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ABSTRACT 
This study was conducted at the University of Massachusetts Medical Center in 

the Volkert laboratory.  Human alkyl adenine DNA glycosylase (hAAG) is a DNA repair 
enzyme that repairs alkylated DNA bases.  hAAG was cloned in 1991 and a second 
isoform was classified in 1994.  The difference between the two isoforms of hAAG is an 
alternate spliced first exon.   

Both isoforms of the hAAG gene were present in the Volkert laboratory 
collection, however the second isoform (hAAG-2) was phenotypically different than the 
first and became the first focus of this study.  Using the improperly functioning isoform 
as a template, and constructing a 5’ primer with the identical upstream sequence as the 
functioning isoform (hAAG-1), a phenotypically similar gene was constructed by PCR.  
The new isoform (hAAG-2) was cloned into an expression vector and its activity as a 
DNA repair agent was studied.  A second version of hAAG-2 was also constructed, 
incorporating a histidine tag for protein purification and identification purposes. 

Efforts included using the ability of hAAG to complement glycosylase deficient 
alkA tagA E. coli double mutant strains to assess and to compare the ability of the two 
isoforms of hAAG and to determine if the histidine tag affected function.  The ability of 
hAAG to rescue cells from exposure to a variety of DNA damaging agents was studied 
by inducing each isoform and analyzing the sensitivity of the cells to increased doses of 
DNA damaging agents.  Both hAAG-1 and hAAG-2 were able to restore the wild type 
resistance of the alkA and tag genes when exposed to the alkylating agents MNNG and 
MMS.   

In order to study the ability of hAAG to repair alkyl lesions larger than methyl 
groups, it was necessary to inactivate the uvrA dependent nucleotide excision repair gene.  
In E. coli, methyl lesions are repaired primarily by glycosylases, while nucleotide 
excision repairs bulky lesions.  Thus, in order to detect hAAG activity on these types of 
damage, it was necessary to inactivate the bacterial uvrA gene.  Each isoform of hAAG 
was transformed into a triple mutant strain deficient in alkA tagA and uvrA, then exposed 
to CNU, BCNU, and Mitomycin C.   Each of these DNA damaging agent caused 
increased toxicity in the presence of hAAG.  hAAG-1 expressed in the alkA tag double 
mutant strain was exposed to Mitomycin C and showed greater resistance than hAAG-1 
expressed in the alkA tag uvrA triple mutant.  In fact, in the nucleotide excision 
proficient strain, expression increased Mitomycin C resistance above that seen in the 
control, suggesting that glycosylase activity may function in a partnership with nucleotide 
excision repair and that the two isoforms of hAAG have subtle differences. 

An ompT protease knockout host strain was constructed using P1-transduction 
and used to examine protein products. hAAG-2 was inserted into the pBlueScript plasmid 
so that the gene could be regulated by the T7 promoter for use beyond the scope of this 
thesis.  A protein synthesis time course assay was conducted to determine the expression 
levels of hAAG-1 and hAAG-2 when induced by IPTG.  Immunoblot detection of the 
histidine tag was used to measure expression levels of each isoform.  
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INTRODUCTION 
The Importance of Deoxyribose Nucleic Acid  

 

One of the most extensively studied materials of biology during the past half-

century, deoxyribose nucleic acid, DNA, is an essential component within the cell.  With 

the exception of some viruses, DNA is the genetic material or “blueprint” of all cells and 

organisms.  Genes encoded from the DNA of bacteria and eukaryotic cells ranging from a 

simple yeast cell to complex mammalian cells command many of the cellular functions 

and activities.    

The central dogma of molecular biology is a model that describes the transcription 

and replication of DNA.  It is replicated in a semi conservative manner or transcribed into 

RNA, ribose nucleic acid, which is used in the creation of protein (Figure 1).  Without a 

specific protein, a cell may lose some specific function(s).  Therefore, the accuracy of 

this transcription process is vital for cell function.  The correct transcription of DNA to 

RNA must occur so that the RNA can either undergo translation into protein (mRNA) or 

assist in the production of proteins (rRNA, tRNA).     

RNA

Protein

DNA Replication

Transcription

Translation

 
Figure 1: Model of the Central Dogma of Molecular Biology.  DNA 

is either replicated in a semiconservative manner or transcribed 
into RNA, which is then further translated into protein.   
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The structure of DNA consists of a ring sugar connected to a nucleoside base at 

its C1’ and a phosphate at its C3’ and C5’ (Figure 2).  There are four nucleoside bases in 

DNA: adenine, thymine, cytosine, and guanine.  These bases are further categorized into 

two groups, the purines and pyrimidines.   

 
Figure 2: The Structure of DNA.  Note the location of the base and 

that the phosophdiester bonds are created to join nucleotides 
together at the 5’ and 3’ carbon of the deoxyribose.  Adapted from 

the URL: http://esg-
www.mit.edu:8001/esgbio/lm/nucleicacids/dna.html 

The purines consist of adenine and guanine and the pyrimidines contain cytosine 

and thymine.  Adenine binds to thymine and guanine binds to cytosine (Figure 3).   
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Figure 3: The two bases classifications and their binding partners.  

The pyrimidines are located on the left of this figure and the 
purines on the right.  Please note that there is a third pyrimidine, 
Uracil, but it is not shown because it is only present in RNA, not 

DNA.  Adapted from the URL: 
http://www.chem.wsu.edu/Chem102/102-DNAStruct.html 

Damage to DNA 

 “DNA damage causes a temporary arrest of cell-cycle progression” (Krokan et al, 

1997), and DNA repair is essential before replication so that the correct DNA sequences 

are synthesized. For this reason, DNA repair mechanisms are highly conserved 

throughout evolution.  DNA is susceptible to various types of damages that alter the 

sequence of the genetic code.  These damages occur either spontaneously or may be 

induced by external environmental factors (Friedberg et al, 1995).  This section will 

describe these two classes of DNA damge. 

Spontaneous DNA Damage 

Spontaneous DNA damage occurs when the genetic sequence of DNA becomes 

altered due to either the activity or failure of a cellular mechanism.  Such spontaneous 

damage or mutation to DNA includes the mispairing of bases in DNA synthesis and 

chemical alterations of the nucleoside base structures.  Mismatched bases are very 



 Bonanno 4 

common in the replication of DNA, thus DNA polymerase scrutinizes the dNTP’s as they 

are inserted along a replicating strand of DNA (see below).  In addition, DNA 

polymerases have proofreading tools that remove and replace improperly paired bases 

(Kunkel, 1992).  Other mismatch errors include frameshift mutations.  A frameshift 

mutation occurs when the sequence of DNA is altered due to template misalignment, thus 

altering the triplet amino acid sequence code from being replicated as intended.  In 

addition to the proofreading activity of polymerase, a second mismatch correction system 

scans newly synthesized DNA for frameshift and mismatch errors.  The mismatch DNA 

repair system provides additional support to protect the fidelity of newly synthesized 

DNA.   In those instances where proofreading and mismatch repair fail, mutations arise.  

These types of mutations include missense mutations, in which an incorrect amino acid is 

translated; deletions and insertions due to slippage or dislocation; and miscoding 

followed by realignment (Kunkel, 1992, Figure 4). 

 
Figure 4: Mutational intermediates for substitution and frameshift 

errors.  Adapted from Kunkel, 1992.               

Other types of spontaneous mutations occur by altering the chemistry of the DNA 

bases.  Sometimes, an isomer of a nucleoside base may arrange itself so that it does not 

bond to its traditional Watson-Crick partner.  These spontaneous mutations are named 
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tautomeric shifts.   Deamination is the conversion of an amino group to a double bonded 

oxygen [oxide] (-NH2 ! =O).   Adenine or guanine may undergo a deamination of their 

exocyclic amino group, converting them to purine analogs.  Cytosine may also undergo 

deamination, which converts it to a uracil nucleoside.  Errors in replication, 

recombination, and repair processes may also lead to spontaneous DNA damage 

(Friedberg et al, 1995).  There are several other functions that lead to spontaneous 

mutations including transposon activity, translocations, transitions, inversions, and 

duplication of genetic material (Lewin, 1997).  An additional source of mutation results 

from spontaneous chemical modification of DNA bases and nucleotides.  The most 

common form of spontaneous damage leading to mutation occurs when an oxygen radical 

creates an oxidation product by damaging a nucleoside.  The most frequent oxidation 

product is 8-oxo-guanine, or GO. 

These examples of spontaneous mutations provide a source of internal DNA 

damage.  This type of damage occurs naturally, without the influence of environmental 

factors.  There is a second category of DNA damage, however, which is influenced by 

environmental toxins.          

Environmental DNA Damage        

Environmental damage occurs when physical and chemical environmental factors 

interact with DNA.  The physical agents that damage DNA include both ionizing and 

ultraviolet radiation.  Ionizing radiation affects the bases and sugar–phosphate backbone 

of DNA.  Often, a free radical (-OH) attacks a base and creates a lethal or mutagenic 

lesion.  The N-glycosylic bond, the bond that connects the base to the deoxyribose, also 

suffers destabilization from ionizing radiation.  Nicks can also form in the DNA 

backbone (Friedberg et al, 1995).  The base, the glycosylic bond, and the sugar-phosphate 

backbone of the DNA molecule are left vulnerable to ionizing agents, thus providing 

evidence that ionizing radiation strongly attacks all components of DNA.   

Ultraviolet radiation is also a physical environmental toxin.  Exposure to this 

wavelength spectrum of light (400 to 100 nm) creates dimerization of pyrimidines due to 

the formation of bonds between adjacent pyrimidines (Friedberg et al, 1995).  This bond 

formation varies among the wavelength intensities.  Cyclobutane pyrimidine dimers, for 
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example, form additional bonds by saturating the 5,6 double bonds of each nucleoside 

whereas the pyrimidine-pyrimidone photoproduct forms a new bond between the 6,4 

postions of adjacent pyrimidines (Friedberg et al, 1995).                 

In addition to these two physical environmental avenues of DNA damage, there 

are many chemicals that damage DNA.  Some of these chemicals can be classified into 

groups such as Psoralens, Alkylating Agents, and Cross-Linking Agents.  Psoralens, a 

crosslinking agent that forms covalent adducts to thymine and cytosine in the presence of 

UV light, intercalates into the DNA (Friedberg et al, 1995).  The function of the latter 

two chemical categories will be described in more detail in the section below discussing 

the drugs used in this study.   

DNA Excision Repair Pathways 

The most relevant DNA repair to this study consists of the excision repair 

processes.  These repair mechanisms include nucleotide excision repair (NER) and base 

excision repair (BER).  Since hAAG is a base excision repair enzyme, this process will 

be explained in greater detail than nucleotide excision repair. 

The Nucleotide Excision Repair System 

Nucleotide excision repair consists of excising a series of bases surrounding a 

bulky lesion such as a pyrimidine dimer resulting in removal of an oligonucleotide 

surrounding and including the lesion.  The uvrABC complex completes this process with 

the help of the UvrD helicase, DNA polymerase, and DNA ligase.  The uvrA+ and uvrB+ 

genes of the NER process are susceptible to regulation by the LexA protein (Friedberg et 

al, 1995).  The LexA protein also controls the SOS Response system, so it has been 

suggested that increased damage induces uvrA and uvrB to increase their levels of 

production. 

In the excision process, UvrA dimerizes and binds to UvrB.  Once this complex 

forms, it patrols the DNA searching for irregularities and bulky adducts.  Once an error is 

found, the UvrAB complex binds to the DNA in need of repair.  The DNA gets kinked, 

UvrA recruits UvrC, and subsequently gets released so that UvrC may bind.  The UvrBC 

complex on the DNA creates nicks approximately 12 base pairs apart from each other.  
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UvrD, an enzyme with helicase activity, releases the damaged fragment and UvrC, 

however UvrB remains bound to the gapped DNA and is released only when the DNA 

polymerase I enzyme is ready to resynthesize the missing fragment.  Finally, DNA ligase 

joins the fragment to the rest of the strand (Figure 5, Friedberg et al, 1995). 

 
  Figure 5: Mechanism of action of the UvrABC complex in NER.  

Adapted from Friedberg et al, 1995. 

This process is both fundamental and important to this study.  Survival Assays 

were conducted in a uvrA- background.  These strains were not able to conduct NER 

because without uvrA, the UvrAB complex cannot be formed, thus UvrB would not be 

able to bind to the DNA.  Therefore, it is important to understand the significance of the 

presence of the uvrA+ gene.        

The uvrA protein is recruited by other proteins to sites of damage.  One such 

protein, called transcription repair coupling factor (TRCF) recruits UvrA.  This process, 
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named transcription coupled repair, involves the RNA polymerase enzyme pausing at a 

pyrimidine dimer adduct (Figure 6).  TRCF binds to a paused RNA polymerase, removes 

it and its mRNA from the site of DNA damage.  At this point it recruits UvrA, which 

dimerizes and forms its complex with UvrB.  UvrB binds to the DNA and continues the 

repair process above.  UvrA is removed along with the TRCF (Selby and Sancar, 1993; 

Friedberg et al, 1995).   

 
Figure 6: Model for recruitment of UvrA by TRCF at a pyrimidine 

dimer adduct.   Adapted from Selby and Sancar, 1993. 

Base Excision Repair 

The base excision repair pathway is a biochemical method for correcting a single 

erronous base.  The activity of this process hinges on the ability of a glycosylase such as 

hAAG to catalyze the first reaction initiating this pathway.  BER is a DNA repair 

mechanism that uses a glycosylase such as hAAG to remove a damaged base from DNA 

(Krokan et al., 1997; Wilson III and Thompson, 1997; Singer and Hang, 1997).  Once 

hAAG performs its task, other enzymes of the base excision repair pathway are able to 

perform their function.   
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There are several different classes of glycosylases; only three systems will be 

considered in this review: the Alkyl Adenine DNA Glycosylases, Uracil- DNA 

Glycosylase, and the Mut M, Mut T, Mut Y Glycosylases.  However, prior to specific 

discussion of each glycosylase, the discovery of glycosylase activity can be attributed to 

Dr. Thomas Lindahl in 1976.   

The Discovery of Glycosylase Activity 

A glycosylase is very specific in nature and is an enzyme that carries out the first 

step in the base excision repair process.  It recognizes one or more particular kinds of 

damaged bases and then cleaves the glycosylic bond that attaches the base to the 

phosphate sugar backbone (Volkert, 1988).  The activity of glycosylases were first 

analyzed and studied by Thomas Lindahl in 1976 (Lindahl, 1976).  He describes a new 

class of repair enzymes that remove and replace damaged nucleotides in nonreplicating 

DNA strands.  This study indicated that the hydrolysis of N-glycosidic bonds of damaged 

nucleotides occurred rather than cleavage of the phosphodiester bonds as in other repair 

pathways.  He also distinguished and isolated the functions of three separate enzymes – 

Ura-DNA Glycosidase, 3-MeAde-DNA Glycosidase, and endonuclease II – by 

examining the inactivation of purified enzyme products (Lindahl, 1976).  The glycosolase 

model proposed by this study (Figure 7) corresponds closely to that generally accepted 

today. 
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A.  B.  

Figure 7: A).Glycosylase model proposed by Lindahl in this 
landamark Nature paper.  Reproduction of Lindahl, 1976. B). The 

modern model of glycosylase activity (Volkert collection). 

 

The base excision repair mechanism consists of a cascade of enzymes each 

performing one single task.  A summary of the pathway (figure 7b) involves the 

following: 

A glycosylase cleaves the damaged or incorrect nucleoside at its glycosidic bond.  

This creates an abasic site.  A 5’AP endonuclease excises the abasic site of DNA on the 

5’ side of the abasic site.  A 3’AP lyase or deoxyribophosphodiesterase (dRpase) then 

cleaves the abasic site from the strand of DNA to prepare the site for synthesis by DNA 

polymerase I by setting up the correct orientation of 3’-OH and 5’dNTP.  This is the step 

in which base excision repair received its name, as only a single base is excised in the 

repair process.  To complete this pathway, DNA polymerase inserts the correct base and 

DNA ligase seals the nick.   
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The most relevant base excision repair enzyme to this study is the human alkyl 

adenine DNA glycosylase.  Therefore, a brief history of its discovery, function, and 

structure must be examined in order to see its homology with its bacterial counterparts. 

The human Alkyl Adenine DNA Glycosylase (hAAG) gene 

The hAAG gene is one of the many DNA repair mechanisms in the human body.  

This gene is an important repair glycosylase that removes many base damages including 

3MeA (3-methyl adenine), 3-methylguanine, 7-methylguanine, 1,N6-ethenoadenine, 

hypoxanthine, cyclic etheno adducts of adenine and guanine, 8-oxoguanine, 8-oxo-7,8-

dihydroguanine and various adducts of nitrogen mustards used in cancer chemotherapy 

(Wilson III and Thompson, 1997; Lau et. al, 1998).   

The Samson laboratory cloned hAAG in 1991 and mapped the gene to 

chromosome 16 (Samson et al., 1991).  This team isolated hAAG using an E. coli alkA- 

tag- mutant system similar to that which they used to clone the yeast homolog (MAG).  

They screened random cDNA clones versus control plasmids for MMS resistance.  Those 

plasmids that showed resistance were digested with BamHII and then placed in human 

hamster hybrids to determine the chromosome location.  The hybridization of hamster 

and human glycosylases varied substantially to allow differentiation (Samson, 1991).   

Human-mouse hybrids were used to confirm the findings of the human-hamster 

experiments linking hAAG to chromosome 16.  Samson’s protein had a calculated weight 

of 32.8 kDa and released 3-meA.  This clone showed no homology to the 3-meA DNA 

glycosylases of bacteria or lower eukaryotes, however showed 85% homology to that of 

rat (Samson et al, 1991). 

More laboratories became involved in the study of hAAG after the Samson 

cloning.  Two years later, Vickers et al directly mapped the gene to the short arm of 

chromosome 16, confirming the Samson data (Figure 8).   
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Figure 8: Short arm of Chromosome 16 mapped with hAAG shown 

in detail. 

This team made a curious finding in that there was an alternative first exon to the 

one Samson cloned in their clone.  They speculated that this could be due to use of 

alternative promoters.  The mapping done in this study was very important to the future 

experiments of hAAG.  First, it proved that the Samson sequence was valid, even though 

they obtained a different exon 1, they proved that the sequence of the Samson exon 1 was 

located in the genome as a part of an intron to their clone (Vickers et al, 1993).  In 

addition, they prove that the point of divergence between the Samson exon 1 and their 

exon 1 was exactly at the boundary between exons 1 and 2 (Vickers et al, 1993).  

However, it was not until the work of Pendlebury et al that it was proven that the 

difference in the first exon was a result of alternative splicing (Pendlebury et al, 1994).  

This team used RT-PCR reactions to prove that both the alternative splice events occur 

simultaneously in all types of cells and tissue and that both forms of hAAG are produced 

in all cell types (Pendlebury et al, 1994).    Therefore, each of these separate versions of 

the hAAG gene is a product of alternative splicing, or the process of a single gene giving 

rise to more than one mRNA product.  Splicing is the process of removing the introns 

from the DNA strand and combining only the exons to make the mature RNA sequence.  

In creating the mRNA for the hAAG gene, one of two known routes can be taken.  

Changing the splice site can do many things to the gene such as vary the reading frame 
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(which in turn alters the protein) to introducing new termination codons.  Thus, in many 

genes that are alternatively spliced, a part of an exon in one isoform of the gene can be a 

part of an intron in another isoform (see Voet and Voet, 1995).  The hAAG gene has two 

known isoforms because of alternative splicing.  Each isoform has four exons, however 

the first is different in each case.  Currently, it is not clear why hAAG has an alternative 

splice mechanism, as each isoform is present in all cells at similar levels (Vickers et al, 

1993, Pendlebury et al, 1994). 

1b 2 3

1a 2 3

hAAG-1 

hAAG-1-6x his

hAAG-2 

hAAG-2-6x his

his tag

4

4
 

Figure 9: Representation of the alternative splice sites of hAAG 

Dr. Ludlum’s Research 

Dr. David Ludlum, a chemist in the Pharmacology Department at the University 

of Massachusetts Medical Center, has dedicated his life to finding chemical methods to 

battle cancer cells.  His career entailed two main areas of interest: the improvement of 

cancer chemotherapy and the understanding of chemical carcinogenesis.  Dr. Ludlum 

provided the world of science with great insights on the functions of Nitrogen Mustards 

and other chemical agents involved in controlling the spread of cancer cells.  However, 

the scope of this study entails chemical carcinogenesis.  The hAAG gene is involved in 

DNA repair.  Since Dr. Ludlum is interested in repair mechanisms that work on alkylated 

DNA, his lab has worked in cooperation with the Volkert lab over the past few years.  

Through a collaborative effort between the Volkert and Ludlum laboratories, the 

functions of the hAAG gene have been explored.   
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Dr. Volkert’s Research 

Dr. Volkert has long been interested in the molecular biology of E.coli and the 

regulation and the function of DNA repair genes in E. coli.  More recently, however his 

lab has shifted towards human DNA repair and, as he coined, “damage avoidance” genes.  

Dr. Volkert’s lab has been comparing bacterial repair genes and human repair genes in E. 

coli.    He is also interested in human DNA repair genes that are active on oxidative 

damage.   

Dr. Volkert has assisted Dr. Ludlum in his research by cloning the hAAG gene 

into a stable vector and by creating a his6 tagged version of the gene to simplify 

purification of its product (Volkert, unpublished results).  Dr. Volkert performed 

experiments involving the comparison between the wild type and his6 tag form of the 

hAAG-1 gene and found that both hAAG-1 and its his tagged form complemented the 

alkA, tag mutant (MV2157) strain, restoring near wild type levels of alkylation resistance 

in a strain that lacks its own alkyl specific DNA glycosylases (Volkert, unpublished 

results).  Therefore, similar testing was needed to compare the second isoform of hAAG 

to determine if this form of the gene behaves in a similar manner to its alternatively 

spliced gene product. 

Structure of hAAG 

hAAG is a single domain protein with 7 alpha helices and 8 beta- pleated sheets 

(Lau et. al, 1998).  Figure 8 displays a crystallized representation of the AAG protein and 

its active site.   
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Figure 10: (A) The Crystal structure of the AAG complexed to 
DNA AAG binds in the minor groove of DNA and expels the 

pyrrolidine into the enzyme active site.  (B) In the active site, water 
forms hydrogen bonds (dotted lines) with Glu-125, Arg-182, the 

main chain carbonyl of Val-262, and N4’ of the pyrrolidine abasic 
nucleotide (Pyr7) (Lau et. al, 1998).     

 

hAAG has been studied extensively in the past 8 years.  In this time, a few 

knockout mice have been created to analyze the in vivo function of hAAG in a 

mammalian system.  hAAG has great homology with many of its mammalian homologs, 

including the mouse and rat glycosylase (Engleward et al, 1993).     

  

The Different Repair Mechanisms of Genetic Damage in E. coli 

As discussed above, there are several situations in which DNA finds itself 

vulnerable to damage.  Since DNA is the genetic material of an organism, it is vital that a 

working sequence is preserved.  Therefore, a series of repair mechanisms have evolved to 

protect the fidelity of the DNA sequence.   These repair systems are quite sophisticated in 

function.  Similar systems are present in prokaryotic and eukaryotic cells; the bacterial 

repair systems have often served as models of study for their eukaryotic homologs. 

There are two broad categories of DNA repair of damage and mutations.  The first 

consists of rectifying the damage by reversal.  In this system, the DNA damage is 

repaired at the site of the lesion.  The second category of DNA repair consists of 
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removing a section of DNA from the heteroduplex strand.  This category, named excision 

repair, involves a wide range of machinery to perform the repair process.  An additional 

response to DNA damage is termed “tolerance of DNA damage” (Friedberg et al, 1995).  

This mechanism neither removes nor reverses the primary lesions or adducts, however 

allows cells “to tolerate” them.  Recombination tools often respond to DNA damage in 

this manner.  Unfortunately, permanent genomic mutations frequently arise because this 

mechanism does not fix the damage to the DNA. 

In this section, the reversal of DNA damage will be explored in E. coli, followed 

by the tolerance of DNA damage.  

The First Line of Defense: The DNA Polymerase Complexes 

As described above, DNA replication machinery provides the first line of defense 

against DNA replication errors.  The replication machinery consists of DNA polymerase 

enzymes with accessory proteins.  The DNA polymerases are highly selective in their 

ability to insert nucleotides into the daughter strand of DNA, showing selectivity during 

both the dNTP binding and chemical steps (Kunkel, 1992).  However, when an error does 

occur, the proofreading machinery, specifically the 3’ !  5’ exonuclease activity excises 

the newly inserted incorrect base.  

Mismatch Repair: The MutH, MutL, MutS Repair System 

Mismatch repair in E. coli relies on the methylation of a sequence in its own 

genome to detect mismatched base errors.  The MutS protein detects any mismatches that 

slip through the DNA polymerase machinery or arise due to chemical alternations such as 

deamination events.  A complex is formed with the assistance of MutL.  This complex 

consists of a DNA loop forming in the opposite direction of the mismatch that MutS has 

bound.  MutH then cleaves the complex at the GATC site, destroying the entire strand.  

DNA polymerase III must then begin synthesis of that strand again.   

