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ABSTRACT 

The accurate, fast and low cost computational tools are indispensable for studying the structure 

and dynamics of biological macromolecules in aqueous solution. The goal of this thesis is 

development and validation of continuum Fuzzy-Border (FB) solvation model to work with the 

Polarizable Simulations Second-order Interaction Model (POSSIM) force field for proteins 

developed by Professor G A Kaminski.  The implicit FB model has advantages over the 

popularly used Poisson Boltzmann (PB) solvation model. The FB continuum model attenuates 

the noise and convergence issues commonly present in numerical treatments of the PB model by 

employing fixed position cubic grid to compute interactions. It also uses either second or first-

order approximation for the solvent polarization which is similar to the second-order explicit 

polarization applied in POSSIM force field.  

 

The FB model was first developed and parameterized with nonpolarizable OPLS-AA force field 

for small molecules which are not only important in themselves but also building blocks of  

proteins and peptide side chains. The hydration parameters are fitted to reproduce the 

experimental or quantum mechanical hydration energies of the molecules with the overall 

average unsigned error of ca. 0.076kcal/mol.  It was further validated by computing the absolute 

pKa values of 11 substituted phenols with the average unsigned error of 0.41pH units in 

comparison with the quantum mechanical error of 0.38pH units for this set of molecules. There 

was a good transferability of hydration parameters and the results were produced only with 

fitting of the specific atoms to the hydration energy and pKa targets. This clearly demonstrates 

the numerical and physical basis of the model is good enough and with proper fitting can 

reproduce the acidity constants for other systems as well. 
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After the successful development of FB model with the fixed charges OPLS-AA force field, it 

was expanded to permit simulations with Polarizable Simulations Second-order Interaction 

Model (POSSIM) force field. The hydration parameters of the small molecules representing 

analogues of protein side chains were fitted to their solvation energies at 298.15K with an 

average error of ca.0.136kcal/mol.  Second, the resulting parameters were used to reproduce the 

pKa values of the reference systems and the carboxylic (Asp7, Glu10, Glu19, Asp27 and Glu43) 

and basic residues (Lys13, Lys29, Lys34, His52 and Lys55) of the turkey ovomucoid third 

domain (OMTKY3) protein. The overall average unsigned error in the pKa values of the acid 

residues was found to be 0.37pH units and the basic residues was 0.38 pH units compared to 

0.58pH units and 0.72 pH units calculated previously using polarizable force field (PFF) and 

Poisson Boltzmann formalism (PBF) continuum solvation model. These results are produced 

with fitting of specific atoms of the reference systems and carboxylic and basic residues of the 

OMTKY3 protein. Since FB model has produced improved pKa shifts of carboxylic residues and 

basic protein residues in OMTKY3 protein compared to PBF/PFF, it suggests the methodology 

of first-order FB continuum solvation model works well in such calculations. In this study the 

importance of explicit treatment of the electrostatic polarization in calculating pKa of both acid 

and basic protein residues is also emphasized. Moreover, the presented results demonstrate not 

only the consistently good degree of accuracy of protein pKa calculations with the second-degree 

POSSIM approximation of the polarizable calculations and the first-order approximation used in 

the Fuzzy-Border model for the continuum solvation energy, but also a high degree of 

transferability of both the POSSIM and continuum solvent Fuzzy Border parameters. Therefore, 

the FB model of solvation combined with the POSSIM force field can be successfully applied to 

study the protein and protein-ligand systems in water.  
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1.1 Computational Chemistry 

Computational chemistry has become increasingly significant in study of structure and function 

of biological macromolecules as well as organic molecules. It is a major tool in investigating 

areas such as folding and conformational changes of proteins
1
, protein-protein interaction

2
, 

structure-based drug design
3
, computing binding free energy of ligands

4 
and

 
modeling enzyme 

mechanisms.
5 
 

 

Currently two main methods are used to evaluate energy in theoretical chemistry
6
:  

 Quantum Mechanics (QM) 

 Molecular Mechanics (MM) 

 

Both these computational methods calculate potential energy, the difference being in their 

approach. Quantum mechanics (QM) calculates the potential energy based on the information of 

electronic structures and the results can be described as the solutions of the Schrödinger 

equation. In the case of Molecular mechanics (MM) electrons are not considered explicitly in the 

molecule although there are some exceptions. The atom and its electrons are treated as a single 

unit represented by potential energy functions or force fields. 

