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Abstract

The desire to follow student learning within intelligent tutoring systems in near

real time has led to the development of several models anticipating the correctness

of the next item as students work through an assignment. Such models have in-

cluded Bayesian Knowledge Tracing (BKT), Performance Factors Analysis (PFA),

and more recently with developments in Deep Learning, Deep Knowledge Tracing

(DKT). The DKT model, based on the use of a recurrent neural network, exhibited

promising results in paper [PBH+15].

Thus far, however, the model has only considered the knowledge components of

the problems and correctness as input, neglecting the breadth of other features col-

lected by computer-based learning platforms. This work seeks to improve upon the

DKT model by incorporating more features at the problem-level and student-level.

With this higher dimensional input, an adaption to the original DKT model struc-

ture is also proposed, incorporating an Autoencoder network layer to convert the

input into a low dimensional feature vector to reduce both the resource requirement

and time needed to train.

Experimental results show that our adapted DKT model, which includes more

combinations of features, can effectively improve accuracy.
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Chapter 1

Knowledge Tracing

The goal of knowledge inference is to measure what relevant knowledge components

a student knows at a specific time. Inferring student knowledge allows us to adapt

to differences in what students know; for instance, if we believe that a student does

not yet know the skill they are working on, more exercises can be given until he or

she reach mastery. Although the knowledge component, which may be skill, fact,

concept or principle, is not directly measurable, we can look at students’ performance

at the knowledge component. Knowledge tracing models that attempt to follow

the progression of student learning often represent student knowledge as a latent

variable. As students work on new problems, these models update their estimates

of student knowledge based on the correctness of responses. The problem is time

series prediction, as student performance on previous items is indicative of future

performance. Models then use the series of questions a student has attempted

previously and the correctness of each question to predict the students performance

on a new problem. In other words, the model predict the correctness of the next

problem correctness (NPC). Two well-known models, Bayesian Knowledge tracing

(BKT)[CA94] and Performance Factor Analysis(PFA) [JCK09] have been widely
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explored due to their ability to capture this progression of knowledge with reliable

accuracy. Both of these models exhibit success in terms of predictive accuracy but

use different algorithms to estimate student knowledge

1.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT), first suggested by Atkinson [1972][Atk72] and

more thoroughly discussed by Corbett & Anderson [1995][CA94], is probably the

most popular algorithm for modeling student learning. BKT is a simple Bayesian

Network as well as being a first order Markov process. BKT attempts to assess the

latent variable of the students knowledge state, using the students performance to

make that inference. This model assumes that at any given opportunity to demon-

strate a skill, the knowledge state of a student is a binary variable, mastered or

not, and the observed performance is a correct or incorrect response. It updates

the probability that the student has mastered the skill based on their performance

on each opportunity to demonstrate the skill. In classical BKT, only the first at-

tempt for each opportunity is taken into account, and it is assumed that each item

corresponds to only a single skill. In its original formulation, a different set of four

parameters is fit for each skill, the first two are learning parameters while the last

two are performance parameters.

• P (L0) – probability the skill is already mastered before the first opportunity

to use the skill in problem solving.

• P (T ) – probability the skill will be learned at each opportunity to use the

skill.

• P (G) – probability the student will guess correctly if the skill is not mastered.
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• P (S) – probability the student will make a mistake if the skill is mastered.

The equations are used to infer student latent knowledge from performance. Actualn

means the actual correctness of the exercise.

P (Ln−1|Correctn) =
P (Ln−1 ∗ (1− P (S)))

P (Ln−1) ∗ (1− P (S)) + (1− P (Ln−1)) ∗ P (G)
(1.1)

P (Ln|Incorrectn) =
P (Ln−1) ∗ P (S)

P (Ln−1) ∗ P (S) + (1− P (Ln−1) ∗ (1− P (G)))
(1.2)

P (Ln|Actualn) = P (Ln−1|Actualn) + ((1− P (Ln−1|Actualn) ∗ P (T ))) (1.3)

Both the expectation maximization algorithm and grid search have been used to

estimate the parameters from training data. The assumption is made that students

do not forgot a skill once they have learned it. Another assumption is that all

items, within the same skill, have the same difficulty, and that no contextual factors

(beyond what skill it is) impact student performance or learning.

The last decade has seen many different variants which attempt to enhance BKT

by either relaxing one of its assumptions or considering additional information. Most

of the papers studying enhancements of BKT have evaluated the improvement in

terms of NPC. For example, research have contextualized parameter estimates based

on time and number of attempts by [Baker, Corbett,& Aleven, 2008][dBCA08], the

use of help [Beck et al., 2008][BCMC08], the students success on past skills and

item difficulty [Pardos & Heffernan, 2010a[PH10]; Khajah et al., 2014[KWLM14]].