Since the potentially erroneous base lies in the newly synthesized strand, this 

system must be able to discriminate between parental and newly synthesized DNA.  This 

occurs by the scanning for the placement of a methyl group on the adenine of GATC 

sequences.  The importance of the GATC site relies on the activity of dam methylation.  
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The dam complex, called the dam methylase, follows downstream from polymerase I and 

methylates the adenine of the sequence GATC.  The mismatch repair genes must function 

prior to the activity of the dam methylase in order to distinguish between the methylated 

parental and unmethylated daughter strands.  Therefore, MutS scans the region of newly 

synthesized DNA between the DNA polymerase and the dam methylase for base errors 

due to mismatches.  In order to determine which strand to cleave, the MutH protein 

examines the GATC sequence and cleaves the unmethylated strand.  MutH then nicks the 

DNA strand with the unmethylated GATC site.  The complex formed by the MutL 

protein breaks down and the daughter strand undergoes synthesis again (Figure 11).  

Once the dam methylase adds a methyl group to the adenine of the GATC site, this repair 

mechanism has no means to distinguish between parental and newly synthesized strand, 

thus potential mutations may occur to the genome if MutS does not function in the area 

between DNA polymerase and the dam methylase (Gilman, 1996).  

 

 
Figure 11: The Activity of the dam methylase and the MutH, 
MutL, MutS Proteins.  Adapted from Friedberg et al, 1995. 
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Enzymatic Photoreactivation 

Pyrimidine dimers form as a result of UV radiation.  Neither DNA replication nor 

transcription can function properly in the presence of a pyrimidine dimer because the 

bulky adduct kinks the DNA in an abnormal manner and the dimerized bases fail to 

properly pair with their partners in the complementary strand.  Photoreactivation (PR) is 

one DNA repair mechanism for such lesions.  An enzyme called photolyase uses the 

energy of white light (300-500nm) to bind to pyrimidine dimers and break the bonds, 

thus restoring the DNA to its normal state (Friedberg et al, 1995).   

DNA Repair Mechanisms Active on Alkyl Lesions 

Considering that DNA is the genetic blueprint of all existence, it is left quite 

vulnerable to methylation by both internal and external toxins.  Therefore, cells have 

evolved a series of mechanisms that protect against unwanted methylation.  Alkylation 

damage is repaired via two main processes.  One pathway is regulated by the adaptive 

response regulon.  The other consists of constituitively expressed alkyl repair genes 

(Figure 12).  The genes of each pathway display many overlapping features and some 

genes are active in both repair processes.     

ada
alkA
alkBtag

ogt aidB

Alkyl
Repair
Genes

Alkyl
Adaptive
Response
Genes

 
Figure 12: The two mechanism in which alkylation damage may be 

repaired.  Note the overlapping functions of ada, alkA, and alkB. 

 The alkylation of DNA is both helpful and harmful to survival.  As stated in the 

section above, the addition of a methyl group to a GATC sequence assists the DNA to 

distinguish itself as the true genomic code.  However, while these types of methylation 

assist the fidelity of DNA replication, there are several different methyl damages that 

occur to DNA as well.  These damages usually occur at specific sites on the bases, but 
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also may occur to the oxygen double bonded to the phosphodiester backbone.  A few 

places in which the DNA undergoes unwanted alkylation include the O6 of guanine, O4 

of thymine, 3rd and 7th positions of guanine , and the 3rd position of adenine.   Many of 

these lesions may become lethal if left untreated.  

The system that the E.coli has devised is very efficient at repairing the methyl 

lesions that are lethal to DNA.  This sytem involves the use of the genes within the 

adaptive response scheme and other alkylation repair genes such as ogt and tag.  The 

sections below detail the processes in which methyl damage is removed from DNA.   

The Adaptive Response System 

The function of the Ada protein, which senses alkylation damage in cells, is two-

fold: it controls the processes of the adaptive response system and directly repairs 

specific DNA lesions.  Thus, it is the controller of the adaptive response system, which is 

a regulon that includes the ada gene itself, aidB, alkB, and alkA genes (Lindahl, 1988).  

The adaptive response system repairs alkylation damage to DNA  replication.  When Ada 

senses that there is a need for additional repair processes or excessive lesions are created, 

it activates the transcription of itself and the other three genes of its regulon  (Figure 13, 

Friedberg et al, 1995, Lindahl 1998).  Thus, the Ada protein has a much larger role in the 

E. coli than just the repair of some alkylated lesions.   
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Figure 13: The Adaptive Response Regulon controlled by Ada.  

Adapted from Lindahl, 1988. 

DNA Alkyltransferases: the Repair of O6-Guanine and O4- Thymine 

Alkylations and Phosphotriesters in DNA 

In E. coli, two genes encode proteins that function together in the process of 

removing O–alkylation lesions to guanine and thymine—Ada and Ogt.  These proteins 

repair O—alkylation lesions to guanine and thymine, thus preventing the mutant bases 

from pairing with the incorrect base in replication.  O6—methyl guanine pairs with 

thymine if not corrected and O4—methyl thymine pairs incorrectly with cytosine 

(Friedberg et al, 1995).  Therefore, this repair system is vital to ensure the fidelity of the 

genetic material is kept intact.   

The sites of base alkylation that Ada acts on are specific; these sites include only 

the oxygen atoms of the nitrogenous bases carrying alkyl groups (Friedberg et al, 1995).  

As mentoioned above, Ada helps with the correction of O6—meG and O4—meT.  In 

addition, Ada recognizes the alkylation at phosphotriester bonds as well, which are 

lesions found in the DNA backbone.   

Ada is a suicide enzyme, which means that it terminates its own function when it 

repairs the DNA.  It does so by fixing the alkylated lesion using the side chain of two 
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cysteine residues, one at the N-terminal end and the other at the C-terminal end (Figure 

14, Friedberg et al, 1995, Lindahl et al, 1988, Meyers et al, 1993).         

 
Figure 14: The activity of the Ada protein.  Note the two cysteine 

residues at amino acid locations 69 and 321.  Once the cysteine 
residues accept methyl groups, the enzyme can no longer function. 

The second DNA alkyltransferase in E. coli, Ogt, differs from Ada in many 

aspects.  This second DNA alkyltransferase protects cells from the damage of alkylation 

while the adaptive response system produces an optimal level of the repair genes under 

its regulatory control.  This allows the cell to make moderate repair to alkylation damage 

while the adaptive response genes transcribe (Friedberg et al, 1995).  Ogt differs from 

Ada in that it only works on alkylated bases and not on the alkylated phosphotriester 

bonds (Friedberg et al, 1995).  The extra protection against alkylated base damages 

suggests that alkylated base damage is more lethal than that of the DNA backbone.  Ogt 

is the primary alkyltransferase in cells which have not yet been induced by ada.  Upon 

induction of the adaptive response system, ada assumes control of methyl transferase 

activity (Volkert, personal communication).  While the ogt+ gene product does not act 

exactly the same as the ada gene product, it does perform one similar function: 
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transferring the methyl lesions of bases away from the base thus restoring its correct 

chemical structure. 

3-meA DNA Glycosylases: The Repair of 3meA, 3meG, and 7meG 

lesions in DNA  

E. coli has two 3-meA DNA glycosylase enzymes in its genome.  These two 

enzymes function in conjunction with the alkyltransferases to remove a methyl lesion 

from the genome.  However, their mechanism and the types of alkylated bases they 

repair, are quite different from that of the alkyltransferases.   

The first 3-meA DNA glycosylase in E. coli is encoded by the tag gene and is 

about 21 kDa in size.  This enzymne has a narrow substrate specificity.  3-meA DNA 

glycosylase I fully releases 3-meAdenine lesions from DNA and catalyses the release of 

3-meG at lower levels (Friedberg et al, 1995).  It is constituitively expressed and is not 

regulated as part of the adaptive response process (Samson, 1991).   

The second 3-meA DNA glycosylase in E. coli is encoded by the alkA gene.  This 

gene is part of the ada regulon and is quite different from the first glycosylase.  It is 

possible that this enzyme recognizes positively charged residues rather than methylated 

lesions as its broad specificity includes those lesions listed in Table 1 (Friedberg et al, 

1995). 

Table 1: The lesions recognized by the DNA glycosylase encoded by 
alkA+. 

3-meA DNA glycosylase II catalyses  the exision of these residues on DNA 
1. 3-meA 5. N1-carboxyethyladenine 
2. 3-meG 6. N7-carboxyethylguanine 
3. 7-meA 7. O2-meT 
4. 7meG 8. O2-meC 

 

Similarities and differences between alkA and tag 

For enzymes that perform very similar functions, alkA and tag are quite different 

from one another.  The protein products show very little homology to each other 
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(Friedberg et al, 1995), possibly suggesting that they function in a different manner.  

Also, while the alkA gene is a member of the adaptive response regulon (Figure 13 

above), tag is not.  This means that the alkA gene is inducible by the alkylation adaptation 

response of the cell whereas tag is constituitive by alkylation adaptation (Friedberg et al, 

1995).  The tag gene has a narrow, but efficient substrate specificity, as it removes 3-

meA in a quick and efficient manner.  The alkA gene catalyzes the release of a greater 

range of lesions (Table 1).  Since tag is expressed constituitively in cells, it is able to 

repair 3-meA lesions immediately.  The ada gene must be induced before it is able to 

repair alkyl lesions.  Therefore,  while the ada regulon induces a multitude of alkA gene 

products to assist with the methyl repair processes, the enzyme encoded by tag repairs the 

3-meA lesions of methylated DNA (Friedberg et al, 1995).   

The function of both 3-meA DNA glycosylases is to remove alkylated damage 

from DNA.  As the cells progress from prokaryotes to eukaryotes to mammalian, it 

becomes curious to observe the similarities and differences of the repair processes that 

are analogous to this E. coli repair system.  The enzymes from other species function in 

the E. coli cell in mutant strains lacking both alk- and tag- (Samson, 1991).   

The adaptive response system and the ogt+ and tag+ genes provide a series of 

mechanisms to repair methylated DNA lesions.     

Other DNA Repair Mechanisms in E. coli 

While the focus of this study primarily involves the bacterial genes alkA and tag, 

and their role in the removal of methylated DNA damage, one should also note some of 

the additional repair pathways that the E. coli (as well as other organisms) have evolved 

to combat DNA damage. 

Ligation of DNA Strand Breaks 

Single strand breaks and nicks in the DNA often undergo repair by the enzyme 

DNA ligase (Friedberg et al, 1995).  This enzyme directly rejoins the 3’ hydroxyl group 

to a 5’ dNTP to create a phosphodiester bond.  While this enzyme works alone, it also 

assists in some of the latter steps of the excision repair cascades.    
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Repair by Recombination 

This system of repair functions when DNA containing bulky lesions such as 

pyrimidine dimers are replicated prior to repair of the lesion.  It involves the function of a 

series of rec genes.  These rec genes invade the daughter strand by forming a holliday 

junction opposite a site of damage such as a pyrimidine dimer in order to fill in a gap 

across.  This leaves a gap opposite an undamaged template and allows for the replication 

or resynthesis across the gap (Figure 15, Friedberg et al, 1995).   Basically, RecA 

interacts with other proteins to create a holliday junction between the parent strand 

without the DNA damage and the stalled daugther strand at the point in which a DNA 

polymerase is stalled by the presence of a pyrimidine dimer.  The parent strand without 

DNA damage now serves to fill the gap across from the pyrimidine dimer with the 

correct sequence.  The daughter strand continues to be synthesized using the opposite 

daughter strand as its template.  Once the area containing the bulky lesion is successfully 

replicated, the Holliday junction is resolved and the DNA continues synthesis to 

completion.  While this method does not fix the bulky lesion on the parental strand, it 

“tolerates” its presence by using recombination machinery to continue synthesis.  The 

cell preserves DNA fildelity by further diluting the damage as future replications occur. 

 

  
Figure 15: Recombinational Repair of DNA 
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The SOS Response 

The SOS repair system assists cellular survival when exposed to extremely poor 

environmental conditions.  DNA may undergo excessive radiation damage, which creates 

a number of lesions.  Many of these lesions may not be repairable by either the nucleotide 

excision repair or recombination repair mechanisms because they may occur across from 

each other on double stranded DNA.  Thus, DNA polymerase III stalls when it 

approaches a base across from a site on the opposite strand of DNA containing excessive 

damage.  The SOS response system begins to function at the point DNA pol III is stalled.  

The LexA protein becomes inactivated and the genes under LexA repression, umuD and 

umuC, are induced (Opperman et al, 1999).  These UmuD and UmuC proteins form a 

complex and function with RecA and SSB (single strand binding protein) to replicate 

translesion areas of damaged DNA (Reuven et al, 1999).  Thus, UmuD and UmuC form 

the complex that constitutes the fifth DNA polymerase (Reuven et al, 1999; Tang et al, 

1999).   

The SOS response does not necessarily correct the DNA damage, however it 

“tolerates” its presence by using recombination machinery to permit DNA synthesis to 

continue, thus keeping the cell alive.  DNA polymerase V is very mutagenic, however the 

cell uses it because it is efficient at replicating the nucleotides across from abasic sites or 

UV pyrimidine dimer sites.  Polymerase V synthesizes DNA across from these damaged 

sites according to the “A-rule,” as dAMP is preferentially incorporated opposite the 

lesion (Tang et al, 1999).   

 

Other Glycosylase Repair Systems 

There are other glycosylase activities in a cell other than those of hAAG and its 

homologs such as 3-meA DNA glycosylase in E. coli.  This section examines a two of the 

other major glycosylases.   
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The MutM, MutT, MutY Repair System for Oxidative Damage 

MutM, MutT, and MutY for a repair system for oxidative damage in DNA.  

Specifically, this system protects DNA from the lethality of 8-oxoG.  Each enzyme 

functions independently; however, it is the product of one enzyme that is used as a 

substrate by another (Figure 16).   

 
Figure 16: The MutM, MutT, MutY Glycosylase pathway.  

Adapted from Friedberg et al., 1995.   

 

Panel A from Figure 16 is a representation of 8 oxo-guanine, commonly referred 

to as GO.  A double strand of DNA that is susceptible to oxidative damage may incur 

such damage on some of its guanine nucleotides.  If a guanine incurs oxidative damage, 

MutM, also referred to as FaPy, excises the 8-oxoG base and prepares the DNA for 

synthesis and repair.  If replication should occur prior to being fixed by MutM, the 8-oxo-

guanine may mispair with adenine.  Should this happen, mutY is able to detect the GO-A 

mispair and excise the adenine.  This recycles the GO damage for either another round of 

replication or for mutM to fix (Figure 16, panel B).  The function of mutT is to prevent 8-

oxodGTP from entering the deoxynucleotide triphosphate pool that DNA polymerase 
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uses to synthesize new DNA.  MutT phosphorylates 8-oxodGTP to 8-oxodGMP (Figure 

16, Panel C).  

Uracil DNA Glycosylase 

The Uracil DNA Glycosylase removes deaminated cytosine (chemically uracil) 

residues from DNA.  These structures may appear in the DNA as either misincorporated 

Uracil nucleotides or deamination damage to cytosine.  Ura-DNA Glycosylase selects for 

deoxyUridine, therefore it does not repair RNA molecules. This glycosylase 

phosphorylates the region 5’ to the Uracil base (Friedberg et al, 1995).  Its importance is 

to preserve the fidelity of DNA by safeguarding the misincorporation of a uracil base.   

 

Description of Drugs used in this Study 

The Alkylating Agents 

 

Alkylating agents are a group of compounds that modify DNA upon contact thus 

providing a therapeutic effect (Ludlum, 1997).  The nitrogen mustard, an early alkylating 

agent that selectively killed tumor cells, was first used in classified clinical trials 1942, 

thus beginning modern cancer chemotherapy treatments (Ludlum, 1997).  After World 

War II, the United States government declassified the nitrogen mustard work and modern 

cancer chemotherapy began (Dittami, 1997).   

Alkylating agents have been used in the chemotherapy of cancer and other 

neoplastic diseases.  These chemical compounds have strong electrophile properties, thus 

they undergo Sn1 reactions to release a negative charged ion and convert from a tertiary 

amine to a quaternary compound (Goodman and Gilman, 1996).  Then, to attach to a base 

pair of a DNA molecule, the mustard undergoes an Sn2 nucleophilic substitution (Figure 

17).   
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Figure 17: The Mechanism of action of the Nitrogen Mustard 
Mechlorethamine.  Other alkylating agents follow a similar 

mechanism.  Based on figure 51-1 from Goodman and Gilmann, 
1996. 

 

Nitrogen mustards attract DNA’s guanine at the number 7 position (Figure 18). 

 
           Figure 18: Sketch of the seventh position where a Nitrogen 

Mustard attracts Guanine  

Within minutes after a person ingests an N-Mustard, it has completely reacted in 

the body.  This drug kills the cell by linking to a nucleotide and preventing DNA 

synthesis.  Once DNA is alkylated; however, it often repairs itself using base or 
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nucleotide excision repair systems described above prior to the next cell cycle or division.  

In this case, the damage is repaired and the alkylating agent is not lethal.   

An interesting atribute to cancer therapy is the role of the oncogene p53, which is 

essential for normal control of cell growth as it provides a pathway for apoptosis.  The 

p53 gene responds to DNA damage by arresting the cell cycle, thereby allowing repair to 

be completed before replication is allowed to resume (Oren, 1999).  If the damage is 

beyond cellular repair, p53 triggers cell suicide or apoptosis to occur.  Normal cellular 

arrest and apoptosis functions of p53 limit tumorgenesis; however, if a mutation occurs to 

the p53 gene, it is very likely that a tumor cell may be created (Sheikh and Fornance, 

2000).  The mutation of this p53 gene occurs in nearly half of all human tumors, making 

the mutant gene a likely candidate for cancerous genetic alternations (Sheikh and 

Fornace, 2000; Oren, 1999).  Therefore, tumor cells fail to arrest the cell cycle when 

DNA damage occurs and proceed directly to replication.  The p53 gene, thus, is a target 

for several cancer therapies, such as treatment of Nitrogen Mustards, because treatment 

leads to preferential killing of p53 deficient tumor cells (Sellers and Fisher, 1999).  

Cancer cells, therefore, display optimum toxicity due to their erroneous rapid growth in 

the absence of wild type p53.   

The Nitrosoguanidines: N-methyl-N’-Nitro-N-Nitrosoguanidine 
(MNNG) and N-ethyl-N’-Nitro-N-Nitrosoguanidine (ENNG) 

 

N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) was synthetically created by 

Green and Greenberg in 1960 after it was shown to function as an effective agent against 

L1210 cells injected in mice (see: Ludlum, 1997a; Ludlum, 1997b).  Unstable in water, 

MNNG provides a high yield of N-methyl-N’-nitroguanidine and nitroso radicals, which 

quickly get converted to nitrous acid, upon decomposition (Gichner and Veleminsky, 

1982).  MNNG alkylates nucleic acids best in the acidic pH range of 5.0-5.5 (Gichner and 

Veleminsky, 1982).  MNNG reacts with the nucleophilic centers in DNA such as the 

highly attacked N7 position of guanine and the N3 postion of adenine.  MNNG is more 

reactive than other alkylating agents such as MMS as it methylates the DNA at more sites 

than MMS.   For example, MNNG reacts with oxygen residues that have lower 
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nucleophilicity.  These sites include the O6 position of guanine, the O4 and O2 positions 

of thymine, the O2 position of cytosine, the oxygen located in the ribose ring, and the 

oxygen residues of the phosphates (Gichner and Veleminsky, 1982).  MNNG methylates 

adenine at the third position of its structure, thus preventing base pairing (Gichner and 

Veleminsky, 1982).  The 3 meA-DNA glycosylases I and II repair this lesion to correct 

the DNA sequence in E. coli and hAAG repair this lesion in mammalian cells (Engleward 

et al, 1996).    

A. B.  
Figure 19: Chemical Structure of A). MNNG and B). ENNG 

MNNG is not found in the natural environment, however its use as a model 

alkylator in research laboratories has assisted scientists study the adaptive response DNA 

repair system (Gichner and Veleminsky, 1982) and the alkylation of genetic material.  An 

ethyl homolog of MNNG, N-Ethyl-N’-nitro-N-nitrosoguanidine (ENNG), was also used 

to some extent in this study.  It behaves in a similar manner to MNNG, but produces 

ethyl rather than methyl lesions. 

Methyl Methanesulfonate (MMS) 

Methyl methanesulfonate (MMS) is a methylating agent.  It is less reactive than 

other alkylating agents used in this study such as the nitrosoureas and MNNG, yet it 

yields various methyl lesions on the DNA (Sakumi and Sekiguchi, 1990).  Unlike 

MNNG, MMS undergoes an Sn2 reaction.   

MMS produces various methylation adducts to the DNA, however it 

preferentially forms adducts to nitrogen atoms of the nucleotide rather than oxygen 

(Samsom et al, 1986, Sakumi and Sekiguchi, 1990).  MMS selectively damages N-

guanine residues, so the great majority of adducts formed by MMS in vivo are N-

methylated guanines (Roy et al, 1996).   
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MMS also differs from the other methylating agents in the damage it creates.  

Whereas MNNG produces toxicity to the cell by preventing chromosome replication 

during S phase of cell division, MMS produces toxicity mainly by damaging cell 

membranes (Smith and Grisham, 1983).  MMS can form genetic mutations, just as the 

other alkylating agents, however it is not as reactive as the other alkylating agents and it 

does not have a broad specificity for selecting alkylation sites in DNA.   

The Cross-Linking Agents 

Mitomycin C (MMC) 

Mitomycin C is an antibiotic that was isloated in Japan in 1958 during a screening 

of soil samples.  The structural chemistry of Mitomycin C  (Fig. 20) involves an aziridine 

group, a quinone group, and a mitosane ring that assist in the alkylation of DNA 

(Goodman and Gilman,1996; Silverman,1992).  Mitomycin C inhibits DNA synthesis by 

cross-linking the DNA at the N6 position of the adenine and at the O6 and N7 positions of 

guanine (Goodman and Gilman, 1996; Verweij et al, 1995).   

 

 
Figure 20: Mitomycin C Structure (Reproduction, Goodman & 

Gilman, 1996) 

Mitomycin C is a bioreductive alkylating agent which is reduced via electron 

pushing.  This reduction occurs either spontaneously or with the assistance of enzymes 

(Goodman and Gilman, 1996).  Bioreductive activation is a prodrug strategy in which an 

inactive compound is metabolically reduced to an alkylating agent (Silverman, 1992).  

Mitomycin C has three potential sites for alkylation, however none of these sites is 

preferentially reactive (Goodman and Gilman, 1996).  Two of the alkylation sites are 
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located on the aziridine group and the other is located at one of the side chains of the 

mitosane ring (--CH2OCONH2). 

Mitomycin C can be reduced by one or two electrons.  One electron reductions, 

performed by enzymes such as cytochrome p-450 reductase, enhance toxicity under 

hypoxic conditions.  These reductions reduce mitomycin C to its semiquinone form, 

which is reversible by the addition of O2. 

Double electron transfer reduces mitomycin C to its hydroquinone form.  This 

reduction, performed by enzymes such as DT-diaphorase, creates the opening of the 

aziridine ring and loss of the carbamyl group.  The new configuration creates DNA 

reactive sites at the 1 and 10 positions (Goodman and Gilman, 1996; Rauth et al, 1998).  

The molecules NADH or NADPH play a role in each reduction as either can assist as a 

cofactor (Rauth et al, 1998).  Figure 21 describes the mechanism of action of mitomycin 

C.  In step 8.83, R represents an electron if the reaction involved the reduction of only 

one electron, converting the quinone to the semiquinone stage, or a hydrogen if the 

reaction involved the reduction of two electrons, reducing the quinone to the 

hydroquinone stage (see: Silverman, 1992).   
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Figure 21: Mechanism of Action of Mitomycin C. (Reproduction, 
Silverman, 1992) 

Shortly after the discovery of mitomycin C in 1958, Iyer and Szybalski proved 

that mitomycin C could crosslink DNA strands (Rauth et al, 1998; see: Silverman, 1992).  

Mitomycin C crosslinks DNA at the N6 position of adenine or at either the O6 and N7 

positions of guanine (Goodman and Gilman, 1996; Verweij et al, 1995).  By crosslinking 

the DNA, mitomycin prevents additional synthesis, thus the cell will not be able to 

reproduce and subsequently dies.     

The United States FDA approved the use of mitomycin C for anticancer treatment 

in 1974 to fight solid tumors (Rauth et al, 1998). 

 

The Nitrosoureas 

Nitrosoureas differ from other alkylating agents in that they decompose very 

rapidly in aqueous solutions and in addition to alkylating DNA, these compounds have 
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the ability to carbamoylate proteins (see: Ludlum, 1997).  This category of compounds 

was created following the discovery that MNNG is effective in slowing the growth of 

tumor cells in mice (Green and Greenberg, 1960).  MNU (Figure 22) exhibited even more 

activity than MNNG.  Thus, an entire new class of compounds was derived from MNNG 

named the nitrosoureas.  

Chloroethyl derivatives of MNU were created and developed due to their greater 

activity and lower toxicity as therapeutics. Chloroethylnitrosoureas (CENUs) have the 

ability to form a cytosine-guanine crosslink DNA thereby denaturing the DNA (Ludlum, 

1997, Eisenbrand et al, 1986).  This study used 2-chloroethyl-N-nitrosourea (CNU) and 

N,N’-bis(2-chloroethyl-N-nitrosourea (BCNU), members of the chloroethylnitrosourea 

(CENU) family (Figure 22). 

