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Abstract 

 

Successive Approximation (SAR) analog-to-digital converters  are used extensively in 
biomedical applications such as CAT scan due to the high resolution they offer. Capacitor 
mismatch in the SAR converter is a limiting factor for its accuracy and resolution. Without some 
form of calibration, a SAR converter can only achieve 10 bit accuracy. In industry, the CAL-
DAC approach is a popular approach for calibrating the SAR ADC, but this approach requires 
significant test time.  

This thesis applies the “Split-ADC” architecture with a deterministic, digital, and background 
self-calibration algorithm to the SAR converter to minimize test time. In this approach, a single 
ADC is split into two independent halves. The two split ADCs convert the same input sample 
and produce two output codes. The ADC output is the average of these two output codes. The 
difference between these two codes is used as a calibration signal to estimate the errors of the 
calibration parameters in a modified Jacobi method. The estimates are used to update calibration 
parameters are updated in a negative feedback LMS procedure. The ADC is fully calibrated 
when the difference signal goes to zero on average.  

This thesis focuses on the specific implementation of the “Split-ADC” self-calibrating algorithm 
on a 16 bit, 1 MS/s differential SAR ADC. The ADC can be calibrated with 105 conversions. 
This represents an improvement of 3 orders of magnitude over existing statistically-based 
calibration algorithms. Simulation results show that the linearity of the calibrated ADC improves 
to within ±1 LSB.  
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1 
Introduction 

Traditionally, Successive Approximation (SAR) Analog-to-digital converters suffer from 
the finite matching accuracy of capacitors [1]. Laser-trimming or some forms of calibration are 
necessary, if ADC’s resolution and accuracy of 16 bit and higher has to be achieved. A less 
expensive way to correct for capacitor mismatch is to develop self-calibration algorithms to be 
used with the SAR.  In 1984, H.S. Lee developed a one-time self-calibrating technique which 
can be applied to the all MOS charge redistribution SAR A/D converter. He measured and stored 
the ratio errors of the capacitors on a RAM during the calibration cycle. During the subsequent 
normal conversion cycle, this information is used with a calibration DAC to correct for the 
mismatch errors [2]. This method proved to be an effective way to improve the SAR resolution, 
and many recent subsequent works are based on his approach [3-6]. It is, however, time-
consuming to measure and write these capacitor ratio errors into the RAM. In fact, this is a 
limiting factor in production cost in industry.    

Thus, the goal of this work is to develop a self-calibrating algorithm based on the “Split-
ADC” architecture introduced in [7, 8] for the SAR ADC to minimize test time. While other self-
calibrating algorithms exist to calibrate the SAR ADC, they do so at the expense of increasing 
the foreground ADC conversion time, or increasing the analog complexity. For instance, [9] 
makes use of a non-binary capacitor array with the perceptron learning rule to calibrate capacitor 
weights in the DAC. This digital error correction procedure, however, cannot be used in the 
background.  [10] used an equalization-based adaptive digital background calibration technique 
to correct for the capacitor ratio mismatch. This approach, however, requires an additional slow-
but-accurate reference ADC to compare the error with the filter output.    

Self-calibrating techniques of other ADCs have also been investigated. Upon comparison, 
the split ADC architecture developed in [7, 8] still offers the best solution in calibrating the SAR 
ADC. The self-calibrating algorithm in this work can be implemented entirely in the digital 
domain, with no added analog complexity. It operates in the background, and therefore does not 
affect the speed of foreground operation. Finally, it uses a deterministic approach to track out 
parameter variations due to environmental influences. Thus, it can calibrate the ADC with a 
much shorter time, compared to the traditional statistical method. Table 1.1 compares this work 
with other self-calibrating techniques. 
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Table 1.1 Comparison with previous work 

 SAR 
specific 

Interleaved specific Pipelined specific This 
work 

[9] [10] [11] [12]-[15] [16]-[20]  [21]-[24] [25],[26] [27],[28] [7, 8] 

Deterministic? √ √     √ √ √ 
(All)Digital? √  √  √ √  √ √ 
Background?  √  √ √ √ √  √ 

 

In [7,8], it was shown that the split ADC concept can be applied to the cyclic ADC, with 
the op-amp gain being the only calibration parameter. In a SAR converter, however, we have 
significantly more calibration parameters. Thus, the primary challenge of this work is to develop 
a self-calibrating algorithm to work with the “Split- SAR ADC” architecture that can calibrate 
many parameters at the same time.  

This thesis is organized as follows: Chapter 2 explains the conventional SAR architecture 
and the modifications we made in the design of the ADC in order to apply the self-calibrating 
algorithm. Chapter 3 explains how the split SAR architecture works together with the self-
calibration algorithm to correct for the calibration parameters at a system level. The whole 
system is then verified in Matlab. Chapter 4 provides in-depth analyses for the error correction 
algorithm used in the self-calibrating procedure. Chapter 5 discusses the details of some of the 
circuit design work necessary to develop the prototype 16 bit, 1 MS/s differential SAR IC in the 
0.25um standard CMOS process. Finally, Chapter 6 concludes this thesis and suggests possible 
future research based on this work.   
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2 
SAR architecture 

 

2.1 Introduction  

Successive Approximation A/D converters are one of the most popular approaches for realizing 
A/D converters. This is because they have relatively quick conversion time, yet moderate circuit 
complexity [29].  

One of the most common architectures used to realize a successive approximation A/D converter 
is the charge redistribution MOS A/D converter developed by McCreary [30]. With this 
converter, the sample, hold and bit cycling actions of the ADC can be realized in a single circuit. 
The use of the binary weighted switched capacitor DAC array also provides better accuracy and 
linearity than its resistive counterpart [31].  

In Section 2.2, we will use the charge redistribution MOS A/D converter to explain the basic 
operation of a 4-bit differential SAR A/D converter. In Section 2.3, we will review the split ADC 
architecture. In Section 2.4, we will develop an ideal 16 bit, 1MS/s differential SAR ADC to be 
used with the split architecture and the error correction algorithm.  Simulation results will be 
provided to show that the proposed design works.  

2.2 SAR ADC Review 

The top level block diagram of a differential SAR converter is shown in Figure 2.1. It consists of 
two sample-and-hold circuits(S/H), two DACs, a latched comparator and the necessary SAR 
logic to update the output of the DAC (Vx and Vy). Vin1, Vin2 are the differential input 
voltages, and it will be replaced by Vinp and Vinm later.  
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Figure 2.1: Top level block diagram of a differential SAR converter 

 

Figure 2.2 shows the algorithm used to implement the SAR logic. At each conversion, Vin1 and 
Vin2 are sampled and held onto the DAC . When the bit cycling action starts, the comparator 
compares Vx and Vy. If Vy is bigger than Vx, the comparator outputs a decision bit 1. 
Otherwise, the comparator outputs a decision bit -1. Vx and Vy are then updated by (2.1a) and 
(2.1b). The decision in each cycle can be determined by (2.1c).  

��� � ����� 	 
������������  (2.1a) 

��� � ����� � 
������������ (2.1b) 

�� � ���������� 	 ������   �2.1 � 
This process is repeated N times for an N bit converter. Eventually, Vx and Vy are driven to 
within 1/2 LSB of each other.  
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Figure 2.2: Updating the DAC voltage Vx and Vy with the SAR logic  
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Figure 2.3 shows the sample, hold and bit cycling operations of the differential SAR converter at 
a circuit level. We demonstrated these operations with a 4 bit converter, where the common 
mode voltage Vcm is 1.25V, and the positive voltage reference Vp and the negative voltage 
reference Vm are 2.5V and 0V respectively. The input voltage range for each input is 0V to 
2.5V, and this is determined by the 0.25 um process supply. Therefore, the differential input 
voltage range is ±2.5V. From (3.2), the smallest voltage that the 4 bit converter can resolve is 
0.3125V. Note that the comparator is only active during the bit cycling mode.  

In the sampling mode, the inputs are being sampled onto all the capacitors. The switches S1 are 
closed, and S2 and S3 are switched in such a way to sample Vin1 and Vin2. At this instant, the 
top plate voltages Vx and Vy are both equal to 1.25V (Figure 2.3a).  

During the hold mode, S1 and S3 are opened, and all S2 are switched to Vcm (Figure 2.3b). 
Because of the law of charge conservation, the charges sampled onto the capacitors during the 
sample mode have to equal to the charges held onto the capacitors during the hold mode. 
Therefore, Vx and Vy are now equal to  

�� � 2.5 	 ���1 (2.2a) 

�� � 2.5 	 ���2 (2.2b) 

Next, the bit cycling operation starts (Figure 2.3c). The comparator first compares Vx and Vy. If 
Vy is bigger than Vx, then the comparator outputs a decision bit 1. Otherwise, the comparator 
outputs a decision bit -1. Starting with the most significant bit, if the decision is 1, the switches 
S2 attaching the capacitors labeled 8C will switch to the right. At the top DAC, S3 switches to 
Vp. At the bottom DAC, S3 switches to Vm. As a result, Vy is reduced by the first binary 
weight, and Vx is increased by the first binary weight in the first cycle. The opposite happens if 
the decision bit is -1.  

Since 8C is half the total capacitance of the DAC, Vx and Vy are increased/ reduced by (2.5-
1.25)/2 = 0.625V in the first bit cycle (2.1). This process is repeated 3 more times, with Vx and 
Vy being increased/ reduced by half of the previous binary weight each time.  Eventually, Vx 
and Vy converge to within 1/2 LSB of each other.  
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Figure 2.3 Sample, Hold and Bit 
Cylcing mode 

(A) During the sample mode, the 
inputs are being sampled onto all 
the capacitors. The switches S1 are 
closed, and S2 and S3 are switched 
in such a way to sample Vin1 and 
Vin2.  

(B) During the hold mode, S1 and 
S3 are opened, and all S2 are 
switched to Vcm . Because of the 
law of charge conservation, the 
charges sampled onto the 
capacitors during the sample mode 
have to equal to the charges held 
onto the capacitors during the hold 
mode.  

(C) During the bit cycling action, 
the comparator compares Vx and 
Vy. If Vy is bigger than Vx, then 
the comparator outputs a decision 
bit 1. Otherwise, the comparator 
outputs a decision bit -1. Starting 
with the most significant bit, if the 
decision is 1, the switches S2 
attaching the capacitors labeled 8C 
will switch to the right. At the top 
DAC, S3 switches to Vp. At the 
bottom DAC, S3 switches to Vm. 
As a result, Vx is increased by the 
first binary weight, and Vy is 
reduced by the first binary weight 
in the first cycle. The opposite 
happens if the decision bit is -1.  

This process is repeated 3 other 
times, with Vx and Vy being 
increased/ reduced by half of the 
previous binary weight each time.  
Vx and Vy eventually converge to 
within ½ LSB of each other.  

A 

B 

C 
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As an example, suppose Vin1 = 2.5V and Vin2 = 0V. Table 2.1 shows the predicted value of Vx 
and Vy in the hold mode and bit cycling mode, and the predicted decision output at each cycle 
using (2.1) and (2.2).  

Table 2.1 The predicted value of Vx and Vy, and the output decision during the hold mode and 
the bit cycling mode 

 Vx(V) Vy(V) d 
Hold 0 2.5 1 

1st cycle 0.625 1.875 1 
2nd cycle 0.9375 1.5625 1 
3rd cycle 1.09375 1.40625 1 
4th cycle 1.171875 1.328125  

 

The result in Table 2.1 is verified against simulation.  Figure 2.4 shows the simulated waveform 
of Vx and Vy for one conversion. Note that Vx and Vy is driven towards the common mode 
voltage 1.25 at the end, and that Vx and Vy is within ½ LSB of each other. In general, we expect 
the DAC voltages Vx and Vy of a N-bit converter possesses a similar waveform.  

 

Figure 2.4: Waveform of Vx and Vy for one conversion 

  

Vy 

Vx 
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2.3 Split SAR ADC architecture 

2.3.1 Split ADC Concept Review 

 

Figure 2.5: “Split ADC” architecture. 

The “Split ADC” architecture developed in [7,8] is presented in Fig. 2.5. The “Split ADC” 
architecture uses two independent and identical ADCs to sample the same input, Vin. Each ADC 
converts Vin and produces individual outputs  xA and xB.  

On the foreground ADC operation, the average of xA and xB , x, is used as the output code of the 
ADC. In the background self-calibration procedure, the difference between the two output codes, 
∆x, is used in an error estimation process to adjust the calibration parameters.  As ∆x is driven to 
zero, the calibration parameters converge to their correct values. As a result, the output code x 
also converges to the correct value. 

In our case, we use a differential SAR converter as our principal ADC. Since we want to make 
sure the only way for ∆x to be zero is when the calibration parameters are adjusted correctly, we 
want to ensure the decision paths to arrive at the same output code for ADCA and ADCB are 
different. In other words, the decisions to reach xA and xB should be independent of each other. 
To do this, we insert redundant bits and use a random process to select the DAC cap segments 
during the bit cycling process. An added advantage of using randomization is that we can use 
any input signal for calibration, even for a constant DC signal. Meanwhile, an added advantage 
of using redundant bits is that it gives the system a second chance to “correct” any previous 
erroneous decisions, due to the presence of the comparator noise.   

The “Spilt ADC” calibration technique can be used for any type of converters. It supports an all- 
digital, deterministic, background self-calibration procedure. In addition, it has a speed and cost 
benefit, and a negligible impact on analog complexity and analog die area.  
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2.3.2  Speed Benefit of the “Split” ADC architecture 

The use of ∆x in correction enables the subtraction of a large input signal magnitude in the self-
calibrating procedure. This in turns provides fast convergence for the calibration parameters as 
compared to the statistical method such as [21], where the convergence speed in some cases 
depends upon on the input signal magnitude.  

2.3.3  Cost benefit 

The preferred tradeoff in submicron CMOS is to move the circuit complexity from the analog 
domain to digital domain. Since our self-calibrating algorithm can be implemented entirely in the 
digital domain, we are able to take advantage of CMOS scaling and save on fabrication cost.  

2.3.4 Implication for analog complexity  

 

Figure 2.6: Splitting a single ADC into two 

Since the “spilt ADC” architecture simply splits the analog area of a single ADC into two 
independent halves, it is able to maintain the overall area, power, bandwidth and noise 
performance [7]. Figure 2.6 shows how we split a single ADC into two independent halves.  
Let’s gm represents the area of the active analog circuitries, and C represents the area of passive 
components such as capacitors and resistors. If we assume that bandwidth fT is proportional to 
gm/C, then the bandwidth of one split ADC will be  

"# $ %&� · �( $ %&(       (2.3) 

Thus, the bandwidth of the split ADC is the same with the single ADC.  

If we assume the power P is proportional to gm, then the power of one split ADC is  

) $  %&�  (2.4a) 

Therefore, the overall power P of the split structure is proportional to gm, where  
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)*+#,- � %&� +
%&� � �.  (2.4b) 

Finally, if we assume the noise N is proportional to /01/3, then the noise of one split ADC is 

4 $ √6*( · √2 (2.5)  

However, since the output code is averaged from two ADCs, the overall noise is proportional to /01/3. Thus, the overall bandwidth, power and noise of the split ADCs are the same as a single 

ADC.  

2.4 Modifications of the differential SAR ADC   

2.4.1 The new DAC structure  

As mentioned in Section 2.3.1, since the split ADC architecture self-calibrating approach 
requires randomization and the use of redundant bits, one cannot simply extend the basic 4-bit 
differential SAR structure in Section 2.2 into the required differential 16-bit differential SAR 
structure.  

Based on the SNR and die area constraints, we come up with the proposed DAC structure in 
Figure 2.7, where the unit capacitor in segment 1 is 1pF, and the unit capacitor in segment 2-5 is 
125 fF. The values of the coupling capacitors Cc1, Cc2 and Cc3 are 325.89fF, 321.4fF and 
285.71 fF respectively. Chapter 5 shows the detailed design procedure to obtain these values.  
 

 

Figure 2.7 Modified DAC structure for the 16-bit differential SAR converter 

There are 5 segments in this DAC, and each segment consists of 16 unit capacitors. Cc1, Cc2 and 
Cc3 are chosen such that the total capacitance of the left segment is 8 times the total capacitance 
of the right segment. In other words, the MSB of the right segment is equal to the LSB of the left 
segment. Therefore, each segment is in charge of making 4 decisions, and we have 4 redundant 
bits. 

The use of unit capacitors in each segment allows us to select capacitors randomly to represent 
the DAC weights. In our randomization process, we generate a random base for each segment so 
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that we know which capacitor is responsible for making which bit of decision. For example, if 
the base number generated is 3 for segment 1, then capacitor 3-10 will be used for d1, capacitor 
11-14 will be used for d2, capacitor 15-16 will be used for d3, capacitor 1 will be used for d4A 
and capacitor 2 will be left unused.  

2.4.2 DAC weights  

To develop an ideal 16-bit differential SAR converter, we need to know the DAC weights 
corresponding to each bit. We can find out the ideal DAC weights corresponding to each 
individual capacitor in each segment with the design equations in Section 5.4.2. However, this 
approach is tedious. Also, if mismatch are present, modifying these equations to find out 
individual DAC weights become formidable, since each capacitor interact with one another in 
this network.  

To simplify the procedure of finding the DAC weights, we develop the simulation in Figure 2.8. 
Turning on the positive or negative reference in the DAC correspond to supplying or pulling out 
1.25V from the individual capacitor, since the common mode voltage is 1.25V. As an example to 
find out the ideal DAC weight corresponding to each capacitor (C1-C80), we supply a square 
wave of 1.25V in magnitude to individual capacitors and see how they change Vtop.  

Figure 2.8: Relating capacitor mismatch with DAC weights 

Table 2.2 shows the ideal voltage weight each capacitor represents.  

  

Vtop 

C1-C16 C17-C32 

C33-C48 

C49-C63 C64-C80 



22 

 

Table 2.2 Ideal DAC weights of all capacitors  

 Ideal  Ideal  Ideal 
C Voltage weight C Voltage weight C Voltage weight 
1 6.8361460E-02 31 8.5451830E-03 61 1.3350820E-04 
2 6.8361460E-02 32 8.5451830E-03 62 1.3350820E-04 
3 6.8361460E-02 33 1.0681480E-03 63 1.3350820E-04 
4 6.8361460E-02 34 1.0681480E-03 64 1.3350820E-04 
5 6.8361460E-02 35 1.0681480E-03 65 1.6688290E-05 
6 6.8361460E-02 36 1.0681480E-03 66 1.6688290E-05 
7 6.8361460E-02 37 1.0681480E-03 67 1.6688290E-05 
8 6.8361460E-02 38 1.0681480E-03 68 1.6688290E-05 
9 6.8361460E-02 39 1.0681480E-03 69 1.6688290E-05 
10 6.8361460E-02 40 1.0681480E-03 70 1.6688290E-05 
11 6.8361460E-02 41 1.0681480E-03 71 1.6688290E-05 
12 6.8361460E-02 42 1.0681480E-03 72 1.6688290E-05 
13 6.8361460E-02 43 1.0681480E-03 73 1.6688290E-05 
14 6.8361460E-02 44 1.0681480E-03 74 1.6688290E-05 
15 6.8361460E-02 45 1.0681480E-03 75 1.6688290E-05 
16 6.8361460E-02 46 1.0681480E-03 76 1.6688290E-05 
17 8.5451830E-03 47 1.0681480E-03 77 1.6688290E-05 
18 8.5451830E-03 48 1.0681480E-03 78 1.6688290E-05 
19 8.5451830E-03 49 1.3350820E-04 79 1.6688290E-05 
20 8.5451830E-03 50 1.3350820E-04 80 1.6688290E-05 
21 8.5451830E-03 51 1.3350820E-04   
22 8.5451830E-03 52 1.3350820E-04   
23 8.5451830E-03 53 1.3350820E-04   
24 8.5451830E-03 54 1.3350820E-04   
25 8.5451830E-03 55 1.3350820E-04   
26 8.5451830E-03 56 1.3350820E-04   
27 8.5451830E-03 57 1.3350820E-04   
28 8.5451830E-03 58 1.3350820E-04   
29 8.5451830E-03 59 1.3350820E-04   
30 8.5451830E-03 60 1.3350820E-04   
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2.5 Building an ideal 16-bit 1Ms/s Successive Approximation A/D converter 

The operation of a 16-bit differential SAR ADC, with the proposed DAC in Section 2.4.1 
implemented, is very similar to the 4-bit differential SAR ADC in Section 2.2, except for 3 
differences.  

In the 16-bit differential SAR ADC, we only use the first segment for sampling. In addition, 
during the bit cycling mode, we employed the randomization scheme discussed in Section 2.4.1 
to select the DAC weights in each segment. Finally, this ADC can resolve two input voltages 
within 1 LSB at the 16 bit level, where 1 LSB equals 76 uV.  

Figure 2.9 shows the basic DAC cell used in the simulation. The capacitor CH is the unit 
capacitor used in a particular segment. If CH is located in segment 1, it has the value of 1 pF. 
Otherwise, it has the value of 125 fF. The MOS switches M2 and M3 are used to sample the 
input voltages. The MOS switch M4 is used to turn on/off the common mode voltage Vcm and is 
used during the hold mode. The MOS switches M5 and M6 are used to turn on/off the positive 
reference Vrefp and the negative reference Vrefm respectively during the bit cycling mode.  In 
this DAC cell, every component is ideal. The MOS switches are replaced by the VerilogA ideal 
switches in Appendix A.  

 

Figure 2.9 Basic DAC cell unit 

CH 

M2 

M3 

M4 

M5 

M6 



24 

 

We connected 16 of these basic cells together to form one segment. They are labeled seg1-seg5 
in Figure 2.10.  

We used VerilogA to implement random number generators, and the SAR logic necessary to 
perform the sample, hold and bit cycling action. Based on the random number generated, the 
DAC switch selector selects the appropriate DAC switches to be used during the sample, hold 
and bit cycling action. Appendix A details all the cell hierarchy used in the design, and the 
VerilogA design of each module. 

A clock cycle of 40 ns is used in this simulation. For 1 conversion, we will use the first 200 ns to 
acquire the input voltage, and the remaining 800ns for bit cycling. We supplied an increasing 
ramp input at Vin1 ranges from 0V to 2.5V, while supplying a decreasing ramp input at Vin2 
ranges from 2.5V to 0V. 1000 conversions were made from this differential input, where the 
sampled voltages range from -2.5V to 2.495V, with an increasing differential step of 5mV.  

 

Fig. 2.10 Simulation of the 16-bit differential SAR converter 

Figure 2.11 shows that the top plate voltages of the DAC Vx and Vy during the hold mode are 
linearly proportional to the differential input voltage.  

 

Seg1                         Seg2                          Seg3                        Seg4                           Seg5 

Seg1                         Seg2                          Seg3                        Seg4                           Seg5 
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Figure 2.11: The relationship between the differential input and the top plate voltages 
Vx and Vy during the hold mode 
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Using the fitline function in Matlab, we found out that we can use (2.6) to predict the value of 
Vx and Vy during the hold mode.  

�� � 	0.4367486 · ����1 	 ���2� � 1.247626   (2.6a) 

�� � 0.4367486 · ����1 	 ���2� � 1.247626     (2.6b) 

Furthermore, using the information in Table 2.2, we can deduce the value of Vx and Vy during 
the bit cycling mode with (2.7).  

��� � ����� 	 �� � =� (2.7a) 

��� � ����� � �� � =�  (2.7b) 

where the weight in each cycle is recorded in Table 2.3.  

Although (2.6) is developed for the ideal case, we can modify it for the non-ideal case by 
changing the fitline parameters. Similarly, we can reuse (2.7), as long as we replaced the ideal 
weights with the non-ideal weights.  

 

Table 2.3 DAC weights for each cycle in the bit cycling mode                                                                 

i W 
1 0.54689168 
2 0.27344584 
3 0.13672292 
4 0.06836146 
5 0.06836146 
6 3.418082e-2 
7 1.709041e-2 
8 8.545205e-3 
9 8.545205e-3 
10 4.2726025e-3 
11 2.13630125e-3 
12 1.068150625e-3 
13 1.068150625e-3 
14 5.340753125e-4 
15 2.6703765625e-4 
16 1.33518828125e-4 
17 1.33518828125e-4 
18 6.67594140625e-5 
19 3.33797070313e-5 
20 1.66898535156e-5 
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The values of the redundant bits are highlighted in Table 2.3. The total voltage weights 
represented by the redundant bits are therefore equal to 78mV (≈1022 LSB). The implication is 
that as long as the total voltage error caused by the mismatch and noise is less than 78mV, we 
will always have enough weights to bring the output code to within the allowed output range.   

Figure 2.12 shows the change in top plate voltage Vx and Vy for one conversion, where the 
differential input is 2.5V.  

 

Figure 2.12 The waveform of Vx and Vy during one conversion 

Note that the initial value of Vx and Vy are approximately 2.339V and 0.1557 as predicted by 
(2.6). The 20 decisions from the simulation are -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -
1. Using (2.7), we found the value of Vx-Vy to be 3.25015e-05V. This corresponds to the final 
value Vx-Vy  in the simulation.  
 
Figure 2.13 shows the final value of Vx-Vy for all the 1000 conversions. Note that they always 
converged to within ± 1/2 LSB at the 16-bit level.  

Vx 

Vy 
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Figure 2.13 Vx-Vy at the end of the 1000 conversions 

In Figure 2.14, we also plotted the ADC error > against the differential input voltage range.  The 

ADC error >  is obtained by (2.8) and (2.9), where � is the differential output voltage.  

� � ∑�� @ =� (2.8) 

> �  � 	 ����1 	 ���2� – any systematic gain error  (2.9) 

Figure 2.14 shows that the error is always within A0.5 LSB at the 16 bit level, as expected.  
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Figure 2.14 The error between the differential input and differential output 

2.6 Summary 

In this chapter, the split ADC architecture and its benefits are reviewed, and an ideal 16-bit 
differential SAR converter is developed to be used with the split architecture. Simulation verifies 
that the ideal 16-bit differential SAR converter works as expected at the system level.  

The ideal 16-bit differential SAR converter serves as an important template for the development 
of the non-ideal Matlab ADC in Section 3.3. In addition, we can check whether the ADC design 
in Chapter 5 work, by comparing the design results with the simulation results in this chapter.  
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3 
Split SAR ADC Implementation 

 

3.1 Introduction  

This chapter starts by explaining how the split ADC architecture and the error correction 
algorithm work together to calibrate the SAR converter at a system level.  Section 3.3 explains 
how to simulate the whole system in Matlab behaviorally.  Section 3.4 describes the performance 
metrics used to measure the success of the self-calibrating algorithm in calibrating the SAR 
ADC. Finally, Section 3.5 shows Matlab simulation results for the whole system and Section 3.6 
summaries this chapter.  

3.2 System Implementation  

Figure 3.1 shows the system block diagram of the split SAR ADC implementation. The system 
consists of 2 main components, the mixed-signal IC and the external FPGA control. The mixed 
signal IC consists of the “split” SAR ADC and the internal SAR logic, while the external FPGA 
control consists of the error correction algorithm and digital logic necessary to communicate 
with the mixed signal IC.  