Researchers have also attempted to give students partial credit rather than assuming

correctness is binary [Wang, Heffernan, & Beck, 2010[WHB10]]. These extensions

greatly improved the BKT model prediction accuracy and were widely adopted in

implementation of ITS.
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1.2 Performance Factor Analysis

A second popular model for representing student knowledge is Performance Factor

Analysis (PFA) [JCK09], a logistic regression model. PFA predicts the probability

that the student will get the next item correct but does not represent the students

amount of latent skill directly. One key difference between PFA and BKT is that

PFA does not assume that each item corresponds to only one skill; an item may

correspond to an arbitrarily large number of skills. Three parameters are computed

for each skill:

• β – the difficulty of the skill

• γ – the effect of success on future performance

• ρ – the effect of failure on future performance

From these parameters, and the number of successes and failures the student has

had on each relevant skill so far, the probability P (m) that the learner will get the

next item correct can be computed according to the following formula. Typically

Expectation Maximization is used to fit the parameters.

m(i, j ∈ KCs, s, f) =
∑

j∈KCs

(βj + γjsi,j + ρjfi,j) (1.4)

P (m) =
1

1 + e−m
(1.5)

PFA is a competitor for measuring student skill, which predicts the probability of

correctness rather than latent knowledge. Handling multiple knowledge component

for the same item is a big virtue for PFA.
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1.3 Deep Knowledge Tracing

Deep knowledge tracing (DKT), introduced in paper [PBH+15], applies a Recurrent

Neural Network (RNN) for this educational data mining task of following the pro-

gression of student knowledge. Similar to BKT, this adaptation observes knowledge

at both the skill level, observing which knowledge component is involved in the task,

and the problem level, observing correctness of each problem. The input layer of

the DKT model is described as an exercise-performance pair of a student which is

encoded using one-hot of cross features, the hidden layer is LSTM nodes, and the

output layer is the correctness prediction of every knowledge component. In sum-

mary, the skill and correctness of each time step is used to predict the correctness

of the next time step, given the skill that the problem belong to.

Figure 1.1: DKT model [PBH+15]

The DKT algorithm uses a RNN to represent the latent knowledge state, along

with its temporal dynamics. As a student progresses through an assignment, it

attempts to utilize information from previous time steps, to make better inferences

regarding future performance. Specifically, the DKT model implements a popular
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variant of RNN, Long Short-Term Memory (LSTM), that employs cell states and

three gates to determine how much information to remember from previous time

steps and also how to combine that memory with information from the current time

step.1

In paper [PBH+15], the training objective is the negative log likelihood of the

observed sequence of student response under the model. δ(qt + 1) represents the

one-hot encoding of which exercise is answered at time t + 1, and l represent the

binary cross entropy. The loss for a given prediction is l(yT δ(qt + 1), at+1) and the

loss for a single student is:

L =
∑
t

l(yT δ(qt + 1), at+1) (1.6)

The loss function is minimized using stochastic gradient descent on mini batches.

In order to prevent gradients from ’exploding’, back propagate through time by

truncating the length of gradient whose norm is above a threshold is adopted here.

Hidden nodes number is 200 which is arbitrarily selected.

The appearance of DKT drew attention of the educational data mining com-

munity due to the claimed dramatic improvement over BKT, claiming about 25%

gain in predictive performance using the ASSISTments 2009 benchmark dataset. At

the 2016 Educational Data Mining Conference, three papers [XZVB16] [WKHE16]

[KLM16] were published to compare DKT with traditional probabilistic and statis-

tical models. They argue that traditional models and variants still perform as well

as this new method with better interpretability and explanatory power.

Due to the recency of the DKT model, it is not as deeply researched as other

established methods. We believe that DKT is a promising approach due to its com-

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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parable performance, and with the emergence of new neural network optimization

algorithms, the structure has space for improvement. Thus far, only skill and cor-

rectness are considered as input to the model, but the neural network can easily

consider more features. In this thesis, I explore the inclusion of more features to

improve the predictive accuracy of the model. In addition to these added features,

we explore the usage of an Undercomplete Autoencoder that incorporates a small

central layer to convert high dimensional data to low dimensional representative en-

codings in order to increase the feasibility of implementing feature vectors of larger

dimensionalities.

7



Chapter 2

Deep Learning

2.1 Deep Neural Network

In the machine learning field, a deep neural network (DNN) is a kind of neural

network algorithm with multiple hidden layers of units between the input and output

layers. The deep aspect of deep neural network here refers to the multiple levels

of transformation that occur between input nodes and output nodes; these levels

are usually referred to as layers, with each layer consisting of numerous nodes. The

hidden nodes are used to extract high level features from previous layers and pass

that information on to the next layer to model complex non-linear relationships.

DNN are typically feed forward networks implemented by back propagation al-

gorithms in which the weight updates can be done via stochastic gradient descent

using following equation.

wi,j(t+ 1) = wi,j(t) + η
∂C

∂wi,j

+ ξ(t) (2.1)

In above formula, wi,j(t + 1) means the weights be updated, and ξ is the learning

rate which also can be decay to optimize the learning process. C is the cost function
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and ξ(t) is a stochastic term.

The research has successfully applied RNN, especially LSTM(Long Short-Term

Memory)[HS97], to many applications such as Time series prediction[SWG05], speech

recognition[GS05], rhythm learning[GSS02] and music composition[ES02]. Convolu-

tional deep neural networks (CNN)[LBD+89] are used in image recognition[SLJ+15]

and Video analysis[KTS+14].

Autoencoders, a kind of widely used DNN, is trained to attempt to copy its

input to its outputs. The hidden layers in the encoding sides are to encode the

input layers to represent the input while the other hidden layers in the decoding side

are to decode these features to input layers. In other words, it involves two parts

encoder and decoder. There are a lot of variants of Autoencodes, like Undercomplete

Autoencoders in which the hidden nodes is less that input layers nodes, Regularized

Autoencoders, Sparse Autoencoders, Denosing Autoencoders which add noise in the

input layer to enhance robustness. Undercomplete Autoencoders is widely used in

dimension reduction. Since neural network is non-convex optimization, the training

process just gets a local optimized value. The paper[HS06] proposes to use Restricted

Boltzmann machine to train the initial value for each layer. Then, the Encoder part

is constructed layer by layer.