 

 
Figure 22: The Molecular Structure of MNU and the CENUs 

CNUs are very potent yet very toxic alkylating agents and anticancer drugs 

(Eisenbrand et al, 1986; Erickson et al., 1980).  CNU is lipid soluble thus enters the 

tumor cells by passive diffusion (Ludlum, 1997b).  Therefore, CNU and other 

nitrosoureas are useful for the treatment of malignant diseases such as brain tumors and 

lymphomas (Weinkam and Dolan, 1983). This attribute, however, is countered by the 

highly toxic qualities that nitrosoureas also possess.      

The mechanism of alkylation by CENU has not yet been fully determined, 

however it is known that DNA crosslinking occurs in a two step reaction.  The first step 

involves the addition of a chloroethyl group to a guanine-O6 DNA position.  CNU also 
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attacks the N6 ring of adenine, N4 ring of cytosine and either the N1or N7 of guanine. In a 

clinical setting, the second step occurs hours after the first.  The molecule forms an 

interstrand crosslink using the bound chloroethyl group to react slowly with a 

nucleophilic site on the opposite strand of DNA (Erickson et al.,1980).  Figure 23 

demonstrates this proposed mechanism of CNU described above.  In this reaction, R = 

CH2CH2Cl, which is used to react with DNA to produce an interstrand crosslink between 

a guanine molecule from one strand and a cytosine from the opposite strand (see: 

Silverman, 1992).   

 

 

Figure 23: The Mechanism proposed for crosslinking of DNA by 
CNU (Reproduction, Silverman, 1992) 

 

There are three major pathways that lead to the decomposition of CNU (Fig. 24, 

Eisenbrand et al, 1986). 
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Figure 24: Three Decomposition Pathways for CNU 
(Reproduction, Eisenbrand et al, 1986) 

 

In pathway A, the CNU forms a ring.  Pathway B is the major pathway for CNU 

decomposition.  It involves the formation of a bifunctional electrophile and isocyanate 

(Eisenbrand et al, 1986).  Pathway C also involves a ring formation intermediate stage.  

These three pathways determine the decomposition of CNU which in turn determines the 

ability of the drug to work on the DNA.   

N,N’-bis(2-chloroethyl-N-nitrosourea (BCNU) proved to be very active in curing 

mice that had been injected with a lethal dose of L1210 cells (Ludlum, 1997).  BCNU 

differs from CNU structurally because of the addition of another chloroethyl group.  

BCNU was the first of the nitrosoureas to be submitted for clinical trials  and is one of the 

few drugs that are capable of passing through the blood brain barrier.  Since it is able to 

do so, BCNU is used as a treatment for brain tumors.   

CENUs create intra and interstrand crosslinks in the DNA (Figure 25).  
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Figure 25: DNA crosslinks formed  by CENU.  A. 1,2-bis(7-

guanyl)-ethane; B. 1-(3-cytosinyl),2-(1-guanyl)ethane.  Adapted 
from Ludlum, 1997. 

The multistep reaction shown in Figure 26 was proposed to explain both the 

formation of the C-G crosslink and the role of alkyltransferase in conferring resistance to 

CENUs (Tong et al, 1982).  The first step in the reaction is a transfer of a chloroethyl 

group from the CENU to the O6-position of the guanine in DNA.  This is followed by an 

intramolecular cyclization reaction to form the intermediate, 1, O6-ethanoguanine, which 

reacts with the N-3-position of cytosine to form the C-G crosslink.  Alkyltransferase can 

remove the chloroethyl group from the O6-position guanine before crosslinking occurs, 

restoring O6-(2-chloroethyl) guanine to its original unmodified form and protecting the 

cell from toxicity (Figure 26; Ludlum, 1997).        
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Figure 26: Reaction of CNUor BCNU with guanine in DNA.  When 

a chloroethyl group is attached to the O6+ position of guanine, a 
DNA crosslink can occur.  However, alkyltransferase activity can 

repair the guanine residue by removing the chloroethyl group 
before the crosslinking occurs.  R denotes the deoxyribose of DNA.  

Adapted from Ludlum, 1997. 

The E. coli 3-meA-DNA Glycosylase II (alkA) has been shown to excise some of 

the modified bases from the CNU-treated DNA (Figure 27, Ludlum 1997). 

 
Figure 27: Modified base release from N-(2-chloroethyl)-N1-alkyl-

N-nitrosourea treated DNA by bacterial 3-methyladenine DNA 
glycosylase II (alkA).  A. 7-(2-chloroethyl)guanine; B. 7-(2-
hydroxyethyl)guanine; C. 1,2-bis(7-guanyl)ethane; D. N2, 3-

ethanoguanine.  Adapted from Ludlum, 1997. 
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Histidine Tag 

One of the goals of this study was to use the histidine (his) tag to assist in the 

detection of glycosylase protein product.  A histidine tag is a polyhisdine tail usually 

consisting of a series of six histidine amino acids attached to the end of a gene, which 

encodes an identifiable marker.  This marker can be especially useful for identifying 

protein production.  Anti-his antibodies can be used in experiments such as the Western 

blot to attract and collect the his-tag labeled protein.  This serves as a method for 

identifying the level of protein produced.   

Prior to this study, a his-tagged version of hAAG-1 was constructed.  As a part of 

this study, the PCR product of the hAAG-2 gene was incorporated into the vector 

containing the hAAG-1-his6.  This provided the laboratory with a his–tagged version of 

each isoform.   

Previous SDS-PAGE analysis performed on purified protein from hAAG-1-

bearing E. coli cells revealed the presence of truncated form of hAAG (Ludlum, personal 

communication).  It was believed that this truncation was due to the OmpT protease 

located on the outer membrane of the E. coli cells.        

 

The OmpT Protease  

The outer membrane protein OmpT is a protease that catalyzes protein 

degradation by cleaving between dibasic sites, preferentially Arg-Arg linkages (Sugimura 

and Higashi, 1988). OmpT proteolysis may also occur after lysine or arginine residues 

(Cavard and Lazdunski, 1990).  OmpT is also responsible for protamine inactivation by 

degradation of the toxic peptide at the external face of the cell envelope, thus protecting 

the cell from antimicrobial cationic proteins in the environment (Stumpe, et al, 1998).  

Protamine causes membrane permeability.                

OmpT is known to cleave secreted fusion proteins and thereby allows harvesting 

of the mature products from the culture supernatant (Maurer et al, 1997).  Interestingly, if 

a cell is permeablilized or broken to allow the ompT  gene product to interact with 

intracellular proteins, it can cleave these even though they normally would not have come 
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into contact with each other (Henderson et al, 1994).  The OmpT protease also has 

specific functions such as cleavage of the HlyA transport signal secreted through the 

outer membrane, cleaving of fusion proteins which causes the extracellular release of 

toxin B subunit, and the degradation of a B-lactamase protein A in the periplasmic space.  

These functions suggest that OmpT processes precursor polypeptides and degrades 

membrane proteins (White et al, 1994).    

Relevance to the Study of hAAG 

DNA repair enzymes are vital for the transfer of correct genetic information from 

parent to daughter cells.  Therefore, it is important to understand their basic functions.  

Once this is known, scientists can apply therapies for diseases based on the strengths of 

the repair enzymes.  Studying hAAG, thus, allows scientists to further understand how 

base excision repair enzymes function.  This is important for multiple reasons, one of 

which is to attempt to selectively treat cancer cells instead of normal cells.     

An important item to cancer chemotherapy is the status of DNA repair.  

Therefore, by studying a gene that repairs DNA, indirectly, possible cancer therapies are 

being researched.  Since cancer is generally results from mutations in DNA, 

understanding these repair genes is essential in the fight against cancer.  From a cancer 

formation perspective, maximizing the activity of repair enzymes such as hAAG prevents 

inherited mutations.  However, from a cancer therapeutic perspective, minimizing these 

repair activities in cancer cells would be a benefit.  So in this study, while not directly 

working with cancerous cells, a DNA repair gene whose function may assist in cancer 

therapy in one of the two approaches was explored.   

What can be Learned Using a Bacterial System 

This study uses a human gene cloned into a plasmid transformed into E. coli cells.  

The choice for using a bacterial system instead of a mammalian system involves many 

benefits.  First, one is able to compare the relationship of hAAG to its bacterial 

homologs, products of the alkA and tagA genes.  In this manner, one can study the 

overlapping functions of the 3-meA DNA Glycosylases of bacteria versus that of man.  

Another asset to using a bacterial system is the ability to observe and analyze if hAAG 
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function deviates between mammalian and bacterial cells.  Scientific literature has proven 

some mammalian cell reisistance to different types of DNA damage in the presence of 

hAAG (Engleward, 1997).   Finally, bacteria have the quickest growth rate, thus 

providing an expedient approach for conducting daily studies.       

The Purpose of Thesis 

This Master Thesis involved several areas of emphasis, thus it had multiple 

purposes.  One purpose of this Masters thesis was to construct the alternative form of the 

hAAG gene (hAAG-2 and its his-tagged derivative) and to compare the properties of the 

hAAG-1 and hAAG-2 isoforms.  The hAAG-2 isoform is very similar in function to 

hAAG-1, as seen in this study and prior work (Pendlebury et al, 1994).  With the help of 

Dr. Volkert and his previous work, analysis of the similarities and differences between 

the two forms of the hAAG gene was an important aspect of this study.   

A second purpose was to use the constructed genes in mutant E. coli systems to 

determine the function of each gene against DNA alkylating agents and crosslinkers.  The 

purpose for this aspect of the study was to determine if the results obtained in an E. coli 

system were consistent with those obtained in a mammalian system.  In addition, it would 

further suggest the precise function of hAAG and if it acted alone or with additional 

enzymes.   

The third purpose of this study was to obtain information about the hAAG protein 

production of each isoform.  This will allow one to observe if there are different levels of 

production between each isoform.   

Experimental Strategy 

The strategy for the experiments in this project was very precise and clear.  The 

first objective was to produce the second isoform of the hAAG gene.  Once this was 

completed the strategy was to use it in a series of survival tests in which the human 

hAAG gene was expressed in bacteria genetically engineered to lack their own genes 

homologous to that of hAAG. The strategy behind performing the survival tests was to 

compare the ability of the two isoforms of the hAAG gene to enhance the survival of the 

DNA repair deficient bacteria.  While these studies occurred, a knockout mutant ompT E. 
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coli strain was constructed.  This strain made it possible to purify intact, full-length 

hAAG protein from bacteria.     

The three themes of this project, therefore, were to produce the second isoform of 

the hAAG gene, to test that gene’s ability to rescue cells from specific chemical lesions 

and compare its action to that of its alternative isoform, and to create a knockout ompT E. 

coli mutant strain in order to produce the intact proteins in order to perform various 

protein analyses efficiently.           
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MATERIALS AND METHODS 
This section describes the materials and methods used in this study.  It is 

divided into five main sections.  The bacterial strains section discusses the relevant 

bacteria strains and plasmids used and created in this study.  The Recombinant DNA 

techniques section discusses the experiments performed on such strains.  The survival 

curve section involves testing the resistance of strains expressing different isoforms of 

the human alkyl adenine DNA glycosylase gene (hAAG).    The ompT section 

involves the microbial genetics of creating a strain carrying a mutant form of this 

gene.  The Protein Analysis section discusses the experiments performed in the ompT 

mutant background.   

 

Bacterial Strains 
The bacterial strains used or created in this study are listed in Table 2.  All 

strains are derived from E. coli. K12.  Key strains have mutations inactivating alkA1 

and tagA1, two bacterial DNA glycosylase genes required for repair of alkylated 

DNA.  The bacterium E. coli is rod-shaped and has a 4500 kilobase circular genome 

(Davis et. al, 1997).     

Table 2: E. coli Strains used or created in this study, unique 
characteristics of each strain relevant to this study, and the 

source or reference of the strain. 

Strain Relevant Characteristics and Properties Source 

Q High Efficiency Transforming Strain Lab Collection 
MV1161 Derivative of AB1157 Lab Collection 
MV1176 uvrA deficient strain. Tranductant derived from 

HK19R of JC3912 
Lab Collection 

MV2157 alkA1 tagA1 mutant of transductant of MV1174 x P1 
GC4800 

Lab Collection 

MV3855 MV2157 alkA1 tagA1 uvrA mutant. Lab Collection 

MV4122 MV2157 transformed with pMV509 (hAAG-1) Lab Collection 

MV4126 MV2157 transformed with pMV513 (hAAG-1-His6) Lab Collection 

MV4135 pMV518 hAAG-2-(his)6 reconstructed in MV2157 Lab Collection 

MV4136 pMV519 hAAG-2-(his)6 reconstructed in MV2157 Lab Collection 

MV4137 pMV513 transformation of AD202 (ompT) Lab Collection 
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MV4138 pMV513 transformation of WA834 (ompT  E.coli:B) Lab Collection 

MV4139 MV4137 x P1 * CAG12171 linked to OmpT::Kan This Study 

MV4140 MV4137 x P1 * CAG12171 linked to OmpT::Kan This Study 

MV4147 pMV536 in Q This Study 

MV4148 pMV537 in Q This Study 

MV4210 MV2157 transduced to ompT P1-4139. alkA1 
tagA1 ompT::Kan mutant 

This Study 

MV4211 MV4210 transformed with hAAG-1-his-6 
(pMV513).  alkA1 tagA1 ompT::Kan mutant 

This Study 

MV4212 MV4210 transformed with hAAG-1-his-6 
(pMV513).  alkA1 tagA1 ompT::Kan mutant. 

This Study 

MV4213 MV4210 transformed with hAAG-2-his-6 
(pMV536).  alkA1 tagA1 ompT::Kan mutant. 

This Study 

MV4214 MV4210 transformed with hAAG-2-his-6 
(pMV536).  alkA1 tagA1 ompT::Kan mutant. 

This Study 

MV4215 MV4210 transformed with hAAG-2-his-6 
(pMV537).  alkA1 tagA1 ompT::Kan mutant. 

This Study 

MV4216 MV4210 transformed with hAAG-2-his-6 
(pMV537).  alkA1 tagA1 ompT::Kan mutant. 

This Study 

MV4217 Q transformed with hAAG-2 (pMV543) This Study 
MV4218 Q transformed with hAAG-2 (pMV543) This Study 
MV4219 Q transformed with hAAG-2 (pMV544) This Study 
MV4220 Q transformed with hAAG-2 (pMV544) This Study 
MV4221 Q transformed with hAAG-2 (pMV545) This Study 
MV4222 Q transformed with hAAG-2 (pMV546) This Study 
MV4223 Q transformed with hAAG-2 (pMV546) This Study 
MV4224 wt. hAAG-1(pMV509) in MV4210 This Study 
MV4225 wt. hAAG-1 (pMV509) in MV4210 This Study 
MV4226 pMV545 transformed in MV4210 This Study 
MV4227 pMV546 transformed in MV4210 This Study 
MV4228 pTRC99a vector in MV4210 This Study 
MV4229 pTRC99a vector in MV4210 This Study 
MV4230 wt. hAAG-1(pMV509) in MV4210 This Study 
MV4231 wt. hAAG-1 (pMV509) in MV4210 This Study 
MV4232 pMV509 vector with pMV536 EcoRI-Sal I insert 

(pMV550) in MV4210 
This Study 

MV4233 pMV509 vector with pMV536 EcoRI-Sal I insert 
(pMV551) in MV4210 

This Study 

MV4234 pBS KS- with pMV536 EcoRI-Hind III insert 
(pMV552) in Q 

This Study 

MV4235 pBS KS- with pMV536 EcoRI-Hind III insert 
( MV553) i Q

This Study 
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(pMV553) in Q 
MV4236 pTRC99a vector in MV3855 alkA1 tagA1 uvrA 

mutant. 
This Study 

MV4237 wt. hAAG-1 (pMV509) in MV3855 alkA1 tagA1 
uvrA mutant. 

This Study 

MV4238 hAAG-1-his-6 (pMV513) in MV3855 alkA1 
tagA1 uvrA mutant. 

This Study 

MV4239 wt. hAAG-2 (pMV550) in MV3855 alkA1 tagA1 
uvrA mutant. 

This Study 

MV4240 hAAG-2-his-6 (pMV536) in MV3855 alkA1 
tagA1 uvrA mutant. 

This Study 

MV4241 pBS KS- with pMV536 EcoRI-Hind III insert 
(pMV552) in MV4210 

This Study 

MV4242 pBS KS- with pMV536 EcoRI-Hind III insert 
(pMV553) in MV4210 

This Study 

MV4243 plasmid from MV4218 in MV4210 alkA1 tagA1 
ompT::Kan mutant. 

This Study 

MV4244 plasmid from MV4218 in MV4210 alkA1 tagA1 
ompT::Kan mutant. 

This Study 

MV4245 plasmid from MV4220 in MV4210 alkA1 tagA1 
ompT::Kan mutant. 

This Study 

MV4246 plasmid from MV4220 in MV4210 alkA1 tagA1 
ompT::Kan mutant. 

This Study 

MV4247 plasmid from MV4221 in MV4210 alkA1 tagA1 
ompT::Kan mutant.  

This Study 

MV4248 plasmid from MV4222 in MV4210 alkA1 tagA1 
ompT::Kan mutant. 

This Study 

MV4249 plasmid from MV4223 in MV4210 alkA1 tagA1 
ompT::Kan mutant. 

This Study 

MV4250 pMV543 in MV3855 alkA1 tagA1 uvrA mutant. This Study 
MV4251 pMV544 in MV3855 alkA1 tagA1 uvrA mutant. This Study 
MV4252 pMV545 in MV3855 alkA1 tagA1 uvrA mutant. This Study 
MV4253 pMV546 (from MV4223) in MV3855 alkA1 

tagA1 uvrA mutant. 
This Study 

MV4254 wt hAAG-2 (pMV551) in MV3855 alkA1 tagA1 
uvrA mutant. 

This Study 

 

Bacterial Plasmids 

The plasmids used in this study were either obtained from the lab collection or 

were created using genetic techniques.  Each plasmid is carried by one of the strains 

listed in table 2.  Table 3 describes the plasmids used and created in this study.   
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Table 3: List of plasmids used in this study, the strain each 
plasmid is stored, the unique characteristics of each plasmid, 

and the original source of the plasmid. 

Plasmid Strain 
Hosting 
Plasmid 

Relevant Characteristics Source 

pMV509 MV4224 wt hAAG-1 clone Lab collection 

pMV513 MV4211 hAAG-1(his)6.  pMV509 cut with Cel II and HindIII- 
Then religated using his tagging oligos MV3 and MV4 
that contain CelII Hind III compatible ends. 

Lab collection 

pMV518 MV4135 hAAG-2(his)6 original plasmid Lab collection 

pMV519 MV4136 Original plasmid with hAAG-2-His6 Lab collection 

pMV536 MV4213 hAAG-2(his)6 in pMV513.  MV20 and MV21 primers 
used.  PCR produced using pMV518 as template.  
EcoRI-HindIII fragment cut. 

This Study 

pMV537 MV4148 hAAG-2(his)6 in pMV513.  MV20 and MV21 primers 
used.  PCR produced using pMV518 as template.  
EcoRI-HindIII fragment cut. 

This Study 

pMV541 MV4206 EcoRI-HindIII fragment from pMV513 (hAAG-1) 
inserted into pBS vector 

Lab Collection 

pMV542 MV4207 EcoRI-HindIII fragment from pMV513 (hAAG-1) 
inserted into pBS vector 

Lab Collection 

pMV543 MV4217 hAAG-2 EcoRI-AfeII fragment from pMV536 into 
EcoRI-AfeII cut pMV509 backbone 

This Study 

pMV544 MV4219 hAAG-2 EcoRI-AfeII fragment from pMV537 into 
EcoRI-AfeII cut pMV509 backbone 

This Study 

pMV545 MV4221 hAAG-2-his-6 EcoRI-AfeII fragment from pMV536 into 
EcoRI-AfeII cut pMV513 

This Study 

pMV546 MV4222 hAAG-2-his-6 EcoRI-AfeII fragment from pMV537 into 
EcoRI-AfeII cut pMV513 

This Study 

pMV550 MV4232 pMV509 vector with pMV536 EcoRI-Sal I insert (pN1) This Study 

pMV551 MV4233 pMV509 vector with pMV536 EcoRI-Sal I insert (pN2) This Study 

pMV552 MV4234 pBS KS- with pMV536 (hAAG-2) EcoRI-Hind III insert  This Study 

pMV553 MV4235 pBS KS- with pMV536 (hAAG-2) EcoRI-Hind III insert This Study 
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Culture Media and Growth Conditions 

The bacterial strains were commonly grown in liquid Luria-Bertani (LB) 

medium.  The antibiotic Ampicillin was often added because the strains carrying the 

plasmids were resistant to Ampicillin.  If another strain of bacteria were present in the 

LB, it would die because it was not Ampicillin resistant, rather it was sensitive to 

Ampicillin.  Therefore, this antibiotic was used to select for the plasmid bearing cells.  

Cells were grown in 6 mL liquid LB-Amp broth oscillated overnight in a 37 

degree Celsius incubator.  To obtain a pure colony from this cell stock, a toothpick 

was used to streak colonies on LB-Amp media plates.  These plates were also placed 

in the 37 degree Celsius incubator overnight.  A pure clone from these plates was then 

inoculated in LB-Amp broth, incubated overnight, and then frozen at -80 degrees 

Celsius in LB + 10% DMSO as a permanent stock.     

Recombinant DNA Techniques 

The following techniques were used to manipulate the DNA as a pure plasmid 

and within host cells.  They were each essential for the biotechnological aspects of 

this study. 

Plasmid Purification 

Isolation of plasmid DNA was performed using the Qiagen QIAprep Spin 

Miniprep Kit.  The cells were lysed using a method based on the alkaline lysis method 

of Birnboim and Doly, 1981 (Qiagen, Inc.).  A buffer containing RNAase was used to 

remove any RNA present.  Excess material such as the cell membranes, components, 

and chromosomal DNA were removed by centrifugation at 14,000 rpm for 10 

minutes.  The plasmid was recovered in the supernatant and was allowed to bind to 

the Qiagen spin column.  Bound DNA was washed to remove endonucleases and salts 

in the buffers PB and PE respectively.  The DNA was then eluted from the QIAprep 

column with 50 uL low concentration TE buffer and centrifugation.  The DNA yield 

was then determined using a spectrophotometer to measure absorbance at a 

wavelength of 260 nm.   
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Polymerase Chain Reaction (PCR) 

PCR was used to isolate and amplify a specific DNA segment.  Using an 

enzyme stable at high temperatures, this procedure acts as a photocopier for a DNA 

template (Davis et al, 1994).  In this experiment, oligonucleotide primers, MV20 and 

MV21 were used to amplify the 980 base pair fragment (Table 4).  The source of the 

DNA template was the plasmid pMV518.  The PCR basically is a cyclic three-step 

reaction.  The first step is the heat denaturation step.  This step separates the double 

stranded DNA into two single strands.  The primers are then allowed to bind to the 

DNA single strands.  The Ampli Taq enzyme and dNTPs elongate a complementary 

strand to each template DNA strand in the third step.  Then, the cycle is repeated 

twenty-nine times, using sufficient primers so that each cycle doubles the number of 

DNA fragment produced.  At the completion of this reaction, an extended elongation 

time provided extra time for the completion of the synthesis of new strands of DNA.  

In each cycle, the number of strands doubled to create an exponential increase in the 

amount of DNA fragment.   

Table 4: Description of oligonucleotide primers used for the 
PCR reaction to create hAAG-2. 

PCR Primers Sequences Tm (C) Description of Use 
MV6 5’- CTG TAT CAG 

GCT GAA AAT C -3’ 
56 First primer used to amplify 

the lagging strand.  
Discarded due to diverse Tm 
compared to MV20. 

MV20 5’- CAT GGA ATT 
CTA AGG AGG TAT 
CTA ATG CCC GCG 
CGC AGC GGG GCC 
CAG TTT TGC –3’ 

79 Used to amplify 5’ leading 
strand of  hAAG-2 sequence.  
Has identical upstream of 
hAAG-1 incorporated, 
including site for ribosome 
binding and EcoRI restriction 
site.   

MV21 5’- GTC AGG TGG 
GAC CAC CGC GCT 
ACT GCC GCC –3’ 

78 New primer constructed for 
amplification of lagging 
strand.  Designed with 
comparable Tm to that of 
MV20. 

 

The goal of the PCR was to amplify an isoform of the human Alkyl Adenine 

DNA Glycosylase (hAAG) gene using primers MV20 and MV21, and a DNA 

template pMV518. The template was the fragment of DNA amplified and the primers 

were the small chains of nucleic acids that complemented a certain region 
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downstream of the fragment of interest.  One primer attached to the 5' end of one 

strand of the template in the second step of the PCR cycle, the other primer attached 

to the 5' end of the opposite strand of the template to a flanking sequence downstream 

from the end of the fragment of interest.  In the first step of the PCR, the DNA 

template separated into two single DNA strands.  In the annealing step, the primers 

attached to each strand of DNA.  In the elongation stage, DNA polymerase then 

copied each strand of DNA to make the complementary strand.  In the next cycle, all 

four of these strands were again duplicated to produce eight copies.  This continued 

for a total of thirty cycles.   

There were five different conditions used in the PCR experiment for this study 

because the DMSO concentration was varied.  Following the PCR, the products from 

each reaction were analyzed on a 1% TAE gel.  The reaction that generated the best 

yield of DNA of interest was then run on a second gel using multiple lanes so that all 

of the DNA product could be excised for further study.        