 

 

 

  



31 

 

V
re
fp

V
c
m

V
re
fm

 

Figure 3-1: System block diagram 

3.2.1  Foreground Operation  

The mixed signal IC contains two SAR ADCs and their digital controls.  The modified SAR 
converter and its theory of operation are described in details in Section 2.2.In Figure 3-1, the 
signal MCLK is used as a master clock signal for the ADC conversion. The signal RAND_Start 
is used to signal the random number generator to start generating random bases for the ADC. 
The signal SDIN transmits the random bases to the serial to parallel base decoder (S-> P 
decoding). When 5 bases are accumulated in the S-> P decoder, the PCLK signal is asserted. 
This signals the SAR logic to start the sample and hold action. The SAR logic serves as a mini 
state machine and controls the sample/hold and bit cycling action of the ADC. During the bit 
cycling mode, it also serves as a decoder to control how the capacitor switches in the DAC are 
used, depending on the comparator decision and the random bases received. At the end of the 
sample-and-hold action, the signal CNVST is asserted. This turns on the latched comparator, and 
starts the bit cycling action. Figure 3-2 shows how these signal changes during 1 conversion.  
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Figure 3-2 Timing diagram 

3.2.2  Background self-calibrating algorithm  

The external FPGA control is responsible for the following: For each conversion, the decisions 
accumulated (dkA and dkB) are converted to a sequence of number (�B �C  and  �B �D  ) by the 
decision decoder.  This sequence of number indicates how a particular capacitor in the DAC is 
used during the bit cycling mode. A positive number indicates we added its weight, a negative 
number indicate we subtracted its weight, and 0 indicate we did not use that particular capacitor 
at all. This new sequence of number is then multiplied by the estimated voltage weights =E�C and =E�D stored in the lookup table. They are then accumulated to produce the output code xA and 
xB.   

While xA and xB are averaged to produce the output code x, their difference ∆x is used in an 
error correction algorithm to estimate the errors for =E�C and =E�D in the L.U.T. One should note 
that the error correction algorithm operates continuously in the background, and does not 
interfere with the foreground conversion. When the new error estimates (>�̂C   and >�̂D) become 
ready, the weights in the L.U.T are simply updated by (3.1)  

 

   =E�C�G�H� � =E�C�+-
� 	 ��>�̂C   (3.1a) 

                                                   =I�D�G�H� � =E�D�+-
� 	 ��>�̂D (3.1b) 

The role of the LMS coefficient  �� is to control the speed of adaptation and the accuracy of the 
convergence [32, 33]. In general, a bigger �� helps the estimated weights converge to the true 
weights more quickly. However, it also makes the system more susceptible to noise. As a result, 
the system may overestimate the weights and there is a danger that the solution will diverge 
instead. A smaller �� helps averaging out the noise in the system and provides more accurate 

weight estimates. However, the tradeoff is that we need longer time for =E�C and =E�D to reach 
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their equilibrium.  �� is chosen to be a number divisible by 2. This is to simplify the digital 
hardware implementation.  

When the estimated errors >�̂C and >�̂D reach zero (on average), equilibrium is reached and the 

estimated weights =E�C and =E�D converge to their true values. As long as the estimates >�̂C and >�̂D 

change in successive small steps and point to the right direction, the weight estimates =E�C and =E�D will converge to their final steady states [8].  

3.3 System Behavioral simulation   

To reduce the cost and time for implementing the real system, we first want to make sure the 
system work .To do this, we first used Matlab to simulate the behavior of the mixed signal IC 
and the external FPGA control in Figure 3.1.  

To simulate the operation of the non-ideal 16bit, 1MS/s differential split SAR ADC in Matlab, 
we can implement the SAR algorithm as shown in Figure 2.2 for two separate MATLAB SAR 
ADCs. We can then modify (2.6) to predict the top plate voltages Vx and Vy during the hold 
mode, and modify (2.7) to predict the DAC top plate voltages during the bit cycling mode.  

To modify (2.6), we rerun the ideal 16bit SAR ADC Cadence simulation we developed in 
Section 2.5, with capacitor mismatch added to the Cadence simulation. 

As an example to show how this work, we assume there are only mismatch in the first DAC 
segment of ADCB, where  

C1 = 1.01p 
C2 = 1.02p 
C3 = 0.97p 
C4 = 1.03p 
C5 = 1.01p 
C6 = 0.98p 
C7 = 0.95p 
C8 = 0.96p 
C9 = 1.01p 
C10 = 0.99p 
C11 = 1.05p 
C12 = 0.98p 
C13 = 0.97p 
C14 = 1.04p 
C15 = 0.96p 
C16 = 1.02p 
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We rerun the simulation, and plotted the DAC voltage Vx and Vy at the end of the hold mode, 
against the differential input voltage. Figure 3.3 shows that their linear relationships remain the 
same as in Figure 2.11.  
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Figure 3.3: The relationship between the differential input and the top plate voltages Vx 
and Vy during the hold mode 
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Using linear fitlines for both graphs, we found that the mismatch does not affect the slope and 
the offset parameters in (2.6). Therefore, we can just use (2.6) to predict the top plate voltages 
during the hold mode.  

To model the top plate voltage during the bit cycling mode, we rerun the simulation in Section 
2.4.2 to find the mismatch weights, by changing the value of C1-C16 in the Cadence simulation.  

Table 3.1 shows the ideal voltage weight of each capacitor, and the new voltage weight after the 
mismatch is applied in segment 1. The DAC weight errors >�̂D, and the ratio of the mismatch 
weight to the ideal weight for segment 1 are also calculated. Similar Tables for segment2-5 can 
be found in Appendix B.   

Table 3.1 DAC weights in segment 1 

  Ideal With Mismatch  
Weight errors 

εiB 

Ratio of 
Mismatch/ 

Ideal  C Voltage weight 
1 6.8361460E-02 6.9234400E-02 8.7294000E-04 1.0127695 
2 6.8361460E-02 6.9919890E-02 1.5584300E-03 1.0227969 
3 6.8361460E-02 6.6492440E-02 -1.8690200E-03 0.9726597 
4 6.8361460E-02 7.0605380E-02 2.2439200E-03 1.0328243 
5 6.8361460E-02 6.9234400E-02 8.7294000E-04 1.0127695 
6 6.8361460E-02 6.7177930E-02 -1.1835300E-03 0.9826872 
7 6.8361460E-02 6.5121460E-02 -3.2400000E-03 0.9526049 
8 6.8361460E-02 6.5806950E-02 -2.5545100E-03 0.9626323 
9 6.8361460E-02 6.9234400E-02 8.7294000E-04 1.0127695 
10 6.8361460E-02 6.7863420E-02 -4.9804000E-04 0.9927146 
11 6.8361460E-02 7.1976350E-02 3.6148900E-03 1.0528791 
12 6.8361460E-02 6.7177930E-02 -1.1835300E-03 0.9826872 
13 6.8361460E-02 6.6492440E-02 -1.8690200E-03 0.9726597 
14 6.8361460E-02 7.1290860E-02 2.9294000E-03 1.0428516 
15 6.8361460E-02 6.5806950E-02 -2.5545100E-03 0.9626323 
16 6.8361460E-02 6.9919890E-02 1.5584300E-03 1.0227969 

 

By applying the weight errors to the Matlab ADC, we successfully simulated a non-ideal 16bit 
differential SAR converter with capacitor mismatches. We also added a 30uV rms noise during 
the hold mode and bit cycling mode in the Matlab ADC to simulate the kT/C noise in the real 
system.  

To implement the self-calibrating algorithm in Matlab, we implemented the error correction 
algorithm described in Chapter 4 to estimate the weight errors >�̂C   and >�̂D. For every 128 

conversions, we updated the DAC weights =E�C and =E�D with the LMS loop described in (3.1).  
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3.4 Performance Metrics  

3.4.1 Differential NonLinearity (DNL) 

 

Figure 3.4 Ideal ADC transfer function 

The output digital codes of an ideal ADC can be plotted against the analog input voltage as 
shown in Figure 3.4. For simplicity, we replace the ideal staircase transfer function of the ADC 
with a straight line.  In an ideal ADC, the spacing between the two digital output codes Di and 
Di+1 equals VLSB, where VLSB is the voltage corresponds to one Least Significant Bit (1 LSB), 
and it is the smallest voltage that a ADC can resolve [34]. 1 LSB is equal to    

1 JKL � �MND � ����O    (3.2) 

where �PB" is the full-scale analog input voltage, and N is the resolution of the ADC in bits. 

The presence of non-idealities in ADC makes the spacing between the two digital output codes 
either greater or less than 1 LSB. To measure the change in this decision spacing, we define the 
Differential NonLinearity(DNL) [34]. The DNL for a particular output code is defined as   

��QR�S � T�UV ��WXY Z 	 1  (3.3) 

where � equals to the value of the digital output Di.  
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Figure 3.5 A transfer function with a missing code  

If the digital output code Di never appears at the output, the analog decision point V i+1 = V i. 
From (3.3), then, the DNL for Di = -1. This scenario is known as missing code and it is 
illustrated in Figure 3.5. Note that from (3.3), a DNL of -1 is the worst case negative DNL an 
ADC can have [34].  

On the other hand, if the spacing between Di and Di+1 equals to 2 LSB or more, we have a 
scenario known as wide code. Since there is no limit as to how far Vi+1 can be from Vi, there is 
no limit in the positive DNL[34].  

3.4.2 Integral NonLinearity (INL) 

                              

Figure 3.6 A transfer function with large INL  

Figure 3.6 plots both the ideal and non-ideal ADC transfer function. The intergral NonLinearity 
(INL) is a measure of the difference between the actual output codes produced by the ADC and 
the ideal linear curve [34].  Figure 3.6 shows that the maximum INL occurs at the code Di. INL 
can be calculated from the cumulative sum of DNL, where  
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[4JR�S � ∑ ��QR0S�6\�    (3.4) 

Note that it is important to distinguish between DNL and INL. DNL measures how small an 
input voltage an ADC can resolve, while INL measures the absolute accuracy of an ADC.  While 
an ADC can resolve two input analog voltages to within 1 LSB at the 12 bit level, it may not be 
accurate to a 12-bit level. In other words, the DNL of a ADC can be smaller than its INL in LSB 
and vice versa [34].  

3.4.3  Characterizing the speed of convergence  

The best way to investigate the speed of the self-calibrating algorithm is to observe how the 
weight error and the average ADC error change with respect to the conversion index. The weight 
error is the absolute value of the second term of (3.1), and the average ADC error is the average 
of the difference between the ADC input and the ADC output from the two ADCs. It can be 
calculated by the second term of (4.17), where its origin will be explained in Section 4.3.2.  

 

   =E�C�G�H� � =E�C�+-
� 	 ��>�̂C   (3.1a) 

                                                  =I�D�G�H� � =E�D�+-
� 	 ��>�̂D  (3.1b) 

 

�] �  ∑
���Y^�Y_ ∑
���` ^�` � � ∑
���Y a�Y _ ∑
���` a�`�   (4.17) 

 

3.5 Simulation of the whole system 

The Matlab code for implementing the whole system in Figure 3.1 can be found in Appendix C. 
In this example, a �� of 213 is used. If the system operates correctly, we would expect the 
calibration parameters (DAC weights) converge to their correct values, and that the average 
ADC error will converge to less than 1 LSB. We would also expect to see improvement in the 
INL/DNL, after the ADC is calibrated. Simulation results show such is the case. Figure 3.7 
shows that >�̂D converge from its initial magnitude of 10e-4 V to 10e-7 V. Figure 3.8 shows that 
the average ADC error converges to less than 1 LSB in its steady state.  Lastly, Figure 3.9 shows 
that the self-calibrating algorithm is able to bring the INL/DNL down to ±0.5 LSB.  
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Figure 3-7: Convergence of the weight error of C1 

 

Figure 3-8: Convergence of the ADC error  
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Figure 3-9: INL/DNL improvement 
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3.6 Summary 

This chapter explains how the split ADC architecture work together with the self-calibrating 
algorithm to calibrate the ADC. Matlab is used to model the system behavior. Simulation results 
show that the self-calibrating algorithm works. In this example, it calibrates the weight within 
400,000 conversions, and improves the INL/DNL  of the ADC to within ±0.5 LSB.  
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4 
Error Correction Algorithm 

 

4.1 Introduction  

The details of the error correction algorithm used in the “spilt” ADC architecture are explored in 
this chapter. In Section 4.2, the basic Jacobi Iterative method will be reviewed. In Section 4.3, 
we developed our error correction algorithm based on the basic Jacobi Iterative method. Section 
4.4 shows how the error correction algorithm improves the INL/DNL and the frequency response 
of the calibrated ADC. It also explores how the choice of different calibration inputs and the 
adaptive parameter �� affect the speed and accuracy of the calibration. Finally, Section 4.5 
summarizes this chapter.  

4.2 Basic Jacobi Review 

The Jacobi iterative method is based on the Jacobi transformation method of matrix 
diagonalization. It solves a matrix equation on a matrix that has no zeros along its main diagonal 
[35].  

Suppose one want to solve a linear system 

K. B � � �b  cK�� K�� K�dK�� K�� K�dKd� Kd� Kdde c
B�B�Bde � c�����d

e  (4.1) 

where  B6 represents the unknown parameters we want to solve for,  �� represents observations 
from the system and K�f are the known coefficients that describe the relationship between the 

unknown parameters B6 and the individual observation ��of the system.  

As an example to show how the Jacobi Iterative method works, we show how the first unknown 
parameter B� can be found [8]. Rewriting the first row of the matrix in equation form gives  

K��B� � K��B� � K�dBd � �� (4.2) 
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From (4.2), we can see that B� can be easily solved, if B� and Bd are known. In the Jacobi 
Iterative method, however, we extract the new iteration for B� from the old iterative values of B� 
and Bd as in (4.3) 

B��G�H� � �NVV ��� 	 K��B��+-
� 	 K�dBd�+-
�)  (4.3) 

Generalizing equation (4.3), we can solve each unknown B6 for each observation i by  

B6�G�H� � �N�g ��� 	 hfi6K�fBf�+-
��  (4.4) 

where k in the index of the unknown parameter we want to solve for, and i and j are the row and 
column indices of the system matrix (4.1).  

The process is repeated until the unknown parameters B6 converge to sufficiently accurate 
values. 

In our system, the observation �� is the difference (∆x) between the two output codes xA and xB 
of the two ADCs. The unknown parameter B6 is the unknown DAC weight errors  >�̂C ,>�̂D, and 
the known coefficients are the decisions coming out from the two ADCs. The next section shows 
how we derive matrix equations for our system in the form of (4.1).  

4.3 Error correction algorithm 

4.3.1 Derivation of ∆x 

The output code of each side of the split ADC are accumulated from the product of �B �C,f,  �B �D,f , and the capacitor weight =EfC   and =EfD ,as shown in (4.5), where i is the conversion 

index, and j is the DAC weight indices in ADCA and ADCB.  

�]C� � ∑�B �C,f  · =EfC   (4.5a) 

�]D� � ∑�B �D,f  · =EfD  (4.5b) 

�B �C,f  and  �B �D,f   are the known coefficients indicating how the capacitors in the DAC array 

of ADCA and ADCB are used in each conversion.  We briefly explained them in Section 3.2.2. 
In this section, we provide a more in-depth explanation. Recall that in the ADC operation, we 
generate a random base for each segment so that we know which capacitor is responsible for 
making which bit of decision. For example, if the base number generated is 3 for segment 1, then 
capacitor 3-10 will be used for d1, capacitor 11-14 will be used for d2, capacitor 15-16 will be 
used for d3, capacitor 1 will be used for d4A and capacitor 2 will be left unused. Thus, if the 
random bases generated for segment 1-5 for ADCA in conversion 1 are 3, 5, 6, 7, 8 respectively, 
then  
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�B �C,��kl � RK1 K2 K3 ∑ K4 ∑ K5S   (4.6a) 

where S1 records the first 16 known coefficients and is equal to  

S1 = R�mC 0 �� �� �� �� �� �� �� �� �� �� �� �d  �dS (4.6b) 

Similarly,  

K2 � R�n �n  �oC  0 �mD �mD �mD �mD �mD �mD �mD �mD �k �k  �k  �k  S. (4.6c) 

Following the same rule,  

S3 = R�p �q  �q  ��lC 0  �oD �oD �oD �oD �oD �oD �oD �oD �p  �p  �p  S (4.6d) 

S4 =  R��� ���  ���  ��� ��dC  0 ��lD ��lD ��lD ��lD ��lD ��lD ��lD ��lD  ��� ���  S (4.6e) 

S5 = R��m ��m  ��m  ��k ��k  ��n 0 ��dD ��dD ��dD ��dD ��dD ��dD ��dD  ��dD ��m S.  (4.6f) 

Since it is unlikely that the typical mismatch in the individual capacitors in segment 4 and 
segment5 will have an impact on the output code, we only store the total capacitor weights for 
segment 4 and segment 5. Hence, we sum up the decisions in S4 and S5 in (4.6a) to indicate how 
the group weights are used.  

The estimates =EfC and =EfD are related to their true analog capacitor weights =fC and =fD by 

(4.7), where >fC and >fD are the fractional errors of =fC r�� =fD .  

=EfC � =fC � >fC      =EfD � =fD � >fD    (4.7) 

Substituting (4.7) into (4.5), we get 

�]C� � ∑�B �C,f  · �=fC � >fC�     (4.8a) 

�]D� � ∑�B �D,f  · �=fD � >fD�   (4.8b) 

Subtracting (4.8b) from (4.8a), we have 

∆�� � ∑�B �D,f =fD 	 ∑�B �C,f  =fC � ∑�B �D,f  >fD   	  ∑�B �C,f  >fC  (4.9) 

Since both ADCs are converting the same input code and =fC , =fD are the true analog capacitor 

weights, the first two terms must be equal (to within the quantization error)even if their decision 
paths are different.  As a result, they cancel each other, leaving behind the last two terms. 
Therefore,  

∆�� �  ∑�B �D,f  >fD   	 ∑�B �C,f  >fC  (4.10) 

Writing (4.10) in the form of (4.1) for 100 conversions, we have 
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tu
uu
uv
∆��∆��www∆��llxy

yy
yz �  { �B �D,�        �B �D,� | �B �D,kl        	�B �C,�     	 �B �C,�…     	�B �C,klw ~ w�B �llD,�    �B �llD,� |  �B �llD,kl       	�B �llC,� 	�B �llC,�…  	�B �llC,kl�

tu
uu
uu
uv
>�D>�Dw>klD>�C>�Cw>klCxy

yy
yy
yz
            

(4.11) 

Therefore, each DAC weight errors >6D in ADCB can be solved by  

>6D�G�H� � �
���Y,g �∆�� 	 h 	 �B �C,f>fC�+-
� 	 hfi6�B �D,f>fD�+-
��  (4.12a) 

Similarly, each DAC weight errors >6C in ADCA can be solved by  

>6C�G�H� � ��
���`,g �∆�� 	 h�B �D,f>fD�+-
� 	 hfi6 	 �B �C,f>fC�+-
��  (4.12b) 

 

4.3.2 Modified Jacobi iterative Method 

Solving the DAC weight errors >�C and >�Dwith the basic Jacobi Iterative method in (4.12) poses 
some difficulties.  

1.) To obtain 1 iteration of >�C and >�D, we need to do 99 multiplications, 99 subtractions, 
and 1 non-binary division. This is very time and memory consuming. In addition, non-
binary division is hard to implement in hardware.   

2.) The iteration stability depends on the value of the diagonal elements of (4.11).If the 
diagonal elements dominates, then the iteration in (4.12) is stable and is guaranteed to 
converge [7]. Since the position of the unused capacitor in each segment is random, there 
is always a chance that one of the diagonal elements  in (4.11) is zero. Therefore, the 
matrix will need to be manipulated to eliminate any zeros in the diagonal elements.  

3.) The accuracy of the iteration is very sensitive to the diagonal elements in (4.11). If the 
kT/C noise causes the diagonal elements to deviate from their supposed value, it can 

point the estimates of >6C�G�H� and >6D�G�H�in completely wrong directions. Therefore, 
we better solve an over-determined system with more conversions.  

To overcome the problems mentioned above, we modify the basic Jacobi Iterative method and 
form the new system matrix in (4.13), where  ��, �B �D and �B �C are accumulated from 128 
conversions: 
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∆��∆��www∆���pxy

yy
yz �  { �B �D,�        �B �D,� | �B �D,kl        	�B �C,�     	 �B �C,�…     	�B �C,klw ~ w�B ��pD,�    �B ��pD,� |  �B ��pD,kl       	�B ��pC,� 	�B ��pC,�…  	�B ��pC,kl�
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>�D>�Dw>klD>�C>�Cw>klCxy

yy
yy
yz
 

     ∆�                                                                       �B                                                                           ε 

(4.13) 

We then perform the following steps to solve for the unknown DAC weights >6C and >6D. 

1.) Assume you want to solve for > in row k. Go to column k of dec and check for any 
negative numbers. Negate them to get positive numbers. If you see a zero in any row p 
in column k of dec, change ∆� in row p to zero.  

2.) Add 128 rows of �� and dec together. This result in the matrix in (4.14), with i 
indicates the set of 128 conversions, and k indicates the column of dec manipulated in 
step 1 and the index of the error one want to solve for.  

3.) If you are solving for >6D, you can apply >6D � ∆��,6. Alternatively, if you are solving 

for >6C, you can apply >6C � ∆��,6_kl .  This is based on the simplification of (4.15), 

which will be explained below.  
4.) Repeat 1-3 until all 100 >6 are solved. Multiply results by �� and update (3.1).  
5.) Wait for the next 128 conversions and repeat the same procedure.  

�∆��,6� � RK�,�K�,�  … K�,6 …K�,qqK�,�llS ·

tu
uu
uu
uu
uv
>�D>�Dw>6Dw>klD>�C>�Cw>klCxy

yy
yy
yy
yz
    (4.14) 

From (4.14), we can solve each error >6C and >6D by (4.15), where i is the set of conversions, k is 
the error index we want to solve for, and j is the index of all error estimates.  

>6D�G�H� � �N�,g ����,6 	 hfi6K�,f>fD�+-
� 	 hK�,f_kl>fC�+-
�� (4.15a) 

>6C�G�H� � �N�,gU�� ����,6_kl 	 hfi6K�,f_kl>fC�+-
� 	 hK�,f>fD�+-
�� (4.15b) 
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The matrix manipulation in step (1) and (2) makes the error >6 we want to solve for strongly 
dependent on ���,6. Also, since there are random shufflings in the capacitors during the bit 

cycling mode, �B �C,f and �B �D,fvary in an independent fashion. Therefore, the known 

coefficients K�,6 of other errors vary in an independent fashion. This implies that the contribution 

of the summation terms in (4.15) to >6C and >6D  will be small compared to ���,6. Therefore, 

they can be safely ignored. The coefficient K�,6 and K�,6_klalways stay positive because of the 

matrix manipulation in step 1. Therefore, solving >6C and >6Dwith (4.16) is justified.  

>6D � ∆��,6 (4.16a) 

 >6C � ∆��,6_kl  (4.16b) 

The modified Jacobi method offers several advantages. Compared to the basic Jacobi Iterative 
method, it uses less memory resource because we do not need to store all the known coefficients K�,f. It is much easier for hardware implementation because only simple negations, additions and 

division by power of 2 will be implemented. In the worst case scenario, 128 negations, 128 
additions and 1 division by 2 are used. This is still much more resource and hardware friendly 
than implementing the basic Jacobi iterative method because there are no non-binary 
multiplications and divisions.  

The beauty of this modified Jacobi method is that, as long as >�C  and >�D move in the right 
directions in successive small steps, the large LMS loop will eventually drive >�C  and >�D to 
zero. Thus, there is no need to wait until they converge to sufficiently accurate values before we 
move on to use the next set of 128 conversions to estimate their new values. Inherently, then, the 
modified Jacobi method is resistant to random system errors such as the kT/C noise.   

Averaging (4.8a) and (4.8b), we obtain the average output code equation (4.17). From (4.17), the 
average output code x consists of the average output codes  �]C and �]D , and the average ADC 
errors. As the errors >6C and >6D converge to zero, ∆x in (4.10) converges to zero. The output 
code x also converge to its real value because the second term in (4.17) vanishes.  

 

�] �  ∑
���Y^�Y_ ∑
���` ^�` � � ∑
���Y a�Y _ ∑
���` a�`�    (4.17) 
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Figure 4.1: Summary of error correction algorithm 

Figure 4.1 summarizes the entire calibration procedure, with the equations necessary to use in 
that step provided. The right hand side of the figure shows events that happen every conversion, 
while the left hand side of the figure shows events that happen every 128 conversions in order to 

update the calibration parameters =E�C and =E�D.  

During each conversion, the input Vin1, Vin2 is sampled onto both ADCA and ADCB. The 
comparators  determine the decisions in 20 cycles according to (2.1c). Using (4.6a), the decisions 
dkA and dkB are then converted into �B �C and �B �D. Next, we obtained the output code �]C and �]D with (4.5). Finally, we averaged �]C and �]D by means of (4.17) to get the output code �].  
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For each conversion, we calculate the difference �� by (4.10). At the same time, we uses ��, �B �C and �B �D from 128 conversions in an error estimation matrix defined by (4.14) to find >�C  

and >�D. Finally, we update =E�C and =E�D in the L.U.T by applying (3.1). This calibration 
procedure happens in every 128 conversions. It operates in the background and is completely 
transparent to the foreground operations.   

4.4 Simulation results  

In this section, we intend to show how the proposed calibration procedure improves the linearity 
of the ADC. In addition, we will explore how the choice of µ and the type of inputs used for 
calibration affect the speed and accuracy of the calibration procedure. The frequency response of 
the output signal, before and after calibration, will also be compared.  

Matlab was used to simulate the system level operation and the error correction algorithm, as 
discussed in Section 3.3 and 3.5. Noise and capacitor mismatch errors were also added to the two 
ADCs to show how the error correction algorithm copes with these non-idealities.  The typical 
mismatch for the 1pF unit capacitor is ±0.1%, while that for the 125fF unit capacitor is ± 0.2%. 
These typical mismatch values are estimated based on [36]. In this experiment, random capacitor 
mismatches about ×100 that of the typical mismatch were added to the capacitors. In addition, 
kT/C Noise of 30uV rms were added to the system during the sampling and bit cycling mode.  

4.4.1 INL/DNL improvement 

As long as the total voltage error caused by the noise and mismatch is less than the sum of the 
redundant bit (1022 LSB), we will always have enough weights to correct for the error in the 
output code. Figure 4.2a shows the INL/DNL plot of the SAR ADC before the error correction 
algorithm is applied. Even the mismatch in the DAC is 100 times that of the typical mismatch, 
we are able to recover its INL/DNL to around 0.5 LSB, once the LMS loop has adapted and 
converged to its steady state (Figure 4.2b).  

Note that the noise and mismatch errors have a much stronger effect on the INLs than the DNLs. 
The Matlab code for this simulation can be found in Appendix D.  
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Figure 4.2: (A) INL/DNL plot of the split ADC before correction. (B) INL /DNL plot of 
the split ADC after correction. 
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 4.4.2 Adaptation for various input signals 

In our ADC architecture, a diversity of decision paths are allowed for one input. This is because 
we have used redundant bits in making decisions, and we chose unit capacitor randomly in the 
DAC segment to correspond to each bit decision. Therefore, calibration information can be 
extracted even for a DC input.  

We expect to see some variation in convergence speed for different inputs. This is because the 
dynamics of the matrix iteration depend on the matrix coefficients in (4.13) and (4.14) [37], and 
the matrix coefficients are in turn determined by the input signals.  

In [8], the “Split-ADC” architecture is applied to a 16 bit, 1 MS/s cyclic ADC. In [8], using a DC 
signal that is close to full scale for calibration poses a challenge. This is because the diversity of 
decision paths near the positive full range are limited. This in turn provides limited patterns for 
the matrix coefficients in the estimation matrix in [8] and significantly slows down the 
convergence.  

In this section, we repeated the experiment in [8]. A sine wave, a DC signal (0.1FS and 0.9 FS), 
and a random signal is used as the calibration input signal. Figure 4.3 shows that both the 
average ADC error and the weight error of all inputs converge to their steady state at around 
600,000 conversions, with a µ of 213. This contradicts with what we observe in [8].  