DNN is easy to overfit because more hidden layers are added to transform fea-

tures. Regularization methods such as L1 − regulization and L2 − regulization

can be applied during training. Dropout is widely used to effectively solve this

problem[SHK+14]. In dropout algorithm, some number of units are randomly omit-

ted from the hidden layers during training. This helps to break the rare dependencies

that can occur in the training data. It can be used in different weight positions.

For example, drop is mainly used in weights between input nodes and hidden nodes,

between hidden nodes and output nodes but not the weights between hidden nodes
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in preview time step and that in next time step. The dropout rate can be arbitrarily

defined in advance or decided by cross-validation.

Unfortunately, the features extracted by deep learning are largely uninterpretable

due to the complexity. This complexity makes it infeasible to explain the meaning

behind every parameter learned by the model, unlike BKT and PFA which attempt

to incorporate interpretability with its estimates.

2.2 Recurrent Neural Network

Recurrent Neural Network(RNN) is a kind of DNN that is network with loop in

itself to persist information[Ola15]. In figures 2.1, the recurrent can be thought as

a multiple copies of the same network with connection to pass information from

preview step to next step. The chain-like shape means the recurrent neural network

Figure 2.1: Unrolled RNN[Ola15]

is used to sequence scenario like speech recognition, language modeling, image cap-

tioning. All recurrent neural networks have the form of a chain of repeating modules

of neural network. In standard RNNs, this repeating module will have a very simple

structure, such as a single tanh layer in figure 2.2.

LSTM(Long Short Term Memory networks) is special kind of RNN to learn long-

term dependencies. Cell state, the horizontal line on the top of figure 2.3, is kind

of like a conveyor belt to transfer information between different steps. LSTM nodes

have the ability to add or remove information from the cell state by means of three

10



Figure 2.2: Simple RNN nodes[Ola15]

gates that optionally let information through. It involves three gates to control the

information flow of the cell state.

Figure 2.3: LSTM nodes[Ola15]

In above figure 2.3, the forget gate layer which is a sigmoid layer to decide what

information should be thrown away from cell state.

fi = σ(Wf · [ht−1, xt] + bf ) (2.2)

In the equation 2.2, fi is the a number between 0 and 1 to represent the percentage of

thrown way information in cell state, 1 represents completely keeping all information

11



while 0 represents completely getting rid of all information.

it = σ(Wi · [ht−1, xt] + bi) (2.3)

Ĉt = tanh(Wc · [ht−1, xt] + bC) (2.4)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (2.5)

The next step is to decide how much information is to stored. In equation 2.3, 2.4

and 2.5, it means the input gate layer decides which values to update and a tanh

layer creates a new value Ĉt that can be added to the state Ct, which is the cell

state result in this time step.

ot = σ(WO · [ht−1, xt] + bo) (2.6)

ht = ot ∗ tanh(Ct) (2.7)

Finally, we need to decide the output result based on our cell state. In equation

2.6 and 2.7, the ot, which is also a sigmoid layer, represents what parts of the cell

state to output. Then put the cell state Ct through tanh (between −1 and 1) and

multiply it by ot to get the output value ht.

There are some other variants of LSTM, like GRU(Gated Recurrent Unit). The

GRU combines the forget and input gates into a single ’update gate’ and merges

the cell state and hidden state. The GRU model is relatively simpler than standard

LSTM models with a similar function.

2.3 Autoencoder

Autoencoder[HS06] is a neural network that is trained to attempt to copy its input

to its output. It has a hidden layer that describes a code used to represent the input.

12



Figure 2.4: GRU nodes[Ola15]

The network consists of two parts, encoder part and decoder part. In figure 2.5,

the encoder part encodes the origin data, which is a chart represented by matrix,

to a compressed representation. The decoder part uses these representations to

reconstruct the input.

Figure 2.5: Encoder and Decoder.

x′ = h(x) (2.8)

r = g(x′) (2.9)

Autoencoder can be stacked in this way but each layer must be trained in advance

using Restricted Boltzmann Machine (RBM). Like other neural networks, the gra-

dient descent method is used to train the weight values of the parameters. In our

experiment, the dimension is reduced to a half of the input size. Autoencoder is

13



Figure 2.6: Stacked Autoencoder

also trained to minimize reconstruction errors (such as squared errors):

L(x, r) = (||x− r||)2 (2.10)

There are a bunch of variants of Autoencoder, like sparse Autoencoder, Stacking

Autoencoder layer by layer, adding noise to input layer to improve the generative

ability. Hinton [HS06] proposed to use RBM to pre-train weights for every layer to

find an optimal initial weights because the training of neural network is a non-convex

optimization process. In our model, we just use 1 layer Undercomplete Autoencoder

to train our model. Figure 2.6 shows the stacked Autoencoder1.

1source: https://www.researchgate.net/figure/274728436 fig2 Figure-2-A-A-stacked-
autoencoder-is-trained-on-high-dimensional-data-im-i-1
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Chapter 3

Improving DKT with More

Features

Intelligent tutoring systems (ITS) often collect numerous features of students work,

including information pertaining to problems, instructional aid, and time spent on

individual tasks. Data in different levels are collected like school level, teacher

level, student level and problem level, skill level and action level. In order to make

full use of these additional data, many models and algorithms have been proposed

to improve the prediction performance of models. For example, students response

time, hint request and number of attempts are added to make better student models

[FHK09], hint usage and the number of attempts needed to find the problem answer

are adopted to predict the performance in the sequence of actions (SOA) model

[DZWH13]; partial credit history acquired based on the number of hints used and

the number of attempts are used to predict the probability of students getting the

next question correct [VIAWH15].

