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Abstract

Elliptic curves are the basis for a relative new class of public-key schemes. It is

predicted that elliptic curves will replace many existing schemes in the near future.

It is thus of great interest to develop algorithms which allow efficient implementations

of elliptic curve crypto systems. This thesis deals with such algorithms.

Efficient algorithms for elliptic curves can be classified into low-level algo-

rithms, which deal with arithmetic in the underlying finite field and high-level al-

gorithms, which operate with the group operation. This thesis describes three new

algorithms for efficient implementations of elliptic curve cryptosystems. The first algo-

rithm describes the application of the Karatsuba-Ofman Algorithm to multiplication

in composite fields GF ((2n)m). The second algorithm deals with efficient inversion

in composite Galois fields of the form GF ((2n)m). The third algorithm is an entirely

new approach which accelerates the multiplication of points which is the core op-

eration in elliptic curve public-key systems. The algorithm explores computational

advantages by computing repeated point doublings directly through closed formulae

rather than from individual point doublings. Finally we apply all three algorithms to

an implementation of an elliptic curve system over GF ((216)11). We provide absolute

performance measures for the field operations and for an entire point multiplication.

We also show the improvements gained by the new point multiplication algorithm in

conjunction with the k-ary and improved k-ary methods for exponentiation.
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Chapter 1

Introduction

1.1 Motivation

In 1976, Diffie and Hellman revolutionized the field of cryptography with the invention

of public-key cryptography [DH76]. Soon after, RSA, the first usable public key

cryptosystem, was introduced [RSA78]. This particular cryptosystem is based on

the difficulty of factoring very large numbers and today, it is still the most widely

used public-key cryptosystem in the world. Since then, in the field of computational

number theory, major work has been done towards efficient integer factorization. As

a consequence, new types of public-key algorithms have arisen. The most important

competitors to RSA are schemes based on the Discrete Logarithm (DL) problem.

Originally, the DL problem was considered in the multiplicative group of a finite

field, especially a prime field or a field of characteristic 2, since these fields seemed

most appropriate for implementations. Then in 1985, a variant of the DL problem

was proposed by Miller [Mil86] and Koblitz [Kob87], based on the group of points of

an elliptic curve (EC) over a finite field.

1



Introduction 2

A main feature that makes elliptic curves attractive is the relatively short

operand length. Cryptosystems which explore the DL problem over elliptic curves

can be built with an operand length of 140–200 bits [Men93b] as compared to RSA

and systems based on the DL in finite fields both of which require operands of 512–

1024 bits. Other advantages are the large numbers of curves available to provide the

groups and the absence of sub-exponential time algorithms (such us the index calculus

method) to attack cryptosystems in these groups. The latter property provides a very

good long-term security against current attacks. In addition, IEEE [KMQV96] and

other standard bodies such as ANSI and ISO are in the process of standardizing elliptic

curve cryptosystems. It is important to point out that elliptic curves can provide

various security services such as key exchange, privacy through encryption,and sender

authentication and message integrity through digital signatures. For these reasons it

is expected that elliptic curves will become very popular for many information security

applications in the near future. It is thus very attractive to provide algorithms which

allow for efficient implementations of elliptic curve cryptosystems. This thesis will

deal with such algorithms.

Efficient algorithms for elliptic curves can be classified into high-level algo-

rithms, which operate with the group operation, and into low-level algorithms, which

deal with arithmetic in the underlying finite field. For efficient implementations it is

obviously the best to optimize both types of algorithms. The main part of the thesis

will introduce three algorithms, one high-level algorithm for point multiplication and

two low-level for finite field inversion and multiplication, respectively.
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1.2 Thesis Outline

Chapter 2 gives an elementary introduction to composite Galois Fields and elliptic

curves. It covers some of the mathematical theory behind the construction of com-

posite fields and the basic equations that will govern the addition and doubling of

elliptic curve points. Finally, it introduces the basic method used to compute the

multiple of a point and the notation that will be used throughout this thesis to refer

to composite fields and elliptic curves.

Chapter 3 presents the approach that we used to implement in software addi-

tion, multiplication, and inversion over Galois Fields. We also introduce the concept

of the Table Look-Up (TLU) which will be fundamental to the discussions about

algorithm complexity in Chapter 5 and the basic data structure used to represent

elliptic curve points.

Chapter 4 summarizes previous works on elliptic curve cryptosystems pre-

sented in the research community in the past. We will introduce some of the pre-

vious elliptic curve implementations found in the literature, both over GF (2k) and

GF ((2n)m). We will also summarize the work in each of following areas: efficient

inversion and efficient multiplication algorithms for arithmetic in GF ((2n)m) and el-

liptic curve point addition algorithms. Finally, we will present some of the improved

algorithms used to compute the product of an elliptic curve point by a large integer.

Chapter 5 provides a detailed treatment of the Karatsuba-Ofman algorithm

(KOA) applied to field multiplication inGF ((2n)m). We provide a complexity analysis

of the KOA for software implementations where arithmetic in the subfield GF (2n) is

based on table look-up.

Chapter 6 shows an algorithm for efficiently computing the inverse of an el-

ement in the composite Galois field GF ((2n)m) ∼= GF (2k). The algorithm is based
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on an idea by Itoh and Tsujii [IT88], but is optimized for a standard base repre-

sentation and for binary field polynomials. The algorithm reduces inversion in the

composite field to inversion in the subfield GF (2n). Unlike the inversion algorithms

in [SOOS95, WBV+96], the inversion algorithm is based on Fermat’s little theorem.

Chapter 7 introduces an entirely new approach for accelerating the multipli-

cation of points on an elliptic curve. The approach works in conjunction with the

k-ary and the sliding window methods. The method is applicable to elliptic curves

over any field, but we provide worked-out formulae for elliptic curves over fields of

characteristic two. In addition, we show the actual performance of the newly intro-

duced algorithm and the ones treated in Chapters 5 and 6 in an implementation of

an elliptic curve cryptosystem over GF (2176) ∼= GF ((216)11). We provide absolute

timing measurements for an entire elliptic curve multiplication as well as timings for

individual operations.

Chapter 8 describes an elliptic curve algorithm analog to the Diffie-Hellman

key exchange protocol [DH76], as well a systems analog to the ElGamal cryptosys-

tem [ElG85]. In addition, a draft of the proposed IEEE Standard for elliptic curve

cryptosystems will be introduced. Timing estimates for several of these systems will

be provided.

Finally, Chapter 9 will discuss the results of this research. It will also provide

the reader with recommendations for further research in the general area of algorithm

optimization for elliptic curves.



Chapter 2

Background

This chapter introduces elliptic curves and composite Galois fields over GF ((2n)m)

and the notation that will be used throughout this thesis to refer to them. We

also present the formulae used to add elliptic curve points for curves over fields of

characteristic two. Finally, we introduce an algorithm used to efficiently compute a

multiple of an elliptic curve point.

2.1 Galois Fields GF ((2n)m)

2.1.1 Polynomial Rings and Fields

It is known that the set of integers modulo q, where q is a prime, forms a field, where

a field is as defined in [LC83]. This field is denoted as Zq . One can also define Zq [x] to

be the set of all polynomials with coefficients from Zq in the indeterminate x. Then,

one can construct the ring of polynomials modulo q by combining the set Zq[x] with

the operations of addition and multiplication of polynomials (as defined in the usual

way) and reducing the coefficients modulo q [LN83].

5
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A second ring can be constructed in a similar manner. This time, we will

construct the ring of polynomials modulo f(x), where f(x) ∈ Zq[x] and deg(f(x)) =

m ≥ 1. This ring is denoted by Zq[x]/f(x). The elements of the ring are all those

polynomials in Zq[x] with degree less or equal to m− 1. Addition and multiplication

are defined as in the case of Zq[x] followed by a reduction modulo f(x). It turns out

that if f(x) is irreducible, GF (qm) ∼= Zq [x]/f(x), is a finite field [LC83]. In addition,

it has been shown that an irreducible polynomial of degree m over GF (q) exist for

any finite field GF (q). In the rest of this thesis the notation GF (qm) will be used

when referring to finite fields.

Notice that GF (qm) is also referred to as an “extension field of GF (q)” and it

has order qm. The field GF (q) is then referred to as the “ground field” or “subfield”

of GF (qm) [McE87]. Finally, every element in GF (qm) can be represented as a poly-

nomial A(x) = am−1xm−1 + · · ·+ a0 with coefficients ai ∈ GF (q), i = 0, 1, · · · ,m− 1.

A(x) is said to be “a polynomial over GF (q).” These qm polynomials in GF (qm) form

the residue classes modulo f(x) of all polynomials over GF (q).

2.1.2 Composite Fields

In this section we will introduce a special type of finite fields, called composite fields,

which will prove to be an essential concept in the development of this thesis.

In Section 2.1.1, it was assumed that q was a prime when constructing a finite

field. In fact, q does not need to be a prime. The order of a field only needs to be

a power of a prime or q = pm where p is prime. In particular, we can build further

extensions on extension fields. For instance, the field GF (qn) can be extended to

GF ((qn)m). Notice that in practical applications (hardware or software) where finite

field arithmetic needs to be implemented, the choice of q = 2 is very beneficial because

of the way in which information is represented inside computers. Thus, we define a
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special type of finite fields.

Definition 1 We call two pairs {GF (2n), Q(y) = yn+
∑n−1
i=0 qiy

i} and {GF ((2n)m), P (x) =

xm +
∑m−1
i=0 pixi} a composite field if

• GF (2n) is constructed as an extension field of GF (2) by Q(y),

• GF ((2n)m) is constructed as extension field of GF (2n) by P (x).

where Q(y) is an irreducible polynomial over GF (2) and P (x) is also irreducible over

GF (2). In the rest of this thesis composite fields will be denoted by GF ((2n)m).

It is important to point out that from a mathematical point of viewGF ((2n)m)

is isomorphic to GF (2k) for nm = k [LN83]. However, although a field of order 2nm

and one of order 2k are isomorphic, their algorithmic complexity is different with

respect to the field operations addition and multiplication and, in general, it will

depend on the choice of m and n and more specifically on the polynomials Q(y) and

P (x) [Paa94].

2.1.3 Choosing the Field Polynomial P (x)

As stated above, the polynomials Q(y) and P (x) are of great importance in determin-

ing the algorithmic complexity of arithmetic in the field GF ((2n)m). In this section

we will explore a way to choose field polynomials that we will provide us with certain

algorithmic advantages.

The polynomial P (x) generates the field GF ((2n)m) and it is very important in

reducing the complexity of the basic operations in the Galois fieldGF ((2n)m). [Jun93]

showed that if gcd(n,m) = 1 then every P (x) of degree m which is irreducible over
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GF (2), is also irreducible over GF (2n). Therefore, one can choose n and m to be

relatively prime and then choose P (x) in such a way that it only has binary coefficients

as opposed to coefficients from GF (2n). Furthermore, one should try to choose an

irreducible polynomial P (x) with the least number of coefficients, thus minimizing

the complexity of modular arithmetic in the Galois field.

2.2 Non-Supersingular Elliptic Curves over Fields

of Characteristic Two

In this section, we define elliptic curves and give general equations that describe them.

The section is meant to be a condensed summary that introduces the reader to the

concept of the elliptic curve. For a more extensive treatment referred to [Men93b].

We then specialize to the case of elliptic curves over finite fields of characteristic 2.

Finally, we define the group law for this curves and analyze the complexity of these

equations.

2.2.1 Background on Elliptic Curves

Let K be a field with characteristic char(K). An elliptic curve over K, denoted by E,

is the set of points (X, Y, Z), which satisfy a generalized smooth Weierstrass equation:

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (2.1)

where a1, ..., a6 ∈ K (K is a fixed algebraic closure of K) and smooth refers to the

fact that for all points (X,Y,Z)∈ P 2(K) satisfying,

F (X, Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0
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at least one of the three partial derivatives ∂F
∂X

, ∂F
∂Y

, and ∂F
∂Z

is non-zero at P . There

is exactly one point in E with Z-coordinate equal to 0, that is (0,1,0). We call this

point the point at infinity and denote it by O.

To obtain an equation in non-homogeneous coordinates, we can let x = X/Z

and y = Y/Z, and together with the special point O, we get [Kaz92] :

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.2)

Thus, an elliptic curveE defined over a finite fieldK is the set of solutions (x, y) ∈ K2

which satisfies (2.2) together with the point of infinity O.

Elliptic curves can be simplified over fields of different characteristics by means

of coordinate transformation. However, in the rest of this thesis, we will be only

concerned with curves of characteristic 2. One can distinguish between two types of

curves in this case:

• Singular elliptic curves with char(K)=2, where E is defined as

y2 + ay = x3 + bx+ c

and,

• Non-supersingular elliptic curves with char(K)=2, where E is defined as

y2 + xy = x3 + ax2 + c.

It is important to point out that an elliptic curve is said to be supersingular if

and only if the j−invariant of E is not equal to zero, otherwise it is non-supersingular

[Men93a].

As a result of the MOV reduction attack [MOV93], which only applies to

supersingular elliptic curves, the security of systems based on the two classes of curves
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differ radically. The MOV attack leads to sub-exponential attacks (index-calculus

method) against supersingular elliptic curves, whereas the best known attacks against

non-supersingular elliptic curves have an exponential complexity. It is important to

point out that supersingular elliptic curves should be avoided when implementing

cryptosystems based on elliptic curves. Moreover, the use of non-supersingular curves

in public-key cryptography can provide far more security per bit ratio than existing

systems such as RSA [AMV93], therefore they will be the only ones studied in this

thesis.

2.2.2 Elliptic Curves over Fields of Characteristic Two in

Affine Coordinates

In the remainder of this report we will study optimum ways to implement non-

supersingular elliptic curves over GF (2k). Thus, we define an elliptic curve in this

context as:

y2 + xy = x3 + ax2 + c (2.3)

where a, c ∈ GF (2k), c 6= 0, together with the point at infinity O [AMV93].

The addition operation for an elliptic curve E (2.3) is defined as follows. Let

P = (x1, y1) ∈ E; then −P = (x1, y1 + x1). P + O = O + P = P for all P ∈ E. If

Q = (x2, y2) ∈ E and Q 6= −P , then P +Q = (x3, y3), where

x3 =


λ2 + λ+ x1 + x2 + a P 6= Q

λ2 + λ+ a P = Q

(2.4)

and
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y3 =


λ(x1 + x3) + x3 + y1 P 6= Q

x2
1 + λx3 + x3 P = Q

(2.5)

where

λ =


y1+y2

x1+x2
P 6= Q

x1 + y1

x1
P = Q

(2.6)

From (2.4) and (2.5) the addition of two different elliptic curve points, i.e.,

P 6= Q, requires the following field operations:

• 8 Additions

• 1 Squaring

• 2 Multiplications

• 1 Inverse

On the other hand, the doubling of an elliptic curve point, i.e., P = Q, using

(2.4) and (2.5) requires the following field operations:

• 5 Additions

• 2 Squarings

• 2 Multiplications

• 1 Inverse

From the discussion in Section 3.1, we know that both multiplication and

inversion are the time critical operations and therefore the need to minimize their

number when doing arithmetic with elliptic curves. Chapter 7 will introduce a new
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method of doubling elliptic curve points that minimizes the number of inversions at

the expense of more multiplications.

