×ℜ∈  

 

Block matrix 







=

qu

pu
u G

G
G  is defined in Appendix I 

 
Reference bus Jacobian can be written as 
 
  ( )rarvrx GGG =  
 
where 

  
v

)u,x(gG r
rv ∂

∂
=   n

rvG ×ℜ∈ 1  

 

  
θ∂

∂
=

)u,x(gG r
ra   n

raG ×ℜ∈ 1  

 
Matrix Gx is of the form 
 

  







′′

′
=

0
0

B
B

Gx  

 
B′ and B″are symmetric which means B′-T = B′-1 and B″-T = B″-1 
 
Recall also that B′ and B″ are factored according to the following two expressions just 

once for the entire iterative process. 

 
 111 UDUB T=′  

 
 222 UDUB T=′′  
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Considering equation (7) 
 

  ( ) u
T

xxu
u

T
x

x
xuu GGFF

GG
G

FFF −

−
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−=

0
0

0
0

1

 

 

  ( ) qu
T

vpu
T

au
qu

pu
T

T

avuu GBFGBFF
G
G

B
B

FFFF −−
−

−

′′−′−=















′

′′
−=

0
0

 

 
  quvpuauu GBFGBFFF 11 −− ′′−′−=  
 
  ( ) ( ) qu

T
vpu

T
auu GUDUFGUDUFFF 1

222
1

111
−−

−−=  
 
  qu

T
vpu

T
auu GUDUFGUDUFFF −−−−−− −−= 2

1
2

1
21

1
1

1
1  

 
Calculation of the above expression is facilitating by calculating F1, F2, G1, G2 via 

column by column forward substitution in a following way 

 
  T

a FUF 1
1

1 =−   ⇔ T
a

T FFU =11  
 
  T

v FUF 2
1

2 =−   ⇔ T
v

T FFU =22  
 
  11 GGU pu

T =−   ⇔ pu
T GGU =11  

 
  22 GGU qu

T =−   ⇔ qu
T GGU =22  

 
Therefore uF  is calculated by 
 
  2

1
221

1
11 GDFGDFFF TT

uu
−− −−=  

 
Next is equation (8) 
 

  ( ) u
T

xrxru
u

T
x

x
rxruru GGGG

GG
G

GGG −

−

−=
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0
0

0
0

1

 

 

 ( ) qu
T

rvpu
T
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pu
T

T

rarvruru GBGGBGG
G
G

B
B

GGGG −−
−

−

′′−′−=















′

′′
−=

0
0
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  qurvpuraruru GBGGBGGG 11 −− ′′−′−=  
 
  ( ) ( ) qu

T
rvpu

T
raruru GUDUGGUDUGGG 1

222
1

111
−−

−−=  
 
  qu

T
rvpu

T
raruru GUDUGGUDUGGG −−−−−− −−= 2

1
2

1
21

1
1

1
1  

 
In order to calculate ruG  vectors g1 and g2 have to be obtained via forward substitution 
 
  T

ra gUG 1
1

1 =−   ⇔ T
ra

T GgU =11  
 
  T

rv gUG 2
1

2 =−   ⇔ T
rv

T GgU =22  
 
Finally equation (8) can be calculated by 
 
  2

1
2121

1
11 GDgGDgGG TT

ruru
−− −−=  

 
 
Equation (9) can be simplified as 
 

  ( ) x
T

x
T
uu

x
T
x

xT
uuu bGGb

b
b

G
G

Gbb −λ

−

−=















−=

1

0
0

0  

 

 ( ) a
TT
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T
T
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T
puuu bBGbBGb
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b

B
B

GGbb −−
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−
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′′
−=

0
0

 

 
  a

T
puv

T
quuu bBGbBGbb 11 −− ′′−′−=  

 
  ( ) ( ) a

TT
puv

TT
quuu bUDUGbUDUGbb 1

222
1
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−−

−−=  
 
 
  a

TT
puv

TT
quuu bUDUGbUDUGbb −−−−−− −−= 2

1
2

1
21

1
1

1
1  

 
Matrices G3 and G4 are calculated via column by column forward substitution and vectors 

b1 and b2 via forward substitution 

 
  TT

qu GUG 3
1

1 =−   ⇔ qu
T GGU =31  

 
  TT

pu GUG 4
1

2 =−   ⇔ pu
T GGU =42  
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  11 bbU v

