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Abstract

This paper presents a new algorithm for the control of a B-double truck-trailer with steer-

able trailer wheels and active hitch angles, designed to minimize both off-tracking and

scuffing. Each trailer has six autonomously steered double wheels, although each double

wheel is modelled by a centrally placed single wheel. Each hitch point, joining truck to

first trailer and first trailer to second trailer, as well as a nominated point central to the

axles of the second trailer, traverses the same path which is determined by an operator

controlling the path curvature and truck speed. The algorithm approximates the ideal

solution in which all wheels on each trailer have the same centre of curvature. The actively

controlled hitch angles, satisfying the path following constraints, provide a further level of

cooperative redundancy of steering systems. Simulations are carried out to show the effects

of changing curvature and front hitch speed on hitch path, wheel angles, and hitch angles

as well as the accuracy of the algorithm. Further simulation is carried out to show the

improvement in off-tracking of the new control system over current B-double fixed wheel

systems.
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1 Introduction

This paper gives a control system for a B-double truck-trailer vehicle traversing a path

which is determined in real-time by the truck’s operator. A numerical algorithm is used to

compute the first and second trailer wheel angles. The objective of this control system is

to minimize both scuffing and off-tracking of the trailer wheels. Scuffing is the movement

of a tyre contact patch relative to the ground, perpendicular to the plane of the wheel,

and results in tyre wear. Scuffing is minimized by ensuring the plane of the wheel is in

the direction of the wheels motion. Off tracking is where wheels that have the same path

when the vehicle is traveling in a straight line, follow different paths when the vehicle is

moving in a curved path and results in “cutting of corners”. The algorithm also computes

the hitch-angles between the truck and first trailer and between the two trailers and active

control of these angles provides a cooperative redundancy of two steering systems, with

the advantage that when one system begins to fail it is backed up by the other system.

Typical dimensions of a B-double are shown in Figure 1.

This paper gives details of the control calculations and also provides simulation studies

to demonstrate the effectiveness of the system. For an experimental test-bed, electric screw

actuators are suggested for the manipulation of wheel angles once the optimal angle has

been calculated. The hitch angle actuator would need to exert more force than the wheel
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Figure 1: Typical dimensions, of a B-double truck-trailer vehicle. Lengths are in mm.

angle actuator, so a hydraulic actuator would be more suitable. Both types of actuators

can be operated either internally or externally [1] to the truck so that parking or reversing

of the vehicle may be done by external remote control with the operator able to move

around and get a better view of the vehicle. Reversing the vehicle will not be covered in

this paper.

Hydraulic actuators are used to steer heavy articulated vehicles in mining and con-

struction, such as articulated wheeled loaders and articulated dump trucks. Research to

optimize the effectiveness of these systems [2, 3] and to control them externally “by wire”

[4] is on-going.

In a series of papers [5, 6, 7, 8] a control algorithm for a snake-like robot has been

developed in which each segment of the robot has autonomous 4 wheel drive and 4 wheel

steering, and each hitch point between segments follows the same path as the front hitch.
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This numerical algorithm has been modified and improved to be applied to a B-double

truck-trailer. In particular, the B-double truck-trailer does not consist of a linked series

of identical, symmetrical segments. The truck (prime mover) does not have steerable rear

wheels and, as a result, determination of the path of the vehicle required new equations.

Minor improvements have occurred as a natural part of the modelling process, such as a

loosening of initial/boundary conditions which allow the path to be determined from a

“standing start” rather than requiring a constant, non-zero speed in the initial stage.

Firstly, the path traveled by the hitch joining the truck to the first trailer must be

determined given the instantaneous input from the operator, at time t, of the truck’s

steerable wheel angles, α(t), and velocity, v(t), of the central point of the truck’s rear axles

(denoted (x, y) in Figure 2). The instantaneous radius of curvature, 1
κ(t) , is the radius of

the circle best fitting the curved path locally to a given point and can be determined as

a function of α(t). Negative κ indicates a right turn, κ = 0 indicates no turn and κ > 0

indicates a left turn. From the path of (x, y), the path and velocity of the truck hitching

point can be determined. Figure 1 shows that typically the hitch point is 150 mm in front

of (x, y).