2.2.3 Multiples of Points

When implementing an elliptic curve cryptosystem, such as those described in Chap-

ter 8, one is required to compute

eP = P + P + · · ·+ P︸ ︷︷ ︸
e times

,

where e is a positive integer and P ∈ E. For very large values of e, a straightforward

summation becomes impractical and so we use a method which is analogous to the

square and multiply algorithm for exponentiation [Knu81]. This method is known as

“repeated double and add” and it is described in Theorem 1 [MQV95].

Theorem 1 Let P ∈ E and e = (etet−1 · · · e1e0)2 be the binary representation of the
multiplier e where the most significant bit et of e is 1. Then, Q = eP can be computed
using the following algorithm.

Algorithm (Input: P = (x, y), e; Output: Q = eP )
1. Q← P

2. For i = t− 1 to 0
2.1 Q← Q+Q

2.2 If ei = 1, then Q← Q+ P
4. Return(Q)

Theorem 1 implies that for a randomly selected integer e with t + 1 bits,

one needs t doubling steps and an average t/2 adding steps. Notice, however, that

improved methods for exponentiation have been suggested. Some of them will be

explored in Chapters 4 and 7.



Chapter 3

Computer Arithmetic in

Composite Fields and Elliptic

Curves

This chapter introduces the way in which we represent Galois field elements in software

implementations. We also present the algorithms used to implement in software

addition, multiplication, and inversion over Galois fields. Finally, we introduce the

concept of the Table Look-Up (TLU) which will be fundamental to the discussions

about algorithmic complexity in Chapter 5.

3.1 Computer Representation of Galois Field Ele-

ments

When optimizing Galois field arithmetic, it is necessary to have a good understanding

of the internal representation of the Galois field elements in the computer. The

13
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software implementation that was used in realizing this work used three different

libraries to deal with Galois fields GF ((2n)m) [HPR].

3.1.1 Composite Field Libraries

The first library implemented, called gfopsn.c, defines the type gfelt which is used

to deal with elements of the ground fieldGF (2n), where n ≤ 32. Notice that these field

elements are represented by integer variables. The field polynomialQ(y) is determined

by the user. The second library is called polyopsn.c. This library defines the type

gfpoly to perform different arithmetic operations with polynomials over GF (2n).

The gfpoly type was defined as an array of gfelt elements. The elements of the

array gfpoly signify the coefficients of the polynomial. The coefficient of xi, is stored

at position i+2. Position 0 of the array is reserved for an integer indicating the

degree of the polynomials, whereas position 1 of the array is reserved for an integer

indicating the number of memory cells allocated. It is important to point out that

the polynomials themselves are not elements of GF (2n), but rather the coefficients of

the polynomials.

The last library corresponds to the file cgfops.c. In this library the type

comp was defined to deal with composite field elements or elements of the Galois

field GF ((2n)m). Notice that this new type was defined the same as the gfpoly type

but the elements of this field are constructed from the polynomial P (x). Thus, if

A(x) ∈ GF ((2n)m), we can represent it as follows:

A(x) = am−1x
m−1 + am−2x

m−2 · · ·+ a1x+ a0, ai ∈ GF (2n) (3.1)

Furthermore, the polynomial A(x) is represented as an array of gfelts (am−1 · · · a1a0)

of lengthm+2 (m entries for m coefficients plus two entries for the degree and the total
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size of the array, as described above). Notice that cgfops.c allows field arithmetic

in GF ((2n)m), by performing polynomial arithmetic modulo P (x).

3.1.2 Application to GF ((216)11)

In this section, we consider the special case of the Galois Field GF ((216)11). Notice

that gcd(16, 11) = 1 thus, if we choose a polynomial of degree 11 which is irreducible

over GF (2), it will also be irreducible over GF (216).

In order to construct the field GF ((216)11), we need to choose irreducible

polynomials for both the ground field GF (216) and the composite field GF ((216)11).

From [LN83], we chose Q(y) = y16 + y11 + y6 + y5 + 1 and P (x) = x11 + x2 + 1.

It is important to point out that because P (x) is a trinomial, the complexity of

the modular reduction will be minimal as opposed to choosing a P (x) with more

coefficients.

From Section 3.1, we know that an element A(x) = a10x10 +a9x9 · · ·+a1x+a0,

ai ∈ GF (216), of the composite field GF ((216)11) will be represented by an integer

array with 11 entries, each entry being an element of type gfelt representing a

coefficient ai of the polynomial A(x). Each coefficient ai in turn is represented as a

16-bit integer variable.

3.2 Computer Arithmetic in Composite Fields

This section introduces the concept of the table look-up as it applies to arithmetic

in composite fields. In addition, it describes in a more detailed manner the type of

arithmetic operations that are defined in some of the libraries that were introduced

in Section 3.1 and the way these libraries are implemented in software.
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3.2.1 Multiplication in GF (2n)

The major advantage of using composite Galois fields is that most of the time con-

suming operations in the ground field, such as inversion and multiplication, can be

accelerated using table look-up (TLU) [Bea96, WBV+96]. Table look-ups are based

on the idea of precomputing “log” and “antilog” tables in the ground field GF (2n).

By log, one means the analog of the logarithm function in a discrete sense. In other

words, given that all non-zero elements of GF (2n) can be represented as the power

of a primitive element ω, we define the log function as follows:

k = log(ωk), ωk ∈ GF (2n), k ∈ {1, 2, · · · , 2n − 1} (3.2)

where GF (2n) = {0, ω, ω2, · · · , ω2n−1 = 1}.

By antilog we mean the inverse of the log function. In other words, if the log

function is as defined in (3.2) then (3.3) defines the antilog function as follows:

ωk = antilog(k) = antilog(log(ωk)), ωk ∈ GF (2n), k ∈ {1, 2, · · · , 2n − 1} (3.3)

(3.2) and (3.3) will prove to be fundamental for efficient software implementations as

described in Chapter 6.

Finally, the product of two elements ωi, ωj ∈ GF (2n) can be reduced to an

integer addition and three table look-ups as follows:

ωiωj = antilog(log(ωi) + log(ωj)) (mod 2n − 1) (3.4)
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3.2.2 Addition in GF ((2n)m)

Addition inGF ((2n)m) is performed by using a routine defined in the library polyopsn.c.

The function definition is polysum(A, B, *X) where A, B, and *X are all of type

gfpoly or, in other words, polynomials with coefficients in GF (2n). The same routine

is also called by cgfopsn.c to perform addition of composite field elements. Compos-

ite field addition, C(x) = A(x) + B(x), A(x), B(x), C(x) ∈ GF ((2n)m), amounts to

adding the coefficients of two composite field elements in standard base representation

as follows

C(x) = (cm−1x
m−1 + · · ·+ c1x+ c0) =

= (am−1x
m−1 + · · ·+ a1x+ a0) + (bm−1x

m−1 + · · ·+ b1x+ b0) (3.5)

where ai+bi = ci ∈ GF (2n) and C(x) ∈ GF ((2n)m). This operation can be performed

by bitwise XORing of the coefficients of the polynomials. Notice that one only needs

a loop with m iterations which is fast.

3.2.3 Multiplication in GF ((2n)m)

The multiplication of two composite field elements A(x), B(x) ∈ GF ((2n)m) can be

performed in standard base representation as follows:

C(x) = A(x)×B(x) mod P (x), (3.6)

where P (x) is the irreducible polynomial of the field GF ((2n)m). The field multipli-

cation can be performed in two steps:

1. Ordinary polynomial multiplication (×)
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2. Reduction modulo the field polynomial (mod).

Step 1 will be treated in detail in Chapter 5 where the Karatsuba-Ofman al-

gorithm is studied. The following will explain how the reduction modulo the field

polynomial is performed. Notice that in both steps, the basic arithmetic operations,

addition and multiplication of polynomials, are performed in the ground field GF (2n).

As stated in previous sections, the additions are XOR operations and the multiplica-

tions are table look-ups as shown in Section 3.2.1.

In order to perform modular reduction in GF ((2n)m) we will consider the

intermediate product C ′(x) = A(x)×B(x). C ′(x) is a polynomial over GF (2n) with

deg(C ′(x)) ≤ 2m − 2 with coefficients c′i ∈ GF (2n). Then, we can represent C(x)

where deg(C(x)) ≤ m− 1 as follows:

C(x) = C ′(x) mod P (x)

= c′2m−2x
2m−2 + · · ·+ c′0 mod P (x) (3.7)

= cm−1x
m−1 + · · ·+ c0

The reduction modulo P (x) can be viewed as a linear mapping of the 2m− 1 coeffi-

cients of C ′(x) into the m coefficients of C(x). This mapping can be represented in a

matrix notation as follows:



d0

d1

...

dm−1


=



1 0 · · · 0 r0,0 · · · r0,m−2

0 1 · · · 0 r1,0 · · · r1,m−2

...
...

...
...

...
. . .

...

0 0 · · · 1 rm−1,0 · · · rm−1,m−2





d′0
...

d′m−1

d′m
...

d′2m−2


. (3.8)
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The matrix on the right hand side of (3.8) consists of a m by m identity matrix

and a m by m − 1 reduction matrix, which is a function of the chosen monic field

polynomial P (x) [Paa94]. If P (x) has only coefficients from GF (2), the entries ri,j of

the reduction matrix are binary, allowing one to compute C(x) with only additions

in the ground field.

3.2.4 Squaring in GF ((2n)m)

The squaring operation is a linear operation for composite fields of characteristic 2

as it is the case for GF ((2n)m). Thus, given A(x) ∈ GF ((2n)m) as defined in (3.1),

A2(x) can be computed as follows [McE87]:

A2(x) = a2
m−1x

2(m−1) + a2
m−2x

2(m−2) · · · + a2
1x

2 + a2
0 mod P (x) (3.9)

where the reduction modulo P (x) is performed as indicated in (3.8). Therefore, it is

easy to see that in performing the squaring operation one does not need to perform

most of the products that are computed in the multiplication of two general composite

field elements, thus reducing the complexity of the squaring operation to m ground

field multiplications. As in the case of general multiplication, only additions and

multiplications (done through table look-ups) of ground field elements are required

in the squaring operation.

3.2.5 Inversion in GF ((2n)m)

The most costly operation in a software implementation that deals with Galois field

arithmetic is inversion. Several algorithms have been proposed to accomplish this.

In Chapter 4 we introduce the so called “Almost Inverse Algorithm” proposed in

[SOOS95]. However, the method used in this implementation is based on a modified
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version of Itoh and Tsujii’s Algorithm for inversion in composite fields [Paa95]. This

algorithm is studied in detail in Chapter 6. For now, it suffices to say that the idea

behind the algorithm is to reduce inversion in GF ((2n)m) to inversion in the ground

field GF (2n) through the use of table look-ups.

3.2.6 Arithmetic in GF ((216)11)

Again, we consider the special case of the Galois field GF ((216)11). Chapter 5 will

deal extensively with the multiplication of polynomials in this field, and Chapter 6

will discuss an inversion algorithm. We will now describe how modulo reduction and

squarings are performed in this field. From Section 3.2.3, we know that the modulo

reduction can be based on a matrix description. We chose P (x) to be the irreducible

polynomial x11 + x2 + 1. For the Galois field GF ((216)11), the matrix in (3.8) is

entirely binary and is shown in Figure 3.1. Notice that computation of the matrix

vector product requires only 21 coefficient additions in the ground field GF (216).



co
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10


=



1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0





c′o
c′1
c′2
c′3
...
c′10

c′11
...
c′18

c′19

c′20



Figure 3.1: Matrix for fast modulo reduction with P (x) = x11 + x2 + 1

We consider now the squaring operation in the field GF ((216)11). In our imple-

mentation, given a composite field elementA(x), where: A(x) = a10x10+. . .+a1x+a0,

ai ∈ GF (2n), the squared element is: A2(x) = a2
10x

20 + a2
9x

18 + · · · + a2
1x

2 + a2
0. We
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now can use a modified form of the reduction matrix given in Figure 3.1 to find the

resulting coefficients for A2(x). Thus, we are required to perform 22 table look-ups

and 6 additions in the subfield GF (216).

3.3 Computer Representation of Elliptic Curve El-

ements

As it was stated in Section 2.2.1, every point on an elliptic curve is described by the

coordinates (x, y). In our software implementation, a new data type was defined to

represent elliptic curve points. This new data type was called ellc elt, where:

typedef struct ellc_elt

{

comp pointx; /* Composite field element */

comp pointy; /* Composite field element */

int infinity; /* point of infinity = 1, else 0 */

} ellc_elt;

The coordinates x and y are represented by a composite field element of type comp

(as defined in Section 3.1). In addition, the variable infinity will be used to indicate

whether the point at infinity O has occurred.



Chapter 4

Previous Work

This chapter summarizes previous works on elliptic curve cryptosystems presented in

the research community in the past. We will introduce some of the previous elliptic

curve implementations found in the literature, both over GF (2k) and GF ((2n)m).

We will also summarize the work in each of following areas: efficient inversion and

efficient multiplication algorithms for arithmetic in GF ((2n)m) and elliptic curve

point addition algorithms. Finally, we will present some of the improved algorithms

used to compute the product of an elliptic curve point by a large integer.

4.1 Elliptic Curve Implementations over GF (2k)

4.1.1 Early work

The earliest references to the way in which elliptic curves are implemented are [MV90]

and [MV93]. In both references, the authors briefly discuss how arithmetic in GF (2k)

can be be efficiently implemented in hardware. The selection of a curve and a finite

field that minimizes the number of field operations is treated as well as alternate

22
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ways to addition of points in an elliptic curve. Finally, the elliptic curve analog of

the ElGamal cryptosystem is analyzed and estimates for its throughput are given.

The underlying idea in [MV90] and [MV93] is to view the field GF (2k) as a

k-dimensional vector space over GF (2) and define a basis for it. Once the basis has

been defined, the elements of the finite field GF (2k) can be conveniently represented

as 0–1 vectors of length k. Addition can be implemented by bitwise XORing the

vector representations which takes only a few clock cycles (Notice that it the ad-

dition operation will only take one cycle if the processor has word length equal to

k). [MV90] and [MV93] also introduce the idea of optimal normal basis for efficient

implementation of both squaring (one clock cycle to perform by shifting the vector

components)and multiplication (takes k clock cycles if optimal normal bases exist for

the field, otherwise low-complexity normal basis should be considered). The Itoh and

Tsujii algorithm [IT88] is introduced as the most efficient technique to compute an

inverse based on Fermat’s Little Theorem. However, the algorithm is costly for hard-

ware implementations because it requires the storage of several intermediate steps

and therefore an alternate algorithm to perform inversion in a Galois field is also

mentioned (see [ABMV93]).

