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ABSTRACT 
Small antennas have attracted significant attention due to their prolific use in consumer 

electronics. Such antennas are highly desirable in the healthcare industry for imaging and implants. 

However, most small antennas are not highly directive and are detuned when in the presence of a 

dielectric. The human body can be compared to a series of lossy dielectric media. 

A novel antenna design, the orthogonal coil, is proposed to counter both of these shortcomings. 

As loop antennas radiate primarily in the magnetic field, their far field pattern is less influenced by nearby 

lossy dielectrics. By exciting two orthogonal coil antennas in quadrature, their beams in the H-plane 

constructively add in one direction and cancel in the other. The result is a small, yet directive antenna, 

when placed near a dielectric interface. 

In addition to present a review of the current literature relating to small antennas and dipoles near 

lossy interfaces, the far field of the orthogonal coil antenna is derived. The directivity is then plotted for 

various conditions to observe the effect of changing dielectric constants, separation from the interface, 

etc. 

Numeric simulations were performed using both Finite Difference Time Domain (FDTD) in 

MATLAB and Finite Element Method (FEM) in Ansys HFSS using a anatomically accurate high-fidelity 

head mesh that was generated from the Visible Human Project® data. The following problem has been 

addressed: find the best radio-frequency path through the brain for a given receiver position – on the top 

of the sinus cavity. Two parameters: transmitter position and radiating frequency should be optimized 

simultaneously such that (i) the propagation path through the brain is the longest; and (ii) the received 

power is maximized. To solve this problem, we have performed a systematic and comprehensive study of 

the electromagnetic fields excited in the head by the aforementioned orthogonal dipoles. Similar analyses 

were performed using pulses to detect Alzheimer’s disease, and on the femur to detect osteoporosis. 
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INTRODUCTION 
Electromagnetic imaging has become an important field in recent years. Although radar has been 

used to find objects since World War II, medical professionals are searching for noninvasive techniques 

to find tumors in the human body. As opposed to large HF arrays trying to find targets that are several 

meters across, we turn our attention to searching for small tumors or other abnormalities that are on the 

millimeter scale [1]. 

This project was inspired by our joint work with Beth Israel Deaconess Medical Center at 

Harvard Medical School. They perform several traditional and experimental imaging procedures such as 

electric impedance tomography (EIT), magnetic induction tomography (MIT), and microwave 

tomography (MWT). EIT operates at DC or low frequencies (DC-20Hz) by applying electrodes to the 

body and trying to restore the conductivity of each of the internal materials [2]. MIT uses higher 

frequencies (200kHz-10MHz) and excites eddy currents using magnetic fields in a similar manner as a 

traditional metal detector [3]. MWT uses RF frequencies (400MHz-10GHz) and senses reflections of a 

transmitted wave in a similar manner as RADAR [4], [5]. This paper focuses on MWT with a novel 

directional antenna. 

 PROBLEM STATEMENT 

We have established the need for a small, directional antenna that radiates into a nearby 

dielectric. If antenna is to be worn on the body, it must be small. Ideally, the antenna would be located on 

the surface of the skin as to avoid being invasive, yet minimizing the losses in the air between the antenna 

and the body. Furthermore, the human body is a lossy dielectric. Each tissue and organ has a different 

dielectric permittivity (휀𝑟) and conductivity (𝜎), both of which affect the radiation properties of the 

antenna. As will be discussed in later sections, surrounding an antenna with a dielectric can detune it. 

Moreover, dispersion from a poorly concentrated wave may render the signal unrecoverable. 

This paper will focus on the design of a small, directional antenna from a theoretical standpoint. 

We consider existing designs and discuss their merits and shortcomings. A new antenna design, the 
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orthogonal coil antenna, is proposed and its far-field pattern is derived. With the theory established, a 

custom human body model is used to simulate the performance of the antenna on both the brain and 

femur. 

No restrictions are placed on the exact size and position of the antenna, as these are problem 

dependent. We are only interested in finding a general antenna design that can create a directed beam, 

while still remaining electrically small, that is, the antenna should have no dimension greater than 
𝜆

2𝜋
, 

where 𝜆 is the wavelength [6]. One may scale dimensions with the desired wavelength, but the power loss 

from having a small antenna (and a low radiation resistance) is deemed to be irrelevant, as the antenna is 

outside the body and presumably from utility power (as opposed to a battery with limited life). 

 SMALL ANTENNAS 

One could argue that the consumer electronics industry has driven the market to search for 

smaller and smaller antennas to fit in more complicated portable devices. These include cell-phones, 

tablets, radio frequency identification devices (RFIDs), etc. The medical field is also interested in 

miniaturization, as they look for methods of powering and communicating with internal implants. 

Naturally, these have acted as a driving force to find small antennas. 

Unfortunately, small antennas generally have a uniform radiation pattern, that is, the radiate in all 

directions equally [6]. A uniform radiation pattern would result in a very wide beam, and the antenna 

would be unable to focus at an area of interest (reducing resolution). Some small antennas can have 

directive properties when placed in a close proximity of a dielectric, such as the loop antenna [7], [8]. 

These cases are examined in more depth in the literature review. 

Chu, McLean, and Wheeler pioneered the field of theoretical small antenna design. Antennas 

generally operate close to or at a fraction of their wavelength. For example, classical dipoles and 

monopoles resonate at 
𝜆

2
 and 

𝜆

4
, respectively. Below the resonance, the radiation resistance is very low, 

making impedance matching difficult (adding additional resistance will reduce reflections, but the resistor 

will absorb the power instead of the antenna) [1]. Chu and Mclean derived a lower limit for the quality 
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factor, Q, for any given antenna [6]. The quality factor is a unitless metric that indicates how well a 

resonator stores energy. It is given as: 

 𝑄 =
2𝜔0 ⋅ max (𝑊𝐸 ,𝑊𝑀)

𝑃𝐴
≈

1

𝐵𝑊
, (1)  

where 𝜔0 is the resonant frequency, 𝑊𝐸 and 𝑊𝑀 are the energy stored in the electric and 

magnetic field, respectively, and 𝑃𝐴 is the power accepted by the antenna. A high quality factor antenna 

releases most of its energy over a narrowband of frequencies, whereas an antenna with a lower Q will 

spread the same amount of energy over a wider bandwidth. The quality factor is then approximately the 

reciprocal of the 3dB bandwidth (the range of frequencies that at least half of the power is released) [6]. 

Let us assume we have an arbitrary antenna that is physically bound by a sphere with radius 𝑎, 

such that 𝑎 is the maximum dimension of the antenna, as shown in Fig. 1 for a conical dipole. Wheeler 

explored the quality factor of an antenna by developing lumped circuit models. Chu and Harrington 

advanced this theory by approximating on the lower bound of Q, that is, the theoretical maximum 

bandwidth an antenna of a given size could possible achieve. McLean then found the exact Chu Limit, 

which is lower bound for Q for small antennas [6]: 

 𝑄𝑚𝑖𝑛 =
1

𝑘𝑎
+

1

(𝑘𝑎)3
, (2)  

where 𝑘 is the wavenumber (
2𝜋

𝜆
). 
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Fig. 1. Arbitrary antenna enclosed in a Chu Sphere 

Hundreds of small antenna designs are currently used in industry. One of the most popular 

techniques to increase the electric length of an antenna is by building meandering lines. As opposed to 

etching a straight trace, one can lengthen the path of current with a “zigzag” pattern. This does not 

increase the maximum dimension of the antenna, but more efficiently uses the volume within the sphere 

[6]. One can also perform impedance matching by placing capacitive loading (i.e. a metal plate) on the 

top of an antenna, effectively widening its bandwidth at the cost of less uniform radiation characteristics. 

Antennas can also be surrounding by dielectrics, which decrease the effective wavelength, electrically 

lengthening the antenna. Unfortunately, dielectrics are generally lossy and will reduce the efficiency of 

the antenna. 
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LITERATURE REVIEW 
In the past several years, there has been significant development in the field of wireless body area 

networks (BANs) with numerous applications involving sensing or transmission of data from different 

points around or through the body [9], [10]. Clearly, there are multiple health-care advantages to being 

able to obtain information around the body remotely without dangerous and expensive, invasive 

procedures. A notable application is reviewed in [11], as the potential for the early diagnosis of 

Alzheimer’s disease through the detection of internal changes of material properties is discussed. These 

problems require a signal path through the brain [9]. 

As previously mentioned, the human body is a lossy transmission medium, which presents 

several challenges in itself.  Prior to the introduction of powerful simulation tools, researches relied on 

theoretical derivations to guide experimentation.  This is especially true for electromagnetic fields due to 

the difficulty involved in acquiring empirical results.  Unfortunately, it is very difficult (and potentially 

dangerous) to perform experiments directly on the human body, thus it is important to develop accurate 

theoretical models to guide and prove the validity of simulations before conducting tests.  

 ANTENNA SELECTION 

The selection of antenna for the purpose of investigating propagation channels within the human 

body is not a trivial task.  If one were to select a traditional dipole, the multipath caused by the boundaries 

between organs would cause the (initially uniform, omnidirectional) dispersed wave to be completely 

untraceable at the receiver, limiting the information that can be gathered about the channel.  Furthermore, 

a dipole primarily radiates in the electric field, which is significantly affected by the permittivity of the 

human body.  Although this can be mitigated by selecting a magnetic dipole or a loop, one would still 

need to find a way to “steer” the beam to a receiver on the head, providing information about a single, 

desired path. 

There are several possible designs for “wearable” antennas (which typically are members of the 

patch family, as these can be made very conformal), but this project requires the antenna to able to 
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Fig. 2. Problem geometry for two orthogonal coils with respect to 

the H plane. The coils were modeled as loops with equivalent magnetic 

moments m. 

 

 

transmit through the body.  The objective of most wearable antennas is to transmit to a base station away 

from the body. 

Selection of an antenna for the purpose of investigating propagation channels within the human 

body is not a trivial task. If one were to select a traditional dipole, the multipath caused by the boundaries 

between organs would cause the dispersed wave to be completely untraceable at the receiver, limiting the 

information that can be gathered about the channel. Furthermore, a dipole primarily radiates in the electric 

field, which is significantly affected by the permittivity of the human body. Although this can be 

mitigated by selecting a magnetic dipole or a loop, one would still need to find a way to “steer” the beam 

to a receiver on the head, providing information about a single, desired path. 

There are several possible designs for wearable antennas, which typically are members of the 

patch family, as these can be made conformal [12]. The objective of most wearable antennas is to transmit 

to a base station away from the body [12], [13]. Conversely, this project requires the antenna to able to 

transmit through the body. 

The loop is a very simple 

option for selecting an antenna 

that can propagate through the 

body. A small loop or coil is very 

similar to a small dipole; however, 

it is horizontally polarized as 

opposed to vertically polarized 

[1]. This implies that a dipole 

would be radiating in 𝐸𝜃, whereas 

a loop is radiating in 𝐻𝜃. Fig. 2  

illustrates the orientation of the 𝐻𝜃 with respect to two orthogonal coils (described in the following 

section). Therefore, the loop antenna should be less affected by dielectric loading. Unfortunately, the 

radiation pattern remains nearly the same as a dipole, thus it can be difficult to properly distinguish the 
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angle of arrival for internal channels [1].  Several examples of electric dipoles in various configurations 

can be found in [14], [15], [16], and [17] 

Of course, there is substantial literature available regarding a dipole (either electric or mangetic) 

above a dielectric medium. Lindell presents a series of derivations in [18], [19], and [20], for the vertical 

case. Lukosz and Kunz perform a similar analysis on orthogonal electric dipoles using optics in [21] and 

[22]. 

An interesting variation of the classic loop is presented in [23]. The authors created segmented 

loop antennas to generate a uniform current distribution throughout the length of the antenna. Without 

segmentation (and the addition of the corresponding matching capacitance), there were regions with large 

specific absorption rate (SAR) values. Once these so called “hot-spots” appear, one must reduce the 

transmit power in order to avoid possible tissue damage [23]. This was of particular interest because the 

goal of the study was to improve the efficiency of the coupling that would power an implant.  

Another variation is the fat arm spiral antenna, designed as means of wirelessly streaming images 

from an endoscopic capsule to a technician in real time, while providing more bandwidth (from 460 MHz 

to 535 MHz) than traditional spiral or helix antennas. This additional bandwidth was provided by 

thickening the spiral. The antenna produces an omnidirectional radiation pattern vital to the particular 

case study, as the orientation of the capsule in the digestive tract relative to a fixed receiver is arbitrary 

[24]. 

A more complex approach is offered by Karathanasis and Karanasiou, who have developed a 

phased array based reflector system to do beamforming within the human body. As opposed to a single 

radiating element, this system employs a 1.25m by 1.2m ellipsoidal cavity and changes the excitation 

phase to cause a local maximum in a given area, capable of inducing localized brain hyperthermia or 

treating hypothermia [25]. Additional references on antennas located near dielectric interfaces can be 

found in: [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], and [38]. 
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Fig. 3. Analytical electric field pattern with respect to the H plane 

for two orthogonal coils close to the human head. The coils are excited 90° 

out of phase to null one beam (right) and to amplify the other (left). 

 

 

 

 ORTHOGONAL COIL ANTENNAS: 

A possible solution to this 

problem was proposed in [11], 

where two orthogonal coil antennas 

were excited with a 90° phase 

difference to produce a single 

concentrated beam at 45°, without 

the need for a large or complicated 

array. This configuration, shown in 

Fig. 3, provides a maximum 

directivity of more than 10dB, 

allowing one to use less transmitted 

power, while reducing interference 

caused by undesired reflections. 

This special beamforming property only holds true when the loops are close to an air-dielectric 

interface that satisfies the quasi-static limit of 𝜎 > 휀𝜔 [39]. It is possible for a loop or dipole to generate a 

directive beam under the condition that the ratio of permititivies of the transmission media is large 

(greater than 4). With 휀𝑟 of air being 1 and 휀𝑟 of body tissues being on the order of 17-70, this is clearly 

applicable [40], [41]. Under this condition, and provided that the loops are excited close to the dielectric 

interface (i.e., the surface of the human body), the electric fields in the second medium (the body) in the 

H-plane (for horizontal and vertical loops respectively) reduce to [39]: 

 
𝐸1𝑥 = 𝑗𝜔𝜇0𝑘1𝑛𝑚{

|𝑠𝑖𝑛(2휃)|

|𝑐𝑜𝑠(휃)| + 𝑗|𝑠𝑖𝑛(휃)|
} (1) 

 
𝐸2𝑥 = 𝜔𝜇0𝑘1𝑛𝑚{

𝑠𝑖𝑔𝑛(𝑦)|𝑠𝑖𝑛(2휃)|

|𝑐𝑜𝑠(휃)| + 𝑗|𝑠𝑖𝑛(휃)|
}, (2) 
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where 𝑘1 is the wavenumber through medium 1, 𝑛 = √휀2 휀1⁄  is the refractive index, 𝑦 is the 

distance along the dielectric interface, and 𝑚 is the magnetic dipole moment. These predict two main 

lobes for each dipole, centered at 휃 = 45°, and  𝜙 = ±90° (the H-plane) [39]. By exciting the orthogonal 

coils 90° out of phase, it is possible to cause destructive interference in one lobe and constructive 

interference in the other, as seen in Fig. 3. The small size and highly directive pattern of this antenna 

make it an excellent candidate for this study. 

 FIELD PROPAGATION 

Electromagnetic field propagation is a classical topic for which the theory is well developed.  In 

the general sense, fields propagate from a source in a manner that satisfies the Maxwell equations and 

appropriate boundary conditions.  The latter part provides interesting affects as a wave comes in contact 

with different media, sometimes giving rise to different modes. 

The most basic case of a time-varying harmonic field is the concept of the plane-wave.  As seen 

in any classical electromagnetic textbook, this is a valid approximation of a propagating field as long as 

one is significantly far enough from the antenna, such that the wave front appears to be uniform.  These 

can then be characterized by a wavenumber, 𝑘, and the wave equations [42]: 

 𝛻2�̃� − 𝛾2�̃� = 0 (3) 

 𝛻2�̃� − 𝛾2�̃� = 0, (4) 

where �̃�, and �̃�, are the electric and magnetic vector phasors (respectively), and 𝛾 is the 

propagation constant.  Note that this plane wave does not necessarily need to be uniform across the entire 

wave front.  Indeed, the wavenumber can be a complex value, which is vital for the definition of the 

surface wave, as we can define a transverse wave impedance as seen in [43]. 

However, waves often come into contact with different media, and the appropriate boundary 

conditions must be respected.  This is a classic field that it is closely tied with optics via Snel’s law, 

which clearly can be applied in these cases.  This then gives rise to different types of modes.  The most 

fundamental is the transverse electromagnetic mode (TEM), but waveguides operate on the principle of 
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transverse electric (TE), or transverse magnetic (TM) modes depending whether the electric or the 

magnetic field is perpendicular to the interface between the materials [42]. 

One of the first investigators in the field was Sommerfeld, who analytically characterized surface 

waves along a cylindrical wire.  This showed both the skin effect (with regards to the concentration of 

current within the wire) as well as the elliptical polarization of the electric field in the direction of 

propagation [44].  Less than a decade later, Zenneck introduced his controversial explanation of the 

surface waves observed in Sommerfeld’s result [45].  Traditionally, it is accepted that radiation decays 

proportional to 
1

𝑟
 in the far field; however, Zenneck believed radios could transmit further by propagating 

through the ground via a so-called “Zenneck wave,” which decays at a slower rate of 
1

√𝑟
.  Although it was 

later determined that the ionosphere was acting as a reflector, permitting the transmission of 

electromagnetic waves over long distance, the existence of the Zenneck wave has been a topic of debate 

[46]. 

The human body may be modeled as a planar set of layered, homogenous boundaries with the 

appropriate permittivities and conductivities [47]. By using a spatial transmission line propagation model, 

the transverse wave impedance of the ith boundary in the x direction can be expressed by [43]: 

 
𝑍𝑖 =

𝑘𝑥,𝑖

(
𝜔휀𝑖 − 𝑗𝜎𝑖

휀0
) 𝑘0

  , (𝑇𝑀) 
(5) 

 𝑍𝑖 =
𝜔𝜇0
𝑘𝑥,𝑖

  , (𝑇𝐸) (6) 

In general, the input impedance (from the perceptive of the boundary) must cancel to produce a 

surface wave on that boundary [43], [47].  The major two types of surface waves that are discussed are 

the Norton wave and the Zenneck wave.  Although an approximation intended for engineering purposes, 

the Norton wave equations describe the rate of decay [46].  It is effectively the geometrical optics field 

subtracted from the radiating field.  Assuming medium 2 is air, The Norton wave is given by [48] 

 
𝐸2𝑧
𝑠 (𝑝, 0) =

𝑗𝜔𝜇0
2𝜋

(
𝑒𝑗𝑘2𝑝

𝑝
)𝐹𝑒 

(7) 
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 𝐹𝑒 = 1 + 𝑗√𝜋𝑝𝑒
−𝑝[1 − 𝑒𝑟𝑓(𝑗√𝑝)] (8) 

Note that 𝑝 is the so-called “numeric distance,” is given by 𝑝 = 𝑗𝑘2𝜌 (
𝑘2
2

2𝑘1
2).  Norton provides 

tables of 𝐹𝑒 for various values of 𝑝 in [49].  It is important to note that the rate of decay is approximately 

𝑒−𝑝, similar to the traditional far-field results, but the wave will be coupled to the surface as opposed to 

radiating into space. 

On the other hand, the Zenneck wave can be expressed along the length of a boundary (again, 

medium 1 is the dielectric and medium 2 is air) as [48]: 

 
𝐸1𝑧 =

𝑗𝜔𝜇0𝑘2

𝑘1
2 𝐴𝑒𝑗𝑘1𝑧𝐻0

(1)(𝑘2𝜌) 
(9) 

 
𝐸2𝑧 =

𝑗𝜔𝜇0
𝑘2

𝐴𝑒
𝑗(
𝑘2
2

𝑘1
)𝑧
𝐻0
(1)(𝑘2𝜌), 

(10) 

where 𝐻0
(1)

 are Hankel functions, which can be approximated by [48]: 

 
𝐻0
(1)(𝑘2𝜌) ≈ √

2

𝜋𝑘2𝜌
𝑒
𝑗(𝑘2𝜌−

𝜋
4
)
 

(11) 

The most important part to note in this result is that the Zenneck decays at a much slower rate of 

1

√𝑟
; however, the appropriate material parameters of the boundary must be selected for a Zenneck wave 

solution to exist. A more detailed discussion on these waves can be found in [48] and [46]. 

Based on the transverse impedances simulated by Lea in [43], it is unlikely that a Zenneck wave 

can be excited on the body with a short electric dipole. Considering that the body model used in [43] is 

inductive at lower frequencies, the conditions for the Norton or Zenneck surface waves could not be met, 

thus no TE surface waves could be observed below 5 GHz. Conversely, the fundamental TM mode 

produced surface waves, as the component of the electric field that is perpendicular to the surface is less 

affected by dielectric losses (severely attenuating any TE waves). Similarly, the presence of Norton waves 

was confirmed via simulation [43].  
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 HUMAN BODY MESHES 

In recent years, significant interest has been placed in the development of accurate human body 

meshes.  Although it is easier to develop an analytical model for planar interfaces, such as the one seen in 

[43], the accuracy of such models is limited.  The human body is far from a simple planar interface and 

the relatively high conductivity and permittivity of the lossy organs has a profound effect on the 

transmission characteristics [11].  Once one refines a model to include internal organs (which is clearly 

even more difficult than a non-planar homogeneous medium), it is impractical to develop a full analytical 

model. 

Fortunately, computational advances over the past several decades have resulted in detailed and 

reliable electromagnetic solution techniques such as finite difference time domain (FDTD), method of 

moments (MoM), and finite element analysis (FEM).  In order to use these powerful tools for medical 

analysis, one requires a mesh of the test subject.  A mesh is a series points that connect triangles and 

tetrahedral to form a three-dimensional structure that closely approximates the object of question.  As one 

would expect, the finer the resolution of the mesh (ie. the more triangles used to approximate it), the 

larger the mesh, and the longer the computation time.  With accurate, computationally feasible meshes of 

the human body, it would be possible to run a variety of EM simulations to advance science and medicine 

(minimizing the number of dangerous tests that need to be done to live subjects).  Table 1 presents a list 

of human body models that are commercially available.  

Custom meshes were constructed for this project from the raw cryoslice data provided by the 

Visible Human Body Project® [50]. The images were produced by photographing slices of the axial plane 

of a female subject at a resolution of 2048 × 1216 pixels, with each pixel having an area of 0.33mm2.  

Organs, including the brain, skull, jaw, tongue, and spine, were identified in pertinent cryoslices 

and hand-segmented using ITK-Snap [51], meshed, and imported into MATLAB. This time-consuming 

process described in [11] results in large, fine resolution triangular surface meshes. Each of these was 

further simplified using surface-preserving Laplacian smoothing [52] to enable fast, yet accurate 

simulations. Resulting models have 1,000-12,000 triangles per structure and mesh description via the 
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Fig. 4. Cross section of the sagittal (YZ) plane of the human head 

model. a.) Locations of included organs, b.) Examples of antenna locations 

with respect to θ. The phase of the excitation was adjusted such that the 45° 

beam transverses the head, as indicated 

 

 

NASTRAN file format [53], [54] allows users to import into custom and commercial simulation software 

packages. In this way, all meshes were imported into Ansys’ High Frequency Structural Simulator 

(HFSS) v. 14, a commercially available FEM electromagnetic simulation suite,  and the mesh checking 

tools resident in this package were utilized to check each model for manifoldness, intersection, and other 

relevant properties. 

Creation of the Cerebrospinal Fluid (CSF), a highly conductive liquid that entirely encompasses 

the brain and is vital to the 

accuracy of any electromagnetic 

simulation involving the head, 

followed a slightly different 

process. Since the brain can move 

about in the CSF, certain 

cryoslices depicted the brain 

directly adjacent to the skull with 

no space allocated for the CSF. 

Therefore, the brain mesh model 

was converted via 3D Delaunay 

tessellation to a strictly convex 

shape. Such an operation will 

allow for all non-convex cavities 

on the brain surface to be filled 

with the CSF. This boundary 

triangular mesh may be extracted 

from the tetrahedral mesh and 

scaled to match an expected 2.5 
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mm-thick CSF layer. 

The final mesh used in these simulations is a refined version of the one presented in [11] with 

additional organs and tissues shown in Fig. 4 to provide a more accurate model of the human head. 

Although not directly intersecting the YZ plane in Fig. 4, the eyes are also included in the simulations. 

The brain is considered a single combined mass, whose permittivity as also given by [55]. The ventricles 

in the brain are assumed to be filled with CSF. 

  

Table 1-Comparison of commercially available human body meshes 

Company/Product name Human body model 

ANSYS HFSS and Maxwell3D 

Product of the United States 

Outdated human body model from Aarkid Limited, Scotland 2005. 