Once the path of the truck hitching point has been determined, knowing the length of

each trailer allows the position, on that path, of the second hitch point (between trailers)

and a central point of the rear trailer’s axles be found (the points (x2, y2) and (x3, y3)

respectively, on Figure 4). The choice of having these points designated as following the

same path is quite arbitrary (any points could be chosen to follow the path) but presumed
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the most sensible choice to reduce off-tracking. For simplicity, the point (x3, y3) will be

called the “third hitching point”, as the algorithm generalizes to road trains with more

than two trailers. There is then enough information to calculate wheel angles in a number

of ways. In the literature, the of use of kinematic, dynamic or hybrid system approaches,

perhaps with feedback [9, 10, 11, 12] tends to neglect calculating time or use constant

curvature path tracking, splines (for example [13]), or specific predetermined maneuvers

such as lane changing. These approaches generally have a common constraint that the front

to rear, central axis be tangential to the path, and this is inconsistent with the constraint

that all hitch points follow the same path.

The geometrical control system given in [8] assumes wheels have no slip (movement of a

tyre contact patch relative to the ground, parallel to the plane of the wheel) and calculates

“effective wheel angles” by also neglecting the slip angle associated to pneumatic tyres.

When any rolling wheel is subjected to a side (or cornering) force, the effective rolling

direction will differ slightly from the apparent rolling direction. This difference is termed

the slip angle. For small cornering forces the slip angle tends to be proportional to the

cornering force. However as the cornering force approaches its limit the variation of slip

angle becomes non linear. Once the maximum cornering force has been reached the slip

angle often increases to very high values as the cornering force decreases. In this case the

wheel is skidding and no part of the tyre contact patch is stationary relative to the ground.

In this paper we will be most interested in low speed low radius of curvature turns

under which scuffing and off-tracking would be large for fixed axle vehicles. Under these
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conditions the cornering force required will be low and the associated slip angles will be

negligible. For high speed turns, although the cornering forces will be much larger, the

radius of curvature will be large so that the tendency for both off tracking and scuffing

will be small. Spark and Ibrahim [14, 15] have proposed two methods of accounting for

slip angles in the geometrical calculation of “effective wheel angles”. In [14] they deduce

the linear elastic portion of the slip angles from measurement of the cornering force and

vertical force on each wheel. In [15] they measure the total slip angles with the aid of

dummy castors located at opposite ends of each vehicle module. In the latter case only

slip angles up to the limit of adhesion are accounted for.

The geometrical control system calculates a common centre of curvature (COC) for

the six wheels and two hitch points of each trailer. Using a similar geometry to [5], the

wheel angles can be given as functions of Rx and Ry, the scalar components of the vector

from the hitch points to the COC, perpendicular and parallel to the inter-hitch axis of

each trailer. The geometry in [5] required the calculation of an additional vector from the

segments central point (itself calculated from the hitch points) to the COC and eliminating

this calculation has increased the algorithm’s speed.

Since the calculation of wheel angles and speed takes a finite processing time, the

proposed control system samples the operator’s values of steerable wheel angle and speed

at a fixed time increment. The time increment must be sufficiently long to allow the

calculation of the wheel and hitch angles of each trailer before the control parameters are

sampled again. At this stage resources to construct a test-bed are not available, however
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the use of sensors and global positioning could be used on such a test-bed to minimize

calculation time and increase accuracy further.

If the path is too curved situations can develop where the rear hitch of a trailer may

equally well travel along the path in a forward or backward direction. This is avoided by

restricting κ < 2
l
, with l the inter-hitch distance, so that the front and rear hitches cannot

be at the ends of a diameter of a circle. Restricting the range of hitch angle values can also

be used to prevent this situation occurring and also to prevent jack-knifing.

The equations for wheel angles and hitch point angles are given in Section 2.

Simulations are performed in Section 3 to validate the algorithm, using variable curva-

ture and speed. A comparison of off-tracking with standard fixed wheel B-doubles trailers,

on a circular arc, is also simulated and demonstrates the significant improvement achieved

with steerable trailer wheels.

2 Calculating the trailer wheel angles and hitch angles

The rear axles of a standard truck (prime mover) are fixed with the wheels non steerable.

The centre of curvature for the truck with an Ackerman steering system can be calculated

as a point which is a perpendicular length of
1

κ
from the central point of the truck’s rear

axles (labelled (x, y) in Figure 2). Since
1

κ
is the radius of curvature, κ is the path curvature

as defined in differential geometry [16].

Given a nominal wheel placed at the centre of the front axis with a steering angle of
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COC truck

(x, y)

(x1, y1)

αα

1

κ

b

d

Figure 2: Trucks centre of curvature

α then the relation between the curvature, κ, of the path of (x, y) and the steering angle,

is given by κ =
tanα

b
, where b is the length from (x, y) to the front axle. It is more

natural for the operators steering parameter to be the value of α which is proportional

to the rotation of the truck’s steering wheel, rather than directly inputting κ which has a

non-linear relation to steering wheel rotation. The operator would adjust α to achieve a

desired path.