In [MV90] and [MV93] supersingular elliptic curves were chosen to implement

the ElGamal cryptosystem because it is possible to avoid the inversion operation in

doubling a point if the coefficients of the elliptic curve are carefully chosen. Never-

theless, the addition of two different points still requires the computation of inverses

in the underlying finite field and these, despite the existence of efficient algorithms to

compute them, are by far the most costly operations to perform. Thus, [MV90] and

[MV93] introduce projective coordinates as a method of adding two different elliptic

curve points without resorting to the inverse operation. Using the repeated double

and add method described in Theorem 1, the product of a point P ∈ E by an in-

teger e with Hw(e) = t + 1 will take 2t multiplications and t inversions using affine
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coordinates (Hw() denotes the Hamming weight of the binary representation of the

operand). On the other hand, if using projective coordinates and the same exponen-

tiation method the total operation count is reduced to 9t+ 2 multiplications and one

inversion. This reduction in inversions occurs at the expense of extra multiplications

and of space since one needs extra registers to store the intermediate results in the

algorithm.

[MV93]also provides throughput estimates for the encryption rate using the

elliptic curve analog of the ElGamal cryptosystem. A supersingular elliptic curve

E : y2 +y = x3+x+1 over GF (2239) was chosen. It was assumed that multiplication

took 239 cycles and inversion using the Itoh and Tsujii algorithm blog2(239 − 1)c +

Hw(239−1)−1 multiplications. Elements of the field GF (2239) were represented using

optimal normal basis. Since the field size is small, it was assumed that the number of

registers was not important and thus projective coordinates were chosen to represent

the points on the curve. Finally, the Hamming weight of the multiplier was limited

to 30 or less, thus increasing the speed of the system and putting an upper bound

on the time required for the encryption. With these assumptions and assuming a

40 MHz clock rate, 145 kbits/s is achieved. Notice that for this specific curve, the

computation of logarithms is believed to be as hard as for logarithms computed in

GF (24k) using the MOV attack thus, the index calculus method is infeasible with

current computer resources, but might be within reach in the near future..

Non-supersingular curves are also introduced. They are very attractive for

security reasons because the MOV attack can not be applied to them thus the size

of the underlying Galois field can be smaller than for supersingular curves. As in

the case of the supersingular curves, the underlying field should also have an optimal

normal basis in order to achieve efficient field arithmetic and the need for the inverse

computation may be eliminated by resorting to projective coordinates.
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Finally, [MV93] mentions an implementation of a cryptosystem in hardware.

The implementation explored a chip explicitly designed to perform efficient elliptic

curve point addition over the field GF (2155) and it will be the subject of Section 4.1.2.

4.1.2 Hardware Implementation over GF (2155) Using Normal

Basis Representation

[AMV93] discusses a VLSI implementation of an arithmetic processor in GF (2155)

which allows an efficient implementation of a non-supersingular elliptic curve cryp-

tosystem. Following the same approach as in [MV93] and [MV90], optimal normal

basis are chosen to perform arithmetic in the underlying field GF (2155). Addition was

implemented by simply XORing the vector representations of the finite field elements

in GF (2155). The normal base multiplier required three registers A, B, and C, where

C was the product register. The C register contained logic to interconnect the A

and B registers. In addition, the registers were directly interconnected to allow fast

register transfers. Since computations on elliptic curves were very I/O intensive, a

32-bit wide I/O structure was incorporated into the device which also allowed for 16-

and 8-bit transfers.

This architecture implied that each register was treated as five individually

addressable 32-bit locations (5 padding bits were used in the high order bits) which

allowed to load or unload an entire register in 10 clock cycles or 250 nanoseconds. The

last optimization in the design was to use a simple instruction set, flexible enough to

allow the implementation of a variety of functions. The instruction set was divided

into two types: instructions for elementary register operations and instructions for

more involved field operations.

It is important to point that [AMV93] were able to implement the coprocessor
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in a relatively small custom gate array by restricting its functionality to the minimum

necessary to implement the elliptic curve cryptosystem. The final device required the

equivalent of about 11000 gates and ran at a 40 MHz clock rate, requiring less than

15 percent of the area of currently available smart card chips.

As in [MV93] and [MV90], projective coordinates were used to implement point

addition thus avoiding the inverse operation. Addition of two different points in a

non-supersingular elliptic curve thus required 13 field multiplications and a doubling

required 7 multiplications. Assuming a Hamming weight multiplier of weight 20

(notice that this does not compromise the security of the system) and a clock rate

of 40 MHz, the approximate throughput rate on any non-supersingular elliptic curve

over GF (2155) is 60 kbits per second (notice that for the unrestricted multiplier the

throughput was estimated to be 40 kbits per second).

4.1.3 Software Implementation over GF (2155) Using Standard

Basis Representation

The contribution by [SOOS95] describes an implementation of the Diffie-Hellman

(DH) key exchange protocol using a non-supersingular elliptic curve over the field

GF (2155). In this implementation, the constant a in (2.3) is chosen to be equal to

zero. With this choice, one effectively eliminates one addition from the calculation of

the x-coordinate of a point P for both addition and doubling of elliptic curve points.

The computation of eP , where e is a large integer and P is a point on the

elliptic curve, is crucial to the speed of the key exchange or digital signature gener-

ation. In particular, the number of point additions and point doublings should be

minimized. For a randomly chosen 155-bit multiplier, the computation of eP will

require on average 154 point doublings and 77 point additions using the standard
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double and add algorithm. Although, the number of doublings is essentially fixed, it

is possible to reduce the number of additions. [SOOS95] implemented speed–ups to

this end.

In the initial phase of the DH protocol both parties choose a primitive element

P0. Then, they generate their secret keys aA, aB ∈ Z and compute their public

keys KpubA = aAP0 and KpubB = aBP0, both points on the elliptic curve. Since

P0 is a system parameter, the preparation of tables of multiples of P0 are useful.

[SOOS95] used a precomputed table which consisted of (16)q ·P0 for q = 0, · · · , 38, to

compute eP , where e is a 155-bit integer, with 42 point additions and no doublings.

In Section 4.3, we discuss this method further which was introduced by [BGMW92].

In the second phase of the DH protocol, one is required to compute a multiple

of point P (the public key of the other party) not known ahead of time. For this

situation [SOOS95] implemented a blend of the k-ary method [Knu81] and Booth’s

algorithm. In this case, a table of the odd multiples of P is computed from P

to 15P . Then, using the table, several doubling steps can be performed before an

addition is necessary. In the case that an even multiple of P is necessary, an odd

multiple of P introduced a couple of steps earlier in the doubling process is used

instead. In addition, since subtraction of points is not more costly than addition

one has the option of subtracting a point when necessary. On the average, for a

random 155-bit multiplier, one is required to perform 152 doubling steps and 32

additions/subtractions, including the precomputation.

The operations of addition, squaring, and multiplication in the underlying

Galois Field that are needed to compute the addition or doubling of two elliptic curve

points are implemented using the same principles that were described in Section 3.2,

using the irreducible polynomial P (x) = x155 +x62 + 1 (Notice that [SOOS95] do not

use the Karatsuba-Ofman algorithm or other advanced multiplication algorithms for
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multiplication but rather ordinary polynomial multiplication). However, they develop

a new algorithm for inversion based on the Euclidean division algorithm.

The “Almost Inverse Algorithm” computes B(x) ∈ GF (2155) and r such that:

A(x)B(x) = xr mod P (x) (4.1)

where deg(B(x)) < deg(P (x)) and r < 2 deg(P (x)). After executing the algorithm

one only needs to divide B(x) by xr to find the inverse A(x). The algorithm is

described in Theorem 2.

Theorem 2 Let A(x), B(x), xr ∈ GF (2k) and let P (x) be the field polynomial of
GF (2k). Then A−1xr mod P (x) can be computed using the following “Almost Inverse
Algorithm” as follows.

Algorithm (Input: A(x), P (x); Output: A−1xr)
1. Initialization.

1.1 r← 0
1.2 B(x)← 1
1.3 C(x)← 0

1.4 F (x)← A(x)
1.5 G(x)← P (x)

2. loop: While F (x) is even, do
2.1 F (x)← F (x)x−1

2.2 C(x)← C(x)x
2.3 k← k + 1

3. If F (x) = 1, then return B(x) and k
4. If deg(F (x)) < deg(G(x)), then

4.5.1 F (x)←→ G(x) (exchange F (x), G(x))
4.5.2 B(x)←→ C(x) (exchange B(x), C(x))

5. F (x)← F (x) +G(x)

6. B(x)← B(x) + C(x)
7. Goto loop.

In order to obtain the inverse of A(x) one needs to divide B(x) out by xr

working modulo P (x). The strategy proposed in [SOOS95] is to successively divide
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Operations Type of Operation Average Timing
Basic Field Operations 155 bit square 1.65 µsec

155 x 155 bit multiply 7.10 µsec
155 bit inverse 25.21 µsec

Elliptic Curve Operations Multiply new elliptic curve point 7.8 msec
Multiply known elliptic curve point 1.8 msec

Table 4.1: Timings for various field and elliptic curve operations [SOOS95].

B(x) by uw where w is the word size of the computer and finish up with a division

by a smaller power of x. Two parts can be distinguish in this procedure. First, a

suitably chosen multiple of P (x) (P(x) is multiplied by the least significant w bits in

B(x)) is added to B(x) so as to zero out the w low order bits of B(x). Second, the

new B(x) is right shifted by w bits, effectively dividing it by xr.

[SOOS95] used a DEC Alpha 3000 with a 175 MHz RISC Architecture and a

64 bit word size. Their timings are summarized in Table 4.1. These timings will be

highly relevant for our work in later chapters.

4.2 Elliptic Curve Implementations over Compos-

ite Fields

Software implementations of EC over composite Galois field GF ((2n)m) were first

described in [HMV92] for the fieldGF ((28)13). More recently, EC systems for the field

GF ((216)11) were described independently in [WBV+96] and [Bea96]. The purpose

of this section is to summarize their findings and contributions. In addition, timings

of the different implementations will be provided.
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4.2.1 Implementation over GF ((28)13)

In this paper, [HMV92] compared the basic operations of squaring, multiplication, and

inversion for the fields GF (2105) and GF ((28)13). Arithmetic in GF (2105) was imple-

mented by using normal basis representation. Addition is accomplished by XORing

the two vectors representing the elements to be added. Inversion, on the other hand,

is computed by first converting to a polynomial basis representation of GF (2105) using

a precomputed change of basis matrix, compute the inverse in polynomial base rep-

resentation using the Euclidean algorithm, and finally, convert back to normal base

representation. Notice, that implementations will more efficient when using optimal

normal basis as opposed to a randomly chosen normal basis.

Arithmetic in the field GF ((28)13) was implemented using a composite field

polynomial basis representation or, in other words, by looking at the field GF (2104) as

a vector space over GF (28) rather than over GF (2). The field polynomial of GF (28)

was chosen to be the irreducible polynomial Q(y) = y8 + y7 + y3 + y2 + 1. The paper

proposes for the first time the idea of table look-ups. Two tables “log” and “antilog”

were defined as in (3.2) and (3.3). Then, multiplication and inversion in the ground

field are accomplished by table look-up (see Section 3.2.1).

The polynomial P (x) = x13+x7+x6+x+1 is chosen to be the field polynomial

of the composite field GF ((28)13). Consequently, elements of this field are represented

as polynomials overGF (28) with maximum degree equal to 12 and all arithmetic done

modulo P (x). Squaring and multiplication in the composite field are implemented

as described in Sections 3.2.3 and 3.2.4 with multiplication of coefficients being done

through table look-up. Inversion, on the other hand, is implemented by using the

extended Euclidean algorithm. Table 4.2 shows a comparison of the timings of the

basic field operations on a SUN SPARCstation-2.

Non-supersingular elliptic curves were chosen to implement the cryptosystem.
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Operations Method/Type of Operation GF (2105) GF ((28)13)
Field operations 10000 squarings 0.02 0.15

10000 multiplications 7.6 1.95
10000 inversions 15.3 9.46

Elliptic Curve 10000 curve additions 33.9 14.4
Operations 10000 curve doublings 38.6 16.2

eP using double and add —- 0.24
eP using Brickell’s method —- 0.052

Table 4.2: Comparison of timings for elliptic curve and field operations using normal
and polynomial basis representations (time in seconds)[HMV92].

They conclude that although hardware implementations can take advantage of pro-

jective coordinates (thus avoiding inversions), it seems that in software the affine

representation is superior. Finally, they suggest an alternate method to the double

and add algorithm for computing the multiple of a point. This method is developed

in [BGMW92] and it will be treated in Section 4.3. Table 4.2 shows the timings

for the basic curve operations (doubling and addition of points) as well as for the

computation of the multiple of a point.

4.2.2 Implementations over GF ((216)11)

In both [WBV+96] and [Bea96] elliptic curve cryptosystems were implemented using

non-supersingular elliptic curves. Both implementations explore arithmetic over the

composite fields GF ((216)11) using polynomial basis representations over GF (216).

In both contributions, addition, squaring, and multiplication are implemented in the

same form, as explained in Sections 3.2.2, 3.2.4, and 3.2.3. Notice that multiplication

of the coefficients of two elements of the field GF ((216)11) is accomplished through

table look-up as proposed in [HMV92]. Inversion, however, is very different in both

implementations.

[WBV+96] explores two approaches. The first approach consists of computing
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the inverse of an element A(x) ∈ GF ((2n)m) using the extended Euclidean algorithm

which is described in Theorem 3. In this theorem the following notation is used:

Given a polynomial A(x) of degree m− 1, A0 represents the number of coefficients in

A(x) (or m) and Ai represents the i− 1 coefficient if A(x) is represented as in (3.1).

[WBV+96] concludes that this algorithm is faster in a polynomial base for composite

fields than in fields GF (2k).

The second approach is the Almost Inverse algorithm explained in Theorem 2.

[WBV+96] compares the two algorithms and observes that their behavior is very

similar. The main difference is that the Almost Inverse algorithm cancels powers of x

from lower degree to higher degree whereas the extended Euclidean algorithm moves

from higher degree to lower degree. This translates into two important benefits of the

Almost Inverse algorithm when working in standard base representation. However,

if working in polynomial base representation this advantages are irrelevant and thus,

[WBV+96] conclude that the Euclidean division algorithm is slightly more efficient

since it returns the inverse at the end of its execution as opposed to the Almost

Inverse algorithm where one still has to divide by xr.

Theorem 3 Let A(x), B(x),∈ GF ((2n)m) and let P (x) be the field polynomial of
GF ((2n)m). Then B(x) = A−1 mod P (x) can be computed using the extended Eu-
clidean algorithm as follows.

