Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@WPI

Worcester Polytechnic Institute

Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2002-04-15

Integration of Heterogeneous Databases:
Discovery of Meta-Information and Maintenance
of Schema—Restructuring Views

Andreas Koeller
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

Repository Citation

Koeller, A. (2002). Integration of Heterogeneous Databases: Discovery of Meta-Information and Maintenance of Schema-Restructuring
Views. Retrieved from https://digitalcommons.wpi.edu/etd-dissertations/116

This dissertation is brought to you for free and open access by Digital WPL. It has been accepted for inclusion in Doctoral Dissertations (All

Dissertations, All Years) by an authorized administrator of Digital WPL For more information, please contact wpi-etd@wpi.edu.

https://core.ac.uk/display/212998643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/116?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Integration of Heterogeneous Databases:
Discovery of Meta-Information and
Maintenance of Schema-Restructuring
Views

by

Andreas Koeller

A Dissertation
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
in
Computer Science

by

December 14, 2001

APPROVED:

Prof. Elke A. Rundensteiner Prof. Nabil I. Hachem
Advisor Committee Member
Prof. Carolina Ruiz Prof. David C. Brown
Committee Member Committee Member

Prof. Dr. rer. nat. habil. Gunter Saake Prof. Micha Hofri
External Committee Member Head of Department
University of Magdeburg

Abstract

In today’s networked world, information is widely distributed across many
independent databases in heterogeneous formats. Integrating such informa-
tion is a difficult task and has been adressed by several projects. However,
previous integration solutions, such as the EVE-Project, have several short-
comings. Database contents and structure change frequently, and users of-
ten have incomplete information about the data content and structure of
the databases they use. When information from several such insufficiently
described sources is to be extracted and integrated, two problems have to
be solved: How can we discover the structure and contents of and inter-
relationships among unknown databases, and how can we provide durable
integration views over several such databases? In this dissertation, we have
developed solutions for those key problems in information integration.

The first part of the dissertation addresses the fact that knowledge about
the interrelationships between databases is essential for any attempt at solv-
ing the information integration problem. We are presenting an algorithm
called FIND; based on the clique-finding problem in graphs and k-uniform

hypergraphs to discover redundancy relationships between two relations.

ii

Furthermore, the algorithm is enhanced by heuristics that significantly re-
duce the search space when necessary. Extensive experimental studies on
the algorithm both with and without heuristics illustrate its effectiveness on
a variety of real-world data sets.

The second part of the dissertation addresses the durable view prob-
lem and presents the first algorithm for incremental view maintenance in
schema-restructuring views. Such views are essential for the integration of
heterogeneous databases. They are typically defined in schema-restructur-
ing query languages like SchemaS@QL, which can transform schema into data
and vice versa, making traditional view maintenance based on differential
queries impossible. Based on an existing algebra for SchemaS@L, we present
an update propagation algorithm that propagates updates along the query
algebra tree and prove its correctness. We also propose optimizations on our
algorithm and present experimental results showing its benefits over view

recomputation.

iii

Acknowledgements

I would like to thank my advisor, Prof. Elke A. Rundensteiner, for her
guidance, advice and support during my time at WPI. Thanks also to the
other members of my dissertation committee, Prof. Carolina Ruiz, Prof.
David Brown, Prof. Nabil Hachem, and Prof. Gunter Saake, who provided
valuable feedback and suggestions during my research that were useful in
guiding my work.

My colleagues in the DSRG group, in particular Kajal Claypool, Li Chen,
and Xin Zhang, with whom I have shared an office for the past four years,
contributed to my work and progress of this dissertation in many ways.

Prof. Micha Hofri gave me the opportunity to teach at WPI, which
provided valuable experience to me and also a welcome occasional distraction
from the research that I was doing. I also would like to thank the other
faculty in the CS department at WPI, in particular Profs. Stanley Selkow,
George Heineman, and Kathi Fisler, for valuable discussions and help with
many issues over the past few years. Michael Voorhis and Jesse Banning
provided technical support and (unfortunately necessary) backups of my

machine.

iv

Finally, I want to thank my fiancée Hajira Begum, for her love and
support and the great amount of understanding she showed whenever I can-
celled yet another weekend plan in the final phase of dissertation writing. I
can’t promise that I'll stop going to school, but I promise that I won’t write

another dissertation anytime soon.

Contents

I Information Integration 1
1 Introduction 2
1.1 Information Integration—Background 2
1.2 Some Issues in Information Integration 4
1.3 Problem Definition 9
1.3.1 Discovery of Inclusion Dependencies 9
1.3.2 Incremental View Maintenance 11
1.4 Approach and Contributions 12
1.4.1 Discovery of Inclusion Dependencies 13
1.4.2 Incremental View Maintenance 16
1.5 Organization of this Dissertation 18
2 The Evolvable View Environment 20
2.1 Maintenance of Views Under Schema Changes. 20
2.2 The EVE-System—Overview 22
2.2.1 A Model for Information Source Description 23
2.2.2 A Preference Model for View Evolution 27
2.2.3 View Synchronization Strategies. 29
2.2.4 Cost Model for Evolved View Definitions 33
2.2.5 Maintenance of Materialized Views after Synchroniza-

tion 35

2.2.6 View Maintenance Under Concurrent Schema and Data
Updates 36
2.2.7 EVE-Implementation 36
II Discovery of Inclusion Dependencies 37
3 Introduction and Background 38

CONTENTS vi

3.1 Introduction. 38
3.1.1 Significance of Inclusion Relationships 39
3.2 Background oo 41
3.21 Notation L Lo 42
3.2.2 Inclusion Dependencies 43
3.2.3 Related Work on Other Dependencies 50
4 Algorithm FIND, for the Discovery of Inclusion Dependen-

cies 53
4.1 Finding Inclusion Relationships across Databases 53
4.1.1 Assumptions 54
4.1.2 A Three-Staged Solution to the IND-Finding Problem 55
4.1.3 Comparing two Databases 58
4.2 INDs between Two Relations 60
4.2.1 Complexityo 60

4.2.2 Solution Approach for Finding INDs Between Two Re-
lations 62
4.2.3 Mapping to a Graph Problem 65
4.2.4 The Clique-Finding Problem 70
4.2.5 Finding Hypercliques. 72
4.2.6 An Algorithm to Find Inclusion Dependencies. 86
4.2.7 Correctness of Algorithm FIND, 101
4.2.8 Complexity of Algorithm FIND, 103
5 Heuristic Strategies to Find Inclusion Dependencies 111
5.1 Comparing two Attribute Sets. 111
5.1.1 Simple IND-Testing 112
5.2 Finding Inclusion Dependencies Using Heuristics 115
52.1 Accidental INDs, 115
5.2.2 Heuristics for IND-Validity Testing 122
5.2.3 Heuristic: Domains 125
5.2.4 Heuristic: Attribute Names 126
5.2.5 Heuristic: Number of Distinct Values. 129
5.2.6 Heuristic: Attribute Value Distribution (AVD) 131
5.27 Summary 135
5.2.8 False Negatives and the Clique-Merging Heuristic . . . 136
5.3 Incorporating Heuristics into the IND-Testing Algorithm . . . 138
5.4 Further Runtime Reductions 142

5.4.1 Restricting the Size of Graphs in Algorithm FIND, . . 143
5.4.2 Determining INDs Using Sampling 145

CONTENTS vii

6 Experiments and Evaluation 150
6.1 Implementation, 150
6.2 Experimental Setup L. 152
6.3 Experiments. o 154

6.3.1 Experiment 1: Number of Unary and Binary INDs . . 155
6.3.2 Experiment 2: Performance and Quality Effects of

Heuristicso o 158
6.3.3 Experiment 3: Effect of Low Numbers of Distinct Val-

uesin Data Set L. 160
6.3.4 Experiment 4: Accuracy of the x?-Test and the At-

tribute Value Heuristic 162

6.3.5 Experiment 5: Effect of Data Set Size on Runtime . . 164
6.3.6 Experiment 6: Effect of Noise on the Correctness of

Algorithm FIND,o oo 166
7 Related Work 168
8 Conclusions 178

IIT Incremental Maintenance of Schema-Restructuring Views
180

9 Introduction and Background 181
9.1 Introduction. 181
9.1.1 DMotivating Example 183
9.1.2 Contributions o 185
9.2 Backgroundo 186
9.2.1 Notation e 186
9.2.2 SchemaSQL 187
10 Propagation of Updates in a SchemaSQL View 195
10.1 The SchemaSQL Update Propagation Strategy 195
10.1.1 Classes of Updates and Transformations 195

10.1.2 SchemaSQL Update Propagation vs. Relational View
Maintenance oL 196
10.1.3 Owverall Propagation Strategy 198

10.1.4 Propagation of Updates through Individual Schema-

SQL

Operators i e 200

CONTENTS viii
10.1.5 Update Propagation Example 208
10.1.6 Grouping Similar SchemaS@QL Updates in Batches . . 211
10.2 Correctness v v it e e e 215
11 Implementation and Evaluation 222
11.1 Implementation 222
11.1.1 SchemaSQL Query Engine. 222
11.1.2 Incremental Update Propagation 224
11.2 Performance Evaluation 225
11.2.1 Experimental Setup 225
11.2.2 Deleting Base Relations of Different Sizes 228
11.2.3 Deleting Tuples from Base Relations 230
11.2.4 Deleting Tuples Leading to Schema Changes 232
11.2.5 View Selectivity 234
12 Related Work 236
13 Conclusions 239
IV Conclusions and Future Work 241
14 Conclusions and Future Work 242
14.1 Results and Contributions of this Dissertation 243
14.2 Ideas for Future Work 246
14.2.1 Discovery Across Multiple Databases 246
14.2.2 Interactivity in the Discovery Process 247
14.2.3 Adaptive Discovery L. 248
14.2.4 Schema-restructuring Views 249

14.2.5 Query Optimization and Implementation of View Main-
tenance Lo 250
14.2.6 Discovery and Maintenance in Non-relational Data . . 250
A The Bron/Kerbosch-Algorithm 252

B A Brute-Force Algorithm to Find Hypercliques 255

ix

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5

3.1

4.1
4.2

4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14
4.15

Tasks in Information Integration 4
Solutions in Information Integration 14
The Framework of the Evolvable View Environment (EVE). . 24

Example Information Source Content Descriptions 26
A Containment Constraint in the Example Information Space 26
A Typical E-SQL View 28
A Possible Rewriting for a View. 30
Functional and Inclusion Dependencies in a Database 45
The Three Stages of Inclusion Dependency Discovery 57
A Simple Algorithm simpleFINDs for the T'wo-Relation IND-

Finding Problem. L oo 64
Validity of All Derived INDs Is Not a Sufficient Validity Test. 65
A 3-hypergraph with 6 edges. 66
Mapping a Set of INDs toa Graph 69
Algorithm HYPERCLIQUE for Finding Cliques in a k-Uniform

Hypergraph o oo 7
Clique Candidate Generation for k-Hypergraphs 79
Phase 1 of Algorithm HYPERCLIQUES: Growing hypercliques 81