The model has a number of flaws; actively looking for better models 

[79] 

CST Microwave Studio/EM 

Studio 

Product of Germany 

Dated European human body models from 80s and 90s including the 

HUGO human body model, SAM phantom heads, and SAM phantom 

hands [76] 

SEMCAD X 

Product of Switzerland 

World leader: Virtual Swiss family with about 80 tissues per person, 

supported by Swiss Government  . V3.x  to be released in early 2013. 

Not suitable for FEM modeling. Must use SEMCAD X. [77] 

XFdtd of REMCOM 

Product of the United States 

Repositionable Visible Human Project Male (1989-1995) 

including low-resolution internal anatomical structures, lacking some 

internal anatomical structures. [78] 

FEKO 

Product of South Africa 

Visible Human Project Male model (1989-1995) of limited resolution 

[75] 
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MATERIAL PROPERTIES 
The accurate portrayal of the material properties of the organs is vital to the success of these 

simulations. All of the materials were assigned their appropriate material properties such that the 

simulation software could interpret which boundary conditions to use and how to calculation the 

attenuation constant inside each lossy volume. All of the data for the material properties used in this 

project were obtained from the Foundation for Research on Information Technologies in Society (IT’IS) 

[56]. IT’IS is an internationally recognized organization in Switzerland, organized by the Swiss 

Government and academia. They specialize in electromagnetic research and their list of supporters 

include [56]: 

• Centre for Technology Assessment (TA-SWISS) – Switzerland 

• Federal Institute for Occupational Safety and Health (BAuA) – Germany 

• National Institute of Environmental Health Sciences (NIEHS) – USA 

Electric permittivity describes how easily an electric field can polarize the molecules in a medium 

[57]. Naturally, this is a property of the material in question. Complex permittivity can be broken up into 

a real and imaginary component: 

 휀 = 휀′ − 𝑗휀′′ (1)  

This loss factor can be defined: 

 휀′′ =
𝜎

휀0𝜔
 (2)  

One should note that permittivity is frequency dependent and is often given as a function of the 

angular frequency, 𝜔. The permittivity of free-space, 휀0, is a constant. Furthermore, it is dependent on 

another, more tangible property, conductivity, 𝜎. Conductivity is determined by the ease of which the 

ionic transfer of electrons occurs within the medium [57]. Fundamentally, this results in two material 

properties that define electrical characteristics of media: the dielectric constant 휀′ (often simply referred to 

as 휀 or, more correctly, 휀𝑟) and the conductivity, 𝜎. 
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This paper is not intended to go into significant detail into measurement of dielectric materials 

and the effects at the cellular level, but a brief synopsis of the methods used in [57], [58], [59], and [41] is 

provided here, as this is where our material data were obtained. Researchers often divide the dielectric 

properties of biological tissue into three dispersion regions. The boundaries between each region are 

debatable and gradual, but they illustrate three distinct phases in which the material properties change. 

These are summarized in Table 2 [57]. 

Table 2- Dispersion regions of biological tissue [57] 

Name Range Cause Characteristic 

𝜶 
< 10𝑘𝐻𝑧 

Ionic diffusion of particles in and 

out of cell membrane 

휀𝑟 > 1000 

𝜎 < 1 

𝜷 ~100𝑘𝐻𝑧
− 1𝐺𝐻𝑧 

Polarization of membrane and 

proteins 

Quick decrease in 

휀𝑟 

Gradual increase 

in 𝜎 

𝜸 
> 1𝐺𝐻𝑧 Polarization of water molecules 

Low 휀𝑟 

Sharp increase in 

𝜎 
An example of the material properties provided by Gabriel and IT’IS is provided in Fig. 5. 

Although the dispersion regions are listed as mutually exclusive, discrete region in the figure, they are 

continuous regions that gradually transition from one to another. The majority of our studies are in the 

100MHz to 1GHz range, which is governed by the 𝛽 region and the polarization of cell membranes and 

proteins [57]. This clearly has a direct biological connection. 



17 

 

Fig. 5. Example of material properties provided by IT'IS with labeled dispersion regions 

Gabriel used the well known co-axial probe technique to find the capacitance and conductance of 

the unknown samples to reverse engineer the dielectric constant and conductivity. Their measurements 

were taken using impedance analyzers in the 300kHz to 3GHz range and combined with those later taken 

from the 130MHz to 20GHz. The capacitance, 𝐶, and the conductance, 𝐺, of the probe in the material was 

compared with the capacitance in air, 𝐾, using the standard relationships [58]: 

 휀𝑟
′ =

𝐶

𝐾
;     𝜎 =

𝐺휀0
𝐾

 (3)  

The comparison to air proved unreliable due to stray capacitance, lead inductance, and 

polarization of the electrodes. Gabriel corrected these inaccuracies by calibrating the test set up with 

known saline solutions and using sputtered platinum electrodes (the polarization effect was shifted lower 

than standard gold electrodes). For frequencies greater than 100MHz, the variations between samples 

were less than 10%, which was deemed to be within the expected range of natural variation between 

biological entities [58]. 

The aforementioned co-axial probe measurement technique requires a sample size of at least 

5cm × 5cm, thus human samples were not always available. For skin and tongue tissue, Gabriel used in 
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vivo human samples. When available, human cadavers (24 hours to 48 hours post-mortem) were tested. 

Lacking either of the above, similar animals were killed and tested less than 2 hours post-mortem. Gabriel 

also showed a tight correlation between human and animal tissues for organs with samples from both 

species [58]. 

Although Gabriel’s measurements covered discrete points from 10 Hz to 20 GHz, one must make 

an accurate model to interpolate and extrapolate points. By examining Fig. 5, one can see that a linear 

model is a very poor approximation to either the dielectric constant or the conductivity. Generally, one 

generates a parametric model based on dispersion regions to describe the change of material properties as 

frequency increases. One of the most common and straightforward methods is the Debye relaxation 

equation [59]: 

 휀(𝜔) = 휀∞ +
휀𝑠 − 휀∞
1 + 𝑗𝜔𝜏

 (4)  

Here, the relaxation time for the medium in question is defined by 𝜏, which is the time (in 

seconds) for the polarization to reach equilibrium after a change in the electric field. The two terms 휀𝑠 and 

휀∞ describe the dielectric constant for 𝜔𝜏 ≪ 1 and 𝜔𝜏 ≫ 1, respectively [59]. This relaxation time is 

generally greater in water than it is in biological tissue because of organic interactions with the tissue 

[41]. Unfortunately, each dispersion region has multiple regions, thus a more general Cole-Cole 

dispersion model was selected [59]: 

 휀(𝜔) = 휀∞ +∑
휀𝑠𝑖 − 휀∞

1 + (𝑗𝜔𝜏𝑖)
(1−𝛼𝑛)

+
𝜎𝑖
𝑗𝜔휀0

𝑛

𝑖=1

 (5)  

This model takes into account the conductivity, 𝜎𝑖 and the “broadening” of the dispersion, 𝛼𝑖 for 

the 𝑖𝑡ℎ dispersion region. Instead of using a least squares fit, which would be heavily biased by the low 

frequency data, Gabriel et al used a customized, systematic method to recursively generate a parametric 

model for each individual tissue layer [59]. 
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ORTHOGONAL COIL ANTENNAS: THEORY 
 The orthogonal coils were selected as the transmitters for their highly directive radiation 

pattern that is excited when they are placed close to a dielectric interface. Such a pattern is necessary for 

isolating and localizing the effects changes in the dielectric media as well the establishment of a discrete, 

clearly defined channel within the human head. Clearly, an omnidirectional antenna, such as the simple 

dipole, would lead to significant multipath and provide very little useable information on the path of 

propagation. Signal processing techniques could be used to separate these components, but these would 

be prohibitively complicated, and require a priori knowledge of the exact layout and composition of the 

head under test. 

 AN ANTENNA ABOVE A DIELECTRIC INTERFACE: PREVAILING THEORIES 

Most antennas are in close proximity to some foreign medium that has a dielectric constant 

greater than one (i.e. the antenna is near anything that is not air or a vacuum). As such, several approaches 

to finding the electromagnetic fields inside such a medium has been developed over the past several 

decades. I briefly outline three of the most common theories, those of Sommerfeld, Carson, and Banos 

[60]. The following sections provide a brief outline of the current literature. A more in depth summary 

can be found in [60], and the interested reader can view the full original documents in [61], [62], and [63]. 

As opposed to working directly with the electric and magnetic fields (E and H, respectively), all 

of the above authors use an artificial construct called the Hertzian vector potential [60]. Before examining 

each of their theories, one must first understand what this potential represents. 

The Maxwell equations are a classic set of electromagnetic relations between material properties 

(dielectric permittivity, 휀, magnetic permeability, 𝜇, and conductivity, 𝜎), current density (�⃗�), and field 

quantities (electric field, �⃗⃗⃗�, electric displacement, �⃗⃗⃗�, magnetic field, �⃗⃗⃗⃗�, magnetic flux density, �⃗⃗⃗�). 

Generally, solving these partial differential equations is complicated and nearly impossible for all but the 

simplest cases (unless evaluated numerically by simulation software). Introductory antenna or 

electromagnetics texts will introduce the vector Helmholtz equation (also known as the wave equation) 
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for time-invariant, linear, isotropic media.  Applying these simplifying assumptions and vector identities 

to the original Maxwell equations, we arrive at the famous Helmoltz equation (for wavenumber, 𝑘, and an 

vector quantity, �⃗⃗⃗�, which can be either the electric or magnetic field) [64]: 

 ∇2�⃗⃗⃗� − 𝑘2�⃗⃗⃗� = 0 (3)  

By increasing the order of Maxwell’s equations (which also increases the complexity) and 

applying boundary conditions, one can eliminate equations and form a determinate system that can be 

solved for the desired field quantity. However, many physicists have opted to use auxiliary variables to 

generate simplified and more compact expressions. One of the most commonly used variables is the 

magnetic vector potential, �⃗⃗⃗�.  Given a known current density (𝑱
𝟎
⃗⃗⃗⃗ ), there exists a magnetic vector potential 

that satisfies [64]: 

 �⃗⃗⃗⃗� =
1

𝜇
∇ × �⃗⃗⃗� (4)  

Furthermore, the magnetic vector potential can be related back to the electric field by an arbitrary 

scalar function, known as the scalar electric potential, 𝜑 [64]: 

 �⃗⃗⃗� = 𝑗𝜔�⃗⃗⃗� − ∇𝜑 (5)  

The selection of this scalar electric potential function is referred to as a so-called “gauge.” The 

𝜑 = 0 gauge is the simplest assumption, but can result in impractical complications if a source is present 

that does not have a divergence of 0. This can happen for electrically small antennas that are much shorter 

than a wavelength [64]. 

Alternatively, one can use the Coulomb gauge to select 𝜑. Noticing how similar the preceding 

equation for the vector magnetic potential is to the electrostatics condition of �⃗⃗⃗� = −∇𝜑, a natural choice 

for 𝜑 is the solution to the equation for electrostatic potential (the Poisson equation) [64]: 

 ∇2𝜑 =
∇ ⋅ 𝑱𝟎⃗⃗ ⃗⃗

𝑗𝜔휀𝑐
 (6)  

The Coulomb gauge, by the above condition, forces the magnetic vector potential to be a 

solenoid. Therefore this particular gauge offers the simplification of ∇ ⋅ �⃗⃗⃗� = 0, yet adds the difficulty of 
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solving the Poisson equation. This additional complexity has made it less popular than the Lorentz gauge 

[64]. 

 The final gauge we will discuss is the Lorentz gauge. Taking advantage of the −𝜔2𝜇휀 

term (in the time domain), one can find a 𝜑, such that the divergence of vector magnetic potential is [64]: 

 ∇ ⋅ �⃗⃗⃗� = 𝑗𝜔𝜇휀𝜑 (7)  

 From here, it is straightforward to substitute this value into the equation �⃗⃗⃗�, and rewrite it 

in terms material properties, the current density, and the vector magnetic potential (presumably the only 

unknown): 

 ∇2�⃗⃗⃗� − 𝜔2𝜇휀∇�⃗⃗⃗� = −𝜇𝑱𝟎⃗⃗ ⃗⃗  (8)  

Before leaving the Lorentz gauge, one should note that it is very convenient if the divergence of 

the current in a field of interest is 0 (∇ ⋅ 𝑱𝟎⃗⃗ ⃗⃗ = 0), as this causes 𝜑 = 0. This implies that the charges are 

either stationary or moving exclusively in closed loops over the region of interest [64]. 

Many antennas have charges that oscillate about a fixed position. To this end, it helps to introduce 

a new artificial variable call the Hertz vector potential, �⃗⃗⃗�. Note that this is not the same as the vector 

magnetic potential, �⃗⃗⃗�, used above. The Hertz vector potential encodes the frequency in it, and has units of 

𝑉 ⋅ 𝑚, as opposed to 
𝑊𝑏

𝑚
 for �⃗⃗⃗�. This new vector potential is defined as [64]: 

 �⃗⃗⃗� =
𝑗𝜔

𝑘2
�⃗⃗⃗� (9)  

Applying the Laplace operator to the Hertz vector potential allows it to be expended as a partial 

differential equation with respect to time [60]: 

 ∇2�⃗⃗⃗� = (휀𝜇
𝜕2

𝜕𝑡2
+ 𝜎𝜇

𝜕

𝜕𝑡
) �⃗⃗⃗� (10)  

The previous equality will be useful in exploiting symmetry. The Hertz vector potential allowed 

Sommerfeld to write the electric and magnetic fields more compactly [61]: 

 �⃗⃗� = 𝑘2�⃗⃗⃗� + ∇∇ ⋅ �⃗⃗⃗� (11)  
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�⃗⃗⃗� =

𝑘2

𝜇0𝜇𝑟𝑗𝜔
∇ × �⃗⃗⃗� 

(12)  

 SOMMERFELD’S THEORY 

German physicist Arnold Sommerfeld was possibly the earliest investigator of EM field 

propagation in a medium. In 1899 he published a paper regarding the fields near wires, becoming one of 

the first to explore radiation through lossy media [44]. Sommerfeld was primarily interested in the 

radiation above ground (a conductive medium) [60]. He considers infinitesimally small dipole, the so-

called “Hertzian dipole,” which is simply two wings of a dipole (two pieces of wire), small enough that 

the current distribution is uniform across them. He splits the Hertz potential into two separate 

components: Π𝑝𝑟𝑖𝑚, which is the potential due to the dipole as if it were in free space, and Π𝑠𝑒𝑐, which is 

the potential due solely to the reflections from the ground [60]. This is very similar to image theory in 

antenna design, where a dipole above a conductor creates a so-called “image” or reflection in a conductor; 

acting as though the reflection is another dipole [1]. 

For ease of notation, we will compress the frequency and angular properties into the angular 

wavenumber, which is given as: 

 𝑘 = √휀𝜇𝜔2 + 𝑗𝜇𝜎𝜔 (13)  

Let us now consider a vertically oriented dipole above a conducting interface. Sommerfeld 

elected to use cylindrical coordinates, as the boundary could be defined in a piecewise fashion, purely in 

the z direction. Furthermore, due to symmetry in the 𝜙 direction, 
𝜕

𝜕𝜙
= 0. The z component of the Hertz 

potential then becomes [60]: 

 (
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+ 𝑘2 +

𝜕2

𝜕𝑧2
)Π𝑧 = 0 (14)  

This partial differential equation has eigenfunctions in the form of: 

 𝑢 = 𝐽0(𝜆𝑟) cos(𝜇𝑧) , 𝑘
2 = 𝜆2 + 𝜇2, (15)  
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where 𝐽0 is no longer the current density, but rather the first order Bessel function.  Although 𝜆 is 

still the wavelength, the 𝜇 above does not refer to the magnetic permeability, but is instead a placeholder 

variable: 

 𝜇 =
𝑚𝜋

ℎ
, (16)  

where 𝑚 is an integer, and ℎ, is the height of our cylindrical coordinate system. By allowing the 

coordinate system to expand vertically to infinity, 𝑚 becomes insignificant and we can treat this as a 

continuous distribution of eigenfunctions. We can integrate across these eigenfunctions (as a function of 

the wavelength) to find Π𝑧 [60]: 

 Π𝑧 = ∫ 𝐹(𝜆)𝐽0(𝜆𝑟)𝑒
±𝜇𝑧𝑑𝜆

∞

0

, 𝜇 = √𝜆2 − 𝑘2 , (17)  

where 𝐹(𝜆) is some unknown function of the wavelength. Note that 𝜇 acts as the propagation 

constant, and thus the sign of the positive real part only has physical significance. Sommerfeld considers 

the case where the source is located directly at the interface, that is, 𝑧 = 0. This reduces the Hertz 

potential to: 

 Π𝑧 =
𝑒𝑗𝑘𝑅

𝑅
, 𝑅2 = 𝑟2 + 𝑧2, (18)  

This then leads to the unknown function 𝐹(𝜆) to be defined by [60]: 

 𝐹(𝜆) =
𝜆

𝜇
 (19)  

Substituting this expression for 𝐹(𝜆) into the integral for the Hertz potential in the z direction, we 

arrive at: 

 Π𝑧 =
1

2
∫

𝜆

𝜇
𝐻0
(1)(𝜆𝑟)𝑒−𝜇|𝑧|𝑑𝜆

∞

−∞

, (20)  

where 𝐻0
(1)

 is a Hankel function of the first kind [61]. This is the Hertz potential in the z direction 

for a dipole located in free space. 
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 If the interface were a perfect electrical conductor, the boundary conditions produce an 

antenna image, as mentioned previously. This image of the vertically oriented dipole has the same 

polarity as the original, thus if excited directly on the interface (𝑧 = 0), the Hertz potentials add in phase. 

Conversely, a horizontal dipole cannot exploit this symmetry, and instead the Hertz potentials cancel 

because they are 180° out of phase. This notion can be expanded by giving the lower half-space (which is 

now considered only partially conductive) as having a permittivity and a complex conductivity. We can 

now take our expression for the dipole in the air (Primary) and add the effect from the induced currents 

from the lower half-space (secondary) for an antenna located at a height ℎ above the medium [60]: 

 Π𝑧 =

{
 
 
 

 
 
 ∫ 𝐽0(𝜆𝑟)𝑑𝜆(

𝜆

𝜇
𝑒−𝜇(𝑧−ℎ) + 𝑒−𝜇(𝑧+ℎ)𝐹(𝜆)) , ℎ < 𝑧

∞

0

∫ 𝐽0(𝜆𝑟)𝑑𝜆 (
𝜆

𝜇
𝑒𝜇(𝑧−ℎ) + 𝑒−𝜇(𝑧+ℎ)𝐹(𝜆)) , 0 < 𝑧 < ℎ

∞

0

∫ 𝐽0(𝜆𝑟)𝑑𝜆𝑒
𝜇𝐸𝑧−𝜇ℎ𝐹𝐸(𝜆), −∞ < 𝑧 < 0

∞

0

 (21)  

Note that the last region (the Hertz vector potential in the lower medium, or 𝑧 < 0), 𝜇𝐸 is 

separately defined as: 

  𝜇𝐸 = √𝜆
2 − 𝑘𝐸

2, (22)  

which uses the wavenumber in the second medium as opposed to air. The subscript E originally 

stood for “Earth,” as Sommerfeld was interested in radio waves over a partially conductive ground [60]. 

However, the functions 𝐹(𝜆) and 𝐹𝐸(𝜆) remain unknown. To determine these, Sommerfeld applies the 

boundary condition that the tangential components of �⃗⃗⃗� and �⃗⃗⃗⃗� must both be continuous across the 

interface. These translate into the following continuity conditions at the interface (𝑧 = 0) [60]: 

 
𝜕Π

𝜕𝑧
=
𝜕Π𝐸
𝜕𝑧

, Π =
𝑘𝐸
2

𝑘2
Π𝐸 (23)  

The preceding relation produces the following system of equations when applied to our definition 

of Π𝑧: 
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 𝜇𝐹 + 𝜇𝐸𝐹𝐸 = 𝜆, μF −
kE
2

𝑘2
𝜇𝐹𝐸 = −𝜆 (24)  

It is now straightforward to solve for these functions in terms of known quantities: 

 𝐹(𝜆) =
𝜆

𝜇
(1 −

2𝜇𝐸

𝜇 (
𝑘𝐸
𝑘
)
2

+ 𝜇𝐸

) , FE(𝜆) =
2𝜆

𝜇 (
𝑘𝐸
𝑘
)
2

+ 𝜇𝐸

 (25)  

Unfortunately, the analysis of a horizontal dipole above an conductive interface is more complex, 

as we can no longer exploit symmetry in the 𝜙 direction (the dipole is now parallel to the surface). If the 

dipole is oriented along the x-axis, thus one must consider the parallel component (Π𝑥) and the 

perpendicular component (Π𝑧). This provides us with two analogous sets of boundary conditions for the 

electric and magnetic fields separately [60]. The boundary condition for the electric field become: 

 ∇ ⋅ �⃗⃗⃗� = ∇ ⋅ 𝚷𝐄⃗⃗⃗⃗⃗⃗ , 𝑘2Πx = 𝑘𝐸
2Π𝐸

2 (26)  

Similarly, Sommerfeld gives the boundary conditions for the magnetic field: 

 Πz = (
𝑘𝐸
𝑘
)
2

Π𝐸𝑧,
𝜕Πx
𝜕𝑧

 = (
𝑘𝐸
𝑘
)
2 𝜕ΠEx
𝜕𝑧

 (27)  

We now have a relationship between the two components, which can be rewritten as: 

 Πx = (
𝑘𝐸
𝑘
)
2

Π𝐸𝑥,
𝜕Πx
𝜕𝑧

 = (
𝑘𝐸
𝑘
)
2 𝜕ΠEx
𝜕𝑧

 (28)  

 
Πz = (

𝑘𝐸
𝑘
)
2

Π𝐸𝑧,
𝜕Π𝑧
𝜕𝑧

−
𝜕Π𝐸𝑧
𝜕𝑧

=
𝜕Π𝐸𝑥
𝜕𝑥

−
𝜕Π𝑥
𝜕𝑥

 
(29)  

The Hertz potential in the x direction for the horizontal dipole is very similar to that of the Hertz 

potential in the z direction for the vertical dipole. Sommerfeld shows that 𝐹(𝜆) now becomes: 

 𝐹(𝜆) =
𝜆

𝜇
(
2𝜇

𝜇 + 𝜇𝐸
− 1) , 𝐹𝐸(𝜆)  = (

𝑘

𝑘𝐸
)
2 2𝜆

𝜇 + 𝜇𝐸
 (30)  

From here, substitution reveals: 

 Πx =
𝑒𝑗𝑘𝑅

𝑅
−
𝑒𝑗𝑘𝑅

′

𝑅′
+ 2∫ 𝐽0(𝜆𝑟)𝑒

−𝜇(𝑧+ℎ) (
𝜆

𝜇 + 𝜇𝐸
)𝑑𝜆

∞

0

 (31)  
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Π𝐸𝑥 = 2(

𝑘

𝑘𝐸
)
2

∫ 𝐽0(𝜆𝑟)𝑒
𝜇𝐸𝑧−𝜇ℎ (

𝜆

𝜇 + 𝜇𝐸
)𝑑𝜆

∞

0

, 
(32)  

where 𝑅 is the distance from from the antenna to the interface, and 𝑅′ is the distance from the 

image of the antenna to the interface [60]. 