These results show the advantage of using a differential SAR structure with the calibration 
algorithm. Since the common voltage of the differential SAR structure is centered at 1.25V, a 
0.9FS DC signal will have one of its differential input sitting constantly at 2.375V, and the other 
differential input sitting constantly at 0.125V. Although the diversity of decision paths is limited 
at the input of 2.375V, there are many different decision paths for the input at 0.125V. Therefore, 
the restricted decision paths of one input are compensated by the many decision paths of the 
other input. This increases the dynamics for the matrix coefficients in (4.13) and (4.14). 
Therefore, using a full range DC input as a calibration signal no longer poses a challenge in the 
calibration algorithm.  

This experiment proves that the proposed calibration algorithm works for any signal, continuous 
or not. The calibration time remains relatively the same for all inputs. In our case, with a µ of 213, 
the calibration time is about 600,000 conversions. This is more than three orders of magnitude 
faster than the traditional statistical method, which requires 232 conversions for the calibration 
parameters to converge to their correct values. The Matlab code for this simulation can be found 
in Appendix D.  
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Figure 4.3: (A) The convergence of weight error for different inputs. (B) The 
convergence of ADC error for different inputs 
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4.4.3 LMS Parameter Selection 

As mentioned in Section 3.3.2, the role of the LMS coefficient  �� is to control the time constant 
of the calibration adaptation and is subject to a tradeoff between accuracy and speed of 
adaptation [32, 33]. In general, while a bigger �� help the estimated weights to converge to the 
true weights more quickly, it also makes the system more susceptible to noise. As a result, the 
system may overestimate the weights and there is a danger that the solution will diverge instead. 
A smaller �� helps averaging out the noise in the system and provides more accurate weight 

estimates. However, the tradeoff is that we need longer time for =E�C and =E�D to reach their 
equilibrium. �� is chosen to be a number divisible by 2. This is to simplify the digital hardware 
implementation.  

Figure 4.4 and Table 4.1 shows the effect of the choice of the LMS coefficient �� on the speed 
and accuracy of the convergence of the weight error and the ADC error.  

In our case, the weight error and the ADC error diverge when we use �� larger than 2-12. 
Therefore, using  �� = 2-12 is a good compromise as it provides fast convergence and a ADC 
error of less than 1 LSB in the steady state. Decreasing �� to 2-14 improves the accuracy of the 
weight estimate and the ADC error slightly, but it significantly slows down the speed of 
convergence.  Increasing �� = 2-16 offers no further advantage on speed and accuracy.  

In general, if the system noise is comparable to the mismatch error, one should use a smaller �� 
to filter out the noise. On the other hand, if the system noise is small compared to the mismatch, 
one should use a larger �� for faster convergence. The Matlab code for this simulation can be 
found in Appendix D.  

Table 4.1a Tradeoff between convergence and accuracy of weight estimates. 

 Convergence Speed 
(Conversions) 

Standard deviation σ 
(V) �� = 2-12 300,000 1.5407e-7 �� = 2-14 1,000,000 3.7498e-8 �� = 2-16 1,300,000 1.3564e-7 

 

Table 4.1b Tradeoff between convergence and accuracy of ADC error. 

 Convergence Speed 
(Conversions) 

Standard deviation σ 
(V) �� = 2-12 300,000 0.0157 �� = 2-14 1,000,000 0.0042 �� = 2-16 1,300,000 0.0141 
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Figure 4.4: (A) Convergence of weight error for different ��. (B) Convergence of ADC 
error for different �� 
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4.4.4 Frequency Response 

A 100 kHz sine wave (with 30uV rms noise) is applied to the un-calibrated and calibrated ADC. 
Figure 4.5 shows the frequency response of the ADC output.  Note that we scale the magnitude 
of the fundamental frequency so that it has a magnitude of 1.  

Without calibration, we see a third harmonic at the ADC output code.  The noise floor is also 
much larger than we expected (Fig. 4.5a).  

With calibration, the third harmonic at 300kHz is removed. Also, the noise floor is restored to 
the expected level of -120dB with respect to the fundamental frequency (Figure 4.5b).  

The Matlab code used for this simulation can be found in Appendix D.  

 

 

Figure 4.5: Frequency Response for (A) Un-calibrated ADC, and (B) Calibrated ADC 
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4.5 Summary  

In this chapter, the theory of the error correction algorithm is presented. Using Matlab behavioral 
simulation, we applied the error correction algorithm to the split SAR ADC system in Chapter 3. 
Simulation results show that the error correction algorithm works with any unknown input, and 
that the use of the adaptive parameter �� allows us to adjust the calibration parameters with the 
optimal speed and accuracy. The choice of ��  is sensitive to the relative magnitude between the 
system noise and the mismatch error. If the system noise is comparable to the mismatch error, 
one should use a smaller �� to filter out the noise. On the other hand, if the system noise is small 
compared to the mismatch, one should use a larger �� for faster convergence. 

In general, the error correction algorithm can calibrate the ADC within 105-106 conversions. It is 
at least 3 orders of magnitude faster than the traditional statistical method, which requires 232 
conversions. There are no limitations on mismatch errors we can correct for. As long as the total 
voltage error caused by the capacitor mismatches are less than the sum of the redundant bits 
(1022 LSB), the INL/DNL can be restored to ±0.5 LSB.  
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5 
Circuit Design 

 

5.1 Introduction 

This chapter starts by exploring non-idealities in the SAR converter and the SAR ADC IC.  In 
Section 5.3, we set up the design specifications for the required 16-bit, 1 MS/s differential SAR 
converter to be used with the “Split-ADC” architecture. The prototype design is developed in the 
0.25 um standard CMOS process. Section 5.4- 5.7 designed the DAC structure, the tapered 
buffer, the sample-and-hold circuit (S/H) and the DAC switches according to the specifications 
in Section 5.3. All these design are based on the ideal 16 bit 1 MS/s differential SAR ADC 
simulation we developed in Section 2.5. To prove that the prototype design work, we added all 
the non-idealities and design parameters in the ADC circuit in Section 5.8 and rerun the 
simulation. Finally, Section 5.9 concludes this chapter by discussing the design results.   

5.2 Non-idealities of the 16-bit differential SAR A/D converter 

5.2.1 Capacitor mismatch 

The accuracy of a SAR ADC is limited by the DAC, and the accuracy of the DAC is in turn 
limited by how well the capacitor ratios match to each other. In the 16 bit, 1 MS/s differential 
SAR converter we developed, we have related the capacitor mismatch to the weight error >f in 

Section 3.3, and we have related the weight error >f to the output code �]� in (4.8).  

For convenience, we rewrite (4.8) in (5.1), where the second term in (5.1) represents the voltage 
error in the output code due to the capacitor mismatch in the DAC.   

�]� � ∑�B �,f  · =f � ∑�B �,f � >f     (5.1) 

We did not intend to improve the capacitor mismatch in the DAC by laser trimming or other 
advanced layout techniques. It is because the split ADC self-calibrating algorithm can remove 
the error term in (5.1) in the digital domain, as we have already proven in Chapter 4.  
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5.2.2 Noise 

There are three main noise sources in the proposed 16-bit, 1 MS/s differential SAR converter. 
Theses noise sources are the kT/C noise from the DAC array, the inherent quantization noise of 
the ADC and noise from the comparator. Since the comparator is not the scope of this project, 
we will only analyze how the kT/C noise and the quantization noise affect the ADC.  

We use (5.2) to find the kT/C noise from the DAC, where ����,�,-� is the kT/C noise power 

from one split ADC, k is the Boltzmann constant 1.38x10-23 JK-1 and T is the room temperature 
in Kelvin [29].  

����,�,-� � �6*(     (5.2)  

Since the first segment of the proposed DAC in Section 2.4.1 contributed mainly to the kT/C, we 
put C = 16pF into (5.2). Therefore, the noise power ����,�,-�  of one DAC equals 16uV rms. 

For a series of uncorrelated noise powers, the variance of their sums equals to the sum of their 
variances. Therefore, their total noise power is calculated by (5.3).  

��� � ��� � ���  (5.3) 

Since we have two DACs in the split ADC architecture, the total noise power ���� due to the 

DAC is then √2 � 16�� P.� = 22uV.  

The quantization noise ������� [29] can be found by  

������� � WXY√��    (5.4) 

Substituting �MND=76.3uV into (5.4), we get ������� = 22uV.  

Therefore, the total noise power due to the kT/C noise and the quantization noise is 30uV.  

5.2.3 Charge injection error  

When a MOS transistor is on, it stores charges in its channel. When the MOS transistor is off, 
these unwanted charges are injected back into the circuit and cause errors in sensitive voltage 
nodes in the system. This is known as the charge injection error [29].  

 In this project, the charge injection error comes from sampling switches and the DAC switches. 
In this section, we will review the mechanisms and the effect of charge injection errors based on 
Figure 5.1 [34].   
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Figure 5.1: Charge injection error 

Charge injection error occurs mainly by two mechanisms. The dominate mechanism is due to the 
channel charge which outflows from the channel region of the transistor to the drain and source 
junctions [29, 34].  

The channel charge of a transistor that has zero VDS is given by  

�(� � 	��� 	 ��� 	 �*� � = @ J · 3+�   (5.5) 

Assuming the falling edge of the clock is very fast, the channel charge is split equally between 
the drain and the source. Thus, the error introduced at Vo, due to this mechanism, is given by: 

∆�� � ����(� � 	 �� ����O����^@M·(��(�   (5.6) 

The second source of error is the clock feed-through due to the capacitive divider formed by 3+M 
and 3� [34]. The error introduced at Vo due to this mechanism can be found by (5.7). Unless the 
effective voltage Veff is very small, this charge typically is not the dominant error [29]. 

∆�� � 	��� 	 �M� · (�W(�W_(�  (5.7) 

Considering these two sources of error, the total output voltage will be equal to  

�+ � ��� � ∆�� � ∆��   (5.8) 

Simplifying (5.8), we get  

�+ � ����1 	 �� � �+�  (5.9) 

where  
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� �  �� � ^@M·(��(�    (5.10) 

and                                     �+� � 	��� 	 �M� · (�W(�W_(� � ������^@M·(��(�     (5.11) 

Thus, the gain error  � is caused by a signal-dependent charge injection. The offset error �+�, on 
the other hand, is caused by both the signal independent charge injection and the clock feed-
through error [34].  

As explained in Figure 2.3, we turned essential MOS switches on and off during the sample, hold 
and bit cycling mode. Therefore, charge injection errors are continuously injected into the 
comparator node Vx and Vy, causing the comparator to make erroneous decisions as Vx-Vy 
approaches zero.  

Fortunately, the differential structure of the ADC removes the linear portion of the charge 
injection error effectively. The structure of the sample-and-hold circuit, and the DAC action, on 
the other hand, removes most of the non-linear charge injection error, as will be explained in 
Section 5.6.  

5.2.4 Harmonic distortion 

 

Figure 5.2: The impedance model of a simple sample-and-hold circuit 

We used the impedance model of the simple sample-and-hold circuit in Figure 5.2 to explain the 
effect of harmonic distortion on the sample and hold circuit. In an ideal S/H circuit, the sampled 
voltage should be equal to the input voltage during the sampling mode. However, the MOS 
switches used for sampling has a nonlinear ON resistance �+G which is given by (5.12) 

�+G � �� (��¡W �%��#��   (5.12) 

where �G is the mobility of the N-channel MOSFET, Cox is the MOSFET gate capacitance, W 
and L is the length and width of the MOSFET, Vgs is the gate to source voltage and Vth is the 
threshold voltage of the MOSFET.  
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Vgs is the difference between the input voltage Vin and the gate voltage Vg. As Vgs change, the 

ON resistance �+G is also constantly changing, causing the transfer function 
+�G  of the sample 

and hold circuit to be non-linear.  

We can use a pure sine wave to characterize the harmonic distortion of a sample-and-hold circuit 
[38]. If a pure sinusoid given as  

��G�¢� � �£sin �¢§�    (5.13) 

is applied to the input, then the output of the sample-and-hold circuit with distortion will be  

�+¨#�¢� � r��£ sin�¢§� � r��£ sin�2¢§� � |� rG�£ sin��¢§�   (5.14)  

Harmonic distortion (HD) for the i th harmonic can be defined as the ratio of the magnitude of 
the i th harmonic to the magnitude of the fundamental frequency [38]. For example, the second-
harmonic distortion would be given as  

©ª� � ,«,V  (5.15) 

The total harmonic distortion (THD) is defined as the square root of the ratio of the sum of all of 
the second and higher harmonics to the magnitude of the fundamental harmonic [38]. Therefore, 
THD can be expressed as  

1©ª �  R,««_,¬«_|_, «SV«,V    (5.16)  

In terms of dB, it can be expressed as  

1©ª �  10log �,««_,¬«_|_, «
,V« �    (5.17) 

Since we did not consider the non-linearity due to the sample-and-hold circuit in the error 
correction algorithm in Chapter 4, we need to make the THD in the S/H circuit an insignificant 
factor in contributing to the output code error �]�.  
5.2.5 Non-idealities in signal source and bond wire  

Any external inputs and outputs of the IC will be affected by non-idealities of the external signal 
sources and bond wires (external non-idealities). A pin used for an analog function tends to be 
more sensitive to these external non-idealities, because an analog operation is much more 
sensitive to signal degradation.  

In our case, most of the analog operation lies with the DAC and the comparator. Therefore, we 
want to design the circuit such that the signal pins used for the DAC and comparator operation is 
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robust to the signal degradation by the external non-idealities.  The most effective way to do this 
is to model these non-idealities and use them in the design process.  

 The external pin-outs used for the DAC and comparator operation are the differential inputs 
Vinp and  Vinm, and the voltage references Vrefp, Vcm and Vrefm.  The external non-idealities 
are modeled in Figure 5.3, where Rs and Cs are the voltage source’s resistance and capacitance 
respectively, and Rb, Cb and Lb are the resistances, capacitances and inductances of the bond 
wires respectively.  

         

Figure 5.3: Modeling external non-idealities 

Typically, Rs has a value ranges from 1mΩ-100mΩ, while Cs has a value of 10uF. Rb, Cb and 
Lb vary according to the bond wire length and diameter. The data in Appendix E provides the 
value of Rb, Cb and Lb at different bond wire length, at a fixed bond wire diameter of 1 mil, a 
die pad pitch at 75 um, a bond pad pitch at 160 um, and a mold compound dielectric constant of 
3.9. The following simulation will be based on the bond wire data provided in Appendix E.  

5.3 Design Specifications 

The 16-bit, 1 MS/s differential SAR converter should be able to resolve two voltages within A 
76.3uV.  It should have a linearity within ± 1 LSB, and a differential input voltage range of A2.5V. It should finish 1 conversion in 1 us.  

The kT/C noise from the DAC, the quantization noise of the ADC, and the comparator noise 
combined together should give a SNR no less than 90 dB.  

The sample-and-hold circuit used in the ADC should have an acquisition time of 200ns, charge 
injection error of much less than 1 LSB, and a total harmonic distortion of -96dB. 

The settling time of the DAC switches used during the bit cycling mode should be less than 15 
ns, while those used during the hold mode should have a settling time shorter than the duration of 
the hold mode cycle.  
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Table 5.1 summarizes the design specifications of the desired 16 bit 1 MS/s differential SAR 
ADC.  

Table 5.1 Design specifications 

System Requirement 

Resolution 76.3 uV 
Linearity ± 1 LSB 

Differential Input voltage 
range 

A2.5V 

Total conversion time 1 us 
SNR >=90 dB 

S/H circuit requirement 

Sample mode acquisition time 200ns 
Total Harmonic distortion in 

S/H 
>=96 dB 

Charge injection error << 1 LSB 

DAC switches 
requirement 

Settling time(Hold mode) < duration of hold mode  
Settling time( Bit cycling 

mode) 
<15 ns 

 

5.4 DAC design  

5.4.1 A modified DAC structure 

To design the DAC, we first estimate the minimum capacitance needed to achieve a SNR of 
90dB. The SNR is given by 

K4� � 20 � log ��G°&±²°&± )   (5.18) 

where ����  is the noise power of the total kT/C noise from both DAC arrays, and ������ is the 
average input power [29]. The differential input signal range of our ADC is ±2.5V, so the 
average input power ������ is 1.77V. Plugging in the required 90dB SNR into (5.18), we 
obtained ���� = 56 uV rms.  

The kT/C noise of one split DAC, according to (5.3), is equal to 40 uV rms. Using (5.2), we find 
the minimum capacitance required for one split DAC is 2.6pF.  

The smallest reasonable capacitor to be fabricated is 50fF. If we were to use the DAC structure 
in the basic 4-bit differential SAR converter in Section 2.2, we would need a total capacitance of 
3.2768nF for the 16-bit converter. While this satisfies the minimum capacitance requirement for 
SNR, this occupies too much die area. Therefore, we come up with the alternative DAC structure 
in Figure 2.7. Figure 5.3 repeats the structure. The total capacitance of this new DAC is around 
18pF. This satisfies the minimum capacitance requirement, while providing a reasonable layout 
area.  
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Figure 5.3 Modified DAC structure for the 16-bit differential SAR converter 

As mentioned in Section 2.4.1, this new structure allow for the insertion of redundant bits . The 
use of unit capacitors in each segment also permit random selection of capacitor weights during 
bit cycling. The coupling capacitors, Cc1, Cc2 and Cc3, are used as attenuating capacitors to 
save area, and they are chosen such that the total capacitance of the left segment is 8 times the 
total capacitance of the right segment.  

One should note the placement of the capacitors in the DAC. The top plate voltage Vt1 of the 
DAC is constantly varying during the bit cycling mode, it is therefore very susceptible to 
parasitic capacitances. Thus, the top plate of the unit capacitors are connected to Vt1,Vt2,Vt3 
and Vt4 to reduce the effect of parasitic capacitances.  

For the coupling capacitors, the bottom plate of Cc1 is connected to Vt1 because its parasitic 
capacitance can be easily removed by the DAC action. The bottom plate of Cc2 and Cc3 are 
connected away from Vt1, since the DAC weights in segment 4 and segment 5 hardly affect the 
top plate voltages of the DAC.   
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5.4.2 Deriving analytical expressions to find Cc1, Cc2 and Cc3 

To find the value of Cc1, Cc2 and Cc3, we first group the unit capacitors in each segment 
together. We then supply a voltage source in each segment and find out how they affect the top 
plate voltage ∆VDAC. We consider 5 cases.  

Case 1: The relationship between v1 and ∆VDAC 

 

                                                   Figure 5.4 Relating v1 and ∆VDAC 

∆�³C(� � (£�(£�_´� · µ1 (5.19) 

¶1 � 3·2 � 3 1 ¸ R3·2 � 3 2 ¸ ¹3·2 � 3·2 ¸ 3 3ºS (5.20) 

 

Case 2: The relationship between v2 and ∆VDAC 

 

                                                Figure 5.5 Relating v2 and ∆VDAC 

 

∆�³C(� � (£�(£�_(£�_´� · µ2    (5.21) 

¶2 � 3 1 ¸ R3·2 � 3 2 ¸ ¹3·2 � 3·2 ¸ 3 3ºS     (5.22) 
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Case 3: The relationship between v3 and ∆VDAC 

 

                                                Figure 5.6 Relating v3 and ∆VDAC 

 

∆�³C(d � (��(��_(£�_(£� · (£�(£�_´d_´d′′ · µ3   (5.23) 

¶3 � 3 2 ¸ R3·2 � 3·2 ¸ 3 3S   (5.24) 

¶3′′ � R3·1 � 3·2S ¸ 3 1  (5.25) 

 

Case 4: The relationship between v4 and ∆VDAC 

 

                                                Figure 5.7 Relating v4 and ∆VDAC 

 

∆�³C(m � (��(��_(£�_(£� · (��(��_´d′′_(£� · (£�(£�_´m_´m′′ @ µ4  (5.26) 

¶4 � 3 3 ¸ 3·2   (5.27) 

¶4′′ � 3 2 ¸ R3·2 � 3 1 ¸ ¹3·1 � 3·2ºS   (5.28) 
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Case 5: The relationship between v5 and ∆VDAC 

 

                                                Figure 5.8 Relating v5 and ∆VDAC 

 

∆�³C(k � (��(��_(£�_(£� · (��(��_´d′′_(£� · (�d(�d_´m′′_(£� � (£�(£�_´�′′ · µ5  (5.29) 

¶1′′ � 3 3 ¸ R3·2 � ¹3 2 ¸» 3·2 � �3·1 � 3·2� ¸ 3 1 bºS  (5.30) 

 

We know that  

∆¼`�«∆¼`�¬ � 8    (5.31) 

∆¼`�¬∆¼`�½ � 8  (5.32) 

∆¼`�½∆¼`�� � 8  (5.33) 

Therefore, substituting (5.21),(5.23),(5.26) and (5.29) into (5.31)-(5.33), we get  

3 1 � 325.89 "¿ 

3 2 � 321.4 "¿ 

3 3 � 285.71 "¿ 

The Matlab code for solving these equations can be found in Appendix F.  

5.5 Tapered buffer design 

Large capacitive loads are common in CMOS integrated circuits. These large loads occur both 
on chip, where high, localized fan-out and long global interconnect lines are common, and off-
chip, where highly capacitive chip-to-chip communication lines exist [39]. In order to drive these 
large capacitive loads at high speed, tapered buffers are needed.  
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Figure 5.9: Tapered Buffer 

 

Figure 5.9 shows the function of a tapered buffer. It is basically a series of inverters that are used 
to isolate the high impedance logic lines from the large capacitive load. It provides a high 
impedance input, so as to prevent the previous logic/registers stage from loading down. 
Meanwhile, it provides a low impedance output to drive the capacitive loads with sufficient 
currents [39].  

All our clocks and switch signals are driven by tapered buffers.  Note that we do not care about 
optimizing the performance of the tapered buffers, but only scaled them approximately to 
provide sufficient speeds and a reasonable rise time/ fall time for the logic signals. We will give 
an example of how the tapered buffers are used in the sample-and-hold ciruit. Figure 5.10 shows 
the bottom-plate sample-and-hold circuit we used in our ADC design. First, M1 is turned on, 
followed by M2 and M3 during the sampling mode. During the hold mode, M1 is first turned off, 
followed by M2 and M3. Figure 5.11 shows its waveform during the sample mode and the hold 
mode. The reason of why the waveforms φ1A, φ1 and φ1B follow this particular sequence will be 
explained in Section 5.6. For now, let’s focus on how we build a tapered buffer system for this 
sample-and-hold circuit.  
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Figure 5.10: The bottom plate sample-and-hold circuit 

 

                  

Figure 5.11:  Signal waveform controlling the sample-and-hold circuit 

 

M1 

M2 

M3 

CH 
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In this example, we know that the capacitive load of M3 is 4 times that of M2, and that the 
capacitive load of M2 is bigger than M1. Based on this information, we scale the tapered buffer 
such that the inverter in the next stage is 4 times bigger than the inverter in the previous stage. 
Figure 5.12 shows how the tapered buffer is built for the sample-and-hold circuit in Figure 5.10.  

 

Figure 5.12: Tapered buffer used in the sample-and-hold circuit 

Only one signal source φ1pre is needed to drive the system, where its rise time and fall time is set 
to be 1 ns. The width of the minimum inverter B1 is 0.36um, and the width of M1, M2 and M3 
are 233.3u, 933.1u and 113.6u respectively. We used 2 inverters (B1 and B2) to drive the 
smallest load M1. We used four inverters (B1-B4) to drive the larger load M2, and we used five 
inverters (B1-B5) to drive the largest capacitive load M3.  

Figure 5.13 shows the simulated waveforms φ1A, φ1 and φ1B during the sample and hold mode. 
Note that they each have a rise time and fall time of around 200-500ps. Also note that these 
waveforms follow the timing sequence in Figure 5.11, because of the inherent delay in each 
inverter.  

 

M1 

M2 

M3 

CH 
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Figure 5.13: (A) Waveform of φ1A, φ1 and φ1B during sample mode. (B) Waveform of φ1A, 
φ1 and φ1B during the hold mode.  
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5.6 Bottom-Plate Sample-and-Hold circuit  

5.6.1 Mechanism to remove charge injection error 

 

Figure 5.14: Bottom plate sample-and-hold circuit 

Figure 5.10 shows the bottom plate sample-and-hold circuit. It is repeated in Figure 5.14 for 
convenience. Compared to the basic top plate sample-and-hold circuit shown in Figure 5.1, this 
circuit can effectively remove the charge injection error.   

In Section 5.5, we briefly explained that during the sample mode, M1 is first turned on, followed 
by M2 and M3. Thus, the top plate of CH equals the common mode voltage Vcm, and the bottom 
plate of CH equals Vin.  

During the hold mode, M1 is first turned off, followed by M2 and M3. Therefore, CH holds the  
voltage Vin-Vcm, plus a voltage error due to the charge injection.  Nevertheless, the structure of 
the bottom plate sample-and-hold circuit and the special switching sequences reduce the charge 
injection error.   

When M1 is turned off, extra charge is injected into the node Vtp1, causing the voltage Vtp1 to 
change. The charge from M1, however, is signal independent. It can therefore be treated like a 
common mode error and removed by the differential SAR structure.  

M1 

M2 

M3 

CH 
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When M2 and M3 is turned off, their charges can only go through the low impedance Vin path, 
because M1 has turned off and make the path to the right a high impedance one. Therefore, the 
signal dependent charge injection error does not affect the voltage stored on CH.  

Of course, in reality, there are parasitic capacitances on both sides of CH. Thus, there would be 
some signal dependent charges, as well as signal independent charges reside on both Vtp1 and 
Vbp1.   

These charges can be further removed by the DAC action. Figure 5.15 shows the bottom-plate 
sample-and-hold circuit, together with the DAC switches used during the hold and bit cycling 
action. Vcm, Vrefm and Vrefp represent the common mode voltage, the negative voltage 
reference and the positive voltage reference of the ADC.  

 

Figure 5.15: The sample-and-hold circuit, together with the DAC switches for a unit 
capacitor  

M1 
M2 

M3 

CH 

M4 

M5 

M6 
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As explained in the ADC operation in Section 2.2, after we turned off the sampling switches M1, 
M2 and M3, we turn on M4 during the hold mode. Thus, the non-linear charge from Vbp1 and 
Vtp1 can escape through the low impedance path Vcm. During the subsequent bit-cycling 
operation, either M5 or M6 is turned on in each unit capacitor cell. This form a low impedance 
path Vrefp or Vrefm that will further remove the non-linear charge reside on Vtp. Thus, the top 
plate Vtp is forced to return to the common mode voltage Vcm by the DAC action eventually.  

5.6.2 Bottom-Plate Sample-and-Hold circuit Design 

To design a bottom plate sample-and-hold circuit that meets the charge injection specification in 
Table 5.1, we need to reduce the size of M1, M2 and M3 such that the nonlinear charge reside on 
the top plate does not affect the outcomes of the comparisons during the bit cycling mode.  

The harmonic distortion and acquisition time requirement, however, places contradictive 
requirement on the size of M1, M2 and M3. The combinational resistance and capacitance of 
M1, M2 and M3 has to be small enough to meet the 200ns acquisition time requirement. On the 
other hand, the non-linear resistances of M2 and M3 have to be small enough to meet the -96dB 
harmonic distortion requirement. This means we should increase the size of M1, M2 and M3.  

From preliminary design results, we found that the harmonic distortion is a limiting factor of the 
sampling switch sizes, because an acquisition time of 200 ns can be easily obtained by adjusting 
the value of a band-limiting resistor r, and the charge injection error requirement can be easily 
satisfied as long as the MOS switches are reasonably sized. Therefore, we first determine the 
sampling switches’ sizes based on the harmonic distortion requirement.  