Phase 2 of Algorithm HYPERCLIQUES: Reducible Graphs . . 83

An Irreducible Graph. 84
Splitting an Irreducible Graph. 85
The Running Example for the IND-Finding Problem. 88
Algorithm FIND, for Finding a Generating Set of INDs Be-

tween Two Relations L. 89
A Graph G35 constructed by Algorithm FIND,. 92
Generating Higher-Arity Member of the Generating Set G(X)

in Algorithm FIND, 94

LIST OF FIGURES X

4.16

4.17

5.1
5.2
5.3
5.4
9.9
5.6
9.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9

9.1
9.2

9.3

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8
10.9

Invalid INDs Generated by the Clique-Finding Algorithm in

Fig. 4.15. 96
An Example for the Complete Algorithm FIND,. 101
Determining the Validity of an IND by a MINUS-Query . . . 112
Determining the Validity of an IND by Two COUNT-Queries 113
A Simple Algorithm to Check for IND Validity 114
Accidental INDs Introduced by Encoding Data 117
Number of Maximal Cliques in Almost Complete Graphs . . 137
The Heuristic IND-Checking Algorithm CHECKy 140
Flowchart for the CHECKy Algorithm. 141
Flow of the Overall Discovery Algorithm 142
Overview of System Architecture 151
Number of Unary INDs in Data Set INSURANCE 156
Number of Binary INDs in Data Set INSURANCE 156
Performance of Algorithm FIND, Using CHECK and CHECKy 158
Quality of Algorithm FIND, Using CHECKy 159

Relative Size of Largest IND Discovered, Data Set INSURANCE161

Quality of Heuristic Algorithm for Subsets Generated Through

Predicates 164
Effect of the Size of Data Sources on Performance of FIND, . 165
Effect of Noise on the Quality of FIND, 167
A Schema-Restructuring Query in SchemaSQL. 184
The Four SchemaSQL Operators UNITE, FoLD, UNFOLD,

SPLIT. . . o o o e e e e e e e 189
The Algebra Tree for the Example in Fig.9.1 194
The SchemaSQL View Maintenance Algorithm 199
Propagation Rules for Q=UNFOLDg, q,(R) 204
Propagation Rules for Q=FOLDy, 4y4+(R) 205
Propagation Rules for Q=SpPLIT, (R) 206
Propagation Rules for Q=UNITE, (R1, Ra, ... JROY L 207
Propagation of add-tuple(Agr) through an UNFOLD-Operator 209

Update Propagation in the View from Figure 9.2. See Sec-

tion 10.1.5 for explanation. 210
Batched Update Propagation Rules for Q=UNFOLD g, 4,(R) . 215
Batched Update Propagation Rules for Q=FOLD g, o, 4+(R) . 216

10.10Batched Update Propagation Rules for Q=SpPLIT 4, (R). Note

that A* = {q1,q2,...,qxr} is the set of output relation names. 216

LIST OF FIGURES xi

10.11Batched Update Propagation Rules for
Q=UNITE o, (R1, R, ..., Rp) - oo 217
10.12A SchemaSQL Algebra Tree. 218

11.1 The architecture of the SchemaSQL View Maintenance System225
11.2 View Maintenance and Recomputation Times vs. Size of

Deleted Base Relations 229
11.3 Deleting Tuples from the Input Schema 232
11.4 Base Updates lead to Data Updates or Schema Changes . . . 233

11.5 Update Propagation under Views of Different Selectivities . . 235

B.1 Brute-Force Algorithm to Find Cliques in a k-Uniform Hy-
pergraph 256

Part 1

Information Integration

Chapter 1

Introduction

1.1 Information Integration—Background

One important use of computer technology has always been the storage,
processing, retrieval and presentation of data and information. While sev-
eral different definitions of information exist, we will refer to data as dis-
crete objects stored in a computer system, while information is data that
has meaning to a human user. Information is typically stored as data in
databases, while database management systems provide services to access
databases [EN94].

Due to changing requirements, advances in database theory and com-
puter technology, and the tendency of users to retain legacy databases, a
large number of different principles for the organization of data in database
systems are in existence. Examples include the historic hierarchical and
network data models [EN94], the commercially most successful relational

model [Cod70], and the later approaches of object-oriented (e.g., [LACT93]),

1.1. INFORMATION INTEGRATION—BACKGROUND 3

object-relational [Ram97], and semistructured data models [Abi97, BDT98,
BPSM97].

While all these data models have advantages and are used to different
extents, there is a common inherent difficulty to all: modelling information
for a database (i.e., creating a schema for a given set of information) is not
trivial. There are typically many ways of finding an appropriate schema
for a given application, and the range of possible schemas varies with the
expressiveness of the underlying data model [Hul86, MIR94]. Many mod-
elling languages (e.g., [Che76, EWHS85]) and methodologies [HK87, Eic91]
have been proposed to obtain a schema for a given application. However,
the process remains difficult for any data model, and an “algorithm” (i.e.,
an automatic procedure free from human interference) for modelling has not
been found [MIR93, LSS96].

Advances over the last decade in networks and general computing tech-
nology have made it possible to access data from different, possibly remote,
data sources and view and/or combine them in a single location. The in-
creasing desire to access data from different sources in a uniform way thus
led to a large field of research: information integration. This term refers
to the process of building database systems that access data from multiple
sources that may differ in data, schema, and even data model. In addi-
tion to the difficulties in using one data model or schema, there are now
problems of integrating different databases with one another, see for ex-
ample [AMMO97, BRU97, GRVB98]. Thus, a widely studied problem in
the area of database systems is the schema integration problem, i.e., the

question how related databases can conceptually be used together in an

1.2. SOME ISSUES IN INFORMATION INTEGRATION 4

application [BLN86, SL90, PBE95, HZ96, RBO01].

1.2 Some Issues in Information Integration

Figure 1.1 gives an overview over some of the important issues in informa-
tion integration and introduces some terminology used in this dissertation.
We are not concerned with physical integration but exclusively with logical
integration, as defined in the figure.

Information Integration

/\

Physical Integration Logical Integration
bandwidth; Schema Integration Data Integration
security;
availability;
network protocols

Resource Identification of

Identification Meta Data; Query decomposition; Conversion and

ond Discovery | Source Relationships Obtaining and Reconciliation of
combining results Incompatible Data
Identification of
access pattems, Maintenance of
schema, Correct Results;
data model Adaptation to IS
changes

Figure 1.1: Tasks in Information Integration

The process of logical information integration (i.e., building a database
system integrating other source databases) involves two essential phases
(Fig. 1.1): (1) setting up an organizational structure (model, schema, data
objects) for the integrated database (“schema integration”), and (2) actually
providing data to a user (“data integration”).

In the first phase, two tasks arise:

1.2. SOME ISSUES IN INFORMATION INTEGRATION 5

e Obtaining (by human input or automatic discovery) as much schema
information as necessary about the sources, for example through man-
ual input [BLN86, RB01], inference from existing meta-information
[PSU98, LNE89], or data-driven discovery [DP95, LCO00]. This is nec-

essary to find a good global structure for the integrated database.

e Performing the actual integration, i.e., identification of ways to trans-
late data models [GMHIT95, TRV96, RS97, GRVBY98] and schemas
[SL90, LSS96] of each source to fit into the global data view that is

presented to the user.

For the second phase of data integration, important steps include break-
ing down global queries for the information sources, converting data, and
maintaining consistency of the results. Different approaches to data integra-
tion have been taken, most notably mediators [Wie92, HGMNT97, LYV 98,
TRV96, BRU97] and (materialized) views [EN94].

In the latter approach, data is provided as a view, i.e., a result of a query,
called a view definition. View-based information integration is characterized

by the following features:

e security: Views make it possible to give users access only to certain

data elements (e.g., through export schemas [SLI0]).

e performance: Views can be materialized (i.e., their view extents
can be replicated at the location of the view) to minimize access to
the sources [EN94]. Materialized views are closely related to Data

Warehouses [Rou98].

1.2. SOME ISSUES IN INFORMATION INTEGRATION 6

e durability: Views can be incrementally updated when data sources
change [BLT86, ZGMWO96, NLR98|. This process is referred to as
view maintenance. Even view definitions (as opposed to only the view
extent) can be adapted to changing source, for example when sources
change their schema or become unavailable [NLRIS8| (“view synchro-
nization”). The EVE-System, described in Sec. 2, provides for view

maintenance under both data and schema changes.

e uniformity: Depending on the view definition language, differences
in schema and model of underlying sources can be made transparent
to some extent. Differences that can be made transparent range from
simple translation of data types to more complex issues of schema

heterogeneity [SL9I0, LSS96].

However, there are important unsolved problems in both phases of in-
formation integration.

One problem that has recently become more and more important arises
from the fact that data sources that are to be integrated have often been
developed independently from one another [LSS96]. While such sources may
be storing related data, they are often schematically heterogeneous, which is
the situation in which “one database’s data (values) correspond to metadata
(schema elements) in others” [KLK91].

Such databases are also usually maintained by independent entities,
meaning that changes in their data or even schema can occur at any time and
cannot be controlled by operators or users of the integrated database system.

Clearly, there is a need for integration methodologies that can (1) transform

1.2. SOME ISSUES IN INFORMATION INTEGRATION 7

schemas [LSS96], (2) “survive” schema changes in the sources (i.e., adapt to
such changes without becoming undefined) [LNRO1], and (3) incrementally
update views defined over such sources [AESY97, NR98, NLR98|. While
some solutions have been proposed for each phase, there is so far no com-
prehensive solution for the entire process of maintaining a view over hetero-
geneous databases.

Another problem is that the schemas of databases are often not fully
known or understood when databases are to be integrated. Reasons for the
absence of schema information include, for example, a lack of cooperation
by providers (e.g., when Web sites are used as information sources) or a
lack of documentation of the sources (e.g., when companies merge and in
the process need to integrate legacy databases with one another). One field
of research in which solutions for the gathering of additional information
about the structure of a database have been developed is known as knowledge
discovery in databases (KDD) [FPSS96, FPSSU96, Fay97, PFI1].

A related issue is redundancy across data sources. Different data sources
may be partly or completely redundant, for example if independent data-
bases contain data about the same real-world entities or if partial or com-
plete backup data is available for some database [LNRO1, Dus97, KLSS95].
Redundancies in databases, if known to a user, can be helpful in provid-
ing higher availability of integrated databases [NR98]. Knowledge about
redundancies can also help with integrating databases in general, for exam-
ple when different entities collecting similar data are combined, as is the
case with many company-mergers. As such knowledge about the relation-

ships between databases is very useful, it is important to find strategies to

1.2. SOME ISSUES IN INFORMATION INTEGRATION 8

discover such knowledge if it is not available.
In summary, database technology in a networked world would benefit

greatly from a solution to the following information integration problem:

Given a set of databases that may be semantically related but
may differ in data model and schema, provide a view over those
databases such that the greatest amount of information relevant
for the user is extracted from the available data. To find the
best possible views, it will generally be necessary to exploit the

interrelationships and redundancies between data sources.