Consider the truck travelling in a plane with the standard orthonormal basis i and j.

Let the tangent to the path, t(t), make an angle of θ with the direction of i. The left hand

diagram of Figure 3 illustrates the vector components in the construction for calculating

the path using methods of differential geometry detailed in [8].

Given the operator input of α(t) and v(t), calculate κ(t) =
tanα

b
and hence

θ(t) =

∫ t

0
v(t)κ(t) dt, x(t) =

∫ t

0
v(t) cos (θ(t)) dt, y(t) =

∫ t

0
v(t) sin (θ(t)) dt (1)

These equations improve those of [8] by using integration with substitution, eliminating

the need to calculate arc length, so that now only 3 equations (rather than 4) are needed
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j

i

t(t)

x(t)

θ(t)

(0, 0)

path

hitch path

path of rear

axle’s centre

d

1

κ
N1

(x1, y1)
(x, y)

truck COC

Figure 3: Vector construction for calculating the path (x(t), y(t)) (on the left) and the

normal to the hitch path (on the right)

to calculate x(t) and y(t), improving the algorithm speed.

From Figures 2 and 3 (left diagram), the truck hitch point, (x1, y1) is a distance d in

front of (x, y), in a direction tangential to the path. Hence,

x1(t) = x(t) + d cos (θ(t)) y1(t) = y(t) + d sin (θ(t)) (2)

give the path, as a function of time, of the truck’s hitch point. The truck’s hitch point,

(x1, y1), is chosen to determine the path traversed by the trailing hitch points, rather than

taking the path (x, y), both because it is a fixed length, l1, from the second hitch and

because it is the point at which truck hitch angle is calculated. This is a departure from

the algorithm of [8] in which the path is analogous to that given by (x, y).

The calculation of the truck’s hitch point, will take a finite time on any calculating

machine. It is natural then to introduce a fixed time increment, ∆t, for sampling the
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operator’s values of v and α, sufficiently large that all calculations can be made before

again sampling the operator’s input parameters. Introducing the notation ti = i∆t, i =

0, 1, 2, 3, . . . , then given α(ti) and v(ti), an iterated loop code is used to perform the

calculations to give a discretized version of the hitch path (x1(ti), y1(ti)). The code proceeds

to calculate discretized wheel angles and hitch angles for the following trailers.

Initial conditions are necessary to approximate the definite integrals of equations (1).

Assume that initially t0 = 0 seconds, α(t0) = 0, θ1(t0) = 0 and x1(t0) = y1(t0) = 0, so the

hitch is moving in the i direction and initially at the origin of the plane.

For any i > 0, the i-th sample gives κ (ti) =
tanα(ti)

b
and v (ti) and assume the values

θ(ti−1), x(ti−1) and y(tt−1) have previously been calculated. Then trapazoidal approxima-

tion of the integrals (1) give equations

θ(ti) = θ(ti−1) +
1

2
(v(ti)κ(ti) + V (ti−1)κ(ti−1))(∆t))

x1(ti) = x(ti−1) +
1

2
(v(ti) cos (θ(ti)) + v(ti−1) cos (θ(ti−1))) (∆t) + d cos (θ(ti))

y1(ti) = y(ti−1) +
1

2
(v(ti) sin (θ(ti)) + v(ti−1) sin (θ(ti−1))) (∆t) + d sin (θ(ti))

as an iterative computation (suitable for encoding into a loop program initialized with the

values at t0) of the discretized hitch path. By definition of the Riemann integral as ∆t → 0

these discrete equations converge to the analytical solutions of equations (2).

A tangent vector to this hitch point path is given by
d

dt
x1(t) =

d

dt
x1(t) i+

d

dt
y1(t) j.