Figure 5.16 shows the sample-and-hold circuit formed by one unit capacitor cell. We will use 
this as a first approximation to find out the value of M1, M2 and M3. This cell is from segment 
one and has a CH value of 1 pF. We added the tapered buffer, the DAC switches, the external 
non-idealities, the parasitic capacitances on both sides of CH, and the band-limiting resistor r to 
the circuit to better approximate the harmonic distortion.  We supplied a differential sine input 
that has magnitude of ±2.5V and a frequency of 500 kHz.  We then characterized the total 
harmonic distortion of the sampled differential input voltage (Vbp1-Vtp1)-(Vbp2-Vtp2) with 
(5.17), where Vbp2 and Vtp2 is the top plate and bottom plate voltage of CH of the other 
differential half. Appendix G shows the Matlab code used to find the harmonic distortion from 
the simulated data.  
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Figure 5.16 Harmonic distortion of one DAC cell  

We first allocate a fixed width of 10 um to M1, M2 and M3 respectively. Table 5.2 shows that as 
we allocate more widths to M2 and M3, the harmonic distortion improve significantly. The size 
of M2 and M3 are therefore the limiting factor of harmonic distortion.  

Table 5.2 Harmonic distortion VS switch sizes of M1, M2 and M3 

 

Tgate Top Switch Total 
Area 

THD 
NMOS(um) PMOS(um) NMOS(um) 

M2 M3 M1 (um^2) (dB) 
W 0.36 1.44 8.2 2.4 -58.63270 
W 0.54 2.16 7.3 2.4 -61.79200 
W 0.81 3.24 5.95 2.4 -65.04580 
W 1.215 4.86 3.925 2.4 -68.33010 
W 1.82250 7.29 0.8875 2.4 -71.36940 

 

 

M1 
M2 

M3 

CH 

Vtp1 Vbp1 

M4 

M5 

M6 

Vrefm 

Vcm 

Vrefp 

r 



77 

 

Knowing that the size of M2 and M3 are the limiting factor of harmonic distortion in the sample-
and-hold circuit, we then increase the area of M2 and M3 until a total harmonic distortion of -96 
dB is reached. Table 5.3 shows that we need to choose M2 = 233.28um and M3 = 933.12um to 
achieve a total harmonic distortion of -96 dB. We may need to reduce the size of M1 for the 
charge injection error reason.  

Table 5.3 Increasing M1, M2 and M3 to meet the harmonic distortion requirement 

  

Tgate Top Switch Total 
Area THD 

NMOS(um) PMOS(um) NMOS(um) 
M2 M3 M1 (um^2) (dB) 

W 1.82250 7.29 0.8875 2.4 -71.36940 
W 3.645 14.58 1.775 4.8 -77.01000 
W 7.29 29.16 3.55 9.6 -82.28450 
W 14.58 58.32 7.1 19.2 -86.97810 
W 29.16 116.64 14.2 38.4 -90.81330 
W 58.32 233.28 28.4 76.8 -93.64570 
W 116.64 466.56 56.8 153.6 -95.45720 
W 233.28 933.12 113.6 307.2 -96.51760 
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5.7 Designing the DAC switches  

 

Figure 5.17 DAC cell in segment 1 
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Figure 5.18 DAC cell in segment 2-5 
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We replaced the ideal DAC cells in the ideal 16-bit, 1 MS/s differential SAR ADC simulation we 
developed in Section 2.5, with the DAC cells in Figure 5.17 and Figure 5.18. The DAC cell used 
in segment 1 are shown in Figure 5.17, while the DAC cell used in segment 2-5 are shown in 
Figure 5.18. From now on, we will call the DAC switches used in segment 1 M4, M5 and M6, 
and the DAC switches used in segment 2-5 M4A, M5A and M6A. M4/M4A are used during the 
hold mode, and M5/M5A, M6/M6A are used during the bit cycling mode.  

 

 

Figure 5.19 The changes in DAC top plate voltages Vx and Vy during one conversion 

Figure 2.17 shows the waveform of the DAC top plate voltage Vx and Vy during 1 conversion. 
We repeated it in Figure 5.19 for convenience. Note that ∆V decreases in each cycle in a binary 
fashion. Since settling time increases with ∆V, it is most stringent to meet the settling time 
requirement during the hold mode and the first bit cycling mode.  

Based on this observation, we know that as long as we sized M4, M5 and M6 such that it meets 
the settling time requirement during the hold mode and the first bit cycling mode, we can be 
assured that the settling requirement is met for the rest of the conversion.  Since CH is segment 2-
5 is 8 times smaller than the CH in segment1, we can automatically size M4A, M5A and M6A 
such that they are 1/8 of M4, M5 and M6.  

The settling time of the DAC switches are strongly affected by the LC oscillation of the bond 
wires. However, we can use the resistances of the DAC switches M4, M5 and M6 to damp out 
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M5 on 
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these oscillations. On the other hand, the resistances of M4, M5 and M6 should not be too big, 
because the RC time constant needs to be small enough such that the DAC top plate voltage (Vx 
and Vy) can reach the next steady state within the duration of the hold mode cycle, and within 15 
ns during the bit cycling mode.  

Figure 5.20 shows that the effect on the DAC top plate voltages if M4, M5 and M6 are too big. 
Note that that the LC oscillations affect the comparator decisions during the bit cycling mode.   

 

Figure 5.20 LC oscillations from bond wire affecting the DAC action  
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Figure 5.21 shows the effect on the DAC voltages if we choose DAC switches that are too small. 
Note that the voltage do not have enough time to reach its steady state due to the big RC time 
constant.  

 

Figure 5.21 RC time constant formed from the bond wire and the DAC switches affecting 
the DAC action 

We need to optimize the size of M4, M5 and M6 to reduce LC oscillation and the RC time 
constant. Based on the 1mm bond wire data in Appendix E, we optimized the size of M4, M5 
and M6 to be 5um, 5um and 20um respectively, giving a settling time in the hold mode to be 
around 21 ns, and a settling time during the bit cycling action to be around 8.5us.  

We also investigate how the length of the bond wire affect the settling time during the hold mode 
and bit cycling mode, based on the bond wire data in Appendix E. Table 5.4 shows that the 
settling time during the bit cycling mode changes within A2ns, as the bond wire length increases 
from 1 mm to 4 mm. The settling time of the hold mode, however, change as much as A15ns as 
the bond wire length increases. These results makes sense, as three switches M2, M3 and M4 
that are sensitive to bond wire inductances are switched during the hold mode. On the other 
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hand, only one DAC switch which is sensitive to bond wire inductance are switched during the 
bit cycling mode.  

The results in Table 5.4 show that we should restrict the bond wire length to 1mm, so that the 
voltage during the hold mode have enough time to settle within 40 ns(the hold mode duration). If 
this is not possible, we should allocate more time for the hold mode and the MSB decision 
making, and allocate less time for the LSB decision making within the 1us conversion.  

Table 5.4 The effect of bond wire length on settling time ts 

Bond Wire length 
ts(hold mode) 

(ns) 

ts for turning on Vm 
(1st bit cycling) 

(ns) 

ts for turning on Vp 
(1st bit cycling) 

(ns) 
1mm 20.7 8.8 8.2 
2mm 38.9 10.2 10.0 
3mm 45.5 9.8 9.8 
4mm 41.0 9.7 9.7 

 

5.8 Putting everything together 

Using the results from Section 5.4 - Section 5.7, we added the tapered buffer, external non-
idealities, CH parasitics, and the band-limiting resistor r into the ADC simulation shown in 
Figure 2.10 and Section 2.5.  

We found that the harmonic distortion of the sample-and-hold circuit improves, when the 
sampling DAC cell in Figure 5.17 are connected to others. As a result, we can reduce M2, M3 to 
116.64u and 466.56u. Due to the charge injection error reason, we need to reduce M1 to 56.8u. 
These dimensions give a total harmonic distortion of -96 dB.  Reducing M1, M2 and M3 also 
helps to reduce the LC oscillation during DAC settling.  

Due to process variation, the acquisition time may change. Therefore, we want to choose a band-
limiting resistor r such that it would give an acquisition time smaller than 200 ns, but still within 
the same order of magnitude. We chose r = 300 Ω. This gives an acquisition time half of what is 
required. As a result, the bandwidth and the system noise doubles. This is the preferred tradeoff, 
however, as the speed requirement is more stringent than the noise requirement in our prototype 
ADC. Table 5.5 shows the effect of the band-limiting resistor r on the acquisition time. 
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Table 5.5 The effect of band-limiting resistor r on acquisition time 

Band-limiting 
resistor 

r Ω 

Acquisition time 
(ns) 

0 89.8 
100 90.7 
300 97.1 
500 117.9 
700 153.4 
900 193.7 

 

Figure 5.22 shows that the residual Vy-Vx is within 1 LSB at the 16-bit level. This shows that 
the ADC can resolve two voltages at a 16-bit level, and that the charge injection error is 
effectively removed.  Figure 5.23 shows that the ADC error, however, is within 1 LSB at the 15-
bit level.  Therefore, the ADC only has 15-bit accuracy. This 1 bit reduction in accuracy is due to 
the top plate parasitic of the unit capacitor and the bond wire parasitic. While we can reduce the 
effects of bond wire by re-allocating the clock cycles used in the conversion and using shorter 
bond wires, we cannot do anything about the top plate parasitic of the unit capacitor, except 
trying to do a good layout to minimize it. 

 



85 

 

 

Figure 5.22 Residual error  

 

Figure 5.23 ADC error  
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Table 5.6 summarizes the design parameters we used for the 16 bit, 1 MS/s differential SAR 
converter to reach the specifications in Section 5.3.  

Table 5.6 Design parameters used in the 1 MS/s 16-b differential SAR converter design 

Sampling switches 
M1 56.8 um 
M2 116.64 um 
M3 466.56 um 

DAC switches 

M4 5um 
M4A 0.625 um 
M5 5 um 

M5A 0.625 um 
M6 20 um 

M6A 2.5 um 

Voltage source parasitics 
Rs 1 mΩ 
Cs 10 um 

Bond wire parasitics 
Rb 125 mΩ-525 mΩ 
Cb 0.08 pF -0.3 pF 
Lb 0.6 nH-4 nH 

Min. Width inverter in 
tapered buffer 

Inv_Width 0.36um 

Band-limiting resistor r r 300 Ω 
1pF CH top plate parasitics CT1 10 fF 

1pF CH bottom plate 
parasitics 

CB1 100 fF 

125 fF CH top plate parasitics CT2 1.25 fF 
125 fF CH bottom plate 

parasitics 
CB2 12.5 fF 

 

5.9 Summary 

In this chapter, we successfully designed the DAC, the sample-and-hold circuit, and the DAC 
switches for the ADC. Sizing the sampling switches M1, M2 and M3 to be 56.8um, 116.64um 
and 466.46um gives a sample-and-hold circuit that has a harmonic distortion of -96dB and 
negligible charge injection error. Choosing the DAC switches M4, M5 and M6 to be 5um, 5um 
and 20um minimize the LC oscillation, as well as the RC time constant resulted from the DAC 
switches and bond wire parasitics. With the top plate parasitic in the unit capacitor, the designed 
ADC achieves 16 bit resolution but only 15 but accuracy. Therefore, one needs to be careful in 
reducing the top plate parasitic during layout.  
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6 
Conclusion 

6.1 Summary 

This work uses Matlab to verify that conceptually, the “split-ADC” architecture developed in 
[7,8] can be applied to the SAR converter, even though there are much more parameters to 
calibrate for in the SAR ADC.  

An error correction algorithm is developed for the split SAR ADC architecture. Simulation 
results show that the calibration algorithm effectively remove the ADC errors due to noise and 
capacitor mismatch in the digital domain. As long as the total voltage error caused by the 
capacitor mismatches and noise are less than the sum of redundant bits (1022 LSB), the error 
correction algorithm can restore the INL/ DNL to within  ±0.5 LSB.  

The error correction algorithm works for any unknown input signal, whether it is continuous or 
not. The calibration time remains relatively the same for all inputs. However, using a DC signal 
for calibration gives more steady state weight error and ADC error.  

The use of the adaptive parameter µe allow us to adjust the DAC weights with the optimal speed 
and accuracy. If the system noise is comparable to the mismatch error, one should use a smaller 
µe to filter out the noise. If system noise is small compared to the mismatch, one should use a 
larger µe for faster convergence.  

The error correction algorithm can calibrate the ADC within 105-106 conversions. It is at least 3 
orders of magnitude faster than the traditional statistical method, which requires 232 conversions.  
In addition, frequency response of the calibrated ADC improves.  

In applying the error correction algorithm, we also developed an IC design for a 16 bit, 1 MS/s 
differential SAR converter. Thus far, we have finished the design work on the sample-and-hold 
circuit and the DAC structure of the ADC. Although the ADC can resolve two input voltages 
within 1 LSB at the 16 bit level, simulation results show that the top plate parasitics and the bond 
wire parasitic reduce the accuracy of the ADC to 15 bit.   
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6.2 Future Work 

With the feasibility of the “Split-SAR” architecture verified, the next step is to build the real 
system in Figure 3-1. On the mixed signal IC side, we have to develop the comparator design 
and the SAR logic necessary to communicate with the FPGA control. On the FPGA control side, 
we have implemented the interface necessary to communicate with the mixed signal IC, and we 
have to work on implementing the error correction algorithm in the FPGA.  
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Appendix A  

Simulating an ideal 16-bit 1 MS/s differential SAR converter in Cadence 

Symbol for Segment X 

 

Inside Segment X 

 

 

Cell Y 
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Inside Cell Y 
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Symbol for DAC switch selector 

 
 
VerilogA Code for DAC switch selector 

// VerilogA for mylib, multiplexer, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module multiplexer_040608(num,svrefpb1,svrefpb2,svrefpb3,svrefpb4,svcm1, 
svcm2,svcm3,svcm4,svrefm1,svrefm2,svrefm3,svrefm4, 
svrefpb_out,svcm_out,svrefm_out,last); 
 
input [1:16] num; 
input svrefpb1,svrefpb2,svrefpb3,svrefpb4; 
input svcm1,svcm2,svcm3,svcm4; 
input svrefm1,svrefm2,svrefm3,svrefm4,last; 
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output [1:16] svrefpb_out,svcm_out,svrefm_out; 
 
electrical [1:16] num; 
electrical svrefpb1,svrefpb2,svrefpb3,svrefpb4; 
electrical svcm1,svcm2,svcm3,svcm4; 
electrical svrefm1,svrefm2,svrefm3,svrefm4,last; 
electrical [1:16] svrefpb_out,svcm_out,svrefm_out; 
 
integer NUM[1:16]; 
integer i; 
real SVREFPB1, SVREFPB2, SVREFPB3, SVREFPB4; 
real SVCM1, SVCM2, SVCM3, SVCM4; 
real SVREFM1, SVREFM2, SVREFM3, SVREFM4, LAST; 
real SVREFPB_OUT[1:16], SVCM_OUT[1:16], SVREFM_OUT[1:16]; 
 
analog begin 
       
  NUM[1] = V(num[1]); 
  NUM[2] = V(num[2]); 
  NUM[3] = V(num[3]); 
  NUM[4] = V(num[4]); 
  NUM[5] = V(num[5]); 
  NUM[6] = V(num[6]); 
  NUM[7] = V(num[7]); 
  NUM[8] = V(num[8]); 
  NUM[9] = V(num[9]); 
  NUM[10] = V(num[10]); 
  NUM[11] = V(num[11]); 
  NUM[12] = V(num[12]); 
  NUM[13] = V(num[13]); 
  NUM[14] = V(num[14]); 
  NUM[15] = V(num[15]); 
  NUM[16] = V(num[16]); 
   
  SVREFPB1 = V(svrefpb1); 
  SVREFPB2 = V(svrefpb2); 
  SVREFPB3 = V(svrefpb3); 
  SVREFPB4 = V(svrefpb4); 
   
  SVCM1 = V(svcm1); 
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  SVCM2 = V(svcm2); 
  SVCM3 = V(svcm3); 
  SVCM4 = V(svcm4); 
   
  SVREFM1 = V(svrefm1); 
  SVREFM2 = V(svrefm2); 
  SVREFM3 = V(svrefm3); 
  SVREFM4 = V(svrefm4); 
   
  LAST = V(last); 
  
  
    for (i = 1; i <17; i = i+1) begin 
     case(1) 
       (NUM[i] >=1) && (NUM[i] <= 8):begin 
                               SVREFPB_OUT[i] = SVREFPB1; 
          SVCM_OUT[i] = SVCM1; 
          SVREFM_OUT[i] = SVREFM1;                               
                               end 
           
       (NUM[i]>=9) && (NUM[i] <=12):begin 
                               SVREFPB_OUT[i] = SVREFPB2; 
          SVCM_OUT[i] = SVCM2; 
          SVREFM_OUT[i] = SVREFM2;                               
                               end 
       (NUM[i] ==13) || (NUM[i] == 14):begin 
                               SVREFPB_OUT[i] = SVREFPB3; 
          SVCM_OUT[i] = SVCM3; 
          SVREFM_OUT[i] = SVREFM3;                               
                               end 
       NUM[i] == 15:begin 
                 SVREFPB_OUT[i] = SVREFPB4; 
          SVCM_OUT[i] = SVCM4; 
          SVREFM_OUT[i] = SVREFM4;                                 
                               end 
       NUM[i] ==16: begin                
                               SVREFPB_OUT[i] = 2.5; 
          SVCM_OUT[i] = LAST; 
          SVREFM_OUT[i] = 0;                                
                               end          
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      endcase 
      end  
   
     
  V(svrefpb_out[1]) <+ SVREFPB_OUT[1]; 
  V(svrefpb_out[2]) <+ SVREFPB_OUT[2]; 
  V(svrefpb_out[3]) <+ SVREFPB_OUT[3]; 
  V(svrefpb_out[4]) <+ SVREFPB_OUT[4]; 
  V(svrefpb_out[5]) <+ SVREFPB_OUT[5]; 
  V(svrefpb_out[6]) <+ SVREFPB_OUT[6]; 
  V(svrefpb_out[7]) <+ SVREFPB_OUT[7]; 
  V(svrefpb_out[8]) <+ SVREFPB_OUT[8]; 
  V(svrefpb_out[9]) <+ SVREFPB_OUT[9]; 
  V(svrefpb_out[10]) <+ SVREFPB_OUT[10]; 
  V(svrefpb_out[11]) <+ SVREFPB_OUT[11]; 
  V(svrefpb_out[12]) <+ SVREFPB_OUT[12]; 
  V(svrefpb_out[13]) <+ SVREFPB_OUT[13]; 
  V(svrefpb_out[14]) <+ SVREFPB_OUT[14]; 
  V(svrefpb_out[15]) <+ SVREFPB_OUT[15]; 
  V(svrefpb_out[16]) <+ SVREFPB_OUT[16]; 
     
  V(svcm_out[1]) <+ SVCM_OUT[1]; 
  V(svcm_out[2]) <+ SVCM_OUT[2]; 
  V(svcm_out[3]) <+ SVCM_OUT[3]; 
  V(svcm_out[4]) <+ SVCM_OUT[4]; 
  V(svcm_out[5]) <+ SVCM_OUT[5]; 
  V(svcm_out[6]) <+ SVCM_OUT[6]; 
  V(svcm_out[7]) <+ SVCM_OUT[7]; 
  V(svcm_out[8]) <+ SVCM_OUT[8]; 
  V(svcm_out[9]) <+ SVCM_OUT[9]; 
  V(svcm_out[10]) <+ SVCM_OUT[10]; 
  V(svcm_out[11]) <+ SVCM_OUT[11]; 
  V(svcm_out[12]) <+ SVCM_OUT[12]; 
  V(svcm_out[13]) <+ SVCM_OUT[13]; 
  V(svcm_out[14]) <+ SVCM_OUT[14]; 
  V(svcm_out[15]) <+ SVCM_OUT[15]; 
  V(svcm_out[16]) <+ SVCM_OUT[16]; 
 
  V(svrefm_out[1]) <+ SVREFM_OUT[1]; 
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  V(svrefm_out[2]) <+ SVREFM_OUT[2]; 
  V(svrefm_out[3]) <+ SVREFM_OUT[3]; 
  V(svrefm_out[4]) <+ SVREFM_OUT[4]; 
  V(svrefm_out[5]) <+ SVREFM_OUT[5]; 
  V(svrefm_out[6]) <+ SVREFM_OUT[6]; 
  V(svrefm_out[7]) <+ SVREFM_OUT[7]; 
  V(svrefm_out[8]) <+ SVREFM_OUT[8]; 
  V(svrefm_out[9]) <+ SVREFM_OUT[9]; 
  V(svrefm_out[10]) <+ SVREFM_OUT[10]; 
  V(svrefm_out[11]) <+ SVREFM_OUT[11]; 
  V(svrefm_out[12]) <+ SVREFM_OUT[12]; 
  V(svrefm_out[13]) <+ SVREFM_OUT[13]; 
  V(svrefm_out[14]) <+ SVREFM_OUT[14]; 
  V(svrefm_out[15]) <+ SVREFM_OUT[15]; 
  V(svrefm_out[16]) <+ SVREFM_OUT[16]; 
 
end // analog event end 
 
endmodule 
 
Symbol for SAR logic block  
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VerilogA Code  for SAR logic block  

// VerilogA for mylib, charge_injection_error, veriloga   
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module R040608_16_bit_ADC_block_A(clk, 
Vtp1,Vtp2,phi_1A,phi_1,bz,bp,bm,num,input1,input2,last); 
 
input clk, Vtp1,Vtp2,input1,input2; 
output phi_1A,phi_1,last;  
output [1:20] bz,bp,bm; 
output [1:80] num; 
 
electrical clk, Vtp1,Vtp2,phi_1A,phi_1,input1,input2,last; 
electrical [1:20] bz,bp,bm; 
electrical [1:80] num; 
 
integer fs1A,fs2A,fs3A,fs4A,fs5A,fs6A,fs7A,PHI_1A, 
BZ[1:20],BP[1:20],BM[1:20],D[1:20],i,next_state, bit,LAST; 
integer seed1,seed2,seed3,seed4,seed5,x,NUM[1:80]; 
real  v1,v2,vin1,vin2,tcheck1,tcheck2,delay; 
 
analog begin 
  @(initial_step) begin 
     fs1A=$fopen( "file1A.txt"); 
     fs2A=$fopen("file2A.txt"); 
     fs3A=$fopen("file3A.txt"); 
     fs4A=$fopen("file4A.txt"); 
     fs5A=$fopen("file5A.txt"); 
     fs6A=$fopen("file6A.txt"); 
     fs7A=$fopen("file7A.txt"); 
     seed1 = 231; 
     seed2 = 13; 
     seed3 = 24; 
     seed4 = 36; 
     seed5 = 59; 
     next_state =0;  
     delay = 0.7e-9; 
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     // generating random number from 1 to 16 
     NUM[1] = abs($random(seed1)%16)+1; 
     NUM[17] = abs($random(seed2)%16)+1; 
     NUM[33] = abs($random(seed3)%16)+1; 
     NUM[49] = abs($random(seed4)%16)+1; 
     NUM[65] = abs($random(seed5)%16)+1;    
    
     for (i=2;i <17; i= i+1)begin 
         NUM[i] = (NUM[1]+(i-1))%16; 
  NUM[16+i] = (NUM[17]+(i-1))%16; 
  NUM[32+i] = (NUM[33]+(i-1))%16; 
  NUM[48+i] = (NUM[49]+(i-1))%16; 
  NUM[64+i] = (NUM[65]+(i-1))%16;    
    
    
  if (NUM[i] == 0) NUM[i] = 16; 
  if (NUM[16+i] == 0) NUM[16+i] = 16; 
  if (NUM[32+i] == 0) NUM[32+i] = 16; 
  if (NUM[48+i] == 0) NUM[48+i] = 16; 
  if (NUM[64+i] == 0) NUM[64+i] = 16; 
       
      end // for end 
    
      PHI_1A = 2.5; 
      LAST = 0; 
     
      
      for (i=1; i <21; i=i+1)begin 
          BP[i]=0; 
          BM[i]=0;  
      end 
      
      for (i=1; i <5; i=i+1)begin 
          BZ[i]=0; 
      end 
      
      
      for (i=5; i <21; i=i+1)begin 
          BZ[i]=2.5; 
      end 
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      vin1=V(input1); 
      vin2=V(input2);  
      
      
  end 
     
   
  @(cross(V(clk)-1.25, 1))begin 
     v2 = V(Vtp2); 
     v1 = V(Vtp1); 
     tcheck1 = $abstime; 
     $fstrobe( fs1A, "%g %f %f %g %f %d", tcheck1,v2, v1,v2-v1,vin2-vin1, next_state);    
      
   
   
     case(1) 
       next_state == 0: begin 
        
                        if (tcheck2 > 0) 
   begin 
                        $fstrobe( fs2A, "%g %f %g %d %d %d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d %d %d %d",  
           tcheck2,vin2-vin1,v2-
v1,D[1],D[2],D[3],D[4],D[5],D[6],D[7],D[8],D[9], D[10], D[11], 
           D[12], D[13], D[14], D[15], D[16], D[17], D[18], D[19], D[20]);  
         
   $fstrobe( fs3A, "%g %d %d %d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d", tcheck2, next_state, NUM[1], NUM[2], NUM[3], 
                                 NUM[4], NUM[5], NUM[6], NUM[7], NUM[8], NUM[9], NUM[10], 
NUM[11], NUM[12], NUM[13], NUM[14], NUM[15], NUM[16]); 
         
   $fstrobe( fs4A, "%g %d %d %d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d", tcheck2, next_state, NUM[17], NUM[18], NUM[19], 
                                NUM[20], NUM[21], NUM[22], NUM[23], NUM[24], NUM[25], 
NUM[26], NUM[27], NUM[28], NUM[29], NUM[30], NUM[31], NUM[32]); 
         
   $fstrobe( fs5A, "%g %d %d %d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d", tcheck2, next_state, NUM[33], NUM[34], NUM[35], 
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                                NUM[36], NUM[37], NUM[38], NUM[39], NUM[40], NUM[41], 
NUM[42], NUM[43], NUM[44], NUM[45], NUM[46], NUM[47], NUM[48]); 
         
   $fstrobe( fs6A, "%g %d %d %d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d", tcheck2, next_state, NUM[49], NUM[50], NUM[51], 
                                NUM[52], NUM[53], NUM[54], NUM[55], NUM[56], NUM[57], 
NUM[58], NUM[59], NUM[60], NUM[61], NUM[62], NUM[63], NUM[64]); 
         
   $fstrobe( fs7A, "%g %d %d %d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d", tcheck2, next_state, NUM[65], NUM[66], NUM[67], 
                                NUM[68], NUM[69], NUM[70], NUM[71], NUM[72], NUM[73], 
NUM[74], NUM[75], NUM[76], NUM[77], NUM[78], NUM[79], NUM[80]); 
                        end     
        