A general automated solution to this problem does not seem within
reach, however many interesting proposals have been made [EW94, KLSS95,
GMHI"95, TRV96, GKD97, RS97, AKS96, LNRO1]. Previous work in which
the author of this dissertation participated includes a solution to some of
the problems mentioned above. The EVE-Project ([NLR98] and others,
Sec. 2) defines a materialized view management system that, among other
features, is able to maintain views under schema changes of underlying in-
formation sources. While this is an important contribution to the field of
information integration from independent sources, there are shortcomings of
the EVE-approach. Two important shortcomings are the fact that (1) only
data sources that can be queried together in one SQL-query can be inte-
grated, and (2) that in order to maintain views under schema changes, the
system need meta-information about the relationship between sources that
is not generally available. In this way, the EVE-Project provided some of the

motivation for the problems tackled in this dissertation. A brief overview

1.3. PROBLEM DEFINITION 9

of the EVE-System and its significance in our context can be found in the

next chapter.

1.3 Problem Definition

1.3.1 Discovery of Inclusion Dependencies

Usually, meta information about sources, such as the semantics of schema
objects, functional dependencies, or relationships between different data
sources, is not explicitly available for an integration effort. Often, only
the schema is known (or can be queried) and data can be queried through
some kind of interface (e.g., using a query language such as SQL). However,
many other kinds of meta information about sources would be beneficial to
perform meaningful information integration.

One important class of meta information is the class of constraints that
restrict the possible states of an information source. Such constraints are
useful in the determination of relationships between sources [LNE89]| and
thus for information integration. Some integration systems perform a semi-
automatic integration using such constraints (e.g., [GKD97, KLSS95]). Such
approaches, as well as manual or (hypothetical) fully automatic integration
systems, would benefit greatly from the availability of as much meta-infor-
mation as possible about the sources to be integrated. The manual search
for such constraints is tedious and often not possible. This is true in par-
ticular when many related information sources are available or when large
relations (with many attributes) are to be compared for interrelationships.

Therefore, the question of whether it is possible to automatically discover

1.3. PROBLEM DEFINITION 10

meta-information in otherwise unknown data sources is important and has
been approach by a number of authors,e.g., [SF93, LNE89, KMRS92].

Clearly, the existence of a constraint cannot be inferred from an inspec-
tion of the data, as any suspected constraint may only hold temporarily or
accidentally. However, it is possible to gather evidence for the existence of
a suspected constraint (a process usually referred to as discovery) by the
determination of patterns in source data. The assumption underlying this
discovery is that if a large part of a database supports a hypothesis about
a constraint and there is no evidence to refute the hypothesis, then this
constraint is likely to exist in the database.

While some types of constraint discovery have been studied to some
extent (for example, functional dependencies [SF93] and various key con-
straints [LNES89]), one important class of constraints, namely inclusion de-
pendencies, has received little attention in the literature thus far. Inclusion
dependencies express subset-relationships between databases and are thus
important indicators for redundancies between data sources. Therefore, the
discovery of inclusion dependencies is important in the context of informa-
tion integration.

While inference rules on such dependencies have been derived in the lit-
erature [CFP82, Mit83], the discovery of inclusion dependencies has not yet
been treated thoroughly. A paper by KANTOLA et al. [KMRS92| provides
some initial ideas and a rough complexity bound. It has also been argued in
the literature [LV00] that a new database normal form based on inclusion de-
pendencies (IDNF) would be beneficial for some applications. Furthermore,

there is some work on the discovery of relationships between web sites, in

1.3. PROBLEM DEFINITION 11

which web sites with their hyperlinks are modelled as graphs [CSGMO00].

1.3.2 Incremental Maintenance of Schema-Restructuring Views

It is known [MIR94, GLS96, GLS™97| that, in any data model, there is no
unique or even “best” database schema for a given application. As a conse-
quence, there are many databases in the “real world” that can store the same
data (i.e., whose databases states can be mapped by an isomorphism) but
that may use incompatible schemas. Such databases are referred to as se-
mantically equivalent [MIR93], but schematically (or syntactically [LSS96])
heterogeneous.

Incompatibility (or schematic heterogeneity) is generally defined with
respect to some query language, i.e., two databases are incompatible (or
schematically heterogeneous) if the query language used to query them can-
not produce identical query results even if the two databases contain iden-
tical information. With respect to SQL (as well as OQL and its variants),
semantically equivalent databases are often incompatible [LSS96, LSS99].
Incompatibility with respect to SQL is due to the limited query capabilities
of SQL, such as the requirement that elements of the SELECT-clause be con-
stants, that aggregation can only occur over single attributes, that attribute
and relation names (“schema”) are treated in a fundamentally different way
from values in tuples (“data”), or that in SQL there is no support for any
kind of loop through schema elements. LAKSHMANAN et al. [LSS96] have
proposed a query language called SchemaS@QL that overcomes many of those
restrictions. Data and schema of relational tables are treated in a uniform

way (i.e., there is no distinction between schema values such as attribute

1.4. APPROACH AND CONTRIBUTIONS 12

names and data values), with the effect that a larger number of databases
can be restructured into one another, removing much of the incompatibility.

However, SchemaSQL (and other such proposals, such as MSQL
[LAZT89] or XSQL [KKS92]) have only been defined as query languages,
not wview definition languages. So far, no incremental view maintenance
schemes have been developed in the literature. While there is much work in
incremental view maintenance for the standard relational data model, such
as [BLT86, ZGMWO96, AESY97], it is not possible to simply adapt that
work to schema-restructuring views. One problem is that traditional SQL
view maintenance assumes that data updates have a particular schema and
that any change to the view can be expressed as a delta-relation (i.e., a set
of tuples describing the difference between old and updated view). These
assumptions do not hold for SchemaS@QL and other schema-restructuring
languages. Furthermore, view maintenance traditionally only takes data
updates into account, whereas in schema-restructuring languages data up-

dates may be transformed into schema changes, and vice versa.

1.4 Approach and Contributions

In this dissertation, we propose solutions for the two problems in
information integration described in Sec. 1.8: a comprehensive,
fully automatic, methodology for the discovery of inclusion de-
pendencies in databases and a framework including an algorithm

for the incremental maintenance of schema-restructuring views.

Fig. 1.2 gives a general overview of related solutions in the field of infor-

1.4. APPROACH AND CONTRIBUTIONS 13

mation integration, based on the classification given in Fig. 1.1. It includes
the author’s previous contributions to the EVE project (Sec. 2) and places
this dissertation’s solutions in the overall information integration context.
In the following sections, we give a brief overview over the assumptions
made for the two major information integration solutions provided in this

dissertation and describe the scope of the solutions provided.

1.4.1 Discovery of Inclusion Dependencies

Inclusion dependencies are rules between two tables R and S of the form
R[X] C S[Y], with X and Y attribute sets. The discovery of inclusion de-
pendencies is an NP-complete problem, as KANTOLA et al. [KMRS92] have
shown. The number of potential inclusion dependencies between two tables
is exponential in the number of attributes in the two relations. However, the
number of interesting inclusion dependencies (i.e., such dependencies that
are not subsumed by others or that actually express some semantic relation-
ship between tables) is often quite small. Therefore, the problem of finding
those “interesting” dependencies is difficult, but solvable as we will show.
In this dissertation, we propose an automated process for the discovery

of inclusion dependencies in databases under three assumptions:

e The data model of the databases in question must include the concept
of attributes (“columns” of data), cannot have complex objects (such
as nested relations), and cannot have pointers or cross-references be-
tween data objects. The relational data model, currently the most

widely used, satisfies this requirement. For other data models, such

14

1.4. APPROACH AND CONTRIBUTIONS

‘uonnjog
' sjuesa1doy] Xog & Ul SUIPRYS IoyIe(] ‘UOIJRIS0IU] UOIPRULIOJU] Ul SUOIIN[OS JUSLIN)) pue

SMBIA BUINEONISSY-DUIBYDS JO INA 10U Alenoosiq

$109[0ld UoloIbaLUl DUIBYDS

SMBIA PBZIIPUBIDIA

aATsuayaIdwo)) 9I0TN
SNOIAdIJ :Z'T oIn3Iq

uoyopessiq jusunD

YoM pajoley|

SIojoIPBN
sebuopyo |SpOW DIOP
oo a|qupdulodu| S| O} uoypidopy synsal BUILIqUIOD SAIUSUOHDISY| ©2IN0S ‘DWBYDs AleAoosid puo
JO UOHDI[IOU0DSY 'sjinsay| }oa10D puo BUIUIINO ‘DIPJ PN ‘suISHDd $58000 UOHOILUSP)
PUD UOISIBAUOD JO ©OUDUBJUIDIN ‘uolisodwoosp Alen JO UOLODYHUSP| JO UoUoIIUSP 20IN0seyY
uolibalu| IO uoloibBaU| UIBYDS

1.4. APPROACH AND CONTRIBUTIONS 15

as object-oriented models or semi-structured models (XML), slight re-

strictions must be imposed on possible data sources.

e The data sources must provide the names and perhaps the types of

their schema elements (i.e., the schema must be available).

e The data sources must support the testing of a given inclusion depen-

dency, for example through some query language.

No further requirements are made of the data sources.

Under these assumptions, our algorithm, named FIND,, will discover in-
clusion dependencies between two given data sources (see box labeled “Dis-
covery” in Fig. 1.2). Since the general problem is NP-complete, a full solu-
tion cannot always be found. Therefore, the FIND, algorithm will first at-
tempt to discover all such dependencies, if the problem size is small enough.
For problems that exceed a certain size it will apply heuristics to either dis-
cover the largest inclusion dependency between the data sources or at least
find some large dependency for very large problems. The algorithm will
report whether it has found the complete or only a partial solution.

Our approach uses a mapping of the inclusion dependency discovery
problem to the clique-finding problem in graphs and k-uniform hypergraphs.
As the clique finding problem itself is also NP-complete [GGL95], additional
heuristics are used when the problem size exceeds certain limits to restrict
the size of the graphs involved and find a partial or complete solution to the
problem.

The contributions of this work are as follows:

1. We give a complete theory of the discovery of inclusion dependencies.

1.4. APPROACH AND CONTRIBUTIONS 16

2. We present an algorithm for an exact solution of the problem for

smaller problem sizes (relations with fewer than 30-40 attributes).

3. We propose heuristics that can be applied for large problem sizes (up

to about 100 attributes).
4. We have implemented all algorithms and heuristics.

5. We have performed extensive experiments on our implementation of
the FIND, algorithm over relational databases. The experiments show
the feasibility of the approach and prove that even for relations of 80
attributes and 100, 000 tuples, the discovery of inclusion dependencies
is possible within reasonable time (on the order of magnitude of a few

hours on a standard 400-MHz-Pentium-PC).