In this paper, we do something similar using these extra features to improve

prediction performance. In our experiment, correctness, students response time, at-
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tempt number, and first action are selected for consideration because these features

recorded by almost all learning platforms are strongly related to the students’ per-

formance. All input information is converted into a sequence of fixed-length input

vectors in the RNN model, representing problem-level or skill-level covariates while

working through a possible multitude of assignments.

As in traditional DKT model, all features including the cross features are rep-

resented as one-hot encoding formate, and then concatenate all of them as inputs.

However, this kind of representation of features leads to the rapid increase in input

layer dimensions, so Autoencoder algorithm is adapted as dimensional reduction

because the naive nature of neural network makes it easy to be embedded to DKT

model here.

3.1 Feature engineering

As previously described, it is easy to incorporate useful information such as this

into the input layer of a neural network. However, the key consideration is how

feature engineering is performed on these features. Feature engineering plays a vital

role in representing features effectively. NTU team[YLH+10] incorporated a large

number of features and cross-features into a vector-space model and then trained

a traditional classifier. They also identified some useful feature combinations to

improve the performance. Cross features were used in the original DKT work as

well, utilizing a one-hot encoding to represent correct and incorrect responses for

each skill separately as a vector of 2 times the number of skills; alternatively, such

information could be represented separately, with a one-hot encoding representing

skills, and just one binary metric to indicate correctness equating to a vector of the

number of skills plus 1. In wide-and-deep learning proposed by Google [CKH+16],
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sparse features and cross features are selected for wide part, while the continuous

columns and the embedding dimension for each categorical column are selected for

deep part. These exemplary models use the engineering of features to improve model

accuracy helping to motivate the methodology of this work.

3.1.1 Cross Features

Cross Features is a method to encode two or more features into one feature to

represent the concurrence appearance of these features. Numerical features and cat-

egorical features all can be represented using cross features. The following equations

show the method to calculate combination of two features. For categorical data, it

is represented using one-hot encoding here.

C(et, ct) = et + (max(E) + 1) ∗ ct (3.1)

C(ct, et) = ct + (max(C) + 1) ∗ et (3.2)

The key reason to use cross features rather than separate features is because

separate will degrade the performance of result because weight unbalance in neural

network. In figure 3.1, skill features have 8 values, and correctness features is binary.

Separate features method needs 8 weights between all skill and one hidden node

and 2 weights between correctness and one hidden node. Only 2 weights in separate

situation can’t represent the change of whole 8 skills.

3.1.2 One-Hot Encoding

One-hot encoding transforms categorical features to a format that works better

with classification and regression algorithms. Take the following student records for

example, the SkillID feature involve four values here: S001, S003, S005, S008.
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Figure 3.1: weights above: separate features below: cross feature

Student Name Skill Id First Action Time(s) Correctness
Mary S005 hint 100 1
Jack S003 attempt 20 1
Jack S008 attempt 50 0
Abby S001 scaffold 200 0
Alisa S005 attempt 120 1

Table 3.1: Student records example

These values can be encoded to nominal values, but it doesn’t make sense from a

machine learning perspective, because we can’t say that S008 is greater than S003.

What we do instead is to generate one boolean column for each category and only

one of these columns could take on the value 1 for each sample. Hence, the one-hot

encoding formate of SkillID feature can be represented in table 3.2.

Therefore, the one-hot encoding for the values of two features, Skill ID: S001

or S003 and First Action: hint, attempt, scaffold, can be represented in table 3.3.

Since one-hot encoding constructs a pretty sparse matrix with the same number

of category type to represent the value of that feature, the shortcoming is obvious
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Sample S001 S003 S005 S008
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

Table 3.2: One-hot encoding

Sample
S001 S001 S001 S003 S003 S003

Other
hint attempt scaffold hint attempt scaffold

1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 1 0
7 0 0 0 0 0 0 1

Table 3.3: One-hot encoding of cross features

quickly increased dimension here. Once the category number is too large, the column

number will also be large. Two methods can solve such problem, one is reduce

dimension, while the other is to represent the category data in other formate like

word embedding which is widely used in language model. Here, just one-hot encoding

with dimension reduction method is applied.

3.1.3 Word Embedding

Word embedding model 1, also called word2vec, is proposed by Mikolov et als [MSC+13]

to learn vector representations of words. Natural language processing systems treat

words as discrete atomic symbols. For example, Porpoise may be represented as

Id537 and SeaWorld as Id143. These encodings are arbitrary, and provide no useful

information to the system regarding the relationships that may exist between the

1source: https://www.tensorflow.org/tutorials/word2vec
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individual symbols. This means that the model can leverage very little of what it has

learned about SeaWorld when it is processing data about Porpoise (such that they

are both animals, four-legged, pets, etc.). Representing words as unique, discrete

ids furthermore leads to data sparsity, and usually means that we may need more

data in order to successfully train statistical models. Using vector representations

can overcome some of these obstacles.

Cross Features Feature 1 Feature 2 Feature 3 Feature 4
S001 hint 0.46467 0.15627 0.63651 0.51252
S001 attempt 0.52647 0.32145 0.23651 0.11452
S001 scaffold 0.12458 0.87452 0.96321 0.12478
S003 hint 0.23145 0.36954 0.00524 0.02784
S003 attempt 0.36954 0.58634 0.64786 0.56274
S003 scaffold 0.45897 0.55626 0.55963 0.23147
Other 0.25642 0.65741 0.89651 0.63574

Table 3.4: Simulated Word embedding representation of cross features

Table 3.4 uses four embedded features to represent those combination values. It

is just a casting relationship between original cross features and compressed four

features.