        
                        // generating random number from 1 to 16 
   NUM[1] = abs($random(seed1)%16)+1; 
   NUM[17] = abs($random(seed2)%16)+1; 
   NUM[33] = abs($random(seed3)%16)+1; 
   NUM[49] = abs($random(seed4)%16)+1; 
   NUM[65] = abs($random(seed5)%16)+1;    
    
   for (i=2;i <17; i= i+1)begin 
      NUM[i] = (NUM[1]+(i-1))%16; 
      NUM[16+i] = (NUM[17]+(i-1))%16; 
      NUM[32+i] = (NUM[33]+(i-1))%16; 
      NUM[48+i] = (NUM[49]+(i-1))%16; 
      NUM[64+i] = (NUM[65]+(i-1))%16;    
    
    
      if (NUM[i] == 0) NUM[i] = 16; 
      if (NUM[16+i] == 0) NUM[16+i] = 16; 
      if (NUM[32+i] == 0) NUM[32+i] = 16; 
      if (NUM[48+i] == 0) NUM[48+i] = 16; 
      if (NUM[64+i] == 0) NUM[64+i] = 16; 
       
   end // for end 
    
   PHI_1A = 2.5; 
   LAST = 0; 
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     next_state = 1;bit =1; 
      
     for (i=1; i <21; i=i+1)begin 
                             BP[i]=0; 
                             BM[i]=0;  
                          end 
      
     for (i=1; i <5; i=i+1)begin 
                             BZ[i]=0; 
                          end 
      
      
                          for (i=5; i <21; i=i+1)begin 
                             BZ[i]=2.5; 
                          end 
      
     vin1=V(input1); 
     vin2=V(input2);  
    
   end 
      
       next_state ==1: begin 
                           
     next_state = 2; 
                           
        end  
       next_state ==2: begin 
                 next_state = 3; 
         end           
                  
                           
       next_state ==3: begin                    
                   next_state = 4; 
                end 
       next_state ==4: begin                    
                   next_state = 5; 
                end         
          
          
       next_state ==5: begin 
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                          PHI_1A=0; 
     LAST = 2.5; 
                   for (i=1; i <5; i=i+1) 
      begin 
                            BZ[i]=2.5; 
      end  
     
                   next_state = 6; 
                end 
                
  ((next_state >5)&&(next_state <26)): begin     
                                
                             
                             if (v2-v1>0) begin 
           BM[bit]=2.5;  
           BP[bit]=0; 
    D[bit] = -1; 
        end 
        else begin 
           BM[bit]=0;  
           BP[bit]=2.5; 
    D[bit] = 1;              
        end 
         
        BZ[bit]=0;          
         
        bit = bit+1; 
        next_state = next_state+1; 
         
        if (next_state == 26) 
        begin 
          next_state = 0; 
          tcheck2 = $abstime; 
        end   
         
                    end        
       
      
        
     endcase 
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   end // cross event end  
    
   
  V(phi_1A) <+ transition(PHI_1A,0,1e-12,1e-12); 
  V(phi_1)  <+ absdelay(V(phi_1A), 0.2n, 0.2n); 
  V(bz[1]) <+transition(BZ[1],delay,1e-12,1e-12);    
  V(bz[2]) <+transition(BZ[2],delay,1e-12,1e-12); 
  V(bz[3]) <+transition(BZ[3],delay,1e-12,1e-12); 
  V(bz[4]) <+transition(BZ[4],delay,1e-12,1e-12); 
  V(bz[5]) <+transition(BZ[5],delay,1e-12,1e-12); 
  V(bz[6]) <+transition(BZ[6],delay,1e-12,1e-12); 
  V(bz[7]) <+transition(BZ[7],delay,1e-12,1e-12); 
  V(bz[8]) <+transition(BZ[8],delay,1e-12,1e-12); 
  V(bz[9]) <+transition(BZ[9],delay,1e-12,1e-12); 
  V(bz[10]) <+transition(BZ[10],delay,1e-12,1e-12); 
  V(bz[11]) <+transition(BZ[11],delay,1e-12,1e-12); 
  V(bz[12]) <+transition(BZ[12],delay,1e-12,1e-12); 
  V(bz[13]) <+transition(BZ[13],delay,1e-12,1e-12); 
  V(bz[14]) <+transition(BZ[14],delay,1e-12,1e-12); 
  V(bz[15]) <+transition(BZ[15],delay,1e-12,1e-12); 
  V(bz[16]) <+transition(BZ[16],delay,1e-12,1e-12); 
  V(bz[17]) <+transition(BZ[17],delay,1e-12,1e-12); 
  V(bz[18]) <+transition(BZ[18],delay,1e-12,1e-12); 
  V(bz[19]) <+transition(BZ[19],delay,1e-12,1e-12); 
  V(bz[20]) <+transition(BZ[20],delay,1e-12,1e-12); 
  V(last)   <+transition(LAST,delay,1e-12,1e-12); 
   
     
  V(bp[1]) <+transition(BP[1],delay,1e-12,1e-12); 
  V(bp[2]) <+transition(BP[2],delay,1e-12,1e-12); 
  V(bp[3]) <+transition(BP[3],delay,1e-12,1e-12); 
  V(bp[4]) <+transition(BP[4],delay,1e-12,1e-12); 
  V(bp[5]) <+transition(BP[5],delay,1e-12,1e-12); 
  V(bp[6]) <+transition(BP[6],delay,1e-12,1e-12); 
  V(bp[7]) <+transition(BP[7],delay,1e-12,1e-12); 
  V(bp[8]) <+transition(BP[8],delay,1e-12,1e-12); 
  V(bp[9]) <+transition(BP[9],delay,1e-12,1e-12); 
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  V(bp[10]) <+transition(BP[10],delay,1e-12,1e-12); 
  V(bp[11]) <+transition(BP[11],delay,1e-12,1e-12); 
  V(bp[12]) <+transition(BP[12],delay,1e-12,1e-12); 
  V(bp[13]) <+transition(BP[13],delay,1e-12,1e-12); 
  V(bp[14]) <+transition(BP[14],delay,1e-12,1e-12); 
  V(bp[15]) <+transition(BP[15],delay,1e-12,1e-12); 
  V(bp[16]) <+transition(BP[16],delay,1e-12,1e-12); 
  V(bp[17]) <+transition(BP[17],delay,1e-12,1e-12); 
  V(bp[18]) <+transition(BP[18],delay,1e-12,1e-12); 
  V(bp[19]) <+transition(BP[19],delay,1e-12,1e-12); 
  V(bp[20]) <+transition(BP[20],delay,1e-12,1e-12); 
   
  
  V(bm[1]) <+transition(BM[1],delay,1e-12,1e-12); 
  V(bm[2]) <+transition(BM[2],delay,1e-12,1e-12); 
  V(bm[3]) <+transition(BM[3],delay,1e-12,1e-12); 
  V(bm[4]) <+transition(BM[4],delay,1e-12,1e-12); 
  V(bm[5]) <+transition(BM[5],delay,1e-12,1e-12); 
  V(bm[6]) <+transition(BM[6],delay,1e-12,1e-12); 
  V(bm[7]) <+transition(BM[7],delay,1e-12,1e-12); 
  V(bm[8]) <+transition(BM[8],delay,1e-12,1e-12); 
  V(bm[9]) <+transition(BM[9],delay,1e-12,1e-12); 
  V(bm[10]) <+transition(BM[10],delay,1e-12,1e-12); 
  V(bm[11]) <+transition(BM[11],delay,1e-12,1e-12); 
  V(bm[12]) <+transition(BM[12],delay,1e-12,1e-12); 
  V(bm[13]) <+transition(BM[13],delay,1e-12,1e-12); 
  V(bm[14]) <+transition(BM[14],delay,1e-12,1e-12); 
  V(bm[15]) <+transition(BM[15],delay,1e-12,1e-12); 
  V(bm[16]) <+transition(BM[16],delay,1e-12,1e-12); 
  V(bm[17]) <+transition(BM[17],delay,1e-12,1e-12); 
  V(bm[18]) <+transition(BM[18],delay,1e-12,1e-12); 
  V(bm[19]) <+transition(BM[19],delay,1e-12,1e-12); 
  V(bm[20]) <+transition(BM[20],delay,1e-12,1e-12); 
   
  V(num[1])<+transition(NUM[1],0,1e-12,1e-12);  
  V(num[2])<+transition(NUM[2],0,1e-12,1e-12);  
  V(num[3])<+transition(NUM[3],0,1e-12,1e-12); 
  V(num[4])<+transition(NUM[4],0,1e-12,1e-12); 
  V(num[5])<+transition(NUM[5],0,1e-12,1e-12); 
  V(num[6])<+transition(NUM[6],0,1e-12,1e-12); 
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  V(num[7])<+transition(NUM[7],0,1e-12,1e-12); 
  V(num[8])<+transition(NUM[8],0,1e-12,1e-12); 
  V(num[9])<+transition(NUM[9],0,1e-12,1e-12); 
  V(num[10])<+transition(NUM[10],0,1e-12,1e-12); 
  V(num[11])<+transition(NUM[11],0,1e-12,1e-12); 
  V(num[12])<+transition(NUM[12],0,1e-12,1e-12); 
  V(num[13])<+transition(NUM[13],0,1e-12,1e-12); 
  V(num[14])<+transition(NUM[14],0,1e-12,1e-12); 
  V(num[15])<+transition(NUM[15],0,1e-12,1e-12); 
  V(num[16])<+transition(NUM[16],0,1e-12,1e-12); 
   
  V(num[17])<+transition(NUM[17],0,1e-12,1e-12);  
  V(num[18])<+transition(NUM[18],0,1e-12,1e-12);  
  V(num[19])<+transition(NUM[19],0,1e-12,1e-12); 
  V(num[20])<+transition(NUM[20],0,1e-12,1e-12); 
  V(num[21])<+transition(NUM[21],0,1e-12,1e-12); 
  V(num[22])<+transition(NUM[22],0,1e-12,1e-12); 
  V(num[23])<+transition(NUM[23],0,1e-12,1e-12); 
  V(num[24])<+transition(NUM[24],0,1e-12,1e-12); 
  V(num[25])<+transition(NUM[25],0,1e-12,1e-12); 
  V(num[26])<+transition(NUM[26],0,1e-12,1e-12); 
  V(num[27])<+transition(NUM[27],0,1e-12,1e-12); 
  V(num[28])<+transition(NUM[28],0,1e-12,1e-12); 
  V(num[29])<+transition(NUM[29],0,1e-12,1e-12); 
  V(num[30])<+transition(NUM[30],0,1e-12,1e-12); 
  V(num[31])<+transition(NUM[31],0,1e-12,1e-12); 
  V(num[32])<+transition(NUM[32],0,1e-12,1e-12); 
   
   
  V(num[33])<+transition(NUM[33],0,1e-12,1e-12);  
  V(num[34])<+transition(NUM[34],0,1e-12,1e-12);  
  V(num[35])<+transition(NUM[35],0,1e-12,1e-12); 
  V(num[36])<+transition(NUM[36],0,1e-12,1e-12); 
  V(num[37])<+transition(NUM[37],0,1e-12,1e-12); 
  V(num[38])<+transition(NUM[38],0,1e-12,1e-12); 
  V(num[39])<+transition(NUM[39],0,1e-12,1e-12); 
  V(num[40])<+transition(NUM[40],0,1e-12,1e-12); 
  V(num[41])<+transition(NUM[41],0,1e-12,1e-12); 
  V(num[42])<+transition(NUM[42],0,1e-12,1e-12); 
  V(num[43])<+transition(NUM[43],0,1e-12,1e-12); 
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  V(num[44])<+transition(NUM[44],0,1e-12,1e-12); 
  V(num[45])<+transition(NUM[45],0,1e-12,1e-12); 
  V(num[46])<+transition(NUM[46],0,1e-12,1e-12); 
  V(num[47])<+transition(NUM[47],0,1e-12,1e-12); 
  V(num[48])<+transition(NUM[48],0,1e-12,1e-12);  
   
  V(num[49])<+transition(NUM[49],0,1e-12,1e-12);  
  V(num[50])<+transition(NUM[50],0,1e-12,1e-12);  
  V(num[51])<+transition(NUM[51],0,1e-12,1e-12); 
  V(num[52])<+transition(NUM[52],0,1e-12,1e-12); 
  V(num[53])<+transition(NUM[53],0,1e-12,1e-12); 
  V(num[54])<+transition(NUM[54],0,1e-12,1e-12); 
  V(num[55])<+transition(NUM[55],0,1e-12,1e-12); 
  V(num[56])<+transition(NUM[56],0,1e-12,1e-12); 
  V(num[57])<+transition(NUM[57],0,1e-12,1e-12); 
  V(num[58])<+transition(NUM[58],0,1e-12,1e-12); 
  V(num[59])<+transition(NUM[59],0,1e-12,1e-12); 
  V(num[60])<+transition(NUM[60],0,1e-12,1e-12); 
  V(num[61])<+transition(NUM[61],0,1e-12,1e-12); 
  V(num[62])<+transition(NUM[62],0,1e-12,1e-12); 
  V(num[63])<+transition(NUM[63],0,1e-12,1e-12); 
  V(num[64])<+transition(NUM[64],0,1e-12,1e-12);   
   
  V(num[65])<+transition(NUM[65],0,1e-12,1e-12);  
  V(num[66])<+transition(NUM[66],0,1e-12,1e-12);  
  V(num[67])<+transition(NUM[67],0,1e-12,1e-12); 
  V(num[68])<+transition(NUM[68],0,1e-12,1e-12); 
  V(num[69])<+transition(NUM[69],0,1e-12,1e-12); 
  V(num[70])<+transition(NUM[70],0,1e-12,1e-12); 
  V(num[71])<+transition(NUM[71],0,1e-12,1e-12); 
  V(num[72])<+transition(NUM[72],0,1e-12,1e-12); 
  V(num[73])<+transition(NUM[73],0,1e-12,1e-12); 
  V(num[74])<+transition(NUM[74],0,1e-12,1e-12); 
  V(num[75])<+transition(NUM[75],0,1e-12,1e-12); 
  V(num[76])<+transition(NUM[76],0,1e-12,1e-12); 
  V(num[77])<+transition(NUM[77],0,1e-12,1e-12); 
  V(num[78])<+transition(NUM[78],0,1e-12,1e-12); 
  V(num[79])<+transition(NUM[79],0,1e-12,1e-12); 
  V(num[80])<+transition(NUM[80],0,1e-12,1e-12);    
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end // analog event end 
 
endmodule 
 
Symbol for Staircase generator at input  

 

VerilogA Code for staircase generator 

// VerilogA for mylib, sample and hold, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module sample_and_hold_022708_B(clk, vin, vout); 
input clk, vin; 
output vout; 
 
electrical clk, vin, vout;  
 
//file handle 
integer fs1; 
 
real v1; 
// v1 is the sample point from the input waveform when the clock edge is falling 
 
 
analog begin 
  @(initial_step) begin 
 v1 = 2.5; 
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  end 
        
  // Sample at rising edge 
  @( cross( V(clk)-1.25, +1) ) begin 
        v1 = V(vin); 
  end   
   
  // Sample at falling edge 
  @( cross( V(clk)-1.25, -1) ) begin 
        v1 = V(vin); 
  end      
   
     V(vout) <+ transition(v1,0,1e-12,1e-12); 
      
end 
 
endmodule 
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Symbol for Ideal Switch  

 

 
VerilogA Code  for Ideal Switch  

 
// VerilogA for newlib, switch, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module switch(svin, svrefm, svcm, svrefpb, vin,vrefm, vcm,vrefp,out); 
input svin, svrefm, svcm, svrefpb, vin,vrefm, vcm,vrefp; 
output out; 
 
electrical svin, svrefm, svcm, svrefpb, vin,vrefm, vcm,vrefp,out; 
real SVIN, SVREFM, SVCM, SVREFPB, VIN, VREFM, VCM, VREFP, OUT; 
 
analog begin 
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SVIN = V(svin); 
SVREFM = V(svrefm); 
SVCM = V(svcm); 
SVREFPB = V(svrefpb); 
VIN = V(vin); 
VREFM = V(vrefm); 
VCM = V(vcm); 
VREFP = V(vrefp); 
 
case(1) 
   SVIN > 1.25:     OUT = VIN; 
   SVREFM > 1.25:   OUT = VREFM; 
   SVCM > 1.25:    OUT = VCM; 
   SVREFPB < 1.25:  OUT = VREFP; 
endcase 
 
V(out) <+ transition(OUT,0,1e-12, 1e-12); 
                
end 
endmodule 
 
Symbol for Ideal Inverter 

 

 
 
VerilogA Code for Ideal Inverter 

 
// VerilogA for newlib, inverter, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
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module inverter(out, in); 
output out; 
electrical out; 
input in; 
electrical in; 
 
parameter real vddl = 2.5; 
parameter real in_low = 1.24; 
parameter real in_high = 1.25; 
 
real out_val; 
 
analog begin 
 
  if (V(in) < in_low) begin 
  out_val = vddl; 
  end 
  else if (V(in) > in_high) begin 
  out_val = 0; 
  end 
  else out_val = -vddl*V(in)/(in_high-in_low)+ 
       vddl*in_high/(in_high-in_low); 
        
 V(out) <+ transition(out_val,0, 1e-12,1e-12); 
 end 
  
endmodule 

  



114 

 

Appendix B  

Non-ideal DAC weights in segment 2-5  

Table I: DAC weights in segment 2 

  Ideal With Mismatch  
Weight errors 

εiB 

Ratio of 
Mismatch/ 

Ideal  C Voltage weight 
17 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
18 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
19 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
20 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
21 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
22 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
23 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
24 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
25 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
26 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
27 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
28 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
29 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
30 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
31 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
32 8.5451830E-03 8.5686140E-03 2.3431000E-05 1.0027420 
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Table II: DAC weights in segment 3 

  Ideal With Mismatch  
Weight errors 

εiB 

Ratio of 
Mismatch/ 

Ideal  C Voltage weight 
33 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
34 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
35 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
36 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
37 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
38 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
39 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
40 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
41 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
42 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
43 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
44 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
45 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
46 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
47 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
48 1.0681480E-03 1.0710770E-03 2.9290000E-06 1.0027421 
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Table III. DAC weights in segment 4 

  Ideal With Mismatch  
Weight errors 

εiB 

Ratio of 
Mismatch/ 

Ideal  C Voltage weight 
49 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
50 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
51 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
52 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
53 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
54 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
55 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
56 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
57 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
58 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
59 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
60 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
61 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
62 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
63 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
64 1.3350820E-04 1.3387430E-04 3.6610000E-07 1.0027422 
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Table IV. DAC weights in segment 5 

  Ideal 
With 

Mismatch  Weight errors 
εiB 

Ratio of 
Mismatch/ 

Ideal  C Voltage weight 
65 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
66 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
67 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
68 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
69 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
70 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
71 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
72 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
73 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
74 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
75 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
76 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
77 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
78 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
79 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
80 1.6688290E-05 1.6734050E-05 4.5760000E-08 1.0027420 
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Appendix C  

Matlab code used for the system verification  

Interface between the mixed signal IC and FPGA 

clear all ;  
close all ;  
clc;  
  
%%%%%%%%%%Overall function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% This code do several things  
%1) Set up the ADC parameters  
%2.) Plot ADC error before correction  
%3.) Apply error correction algorithm  
%4.) Plot ADC error after correction  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% N denotes the number of bits of the ADC  
N = 20;  
  
 % These are weights got from the perfect 16 bit ADC  step size (Book5 pg 54)  
W1 = 2*6.836146e-2;  
W2 = 2*8.545183e-3;  
W3 = 2*1.068148e-3;  
W4 = 2*1.335082e-4;  
W5 = 2*1.668829e-5;  
  
% This denotes the initial weight used for both ADC _A and ADC_B in the  
% digital to analog interface. The decisions from A DC_A will by muliplied  
% by the estimated weight WA to get the analog volt age. The same happen for  
% ADC_B. We assume we DO NOT KNOW of any error in t he ADC itself, so we can  
% just estimate them  
  
WA = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];  
   
WB = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];   
   
   
% Initialization for before/after plot  
INL = zeros(1,2^16);  
DNL = zeros(1,2^16);  
dec_A_ramp = zeros(65536*16,50);  
dec_B_ramp = zeros(65536*16,50);  
INL_after = zeros(1,2^16);  
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DNL_after = zeros(1,2^16);  
  
Anum1 = zeros(1,16);  
Anum2 = zeros(1,16);  
Anum3 = zeros(1,16);  
Anum4 = zeros(1,16);  
Anum5 = zeros(1,16);  
  
Bnum1 = zeros(1,16);  
Bnum2 = zeros(1,16);  
Bnum3 = zeros(1,16);  
Bnum4 = zeros(1,16);  
Bnum5 = zeros(1,16);  
  
% Initialization  
dec_A = zeros(128,50);  
dec_B = zeros(128,50);  
err = zeros(100,1);  
  
resolution = 2.5/(2^16*16);  
%VLSB = 2*resolution;  
  
step = 2.5/2^16;  
  
   
% Define Vin vector. A ramp input is used in this c ase.  
Vin2 = [0: resolution: 2.5-resolution];  
Vin1 = [2.5-resolution: -resolution: 0];  
  
 Vsample2 = [0:step:2.5];  
 Vsample1 = [2.5:-step:0];  
  
  
   
%%%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%INL/DNL plot before error correction  
  
%Add some noise  
for  i = 1: length(Vin1)  
    Vin1(i) = Vin1(i)+ randn*(30*10^-6);  
    Vin2(i) = Vin2(i)+ randn*(30*10^-6);  
end      
  
% Convert them  
 R013108_ADC_16bit_randomization;  
  Vin_ramp1 = Vin1;  
  Vin_ramp2 = Vin2;  
  new_dA_ramp = new_dA;  
  new_dB_ramp = new_dB;  



120 

 

  Vin_bar = (new_dB_ramp*WB + new_dA_ramp*WA)/2;  
  
  figure(1)  
  plot((Vin2-Vin1)', Vin_bar, 'r' );  
  hold on;  
  fita = polyfit((Vin2-Vin1)', Vin_bar, 1);  
  Vin_bar_mod = (Vin_bar-fita(2))*1/fita(1);  
  plot((Vin2-Vin1)', Vin_bar_mod, 'g' );  
  axis([-2.5 2.5 -2.5 2.5])  
   
  count = histc((Vin_bar_mod)', ([-5 Vsample2(2:655 36)-Vsample1(2:65536) 
5]));  
  DNL = (count(1:65536)-16)/16;  
  INL = cumsum(DNL);  
   
  Code = 0:1:65535;  
   
 figure(2)  
 subplot(2,1,1)  
 plot(Code, [0, INL(2:65535),0]);  
 title( 'Before Correction' );  
 xlabel( 'Code' );  
 ylabel( 'INL(in LSB)' );  
  
 subplot(2,1,2)  
 plot(Code, [0, DNL(2:65535), 0]);  
 title( 'Before Correction' );  
 xlabel( 'Code' );  
 ylabel( 'DNL(in LSB)' );  
  
  
  
%%%%%%%%%Plot ADC error before correction  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%Error correction 
  
% Supply a sine input  
resolution = 0:1e-3:1280;  
Input2 = 1.25*sin(resolution)+1.25;  
Input1 = -1.25*sin(resolution)+1.25;  
  
% Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(3)  
plot(resolution(1:10000),Input2(1:10000), resolutio n(1:10000), 
Input1(1:10000));  
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% Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
% WAside and WBside serve as the updated weight. Fo r each 128 conversions,  
% They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
  
for  x = 1: 10000  
         
     % This is for sine input only. Using different part s of the sine  
     % signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    % Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    % Apply error correction  
    R013108_error_correction;  
end  
  
%%%%%%%%%%%%%%%%Error correction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%Plot ADC error after error correction  
  
% Rearranging decision A and decision B so that the y can be easily  
% multipled by the "corrected" weights  
for  i = 1:length(Vin_ramp1)  
    t1 = sum(new_dA_ramp(i,49:64));  
    t2 = sum(new_dA_ramp(i,65:80));  
    dec_A_ramp(i,:) = [new_dA_ramp(i,1:48) t1 t2];  
  
    t3 = sum(new_dB_ramp(i,49:64));  
    t4 = sum(new_dB_ramp(i,65:80));  
    dec_B_ramp(i,:) = [new_dB_ramp(i,1:48) t3 t4];  
end  
  
% Getting the analog output code using the "correct ed" weights  
Vin_bar_after = (dec_B_ramp*WBside + dec_A_ramp*WAs ide)/2;  
  
  
resolution = 2.5/(2^16*16);  
Vin_ideal2 = [0: resolution: 2.5];  
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Vin_ideal1 = [2.5: -resolution: 0];  
  
Vin_ideal2 = Vin_ideal2(1:2^16*16);  
Vin_ideal1 = Vin_ideal1(1:2^16*16);  
  
figure(4)  
plot((Vin_ideal2-Vin_ideal1)', Vin_bar_after, 'r' );  
hold on;  
fita = polyfit((Vin_ideal2-Vin_ideal1)', Vin_bar_af ter, 1);  
Vin_bar_after_mod = (Vin_bar_after-fita(2))*1/fita( 1);  
plot((Vin_ideal2-Vin_ideal1)', Vin_bar_after_mod, 'g' );  
axis([-2.5 2.5 -2.5 2.5])  
   
count = histc((Vin_bar_after_mod)', ([-5 Vsample2(2 :65536)-Vsample1(2:65536) 
5]));  
DNL_after = (count(1:65536)-16)/16;  
INL_after = cumsum(DNL_after);  
   
Code = 0:1:65535;  
   
figure(5)  
subplot(2,1,1)  
plot(INL_after);  
title( 'After Correction' );  
xlabel( 'Code' );  
ylabel( 'INL(in LSB)' );  
axis([0 65535 -1 1]);  
  
  
subplot(2,1,2)  
plot(DNL_after);  
title( 'After Correction' );  
xlabel( 'Code' );  
ylabel( 'DNL(in LSB)' );  
axis([0 65535 -1 1]);  

 

Modified SAR ADC 

%%%%%%%%%%%%%%%%%%%%%%%Overall function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This code composes of two ADCs. Two ADCs each conv ert the same input  
%into a bunch of decisions, according to their set weights. In this example,  
%ADCA's weight is perfect, and zero biased errors a re added to first segment  
%of ADCB(bottom row).  
  