1.4.2 Incremental Maintenance of Schema-Restructuring Views

A schema restructuring view is a view defined in a schema-restructuring
query language like SchemaSQL [LSS96]. Incremental view maintenance
in such views is fundamentally different from traditional incremental view
maintenance. One important reason is that it is necessary to handle schema
changes in addition to data updates. Furthermore, due to the conversion
between data and schema elements that is a main feature of schema-re-
structuring query languages, the computation of updates to a view based
on source updates becomes much more complicated compared to standard
relational view maintenance.

In this dissertation, we give an algebra-based solution for incremental

1.4. APPROACH AND CONTRIBUTIONS 17

view maintenance in schema-restructuring views, under the following as-

sumptions:

e The data sources must be relational (this is a requirement of the class

of query language used, in particular SchemaSQL).

e We must have access to the data sources through a query language

(e.g., SQL)

e Data sources must notify the view maintenance system about their

updates, i.e., we do not study the problem of change discovery itself.

We solve the issues that arise in incremental view maintenance for sche-
marrestructuring views, using SchemaSQL as an example for the view def-
inition language (see the box labeled “Incr. VM of Schema-Restructuring
Views” in Fig. 1.2). We observe that, due to the possible transformation of
“schema” into “data” and vice-versa, we must not only consider data up-
dates (DUs) for SchemaS@QL, but also schema changes (SCs). A consequence
is that, as shown in this work, using the standard approach of generating
query expressions that compute some kind of “delta” relation A between
the old and the new view after an update is not sufficient. Our algorithm
thus transforms an incoming (schema or data) update into a sequence of
schema changes and/or data updates on the view extent.

The contributions of this part of our work are as follows:

1. We identify the new problem of schema-restructuring view mainte-

nance.

2. We give an algebra-based solution of this view maintenance problem.

1.5. ORGANIZATION OF THIS DISSERTATION 18

3. We prove this approach correct.

4. We develop a prototype implementation of a query engine and incre-

mental view maintenance system for SchemaSQL.

5. We describe performance experiments showing the improvements of

this approach over recomputation.

1.5 Organization of this Dissertation

This dissertation is organized into four parts. Part I includes this introduc-
tion (Chapter 1) and reviews problems and solutions in information inte-
gration, in particular the EVE-Project (Chapter 2) to which the author has
made contributions and which has provided some of the motivation for the
work in this dissertation.

Part II describes the discovery of inclusion dependencies. Chapter 3
introduces the problem and reviews background. Chapter 4 describes algo-
rithm FIND, which finds the exact solution to the problem for smaller-size
problems. Chapter 5 introduces heuristics and supplements algorithm FIND,
by algorithm CHECKy, adding heuristics to find partial or complete solu-
tions for larger problems. Chapter 6 shows our experimental results and
Chapter 7 reviews related work.

Part I1I deals with the incremental maintenance of schema-restructuring
views. Chapter 9 introduces the topic and reviews background. Chap-
ter 10 introduces our incremental view maintenance strategy for schema-

restructuring views, including detailed rules for update propagation for both

1.5. ORGANIZATION OF THIS DISSERTATION 19

single and batched updates. Chapter 11 gives summaries of our performance
experiments and Chapter 12 reviews related work.

Finally, Part IV concludes the dissertation. Chapter 14 summarizes our
results and lists starting points for future work. Two additional algorithms
that were used in the discovery work are presented in Appendices A and B,

respectively.

20

Chapter 2

The Evolvable View
Environment (EVE)

2.1 Maintenance of Views Under Schema Changes

In this chapter, we will give a brief overview of the EVE project, as it
provides additional motivation for the importance of the issues approached
in this dissertation. Shortcomings of the EVE work led us to tackle the
problems solved in this dissertation.

The focus of this dissertation lies on information integration. While this
has been an important field of research for a long time, newer developments,
such as the World Wide Web, have increased the importance of integration.
An important feature of the WWW is the inherent independence of data
producers from data consumers. Independent data producers or providers
have control over the capabilities (schema) of their information sources which

raises the question of the influence of schema changes (deletions, renames,

2.1. MAINTENANCE OF VIEWS UNDER SCHEMA CHANGES 21

and additions of attributes or relations in underlying databases) on a view.
In traditional views (as introduced in the literature, e.g., [BLT86, ZGMW96,
AESY97]), schema changes can render a view definition undefined.

Two general approaches that can address this problem have been pre-
sented in the literature. One approach taken by LEVY et al. [LSK95], as
well as ARENS et al. [AKS96] is to create a global domain model, i.e., an
a-priori defined schema fixed in time that defines all possible attributes and
relations in a given domain (“world view”). Over such a domain model,
information providers define views that specify which part of the world’s
data they provide. Consumers also query the domain model. An algorithm
then rewrites a consumer’s query in terms of the providers’ views currently
available and thus provides the consumer with whatever data happens to
be available at the moment. Changes would then only be possible in the
views, while the domain model never changes, and could be accommodated
by query rewriting algorithms that rewrite queries using views.

The inverse approach, explored by the author and others in a number
of publications in the context of the EVE project [RLN97, NLR98, NR9S,
KRH98, KR99, LKNR99b, KR00] neither relies on a globally fixed domain
nor on an ontology of permitted classes of data—both strong assumptions
that are often not realistic. Instead, views are built in the traditional way
over a number of base schemas and those views are adapted to base schema
changes by rewriting them using information space redundancy and relax-
able view queries [RLN97, RLN97, NLR98, NR98, KRH98, Nic99]. The
benefit of this approach is that no pre-defined domain (which is hard to

establish and to maintain) is necessary, and a view can adapt to changes in

2.2. THE EVE-SYSTEM-OVERVIEW 22

the underlying data by automatically rewriting user queries (without human
intervention).

In the EVE-Project, the author of this dissertation and others have
defined algorithms that can rewrite a view definition under schema changes
(in particular deletions) of underlying sources and retain all or a part of the
view extent in the new rewritten view. The notion of non-equivalence of view
rewritings has been defined [NLR98], and a model for a numeric assessment
of the quality and cost of such rewritings has been presented [LKNR99b].

However, the EVE-Project has several important shortcomings that pro-
vided the motivation for some of the work presented in this dissertation. We
will give a brief overview over the work done in the EVE-project and its sig-

nificance in general and for this dissertation in particular.

2.2 The EVE-System for Synchronization of Ma-

terialized Views

The Evolvable View Environment (EVE), to which the author of this disser-
tation made several contributions [KRH98, KR99, LKNR99b, KR00, KRO1],
is a materialized view maintenance framework that is able to maintain views
over dynamic distributed data sources. Source updates include both the
commonly studied data updates and the previously unexplored update class
of schema changes (deleting, renaming, and adding relations and attributes).
EVE consists of several modules (Fig. 2.1) that accomplish the tasks de-
scribed below.

The EVE-Middleware integrates data sources through wrappers and sup-

2.2. THE EVE-SYSTEM-OVERVIEW 23

plies data specified through view queries to a user. Its major components
are a Multidatabase Query Engine that collects data and handles the prop-
agation of updates and maintenance queries, as well as a Materialized View
FEvolver that tracks schema changes in underlying sources and keeps the
MKB synchronized with source schemas. To support those components,
EVE keeps two meta-data stores. The View Knowledge Base contains
the definitions of user views in an SQL-like language. The Meta Know-
ledge Base, similar to the University of Michigan Digital Library system
[NR97a, NR97b], stores information about source schemas and source re-
lationships. The Meta Knowledge Base (MKB) is a resource that can be
exploited when searching for an appropriate substitution for the affected
components of a view in the global environment. The structure of VKB and
MKB data is discussed below.

Several modules fulfill subtasks in the general EVE-System. The View
Synchronizer rewrites views if otherwise a view would become undefined
after a source schema change. The View Maintainer adapts view extents
incrementally after view rewritings, reducing the amount of data requested
from the sources. The QC-Computation and View Selection module com-
pares different possibilities for view rewritings and chooses a desirable one.
The Concurrency Control module resolves concurrency issues between data

updates and/or schema changes in the information sources.

2.2.1 A Model for Information Source Description

The purpose of view synchronization in EVE is to preserve useful view

information in terms of the view interface as well as the view extent, to

24

2.2. THE EVE-SYSTEM-OVERVIEW

(JAH) YIOWUOIIAUY MOTA S[(RA[OAR 9} JO YIOMdWRI] oY, :1°g oIN31]

(leuteiu| “B'9)
MOMISN (P09

dppano
ojuowss [ood

(e > oo
D jouiepa

\ v v
/
SUOIOIIOU m
oBupyYD pWBYos A
DIOP-DIOU SUOIDDIIOU B1oPAn _-._u_
synsal Alenb/ssuanb W
_ Ly o
' 19A|0A] MBIA PSZIIOUSIDIN auIBU3 AIOND SSOCIOPHINA | (d33msd o
(" '$AD "00d) | 80UDUBIUION ' d3ams] =
e ! 19Z|UCIYOUAS |OJUCD JOUIDIUD Aquessoey | I oUDUBIUIO) ()
SWIYON >\“ MOIA <o}rouainouon MOIA 1o6BuL \.so_\./ pup umopsoaig | ! MaIN
UOHDZIUOIYOUAS MBIA | ’ i) ' oueWsU M
1 | e I D
=
SUOISIOA MOIA I__ SMIN ()
|— — =
UOIOBIOS MBIA } =
UOISION 159! =
Q ISISA }so©g Vm@msﬂ_”\\,/o:x +C®+xw
UOROINAWOD-OD] g MaIA ==~ (swue11D)
oIS, = Il M|
A peZIPHSIDN SIas MaIA
0 - -
T

jouyeg MaIA T

2.2. THE EVE-SYSTEM-OVERVIEW 25

the largest degree possible. This requires us to be able to find alternative,
ideally semantically equivalent, replacements for components of a view def-
inition that may be no longer available from one of the information sources
(ISs). To accomplish this task, EVE contains a model for the description
of both the capabilities of each IS as well as interrelationships between ISs.
The availability of such type of knowledge is a critical resource that can be
exploited when searching for appropriate substitutions for the affected com-
ponents of a view in the global environment. While several different types
of meta-information are used in EVE, the most important form of useful
information is knowledge about containment between relations or their pro-
jections. However, such information is not always explicitly provided by
information providers, in particular when the sources to be compared be-
long to independent or competing providers.

Here, an automated way of “mining” some containment information
about information sources would be very helpful in filling the EVE MKB
with useful data. In fact, this requirement of the EVE system provided some
of the motivation for the work discussed in Part II of this dissertation. Our
solution of the inclusion dependency discovery problem presented in this
dissertation can be used to discover containment information in databases.

We will briefly review containment constraints, which serve as the tool for
modeling containment in EVE, to point out their similarity to the inclusion
dependencies discussed in Part II of this dissertation.

A containment constraint between two relations Ry and Ry states that
a (horizontal and/or vertical) fragment of R; is semantically contained or

equivalent to a (horizontal and/or vertical) fragment of Rs.

2.2. THE EVE-SYSTEM-OVERVIEW 26

Consider the containment constraint shown in Figure 2.3 which is defined
over the example information space in Fig. 2.2. This containment constraint
shows that the projection on the Holder and Age attributes of relation Insur-
ance forms a superset of the projection on attributes Name, Age of relation
BackBay for all tuples in Insurance whose Amount is over 1,000,000 and

whose Age is under 50.