Purification of DNA Fragments 

To purify a DNA fragment from an agarose gel, the Gene Clean Kit (Bio101, 

Inc.) was used.  The basic Gene Clean procedure was to dissolve the agarose, to bind 

the DNA to silica beads, centrifuge the mix to concentrate the DNA, wash it, and then 

elute it to release DNA from the beads.  If a specific band of DNA was needed for 

further analysis, the Gene Clean Kit was a quick method to purify a DNA fragment 

from an agarose gel.  First, a piece of 1% TAE agarose gel slice containing the DNA 

fragment was excised and NaI was added to the gel excision containing the desired 

DNA fragment.  Then, GLASSMILK, a chemical with a silica matrix component, was 

added to bind to the DNA.  Centrifugation precipitated the DNA-silica complex and 

NaI was removed in the supernatant.  The GLASSMILK with DNA attached to it was 

washed a series of times with an alcohol containing Wash Solution (Bio101, Inc.).  

The DNA was then released from the GLASSMILK with low salt concentration TE 

buffer and after centrifugation, the supernatant contained clean, pure DNA.   

Restriction Digests  

Following the purification of the DNA fragment of interest, a restriction digest 

involving the EcoRI and HindIII restriction sites was performed.  By combining these 
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enzymes in their appropriate buffer with the DNA, the DNA was cut at specific 

sequences forming sticky or blunt ends.  Typically 3 to 10 ug of plasmid DNA was 

cut in a 10 uL reaction containing salt buffer and the EcoRI and Hind III restriction 

enzymes. These fragments were then used to perform a ligation.  Restriction digests 

were also helpful to determine the size of a piece of DNA and to determine if it was 

likely to contain the correct sequence, based on the location of specific restriction 

sites. 

Cell Preparation and Transformation 

Transformation is the introduction of a plasmid into a competent cell.  A 

competent cell is a cell that is chemically treated to allow its membrane to be 

permeated by plasmids. Two strains were made into competent cells for this study, Q 

and 4210.  The cell preparation and transformation experiment is done as the first step 

in creating a new bacterial strain.   

A cell is prepared for a transformation by growing to Klett 50, which is an 

absorbance level that indicates that the cells are in the log phase and corresponds to 

approximately 3 x 108 cells per mL.  Following growth, the cells were centrifuged and 

resuspended in a mix of 0.1 M Pipes, pH 6.8 and 2.5 M CaCl2.  These chemicals treat 

the cell to induce competency.   

These cells, once competent, were very receptive to plasmids in a 

transformation.  In this study, small scale transformations were used.  Two hundred 

microliters of  cells were mixed with 5-10 ug purified DNA in a solution containing 

0.1 M Pipes, pH 6.8, 1 M CaCl2, 1 M MgCl2, and dH2O.  Following an extended 

incubation (30 minutes to 48 hours) on ice, the cells were heat shocked at room 

temperature for two minutes and incubated with aeration in LB to allow growth.  

Then, the cells were streaked on LB plates and incubated at 37 degrees Celsius 

overnight.   

Ligation 

A ligation joins together two DNA fragments using an enzyme from 

bacteriophage T4 called T4 DNA ligase.  The DNA fragment purified from the PCR 

(90 ug/mL) and the vectors pMV513 (110 ug/mL) and pMV509 115 ug/mL) 

linearized with EcoRI and Hind III enzymes were joined together using this enzyme 
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after digestion with the appropriate restriction enzymes.  The ligation reaction created 

certain plasmids relevant to this study.  Those plasmids were subsequently used in the 

transformation protocol to create new strains.   

DNA Sequencing 

The Nucleic Acids Core facility at the University of Massachusetts Medical 

Center and the DNA sequencing services of Iowa State University performed DNA 

sequencing to verify the nucleotide sequence of the engineered plasmids.  The 

UMMC Nucleic Acids Core facility used a computer analysis program ABI Prism 

Model version 2.1.1.      

 

Cell Survival Assays 

Survival curves were performed to test the function of the hAAG-2-(his)6 gene 

with respect to that of the hAAG-1-(his)6 isoform.  Additional experiments included 

testing the function of the hAAG-1 gene with respect to that of hAAG-2, and 

observing the effect of the histidine tag on each gene.  Each curve involved a series of 

carefully timed actions in order to provide an accurate measurement of the survival of 

the cells.         

For survival measurements, bacteria were grown in LB medium to Klett 30, 

which is approximately 108 cells per mL.  Cells were then dispersed into two tubes, 

one induced with 0.1 M IPTG to turn on the hAAG gene, the other uninduced, and 

were incubated at 37 degrees Celsius for 90 minutes.  Following incubation, cells 

were supplemented a dose of an alkylating agent or cross-linking agent and incubated 

for an additional half-hour.  One of the tubes from each set served as an untreated 

control.  Aliquots were then removed, diluted in 1 x E buffer components plus 4% 

NaS2O3 to inactivate residual chemical, and spread on LB-Amp plates to estimate cell 

survival (Volkert, 1984).  Results are estimated by calculating the titer and the 

fraction survival.  The survival was expressed as a percent of the colony titer divided 

by that of the untreated control for each dose.  All experiments were performed from 

two to seven times for each strain.  Figures represent the Mean ± the Standard Error.  

In those instances where error bars are not seen, the Standard Error is too small and 

masked by the symbol.      
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Protein Analyses 

Transferring hAAG-2-his6 into pBluscript KS- 

The his-tagged isoforms of hAAG were genetically engineered into the 

plasmid pBluescript.  Construction of hAAG-2-6x-his into pBluescript consisted of 

performing restriction digests at the EcoRI and HindIII sites of the hAAG-2-6x his 

gene from plasmid pMV536.  The reciprocal sites of pBluscript were also cut.  A 

ligation occurred to produce the plasmid pMV552 (Table 2).  Correct ligation was 

confirmed in further restriction analyses. 

Protein Synthesis and Concentration Time Point Analyses 

Cultures are grown overnight on a roller at 37 degrees Celsius. The plasmid 

containing cells were grown in the presence of ampicillin.  Addition of 0.2 mM IPTG 

when the cultures reach an OD600 of 0.61(Klett 80) induces the synthetic lac promoter 

to produce RNA polymerase, which in turn initiates high-level expression of hAAG-

1-his6 or hAAG-2-his6 inside the plasmid.  An initial sample of 100 ul culture is 

collected immediately prior to IPTG induction to serve as time point zero.  Cells were 

harvested at 1.5, 2, 6, and 12 hours after induction.  Once harvested, cells were 

centrifuged and the supernatant removed.  Cells were then suspended in1x SDS gel 

sample buffer, boiled for 5 minutes, and frozen at –20 degrees Celsius for later use.   

Western Blot Analysis 

The samples from the time course assay were electrophoresed in a 7.5% 

polyacrylamide gel in the presence of SDS and electrotransferred to a nitrocellulose 

membrane at 30 volts overnight.  The blot was incubated with 0.3 ug/ml penta-his 

(Qiagen, Inc.) for 2 hours, then with anti-mouse IgG conjugated with horseradish 

peroxidase (NEB).  The blot was visualized using a chemiluminescence detection kit 

(Amersham Pharmacia Biotech, Inc).   
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P1-Mediated Transduction and the Genetics of Strain 

Construction  

Transduction is a bacteriophage mediated recombinational process in which a 

phage injects erroneously packaged bacterial DNA fragments from one strain of 

bacteria into another.  This transferred chromosomal segment then recombines with 

homologous portions of the bacterium’s chromosome to incorporate itself into the 

bacterium’s chromosome (Voet and Voet, 1995).  The bacteriophage P1 transduces 

very nicely into E. coli, the bacteria that we have used to host our gene.  Therefore, 

alterations to the strain were constructed in order to create specific conditions.  One 

genetic alteration made in this study was to create the alkA1, tagA1, ompT triple 

mutant strain MV4210.  
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Results 
 

Introduction 

The results of this study can be separated into five sections.  The first consists of 

the preparation of the hAAG-2 and hAAG-2-his6 forms of the gene.  The second involves 

the biology of the two isoforms and the comparison of each isoform to its histidine 

tagged counterpart.  The third section includes the creation of the alkA1 tagA1 ompT 

mutant strain.  Preparation of the hAAG-2-his6 gene inserted into pBluescript is the 

fourth major section of this report.  Finally, protein analysis is presented. 

 

Cloning and sequencing of the Alternative hAAG Gene 

The cloning and sequencing of the secondary exon sequence of the hAAG-1 gene 

involved the amplification of the hAAG-2-his6 gene fragment from pMV518 using the 

polymerase chain reaction (PCR), ligation of the amplified fragment into a pMV513 

plasmid backbone, and transformation of this new plasmid into a competent cell to 

produce a new strain. 

Construction of hAAG-2 by PCR   

A previous version of hAAG-2-his6 failed to exhibit an alkylating agent resistance 

phenotype, like that seen when induced hAAG-1-his6 is expressed in an alkA1 tagA1 E. 

coli mutant strain (Volkert, unpublished observation).  It was unclear if this was due to 

faulty expression, or a functional difference between the hAAG-1 and hAAG-2 isoforms.  

In order to eliminate expression differences, the hAAG-2 gene was reconstructed to 

produce a version that had the identical upstream sequence as hAAG-1 using PCR.  

These constructs were named pMV536 and pMV537, and contained the hAAG-2 gene 

sequence attached to a polyhistidine tail.  

For the construction of these plasmids, a 980 base pair (bp) fragment amplified 

from plasmid pMV518, which carries the original non-functional hAAG-2 sequence, was 
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inserted between the EcoRI and HindIII sites of the pMV513 plasmid.  Several attempts 

to amplify the correct fragment failed due to the difference in melting temperature 

between the two initial primers used.  The MV20 primer contained an EcoRI site, the 

identical upstream sequence as hAAG-1, and a region that hybridized to Exon 1 of 

hAAG-2.  Two downstream primers were used in separate reactions, MV6 and MV21.  

The two initial primers were MV20 (melting temperature 78 degrees) and MV6 (melting 

temperature 66 degrees).  In this PCR, although a band in the 980 base pair region was 

observable, it was not the band of interest.  Curiously, a second band also appeared in the 

2,000 base pair region.  Restriction analysis led to the prediction that this additional band 

might be a dimer, however several tests using restriction enzymes to cut this dimer failed 

to confirm this (Figure 28). 

 

   
Figure 28: PCR reaction involving MV20 and MV6 primers.  Note 

the band at 2 Kb and also two bands between 900bp and 1 Kb.  The 
expected fragment size was 980bp.   

 
Therefore, a new primer MV21 was designed to match the melting temperature of 

primer MV20.  The use of primers MV20 and MV21 allowed successful amplification of 

the hAAG-2 form of the gene from the pMV518 template.  Several PCR reactions were 

run simultaneously, differing in the amount of DMSO, which modifies the annealing 

temperature of the PCR reaction.  Small aliquots of all PCR reactions were run on a 1% 

agarose TAE gel to determine which conditions yielded the highest levels of specific 
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fragment amplification (figure 29).  A larger volume of the 980 bp band produced in 

reactions 1 and 2 (Figure 29, lanes 1 + 2) was repurified on a 1% TAE agarose gel.  

These products were purified using a gene clean kit (Bio101, Inc.), then, cleaved with the 

appropriate restriction enzymes, used in the ligation reactions described below.    

 

Figure 29: PCR of 980 bp fragment of hAAG-2 gene.  The only 
variable between the lanes was the amount of DMSO, ranging from 
0 uL in lane 1 to 10 uL in lane 5.  Lane 6 was the negative control, 

using the same conditions as lane 3 with no DNA template.    

Ligation of PCR fragment into pMV513 backbone 

The PCR fragment was inserted into the plasmid vector by ligating the EcoRI and 

Hind III sites.  The plasmid carrying hAAG-1-his6, pMV513, was used as the vector 

because simple restriction digests allow discrimination between exon 1 of hAAG-1 and 

hAAG-2 (Figure 30). 
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Figure 30: Plasmid creation.  The EcoRI-HindIII site of pMV518 

was amplified using PCR and then ligated into the pMV513 vector 
between its EcoRI-HindIII sites to create hAAG-2-his6.  
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Transformation of Ligation Product into Competent Cell Q 

 

The strain W3110 lacIq, referred to as Q, is a high efficiency transforming strain 

used to recover ligation products.   Competent Q cells were transformed with the ligation 

products of the hAAG-2 PCR fragment and the pMV513 vector backbone.  After 

transforming these ligation products into competent Q cells, six individual ampr colonies 

were transferred from the transformation plate and were streaked on individual LB-Amp 

plates to purify them.  Then, a single clone from each of these plates was inoculated in 5 

mL of LB-Amp broth and grown overnight.   Once the cells grew, the Qiagen mini-prep 

kit was used to purify the plasmids from the Q cells for analysis and transformation into 

glycosylase deficient cells.   

Strain Numbers MV4147 and MV4148 

After the plasmids were purified with the Qiagen mini-prep kit, several 

experiments were performed to confirm the accuracy of the sequence.  First, the plasmids 

were cut with restriction enzymes EcoO109, Bst E II, EcoRI and Hind III, and EcoRI and 

Afe II (Figure 31 and data not shown).   

A.    B.  

  14 15 p513 
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Figure 31: Confirmation of Ligation.  A) Displays the BstE II 
restiction digests.  Note the lane labeled “BstE 513” shows a band 

at 882 as “BstE II 518” does.  Neither sample labeled 14 nor 15 
have this band, showing consistency with pMV518.  B) Samples 14 
and 15 confer the appropriate insert/vector ratio with this EcoRI-

Hind III restriction enzyme cut. C) Restriction map of hAAG-1 
and the BstE II cut sites.  D). Restriction map of hAAG-2 and the 
BstE II cut sites.  Notice the restriction site at 292bp in hAAG-1 

that is not present in hAAG-2.  Data in A) confirm the presence of 
hAAG-2 in samples 14 and 15.  C) and D) were created using Clone 

Manager 4. 

These restriction enzymes were selected because clear distinctions could be made 

to pMV513 versus pMV536 and pMV537, the new form (Figure 31).  These digested 

fragments were run on a 1% TAE agarose gel and the lengths of the bands were analyzed. 

There is an additional BsteII restriction site in exon 1 of hAAG-1, therefore it would be 

expected that the restriction map would show two bands, one at 882 and the other at 4.6 

Kb.  hAAG-2 would show only one band at 5.2 Kb (Figure 31).  Two of the plasmids that 

produced the correct pattern were chosen for DNA sequencing by the University of 

Massachusetts Nucleic Acid DNA sequencing facility and were later resequenced at the 

Iowa State University DNA sequencing service facility.  The plasmids pMV536 (Figure 
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31, sample 14) and pMV537 (Figure 31, sample 15) proved to be identical and had the 

desired DNA sequence.  Thus, the Q cells containing plasmid pMV536 was provided the 

strain number MV4147.  The Q cells containing plasmid pMV537 was given the strain 

number MV4148.   

Construction of Expression Plasmids carrying hAAG-2 and hAAG-2-

(his)6 

The EcoRI-Sal I site from pMV536 and pMV537 plasmids was cloned into the 

EcoRI-Sal I sites of pMV509 to convert the non his-tagged form of hAAG-1 upstream 

sequence to that of hAAG-2-his6, thereby creating plasmids expressing the nontagged 

form of hAAG-2.  Two plasmids were retained as pMV550 (hAAG-2 derived from 

pMV536) and pMV551 (hAAG-2 derived from pMV537) respectively (Figure 32).  
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hAAG-2 was cut from pMV536 at the 

EcoRI-SalI sites and inserted into pMV509 

to provide a hAAG-2 construct without the 

poly histidine tag. 
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Figure 32: Restriction map showing the construction of hAAG-2.  
The EcoRI-SalI fragment from pMV536 was inserted into pMV509 

lacking its own EcoRI-SalI site to create pMV550 (hAAG-2).   
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 Exon 1 of the hAAG-2 gene has a BssHII site that is lacking in hAAG-1.  

Therefore, to confirm conversion, the plasmids were digested with Bss HII restriction 

endonuclease.  The expected band sizes for hAAG-1 were 4402 bp and 872 bp and 

hAAG-2 were 656 bp, 872 bp, and 3.5 kb.  Figure 33 demonstrates that the presumptive 

hAAG-2 bearing plasmids produce the expected BssHII restriction fragments, confirming 

their structure.  Iowa State DNA Sequencing Facility provided further confirmation via 

sequence analysis.  Thus, plasmids expressing hAAG-1, hAAG-1-his6, hAAG-2, and 

hAAG-2-his6 proteins containing identical upstream sequences were made available for 

future experiments.       
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A.  

Figure 33: Confirmation that the 
EcoRI- Sal I piece from hAAG-2 
was correctly inserted into the 

pMV509 vector. A) Lane 1 contains 
pMV550 and lane 2 contains 

pMV551.  The expected band sizes 
are 656 bp, 872 bp,and 3.5 Kb. B). 
The restriction map of hAAG-1.  

Note that there are only two BssHII 
sites.  C). The restriction map of 
hAAG-2.  Note that there is an 
additional BssHII site than in 

hAAG-1.  This additional site allows 
the performance of restriction 

analysis to compare each isoform. 
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Cell Survival Assays 

The plasmids bearing hAAG-1, hAAG-1-his6, hAAG-2, hAAG-2-his6, and the 

vector pTRC99a were transformed into the glycosylase deficient alkA tagA ompT strain 

MV4210 to construct strains MV4224, MV4211, MV4232, MV4213, and MV4228.  

They were also transformed into the glycosylase and excision repair deficient alkA tagA 

uvrA strain MV3855 to construct strains MV4237, MV4238, MV4239, MV4240, and 

MV4236 respectively.  These strains were then tested in timed survival experiments to 

determine if the expression of the human glycosylase genes could protect the cells against 

killing by alkylating agents and other DNA damaging agents.  The survival is expressed 

as a percentage of untreated control.  Data are presented as the Mean ±  Standard Error 

from two to seven independent experiments. 

 

MNNG 

The following section displays the effect of the glycosylase activity on cell 

survival after exposure to MNNG. 

MNNG Survival: Effect of the hAAG-1 and hAAG-2 genes 

MNNG alkylates DNA by the covalent addition of a methyl group to the oxygen 

molecules within the phosphates of the DNA backbone and by forming lesions at various 

positions of the four bases.  As explained above, the glycosylase activity of bacterial alkA 

and tagA genes are required for normal repair of MNNG damage (Friedberg et al, 1995).  

The hAAG enzyme has overlapping function with the alkA and tagA enzymes.  This is 

confirmed in figure 34.  The presence of induced hAAG-1 (closed circles) rescues cells 

deficient in alkA and tagA repair mechanisms.  The IPTG induced hAAG-1 actually 

causes a higher survival level at higher doses in E. coli than the alkA tagA wild type 

genes, suggesting it repairs MNNG damage more efficiently than the bacterial 

glycosylases.  This graph shows a dose response of both the hAAG-1 mutant and the wild 

type strain.  At 30 minutes of exposure to 24 ug/ml of MNNG, the repair deficient alk tag 

mutant strain shows a survival level of 0.03%.  When hAAG-1 is introduced into this 
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strain and induced, survival increases to approximately 32%.  In contrast, the wild type 

repair proficient bacterial strain has a survival level of approximately 9%.  The uninduced 

hAAG-1 mutant has approximately a 7% survival level at the same exposure, indicating 

that hAAG-1 is able to repair methylated lesions created by MNNG in bacteria.          
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Figure 34: Effect of hAAG-1 on alkylation induced cell killing by 
MNNG.  The induced sample containing hAAG-1 (closed circles) 
shows increased resistance to MNNG at higher concentrations.  

The uninduced sample of hAAG-1 remains with the wild type E. 
coli strain (MV1161, x and + symbols).  The diamonds represent 

the vector control deficient in glycosylase acitivity. (MV1161, wild 
type; MV4224, alkA tagA/ phAAG-1(plasmid bearing hAAG-1); 

MV4228, alkA tag A/pTRC99a vector)      

 

The second isoform of hAAG also confers increased resistance to MNNG in the 

repair deficient alkA tag mutant strain.  The efficiency of hAAG-2, however, is slightly 

less than that of the wild type alk tag system.   At 30 minutes of exposure to 24 ug/ml of 

MNNG, hAAG-2 induced cells have a 5.2% survival level while wild type cells have a 

survival level of approximately 9% (Figure 35).  The uninduced hAAG-2 cells also 
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demonstrated approximately 1 log greater rescue than the double mutant control strain 

(open and closed diamonds).     
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Figure 35: Effect of hAAG-2 on alkylation induced cell killing by 

MNNG.  Closed triangles represent induced glycosylase, open 
triangles represent the uninduced sample. (MV1161, wild type; 

MV4228, alkA tag A/ pTRC99a vector; MV4232, alkA tagA/ 
phAAG-2 [plasmid bearing hAAG-2]) 

 

When exposed to MNNG, hAAG-2, provides resistance, but does not function as 

well as hAAG-1.  At all doses tested, hAAG-1 increased survival to a greater level than 

hAAG-2.  The survival level attained at an MNNG exposure of 8 ug/ml was 88% when 

hAAG-1 was expressed, while induced hAAG-2 increased survival to 60%.  This 

difference in survival increased with dose.  For example, hAAG-2 increased survival to 

2.5% at 30 minutes exposure to 32 ug/ml of MNNG, while hAAG-1 increased survival 

to12% (Figures 34 and 35).     
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MNNG Survival: comparison of the hAAG-1 and hAAG-1-his6 genes 

The histidine tagged forms of hAAG were constructed for future purification of 

the enzyme and for use in in vitro DNA repair assays.  Therefore, it is important to know 

if the histidine tags affect the repair activity of the hAAG gene products.   

The hAAG-1-his6 gene is the hAAG-1 gene with a his tag incorporated onto the 

end of its fourth exon.  Figure 36 shows the rescue of MNNG treated cells by hAAG-1-

his6.  The level of survival at 24 ug/ml MNNG is approximately 19.8% for the cells 

induced by IPTG while those uninduced, at the same level of MNNG exposure, were 

much more sensitive (3.5% survival level).  At higher doses, hAAG-1-his6 rescued cells 

more efficiently than the wild type glycosylases.  For example, the level of survival at 24 

ug/ml of MNNG exposure of the wild type E. coli strain MV1161 is 10% while that of 

the mutant alk tag deficient control is 0.12%.   

Since the levels of resistance attained upon induction are similar to those seen 

with the non-histagged forms of hAAG, it suggests that the addition of the his–tag to 

hAAG-1 does not alter the ability of hAAG-1 to provide resistance to MNNG. 
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Figure 36: Effect of hAAG-1 (MV4224) and hAAG-1-his6 

(MV4211) on alkylation induced cell killing by MNNG.  The 
histidine tag has no effect on the ability of hAAG-1 to function.  
Closed squares represent induced his–tagged glycosylase, open 
squares represent uninduced his-tagged sample. (MV1161, wild 

type; MV4211, alkA tagA/ phAAG-1-his6 [plasmid bearing hAAG-
1-his6]; MV4224, alkA tagA/ phAAG-1; MV4228, alkA tag A/ 

pTRC99a vector) 

 

MNNG Survival: comparison of the hAAG-2 and hAAG-2-his6 genes  

The histidine tag to hAAG-2, like that to hAAG-1, also is incorporated on the 

fourth exon.  Figure 37 shows the rescue of MNNG treated cells by hAAG-2-his6.  The 

level of survival at 24 ug/ml MNNG is approximately 5% for the cells induced by IPTG 

while those uninduced, at the same level of MNNG exposure, were one magnitude more 

sensitive (0.5% survival level).  At higher levels, hAAG-2-his6 resistance equalled that of 

the wild type E. coli proficient in its own alkA and tag genes.  In the alk tag deficient 

mutant, hAAG-2-his6 increased the level of survival quite substantially.  At the MNNG 
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dose of 24 ug/ml, 5% of bacteria survive in the presence of hAAG-2-his6, compared to 

only 0.12% in its absence. Thus, hAAG-2-his6 functions well against MNNG exposure at 

the doses tested and the histidine tag has no effect on the function of hAAG-2 when 

exposed to MNNG.   hAAG-2-his6 has similar characteristics to hAAG-2 at all dose 

levels tested (Figure 37).     
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Figure 37: Effect of hAAG-2 (MV4232) and hAAG-2-his6 

(MV4213) on alkylation induced cell killing by MNNG.  The 
histidine tag has no effect on the ability of hAAG-2 to function.  
Closed squares represent induced his–tagged glycosylase, open 
squares represent uninduced his-tagged sample. (MV1161, wild 

type; MV4213, alkA tagA/ phAAG-2-his6 [plasmid bearing hAAG-
2-his6]; MV4228, alkA tag A/ pTRC99a vector; MV4232, alkA 

tagA/ phAAG-2) 
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When induced hAAG-1-his6 and hAAG-2-his6 are compared (Figure 36 small closed 

squares and Figure 37, large closed squares, respectively), hAAG-1-his6 appears to be 

more efficient in recovering e. coli cells from MNNG killing.   