Figure 3.2: Wording Embedding in natural language process

In typically word process scenario, these feature values are initialed randomly

and adjusted during training. Since Euclidian distance between two different sam-
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ples represent the correlation relationship, it pretty useful for word process. For

example, the distance between embedding of word Porpoise and SeaWorld is less

than that between embedding of word Paris and Camera in figure 3.22. However,

in education data mining, the distance between different samples have no such corre-

lation relationship. That is why one-hot encoding with dimension reduction rather

than word embedding method is adopted.

3.1.4 Feature process

The goal of this process in our model, as it pertains to this work and coincides

with how input is represented in the DKT model, is to convert the features to

categorical data to simplify the input without losing much information. This process

is described briefly for each considered feature as follows:

• Exercise tag exhibits differing representations described by either a numeric

skill id or the name of the knowledge component in a different dataset. Re-

gardless of representation in the data, this is strictly categorical and is handled

as such. Exercise tag can be at different levels, such as skill level, problem

level and step level. However, too fine level, like step level, is hard to predict

because every step owns few training dataset so that it is impossible to be

convergent to local optimal weight. In our experiment, we uses skill-level for

exercise tag. The balance of exercise number is also critical since exercise with

too few training dataset can’t convergent to a local optimized value so that

the final performance would be impacted.

• Correctness is represented as a binary value where 1 indicates correctness in

the problem and 0 represents an incorrect response. Correctness of current

2source: http://redcatlabs.com/2015-01-15 Presentation-PyDataSG/#/
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problem is a key component of input while the correctness of next problem

is the label of output layer. However, in each time step, just one label exists

because we just know the correctness of current exercise. Some fault values

which are neither 0 or 1 may exist in dataset. 0.5 is used as threshold to

separate them to binary value.

• Time is a critical feature to reflect student’s understanding of a skill. It is

the first response time when the student encountered the exercise. Some ITS

platform may record some other time information but just first response time

is considered here because it can reflect student’s performance in this exercise.

Obviously, it is numerical feature. Two problems exist here if we use the

feature as input directly.

1. Numerical features here may cause the model to be too complicated. For

example, 101 seconds used in a skill isn’t too much different than 100

seconds. If the time features is used as input features directly, the model

has to learn the difference between them.

2. Same time in different exercise represents different students’ performance.

For example, skill A is a hard problem, student need more time to con-

sider while skill B is relative easy so that less average time is needed.

If the time features is used as input features directly, the model can’t

consider such difference.

Such relationship exist even in single skill. Three skill are selected in figure 3.4.

Opportunity features in ASSISTments 2009 is the number of opportunities the

student has to practice on this skill. For different opportunities, the relation-

ships between time z-score and correctness still exist.
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Figure 3.3: Time z-score (X axis) and Correctness (Y axis)

The transformed time feature is z-scored within skill and discretized based

on its relationship with correctness as shown in Figure 3.3 which comes from

the ASSISTments 2009 datasets. Different skills need different times to fin-

ish. In other words, the mean time of finishing different skills are different.

Therefore, we transfer the time to the z-score for different skills. The z-score

is still numerical, but small differences in z-score don’t represent important

differences. Therefore, we discrete the z-score to a categorical feature. In our

model, we arbitrarily select 5 categories. In figure 3.3, too little time, like less

than −0.75, has obvious worse performance. Meanwhile, the increase of time

after a threshold hasn’t much impact on correctness. Therefore, two reference

lines of correctness, 50% and 70%, are selected for the discretized boundaries

to divide the time to four categories.

• Attempt count is the number of times a student entered an problem. It rep-

resents how many times the student has exercised this problem. Obviously,

it should be a parabola between attempt count and mastering of this prob-

lem. More times less a threshold means more possibility that the student can

answer this problem correctly. Sometimes, even more times encountered has
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Figure 3.4: Time z-score and correctness for different opportunity

no help in answering this problem correctly since the student give up this

chance or lost confidence to answer it. This numerical feature is discretized as

[0, 1, other] in ASSISTments and [== 1, 1 < and <= 5, > 5, other] in Open

Learning Initiative as described further in a later section.

• First action is strictly categorical, representing if a student makes an attempt

or requests help within the system as a first action. For example, ASSISTments

use three value to represent the first action type. 0 represents that student

attempts to answer the problem, 1 represents that student uses hint for the

problem, and 2 represents that students uses scaffolding help to finish the

problem. Different action types can obviously reflect student’s understanding

in one exercise (or skill). Attempt means the student have confidence in some

degree to answer the problem correctly while asking for help means he or she

has no confidence. Interesting, students may have totally different performance

after asking for help. He or she may master the skill or this help may provide
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Figure 3.5: Time z-score and correctness for single skill

no help for understanding the problem.

Different ITS platforms record different features according to the requirement.

However, these four features are almost recorded in all platforms. Therefore, just

these four features are considered here. Many different process methods can be

applied in feature engineering. Just few simple process methods with arbitrary

hyper parameters are applied. The hyper parameters can be selected by means of

cross-validation.

3.2 Concatenate encoded features

After converting to categorical data, features are represented as a sparse vector using

one-hot encoding. Papers [PBH+15] [YLH+10] [CKH+16] show that combination

of some input features into cross features as input can improve model accuracy.