% Two process contribute to the difference in decis ions  
%1.) Randomization using rand  
%2.) error in ADC_B  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ADC_A 
  
% %Ideal cap weight, top row(C1-C80)  
AWT_seg1 = ones(1,16)*W1*1/2;  
AWT_seg2 = ones(1,16)*W2*1/2;  
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AWT_seg3 = ones(1,16)*W3*1/2;  
AWT_seg4 = ones(1,16)*W4*1/2;  
AWT_seg5 = ones(1,16)*W5*1/2;  
  
%Ideal cap weight, bottom row(C1-C80)  
AWB_seg1 = ones(1,16)*W1*1/2;  
AWB_seg2 = ones(1,16)*W2*1/2;  
AWB_seg3 = ones(1,16)*W3*1/2;  
AWB_seg4 = ones(1,16)*W4*1/2;  
AWB_seg5 = ones(1,16)*W5*1/2;  
  
% Add some error to the bottom row cap in ADC_A, to  segment 1,2,3,4,5  
% Just like Book 6 page 36, 37 (zero basied error)  
  
%R013108_MismatchA_non_zero;  
  
%Sample Voltage points  
S = length(Vin1);  
  
% Initialize Vx and Vy, and vcomp  
AVx = zeros(N+1,S);  
AVy = zeros(N+1,S);  
AVcomp = zeros(N+1,S);  
Astore_draw = zeros(S,5);  
% Anum1 = zeros(1,16);  
% Anum2 = zeros(1,16);  
% Anum3 = zeros(1,16);  
% Anum4 = zeros(1,16);  
% Anum5 = zeros(1,16);  
  
% decision_matrix  
dA = zeros(N,length(Vin1));  
  
% reconstructed decision matrix  
new_dA = zeros(length(Vin2),80);  
  
% linear fit got from plotting Vx, Vy against Vin i n the ideal case  
% Assume it does not change much!?  
  
fity = [-0.461439915525947   1.249999999621569];  
fitx = [0.461439914252529   1.250000002374065];  
  
% Sample + Hold Mode  
% Vy is the bottom row, Vx is the top row  
% The linear fit helps to get the first Vx, Vy poin t. Afterwards, it's all  
% up to the weight.  
AVx(1,:) = fitx(1)*(Vin2-Vin1)+fitx(2);  
AVy(1,:) = fity(1)*(Vin2-Vin1)+fity(2);  
AVcomp(1,:) = AVy(1,:)-AVx(1,:);  
  
% Bit cycle mode  
  for  j = 1:S  
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      % Initiating randomization. If num 1 = 8, then num2  = 9. the number 
goes in  
    % a wheel fashion  
     
    Adraw1 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum1(q) = mod(Adraw1+(q-1),16);  
         if  Anum1(q) == 0  
             Anum1(q) = 16;  
         end ;  
      end ;  
       
   Adraw2 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum2(q) = mod(Adraw2+(q-1),16);  
         if  Anum2(q) == 0  
             Anum2(q) = 16;  
         end ;  
      end ;    
       
   Adraw3 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum3(q) = mod(Adraw3+(q-1),16);  
         if  Anum3(q) == 0  
             Anum3(q) = 16;  
         end ;  
      end ;  
       
   Adraw4 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum4(q) = mod(Adraw4+(q-1),16);  
         if  Anum4(q) == 0  
             Anum4(q) = 16;  
         end ;  
      end ;  
       
   Adraw5 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum5(q) = mod(Adraw5+(q-1),16);  
         if  Anum5(q) == 0  
             Anum5(q) = 16;  
         end ;  
      end ;  
       
    Astore_draw(j,1:5) = [Adraw1 Adraw2 Adraw3 Adra w4 Adraw5];   
       
       
    Ab1 = find(Anum1 >=1 & Anum1 <= 8);  
    Ab2 = find(Anum1 >=9 & Anum1 <=12);  
    Ab3 = find(Anum1>=13 & Anum1 <= 14);  
    Ab4a = find(Anum1 == 15);  
    Aunused1 = find(Anum1 ==16);  
     
    Ab4b = find(Anum2 >=1 & Anum2 <= 8);  
    Ab5 = find(Anum2 >=9 & Anum2 <=12);  
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    Ab6 = find(Anum2>=13 & Anum2 <= 14);  
    Ab7a = find(Anum2 == 15);  
    Aunused2 = find(Anum2 ==16);  
     
    Ab7b = find(Anum3 >=1 & Anum3 <= 8);  
    Ab8 = find(Anum3 >=9 & Anum3 <=12);  
    Ab9 = find(Anum3>=13 & Anum3 <= 14);  
    Ab10a = find(Anum3 == 15);  
    Aunused3 = find(Anum3 ==16);  
     
    Ab10b = find(Anum4 >=1 & Anum4 <= 8);  
    Ab11 = find(Anum4 >=9 & Anum4 <=12);  
    Ab12 = find(Anum4>=13 & Anum4 <= 14);  
    Ab13a = find(Anum4 == 15);  
    Aunused4 = find(Anum4 ==16);  
     
    Ab13b = find(Anum5 >=1 & Anum5 <= 8);  
    Ab14 = find(Anum5 >=9 & Anum5 <=12);  
    Ab15 = find(Anum5>=13 & Anum5 <= 14);  
    Ab16 = find(Anum5 == 15);  
    Aunused5 = find(Anum5 ==16);  
     
    % Sum up the weight used for each bit(Top row)  
    AWT(1) = sum(AWT_seg1(Ab1));  
    AWT(2) = sum(AWT_seg1(Ab2));  
    AWT(3) = sum(AWT_seg1(Ab3));  
    AWT(4) = sum(AWT_seg1(Ab4a));  
     
    AWT(5) = sum(AWT_seg2(Ab4b));  
    AWT(6) = sum(AWT_seg2(Ab5));  
    AWT(7) = sum(AWT_seg2(Ab6));  
    AWT(8) = sum(AWT_seg2(Ab7a));  
     
    AWT(9)  = sum(AWT_seg3(Ab7b));  
    AWT(10) = sum(AWT_seg3(Ab8));  
    AWT(11) = sum(AWT_seg3(Ab9));  
    AWT(12) = sum(AWT_seg3(Ab10a));  
     
    AWT(13)  = sum(AWT_seg4(Ab10b));  
    AWT(14) = sum(AWT_seg4(Ab11));  
    AWT(15) = sum(AWT_seg4(Ab12));  
    AWT(16) = sum(AWT_seg4(Ab13a));  
     
    AWT(17)  = sum(AWT_seg5(Ab13b));  
    AWT(18) = sum(AWT_seg5(Ab14));  
    AWT(19) = sum(AWT_seg5(Ab15));  
    AWT(20) = sum(AWT_seg5(Ab16));  
     
    % Sum up the weight used for each bit(Bottom row)  
    AWB(1) = sum(AWB_seg1(Ab1));  
    AWB(2) = sum(AWB_seg1(Ab2));  
    AWB(3) = sum(AWB_seg1(Ab3));  
    AWB(4) = sum(AWB_seg1(Ab4a));  
     
    AWB(5) = sum(AWB_seg2(Ab4b));  
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    AWB(6) = sum(AWB_seg2(Ab5));  
    AWB(7) = sum(AWB_seg2(Ab6));  
    AWB(8) = sum(AWB_seg2(Ab7a));  
     
    AWB(9)  = sum(AWB_seg3(Ab7b));  
    AWB(10) = sum(AWB_seg3(Ab8));  
    AWB(11) = sum(AWB_seg3(Ab9));  
    AWB(12) = sum(AWB_seg3(Ab10a));  
     
    AWB(13)  = sum(AWB_seg4(Ab10b));  
    AWB(14) = sum(AWB_seg4(Ab11));  
    AWB(15) = sum(AWB_seg4(Ab12));  
    AWB(16) = sum(AWB_seg4(Ab13a));  
     
    AWB(17)  = sum(AWB_seg5(Ab13b));  
    AWB(18) = sum(AWB_seg5(Ab14));  
    AWB(19) = sum(AWB_seg5(Ab15));  
    AWB(20) = sum(AWB_seg5(Ab16));  
         
    for  n = 1:N            
  
        dA(n,j) = -sign(AVcomp(n,j)-0+ randn*(30*10 ^-6));   
         
     % Only d= 1 and d=-1 is allowed. If d = 0, this ind icates Vin = Vdac,  
     % so a decision bit 1 should be assigned.  
  
        if  AVy(n,j)== AVx(n,j)  
           dA(n,j) = 1;  
        end ;  
         
       AVy(n+1,j) = AVy(n,j) + dA(n,j)*AWB(n);  
       AVx(n+1,j) = AVx(n,j) - dA(n,j)*AWT(n);  
       AVcomp(n+1,j) = AVy(n+1,j) - AVx(n+1,j);   
     
  
     new_dA(j,Ab1) = dA(1,j);  
     new_dA(j,Ab2) = dA(2,j);  
     new_dA(j,Ab3) = dA(3,j);  
     new_dA(j,Ab4a) = dA(4,j);  
      
     new_dA(j,16+Ab4b) = dA(5,j);  
     new_dA(j,16+Ab5) = dA(6,j);  
     new_dA(j,16+Ab6) = dA(7,j);  
     new_dA(j,16+Ab7a) = dA(8,j);  
      
     new_dA(j,32+Ab7b) = dA(9,j);  
     new_dA(j,32+Ab8) = dA(10,j);  
     new_dA(j,32+Ab9) = dA(11,j);  
     new_dA(j,32+Ab10a) = dA(12,j);  
      
     new_dA(j,48+Ab10b) = dA(13,j);  
     new_dA(j,48+Ab11) = dA(14,j);  
     new_dA(j,48+Ab12) = dA(15,j);  
     new_dA(j,48+Ab13a) = dA(16,j);  
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     new_dA(j,64+Ab13b) = dA(17,j);  
     new_dA(j,64+Ab14) = dA(18,j);  
     new_dA(j,64+Ab15) = dA(19,j);  
     new_dA(j,64+Ab16) = dA(20,j);      
  
    end ; %(for n loop)   
  
      
 end ; % (for j loop)  
%   
%%%%%%%%%%%%%%%%%%%%%ADC_A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ADC_B 
  
%Ideal cap weight, top row(C1-C80)  
BWT_seg1 = ones(1,16)*1/2*W1;  
BWT_seg2 = ones(1,16)*1/2*W2;  
BWT_seg3 = ones(1,16)*1/2*W3;  
BWT_seg4 = ones(1,16)*1/2*W4;  
BWT_seg5 = ones(1,16)*1/2*W5;  
  
%Ideal cap weight, bottom row(C1-C80)  
BWB_seg1 = ones(1,16)*1/2*W1;  
BWB_seg2 = ones(1,16)*1/2*W2;  
BWB_seg3 = ones(1,16)*1/2*W3;  
BWB_seg4 = ones(1,16)*1/2*W4;  
BWB_seg5 = ones(1,16)*1/2*W5;  
  
% Add some error to the bottom row cap in ADC_B, to  segment 1,2,3,4,5  
% Just like Book 6 page 36, 37 (zero basied error)  
  
R013108_MismatchB;  
  
%Sample Voltage points  
S = length(Vin1);  
  
% Initialize Vx and Vy, and vcomp  
BVx = zeros(N+1,S);  
BVy = zeros(N+1,S);  
  
BVcomp = zeros(N+1,S);  
Bstore_draw = zeros(S,5);  
% Bnum1 = zeros(1,16);  
% Bnum2 = zeros(1,16);  
% Bnum3 = zeros(1,16);  
% Bnum4 = zeros(1,16);  
% Bnum5 = zeros(1,16);  
%  
% decision_matrix  
dB = zeros(N,length(Vin1));  
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% reconstructed decision matrix  
new_dB = zeros(length(Vin2),80);  
  
% linear fit got from plotting Vx, Vy against Vin i n the ideal case  
% Assume it does not change much!?  
  
fity = [-0.461439915525947   1.249999999621569];  
fitx = [0.461439914252529   1.250000002374065];  
  
% Sample + Hold Mode  
% Vy is the bottom row, Vx is the top row  
% The linear fit helps to get the first Vx, Vy poin t. Afterwards, it's all  
% up to the weight.  
BVx(1,:) = fitx(1)*(Vin2-Vin1)+fitx(2);  
BVy(1,:) = fity(1)*(Vin2-Vin1)+fity(2);  
BVcomp(1,:) = BVy(1,:)-BVx(1,:);  
  
% Bit cycle mode  
  for  j = 1:S  
       
      % Initiating randomization. If num 1 = 8, then num2  = 9. the number 
goes in  
    % a wheel fashion  
     
    Bdraw1 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum1(q) = mod(Bdraw1+(q-1),16);  
         if  Bnum1(q) == 0  
             Bnum1(q) = 16;  
         end ;  
      end ;  
       
   Bdraw2 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum2(q) = mod(Bdraw2+(q-1),16);  
         if  Bnum2(q) == 0  
             Bnum2(q) = 16;  
         end ;  
      end ;    
       
   Bdraw3 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum3(q) = mod(Bdraw3+(q-1),16);  
         if  Bnum3(q) == 0  
             Bnum3(q) = 16;  
         end ;  
      end ;  
       
   Bdraw4 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum4(q) = mod(Bdraw4+(q-1),16);  
         if  Bnum4(q) == 0  
             Bnum4(q) = 16;  
         end ;  
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      end ;  
       
   Bdraw5 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum5(q) = mod(Bdraw5+(q-1),16);  
         if  Bnum5(q) == 0  
             Bnum5(q) = 16;  
         end ;  
      end ;    
    
    Bstore_draw(j,1:5) = [Bdraw1 Bdraw2 Bdraw3 Bdra w4 Bdraw5];   
       
    Bb1 = find(Bnum1 >=1 & Bnum1 <= 8);  
    Bb2 = find(Bnum1 >=9 & Bnum1 <=12);  
    Bb3 = find(Bnum1>=13 & Bnum1 <= 14);  
    Bb4a = find(Bnum1 == 15);  
    Bunused1 = find(Bnum1 ==16);  
     
    Bb4b = find(Bnum2 >=1 & Bnum2 <= 8);  
    Bb5 = find(Bnum2 >=9 & Bnum2 <=12);  
    Bb6 = find(Bnum2>=13 & Bnum2 <= 14);  
    Bb7a = find(Bnum2 == 15);  
    Bunused2 = find(Bnum2 ==16);  
     
    Bb7b = find(Bnum3 >=1 & Bnum3 <= 8);  
    Bb8 = find(Bnum3 >=9 & Bnum3 <=12);  
    Bb9 = find(Bnum3>=13 & Bnum3 <= 14);  
    Bb10a = find(Bnum3 == 15);  
    Bunused3 = find(Bnum3 ==16);  
     
    Bb10b = find(Bnum4 >=1 & Bnum4 <= 8);  
    Bb11 = find(Bnum4 >=9 & Bnum4 <=12);  
    Bb12 = find(Bnum4>=13 & Bnum4 <= 14);  
    Bb13a = find(Bnum4 == 15);  
    Bunused4 = find(Bnum4 ==16);  
     
    Bb13b = find(Bnum5 >=1 & Bnum5 <= 8);  
    Bb14 = find(Bnum5 >=9 & Bnum5 <=12);  
    Bb15 = find(Bnum5>=13 & Bnum5 <= 14);  
    Bb16 = find(Bnum5 == 15);  
    Bunused5 = find(Bnum5 ==16);  
     
    % sum up the weights used for each bit(Top row)  
    BWT(1) = sum(BWT_seg1(Bb1));  
    BWT(2) = sum(BWT_seg1(Bb2));  
    BWT(3) = sum(BWT_seg1(Bb3));  
    BWT(4) = sum(BWT_seg1(Bb4a));  
     
    BWT(5) = sum(BWT_seg2(Bb4b));  
    BWT(6) = sum(BWT_seg2(Bb5));  
    BWT(7) = sum(BWT_seg2(Bb6));  
    BWT(8) = sum(BWT_seg2(Bb7a));  
     
    BWT(9)  = sum(BWT_seg3(Bb7b));  
    BWT(10) = sum(BWT_seg3(Bb8));  
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    BWT(11) = sum(BWT_seg3(Bb9));  
    BWT(12) = sum(BWT_seg3(Bb10a));  
     
    BWT(13)  = sum(BWT_seg4(Bb10b));  
    BWT(14) = sum(BWT_seg4(Bb11));  
    BWT(15) = sum(BWT_seg4(Bb12));  
    BWT(16) = sum(BWT_seg4(Bb13a));  
     
    BWT(17)  = sum(BWT_seg5(Bb13b));  
    BWT(18) = sum(BWT_seg5(Bb14));  
    BWT(19) = sum(BWT_seg5(Bb15));  
    BWT(20) = sum(BWT_seg5(Bb16));  
     
    % sum up the weight used for each bit(Bottom row)  
    BWB(1) = sum(BWB_seg1(Bb1));  
    BWB(2) = sum(BWB_seg1(Bb2));  
    BWB(3) = sum(BWB_seg1(Bb3));  
    BWB(4) = sum(BWB_seg1(Bb4a));  
     
    BWB(5) = sum(BWB_seg2(Bb4b));  
    BWB(6) = sum(BWB_seg2(Bb5));  
    BWB(7) = sum(BWB_seg2(Bb6));  
    BWB(8) = sum(BWB_seg2(Bb7a));  
     
    BWB(9)  = sum(BWB_seg3(Bb7b));  
    BWB(10) = sum(BWB_seg3(Bb8));  
    BWB(11) = sum(BWB_seg3(Bb9));  
    BWB(12) = sum(BWB_seg3(Bb10a));  
     
    BWB(13)  = sum(BWB_seg4(Bb10b));  
    BWB(14) = sum(BWB_seg4(Bb11));  
    BWB(15) = sum(BWB_seg4(Bb12));  
    BWB(16) = sum(BWB_seg4(Bb13a));  
     
    BWB(17)  = sum(BWB_seg5(Bb13b));  
    BWB(18) = sum(BWB_seg5(Bb14));  
    BWB(19) = sum(BWB_seg5(Bb15));  
    BWB(20) = sum(BWB_seg5(Bb16));  
         
    for  n = 1:N            
  
        dB(n,j) = -sign(BVcomp(n,j)-0 + randn*(30*1 0^-6));   
         
     % Only d= 1 and d=-1 is allowed. If d = 0, this ind icates Vin = Vdac,  
     % so a decision bit 1 should be assigned.  
  
        if  BVy(n,j)== BVx(n,j)  
           dB(n,j) = 1;  
        end ;  
         
       BVy(n+1,j) = BVy(n,j) + dB(n,j)*BWB(n);  
       BVx(n+1,j) = BVx(n,j) - dB(n,j)*BWT(n);  
       BVcomp(n+1,j) = BVy(n+1,j) - BVx(n+1,j);   
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     new_dB(j,Bb1) = dB(1,j);  
     new_dB(j,Bb2) = dB(2,j);  
     new_dB(j,Bb3) = dB(3,j);  
     new_dB(j,Bb4a) = dB(4,j);  
      
     new_dB(j,16+Bb4b) = dB(5,j);  
     new_dB(j,16+Bb5) = dB(6,j);  
     new_dB(j,16+Bb6) = dB(7,j);  
     new_dB(j,16+Bb7a) = dB(8,j);  
      
     new_dB(j,32+Bb7b) = dB(9,j);  
     new_dB(j,32+Bb8) = dB(10,j);  
     new_dB(j,32+Bb9) = dB(11,j);  
     new_dB(j,32+Bb10a) = dB(12,j);  
      
     new_dB(j,48+Bb10b) = dB(13,j);  
     new_dB(j,48+Bb11) = dB(14,j);  
     new_dB(j,48+Bb12) = dB(15,j);  
     new_dB(j,48+Bb13a) = dB(16,j);  
      
     new_dB(j,64+Bb13b) = dB(17,j);  
     new_dB(j,64+Bb14) = dB(18,j);  
     new_dB(j,64+Bb15) = dB(19,j);  
     new_dB(j,64+Bb16) = dB(20,j);      
  
    end ; %(for n loop)   
  
      
 end ; % (for j loop)  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%ADC_B%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Mismatch modeling 

% Bottom row error, ADCB, seg1  
BWB_seg1(1) = BWB_seg1(1)*1.0127695;  
BWB_seg1(2) = BWB_seg1(2)*1.0227969;  
BWB_seg1(3) = BWB_seg1(3)*0.97265974;  
BWB_seg1(4) = BWB_seg1(4)*1.0328243;  
BWB_seg1(5) = BWB_seg1(5)*1.0127695;  
BWB_seg1(6) = BWB_seg1(6)*0.9826872;  
BWB_seg1(7) = BWB_seg1(7)*0.9526049;  
BWB_seg1(8) = BWB_seg1(8)*0.9626323;  
BWB_seg1(9) = BWB_seg1(9)*1.0127695;  
BWB_seg1(10) = BWB_seg1(10)*0.9927146;  
BWB_seg1(11) = BWB_seg1(11)*1.0528791;  
BWB_seg1(12) = BWB_seg1(12)*0.9826872;  
BWB_seg1(13) = BWB_seg1(13)*0.9726597;  
BWB_seg1(14) = BWB_seg1(14)*1.0428516;  
BWB_seg1(15) = BWB_seg1(15)*0.9626323;  
BWB_seg1(16) = BWB_seg1(16)*1.0227969;  
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% % Bottom row error, ADCB, seg2  
BWB_seg2(1) = BWB_seg2(1)*1.0027420;  
BWB_seg2(2) = BWB_seg2(2)*1.0027420;  
BWB_seg2(3) = BWB_seg2(3)*1.0027420;  
BWB_seg2(4) = BWB_seg2(4)*1.0027420;  
BWB_seg2(5) = BWB_seg2(5)*1.0027420;  
BWB_seg2(6) = BWB_seg2(6)*1.0027420;  
BWB_seg2(7) = BWB_seg2(7)*1.0027420;  
BWB_seg2(8) = BWB_seg2(8)*1.0027420;  
BWB_seg2(9) = BWB_seg2(9)*1.0027420;  
BWB_seg2(10) = BWB_seg2(10)*1.0027420;  
BWB_seg2(11) = BWB_seg2(11)*1.0027420;  
BWB_seg2(12) = BWB_seg2(12)*1.0027420;  
BWB_seg2(13) = BWB_seg2(13)*1.0027420;  
BWB_seg2(14) = BWB_seg2(14)*1.0027420;  
BWB_seg2(15) = BWB_seg2(15)*1.0027420;  
BWB_seg2(16) = BWB_seg2(16)*1.0027420;  
  
% Bottom row error, ADCB, seg3  
BWB_seg3(1) = BWB_seg3(1)*1.0027421;  
BWB_seg3(2) = BWB_seg3(2)*1.0027421;  
BWB_seg3(3) = BWB_seg3(3)*1.0027421;  
BWB_seg3(4) = BWB_seg3(4)*1.0027421;  
BWB_seg3(5) = BWB_seg3(5)*1.0027421;  
BWB_seg3(6) = BWB_seg3(6)*1.0027421;  
BWB_seg3(7) = BWB_seg3(7)*1.0027421;  
BWB_seg3(8) = BWB_seg3(8)*1.0027421;  
BWB_seg3(9) = BWB_seg3(9)*1.0027421;  
BWB_seg3(10) = BWB_seg3(10)*1.0027421;  
BWB_seg3(11) = BWB_seg3(11)*1.0027421;  
BWB_seg3(12) = BWB_seg3(12)*1.0027421;  
BWB_seg3(13) = BWB_seg3(13)*1.0027421;  
BWB_seg3(14) = BWB_seg3(14)*1.0027421;  
BWB_seg3(15) = BWB_seg3(15)*1.0027421;  
BWB_seg3(16) = BWB_seg3(16)*1.0027421;  
%  
% Bottom row error, ADCB, seg4  
BWB_seg4(1) = BWB_seg4(1)*1.0027422;  
BWB_seg4(2) = BWB_seg4(2)*1.0027422;  
BWB_seg4(3) = BWB_seg4(3)*1.0027422;  
BWB_seg4(4) = BWB_seg4(4)*1.0027422;  
BWB_seg4(5) = BWB_seg4(5)*1.0027422;  
BWB_seg4(6) = BWB_seg4(6)*1.0027422;  
BWB_seg4(7) = BWB_seg4(7)*1.0027422;  
BWB_seg4(8) = BWB_seg4(8)*1.0027422;  
BWB_seg4(9) = BWB_seg4(9)*1.0027422;  
BWB_seg4(10) = BWB_seg4(10)*1.0027422;  
BWB_seg4(11) = BWB_seg4(11)*1.0027422;  
BWB_seg4(12) = BWB_seg4(12)*1.0027422;  
BWB_seg4(13) = BWB_seg4(13)*1.0027422;  
BWB_seg4(14) = BWB_seg4(14)*1.0027422;  
BWB_seg4(15) = BWB_seg4(15)*1.0027422;  
BWB_seg4(16) = BWB_seg4(16)*1.0027422;  
  
% Bottom row error, ADCB, seg5  
BWB_seg5(1) = BWB_seg5(1)*1.0027420;  
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BWB_seg5(2) = BWB_seg5(2)*1.0027420;  
BWB_seg5(3) = BWB_seg5(3)*1.0027420;  
BWB_seg5(4) = BWB_seg5(4)*1.0027420;  
BWB_seg5(5) = BWB_seg5(5)*1.0027420;  
BWB_seg5(6) = BWB_seg5(6)*1.0027420;  
BWB_seg5(7) = BWB_seg5(7)*1.0027420;  
BWB_seg5(8) = BWB_seg5(8)*1.0027420;  
BWB_seg5(9) = BWB_seg5(9)*1.0027420;  
BWB_seg5(10) = BWB_seg5(10)*1.0027420;  
BWB_seg5(11) = BWB_seg5(11)*1.0027420;  
BWB_seg5(12) = BWB_seg5(12)*1.0027420;  
BWB_seg5(13) = BWB_seg5(13)*1.0027420;  
BWB_seg5(14) = BWB_seg5(14)*1.0027420;  
BWB_seg5(15) = BWB_seg5(15)*1.0027420;  
BWB_seg5(16) = BWB_seg5(16)*1.0027420;  
 

Error correction algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%Error Correction Algorithm 
  
% % Initialization  
% dec_A = zeros(128,50);  
% dec_B = zeros(128,50);  
% err = zeros(100,1);  
  
  
%%% Redistribute decisions from ADCA and ADCB for e rror correction matrix  
for  i = 1:128  
     t1 = sum(new_dA(i,49:64));  
     t2 = sum(new_dA(i,65:80));  
     dec_A(i,:) = [new_dA(i,1:48) t1 t2];  
      
     t3 = sum(new_dB(i,49:64));  
     t4 = sum(new_dB(i,65:80));  
     dec_B(i,:) = [new_dB(i,1:48) t3 t4];  
  
 end  
      
 % Setting up parameters      
 mu = 2^13;  
 dec = [dec_B -dec_A];  
 del_x = dec_B*WBside - dec_A*WAside;  
    
 %%%%% Store the 128 set of decisions and del_x into  temp  
 temp_dec = dec;  
 temp_del_x = del_x;  
    
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%Core of error correction algorithm  
%%%% It is essentially doing what Book 6 p1 is doin g 
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%% Small LMS loop for estimating error for each 128  conversions  
for  j = 1:100  
    for  i = 1:128  
       if  dec(i,j) < 0  
           temp_dec(i,:) = -temp_dec(i,:);  
           temp_del_x(i) = -temp_del_x(i);  
       end  
        
       if  dec(i,j) == 0  
           temp_del_x(i) = 0;  
       end  
        
    end  
     
    err(j,1) = sum(temp_del_x)/mu;  
    temp_dec = dec;  
    temp_del_x = del_x;      
  
end  
  
% Update WB, WA and as a result, delta_x  
WBside = WBside - err(1:50);  
WAside = WAside - err(51:100);  
  
% Storing and see how each of the 100 weight error evolve  
% over the x set of 128 conversions  
my_err(1:100,x) = err;  
my_weight(1:100,x) = [WBside; WAside];  
     
  
%%%%%%%%%%%%%%End of Error Correction Algorithm  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix D  

Matlab Code used for testing performance of the error correction algorithm 

INL/DNL improvement 

Interface between mixed signal IC and FPGA control 

clear all ;  
close all ;  
clc;  
  
%%%%%%%%%%Overall function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% This code do several things  
%1) Set up the ADC parameters  
%2.) Plot ADC error before correction  
%3.) Apply error correction algorithm  
%4.) Plot ADC error after correction  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% N denotes the number of bits of the ADC  
N = 20;  
  
 % These are weights got from the perfect 16 bit ADC  step size (Book5 pg 54)  
W1 = 0.145837866667;  
W2 = W1/8;  
W3 = W2/8;  
W4 = W3/8;  
W5 = W4/8;  
  
% This denotes the initial weight used for both ADC _A and ADC_B in the  
% digital to analog interface. The decisions from A DC_A will by muliplied  
% by the estimated weight WA to get the analog volt age. The same happen for  
% ADC_B. We assume we DO NOT KNOW of any error in t he ADC itself, so we can  
% just estimate them  
  
WA = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];  
   
WB = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];   
   
   
% Initialization for before/after plot  
INL = zeros(1,2^16);  
DNL = zeros(1,2^16);  
dec_A_ramp = zeros(65536*16,50);  
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dec_B_ramp = zeros(65536*16,50);  
INL_after = zeros(1,2^16);  
DNL_after = zeros(1,2^16);  
  