 

Quantum mechanics (QM) calculations can be further divided in two categories
7
:  

 Ab initio 

 Semi-empirical 
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Ab initio methods use the Schrödinger equation with approximations to calculate total energy of 

the system. Such a calculation is based on quantum mechanics only and no experimental data is 

used. In the case of semiempirical methods the potential energy is calculated using experimental 

parameters as well as Schrödinger equation.  

 

Quantum mechanics (QM) is generally regarded as the most accurate for potential energy 

calculations and has been the most popular approach to calculate energy.  

 

However, there are limitations to its applications; 

Firstly, QM calculations are computer intensive. They need large computational resources and 

longer time when dealing with larger systems and thus their area of applications is limited. 

Secondly, QM calculations can produce different results when using different levels of theory 

and this deviation is evident for both small and large systems. 

 

Thus in order to have results which are reasonably accurate, complete within a reasonable 

computational time and applicable to different molecular systems, molecular mechanics (MM) 

calculations are performed. Molecular mechanics calculates the potential energy using 

parameters derived from experimental data or ab inito calculation using force fields. 

 

1.2 Force field 

A Force field constitutes a set of analytical potential energy functions derived from classical 

mechanics. These potential energy functions are used to calculate the energy of a molecular 

system using parameters derived from the experimental or quantum mechanical techniques such 
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as ab initio, DFT (Density Functional Theory). This combined set of potential energy 

functions and their parameters is known as a force field.
8 
 

 

The general equation used to calculate energy in a force field consists of the bonded and the non-

bonded interactions. The bonded energy interactions is a sum of intramolecular bonds, angles 

and torsion terms and the nonbonded consist of both intermolecular and intramolecular van der 

Waal and electrostatic Coulomb interaction terms. (Equation (1a) (1b), Figure 1).  

 

  (1a) 

 (1b) 

 

 

Figure 1: Bonded and non-bonded interactions in a molecule  

 

Force fields can be generic or specific depending on their implementation. Force fields such as 

universal force field (UFF)
9
 and generalized Amber force field (GAFF)

10 
are of general 

applicability but recently developed force fields are more specialized to organic, inorganic or 
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biological molecules. They are more specifically designed for either organic molecules such as 

sugars or lipids or bio macromolecules such as proteins and nucleic acids.  

 

1.2.1 Types of Force field 

 

Force fields can be grouped under three major classes: 

 Class I force fields 

 Class IΙ force fields 

 Class ΙΙI force fields 

 

Class I force fields: Force fields such as AMBER
11,12

, CHARMM
13

, OPLS
14

, MMFF
15

, 

GROMOS
16

, ECEPP
17 

have been successfully applied to address many problems. The 

functional form of this type of force fields represents minimum forces to describe the molecular 

structure.  

 

The total energy for bonded interactions consists of harmonic terms for bond stretching, angle 

bending and a Fourier series for each dihedral angle as shown in equation (2).  

 

 

(2) 

 

In equation (2), req and θeq represent the equilibrium values for the bond lengths and the angles 

between the atoms respectively. In the dihedral term, n represents the multiplicity and γ is the 
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dihedral phase angle. Kr, Kθ and Vn are the force constants for bonds, angles and the dihedral 

terms respectively.  

 

The nonbonded energy term is given as sum of van der Waals and the Coulomb electrostatic 

interactions between the atoms separated by more than two bonds in both the intramolecular and 

intermolecular atom pairs (equation (3)). The van der Waals interactions are evaluated by 

Lennard-Jones (LJ) formalism.  The LJ interaction energy term contains the short range repulsive 

and long range attractive term. For the repulsive term, the energy varies as a function of r
-12

 

whereas for the attractive case it is proportional to r
-6

 as in London dispersion energy between 

the two atoms with polarizabilities a (-a
2
/r

6
). 

 

 

(3) 

  

The constant A and B in the first term in equation (3) are the van der Waals coefficients 

describing interactions for same atom types when the well depth (εi) and atomic radii (Ri) are 

known (equation (4) and equation (5)). 