 The horizontal dipole still has a z component, thus we must solve the wave equation: 

 (∇2 + 𝑘2)Π𝑧 = 0 (33)  

 Sommerfeld provides that the solution to this differential equation is: 

 Π𝑧 = 𝐽𝑚(𝜆𝑟)𝑒
−𝜇𝑧𝑒𝑗𝑚𝜙 (34)  

 The boundary conditions that were previously established show that the azimuthal factor 

is cos(𝜙), thus the eigenfunctions are instead based on first order Bessel functions (𝐽1 instead of 𝐽0) 

[61].Currents in the second medium induce currents in the x direction (noting the antenna is parallel to the 

x axis); however, this implies the primary field has no effect on Π𝑧. We now have enough information to 

solve for the remaining component of the Hertz vector potential [60]: 

 Πz = −
2cos(𝜙)

𝑘2
∫ 𝐽1(𝜆𝑟)𝑒

−𝜇(𝑧+ℎ)𝜆2(
𝜇 − 𝜇𝐸

𝜇 (
𝑘𝐸
𝑘
)
2

+ 𝜇𝐸

)𝑑𝜆
∞

0

, 𝑧 > 0 (35)  

 

Πz = −
2cos(𝜙)

𝑘𝐸
2 ∫ 𝐽1(𝜆𝑟)𝑒

−𝜇𝐸𝑧−𝜇ℎ𝜆2(
𝜇 − 𝜇𝐸

𝜇 (
𝑘𝐸
𝑘
)
2

+ 𝜇𝐸

)𝑑𝜆
∞

0

, 𝑧 < 0 

(36)  

 BANOS’ THEORY 

 Alfredo Banos, a Mexican-American Professor, also used a Hertzian dipole and the Hertz 

vector potential; however, his approach makes use of the Green’s function after using a triple Fourier 

transform (in the spatial domain). After generating differential relations between the Hertz potential and 

each spatial coordinate of the electric and magnetic fields, Banos focuses heavily on saddle point methods 

to solving specific situations on a case-by-case basis [62]. 
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 Banos applies the continuity charge to this problem, where the charge density, 𝜌, must be 

continuous across the interface [60]: 

 ∇ ⋅ �⃗� = 𝑗𝜔𝜌 (37)  

 Banos then presents the inhomogeneous Helmholtz equation for the horizontal electric 

dipole along the x-axis in terms of the impressed current density, 𝑱𝟎⃗⃗ ⃗⃗  [60]: 

 (∇2 + k2)�⃗⃗⃗� =
−𝑗𝑱𝟎⃗⃗ ⃗⃗

𝜔휀 + 𝑗𝜎
 (38)  

 He defines this impressed current density as in the x direction as: 

 𝑱𝟎⃗⃗ ⃗⃗ = �̂�𝒙𝑝𝛿(𝑥)𝛿(𝑦)𝛿(𝑧 − ℎ), (39)  

where �̂�𝒙 is the unit vector in the x direction, 𝛿(𝑥) is the Dirac delta function, and 𝑝 is 

proportional to the dipole moment.  It is given by 𝑝 = 𝐼Δℓ, where 𝐼 is the current through the dipole, and 

Δℓ is the length [60]. Banos then uses the Green’s function in the previous Helmholtz equation: 

 (∇2 + k2)𝐺 = −4𝜋𝛿(𝑥)𝛿(𝑦)𝛿(𝑧) (40)  

The solution of which, for the electric dipole moment, is: 

 𝐺 =
𝑒𝑗𝑘𝑅

𝑅
 (41)  

Banos then fins that the vector magnetic potential can be described as: 

 �⃗⃗⃗� = �̂�𝒓Π𝑥 cos(𝜙) − �̂�𝝓Π𝑥 sin(𝜙) + �̂�𝒛Π𝑧 (42)  

 

The fields for the horizontal dipole are summarized in Table 3 [60]: 

Table 3. Banos’ results for the field components of a horizontal electric dipole above a conductive interface 

 �⃗⃗⃗� �⃗⃗⃗⃗� 

𝑟 𝜕

𝜕𝑟
(∇ ⋅ 𝚷) + 𝑘2Π𝑥cos (𝜙) −

𝑗𝑘2

𝜔𝜇0
(sin(𝜙)

𝜕Π𝑥
𝜕𝑧

+
1

𝑟

𝜕Π𝑧
𝜕𝜙

) 

𝜙 1

𝑟

𝜕

𝜕𝜙
(∇ ⋅ 𝚷) − 𝑘2Π𝑥sin (𝜙) −

𝑗𝑘2

𝜔𝜇0
(cos(𝜙)

𝜕Π𝑥
𝜕𝑧

−
𝜕Π𝑧
𝜕𝑟

) 
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𝑧 𝜕

𝜕𝑧
(∇ ⋅ 𝚷) + 𝑘2Π𝑧 

𝑗𝑘2

𝜔𝜇0
(sin(𝜙)

𝜕Π𝑥
𝜕𝑟

) 

 

 WAIT’S THEORY 

 James Wait, a Canadian electrical engineer and physicist again uses the Hertz vector 

potential, but his methods are slightly different than those of Sommerfeld and Banos. Wait instead uses a 

vector based approach, using both electric and magnetic current [63]. 

 Wait begins his text with an overview of the Hertz vector potential and the claim that 

only the z component is necessary in free space, as the magnetic field is perpendicular to the radial and 

axial vectors, thus orbiting the z-axis [60]. He uses the fictitious magnetic current density, �⃗⃗⃗⃗�, which is 

analogous to traditional electric current density, �⃗�: 

 ∇ × �⃗⃗⃗� = −𝑗𝜇𝜇0𝜔�⃗⃗⃗⃗� − �⃗⃗⃗⃗� (43)  

 ∇ × �⃗⃗⃗⃗� = (𝜎 + 𝑗𝜔휀휀0)�⃗⃗⃗� + �⃗� (44)  

Unlike Sommerfeld and Banos, Wait introduces a new abstract quantity, the magnetic Hertz 

vector, �⃗⃗⃗�∗, which is the counterpart of the traditional Hertz vector potential (�⃗⃗⃗�) [60]. 

 �⃗⃗⃗�∗ =
1

4𝜋𝑗𝜇𝜇0𝜔
∫
𝑒−𝑗𝑘𝑅

𝑅
�⃗⃗⃗⃗�𝑑𝑉

 

𝑉

 (45)  

He then expends this theory to an infinitesimal loop of current, oriented parallel to the material 

interface (i.e. a vertical magnetic dipole).  Wait integrates around said loop and applies the same method 

as performed with the electric  dipole to derive the magnetic Hertz potential for the magnetic dipole [60]: 

 Π𝑧
∗ =

𝑚

4𝜋 
(
𝑒−𝑗𝑘𝑅

𝑅
), (46)  

where 𝑚 is the magnetic moment of the loop. 
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 AN ANTENNA ABOVE A DIELECTRIC INTERFACE: ANGULAR SPECTRA 

Let us first consider the case of a simple loop, or horizontal magnetic dipole above a dielectric 

interface. One must consider the optical fields produced by this dipole, which are composed of the plane 

waves and evanescent waves that satisfy the Maxwell’s equations. To describe these fields, we make use 

of the spatial Fourier transform, resulting in the so-called angular spectrum [65].  Let as assume the 

electric field at any given point is defined by 𝑬(𝜌, 𝜙, 𝑧). The angular spectrum representation is then 

defined by: 

 �̂�(𝜌. 𝜙, 𝑧) = ∫ ∫ 𝑬(𝜌, 𝜙, 𝑧)𝑒−𝑗(𝑘𝜙𝜙+𝑘𝜌𝜌)𝑑𝜙𝑑𝜌
2𝜋

0

+∞

−∞

 (47)  

Using the spectral density function, 𝐴(�⃗⃗⃗�), we shall define the fields in both regions as described 

by Smith in [7]. This function is divided into a linear combination of its parallel and perpendicular 

components with respect to the plane of incidence. Provided we know the incident electric field vector �⃗⃗⃗�𝑖, 

 𝑨| |
±(�⃗⃗⃗⃗�) =

±𝑘1exp [𝑗𝛾1(𝐾)]

𝐾𝛾1
∫ ∫ �⃗⃗⃗⃗� • �⃗⃗⃗�𝒊(𝑥, 𝑦, 𝑧)𝑒

𝑗�⃗⃗⃗⃗�•�⃗⃗�𝑑𝑥𝑑𝑦
+∞

−∞

+∞

−∞

 (48)  

 
𝑨⊥
±(�⃗⃗⃗⃗�) =

−exp[𝑗𝛾1(𝐾)]

𝐾
∫ ∫ �⃗⃗⃗⃗� • [�̂� × �⃗⃗⃗�𝒊(𝑥, 𝑦, 𝑧)]𝑒

𝑗�⃗⃗⃗⃗�•�⃗⃗�𝑑𝑥𝑑𝑦
+∞

−∞

+∞

−∞

, 
(49)  

where �⃗⃗�, is the observation vector. As usual, the plane-wave propagation component is given by 

�⃗⃗⃗�1, which is given in terms of the transverse component �⃗⃗⃗⃗�, such that [7]: 

 �⃗⃗⃗�1
± = �⃗⃗⃗⃗� ± 𝛾1(𝐾)�̂� (50)  

 �⃗⃗⃗⃗� = 𝑘𝑥�̂� + 𝑘𝑦�̂� (51)  

 𝐾 = √𝑘𝑥
2 + 𝑘𝑦

2 (52)  

From this, we can determine that 𝛾1 must be: 

 𝛾1(𝐾) = −𝑗√𝐾
2 − 𝑘1

2;       where 𝑘1 ∈ ℝ and 𝐾
2 > 𝑘1

2 (53)  

Similarly, 
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 𝛾2(𝐾) = −𝑗√𝐾
2 − 𝑘2

2;       where 𝑘2 ∈ ℝ and 𝐾
2 > 𝑘2

2 (1)  

To simplify the derivation, field quantities will be referred to in terms of the unit vectors of the 

spectral density functions, combining the main vector quantities in two terms [7]: 

 �̂�| |
± =

−𝐾2�̂� ± 𝛾1(𝐾)�⃗⃗⃗⃗�

𝑘1𝐾
 (2)  

 
�̂�⊥
± =

�̂� × �⃗⃗⃗⃗�

𝐾
, 

(3)  

Now, let us consider the interface. In free space, we have the incident field directly radiated by 

the antenna in addition to reflections from the surface. In the dielectric medium, only the transmitted 

portion of the field exists (i.e. the portion that penetrates from medium 1 to medium 2). The incident 

electric field is given by [7]: 

 �⃗⃗⃗�𝒊
±(𝑥, 𝑦, 𝑧) =

1

4𝜋2
∫ ∫ [�̂�∥

±𝐴∥
±(�⃗⃗⃗⃗�) exp(∓𝑗𝛾1(𝑘)ℎ) + �̂�⊥

±�̂�⊥
±(�⃗⃗⃗⃗�) exp(∓𝑗�⃗⃗⃗�1

± • �⃗⃗�)]𝑑𝑘𝑥𝑑𝑘𝑦

+∞

−∞

+∞

−∞

 (4)  

Here, ℎ is the height of the antenna from the interface. If the dipole is placed directly on or very 

close to the interface (i.e. ℎ → 0), the exp(∓𝑗𝛾1(𝑘)ℎ) term simplifies to 1. 

The field in the second region must be split into a reflected and transmitted field for above (𝑧 ≤

0) and below (𝑧 > 0) the interface respectively. This then leads to: 

 

�⃗⃗⃗�𝑟(𝑥, 𝑦, 𝑧) =
1

4𝜋2
∫ ∫ [[�̂�∥

𝑟𝑅∥(𝐾)𝐴∥
+(�⃗⃗⃗⃗�) + �̂�⊥

𝑟𝑅⊥(𝐾)𝐴⊥
+(�⃗⃗⃗⃗�)]

+∞

−∞

+∞

−∞

• exp(−𝑗𝛾1(𝐾)ℎ − 𝑗�⃗⃗⃗�1
− • �⃗⃗�)] 𝑑𝑘𝑥𝑑𝑘𝑦 

(5)  

 
�⃗⃗⃗�𝑡(𝑥, 𝑦, 𝑧) =

1

4𝜋2
∫ ∫ [[�̂�∥

𝑡𝑇∥(𝐾)𝐴∥
+(�⃗⃗⃗⃗�) + �̂�⊥

𝑟𝑇⊥(𝐾)𝐴⊥
+(�⃗⃗⃗⃗�)]

+∞

−∞

+∞

−∞

• exp(−𝑗𝛾1(𝐾)ℎ − 𝑗�⃗⃗�𝑡 • �⃗⃗�)] 𝑑𝑘𝑥𝑑𝑘𝑦, 

(6)  

Note that the propagation vector for the transmitted field ,�⃗⃗⃗�𝑡, is defined by: 

 �⃗⃗⃗�𝒕 = �⃗⃗⃗⃗� + 𝛾2(𝐾)�̂� (7)  
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Smith defines the reflection and transmission coefficients using the boundary conditions at the 

interface, which are given in Table 4 [7]. 

Table 4. General reflection and transmission coefficients at a dielectric interface 

Reflection/Transmission Coefficient Expression 

𝑅∥(𝐾) 
𝑘2
2𝛾1 − 𝑘1

2𝛾2

𝑘2
2𝛾1 + 𝑘1

2𝛾2
 

𝑅⊥(𝐾) 
𝛾1 − 𝛾2
𝛾1 + 𝛾2

 

𝑇∥(𝐾) 
2𝑘1𝑘2𝛾1

𝑘2
2𝛾1 + 𝑘1

2𝛾2
 

𝑇⊥(𝐾) 2𝛾1(𝛾1 + 𝛾2) 

In the air above the interface, the total electric field is the sum of the incident and reflected fields 

by superposition, whereas the fields in the medium are due totally to transmission: 

 

�⃗⃗⃗�1(𝑥, 𝑦, 𝑧) =
1

4𝜋2
∫ ∫ [�̂�∥

𝑟[𝐴∥
−(�⃗⃗⃗⃗�)𝑒𝑗𝛾1(𝐾)ℎ + 𝑅∥(𝐾)𝐴∥

+(�⃗⃗⃗⃗�)𝑒𝑗𝛾1(𝐾)ℎ]
+∞

−∞

+∞

−∞

+ �̂�⊥
𝑟 [𝐴⊥

−(�⃗⃗⃗⃗�)𝑒𝑗𝛾1(𝐾)ℎ + 𝑅⊥(𝐾)𝐴⊥
+(�⃗⃗⃗⃗�)𝑒𝑗𝛾1(𝐾)ℎ]𝑒−𝑗�⃗⃗⃗�1

−•�⃗⃗�] 𝑑𝑘𝑥𝑑𝑘𝑦 ; 𝑧

≤ −ℎ − 𝛿− 

(8)  

 
�⃗⃗⃗�2(𝑥, 𝑦, 𝑧) =

1

4𝜋2
∫ ∫ [[�̂�∥

𝑡𝑇∥(𝐾)𝐴∥
+(�⃗⃗⃗⃗�) + �̂�⊥

𝑟𝑇⊥(𝐾)𝐴⊥
+(�⃗⃗⃗⃗�)]

+∞

−∞

+∞

−∞

• exp(−𝑗𝛾1(𝐾)ℎ − 𝑗�⃗⃗�𝑡 • �⃗⃗�)] 𝑑𝑘𝑥𝑑𝑘𝑦 ; 𝑧 ≥ 0, 

(9)  

Note that up to this point, we still have not made any assumptions about the antenna exciting this 

field. This general equation for the fields holds for both the near and far-field for any antenna, provided 

we know the incident field of the specific antenna. However, as a simplification, let us examine the far-

field in either region by selecting an observation point that is far away from the antenna (i.e. 𝑘𝑖𝑟 → +∞). 

Smith does this and provides us with the so-called “geometric optics” field, retaining only the dominating 

asymptotic term exp (−
𝑗𝑘𝑖𝑟

𝑘𝑖𝑟
), which is valid as long as one is far from the antenna and not close to the 
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horizon (휃 = 90°). The geometric optics fields are provided for each interface in spherical coordinates for 

simplicity [7]: 

Table 5. Components of the electric field for an arbitrary antenna above a dielectric interface in the far field 

Co

mponent 

Medium 1 (Air) 
𝜋

2
< 휃 ≤

𝜋 

Medium 2 (dielectric) 0 < 휃 ≤
𝜋

2
 

𝐸𝜃(𝑟, 휃, 𝜙) 

𝑗𝑒−𝑗𝑘1𝑟𝑘1|cos(휃)|

2𝜋𝑟
• 

[𝐴∥
−(�⃗⃗⃗�𝑠1)𝑒

𝑗𝑘1ℎ|cos(𝜃)|

+ 𝐴∥
+(�⃗⃗⃗�𝑠1)𝑅∥(𝐾𝑠1)𝑒

−𝑗𝑘1ℎ|cos(𝜃)|] 

𝑗𝑘2|cos(휃)|

2𝜋𝑟
exp [−𝑗 (𝑘2𝑟 + ℎ√𝑘1

2 − 𝑘2
2 𝑠𝑖𝑛2(휃))] • 

𝐴∥
+(�⃗⃗⃗�𝑠2)𝑇∥(𝐾𝑠2) 

𝐸𝜙(𝑟, 휃, 𝜙) 

𝑗𝑒−𝑗𝑘1𝑟𝑘1|cos(휃)|

2𝜋𝑟
• 

[𝐴⊥
−(�⃗⃗⃗�𝑠1)𝑒

𝑗𝑘1ℎ|cos(𝜃)|

+ 𝐴⊥
+(�⃗⃗⃗�𝑠1)𝑅⊥(𝐾𝑠1)𝑒

−𝑗𝑘1ℎ|cos(𝜃)|] 

𝑗𝑘2|cos(휃)|

2𝜋𝑟
exp [−𝑗 (𝑘2𝑟 + ℎ√𝑘1

2 − 𝑘2
2 𝑠𝑖𝑛2(휃))] • 

𝐴⊥
+(�⃗⃗⃗�𝑠2)𝑇⊥(𝐾𝑠2) 

The Fresnel coefficients and spectral density functions were rewritten as functions of the 

transverse propagation numbers for the ith medium, 𝐾𝑠𝑖. This is a geometric transformation to simplify 

the expressions for the fields and demonstrate the symmetry in each region. These transverse propagation 

numbers are defined as: 

 �⃗⃗⃗⃗�𝑠𝑖 = 𝑘𝑖 sin(휃) [�̂� cos(𝜙) + �̂�sin (𝜙)] (10)  

 𝐾𝑠𝑖 = 𝑘𝑖 sin(휃) (11)  

Similarly, the Fresnel coefficients are rewritten as: 

Table 6. General reflection and transmission coefficients at a dielectric interface in terms of 𝐾𝑠𝑖  

Reflection/Transmission Coefficient Expression 

𝑅∥(𝐾𝑠𝑖) 

(
𝑘2
𝑘1
)
2

|cos(휃)| − √(
𝑘2
𝑘1
)
2

− sin2(휃)

(
𝑘2
𝑘1
)
2

|cos(휃)| + √(
𝑘2
𝑘1
)
2

− sin2(휃)
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𝑅⊥(𝐾𝑠𝑖) 

|cos(휃)| − √(
𝑘2
𝑘1
)
2

− sin2(휃)

|cos(휃)| + √(
𝑘2
𝑘1
)
2

− sin2(휃)

 

𝑇∥(𝐾𝑠𝑖) 

2 (
𝑘1
𝑘2
)√(

𝑘1
𝑘2
)
2

− sin2(휃)

(
𝑘1
𝑘2
)
2

|cos(휃)| + √(
𝑘1
𝑘2
)
2

− sin2(휃)

 

𝑇⊥(𝐾𝑠𝑖) 

2√(
𝑘1
𝑘2
)
2

− sin2(휃)

|cos(휃)| + √(
𝑘1
𝑘2
)
2

− sin2(휃)

 

 

 HORIZONTALLY ORIENTED MAGNETIC DIPOLE 

The previous section provided a general format for finding the far field of an arbitrary antenna 

above a dielectric interface. Let us consider a horizontally oriented infinitesimal magnetic dipole with 

dipole moment �⃗⃗⃗⃗� = 𝑚�̂�. The parallel and perpendicular components of the spectral density function are 

given as [7]: 

 𝐴∥
±(�⃗⃗⃗⃗�) = −

𝑗𝜔𝜇0𝑘1𝑘𝑥𝑚

2𝐾𝛾1(𝐾)
 (12)  

 
𝐴⊥
±(�⃗⃗⃗⃗�) = ±

𝑗𝜔𝜇0𝑘𝑦𝑚

2𝐾
, 

(13)  

Where 𝑘1 = √𝑘𝑥
2 + 𝑘𝑦

2 in medium 1 and 𝑘𝑥 and 𝑘𝑦 are simply the respective 𝑥 and 𝑦 components 

of the wavenumber in the first medium. One can think of this as the magnitude of the propagation vector 

in a plane, which clearly does not have a 𝑧 component. One can substitute these into the expression for 
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the far field obtained in Table 5 to find the far field solution for a small horizontally oriented magnetic 

dipole above a dielectric interface. 

Table 7. Far field of an infinitesimally small, horizontally oriented magnetic dipole above a dielectric 

interface 

 Medium 1 (Air) 
𝜋

2
< 휃 ≤ 𝜋 Medium 2 (dielectric) 0 < 휃 ≤

𝜋

2
 

𝐸𝜃 

휁1𝑚𝑘1
2𝑐𝑜𝑠(𝜙)𝑒𝑗𝑘1ℎ|cos(𝜃)| • 

𝑒−𝑗𝑘1𝑟

4𝜋𝑟
[1 + 𝑅∥(𝐾𝑠1)𝑒

−𝑗2𝑘1ℎ|cos(𝜃)|] 

휁2𝑚𝑘2
2 cos(𝜙) |𝑐𝑜𝑠(휃)| exp(−𝑗𝑘1ℎ√1 − (

𝑘2
𝑘1
)
2

sin2(휃)) 

•
𝑇∥(𝐾𝑠2)e

−𝑗𝑘2𝑟

4𝜋𝑟√1 − (
𝑘2
𝑘1
)
2

sin2(휃)

 

𝐸𝜙 

휁1𝑚𝑘1
2 sin(𝜙) |𝑐𝑜𝑠(휃)|𝑒𝑗𝑘1ℎ|cos(𝜃)| • 

𝑒−𝑗𝑘1𝑟

4𝜋𝑟
[1 − 𝑅⊥(𝐾𝑠1)𝑒

−𝑗2𝑘1ℎ|cos(𝜃)|] 

−휁2𝑚𝑘2
2 sin(𝜙) |𝑐𝑜𝑠(휃)| exp(−𝑗𝑘1ℎ√1 − (

𝑘2
𝑘1
)
2

sin2(휃)) 

•
𝑇⊥(𝐾𝑠2)e

−𝑗𝑘2𝑟

4𝜋𝑟
 

 

Note that in Table 7, we simplify the expression by collapsing the material properties of the two 

regions into 휁1 and 휁2, respectively. These wave impedances are given by: 

 휁𝑖 = √
𝑗𝜔𝜇𝑖

𝜎𝑖 + 𝑗𝜔휀𝑖
, for i = 1,2 (14)  

 VERTICALLY ORIENTED MAGNETIC DIPOLE 

The same method from the previous section can be used to find the fields for a vertically 

magnetic dipole above a dielectric interface. Smith has already found the far field for an array of arbitrary 

horizontal loops of current above a dielectric interface in [8]. This solution can be applied to find the far 

field for a single vertical magnetic dipole. Given an array of 𝑛 loops, each with conductor radius 𝑎𝑛, outer 

radius of 𝑏𝑛, and heights, ℎ𝑛, from the interface, the far field is given by [8] in Table 8. 
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Table 8. Far field components for an arbitrary array of horizontal loops above a dielectric interface 

𝐸1𝜃 

−휁1 cot(휃) 𝑒
−𝑗𝑘1𝑟

𝑟
∑{[𝑒𝑗𝑘1ℎ𝑖 cos(𝜃)
𝑛

𝑖=1

− 𝑅∥(휃)𝑒
−𝑗𝑘1ℎ𝑖 cos(𝜃)] ∑ 𝑗𝑚𝑚𝐼𝑚𝑖 sin(𝑚𝜙) 𝐽𝑚(𝑘1𝑏𝑖 sin(휃))

𝑚𝑚𝑎𝑥

𝑚=1

} 

𝐸1𝜙 

휁1𝑒
−𝑗𝑘1𝑟

4𝑟
∑{𝑘1𝑏𝑖[𝑒

𝑗𝑘1ℎ𝑖 cos(𝜃)

𝑛

𝑖=1

+ 𝑅⊥(휃)𝑒
−𝑗𝑘1ℎ𝑖 cos(𝜃)] ∑ ℎ(𝑚)𝑗𝑚𝐼𝑚𝑖 cos(𝑚𝜙) [𝐽𝑚+1(𝑘1𝑏𝑖 sin(휃))

𝑚𝑚𝑎𝑥

𝑚=0

− 𝐽𝑚−1(𝑘1𝑏𝑖 sin(휃))]} 

𝐸2𝜃 
휁1 cot(휃

′)𝑇∥(휃)𝑒
−𝑗𝑘2𝑟

𝑟
∑{𝑒−𝑗𝑘1ℎ𝑖cos (𝜃

′) ∑ 𝑗𝑚𝑚𝐼𝑚𝑖 sin(𝑚𝜙) 𝐽𝑚(𝑘1𝑏𝑖 sin(휃
′))

𝑚𝑚𝑎𝑥

𝑚=1

}

𝑛

𝑖=1

 

𝐸2𝜙 

휁1𝑒
−𝑗𝑘2𝑟𝑇⊥(휃)

4𝑟
∑𝑘1𝑏𝑖

𝑛

𝑖=1

{𝑒−𝑗𝑘1ℎ𝑖cos (𝜃
′) ∑ ℎ(𝑚)𝑗𝑚 cos(𝑚𝜙) 𝐼𝑚𝑖[𝐽𝑚+1(𝑘1𝑏𝑖 sin(휃

′))

𝑚𝑚𝑎𝑥

𝑚=0

− 𝐽𝑚−1(𝑘1𝑏𝑖 sin(휃
′))]} 

 

The Fresnel reflection and transmission coefficients are almost the same as those provided in 

Table 6, as they are general with respect to the orientation of the incident field, regardless of the source. 