Conclusions for MNNG 

Overall, the results from the cell survival tests involving MNNG prove that 

hAAG-1 and hAAG-2 are able to repair DNA damage produced by the methylating agent 

MNNG as indicated by the increase in MNNG resistance seen in the repair deficient alkA 

tag double mutant strain in the presence of the hAAG forms tested. The results 

demonstrate that the overexpression of hAAG-1 provides a higher level of resistance than 

is seen in the repair proficient wild type bacterial strain.  The results also show that there 

are slight differences between hAAG-1 and hAAG-2 and that the his-tagged forms 

function in a similar manner as their non- tagged forms indicating that the his tags do not 

affect the activity of either form of hAAG.  

 

MMS 

The following section displays the effect of the glycosylase activity on cell 

survival after exposure. 

MMS Survival: Effect of the hAAG-1 and hAAG-2 genes 

MMS alkylates DNA by attaching a methyl group to the nitrogen molecules at 

various positions of the four bases.  Glycosylase activity of bacterial alkA and tagA 

genes is required for normal repair of MMS damage (Friedberg et al, 1995).  The data in 

Figure 38 further supports the overlapping function of the hAAG enzyme compared to 

the function of the alkA and tagA enzymes.  The presence of induced hAAG (closed 

circles) rescues cells deficient in alkA and tagA repair to the same extent as the E. coli  

alkA tagA wild type genes, suggesting human glycosylase repairs MMS damage as 

efficiently as the bacterial glycosylases.  This graph (Figure 38) shows a similar dose 

response of both the hAAG-1-containing deficient alkA tag mutant and the wild type 

strain.  At 30 minutes of exposure to 20 mM of MMS, the repair deficient alkA tag 
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mutant strain shows a survival level of 0.02%.  When hAAG-1 is introduced into this 

strain and induced, survival increases to approximately 62%.  Similarly, the wild type 

repair proficient bacterial strain has a survival level of approximately 64%.  The 

uninduced hAAG-1 mutant has approximately a 3% survival level at the same exposure, 

indicating that hAAG-1 is able to repair methylated lesions created by MMS in bacteria. 
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Figure 38: Effect of hAAG-1 on alkylation induced cell killing by 
MMS.  The induced sample containing hAAG-1 (closed circles) 

shows increased resistance to MMS at higher concentrations.  The 
uninduced sample of hAAG-1 remains  with the wild type E. coli 
strain (MV1161, + symbols). (MV1161, wild type; MV4224, alkA 

tagA/ phAAG-1; MV4228, alkA tag A/ pTRC99a vector) 

 

The second isoform of hAAG also confers increased resistance to MMS in the 

repair deficient alkA tag mutant strain.  The efficiency of hAAG-2, however, is slightly 

less than that of the wild type alk tag system.   At 30 minutes of exposure to 20 mM of 

MMS, hAAG-2 induced cells show 23% survival level while wild type cells have a 

survival level of approximately 64% (Figure 39).  The uninduced hAAG-2 cells (2% 
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survival level) also demonstrate greater rescue than the double mutant control strain 

(0.02% survival level, open and closed diamonds) by two orders of magnitude at 20 mM 

of exposure to MMS, indicating that even low levels of hAAG-2 protein can confer 

increased MMS resistance.  Thus, hAAG-2 effectively rescues bacteria deficient in their 

own repair mechanism from damage due to exposure to MMS.   
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Figure 39: Effect of hAAG-2 on alkylation induced cell killing by 

MMS.  Closed triangles represent induced glycosylase, open 
triangles represent the uninduced sample. (MV1161, wild type; 

MV1176, uvrA; MV4228, alkA tag A/ pTRC99a vector; MV4232, 
alkA tagA/ phAAG-2) 

Comparison of the resluts in Figures 38 and 39 sugguest that hAAG-2 protect E. 

coli cells to somewhate lesser extent than the hAAG-1 form from MMS toxicity.  

However, this difference in survival level is narrower compared to that of MNNG 

(Figures 34 and 35).  
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MMS Survival: comparison of hAAG-1 and hAAG-2 activity in uvrA 

deficient and proficient strains  

The uvrA mutation inactivates the nucleotide excision repair (NER) pathway in E. 

coli (see: Friedberg et al., 1995).  The results in Figure 40 (star symbols, MV1176) show 

that the uvrA mutation in a base excision repair wild type background does not sensitize 

cells to MMS.  In addition, the uvrA mutation does not increase sensitivity to MMS of 

alkA tag glycosylase deficient E. coli cells (compare Figure 38 and 40, diamonds).  The 

results in Figure 40 however suggest that the presence of functional E. coli nucleotide 

excision repair slightly increases, a protection provided by human AAG-2 against MMS 

toxicity.   

The NER pathway may be more important for the repair of DNA adducts bulkier 

than a methyl group. DNA lesions that have adducts greater in size than methyl groups, 

such as the ethyl group or mitomycin crosslinks, are repaired by the uvrABC nucleotide 

excision repair system (Van Hauten, 1990).  Since bulky adducts are introduced by other 

agents in this study, and since such repair activity could mask the effect of the human 

DNA glycosylase activity, the remaining cell survival experiments were performed in the 

alkA tagA uvrA triple mutant background.   
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Figure 40: Effect of hAAG-1 on alkylation induced cell killing by 

MMS in the presence and absence of the uvrA gene.  hAAG-1 alkA 
tag (closed circles) and hAAG-1 alkA tag uvrA (closed squares) 

rescue cells from MMS damage to the same extent.  The alk+ tag+ 
uvrA- control also rescues cells quite efficiently (star symbol). 

(MV1176, uvrA; MV4224, alkA tagA/ phAAG-1; MV4236, alkA tag 
A uvrA pTRC99a vector; MV4237, alkA tagA uvrA/ phAAG-1) 
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Figure 41: Effect of hAAG-2 on alkylation induced cell killing by 

MMS in the presence and absence of the uvrA gene.  hAAG-2 
rescues cells from MMS damage to a greater extent in the alkA tag 

(closed triangles) than in the alkA tag uvrA background (closed 
circles).  The uvrA mutation in the alkA+ tag+ background (star 

symbols) does not sensitize cells to MMS. (MV1176, uvrA; 
MV4232, alkA tagA/ phAAG-2; MV4236, alkA tag A uvrA 

pTRC99a vector; MV4239, alkA tagA uvrA/ phAAG-2) 
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MMS Survival: comparison of the hAAG-1 and hAAG-1-his6 genes 

Figure 42 shows the rescue of MMS treated cells by hAAG-1-his6.  The level of 

survival at 20 mM MMS is approximately 43% for the cells induced by IPTG while those 

uninduced, at the same level of MMS exposure, were much more sensitive (0.5% survival 

level).  hAAG-1-his6 and hAAG-1 have extremely similar survival patterns, suggesting 

that the addition of the his–tag to hAAG-1 does not alter the ability of hAAG-1 to 

provide resistance to MMS.  hAAG-1-his6 rescues cells just as efficiently as the uvrA 

deficient E. coli strain MV1176.   The level of survival at 15 mM of MMS exposure of 

the uvrA deficient E. coli strain MV1176 is 87% while that of hAAG-1-his6 is 64%.  The 

mutant alk tag uvrA deficient control is 0.11% (Figure 42).              
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Figure 42: Effect of hAAG-1 (MV4237) and hAAG-1-his6 
(MV4238) on alkylation induced cell killing by MMS.  The 

histidine tag has no effect on the ability of hAAG-1 to function.  
Closed squares represent induced his–tagged glycosylase, open 

squares represent uninduced his-tagged sample. (MV1176, uvrA; 
MV4236, alkA tag A uvrA pTRC99a vector; MV4237, alkA tagA 

uvrA/ phAAG-1; MV4238, alkA tagA uvrA/ phAAG-1-his6) 
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MMS Survival: comparison of the hAAG-2 and hAAG-2-his6 genes  

The addition of the histidine tag to hAAG-2, like that of hAAG-1, has little effect 

on the ability of hAAG to function (Figure 43).  The rescue of MMS treated cells by 

hAAG-2-his6, when induced, obtains survival levels approaching those of hAAG-2.  The 

level of survival at 20 mM MMS is approximately 4.1% for the cells bearing the hAAG-

2-his6 plasmid.  At the same level of MMS exposure,  hAAG-2 has a 9.5% survival level.  

While the level of hAAG-2-his6 survival at 20 mM MMS provides resistance to cells 

induced by IPTG, uninduced cells, at the same level of MMS exposure, were just as 

sensitive as the triple mutant strain (0.03% survival level).  hAAG-2-his6 and hAAG-2 

have similar survival levels when induced, suggesting that the addition of the his–tag to 

hAAG-2 does not alter the ability of hAAG-2 to rescue cells from DNA damage caused 

by exposure to MMS.  

Compared to the alk tag uvrA deficient mutant, hAAG-2-his6 increased the level 

of survival dramatically at exposure to 20 mM of MMS when induced.  hAAG-2-his6 has 

a survival level of 4.1% at 20 mM MMS exposure while the triple mutant has a survival 

level of 0.25%, a decrease of more than two orders of magnitude Thus, hAAG-2-his6 

functions well against MMS exposure at the doses tested. 

In the induced sample, the histidine tag has no effect on the function of hAAG-2 

when exposed to MMS.   However, uninduced samples showed no basal level activity.  

This deviates from results obtained by MNNG expsoure, albiet in the double mutant 

strain (Figure 35, above).  Nonetheless, induced hAAG-2-his6 has similar characteristics 

to induced hAAG-2 at all dose levels tested, thus the histidine tag does not affect hAAG-

2 activity (Figure 43).     
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Figure 43: Effect of hAAG-2 (MV4239) and hAAG-2-his6 
(MV4240) on alkylation induced cell killing by MMS.  The 

histidine tag has no effect on the ability of hAAG-2 to function, 
however uninduced hAAG-2-his(6) show no basal level expression.  

Closed squares represent induced his–tagged glycosylase, open 
squares represent uninduced his-tagged sample. (MV1176, uvrA; 
MV4236, alkA tag A uvrA pTRC99a vector; MV4239, alkA tagA 

uvrA/ phAAG-2; MV4240, alkA tagA uvrA/phAAG-2-his6) 

Each histidine tagged form of hAAG has a similar ability to restore MMS resistance to 

that of the non-tagged forms.  The levels of survival, however, for each form, were 

slightly lower than that of their non-tagged forms.  This difference, however, was not 

statistically significant due to statistical analysis of experimental error.  As was the case 

for the nontagged gene products, hAAG-1-his6 functioned more efficiently than hAAG-2-

his6 (Figures 42 and 43).  

 

Conclusions for MMS 

Overall, the results from the cell survival tests involving MMS support those 

obtained from exposure to MNNG and prove that hAAG-1 and hAAG-2 are able to 
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rescue DNA from the damage produced by the methylating agent MMS.  This is 

indicated by the large increase in MMS resistance observed when alkA tagA cells 

expressing any of the forms of the hAAG are exposed to MMS.  The results of the alkA 

tag uvrA triple mutant strain  further show that nucleotide excision repair is not needed to 

fix methylated lesions and that hAAG complementation is as effective as the alkA tagA 

uvrA+ strain.  These results demonstrate that the overexpression of hAAG-1 functions as 

well as the wild type E. coli glycosylases in the uvrA proficient and deficient strains.   

The results also show that there are slight differences between hAAG-1 and 

hAAG-2, consistant with the results from MNNG exposure.  hAAG-1-his6 and hAAG-2-

his6 function in a similar manner as their non- tagged forms.  Thus, differences between 

hAAG-1 and hAAG-2 are also present in the his-tagged forms.   

 

The Nitrosoureas 

Cells expressing each form of hAAG in the triple mutant background were 

exposed to two members of the nitrosourea family of DNA damaging agents: CNU and 

BCNU.   

CNU 

The following section displays the effect of human glycosylase on survival of  E. 

coli cells after exposure to CNU. 

CNU Survival: Effect of the hAAG-1 and hAAG-2 genes 

CNU is known to crosslink DNA from cytosine to guanine residues.  Glycosylase 

activity of bacterial alkA and tagA genes does not normally repair lesions created by 

CNU damage because the adducts created are beyond the substrate specificity of the 

bacterial glycosylases (Friedberg et al, 1995).  The function of the hAAG enzyme may 

differ from that of its E. coli homologs in this type of DNA repair.  In mouse cells, the 

absence of hAAG has been shown to sensitize cells to BCNU and Mitomycin C exposure 

suggesting that hAAG is required for repair of BCNU and Mitomycin C damage 

(Engleward et al, 1997).  However, the presence of induced hAAG (closed circles) does 
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not rescue cells deficient in alkA tagA and uvrA repair mechanisms (Figure 44).  This 

suggests that hAAG-1 does not repair CNU damage as efficiently as methylation damage. 

In fact, the presence of hAAG at the higher dose ranges actually is slightly toxic to the 

cells.  At 30 minutes of exposure to 0.5 mM of CNU, the repair deficient alk tag uvrA 

mutant strain shows a survival level of 0.17%.  When hAAG-1 is introduced into this 

strain and induced, sensitivity increases to an approximately survival level of 0.023%.  

The wild type repair proficient bacterial strain has a survival level of approximately 

18.5% at 0.5 mM CNU exposure for 30 minutes.  At the same exposure, the uninduced 

hAAG-1 mutant has approximately an 0.18% survival level, indicating that strain lacking 

alkA tag and uvrA is more sensitive by two orders of magnitude than the wild type strain.  

Also displayed in this figure, is the E. coli mutant deficient in the uvrA gene.  This strain 

is also sensitive to CNU exposure.  The level of survival is comparable with that of the 

triple mutant, suggesting that the alkA and tag genes have a small role in the repair of 

CNU generated damage to the E. coli genome.  Thus, comparing the wild type to the 

uvrA deficient strain provides evidence that the nucleotide excision repair mechanism is 

needed for the repair of CNU damaged lesions.  These data indicate that hAAG-1 is not 

able to repair lesions created by CNU in bacteria and that the nucelotide excision repair 

system is used on DNA damage created by CNU exposure (Figure 44). 
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Figure 44: Effect of hAAG-1 on induced cell killing by CNU.  The 

induced sample containing hAAG-1 (closed circles) shows 
increased sensitivity to CNU at higher concentrations. 

Interestingly, the wild type E.coli shows some resistance to CNU 
exposure, but once the uvrA gene is removed, the bacterial 

glycosylases alone are not able to rescue the cells, thus the survival 
level drops to that of the triple mutant strain. The uninduced 
sample of hAAG-1 remains as sensitive as the alkA+ tag+ uvrA 

deficient E. coli strain (MV1176, star symbols) and becomes more 
sensitive at higher doses. (MV1161, wild type; MV1176, uvrA; 

MV4236, alkA tag A uvrA pTRC99a vector; MV4237, alkA tagA 
uvrA/ phAAG-1) 

The second isoform of hAAG also confers increased sensitivity to high CNU dose 

in the repair deficient alkA tag uvrA mutant strain. hAAG-2, like hAAG-1, is more toxic 

than the glycosylases of the wild type alk tag system.   At 30 minutes of exposure to 0.5 

mM of CNU, hAAG-2 induced cells have a 0.021% survival level, while wild type cells 

have a survival level of approximately 18.5% (Figure 45, closed triangles).  The 

uninduced hAAG-2 cells (0.028% survival level at 0.5 mM of CNU exposure) also 

demonstrate greater cellular toxicity than the triple mutant control strain (0.17% survival 

level at 0.5 mM of CNU exposure, open and closed diamonds).  This increased sensitivity 

of strains bearing the hAAG-2 plasmid is nearly an order of magnitude at 0.5 mM of 
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exposure to CNU.  Thus, hAAG-2 does not rescue bacteria deficient in their own repair 

mechanism from damage due to exposure to CNU, but actually increases sensitivity to 

the DNA damaging agent.   
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Figure 45: Effect of hAAG-2 on DNA damage induced cell killing 

by CNU.  Closed triangles represent induced glycosylase in the 
alkA tag uvrA deficient background, open triangles represent the 
uninduced sample in the same background. (MV1161, wild type; 

MV1176, uvrA; MV4236, alkA tag A uvrA pTRC99a vector; 
MV4239, alkA tagA uvrA/ phAAG-2) 

 

When exposed to a high dose of CNU, the presence of hAAG-1 and hAAG-2 

make the cells more sensitive.  Both isoforms function in a similar manner.  At low levels 

of CNU exposure, hAAG-1 and hAAG-2 both have similar survival levels, which are 

actually analogous to the triple gene, alkA tag, and uvrA deficient mutant.  For example, 

at 0.25mM of CNU exposure for 30 minutes, hAAG-1 has a survival level of 16%, 

hAAG-2 has a survival level of 21.8%, and the triple mutant has a survival level of 21%.  

However, as the dose concentration increases, so too does the separation in sensitivity 

until the presence of hAAG increases sensitivity of the alkA, tag proficient strain (Figure 

45).  
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CNU Survival comparison of the hAAG-1 and hAAG-1-his6 genes 

Figure 46 shows the sensitivity of hAAG-1-his6 to CNU treatment. The level of 

survival at 0.5 mM CNU is approximately 0.048% for the cells induced by IPTG while 

those uninduced, at the same level of CNU exposure, were equally as sensitive (0.040% 

survival level).  hAAG-1-his6 and hAAG-1 have extremely similar survival levels, 

suggesting that the addition of the his–tag to hAAG-1 does not resistance to CNU.   

hAAG-1-his6 does not affect sensitivity of the uvrA deficient E. coli strain MV1176 until 

it is treated at the highest dose of 0.5 mM CNU for 30 minutes.  Thus, hAAG-1-his6 

increases sensitivity of the uvrA deficient E. coli strain MV1176 at the highest doses.   

The level of survival at 0.36 mM of CNU exposure of the uvrA deficient E. coli strain 

MV1176 is 4% while that of hAAG-1-his6 is 2.4%, a relatively similar level of survival.  

However, at 0.5 mM CNU exposure, the uvrA deficient bacteria have a 0.12% survival 

level while the strain bearing the plasmid containing hAAG-1-his6 has a 0.048% survival.  

The same pattern is seen for the strain bearing the plasmid containing hAAG-1. At 0.5 

mM CNU exposure, the strain containing the plasmid bearing hAAG-1 has a 0.023% 

survival level.  Thus, the presence of hAAG-1, whether his-tagged or normal, increases 

sensitivity with respect to the mutant alk tag uvrA deficient control (0.14% survival level 

at 0.5 mM CNU exposure) and the uvrA deficient strain  (Figure 46).              
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Figure 46: Effect of hAAG-1 (MV4237) and hAAG-1-his6 

(MV4238) on induced cell killing by CNU.  The histidine tag has no 
effect on the ability of hAAG-1 to function, although when hAAG-1 
functions, greater levels of sensitivity are achieved at higher doses.  

Closed squares represent induced his–tagged glycosylase in the 
alkA tag uvrA triple mutant background, open squares represent 

uninduced his-tagged sample in the same triple mutant 
background. (MV1161, wild type; MV1176, uvrA; MV4236, alkA 

tag A uvrA pTRC99a vector; MV4237, alkA tagA uvrA/ phAAG-1; 
MV4238, alkA tagA uvrA/ phAAG-1-his6) 

 

CNU Survival comparison of the hAAG-2 and hAAG-2-his6 genes  

The addition of the histidine tag to hAAG-2, like that of hAAG-1, has little effect 

on the ability of hAAG to function (Figure 47).  hAAG-2-his6 is sensitive to CNU 

treatment and becomes more sensitive at higher concentrations. The level of survival at 

0.5 mM CNU is approximately 0.025% for the cells induced by IPTG while those 

uninduced, at the same level of CNU exposure, were equally as sensitive (0.018% 

survival level).  hAAG-2-his6 and hAAG-2 have extremely similar survival levels, 

suggesting that the addition of the his–tag to hAAG-2 does not alter the ability of hAAG-

2 to provide resistance to CNU.  The survival of hAAG-2-his6 is equal to that of the uvrA 
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deficient E. coli strain MV1176 until it is treated at the highest dose of 0.5mM CNU for 

30 minutes.  Thus, hAAG-2-his6 is more sensitive at this dose than the uvrA deficient E. 

coli strain MV1176.   The level of survival at 0.36 mM of CNU exposure of the uvrA 

deficient E. coli strain MV1176 is 4% while that of hAAG-2-his6 is 3.7%, a relatively 

similar level of survival.  However, at 0.5 mM CNU exposure, the uvrA deficient bacteria 

have a 0.12% survival level while the strain bearing the plasmid containing hAAG-1-his6 

has a 0.025% survival.  The same survival level occurs for the strain bearing the plasmid 

containing hAAG-2. At 0.5 mM CNU exposure, the strain containing the plasmid bearing 

hAAG-2 has a 0.021% survival level.  Therefore, the presence of hAAG-2, like hAAG-1, 

whether his-tagged or normal, increases sensitivity with respect to the mutant alk tag 

uvrA deficient control, which has a survival level of 0.14% at 0.5 mM CNU exposure,  

and the uvrA deficient strain  (Figure 47).              
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Figure 47: Effect of hAAG-2 (MV4239) and hAAG-2-his6 

(MV4240) on induced cell killing by CNU.  The histidine tag has no 
effect on the ability of hAAG-2 to function, although when hAAG-1 
functions, greater levels of sensitivity are achieved at higher doses.  

Closed squares represent induced his–tagged glycosylase in the 
alkA tag uvrA triple mutant background, open squares represent 
uninduced his-tagged sample in the same background. (MV1161, 
wild type; MV1176, uvrA; MV4236, alkA tag A uvrA pTRC99a 

vector; MV4239, alkA tagA uvrA/ phAAG-2; MV4240, alkA tagA 
uvrA/phAAG-2-his6) 
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Conclusions for CNU 

Overall, the results from the cell survival tests involving CNU are quite different 

from those observed from exposure to MNNG and MMS.  These data prove that hAAG-1 

and hAAG-2 are not able to rescue E. coli cells from the damage produced by the DNA 

crosslinking agent CNU.  This is based on the lack of increased resistance when strains 

expressing any of the forms of the hAAG forms are exposed to CNU in the repair 

deficient alkA tag uvrA triple mutant strain.  A deleterious role of hAAG is suggested by 

the increased sensitivity seen at high CNU doses when hAAG is expressed.  The results 

of the two control strains (wild type strain and glycosylase proficient, excision repair 

deficient strain) show that, in E. coli, nucleotide excision repair is needed to fix lesions 

created by CNU exposure (Figure 47, above).  

The results also show that the only noticeable differences between hAAG-1 and 

hAAG-2 involves the level of sensitivity at the 0.5 mM dose.  hAAG-2 is slightly more 

sensitve than hAAG-1 at this dose (Figure 48).  hAAG-1-his6 and hAAG-2-his6 function 

in a similar manner as their non- tagged forms.  Thus, the differences between hAAG-1 

and hAAG-2 are also present in the his-tagged forms.   
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Figure 48: Toxic Effect of hAAG-1 and hAAG-2 on induced cell 
killing by CNU at 0.5mM. hAAG-1 alkA tag uvrA strain (closed 

circles) and hAAG-2 alkA tag uvrA strain are more sensitive to the 
cell than the strain deficient in  alkA tag uvrA  (diamond symbols) 

when exposed to CNU at 0.5mM for 30 minutes. (MV4236, alkA tag 
A uvrA pTRC99a vector; MV4237, alkA tagA uvrA/ phAAG-1; 

MV4239, alkA tagA uvrA/ phAAG-2) 
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BCNU 

The following section describes the effect of the human glycosylase on the 

survival of E. coli cells exposed to BCNU. 