 

 (4) 

 
(5) 

 

The electrostatic and van der Waals interactions between the atoms separated by three or more 

bonds or 1-4 nonbonded interactions are treated separately and their magnitude is often scaled 
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down. This formalism is typical but not the only possible one for class Ι force fields. Some force 

fields of this type have additional energy terms or small variations in the functional forms.  

 

 The equations (2) to (5) contain several constants or parameters that are produced to reproduce 

the experimental or the quantum mechanically obtained conformational energies and geometries, 

binding energies, vibrational frequencies, heats of formation,  and other properties characterizing 

the condensed or gas phase.
18

  

 

The electrostatic interactions in Class Ι force field use pairwise additive potential energy 

functions in terms of fixed charges, usually centered on atoms. This results in lack of accuracy in 

calculation of potential energy functions in some cases like treating molecules in environments 

of different dielectrics. The accuracy of many force fields have been increased by 

reparameterizing the current set of parameters or parameterizing the complete force field after 

adding new functional forms as in highly successful OPLS (Optimized Potentials for Liquid 

Simulations) force field where several improvements have been incorporated in the last thirty 

years resulting in faster and more accurate liquid simulations for large organic molecules and 

biomolecules such as proteins. These modifications have resulted in improved predictions of 

thermodynamic properties from the liquid state such as heat of vaporization, and free energy of 

hydration. 

 

The limitations due to the use of fixed charges and pairwise additive approximation has led to the 

development of more improved force fields.  
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Class II force fields: Class ΙΙ force fields have more complex functional form and include 

terms in addition to equations (2)-(5). These are higher-order stretch bend valence terms to treat 

anharmonicity as well as cross terms between stretch and bend valence and/or bend and dihedral 

angles.
19

 Some also include a Morse function that allows for bond breaking in empirical force 

fields and a cosine angle term for nonlinear angle.
11, 20

 

 

The nonbonded electrostatic interactions between the point charges are represented by Coulomb 

formalism for most of the force fields. These point charges are mostly located on the nuclei 

except in case of MM3 force field where the electrostatic interactions are evaluated as point 

dipoles on the chemical bonds
21

. In standard force fields van der Waal interactions are 

proportional to the distance, R, between the two interacting points and varies as 12-6 (R
-12

 to R
-6

) 

in standard Lennard-Jones interaction energy term. Other alternatives to this term include 9-6 

term, buffered 14-7 used in MMFF force field or exponential Buckingham potential
22

 that are 

more realistic and expensive to compute. The accuracy of class ΙΙ force fields increase with 

addition of these terms and is particularly useful for reproducing conformational energies and 

equilibria, molecular structures and molecular vibrations. Examples of class ΙΙ force field are 

CFF,
22

 CVFF,
23

 MMFF,
24

 MM3/MM4
21,25

 and UFF.
11 

  

 

Though Class ΙΙ force fields have been validated over a number of decades and are found to be 

robust for treating structure and energetics as well in reproducing properties of biological 

systems, they typically do not perform well in many condensed phase simulations.
26

 In these 

simulations the high dielectric medium such as water polarizes the charge distribution of the 

solute. The molecule of water itself in the gas phase carries a dipole moment of 1.85 Debye and 
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its polarization increases by about one Debye in bulk water.  Therefore, the explicit treatment of 

electrostatic polarization interactions is critical for such simulations. Examples of modeling of 

protein folding where the section of amino acids form a hydrophobic core and must be 

transferred from its water environment to the interior of a protein with a different dielectric, 

folding of RNA in divalent ions media or folding of membrane proteins in a lipid environment all 

underline the need of explicit polarization effects.
27

 

 

In both Class Ι and Class ΙΙ force fields the polarization is included implicitly in the averaged 

manner.  It is either included in Lennard-Jones interactions or by assignment of the fixed 

enhanced partial charges, qi, to the atoms. These partial charges are produced through quantum 

mechanical methods, which overestimate the values of charge.  These methods treating 

polarization in an effective manner limits the accuracy of nonpolarizable or Class Ι and Class ΙΙ 

force fields as the polarization can vary significantly in a biomolecular system extending from 

the polar environment at the protein surface to the non-polar interior of the protein. The response 

of charge distribution to the changing dielectric environment can only be accounted for by 

incorporating explicit polarization effects.  