The problem geometry allows us to simplify the transmission coefficients in the vertical case to: 
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𝑇∥(휃) =

2 (
𝑘1
𝑘2
) |cos(휃)|

(
𝑘1
𝑘2
)
2

|cos(휃)| + √(
𝑘1
𝑘2
)
2

− sin2(휃)

 
(15)  

 
𝑇⊥(휃) =

2|cos(휃)|

|cos(휃)| + √(
𝑘1
𝑘2
)
2

− sin2(휃)

 
(16)  

For the ease of notation, 휃′ was used to denote: 

 휃′ = sin−1 (
𝑘2
𝑘1
sin(휃)) (17)  

Although the equations in Table 8 may appear cumbersome in the general case, we can make 

several simplifications. Let us have only a single horizontal loop (i.e. vertical magnetic dipole), setting 

𝑛 = 1. Therefore, only the first term of summation over the number of antennas is retained. Furthermore, 

we only consider an infinitesimal magnetic dipole, thus the loop radii 𝑎 = 𝑏 ≈ 0. We consider the static 

case with uniform current distribution throughout the loop, thus we only keep 𝑚 = 0 in the Fourier 

expansion. This assumption causes the 휃 component in either material to be 0, as all of the higher order 

modes in the sum are now zero (i.e. 𝐼𝑖1 = 0, 𝐼𝑖2 = 0,…). The magnetic moment, m = 𝐼0𝑖𝜋𝑏
2 must be held 

constant, otherwise the dipole will not radiate. Thus we must look at the asymptotic expansion of 

allowing 𝑏 → 0 without allowing the magnetic moment to go to zero (i.e, 𝐼0 must offset b). We can first 

rewrite 𝐸1𝜙 and 𝐸2𝜙 as: 

 
𝐸1𝜙 =

휁1𝑘1𝑒
−𝑗𝑘1𝑟

4𝜋𝑟
𝐼0𝑏[𝑒

𝑗𝑘1ℎ cos(𝜃) + 𝑅⊥(휃)𝑒
−𝑗𝑘1ℎ cos(𝜃)][𝐽1(𝑘1𝑏 sin(휃))

− 𝐽−1(𝑘1𝑏 sin(휃))] 

(18)  

 
𝐸2𝜙 =

휁1𝑘1𝑒
−𝑗𝑘2𝑟𝑇⊥(휃)

4𝜋𝑟
𝐼0𝑏𝑒

−𝑗𝑘1ℎcos (𝜃
′)[𝐽1(𝑘1𝑏 sin(휃

′)) − 𝐽−1(𝑘1𝑏 sin(휃
′))] 

(19)  

 

 

We can then look at the asymptotic expansion of the Bessel function [66]: 
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[𝐽1(𝑘1𝑏 sin(휃)) − 𝐽−1(𝑘1𝑏 sin(휃))]

= [(
𝑘1𝑏 sin(휃)

2
)

1

∑
(−1)𝑘

𝑘! Γ(𝑘 + 2)
(
𝑘1𝑏 sin(휃)

2
)

2𝑘∞

𝑘=0

− (
𝑘1𝑏 sin(휃)

2
)

−1

∑
(−1)𝑘

𝑘! Γ(𝑘)
(
𝑘1𝑏 sin(휃)

2
)

2𝑘∞

𝑘=0

] 

(20)  

The magnetic moment must remain constant as the radius decreases. If this radius, 𝑏 → 0, then 𝑏2 

is small. As 𝑘 increases in the series expansion of the Bessel function, the radius is raised to increasing 

powers, thus it is becoming smaller and smaller. Only the leading term, which will form m = 𝐼0𝑏
2, will 

be retained as it dominates the expansion (only 𝑘 = 0 is considered for 𝐽1, but this term approaches 0 for 

𝐽−1, thus we must consider 𝑘 = 1 for 𝐽−1). 

 

[𝐽1(𝑘1𝑏 sin(휃)) − 𝐽−1(𝑘1𝑏 sin(휃))]

= [(
𝑘1𝑏 sin(휃)

2
)
−1

Γ(2)
− (

2

𝑘1𝑏 sin(휃)
)
−1

Γ(1)
(
𝑘1𝑏 sin(휃)

2
)

2

] 
(21)  

Noting that Γ(2) = Γ(0) = 1: 

 [𝐽1(𝑘1𝑏 sin(휃)) − 𝐽−1(𝑘1𝑏 sin(휃))] = 𝑘1𝑏 sin(휃) (22)  

These simplifications cause the far field components in Table 8 to reduce to those in Table 9: 

Table 9. Far field components of a vertical magnetic dipole above a dielectric interface 

𝐸1𝜃 0 

𝐸1𝜙 
휁1𝑘1

2𝑚sin(휃) 𝑒−𝑗𝑘1𝑟

4𝜋𝑟
[𝑒𝑗𝑘1ℎ cos(𝜃) + 𝑅⊥(휃)𝑒

−𝑗𝑘1ℎ cos(𝜃)] 

𝐸2𝜃 0 

𝐸2𝜙 
−휁2𝑘2

2𝑚 𝑒−𝑗𝑘2𝑟𝑇⊥(휃)

4𝜋𝑟
exp(−𝑗𝑘1ℎ√1 − (

𝑘2
𝑘1
)
2

𝑠𝑖𝑛2(휃)) 
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 To check these results, let us use these equations to compute the far field of a magnetic 

dipole in free space. There is no longer an interface between the materials, thus ℎ → 0, and the material 

properties of the two regions are equivalent (we assume they are in a vacuum): 휀1 = 휀2 = 휀0, and 𝜎1 =

𝜎2 = 0. Logically, we must show that 𝐸1𝜙 = 𝐸2𝜙. Also, we must evaluate the Fresnel coefficients (this is 

a trivial case with no boundaries so, there should be no reflections and only perfect transmission). These 

are summarized in Table 10. 

Table 10. Fresnel coefficients with no boundaries 

Reflection/Transmission Coefficient Expression 

𝑅∥(𝐾𝑠𝑖) 0 

𝑅⊥(𝐾𝑠𝑖) 0 

𝑇∥(𝐾𝑠𝑖) 1 

𝑇⊥(𝐾𝑠𝑖) 1 

 

Furthermore, 휃 = 휃′ when there are no boundaries. 

 𝐸1𝜙 = 𝐸2𝜙 =
휁𝑘2𝑚sin(휃) 𝑒−𝑗𝑘𝑟

4𝜋𝑟
 (23)  

This matches exactly with the far field of a loop in free space, as per Balanis [1]. We can perform 

a similar analysis for the far field of the horizontally orientated magnetic dipole, which was derived in the 

previous section. 

 𝐸𝜃 = 𝐸1𝜃 + 𝐸2𝜃 = 휁𝑚𝑘
2𝑐𝑜𝑠(𝜙)

𝑒−𝑗𝑘1𝑟

2𝜋𝑟
 (24)  

 𝐸𝜙 = 𝐸1𝜙 + 𝐸2𝜙 = 0 (25)  

When we rotate the coordinate system by 
𝜋

2
 radians about the 휃 axis, to realign this solution to 

that of the vertical magnetic dipole (for comparison), this 휃 component becomes the new 𝜙 component: 
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 𝐸𝜙 = 휁𝑚𝑘
2𝑐𝑜𝑠(휃)

𝑒−𝑗𝑘1𝑟

2𝜋𝑟
 (26)  

Using Balanis definition of the magnetic moment 𝑚 = 𝐼𝑚ℓ = 𝑗𝜔𝜇𝐼0𝜋𝑎
2 [1], and collapsing this 

term into Smith’s definition: 𝑚 = 𝐼0𝜋𝑎
2 [7], the remaining terms can be absorbed into the wave 

impedance 휁. This allows us to establish equivalency between Smith’s result (the left hand side of the 

equation), and Balanis result (right hand side): 

 휁𝑚𝑘2𝑐𝑜𝑠(휃)
𝑒−𝑗𝑘𝑟

2𝜋𝑟
=
−𝑗𝑘(𝑗𝜋𝑎2𝜔𝜇𝐼0)𝑠𝑖𝑛(휃)

4𝜋𝑟
𝑒−𝑗𝑘𝑟 (27)  

 
휁𝑚𝑘2𝑐𝑜𝑠(휃)

𝑒−𝑗𝑘𝑟

2𝜋𝑟
= 휁𝑚𝑘2𝑠𝑖𝑛(휃)

𝑒−𝑗𝑘𝑟

2𝜋𝑟
  

(28)  

For the purposes of clarity, we can rewrite these expressions in terms of the index of refraction, 

which we define as: 

𝑛 =
𝑘2
𝑘1
, 

(29)  

which simplifies to the familiar 𝑛 = √
𝜀2

𝜀1
 if 𝜇1 = 𝜇2 = 1 and 𝜎1 = 𝜎2 = 0. The expressions for 

the far-field components of the horizontal and vertical magnetic dipoles above a planar interface are 

summarized in Table 11 and Table 12, respectively. 
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Table 11. Compact expression for the far-field of a horizontal magnetic dipole above a dielectric interface 

Horizontal Magnetic Dipole 

 Medium 1 (Air) Medium 2 (dielectric) 

𝐸𝜃 

𝜔𝜇0𝑚𝑘1𝑐𝑜𝑠(𝜙)𝑒
𝑗𝑘1ℎ|cos(𝜃)|

𝑒−𝑗𝑘1𝑟

4𝜋𝑟
⋅ 

[
 
 
 

1 +
𝑛2|cos(휃)|−√𝑛2 − sin2(휃)

𝑛2|cos(휃)|+√𝑛2 − sin2(휃)

𝑒−𝑗2𝑘1ℎ|cos(𝜃)|

]
 
 
 

 

 

𝜔𝜇0𝑘1𝑚cos(𝜙) |𝑐𝑜𝑠(휃)| ⋅ 

exp(−𝑗𝑘1ℎ√1 − (
𝑘2
𝑘1
)
2

sin2(휃)) ⋅ 

(

 
2

|cos(휃)|+√1 − 𝑛2 sin2(휃))

 
e−𝑗𝑘2𝑟

4𝜋𝑟
 

 

𝐸𝜙 

𝜔𝜇0𝑚𝑘1 sin(𝜙) |𝑐𝑜𝑠(휃)|𝑒
𝑗𝑘1ℎ|cos(𝜃)|

𝑒−𝑗𝑘1𝑟

4𝜋𝑟
⋅ 

[
 
 
 

1 −
|cos(휃)|−√𝑛2 − sin2(휃)

|cos(휃)|+√𝑛2 − sin2(휃)

𝑒−𝑗2𝑘1ℎ|cos(𝜃)|

]
 
 
 

 

 

−𝜔𝜇0𝑘1𝑛𝑚

(

 
2 sin(𝜙) |𝑐𝑜𝑠(휃)|√1 − 𝑛2 sin2(휃)

𝑛|cos(휃)|+√1 − 𝑛2sin2(휃) )

 ⋅ 

exp (−𝑗𝑘1ℎ√1 − 𝑛
2 sin2(휃))

e−𝑗𝑘2𝑟

4𝜋𝑟
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Table 12. Compact expression for the far-field of a vertical magnetic dipole above a dielectric interface 

Vertical Magnetic Dipole 

 Medium 1 (Air) Medium 2 (dielectric) 

𝐸𝜃 0 0 

𝐸𝜙 

𝜔𝜇0𝑘1𝑚sin(휃) ⋅ 

[𝑒𝑗𝑘1ℎ cos(𝜃)

+
cos(휃) − √𝑛2 − sin2(휃)

cos(휃) + √𝑛2 − sin2(휃)
𝑒−𝑗𝑘1ℎ cos(𝜃)] ⋅ 

(
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
) 

−𝜔𝜇0𝑘1𝑚n(
2𝑛𝑠𝑖𝑛(휃)|cos(휃)|

𝑛|cos(휃)| + √1 − 𝑛2 sin2(휃)
) ⋅ 

𝑒𝑥𝑝 (−𝑗𝑘1ℎ√1 − 𝑛
2 sin2(휃))(

𝑒−𝑗𝑘2𝑟

4𝜋𝑟
) 

 

 SPECIAL CASES 

These expressions for the fields are complicated in the general case, but can be simplified if 

certain restrictions are applied. First, let us consider the case where ℎ → 0, that is, the antenna is located 

infinitely close to the interface. This simplification is demonstrated in Table 13 and Table 14 for the 

horizontal and vertical magnetic dipoles, respectively. 
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Table 13. Far field components for a horizontal magnetic dipole very close to a dielectric interface 

Horizontal Magnetic Dipole 

 Medium 1 (Air) Medium 2 (dielectric) 

𝐸𝜃 

𝜔𝜇0𝑚𝑘1𝑐𝑜𝑠(𝜙)
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
⋅ 

[
 
 
 

1 +
𝑛2|cos(휃)|−√𝑛2 − sin2(휃)

𝑛2|cos(휃)|+√𝑛2 − sin2(휃)]
 
 
 

 

 

𝜔𝜇0𝑘1𝑚cos(𝜙) |𝑐𝑜𝑠(휃)| ⋅ 

(

 
2

|cos(휃)|+√1 − 𝑛2 sin2(휃))

 
e−𝑗𝑘2𝑟

4𝜋𝑟
 

 

𝐸𝜙 

𝜔𝜇0𝑚𝑘1 sin(𝜙) |𝑐𝑜𝑠(휃)|
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
⋅ 

[
 
 
 

1 −
|cos(휃)|−√𝑛2 − sin2(휃)

|cos(휃)|+√𝑛2 − sin2(휃)]
 
 
 

 

 

−𝜔𝜇0𝑘1𝑛𝑚

(

 
2 sin(𝜙) |𝑐𝑜𝑠(휃)|√1 − 𝑛2 sin2(휃)

𝑛|cos(휃)|+√1 − 𝑛2sin2(휃) )

 ⋅ 

e−𝑗𝑘2𝑟

4𝜋𝑟
 

 

Table 14. Far field components for a Vertical magnetic dipole very close to a dielectric interface 

Vertical Magnetic Dipole 

 Medium 1 (Air) Medium 2 (dielectric) 

𝐸𝜃 0 0 

𝐸𝜙 

𝜔𝜇0𝑘1𝑚sin(휃) ⋅ 

[1 +
cos(휃) − √𝑛2 − sin2(휃)

cos(휃) + √𝑛2 − sin2(휃)
] ⋅ 

(
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
) 

−𝜔𝜇0𝑘1𝑚n(
2𝑛𝑠𝑖𝑛(휃)|cos(휃)|

𝑛|cos(휃)| + √1 − 𝑛2 sin2(휃)
) ⋅ 

(
𝑒−𝑗𝑘2𝑟

4𝜋𝑟
) 
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Generally, if one places an antenna on an interface, the contrast in the dielectric constant or material 

properties is very large. Let us now consider the asymptotic case where 𝑛 ≫ 1, that is, 휀2 ≫ 휀1. These new 

expressions are summarized for the horizontal and vertical magnetic dipoles in Table 15 and  
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Table 16, respectively. 

Table 15. Far field components for a horizontal magnetic dipole very close to a high contrast dielectric 

interface 

Horizontal Magnetic Dipole 

 Medium 1 (Air) Medium 2 (dielectric) 

𝐸𝜃 2𝜔𝜇0𝑚𝑘1𝑐𝑜𝑠(𝜙)
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
 

𝜔𝜇0𝑘1𝑚cos(𝜙) ⋅ 

(
−2𝑗|𝑐𝑜𝑠(휃)|

|sin(휃)|
)
e−𝑗𝑘2𝑟

4𝜋𝑟
 

 

𝐸𝜙 2𝜔𝜇0𝑚𝑘1 sin(𝜙) |𝑐𝑜𝑠(휃)|
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
 

−𝜔𝜇0𝑘1𝑚[𝑗𝑠𝑖𝑛(𝜙)] (
𝑛|sin(2휃)|

|cos(휃)|+ 𝑗|sin(휃)|
) ⋅ 

e−𝑗𝑘2𝑟

4𝜋𝑟
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Table 16. Far field components for a Vertical magnetic dipole very close to a high contrast dielectric 

interface 

Vertical Magnetic Dipole 

 Medium 1 (Air) Medium 2 (dielectric) 

𝐸𝜃 0 0 

𝐸𝜙 0 

−𝜔𝜇0𝑘1𝑚(
𝑛|sin(2휃)|

|cos(휃)|+ 𝑗|sin(휃)|
) ⋅ 

e−𝑗𝑘2𝑟

4𝜋𝑟
 

 ORTHOGONAL MAGNETIC DIPOLES 

With the far field solutions of both orientations of the magnetic dipole, we can now apply 

superposition to combine both antennas. Moreover, we will apply a phase offset to the vertical magnetic 

dipole in form of 𝑒𝑗𝜃𝑥 , where 휃𝑥 is the difference in the excitation phase from the horizontal coil. A 휃𝑥 of 

0 implies they are completely in-phase, whereas a 휃𝑥 of 𝜋 indicates they are completely out of phase. 

These are shown in Table 17. Note that 𝐸𝜙 will form a maximized beam at 휃 = 45°, because the field 

components from the horizontal and vertical dipoles add constructively in phase (at 휃 = −45°, they add 

destructively and cancel the second beam that was observed from a single magnetic dipole). 
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Table 17. Field components for combined orthogonal dipoles with a 90 degree phase offset very close to a 

high contrast dielectric interface 

Cross Coil Antenna with 90° Phase Offset 

 Medium 1 (Air) Medium 2 (dielectric) 

𝐸𝜃 2𝜔𝜇0𝑚𝑘1𝑐𝑜𝑠(𝜙)
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
 

𝜔𝜇0𝑘1𝑚cos(𝜙) ⋅ 

(
−2𝑗|𝑐𝑜𝑠(휃)|

|sin(휃)|
)
e−𝑗𝑘2𝑟

4𝜋𝑟
 

 

𝐸𝜙 2𝜔𝜇0𝑚𝑘1 sin(𝜙) |𝑐𝑜𝑠(휃)|
𝑒−𝑗𝑘1𝑟

4𝜋𝑟
 

𝜔𝜇0𝑘1𝑚(
𝑛|sin(2휃)|

|cos(휃)|+ 𝑗|sin(휃)|
) ⋅ 

(sin(𝜙) + 1)
e−𝑗𝑘2𝑟

4𝜋𝑟
 

 

 DIRECTIVITY 

The derivation for the fields in the previous section were exclusively for the Far-field or 

Fraunhofer region. This radiating far-field is taken to begin at radial distances of 𝑟 >
2𝐷2

𝜆
, where D is the 

maximum dimension of the antenna and 𝜆 is the wavelength [1]. One typically plots the radiation pattern, 

showing the relative intensity of the fields, in the far-field of most antennas, as the distance between 

transmitter and receiver is often 𝑟 ≫
2𝐷2

𝜆
. A radiation pattern is a common means of judging the spatial 

radiation characteristics of an antenna and is defined as “a mathematical function or a graphical 

representation of the radiation properties of the antenna as a function of space coordinates [1].” 

Generally, an antenna engineer is trying to maximize power between a transmitter and a receiver. 

Basic circuit analysis reveals there is a relationship between power and voltage through the standard 

power equations: 𝑃 = 𝐼𝑅 =
𝑉2

𝑅
, where 𝑃 is power, 𝐼 is current, 𝑉 is the voltage drop across a given 

element, and 𝑅 is the resistance of said element. Logically, this is a simplification of the general case of 

the Poynting vector, �⃗⃗⃗� = �⃗⃗⃗� × �⃗⃗⃗⃗�∗, where �⃗⃗⃗� is the Poynting vector, �⃗⃗⃗� is the electric field, and �⃗⃗⃗⃗� is the 
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complex conjugate of the magnetic field. In the far field, the magnitude of the Poynting vector can be 

approximated by |�⃗⃗⃗�| =
|�⃗⃗⃗�|

2

𝜂
, where 휂 is the wave impedance [1]. 

 To define directivity, we must first define radiation intensity. The radiation intensity, 𝑈, 

of an antenna is the power radiated by said antenna per unit solid angle (as opposed to radiation density, 

𝑊𝑟𝑎𝑑, which is half of the real part of the magnitude of the Poynting vector). Radiation intensity in the far 

field is then given by [1]: 

𝑈 =
𝑟2

2휂
× (|𝐸𝜃|

2 + |𝐸𝜙|
2
) 

(30)  

 To increase the power radiated from an antenna, one can simply put more power into the 

device. This is hardly efficient, and says very little about the quality of an antenna (any device can be 

used to transmit at any frequency over any distance if supplied with infinite power, which may destroy the 

antenna in the process). Directivity is a unitless measurement that compares the power radiated at any 

specific angle (𝜙 and 휃) to that of the average radiated power of the antenna. A hypothetical isotropic 

antenna, which radiates in all directions equally, would have a directivity pattern that was a perfect 

sphere, with a directivity of 1 everywhere. A highly directive antenna may have a beam with 𝐷 ≫ 1 at a 

certain angle, but areas where comparatively little radiation is produced (so-called “nulls,” where 𝐷 ≪ 1). 

Traditionally, directivity is given by [1]: 

𝐷 =
4𝜋𝑈

𝑃𝑟𝑎𝑑
=

4𝜋 (|𝐸𝜃|
2 + |𝐸𝜙|

2
)

∫ ∫ (|𝐸𝜃|
2 + |𝐸𝜙|

2
) sin(휃) 𝑑휃𝑑𝜙

𝜋

0

2𝜋

0

 

(31)  

 Unfortunately, this definition does not hold true for a lossy medium. One may recall that 

the introduction of 𝜎 > 0 will result in a complex wave impedance 휁 for either of the radiation media for 

our dipoles above an interface. The radiated power and radiation density must be completely real and 

cannot contain an imaginary (reactive) component. Smith provides a slightly different definition for the 

directivity to take into account the conductive losses. He considers only the radiating power by scaling the 
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magnitude of the complex wave impedance by its real part. This produces a modified definition of 

directivity, which must defined separately for region 1 and region 2 [7]: 

𝐷𝑖 =

4𝜋Re(휁𝑖)
2|휁1|

2 (|𝐸𝜃𝑒
𝑗𝑘𝑖𝑟𝑟|

2
+ |𝐸𝜙𝑒

𝑗𝑘𝑖𝑟𝑟|
2
)

∫ ∫ (
Re(휁𝑖)
2|휁1|

2 (|𝐸𝜃𝑒
𝑗𝑘𝑖𝑟𝑟|2 + |𝐸𝜙𝑒

𝑗𝑘𝑖𝑟𝑟|
2
)) sin(휃) 𝑑휃𝑑𝜙

𝜋

0

2𝜋

0

,   for 𝑖 = 1,2 

(32)  
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ARBITRARY ORIENTATION OF MAGNETIC DIPOLES 
 In the previous section, we demonstrated that a 45° beam could be generated by exciting 

two orthogonal magnetic dipoles 90° out of phase. However, it was initially assumed that these two 

dipoles would be globally oriented such that they were aligned with the interface (i.e. the medium is 

parallel to the horizontally oriented magnetic dipole and perpendicular to the vertically oriented magnetic 

dipole), as seen in Fig. 6a. We wish to show that it is possible to generate this directive beam with any 

two orthogonal dipoles, regardless of their orientation relative to the interface, as seen in Fig. 6b. 

 

Fig. 6. Orientation of magnetic dipoles above a dielectric interface. a) the proposed orthogonal orientation b) 

arbitrary orientation 

 POLARIZATION 

 The concept of exciting two antennas with a phase offset is not novel. Indeed, it is the 

foundation of the concept of polarization.  Typically, if a reference direction of the polarization of an 

antenna is not given, one may assume that it is in the direction of maximum gain [67].  Although 

electromagnetic waves propagate at the same velocity (assuming a uniform medium) in all directions 

from a source at varying intensities, the excitement of the antenna determines its polarization.  

Considering the phase of the feed determines how the wave propagates over time, one can describe the 

polarization to be that of the vector traced by the electric field at a set point in space.  Typically, one 
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usually encounters three general types of polarization: circular polarization, elliptical polarization, and 

linear polarization.  The magnitude of the electric field vector is given by Equation (12) [42]. 

 

|𝑬(𝑧, 𝑡)| = √𝐸𝑥
2(𝑧, 𝑡) + 𝐸𝑦

2(𝑧, 𝑡)

= √𝑎𝑥
2(cos2 (𝜔𝑡 − 𝑘𝑧)) + 𝑎𝑦

2(cos2 (𝜔𝑡 − 𝑘𝑧 + 𝛿)) 

(1)  

 

 Here, |𝑬(𝑧, 𝑡)| is the electric field magnitude at a point in space z with respect to time t.  

Viewing the electric field as a planar wave (x-y plane) propagating in the z direction, Equation 3 shows 

that the magnitude is simply the geometric mean of the separate x and y components.  These are 

represented by the amplitudes multiplied by  cos2 functions, where 𝜔 represents the angular frequency, k 

is the wavenumber (𝑘 =
𝜔√𝜀𝑟

𝑐
), and 𝛿 is the difference in phase between the respective x and y 

components.  This phase difference is typically given in radians, thus if 𝛿 is 0, then the two components 

are perfectly in-phase with one another.  When 𝛿 is π, they are completely out of phase [42]. 

 Linear polarization occurs when the electric field vectors lie upon a single line 

throughout time.  The UHF antenna in this project will need to be linearly polarized in order communicate 

with other JTRS users.  As one would expect, this can only occur when the horizontal and vertical 

components of the field are completely in or out of phase.  Typically, one can describe this relationship by 

the inclination angle with respect to the x-axis, as shown in Equation (13).  This is the angle formed by 

the ratio of the vertical components of the field to the horizontal components of the field [42]. 