Anum1 = zeros(1,16);  
Anum2 = zeros(1,16);  
Anum3 = zeros(1,16);  
Anum4 = zeros(1,16);  
Anum5 = zeros(1,16);  
  
Bnum1 = zeros(1,16);  
Bnum2 = zeros(1,16);  
Bnum3 = zeros(1,16);  
Bnum4 = zeros(1,16);  
Bnum5 = zeros(1,16);  
  
% Initialization  
dec_A = zeros(128,50);  
dec_B = zeros(128,50);  
err = zeros(100,1);  
  
resolution = 2.5/(2^16*16);  
%VLSB = 2*resolution;  
  
step = 2.5/2^16;  
  
   
% Define Vin vector. A ramp input is used in this c ase.  
Vin2 = [0: resolution: 2.5-resolution];  
Vin1 = [2.5-resolution: -resolution: 0];  
  
 Vsample2 = [0:step:2.5];  
 Vsample1 = [2.5:-step:0];  
  
  
   
%%%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%INL/DNL plot before error correction  
  
%Add some noise  
for  i = 1: length(Vin1)  
    Vin1(i) = Vin1(i)+ randn*(30*10^-6);  
    Vin2(i) = Vin2(i)+ randn*(30*10^-6);  
end      
  
% Convert them  
 R013108_ADC_16bit_randomization;  
  Vin_ramp1 = Vin1;  
  Vin_ramp2 = Vin2;  
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  new_dA_ramp = new_dA;  
  new_dB_ramp = new_dB;  
  Vin_bar = (new_dB_ramp*WB + new_dA_ramp*WA)/2;  
  
  figure(1)  
  plot((Vin2-Vin1)', Vin_bar, 'r' );  
  hold on;  
  fita = polyfit((Vin2-Vin1)', Vin_bar, 1);  
  Vin_bar_mod = (Vin_bar-fita(2))*1/fita(1);  
  plot((Vin2-Vin1)', Vin_bar_mod, 'g' );  
  axis([-2.5 2.5 -2.5 2.5])  
   
  count = histc((Vin_bar_mod)', ([-5 Vsample2(2:655 36)-Vsample1(2:65536) 
5]));  
  DNL = (count(1:65536)-16)/16;  
  INL = cumsum(DNL);  
   
  Code = 0:1:65535;  
   
 figure(2)  
 subplot(2,1,1)  
 plot(Code, [0, INL(2:65535),0]);  
 title( 'Before Correction' );  
 xlabel( 'Code' );  
 ylabel( 'INL(in LSB)' );  
  
 subplot(2,1,2)  
 plot(Code, [0, DNL(2:65535), 0]);  
 title( 'Before Correction' );  
 xlabel( 'Code' );  
 ylabel( 'DNL(in LSB)' );  
  
  
  
%%%%%%%%%%Plot ADC error before correction  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%Error correction 
  
% Supply a sine input  
resolution = 0:1e-3:1280;  
Input2 = 1.25*sin(resolution)+1.25;  
Input1 = -1.25*sin(resolution)+1.25;  
  
% Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(3)  
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plot(resolution(1:10000),Input2(1:10000), resolutio n(1:10000), 
Input1(1:10000));  
  
% Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
% WAside and WBside serve as the updated weight. Fo r each 128 conversions,  
% They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
  
for  x = 1: 10000  
         
     % This is for sine input only. Using different part s of the sine  
     % signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    % Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    % Apply error correction  
    R013108_error_correction;  
end  
  
%%%%%%%%%%%%%%%%Error correction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%Plot ADC error after error correction  
  
% Rearranging decision A and decision B so that the y can be easily  
% multipled by the "corrected" weights  
for  i = 1:length(Vin_ramp1)  
    t1 = sum(new_dA_ramp(i,49:64));  
    t2 = sum(new_dA_ramp(i,65:80));  
    dec_A_ramp(i,:) = [new_dA_ramp(i,1:48) t1 t2];  
  
    t3 = sum(new_dB_ramp(i,49:64));  
    t4 = sum(new_dB_ramp(i,65:80));  
    dec_B_ramp(i,:) = [new_dB_ramp(i,1:48) t3 t4];  
end  
  
% Getting the analog output code using the "correct ed" weights  
Vin_bar_after = (dec_B_ramp*WBside + dec_A_ramp*WAs ide)/2;  
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resolution = 2.5/(2^16*16);  
Vin_ideal2 = [0: resolution: 2.5];  
Vin_ideal1 = [2.5: -resolution: 0];  
  
Vin_ideal2 = Vin_ideal2(1:2^16*16);  
Vin_ideal1 = Vin_ideal1(1:2^16*16);  
  
figure(4)  
plot((Vin_ideal2-Vin_ideal1)', Vin_bar_after, 'r' );  
hold on;  
fita = polyfit((Vin_ideal2-Vin_ideal1)', Vin_bar_af ter, 1);  
Vin_bar_after_mod = (Vin_bar_after-fita(2))*1/fita( 1);  
plot((Vin_ideal2-Vin_ideal1)', Vin_bar_after_mod, 'g' );  
axis([-2.5 2.5 -2.5 2.5])  
   
count = histc((Vin_bar_after_mod)', ([-5 Vsample2(2 :65536)-Vsample1(2:65536) 
5]));  
DNL_after = (count(1:65536)-16)/16;  
INL_after = cumsum(DNL_after);  
   
Code = 0:1:65535;  
   
figure(5)  
subplot(2,1,1)  
plot(INL_after);  
title( 'After Correction' );  
xlabel( 'Code' );  
ylabel( 'INL(in LSB)' );  
axis([0 65535 -1 1]);  
  
  
subplot(2,1,2)  
plot(DNL_after);  
title( 'After Correction' );  
xlabel( 'Code' );  
ylabel( 'DNL(in LSB)' );  
axis([0 65535 -1 1]); 
 

Modified SAR ADC 

%%%%%%%%%%%%%%%%%%%%%%%Overall function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This code composes of two ADCs. Two ADCs each conv ert the same input  
%into a bunch of decisions, according to their set weights. In this example,  
%ADCA's weight is perfect, and zero biased errors a re added to first segment  
%of ADCB(bottom row).  
  
% Two process contribute to the difference in decis ions  
%1.) Randomization using rand  
%2.) error in ADC_B  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ADC_A 
  
% This is the NON zero-biased cap mismatch, Cc erro r set  
Ctotal_A = 18.2756233; % pF 
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weight_factor = 1.25*16/15;  
  
W1_mod = 1/Ctotal_A*weight_factor;  
W2_mod = 0.125/Ctotal_A*weight_factor;  
W3_mod = W2_mod/7.9837;  
W4_mod = W3_mod/8.025;  
W5_mod = W4_mod/7.980566;  
  
% %Ideal cap weight, top row(C1-C80)  
% AWT_seg1 = ones(1,16)*W1*1/2;  
% AWT_seg2 = ones(1,16)*W2*1/2;  
% AWT_seg3 = ones(1,16)*W3*1/2;  
% AWT_seg4 = ones(1,16)*W4*1/2;  
% AWT_seg5 = ones(1,16)*W5*1/2;  
%  
% %Ideal cap weight, bottom row(C1-C80)  
% AWB_seg1 = ones(1,16)*W1*1/2;  
% AWB_seg2 = ones(1,16)*W2*1/2;  
% AWB_seg3 = ones(1,16)*W3*1/2;  
% AWB_seg4 = ones(1,16)*W4*1/2;  
% AWB_seg5 = ones(1,16)*W5*1/2;  
  
%Ideal cap weight, top row(C1-C80)  
AWT_seg1 = ones(1,16)*W1_mod;  
AWT_seg2 = ones(1,16)*W2_mod;  
AWT_seg3 = ones(1,16)*W3_mod;  
AWT_seg4 = ones(1,16)*W4_mod;  
AWT_seg5 = ones(1,16)*W5_mod;  
  
%Ideal cap weight, bottom row(C1-C80)  
AWB_seg1 = ones(1,16)*W1_mod;  
AWB_seg2 = ones(1,16)*W2_mod;  
AWB_seg3 = ones(1,16)*W3_mod;  
AWB_seg4 = ones(1,16)*W4_mod;  
AWB_seg5 = ones(1,16)*W5_mod;  
  
% Add some error to the bottom row cap in ADC_A, to  segment 1,2,3,4,5  
% Just like Book 6 page 36, 37 (zero basied error)  
  
R013108_MismatchA_non_zero;  
  
%Sample Voltage points  
S = length(Vin1);  
  
% Initialize Vx and Vy, and vcomp  
AVx = zeros(N+1,S);  
AVy = zeros(N+1,S);  
AVcomp = zeros(N+1,S);  
Astore_draw = zeros(S,5);  
% Anum1 = zeros(1,16);  
% Anum2 = zeros(1,16);  
% Anum3 = zeros(1,16);  
% Anum4 = zeros(1,16);  
% Anum5 = zeros(1,16);  
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% decision_matrix  
dA = zeros(N,length(Vin1));  
  
% reconstructed decision matrix  
new_dA = zeros(length(Vin2),80);  
  
% linear fit got from plotting Vx, Vy against Vin i n the ideal case  
% Assume it does not change much!?  
  
fity = [-0.468749927975927   1.249999974180060];  
fitx = [0.468749974761574   1.250000101936904];  
  
% Sample + Hold Mode  
% Vy is the bottom row, Vx is the top row  
% The linear fit helps to get the first Vx, Vy poin t. Afterwards, it's all  
% up to the weight.  
AVx(1,:) = fitx(1)*(Vin2-Vin1)+fitx(2);  
AVy(1,:) = fity(1)*(Vin2-Vin1)+fity(2);  
AVcomp(1,:) = AVy(1,:)-AVx(1,:);  
  
% Bit cycle mode  
  for  j = 1:S  
       
      % Initiating randomization. If num 1 = 8, then num2  = 9. the number 
goes in  
    % a wheel fashion  
     
    Adraw1 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum1(q) = mod(Adraw1+(q-1),16);  
         if  Anum1(q) == 0  
             Anum1(q) = 16;  
         end ;  
      end ;  
       
   Adraw2 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum2(q) = mod(Adraw2+(q-1),16);  
         if  Anum2(q) == 0  
             Anum2(q) = 16;  
         end ;  
      end ;    
       
   Adraw3 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum3(q) = mod(Adraw3+(q-1),16);  
         if  Anum3(q) == 0  
             Anum3(q) = 16;  
         end ;  
      end ;  
       
   Adraw4 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum4(q) = mod(Adraw4+(q-1),16);  
         if  Anum4(q) == 0  
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             Anum4(q) = 16;  
         end ;  
      end ;  
       
   Adraw5 = floor(16*rand)+1;     
      for  q = 1:16  
         Anum5(q) = mod(Adraw5+(q-1),16);  
         if  Anum5(q) == 0  
             Anum5(q) = 16;  
         end ;  
      end ;  
       
    Astore_draw(j,1:5) = [Adraw1 Adraw2 Adraw3 Adra w4 Adraw5];   
       
       
    Ab1 = find(Anum1 >=1 & Anum1 <= 8);  
    Ab2 = find(Anum1 >=9 & Anum1 <=12);  
    Ab3 = find(Anum1>=13 & Anum1 <= 14);  
    Ab4a = find(Anum1 == 15);  
    Aunused1 = find(Anum1 ==16);  
     
    Ab4b = find(Anum2 >=1 & Anum2 <= 8);  
    Ab5 = find(Anum2 >=9 & Anum2 <=12);  
    Ab6 = find(Anum2>=13 & Anum2 <= 14);  
    Ab7a = find(Anum2 == 15);  
    Aunused2 = find(Anum2 ==16);  
     
    Ab7b = find(Anum3 >=1 & Anum3 <= 8);  
    Ab8 = find(Anum3 >=9 & Anum3 <=12);  
    Ab9 = find(Anum3>=13 & Anum3 <= 14);  
    Ab10a = find(Anum3 == 15);  
    Aunused3 = find(Anum3 ==16);  
     
    Ab10b = find(Anum4 >=1 & Anum4 <= 8);  
    Ab11 = find(Anum4 >=9 & Anum4 <=12);  
    Ab12 = find(Anum4>=13 & Anum4 <= 14);  
    Ab13a = find(Anum4 == 15);  
    Aunused4 = find(Anum4 ==16);  
     
    Ab13b = find(Anum5 >=1 & Anum5 <= 8);  
    Ab14 = find(Anum5 >=9 & Anum5 <=12);  
    Ab15 = find(Anum5>=13 & Anum5 <= 14);  
    Ab16 = find(Anum5 == 15);  
    Aunused5 = find(Anum5 ==16);  
     
    % Sum up the weight used for each bit(Top row)  
    AWT(1) = sum(AWT_seg1(Ab1));  
    AWT(2) = sum(AWT_seg1(Ab2));  
    AWT(3) = sum(AWT_seg1(Ab3));  
    AWT(4) = sum(AWT_seg1(Ab4a));  
     
    AWT(5) = sum(AWT_seg2(Ab4b));  
    AWT(6) = sum(AWT_seg2(Ab5));  
    AWT(7) = sum(AWT_seg2(Ab6));  
    AWT(8) = sum(AWT_seg2(Ab7a));  
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    AWT(9)  = sum(AWT_seg3(Ab7b));  
    AWT(10) = sum(AWT_seg3(Ab8));  
    AWT(11) = sum(AWT_seg3(Ab9));  
    AWT(12) = sum(AWT_seg3(Ab10a));  
     
    AWT(13)  = sum(AWT_seg4(Ab10b));  
    AWT(14) = sum(AWT_seg4(Ab11));  
    AWT(15) = sum(AWT_seg4(Ab12));  
    AWT(16) = sum(AWT_seg4(Ab13a));  
     
    AWT(17)  = sum(AWT_seg5(Ab13b));  
    AWT(18) = sum(AWT_seg5(Ab14));  
    AWT(19) = sum(AWT_seg5(Ab15));  
    AWT(20) = sum(AWT_seg5(Ab16));  
     
    % Sum up the weight used for each bit(Bottom row)  
    AWB(1) = sum(AWB_seg1(Ab1));  
    AWB(2) = sum(AWB_seg1(Ab2));  
    AWB(3) = sum(AWB_seg1(Ab3));  
    AWB(4) = sum(AWB_seg1(Ab4a));  
     
    AWB(5) = sum(AWB_seg2(Ab4b));  
    AWB(6) = sum(AWB_seg2(Ab5));  
    AWB(7) = sum(AWB_seg2(Ab6));  
    AWB(8) = sum(AWB_seg2(Ab7a));  
     
    AWB(9)  = sum(AWB_seg3(Ab7b));  
    AWB(10) = sum(AWB_seg3(Ab8));  
    AWB(11) = sum(AWB_seg3(Ab9));  
    AWB(12) = sum(AWB_seg3(Ab10a));  
     
    AWB(13)  = sum(AWB_seg4(Ab10b));  
    AWB(14) = sum(AWB_seg4(Ab11));  
    AWB(15) = sum(AWB_seg4(Ab12));  
    AWB(16) = sum(AWB_seg4(Ab13a));  
     
    AWB(17)  = sum(AWB_seg5(Ab13b));  
    AWB(18) = sum(AWB_seg5(Ab14));  
    AWB(19) = sum(AWB_seg5(Ab15));  
    AWB(20) = sum(AWB_seg5(Ab16));  
         
    for  n = 1:N            
  
        dA(n,j) = -sign(AVcomp(n,j)-0+ randn*(30*10 ^-6));   
         
     % Only d= 1 and d=-1 is allowed. If d = 0, this ind icates Vin = Vdac,  
     % so a decision bit 1 should be assigned.  
  
        if  AVy(n,j)== AVx(n,j)  
           dA(n,j) = 1;  
        end ;  
         
       AVy(n+1,j) = AVy(n,j) + dA(n,j)*AWB(n);  
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       AVx(n+1,j) = AVx(n,j) - dA(n,j)*AWT(n);  
       AVcomp(n+1,j) = AVy(n+1,j) - AVx(n+1,j);   
     
  
     new_dA(j,Ab1) = dA(1,j);  
     new_dA(j,Ab2) = dA(2,j);  
     new_dA(j,Ab3) = dA(3,j);  
     new_dA(j,Ab4a) = dA(4,j);  
      
     new_dA(j,16+Ab4b) = dA(5,j);  
     new_dA(j,16+Ab5) = dA(6,j);  
     new_dA(j,16+Ab6) = dA(7,j);  
     new_dA(j,16+Ab7a) = dA(8,j);  
      
     new_dA(j,32+Ab7b) = dA(9,j);  
     new_dA(j,32+Ab8) = dA(10,j);  
     new_dA(j,32+Ab9) = dA(11,j);  
     new_dA(j,32+Ab10a) = dA(12,j);  
      
     new_dA(j,48+Ab10b) = dA(13,j);  
     new_dA(j,48+Ab11) = dA(14,j);  
     new_dA(j,48+Ab12) = dA(15,j);  
     new_dA(j,48+Ab13a) = dA(16,j);  
      
     new_dA(j,64+Ab13b) = dA(17,j);  
     new_dA(j,64+Ab14) = dA(18,j);  
     new_dA(j,64+Ab15) = dA(19,j);  
     new_dA(j,64+Ab16) = dA(20,j);      
  
    end ; %(for n loop)   
  
      
 end ; % (for j loop)  
%   
%%%%%%%%%%%%%%%%%%%%%ADC_A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ADC_B 
  
%Ideal cap weight, top row(C1-C80)  
BWT_seg1 = ones(1,16)*1/2*W1;  
BWT_seg2 = ones(1,16)*1/2*W2;  
BWT_seg3 = ones(1,16)*1/2*W3;  
BWT_seg4 = ones(1,16)*1/2*W4;  
BWT_seg5 = ones(1,16)*1/2*W5;  
  
%Ideal cap weight, bottom row(C1-C80)  
BWB_seg1 = ones(1,16)*1/2*W1;  
BWB_seg2 = ones(1,16)*1/2*W2;  
BWB_seg3 = ones(1,16)*1/2*W3;  
BWB_seg4 = ones(1,16)*1/2*W4;  
BWB_seg5 = ones(1,16)*1/2*W5;  
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% Add some error to the bottom row cap in ADC_B, to  segment 1,2,3,4,5  
% Just like Book 6 page 36, 37 (zero basied error)  
  
R013108_MismatchB;  
  
%Sample Voltage points  
S = length(Vin1);  
  
% Initialize Vx and Vy, and vcomp  
BVx = zeros(N+1,S);  
BVy = zeros(N+1,S);  
  
BVcomp = zeros(N+1,S);  
Bstore_draw = zeros(S,5);  
% Bnum1 = zeros(1,16);  
% Bnum2 = zeros(1,16);  
% Bnum3 = zeros(1,16);  
% Bnum4 = zeros(1,16);  
% Bnum5 = zeros(1,16);  
%  
% decision_matrix  
dB = zeros(N,length(Vin1));  
  
% reconstructed decision matrix  
new_dB = zeros(length(Vin2),80);  
  
% linear fit got from plotting Vx, Vy against Vin i n the ideal case  
% Assume it does not change much!?  
  
fity = [-0.468749927975927   1.249999974180060];  
fitx = [0.468749974761574   1.250000101936904];  
  
% Sample + Hold Mode  
% Vy is the bottom row, Vx is the top row  
% The linear fit helps to get the first Vx, Vy poin t. Afterwards, it's all  
% up to the weight.  
BVx(1,:) = fitx(1)*(Vin2-Vin1)+fitx(2);  
BVy(1,:) = fity(1)*(Vin2-Vin1)+fity(2);  
BVcomp(1,:) = BVy(1,:)-BVx(1,:);  
  
% Bit cycle mode  
  for  j = 1:S  
       
      % Initiating randomization. If num 1 = 8, then num2  = 9. the number 
goes in  
    % a wheel fashion  
     
    Bdraw1 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum1(q) = mod(Bdraw1+(q-1),16);  
         if  Bnum1(q) == 0  
             Bnum1(q) = 16;  
         end ;  
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      end ;  
       
   Bdraw2 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum2(q) = mod(Bdraw2+(q-1),16);  
         if  Bnum2(q) == 0  
             Bnum2(q) = 16;  
         end ;  
      end ;    
       
   Bdraw3 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum3(q) = mod(Bdraw3+(q-1),16);  
         if  Bnum3(q) == 0  
             Bnum3(q) = 16;  
         end ;  
      end ;  
       
   Bdraw4 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum4(q) = mod(Bdraw4+(q-1),16);  
         if  Bnum4(q) == 0  
             Bnum4(q) = 16;  
         end ;  
      end ;  
       
   Bdraw5 = floor(16*rand)+1;     
      for  q = 1:16  
         Bnum5(q) = mod(Bdraw5+(q-1),16);  
         if  Bnum5(q) == 0  
             Bnum5(q) = 16;  
         end ;  
      end ;    
    
    Bstore_draw(j,1:5) = [Bdraw1 Bdraw2 Bdraw3 Bdra w4 Bdraw5];   
       
    Bb1 = find(Bnum1 >=1 & Bnum1 <= 8);  
    Bb2 = find(Bnum1 >=9 & Bnum1 <=12);  
    Bb3 = find(Bnum1>=13 & Bnum1 <= 14);  
    Bb4a = find(Bnum1 == 15);  
    Bunused1 = find(Bnum1 ==16);  
     
    Bb4b = find(Bnum2 >=1 & Bnum2 <= 8);  
    Bb5 = find(Bnum2 >=9 & Bnum2 <=12);  
    Bb6 = find(Bnum2>=13 & Bnum2 <= 14);  
    Bb7a = find(Bnum2 == 15);  
    Bunused2 = find(Bnum2 ==16);  
     
    Bb7b = find(Bnum3 >=1 & Bnum3 <= 8);  
    Bb8 = find(Bnum3 >=9 & Bnum3 <=12);  
    Bb9 = find(Bnum3>=13 & Bnum3 <= 14);  
    Bb10a = find(Bnum3 == 15);  
    Bunused3 = find(Bnum3 ==16);  
     
    Bb10b = find(Bnum4 >=1 & Bnum4 <= 8);  
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    Bb11 = find(Bnum4 >=9 & Bnum4 <=12);  
    Bb12 = find(Bnum4>=13 & Bnum4 <= 14);  
    Bb13a = find(Bnum4 == 15);  
    Bunused4 = find(Bnum4 ==16);  
     
    Bb13b = find(Bnum5 >=1 & Bnum5 <= 8);  
    Bb14 = find(Bnum5 >=9 & Bnum5 <=12);  
    Bb15 = find(Bnum5>=13 & Bnum5 <= 14);  
    Bb16 = find(Bnum5 == 15);  
    Bunused5 = find(Bnum5 ==16);  
     
    % sum up the weights used for each bit(Top row)  
    BWT(1) = sum(BWT_seg1(Bb1));  
    BWT(2) = sum(BWT_seg1(Bb2));  
    BWT(3) = sum(BWT_seg1(Bb3));  
    BWT(4) = sum(BWT_seg1(Bb4a));  
     
    BWT(5) = sum(BWT_seg2(Bb4b));  
    BWT(6) = sum(BWT_seg2(Bb5));  
    BWT(7) = sum(BWT_seg2(Bb6));  
    BWT(8) = sum(BWT_seg2(Bb7a));  
     
    BWT(9)  = sum(BWT_seg3(Bb7b));  
    BWT(10) = sum(BWT_seg3(Bb8));  
    BWT(11) = sum(BWT_seg3(Bb9));  
    BWT(12) = sum(BWT_seg3(Bb10a));  
     
    BWT(13)  = sum(BWT_seg4(Bb10b));  
    BWT(14) = sum(BWT_seg4(Bb11));  
    BWT(15) = sum(BWT_seg4(Bb12));  
    BWT(16) = sum(BWT_seg4(Bb13a));  
     
    BWT(17)  = sum(BWT_seg5(Bb13b));  
    BWT(18) = sum(BWT_seg5(Bb14));  
    BWT(19) = sum(BWT_seg5(Bb15));  
    BWT(20) = sum(BWT_seg5(Bb16));  
     
    % sum up the weight used for each bit(Bottom row)  
    BWB(1) = sum(BWB_seg1(Bb1));  
    BWB(2) = sum(BWB_seg1(Bb2));  
    BWB(3) = sum(BWB_seg1(Bb3));  
    BWB(4) = sum(BWB_seg1(Bb4a));  
     
    BWB(5) = sum(BWB_seg2(Bb4b));  
    BWB(6) = sum(BWB_seg2(Bb5));  
    BWB(7) = sum(BWB_seg2(Bb6));  
    BWB(8) = sum(BWB_seg2(Bb7a));  
     
    BWB(9)  = sum(BWB_seg3(Bb7b));  
    BWB(10) = sum(BWB_seg3(Bb8));  
    BWB(11) = sum(BWB_seg3(Bb9));  
    BWB(12) = sum(BWB_seg3(Bb10a));  
     
    BWB(13)  = sum(BWB_seg4(Bb10b));  
    BWB(14) = sum(BWB_seg4(Bb11));  
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    BWB(15) = sum(BWB_seg4(Bb12));  
    BWB(16) = sum(BWB_seg4(Bb13a));  
     
    BWB(17)  = sum(BWB_seg5(Bb13b));  
    BWB(18) = sum(BWB_seg5(Bb14));  
    BWB(19) = sum(BWB_seg5(Bb15));  
    BWB(20) = sum(BWB_seg5(Bb16));  
         
    for  n = 1:N            
  
        dB(n,j) = -sign(BVcomp(n,j)-0 + randn*(30*1 0^-6));   
         
     % Only d= 1 and d=-1 is allowed. If d = 0, this ind icates Vin = Vdac,  
     % so a decision bit 1 should be assigned.  
  
        if  BVy(n,j)== BVx(n,j)  
           dB(n,j) = 1;  
        end ;  
         
       BVy(n+1,j) = BVy(n,j) + dB(n,j)*BWB(n);  
       BVx(n+1,j) = BVx(n,j) - dB(n,j)*BWT(n);  
       BVcomp(n+1,j) = BVy(n+1,j) - BVx(n+1,j);   
     
  
     new_dB(j,Bb1) = dB(1,j);  
     new_dB(j,Bb2) = dB(2,j);  
     new_dB(j,Bb3) = dB(3,j);  
     new_dB(j,Bb4a) = dB(4,j);  
      
     new_dB(j,16+Bb4b) = dB(5,j);  
     new_dB(j,16+Bb5) = dB(6,j);  
     new_dB(j,16+Bb6) = dB(7,j);  
     new_dB(j,16+Bb7a) = dB(8,j);  
      
     new_dB(j,32+Bb7b) = dB(9,j);  
     new_dB(j,32+Bb8) = dB(10,j);  
     new_dB(j,32+Bb9) = dB(11,j);  
     new_dB(j,32+Bb10a) = dB(12,j);  
      
     new_dB(j,48+Bb10b) = dB(13,j);  
     new_dB(j,48+Bb11) = dB(14,j);  
     new_dB(j,48+Bb12) = dB(15,j);  
     new_dB(j,48+Bb13a) = dB(16,j);  
      
     new_dB(j,64+Bb13b) = dB(17,j);  
     new_dB(j,64+Bb14) = dB(18,j);  
     new_dB(j,64+Bb15) = dB(19,j);  
     new_dB(j,64+Bb16) = dB(20,j);      
  
    end ; %(for n loop)   
  
      
 end ; % (for j loop)  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%ADC_B%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

Error correction algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%Error Correction Algorithm 
  
% % Initialization  
% dec_A = zeros(128,50);  
% dec_B = zeros(128,50);  
% err = zeros(100,1);  
  