  

In the Class Ι and Class ΙΙ force fields, molecules do not respond to the changes in the 

electrostatic environment (temperature, pressure, pH, ion concentration and type of solvent) 

contrary to the real molecular systems which get perturbed due to the presence of a charged 

body, thus disturbing its geometry and energetics. Therefore, a major focus is in the development 

of the force field to treat electrostatic polarization of charge distribution by the environment of 

different dielectrics.  
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One of the first attempts to treat polarization was undertaken by Warshel and Lewitt in the study 

of lysozyme reaction in 1976.
28

 Polarization has also shown to significantly affect intermolecular 

interactions in the gas-phase environment. Caldwell and Kollman
29 

published
 
development of a 

model to study aromatic-cation interactions by including polarization explicitly in additive force 

fields. Importance of polarization in molecular modeling was further presented by Rick, Stuart 

and Berne in their study of the hydration of the chloride ion in a small water droplet.
30

 The 

chloride ion preferred to remain buried in the center of the droplet using the nonpolarizable 

OPLS/AA force field whereas with the polarizable water model TIP4P-FQ clearly showed 

preference of the ion to remain on the surface, hence depicting the entropic effect consistent with  

experimental evidence.  

 

Thus published reports similar to presented above emphasized the need to include explicitly 

many-body induced polarization leading to the development of the class III polarizable force 

fields. 

 

Class III force fields:  Class III force fields are the most recent area of computational 

research that incorporate explicit polarizability term in the total energy, thus allowing the tuning 

of charge distribution to the changing dielectric environment. This polarizability or redistribution 

of charge in response to the changing electric field in molecular simulations is non-additive. The 

non-additivity arises from the different electron polarization of two atoms in the presence of one 

or more bonded atoms.  
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Examples of  Class III  force fields are either the ones which have included the polarization 

term since their inception such as AMOEBA,
31

 SIBFA,
32

 SDFF,
33

 NEMO,
34

 POSSIM
35

 or 

are the counterparts of the existing standard class I force fields for example AMBER ff02, 

ff02EP,
36

 CHARMM,
37

 PIPF-CHARMM,
38

 OPLS/PFF,
39

 OPLS-AAP/OPLS-CM1AP,
40

 and 

GROMOS.
41

  

 

The specific examples illustrating the importance of explicit electrostatic polarizability are 

evident in the following examples. First is the calculation of accurate binding energies of E-

selectin forming a complex with a calcium
 
ion and Sialyl LewisX (Slx). It is known that the 

surfaces of cancer cells are found to be rich in these sugars. Selectins on the surface of the 

platelets bind to the Slx carrying cancer cells into the circulatory system. The X-Ray structure of 

E-selectin-Slx complex reveals a stable complex with two hydrogen bonds between one of the 

saccharide monomers in Slx, fucose and Ca
++ 

ion, figure 2(a). The energy of formation of the E-

selectin-Slx complex was found to be thermodynamically unstable +14.52kcal/mol with the 

OPLS-AA force field compared to -17.93kcal/mol calculated with the PFF or Polarizable Force 

Field.
39(b), 39(d)

  

 

In another example the formation energy of stable complex between protein farnesyl transferase 

and inhibitor SCH66336 (4-{2-[4-(3,10-dibromo-8-chloro-6,11-dihydro-5H-

benzo[5,6]cyclohepta[1,2-B]pyridin-11-yl)piperdin-1-yl]-2-oxoethyl} piperidine-1-

carboxamide)
43 

was studied, figure 2(b). The complex formation energy of this stable complex 

computed with OPLS-AA force field was +55.84kcal/mol while the polarizable force field 
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(PFF)
39(d)

 calculated a value of -28.04kcal/mol in agreement with the stable protein-inhibitor 

complex. 

  

Figure 2: Complex of E-selectin and Ca
++

 with Sialyl Lewis X, PDB 1G1T (a) and SCH66336 

(magenta) in complex with farnesyl transferase, PDB 1O5M (b). 