BCNU Survival: Effect of the hAAG-1 and hAAG-2 genes 

BCNU is a DNA damaging agent that crosslinks DNA.  Glycosylase activity of 

bacterial alkA and tagA genes does not normally repair lesions created by BCNU 

damage, for similar reasons to CNU, because the adducts created by BCNU are beyond 

the substrate specificity of the bacterial glycosylases (see: Friedberg et al, 1995).  The 

function of the hAAG enzyme may differ from that of its E. coli homologs in the repair 

of BCNU lesions. The absence of mouse AAG has been shown to sensitize cells to 

BCNU and Mitomycin C exposure, thus mouse AAG protects against cell killing by 

BCNU and Mitomycin C (Engleward et al, 1996, Engleward et al, 1998).  However, the 

presence of induced hAAG (closed circles) does not rescue cells deficient in alkA tagA 

and uvrA repair mechanisms (Figure 49).  This suggests that hAAG-1 does not repair 

BCNU damage as efficiently as methylation damage.  The wild type E.coli shows some 

resistance to BCNU exposure, but once the uvrA gene is removed, the bacterial 

glycosylases alone are not able to rescue the cells, thus the survival level of the uvrA 

strain is identical to that of the alkA tag uvrA triple mutant strain.  In fact, the presence of 

hAAG-1 at the higher dose ranges actually increases sensitivity.  At 30 minutes of 

exposure to 3 mM of BCNU, the repair deficient alk tag uvrA mutant strain shows a 

survival level of 0.353%.  When hAAG-1 is introduced into this strain and induced, 

sensitivity increases one order of magnitude to the survival level of 0.030%.  The wild 

type repair proficient bacterial strain has a survival level of approximately 31% at 3 mM 

BCNU exposure for 30 minutes.  Thus, the wild type bacterium is better suited to 

maintain cellular survival than those strains bearing the hAAG-1 plasmid.  The 

uninduced hAAG-1 cells have approximately a 0.104% survival level at the same 

exposure.  These data indicate that cells with induced hAAG-1 are more sensitive by two 

orders of magnitude compared to wild type E. coli cells (Figure 49).  Also displayed in 

this figure is the E. coli mutant deficient in the uvrA gene.  This strain is also sensitive to 

BCNU exposure.  The level of survival is comparable with that of the triple mutant, 
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suggesting that the alkA and tag genes have a small role in the repair of BCNU generated 

damage to the E. coli genome.  Thus, comparing the wild type to the uvrA deficient strain 

provides evidence that the nucleotide excision repair mechanism is needed for the repair 

of BCNU damaged lesions.  These data indicate that hAAG-1 is not able to repair lesions 

created by BCNU in bacteria (Figure 49). 
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Figure 49: Effect of hAAG-1 on induced cell killing by BCNU.  The 
induced sample containing hAAG-1 (closed circles) in the alkA tag 

uvrA  triple mutant background shows increased sensitivity to 
BCNU at all concentrations.  The uninduced sample of hAAG-1 

remains  with the uvrA deficient E. coli strain (MV1176, star 
symbol). (MV1161, wild type; MV1176, uvrA; MV4236, alkA tag A 

uvrA pTRC99a vector; MV4237, alkA tagA uvrA/ phAAG-1) 

 

The second isoform of hAAG does not confer increased sensitivity to BCNU in 

the repair deficient alkA tag uvrA mutant strain.  At 30 minutes of exposure to 3 mM of 

BCNU, hAAG-2 induced cells have a 0.65% survival level (Figure 50, closed triangles), 

while wild type cells have a survival level of approximately 31%.  The uninduced hAAG-

2 cells (2.5% survival level at 3 mM of BCNU exposure) show greater resistance than the 

deficient alkA tag uvrA triple mutant control strain (0.41% survival level at 3 mM of 
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BCNU exposure, open and closed diamonds).  hAAG-2 does not rescue bacteria deficient 

in their own repair mechanism from damage due to exposure to BCNU (Figure 50).   
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Figure 50: Effect of hAAG-2 on DNA damage induced cell killing 
by BCNU.  Closed triangles represent induced glycosylase in the 
alkA tag uvrA deficient background, open triangles represent the 
uninduced sample in the same background. (MV1161, wild type; 

MV1176, uvrA; MV4236, alkA tag A uvrA pTRC99a vector; 
MV4239, alkA tagA uvrA/ phAAG-2) 

 

Neither hAAG-1 nor hAAG-2 assist in the repair of lesions created by BCNU.  

However, hAAG-1 increased sensitivity of the bacteria at higher doses, while hAAG-2 

had no effect on the survival of the alkA tag uvrA triple mutant strain.  At low levels of 

BCNU exposure, hAAG-1 and hAAG-2 both were similar and had no measurable affect 

on the alkA tag, and uvrA deficient mutant and the wild type strain (Figures 49 and 50).  



Bonanno 88 

 

BCNU Survival: Effects of the his6 tag on each isoform of hAAG 

Each histidine tagged form of hAAG is as sensitive to BCNU exposure as the 

alkA tag uvrA triple mutant strain and the uvrA deficient strain.  hAAG-1-his6 functions 

similar to hAAG-1, but hAAG-2-his6 is more sensitive than hAAG-2 at higher doses.  

The levels of survival, however, for each form, were only slightly lower than that of the 

alkA tag uvrA triple mutant strain and the uvrA deficient strain at 3 mM of BCNU 

exposure (Figure 51 and 52).  

Figure 51 shows the sensitivity of hAAG-1-his6 to BCNU treatment. The level of 

survival at 3 mM BCNU is approximately 0.10% for the cells induced by IPTG while 

those uninduced, at the same level of BCNU exposure, were equally sensitive (0.093% 

survival level).  hAAG-1-his6 and hAAG-1 have extremely similar survival levels, 

indicating that the addition of the his–tag to hAAG-1 does not alter the ability of hAAG-1 

to provide resistance to BCNU.  Expression of hAAG-1-his6 has no effect on the uvrA 

deficient E. coli strain MV1176.  At the highest dose of 3 mM BCNU for 30 minutes, 

hAAG-1-his6 is more sensitive than the uvrA deficient E. coli strain MV1176.   The level 

of survival at 2.5 mM of BCNU exposure of the uvrA deficient E. coli strain MV1176 is 

2.4% while that of hAAG-1-his6 is 1.8%, a relatively similar level of survival.  However, 

at 3 mM BCNU exposure, the uvrA deficient bacteria have a 0.22% survival level while 

the strain bearing the plasmid containing hAAG-1-his6 has a 0.1% survival.  At 3 mM 

BCNU exposure, the strain containing the plasmid bearing hAAG-1 has a 0.030% 

survival level compared to 0.40% for the control.  Thus, the presence of hAAG-1, 

whether his-tagged or normal, increases sensitivity of the alk tag uvrA strain.   The uvrA 

deficient strain is also less sensitive than those expressing hAAG at high concentrations 

of BCNU (Figure 51).              
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Figure 51: Effect of hAAG-1 (MV4237) and hAAG-1-his6 

(MV4238) on induced cell killing by BCNU.  The histidine tag has 
little effect on the ability of hAAG-1 to function, as the presence of 
the his-tag makes hAAG-1 less toxic at high doses.  Closed squares 

represent induced his–tagged glycosylase in the alkA tag uvrA 
triple mutant background, open squares represent uninduced his-
tagged sample in the same triple mutant background. (MV1161, 
wild type; MV1176, uvrA; MV4236, alkA tag A uvrA pTRC99a 

vector; MV4237, alkA tagA uvrA/ phAAG-1; MV4238, alkA tagA 
uvrA/ phAAG-1-his6) 

 

The addition of the histidine tag to hAAG-2, has a more toxic effect on the ability 

of hAAG to function (Figure 52).  hAAG-2-his6 is sensitive to BCNU treatment, more so 

than hAAG-2, and becomes increasingly sensitive at higher concentrations. The level of 

survival at 3 mM BCNU is approximately 0.178% for the cells induced by IPTG while 

those uninduced, at the same level of BCNU exposure, were equally as sensitive (0.2% 

survival level).  hAAG-2-his6 and hAAG-2 have diverse levels of survival, suggesting 

that the addition of the his–tag to hAAG-2 alter the ability of hAAG-2 by increasing the 

sensitivity of strains expressing hAAG-2-his6.  hAAG-2-his6 is as sensitive as the uvrA 

deficient E. coli strain MV1176.   The level of survival at 2.5 mM of BCNU exposure of 



Bonanno 90 

 

the uvrA deficient E. coli strain MV1176 is 2.4% while that of hAAG-2-his6 is 1.2%, a 

relatively small difference in the level of survival.  At 3 mM BCNU exposure, the uvrA 

deficient bacteria have a 0.22% survival level while the strain bearing the plasmid 

containing hAAG-2-his6 has a 0.17% survival.  A different survival level occurs for the 

strain bearing the plasmid containing hAAG-2. At 3 mM BCNU exposure, the strain 

containing the plasmid bearing hAAG-2 has a 0.65% survival level.  The presence of 

hAAG-2-his6 increases sensitivity of the mutant alk tag uvrA deficient control, which has 

a survival level of 0.14% at 3 mM BCNU exposure,  and has a similar survival level as  

the uvrA deficient strain (Figure 52).  Thus, the his-tag has a toxic effect on the hAAG-2 

gene.               
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Figure 52: Effect of hAAG-2 (MV4239) and hAAG-2-his6 

(MV4240) on induced cell killing by BCNU.  The histidine tag has a 
toxic effect on the sensitivity of hAAG-2, but may not effect the 
ability of hAAG-2 to function, although when hAAG-2-his(6) is 

induced, greater levels of sensitivity are achieved at higher doses.  
Closed squares represent induced his–tagged glycosylase in the 

alkA tag uvrA triple mutant background, open squares represent 
uninduced his-tagged sample in the same background. (MV1161, 
wild type; MV1176, uvrA; MV4236, alkA tag A uvrA pTRC99a 

vector; MV4239, alkA tagA uvrA/ phAAG-2; MV4240, alkA tagA 
uvrA/phAAG-2-his6) 
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Conclusions for BCNU 

Overall, the results from the cell survival tests involving BCNU are quite different 

from those observed from exposure to MNNG and MMS, but similar to CNU.  The 

BCNU survival results  contradict published data (Engleward et al, 1996). Engleward 

showed that loss of AAG activity in mouse cells caused BCNU sensitivity, indicating a 

role for hAAG in BCNU damage repair.  The data from this study  indicate that hAAG-1 

and hAAG-2 are not able to repair DNA damaged by the crosslinking DNA damaging 

agent BCNU in a deficient alkA tag uvrA mutant strain.  The results of the two control 

bacterial strains show that nucleotide excision repair is needed to fix lesions created by 

BCNU exposure.  These results demonstrate that the overexpression of hAAG-1 and 

hAAG-2 are toxic to the bacteria at 3 mM BCNU exposure compared to the alkA tag 

uvrA triple mutant strain (Figure 53).  

The results also show that the only noticeable differences between hAAG-1 and 

hAAG-2 involves the level of sensitivity at the 3 mM dose.  hAAG-2 is less sensitve than 

hAAG-1 at this dose by more than one order of magnitude (Figure 53).  hAAG-1-his6 and 

hAAG-2-his6 function in a similar manner as their non- tagged forms, however hAAG-2-

his6 is slightly more toxic at higher doses than hAAG-2.  
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Figure 53: Toxic Effect of hAAG-1 compared to hAAG-2 on 

induced cell killing by BCNU at 3 mM. hAAG-1 alkA tag uvrA 
strain (closed circles) is more sensitive to the cell than the hAAG-2 

alkA tag uvrA strain and the strain deficient in  alkA tag uvrA  
(diamond symbols) when exposed to BCNU at 3 mM for 30 

minutes. (MV1176, uvrA; MV4236, alkA tag A uvrA pTRC99a 
vector; MV4237, alkA tagA uvrA/ phAAG-1; MV4239, alkA tagA 

uvrA/ phAAG-2) 

Mitomycin C (MMC) 

The following section displays the effect of human glycosylase activity on the 

survival after exposure of E. coli cells to the crosslinking agent Mitomycin C (MMC). 

MMC Survival tests for the hAAG-1 gene 

Mitomycin C is a DNA damaging agent that creates interstrand crosslinks in 

double stranded DNA, thus preventing it from replicating.  Prior studies show increased 

Mitomycin C sensitivity in mammalian cells lacking a functional hAAG gene (Engleward 

et al, 1996), suggesting that hAAG may play a role in the rescue of DNA damage 

produced by Mitomycin C.   
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Mitomycin C creates bulky adducts to the DNA that may cause bending or 

kinking of the DNA strand when it intercalates into the helix.  Since uvrABC excises 

bulky lesions during repair as a part of the nucleotide excision system, it became 

important to observe the functional differences between E. coli strains deficient in alkA 

and tag and E. coli strains deficient in alkA, tag, and uvrA.  Therefore, two hAAG-1 

strains were tested for resistance to Mitomycin C.  One is the strain deficient in alkA and 

tag and the other is deficient in alkA, tag,and uvrA.  Each strain demonstrated unique 

results, which may suggest the role of the uvrABC system on the repair of Mitomycin C 

created adducts.   

The alkA tag double mutant strain was less sensitive than the alkA tag uvrA triple 

mutant to Mitomycin C exposure (Figure 54).      
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Figure 54: Effect of hAAG-1 activity on cell killing by Mitomycin 
C.  The induced sample containing hAAG-1 (closed circles) in the 
alkA tag background and the uninduced sample of hAAG-1 (open 

circles) are more resistant than those of the hAAG-1 in the alkA tag 
uvrA deficient mutant (small circles). (MV4224, alkA tagA/ 

phAAG-1; MV4228, alkA tag A/ pTRC99a vector; MV4237, alkA 
tagA uvrA/ phAAG-1) 
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There are two genetic differences between these two strains.  The first is the 

absence of the ompT outer membrane protease from the alkA tag double mutant.  Prior 

data for MNNG showed that this mutation does not have any effect on the ability of the 

glycosylase to function in vivo (data not shown).  The second genetic difference between 

the two strains is the absence of the uvrA gene from the alkA tag uvrA triple mutant.  

Since the uvrA gene encodes a protein needed for the function of the nucleotide excision 

repair system, by knocking out the uvrA gene, the entire nucleotide excision repair 

pathway is not able to function.  This may explain the reason for the differences obtained. 

To further examine the role of hAAG-1, a comparison was made based on the 

survival of E. coli proficient in uvrA, but deficient in alkA and tag.  The level of survival 

of these strains is similar to that of its hAAG-1 bearing derivative (Figures 54 and 55).  

An interesting note, however, is the increased resistance of the plasmid bearing 

alkA tag deficient strains, regardless of the presence of hAAG-1.  The alkA tag double 

mutant containing the plasmid vector pTR99a shows equal resistance as that strain 

deficient in alkA and tag containing hAAG-1 (Figure 55).   Thus, the alkA tag double 

mutant strains are less sensitive than the wild type glycosylase strain suggesting that 

bacterial glycosylase(s) sensitize cells for MMC killing.  On the other hand, human 

glycosylase expressed in E. coli has little or no effect on MMC cytotoxicity (Figure 55).  
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Figure 55: Effect of hAAG-1 activity on cell killing by MMC.  The 
induced sample containing hAAG-1 (closed circles) in the alkA tag 
background and the uninduced sample of hAAG-1 (open circles) 
show levels of survival similar to those of the alkA tag deficient 

double mutant (small triangles), yet greater than those of the wild 
type E. coli strain (+ symbol). (MV1161, wild type; MV4224, alkA 

tagA/ phAAG-1; MV4228, alkA tag A/ pTRC99a vector) 

 

An interesting finding was seen when the alkA tag uvrA triple mutant strain 

containing hAAG-1 was analyzed.  This strain, unlike the double mutant, showed great 

sensitivy to Mitomycin C, especially at lower dose levels.  Thus, the role of uvrA may be 

a factor in these differences.  The effect of hAAG-1 in the alkA tag uvrA triple mutant 

background was to increase Mitomycin C sensitivity at low levels (Figure 56).  
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Figure 56: Effect of hAAG-1 on cell killing by Mitomycin C.  The 
induced sample containing hAAG-1 (closed circles) in a alkA tag 

uvrA mutant background and the uninduced sample of hAAG-1 in 
the same background show toxic levels of survival at lower doses 

yet regain resistance similar to that of the wild type E. coli strain at 
higher doses (MV1161, + symbols).  The diamond represents the 

alkA tag uvrA vector control, which was used in the comparison of 
hAAG-1 toxicity. (MV1161, wild type; MV4236, alkA tag A uvrA 

pTRC99a vector; MV4237, alkA tagA uvrA/ phAAG-1) 

 

MMC Conclusions for hAAG-1 Survival in uvrA + and uvrA - 

backgrounds 

Comparing the two strains containing hAAG-1, one can clearly see diversity 

between the sensitivity of the two strains.  Figures 57 revisits the activity displayed by the 

two strains with respect to the wild type mutant and the uvrA deficient mutant.  Panel B 

of figure 57 uses a logarithmic scale to expand the lower levels of exposure.   
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Figure 57: Effect of hAAG-1 against MMC cell killing in the alkA 

tag background and in the alkA tag uvrA background.  A). The 
induced sample containing hAAG-1 in the alkA- tag- uvrA+ strain 

(closed red circles) and the uninduced sample of hAAG-1 show 
levels of survival greater than those of the wild type E. coli strain 

(MV1161, cyan color).  The induced sample of the alkA- tag- uvrA- 
strain (closed purple squares) and uninduced sample (open purple 
squares) show more sensitivity to MMC than the double mutant 
strain.   B). Using a logarithmic x-axis to amplify the exposure at 

low doses, one can compare the differences observed between 
strains containing and lacking the uvrA gene.  The induced sample 
containing hAAG-1 (closed circles) in the alkA tag double mutant 

show greater resistance at low levels of Mitomycin C exposure.   
The induced sample of hAAG-1 in the alkA tag uvrA triple mutant 

background show levels of survival equal to the uvrA deficient 
bacterial strain at low levels.   (MV1161, wild type; MV1176, uvrA; 

MV4224, alkA tagA/phAAG-1;  
MV4237, alkA tagA uvrA/phAAG-1) 

 

General conclusions about the function of hAAG-1 can be drawn from the 

difference in hAAG-1 function in these survival assays between the alkA tag background 

and the alkA tag uvrA backgrounds.  First, the presence of uvrA greatly increases the 

performance of hAAG-1.  In the absence of uvrA, hAAG-1 expression increased 

Mitomycin C sensitivity at the low dose levels of 0.025 ug/ml and 0.1ug.ml.  The 

survival levels at these dose ranges can be summarized in Table 5.  hAAG-1 expression 

in the alkA tag uvrA deficient background sensitizes to the greatest degree at low doses, 

however the alkA tag proficient uvrA deficient strain becomes more sensitive than 

hAAG-1 as the dose increases (Table 5).   
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  Table 5: Percent survival comparison among various dose levels 
of Mitomycin C exposure for 30 minutes.   

Sample Dose  (ug/ml)   
 0.025 0.1 1 2 
hAAG-1 uvrA+ alkA-- tag-- 91 % 89% 5.5% 1.8% 
Wild type E. coli 70% 53% 0.88% 0.25% 
hAAG-1 uvrA-- alkA-- tag-- 39.5% 9.8% 0.26% 0.19% 
E. coli uvrA-- alkA+ tag+ 51.3% 9.2% 0.04% 0.03% 

 

MMC Survival: Effects of the hAAG-2 gene 

The second isoform of hAAG confers increased sensitivity to Mitomycin C 

exposure in the repair deficient alkA tag uvrA mutant strain. In the alkA tag uvrA 

deficient background, hAAG-2, like hAAG-1, is more toxic than the glycosylases of the 

wild type alk tag uvrA proficient system.  hAAG-2 is also slightly more resistant than the 

uvrA deficient bacteria mutant.  At 30 minutes of exposure to 2 ug/ml of Mitomycin C, 

hAAG-2 induced cells  (Figure 58, closed triangles) have a 0.061% survival level, while 

wild type cells have a survival level of approximately 0.25%.  The uninduced hAAG-2 

cells (0.093% survival level at 2 ug/ml of Mitomycin C exposure) also demonstrate equal 

sensitivity to that of the triple mutant control strain (0.04% survival level at 2 ug/ml of 

Mitomycin C exposure (Figure 58, diamonds).  Thus, hAAG-2 does not rescue bacteria 

deficient in their own repair mechanisms from damage due to exposure to Mitomycin C, 

but actually increases sensitivity to the DNA damaging agent to the survival level of the 

alkA tag uvrA triple mutant.   
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Figure 58: Effect of hAAG-2 on cell killing by Mitomycin C.  The 

induced sample containing hAAG-2 (closed triangles) in a alkA tag 
uvrA mutant background and the uninduced sample of hAAG-2 in 
the same background show equal sensitivity as those expressed by 
the alkA tag uvrA vector control. Levels of survival are lower than 
those of the alkA tag uvrA proficient E.coli (+ symbols).   However, 
survival levels are slightly more resistant than the uvrA deficient E. 

coli strain (star symbols). (MV1161, wild type; MV1176, uvrA; 
MV4236, alkA tag A uvrA pTRC99a vector; MV4239, alkA tagA 

uvrA/ phAAG-2) 

 

When exposed to Mitomycin C, the presence of hAAG-1 and hAAG-2 make the 

cells just as sensitive as the alkA tag, and uvrA deficient mutant.   The strain proficient in 

all repair pathways showed less sensitivity than those strains containing plasmids bearing 

hAAG.  At lower doses of Mitomycin C exposure, hAAG-1 was more toxic than hAAG-

2.  However, at higher doses, hAAG-2 was actually slightly more sensitive than hAAG-1.  

This data indicates that hAAG-1 is toxic in cells when exposed to low levels of 

Mitomycin C whereas hAAG-2 is not as toxic to this low exposure of Mitomycin C.  At 

0.1 ug/ml Mitomycin C exposure, hAAG-1 is more sensitive than hAAG-2 by a full order 

of magnitude (Figures 57 and 58). At high levels of Mitomycin C exposure, hAAG-1 and 

hAAG-2 both have similar survival levels, which are actually similar to the alkA tag, 
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uvrA deficient mutant.  For example, at 1 ug/ml of Mitomycin C exposure for 30 

minutes, hAAG-1 has a survival level of 0.26%, hAAG-2 has a survival level of 0.20%, 

and the triple mutant has a survival level of 0.24%.  However, as the dose concentration 

increases, so too does the separation in sensitivity.  hAAG-2 increases the sensitivity to 

Mitomycin C to a greater extent than hAAG-1 (Figure 58).  

MMC Survival: comparisons of the his6  tagged forms of hAAG 

hAAG-1-his6 and hAAG-2-his6 have both similarities and differences.  hAAG-2-

his6 shows more sensitivity than hAAG-1-his6, however both were sensitive at the lower 

doses (Figure 59).  A logarithmic scale was needed to clearly see the sensitivity to low 

concentrations of Mitomycin C.  Induction increased toxicity, suggesting that the greater 

amount of his-tagged glycosylase, the more sensitive the cells were to Mitomycin C 

exposure. 
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The hAAG-1-his6 gene showed similar sensitivity to Mitomycin C as hAAG-1 in 

the same background (alkA- tag- uvrA triple mutant).  At lower levels, toxicity was very 

high, yet as the doses increased, so did the level of survival (Figure 59).  Thus, the his-tag 

has no effect on sensitivity to MMC.      
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Figure 59: Effect of hAAG-1 and hAAG-1-his6 on cell killing by 

MMC.  The induced sample containing hAAG-1 (closed circles) in 
the alkA- tag- uvrA background and the uninduced sample of 

hAAG-1 in the same background show levels of survival lower than 
those of the wild type E. coli strain (MV1161, + symbols).  The 

induced sample of hAAG-1-his6 also reacts very similar to hAAG-1. 
B).  The induced sample containing hAAG-1 (closed circles) in the 
alkA- tag- uvrA background shows a level of survival higher than 
those of the uvrA deficient E. coli strain (MV1176, star symbols).  
The induced sample of hAAG-1-his6 in the same background also 

react very similar to hAAG-1. This figure represents the data from 
panel A, however using a logarithmic scale for the x-axis in order 
to see more clearly the sensitivity at lower levels. (MV1176, uvrA; 
MV4237, alkA tagA uvrA/ phAAG-1; MV4238, alkA tagA uvrA/ 

phAAG-1-his6) 

The histidine tag attached to hAAG-2 posed a great variation to that on the 

hAAG-1, similar to that seen in the BCNU treatments.  This is very strange due to the 

fact that hAAG-2-his6 was created from hAAG-1-his6.  However, it is obvious from this 

data that hAAG-2-his6 shows great sensitivity to Mitomycin C by over three orders of 

magnitude at the low doses of 0.025 ug/ml and 0.1 ug/ml (Figure 60).  The hAAG-2-his6 

was very toxic when induced by IPTG at lower dose levels, however as the dose 
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increased, the toxicity decreased.   hAAG-2-his6 actually displayed sensitivity equal to 

the control alkA- tag- uvrA triple mutant at the higher doses (Figure 60).   
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Figure 60: A)Effect of hAAG-2 and hAAG-2-his6 on cell killing by 
MMC.  The induced sample containing hAAG-2 (closed triangles) 
in the alkA- tag- uvrA background and the uninduced sample of 

hAAG-2 in the same background show levels of survival lower than 
those of the wild type E. coli strain (MV1161, + symbols).  The 

induced sample of hAAG-2-his6 reacts in a very sensitive manner 
compared to hAAG-2 sensitivity at low doses. B). The induced 

sample containing hAAG-2 (closed triangles) in the alkA- tag- uvrA 
background shows a level of survival higher than those of the uvrA 

deficient E. coli strain (MV1176, star symbols).  The induced 
sample of hAAG-2-his6 in the same background, shows a survival 
level much lower than those of hAAG-2 and of the uvrA deficient 

E. coli strain. This figure represents the data from panel A, 
however using a logarithmic scale for the x-axis in order to see 

more clearly the sensitivity at lower levels. (MV1176, uvrA; 
MV4236, alkA tag A uvrA pTRC99a vector; MV4239, alkA tagA 

uvrA/ phAAG-2; MV4240, alkA tagA uvrA/ phAAG-2-his6) 

hAAG-2-his6 shows extreme sensitivity at low levels of MMC exposure, 

suggesting that the histidine tag may alter the function of the hAAG-2 isoform (Figure 

61). 
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Figure 61: Cell Killing by MMC.  hAAG-2-his6 ( large squares) in 
an alkA tag uvrA background proves to be very toxic at low levels 
of Mitomycin C exposure.  (MV4236, alkA tag A uvrA pTRC99a 

vector; MV4240, alkA tagA uvrA/ phAAG-2-his6) 

  

Conclusions for MMC Survival Assays 

Mitomycin C displayed interesting results.  hAAG-1 was more sensitive to 

Mitomycin C exposure than hAAG-2 at lower doses, but as the dose increased, a reversal 

in sensitivity occurred.  hAAG-2-his6 was more sensitive to Mitomycin C exposure at 

lower dose levels than hAAG-1-his6, suggesting the possibility that the alternative exon 1 

of hAAG-2 may present the increased sensitivity to Mitomycin C.  The possibility of a 

poor dilution to obtain the lower level concentrations can be ruled out due to the daily 

consistency obtained in the results.  

A result worth pursuing is the effect of the uvrA gene to Mitomycin C exposure.  