IS 1: Flight Information

Customer(Name,Address,PhoneNo,Age)

FlightRes(PName,Airline,FlightNo,Source,
Dest,Date)

IS 2: Insurance Information

Insurance(Holder, Type,Amount,Age)

PreferredCust(PrefName, PrefAddress,
PrefPhone)

IS 3: Tour Participant Information

Participant(Name, TourlD,StartDate,Location)

Tour(TourlD, TourName, Type,NoDays)

Figure 2.2: Example Information Source Content Descriptions

CCCustomer,Insurance =
(Wlnsurance.Holder, Insurance.Age (O-(Insurance‘Amount> 1,000,000) IDSUI‘&HCG)) g

T Customer.Name,Customer.Age Customer

Figure 2.3: A Containment Constraint in the Example Information Space

It is clear that containment constraints are closely related to inclusion
dependencies (INDs) which are the focus of Part II of this dissertation.
In fact, INDs are simply a special case of containment constraints, with a
set relationship of “C” or “2” and no selection conditions. Therefore, the

discovery of INDs between relations would provide very valuable information

2.2. THE EVE-SYSTEM-OVERVIEW 27

that could be used to form containment constraints for the EVE-System.

2.2.2 A Preference Model for View Evolution

View definers themselves need to be able to control the view evolution pro-
cess, as they are knowledgeable about the extent to which the different com-
ponents of a view are critical or dispensable. For example, a view definer
may know that one attribute (say the attribute Name) is indispensable to
the view, whereas another attribute (say the attribute Address) is desirable
yet can be omitted from the original view definition, if keeping it becomes
impossible, without jeopardizing the utility of the view.

While on the one hand we do desire user input to inform our system of
preferences about the most desirable view synchronization, we must face the
problem that the original view definer may no longer be around when a view
becomes affected by changes of its underlying sources. In addition, it may
not be practical to disable the view and to stop all applications dependent on
it until the original view definer (or other knowledgeable users of the view)
are available to help with this process. For this purpose we developed a view
definition language, called Evolvable-SQL (E-SQL)[RLN97], that incorpo-
rates evolution parameters into the SQL view definition language. E-SQL
allows the view definer to specify criteria based on which the view will be
evolved by the system. A typical E-SQL view is given in Figure 2.4.

The view-extent parameter VE € {C, D, =, ~} expresses the relationship
between the original and rewritten query as required by the view definer. For
instance, V€ =“D” requires any query rewriting V; for the current view V

to compute a superset of the original view extent (i.e., V; D V). The value

2.2. THE EVE-SYSTEM-OVERVIEW 28

CREATE VIEW Asia-Customer (V&€ = “C”) AS

SELECT Name (AR = true), Address (AD = true)
FROM IS1.Customer C (RR = true), IS1.FlightRes F
WHERE C.Name = F.PName (CR = true) AND (F.Dest = ‘Asia’)

Figure 2.4: A Typical E-SQL View

VE =“x" means no restrictions for the extent are given. Also, for each
element in the view definition’s SELECT-, FROM- and WHERE-clause, re-
spectively, two boolean values determine whether that view element is (1)
dispensable from the view definition and/or (2) replaceable with a meaning-
ful alternative from the information space. Those parameters are named
attribute-dispensable (AD), attribute-replaceable (AR), relation-dispensable
(RD), relation-replaceable (RR), condition-dispensable (CD), and condition-
replaceable (CR). For a full description of the E-SQL language, the reader
is referred to [LNRI7].

The semantics of the query in Fig. 2.4 are as follows: Any rewriting of
the view query is acceptable as long as the new view extent is a subset of
the old one (expressed by VE = “C”); the attribute Address is dispensable
(expressed by AD = true) and attribute Name can be replaced from an-
other source (AR = true); the relation Customer (but not FlightRes) can be
replaced with another relation (RR = true) and the user will still have use
for the view even if the first WHERE-condition has to be replaced with a

similar one (CR = true).

2.2. THE EVE-SYSTEM-OVERVIEW 29

2.2.3 View Synchronization Strategies.

One of the primary objectives of EVE is to design alternate strategies (al-
gorithms) for evolving views transparently according to users’ preferences
as well as available information in the environment. Based on this solution
framework of E-SQL and the information source descriptions, we introduced
strategies for the transparent evolution of views. Our proposed view rewrit-
ing process, which we call view synchronization, finds a new view definition
that meets all view preservation constraints specified in the original view
definition, i.e., the preferences noted in the E-SQL definition. Furthermore,
it identifies and extracts appropriate information from other ISs as replace-
ment of the affected components of the view definition and produces an
alternative view definition. Important algorithms for view synchronization
are POC/SPOC [NR98], CVS [NLR98|, as well as GRASP [KRH98] and
History-Driven View Synchronization (HD-VS) [KR00]. The later two are

by the author of this dissertation.

The POC Algorithm

Due to its simplicity, the most widely used algorithm in the EVE project
is the Project-Containment (POC) Algorithm. POC uses information from
containment constraints to rewrite views after source schema changes. De-
pending on the view evolution parameter specified by a user (see Fig. 2.4)
and the available containment information, POC replaces deleted attributes
or relations by alternatives found through containment constraints. The

constraint given in the view evolution parameter is kept valid by choosing

2.2. THE EVE-SYSTEM-OVERVIEW 30

only replacements that satisfying that parameter. In that process, it might
be necessary to introduce additional constraints in the WHERE-clause of

the view query.

Example 2.1 We define an information space (Meta Knowledge Base) ac-
cording to Figures 2.2 and 2.3. We consider the view Customer-Passengers in
Figure 2.4 and show how to apply the POC algorithm and find a replacement
under the schema change delete_relation(Customer).

The POC algorithm uses containment constraints in the MKB that con-
nect the new relation to the remaining relations in the existing query. Here,
we can replace the attribute Customer.Age by the similar attribute Insur-
ance.Age in relation Insurance and join the new table with FlightRes using
the containment constraint from Figure 2.3. Then all view elements (i.e.,
attributes and WHERE-clauses) that depend on the old relation are replaced
by view elements using the new relation. A possible rewriting of the query

in Figure 2.4 using this substitution is given by the query in Figure 2.5.

CREATE VIEW Asia-Customer’ (V€ = “C”) AS

SELECT L.Holder (AR = true)
FROM IS2.Insurance I (RR = true), IS1.FlightRes F
WHERE I.Holder = F.PName (CR = true)

AND (F.Dest = ‘Asia’)
AND (I.Amount>1,000,000)

Figure 2.5: A Possible Rewriting for a View.

This view rewriting will have no Address-atiribute, as no address infor-
mation is available after the deletion of relation Customer. However, names

of customers are still available, as long as those customers had a large enough

2.2. THE EVE-SYSTEM-OVERVIEW 31

insurance policy, and will now come from information source 1S2, from re-

lation Insurance.

History-Driven View Synchronization

All earlier view synchronization algorithms (i.e., SVS, POC/SPOC, CVS,
GRASP) are single-step algorithms and perform synchronization only after
delete-schema changes. They react to a single schema change in the underly-
ing relations with a single view synchronization step. The synchronized view
definition is then used as the basis for any further synchronization steps.

In particular, after the deletion of an underlying relation that has been
used by a view, the view is rewritten to not refer to that relation any more.
Even if the same relation is later added back to the information space (for
instance, after a temporary unavailability due to a network problem), it will
never be used by the view again since without a global domain model the
view synchronization algorithm cannot determine in what relationship a new
data element stands to other previously available elements.

As a solution to this problem, the author of this dissertation proposed
history-driven view synchronization (HD-VS) [KR00, KRO1]. This is a pro-
cess capable of handling a more comprehensive set of information source
schema changes, namely adds, renames, and deletes of attributes and rela-
tions. Also, it is capable of rewriting views as necessary under changes of
constraints across the source databases (such as a containment relationship
defining that IS1.Hotels contains 1S2.BostonHotels). The main contribution
of the HD-VS work is the use of additional available meta data to keep

views as close to their original definition as possible, under a sequence of

2.2. THE EVE-SYSTEM-OVERVIEW 32

meta data changes that occurs over time. We will give a brief overview of

the HD-VS algorithm for History-Driven View Synchronization.

e As in one-step synchronization (e.g., [NR98]), a synchronization occurs
after each meta data change for an affected view. However, now input
data are not only the current but also all previous states of MKB and
VKB as well as the meta data changes that occurred, i.e., the complete

history.

e If a view can be rewritten, the algorithm rewrites a valid view on
the old information space into a valid view on the new information
space. In certain cases, the algorithm falls back on the one-step view

synchronization algorithms (e.g., POC).

e Now, not only deletes and renames but also all adds of meta data are
considered. Meta data includes both schema such as relations and at-

tributes, as well as other constraints such as containment constraints.

e If a view is rewritten, its quality (usefulness to a user, Sec. 2.2.4) may
increase over the previous version (whereas the one-step algorithms
could never improve on quality), depending on the meta data change

that caused the synchronization.

e If a meta data item is deleted, the algorithm tries to compensate the
deletion with a previous add and vice-versa (“cancellation”). That
means that temporary unavailability of data can be accounted for.
The algorithm is capable of returning to a previous view definition if

appropriate.

2.2. THE EVE-SYSTEM-OVERVIEW 33

HD-VS uses three main concepts: backtracking in the history of a view,
re-applying a part of a meta data update sequence from that history, and
reconstructing part of the view’s history graph in the process of re-appli-

cation of meta data changes.

2.2.4 Cost Model for Evolved View Definitions

Unlike in traditional query processing research, we may need to construct
alternate view definitions as solutions that no longer are equivalent to the
original view, i.e., the view interface (set of attributes) may be reduced or the
number of tuples returned may not correspond to the original extent. EVE
thus contains a formal model of correctness for view synchronization that
characterizes what are “correct” view rewritings for a given view definition,
as well as what are measures that allow us to evaluate the quality of alternate
solutions. It is important to note here that existing cost measures of query
rewritings are only partially applicable to our problem domain, as we must
take relative quality of the amount of view preservation into account. It
is not sufficient to assess only the cost of synchronizing or maintaining the
view.

For this purpose the author of dissertation and others have developed
the QC-Model [LKNR99b]| to estimate the quality and cost of the rewrit-
ings. Each legal query rewriting will in general preserve a different amount
(extent) and different types (interface) of information, which we refer to as
the quality of the view. Also, each new view query will cause different view
maintenance costs, since in general data will have to be collected from a

different set of ISs. With these two dimensions, the QC-Model can compare

2.2. THE EVE-SYSTEM-OVERVIEW 34

different view queries with each other, even if they are not equivalent. This
comparison is accomplished by assessing five different factors as outlined

below (full algorithm in [LKNR99b]).

e Quality Factors: Quality refers to the similarity (vs. divergence)
between an original view V and its n-th rewriting V(™ and is expressed

for an original view V by Q(V(™).