 

It is imperative to include the electrostatic polarization explicitly in calculations such as pKa and 

ion binding that involves strong electrostatic interactions as shown by our group. Figure 3 show 

the calculation of pKa values of carboxylic 
42(a)

 and basic 
42(b)

 OMTKY3 protein residues with 

nonpolarizable OPLS-AA and polarizable PFF force fields. The accurate pKa determination of 

ca. 0.6 and 0.7 pH units was achieved with a polarizable force field.  
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(a) 

 

(b) 

Figure 3: pKa values of carboxylic (a) and basic (b) OMTKY3 residues
42

 

 

Our group has also shown increased accuracy in simulations of ion interactions with small 

molecules and proteins with a polarizable force field.  The Cu(ǀ) complexes with benzene show 

improved geometry and energy with a polarizable force field (PFF) than the fixed charge OPLS 

force field shown in the table 1.
43

 Parameters for copper (ǀ) were refitted with both OPLS and 

PFF force fields for copper-water gas phase complexes but was observed to work well for the 

copper complex with benzene. The error in the hydration energy of the copper ion with the PFF 

was also found to be only 1.8% compared to the OPLS error of 22%. 

.   
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 Table1: Energy and distances in complex of Cu(ǀ) with benzene molecule 
43

  

Model systems Energy, kcal/mol Cu
+
…C(benzene) distance, Å 

OPLS -14.0 2.77 

OPLS, refitted for TIP3P -25.2 2.14 

OPLS, refitted for TIP4P -26.0 2.11 

PFF -54.4 2.30 

Reference 
44

 -56.9 to -61.3 2.31 

 

Ion binding calculations were also extended to a Cu
+ 

complex with bacillus subtilis CopZ 

protein. The binding energy with non-polarizable OPLS an incorrect value of +9.98 kcal/mol 

while with the polarizable PFF force field was -33.05kcal/mol. The PFF force field also predicts 

correct Cu
+
…S

-
 distances within the accuracy of 0.06Å compared to the ca. 0.4Å error with the 

fixed charge model from the experimental results, figure 4.
44

  

 
 

(a) (b) 

Figure 4: A fragment of Copz protein -copper (ǀ) complex as simulated with OPLS (a) and PFF 

(b) force fields 
44
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The above examples emphasize the importance of explicit electrostatic polarization interaction in 

studying many protein-ligand interactions.  Polarization has proven to be significant particularly 

in computing acidity constants of small molecules and proteins, dimerization energies (aromatic 

cation interactions), binding energy (such as ion binding with small molecules and protein and 

sugar protein complexes) and in energetics and/or directionality of formation of hydrogen bonds. 

 

Although the force fields with explicit polarization yield accurate results in many simulations, 

those force fields require 3 to 10 times greater computing time depending on the system than 

their additive analogs. This issue has been partially addressed by massive progress made in 

computer technologies and advancements in programming such as the particle-mesh Ewald 

(PME) 
45

 method for accurate and fast calculation of electrostatic energy. As mentioned above 

the challenge is to accurately evaluate many body interactions in a reasonably time efficient 

manner. Several methods have been proposed to incorporate electronic polarization in molecular 

simulations, including fluctuating charges (FQ) as well as Drude oscillator and induced dipole 

models. 

 

1.2.2 Methods to include electronic polarization effects in force fields 

Currently, the basic methods proposed to include the electronic polarization effects in force 

fields are fluctuating charge (FQ), Drude oscillator (DO) and induced point dipole (IPD) 

models.
46,48  
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 Fluctuating charge (FQ) model 
46

  

This model is also known as the electronegativity equalization (EQ) model as it allow flow of 

charges between the atoms to equalize their instantaneous electronegativity. This approach 

involves assigning fictitious masses to the fluctuating charges (FQs) and treating them as 

additional degrees of freedom in the equations of the motion. The resulting equations of motions 

are solved more efficiently in molecular dynamics (MD) simulations than the Monte Carlo (MC) 

simulations.  In the MD simulations, these equations are solved using the extended Lagrangian 

method
47

 at the associated computational cost slightly higher than  required for the fixed atomic 

charges of pairwise additive force fields.  The parameters in the FQ model used to determine 

charge and response in polarization can be obtained empirically or fit to reproduce the two-body, 

three-body quantum chemical energies of water dimers and trimers.   