Applying the fundamental theorem of calculus to equations (1) allows the derivatives of
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x1(t) and y1(t) to be calculated in terms of the input parameters, giving the tangent

d

dt
x1(t) = [−d v(t)κ(t) sin(θ(t)) + v(t) cos(θ(t))] i+ [d v(t)κ(t) cos(θ(t)) + v(t) sin(θ(t))] j

A normal to the path is then

N1(t) = [d v(t)κ(t) cos(θ(t)) + v(t) sin(θ(t))] i− [−d v(t)κ(t) sin(θ(t)) + v(t) cos(θ(t))] j

and, with some algebraic manipulation, a unit normal to the hitch path at discrete time

intervals ti is

N̂1(ti) = N11(ti)i+N12(ti)j

=

[

dκ(ti) cos θ(ti) + sin θ(ti)
√

d2(κ(ti))2 + 1

]

i+

[

dκ(ti) sin θ(ti)− cos θ(ti)
√

d2(κ(ti))2 + 1

]

j

The same equation can be achieved geometrically from Figure 3 (right diagram), under the

assumption that an Ackerman steering system results in all points on the truck moving

around the same centre of curvature. Some care must be taken with the sign of κ (positive

or negative) in this alternative method.

Consequently, each discrete path point has an associated unit normal to the path at

that point.

The next step in the calculation is to determine the position of the second and third

hitch positions (x2(ti), y2(ti)) and (x3(ti), y3(ti)). The method detailed in [8] finds (x2(ti), y2(ti))

as the discrete point on the path that is closest to the distance l1 from (x1(ti), y1(ti)). This

may be the same point as (x2(ti−1), y2(ti−1)) or a point in front of it. Successive points
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are tested to find the most suitable point. The unit normal associated to the path point

(x2(ti), y2(ti)) is denoted N̂2(ti).

The third hitch point, (x3(ti), y3(ti)), is the discrete path point that is closest to the

distance l2 from (x2(ti), y2(ti)) and has associated unit normal N̂3(ti).

The centre of curvature of the first trailer, COC1(ti), is the intersection of a line from

(x1(ti), y1(ti)) in the direction of N̂1(ti) and the line from (x2(ti), y2(ti)) in the direction

of N̂2(ti). The centre of curvature of the second trailer, COC2(ti), is the intersection of a

line from (x2(ti), y2(ti)) in the direction of N̂2(ti) and the line from (x3(ti), y3(ti)) in the

direction of N̂3(ti).

path of

first hitch

COC1

COC2

COC truck

(x, y)

(x1, y1)

(x2, y2)

(x3, y3)

1

2

4

5

6

7

8

9

10

11

12

3

Figure 4: Position of the COC’s used to determine wheel angles. Trailer wheels are num-

bered 1 to 12.

Once the COC’s and the hitch points are known, a vector can be calculated from the

second hitch point to the COC1 and the third hitch point to the COC2. These vectors can

then be decomposed into components parallel and perpendicular to the trailers central line
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running from second hitch to first and from rear reference to second hitch. The lengths of

these components are shown as R1y, R1x, R2y and R2x in Figure 5. Each component will

be a function of time, ti.

path of

first hitch

COC1

(x1, y1)

(x2, y2)

R2y

R2x

R1y

R1x

(x3, y3)

COC2

f2

e2 e1

d1

f1

Figure 5: Lengths of COC’s perpendicular and parallel to the trailers, with axle dimensions

From the values of R1y, R1x, R2y, R2x, d1, f1, e1, f2 and e2 the wheel angles can be

calculated by trigonometry as in [5]. However because the values of R1y, R1x, R2y and R2x

can become infinite, singularities may occur without the algebraic manipulation performed

in [8]. The manipulation involves inverting any quantities that became infinite so the

inverted quantity remains finite at all times, and then taking this inversion into account

throughout the calculations. It is assumed that R1y > 0.5f1 + d1 and R2y > 0.5f2 so that

all positive wheel angles will indicate anticlockwise rotation and negative angles, clockwise

rotation. Angles are calculated in radians but can be converted to degrees in the final step.

In the calculation of the COC’s, the lengths of the COC’s from the hitch points is
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determined, and inverting these quantities we get the finite quantities

K11(ti) =
N11(ti)N22(ti)−N21(ti)N12(ti)

N22 (x2(ti)− x1(ti)) +N21 (y1(ti)− y2(ti))

K12(ti) =
N11(ti)N22(ti)−N21(ti)N12(ti)

N12 (x2(ti)− x1(ti)) +N11 (y1(ti)− y2(ti))

K21(ti) =
N21(ti)N32(ti)−N31(ti)N22(ti)

N32 (x3(ti)− x2(ti)) +N31 (y2(ti)− y3(ti))

K22(ti) =
N21(ti)N32(ti)−N31(ti)N22(ti)

N22 (x3(ti)− x2(ti)) +N21 (y2(ti)− y3(ti))
(3)

associated to the lengths of the truck hitch to COC1, the second hitch to COC1, the second

hitch to COC2 and the rear reference to COC2.