When hAAG-1 was in the uvrA proficient background, it increased Mitomycin C 

resistance relative to the control.  When it was in the uvrA deficient background, it 

caused sensitivity.  The presence and absence of uvrA function had the same effect in the 

alkA tag double mutant (Figure 62).   
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A general hypothesis for the relationship between the glycosylase activity and the 

nucleotide excision repair system is that glycosylase needed to create perform initial 

repair to DNA in order to produce recognizable adducts for the excision repair system to 

excise.  Therefore, strains containing both the presence of glycosylase genes and the 

uvrA gene should be more resistant than strains lacking either of those repair systems.  

This is not the case, however, when exposed to Mitomycin C.  The level of survival for 

the alkA tag double mutant is very comparative to that of the its derivative expressing 

hAAG-1, which suggests that the presence of glycosylase may not be relevant to the 

recovery of cells exposed to Mitomycin C.  However, the alkA tag uvrA strain is more 

resistant than the uvrA deficient strain at 1 ug/ml of Mitomycin C exposure, suggesting 

that glycosylase activity sensitizes the cells in the absence of the uvrA gene (Figure 62).  
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Figure 62: Effect of cell killing by Mitomycin C.  This graph shows 
Mitomycin C’s effect on strains without hAAG.  Most sensitive is 

the uvrA deficient strain (star symbols).  Then, the alkA- tag- uvrA 
triple mutant (diamonds) was next sensitive.  More resistant than 
this was the proficient strain (+ symbols).  The most resistant was 
the alkA- tag- double mutant strain (small triangles). (MV1161, 

wild type; MV1176, uvrA; MV4228, alkA tagA/ pTRC99a vector; 
MV4236, alkA tag A uvrA pTRC99a vector) 
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hAAG-1-his6 and hAAG-2-his6 Protein Analysis 

The first step in conducting the protein analysis of hAAG-1-his6 and hAAG-2-his6 

was to provide a system in which the maximum level of production would be achieved.  

The system chosen knocked out the protease activity of the ompT protein.  Then, protein 

analysis to determine expression levels and time assays were conducted.    

Constructing a Strain Carrying an alkA1 tagA1 ompT Mutant Gene 

The goal of this series of experiments was to create an ompT::KanR mutant strain 

to control the function of ompT allowing bacterial expression of hAAG protein. OmpT is 

an outer membrane protein that cleaves proteins upon their release from cells between 

two basic amino acid residues (Henderson, 1994).  Therefore, this protease causes 

cleaveage of hAAG during purification by cleaving hAAG between two arginine 

residues.  Based on the results of amino terminal protein sequencing it was found that the 

hAAG-1-His6 protein was cleaved at a site between two Arginine residues (S. Wright, Q. 

Li and D. Ludlum, Personal Communication).  Since this is the prefered clevage site of 

the OmpT protease (Sugimura and Higashi 1988), we decided to construct an 

ompT::kanR mutant of our alkA tagA mutant strain MV2157 or derivative, using P1 

transduction to block the Arginine cleavage.  In doing so, we prevent cleavage of full-

length proteins, allowing us to perform further testing on the protein’s function.  Since 

this strain was already kanamycin resistant, it was first necessary to place the ompT::kanR 

gene next to a selectable marker for genetic transfer in MV4137.  I tested three strains 

known to carry Tn 10 (tetracycline resistance) insertions located near ompT for linkage in 

order to find the one that is closest.  

Properties of the ompT Mutant Strain 

Since the alkA  tagA strain MV2157 carried a kanamycin resistance element and 

was, therefore, alkA, it was necessary to construct an ompT::KanR  derivative by 

transferring ompT::KanR from strain AD202 into a strain that carries a Tn10-TetR marker 

tightly linked to ompT, using P1 transduction and selecting for KanR TetR transductants 

(Volkert, 1999).    
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Choosing a Recipient Cell Strain 

Three strains, CAG12149, CAG12021, and CAG12171 were tested for linkage of 

Tn10-tetR to ompT::Kan using the strain P1-MV4137 ompT::KanR as a donor.  The P1-

MV4137 packages random 90 kilobase DNA piece approximately 2% the size of a 

chromosome and transfersthe desired fragment at a frequency of about 10-5 transductants 

(Miller, 1972).  It also lacks the TetR marker of the strain and is TetS (see figure 63a). 

 

 
Figure 63: A Crude genetic map of  A). the P1-MV4137 

ompT::KanR strain B). the CAG Recipient Strain KanS TetR 
orientation. C). the KanR  and TetR cells, the Desired Recombinant. 

 

The recipient strains have just the opposite resistance and suppressor sites as the 

P1-MV4137.  Figure 63b displays the orientation of the kan and tet antibiotics in these 

cell lines.  This experiment was accomplished to detect the presence of the desired KanR
  

and TetR recombinant (Figure 63c).   

Prior to obtaining this ompT resistance, a test cross was completed to provide 

accuracy in our determination that the strain had accepted the KanR and was not 

expressing its unlinked KanR marker downstream from the gene.  Therefore, the test cross 

was done to determine which tetR marker was closest to the ompT::Tn10Kan.  This is 

indicated in this cross by the one yielding the lowest ration of TetR KanR to TetS Kan R 

recombinants, the TetS KanR recombinants are those inheriting both donor markers.  

Table 6 shows this ratio was lowest in the P1-MV4137 to CAG12171 cross.   
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Table 6: Ratio of P1-MV4137 with CAG recipient crosses 

 KanR cell count KanR—TetR cell count 
CAG12021 69 52 
CAG12149 20 13 
CAG12171 44 10 
P-1 only (control) 0 0 

 

 

A TetR::ompT KanR recombinant was then picked , purified, and subsequently 

used as a P1-donor strain in a second cross in which P1-MV1161 was used and MV4139 

and MV4140 were used as recipients.  P1 was grown on MV4139 and it was used to 

transduce MV2157, MV4122, MV4126, and MV4137.  Four colonies of each were 

picked and purified, then tested for coinheritance of ompT::KanR by backcrossing into 

strain Q and selecting for TetR::KanR in order to determine which backcross donors 

carried the KanR allele linked to the TetR allele.  Table 7 shows that strains MV2157, 

MV4126, and MV4137 inherited both markers and stain MV4122 did not.  

 Table 7: Percentage yield of backcrosses in each of the four alkA 
tagA strains 

Strain Number of dual 
cells 

Number of Streaked  
Cells 

Percentage 

MV2157 20 50 40 
MV4122 0 50 0 
MV4126 14 50 28 
MV4137 15 50 30 

 

Once the ompT alkA tagA strain carrying the hAAG-1-his6 expressing plasmid 

was constructed, it was grown and its hAAG-1-his6 protein purified and subjected to 

polyacrylamide gel electrophoresis.  The purified protein was found to be about 1 kDa 

larger than the protein previously purified from the ompT+ strain, suggesting it was intact. 

Amino terminal sequencing confirmed that that ompT::kanR alkA tagA mutant strain 

yielded an intact hAAG protein (S. Wright, Q. Li and D. Ludlum, Personal 

Communication). 
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Transfer of hAAG-2- 6x his to a pBluescript vector 

One of the focuses of this project, and as an ongoing project in the Ludlum 

laboratory was the protein production and purification of the hAAG genes.  The his-

tagged versions of each gene were incorporated into the plasmid pBluescript KS- so that 

the T7 promoter could regulate hAAG.  The plasmid construction of hAAG-1-his6 was 

engineered previously, so only hAAG-2-his6 was constructed in this work.  pBluescript 

and pMV536 were each cut at the EcoRI and Hind III sites.  The restriction product was 

purified using the gene clean kit (Bio101, Inc.) and ligated using T4 DNA ligase at 16 

degrees C.  The product was then transformed into competent Q cells and colonies were 

picked and the plasmids purified using the Qiagen plasmid miniprep kit.  Restriction 

digests were perfomed to determine that the ligation occurred correclty.  The plasmids 

were cut with EcoRI-HindIII, and EcoRI-Afe II (data not shown).  Figure 64 shows a 

restriction digest by BsteII.  This enzyme was used because of its unique single site in 

pBluescript and because with the hAAG-2-his6 site added to the pBluescript, the sites 

mapped to 2.8 kb, 884 bp, and 114 bp- an ideal distance to distinguish easily on a gel if 

the correct fragment had been ligated.  The lane labeled 552 displays these three 

fragments, thus restriction analysis has provided the conclusion that hAAG-2-his6 was 

transfered to pBluescript correctly.    
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Figure 64: Restriction Digestion of Ligation product of hAAG-2-6x 

his insert and pBluescript Vector.  The lane labeled 552 displays 
the BstE II restriction digest.  Bands corresponding to 114 bp, 884 

bp, and 2.8 kb were observed.   

 

Plasmids containing the hAAG-2-his6 were erroneously transformed into 

MV4210 because it was thought that the absence of the OmpT protease could be used to 

benefit increased protein production.  However, plasmid pMV552 must be transferred 

into strains BL21 (DE3) and BL21 (DE3) lysS so that expression can be achieved from 

the T7 promoter located within the pBluescript plasmid.  Expression from the T7 

promoter should yield increased protein production. 

 

Protein Synthesis and Production Time Assay 

The first time assay was successful, however the protein produced did not yield 

high enough levels to be detected on a Western blot.  Therefore, longer incubation time in 

the presence of IPTG will occur in the next Western blot assay.    
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Western Blot Analysis 

Currently, attempts at observing the his-tagged protein via chemiluminescense 

have not been completed successfully.  In these Western Blot experiments, transfer to the 

membrane had occurred.  Therefore, it is believed that higher concentrations are needed 

in order to observe the histidine tagged hAAG proteins.  This will be accomplished in the 

next protein synthesis time study. 
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DISCUSSION 
 

Construction of hAAG-2 and hAAG-2-his6 

The second isoform of hAAG present in the plasmid pMV518 was reconstructed 

to provide an identical upstream sequence to that of hAAG-1 by incorporating it into a 5’ 

primer (MV20) to be used in a PCR reaction.  The addition of this sequence, containing a 

ribosomal binding site and key restriction endonuclease, and the incorporation of the 

PCR fragment into the plasmids containing hAAG-1 and hAAG-1-his6 provided the lab 

with a gene that functioned similarly to hAAG-1.   

PCR primers must be very close in melting temperature in order for the reaction 

to occur properly.  Once a 3’ primer was constructed with a similar melting temperature 

to that of the 5’ primer, the PCR proceeded as expected.  After the plasmids bearing 

hAAG-2 and hAAG-2-his6 were constructed, they expressed phenotypically similar 

properties to their alternately spliced isoform.  Thus, the original hAAG-2-his6 within 

pMV518 was not being expressed properly, possibly due to transcriptional and/or 

translational  problems.   

The only biological difference between the two isoforms of hAAG is the first 

exon.  Exon 1 of hAAG-2 is 15 base pairs greater in length than exon 1 of hAAG-1.  In 

addition to this size difference, hAAG-1 and hAAG-2 have an altered amino acid 

sequence in the first exon.  This may create slightly different protein structures when the 

amino acids conform into the tiertiary and quartinery protein structures.  It may also 

result in different stabilities and/or subcellular localization in mammalian cells.    

Survival Data 

 

The information collected and observed from the cell survival assays provide 

insight to the biological function of each isoform of hAAG when cells are exposed to 

various chemical DNA damaging agents.  This section presents key insight specific to 
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each drug used and then is followed by a section dedicated to a general discussion 

involving all the data collected.   

 

MNNG and MMS Survival tests  

 

The human AAG-1 is able to function in an alkA tag bacterium to increase 

resistance to MNNG.  At higher doses, this increase in resistance is greater than that seen 

in a wild type bacterium that expresses its own alk and tag encoded glycosylases.  This 

suggests that hAAG-1 functions more efficiently in the E. coli system than alkA and 

tagA.  Even basal level production of hAAG-1 substantially increases resistance to 

MNNG opposed to cells deficient in glycosylase activity (Figure 34).  The hAAG-1 

bearing strain shows IPTG induction of hAAG-dependent MNNG resistance. 

The addition of the histidine tag does not alter the performance of hAAG-1 when 

cells are exposed to MNNG (Figure 36).  The survival of both the induced and uninduced 

cells carrying the plasmid bearing hAAG-1-his6, at all doses, is similar to the survival of 

induced and uninduced cells carrying the plasmid bearing hAAG-1.  Therefore, the 

addition of the histidine tag has no effect on the ability of hAAG-1 to function in repair 

of MNNG damage to DNA.   

Both MNNG and MMS methylate DNA to cause damage.  The wild type E. coli 

is able to repair this damage at very high levels of survival.  Induced hAAG-1 has 

provided resistance comparable with that of wild type when introduced into the MMS 

sensitive alkA tag double mutant and the alkA tag uvrA triple mutant strains.  As is the 

case with MNNG, uninduced hAAG-1 and hAAG-2 show some basal level rescue, 

however neither show the level of resistance of the induced cells. 

The presence of hAAG-2 also increases the cellular resistance to MNNG and 

MMS.  This increase in resistance, however, is not as great as that of the presence of 

hAAG-1 when exposed to equal doses of drug.  This data suggests a possible difference 

between the two isoforms, since cells containing the plasmid bearing hAAG-1 are more 

resistant than those containing the plasmid bearing hAAG-2.   hAAG-1 performs more 

efficiently than the wild type glycosylases; hAAG-2 functions equal to alkA and tag 
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glycosylase activity of the wild type cells.  The maximum survival rate of hAAG-2 

corresponds to the level seen in uninduced cells bearing the hAAG-1 expressing plasmids 

(Figures 37, 43).  This suggests hAAG-1 is more effective than hAAG-2 for repair of 

methyl damage.   

There is a difference in the survival level of cells expressing the different 

isoforms of hAAG.  There are several reasons why this may occur.  Since it is not yet 

known why there are two known isoforms of hAAG, these differences are interesting to 

analyze because they may provide insight to the reason(s) for the two isoforms of hAAG. 

The first possibility for the different survival levels provided by each isoform is 

the activity of each isoform of hAAG.  hAAG-1 may be more active in cells than hAAG-

2, thus it functions in a more efficient manner.  There may also be more hAAG-1 protein 

than hAAG-2 protein present in the strains due to stability of their enzyme products under 

the given conditions or there may be differences in their expression.  The stability of each 

protein may explain why survival levels of hAAG-1 expressing strains are greater than 

those of strains expressing hAAG-2.  hAAG-1 protein may be produced in greater 

amount than hAAG-2 or hAAG-2 expression may never quite reach its optimal 

expression levels inside the E. coli system used.  Thus, hAAG-1 may be more readily 

available than hAAG-2 to repair methyl lesions.  Protein analysis using an immunoblot 

detection system may be able to determine if the level of expression is greater for one 

isoform over the other. 

A second reason for the difference in survival levels between each isoform may 

be a difference in activity.  hAAG-2 may correct methylated lesions less efficiently than 

hAAG-1.  Thus, hAAG-1 may have a greater specific activity or a higher affinity for 

methylated lesions than hAAG-2.   

The differences between hAAG-1 and hAAG-2 in the repair of methylation 

damage produced by MNNG and MMS exposure show similarities between the two 

methylating agents.  Each isoform of hAAG is able to repair lesions quite efficiently, 

however hAAG-1 provides more resistance than hAAG-2.  The histidine tagged versions 

of each isoform function in a similar manner to their non-his tagged counterparts.     
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Nitrosourea Survival Tests 

The hAAG-1 and hAAG-2 genes both function in a similar manner when cells 

containing a plasmid bearing each isoform are exposed to CNU.  Addition of the histidine 

tag does not effect survival after exposure to CNU.  Both the induced and uninduced 

curves result in toxicity at a high dose ([0.5mM]).  This toxicity, compared to a triple 

mutant genotype, provides evidence that the presence of no glycosylase is better than the 

expression of glycosylase at either induced levels or basal level expression.  This 

evidence may be explained through the same phenomenon as another crosslinking agent 

tested: MMC.  The glycosylase creates lesions that may be repaired by the nucleotide 

excision repair pathway, however in the absence of uvrA, the NER pathway does not 

exist, thus the abasic site created by the glycosylase becomes lethal.   

Another possibility is that the glycosylase is dependent on the presence of another 

protein or protein complex.  This protein or protein complex may serve as a chaperone or 

may recruit hAAG to the lesion.  Present in human cells, this protein or complex may not 

be present in bacteria, or may be present in an unrecognizable or incompatible form.  

Thus, hAAG is not able to function properly because it is not recognized, or does not 

recognize, this helper protein.     

BCNU reacts analogous to CNU in the experiments except that hAAG-2 is not 

any more sensitive than the alkA tag uvrA triple mutant at high doses, whereas hAAG-1 

is more toxic than the triple mutant strain.  Even though hAAG-1 is more toxic than 

hAAG-2 when exposed to BCNU, both isoforms display a similar response at each dose.  

The induced sample is more sensitive than the uninduced sample.  In this instance, the 

presence of induced glycosylase is worse for (hAAG-1) or equal to (hAAG-2) no 

glycosylase activity at all in the cell.  hAAG-2 follows the same dose response as the 

bacterial mutant deficient in uvrA, showing that neither hAAG-2 nor bacterial alkA and 

tag glycosylase activities function without uvrA present.  The wild type E. coli, proficient 

in all repair genes, has a survival level of about 2.5 orders of magnitude greater than the 

uvrA deficient mutant strains at the 3 mM dose.   

The histidine tagged versions of hAAG-1 has a different effects than its non his-

tagged counterpart when exposed to BCNU.  hAAG-1-his6 becomes slightly less 

sensitive than the non his-tagged version as the induced sample retains the sensitivity of 
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the alkA tag uvrA deficient triple mutant.  hAAG-2-his6 on the other hand becomes more 

sensitive than hAAG-2 by about 0.5 greater magnitude.         

The data collected display a different result than those data published by the 

Samson laboratory involving the activity of AAG in a knockout mouse (Engleward et al, 

1996, Engleward et al, 1998).  Their data predicts that AAG is capable of repairing 

BCNU and Mitomycin C damage.  Thus, there may either be an apparent difference 

between the mammalian and bacterial systems, a difference between the human and 

mouse genes, or a component may be missing in the bacterial system that is present in the 

mammalian system.  This component may indeed be nucleotide excision repair function 

since hAAG enhances excision repair of Mitomycin C.  However, to date, neither CNU 

nor BCNU have been tested to determine if hAAG proteins enhance their excision repair, 

and these experiments need to be performed.    

 

MMC Survival Tests 

The survival of hAAG-1 expressing cells upon exposure to Mitomycin C proved 

to be very interesting.  Two strains were used in the MMC experiments, a double mutant 

deficient in alkA and tag and a triple mutant deficient in alkA, tag, and uvrA.  The uvrA 

mutation was added to the double mutant strain because MMC damage is a substrate for 

nucleotide excision repair and that efficient repair by the bacterial excision system might 

mask a low level of repair by the hAAG proteins.  The result that the loss of excision 

repair, as an effect of the uvrA mutation, greatly increases MMC sensitivity of the alkA 

tag strain (Figure 62), confirms a role for excision in the repair of MMC damage to DNA.  

Because hAAG knockout mouse cells are sensitive to MMC damage when compared to 

their hAAG + controls, Engleward et al suggested that mammalian glycosylases are able 

to repair crosslinks in DNA (Engleward et al, 1996).  This conclusion predicts that 

hAAG-1 expression alone should increase resistance to MMC.  This is not the case, since 

hAAG-1 does not increase MMC resistance of the alkA tag uvrA strain.  In fact, a small, 

but reproducible increase in sensitivity is seen upon hAAG-1 expression. Interestingly, 

hAAG expression does increase MMC resistance in the excision repair proficient alkA 
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tag mutant strain (figure 57), suggesting both repair systems may be required.  Thus, it is 

possible that hAAG-1 enhances excision repair by the bacterial uvrABC excision system.   

One model to explain this result is based on a similar phenomenon seen when 

photolyase is over expressed in excision proficient strains.  This enzyme binds UV 

lesions in the dark but requires white light for activation of its repair activity.  However 

binding of lesions by photolyase in the dark stimulates lesion recognition by uvrA protein 

and enhances repair and UV survival.  As is the case with hAAG-1, this enhanced repair 

is seen only in uvrA+ strains and is abolished by uvr mutations (Sancar, 1994).  Thus, 

hAAG may play a similar role and is itself unable to repair MMC damage, but may 

enhance excision repair of MMC lesions. Thus, hAAG-1 may not itself repair damage 

produced by complex alkylators such as MMC, BCNU, and CNU; however, it may be 

required for efficient repair by other repair systems.  Alternatively, it is possible that 

hAAG does repair these lesions in mammalian cells, but that other cofactors, not present 

in E. coli, are required for this repair, or that the protein requires post-translational 

processing not functional in E. coli for this repair activity.    

The base excision repair system assisting other repair systems model is 

speculative and more studies have to be performed to confirm it.  The role of nucleotide 

excision repair is able to function as well as hAAG-1 in the alkA tag double mutant 

background.  Thus, the role of excision repair is present in the absence of glycosylase to 

levels greater than wild type E. coli repair systems (Figure 55).  Testing the non hAAG 

expressing uvrA strain shows great sensitivity  relative to the proficient uvrA strain.  

Thus, uvrA is vital to the protection of E. coli from damage caused by Mitomycin C. 

While the nucleotide repair system is able to repair some of the damage created by 

Mitomycin C exposure, it is not able to rescue a large percentage of cells (Figure 62).  

For example, at 0.1 ug/ml of Mitomycin C exposure, the survival level of wild type cells 

is 53% while that of the uvrA deficient strain is 9.2%, roughly a half order of magnitude 

difference.  Therefore, uvrABC repairs some damage created by Mitomycin C exposure.                      

Another interesting aspect of the Mitomycin C curves was the toxicity of hAAG-

2-his6 at lower doses.  The presence of glycosylase in these instances makes the cells 

more sensitive than those with no glycosylase activity at all (Figure 61).  This suggests 

that the histidine tag effects the ability of the hAAG-2-his6 protein to function.  
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It is interesting to observe the effect of Mitomycin C exposure on the 4 strains 

without a plasmid bearing hAAG.  Surprisingly, the alkA tag deficient double mutant is 

more resistant than the wild type E. coli strain at 1ug/ml of Mitomycin C exposure. 

(Figure 62).  At 2 ug/ml, these two strains are relatively similar in surivival level.  This 

suggests that glycosylase activity is not involved in the repair of Mitomycin C lesions and 

in the absence of such activity, repair is slightly more efficient.  This is further supported 

by the uvrA deficient strain and the alkA tag uvrA deficient triple mutant control.  The 

most sensitive strain is the uvrA deficient strain.  This strain has glycosylase activity in 

the form of the alkA and tag gene products.  The alkA tag uvrA triple mutant is more 

resistant than the uvrA deficient strain at 1ug/ml Mitomycin C exposure, but is equally 

sensitive at 2ug/ml of exposure to Mitomycin C (Figure 62).  These data suggest that the 

presence of glycosylase is toxic to cells in the absence of uvrA and that merely the 

presence of uvrA accounts for increased resistance to Mitomycin C exposure.         

The relationship between Glycosylase activity and Nucleotide 
Excision Repair 

It may be possible that nucleotide excision repair and glycosylase activity have a 

partnership.  If these two systems jointly function, then the presence of glycosylase may 

effect the activity of nucleotide excision repair by providing it a substrate.  Preliminary 

studies of hAAG-1 in the alkA tag double mutant background exposed to Mitomycin C 

show an increased resistance than that of hAAG-1 in the alkA tag uvrA triple mutant 

background.  The only caveat is that initial experiments involving the alkA tag deficient 

mutant strain shows similar resistance.  Therefore, the activity of hAAG-1 may not be 

important to the function of uvrA, but maybe simply the presence of uvrA is needed to 

repair lesions created by Mitomycin C damage as the absence of glycosylase activity and 

the presence of hAAG-1 have similar effects in the uvrA proficient strain.  Since this data 

is in its preliminary stages, strong conclusions may not be made at this time. However, it 

is apparent that there is a relationship between glycosylase activity and nucleotide 

excision repair since hAAG functions at toxic levels when exposed to high doses of DNA 

damaging agents in the absence of uvrA.   
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Protein Analysis 

At the current time, no progress has been made analyzing the hAAG protein 

products.  However, once this data has been collected, we will be able to determine the 

level of protein produced by each his-tagged isoform of hAAG.  Since the his-tagged 

versions of both hAAG-1 and hAAG-2 displayed very similar quantitative properties as 

their non his-tagged counterparts in the cell survival assays, we will assume that the 

protein production between the tagged and non-tagged versions of each isoform is 

relatively similar.  One worry, however is the increase in toxicity that hAAG-2-his6 

displayed for the crosslinking agents with respect to hAAG-2.  This toxicity may be 

directly due to the presence of the histidine tag.  A modification or change may need to 

occur for hAAG-2 to function properly, and the histidine tag may prevent this change 

from taking place.  This is unlikely, however, since hAAG-2-his6 functions very similar 

to hAAG-2 when exposed to MNNG and MMS. 

If the protein levels detected by the Western blot show a greater level of hAAG-1 

product than hAAG-2, then it provides a possible explanation for the difference in 

methylation rescue from MNNG or MMS exposure.        