 

The FQ model has been used to include polarization in the universal force field (UFF)
10

, PFF
39

, 

and CHARMM
13

 force fields. One disadvantage of this model is the confinement of the 

polarizability in the molecular plane whereas experimentally it is found to be nearly isotropic. 

 

 Drude oscillator (DO) method 
48

  

DO models also known as shell models are commonly used in the simulations of solid-state ionic 

materials and many other systems as well. The electronic polarization is incorporated in this 

model by representing an atom or ion as a two particle system. The two particles are the core and 

a shell linked with a harmonic spring and associated with certain fixed charges. This core and 

shell together is known as a Drude particle. The electronic polarization is linked to the response 

in the relative displacement of the charges to the external electric field. This approach to add 
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electrostatic polarizability has been incorporated in CHARMM
37

 and GROMOS
41

 molecular 

modeling packages. 

 

 Inducible point dipole model 

 This is the most widely used method to treat molecular polarizability and its applicability varies 

from atomic to molecular systems such as noble gases to water to proteins. This approach has 

been used in many force fields such as OPLS/PFF
39

, AMOEBA
31

 and AMBER ff02, ff02EP
36

. 

Many new water models being developed employ this method to incorporate electronic 

polarization. According to this model, a point dipole, or PD, is induced at each contributing 

center in response to the total electric field, E. Hence the total energy, Etotal, includes an 

additional energy term, Epol (Equation 6). 

 (6) 

 

The polarization resulting from the dipolar interactions between the permanent partial charges 

and the induced dipoles is incorporated in the Epol energy term. The explicit polarization energy 

is then calculated using the formula given in equation (7). 

 

 
(7) 

In equation (7), αi  represents isotropic point polarizability of atom i. Ei
0 

denote the electrostatic 

field created on atom i in response to the partial charges. Ei is the electrostatic field due to the 

atomic charges (or higher order multipoles) and induced dipoles.  
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This total electric field is a result of both the permanent atomic charges as well as the induced 

dipoles and is determined self-consistently via an iterative procedure that minimizes the 

polarization energy or by means of the extended Lagrangian method.
47

 

 

Polarizable Simulations Second-Order Interaction Model (POSSIM) Force 

Field 

The Kaminski group has developed the Polarizable Simulations Second-Order Interaction Model 

(POSSIM)
35

 force field using the inducible point dipole (IPD) method for protein simulations. 

This method is combined with the fast second-order approximation to decrease the 

computational time by about an order of magnitude without any loss of accuracy. It has also 

eliminated the problem of polarization catastrophe associated with the polarizable force fields. 

The second-order technique used for polarizable simulations forms the basis of the polarizable 

POSSIM force field. The parameters used in POSSIM force field also show good transferability, 

thus reducing the number of parameters fitted for biomolecular simulations. This also proves the 

correct physical basis of the model and permits it to predict the physical properties of a molecule 

in different environments. The polarizable POSSIM force field and software package is 

particularly targeted for use in biomolecular simulations. 

 

Since most of the biomolecular processes are likely to occur in aqueous solution, theoretical 

study of such processes requires adequate representation of water. There are different methods to 

treat solvent and each has its own advantages and disadvantages. The choice of a particular 

solvation model in simulations depends on the requirements of the problem and size of the 

solute. Some solvation models have higher accuracy while others have high computational cost. 



30 
 

Thus, developing a computational model for water that is both reasonably accurate and fast is an 

ever evolving and ongoing quest.    

 

Our group also is developing an implicit solvation model named as the Fuzzy-Border continuum 

solvation model
49

 that is intended to work with both the OPLS and mainly Polarizable 

Simulations Second-Order Interaction Model (POSSIM) force fields for simulations targeted 

especially for proteins. The following sections give an overview of solvation models used in 

biomolecular simulations.  

 

1.3 Solvation Models 

There are different approaches for representing solvent in biomolecular simulations particularly 

in understanding structure and function of biomolecules with increased accuracy and efficiency. 

These solvation models range from very expensive and accurate representation of solvent to the 

less expensive continuous isotropic structureless medium representing averaged properties of 

water and other solvents.   