Algorithm (Input: A(x), P (x); Output: A−1)
1. Initialization.

1.1 B(x)← 1
1.2 C(x)← 0

1.3 F (x)← A(x)
1.4 G(x)← P (x)

2. Do
2.1 If deg(F (x)) = 0 then return B(x)/F1

2.2 If deg(F (x)) < deg(G(x)) then
2.2.1 F (x)←→ G(x) (exchange F (x), G(x))
2.2.2 B(x)←→ C(x) (exchange B(x), C(x))
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2.3 j = deg(F (x))− deg(G(x))
2.4 α = FF0/GG0

2.5 F (x)← F (x) + αxjG(x)
2.6 B(x)← B(x) + αxjC(x)
Goto 2

Finally, the computation of the multiple of a point is achieved by implementing

the double and add/subtract algorithm. [WBV+96] use a 177-bit multiplier which

means that 176 doublings and an average of 59 additions/subtractions are required

for one “exponentiation.”

[Bea96] explores an implementation of the inversion operation originally de-

scribed in [IT88]. In this paper, an efficient method for inversion in GF (2k) based

on Fermat’s little theorem is discussed. In Section 6 of the reference the method is

extended to composite Galois fields GF ((2n)m) using normal base representation. On

the other hand, this inversion algorithm was optimized for composite fields in poly-

nomial base representation in [Paa94] and [Paa95] and it will be treated extensively

in Chapter 6 of this thesis. In addition, the analog of an exponentiation operation

for elliptic curves was implemented using the double and add algorithm described in

Theorem 1. Thus, a 176-bit multiplier e meant that eP would take 175 doublings and

an average of 86 addition steps. Finally, [Bea96] implemented the elliptic curve ana-

log of the Diffie-Hellman Key exchange. Table 4.3 compares the timing results that

both [WBV+96] and [Bea96] presented in their contributions. Notice that [WBV+96]

measurements were performed in a Pentium/133 based PC whereas [Bea96] used a

DEC Alpha 3000, 175 MHz RISC architecture with a 64-bit word size.



Previous Work 34

Operations Method/Type of Operation [WBV+96] [Bea96]
Field operations 176 bit add 1.2 1.19

176 bit squaring 5.9 4.23
176 bit multiply 62.7 43
176 bit inversion 160 285

Elliptic Curve Addition 306 (estimate) 452
Operations Doubling 309 (estimate) 441

Point multiplication 72 ms (estimate) 123 ms
Elliptic curve key exchange —- 246 ms

Table 4.3: Comparison of timings for elliptic curve and field operations between
elliptic curve implementations over GF ((216)11). NOTE: unmarked times are in mi-
croseconds.

4.3 Efficient Exponentiation

The problem of multiplying a point P of an EC by a (large) integer k is analogous

to exponentiation of an element in a multiplicative group to the kth power. The

standard algorithm for this problem is the binary exponentiation method (or square-

and-multiply algorithm) which is studied in detail in [Knu81] and versions of which

have been adapted to the elliptic curve case in Theorem 1. A generalization of the

binary method is the k-ary method [Coh93, Koc95, MvOV97] which processes k ex-

ponent bits in one iteration. Theorem 4 was adapted from [MvOV97] and it describes

the algorithm as it is applied to elliptic curves.

Theorem 4 Let P ∈ E and e = (etet−1 · · · e1e0)b be the radix representation of the
multiplier e in base b where b = 2k for k ≥ 1. Then, Q = eP can be computed using
the following algorithm.

Algorithm (Input: P = (x, y), e; Output: Q = eP )

1. Precomputation
1.1 P0 ← O (Point at infinity)

1.2 For i = 1 to 2k − 1
Pi = Pi−1 + P (i.e., Pi = i ∗ P )

2. Q← O
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3. For i = t to 0
3.1 Q← 2kQ

3.2 Q← Q+ Pei
4. Return(Q)

Notice that Step 3.1 in the algorithm involves the doubling of point Q, k times,

and Step 3.2 requires one point addition. Thus, the complexity of the k-ary method

with t iterations is kt point doublings, t point additions from the loop in Step 3, and

2k − 2 point additions from the precomputation in Step 1.2 (One should not count

the first addition in Step 1.2 since P is added to the point at infinity).

Theorem 5 Let P ∈ E and e = (etet−1 · · · e1e0)b be the radix representation of the
multiplier e in base b where b = 2k for k ≥ 1. Also, for each i such that 0 ≤ i ≤ t, if
ei 6= 0, then write ei = 2hiui where ui is odd; if ei = 0 then let hi = 0, ui = 0. Then,
Q = eP can be computed using the following algorithm.

Algorithm (Input: P = (x, y), e; Output: Q = eP )
1. Precomputation

1.1 P0 ← O (Point at infinity)

1.2 P1 ← P
1.3 P2 ← 2P

1.4 For i = 1 to 2k−1 − 1
P2i+1 = P2i−1 + P2

2. Q← O
3. For i = t to 0

Q← 2hi(2k−hiQ+ Pui)
4. Return(Q)

Further improvements of the k-ary method include the improved k-ary method

and the sliding window method both treated in [MvOV97] and [Koc95]. Theorems 5

and 6 have been adapted from [MvOV97] and describe these algorithms.

Theorem 6 Let P ∈ E and e = (etet−1 · · · e1e0)2 be the binary representation of the
multiplier e together with an integer k ≥ 1 (window size). Then, Q = eP can be
computed using the following algorithm.
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Algorithm (Input: P = (x, y), e; Output: Q = eP )
1. Precomputation

1.1 P1 ← P
1.2 P2 ← 2P
1.3 For i = 1 to 2k−1 − 1

P2i+1 = P2i−1 + P2

2. Q← O
3. i← t
4. While i ≥ 0 do

4.1 If ei = 0 then
4.1.1 Q← 2Q

4.1.2 i← i− 1
4.2 Else, find the longest bit-string eiei−1 · · · el

such that i− l + 1 ≤ k and el = 1, and do the following
4.2.1 A← 2i−l+1A+ P(eiei−1···el)2

4.2.2 i← l − 1

5. Return(Q)

[Koc95] performs a detailed analysis of all window techniques for exponentia-

tion. In addition, Chapter 7 will explore the application of several of this techniques

to elliptic curve cryptosystems over composite fields GF ((216)11) and it will provide

a complexity analysis of this algorithms for special cases.

Finally, in some protocols, like in the calculation of the public key in the

Diffie-Hellman key exchange, the point P , input to these exponentiation algorithms,

is known ahead of time. In these cases, it is possible to apply an algorithm introduced

in [BGMW92]. This algorithm is described in Theorem 7 which has been adapted

from the original paper to the case of elliptic curves.

Theorem 7 Let P ∈ E and let h and e =
∑t
i=0 eisi be positive integers with 0 ≤

ei ≤ h and 0 ≤ i ≤ t. Now, suppose the products Pi = siP for 0 ≤ i ≤ t are available
ahead of time by precomputation (Storage required is for t + 1 curve points). Then,
if t + h ≥ 2, Q = eP can be computed with t + h − 2 additions with the following
algorithm shows.

Algorithm (Input: {s0P, s1P, · · · , stP}, e =
∑t
i=0 eisi,and h; Output: Q = eP )
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1. B ← O (Point at infinity)
2. Q← O (Point at infinity)

3. For j = h to 1 by -1
3.1 For each i for which ei = j do the following

B ← B + siP

3.2 Q← B +Q
4. Return(Q)

The most obvious application of Theorem 7 is the case in which the multiplier

e is represented in radix b. Then, if e =
∑t
i=0 eib

i, Pi = biP for 0 ≤ i ≤ t are

precomputed. In addition, if we assume that e will be uniformly distributed on the

range {0, · · · , N}, then t+1 ≤ dlogbNe, we will expect on average that a digit (in the

b-radix representation of e) will be zero about 1/b of the time and thus, the average

number of additions will be b−1
b
dlogbNe+ b− 3 (Notice h = b− 1).



Chapter 5

Fast Multiplication in Composite

Galois Fields GF ((2n)m)

With respect to complexity, field multiplication is the second most costly operation in

EC systems only after inversion. Since the new point multiplication algorithm from

Section 7.1 trades field inversions for field multiplications, it is especially attractive to

provide efficient multiplication algorithms. In this section we apply the Karatsuba-

Ofman Algorithm (KOA) [Knu81, KO63] to polynomials over Galois fields GF (2n)

of degree m − 1 which represent a field element in GF ((2n)m). First, we consider

the general KOA as it is applied to two polynomials A(x) and B(x) with maximum

degree m−1 over the field F . We present the results for the case m = 2t as described

in [Paa96]. In addition, we derive new formulas for the multiplicative and additive

complexity for the cases m = 2tl and m = 2tl − 1. Finally, we define two new

operations, table look-up (TLU) and exponent addition (EXPA), and derive their

complexities for the three cases. These two operations are of central importance for

an exact complexity analysis of a software implementation of the KOA in composite

fields.

38
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5.1 The KOA for Polynomials of Degree 2t − 1

Recall from Section 3.2.3 that field multiplication inGF ((2n)m) consists of polynomial

multiplication and modulo reduction, where polynomial multiplication is by far the

most costly operation. We are interested in finding the product of two polynomials

A(x) and B(x) with maximum degree of 2t − 1 over a field F . Note that straight-

forward polynomial multiplication requires m2 coefficient multiplications. Thus, each

polynomial possesses at most 2t = m, t integer, coefficients and we want to find

C(x) = A(x)B(x) such that deg(C(x)) ≤ 2m − 2. Then by splitting A(x) and B(x)

into an upper and lower half, we can apply the KOA as follows:

A(x) = x
m
2 (am−1x

m
2
−1 + · · · + am

2
) + (am

2
−1x

m
2
−1 + · · ·+ a0) = Ahx

m
2 +Al

B(x) = x
m
2 (bm−1x

m
2
−1 + · · ·+ bm

2
) + (bm

2
−1x

m
2
−1 + · · · + b0) = Bhx

m
2 +Bl (5.1)

Using (5.1), a set of auxiliary polynomials D(i)
j (x) (for i = 1 . . . t and j = 0 . . . (3i−1))

can be defined as follows:

D(1)
0 (x) = Al(x)Bl(x)

D(1)
1 (x) = (Ah(x) +Al(x))(Bh(x) +Bl(x)) (5.2)

D
(1)
2 (x) = Ah(x)Bh(x)

Then, C(x) = A(x)B(x) is obtained by:

C(x) = D
(1)
0 (x) + (D

(1)
1 (x)−D(1)

0 (x)−D(1)
2 (x))x

m
2 +D

(1)
2 (x)xm (5.3)

Since (5.2) requires three multiplications of polynomials with m/2 coefficients, the

number of multiplications has been reduced to 3/4m2. However, the algorithm can be

applied recursively to the three polynomial multiplications in (5.2). The polynomials
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Ah, Al, and (Ah +Al) as well as their B counterparts are again split in half yielding

polynomials D
(2)
j (x) of degree m/22− 1. In the ith iteration deg(D

(i)
j (x)) = m/2i− 1

and after t = log2m steps the algorithm ends with polynomials D(t)
j (x) of degree 0.

The following theorem derived in [Paa96] provides expressions for the computational

complexity of the KOA for polynomials over fields of characteristic 2. Notice that

MUL denotes the number of coefficient multiplications and ADD denotes the number

of coefficient additions in GF (2n).

Theorem 8 Consider two arbitrary polynomials in one variable of degree less than or

equal to m− 1 where m = 2t, with coefficients in a field F of characteristic 2. Then,

by using the Karatsuba-Ofman algorithm the polynomials can be multiplied with:

#MUL = mlog2 3 (5.4)

#ADD ≤ 6mlog2 3 − 8m+ 2 (5.5)

It should be noted that since we assume a field F with characteristic 2, the subtrac-

tions in (5.3) become additions.

5.2 Complexity of the KOA for Polynomials of De-

gree 2tl − 1

In this section we generalize the KOA from above. In the following, gcd(l, 2) = 1.

We consider the product of two polynomials A(x) and B(x) with maximum degree

of 2tl − 1 over a field F . In particular, we want to find C(x) = A(x)B(x) such that

deg(C(x)) ≤ 2m− 2 with m = 2tl, t an integer. Notice that since the polynomial has

an even number of coefficients m, the general KOA can still be applied and (5.1) and

(5.2) still hold. However, since the algorithm can only run for t iterations (as many
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powers of 2 as there are in m), we get in the final step that deg(D(t)
j (x)) = l − 1.

Polynomials D(t)
j are then multiplied using the school book method.

Theorem 9 Consider two arbitrary polynomials in one variable of degree less than or

equal to m− 1 where m = 2tl, with coefficients in a field F of characteristic 2. Then,

by using the Karatsuba-Ofman algorithm the polynomials can be multiplied with:

#MUL = l2
(
m

l

)log2 3

= l2−log2 3mlog2 3 (5.6)

#ADD = (l − 1)2
(
m

l

)log2 3

+ (8l − 2)
(
m

l

)log2 3

− 8m+ 2 (5.7)

Proof. We will consider three different stages in the algorithm. First, we
consider the number of additions due to the splitting in (5.2). Taking into

account that the number of polynomials triples after each iteration step, and
noticing that the KAO runs t times, we find:

#ADD1 =
t∑
i=1

3i−1 2m

2i
=

2m

3

(
2

(
3

2

)t+1

− 3

)
= 2l

(
m

l

)log2 3

− 2m

Second, we consider the product of the D
(t)
j (x) polynomials (all of which are of

degree l − 1). Since we can not split them anymore, the school book method

is applied to each of the D
(t)
j (x) polynomials yielding l2 multiplications and

(l− 1)2 additions per product. Noticing again that the number of polynomials

triples with each iteration step and that KAO has run through t iterations, it
is easy to see that multiplying 3t = (m/l)log2 3 polynomials requires:

#MUL1 = l2
(
m

l

)log2 3

#ADD2 = (l− 1)2
(
m

l

)log2 3

The third and final stage corresponds to merging the polynomials according to

(5.3). It is important to point out that there are two kinds of additions (or
subtractions) involved. First, the additions due to subtracting three polynomi-

als with 2il − 1 coefficients and second, the additions due to the overlapping
of terms. In the first case, one should take into account that there are 2 sub-

tractions per coefficient and that the number of polynomials triples with each
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iteration, one readily obtains:

#ADD3a =
t∑
i=1

3t−i2(2il − 1)

In the second case, we notice that deg(D
(t−i+1)
j (x)) = 2il−2 (again for i = 1 . . . t

and j = 0 . . . (3i − 1)). Since the degree of the polynomials corresponding to a

given iteration is always the same, we can pick any j. Thus, we consider the
case for j=0. Then:

D
(t−i)
0 = D

(t−i+1)
0 (x)+(D

(t−i+1)
1 (x)−D(t−i+1)

0 (x)−D(t−i+1)
2 (x))x2i−1l+D

(t−i+1)
2 (x)x2il

From this equation is easy to get the overlap by:

#ADDoverlap3terms = (2il− 2− 2i−1l+ 1) + (2i−1l+ 2il− 2− 2il+ 1) = 2il− 2

Since the number of polynomials triples with each iteration, we find:

#ADD3b =
t∑
i=1

3t−i(2il − 2)

Combining the additions of this last step one gets that the total number of

additions due to the merging of the polynomials according to (5.3) is

#ADD3 =
t∑
i=1

3t−i(2(2il − 1) + (2il− 2)) = (6l− 2)

(
m

l

)log2 3

− 6m+ 2

Then, the overall complexities in Theorem 2 are obtained by summation of the

partial complexities. This ends the proof. 2

Notice that (5.6) and (5.7) reduce to (5.4) and (5.5) for l = 1.