— The Degree of Divergence in Terms of the View Interface deter-
mines how different the view interfaces of the two queries are.
This can be expressed numerically by counting the common and
non-common attributes in both queries and computing a percent-
age. For the purpose of this current work, we will abstract from

further details and instead refer to [LKNR9S].

— The Degree of Divergence in Terms of the View Eztent is deter-
mined by the relative numbers of missing and additional tuples in
the extent of a view rewriting (as compared to the extent of the
original view). In order to estimate the overlap between old and
new views, containment constraints are used, since they make
statements about relationships between relations. Again, the ac-

tual formulas can be found in [LKNR9S].

e Cost Factors: Cost factors measure the (long-term) cost associated
with future incremental view maintenance after the view has been re-
written and the extent has been updated. The factors are Number of
Messages between data warehouse and information sources, Number

of Bytes Transferred through the network, and Number of 1/Os at

2.2. THE EVE-SYSTEM-OVERVIEW 35

the ISs. Cost factors are combined into a single value using tradeoff

factors, and the combined cost value of a view rewriting is denoted by

C(vm),

Normalizing and then combining these factors yields the QC-Value for a
given rewriting QC(V (™), a real number between 0 (bad) and 1 (good) that
can be used to assess the value of a given query rewriting for a particular
user (in terms of that user’s E-SQL query evolution preferences).

This Quality-and-Cost Model (QC-Model) [LKNR99b, LKNR99a] has

been developed in part by the author of this dissertation.

2.2.5 Maintenance of Materialized Views after Synchroniza-

tion

To assure minimal impact of view evolution on users of a view, we have
explored incremental techniques for updating the view extents after the def-
inition of a view has been synchronized. Our goal is to achieve the level
of efficiency needed to make the overhead for view synchronization minimal
from a user’s point of view. Previous work on view maintenance assumed
that only data updates were done on the underlying ISs instead of schema
updates [NR99]. This problem provides another motivation for this disserta-
tion. In Part III, we propose the first incremental view maintenance scheme
that can maintain views under both data updates and schema changes. We
demonstrate the principle of view synchronization under schema changes at
the example of SchemaSQL, but our concept can be used in the context of

the EVE-System as well.

2.2. THE EVE-SYSTEM-OVERVIEW 36

2.2.6 View Maintenance Under Concurrent Schema and Data

Updates

In general, ISs are not aware of and do not cooperate with the integrating
data warehouse in handling schema changes and data updates. Due to
the independence of the ISs, concurrent schema changes and data updates
may occur at any time in any order. The SDCC-System [ZR99] and the
Dynamic Data Warehouse (DyDa) system [CZCT01] are extensions of the

EVE-System and address those issues.

2.2.7 EVE-Implementation

To verify the feasibility of our proposed approach, we have implemented
a prototype of the EVE system and have demonstrated it at major confer-
ences [KLZT97, RKL 198, RKZ199, CZC*01]. The EVE system as depicted
in Figure 2.1 is implemented using Java. ISs in EVE are either stored in an
Oracle or an MS Access database, and communication between EVE mod-
ules and the ISs occurs through JDBC. The EVE graphical user interface,

written in Java, communicates with the underlying system via RMI.

37

Part 11

Discovery of Inclusion

Dependencies

38

Chapter 3

Introduction and

Background

3.1 Introduction

In this work, we are concerned with the discovery of meta-information
(i.e., information about the syntax and semantics of data) in databases.
In this work, we use the relational data model, in which data (atomic simple
values such as numbers or strings) is stored in attributes (columns) that
are grouped in relations (tables), but other data models also support our
concepts. Rows in relational tables are referred to as tuples. In the rela-
tional model, a number of constraints have been defined [EN94] that impose
several useful restrictions on a table. Examples are keys (uniqueness con-
straints on attributes), functional dependencies (dependencies of the values
in one attribute on the values in the same tuple in other attributes), and

inclusion dependencies, explained below.

3.1. INTRODUCTION 39

3.1.1 Significance of Inclusion Relationships

FAGIN [Fag81] suggests that inclusion dependencies (INDs) express an im-
portant relationship between relations. For example, he shows that relations
whose only intra-relational dependencies are functional dependencies can be
restructured into relations that have only INDs as inter-relational depen-
dencies. More specifically, a relation that has as its only constraints a set of
functional dependencies can be equivalently composed into a set of relations
that have only key constraints and inter-relational inclusion dependencies.
FAGIN also presents a normal form for relational databases (DK/NF for
domain-key normal form) that attempts to use only INDs as inter-relational
dependencies.

In the context of data integration, INDs can help to solve a very com-
mon and difficult problem: discovering redundancies across data sources.
Due to the nature of data and its generation, information is often stored in
multiple places, with large amounts of redundancy. When trying to inte-
grate data sources that are likely to be (even partly) redundant, a method
to discover such redundancies would be very beneficial. One example in
which redundancy discovery would be helpful is the Evolvable View En-
vironment (EVE) [NLR98, KRH98] which is concerned with maintaining
views under schema changes by replacing deleted information sources with
partly redundant alternative sources. In general, the discovery of INDs will
be beneficial in any effort to integrate unknown databases. A reliable algo-
rithm to discover INDs will enable an integration system to incorporate new

data sources that would previously would not have been used since their

3.1. INTRODUCTION 40

relationships with existing data was not known. Examples of systems in
which our technology could be used to improve efficiency include data ware-
houses [Gar98], multidatabase systems such as Infomaster [GKD97], schema
integration systems such as ARTEMIS [BBCT00] or SemInt [LC95, LC00],
or other schema matching approaches like Clio [MHHO00]. Many other uses
are conceivable in the field of data and schema integration, in which our tool
can be useful to a human integrator as a decision support tool.

In summary, whenever sufficient meta-information about data is not
available (i.e., whenever the constraints that exist in a database are not
known to a user), an algorithm that discovers candidates for INDs (since
dependencies as such cannot be “discovered” from a single state of the data-
base) would be very helpful in extracting such meta information. A tool
that solves this problem does not exist to date. Also, a manual extraction of
inclusion dependencies by domain experts does not seem feasible due to the
large number of information sources in the world, the potential high number
of attributes in real-world relations (50-100 attributes are common), and a
widespread lack of reliable meta-information about legacy databases. This
work deals with the efficient extraction of candidate sets for INDs from a set
of relations. We will show in the following that the discovery of such redun-
dancies is possible and feasible by way of establishing and testing inclusion
dependency candidates between given data sources.

As shown in the literature [KMRS92], the problem of finding even one
maximal inclusion dependency for two given relations is inherently NP-hard.
In the worst case, there is an exponential number of such dependencies for

a given set of attributes in two relations. We will show that despite this

3.2. BACKGROUND 41

inherent complexity, the discovery of inclusion dependencies is tractable
for real-world databases. The limits of applicability for our algorithms are
relations of approximately 100-150 attributes, while the extent size (number
of tuples) of each relation is only a linear factor for performance. The size of
tractable problems depends on a number of properties, such as the number of
distinct values in each attribute, and the solution found by our algorithms
is not always complete for large problems. However, the algorithm will
always will first attempt to find all INDs, then fall back to finding the
largest inclusion dependency, and if that is not possible either, will find large
inclusion dependencies that are not necessarily maximal. The algorithm can
be adapted to the available amount of computing time and will find better
solutions given more time. It also provides a measure of quality of the

solution.

3.2 Background

As explained above, we are concerned with discovering meta-information
about interrelationships between separate databases. We will focus on re-
lational databases, but our methodology is applicable to all data models in
which inclusion dependencies can be defined (i.e., in which simple values are
organized in attributes and some higher level such as relations).

The problem of discovering information and meta information from large
amounts of data is widely studied, in particular in the fields of KDD (Know-
ledge Discovery in Databases) [FPSS96] and AT (Artificial Intelligence) [RN95].

Most efforts in information discovery are concerned with the derivation of

3.2. BACKGROUND 42

patterns from the data available. Often, algorithms look for patterns which
suggest some kind of constraint between database objects. Naturally, con-
straints cannot be “discovered”. However one can detect data patterns that
would be allowed (or not allowed) under an assumed constraint and thus
accept or reject certain hypotheses about data patterns. Sometimes, this
process is called “constraint discovery” [LH97]. The term “dependency dis-
covery” seems to be more correct and is more widely used [KMRS92, BB95a].

We will first discuss inclusion dependencies and their theory and then
review additional dependencies whose theory is related to our problem in

Section 3.2.3.

3.2.1 Notation

For clarity, we review the notation used in this work. = The notation is
similar to [CFP82], from which the following section has been adapted.

Throughout this work, we will denote set variables by capital letters and
variables that denote elements of a set by small letters. By “k-subset of X”
we mean a subset of X with cardinality %k, while a “k-set” is simply a set
with cardinality k.

A value is an atomic element of data that is stored in a relation’s extent.
Examples include “Stanley Kubrick”, 1984, or 04/19/1972. A domain D is a
finite set of values.

An attribute is a bag (multiset) of values. A relation schema is a pair
(Rel,U) where Rel is the relation name and U = (aq,...,a,,) is a finite
ordered m-tuple of labels, which are called attribute names.

A relation is a 3-tuple R = (Rel,U, E) with Rel and U as above and

3.2. BACKGROUND 43

E C Dy x Dy x ... x Dy the relation extent. The sets D1, ..., D, are called
the domains of R’s attributes. A tuple in relation R = (Rel,U, F) is an
element of E. An operator t[ay,as,...,ak] returns the projection of ¢ on the
attributes named aq,a9,...,a;r. To be more specific about our definition
of attribute, we can define an attribute A; as a bag constructed as follows:
A; = {t[a;]|t € E} or, in short, A; = E[a;].

We write Rel[U] or Rellay, ... ,an,] when referring to the projection of a
relation on a set of attributes. Note that the construct Films[Title, Director],
according to this definition means “the relation whose name is ‘Films’, with
two attributes whose names are ‘Title’ and ‘Director’. In this case, “Films”,
“Title”, and “Director” are constants (values), not variables.

For the remainder of this work, and if not stated otherwise, we will use
the generic constants R and S for relation names and X and Y as symbols

for sets of attribute names.

3.2.2 Inclusion Dependencies

There are interesting data patterns to discover when given a set of relations
rather than a single relation. The most common and useful pattern that
can be derived across two relations are inclusion dependencies, introduced

by FAGIN [Fag81]. Inclusion dependencies are formally defined below.

Definition 3.1 (IND) Let Rlay,as,...,a,] and S[b1,ba,...,by] be (pro-
jections on) two relations. Let X be a sequence of k distinct attribute
names from R and'Y a sequence of k distinct attribute names from S, with

1 <k <min(n,m). Then, an inclusion dependency (IND) is an asser-

3.2. BACKGROUND 44

tion of the form R[X] C S[Y].

Note that so-called “referential integrity constraints”, asserting an im-
plication between values across two attributes in two different relations, are
simply a special case of an IND where both sides are projections on a single
attribute each. Also, one can define equivalence dependencies [Fag81] in the

following way: R[X] = S[Y] < (R[X] C S[Y]) A (S]Y] C R[X]).