 

Broadly, there are two main methods to study solvation at the molecular level - explicit and the 

implicit solvation models  

 Explicit solvation model 

 Implicit solvation model 
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The explicit solvation model provides the most detailed and realistic approach to treat solution 

around the molecules by including all the degrees of the freedom of the solvent molecules.
50

 The 

explicit solvent environment takes into account all interactions and is known to accurately 

simulate the interactions between the solutes, water, ions and formation of hydrogen bonds 

(Figure 5a).  

 

However, such simulations increases the system size by an order of magnitude compared to the 

solute alone and are carried out at huge computational expense. Although there is significant 

advancement in the computational power, these calculations are still not feasible for many 

applications. It demands long simulation time in calculating water-water interactions as each 

water molecule is represented by at least three charges. The interactions between the solvent 

surrounding the solute also requires averaging several times in order to make the results with 

respect to solute structure and dynamics meaningful.  

 

Due to these limitations of explicit solvation models, the implicit solvation models have become 

more popular (Figure 5b). The implicit solvation model represents solvent as a dielectric 

continuum with the solute-solvent interactions described in the spirit of a mean-field approach as 

a function of solute configuration.
51 

 

 

Recent years has seen much progress in the continuum or the implicit solvation models for 

biomolecular simulations owing to their fast nature and reasonably accuracy in comparison to the 

explicit solvation model. The implicit solvation model based on the experimental dielectric 

constant treat the electrostatic long-range forces accurately and thus is known to work better than 
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many explicit solvation models. Also, the continuum solvation models works well with 

polarizable solutes whereas many explicit solvation models that neglect the solute electronic 

polarization owing to its computational cost. 

 

  

(a)  (b)  

Figure 5: (a) Explicit and (b) Implicit solvation models used in biomolecular simulations  

 

Although implicit simulations offer fast treatment of complex systems, it is not suitable for 

modeling reactions in biomolecular systems. Such systems are simulated with the combined 

quantum mechanical/molecular mechanics (QM/MM) methods.  In the QM/MM method, the 

system is divided in two parts. The solute and the nearby solvent molecules are treated quantum 

mechanically for high level description whereas the remaining solvent is modeled using a 

molecular mechanics force field.  Hybrid QM/MM methods rely on use of efficient level of QM 

theory for solute interactions, MM force field or explicit water for the solvent and partial charges 

of solute for solute-solvent interactions. The simplified version of fully polarizable QM/MM was 

first used by Warshal and Lewitt in 1976.
28

 Some other examples of the combined QM/MM 

approach are AM1/OPLS/CM1
52

, AM1/TIP3P.
53
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The continuum models can be used within the quantum mechanics (QM) or molecular mechanics 

(MM) framework.  Continuum models such as Polarizable Continuum Models (PCM) are used in 

QM to model solvent effects. These models use Poisson-Boltzmann (PB) model or Generalized-

Born (GB) formalism to calculate the electrostatic potential of the system. Some of the examples 

of PCM models
54

 are original dielectric PCM or D-PCM, the integral equation formulation (IEF-

PCM), and conductor-like screening model (COSMO)
55

 and SMx models.
56

  

 

1.3.1 Solvation free energy 

The solvation free energy is most important component of free energy calculations in 

biomolecules.
 
The implicit solvation model takes into account average influence of solvent by 

directly computing the solvation free energy. The solvation free energy is defined as the change 

in free energy associated with the transfer of solute in a fixed configuration from vacuum to the 

solvent
57

 shown in figure 6. 

 

Figure 6: Schematic view of solvation free energy 
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The free energy of solvation broadly constitutes nonpolar and electrostatic forces between the 

solute and the solvent (Equation 8).
58

 

 

 (8) 

 

The biological processes in water are mainly dominated by inter and intramolecular electrostatic 

interactions because of their long range nature and the fact that proteins and nucleic acids are 

charged molecules. Electrostatic interactions substantially affect the structure and dynamics of 

the biomolecules and are also crucial for stability of macromolecules and their interactions with 

ions, solvent and other molecules.   