The cross features of exercise and correctness, as well as time and correctness are

selected in our model. The selection of cross features is relatively arbitrary and
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cross-validation is a feasible method to find the optimal cross features. All the

encoded features, which includes single features and cross features, are concatenated

to construct the input vector in figure 3.6. The input vector is constructed by

Figure 3.6: Concatenated encoded features

concatenating one-hot encodings for separate features as illustrated in Figure 3.6,

where vt represents the resulting input vector of each student exercise. et refers to

the exercise tag, while ct refers to correctness, and tt represents time. C() is the

cross feature, O() is the one-hot encoder format, and the _ operator is used to

denote concatenation.

[ht]vt = O(C(et, ct))
_O(C(tt, ct))

_O(tt) (3.3)

An alternative method, word embedding, is also proposed to represent the feature

in neural network, particularly in nature language process. In large dataset like

word process, every word has enough training dataset so that the weights of neural

network can be convergent to be optimal values. Here we just use one-hot encode

due to the few number of skill, only 100+. For some other features like problem level

id and action, word embedding is an effective encoded method without good effect
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because one encoding method may recover to original features but can’t extract

the internal feature. For example, word embedding in language process can get

the correlation between different words using the euclidean distance but features

in education data mining, like problem id, action id and student id, have no such

correlation. It just shows the appearance order of problem id and action id so it has

no strong support to knowledge tracing prediction.

3.3 Reduce dimension using Autoencoder

Using cross features leads to a rapid increase of the dimensionality of the input

vector. RNNs are considerably more computationally expensive due to the compar-

atively larger number of parameters. For example, training a LSTM DKT model

with 50 skills and 200 hidden nodes, which needs to learn 250,850 parameters, takes

3.5 minutes per epoch, equating to more than 14 hours when using a 5 fold cross

validation run over 50 epochs. To this extent, the network structure of DKT may

benefit from reduced dimensionality, particularly if this can be achieved without

sacrificing performance.

The goal of dimensionality reduction is to compress the signals in size and

to discover compact representations of their variability. Two widely used dimen-

sionality reduction algorithms are the methods of Principal Component Analysis

(PCA) [Jol02] and Multi Dimensional Scaling (MDS) [KW78] for the problem of

linear dimensionality reduction and Locally Linear Embedding (LLE) for the prob-

lem of nonlinear dimensionality reduction. Both methods are eigenvector methods

designed to model linear variabilities. In PCA, the linear projections of greatest vari-

ance from the top eigenvectors of the data covariance matrix are computed. While

the low dimensional embedding that best preserves pairwise distances between data
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points are computed in MDS. LLE [SR00] is an unsupervised learning algorithm

that computes low dimensional, neighborhood preserving embeddings of high di-

mensional data. In our experiment, we just consider Autoencoder since it is easy

to combine it to RNN. PCA and LLE are also potential algorithms for dimension

reduction.

Undercomplete Autoencoder is a multilayer neural network with a small central

layer that can convert high dimensional data to low dimensional representative en-

codings that can be used to reconstruct the high dimensional input vectors; in this

way dimensionality is reduced without the loss of too much important information

in figure 3.7. Once trained, the output layer can be removed, and the hidden layer

can connect to another network layer. In our model, we use the tanh as active

Figure 3.7: Undercomplete Autoencoder.

function to train the Autoencoder to reduce dimension.

v′t = tanh(Wed ∗ vt + bed) (3.4)

yt = tanh(W T
ed ∗ v′t + bdd) (3.5)
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Figure 3.8: New DKT LSTM Model without Autoencoder

3.4 DKT Extension Model

Figure 3.8 and figure 3.9 depict the resulting model representation utilizing an En-

coder layer to support the added features. Figure 3.8 is the new DKT LSTM model

without dimension reduction while the figure 3.9 is for model with dimension re-

duction. In figure 3.8, vt represents the Concatenated features, and ht means the

hidden layers in t time steps and yt means the label of output layers which is the

correctness of next problem. The performance of every skill is predicted but just

one is supervised because only one label exists at each time step.

In figure 3.9, v′t represents the feature vector extracted by Autoencoder according

to equation 3.4. The gray arrows mean that weights between these two layers are

held constant so the encoder weights needed to be trained separately in advance.

In our model, we have tried to fine-tune these weights with Neural Network, the

network is overfitting quickly due to the increased weights.
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Figure 3.9: New DKT LSTM Model with Autoencoder

3.5 Optimization

As with other binary classification problems in neural network, the training objective

is the negative log likelihood of the observed sequence of student responses under

the model. We use the exact same cost function as the traditional DKT model.

L =
∑
t

l(yT δ(qt + 1), at+1) (3.6)

This objective was minimized using stochastic gradient descent on minibatches.

In order to prevent overfitting, dropout [SHK+14] is applied to weights of between

vt and ht and weights of between ht and yt but not weights ht and ht−1 for no

dimensional reduction scenario in figure 3.8. For dimensional reduction scenario

in figure 3.9, dropout is applied to weights of between v′t and ht and weights of
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between ht and yt rather than weights ht and ht−1. Dropout is mainly used for

feed forward neural networks but not dedicated for recurrent neural network, so

the weights between hidden nodes in different time steps are not considered. The

dropout rate, which means the percentage of removed weights, is 0.4. This value is

selected arbitrarily based on the scope provided in paper [SHK+14].

In our experiment, only one LSTM layer with 200 hidden nodes is used. Other

hyper parameters like time steps and batch size is selected based on the dataset

characters. In table 3.5, it shows these parameter values. The epoch number is 50

for all dataset.