Then an inverted-compatible form of the coordinates of COC1(ti) = (C11(ti), C12(ti))

and COC2(ti) = (C21(ti), C22(ti)) are given by

C11(ti) = K11(ti)x1(ti) +N11(ti) C12(ti) = K11(ti)y1(ti) +N12(ti)

C21(ti) = K21(ti)x2(ti) +N21(ti) C22(ti) = K21(ti)y2(ti) +N22(ti) (4)

Using equations (3) and (4) the inverted-compatible versions of R1y, R1x, R2y and R2x
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are given by

T1x(ti) =

(C11(ti)−K11(ti)x2(ti)) (y1(ti)− y2(ti))

− (C12(ti)−K11(ti)y2(ti)) (x1(ti)− x2(ti))
√

(x1(ti)− x2(ti))
2 + (y1(ti)− y2(ti))

2

T1y(ti) =

(C11(ti)−K11(ti)x2(ti)) (x1(ti)− x2(ti))

+ (C12(ti)−K11(ti)y2(ti)) (y1(ti)− y2(ti))
√

(x1(ti)− x2(ti))
2
+ (y1(ti)− y2(ti))

2

T2x(ti) =

(C21(ti)−K21(ti)x3(ti)) (y2(ti)− y3(ti))

− (C22(ti)−K21(ti)y3(ti)) (x2(ti)− x3(ti))
√

(x2(ti)− x3(ti))
2
+ (y2(ti)− y3(ti))

2

T2y(ti) =

(C21(ti)−K21(ti)x3(ti)) (x2(ti)− x3(ti))

+ (C22(ti)−K21(ti)y3(ti)) (y2(ti)− y3(ti))
√

(x2(ti)− x3(ti))
2
+ (y2(ti)− y3(ti))

2

(5)

Finally, from equations (5) and the truck dimensions in Figure 5 we get the wheel angles

of the first and second trailers as

φ1(ti) = arctan

(

T1y(ti)− (d1 +
1

2
f1)K11(ti)

T1x(ti)−
1

2
e1K11(ti)

)

φ7(ti) = arctan

(

T2y(ti)−
1

2
f2K21(ti)

T2x(ti)−
1

2
e2K21(ti)

)

φ2(ti) = arctan

(

T1y(ti)− (d1 +
1

2
f1)K11(ti)

T1x(ti) +
1

2
e1K11(ti)

)

φ8(ti) = arctan

(

T2y(ti)−
1

2
f2K21(ti)

T2x(ti) +
1

2
e2K21(ti)

)

φ3(ti) = arctan

(

T1y(ti)− d1K11(ti)

T1x(ti)−
1

2
e1K11(ti)

)

φ9(ti) = arctan

(

T2y(ti)

T2x(ti)−
1

2
e2K21(ti)

)

φ4(ti) = arctan

(

T1y(ti)− d1K11(ti)

T1x(ti) +
1

2
e1K11(ti)

)

φ10(ti) = arctan

(

T2y(ti)

T2x(ti) +
1

2
e2K21(ti)

)

φ5(ti) = arctan

(

T1y(ti) + (1
2
f1 − d1)K11(ti)

T1x(ti)−
1

2
e1K11(ti)

)

φ11(ti) = arctan

(

T2y(ti) +
1

2
f2K21(ti)

T2x(ti)−
1

2
e2K21(ti)

)

φ6(ti) = arctan

(

T1y(ti) + (1
2
f1 − d1)K11(ti)

T1x(ti) +
1

2
e1K11(ti)

)

φ12(ti) = arctan

(

T2y(ti) +
1

2
f2K21(ti)

T2x(ti) +
1

2
e2K21(ti)

)

(6)
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New calculations are made in this paper to determine the hitch angles between truck and

first trailer and first and second trailers. Hitch angles were not calculated in the algorithm

of [8]. The central axis through the hitch point of the truck, from back to front, is described

by the tangent vector to the path of (x, y), which is t = cos (θ(ti)) i+ sin (θ(ti)) j, and the

central axis through the hitch point of the first trailer and the truck, from back to front,

is described by the vector t1 = (x1(ti)− x2(ti)) i + (y1(ti)− y2(ti)) j. Properties of the

vector cross product can be used to determine the angle −
π

2
≤ ϕ1 ≤

π

2
between these two

vectors. The properties we use are that for any vectors a and b the magnitude (length)

‖a × b‖ = ‖a‖‖b‖ sinϕ and that a, b and a × b form a right handed set. Since we are

dealing with vectors in the ij plane, their cross product will always be a scalar multiple

of the standard third dimension vector k perpendicular to the plane, so that ϕ1 will be

positive for anticlockwise rotation and negative for clockwise (see Figure 6).

path of

first hitch

(x1, y1)(x2, y2)

(x3, y3)

ϕ1(ti)

ϕ2(t1)

Figure 6: Hitch angles

The same method is used to calculate the hitch angle, ϕ2, between the first and second
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trailers.