5.3 Complexity of the KOA for Polynomials of De-

gree 2tl − 2

In the previous sections, we covered the cases for m = 2t and m = 2tl. However,

in applications of elliptic curve systems we are often interested in composite fields

over the Galois field GF ((2n)m) where n and m are relatively prime as described in
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Section 4.2. Since it is often desired to have n even there is a need to consider the

case for odd m, i.e., m = 2tl − 1. In particular, we want to find C(x) = A(x)B(x)

such that deg(C(x)) ≤ 2m−2 with m = 2tl−1, t an integer. Then, we can represent

A(x) and B(x) in a way similar to (5.1) by adding an extra term with coefficient

am = 0. For convenience, we will introduce the parameter k = m + 1 and express

A(x) and B(x) as follows:

A(x) = x
k
2 (0x

k
2
−1 + ak−2x

k
2
−2 + · · ·+ a k

2
) + (a k

2
−1x

k
2
−1 + · · ·+ a0) = Ahx

k
2 +Al

B(x) = x
k
2 (0x

k
2
−1 + bk−2x

k
2
−2 + · · ·+ b k

2
) + (b k

2
−1x

k
2
−1 + · · ·+ b0) = Bhx

k
2 +Bl

(5.8)

Notice that now the polynomials A(x) and B(x) have an even number of

coefficients (k = m+ 1 = 2tl), allowing us to apply the general KOA to (5.8) t times.

This reduces this problem to the case for m = 2tl, permitting us to apply the same

equations. However, since we have one less coefficient the final multiplicative and

additive complexities are reduced. Theorem 3 summarizes the results.

Theorem 10 Consider two arbitrary polynomials in one variable of degree less than

or equal to m − 1 where m = 2tl − 1, with coefficients in a field F of characteristic

2. Then, by using the Karatsuba-Ofman algorithm the polynomials can be multiplied

with:

#MUL = l2
(
m+ 1

l

)log2 3

− 2l + 1 (5.9)

#ADD = (l − 1)2
(
m+ 1

l

)log2 3

+(8l − 2)
(
m+ 1

l

)log2 3

− 8(m+ 1) + (5− 2l − 4t) (5.10)

Proof. In order to prove Theorem 3, we will again consider three different
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stages of the KOA. In the first stage, we consider the number of additions due
to the splitting in (5.2). In this case, the number of polynomials triples after

each iteration, thus the total number of polynomials is the same as in the case
m = 2tl. However, in each iteration the total number of additions is decreased
by two since the total number of “real coefficients” in A(x) or B(x) is at most

2tl − 1 as opposed to 2tl. Therefore, we find:

#ADD1 =
t∑
i=1

(
3i−1 2k

2i

)
− 2 = 2l

(
m+ 1

l

)log2 3

− 2(m+ 1)− 2t

Second, we consider the product of the D
(t)
j (x) polynomials (notice that as

in the previous cases, we will refer to the polynomials in each iteration as

D
(i)
j (x) with j = 0 . . .3i − 1) all of which have l coefficients except for the one

corresponding to j = 3t−1 which only has l−1 coefficients. As before, we apply

the school book method to find the product yielding (l − 1)2 multiplications

and (l−2)2 additions for D
(t)
3t−1(x) and l2 multiplications and (l−1)2 additions

for the rest. Thus:

#MUL1 = 2 l2 3t−1 + (3t−1− 1)l2 + (l− 1)2 = 3tl2 − 2l+ 1

#ADD2 = 2 (l− 1)2 3t−1 + (3t−1− 1)(l− 1)2 + (l − 2)2 = 3t(l − 1)2 − 2l+ 3

Third, we consider the merging of the polynomials according to (5.3). It is
important to point out that, as before, there are two kinds of additions (or

subtractions) involved (notice that since we restrict our discussion to fields of
characteristic 2 subtractions and additions are equivalent). First, subtracting

three polynomials with either k/2i−1 − 1 or k/2i−1 − 3 coefficients and second,
the additions due to the overlapping of terms. In the first case, one should take
into account that there are two subtractions per coefficient, that the number of

polynomials triples with each iteration, and that in each iteration there is only
one polynomial that has two coefficients less than the rest. Combining these

observations, one obtains:

#ADD3a =
t∑
i=1

2 3t−i(2il− 1)− 2

Second, 2il − 2 additions due to the overlapping of the three terms. It turns
out that the number of overlaps is the same as in the case m = 2tl. However,

one should be careful of the values of l for which this assertion holds. As we
know, the only polynomial that is shorter than those for the case m = 2tl are

the polynomials D
(i)
3i−1

(x), so these are the ones we should consider to see if

there are any changes with respect to the previous cases. So we have that in
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general:

D
(t−i)
3t−i−1

= D
(t−i+1)
3t−i+1−3

+
(
D

(t−i+1)
3t−i+1−2

−D(t−i+1)
3t−i+1−3

−D(t−i+1)
3t−i+1−1

)
x

k
2t−i+1 +D

(t−i+1)
3t−i+1−1

x
k

2t−i

Noticing that

deg(D
(t−i+1)
3t−i+1−3

) = deg(D
(t−i+1)
3t−i+1−2

) =
k

2t−i
− 2

deg(D
(t−i+1)
3t−i+1−1

) =
k

2t−i
− 4

We readily get that the following condition should hold:

k

2t−i
− 2 +

k

2t−i+1
≤ k

2t−i
− 4 +

k

2t−i

Using the fact that k = 2tl and rearranging terms, we find:

2i−1(2l− 1) ≥ 2

Since i goes from 1 to t, it is sufficient to find the values of l for which the
following inequality is true:

(2l− 1) ≥ 2

Solving for l, we find that l ≥ 1.5. But l has to be an odd number greater than

1 (from the definition of m),thus, the number of additions due to overlapping
is

#ADD3b =
t∑
i=1

2 3t−i(2il− 2)

for any value of l which is consistent with our definition of m. Combining the

partial results we obtain (5.9) and (5.10). This completes our proof. 2

5.4 Complexity Analysis for Software Implemen-

tations

It was explained in Section 3.2.1 that one of the advantages of using composite fields

was that both multiplication and inversion inGF ((2n)m) could be reduced to inversion

and multiplication in the ground field which are realized through table look-ups.

In this section we will apply this concept to obtain exact counts of the number of
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operations needed to perform a multiplication in the field GF ((2n)m). Notice that

here we use the fact that all non-zero elements ai ∈ GF (2n) form a cyclic group. As

stated in Section 3.2.1, these elements can be expressed as multiples of a primitive

element ω: ai = ωi.

Then, we store all the pairs (ai, i) in two tables: log and antilog, sorted by the

first component (ai) and second component (i), respectively. Thus, the product of two

elements aj, ak ∈ GF (2n) can be obtained as shown in (3.4). Notice that (3.4) implies

that two elements of the ground field GF (2n) can be multiplied using three table

look-up operations and one addition modulo the order of the multiplicative group

(exponent addition). It is important to point out that depending on the hardware

platform (e.g., microprocessor, RISC, etc.) the relative speed for the two types of

operations can differ dramatically. For instance, in our implementation where n = 16

it was found that access to the large look-up tables took about 6 clock cycles on a

DEC Alpha workstation, whereas element addition and exponent addition took about

2 clock cycles on average. Thus, in order to obtain valid performance predictions one

needs exact counts of the number of operations.

Based on these two new operations (table look up (TLU) and exponent addi-

tion (EXPA)) we have derived new formulas and re-written Theorems 1, 2, and 3 as

follows.

Corollary 1 Consider two arbitrary polynomials A(x), B(x) in one variable of degree

less than or equal to m−1 where m = 2t, with coefficients in a field F of characteristic

2. Then, by using the Karatsuba-Ofman algorithm the polynomials can be multiplied

with:

#ADD = 6mlog2 3 − 8m+ 2 (5.11)

#TLU = 3mlog2 3 (5.12)
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#EXPA = mlog2 3 (5.13)

Proof. The number of additions follows directly from Theorem 1. The number

of exponent additions is the same as the number of multiplications since for each
multiplication one has to perform one exponent addition, so this also follows

from Theorem 1. The TLU’s can be divided into three kinds. First, the TLU’s
needed to convert each element αi to its corresponding exponent representation

i. These are just twice the number of coefficients in one of the polynomials being
multiplied or 2m = 2t+1. Second, we consider the number of TLU’s required to
convert back to vector representation once two elements have been multiplied.

These are just equal to the number of multiplications or mlog2 3. Finally, we
consider the number of TLU’s due to splitting of polynomials in (5.2). From

[Paa96] proof of the complexity of the KOA for the polynomials of degree 2t−1,
we find that the number of additions due to the splitting is:

#ADDsplitting = 2mlog2 3 − 2m = 2(3t −m)

But each time you perform an addition due to the splitting, you create a new

coefficient that needs to be transform to exponent representation, one concludes

that the number of additions due to the splitting and the number of TLU’s due

to the splitting are the same. Thus, adding up the partial results one obtains

(5.12). This ends the proof. 2

Corollary 2 Consider two arbitrary polynomials in one variable of degree less than

or equal to m − 1 where m = 2tl, with coefficients in a field F of characteristic

2. Then, by using the Karatsuba-Ofman algorithm the polynomials can be multiplied

with:

#ADD = (l− 1)2
(
m

l

)log2 3

+ (8l − 2)
(
m

l

)log2 3

− 8m+ 2 (5.14)

#TLU = l
(
m

l

)log2 3

(l + 2) (5.15)

#EXPA = l2
(
m

l

)log2 3

(5.16)

Proof. As in Corollary 1, both the number of additions and exponent addi-

tions follow from Theorem 2. The number of TLU’s can be found by adding

the TLU’s needed to convert each element αi to its corresponding exponent
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representation i or 2m = 2t+1l, the number of TLU’s required to convert back

to vector representation once two elements have been multiplied which is the

same as the number of multiplications, and the number of TLU’s due to the

splitting of polynomials in (5.2) which as in the case of Corollary 1 is equal to

the number of additions due to the splitting or 2l
(m
l

)log2 3 − 2m. Adding up

the partial results we get (5.15). 2

Corollary 3 Consider two arbitrary polynomials in one variable of degree less than

or equal to m − 1 where m = 2tl − 1, with coefficients in a field F of characteristic

2. Then, by using the Karatsuba-Ofman algorithm the polynomials can be multiplied

with:

#ADD = (l− 1)2
(
m+ 1

l

)log2 3

+(8l − 2)
(
m+ 1

l

)log2 3

− 8(m+ 1) + (5− 2l − 4t) (5.17)

#TLU =
(
m+ 1

l

)log2 3

l(l + 2)− 2(t+ l) (5.18)

#EXPA = l2
(
m+ 1

l

)log2 3

− 2l + 1 (5.19)

Proof. (5.17) and (5.19) follow directly from Theorem 3. The number of TLU’s

is obtained from the number of TLU’s needed to convert each element αi to

its corresponding exponent representation i or 2m = 2t+1l− 2, the the number

of TLU’s required to convert back to vector representation once two elements

have been multiplied which is the same as the number of multiplications, and

the number of TLU’s due to the splitting of polynomials in (5.2) which is equal

to the number of additions due to the splitting or 2l
(
m+1
l

)log2 3
−2(m+1)−2t.

Adding up the partial results one finds (5.18). 2

5.5 Multiplication in GF ((216)11)

We summarize this section by considering the complexity of a multiplication in

GF ((2n)m) for n = 16 and m = 11. We can apply Corollary 3 and let m = 11,
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l = 3, and t = 2. From there we obtain that one needs 129 additions and 76 multipli-

cations in GF (216) or equivalently, 129 coefficient additions, 125 table look-ups, and

76 exponent additions. Notice, when using the regular method for multiplication one

would require 121 multiplications and 100 coefficient additions or, in terms of table

look-ups, 100 coefficient additions, 121 + 22 = 143 table look-ups, and 121 exponent

additions. If one compares both complexities and ignores exponent and coefficient

additions, one can readily see that the theoretical improvement in the timing for the

multiplication operation when using the Karatsuba-Ofman algorithm would be about

12.5 percent.

Method Average Timing (µsec)
Straight forward method 43.0
Karatsuba-Ofman algorithm 38.6

Table 5.1: Comparison of timings for 176-bit multiplication in GF ((216)11) using the
Karatsuba-Ofman algorithm and the straight forward multiplication method.

Table 5.1 compares the timings obtained from the implementation of both

multiplication algorithms (KOA and regular multiplication). It can be seen from the

table that the improvement in timing for one multiplication is about 10.5 percent

which agrees with the theoretical predictions.



Chapter 6

Efficient Inversion in Composite

Galois Fields GF ((2n)m)

As stated in the previous sections, inversion is the most costly arithmetic operation

in EC systems. In the following an inversion method based on Fermat’s little theorem

will be developed which is entirely different from the approach in [WBV+96, SOOS95].

The basic property of the algorithm developed in this section is that inversion in

GF ((2n)m) is reduced to inversion in the subfield GF (2n). It is important to point

out that subfield inversion can be done extremely fast through table look-up provided

n is moderate, say n ≤ 16. Notice also that the Itoh and Tsujii’s Algorithm intro-

duced in [IT88] was originally applied to composite fields GF ((2n)m) represented in

normal bases. However, we applied and optimized this algorithm to composite fields

in standard base representation, as suggested in [Paa95]. Finally, we show a major

computational advantage for the case that the field polynomial has only coefficients

from GF (2).

50
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We want to determine the inverse of A ∈ GF ((2n)m), A 6= 0. A is given as

A(x) = am−1x
m−1 + · · ·+ a1x+ a0, ai ∈ GF (2n). (6.1)

By applying Fermat’s Theorem, we can readily obtain that

A2nm−1 = AA2nm−2 = 1, ∀A ∈ GF ((2n)m) \ {0}, (6.2)

from which it follows that

A−1 = A2nm−2. (6.3)

(6.3) shows that the inverse of an elementA ∈ GF ((2n)m) can be computed by raising

it to the power of 2nm − 2 = 2 + 22 + 23 + · · · + 2nm−1 using the standard “binary

method” described in [Knu81]. However, in the following we derive a method which

reduces inversion in the composite field GF ((2n)m) can be reduced to inversion in

the ground field GF (2n), one obtains a better method to calculate the inverse of an

element A. The following theorem describes the algorithm.