 𝛹(𝑧, 𝑡) = 𝑡𝑎𝑛−1 (
𝐸𝑦(𝑧, 𝑡)

𝐸𝑥(𝑧, 𝑡)
) (2)  

 

In this equation, 𝐸𝑦(𝑧, 𝑡) and 𝐸𝑥(𝑧, 𝑡) are the values of the electric field components in the 

vertical and horizontal directions, respectively, at a certain distance z and time t.  However, this angle is 

not dependent on distance and time, as the vertical and horizontal components of the field will change 
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correspondingly, thus canceling out z and t in the final inclination angle.  This is only true for the linearly 

polarized case as only the magnitude changes [42]. 

Another special case of particular interest is circular polarization.  Circular polarization occurs 

when the magnitudes of the horizontal and vertical components of a propagating electric field are equal, 

but out of phase by a quarter of a cycle.  An antenna is Left Hand Circularly Polarized (LHCP) if 𝛿 =
𝜋

2
, 

but it is RHCP if 𝛿 = −
𝜋

2
 [42].  One can make an antenna circularly polarized by changing the phase of 

the feeds such that the phase leading feed moves closer (in phase as opposed to distance) or further from 

the phase lagging feed [67].  However, opposite that of linear polarization, either direction of circular 

polarization will have an inclination angle that is a function of time, but the total magnitude of the electric 

field will remain constant.  This can be seen in Equation (14), which applies Equations (12) and (13) to 

the RHCP case for magnitude of the electric field.  Similarly, this is performed with Equation (16) to 

obtain the inclination angle in Equation (17) for the same RHCP case [42]. 

 

|𝑬(𝑧, 𝑡)| = √𝐸𝑥
2(𝑧, 𝑡) + 𝐸𝑦

2(𝑧, 𝑡)

= √𝑎 
2(cos2 (𝜔𝑡 − 𝑘𝑧)) + (−𝑎) 

2(sin2 (𝜔𝑡 − 𝑘𝑧)) 

(3)  

 

 

|𝑬(𝑧, 𝑡)| = 𝑎 

 

(4)  

 𝛹(𝑧, 𝑡) = 𝑡𝑎𝑛−1 (
𝑎(sin (𝜔𝑡 − 𝑘𝑧))

𝑎(cos(𝜔𝑡 − 𝑘𝑧))
) (5)  

 

 
𝛹(𝑧, 𝑡) = 𝜔𝑡 − 𝑘𝑧 

 

(6)  

 Note the negative sign that is included with the vertical component of the electric field.  

This is included to show that it is caused by 𝛿 =
−𝜋

2
,  whereas for LHCP, the only difference would be in 
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the inclination angle (due to  𝛿 =
𝜋

2
), thus becoming 𝑘𝑧 − 𝜔𝑡.  This RHCP case is called “right-handed” 

because one can curl one’s fingers on one’s right hand to point in the direction of the electric field vector, 

and the thumb on this hand will be pointing in the direction of propagation.  The same rule can be applied 

to LHCP with the left hand [42]. 

 Circular Polarization can be thought of a special case of the more general elliptical 

polarization, where the ellipticity angle is 𝜒 = ±
π

4
.  The rotation angle is now the angle the ellipse created 

(by tracing the field in a similar method as that of circular polarization) from a reference axis (typically 

the horizontal axis), whereas the ellipciticy angle determines the curvature of the ellipse and is given by 

Equation (18) [42]. 

 tan(𝜒) = ±
aη

aξ
= ±

1

R
 (7)  

 

 This ratio between the major and minor axes, R, is more commonly known as the axial 

ratio, where a negative value indicates right hand polarization, and a positive vale indicates left hand 

polarization.  It can be used to gauge the shape of the polarization, as it can vary from 1 (circular 

polarization) to ∞ for linearly polarized antennas. The parameters aη and aξ are taken from the circularly 

polarized case for horizontal and vertical components; however, for elliptical cases, these are instead used 

as a measurement of amplitude along the major and minor axes, respectively [42].  It is important to note 

that these are with reference to the path traced by the electric field and not to the spherical coordinate 

units (𝜑 and 휃) of the far-field radiation sphere, from which one would make measurements.  When 

performing said measurements, one will usually measure the antenna gain from a reference antenna at 

several tilt angles from the azimuth, where one compares co-polarized gain (the same polarization as the 

receiver) against cross-polarized gain (the opposite polarization, which one typically wishes to reject).  It 

is a common practice to ensure that the main beam of an antenna is pointed along the polar axis to ensure 

maximum gain [67]. 
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 A natural question to then ask is: “what would happen if there were a polarization 

mismatch between a transmitter and a receiver?”  At first, it may appear as though it would not be 

accepted, but an antenna does not usually radiate a pure polarization (i.e., a RHCP antenna may have 

some LHCP components).  This energy is lost, and is described by the Polarization Loss Factor (PLF), as 

seen in Equation (19) [67]. 

 𝑃𝐿𝐹 = |�̂�𝑤 + �̂�𝑎|
2 = |cos (𝜓𝑝)|

2
 (8)  

 In this definition (taken from the perspective of the receiving antenna), �̂�𝑤 and �̂�𝑎 are 

both unit vectors to indicate the direction of the electric field.  The unit vector �̂�𝑤 represents the direction 

of incoming radiated wave, whereas �̂�𝑎 is known as the polarization vector, which is the natural 

polarization of the receiving antenna [67].  If the two are identical, then there are no losses; however, if 

they are opposites, then the antenna is completely cross polarized, and in theory, no radiation will be 

absorbed.  The second representation of this is simply a trigonometric version of the two, using the 

polarization angle between these two vectors,  𝜓𝑝 [67].  Therefore, it is vital to match the polarization of 

the transmitter and receiver and an antenna to avoid the high losses associated with polarization 

mismatch. 

 ARBITRARY ORIENTATION OF THE MAGNETIC DIPOLES 

Typically, antenna engineers are concerned with polarization generally excite electric dipoles 

with a phase difference. A similar effect can be observed when exciting two magnetic dipoles. Let us 

assume that these two magnetic dipoles are excited by magnetic moments, �⃗⃗⃗�1 and �⃗⃗⃗�2, with 

corresponding x and y components. Each is excited at an arbitrary phase 𝜙𝑖. The magnetic moments of 

each of these antennas can then be given by: 

 �⃗⃗⃗�1(𝑡) = (
𝑚𝑥1

𝑚𝑦1
) cos (𝜔𝑡 + 𝜙1) (6)  

 
�⃗⃗⃗�2(𝑡) = (

𝑚𝑥2

𝑚𝑦2
) cos (𝜔𝑡 + 𝜙2) 

(7)  
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By superposition, we can combine these two dipoles: 

 �⃗⃗⃗�1(𝑡) + �⃗⃗⃗�2(𝑡) = (
𝑚𝑥1 cos(𝜔𝑡 + 𝜙1) +𝑚𝑥2cos (𝜔𝑡 + 𝜙2)

𝑚𝑦1 cos(𝜔𝑡 + 𝜙1) +𝑚𝑦2cos (𝜔𝑡 + 𝜙2)
) (8)  

Let us now assume that |�⃗⃗⃗�1| = |�⃗⃗⃗�2|, that is, the magnetic moments are of equal magnitude, but 

of different directions and excitation phases. Therefore, we can replace this term with 𝑚. Furthermore, let 

us geometrically construct these moments from their normal components, as defined in Table 18. 

Table 18. Vertical and horizontal components of two arbitrary magnetic moments 

𝑚𝑥1 = 𝑚1cos(휃1) 𝑚𝑥2 = 𝑚2cos(휃2) 

𝑚𝑦1 = 𝑚1sin(휃1) 𝑚𝑦2 = 𝑚2sin(휃2) 

 

 �⃗⃗⃗�1(𝑡) + �⃗⃗⃗�2(𝑡) = (
𝑚cos(휃1) cos(𝜔𝑡 + 𝜙1) +𝑚cos(휃2)cos (𝜔𝑡 + 𝜙2)

𝑚sin(휃1) cos(𝜔𝑡 + 𝜙1) +𝑚sin(휃2)cos (𝜔𝑡 + 𝜙2)
) (9)  

Next, let us assume that the dipoles are physically orthogonal, that is 휃2 = 휃1 +
𝜋

2
. This allows us 

to further simply our expression for the sum of the magnetic moments: 

 �⃗⃗⃗�1(𝑡) + �⃗⃗⃗�2(𝑡) = (
𝑚cos(휃1) cos(𝜔𝑡 + 𝜙1) − 𝑚sin(휃1)cos (𝜔𝑡 + 𝜙2)

𝑚sin (휃1) cos(𝜔𝑡 + 𝜙1) + 𝑚cos(휃1)cos (𝜔𝑡 + 𝜙2)
) (10)  

To simplify these expression into a more recognizable form, we require one additional 

assumption: that the phase excitation is exactly 90° out of phase, that is, 𝜙2 = 𝜙1 +
𝜋

2
. 

 �⃗⃗⃗�1(𝑡) + �⃗⃗⃗�2(𝑡) = (
𝑚 cos(휃1) cos(𝜔𝑡 + 𝜙1) + 𝑚sin(휃1)sin (𝜔𝑡 + 𝜙1)

𝑚 sin(휃1) cos(𝜔𝑡 + 𝜙1) − 𝑚cos(휃1)sin (𝜔𝑡 + 𝜙1)
) (11)  

 �⃗⃗⃗�1(𝑡) + �⃗⃗⃗�2(𝑡) = (
2𝑚 cos(𝜔𝑡 + 𝜙1 − 휃1)

2𝑚 sin(𝜔𝑡 + 𝜙1 − 휃1)
) (12)  

 Of course, this can also be written in terms of cosines alone, to explicitly display the 90° shift: 

�⃗⃗⃗�1(𝑡) + �⃗⃗⃗�2(𝑡) = (
2𝑚cos(𝜔𝑡 + 𝜙1 − 휃1)

2𝑚cos (𝜔𝑡 + 𝜙1 −
𝜋
2)
) (13)  
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ORTHOGONAL COIL ANTENNAS: ANALYTICAL RESULTS 
The previous section outlined the derivation for the far field of an orthogonal coil antenna excited 

in quadrature. As the antenna approaches the surface of the interface (ℎ → 0) and the dielectric contrast 

(𝑛 =
𝑘2

𝑘1
≫ 1) increases between the media, the antenna forms a focused beam into the lower subspace 

(the dielectric). This section presents the field patterns that illustrate this affect and explore the sensitivity 

of this beam to changes in the material properties, distance from the substrate, and excitation phase. 

 DIRECTIVITY PATTERNS 

As stated previously, directivity is one of the main standard performance metrics for antennas, as 

it indicates which direction the antenna radiates the most power. Naturally, we wish to generate a directed 

beam through the dielectric medium (e.g. a human body) when we establish a channel. A narrow beam 

with high directivity limits the amount of “leaked” power to other areas of the medium, that could 

potentially be reflected and corrupt the received signal. A narrower beam allows for greater resolution, as 

one can illuminate smaller objects with radiation as opposed to an entire region. Clearly this would be 

valuable in the case of a medical diagnosis, where the doctor is checking for a small tumor or 

abnormality. Finally, a high directivity maximizes gain or power transfer to the receiver, thus maximizing 

the signal-to-noise ratio (SNR) and reducing the error generated by ambient noise in the measurement 

system. 

This section will perform a sensitivity analysis to determine how susceptible to change the 

radiation pattern and the maximum directivity are to changes in material, geometric, or excitation 

differences. This will allow an engineer to determine the tolerances of his or her system. For example, one 

may need to know how much power is no longer radiated into the dielectric medium if the antenna needs 

to be located at least a few millimeters from the surface. 

The two performance criteria that are evaluated here are the maximum directivity, and the power 

radiated into the second medium. Ideally, both should be maximized to form a narrow beam that 

propagates through the dielectric. However, the three-dimensional radiation patterns are also shown to 
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illustrate the beam forming properties of this antenna. An example of the directivity pattern of an 

orthogonal coil antenna is shown in Fig. 7. This is the basic case where the first medium is a vacuum, and 

the second medium is a lossless dielectric with an 휀𝑟 of 10. Note that the z-axis has been inverted for 

clarity, thus the second medium is located on top (indicated by the yellow, semitransparent rectangular 

prism). 

 

Fig. 7. Example of the Directivity Pattern of Two Orthogonal Magnetic Dipoles 

For the purposes of a fair comparison, the above case is considered to be the base case for the 

antenna. The first medium is always assumed to be air, and the second is always a lossless dielectric with 

an 휀𝑟 of 10, unless specified otherwise. Furthermore, the antenna is considered to be directly on the 

interface (ℎ → 0), and the orthogonal coils are excited exactly 90° out of phase. 
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 PARAMETRIC ANALYSIS: SENSITIVITY TO CHANGES IN THE DIELECTRIC 

CONSTANT 

In the simplified example, we allowed the dielectric contrast between the media to become very 

large (𝑛 ≫ 1). This then raises the question: “how high is high enough?” By sweeping 휀𝑟 of the lower 

medium (as a control in all of these analyses, the upper medium is assumed to be air), we can establish the 

relation between the dielectric constant and maximum directivity. Fig. 8 begins to answer this question. 

There is a sharp discontinuity between the cases where both media are air (i.e. 휀𝑟1 = 휀𝑟2 = 1), and when 

the second medium becomes a dielectric. A narrow index of refraction, caused by similar 휀𝑟 values, will 

still produce an angled beam, although it is not focused very well. One should also note that the 

maximum directivity of the vertical and horizontal magnetic dipoles do not need to be equivalent for 

greater values of the dielectric constant, as they produce completely different patterns in the presence of a 

dielectric (in air, they are identical). However, as 휀𝑟 increases past 10~20, the maximum directivity of 

each antenna type remains constant. 
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Fig. 8. Analytical Maximum Directivity as a Function of ε 

 Fig. 8 showed that the orthogonal coil antenna clearly had the greatest directivity for 

large values of 휀𝑟.  Conversely, Fig. 9 shows that the vertical magnetic dipole radiates more power into 

the dielectric than either the horizontal magnetic dipole or cross coil designs. As 
𝜀𝑟2

𝜀𝑟1
= 𝑛 → ∞, all of the 

power from any of these antennas will be radiated into the dielectric as opposed to the surrounding air. 

This is generally desirable, as it allows one wishes to penetrate the medium, and any power radiated into 

the air is wasted. However, even in the case of 휀𝑟2 = 10, more than 95% of the total radiated power 

propagates through the dielectric medium for the orthogonal coil antenna. Considering that the maximum 

directivity is also greater than 9.5𝑑𝐵 at 휀𝑟2 = 10, this is a reasonable candidate for an antenna (the 

majority of the material properties of the organs being considered in this study have 휀𝑟 ≫ 10). 
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Fig. 9. Power Radiated into the Dielectric as a Function of ε 

The figures on the following pages show the radiation pattern for the horizontal and vertical 

magnetic dipoles, as well as that for the combined cross coil antenna (when excited 90° out of phase). In 

the interests of producing a fair comparison, all other variables are held constant. 

Fig. 9 shows the interesting result of having a low index of refraction (i.e. 휀𝑟2 ≈ 1). The first row 

shows the most basic case, which is the lack of a boundary altogether, thus both subspaces are air. This 

produces the classical pattern of a magnetic dipole or loop in the air, and of course, vertical dipole is 

simply a rotated version of the horizontal one. A loop in free space is not a directive antenna. However, as 

휀𝑟 increases to 2 or 5, weak lobes are formed. The horizontal dipole has a much larger backlobe in 

comparison to the vertical magnetic dipole, thus they do not fully cancel one another out in the combined 

antenna. Moreover, their superposition produces strange patterns, with a thin bowl at the top, as the 

pattern of the vertical dipole does not widen until higher values of 휀. This helps generate the sharp 
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increase increase in maximum directivity, until it decays and finally rises again (the transition region in 

Fig. 8, for 휀 < 10). 

As previously stated, these low values of 휀 are not very common in the body at 400MHz. Fig. 10 

demonstrates the stability of this radiation pattern as the dielectric constant increases from 10 to 100. By a 

휀𝑟 of 10, the horizontal magnetic dipole has formed two clear beams, with minor end-fire lobes at the top. 

The vertical magnetic dipole forms a hollow cone, which, unfortunately, is not very useful for directing 

power, as it illuminates a wide circular area. The combined cross coils has a clear, strong beam focused at 

45° from the horizon, down into the material. Both the horizontal and combined antennas retain their 

backlobe, but this is very weak compared to the main beam, and in the case of cross coil antenna 

configuration, it is unnoticeable (max(𝐷) ≪ −10𝑑𝐵) for 휀𝑟 > 20. 



61 

 
Fig. 10. Directivity Patterns for epsilon=1,2, and 5 
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Fig. 11. Directivity Patterns for epsilon=10,20, and 100 
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 PARAMETRIC ANALYSIS: SENSITIVITY TO CHANGES IN THE CONDUCTIVITY 

In the previous examples, we assumed the conductivity of both media to be 0. However, perfectly 

lossless media do not exist in reality. It is therefore logical to perform a sensitivity analysis on this 

antenna with respect to conductivity to show how 𝜎 affects the radiation pattern. Fortunately, the 

conductivity does not have a large effect on the pattern. Fig. 12 shows that the maximum directivity 

generally does not change more than 0.5dB for significant changes in 𝜎. Conductivity values greater than 

1 (
𝑆

𝑚
) had no major impact on the maximum directivity. 

 

Fig. 12. Analytical Maximum Directivity as a Function of σ 

As one might expect, the same pattern was observed in the total radiated power. Fig. 13 confirms 

that increasing the conductivity of the medium, increases the amount of power that is absorbed by it (One 

may further take into account the thermal conductivity and volume to determine how quickly the second 

material will heat due to these losses). The vertical magnetic dipole is nearly unaffected by 𝜎 altogether, 
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whereas a high conductivity will increase the power radiated into the second medium by 4% to 12% for 

the horizontal and magnetic dipoles, respectively. 

 

Fig. 13. Power Radiated into the Dielectric Medium as a Function of σ 

 

 A similar comparison is performed with the directivity patterns for changes in 

conductivity as was performed for changes in the dielectric constant; however, the changes are now more 

subtle. Fig. 14 shows the results of varying 𝜎 from 0 to 1(
𝑆

𝑚
). Beyond this, the  changes are almost 

completely  unnoticeable. The horizontal dipole is most affected, as the higher conductivity reduces the 

two end-fire lobes, which in turn help increase the maximum directivity along the main two beams. These 

results imply that the conductivity of a lossy transmission medium does not affect the radiation pattern 

significantly and can generally be neglected from a design standpoint.
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Fig. 14. Directivity Patterns for sigma=0, 0.25, and 1 
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 PARAMETRIC ANALYSIS: SENSITIVITY TO CHANGES IN HEIGHT 

Although the general case still holds true, one of the assumptions in the simplified model was that 

the antenna was located infinitesimally close to the dielectric interface (ℎ → 0). This is tantamount to 

placing the antenna directly on the surface of the body. Unfortunately, this is not always possible, as there 

may be a finite layer of clothing or an intermediate mounting for structural concerns. Therefore, it is of 

interest to know how sensitive the antenna pattern is to changes in height. 

. Fig. 15 shows the maximum directivity as a function of height above the interface. In these 

examples, the height is given in terms of fractions of a wavelength (calculated in air) as opposed to an 

absolute distance in meters This normalizes the scale to be independent of the frequency of operation. At 

short distances (ℎ < 0.01𝜆, which is ≈7.5mm at 400MHz), the maximum directivity decays as one 

increases the height over the substrate. However, the reflections actually can create an increase in 

maximum directivity at certain extreme distances (e.g. 0.2𝜆), where it increases by nearly 7dB for the 

vertical magnetic dipole. This is a case where this particular performance metric fails, as the radiation 

pattern shows the pattern decays, regardless of the high directivity spike. 
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Fig. 15. Analytical Maximum Directivity as a Function of Height above the Interface 

Realistically, we are only the region of small height distances (ℎ < 0.05𝜆, which is ≈37.5mm at 

400MHz), as shown in Fig. 15. Placing an antenna greater than this distance from the human body is not 

practical, and could result in additional interference. Moreover, the radiation pattern shows that the beam 

has degraded at this point. With small changes in height, close to the dielectric interface, the horizontal 

and vertical magnetic dipoles do not change more than 1dB, and the cross coil antenna does not degrade 

more than 0.2dB. This is convenient, as it implies than the person under test would not need the antenna 

to cut into the surface of their body, and may even comfortably be applied over a thin layer of clothing. 
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Fig. 16. Analytical Maximum Directivity as a Function of Height above the Interface for small distances 

Although Fig. 15 showed an increasing maximum directivity as the antenna was placed further 

from the body, Fig. 16 shows that the power radiated into the second medium will decay with distance. 

Logically, this is expected, as the antenna is further from the second medium, thus it is radiating primarily 

into the air, not into the dielectric. Although the horizontal dipole is affected even at very small distances 

(ℎ < 0.05𝜆), all three antennas appear to decay at approximately the same rate from 0.05𝜆 to 0.2𝜆, 

loosing about 10%-20% of the power radiated into the second medium for every 0.05𝜆 further the antenna 

is placed from the interface. 
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Fig. 17. Power Radiated into the Dielectric as a Function of Height above the Interface 

Fig. 17 illustrates how the directivity pattern changes as the height from the interface increases. 

For the purposes of easy comparison, the material boxes are not shifted and the coordinate system 

remains stationary. As the distance from the interface increases, the end-fire lobes at the top of the 

horizontal magnetic dipole become more pronounced as the  main two lobes decay. As expected, the 

backlobe will become increasingly larger as one moves further from the interface. The vertical magnetic 

dipole is less effected by distance, but also develops sidelobes, and will generate a cusp in its radiation 

pattern from the reflection from the surface of the interface. As the superposition of the horizontal and 

vertical magnetic dipoles, the combined antenna suffers both of these affects, generating a widened, 

lopsided beam with a cusp at endfire.
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Fig. 18. Directivity Patterns for h=0, 0.01λ, and 0.1λ 
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 PARAMETRIC ANALYSIS: SENSITIVITY TO CHANGES IN EXCITATION PHASE 

As previously established, for the 𝐸𝜙 components in the dielectric to constructively add in one 

beam and destructively add in the other, one must excite the antenna in quadrature, that is, one antenna 

must be exited 90° out of phase with the other. This can be accomplished with a 90° hybrid or a 𝜆/4 

transformer. However, these methods are frequency dependent, and it is useful to know to the tolerance of 

this antenna system to inaccuracies in adjusting the phase offset to exactly 90°. 

As expected, Fig. 19 confirms that the maximum directivity of the orthogonal coil antenna decays 

sinusoidaly as one deviates from the optimal excitation phase of 90°. Of course, there are two sets of 

peaks, as one can excite the other direction. Unfortunately, this implies that traditional beam steering, 

similar to what one would find with a traditional phased array, would be difficult with such an antenna. 

However, provided one is within 25° of the true 90° phase shift, one can expect to lose less than 0.5dB of 

directivity. 
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Fig. 19. Analytical Maximum Directivity as a Function of the Phase Offset 
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Fig. 20. Directivity Patterns for the Combined Cross Coil Antenna with Different Phase Shifts 
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Fig. 20 illustrates the radiation pattern for the cross coil antennas for various excitation phase 

offsets. The horizontal and vertical magnetic dipoles are not shown here, as the phase offset is irrelevant 

for these two, individual components. If excited exactly in phase (i.e. 0° offset), two symmetric beams are 

formed, similar to the horizontal magnetic dipole, but in a ring shape in the 𝜙 direction (the contribution 

of the vertical magnetic dipole). The beam gradually forms as one increases the phase offset to 90°. 

Fortunately, there is very little difference between 60° and 90° case (approximately 0.5 dB), which 

implies a significant tolerance in excitation offset errors. This is very useful, as hybrids and 
𝜆

4
 transmission 

line segments depend on the wavelength. If one uses a different frequency, the wavelength changes, and 

one must acquire a new hybrid or change the length of the cables feeding the power splitter, such that they 

are again offset by 
𝜆

4
. Having a high tolerance to phase offset errors allows one to effectively have a wider 

band of acceptable frequencies, or greater manufacturing tolerance. 

Unfortunately, the beam cannot be steered by changing the phase, as the two components will 

only partially cancel one another out. One can, however, excite the antennas −90° or 270° out of phase to 

produce an identical beam, in the opposite direction. This is simple to configure during testing (one can 

simply switch the terminals on the power divider or hybrid), but does not provide the ability to scan 

through multiple angles. 
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APPLICATIONS OF THE ORTHOGONAL COIL ANTENNA 
Previous sections described a novel antenna, the orthogonal coil, which could be excited in 

quadrature to generate a directive beam through a medium. This medium was abstracted as an arbitrary 

lossy dielectric; however, it could easily be water, the soil, or even the human body. With the theory 

behind the antenna established, let us try to generate a channel through the human head using the directive 

properties of the antenna. The channel will be affected by the material properties of each tissue layer, 

resulting in reflection and refraction. Ideally, we would like to detect such changes to help establish a 

diagnosis, but first, we must establish said channel. 