ϕ1(ti) = arcsin





(y1(ti)− y2(ti)) cos (θ(ti))− (x1(ti)− x2(ti)) sin (θ(ti))
√

(x1(ti)− x2(ti))
2 + (y1(ti)− y2(ti))

2





ϕ2(ti) = arcsin





(x1(ti)− x2(ti)) (y2(ti)− y3(ti)) − (y1(ti)− y2(ti)) (x2(ti)− x3(ti))
√

(x1(ti)− x2(ti))
2
+ (y1(ti)− y2(ti))

2

√

(x2(ti)− x3(ti))
2
+ (y2(ti)− y3(ti))

2





3 Results and discussion

The simulations performed used the dimensions of the B-double shown in Figure 1. The op-

erator is simulated by external functions of front wheel angle and velocity. These functions

are sampled at the start of each calculation loop.

The first simulations show the effectiveness of the algorithm applied to B-double truck-

trailers. In these simulations the operator steers straight ahead (α = 0 in Figure 2) for

9 s then moves into a linearly increasing right turn for 2 s stabilizing at a right turn of

α = −π
6 = −30◦ held for 5 s. The operator then linearly changes, over 4 s, to a left turn of

α = π
8 = 22.5◦ which is held for 4 s after which the steering straightens out linearly over a

period of 2 s and then remains straight until the 30 s simulation is complete.

We simulate a constant acceleration of 0.2 m/s2 so the velocity increases linearly as

v = 0.2t m/s. Thus, the B-double makes a standing start and increases to a final speed of

approximately 21.6 km/h.

Ten simulation runs using ∆t = 0.005 gave an average CPU time of approximately
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0.2∆t (on a laptop with Windows XP operating system, 2.96 GB RAM, processor speed

2.53 GHz) so that the sampling time is 5 times the average calculation time. The calculating

time decreases as the path becomes straighter so this particular choice of path requires a

great deal of calculation per loop. This is an arbitrary choice of ∆t which could have been

chosen to be smaller to reduce errors due to discretizing the algorithm. However, for any

computational machine there will be a limit to calculating speed and associated errors. In

this paper we examine the errors involved in the algorithm when ∆t = 0.005 s with one

comparison of wheel angle errors for ∆t = 0.001 s.

Figure 7 shows the hitch path under the given operator specifications. The second hitch

starts at (-8.17,0), the third hitch at (-17.52,0) and the truck hitch starts at (0,0), but all

hitches follow the same path (as they are, in fact, prescribed to do so). The second and

third hitches also finish behind the truck hitch but this is not clearly apparent in Figure 7

since these paths are covered by the truck hitch path. Figure 7 shows the expected path of

the hitches given the operator parameters. The truck hitch starts straight then transforms

into a circular arc to the right. The hitch path then smoothly changes to a constant circular

arc to the left before finally straightening out. The duration of time spent on the second

circle is 5 s and that spent on the first 4 s yet approximately twice the arc of circle is

navigated on the second circle because the truck is moving with ever increasing speed.

Comparison of the discretized path to analytical solutions are difficult. Equations (1)

will at best be approximated numerically as they do not have analytical solutions with

the prescribed α and v used in this simulation. We can see, however, the path is straight
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Figure 7: Hitch paths with ∆t = 0.005 s

where it should be and has a radius approximately equal to the analytic radius of curvature

of 7.41 m and 10.33 m, on the regions of constant curvature. A closer examination will

be made of the wheel angle errors on the regions of constant curvature and also on the

determination of the position of the second and third hitch points.