Future Experiments 

There are several experiments that can be conducted to provide additional 

information to this study.  Many involve the relationship of base excision repair 

glycosylases such as hAAG, alkA, and tag to nucleotide excision repair mechanisms such 

as the uvrABC system of E. coli.  First, additional cell survival analysis to compare the 

survival levels of the alkA tag double mutant strains to exposure of BCNU, CNU, and 

Mitomycin C.  Since BCNU and Mitomycin C are clinically used, understanding how 

glycosylase activity is involved in the repair process, if even at all, is important.  

Knowledge obtained from these cell survival assays may allow scientists to better 

understand the relationship of the two excision repair systems and how they affect the 

repair of certain drugs such as BCNU and Mitomycin C.  Not only would doctors be able 

to use these treatments more efficiently, but the increased knowledge of these repair 

systems are valuable for molecular biologists.   



Bonanno 119 

 

Therefore, proposed experiments include testing the survival of hAAG-1 and 

hAAG-2 in the alkA tag background to exposure of CNU, BCNU, and Mitomycin C.  It 

would also be interesting to observe if the toxicity of the hAAG-2-his6 in the uvrA 

proficient background is maintained or rescued.  By conducting these tests, we will learn 

more about the ability of glycosylase activity, of nucleotide excision repair, and of the 

DNA damaging agents.   

The toxicity of induced hAAG at high doses of the nitrosoureas is also an 

interesting discovery.  It would be curious to determine if this toxicity is due to the 

presence of the glycosylase, the absence of the uvrABC system, or caused by increased 

base pairing mutations.  Experiments to determine the mutational frequency at high 

concentrations of DNA damaging agent exposure may be an effort well worthwhile.       

The differences between the two isoforms of hAAG may be consistent with 

exposure to DNA damaging agents.  Experiments may be conducted in which induced 

versions of hAAG are exposed to DNA damaging agents for an extended period of time 

in order to observe if resistance is created over this period of time.  For example, it is 

known that induced hAAG-1 exposed to 32 ug/ml of MNNG for 30 minutes has a 

survival level of about 13%.  Similar to how the immune system combats an infection, 

(but without the use of antibodies), it may be possible that increased exposure to 

chemical agents allow the cell to increase their survival level.  For example, if the cells 

are incubated for an extended period of time, possibly, as future replications occur, 

increased resistance to MNNG damage may also occur because one, or both, of the 

isoforms may protect the DNA from lesions formed by MNNG more efficiently in the 

presence of constant exposure to the chemical agent.            

 

 

 



Bonanno 120 

 

REFERENCES 
 

Allan JM, et al. (1994) The use of purified DNA repair proteins to detect DNA damage. 
Mutation Research 313: 165-174. 

Allan, JM et al (1998) Mammalian 3-Methyladenine DNA Glycosylase Protects against 
the Toxicity and Clastogenicity of Certain Chemotherapeutic DNA Cross-Linking 
Agents. Cancer Research 58: 3965-3973 

Birboim, H. C. and Doly, J. (1979) A rapid alkaline lysis procedure for screening 
recombinant plasmid. DNA.  Nucleic. Acids Research. 7, 1513-1522. 

Bodell, WJ. et al (1988) Differences in DNA Alkylation Products Formed in Sensitive 
and Resistant Human Glioma Cells Treated with N-(2-Chloroethyl)-N-
nitrosourea. Cancer Research 48: 4489-4492 

Caradonna SJ, et al. (1982) DNA glycosylases.  Molecular and Cellular Biochemistry 46: 
49-63 

Cavard, D and C. Lazdunski (1990) Colicin Cleavage by OmpT Protease during Both 
Entry into and Release from Escherichia coli Cells Journal of Bacteriology 172: 
648-652 

Chen et al (1994) The Escherichia coli AlkB Protein Protects Human Cells against 
Alkylation-Induced Toxicity  Journal of Bacteriology 176: 6255-6261. 

Croteau et al (1999) Mitochondrial DNA repair pathways Mutat Research 434: 137-148. 

Cunningham RP. (1997) DNA glycosylases. Mutation Research 383: 189-196. 

Cuolotta, E and DE Koshland, Jr. (1994) DNA Repair Works Its Way to the Top Science 
266: 1926-1929. 

Davis, L, Kuehl, M, and J Battey (1994) Basic methods in molecular biology. Appleton 
& Lange. 2, 1-304. 

Day, RS. III, et al. (1980) Defective repair of alkylated DNA by human tumour and 
SV40-transformed human cell strains. Nature 288: 724-727 



Bonanno 121 

 

Dosanjh, M.K. et al (1994) 1,N6-Ethenoadenine Is Preferred over 3-Methyladenine as 
Substrate by a Cloned Human N-Methylpurine-DNA Glycosylase (3-
Methyladenine-DNA Glycosylase) Biochemistry 33: 1624-1628 

Ducore, JM. and BS. Rosenstein (1985) Theophylline release of replicon initiation 
inhibition by nitrosoureas correlates with the synergistic killing in L1210 
leukemia in vitro. Mutation Research 146: 1-8 

Eisenbrand G et al (1986) DNA Adducts and DNA Damage by Antineoplastic and 
Carcinogenic N-nitrosocompounds. Journal of Cancer Research and Clinical 
Oncology 112(3): 196-204. 

Elder et al (1998) Alkylpurine-DNA-N-glycosylase Knockout Mice Show Increased 
Susceptibility to Induction of Mutations by Methyl Methanesulfonate. Molecular 
and Cellular Biology 18 (10): 5828-37. 

Engelward BP et al (1998) A Chemical and Genetic Approach Together Define the 
Biological Consequences of 3-Methyladenine Lesions in the Mammalian 
GenomeJournal of Biological Chemistry 273: 5412-5418. 

Engelward, BP et al (1996) Repair-deficient 3-methyladenine DNA glycosylase 
homozygous mutant mouse cells have increased sensitivity to alkylation-induced 
chromosome damage and cell killing. The EMBO Journal 15: 945-952 

Engelward, BP et al (1997) Base excision repair deficient mice lacking the Aag 
alkyladenine Proc. Natl. Acad. Sci. USA 94: 13087-13092 

Engleward, BP et al. (1993) Cloning and characterization of a mouse 3-methyladenine/7-
methylguanine/3-methylguanine DNA glycosylase cDNA whose gene maps to 
chromosome 11. Carsinogenesis 14: 175-181 

Erickson, LC. et al. (1980) DNA cross-linking and monoadduct repair in nitrosourea-
treated human tumour cells. Nature 288: 727-729 

Friedberg EC, et al. (1981) The repair of DNA damage: recent developments and new 
insights.  Journal of Supramolecular Structure and Cellular Biochemistry 16: 91-
103. 

Friedberg EC et al (1995) DNA Repair and Mutagenesis. Washington DC: ASM Press. 

Gichner and Veleminsky (1982) Genetic effects of the N-methyl-N’nitro-N-
nitrosoguanidine and its homologs. Mutational Research 99: 129-242. 



Bonanno 122 

 

Glassner et al (1998) Generation of a strong mutator penotype in yeast by imbalanced 
base excision repair Proceedings of the National Academy of Science 95: 9997-
10002. 

Glassner et al (1998) The influence of DNA glycosylases on spontaneous mutation Mutat 
Research 400: 33-44. 

Gonzaga, PE. et al (1992) Identification of the Cross-Link between Human O6-
Methylguanine-DNA Methyltransferase and Chloroethylnitrosourea-treated DNA. 
Cancer Research 52: 6052-6058 

Goodman and Gilman (1996) The Pharmacological Basis of Therapeutics, 9th edition 
McGraw-Hill Co., New York 

Green MO and Greenberg J (1960) The activity of nitrosoguanidines against ascites 
tumors in mice. Cancer Research 44: 1166-1171. 

Grossman L. (1981) Enzymes involved in the repair of damaged DNA.  Archives of 
Biochemistry and Biophysics 211: 511-522. 

Grossman, L et al (1988) Repair of DNA-containing pyrimidine dimers FASEB J 2: 
2696-2701. 

Hanawalt, PC. (1994) Transcription-Coupled Repair and Human Disease Science 266: 
1957-1958. 

Hang, B. et al (1996)1,N6-Ethenoadenine and 3,N4-ethenocytosine are excised by 
separate human DNA glycosylases Carcinogenesis 17: 155-157 

Hang, B. et al (1997) Targeted deletion of alkylpurine-DNA-N-glycosylase in mice 
eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-
ethenocytosine or 8-oxoguanine. Proc. Natl. Acad. Sci. USA 94: 12869-12874 

Henderson, TA. et al. (1994) Artifactual Processing of Penicillin-Binding Proteins 7 and 
1b by the OmpT Protease of Escherichia coli. Journal of Bacteriology 176:256-
259 

Holmquist GP (1998) Endogenous lesions, S-phase-independent spontaneous mutations, 
and evolutionary strategies for base excision repair. Mutation Research 400: 59-
168. 



Bonanno 123 

 

Izumi, T et al (1997) Molecular cloning and characterization of the promoter of the 
human N-methylpurine-DNA glycosylase (MPG) gene. Carcinogenesis 18: 1837-
1839 

Jacobs et al (1998) Hypermutation of immunoglbulin genes in memory B cels of DNA 
repair-deficient mice Journal of Experimental Medicine 187: 1735-1743. 

Jeggo, P et al (1977) An adaptive response of E. coli to low levels of alkylating agent: 
comparison with previously characterized DNA repair pathways Molecular 
General Genetics 157: 1-9. 

Kacinski BM, et al. (1985) Repair of Haloethylnitrosourea-induced DNA Damage in 
Mutant and Adapted Bacteria. Cancer Research December; 45 (12 Part 1): 
6471-4. 

Kaufmann, A et al. (1994) New Outer Membrane-Associated Protease of Escherichia 
coli K-12. Journal of Bacteriology 176: 359-367 

Koshland, DE. Jr. (1994) Molecule of the Year: The DNA Repair Enzyme Science 266: 
1925. 

Kow YW (1994) Base excision repair in E. coli: an overview. Annual N Y Academy of 
Science 726: 178-180. 

Krokan, HE. et al (1997) DNA glycosylase in the base excision repair of DNA. 
Biochemistry. Journal 325: 1-16 

Lau, AY. et al (1998) Crystal Structure of a Human Alkylbase-DNA Repair Enzyme 
Complexed to DNA: Mechanisms for Nucleotide Flipping and Base Excision. 
Cell 95: 249-258 

Laval J, et al (1998) Antimutagenic role of base-excision repair enzymes upon free 
radical-induced DNA damage. Mutation Research 402: 93-102 

Laval J. (1996) Role of DNA repair enxymes in the cellular resistance to oxidative stress. 
Pathological Biology 44: 14-24. 

Lewin B (1997) Genes VI. Oxford, England: Oxford Press 

Lindahl, T (1976) New class of enzymes acting on damaged DNA Nature 259: 64-66. 



Bonanno 124 

 

Lindahl, T (1979) DNA Glycosylases, Endonucleases for Apuric/Apyrimidinic Sites, and 
Base Excision Repair Prog in Nucleic Acid Research Molecular Biology 22: 135-
192. 

Lindahl, T (1982) DNA Repair Enzymes Annual Review of Biochemistry 51: 61-87. 

Lindahl, T (1990) Repair of intrinic DNA lesions. Mutation Research 238: 305-311. 

Lloyd RS (1998) Base excision repair of cyclobutane pyrimidine dimers.  Mutation 
Research 408: 159-170 

Loeb LA, et al. (1986) Mutagenesis by apurinic/apyrimidinic sites. Annual Review of 
Genetics 20: 201-230. 

Ludlum, D (1997) The Chloroethylnitrosoureas: Sensitivity and Resistance to Cancer 
Chemotherapy at the Molecular Level. Cancer Investigation 15 (6): 588-598 

Ludlum, D (1997) Development of the Nitrosoureas Cancer Therapeutics: Experimental 
and Clinical Agents. New Jersey: B. Teicher Humana Press Inc. Ch. 3: 81-92. 

Mackay et al (1994) DNA Alkylation Repair Limits Spontaneous Base Substitution 
Mutation in Escherichia coli. Journal of Bacteriology 176: 3324-3230. 

Matijasevic, Z et al. (1993) Protection against chloroethylnitrosourea cytotoxicity by 
eukaryotic 3-methyladenine DNA glycosylase. Proceedings of the National 
Academy of Scientists, USA 90: 11855-11859. 

Maze et al (1996) Increasing DNA repair methyltransferase levels via bone marrow stem 
cell transduction rescues mice from the toxic effects of 1,3-bis(2-chloroethyl)-1-
nitrosourea, a chemotherapeutic alkylating agent Proceedings of the National 
Academy of Scientists 93: 206-210. 

Memisoglu, A and L Samson (1996) DNA Repair Function in Heterologous Cells. 
Critical Reivews in Biochemistry and Molecular Biology 31: 405-447. 

Mitra, S, et al. (1993) Regulation of repair of alkylation damage in mammalian genomes. 
Prog Nucleic Acid Research Molecular Biology 44: 109-142. 

Opperman, T et al (1999) A model for a umuDC-dependent prokaryotic DNA damage 
checkpoint.  The Proceedings of the National Academy of Science 96: 9218-9223. 

Oren, M (1999) Regulation of the p53 Tumor Suppressor Protein. The Journal of 
Biological Chemistry. 274: 36031-36034. 



Bonanno 125 

 

Pendlebury, A et. al (1994) Evidence for the simultaneous expression of alternatively 
spliced alkylpurine N-glycosylase transcripts in human tissues and cells. 
Carcinogenesis 15: 2957-2960 

Rangaswamy, V. et al (1998) Analysis of Genes Involved in Biosynthesis of Coronafacic 
Acid, the Polyketide Component of the Phytotoxin Coronatine. Journal of 
Bacteriology. 180, 3330-3338. 

Rauth, AM et al (1998) Bioreductive Therapies: an Overview of Drugs and Their 
Mechanisms of Action. International Journal of Radiation Oncology Biological 
Physics 42(4): 755-762 

Reuven, NB et al (1999) The Mutagenesis Protein UmuC Is a DNA Polymerase 
Activated by UmuD’, RecA, and SSB and Is Specialized for Translesion 
Replication. The Journal of Biological Chemistry 274(45): 31763-31766. 

Roy, R et al. (1996) Distinct substrate preference of human and mouse N-methylpurine-
DNA glycosylases. Carcinogenesis 17: 2177-2182 

Roy, R et al. (1998) Specific Interaction of Wild-Type and Truncated Mouse N-
Methylpurine-DNA Glycosylase with Ethenoadeninie-Containing DNA. 
Biochemistry 37: 580-589 

Sakumi K, and M Sekiguchi. (1990) Structures and functions of DNA glycosylases. 
Mutation Research 236: 161-172. 

Samson L et al (1986) Suppression of human DNA alkylation-repair defects by 
Escherichia coli  DNA-repair genes Proceedings of the National Academy of 
Science 83: 5607-5610. 

Samson L and J Cairns (1977) A new pathway for DNA repair in Escherichia coli. 
Nature 267: 281-283. 

Samson, L (1992) The repair of DNA alkylation damage by methytransferases and 
glycosylases Essays Biochemistry 27: 69-78 

Samson, L (1992) The suicidal DNA repair methyltransferases of microbes Molecular 
Microbiology  6: 825-831. 

Samson, L et. al (1991) Cloning and characterization of a 3-methyladenine DNA 
glycosylase cDNA from human cells whose gene maps to chromosome 16. Proc. 
Natl. Acad. Sci. USA 88: 9127-9131 



Bonanno 126 

 

Sancar, A (1994) Mechanisms of DNA Excision Repair Science 266: 1954-1956. 

Saparbaev, M et al. (1995) Escherichia coli, Saccharomyces cerevisiae, rat and human 3-
methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in 
DNA. Nucleic Acids Research 23: 3750-3755 

Sedgwick, B (1989) In Vitro Proteolytic Cleavage of the Escherichia coli Ada Protein by 
the ompT Gene Product. Journal of Bacteriology 171: 2249-2251 

Sellers WR and DE Fisher (1999) Apoptosis and cancer drug treatment. Journal of 
Clinical Investigation 104: 1655-1661. 

Sheikh, MS and AJ Fornance, Jr. (2000) Role of p53 Family Members in Apoptosis. 
Journal of Cellular Physiology 182: 171-181. 

Silverman, RB. (1992) The Organic Chemistry of Drug Design and Drug Action, 
Academic Press, New York 

Singer, B (1996) DNA Damage: Chemistry, Repair, and Mutagenic Potential. Regulatory 
Toxicology and Pharmacology 23: 2-13 

Singer, B and B. Hang (1997) What Structural Features Determine Repair Enzyme 
Specificity and Mechanism in Chemically Modified DNA? Chemical Research in 
Toxicology 10: 713-732 

Smith GJ and JW Grisham (1983) Cytotoxicity of monofunctional alkylating agents 
Methyl methanesulfonate and methyl-N'-nitro-N-nitrosoguanidine have different 
mechanisms of toxicity for 10T1/2 cells.  Mutational Research 111(3): 405-417. 

Smith KC (1978) Multiple pathways of DNA repair and their possible roles in 
mutagenesis. National Cancer Institute Monogram 50: 107-114. 

Smith, MT. (1985) Quinones as Mutagens, Carcinogens, and Anticancer Agents: 
Introduciton and Overview Journal of Toxicology and Enviromental Health 16: 
665-672 

Studier FW and BA. Moffatt (1986) Use of Bacteriophage T7 RNA Polymerase to Direct 
Selective High-level Expression of Cloned Genes. Molecular Biology 189: 113-
130. 

Studier, et al (1990) Use of T7 RNA Polymerase to Direct Expression of Cloned Genes. 
Methods in Enzymology 185: 60-89. 



Bonanno 127 

 

Sugimura and Higashi (1988) Journal of Bacteriology170:3650-3654 

Tang et al (1999) UmuD’2C is an error-prone DNA polymerase, Escherichia coli pol V. 
The Proceedings of the National Academy of Science 96: 8919-8924. 

Tong WP et al (1982) Modifications of DNA by different haloethylnitrosoureas. Cancer 
Research 42: 4460-4464. 

Verly WG (1980) Prereplicative error-free DNA repair.  Biochemical Pharmacology 29: 
977-982. 

Verweij, J. et al, (1995) Antitumor antibiotics. Cancer Chemotherapy: Principles and 
Practice, 2nd edition J. B. Lippincott Co., Philadelphia. 

Vickers, MA et al (1993) Structure of the human 3-methyladenine DNA glycosylase gene 
and localization close to the 16p telomere.  Proceedings of the National Academy 
of Science USA 90: 3437-3341  

Voet and Voet (1995) Biochemistry. New York: John and Wiley Press. 

Weinkam, RJ and ME Dolan (1983) An Analysis of 1-(2-Chloroethyl)-1-nitrosourea 
Activity at the Cellular Level. Journal of Medicinal Chemistry 26: 1656-1659 

White, CB et al. (1995) A Novel Activity of OmptT Proteolysis Under Extreme 
Denaturing Conditions. Journal of Biological Chemistry 270: 12990-12994 

Wilson, D III and LH. Thompson (1997) Life without DNA repair. Proceedings of the 
National Academy of Science USA 94: 12754-12757 

Wolffe et al (1999) DNA demethlation Proceedings of the National Academy of Science 
96: 5894-5896. 

Wyatt et al (1999) 3-methyladenine DNA glycosylases: structure, function, and 
biological importance Bioessays 21.8: 668-676. 

Yu Z, et al. (1999) Human DNA repair systems: an overview. Environmental and 
Molecular Mutagenesis 33: 3-20. 

 Zhao, GP and RL Somerville (1993) An Amino Acid Switch (Gly281 ! Arg) within the 
“Hinge” Region of the Tryptophan Synthase B Subunit Creates a Novel Cleavage 
Site for the OmpT Protease and Selectively Diminishes Affinity toward a Specific 
Monoclonal Antibody. The Journal of Biological Chemistry 268: 14912-14920 


	Worcester Polytechnic Institute
	Digital WPI
	2000-05-08

	Analysis of the Two Isoforms of the Human Alkyl Adenine DNA Glycosylase (HAAG) Gene: A Comparative Study of its Isoforms, its Protein and its Resistance to DNA Damage Agents
	Kenneth C. Bonanno
	Repository Citation


	FRONT MATTER
	Abstract
	Acknowledgements
	Table of Contents
	Table of Figures
	Table of Tables

	INTRODUCTION
	The Importance of Deoxyribose Nucleic Acid
	Damage to DNA
	Spontaneous DNA Damage
	Environmental DNA Damage

	DNA Excision Repair Pathways
	The Nucleotide Excision Repair System
	Base Excision Repair
	The Discovery of Glycosylase Activity

	The human Alkyl Adenine DNA Glycosylase (hAAG) gene
	Dr. Ludlum’s Research
	Dr. Volkert’s Research
	Structure of hAAG

	The Different Repair Mechanisms of Genetic Damage in E. coli
	The First Line of Defense: The DNA Polymerase Complexes
	Mismatch Repair: The MutH, MutL, MutS Repair System
	Enzymatic Photoreactivation

	DNA Repair Mechanisms Active on Alkyl Lesions
	The Adaptive Response System
	DNA Alkyltransferases: the Repair of O 6 -Guanine and O 4 - Thymine Alkylations and Phosphotriesters in DNA
	3-meA DNA Glycosylases: The Repair of 3meA, 3meG, and 7meG lesions in DNA
	Similarities and differences between alkA and tag

	Other DNA Repair Mechanisms in E. coli
	Ligation of DNA Strand Breaks
	Repair by Recombination
	The SOS Response
	Other Glycosylase Repair Systems
	The MutM, MutT, MutY Repair System for Oxidative Damage
	Uracil DNA Glycosylase

	Description of Drugs used in this Study
	The Alkylating Agents
	The Nitrosoguanidines: N-methyl-N’-Nitro-N-Nitrosoguanidine (MNNG) and N-ethyl-N’-Nitro-N-Nitrosoguanidine (ENNG)
	Methyl Methanesulfonate (MMS)

	The Cross-Linking Agents
	Mitomycin C (MMC)
	The Nitrosoureas


	Histidine Tag
	The OmpT Protease
	Relevance to the Study of hAAG
	What can be Learned Using a Bacterial System

	The Purpose of Thesis
	Experimental Strategy


	MATERIALS AND METHODS
	Bacterial Strains
	Bacterial Plasmids
	Culture Media and Growth Conditions
	Recombinant DNA Techniques
	Plasmid Purification
	Polymerase Chain Reaction (PCR)
	Purification of DNA Fragments
	Restriction Digests
	Cell Preparation and Transformation
	Ligation
	DNA Sequencing

	Cell Survival Assays
	Protein Analyses
	Transferring hAAG-2-his6 into pBluscript KS-
	Protein Synthesis and Concentration Time Point Analyses
	Western Blot Analysis
	P1-Mediated Transduction and the Genetics of Strain Construction


	RESULTS
	Introduction
	Cloning and sequencing of the Alternative hAAG Gene
	Construction of hAAG-2 by PCR
	Ligation of PCR fragment into pMV513 backbone
	Transformation of Ligation Product into Competent Cell Q
	Strain Numbers MV4147 and MV4148
	Construction of Expression Plasmids carrying hAAG-2 and hAAG-2- (his)6

	Cell Survival Assays
	MNNG
	MNNG Survival: Effect of the hAAG-1 and hAAG-2 genes
	MNNG Survival: comparison of the hAAG-1 and hAAG-1-his6 genes
	MNNG Survival: comparison of the hAAG-2 and hAAG-2-his6 genes
	Conclusions for MNNG

	MMS
	MMS Survival: Effect of the hAAG-1 and hAAG-2 genes
	MMS Survival: comparison of hAAG-1 and hAAG-2 activity in uvrA deficient and proficient strains
	 MMS Survival: comparison of the hAAG-1 and hAAG-1-his6 genes
	MMS Survival: comparison of the hAAG-2 and hAAG-2-his6 genes
	Conclusions for MMS

	The Nitrosoureas
	CNU
	CNU Survival: Effect of the hAAG-1 and hAAG-2 genes
	CNU Survival comparison of the hAAG-1 and hAAG-1-his6 genes
	CNU Survival comparison of the hAAG-2 and hAAG-2-his6 genes
	Conclusions for CNU

	BCNU
	BCNU Survival: Effect of the hAAG-1 and hAAG-2 genes
	BCNU Survival: Effects of the his6 tag on each isoform of hAAG
	Conclusions for BCNU

	Mitomycin C (MMC)
	MMC Survival tests for the hAAG-1 gene
	MMC Conclusions for hAAG-1 Survival in uvrA + and uvrA - backgrounds
	MMC Survival: Effects of the hAAG-2 gene
	MMC Survival: comparisons of the his6 tagged forms of hAAG
	Conclusions for MMC Survival Assays

	hAAG-1-his6 and hAAG-2-his6 Protein Analysis
	Constructing a Strain Carrying an alkA1 tagA1 ompT Mutant Gene
	Properties of the ompT Mutant Strain
	Choosing a Recipient Cell Strain
	Transfer of hAAG-2- 6x his to a pBluescript vector
	Protein Synthesis and Production Time Assay
	Western Blot Analysis


	DISCUSSION
	Construction of hAAG-2 and hAAG-2-his6
	Survival Data
	MNNG and MMS Survival tests
	Nitrosourea Survival Tests
	MMC Survival Tests

	The relationship between Glycosylase activity and Nucleotide Excision Repair
	Protein Analysis
	Future Experiments

	REFERENCES