Example 3.1 We are introducing a running example. Consider the rela-
tions defined in Fig. 3.1. An IND would be, for example, MyMovies[T'itle, Style] C
Movies[Genre, Title]. Note that “IND” does not imply “valid in the data-
base”. Rather, validity is a feature of INDs that will be defined shortly. Some

other INDs are listed in the figure.

Definition 3.2 (valid) An IND o = (R[a;,,...,a;] € S[bi,...,b;]) is
valid between two relations R = (r, (a1, ...,an), Er) and S = (s, (b1,...,by), Es)
if the sets of tuples in Er and Eg satisfy the assertion given by o. Otherwise,

the IND is called invalid for R and S.

Example 3.2 All INDs listed in Fig. 3.1 are valid IND:s.

MyMovies[Title, Style] C Movies|Genre, Title], as mentioned in Ezam-
ple 3.1, is an invalid IND. Note that in order for this IND to be valid, My-
Movies. Title would have to be a subset of Movies.Genre and MyMovies.Style

would have to be a subset of Movies. Title

An inclusion dependency is merely a statement about two relations which

may be true or false. A valid IND describes the fact that a projection of

3.2. BACKGROUND 45

Movies
Title Genre Director Year
Dune Sci-Fi David Lynch 1984
Titanic Drama James Cameron 1997
Titanic Drama Jean Negulesco 1953
Dr. Strangelove Satire Stanley Kubrick 1963
AL Sci-Fi Steven Spielberg | 2001
Shrek Animation | Andrew Adamson | 2001
2001-A Space Odyssey | Sci-Fi Stanley Kubrick 1968
MyMovies
Title Style Movies2001
Dune Sci-Fi : -
o Title | Director
Titanic Drama .
. AL Steven Spielberg
Dr. Strangelove | Satire
- Shrek | Andrew Adamson
AL Sci-Fi
Shrek Animation

Some Functional Dependencies:
Movies|Title, Year— Director]
Movies|Title,Director— Year]
Movies|Title— Genre]

Valid Inclusion Dependencies (INDs):
MyMovies|Title,Style] C Movies[Title,Genre]
Movies2001[Title,Director] C Movies|Title,Director]
Movies2001[Title] € MyMovies|Title]

The data supports a possible

Referential Integrity Constraint
between MyMovies.Title and Movies.Title

Figure 3.1: Functional and Inclusion Dependencies in a Database

3.2. BACKGROUND 46

one relation R forms a subset of another projection (of the same number of
attributes) of a relation S. Note that INDs are defined over sequences of
attributes, not sets, since the order of attributes is important (INDs are not
invariant under permutation of the attributes of only one side).

We will also define an important feature of INDs that we will call arity.

Definition 3.3 (arity of an IND) Let X and Y be sequences of k at-
tributes, respectively and o = R[X] C S[Y] be an IND. Then k is the arity

of o, denoted by |o|, and o is called a k-ary IND.

Example 3.3 Genres|Title, Genre] C Movies| Title, Genre] is a 2-ary or bi-

nary IND. Likewise, Genres|Title] C Movies|Title] is a unary IND.

CASANOVA et al. [CFP82] have provided some important insights into
the IND problem. They have described a complete set of inference rules for
INDs, in the sense that repeated application of their rules will generate all
valid INDs that can be derived from a given set of valid INDs (i.e., those

rules form an aziomatization for INDs). The rules are given below.

Axiom 3.1 (reflexivity) R[X| C R[X], if X is a sequence of distinct at-

tributes from R.

Axiom 3.2 (projection and permutation) If R[A;,...,A,] C S[By,...

is valid (by Def. 3.2), then R[A;,, ..., A;) € S[Bi,,...,B;,| is valid for any

sequence (i1,...,1x) of distinct integers from {1,... ,m}.

Note that permutation refers to “synchronous” reordering of attributes
on both sides, i.e., R[X,Y] C S[X,Y] = R[Y,X] C S[Y,X], but
S(RIX,Y] € S[X,Y] = RIY,X] C S[X,Y])

3.2. BACKGROUND 47

Axiom 3.3 (transitivity) If R[X] C S[Y] and S[Y] C T'[Z] are both valid
(by Def. 3.2), then R[X] C T[Z] is valid.

Definition 3.4 (derived INDs) A wvalid IND o can be derived from a
set 3 of valid INDs, denoted by ¥ = o, if o can be obtained by repeatedly

applying the above axioms on some set of INDs taken from X.

Example 3.4 Some wvalid INDs that can be derived from the wvalid INDs
stated in Fig. 3.1 are Movies[Title] C Genres[Title], Movies|Genre] C

Genres|Genre], and Movies2001[Director| C Movies|Director].
CASANOVA et al. [CFP82] consider the following decision problem:

“Decide whether ¥ |= o, i.e., decide whether a particular IND o

can be derived from a given set > of INDs”.

They show that this decision problem is decidable for finite databases
but PSPACE-complete. The reason for this complexity is the exponential
number of potential inclusion dependencies that can be derived from a set
of INDs.

Since INDs are invariant under synchronous permutation of both sides
(by Axiom 3.2), we will now define equality of INDs (which applies to both
valid and invalid INDs).

Definition 3.5 (equality of INDs) Two INDs R|ay, ... ,am] C S[bi,...,0n]
and Rlci,,...,c,,] € S[diy,...,d;,]| are equal if and only if there is a se-
quence (i1,...,1y) of distinct integers 1,...,m such that a1 = ¢;; N\ ag =

ciz/\---/\am:cim/\bl:dil/\bZZdiQ/\---/\bm:dim-

3.2. BACKGROUND 48

Note that equality according to this definition is an equivalence relation
on INDs. It is also clear that equivalence preserves validity, i.e., in a set of

equal INDs, the elements are either all valid or all invalid.

Example 3.5 In Fig. 3.1, a valid IND Genres| Title, Genre] C Movies| Title, Genre]
is listed. This IND would be equal to Genres[Genre, Title] C Movies|Genre, Title]

but not to an IND Genres| Title, Genre] C Movies|Genre, Title].

One very important observation on INDs is that a k-ary IND with & > 1
naturally implies a set of unary INDs. Let 0 = R[X] C S[Y] be a k-ary
IND. Let ¥, be the set of all unary INDs R[z] C S[y] withz € X andy € Y.
Then, there clearly is a close relationship between o and 1, as formalized

in Corollary 3.1.

Corollary 3.1 Let X be the set of all possible k-ary INDs between two
given relations R and S. Let Z’f be the set whose elements are all k-sets of
unary INDs between R and S. Then, there is an isomorphism between X

and Z’f. We say that Z]f is implied by ;..

This isomorphic mapping is possible since INDs are invariant under per-
mutations of their attribute pairs (such that there are exactly as many k-ary
INDs as there are k-subsets of unary INDs), and each pair of single attributes
in a k-ary IND o corresponds to one unary IND implied by o. Note that the
isomorphism does not hold for walid INDs since clearly the existence of k
unary valid IND does not imply the existence of any higher-arity valid INDs
(i.e., only the direction ¥} = E’f holds for valid INDs, not the converse,

see Sec. 4.2.2).

3.2. BACKGROUND 49

Validity of INDs is preserved under projections and permutation, by Ax-
iom 3.2. In order to describe all inclusion information between two relations
it is therefore not necessary to list all INDs between two relations. Rather,
a small set of INDs from which all others can be generated will suffice, as

formalized with the following definition.

Definition 3.6 (generating set of INDs) Consider a set of valid inclu-
sion dependencies: ¥ = {o1,09,...,0,}. A generating set of 3, denoted

by G(X), is a set of valid INDs with the following properties' :
1.YoeX:G(X) o

2. Vo e G(X):~((G(X)\o) =o)

In words, the generating set G(X) contains exactly those valid INDs
from which all valid INDs in X can be derived. The set is not empty for
any X, since it can be constructed by first including all ¢ € ¥ into G(X)
and then removing all ¢ for which property 2 does not hold. The set is
minimal since removing any IND o from a G(X) for which property 2 holds
would by definition violate property 1. Therefore, generating sets contain
all information about inclusion dependencies between relations in a minimal
number of INDs.

If all INDs in 3 are defined between exactly two different relations, i.e.,
Vo € ¥ : 0 = (Ra1,a2,...,a;] C S[by,ba,...,b]), the transitivity rule
(Axiom 3.3) does not apply. Then, the set G(X) is also unique for a given X.

If there were two distinct generating sets G1(X) and Go(X) for a X, at least

!The symbol \ stands for “set-difference”.

3.2. BACKGROUND 50

one IND in Go(X) that does not exist in G;(X) would have to be derivable
from G;(X), which contradicts property 2. If the transitivity rule is used

(Axiom 3.3) the generating set as defined above may not be unique.

3.2.3 Related Work on Other Dependencies

We have now defined inclusion dependencies, whose discovery is the focus
of this chapter. In this section, we are looking at related work in knowledge
discovery in databases that may be useful as starting points for a solution
to the IND discovery problem.

One important notion which has many real-world applications and is
studied widely is the pattern of association rules [AS94], giving information
about approximate dependencies between values in so called transactional
data. Association rules are often used in commercial “market basket” re-
search, where a database is mined for information of the form: “Which
articles do customers buy together in one transaction?” Discovering such
rules is usually accomplished by generating rule candidates based on value
frequencies in a database and then growing candidate sets attribute by at-
tribute, as long as some minimum support for the rule is maintained. The
concepts used in association rule mining (in particular the apriori-Strategy
described above) are related to our problem but not directly applicable since
association rules are probabilistic in nature [AS94], whereas we are generally
looking for constraints, i.e., exact dependencies. Even when we weaken our
requirements and no longer look for exact dependencies, the apriori mecha-
nism used in association rule mining does not provide a feasible solution for

our problem, as its computational complexity is too high for our purposes.

3.2. BACKGROUND 51

Another important class of related work is the class of functional de-
pendencies. A functional dependency is a constraint on a set of attributes
(A1, Ag, ..., Ag, X) in a relation R, specifying that for any two tuples ¢; and

to from R, the following conditions holds:

t1[A1, Ao, .. Ay = 12[A1, Aoy A]) = [X = 6] X

The derivation of functional dependencies through inference rules has been
treated extensively [Mit83, KMRS92, CFP82, MG90]. The problem of find-
ing evidence for functional dependencies from the extent of relations has also
been considered. Several projects deal with the question how to efficiently
find candidates for functional dependencies from among the attributes of a
relation [BB95a, SF93].

Functional dependencies and inclusion dependencies are related but have
some important differences. In particular, functional dependencies generally
are defined only within one relation, whereas the natural purpose of inclu-
sion dependencies is to define relationships across two different relations.
MiTcHELL [Mit83] also considers inclusion dependencies within one rela-
tion. Functional and inclusion dependencies are related in the sense that
they both constrain possible valid database states and are thus helpful in
database design. However, for our purpose of discovering information about
relationships across unknown databases the case of inclusion dependencies
is more useful.