Theorem 11 [Paa94] The multiplicative inverse of an element A of the composite

field GF ((2n)m) can be computed by

A−1 = (Ar)−1Ar−1, (6.4)

where Ar ∈ GF (2n) and r = (2nm − 1)/(2n − 1).

Computing the inverse through Theorem (11) requires four steps: exponentia-

tion in GF ((2n)m) (Ar−1), multiplication of A and Ar−1 to get Ar ∈ GF (2n), inversion

in GF (2n), and multiplication of (Ar)−1Ar−1. Each of these steps will be analyzed in

the following.
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6.1 Exponentiation in GF ((2n)m)

The first step in the algorithm above is the computation of Ar−1 where A ∈GF ((2n)m).

Notice that r can be expressed as a sum of powers as follows:

r − 1 =
2nm − 1

2n − 1
− 1 = 2n + 22n + 23n + · · · + 2(m−1)n (6.5)

This representation is similar to the binary representation of the number

2nm − 2 = 2 + 22 + 23 + · · · + 2nm−1 and hence, the optimized method from [IT88]

can be applied. The method requires blog2(m− 1)c+ Hw(m − 1)− 1 general multi-

plications and m − 1 exponentiations to the power of 2n [IT88], with both types of

operations performed in GF ((2n)m)(Hw() denotes the Hamming weight of the binary

representation of the operand). Multiplications can be realized using the Karatsuba-

Ofman Algorithm described in Chapter 5 and exponentiation is realized as explained

below. Let B and C be elements of GF ((2n)m). We want to find C(x) = B2n, where

B(x) =
∑m−1
i=0 bixi. This can be performed as follows (the proof is based on [McE87,

Lemma 5.12]):

C(x) =
m−1∑
i=0

cix
i =

(
m−1∑
i=0

bix
i

)2n

=
m−1∑
i=0

b2n

i x
i2n =

m−1∑
i=0

bix
i2n, bi ∈ GF (2n). (6.6)

Assuming 2n > m − 1, there are m − 1 powers of x which must be reduced

modulo the field polynomial P (x), namely the powers xi2
n
, i = 1, 2, . . . ,m − 1. We

use the following notation for the representation of these powers in the residue classes

modulo P (x):

xi2
n

= s0,i + s1,ix+ · · ·+ sm−1,ix
m−1 mod P (x), i = 1, 2, . . . ,m− 1. (6.7)

Using the coefficients sj,i, the exponentiations in (6.6) can be expressed in matrix
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form as



c0

c1

...

cm−1


=



1 s0,1 s0,2 · · · s0,m−1

0 s1,1 s1,2 · · · s1,m−1

...
...

...
. . .

...

0 sm−1,1 sm−1,2 · · · sm−1,m−1





b0

b1

...

bm−1


. (6.8)

A main computational advantage occurs if P (x) is chosen to have only binary

coefficients, as suggested in Section 3.2.3. In this case, all powers of xa mod P (x)

belong to a subfield whose elements are represented by binary polynomials. In par-

ticular, all coefficients sn,i in (6.8) are binary, i.e., elements from GF (2). In addition,

since both n and P (x) are known ahead of time one exponentiation is reduced from

(m − 1)m constant multiplications and m(m − 2) + 1 additions to only (m − 1)2/4

additions on average.

6.2 Multiplication in GF ((2n)m), where the Product

is an Element of GF (2n)

The second step performs the operation

Ar = Ar−1A, (6.9)

where Ar ∈ GF (2n), and the two operands are elements in GF ((2n)m). We consider

the multiplication D(x) = B(x)C(x) mod P (x) where B,C ∈ GF ((2n)m) and D ∈

GF (2n). First, we consider the pure polynomial multiplication of B and C:

D′(x) = B(x)C(x) =

(
m−1∑
i=0

bix
i

)(
m−1∑
i=0

cix
i

)
=

(
m−2∑
i=0

d′ix
i

)
. (6.10)
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We know that D′(x) ≡ D(x) = d0 mod P (x), i.e., that all but the zero coef-

ficient of D′(x) vanish after reduction modulo P (x). The reduction modulo P (x) is

done as explained in Section 3.2.3 with a reduction matrix of the form of (3.8). Using

this matrix representation and the fact that deg(D(x)) = 0, one finds that D(x) can

be expressed as:

D(x) = d0 = d′0 +
m−2∑
i=0

r0,i d
′
m+i (mod P (x)) (6.11)

which eliminates all constant multiplications.

6.3 Inversion in GF (2n) and Multiplication of an

Element from GF (2n) with an Element from

GF ((2n)m)

The third and fourth steps carry small complexities since both involve operations with

elements of the subfield. First, we calculate the inverse of Ar with two table look-

ups [WBV+96] since Ar is an element of the ground field. This inversion operation is

accomplished by first finding the exponent i to which a primitive element ω ∈ GF (2n)

would be raised, in order to obtain Ar. This first step is done by making use of the

log function described in Section 3.2.1 (first table look-up). Second, one takes the

negative of this exponent modulo 2n − 1, and finally one converts the previous result

back to the element representation with the antilog function (second table look-up).

This process is shown in analytical form in (6.12).

A−r = antilog[− log(Ar) (mod 2n − 1)] (6.12)
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In the fourth step, we compute A−1 = (Ar)−1Ar−1 by multiplying (Ar)−1,

which is also an element of GF (2n), with Ar−1, an element of GF ((2n)m). This last

operation requires m multiplication in the ground field GF (2n). Notice that there is

no reduction modulo P (x) since all arithmetic is done in GF (2n).

6.4 Inversion in GF ((216)11)

We consider the special case where n = 16 and m = 11. In this case, we chose as

field polynomial the trinomial P (x) = x11 + x2 + 1 because it would minimize the

number of non-zero entries in the matrices of (6.8) and (3.8). Using this polynomial,

one can find Ar−1 with 4 multiplications in GF ((216)11 and 390 additions in GF (216).

Similarly, Ar = Ar−1A can be computed using 12 multiplications and 10 additions

in GF (216), (Ar)−1 requires one inversion in the subfield GF (216), and (Ar)−1Ar−1

involves 11 subfield multiplications in GF (216). Thus, the total complexity of an

inversion in GF ((216)11) is 4 multiplications in the composite field and one inversion,

23 multiplications, and 400 additions in the subfield. This translates into an inversion

time of 158.7 µsec. This time is essentially determined by the 4 multiplications

required to perform the inversion operation.



Chapter 7

A New Approach to Point

Doubling for Elliptic Curves

This chapter introduces an entirely new approach for accelerating the multiplication

of points on an elliptic curve. The approach works in conjunction with the k-ary

and the sliding window methods. The method is applicable to elliptic curves over

any field, but we provide worked-out formulae for elliptic curves over fields of char-

acteristic two. In addition, we show the actual performance of the newly introduced

algorithm and the ones treated in Chapters 5 and 6 in an implementation of an elliptic

curve cryptosystem over GF (2176) ∼= GF ((216)11). We provide absolute timing mea-

surements for an entire elliptic curve multiplication as well as timings for individual

operations.

56
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7.1 Principle Idea

The basic operation for the DL problem for elliptic curves is “multiplication” of a

point P ∈ E with an integer e, which is of the order of #E. One way of performing

this operation is analogous to the square and multiply algorithm for exponentiation

[Knu81] and it is known as “repeated double and add” as described in Theorem 1. A

generalization of this method is the k-ary method which is described in Theorem 4.

This algorithm reduces the number of additions needed in the regular double and add

algorithm.

Notice that in Theorem 4, Step 3.1 in the algorithm involves the doubling of

point Q, k times, and Step 3.2 requires one point addition. Since point doubling is

the most costly operation, it is extremely attractive to find ways of accelerating the

doubling operation. Recall now from Section 2.2.2 that the doubling of an elliptic

curve point requires one inversion and that in most practical applications, inversion

is by far the most expensive operation to perform. In the following we will introduce

an entirely new approach to compute repeated point doublings over an elliptic curve

which reduces the number of inversion at the cost of extra multiplications and thus

the complexity of the overall computation of the multiple of an elliptic curve point.

Our new approach is based on the following principle. First, observe that the

k-ary method relies on k repeated doublings. The new approach allows computation

of 2kP = (xk, yk) directly from P = (x, y) without computing the intermediate points

2P , 22P , · · ·,2k−1P . Such direct formulae are obtained by inserting (2.4) and (2.5)

into one another. Theorem 12 describes a formula for computing two point doublings

directly and its proof gives the derivation.

Theorem 12 Given a point P = (x, y) on the elliptic curve E one can compute
the point Q = 22P = (x2, y2) with 1 inverse, 9 multiplications, 6 squarings, and 10
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additions as shown in (7.1) and (7.2).

x2 =
ζ2 + (δγ)ζ

(δγ)2
+ a, (7.1)

y2 =
ζ(δγ)x2 + (δ2)2

(δγ)2
+ x2, (7.2)

where γ = x2,η = γ + y, δ = η2 + ηx+ aγ, ξ = ηx+ γ, and ζ = δ(δ + ξ) + γ2γ.

Proof. We begin by rewriting (2.4) and (2.5) in terms of x, y, x1, and y1 where

P = (x, y) and 2P = (x1, y1),

x1 =
(x2 + y)2 + (x2 + y)x+ ax2

x2

y1 =
x2x+ (x2 + y)x1

x
+ x1

Letting γ = x2, η = γ + y, and δ = η2 + ηx+ aγ, we get:

x1 =
δ

γ

y1 =
γx+ ηx1

x
+ x1

Substituting x by x1 and x1 by x2, we readily find an equation for 22P =
(x2, y2),

x2 =
(x2

1 + y1)2 + (x2
1 + y1)x1 + ax2

1

x2
1

y2 =
x2

1x1 + (x2
1 + y1)x2

x1
+ x2

Next, we consider the term x2
1 + y1. By using the expressions for x1 and y1 in

terms of γ, η, δ, and the new variables ξ = ηx+ γ and ζ = δ2 + γ2γ + δξ, we

get:

x2
1 + y1 =

ζ

γ2

Substituting back into the expression for x2,

x2 =

(
ζ
γ2

)2
+
(
ζ
γ2

)
x1(

δ
γ

)2 + a

Doing the algebra and simplifying, one readily obtains (7.1). A similar proce-
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dure will yield for y2 the following intermediate result:

y2 =

ζ
γ2x2 +

(
δ
γ

)2
δ
γ(

δ
γ

) + x2

Simplifying and multiplying numerator and denominator by δ one gets,

y2 =

(
ζγx2+δ2δ

γ2

)
δ

δ2
+ x2

which after simplification turns into (7.2). This ends the proof.2

We continued in a similar manner and found expressions for 23P = (x3, y3),

24P = (x4, y4), and 25P = (x5, y5). Again, these expressions, described in Theo-

rems 13, 14, and 15, only require one inversion as opposed to the three, four, or

five inversions that the regular double and add algorithm would require in each one

of these cases. It is important to point out that the point P has to be an element

of prime order belonging to the cyclic subgroup corresponding to the largest prime

factor in the order of E. This last requirement ensures that 4P , 8P , 16P , or 32P will

never equal O. Notice that this is compliant with [KMQV96].

Theorem 13 Given a point P = (x, y) on the elliptic curve E one can compute the
point Q = 23P = (x3, y3) with 1 inverse, 14 multiplications, 7 squarings, and 17
additions as shown in (7.3) and (7.4).

x3 =
ω2 + ωρ

ρ2
+ a (7.3)

y3 =
(υ2)2 + ωρx3

ρ2
+ x3 (7.4)

Theorem 14 Given a point P = (x, y) on the elliptic curve E one can compute the
point Q = 24P = (x4, y4) with 1 inverse, 19 multiplications, 15 squarings, and 20
additions as shown in (7.5) and (7.6).

x4 =
θ2 + θµρ2

(µρ2)2
+ a (7.5)
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y4 =
(µ2)2 + (θµρ2)x4

(µρ2)2
+ x4 (7.6)

Theorem 15 Given a point P = (x, y) on the elliptic curve E one can compute the
point Q = 25P = (x5, y5) with 1 inverse, 24 multiplications, 19 squarings, and 22
additions as shown in (7.7) and (7.8).

x5 =
σ2 + σβκ2

(βκ2)2
+ a (7.7)

y5 =
(β2)2 + x5(σβκ2)

(βκ2)2
+ x5 (7.8)

where γ,η, δ, ξ, and ζ are as defined in Theorem 12, and τ = δγ, υ =
ζ2 + τζ + τ 2a, ρ = υτ 2, ω = υ(υ + ζτ ) + (τδ2)2 + ρ, µ = ω2 + ωρ + aρ2, and θ =
µ2+µ(ωρ)+µρ2+(υ2ρ)2, κ = µρ2, β = θ2+θκ+aκ2, and σ = β(β+θκ+κ2)+κ2(µ2)2.

The advantage of Equations (7.1) and (7.2) is that they only require one in-

version as opposed to the two inversions that two separate double operations would

require for computing 4P . The “price” that must be paid is 9− 4 = 5 extra multipli-

cations if squarings and additions are ignored. For k = 2, the direct formulae (7.1)

and (7.2) trade thus one inversion at the cost of 5 multiplications. It is easy to see

that the formulae are an advantage in situations where inversion is at least five times

as costly as multiplication. However, this “break even point” decreases if the method

is extended to the computation of 2kP for k > 2 as described below.

7.1.1 The Break-Even Point

For application in practice it is highly relevant to compare the complexity of our

newly derived formulae with that of the double and add algorithm. If we note that

our method reduces inversions at the cost of multiplications, the performance of the

new method depend on the cost factor of one inversion relatively to the cost of one

multiplication. For this purpose we introduce the notion of a “break even point.”
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Since it is possible to express the time that it takes to perform one inversion in terms

of the equivalent number of multiplication times, we define the break even point as the

number of multiplication times needed per inversion so that our formulae outperform

the regular double and add algorithm. The results are summarized in Table 7.1.

Calculation Method Complexity Break Even Point
Sq. Add. Mult. Inv.

4P Direct Doublings 6 10 9 1 1 inv. > 5 mult.
Individual Doublings 4 10 4 2

8P Direct Doublings 7 17 14 1 1 inv. > 4 mult.
Individual Doublings 6 15 6 3

16P Direct Doublings 15 20 19 1 1 inv. > 3.7 mult.
Individual Doublings 8 20 8 4

32P Direct Doublings 19 22 24 1 1 inv. > 3.5 mult.
Individual Doublings 10 25 10 5

Table 7.1: Complexity comparison: Individual doublings vs. direct computation of
several doublings.