Simulations were performed using Ansys High Frequency Structural Simulator (HFSS), a finite 

element method (FEM) solver. The meshes used to generate the model were constructed from data 

provided by the U.S. National Library of Medicine [50]. After segmenting and meshing individual organs 

of the female human head model, the results were imported into HFSS and assigned their respective 

dielectric constant (휀𝑟) and conductivity (𝜎), which were obtained from [56]. The frequency dependence 

of both of these material properties was accounted for in the simulations. 

As an extension of the work done in [11] which utilized pulses, the finite element solver in HFSS 

was used to conduct continuous wave (CW) simulations at specific frequencies. Dispersion is neglected, 

as it is not relevant in narrowband CW studies (exactly one frequency is used at a time, thus the phase 

velocity for each frequency is constant). The coils were constructed of 0.4mm thick wire, and were 7mm 

in diameter. In order to assist in characterizing the human head channel as a transmission medium, the 

transmitting antenna was positioned around the head in a spherical based coordinate system as shown in 

Fig. 1. The distance from the center of mass of the head to the center of the coil antennas was adjusted 

such the edges were approximately 1mm from the surface. This adjustment was necessary because the 

human head is clearly not a perfect sphere, and the coils were to remain close to but not intersecting the 

dielectric interface. An example of the antenna used in the simulation is shown in Fig. 21. 
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Fig. 21. Close-up view of the two orthogonal loop antennas 

used in the following simulations. Only the skin, skull, CSF, and 

brain meshes are shown for clarity 

 

 

 

Fig. 22. Section of the surface mesh used in Ansys HFSS simulations of the head. The blue spheres indicate 

possible TX positions, wheras the black sphere is the location of the receiver. 

 

 

 

At each labeled point in , the antenna was laterally translated (without rotation) and excited in a 

manner that would direct the beam through the head. The testing points extended from −60° to +60° in 

steps of 5° in either cut-plane (sagittal YZ and coronal XZ planes) for a total of 49 different testing points. 

Only the results for the sagittal plane are 

considered in this paper, as the coronal 

plane is more symmetric and did not 

provide a feasible point to extract the fields.  

For brevity, the complete set of 

calculations is not included in this paper. 

Instead, only the most interesting and useful 
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field plots are displayed. It is important to note that the organs within the human head have a high relative 

dielectric constant (> 50), which results in a slower phase velocity. This delay is intentionally used in 

[11]. to remotely detect changes within the body; however, it also scales the magnitude of the received 

electric field. In order to more easily detect the propagation paths within the head, the Poynting vector 

(𝑺 = 𝑬 ×𝑯∗) is plotted on a logarithmic scale. This shows the direction of power flow and eliminates the 

oscillating standing waves. 

 POYNTING VECTOR FOR THE SAGGITAL PLANE 

Again, the goal of this study is to establish a channel though the human head. Not only must the 

power penetrate the head and travel through the brain, it must be extracted. To achieve this objective, two 

design variables must be optimized: the location measured from the center of the head (given as the angle 

휃) and the frequency of excitation 𝑓. Fig. 23 shows the propagation of power at 100 MHz. At low 

frequencies the wavelength in free space is over a meter, and even in the brain (with one of the highest 

dielectric constants of 휀𝑟 = 88.9 at 100MHz), the wavelength is still greater than 300mm [56]. The 

resulting Poynting vector plots resemble those of the near field of the orthogonal coils in free space. 
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Fig. 23. Magnitude and direction of the Poynting vector for selected antenna positions at 100 MHz. The red 

crosses show the locations of the transmitter (the size is exaggerated for clarity). 
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Mid-range frequencies, such as 500 MHz, cause the wavelength to be closer to the Fresnel region 

and allow the antenna to demonstrate the targeted directive pattern described in [39], as seen in Fig. 24. 

The CSF, with 휀𝑟 = 70.1 and 𝜎 = 2.28
S

m
 at 500 MHz, begins to act like the walls of a waveguide around 

the brain [56]. Depending on the direction of excitation, this effect steers the beam along the inner 

contour of the brain to either the cerebellum or the sinus cavity. Unfortunately, at higher frequencies the 

difference in 휀 causes a much larger angle of refraction at the sinus(air)/muscle interface, making the field 

more difficult to recover. 
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Fig. 24. Magnitude and direction of the Poynting vector for selected antenna positions at 500 MHz. 
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As one increases the frequency, the problems observed in Fig. 24 begin to escalate. Fig. 25 

illustrates the Poynting vector for the orthogonal coils being excited at 1 GHz. The 45° beam is still 

clearly present, albeit curved by the aforementioned waveguide effect of the CSF, but reflections from 

this boundary begin to eliminate the propagating component of the wave. This cancellation would make 

signal extraction very challenging, as there is little to no forward propagating power through the brain that 

exits the head. 

The quantity of multipath at 1 GHz suggests that through use of signal processing techniques one 

could obtain more information from the reflections. CW signals contain only one frequency (the 

excitation frequency), and thus do not suffer from dispersion. However, if the wave encounters a phase 

shifted version of itself (due to reflections), superposition dictates that it could constructively or 

destructively combine. A wideband signal takes advantage of frequency diversity and the dispersive 

effects of the channel to reconstruct the original signal. This is a traditional signal processing technique, 

but it introduces further complications and limitations, and it is not applicable to narrowband signals. 
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Fig. 25. Magnitude and direction of the Poynting vector for selected antenna positions at 1 GHz. 
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 ESTABLISHING A PROPAGATION CHANNEL THROUGH THE BRAIN 

The ideal transmission channel would propagate through a long path within the brain and be 

received with the maximum power transfer through this path. A longer propagation path through the brain 

will experience a greater effect in attenuation and phase velocity due to abnormalities in the material 

properties in the brain. Furthermore, increasing this length would help negate the effects the short 

distances required to enter or leave the brain. Clearly, maximizing the power received (i.e. concentrating 

the beam) allows one to more easily observe these changes in the presence of noise. 

This now becomes an optimization problem, where one must maximize the path length through 

the brain without compromising received power. A test point was selected on top of the sinus to measure 

the received fields. Although similar study could be preformed with a more practical receiver on the 

tongue, the sinus cavity destroys all paths to the tongue at higher frequencies. 

The transmitting coils were moved from 휃 = −60° to +60° in steps of 5° at a constant distance 

of approximately 1mm to the surface of the head, as depicted in Fig. 22. At each transmission point the 

fields were simulated for excitations from 100 MHz to 1 GHz in steps on 100 MHz. The magnitude of the 

Poynting vector at the test point shown in Fig. 27 is summarized in Fig. 26(a). 

The disproportionately large magnitudes near −60° in Fig. 26(a) are caused by the caused by the 

close proximity of the transmitter on the front of the head and the test point in the sinuses. These values 

are less relevant as there is virtually no path through the brain. Near+15°, the magnitude reaches a local 

plateau between -40dB and -35dB before sharply dropping. Fig. 27. Magnitude and direction of the 

Poynting vector for an antenna placed at θ=+15° at selected frequencies., is an example of poynting 

vector field for an antenna located at this position. One may note that the high intensity is caused by the 

waveguide properties of the CSF channeling the power into the sinus cavity at frequencies between 200 

MHz and 600 MHz. Higher frequencies at this position begin to suffer from reflection, reducing the 

magnitude of received Poynting vector. 
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Fig. 26(b) plots the path length through the brain on the same axes as Fig. 26(a). We define the 

propagation path to exclusively be the curved distance (following the vectors), not the perpendicular 

distance, from the transmitter to the test point. Each distance was graphically calculated using vector plots 
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Fig. 26. a) Magnitude of the Poynting vector evaluated at the test point above the sinus cavity as shown in Fig. 27 

for different excitation positions and frequencies. b) The length of the path of power propagation through the brain. 

The star indicates the selected optimal compromise in maximising the received power and propagation distance 

through the brain  

(at 휃 = +15° and 𝑓 = 400 𝑀𝐻𝑧). 
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such as those in -Fig. 27. Only the portion of this curve that is inside the brain is considered, and cases 

that did not have a path from the antenna to the test point via the brain were discarded as having a path 

length of 0. 

The optimal location and frequency for the transmitter is problem dependent, as one must find a 

compromise between a long propagation path through the brain and high received power. We selected the 

starred point in Fig. 26Fig. 26. a) Magnitude of the Poynting vector evaluated at the test point above the 

sinus cavity as shown in Fig. 27 for different excitation positions and frequencies. b) The length of the 

path of power propagation through the brain. The star indicates the selected optimal compromise in 

maximising the received power and propagation distance through the brain  

(at 휃 = +15° and 𝑓 = 400 𝑀𝐻𝑧). (at 휃 = +15° and f = 400MHz), where |𝑺| > −40dB, and the path 

length through the brain is at least 125mm. Other transmitter locations and frequencies produced a shorter 

path, or the received power was too low to be feasibly measured with noise. 

The largest obstruction to the signal path is the sinus cavity, as it has the greatest dielectric 

contrast (휀𝑟 = 1 for air, but 휀𝑟 ≈ 57.1 at 400MHz). Moreover, the sinus cavity can be filled with mucus, 

or the swelling of the surrounding tissue can change its shape. Although the original concept was to place 

the receiver on the tongue, the large angle of refraction at the sinus cavities makes this course of action 

very unreliable. By injecting the receiver to the roof of the sinus, the signal can be extracted with minimal 

distortion from the aforementioned variations. This can greatly reduce the number of materials that can 

change, thus isolating fluctuations in the material properties of the brain. 
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Fig. 27. Magnitude and direction of the Poynting vector for an antenna placed at θ=+15° at selected 

frequencies. 
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 VALIDATION USING PULSES AND FDTD 

All of the previous results were performed using finite element method (FEM) simulations with a 

single frequency continuous wave (CW). Prior to these simulations, pulse-based microwave signals were 

simulated using an older version of the VHP model with fewer organs, shown in Fig. 28 [11]. The goal of 

this study was similar in nature: to detect changes in the material properties of the cerebrospinal fluid 

(CSF).  CSF is viscous liquid that protects and nourishes the brain. A medical professional can extract 

CSF from a patient in a fairly dangerous procedure called a “spinal tap,” which involves drawing this 

fluid close to the brain stem. 

 

Fig. 28. Combined low-resolution mesh for the Visible 

Human Body Project (female) 

 

Figure 1.  
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Doctors can test the CSF for glucose 

levels, cell counts, supernatant color, latex 

agglutination, and other medicinally important 

characteristics. A study showed that the 

dielectric constant is approximately 10-20% 

greater for individuals with hepatic 

encephalopathy meningitis, and encephalitis at 

2.683GHz [68]. This was due to a change in 

glucose or protein levels. Moreover, another 

recent study showed that the one may be able 

to detect Alzheimer’s disease (AD) before the 

symptoms manifest themselves [69]. The CSF 

supplies amino acids to the brain. A team of 

researchers found a close correlation between 

concentrations of two of these proteins, β-

Amyloid protein 1-42 (Aβ-42) and CSF 

phosphorylated tau181P (P-Tau181P), and the 

development of AD up to 10 years before the 

first symptoms begin to develop. Clearly there is a need to non-invasively test for the presence of these 

proteins to help diagnosis AD in its early stages. 

 The same orthogonal coil antenna is placed above the head. As stated previously, this 

antenna will form a directive beam into the dielectric when the coils are excited in quadrature. A finite 

difference time domain (FDTD) simulation of the coil above a dielectric shown in Fig. 29. Note that in 

the H-plane, the waves propagating towards port 3 add destructively and cancel, whereas the waves 

toward port 4 add constructively. This results in the concentrated 45° beam. 

 

Fig. 29. Orthogonal-coil antenna used at the 

simulations: a) concept; b)Operation at the top of a lossy 

dielectric half-space, c) Magnetic field at the probe location in 

Fig. 1b. 
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 Before using our refined 

VHP model and frequency dependent 

material properties from IT’IS [56], static 

values at for the dielectric constant and 

conductivity were collected from various 

sources. The dielectric constant and 

conductivity were only recorded at 

400MHz and assumed to remain constant 

over the width of the pulse. These values are summarized in Table 19. 

 Each magnetic dipole (small coil) was excited with a time-varying current source in the 

form of a Rayleigh pulse [11]: 

𝑖(𝑡) =
𝐼0(𝑡0 − 𝑡)

𝜏
exp(−

(𝑡 − 𝑡0)
2

4𝜏2
) , 𝑡0 = 5𝜏, 𝑓𝑐 =

0.16

𝜏
, 

(33)  

where 𝐼0 is maximum current (𝐼0 = 1𝐴 was selected for simplicity), 𝑓𝑐 is the center frequency, 

and 𝜏 determines the bandwidth of the pulse. Center frequencies of 400MHz, 800MHz, and 1600MHz 

were examined with corresponding pulse delays of 0.4ns, 0.2ns, and 0.1ns, respectively. The resulting 

electric field for each case is plotted in Fig. 30. 

 The first row of Fig. 30 shows the electric field propagating through the head at 400MHz 

as time progresses. The volumetric wave propagating through the brain is clearly the most dominant 

feature, although there is some multipath as the wave reaches the outer surface of the combined skin-fat 

layer. Note that the secondary lobe is still present, albeit much weaker than the main lobe, as the body is 

not a perfect dielectric. 

 The second row shows the electric field at 800MHz. The wavelength is becoming shorter 

and the attenuation is more noticeable at higher frequencies, resulting in a quickly decaying wave. This 

attenuation makes signal extraction more challenging for higher frequency excitations. However, one may 

Table 19. Electrical data of biological tissues at 400 

MHz, [41] used at the simulations as nominal values. 

Biological Tissue Permittivity 

(
r

 ) 

Conductivity 

( , S/m) 

Brain 49.7 0.59 

Cerebral Spinal 

Fluid (CSF) 

71.0 2.25 

Skin 46.7 0.69 

Skull 17.8 0.16 

Spinal Cord 35.4 0.45 

Jaw Bone 22.4 0.23 

Tongue 57.7 0.77 

Eye Tissue 57.7 1.00 

Teeth 22.4 0.23 
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notice the appearance of a surface wave that is decoupled from the volumetric wave. This surface wave 

propagates mostly only skin/air interface, and carries little information regarding the brain. 

 The final row illustrates the effects of increasing the center frequency to 1.6GHz. In 

addition to increased attenuation, the aforementioned surface wave becomes more dominant than the 

volumetric wave. Observing this last row more closely reveals that increasing the frequency also 

increases the multipath components, as expected. 
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 Fig. 31 demonstrates the resulting signal from a receiver placed on the back of the head if 

the dielectric constant of the CSF varied by approximately ±15%. The diffraction pulse through the air 

does not pass through the body at all, and is completely unaffected by the change in the CSF.  

Furthermore, an increased dielectric constant reduces phase velocity, thus the diffraction pulse arrives at 

the receiver significantly earlier than the volumetric wave. 

 

Fig. 30. Evolution of the pulse signal (dominant co-polar electric-field component is shown) within the 

human head at 400MHz, 800MHz, and 1600MHz center frequency. Only the outer shape of the human head is 

shown. 
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 The volumetric wave shares the same general shape as the original transmitted pulse. The 

spreading is caused by the wave diffracting off of the internal tissue layers, resulting in heavily attenuated 

and slightly delayed “echoes” to appear. Observing Fig. 31 closely, one may notice the phase shifts 

between the different test cases. These correspond to the different phase velcoities determined by the 

dielectric constant. Moreover, the amplitude will slightly fluctuate due to the shift in the angle of 

refraction, such that the receiver is no longer centered. 

 These simulations showed that one could find use an orthogonal coil antenna to excite a 

beam through the head, thus finding a change in CSF properties through the correlation of the signal from 

nominal CSF and that of the patient. Unfortunately, this method has several uncertainties, such as 

inconsistencies in skin composition between tests (e.g. the patient may have varying degrees of dry or wet 

skin), consistent placement of the TX and RX antennas, and adapting the configuration to different body 

shapes. 

  

 

Fig. 31. a) - Orthogonal-coil antenna on top of the head excited at 400MHz and two small orthogonal 

receiving dipoles (or field probes; b) -  The copolar electric field at one receiver location (on the back of the head).  

The received voltage signal for a small 
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 RF SIMULATIONS ON A HUMAN FEMUR MODEL: PRELIMINARY RESULTS 

We use a section of the Ansys Human body model, as seen in Fig. 32. This coronal plane is the 

main testing plane for all of the following results, as the saggital plane suffered too many reflections from 

muscle tissue to have a beam penetrate through the femur. Two orthogonal coil antennas  (i.e. magnetic 

dipoles) were excited in quadrature to generate a directive beam into the body. 

 

Fig. 32 Leg and hip from the Ansys Human Body Model 

 

 We compared two extreme cases that are displayed in Fig. 33. One image is an extremely 

osteoporotic case, with the majority of the femur consisting of Bone marrow (~18.8% of the total femur 

volume). This is compared to a “normal” femur with only  ~7.4% of the total femur volume consisting of 

bone marrow. The marrow replaces the volume normally occupied by cancellous bone. 
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Fig. 33. Comparison of an a) osteoporotic femur and b) a normal femur 

The magnitude of the Poynting vector was then measured at the RX point shown in Fig. 33 for 

400MHz and 800MHz excitations. These vector plots can be seen in Fig. 34. The differences between the 

osteoporotic (a) and the normal (b) femurs are subtle from the field perspective. A closer inspection 

shows that the osteoporotic case, due to the large volume of bone marrow, causes more diffraction as the 

Poynting vector propagates through it. The result is power being dispersed across the entire inner portion 

of the leg (where the receiver array would be located). 
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Fig. 34. Signal path through the leg for an 800 MHz excitation. a) the osteoporotic case and b) the normal 

femur 

In comparison, a large difference in the received magnitude can be observed between the two 

cases. The changes in the received signal strength (RSS) are summarized in Table 20. Even without an 

optimal channel, one can clearly see an observable change in the total received power at both 400MHz 

and 800MHz. Unfortunately, this assumes that all other tissues remain the same between the osteoporotic 

and normal cases, which is highly unlikely. 

Table 20. Change in RSS between two femur models for selected CW frequencies 

 400MHz RSS (mW) % Change 

Normal 136.27 
13.69% 

Osteoporotic 117.62 

800MHz 
 

  

Normal 155.50 
43.60% 

Osteoporotic 87.71 

 

Frequency Selection 

In the previous section, we used 400MHz and 800MHz as two seemingly arbitrary frequencies to 

demonstrate the change in RSS between the osteoporotic and normal human femur models. Most organic 

tissues are dispersive, and thus have different material properties at different frequencies [55]. Ideally, we 

would like to select a frequency (or range of frequencies) where the different between the osteoporotic 



97 

case would be most noticeable. The primary difference between the osteoporotic femur and the normal 

femur is that the former replaces most of the cancellous bone with yellow bone marrow. We are then 

interesting in scanning at a frequency where the difference between the material properties of the 

cancellous bone and the bone marrow are largest. 

 

Fig. 35. Frequency dependence of the dielectric constant on selected tissues 

One can see in Fig. 35 that the dielectric constant of most tissues decreases with frequency. 

Again, we are interested in maximizing the difference between the dielectric constant of the cancellous 

bone (the green curve) and the yellow bone marrow (the yellow curve). At low frequencies (i.e. <1MHz) 

there is a large difference because the 휀𝑟 of the cancellous bone marrow becomes very large. This is not 

very useful because the wavelength is extremely long at 1MHz (~300m in air, or ~21m in the cancellous 

bone), making it difficult to generate a directive beam. Conversely, the dielectric constant shrinks for all 

organs above 10GHz, which would make discerning between the materials difficult. 
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Instead, let us plot the percentage difference between the cancellous bone and the yellow bone 

marrow, as shown in Fig. 36. A very large difference of greater than 70% occurs in the 10MHz to 1 GHz 

region. Although the wavelength is still too long at 10MHz (~30m in air at ~3.8m in cancellous bone), we 

can scan between 100MHz and 1GHz, which is the main frequency range for this study. Moreover, the 

cortical bone has approximately the same dielectric constant as the surrounding fat in this region, which 

effectively eliminates this additional interface. 

 

Fig. 36. Percentage difference in Dielectric Constant between the Cancellous Bone and Yellow Bone 

Marrow 

We can also examine the conductivity, 𝜎. Although the conductivity does not affect the 

wavelength, a high conductivity will result in high losses, reducing the received SNR.  

Fig. 37 shows the frequency dependence of the conductivity of the same tissues. One may 

immediately note that the conductivity of all tissues increases with frequency, and sharply rises past 

1GHz. Frequencies beyond this value will suffer significant attenuation in the media, making the recovery 

signal processing very challenging and prone to measurement error. Secondly, one may also note that the 
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muscle is much more conductive than the surrounding organs. Avoiding muscle in the signal path is 

advantageous to the high losses it can occur. The conductivity values between the yellow bone marrow 

and the cancellous bone are much more stable than the dielectric constant, as seen in Fig. 38. 

 
Fig. 37 Frequency dependence of the conductivity of selected tissues 
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Fig. 38. Percentage difference in Conductivity between the Cancellous Bone and Yellow Bone Marrow 

 

RX Array 

Unlike consumer goods, biological components are not mass produced with exacting standards in 

terms of size and composition. Varying dimensions and material properties between humans could lead to 

large variations in the measured RSS. To counter this, we propose that we use an array to measure 

changes in RSS, as opposed to the magnitude. An example of such an array was created in our Ansys 

model to measure an infinite number of points, as seen in Fig. 39. As previously shown, the muscle tissue 

generally caused very large angles of refraction due to the high dielectric contrast with the surrounding fat 

tissue. The TX positions are selected near the muscle gap between the Gluteus and quadriceps, and are 

located 10 mm apart from one another. 
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Fig. 39. Transmitter and receiver array positions on the leg 

Nominal Case 

To evaluate the robustness of our model, a sensitivity analysis was performed with the different 

tissue layers. The first case to be observed was the nominal case, where we compare the normal and 

osteoporotic femurs, assuming their normal material properties (i.e. those provided by IT’IS), as shown in 

Table 21. Again, one should note the high permittivity and conductivity of the muscle tissue in 

comparison to all surrounding tissues. This is significant, as it will cause a high angle of diffraction. 

Table 21. Relevant Material Properties for the Nominal Femur 

Tissue/Organ 𝜺𝒓(𝟒𝟎𝟎𝑴𝑯𝒛) 𝝈(𝟒𝟎𝟎𝑴𝑯𝒛) 

Fat Tissue 11.6 0.081 
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Muscle Tissue 57.1 0.796 

Cortical Bone 13.1 0.091 

Cancellous Bone 22.4 0.235 

Yellow Marrow 5.67 0.030 

 

Fig. 40 shows the normalized RSS across the receiver for both the normal and osteoporotic 

femurs, assuming all materials have their nominal properties. The 0mm distance across the receiver array 

corresponds to the point closest to the groin (as this point is closest to the TX, it logically has the highest 

signal strength), and greater distances are further down the leg. For all antenna positions, one may notice 

that the presence of additional bone marrow (from the osteoporotic femur) causes greater dispersion of 

the power, and a wider received area, regardless of the TX position. The middle TX position (#2) appears 

to show the greatest difference, with a peak of a 72.86% change at approximately 700MHz.
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Fig. 40 Simulated, Normalized RSS along the Femur for the Nominal Case
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Increased Fat Dielectric Constant Case 

The majority of this femur from the Ansys body model consists primarily of fat. To be a useful 

medical diagnosis tool, this method would need to be have little variation between the quantity and 

material properties of the fat layer (which could vary from patient to patient). Generating a new FEM 

mesh is very difficult, thus we instead elected to increase the dielectric constant of the fat layer by 10%. 

Note that all material properties are still frequency dependent, thus the 휀𝑟 of fat was increased across the 

entire frequency sweep, not a specific point. A sample of these frequencies is displayed in Table 22. 

Table 22. Relevant Material Properties for the Femur with an Increased Fat Dielectric Constant 

Tissue/Organ 𝜺𝒓(𝟒𝟎𝟎𝑴𝑯𝒛) 𝝈(𝟒𝟎𝟎𝑴𝑯𝒛) 

Fat Tissue 12.76 0.081 

Muscle Tissue 57.1 0.796 

Cortical Bone 13.1 0.091 

Cancellous Bone 22.4 0.235 

Yellow Marrow 5.67 0.030 

 

Fig. 41 shows the normalized RSS across the receiver for both the normal and osteoporotic 

femurs, with fat having a higher dielectric constant. All else was kept the same as the previous study in 

the interests of a fair comparison. Visually, there is very little difference between the nominal case and 

the one with a different dielectric constant for fat. The curves are slightly less defined, as there is less of a 

sharp difference between the fat tissue and surrounding muscle (the angle of diffraction will not be as 

large). The maximum difference (ignoring the outlier due to numerical error for the third case) is now 

73.87%, which is still a substantial difference (only a single percentage point change from the nominal 

case).
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Fig. 41 Simulated, Normalized RSS along the Femur with an Increased Fat Dielectric Constant
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Highly Conductive Muscle Case 

Considering the high volume of muscle surrounding the femur, it is logical to examine the 

variation of its material properties on the received signal. The conductivity of the muscle tissue is raised 

to match its dielectric constant. Table 23 summarizes these new values in comparison to the other 

material properties at 400MHz. 