  
%%% Redistribute decisions from ADCA and ADCB for e rror correction matrix  
for  i = 1:128  
     t1 = sum(new_dA(i,49:64));  
     t2 = sum(new_dA(i,65:80));  
     dec_A(i,:) = [new_dA(i,1:48) t1 t2];  
      
     t3 = sum(new_dB(i,49:64));  
     t4 = sum(new_dB(i,65:80));  
     dec_B(i,:) = [new_dB(i,1:48) t3 t4];  
  
 end  
      
 % Setting up parameters      
 mu = 2^13;  
 dec = [dec_B -dec_A];  
 del_x = dec_B*WBside - dec_A*WAside;  
    
 %%%%% Store the 128 set of decisions and del_x into  temp  
 temp_dec = dec;  
 temp_del_x = del_x;  
    
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%Core of error correction algorithm  
%%%% It is essentially doing what Book 6 p1 is doin g 
  
%% Small LMS loop for estimating error for each 128  conversions  
for  j = 1:100  
    for  i = 1:128  
       if  dec(i,j) < 0  
           temp_dec(i,:) = -temp_dec(i,:);  
           temp_del_x(i) = -temp_del_x(i);  
       end  
        
       if  dec(i,j) == 0  
           temp_del_x(i) = 0;  
       end  
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    end  
     
    err(j,1) = sum(temp_del_x)/mu;  
    temp_dec = dec;  
    temp_del_x = del_x;      
  
end  
  
% Update WB, WA and as a result, delta_x  
WBside = WBside - err(1:50);  
WAside = WAside - err(51:100);  
  
% Storing and see how each of the 100 weight error evolve  
% over the x set of 128 conversions  
my_err(1:100,x) = err;  
my_weight(1:100,x) = [WBside; WAside];  
     
  
%%%%%%%%%%%%%%End of Error Correction Algorithm  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Adaptation for various input signal 

Interface between mixed signal IC and FPGA control 

clear all ;  
close all ;  
clc;  
  
%%%%%%%%%Overall function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This code do several things  
%1) Set up the ADC parameters  
%2.) Plot ADC error before correction  
%3.) Apply error correction algorithm  
%4.) Plot ADC error after correction  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%N denotes the number of bits of the ADC  
N = 20;  
  
%These are weights got from the perfect 16 bit ADC step size (Book5 pg 54)  
W1 = 0.145837866667;  
W2 = W1/8;  
W3 = W2/8;  
W4 = W3/8;  
W5 = W4/8;  
  
%conv denotes set of conversion  
conv = 10000;  
  
%This denotes the initial weight used for both ADC_ A and ADC_B in the  
%digital to analog interface. The decisions from AD C_A will by muliplied  
%by the estimated weight WA to get the analog volta ge. The same happen for  
%ADC_B. We assume we DO NOT KNOW of any error in th e ADC itself, so we can  
%just estimate them  
  
WA = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];  
   
WB = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];     
   
Anum1 = zeros(1,16);  
Anum2 = zeros(1,16);  
Anum3 = zeros(1,16);  
Anum4 = zeros(1,16);  
Anum5 = zeros(1,16);  
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Bnum1 = zeros(1,16);  
Bnum2 = zeros(1,16);  
Bnum3 = zeros(1,16);  
Bnum4 = zeros(1,16);  
Bnum5 = zeros(1,16);  
  
%Initialization  
dec_A = zeros(128,50);  
dec_B = zeros(128,50);  
dec = zeros(128,100);  
del_x = zeros(128,1);  
  
err = zeros(100,1);  
my_err = zeros(100,conv);  
ADC_error = zeros(128,conv);  
  
mu = 2^13;  
  
%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%Error correction 
  
%%%%%%%%%%%%Sine Input 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% 
%Supply a sine input  
resolution = 0:1e-3:1280;  
Input2 = 1.25*sin(resolution)+1.25;  
Input1 = -1.25*sin(resolution)+1.25;  
  
%Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(1)  
plot(resolution(1:10000),Input2(1:10000), resolutio n(1:10000), 
Input1(1:10000));  
  
%Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
%WAside and WBside serve as the updated weight. For  each 128 conversions,  
%They will be updated  
  
WAside = [WA(1:48); q1; q2];  
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WBside = [WB(1:48); q3; q4];  
  
for  x = 1: conv  
         
     %This is for sine input only. Using different parts  of the sine  
     %signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    %Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    %Apply error correction  
    R013108_error_correction;  
end  
  
%Storing and see how each of the 100 weight error e volve  
%over the x set of 128 conversions  
sine_err = my_err;  
sine_error = ADC_error;  
  
  
%%%%%%%%%%%Sine Input 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%DC Input(0.9 FS) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% 
%Supply a DC input(0.9 FS)  
Input2 = 2.375*ones(1,1280000);  
Input1 = 0.125*ones(1,1280000);  
  
%Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(2)  
plot(1:10000,Input2(1:10000), 1:10000, Input1(1:100 00));  
  
%Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
%WAside and WBside serve as the updated weight. For  each 128 conversions,  
%They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
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for  x = 1: conv  
         
     %This is for sine input only. Using different parts  of the sine  
     %signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    %Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    %Apply error correction  
    R013108_error_correction;  
end  
  
%Storing and see how each of the 100 weight error e volve  
%over the x set of 128 conversions  
DC09_err = my_err;  
DC09_error = ADC_error;  
  
  
%%%%%%%%%%%%DC Input (0.9 FS) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%DC Input(0.1 FS) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
%Supply a DC input(0.1 FS)  
Input2 = 1.375*ones(1,1280000);  
Input1 = 1.125*ones(1,1280000);  
  
%Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(3)  
plot(1:10000,Input2(1:10000), 1:10000, Input1(1:100 00));  
  
%Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
%WAside and WBside serve as the updated weight. For  each 128 conversions,  
%They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
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for  x = 1: conv  
         
     %This is for sine input only. Using different parts  of the sine  
     %signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    %Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    %Apply error correction  
    R013108_error_correction;  
end  
  
%Storing and see how each of the 100 weight error e volve  
%over the x set of 128 conversions  
DC01_err = my_err;  
DC01_error = ADC_error;  
  
%%%%%%%%%%%%%%%DC Input (0.1 FS) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%Random  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
%Supply Random Input  
Input2 = 2.4*rand(1,1280000);  
Input1 = 2.4-2.4*rand(1,1280000);  
  
%Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(4)  
plot(1:10000,Input2(1:10000), 1:10000, Input1(1:100 00));  
  
%Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
%WAside and WBside serve as the updated weight. For  each 128 conversions,  
%They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
  
for  x = 1: conv  
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     %This is for sine input only. Using different parts  of the sine  
     %signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    %Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    %Apply error correction  
    R013108_error_correction;  
end  
  
%Storing and see how each of the 100 weight error e volve  
%over the x set of 128 conversions  
random_err = my_err;  
random_error = ADC_error;  
  
  
%%%%%%%%%%%%%%Random 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%Error correction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%Plot ADC error after error correction  
  
%Plot how error1 evolves over x set of 128 conversi on 
%error1 in this case is the first cap weight error in ADC_B  
conversion = 128*(1:x);  
VLSB = 5/2^16;  
sine_error = sine_error/VLSB;  
DC09_error = DC09_error/VLSB;  
DC01_error = DC01_error/VLSB;  
random_error = random_error/VLSB;  
  
figure(5)  
semilogy(conversion,abs(sine_err(1,:)),conversion,a bs(DC09_err(1,:)),conversi
on,abs(DC01_err(1,:)),conversion,abs(random_err(1,: )));  
grid;  
title( 'Evolution of weight error over time' );  
xlabel( 'Conversion Index' );  
ylabel( 'Error(V)' );  
legend( 'Sine Wave' , 'DC(0.9 FS)' , 'DC(0.1 FS)' , 'Random' );  
  
figure(6)  
semilogy(conversion, abs(sine_error(1,:)), conversi on, 
abs(DC09_error(1,:)),conversion, abs(DC01_error(1,: )),conversion, 
abs(random_error(1,:)));  
grid;  
title( 'ADC error' );  
xlabel( 'Conversion Index' );  
ylabel( 'ADC error(LSB)' );  
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legend( 'Sine Wave' , 'DC(0.9 FS)' , 'DC(0.1 FS)' , 'Random' );  
  
% To calculate standard deviation  
% std of weight error  
sine_err_std = std(sine_err(1,8000:10000))  
DC09_err_std = std(DC09_err(1,8000:10000))  
DC01_err_std = std(DC01_err(1,8000:10000))  
random_err_std = std(random_err(1,8000:10000))  
  
% std of ADC error(LSB)  
sine_error_std = std(sine_error(1,8000:10000))  
DC09_error_std = std(DC09_error(1,8000:10000))  
DC01_error_std = std(DC01_error(1,8000:10000))  
random_error_std = std(random_error(1,8000:10000))  
  
  
% %%%%%%%%%%%%%Plot ADC error after error correctio n 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Modified SAR ADC  

Same as before     

Error Correction Algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%Error Correction Algorithm 
  
% % Initialization  
% dec_A = zeros(128,50);  
% dec_B = zeros(128,50);  
% err = zeros(100,1);  
  
  
%%% Redistribute decisions from ADCA and ADCB for e rror correction matrix  
for  i = 1:128  
     t1 = sum(new_dA(i,49:64));  
     t2 = sum(new_dA(i,65:80));  
     dec_A(i,:) = [new_dA(i,1:48) t1 t2];  
      
     t3 = sum(new_dB(i,49:64));  
     t4 = sum(new_dB(i,65:80));  
     dec_B(i,:) = [new_dB(i,1:48) t3 t4];  
  
 end  
      
 % Setting up parameters      
  
 dec = [dec_B -dec_A];  
 del_x = dec_B*WBside - dec_A*WAside;  
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 %%%%% Store the 128 set of decisions and del_x into  temp  
 temp_dec = dec;  
 temp_del_x = del_x;  
    
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%Core of error correction algorithm  
%%%% It is essentially doing what Book 6 p1 is doin g 
  
%% Small LMS loop for estimating error for each 128  conversions  
for  j = 1:100  
    for  i = 1:128  
       if  dec(i,j) < 0  
           temp_dec(i,:) = -temp_dec(i,:);  
           temp_del_x(i) = -temp_del_x(i);  
       end  
        
       if  dec(i,j) == 0  
           temp_del_x(i) = 0;  
       end  
        
    end  
     
    err(j,1) = sum(temp_del_x)/mu;  
    temp_dec = dec;  
    temp_del_x = del_x;      
  
end  
  
% Update WB, WA and as a result, delta_x  
WBside = WBside - err(1:50);  
WAside = WAside - err(51:100);  
  
% Storing and see how each of the 100 weight error evolve  
% over the x set of 128 conversions  
my_err(1:100,x) = err;  
%my_weight(1:100,x) = [WBside; WAside];  
ADC_error(1:128,x) = (dec_B*err(1:50)+dec_A*err(51: 100))/2;  
     
  
%%%%%%%%%%%%%%End of Error Correction Algorithm  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Effect of different mu 

Interface between mixed signal IC and external FPGA control 

clear all ;  
close all ;  
clc;  
  
%%%%%%%%%%Overall function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% This code do several things  
%1) Set up the ADC parameters  
%2.) Plot ADC error before correction  
%3.) Apply error correction algorithm  
%4.) Plot ADC error after correction  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% N denotes the number of bits of the ADC  
N = 20;  
  
 % These are weights got from the perfect 16 bit ADC  step size (Book5 pg 54)  
W1 = 0.145837866667;  
W2 = W1/8;  
W3 = W2/8;  
W4 = W3/8;  
W5 = W4/8;  
  
% This denotes the initial weight used for both ADC _A and ADC_B in the  
% digital to analog interface. The decisions from A DC_A will by muliplied  
% by the estimated weight WA to get the analog volt age. The same happen for  
% ADC_B. We assume we DO NOT KNOW of any error in t he ADC itself, so we can  
% just estimate them  
  
WA = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];  
   
WB = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];   
   
Anum1 = zeros(1,16);  
Anum2 = zeros(1,16);  
Anum3 = zeros(1,16);  
Anum4 = zeros(1,16);  
Anum5 = zeros(1,16);  
  
Bnum1 = zeros(1,16);  
Bnum2 = zeros(1,16);  
Bnum3 = zeros(1,16);  
Bnum4 = zeros(1,16);  
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Bnum5 = zeros(1,16);  
  
% Initialization  
dec_A = zeros(128,50);  
dec_B = zeros(128,50);  
dec = zeros(128,100);  
del_x = zeros(128,1);  
  
err = zeros(100,1);  
my_err = zeros(100,10000);  
ADC_error = zeros(128,10000);  
  
  
%%%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%Error correction 
  
%%%%%%%%%%%%%%1st mu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
% Supply a sine input  
resolution = 0:1e-3:1280;  
Input2 = 1.25*sin(resolution)+1.25;  
Input1 = -1.25*sin(resolution)+1.25;  
mu = 2^16;  
  
% Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(1)  
plot(resolution(1:10000),Input2(1:10000), resolutio n(1:10000), 
Input1(1:10000));  
  
% Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
% WAside and WBside serve as the updated weight. Fo r each 128 conversions,  
% They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
  
for  x = 1: 10000  
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     % This is for sine input only. Using different part s of the sine  
     % signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    % Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    % Apply error correction  
    R013108_error_correction;  
end  
  
% Storing and see how each of the 100 weight error evolve  
% over the x set of 128 conversions  
sine1_err = my_err;  
sine1_error = ADC_error;  
  
  
%%%%%%%%%%%%%%%%1st mu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%2nd mu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
mu = 2^14;  
  
% Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
% WAside and WBside serve as the updated weight. Fo r each 128 conversions,  
% They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
  
for  x = 1: 10000  
         
     % This is for sine input only. Using different part s of the sine  
     % signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    % Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    % Apply error correction  
    R013108_error_correction;  
end  
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% Storing and see how each of the 100 weight error evolve  
% over the x set of 128 conversions  
sine2_err = my_err;  
sine2_error = ADC_error;  
  
  
%%%%%%%%%%%%%%%%2nd mu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%3nd mu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
  
mu = 2^12;  
  
% Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
% WAside and WBside serve as the updated weight. Fo r each 128 conversions,  
% They will be updated  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
  
for  x = 1: 10000  
         
     % This is for sine input only. Using different part s of the sine  
     % signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    % Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    % Apply error correction  
    R013108_error_correction;  
end  
  
% Storing and see how each of the 100 weight error evolve  
% over the x set of 128 conversions  
sine3_err = my_err;  
sine3_error = ADC_error;  
  
  
%%%%%%%%%%%%%%%%3rd mu 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%Error correction 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%Plot ADC error after error correction  
  
%Plot how error1 evolves over x set of 128 conversi on 
%error1 in this case is the first cap weight error in ADC_B  
conversion = 128*(1:x);  
VLSB = 5/2^16;  
sine1_error = sine1_error/VLSB;  
sine2_error = sine2_error/VLSB;  
sine3_error = sine3_error/VLSB;  
  
figure(2)  
semilogy(conversion,abs(sine1_err(1,:)),conversion, abs(sine2_err(1,:)),conver
sion,abs(sine3_err(1,:)));  
grid;  
title( 'Evolution of weight error over time' );  
xlabel( 'Conversion Index' );  
ylabel( 'Error(V)' );  
legend( 'u = 2^-16' , 'u = 2^-14' , 'u = 2^-12' );  
  
figure(3)  
semilogy(conversion, abs(sine1_error(1,:)), convers ion, 
abs(sine2_error(1,:)),conversion, abs(sine3_error(1 ,:)));  
grid;  
title( 'ADC error' );  
xlabel( 'Conversion Index' );  
ylabel( 'ADC error(LSB)' );  
legend( 'u = 2^-16' , 'u = 2^-14' , 'u = 2^-12' );  
  
% To calculate standard deviation  
% std of weight error  
sine1_err_std = std(sine1_err(1,8000:10000))  
sine2_err_std = std(sine2_err(1,8000:10000))  
sine3_err_std = std(sine3_err(1,8000:10000))  
  
% std of ADC error(LSB)  
sine1_error_std = std(sine1_error(1,8000:10000))  
sine2_error_std = std(sine2_error(1,8000:10000))  
sine3_error_std = std(sine3_error(1,8000:10000))  
  
% %%%%%%%%%%%%%Plot ADC error after error correctio n 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Modified SAR ADC 

Same as before 

Error Correction 

Same as before 
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Frequency Response 

Interface between mixed signal IC and external FPGA 

clear all ;  
close all ;  
clc;  
  
%%%%%%%%%%Overall function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% This code do several things  
%1) Set up the ADC parameters  
%2.) Plot ADC error before correction  
%3.) Apply error correction algorithm  
%4.) Plot ADC error after correction  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% N denotes the number of bits of the ADC  
N = 20;  
  
 % These are weights got from the perfect 16 bit ADC  step size (Book5 pg 54)  
W1 = 0.145837866667;  
W2 = W1/8;  
W3 = W2/8;  
W4 = W3/8;  
W5 = W4/8;  
  
% This denotes the initial weight used for both ADC _A and ADC_B in the  
% digital to analog interface. The decisions from A DC_A will by muliplied  
% by the estimated weight WA to get the analog volt age. The same happen for  
% ADC_B. We assume we DO NOT KNOW of any error in t he ADC itself, so we can  
% just estimate them  
  
WA = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];  
   
WB = [W1*ones(16,1);  
      W2*ones(16,1);  
      W3*ones(16,1);  
      W4*ones(16,1);  
      W5*ones(16,1)];   
   
   
% Initialization for before/after plot  
  
Anum1 = zeros(1,16);  
Anum2 = zeros(1,16);  
Anum3 = zeros(1,16);  
Anum4 = zeros(1,16);  
Anum5 = zeros(1,16);  
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Bnum1 = zeros(1,16);  
Bnum2 = zeros(1,16);  
Bnum3 = zeros(1,16);  
Bnum4 = zeros(1,16);  
Bnum5 = zeros(1,16);  
  
% Initialization  
dec_A = zeros(128,50);  
dec_B = zeros(128,50);  
err = zeros(100,1);  
dec_A_no_cal = zeros(10000,50);  
dec_B_no_cal = zeros(10000,50);  
dec_A_cal = zeros(10000,50);  
dec_B_cal = zeros(10000,50);  
  
%%%%%%%%%%%%%%%%ADC setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%Frequency Response of Original Signal (With some noise)  
  
% Supply a sine input  
resolution = 0:(2*pi/10):1280000*2*pi/10;  
Input2 = 1.25*sin(resolution)+1.25;  
Input1 = -1.25*sin(resolution)+1.25;  
  
% Add some noise  
for  i = 1: length(Input2)  
    Input1(i) = Input1(i)+ randn*(30*10^-6);  
    Input2(i) = Input2(i)+ randn*(30*10^-6);  
end      
  
figure(1)  
plot(resolution(1:20),Input2(1:20), '*' , resolution(1:20), Input1(1:20), 'o' );  
  
data = Input2(1:10000)-Input1(1:10000);  
  
% Number of points sampled  
n = 10000;  
  
% sampling freqency  
fs = 1e6;  
  
% Time axis  
dt = 1/fs;  
T = dt*n;  
t = 0:dt:dt*(n-1);  
  
% frequency axis  
df = 1/T;  
fmax = 1/2*fs;  
freq = [-fmax:df:fmax-df];  
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Vin_spec=fftshift(abs(fft(data)));  
Vin_spec_square = abs(Vin_spec).^2;  
spec_max = max(Vin_spec_square);  
Vin_spec_square_dB = 10*log10(Vin_spec_square/spec_ max);  
figure(2)  
plot(freq(5000:10000)/1000,Vin_spec_square_dB(5000: 10000));  
axis([0 500 -140 1]);  
xlabel( 'frequency(kHz)' );  
ylabel( 'Magnitude(dB)' );  
title( 'Frequency spectrum' );  
  
%%%%%%%%%%%%%%%%%Frequency Response with Original Signal(with some noise)%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%Frequency Response(uncalibrated ADC)%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Vin2 = Input2(1:10000);  
Vin1 = Input1(1:10000);  
R013108_ADC_16bit_randomization;  
  
% Rearranging weight  
%group cap weight in segment 4 as one  
%group cap weight in segment 5 as one  
q1 = sum(WA(49:64,1));  
q2 = sum(WA(65:80,1));  
q3 = sum(WB(49:64,1));  
q4 = sum(WB(65:80,1));  
  
WAside = [WA(1:48); q1; q2];  
WBside = [WB(1:48); q3; q4];  
  
for  i = 1:length(Vin1)  
    t1 = sum(new_dA(i,49:64));  
    t2 = sum(new_dA(i,65:80));  
    dec_A_no_cal(i,:) = [new_dA(i,1:48) t1 t2];  
  
    t3 = sum(new_dB(i,49:64));  
    t4 = sum(new_dB(i,65:80));  
    dec_B__no_cal(i,:) = [new_dB(i,1:48) t3 t4];  
end  
  
% Getting the analog output code(no calibration)  
Vin_bar_after = (dec_B_no_cal*WBside + dec_A_no_cal *WAside)/2;  
Vin_after_spec=fftshift(abs(fft(Vin_bar_after)));  
Vin_after_spec_square = abs(Vin_after_spec).^2;  
spec_max_after = max(Vin_after_spec_square);  
Vin_after_spec_square_dB = 10*log10(Vin_after_spec_ square/spec_max_after);  
  
figure(3)  
plot(freq(5000:10000)/1000,Vin_after_spec_square_dB (5000:10000));  
axis([0 500 -90 1]);  
xlabel( 'frequency(kHz)' );  
ylabel( 'Magnitude(dB)' );  
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title( 'Frequency spectrum' );  
  
%%%%%%%%%%%Frequency Response(uncalibrated ADC)%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%Frequency Response(calibrated ADC)%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
for  x = 1: 10000  
         
     % This is for sine input only. Using different part s of the sine  
     % signal for error correction  
     Vin2 = Input2(1,128*(x-1)+1: 128*x);  
     Vin1 = Input1(1,128*(x-1)+1: 128*x);  
     
    % Convert using ADC code  
    R013108_ADC_16bit_randomization;  
    % Apply error correction  
    R013108_error_correction;  
end  
  
Vin2 = Input2(1:10000);  
Vin1 = Input1(1:10000);  
R013108_ADC_16bit_randomization;  
  
for  i = 1:length(Vin1)  
    t1 = sum(new_dA(i,49:64));  
    t2 = sum(new_dA(i,65:80));  
    dec_A_cal(i,:) = [new_dA(i,1:48) t1 t2];  
  
    t3 = sum(new_dB(i,49:64));  
    t4 = sum(new_dB(i,65:80));  
    dec_B_cal(i,:) = [new_dB(i,1:48) t3 t4];  
end  
  
% Getting the analog output code(with calibration)  
Vin_cal = (dec_B_cal*WBside + dec_A_cal*WAside)/2;  
Vin_cal_spec=fftshift(abs(fft(Vin_cal)));  
Vin_cal_square = abs(Vin_cal_spec).^2;  
spec_max_cal = max(Vin_cal_square);  
Vin_cal_square_dB = 10*log10(Vin_cal_square/spec_ma x_cal);  
  
figure(4)  
plot(freq(5000:10000)/1000,Vin_cal_square_dB(5000:1 0000));  
axis([0 500 -140 1]);  
xlabel( 'frequency(kHz)' );  
ylabel( 'Magnitude(dB)' );  
title( 'Frequency spectrum' );  
  
%%%%%%%%%%%%Frequency Response(calibrated ADC)%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Modified SAR ADC 

Same as before 

Error correction algorithm 

Same as before 
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Appendix E  

Bond Wire Data 
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Appendix F 

Matlab code used for calculating the values of coupling capacitors 

clear all ;  
close all ;  
clc;  
  
Cp1 = 16; % in pF  
Cp2 = 2; % in pF  
  
syms Cc2 Cc3 Cc4 
  
Z4 = Cc4*Cp2/(Cc4+Cp2);  
Z3 = (Cp2+Z4)*Cc3/(Cp2+Z4+Cc3);  
Z2 = (Cp2+Z3)*Cc2/(Cp2+Z3+Cc2);  
  
Z2R = Cp1+Cp2;  
Z3R = Z2R*Cc2/(Z2R+Cc2);  
Z4R = (Cp2+Z3R)*Cc3/(Cp2+Z3R+Cc3);  
Z1R = (Cp2+Z4R)*Cc4/(Cp2+Z4R+Cc4);  
  
eq2 = simplify((Cc2+Cp1+Cp2)*(Cp2+Z3+Z3R)/(Cc2*(Cp1 +Cp2+Z2)));  
eq3 = simplify((Cc3+Z3R+Cp2)*(Cp2+Z4+Z4R)/(Cc3*(Cp2 +Z3+Z3R)));  
eq4 = simplify((Cc4+Z4R+Cp2)*(Cp2+Z1R)/(Cc4*(Cp2+Z4 +Z4R)));  
  
 EQ2 
='(8*Cc4+8+6*Cc3*Cc4+8*Cc3+4*Cc4*Cc2+4*Cc2+Cc3*Cc4*C c2+2*Cc3*Cc2)/Cc2/(4*Cc4+
4+Cc3*Cc4+2*Cc3)=8' ;  
 EQ3 = '(4*Cc4+4+Cc3*Cc4+2*Cc3)/Cc3/(Cc4+2)=8' ;  
 EQ4 = '(Cc4+2)/Cc4=8' ;  
  
 [Cc2, Cc3, Cc4] = solve(EQ2,EQ3,EQ4,Cc2,Cc3,Cc4)  
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Appendix G 

Matlab code used for calculating harmonic distortion 

Appendix 5C  Matlab code for calculating harmonic distortion 

clear all ;  
close all ;  
clc;  
  
data = load( 'ahdli752.txt' );  
  
% signal frequency  
f = 500000;  
  
% Number of points sampled at one period  
N = 10000;  
  
% sampling freqency  
fs = 5e9;  
  
% Time axis  
dt = 1/fs;  
T = dt*N;  
t = 0:dt:dt*(N-1);  
  
% frequency axis  
df = 1/T;  
fmax = 1/2*fs;  
freq = [-fmax:df:fmax-df];  
  
figure(1)  
plot(t*10^6,data(1:10000,2), 'r*' );  
xlabel( 'Time(us)' );  
ylabel( 'Voltage(V)' );  
hold on;  
plot(t*10^6,data(1:10000,3), 'b+' );  
legend( 'Vin' , 'Vhold' );  
hold off ;  
  
Vin_spec=fftshift(abs(fft(data(1:10000,2))));  
Vhold_spec =fftshift(abs(fft(data(1:10000,3))));  
  
figure(2)  
subplot(2,1,1);  
stem(freq,Vin_spec);  
xlabel( 'frequency(Hz)' );  
ylabel( 'Magnitude of Vin' );  
%axis([-2.5e7 0.5e7 0 3]);  
title( 'Frequency spectrum' );  
  
subplot(2,1,2);  
stem(freq,Vhold_spec);  
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%axis([-0.5e7 0.5e7 0 3]);  
  
xlabel( 'frequency(Hz)' );  
ylabel( 'Magnitude of Vhold' );  
  
% To calculate THD  
Vhold_spec_sqr = Vhold_spec.^2;  
loc = find(freq>f,1);  
Vh_sqr_sum = sum(Vhold_spec_sqr(loc+1:N,1));  
Vf_sqr = Vhold_spec_sqr(loc-1,1);  
THD = 10*log10(Vh_sqr_sum/Vf_sqr);  
 

 

 


	Worcester Polytechnic Institute
	Digital WPI
	2008-04-30

	Applying the "Split-ADC" Architecture to a 16 bit, 1 MS/s differential Successive Approximation Analog-to-Digital Converter
	Ka Yan Chan
	Repository Citation


	tmp.1530275769.pdf.QbYki