Next, the break-even point is derived for the case of 2 doublings. In general

we have that for our formulae to be advantageous we need the following relation to

hold:

Cost(2 doublings) > Cost(Formula for 2 doublings)

Then, ignoring squarings and additions and expressing the Cost function in terms of

multiplications and inversions, we have:

2(2 multiplications +1 inverse) > (9 multiplications +1 inverse)

Defining r = M/I , where M stands for the time that it takes for one multiplication

to be performed and I is the time for one inversion, one can re-write the above

expressions as:

2(2M + rM) > (9M + rM)
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Solving for r in terms of M one obtains:

r > (9− 4)M ⇒ r > 5M

7.1.2 Theoretical and Practical Timings

We performed timing measurements on the individual doubling operation and the

corresponding formulae presented in Theorems 12, 13, 14,and 15. In addition, we

developed timing estimates based on the observed timings of field operations in the

Galois field GF ((216)11) as presented in Table 7.2 (Notice multiplication and inversion

were implemented as described in Chapters 5 and 6).

Type of Operation Average Timing (µsec)
176 bit addition 1.19
176 bit squaring 4.23
176 x 176 bit multiplication 38.56
176 bit inverse 158.73

Table 7.2: Timings for various field operations in GF ((216)11).

In analyzing this results, one has to take into account the fact that in our

implementation all operations were run on a DEC Alpha 3000, a 175 MHz RISC

processor with a 64-bit word size and that the coordinates of the elliptic curve points

that were doubled are in the field GF ((216)11). Notice that one inversion time cor-

respond to 4.12 multiplication times. Using Table 7.1, we can readily predict that

the timings for the formulae presented in Theorems 13, 14 and 15 should outperform

the timings for the individual doublings. In addition, using the complexity shown

in Table 7.1 and the timings shown in Table 7.2 we can make estimates as to how

long a doubling operation will take using both formulae and individual doublings.

Table 7.3 summarizes the estimated times and compares them to the actual times



New Approach to Point Doubling in EC 63

that doublings take.

Calculation Method Predicted Timing Measured Timing % Improvement
Predicted Measured

8P Direct Doublings 748.41 µsec 904.812 µsec 0.30 12.5
Individual Doublings 750.78 µsec 1.035 msec

16P Direct Doublings 978.62 µsec 1.141 msec 2.24 17.85
Individual Doublings 1.001 msec 1.389 msec

32P Direct Doublings 1.191 msec 1.380 msec 4.80 22.08
Individual Doublings 1.251 msec 1.771 msec

Table 7.3: Timing comparison: Individual doublings vs. direct computation of several
doublings in GF ((216)11).

Two important observations are worth noticing:

• First, the average timings are always greater than the estimated timings, which

we attributed to the presence of overhead in the routines that implement the

algorithms (e.g., initialization of variables).

• Second, and more important than the first observation, the average timings

imply that the formulae outperform the regular approach of doubling elliptic

curve points by much more than predicted.

7.2 Complexity Analysis of the k-ary Method

In this section, we perform an analysis of the k-ary method when it is used in con-

junction with the formulae presented in Theorems 12, 13, 14, and 15. In addition, we

compare the complexity of both approaches to the k-ary method, with and without

formulae. Finally, we derive an expression that predicts the theoretical improvement

of the k-ary method when applied with the formulae, in terms of the ratio between

inversion and multiplication times.
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7.2.1 k-ary Method Complexity

In Section 4.3, we noticed that the complexity of the k-ary method was:

#Additionsk−ary = 2k − 2 + t (7.9)

#Doublingsk−ary = kt (7.10)

where t+1 is the number of k-bit words in the multiplier e. If we consider a (l+1)-bit

multiplier, we can rewrite (7.9) and (7.10) as: (Notice t = d l+1
k
e − 1)

#Additionsk−ary = 2k +

⌈
l + 1

k

⌉
− 3 (7.11)

#Doublingsk−ary = k

(⌈
l + 1

k

⌉
− 1

)
(7.12)

Recall from Section 2.2.2 that both, point addition and doubling, require two

field multiplications and one field inversion (squarings and additions will not be taken

into account since they are almost for “free” when compared to multiplication and

inversion). Then, the number of multiplications and inversions in the k-ary method

are:

#Multiplicationsk−ary = 2(k + 1)

⌈
l + 1

k

⌉
+ 2k+1 − (6 + 2k) (7.13)

#Inversionsk−ary = (k + 1)

⌈
l + 1

k

⌉
+ 2k − (3 + k) (7.14)

For the specific case k = 4,which is the optimum choice for most elliptic curve systems,

(7.13) and (7.14) reduce to:

#Multiplicationsk−ary(k = 4) = 10

⌈
l + 1

4

⌉
+ 18 (7.15)
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#Inversionsk−ary(k = 4) = 5

⌈
l + 1

4

⌉
+ 9 (7.16)

7.2.2 Complexity of the k-ary Method with Formulae for

k = 4

In order to apply the formulae of Theorem 14, we substitute the double and add

algorithm in Step 3.1 by (7.5) and (7.6). Then, (7.11) and (7.12) become:

#Additionsk−ary = 2k +

⌈
l + 1

k

⌉
− 3 (7.17)

#Doubling Formulask−ary = t (7.18)

Recall from Theorem 14 that one needs 19 field multiplications and one inverse

to perform four consecutive doublings with the formulae in (7.5) and (7.6). Then,

noticing that the complexity of a point addition operation has not changed, we find:

#Multiplicationsk−ary with formulae(k = 4) = 21

⌈
l + 1

4

⌉
+ 7 (7.19)

#Inversionsk−ary with formulae(k = 4) = 2

⌈
l + 1

4

⌉
+ 12 (7.20)

7.2.3 Relative Improvement

In this section, we consider the special case in which l + 1 = 176, or in other words,

the case of a 176-bit multiplier. Notice that, k = 4 in all computations because

it was found to be the optimum value of k for this number of bits. The number of

multiplications and inversions needed for the k-ary method with and without formulas

are summarized in Table 7.4.

From Table 7.4 we derived expressions for the time it would take to perform
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Field Operation k-ary method k-ary method with formulae
#multiplications 458 931
#inversions 229 100

Table 7.4: Comparison of complexities required to perform the multiplication eP using
the regular k-ary method, k = 4, and the k-ary method with four direct doublings.

a whole point multiplication as:

TRegular method = 458tMULT + 229tINV (7.21)

TFormula method = 931tMULT + 100tINV (7.22)

where tMULT means the time required for one field multiplication and tINV signifies

the time required for one field inversion. Notice that from (7.21) and (7.22) one can

readily derive the relative improvement by defining r = tINV /tMULT as:

Relative Improvement =
TRegular method −TFormula method

TRegular method
(7.23)

or using (7.21) and (7.22)

Relative Improvement =
129r − 473

229r + 458
< 56.3% (7.24)

Notice that the relative improvement for the ratio of the inversion time to the multi-

plication time in our implementation is:

Relative Improvement(r = 4.19) =
129(4.19) − 473

229(4.19) + 458
× 100 = 13.5%

As will be shown in Section 7.4 the actual improvement is 17 percent which is in

accordance with the observation in Table 7.3.
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7.3 Complexity Analysis of the Improved k-ary Method

with Formulae for k = 5

In this section, we consider the improved k-ary method of exponentiation described

in Theorem 5. We develop a complexity analysis of this algorithm for the case k = 5

and find specific values for a 176-bit multiplier.

By choosing k = 5, we limit the size of each word ei in the b-radix represen-

tation of the multiplier to 5 bits (see Theorem 5). This implies that there are 32

possible different values that each 5-bit word ei can attain. Furthermore, if one was

to divide the ei words into subgroups based on the value of hi and 5− hi (as defined

in Theorem 5) one would find the distribution found in Table 7.5. Notice that the

values of hi will determine the number of doublings performed in a given iteration of

the improved k-ary method for exponentiation.

hi 5− hi Frequency
0 5 17
1 4 8
2 3 4
3 2 2
4 1 1

Table 7.5: Frequency of occurrence for possible hi and 5− hi values.

As in Section 7.2, we will limit our complexity analysis to multiplications and

inversions since additions and squarings are “cheap” when compared to the other field

operations. Notice, then that depending on the value of hi, one will have to perform

five doublings (D5), four doublings (D4), three doublings (D3), two doublings (D2), or

one doubling (D1). Table 7.6 shows a summary of the complexity of these operations.

It is important to point out that since the formulae presented in Theorems 12, 13, 14,

and 15 are only more efficient than the double and add algorithm for three, four, or
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five doublings, these are the only formulae that will be used. The standard doubling

formula for elliptic curves from (2.4) and (2.5) will be used in the remainder of the

cases.

Method of Doubling # of Doublings # Mult. # Inv.
Regular Method D1 2 1

D2 4 2

Formulae Method D3 14 1
D4 19 1
D5 24 1

Table 7.6: Complexity of Doubling Approach.

From Theorem 5, we know that there 24 − 1 additions and one doubling due

to precomputation, and t additions, t(hi + (5 − hi)) doubling steps (why we write

the number of doublings in this way rather than 5t will become apparent later) for

iterations t− 1 to 0, and a variable number of operations in the first iteration of the

algorithm, depending on the number of significant bits in the most significant word

of the multiplier.

Now, we specialize our analysis to the case in which we have a l + 1 = 176

bit multiplier. In this case, the algorithm will go through t + 1 = d(l + 1)/5e = 36

iterations. Then, we can find the complexity of the precomputations as follows:

(Notice that as before one point addition takes two multiplications and one inversion)

#Multiplicationsprecom = 2 + 15(2) = 32

#Inversionsprecom = 1 + 15 = 16

The complexity of the precomputation is found by noticing that the most significant

word of the base-32 representation of the multiplier can have at most two bits (in

general there will be at most 2d(l+1)/kek−(l+1) bits). Therefore, we have the complexity

shown in Table 7.7.
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Bit Pattern Doublings Table Look-ups
00 0 0 (go to next word)
01 0 1
10 1 1
11 0 1

Table 7.7: Number of Operation for Bit Patterns of the Most Significant Word of the
Multiplier.

Since table look-ups are essentially for free and assuming that every bit pattern

has the same probability, we will have that an average of 0.25 ·2 = 0.5 multiplications

and 0.25 · 1 = 0.25 inversions from the first iteration of the algorithm. For the re-

maining t iterations we will have the following average number of operations: (Notice

that D1, D2, D2, D3, D4, and D5 are as defined in Table 7.6)

Avg. # operations =
(

17

32
D5 +

1

32
(D4 +D1) +

2

32
(D3 +D4)+)

(
4

32
(D2 +D3) +

8

32
(D1 +D4)

)
t

Substituting the corresponding number of multiplications and inversions in for D1,

D2, D2, D3, D4, and D5, we get:

#Multiplicationsdoubling =
24675

32
= 771.09

#Inversionsdoubling =
1855

32
= 57.97

The number of additions is just equal to t or 35 additions. Notice that there is a 1/32

chance that ei = 0, in which case there would not be an addition, thus in terms of

the field operations we have that 35 additions contribute:

#Multiplicationsadditions = 2
31

32
35 = 67.81
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#Inversionsadditions =
31

32
35 = 33.91

Thus, adding up the partial complexities, we find that the improved k-ary method

for exponentiation with a 176-bit multiplier and k = 5, will require on average:

#Multiplicationsimproved k−ary = 871.41 (7.25)

#Inversionsimproved k−ary = 108.13 (7.26)

Comparing (7.25) and (7.26) to the results presented in Table 7.4, it can be seen

that the number of multiplications decreases by about 60 at the cost of about 8 extra

inversions. Assuming that one inversion time is 4.19 multiplication times, one finds

that the improvement from the k-ary method with formulae to the improved k-ary

method with formulae is on average about 25.55 multiplication times or on a DEC

Alpha with a 175 MHz clock frequency, 985 µsec.

7.4 Application to Point Multiplication

This section describes the application of the various algorithms to an actual EC

system over the field GF (216)11) ∼= GF (2176). First we investigate multiplication of

a point which is the core operation in a Diffie-Hellman key exchange or a digital

signature generation. We compare the timings obtained for different parameters k in

the k-ary method and the improved k-ary method with and without the new formulae

of Section 7.1. We also present the timings for several arithmetic operations in the

composite field GF ((216)11) and the timings for several algorithms used to compute

nP where n is a long integer (176 bits) and P is a point on the elliptic curve as

described in (2.3). The DEC Alpha 3000, a 175 MHz RISC architecture with a 64

bit word size was used to perform all measurements. In some cases timings on a
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DEC Alpha with a clock frequency of 233 MHz will also be provided as a measure of

comparison.

Method Window Size k Average Timing (in msec)
k-ary 3 87

4 84
5 88

k-ary with formulae 4 68

Table 7.8: Comparison of average time required to perform the nP calculation in
GF ((216)11) using the regular k-ary method and the k-ary method with four direct
doublings using a DEC Alpha with 175 MHz clock frequency.

After several measurements, it was found that the optimum value for the

window size in the k-ary method was k = 4. Table 7.8 presents these results. It is

easy to see that by implementing the k-ary method with the formulas of Section 7.1,

one can achieve speed-ups of up to 17 percent. Notice that the optimum value of k is

still influenced by the number of additions that are needed to pre-compute the table

used in the k-ary method as described in Theorem 4.

Operations Method/ Avg. Timing Avg. Timing
Type of Operation (175 MHz) (233 MHz)

Basic Field Operations 176 x 176 bit multiplication 38.6 µsec 29.9 µsec
176 bit inverse 158.7 µsec 115.7 µsec

Multiply new elliptic Double and Add Algorithm 92.7 msec 64.6 msec
curve point (n→ 176 bits) k-ary method (k = 4) 82.7 msec 61.7 msec

k-ary method with formulae (k = 4) 68.3 msec 49.2 msec
Improved k-ary (k = 5) 75.8 msec 58.3 msec
Improved k-ary with formulae (k = 5) 69.3 msec 50.4 msec

Multiply known elliptic Brickell’s Algorithm (base = 24 = 16) 19.7 msec 13.4 msec
curve point (n→ 176 bits)

Table 7.9: Timings for various field and elliptic curve operations.

Table 7.9 presents the timings for various arithmetic operations and for sev-

eral algorithms used to compute nP . Notice also that the last entry of Table 7.9
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corresponds to the nP calculation when the point P is known ahead of time, thus it

is possible to pre-compute a table of multiples of P . This implies that the formulae

derived in Section 7.1 were not used in this algorithm. Finally, that the timings of

Table 7.9 do not show any timing improvement due to the use of the improved k-ary

method contrary to the predictions made in Section 7.3. In fact the timings indicate

that the improved k-method with formulae is slower than the k-ary method with for-

mulae. This can be explained by the fact that in the k-ary method one only realizes

doublings with the formulae while in the improved k-ary method you need to use the

double and add algorithm in some cases since the formulae are not effective for small

numbers of doublings (1 or 2). This inclusion of the double and add algorithm will

create overhead which eventually will make the improved k-ary method slower than

the k-ary method.