Setting ASSISTments 2009-2010 OLI Statics F2011

TimeStep 1,218 1,500
BatchSize 30 10

Epoch 40 40

Table 3.5: Hyper parameter setting

A model with more than one LSTM hidden layer is tested in our experiment,

but the performance is degraded due to doubled parameters which increase the

complexity dramatically. Other models like simple RNN and GRU nodes are also

tested, simple RNN degrade the performance and GRU hidden nodes has similar

test performance with LSTM hidden nodes. Because RNN training process is pretty

time consuming particularly using cross-validation, just one LSTM hidden layers is

considered in our experiment.
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Chapter 4

Datasets and Environment

4.1 Datasets

Two educational datasets from ASSISTments and Open Learning Initiative (OLI)

are tested in our experiments. These two ITSs are computer-based learning plat-

forms which embed practice and assessment throughout the learning process.

The original DKT model with inputs that include only exercise tag and correct-

ness is used as a model for comparison. Since it is a time-series algorithm, students

whose records are less than 2 are not considered.

Setting ASSISTments 2009-2010 OLI Statics F2011

Student 3,866 332
Skill 124 82

Record 303k 257k

Table 4.1: Dataset statistics information
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4.1.1 ASSISTments 2009-2010

ASSISTments, founded by Professor Neil T. Heffernan in Worcester Polytechnic

Institute (WPI), is a computer-based learning system that simultaneously teaches

and assesses students outside class. This dataset was gathered from ASSISTments

skill builder problem sets 1, which are assignments in which a student works on

similar questions until he or she can correctly answer n consecutive problems cor-

rectly (where n is usually 3). After completion, students do not commonly rework

the same skill. This dataset is the benchmark dataset for education data mining

research because it is the largest number of open student learning records collected

from online learning platform so far.

In the original data version, Xiong et al. [XZVB16] discovered three issues: du-

plicated records, mixing main problems with scaffolding problems and repeated re-

sponse sequences with different skill tagging (duplication by skill tag). These issues

have unintentionally inflated the performance of DKT in the original version, so the

updated version of this dataset is adopted here.

Unlike other datasets, the records of a student may not be consecutive be-

cause student may answer questions in different days. That is why some previous

works [PBH+15] reports 15, 391 students while others [XZVB16] reports 4, 217 stu-

dents. There are two methods to process these records. The dataset can be used

directly so that the records answered in different days are considered as different stu-

dent’s records, whereas all records belong to one student are concatenated because

these records represent the performance of same student. In our model, we use the

second method to process data. The exercise tag is defined as the skill id. Table

4.1 shows the key statistical information about this dataset, the students number is

1https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-
data-2009-2010
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3, 866 and the skill number is 124 and records number is more than 303, 000.

4.1.2 OLI Statics F2011

The Open Learning Initiative (OLI) is a computer learning system at Carnegie Mel-

lon University to offer online courses to students at school 2. OLI embeds assessment

into instructional activity and collect real-time data of student-use in those activities

with the students permission.

This dataset 3 was from a college-level engineering statics course in OLI. It pro-

vide dataset from different semesters. Fall 2011 is adopted here because it involves

332 students. Unlike ASSISTments dataset whose skill ID is a number, this dataset

use text description to represent skill ID. The text is covert to category data type.

Since it is a time-series algorithm, students whose records contain less than 2

time steps are not considered. Table 4.1 shows the key statistical information, it

involves 332 students, 82 skills and more than 257, 000 records totally.

4.2 Evaluation Metrics

As in paper [XZVB16], the accuracy was evaluated using Area Under Curve (AUC)

and the square of Pearson correlation (r2). AUC and r2 provide robust metrics

for evaluation predictions where the value being predicted is either a 0 or 1 also

represents different information on modeling performance. An AUC of 0.50 always

represents the scored achievable by random chance and a higher AUC score rep-

resents higher accuracy. r2 is the square of Pearson correlation coefficient between

the observed and predicted values of dependent variable. In the case of r2, it is

normalized relative to the variance in the data set and it is not directly a measure

2source: https://oli.cmu.edu/get-to-know-oli/learn-more-about-oli/
3https://pslcdatashop.web.cmu.edu/Project?id=48
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of how good the modeled values are, but rather a way of measuring the proportion

of variance we can explain using one or more variables. r2 is similar to root mean

squared error (RMSE) but is more interpretable. For example, it is unclear whether

a RMSE of 0.3 is good or bad without knowing more about the dataset. However,

a r2 of 0.8 indicates the model accounts for most of the variability in the data set.

Neither AUC nor r2 method is a perfect evaluation metric, but their combination

accounts for different aspects of a model and provides us a basis to evaluate our

models.

4.3 Running Environment

For replicability, the running environment is reported as the following:

• Hardware: i5600 processor, 16G RAM, GTX 1070 (8G) graphics cards

• OS: Ubuntu 14.04 64-bit. Ubuntu 16.04, the latest version, is not compatible

with Tensorflow GPU version.

• Package: Tensorflow 0.10 Linux GPU version.

• Python version: 3.4. (python version 3.5 is not compatible with Tensorflow

GPU version)

• NVIDIA CUDA version: 7.5

• NVIDIA cuDNN version: 4.0

• Other package: Pandas, Numpy, Keras (statistic parameter number)

Compared with CPU, NVIDIA GPU effective improves running speed of Tensorflow.
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Chapter 5

Results

5-fold student level cross validation is applied to reduce the variance of test result

which is evaluated by AUC and (r2). Many possible feature combinations exist,

but only a selected few are explored here. In table 5.1 and 5.2, S means skill id,

C means correctness, T means time, ACT means first action, ATT means attempt

number, _ means concatenation.