Table 23. Relevant Material Properties for the Femur with Highly Conductive Muscles 

Tissue/Organ 𝜺𝒓(𝟒𝟎𝟎𝑴𝑯𝒛) 𝝈(𝟒𝟎𝟎𝑴𝑯𝒛) 

Fat Tissue 11.6 0.081 

Muscle Tissue 57.1 57.1 

Cortical Bone 13.1 0.091 

Cancellous Bone 22.4 0.235 

Yellow Marrow 5.67 0.030 

 

Fig. 42shows the normalized RSS across the receiver for both the normal and osteoporotic 

femurs, with all material properties being nominal with the exception of the highly conductive muscle. 

The results are substantially different from the previous two cases. Instead of destroying the channel, the 

muscle helps act as a waveguide, focusing it to the other side of the leg, provided the transmitter is in the 

correct location. The first and third TX locations cause the beam to strike the conductive muscle tissue 

almost at a 90° angle, resulting in very little of the beam arriving at the RX array (thus there is a very 

small difference between the normal and osteoporotic cases).  However, if one places the TX antenna at 

position 2, the beam has a clear path through the bone marrow, and there is a very clear change (91.6%) at 

700MHz.
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Fig. 42 Simulated, Normalized RSS along the Femur with highly conductive muscle tissue
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CONCLUSION 
The goal of this project was to design an electrically small antenna that could generate a directive 

beam into a dielectric. We have shown that two orthogonal loops driven in quadrature will produce a 

highly-directive beam with a maximum directivity of upwards of 10dB. This is significantly greater than a 

traditional loop in free space, which only produces a maximum directivity of 1.76dB. [1]. Although 

significantly higher directivities are possible from superdirective antennas, and traveling wave antennas, 

these are often comparable to a wavelength in size. Superdirective arrays generally require very high 

currents for a small gain in directivity. Yagi-Uda travelling wave antennas can reach directivities greater 

than 14dB (generally between 14.8 and 17.8), but require multiple reflectors and directors, each 

approximately 
𝜆

2
 in length and 

𝜆

4
 spacing between directors [1]. Both are much less practical than the 

proposed orthogonal loop design, provided one wishes to radiate into the dielectric 

 HUMAN BODY RESULTS 

No human testing was performed in this work, and all analysis is based purely on simulation data. 

Fortunately, modern FEM meshes have become increasingly accurate, and can closely follow the 

complex curvature of human organs. This, in combination with the frequency dependent material 

properties of each tissue layer (provided by [55]), helps validate our studies. 

Our simulations have demonstrated the existence of a channel through the brain to the sinus 

cavity. By exciting orthogonal coil antennas in quadrature, a directed beam can be generated and steered 

through a dielectric medium (e.g. the brain, skull, etc.). By adjusting the transmitter position and 

excitation frequency, an optimal path through the brain was found. 

The meshes used in this study were improved from those in [11] from both an anatomical and 

material perspective. Previous versions did not include separate layers for the fat, muscle, and other 

organs.  However, the previous model still illustrates a similar path through the brain to the tongue at a 

similar transmission position. This implies that the existence of the path may be robust to material 

changes. One may need to tune the exact frequency and position, but there should be at least one 
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acceptable transmission path. The variance in the conditions for generating these paths for different head 

models would be a worthwhile avenue of research for conducting practical microwave tomography. 

Similar results were observed in a separate study of the human leg. To determine if a patient is 

developing osteoporosis, we proposed that an orthogonal coil antenna is placed next the femur and several 

receivers are positional along the inside the leg. The osteoporotic femur is clearly distinguishable from the 

healthy femur because osteoporosis causes the cancellous bone to be replaced by bone marrow. As these 

have very different material properties, the change in the angle of diffraction shifts the transmission path 

and results in a relative power peak at a given location and frequency. Even after varying the conductivity 

of the muscle and the dielectric constant of the fat, one could identify which femur was osteoporotic due 

to the aforementioned peaks.  

 FUTURE EXTENSIONS AND APPLICATIONS 

 At the time of writing, models of the orthogonal antenna are being constructed at WPI for 

testing, as shown in Fig. 43. Each of the antennas is constructed from 24 gauge coax on a square 25.4mm 

× 25.4mm FR4 substrate (1.6mm thick). To achieve a 90° phase offset, one of the loops is fed through a 

coax cable that is 
𝜆

4
 (at 400MHz → 18.74cm) after the output of the power splitter. After shielding the 

cables with an RF choke (stopping the wires from radiating), a testing apparatus must be constructed to 

verify the directive properties of the coils. This will likely consist of a water tank with an adjustable TX 

antenna on the outer surface and an RX antenna internally (to avoid reflections caused by the outside of 

the tank). This is an extension of the theory and will tested at a later date. 
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Fig. 43. Prototype orthogonal coil antennas. a) Power splitter connected to two cables offset by 𝜆/4 b) Close-up 

view of the antenna 

The orthogonal coil antenna is not limited to biomedical applications. Indeed, our recent work 

focuses on establishing channels through the head and leg to detect material abnormalities, but the same 

method can be extended to any arbitrary dielectric. For example, one may wish to apply this technique to 

ground penetrating radar [70], [71] or submarine detection [72], [73]. The small size and directivity of 

this antenna lends itself well to constructing large arrays to obtain greater resolution for imaging 

techniques. 
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APPENDIX A. ORTHOGONAL MAGNETIC DIPOLES IN FREE SPACE 
The loop is a very simple option for selecting an antenna that can propagate through the body. A 

small loop or coil is very similar to a small dipole; however, it is horizontally polarized as opposed to 

vertically polarized [67]. This implies that a dipole would be radiating in 𝐸휃, whereas a loop is radiating 

in 𝐻휃. First, let us consider the basic case of this orthogonal coils or magnetic dipoles in free-space. 

 VERTICAL AND HORIZONTAL MAGNETIC DIPOLES IN FREE SPACE 

In the absence of any media interfaces, it is more straightforward to exploit symmetry in field 

solutions. The derivation of the fields is a classical textbook problem and is only briefly outlined here. For 

a more in-depth discussion of the derivation, please refer to a text such as [67]. 

 Let us assume we have a horizontal ring of current on the x-y plane, such that it acts as a 

vertical magnetic dipole. The source is located at the spherical coordinates (𝑟′, 휃′, 𝜙′) in reference to the 

observation point (𝑟, 휃, 𝜙). Given this coordinate system and corresponding spherical unit vectors �̂�𝑟, �̂�𝜃, 

and �̂�𝜙, it is possible to define the current vector as [67]: 

 �⃗�𝑒 =

�̂�𝑟[𝐼𝜙 sin(휃) sin(𝜙 − 𝜙
′)] +

�̂�𝜃[𝐼𝜙 cos(휃) sin(𝜙 − 𝜙
′)] +

�̂�𝜙[𝐼𝜙 sin(휃) sin(𝜙 − 𝜙
′)]     

 (1)  

 One should note that in this special case, current is only flowing around the ring, and thus 

only in the 𝜙 direction. The distance formula dictates that distance between the observation point and the 

source point of this infinitesimal magnetic dipole can be given by: 

 𝑅 = √𝑟2 + 𝑎2 − 2𝑎𝑟𝑠𝑖𝑛(휃)cos (𝜙 − 𝜙′), (2)  

where 𝑎 is the radius of the loop. Fortunately, the integral for the vector potential can be 

simplified because the spatial current distribution is not dependent on 𝜙, allowing one to simply set it to 

zero. The resulting vector potential with respect to an excitation current 𝐼0, magnetic permeability 𝜇 (of 

the surrounding transmission medium, which is assumed to have 𝜇𝑟 = 1), and wavenumber 𝑘, is then 

given by: 
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 𝐴𝜙 =
𝑎𝜇𝐼0
4𝜋

∫
cos(𝜙′) 𝑒−𝑗𝑘𝐷

𝐷
𝑑𝜙′

2𝜋

0

 (3)  

When integrated, this evaluates to the vector potential: 

 �⃗⃗⃗� =
𝑘𝜇𝑎2𝐼0sin (휃)

4𝜋
[1 +

1

𝑗𝑘𝑟
]𝑒^ − 𝑗𝑘𝑟 (4)  

Of course, this vector potential can be expanded into the individual magnetic and electric field 

components. Let us also substitute this radius and current in the loop for the equivalent magnetic dipole 

moment and length, 𝐼𝑚 and ℓ respectively to produce the fields given in Table 24 [67]. 

Table 24. Electric and magnetic field components for a vertical magnetic dipole in free-space 

 �⃗⃗⃗� �⃗⃗⃗⃗� 

𝑟 0 
𝐼𝑚ℓ cos(휃)

2𝜋휂𝑟2
[1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 

휃 0 𝑗
𝑘𝐼𝑚ℓ sin(휃)

4𝜋휂𝑟
[1 +

1

𝑗𝑘𝑟
−

1

(𝑘𝑟)2
] 𝑒−𝑗𝑘𝑟 

𝜙 −𝑗 (
𝑘𝐼𝑚ℓ sin(휃)

4𝜋𝑟
) [1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 0 

With the full field solution for the vertical magnetic dipole presented, let us now consider the 

horizontal dipole. As previously stated, one may exploit symmetry of the fields due to the lack of any 

media interfaces that would otherwise cause absorption or diffraction. In general, a spherical coordinate 

system may be rotated by a rotation matrix. 

 �⃗⃗⃗� = [

sin(휃) cos(𝜙) cos(𝜙) cos(휃) − sin(𝜙)

sin(휃) sin(𝜙) sin(𝜙) cos(휃) cos(𝜙)

cos(휃) − sin(휃) 0

] [

𝐸𝑟
𝐸𝜃
𝐸𝜙

] (5)  

To produce the fields of a horizontal magnetic dipole, the original solution must be rotated about 

the 휃 axis by 90° (not the azimuthal axis, 𝜙, which is symmetric about the vertical dipole). 

 �⃗⃗⃗� = [
1 0 0
0 0 1
0 −1 0

] [

𝐸𝑟
𝐸𝜃
𝐸𝜙
] = [

𝐸𝑟
𝐸𝜙
−𝐸𝜃

] (6)  
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A similar process is followed for the magnetic field components. Substituting back the original 

values for the fields from Table 24, we can find the electric and magnetic field solution for a horizontally 

oriented dipole in free-space. 

Table 25- Electric and magnetic field components for a horizontal magnetic dipole in free-space 

 �⃗⃗⃗� �⃗⃗⃗⃗� 

𝑟 0 
𝐼𝑚ℓ cos(휃)

2𝜋휂𝑟2
[1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 

휃 −𝑗 (
𝑘𝐼𝑚ℓ sin(휃)

4𝜋𝑟
) [1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 0 

𝜙 0 −𝑗
𝑘𝐼𝑚ℓ sin(휃)

4𝜋휂𝑟
[1 +

1

𝑗𝑘𝑟
−

1

(𝑘𝑟)2
] 𝑒−𝑗𝑘𝑟 

 ORTHOGONAL MAGNETIC DIPOLES IN FREE-SPACE 

The previous section outlined the field solutions for both the horizontal and vertical magnetic 

dipoles in free-space. The proposed orthogonal coil antenna effectively utilizes both of these antennas. To 

generate the field solution for this orthogonal dipole, one must apply a 90° phase shift in the time domain 

to either of the excitations. One may then apply superposition to add the two time-harmonic fields 

together. 

A 90° phase shift can be applied to the electric and magnetic field solution by simply multiplying 

each term by 𝑒
𝑗𝜋

2 . The fields for the delayed horizontal dipole are then given by Table 26. 
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Table 26- Electric and magnetic field components for a horizontal magnetic dipole that is delayed by 90 

degrees 

 �⃗⃗⃗� �⃗⃗⃗⃗� 

𝑟 0 
𝐼𝑚ℓ cos(휃)

2𝜋휂𝑟2
[1 +

1

𝑗𝑘𝑟
] 𝑒

−𝑗(𝑘𝑟+
𝜋
2
)
 

휃 −𝑗 (
𝑘𝐼𝑚ℓ sin(휃)

4𝜋𝑟
) [1 +

1

𝑗𝑘𝑟
] 𝑒

−𝑗(𝑘𝑟+
𝜋
2
)
 0 

𝜙 0 −𝑗
𝑘𝐼𝑚ℓ sin(휃)

4𝜋휂𝑟
[1 +

1

𝑗𝑘𝑟
−

1

(𝑘𝑟)2
] 𝑒

−𝑗(𝑘𝑟+
𝜋
2
)
 

By the principle of superposition, the field resulting from two orthogonal magnetic dipoles is the 

sum of each vector component from each respective antenna. 

Table 27- Electric and magnetic field components for two orthogonal magnetic dipoles in free-space 

 �⃗⃗⃗� �⃗⃗⃗⃗� 

𝑟 0 

𝐼𝑚ℓ cos(𝜃)

2𝜋𝜂𝑟2
[1 +

1

𝑗𝑘𝑟
] [𝑒−𝑗(𝑘𝑟+

𝜋

2
) +

𝑒−𝑗𝑘𝑟]   

휃 −𝑗 (
𝑘𝐼𝑚ℓ sin(휃)

4𝜋𝑟
) [1 +

1

𝑗𝑘𝑟
] 𝑒

−𝑗(𝑘𝑟+
𝜋
2
)
 𝑗

𝑘𝐼𝑚ℓ sin(휃)

4𝜋휂𝑟
[1 +

1

𝑗𝑘𝑟
−

1

(𝑘𝑟)2
] 𝑒−𝑗𝑘𝑟 

𝜙 −𝑗 (
𝑘𝐼𝑚ℓ sin(휃)

4𝜋𝑟
) [1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 −𝑗

𝑘𝐼𝑚ℓ sin(휃)

4𝜋휂𝑟
[1 +

1

𝑗𝑘𝑟
−

1

(𝑘𝑟)2
] 𝑒−𝑗(𝑘𝑟+

𝜋
2
)
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Fig. 44. Normalized magnitude of the simulated electric field along the 

surface of the head at a.)800MHz, b.) 1600MHz, and c.) 2400MHz. 

 

APPENDIX B. MESH AND MODEL SENSITIVITY 
The model simulated in [11] 

demonstrated faint, yet distinct 

surface waves along the head. No 

surface waves were observed on the 

new mesh. In order to better classify 

the fields on this earlier model, the 

magnitude of the electric field was 

simulated following a segmented line 

along the surface of the head. While 

the head is not large enough to show 

the trends in the far field, it is 

possible to find a curve of best fit 

using the least mean square 

algorithm for several different rates. 

Note that the field strengths have 

been normalized to their respective 

maximum amplitudes such that 

|𝑬| = 1 at a distance of 0𝜆 (an 

infinitesimal distance from the 

surface of the antenna). 

As shown in Fig. 44(a), it is 

difficult to see the surface wave 

propagating at 800 MHz; but it 

appears emerging near 0.1𝜆. The 
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Table 28. Root mean square error of each fit of the E field 

RMSE 

f(MHz) 1/R 1/sqrt(R) 
exp(-

R) 

400 0.0777 0.0784 0.0271 

800 0.0178 0.0292 0.0079 

1400 0.0190 0.0287 0.0165 

1600 0.0187 0.0271 0.0190 

1800 0.0194 0.0262 0.0191 

2400 0.0245 0.0170 0.0150 

 

field intensity appears to decay at 

a rate proportional to 𝑒−𝑟, 

indicative of a Norton wave 

propagating along the scalp [49]. 

In the previous section, it was 

clear that surface waves began to 

develop near 1600 MHz. Fig. 

10(b) shows a distinct oscillating pattern that appears to be decaying at a slower rate than the expected 
1

𝑟
. 

Indeed, it more closely follows
1

√𝑟
, and exhibits the behavior best represented by a Zenneck wave [45]. 

Unfortunately, it is difficult to examine the fields at a larger distance (extending the simulation to the far 

field) because of the limited size of the human head and the curved nature of the boundary. Of course, 

these oscillations are noticeably shorter than a wavelength because they are coupled to the surface of the 

skin, which has a much higher dielectric constant to that of air. 

As one could infer from the images, the oscillations become much more profound at higher frequencies. 

Fig. 44(c) shows a clear oscillating decay expected from a surface wave. However, the irregular curvature 

of the head complicates the classification of this wave. It is possible that any of the previously presented 

waves could be described by the Norton wave with a rate of decay proportional to 𝑒−𝑟 [49], but these 

classifications are only valid for planar surfaces in the far field. Table 28 presents the root mean square 

error (RMSE) of each type of fit for the corresponding frequencies. 

When the brain undergoes any form of serious trauma, through either injury or the development of a 

tumor, the physical and electric properties change accordingly. Recent studies indicate that different 

levels of blood content, potentially caused by burst blood vessels in the head, will lead to different 

dielectric properties [5], [74]. The channel established earlier in this text can be used to detect such 

abnormalities. 
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Table 29. Phase difference in the electric field in a given 

direction on the tongue with respect to changes in the 

dielectric constant of the brain. 

Δ휀𝑟 (%) Δ휃𝑋(°) Δ휃𝑌(°) Δ휃𝑍(°) 

-10.00 -52.27 -65.53 -22.95 

-7.50 -40.09 -50.36 -18.32 

-5.00 -25.91 -34.45 -12.77 

-2.50 -14.32 -17.59 -6.54 

2.50 15.52 18.21 6.84 

5.00 32.88 36.54 14.03 

7.50 52.25 54.88 21.15 

10.00 73.95 72.64 28.60 

 

A continuous wave is ideal for detecting 

volumetric changes of the brain. It is 

narrowband, straightforward to produce and 

measure, and provides a clear phase reference. 

Conversely, a broadband pulse would provide 

additional frequency diversity, allowing one to 

determine the existence of small objects, such as 

localized lacuna tumors in the brain. This is 

possible because the additional frequencies allow one to resolve more paths, thus obtaining additional 

information from the multipath characteristics of the channel. Broadband pulse simulation is beyond the 

scope of this study. An excellent example of such an analysis is provided in [5], but requires complex 

signal processing and 72 antennas to image the entire head.  On the contrary, the CW technique shown 

here allows for simple and rapid detection of any general abnormality in the brain by observing the 

integral characteristics of the wave.  This, perhaps, could be used as a screening measure to determine if 

more in-depth analysis is needed. 

Although there was significant multipath at higher frequencies, two primary propagation channels were 

observed at 1600MHz with the transmitter coils located 10° from the vertical axis. One propagation path, 

caused by the surface wave, exists along the dielectric interface created by the skin. As seen in Fig. 23, 

this path does not penetrate more than 1.5 cm into the head, limiting the amount of information that can 

be obtained about the brain. The second channel is the volumetric wave that propagates through the brain, 

CSF, and skull to the mouth. This opening provides a convenient location to extract the signal. 

The same simulation model was used to study the effects of changes in the dielectric constant. For 

comparison, the electric field was observed on the forehead and the tongue, as seen in Fig. 45. These two 

locations provide access to the volumetric and surface waves with minimal interference from multipath. 

The phase velocity in a dielectric medium is proportional to the relative dielectric constant of medium 

of propagation. This implies that a continuous wave should undergo different phase shifts corresponding 
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Fig. 45. Locations of transmitting antennas and field measurement points. The 

receiver on the forehead is in the direct path of the surface wave. Conversely, the 

receiver on the tongue is mainly influenced by the volumetric wave. 

 

 

to the change in the dielectric properties of the brain. Although the magnitude should also change, small 

differences in magnitude are difficult to accurately measure in a lossy material. Furthermore, the amount 

of decay is dependent on the length of the given path. In comparison the forehead is closer to the 

transmitter than the tongue, thus it will always have a higher received magnitude. Only the relative phase 

delays are considered for the purpose of this comparison. 

The electric field components were measured in the X, Y, and Z directions. For this model, the XZ 

plane is the sagittal plane, whereas the YZ plane is the coronal plane. The dielectric constant of the brain 

was varied by 10% in either direction from the nominal value of 55.9. Upon completion of the simulation, 

the electric field waveforms (as the excitation of the CW varies from 0 to 360°) were normalized and 

compared to the nominal case. 

The phase shifts for the electric field in the X, Y, and Z directions is shown in Table 29. All three 

components are shown because the polarization of the receiver antenna would determine which would be 

accepted. One should note that in the X and Y directions, the phase shift was greater than 14° even for a 

slight change in the dielectric constant of 2.5%. In comparison, the phase difference on the forehead, 

caused by the surface 

waves, was almost 

completely unaffected 

by the changes in the 

brain. In general, the 

overall phase shift on 

the forehead was 

typically not more 

than 1%, with a few 

outliers exceeding 5% 
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that may be attributed to numerical error. 
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APPENDIX C. MATLAB CODE FOR THE ORTHGONAL COIL 

RADIATION PATTERN GRAPHICAL USER INTERFACE 
The following MATLAB code produces the radiation pattern for vertical, horizontal, and 

orthogonal magnetic dipoles based on the prompted user inputs: 

function []=radgui() 
close all 
global thetares; 
global phires; 
global w; 
global m; 
global phaseoff; 
global epsilon1; 
global epsilon2; 
global sigma1; 
global sigma2; 
global plotflag; 
global lowlim; 
global uplim; 

  
%GUI Version 
%Fields for horizontal and magnetic dipoles: 
%General Case: Arbritrary Material Properties and Height 

  
%% Defaults 
plotflag=0; %generate plots? (1=yes) 

  
% constants 
thetares=pi/128; %resolution of theta sweep in radians 
phires=pi/64; %resolution of phi sweep in radians 

  
mu0=1.25663706e-6; %permeability of free space (m*kg/(s^2*A^2)) 
eps0=8.85418782e-12; %permitivity of free space ((s^4*A^2)/(m^3*kg)) 

  
w=2*pi*400e6; %angular frequency (rads/s) 

  
m=1;%magnetic dipole moment (=I0*pi*a^2) 
r=1; %radial distance (this will cancel out, but is here for completeness) 

  

  
h=0; %height (in meters) from the surface of the interface 
phaseoff=exp(j*pi/2); %phase offset between horizontal and vertical dipoles 

  
%display 
lowlim=-10; %lowest limit (in dB) for plotting purposes 
uplim=10; %highest limit (in dB) for plotting purposes 

  
%material properties 
epsilon1=eps0*1; 
epsilon2=eps0*10; 
sigma1=0; 
sigma2=0; 
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%output text (display max directivity, where it occurs and power ratio) 
outtext.maxD1='Maximum D (dB)'; 
outtext.maxangle1='Location of max(D)'; 
outtext.powerratio1='Power radiated in Mat. 1 vs Mat. 2'; 

  

  

  
scrsz = get(0,'ScreenSize'); 
mainmenu=figure('OuterPosition',[1 scrsz(4)/2 scrsz(3) (scrsz(4)/2)]) 
%horizontal 
figure('OuterPosition',[1 50 scrsz(3)/3 (scrsz(4)/2)-50]) 
horaxis=gca; 
%title('Horiztonal Magnetic Dipole') 
%vertical 
figure('OuterPosition',[scrsz(3)/3 50 scrsz(3)/3 (scrsz(4)/2)-50]) 
veraxis=gca; 
%title('Vertical Magnetic Dipole') 
%combined 
figure('OuterPosition',[2*scrsz(3)/3 50 scrsz(3)/3 (scrsz(4)/2)-50]) 
comaxis=gca; 
%title('Orthogonal Dipoles') 

  

  

  
%Generate the "Command Menu" 
%% General options 
genpanel=uipanel(mainmenu,'Title','General 

Options','Position',[0.01,0.01,0.32,0.9]) 
uicontrol(genpanel,'Style','text','Units','Normalized','Position',[0,0.9,0.15

,0.1],'String','Theta Resolution (degrees)') 
uicontrol(genpanel,'Style','edit','Units','Normalized','Position',[0.15,0.9,0

.15,0.1],'String',thetares*180/pi,'Callback',@setthetaCB) 
uicontrol(genpanel,'Style','text','Units','Normalized','Position',[0,0.8,0.15

,0.1],'String','Phi Resolution (degrees)') 
uicontrol(genpanel,'Style','edit','Units','Normalized','Position',[0.15,0.8,0

.15,0.1],'String',phires*180/pi,'Callback',@setphiCB) 
uicontrol(genpanel,'Style','text','Units','Normalized','Position',[0,0.7,0.15

,0.1],'String','Generate Plots?') 
uicontrol(genpanel,'Style','checkbox','Units','Normalized','Position',[0.15,0

.7,0.15,0.1],'Callback',@checkboxCB) 
uicontrol(genpanel,'Style','text','Units','Normalized','Position',[0,0.6,0.15

,0.1],'String','Minimum Scale (dB):') 
uicontrol(genpanel,'Style','edit','Units','Normalized','Position',[0.15,0.6,0

.15,0.1],'String',-10,'Callback',@setlowCB) 
uicontrol(genpanel,'Style','text','Units','Normalized','Position',[0.5,0.6,0.