The second hitch point should l1 = 8.170 m behind the truck hitch, and the third hitch

point should be l2 = 9.350 m behind the second. Figure 8 shows a plot of the difference

between the calculated inter-hitch distances and l1 or l2 respectively. Thus it shows the

error in locating the exact position of the hitches on the path. The mean of the l1 error

is −1.2508 × 10−6 m and the mean of the l2 error is 5.1867 × 10−5, both of which are

minute compared to l1 or l2, demonstrating that, on average, the error is negligible. The

“wobbling” effect of oscillating between negative and positive error is due to the selection
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Figure 8: Inter-hitch length errors with ∆t = 0.005 s

of points alternately changing from being closer to further than the actual distance as the

algorithm makes its choice of the closest path point to the correct distance. Also clear

from Figure 8 is that the error increases with increasing speed because the discrete hitch

path points are spaced further apart as speed increases for any fixed ∆t.

The initial regions show zero error. This is because the position of the second and third

hitches must be calculated using the first hitch and the assumption of a straight path until

enough discrete path points are generated for those two trailing hitches. Hence until the

second hitch passes the origin it is given as (x2(ti), y2(ti)) = (x1(ti) − l1, 0) and the third

hitch by (x3(ti), y3(ti)) = (x2(ti)− l2, 0).

Figure 9 graphs the trailer wheel angles as a function of time and shows the large scale

pattern of wheel angles that is expected. All wheels start going straight with angle 0,

then increase (turn anti-clockwise) before reaching a period of sustained constant angle

whilst traversing the circular arc to the right. Of course, throughout the simulation, the
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Figure 9: Wheel angles of first and second trailers

second trailer wheels start turning later than the first trailer’s because the second trailer

is following the first.

On both the first and second trailers the front wheels turn a smaller angle than the

middle wheels which turn a smaller angle than the rear wheels. This is as expected since

the distance of these wheels, in the direction of the central spine of the trailer is increasingly

further from the COC. A scale drawing of Figure 4 would make this perfectly clear. Also,

the wheels on the second trailer turn through a larger angle than their corresponding wheels

on the first trailer, when traversing the same circle. This is because the interhitch length

of the first trailer is 8.170 m whereas the interhitch length of the second trailer is 9.350

m making the COC further from the second trailer wheels in the direction of the central

spine of that trailer. In Figure 9 all wheels then change to a constant clockwise angle
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(approximately 0.75 times the size of the anticlockwise angles) and finally straighten. We

also notice that wheel pairs interchange which angle is largest depending on clockwise or

anticlockwise turn because they change being inner or outer wheels in the turns of different

direction.

It is not possible to calculate analytical values of wheel angles throughout the simu-

lation. However, it is possible to verify the accuracy of the algorithm for wheel angles in

stable regions when two hitch points are on a constant circular path. By trigonometry we

can calculate that on the constant right turn with α = π
6 , Wheel 1 should have an angle

of 28.470 degrees and for α = π
8 , Wheel 1 should have an angle of -15.329 degrees. Figure

10 contrasts the algorithm calculated wheel angle values with the constant analytical value

on these two circular arcs. On both arcs it is clear that there is a wobble in angle in the
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Figure 10: Wheel 1 angles, with ∆t = 0.005 s, compared to the constant analytical value

algorithm calculated value due to the same wobble occurring in Figure 8. We see that the

central tendency or mean angle is approximately the analytically calculated value in both
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cases. We also notice less wobble in the right hand graph which is caused by the increased

speed at that time, spacing the discrete path points further apart and resulting in more

choices of path point of the same sign of error (positive or negative) before changing. The

change in values of the same sign are difficult to detect at this scale but at larger scales

show as jagged sections of the slopes of the angle graph. Although also difficult to detect,

this property is also present in Figure 8; look at the spacing between maximal peaks.

To demonstrate that the numerical algorithm converges to the analytical solution as

∆t → 0 the simulation was run with ∆t = 0.001 s and the resulatant decraese in error

shown in Figure 11. The maximal error with ∆t = 0.001 s is approximately 0.005 degrees

whereas with ∆t = 0.005 s the maximum error was approximately 0.03 degrees. The mean

wheel angle is still approximately the analytical value.

1.45 1.5 1.55 1.6

x 10
4

28.464

28.466

28.468

28.47

28.472

28.474

Time (increments of 0.001 s)

W
he

el
 1

 a
ng

le
 (d

eg
re

es
)

2.2 2.25 2.3 2.35 2.4

x 10
4

−15.334

−15.332

−15.33

−15.328

−15.326

−15.324

Time (increments of 0.001 s)

W
he

el
 1

 a
ng

le
 (

de
gr

ee
s)

Figure 11: Wheel 1 angles, with ∆t = 0.001 s, compared to the constant analytical value

Figure 12 (left diagram) gives a close up view of four of the wheel angles during the first

transition from a straight path to one of constant curvature. The large scale graph of wheel
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angles in Figure 9, over the full 30 s period, does not allow the small time scale differences

in trailer wheel steering to be observed. The closer examination of Figure 12 (left diagram)
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Figure 12: Comparison of wheel angles of first and second trailers (left diagram) and the

controlled first and second hitch angles (right diagram)

strengthens the evidence that the algorithm provides the correct wheel angles. Here it is

clear not only that the second trailer wheels start turning a short time following the first

trailer but also the front wheel of each trailer starts turning before the rear wheel of the

trailer for the same reason; that the rear wheel follows the front.