Chapter 8

Elliptic Curve Key Exchange

Protocols

This chapter is based on the discussion in [Bea96, Chapter 5]. This chapter intro-

duces several elliptic curve based cryptosystems. An analog of the Diffie-Hellman key

exchange protocol will be presented as well as other systems whose one-way functions

have been replaced by elliptic curves. Finally, we provide timing estimates for a soft-

ware implementation of the elliptic curve analog of the Diffie-Hellman key exchange

protocol.

8.1 Elliptic Curve Analog to Diffie-Hellman Key

Exchange

The Diffie-Hellman key exchange algorithm can easily be implemented using elliptic

curves. Let’s suppose that Alice and Bob want to agree upon a key which will later

be used in conjunction with a private-key cryptosystem. They first publicly choose

73
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an elliptic curve E over a finite field GF (2k). Each of their keys will be constructed

using a point α ∈ E(GF (2k)) which they have randomly chosen and made public.

Point α is the generator of a cyclic subgroup of E, and the group order should be of

the same magnitude as GF (2k).

AB

ABK      = u BetaB

Compute Beta B
Beta     = v alphaB

Compute Shared Key KAB

Alice Bob

Compute Shared Key K

Choose a secret random

AB

          = (uv)alpha

          = u (v alpha)

Choose a secret random

          = (uv)alpha

          = v (u alpha)

Beta

Beta

A

B

parameter u, 0 < u < #E

Compute BetaA
Beta    = u*alphaA

parameter v, 0 < v < #E

K       = v BetaA

Figure 8.1: Elliptic curve key exchange protocol

Alice and Bob now have the same key Kuv = u v α ∈ E. Security is gained

by the intractability of finding point Kuv. Notice that without solving the elliptic

curve discrete logarithm problem, which is defined as follows:

Given: α, β ∈ E such that: β = nα,where n is an integer.

Determine: n.

there seems to be no efficient way to compute u v α knowing only uα and v α.
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8.2 Proposed IEEE Standard

The next cryptosystem that will be described is a draft of a proposed IEEE Standard

[MQV95]. Changes may occur in the design of such a system, since it is still in the

working stages.

This system is designed to be an analog to the ElGamal public-key cryptosys-

tem. However, unlike the previous system discussed, this system does not contain the

same drawbacks that were previously mentioned. The idea behind this proposal, is to

standardize a method, which is secure, and at the same time able to be implemented

in software and hardware at reasonable speeds.

This method, like the others we discussed, has the same system setup. An

elliptic curve E defined over a finite field GF (q) is chosen. A point P with order n is

then selected. These values are all public information.

Again, generating the public and private keys is similar to the methods already

discussed. For the following discussion: Bob is sending a message M to Alice.

Key Generation

1. Select a random integer d in the range {1→ n− 1}.

2. Compute the point Q := dP .

3. The entity’s public key is the point Q.

4. The entity’s private key is the integer d.

Encryption Process

1. Bob gets Alice’s public key: Q.
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2. The message M is represented as a pair of field elements (m1,m2), m1 ∈ GF (q),

m2 ∈ GF (q).

3. Select a random integer k in the range {1→ n − 1}.

4. Compute the point (x1, y1) := kP .

5. Compute the point (x2, y2) := kQ.

6. The field elements m1, m2, and x2 are combined in a predetermined manner to

obtain the two field elements c1 and c2. (Discussed below)

7. Transmit the data c := (x1, y1, c1, c2) to Alice.

Decryption Process

1. Compute the point (x2, y2) := d(x1, y1), using its private key d.

2. Recover the message m1 and m2 from c1, c2, and x2.

What makes this method more secure than the one discussed earlier, is the way

that the field elementsm1, m2, and x2 are combined. They are combined in a manner

in which an intruder who knows c1, c2 and half the message, say m1, cannot recover

the second half of the message m2, nor will he be able to substitute m1 by another

message m
′
1 of his choice. The following method is used to encrypt the message and

form the field elements c1, c2:

1. Form the field element x3 by setting to 0 the most significant bit of x2.

2. Compute the field element x3
2.

3. Form the field element y3 by setting to 0 the most significant bit of x3
2.
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4. Form the field element x4 by concatenating the most significant bits of x3 fol-

lowed by the least significant bits of y3.

5. Form the field element y4 by concatenating the most significant bits of y3 fol-

lowed by the least significant bits of x3.

6. Compute z1 := m1 ⊕ y3 and z2 := m2 ⊕ x3, where ⊕ is bitwise XOR.

7. Perform field multiplications to get c1 := x4 ∗ z1 and c2 := y4 ∗ z2.

Message expansion can be reduced to about 3/2 if we represent point P by its

x-coordinate and one bit of y1. We can do this using the method that is outlined in

the appendix.

8.3 Performance Analysis

In this section, we provide a comparison between the speeds that elliptic curve cryp-

tosystems can attain and the speeds of other algorithms such as the Diffie-Hellman

key exchange over prime fields. It is assume that both algorithms are run on a DEC

Alpha 3000 with a 175 MHz clock frequency. Finally it is important to point out

that the Diffie-Hellman key exchange times over prime fields are not estimates but

rather the timings reported in [Bea96]. The elliptic curve key-exchange algorithm

DH 512 DH 1024 EC 176
Key exchange times 1.16sec 8.62sec 88 msec

Table 8.1: Time comparison for key-exchange algorithms: Modulo arithmetic vs.
elliptic curves over the field GF ((216)11).

outperforms the Diffie-Hellman algorithm for both the 512 and 1024 bit modulus. It

is important to point out that the times reported in Table 8.1 are average times, since
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each key exchange will depend on the specific exponent used. Finally, notice that the

elliptic curve that was used provide the same level of security as a Diffie-Hellman key

exchange with 1200 bits, thus, the time improvement that is obtained with elliptic

curves is even more dramatic.



Chapter 9

Discussion

This section will summarize the results that were obtained throughout the research

work that culminated with this thesis. A summary of the chapters and their main

results will be provided as well as some recommendations for future research.

9.1 Conclusions

This research has demonstrated that elliptic curve cryptosystems are well suited for

cryptographic applications and can be used in practical applications. Furthermore,

elliptic curve cryptosystems are a logical alternative to other systems based in DL

problem over finite fields because of their security and their efficiency derived from

their short key lengths. Three algorithms were developed which can be used to con-

struct cryptosystems that outperform existing systems today. The main achievements

of this research included:

• Demonstrated an efficient implementation of the multiplication operation in the

composite field GF ((216)11) that outperforms by ten percent a straightforward
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approach. This was achieved by optimizing and analyzing the Karatsuba-Ofman

algorithm for multiplication in composite fields for software implementations.

• Demonstrated an efficient implementation of the Itoh and Tsujii’s algorithm for

computing inverses in composite fields in standard base representation which

had been initially tailored for Galois fields in normal base representation.

• Developed a totally new approach for point multiplication, the core operation

in the Diffie-Hellman key exchange protocol and the generation of digital signa-

tures. This approached proved to provide our implementation with a 17 percent

improvement over the standard k-ary method for exponentiation.

• The software implementation achieved a time of 49.21 msec in a DEC Alpha

with a 233 MHz clock frequency for performing a whole elliptic curve point

multiplication, which is essentially the time needed for a Diffie-Hellman key

exchange or signature generation.

• Provided time estimates for an elliptic curve key-exchange protocol that outper-

forms the Diffie-Hellman key exchange algorithm based on modulo-p arithmetic

with 1024 bits by a factor of almost 100.

9.2 Recommendations for Further Research

This section will provide the reader with an overview of the possible areas in which

further work could be pursued. Many of the ideas have come up as a result of

this research and provide opportunities to investigate further the possibilities of the

algorithms that were developed in this thesis.
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9.2.1 Generalization of the Improved Point Multiplication

Chapter 7 explored a new approach for point doubling in non-supersingular elliptic

curves over fields of characteristic 2. It would be interesting to explore the benefits

of this idea as applied to curves over fields of characteristic 3, prime fields, and for

supersingular and hyperelliptic curves. Also, from a theoretical point of view, it

would be nice if general formulas for the computation of a multiple of a point could

be derived so as to provided a formula for any point Qk = 2kP in terms of the previous

formula for Qk−1 = 2k−1P .

9.2.2 Implementation of a Variant of the Improved k-ary

Method

It was found in Chapter 7 that the improved k-ary method did not outperform the k-

ary method. On possible solution would be to derive further formulas for 6,7,8,9,and

10 doublings in a row and allow for more doublings in each iteration of the algorithm

without altering the value of k that was found to be optimum.

9.2.3 Implementation of the Sliding Window Method for Ex-

ponentiation

The sliding window method for exponentiation, it is a generalization of the k-ary and

improved k-ary methods which uses variable values for k, known as the window size.

A possible project would be to explore this algorithm and the feasibility of applying

the doubling formulas to it.
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9.2.4 Implementation of a Different Inversion Algorithm

It was found in Chapter 6 that the exponentiation algorithm that was used in our

implementation was not the most efficient one. Thus, it would be necessary to im-

plement the algorithms that were suggested in [WBV+96] for inversion in composite

fields.



Appendix A

Proofs for Doubling Formulas

A.1 Proof for Theorem 13

In the following, we will derive Theorem 13. We assume that we have obtained

(7.1) and (7.2) to calculate 22P = (x2, y2) and that we are trying to find similar

expressions for 23P = (x3, y3). In addition, we keep the notation of Theorem 12 in

which γ = x2,η = γ + y, δ = η2 + ηx+ aγ, ξ = ηx+ γ, and ζ = δ(δ + ξ) + γ2γ, and

P = (x, y).

Then, by writing (2.4) and (2.5) in terms of x2, y2, x3, and y3, one finds:

x3 =
(x2

2 + y2)2 + (x2
2 + y2)x2 + ax2

2

x2
2

y3 =
x2

2x2 + (x2
2 + y2)x3

x2
+ x3

Next we consider the term x2
2 + y2 by plugging in (7.1) and (7.2) for x2 and y2,
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respectively. Then, if we let τ = δγ and υ = ζ2 + τζ + τ 2a, we get:

x2
2 + y2 =

υ2 + ζτυ + τ 2δ4 + τ 2υ

τ 4

Plugging this expression into the expression for x3, we get:

x3 =

[
υ2+ζτυ+τ2δ4+τ2υ

τ4

]2
+
[
υ2+ζτυ+τ2δ4+τ2υ

τ4

] (
υ
τ2

)
υ2

τ4

+ a

Letting ρ = υτ 2 and ω = υ(υ+ζυ)+(τδ2)2 +ρ and simplifying we immediately

obtain (7.3). Notice that (7.4) is also easily obtained by first substituting x2 = υ
τ2

and plugging this expression into the equation for y3 to obtain:

y3 =

(
υ
τ2

)
υ
τ2 + ω

τ4x3

υ
τ2

+ x3

which after simplification yields (7.4).2

A.2 Proof for Theorem 14

In the following, we will derive Theorem 14. We assume that we have obtained

(7.3) and (7.4) to calculate 23P = (x3, y3) and that we are trying to find similar

expressions for 24P = (x4, y4). In addition, we keep the notation of Theorem 13 in

which γ = x2,η = γ + y, δ = η2 + ηx+ aγ, ξ = ηx + γ, ζ = δ(δ + ξ) + γ2γ,τ = δγ,

υ = ζ2 + τζ + τ 2a, ρ = υτ 2, ω = υ(υ + ζτ ) + (τδ2)2 + ρ, and P = (x, y).

Then, by writing (2.4) and (2.5) in terms of x3, y3, x4, and y4, one finds:

x4 =
(x2

3 + y3)2 + (x2
3 + y3)x3 + ax2

3

x2
3
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y4 =
x2

3x3 + (x2
3 + y3)x4

x3
+ x4

Next we use (7.3) and (7.4) and consider the term x2
3 + y3. Thus, we get:

x2
3 + y3 =

(ω2 + ωρ + ρ2a)2

ρ4
+
υ4ρ2 + ωρ(ω2 + ωρ+ ρ2a) + ρ2(ω2 + ωρ + ρ2a)

ρ4

Letting µ = ω2 + ωρ + ρ2a and θ = µ(µ + ρ(ω + ρ)) + (υ2ρ)2, we get:

x3 =
µ

ρ2

and

x2
3 + y3 =

θ

ρ4

Plugging this expression into the equation for x4, we get

x4 =

(
θ
ρ4

)2
+ θ

ρ4
µ
ρ2(

µ
ρ2

)2 + a

which after simplifying turns into (7.5). Similarly, we write y4 in terms of x3 and y3

as

y5 =

(
µ
ρ2

)2 ( µ
ρ2

)
+ θ

ρ4x4

µ
ρ2

+ x4

Simplifying, we get (7.6).2

A.3 Proof for Theorem 15

In the following, we will derive Theorem 15. We assume that we have obtained

(7.5) and (7.6) to calculate 24P = (x4, y4) and that we are trying to find similar

expressions for 25P = (x5, y5). In addition, we keep the notation of Theorem 15 in
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which γ = x2,η = γ + y, δ = η2 + ηx+ aγ, ξ = ηx + γ, ζ = δ(δ + ξ) + γ2γ,τ = δγ,

υ = ζ2 + τζ + τ 2a, ρ = υτ 2, ω = υ(υ + ζτ ) + (τδ2)2 + ρ, µ = ω2 + ωρ + aρ2,

θ = µ2 + µ(ωρ) + µρ2 + (υ2ρ)2, and P = (x, y).

We then re-write (2.4) and (2.5) in terms of x4, y4, x5, and y5 as:

x5 =
(x2

4 + y4)2 + (x2
4 + y4)x4 + ax2

4

x2
4

y5 =
x2

4x4 + (x2
4 + y4)x5

x4

+ x5

Next, consider the term x2
4 + y4 and use (7.5). Using(7.6) for x4 and y4, we

find:

x2
4+y4 =

(θ2 + θµρ2 + a(µρ2)2)
2

(µρ2)4
+

[
(µ2)2 + (θµρ2)

(θ2+θµρ2+a(µρ2)2)
(µρ2)2

]
(µρ2)2

+
(θ2 + θµρ2 + a(µρ2)2)

(µρ2)2

Letting κ = µρ2, β = θ2 + θκ+ aκ2, and σ = β(β + θκ+ κ2) + κ2(µ2)2, one obtains:

x2
4 + y4 =

σ

(κ2)2

Then:

x5 =

(
σ

(κ2)2

)2
+ σ

(κ2)2
β
κ2

β2

κ4

+ a

which readily simplifies into (7.7). In a similar manner, we obtain:

y5 =

(
β
κ2

)2 β
κ2 + σ

(κ2)2x5

β
κ2

+ x5

which turns into (7.8) after simplification.2
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