15,0.1],'String','Maximum Scale (dB):') 
uicontrol(genpanel,'Style','edit','Units','Normalized','Position',[0.65,0.6,0

.15,0.1],'String',10,'Callback',@sethighCB) 
uicontrol(genpanel,'Style','pushbutton','Units','Normalized','Position',[0,0.

3,1,0.2],'String','Update','Callback',@genpattern) 

  
%display results for the Horiztonal Magnetic Dipole 
handles.texthor1=uicontrol(genpanel,'Style','text','Units','Normalized','Posi

tion',[0,0.2,1,0.1],'String',outtext.maxD1) 
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handles.texthor2=uicontrol(genpanel,'Style','text','Units','Normalized','Posi

tion',[0,0.1,1,0.1],'String',outtext.maxangle1) 
handles.texthor3=uicontrol(genpanel,'Style','text','Units','Normalized','Posi

tion',[0,0,1,0.1],'String',outtext.powerratio1) 

  

  
%callback functions 
    function checkboxCB(hObj,event) 
        %global plotflag; 
        plotflag=get(hObj,'Value'); 
    end 

  
    function setthetaCB(hObj,event) 
        %global thetares; 
        thetares=str2num(get(hObj,'String'))*(pi/180); 
    end 

  
    function setphiCB(hObj,event) 
        %global phires; 
        phires=str2num(get(hObj,'String'))*(pi/180); 
    end 

  
    function setlowCB(hObj,event) 
        %global phires; 
        lowlim=str2num(get(hObj,'String')); 
    end 

  
    function sethighCB(hObj,event) 
        %global phires; 
        uplim=str2num(get(hObj,'String')); 
    end 

  
%% Excitation options 
excitepanel=uipanel(mainmenu,'Title','Excitation 

Options','Position',[0.33,0.01,0.32,0.9]) 
uicontrol(excitepanel,'Style','text','Units','Normalized','Position',[0,0.9,0

.15,0.1],'String','Frequency (MHz)') 
uicontrol(excitepanel,'Style','edit','Units','Normalized','Position',[0.15,0.

9,0.15,0.1],'String',(w/(2*pi))/1e6,'Callback',@setfreqCB) 
uicontrol(excitepanel,'Style','text','Units','Normalized','Position',[0,0.8,0

.15,0.1],'String','Magnetic Moment (A/m^2)') 
uicontrol(excitepanel,'Style','edit','Units','Normalized','Position',[0.15,0.

8,0.15,0.1],'String',m,'Callback',@setmCB) 
uicontrol(excitepanel,'Style','text','Units','Normalized','Position',[0,0.7,0

.15,0.1],'String','Phase Offset (degrees)') 
uicontrol(excitepanel,'Style','edit','Units','Normalized','Position',[0.15,0.

7,0.15,0.1],'String',90,'Callback',@setphaseoffCB) 

  
%display results for the Vertical Magnetic Dipole 
handles.textver1=uicontrol(excitepanel,'Style','text','Units','Normalized','P

osition',[0,0.2,1,0.1],'String',outtext.maxD1) 
handles.textver2=uicontrol(excitepanel,'Style','text','Units','Normalized','P

osition',[0,0.1,1,0.1],'String',outtext.maxangle1) 
handles.textver3=uicontrol(excitepanel,'Style','text','Units','Normalized','P

osition',[0,0,1,0.1],'String',outtext.powerratio1) 
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%callback functions 

  
    function setfreqCB(hObj,event) 
        %global w; 
        w=str2num((get(hObj,'String'))/1e6)*2*pi; 
    end 

  
    function setmCB(hObj,event) 
        %global m; 
        m=str2num(get(hObj,'String')); 
    end 

  
    function setphaseoffCB(hObj,event) 
        %global phaseoff; 
        phaseoff=exp(j*str2num(get(hObj,'String'))*(pi/180)); 
    end 

  
%% Material Properties 
matpanel=uipanel(mainmenu,'Title','Material 

Properties','Position',[0.65,0.01,0.32,0.9]) 
uicontrol(matpanel,'Style','text','Units','Normalized','Position',[0.25,0.9,0

.25,0.1],'String','epsilon') 
uicontrol(matpanel,'Style','text','Units','Normalized','Position',[0.5,0.9,0.

25,0.1],'String','sigma') 
uicontrol(matpanel,'Style','text','Units','Normalized','Position',[0,0.8,0.25

,0.1],'String','Material 1') 
uicontrol(matpanel,'Style','text','Units','Normalized','Position',[0,0.7,0.25

,0.1],'String','Material 2') 
uicontrol(matpanel,'Style','text','Units','Normalized','Position',[0,0.6,1,0.

1],'String','Height above the interface (m):') 
uicontrol(matpanel,'Style','edit','Units','Normalized','Position',[0.25,0.5,0

.5,0.1],'String',h,'Callback',@heightCB) 

  

  
uicontrol(matpanel,'Style','edit','Units','Normalized','Position',[0.25,0.8,0

.25,0.1],'String',epsilon1/eps0,'Callback',@eps1CB) 
uicontrol(matpanel,'Style','edit','Units','Normalized','Position',[0.5,0.8,0.

25,0.1],'String',sigma1,'Callback',@sig1CB) 
uicontrol(matpanel,'Style','edit','Units','Normalized','Position',[0.25,0.7,0

.25,0.1],'String',epsilon2/eps0,'Callback',@eps2CB) 
uicontrol(matpanel,'Style','edit','Units','Normalized','Position',[0.5,0.7,0.

25,0.1],'String',sigma2,'Callback',@sig2CB) 

  
%display results for the Orthogonal Dipoles 
handles.textcom1=uicontrol(matpanel,'Style','text','Units','Normalized','Posi

tion',[0,0.2,1,0.1],'String',outtext.maxD1) 
handles.textcom2=uicontrol(matpanel,'Style','text','Units','Normalized','Posi

tion',[0,0.1,1,0.1],'String',outtext.maxangle1) 
handles.textcom3=uicontrol(matpanel,'Style','text','Units','Normalized','Posi

tion',[0,0,1,0.1],'String',outtext.powerratio1) 

  

  
%callback functions 
    function eps1CB(hObj,event) 
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        %global epsilon1; 
        %global eps0; 
        epsilon1=eps0*(str2num(get(hObj,'String'))); 
    end 

  
    function eps2CB(hObj,event) 
        %global epsilon2; 
        %global eps0; 
        epsilon2=eps0*(str2num(get(hObj,'String'))); 
    end 

  
    function sig1CB(hObj,event) 
        %global sigma1; 
        sigma1=(str2num(get(hObj,'String'))); 
    end 

  
    function sig2CB(hObj,event) 
        %global sigma2; 
        sigma2=(str2num(get(hObj,'String'))); 
    end 

  
    function heightCB(hObj,event) 
        %global h; 
        h=(str2num(get(hObj,'String'))); 
    end 

  
    function genpattern(hObj,event) 
        zeta1=sqrt(j*w*mu0/(sigma1+j*w*epsilon1)); 
        zeta2=sqrt(j*w*mu0/(sigma2+j*w*epsilon2)); 

         
        k1=w*mu0/(zeta1); %wave numbers 
        k2=w*mu0/(zeta2); 
        %n=sqrt(epsilon2/epsilon1); %index of refraction 
        n=k2/k1; 

         
        %air hemisphere 
        theta1=0:thetares:pi/2-1e-5; %avoid theta=pi/2, because there is a 

singularity 
        phi1=0:phires:2*pi; 
        [theta1,phi1]=meshgrid(theta1,phi1); 
        %dielectric hemisphere 
        theta2=pi/2+1e-5:thetares:pi; 
        phi2=0:phires:2*pi; 
        [theta2,phi2]=meshgrid(theta2,phi2); 

         

         

         
        %% Field components 
        %horizontal magnetic dipole 
        ndiff1=sqrt(n^2-sin(theta1).^2); 
        ndiff2=sqrt(1-n^2*sin(theta2).^2); 

         
        Rpar=(n^2*abs(cos(theta1))-ndiff1)./(n^2*abs(cos(theta1))+ndiff1); 
        Tpar=2./(abs(cos(theta2))+ndiff2); 
        Rperp=(abs(cos(theta1))-ndiff1)./(abs(cos(theta1))+ndiff1); 
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        Tperp=2*ndiff2./(n*abs(cos(theta2))+ndiff2); 

         
        heightterm=exp(-abs(real(-j*k1*h*ndiff2))+j*imag(-j*k1*h*ndiff2)); 
        

E_theta_hor1=w*mu0*m*k1*cos(phi1).*exp(j*k1*h*abs(cos(theta1)))*(exp(-

j*k1*r)./(4*pi*r)).*(1+Rpar.*exp(-j*2*k1*h*abs(cos(theta1)))); 
        

E_theta_hor2=w*mu0*m*k1*cos(phi2).*abs(cos(theta2)).*heightterm.*Tpar.*(exp(-

j*k2*r)/(4*pi*r)); 

         
        

E_phi_hor1=w*mu0*m*k1.*sin(phi1).*abs(cos(theta1)).*exp(j*k1*h*abs(cos(theta1

))).*(exp(-j*k1*r)./(4*pi*r)).*(1-Rperp); 
        E_phi_hor2=-

w*mu0*k1*n*m*sin(phi2).*abs(cos(theta2)).*Tperp.*heightterm.*(exp(-

j*k2*r)./(4*pi*r)); 

         

         
        %vertical magnetic dipole 
        Tpar=(cos(theta1)-ndiff1)./(cos(theta1)+ndiff1); 
        Tperp=2*n./(n*abs(cos(theta2))+ndiff2); 

         
        E_theta_ver1=zeros(size(theta1)); 
        E_theta_ver2=zeros(size(theta2)); 

         
        

E_phi_ver1=w*mu0*m*k1*sin(theta1).*(exp(j*k1*h*cos(theta1))+Tpar.*exp(-

j*k1*h*cos(theta1))).*(exp(-j*k1*r)./(4*pi*r)); 
        E_phi_ver2=-

w*mu0*k1*m*n*sin(theta2).*abs(cos(theta2)).*Tperp.*heightterm.*(exp(-

j*k2*r)./(4*pi*r)); 

         

         
        %combined with 90 degree offset 
        E_theta_com1=E_theta_hor1+E_theta_ver1*phaseoff; 
        E_theta_com2=E_theta_hor2+E_theta_ver1*phaseoff; 

         
        E_phi_com1=E_phi_hor1+E_phi_ver1*phaseoff; 
        E_phi_com2=E_phi_hor2+E_phi_ver2*phaseoff; 

         

         

         
        %% Calculate Directivity 

         
        

[D1_hor,D2_hor,Prad1_hor,Prad2_hor]=directivity(r,k1,k2,zeta1,zeta2,theta1,th

eta2,phi1,phi2,... 
            E_theta_hor1,E_theta_hor2,E_phi_hor1,E_phi_hor2); 
        

[D1_ver,D2_ver,Prad1_ver,Prad2_ver]=directivity(r,k1,k2,zeta1,zeta2,theta1,th

eta2,phi1,phi2,... 
            E_theta_ver1,E_theta_ver2,E_phi_ver1,E_phi_ver2); 
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[D1_com,D2_com,Prad1_com,Prad2_com]=directivity(r,k1,k2,zeta1,zeta2,theta1,th

eta2,phi1,phi2,... 
            E_theta_com1,E_theta_com2,E_phi_com1,E_phi_com2); 

         
        %% Generate Plots 
        %put back pi/2 for plotting purposes 
        theta1(:,end)=pi/2; 
        theta2(:,1)=pi/2; 

         

         
        if plotflag==1 
            fontsize=12; 
            % Directivity for the Horiztonal Magnetic Dipole 
            axes(horaxis) 
            cla 
            plotqty1=10*log10(D1_hor); 
            plotqty2=10*log10(D2_hor); 

             
            %set limits 

             
            plotqty1(plotqty1>uplim)=uplim; 
            plotqty2(plotqty2>uplim)=uplim; 
            %uplim=max(max(max(plotqty1,plotqty2))); 
            plotqty1(plotqty1<lowlim)=lowlim; 
            plotqty2(plotqty2<lowlim)=lowlim; 

             
            [x,y,z]=sph2cart(phi1,pi/2-theta1,plotqty1+abs(lowlim)); 
            surf(x,y,-z,plotqty1,'FaceColor','interp','EdgeColor','none') 
            hold on 
            [x,y,z]=sph2cart(phi2,pi/2-theta2,plotqty2+abs(lowlim)); 
            surf(x,y,-z,plotqty2,'FaceColor','interp','EdgeColor','none') 
            %make a transparent cube to represent the dielectric 
            verts=[-1 -1 0; -1 1 0; 1 1 0; 1 -1 0; -1 -1 1; -1 1 1; 1 1 1; 1 

-1 1]*(uplim+abs(lowlim)); 
            faces=[1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8]; 
            patch('Vertices', verts, 'Faces', 

faces,'FaceAlpha',0.1,'FaceColor','y'); 
            hold off 
            axis([-(uplim+abs(lowlim)),uplim+abs(lowlim),-

(uplim+abs(lowlim)),uplim+abs(lowlim),... 
                -(uplim+abs(lowlim)),uplim+abs(lowlim),lowlim,uplim]) 
            view(82, 8) 
            %title('Horiztonal Magnetic Dipole','fontsize',fontsize) 
            set(horaxis,'XtickLabel',[],'YtickLabel',[],'ZtickLabel',[]) 
            %colorbar 
            %coordinate system 
            

line([0,uplim+abs(lowlim)],[0,0],[0,0],'LineWidth',3,'color','g','Marker','>'

,'MarkerSize',10) 
            

line([0,0],[0,uplim+abs(lowlim)],[0,0],'LineWidth',3,'color','b','Marker','>'

,'MarkerSize',10) 
            

line([0,0],[0,0],[0,uplim+abs(lowlim)],'LineWidth',3,'color','r','Marker','^'

,'MarkerSize',10) 



133 

            %axis equal; 

             

             
            % Directivity for the Vertical Magnetic Dipole 
            axes(veraxis) 
            cla 
            plotqty1=10*log10(D1_ver); 
            plotqty2=10*log10(D2_ver); 

             
            %set limits 
            plotqty1(plotqty1>uplim)=uplim; 
            plotqty2(plotqty2>uplim)=uplim; 
            %uplim=max(max(max(plotqty1,plotqty2))); 
            plotqty1(plotqty1<lowlim)=lowlim; 
            plotqty2(plotqty2<lowlim)=lowlim; 

             
            [x,y,z]=sph2cart(phi1,pi/2-theta1,plotqty1+abs(lowlim)); 
            surf(x,y,-z,plotqty1,'FaceColor','interp','EdgeColor','none') 
            hold on 
            [x,y,z]=sph2cart(phi2,pi/2-theta2,plotqty2+abs(lowlim)); 
            surf(x,y,-z,plotqty2,'FaceColor','interp','EdgeColor','none') 
            %make a transparent cube to represent the dielectric 
            verts=[-1 -1 0; -1 1 0; 1 1 0; 1 -1 0; -1 -1 1; -1 1 1; 1 1 1; 1 

-1 1]*(uplim+abs(lowlim)); 
            faces=[1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8]; 
            patch('Vertices', verts, 'Faces', 

faces,'FaceAlpha',0.1,'FaceColor','y'); 
            hold off 
            axis([-(uplim+abs(lowlim)),uplim+abs(lowlim),-

(uplim+abs(lowlim)),uplim+abs(lowlim),... 
                -(uplim+abs(lowlim)),uplim+abs(lowlim),lowlim,uplim]) 
            view(82, 8) 
            %title('Vertical Magnetic Dipole','fontsize',fontsize) 
            set(veraxis,'XtickLabel',[],'YtickLabel',[],'ZtickLabel',[]) 
            %colorbar 
            

line([0,uplim+abs(lowlim)],[0,0],[0,0],'LineWidth',3,'color','g','Marker','>'

,'MarkerSize',10) 
            

line([0,0],[0,uplim+abs(lowlim)],[0,0],'LineWidth',3,'color','b','Marker','>'

,'MarkerSize',10) 
            

line([0,0],[0,0],[0,uplim+abs(lowlim)],'LineWidth',3,'color','r','Marker','^'

,'MarkerSize',10) 

             
            % Directivity for Cross Coils 
            axes(comaxis) 
            cla 
            plotqty1=10*log10(D1_com); 
            plotqty2=10*log10(D2_com); 

             
            %set limits 
            plotqty1(plotqty1>uplim)=uplim; 
            plotqty2(plotqty2>uplim)=uplim; 
            %uplim=max(max(max(plotqty1,plotqty2))); 
            plotqty1(plotqty1<lowlim)=lowlim; 
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            plotqty2(plotqty2<lowlim)=lowlim; 

             
            [x,y,z]=sph2cart(phi1,pi/2-theta1,plotqty1+abs(lowlim)); 
            surf(x,y,-z,plotqty1,'FaceColor','interp','EdgeColor','none') 
            hold on 
            [x,y,z]=sph2cart(phi2,pi/2-theta2,plotqty2+abs(lowlim)); 
            surf(x,y,-z,plotqty2,'FaceColor','interp','EdgeColor','none') 
            %make a transparent cube to represent the dielectric 
            verts=[-1 -1 0; -1 1 0; 1 1 0; 1 -1 0; -1 -1 1; -1 1 1; 1 1 1; 1 

-1 1]*(uplim+abs(lowlim)); 
            faces=[1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8]; 
            patch('Vertices', verts, 'Faces', 

faces,'FaceAlpha',0.1,'FaceColor','y'); 
            hold off 
            axis([-(uplim+abs(lowlim)),uplim+abs(lowlim),-

(uplim+abs(lowlim)),uplim+abs(lowlim),... 
                -(uplim+abs(lowlim)),uplim+abs(lowlim),lowlim,uplim]) 
            view(82, 8) 
            %title('Orthogonal Magnetic Dipoles','fontsize',fontsize) 
            set(comaxis,'XtickLabel',[],'YtickLabel',[],'ZtickLabel',[]) 
            %colorbar 
            

line([0,uplim+abs(lowlim)],[0,0],[0,0],'LineWidth',3,'color','g','Marker','>'

,'MarkerSize',10) 
            

line([0,0],[0,uplim+abs(lowlim)],[0,0],'LineWidth',3,'color','b','Marker','>'

,'MarkerSize',10) 
            

line([0,0],[0,0],[0,uplim+abs(lowlim)],'LineWidth',3,'color','r','Marker','^'

,'MarkerSize',10) 
            %axis equal; 
        end 

         

         
        %% Find the maximum directivity and where it occurs 
        %Horiztonal Dipole 
        plotqty1=D1_hor; 
        plotqty2=D2_hor; 
        MaxD=max(max(max(plotqty2,plotqty1))); 
        ind=find(plotqty1==MaxD,1); 
        if isempty(ind) 
            ind=find(plotqty2==MaxD,1); 
            thetnum=floor(ind/size(plotqty2,1))+1; 
            phinum=mod(ind,size(plotqty2,1))+1; 
            bestthet=theta2(1,thetnum)*180/pi; 
            bestphi=phi2(thetnum,1)*180/pi; 
        else 
            thetnum=floor(ind/size(plotqty1,1))+1; 
            phinum=mod(ind,size(plotqty1,1))+1; 
            bestthet=theta1(1,thetnum)*180/pi; 
            bestphi=phi1(thetnum,1)*180/pi; 
        end 
        %state the Max directivity and ratio of radiated power 
        disp('Horiztonal Dipole') 
        fprintf('Max Directivity = %.2f dB @\ntheta = %.2f deg,\nphi = %.2f 

deg \n',10*log10(MaxD),bestthet,bestphi) 
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        fprintf('\nRatio of radiated power in medium 2 / medium 1 = %.2f \n 

\n',Prad2_hor/Prad1_hor) 

         
        %save these messages for the gui 
        set(handles.texthor1,'string',sprintf('Max Directivity = %.2f 

dB',10*log10(MaxD))); 
        set(handles.texthor2,'string',sprintf('@ theta = %.2f deg,  phi = 

%.2f deg',bestthet,bestphi)); 
        set(handles.texthor3,'string',sprintf('Ratio of radiated power in 

medium 2 / medium 1 = %.2f',Prad2_hor/Prad1_hor)); 

         

         
        %Vertical Dipole 
        plotqty1=D1_ver; 
        plotqty2=D2_ver; 
        MaxD=max(max(max(plotqty2,plotqty1))); 
        ind=find(plotqty1==MaxD,1); 
        if isempty(ind) 
            ind=find(plotqty2==MaxD,1); 
            thetnum=floor(ind/size(plotqty2,1))+1; 
            phinum=mod(ind,size(plotqty2,1))+1; 
            bestthet=theta2(1,thetnum)*180/pi; 
            bestphi=phi2(thetnum,1)*180/pi; 
        else 
            thetnum=floor(ind/size(plotqty1,1))+1; 
            phinum=mod(ind,size(plotqty1,1))+1; 
            bestthet=theta1(1,thetnum)*180/pi; 
            bestphi=phi1(thetnum,1)*180/pi; 
        end 
        disp('Vertical Dipole') 
        fprintf('Max Directivity = %.2f dB @\ntheta = %.2f deg,\nphi = %.2f 

deg \n',10*log10(MaxD),bestthet,bestphi) 
        fprintf('\nRatio of radiated power in medium 2 / medium 1 = %.2f \n 

\n',Prad2_ver/Prad1_ver) 

         
        %save these messages for the gui 
        set(handles.textver1,'string',sprintf('Max Directivity = %.2f 

dB',10*log10(MaxD))); 
        set(handles.textver2,'string',sprintf('@ theta = %.2f deg,  phi = 

%.2f deg',bestthet,bestphi)); 
        set(handles.textver3,'string',sprintf('Ratio of radiated power in 

medium 2 / medium 1 = %.2f',Prad2_ver/Prad1_ver)); 

         
        %Cross Coils 
        plotqty1=D1_com; 
        plotqty2=D2_com; 
        MaxD=max(max(max(plotqty2,plotqty1))); 
        ind=find(plotqty1==MaxD,1); 
        if isempty(ind) 
            ind=find(plotqty2==MaxD,1); 
            thetnum=floor(ind/size(plotqty2,1))+1; 
            phinum=mod(ind,size(plotqty2,1))+1; 
            bestthet=theta2(1,thetnum)*180/pi; 
            bestphi=phi2(thetnum,1)*180/pi; 
        else 
            thetnum=floor(ind/size(plotqty1,1))+1; 
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            phinum=mod(ind,size(plotqty1,1))+1; 
            bestthet=theta1(1,thetnum)*180/pi; 
            bestphi=phi1(thetnum,1)*180/pi; 
        end 
        %state the Max directivity and ratio of radiated power 
        disp('Cross Coils') 
        fprintf('Max Directivity = %.2f dB @\ntheta = %.2f deg,\nphi = %.2f 

deg \n',10*log10(MaxD),bestthet,bestphi) 
        fprintf('\nRatio of radiated power in medium 2 / medium 1 = %.2f \n 

\n',Prad2_com/Prad1_com) 

         
        %save these messages for the gui 
        set(handles.textcom1,'string',sprintf('Max Directivity = %.2f 

dB',10*log10(MaxD))); 
        set(handles.textcom2,'string',sprintf('@ theta = %.2f deg,  phi = 

%.2f deg',bestthet,bestphi)); 
        set(handles.textcom3,'string',sprintf('Ratio of radiated power in 

medium 2 / medium 1 = %.2f',Prad2_com/Prad1_com)); 
    end 

  

  
end 

  
function [ D1,D2,Prad1,Prad2 ] = 

directivity(r,k1,k2,zeta1,zeta2,theta1,theta2,phi1,phi2,E_theta1, E_theta2, 

E_phi1, E_phi2) 
%directivity Finds the directivity in spherical coordinates 
%   This function was intended for calculated the fields above  horizontal 
%   and vertical dipoles from the far-fields. It expects two regions: a top 
%   and lower region with corresponding theta and phi coordinates. 

  
%r=1; 
%radiation intensity: 
U1=(real(zeta1)./(2*(abs(zeta1).^2)))*((abs(E_theta1.*exp(j*k1*r)*r).^2)+... 
   (abs(E_phi1.*exp(j*k1*r)*r).^2)); 

  
U2=(real(zeta2)./(2*(abs(zeta2).^2)))*((abs(E_theta2.*exp(j*k2*r)*r).^2)+... 
   (abs(E_phi2.*exp(j*k2*r)*r).^2)); 

  

  
%total power radiated 
Prad1=trapz(theta1(1,:),trapz(phi1(:,1),sin(theta1).*U1)); 
Prad2=trapz(theta2(1,:),trapz(phi2(:,1),sin(theta2).*U2)); 

  
Prad=Prad1+Prad2; 

  
%directivity 
D1=4*pi*U1/Prad; 
D2=4*pi*U2/Prad; 

  
end 
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