The second (cooperatively redundant) steering system is the controlled hitch angles

for this path. These hitch angles are shown in Figure 12 (right diagram). The interesting

feature of Figure 12 (right diagram) is the greater hitch angle of the second hitch compared

to the truck hitch when the trailers traverse circular arcs. An inspection of Figures 2 and

6 make it clear that the truck hitch angle is the angle formed between the tangent to the
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circle and a chord of the circular arc, whereas the second hitch angle will be a greater

angle formed by two chords of the circle. This also explains why the second hitch has

no periods of constant angle on the first circular arc and a short constant period on the

second; because the radius of curvature is sufficiently small that the three hitch points are

never on an arc of constant curvature in the first circular arc and only briefly in the second.

The first hitch angle being constant only requires the truck and second hitch points to be

on a constant arc. It is also noticeable that the second hitch changes angle at a lag behind

the truck hitch, again because the second hitch follows the truck hitch by the length of the

first trailer.

A second simulation study was conducted to compare the off-tracking of the steered

trailer wheels proposed in this paper and standard fixed trailer wheels such as those of

the B-double in Figure 1. The operator parameters in this simulation are for a path of

constant radius (with α = −π
8 = −22.5◦) after an initial linear change from a straight path.

Speed increases linearly to 10 m/s (approximately 36 km/h) during the first 10 s and then

remains constant for the 13 s simulation.

Figure 13 compares off-tracking of trailers with steered wheels and those with fixed

wheels. In particular the wheel paths of wheel 1 of the first trailer (in the left diagram)

and wheel 7 of the second trailer (in the right diagram) are shown. The displacement of the

second and third hitch points of the fixed wheel trailers (and consequently their wheels)

was calculated using the average of the displacement of the truck hitch in the direction of

the line joining the second hitch at time ti−1 to the front hitch at times ti−1 and ti. At the
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Figure 13: Off-tracking of wheel 1 on the left diagram and wheel 7 on the right diagram

of a steered wheel and fixed axis trailer system

small time increment of ∆t = 0.005 s, this average displacement returns a position for the

second and third hitches which are within 0.0005% of the true distance from the preceding

hitch point.

It is apparent that the off-tracking of the steered trailer wheels are small compared

to those of the fixed wheel trailers. It is also apparent that both steered trailers have

approximately the same amount of off-tracking, the extent of which is determined by the

length of the trailer. The figures show that once a constant curvature is reached, the entire

steered trailer system tracks inside the second hitch point of a fixed axle trailer which is

itself significantly inside the second trailer wheels of the fixed wheel system. In fact, the

right hand diagram shows that a turning angle of α = −π
8 is too sharp for the fixed axle

trailer to perform and the simulation ends with the second hitch pushing the third hitch

and Wheel 7 backward. As the number of trailers increase this effect will become greater
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for fixed axle trailers whereas any number of the steered trailers will all track closely to

the hitch path even in very sharp cornering.

4 Conclusion

Inspection of the simulation studies in Section 3 show that the algorithm for steering

multiple trailer vehicles not only appears to be accurate but also of great benefit in terms

of reduced off-tracking compared to standard fixed wheel trailers. Compared to analytical

solutions we see the discrete numerical algorithm has a “wobbling” effect which could

be dampered either in the control system process or simply attenuated by the selection of

actuator for wheel angle. The simulations show how the algorithm converges to an analytic

real time solution as ∆t → 0.

The great benefit of steerable trailers is the reduction of off-tracking and scuffing. Such

steerable trailers could negotiate corners without the need to swing the truck out across

the road into the lanes of on-coming traffic. The use of actively controlled hitch angles

provides cooperative reinforcement of the steering system, a back-up if the wheel steering

fails and can be used to prevent jack-knifing.

As more trailers are added behind a truck, the advantage of steered trailer wheels

become more and more pronounced, so, as the length of road trains increases, so too do

the benefits of steerable trailer wheels and actively controlled hitch angles.
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