Model Autoencoder AUC(%) r2

Baseline: S/C No 83.1± 0.6 0.324± 0.012
S/C _ T/C No 85.8± 0.7 0.391± 0.015
S/C _ T/C Yes 86.7± 0.4 0.410± 0.008
S/C _ T/C _ T _ACT

_ ATT No 86.1± 0.4 0.398± 0.011
S/C _ T/C _ T _ACT

_ ATT Yes 86.7± 0.2 0.411± 0.005
S/C _ T/C _ T/S _ T _ACT

_ ATT Yes 86.7± 0.5 0.412± 0.012

Table 5.1: ASSISTments 2009 dataset Result

On both datasets in table 5.1 and 5.2, models with incorporated features in which

Autoencoder isn’t used outperform the baseline, the original DKT model. In the

ASSISTments 2009 dataset, AUC value is improved to 85.8 from 83.1 and r2 value

increases to 0.391 from 0.342 after adding the cross feature of skill and correctness.

In the Statics 2011 dataset, the AUC value increases to 73.1 from 70.6 and r2 value
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Model Autoencoder AUC(%) r2

Baseline: S/C No 70.6± 0.7 0.105± 0.009
S/C _ T/C No 73.1± 0.5 0.135± 0.010
S/C _ T/C Yes 73.5± 0.9 0.142± 0.012
S/C _ T/C _ T _ACT

_ ATT No 73.2± 0.5 0.140± 0.011
S/C _ T/C _ T _ACT

_ ATT Yes 74.0± 0.5 0.148± 0.009
S/C _ T/C _ T/S _ T _ACT

_ ATT Yes 74.0± 0.9 0.147± 0.016

Table 5.2: OLI Static 2011 dataset Result

is from 0.105 to 0.135 if only add cross feature of skill and correctness. Actually,

if only incorporating cross feature of skill and correctness, the dimension of input

layer only increases 8, 4(time) ∗ 2(correctness) so that it almost has same running

efficiency as original DKT model. However, it exhibits only a marginal increase

to this upon adding time, first action, and attempt count into the input vectors.

It is easy to understanding result, because linear dependence exist between these

features.

The adoption of Autoencoder when compared to models using the same features

also shows increased performance, supporting its usage for reducing dimensionality.

The compressed dimension is half of the input layer. In the ASSISTments 2009

dataset, AUC value is improved to 86.7 from 85.8 and r2 value increases from 0.391

to 0.410. While in OLI Statics dataset, AUC value is from 73.1 to 73.5 while r2

value is from 0.135 to 0.142. In our analyses, the model incorporating all features

in the last record in table 5.1 and 5.2 was not even feasible without the use of this

Autoencoder, deeming it necessary to use when given large dimensional inputs. The

different number of hidden node can impact the result, we tried 1/4 of the original

input dimension, the performance of test result degrade a little bit but not increase.

In summary, the incorporation of more features into DKT can improve the pre-

diction accuracy, and the Autoencoder method can effective reduce the resource
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need for training without similar prediction accuracy if the hidden nodes number is

selected properly.
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Chapter 6

Discussion

6.1 Drawback in constructing skill graph

Paper [PBH+15] proposes to use DKT model to get the skill graph or get the best

exercise path which can improve the whole performance in study because DKT

model can predict the performance of student in every exercise based on previous

exercises. However, from skill transfer perspective, the model is trained according

to a relative fixed skill transfer pattern. 30 skills are randomly selected from both

datasets to construct the skill transfer chart in figure 6.1. Take ASSISTments 2009

dataset for example, skill 9 mainly transfer to skill 8, and skill 10 mainly transfer

to skill 9 in figure 6.1. Therefore, it is unconvinced to infer student’s performance

in skill 14 based on skill 10 because there is no training data from skill 10 to skill

14. However, we can use DKT model to predict the NPC because the test dataset

and validation test dataset follow the same transfer pattern as training dataset.

6.2 Future work

Extending this model encompasses several potential directions to pursue.
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Figure 6.1: ASSISTments Dataset skill transfer

• Explore even more student features [GZM11] like class-level features and school-

level features and explore more features engineer method in different manners,

such as tokening the words of knowledge components for different exercise rep-

resentations. Cross-validation is a effective way to select features.

• Explore the wide and deep approach [YLH+10] in how the features are repre-

sented within model training to combine the advantage of memorization and

generalization. Memorization means the frequent co-occurrence of features and

exploit the correlation in historical data, while the generalization is based on

transitivity of correlation and explore new feature combination. Memorization
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of feature is represented by a wide set of cross-product feature transformations

and generalization use more feature engineering effort to single features.

• Explore different dimensionality reduction methods like linear transformation

like Principal Component Analysis (PCA), Multi Dimensional Scaling (MDS)

and non-linear methods like Locally Linear Embedding (LLE) and other Au-

toencoder methods. Many variants of Autoencoder can be used to strength

the ability, like adding noise to the input layer, add different regularization

to the cost function, stacking deep layers in encoder and decoder part or use

RBM to optimize the initial weights.

• Explore DKT model to solve other prediction problems in education data

mining. NPC is just a kind of label for knowledge tracing. Some other new

prediction model are also available such as wheel spinning [BG13], student

dropout, or hint usage.

• Explore the multi-task prediction to improve the prediction accuracy. For ex-

ample, because wheel spinning and NPC are strongly related, adding Wheel

spinning label to output layer to train the weights may improve the perfor-

mance of NPC. However, it is necessary to pay attention to the missing labels

in such dataset. NPC almost can guarantee that every prediction problem

have label but other may not. Many labels are generated according to differ-

ent standards. Take affect label for example, the labels like bored, concentrat-

ing, confused and frustrated, are generated every 20 seconds during student’s

answering question process.
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