T =−   ⇔ v
T bbU =11  

 
  22 bbU a

T =−   ⇔ a
T bbU =22  

 
Equation (9) is calculated on following way 
 
  2

1
241

1
13 bDGbDGbb TT

uu
−− −−=  

 
Equation (10) 
 

  ( ) λ
−λ

−

−=















−= bGGb

b
b

G
G

Gbb xrxr
x

T
x

x
rxrr

1
1

0
0
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λ
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λ
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  ( ) ( ) q

T
rvp

T
rarr bUDUGbUDUGbb λ

−
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1
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1
222  

 
  q

T
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T
rarr bUDUGbUDUGbb λ

−−−
λ

−−− −−= 1
1

1
1

12
1

2
1

2  
 
vectors g3, g4, b3, b4 are obtained performing forward substitution 
 
  T

ra gUG 3
1

2 =−   ⇔ T
ra

T GgU =32  
 
  T

rv gUG 4
1

1 =−   ⇔ T
ra

T GgU =41  
 
  32 bbU p

T =λ
−   ⇔ p

T bbU λ=32  
 
  41 bbU q

T =λ
−   ⇔ q

T bbU λ=41  
 
Thus, variable rb  is calculated 
 
  4

1
143

1
23 bDgbDgbb TT

rr
−− −−=  

 
Finally equation (11) 
 

  ( ) λ
−

π
λ

−

ππ −=















−= bGFb

b
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G
G
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T
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x
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0
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  ( ) qvpa
q

p
av bBFbBFb

b
b

B
B

FFbb λ
−

λ
−

π
λ

λ
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−

ππ ′−′′−=

















′′
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−= 11

1

1

0
0

 

 
 
  ( ) ( ) q

T
vp

T
a bUDUFbUDUFbb λ

−
λ

−
ππ −−=

1
111

1
222  

 
  q

T
rvp

T
rarr bUDUGbUDUGbb λ

−−−
λ

−−− −−= 1
1

1
1

12
1

2
1

2  
 
  q

T
vp

T
a bUDUFbUDUFbb λ

−−−
λ

−−−
ππ −−= 1

1
1

1
12

1
2

1
2  

 
Following two matrices F3 and F4 are obtained via column by column forward 
substitution 
 
  T

a FUF 3
1

2 =−   ⇔ T
a

T FFU =32  
 
  T

v FUF 4
1

1 =−   ⇔ T
v

T FFU =41  
 
Finally 
 
  4

1
143

1
23 bDFbDFbb TT −−

ππ −−=  
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Appendix IV:   Implementation of the Active Set Method 
 
 
 
 
 
Solution if feasible if there is no new violated constraints. Now our concern is how to 

facilitate computation if new violated constraint is found? When new violated constraint 

is found, we have to build additional columns of matrix F as well as to update matrices 

where matrix F appears (i.e., F ). 

Now we will show how this can be done with not too much extra work: 

 
First we have to calculate Fx new and Fu new (row vector) for each new violated constraint. 
 

 
x

uxfF new
newx ∂

∂
=

),(   dimension (nv×2n) 

 
u

uxfF new
newu ∂

∂
=

),(   dimension (nv×nu) 

 
where nv is the number of new violated constraints 
 
Matrix F appears in the following terms: 
 

TT FUF −=  or 1−= FUF T  
 
 
New F matrix will be denoted by newF  and will include new violated constraints 
 
 T

new
T

new FUF −=  
and 
 

 







=

00

T
newu

T
uT

new
FF

F  

 
Next term to be calculated is: 
 

 ( ) 















−=

−

u

xu

x

T
xxx

newxnewunewu G
W

G
GW

FFF
1

0
0  
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remember from Appendix II  
 
 ( ) KUDUFFF T

newxnewunewu
−−−−= 110  

 
 ( )0newxFF =   of dimension (nv×4n) 
 
calculating 
 
 1−= UFRT  
 
and if we recall 
 
 KUM T−=  
 
equation  
 
 KUDUFFF T

newunewu
−−−−= 11  

 
 MDRFF T

newunewu
1−−=  

 
Finally, 
 

 







= −

00

T
newu

T
uT

new
FF

UF  

 
newF  can be written in the following block matrix form 

 
 ( )FFFnew ′=  
 
we just need to perform forward substitution (fast forward substitution) on additional 
columns corresponding to new violated constraints and calculate F ′  
 

 







=′

0

T
newuT F

FU  F ′  has dimension (4n×nv) 
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