Commercial database systems also define referential integrity constraints.

Such constraints ensure that any value in an attribute A in relation R exists

3.2. BACKGROUND 52

in an attribute B in relation S. Clearly, those are unary inclusion dependen-
cies. The practical use of such constraints is to ensure that after database
normalization, dependent relations will contain in their (foreign) keys all
values necessary for a join (Fig. 3.1). Referential integrity constraints are
typically defined on those attributes between which a functional dependency
held before normalization. So in turn, discovering inclusion dependencies
between relations might provide some information about a database that
suggests the existence of a referential integrity constraint.

However, the existing functional dependency algorithms (e.g., [BB95a,
SF93]) cannot be used to derive inclusion dependencies (or to deduce in-
clusion dependencies from functional dependencies), as the complexity of
our problem is much higher than the complexity of functional dependency
discovery. A few rules for the deduction of INDs from functional depen-
dencies and other INDs are given in [Mit83], but the are only applicable
in very specific cases. Functional dependencies that are defined within one
relation (which is true for most such dependencies) cannot directly help in

the detection of general (inter-relation) inclusion dependencies.

53

Chapter 4

Algorithm FIND, for the
Discovery of Inclusion

Dependencies

4.1 Finding Inclusion Relationships across Data-

bases
We can now state our problem in a concise manner:

Given a set of relations R* = {R1,..., Ry} stored in one or more
DBMS, find the generating set of inclusion dependencies (INDs)

between any two relations in R*.

Note that we are not looking for all INDs but for a (minimal) generating set.

Since all other INDs can be derived from the generating set by projection

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 54

and permutation, it is sufficient to consider only this set. As we will see
shortly, trying to generate all INDs is impractical due to their large number

while a generating set can be found more efficiently.

4.1.1 Assumptions

For the discovery of INDs, we will assume that INDs can be defined in
the underlying data model. That is certainly true for the relational model,
but object-oriented models and to a certain extent semi-structured models
also have a notion of data inclusion. We furthermore require that the data
model must include the concept of attributes (“columns” of data), cannot
have complex objects (such as nested relations) and cannot have pointers or
cross-references between data objects.

Throughout this dissertation, we will assume that equality between tu-
ples is a binary function, i.e., two tuples (and thus each matching pair of
their values) are either equal or they are not equal. There is some work
on the value-matching problem, which asks for “approximate” equality be-
tween values across two attributes [Coh98|. In this work, we will not focus
on that problem and rather assume that we can compare two tuples and
decide whether they are equal or not.

Furthermore, we will restrict ourselves to databases that are queryable
with some kind of query language, for example SQL. The language should

support the following types of queries (for relational databases):

1. find the set of names of all relational tables in the database

2. find the names and types of all attributes in a table

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 55

3. decide if a given IND holds in the database (form a set difference

between two projections of relations and decide whether the set is

empty).

The first two types of queries access the data dictionary of a database.
Those queries are supported by all commercial SQL-database systems (as
well as by wrappers like JDBC). Deciding whether the tuples in a set of at-
tributes in one relation form a subset of the tuples in another set of attributes
in another relation is supported by the standard SQL-minus-statement. A

query to that effect can be formulated in SQL (see Sec. 5.1)

4.1.2 A Three-Staged Solution to the IND-Finding Problem

The problem as given above asks for complex relationships among databases.
Relational databases have an inherent three-layer hierarchy: databases con-
sist of relations, which in turn consist of attributes. Analogous layers exist
for other data models as well, such as database-object-attribute in object-
oriented databases. Some additional restrictions may be necessary for such
more expressive data models to support the concept of inclusion dependen-
cies. For example, the semi-structured data model as used in XML allows
for different multiplicities of attributes, which is difficult to map to the con-
cept of INDs. In order to discover INDs in such databases, our approach
requires that no attribute occurs more than once in any one data object.
The existence of such layers suggests a three-layered strategy to dis-
cover relationships between databases: compare attributes, compare rela-

tions, and, finally, compare databases. It is clear that two relations whose

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 56

attributes are not related cannot in turn be related, and likewise a relation-
ship between databases requires relationships between their relations. Thus,
there are three necessary stages in any algorithm that could solve the above

problem:

1. FIND,: finding valid INDs between a set of given relations in a set of

databases (the general problem)?,
2. FIND3: finding valid INDs between a pair of given relations,

3. CHECK: determining whether a given IND is valid.

A general overview over our approach is shown in Fig. 4.1. Those stages
do not necessarily need to be executed separately, but treating them sepa-
rately helps to gain insights into the nature of the problem.

A simple algorithm (i.e., pairwise comparison) for the first stage could
express the general problem for n relations as (g) problems on pairs of
relations. Improvements are possible for example by using the transitiv-
ity property of INDs (Section 4.1.3). Some ideas are given as future work
(Sec. 14.2).

The second stage needs to find maximal valid INDs (i.e., a generating
set for each pair of relations considered) with a minimal number of single
IND checks. The focus in this stage is not how to check the validity of INDs
against a database state, but in finding a generating set of INDs with a

minimal number of checks. Each check is assumed to take unit time, and

we will consider ways to reduce that time in the third stage below. We will

'FIND stands for Find Inclusion Dependencies.

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 57

T
—

FIND,, ﬁ@ m m

?

7 C

FIND, <
?7 C

:c
T [

L2

CHECK e

Figure 4.1: The Three Stages of Inclusion Dependency Discovery

show in Sec. 4.2 that the problem of finding a generating set of INDs is NP-
hard for the general case (based on well known complexity results for related
problems). In fact, the number of possible (valid or invalid) INDs between
two relations of k attributes is very high so that an exhaustive search of all
INDs is intractable even for relations with 7 or 8 attributes. For example,
there are 1,441,728 possible INDs between two relations with 8 attributes
each, without considering permutations, see Sec. 4.2. However, it is not
likely that many distinct valid INDs exist between two real-world relations.
Therefore, the number of mazimal INDs (i.e., the size of the generating
set of existing INDs) is likely to be small for real-world data, and giving a
solution to the general problem remains possible.

The third stage (checking a particular IND), which has to be executed

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 58

for every IND generated in Step 2, involves querying one or two database
systems in order to determine an inclusion between two sets of attributes
across two relations. When the relations exist in the same database, they
can be queried with an SQL-minus-query. Relational database systems us-
ing external sorting may effectively answer such queries in linear time in
the size of input databases (Chapter 6). There are many approaches for
improvements here that we will discuss in Section 5.1. If the relations are in
two different database systems, a single SQL query is not sufficient. In that
case, other techniques can be applied. Some ideas are given in Section 5.1
as well.

Overall, the stage with the highest complexity is the stage of finding
valid INDs between two relations. Therefore, we expect the greatest im-
provements in runtime for a general algorithm at this stage. This is therefore
the problem upon which we focus our attention.

It is possible to make use of additional information about the databases
in question in order to reduce the amount of necessary work. Some concepts
that we will explore further in this text are heuristics on the meaning of
attribute and relation names (ontologies) and other properties of data in

relations, such as data types and value distribution histograms.

4.1.3 Comparing two Databases

As stated in Section 4.1, we are looking for a generating set of INDs among
a set of relations, meaning that the output of our algorithm should be only
those INDs that cannot be derived from other INDs. In particular, this ex-

cludes INDs that can be obtained from other INDs by transitivity (Sec. 3.3).

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 59

However, note that transitivity cannot be universally applied to our prob-
lem. For example, consider an IND finding problem in which two valid
maximal INDs have been found: R[A, B] C S[C, D] and S[C, D] C T[E, F].
Those two INDs together are not sufficient to reason about the validity of
a third IND R[A, B, X| C T[E, F, X|, even though it may also be valid and
maximal. That means that even if a new IND is found by transitivity, there
is no guarantee that this IND is maximal and thus part of the generating
set. Therefore, it seems necessary for the time being to exhaustively search
all pairs of relations in a database for inclusion dependencies. Transitivity
can help with reducing the search space somewhat, but all relations under
consideration will have to be accessed. For a set of n relations, that means
that (g‘) pairs of relations have to be considered. All INDs found must then
be tested for mutual dependencies, and those INDs that can be derived from
others must be removed from the solution.

Thus, a simple algorithm to solve the general IND-finding problem is as

follows 2:

FIND,,(Database D;, Database D5)
Set INDs « ()
forall (R € D)
forall (S € Dy)
if (R#S5)
INDs « INDs UFIND2(R,S) //defined in Sec. 4.2
removeDerivableINDs(INDs)

2For all pseudocode in this dissertation, we use a C-like syntax, i.e., variables are defined
by writing their type before their name. The symbol « is used to denote assignment. The
scope of complex statements is marked by indentation.

4.2. INDS BETWEEN TWO RELATIONS 60

If algorithm FIND; is assumed to run at unit cost, the algorithm FIND,,
runs in O(n?) in the number of relations in the database. Thus, we did
not pursue optimizations on this algorithm further since the potential sav-
ings in runtime at this stage are small compared to the possible optimiza-
tions in the discovery of INDs between two given relations. MISSAOUI and
GODIN [MG90] presented an algorithm for the efficient computation of the
closure of INDs under transitivity (for relation schemes with many relations).
The authors give simple algorithms for polynomial-time computation of clo-
sure and computation of a minimal cover of INDs for a multi-relation IND

inference problem using transitivity only.

4.2 Finding Inclusion Dependencies between Two

Relations

In this section, we consider the problem of finding inclusion dependencies

between two given relations:

Consider two relations R and S. Find a generating set G(X)
of valid inclusion dependencies ¥ = {o1,09,...,0,} of the form
R[AR] C S[As] with Ar a subsequence of attributes from R and

Ag a subsequence of attributes from S.

4.2.1 Complexity

We will consider the worst-case complexity of the problem as a function of

the number of attributes in both relations. The maximum number of distinct

4.2. INDS BETWEEN TWO RELATIONS 61

INDs between two relations can be computed as follows. For two relations
R and S with ki and kg attributes, respectively, one can form kg - kg unary
INDs. It is possible for all such INDs to be valid at the same time, namely
when all attributes in both relations have exactly the same data (which is
not likely to occur in practice). The number of k-ary INDs in general is
determined by the number of pairs of k-ary subsets of the attributes in each
relation. For each such pair, there are k! INDs, since each permutation of
one side of an IND, while keeping the other side unchanged, gives a new
IND (i.e., an IND not equal to any previously generated IND). Permutations
of both sides do not lead to new INDs (see Def. 3.5), as this process would
generate INDs equal to previously generated ones. Therefore, the number

of k-ary INDs, denoted by I, is

Ii(kg, ks) = <klf> : (k]f) k! (4.1)

Assuming without loss of generality that kg < kg, the total number of

INDs between R and S, denoted by I, is

I(kr, ks) = i <kZR> : <kf> - ! (4.2)

N prt (kr — i) (ks — i) -d!

A naive brute-force IND-finding algorithm for a pair of relations could
first generate all possible INDs and then test each