 

The nonpolar component of the total solvation energy arises from the energy penalty for creating 

a cavity against the solvent pressure, van der Waals interactions with the solvent and for the 

entropy associated with the reorganization of the solvent around the solute molecule.   The 

nonpolar contribution to the solvation free energy is significant whereever hydrophobic 

interactions play a key role.
59

 Examples of this can be seen in structure and function of proteins 

in water
60

 and ligand binding to proteins.
61

 Hydrophobic interactions also play a key role in 

hydration of hydrophobic molecular assemblies resulting in formation of micelles and phospho-

lipid membranes and their mechanism of interaction with plasma and membrane bound 

proteins.
62

    

 

The most accurate description of a solvent model requires calculation of all the interactions 

between the solute and the solvent and then averaging these over many solvent configurations. 
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The huge computational requirements for such calculations have been alleviated by faster 

theoretical methods such as implicit solvation models and huge advancements in computational 

power. 

 

1.3.2 Types of Implicit Solvation Models 

There are different types of implicit solvation models targeted for evaluating the solute-solvent 

interactions with varying speed and accuracy as shown in figure 7. The electrostatic contribution 

to the solvation free energy is computed using the approaches based on Poisson-Boltzmann (PB) 

equation, Generalized-Born (GB) formalisms and dielectric screening functions. The nonpolar 

component is usually modeled as proportional to solvent-accessible surface areas (SASA). The 

electrostatic PB and GB models are also combined with the nonpolar models such as solvent 

accessible surface area (SASA) for achieving accuracy in total solvation energy particularly in 

case of biomolecular simulations.   

 

 

Figure 7: Implicit Solvation models  

 

The basic laws and theories used to compute electrostatic interactions
63

 in implicit models are  
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 Coulombs law 

 Poisson Boltzmann equation  

 Born equation  

 

The non-electrostatic contribution to solvation free energy is usually modeled as a linear function 

of solvent-accessible surface area.   

 

Coulomb Equation  

The calculation of the electrostatic potential at every point in space in a given distribution of 

charges is the most difficult problem in classical electrostatic theory. The electrostatic potential 

ϕ(r) at a specific position in space for a point charge in a homogeneous medium such as vacuum 

can be evaluated using Coulomb’s law. 

 

 
(9) 

In the equation 9 φ is the electrostatic potential, qi is the charge and ri is the distance from the 

point charge i. ε0 and ε designates the dielectric constant of vacuum and medium respectively.  

This can be used to evaluate the total electrostatic energy of complex biomolecular systems like 

protein of N point charges immersed in the solvent  

  

  

(10) 
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In equation (10)  represent the change in electrostatic interaction energy at room 

temperature in kcal/mol to the energy of charges placed at infinite separation. qi and qj are the 

point charges and rij is the distance in Å between the point charges. εr designates dielectric 

constant of the medium with respect to the vacuum. This equation is frequently used to calculate 

electrostatic forces in microscopic modeling of proteins.  

Poisson-Boltzmann Equation (Poisson-Boltzmann Model) 

Poisson Equation  

In case of complex protein-solvent systems, the evaluation of the electrostatic energy of vast 

number of point charges can be time demanding process. The explicit representation and 

reorientation of all the point charges in these systems are approximated as dielectric constant in 

continuum solvation models. 

  

Poisson equation relates the electrostatic potential φ to the total charge density, ρ (Equation 11).  

 

 (11a) 

 

ρ(r) or the charge density represent the distribution of charges in the system, ε(r) is the dielectric 

constant that includes effects such as induced dipole and/or relaxation of charges that are not 

explicitly modeled.  

 

Poisson-Boltzmann Equation (11(a)) for a set of point charges placed in a cavity with dielectric 

constant, ε(r), can be written as surface integral formulation including the induced polarization 

charge as shown in equation 11(b) 
64
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(11b) 

 

In equation 11(b) qk is the charge and rk is coordinate of atom k. σ(R) represents the induced 

polarization charge density on the dielectric boundary at point R, where R is the vector of 

integration over the surface of the molecule. 

 

Boltzmann distribution of ions  

The evaluation of charge density, ρ(r) in the Poisson equation is a straightforward process if all 

the positions of the charges are known such as the C=O bonds in backbone of proteins and the 

dipoles on side chains that can reorient only in certain allowed geometries within the small 

conformational changes in the protein. But there are ions in solution such as Na
+
, Cl

-
, K

+
, Mg

2+
 

which constantly change their position under the influence of local electrostatic potential and the 

surrounding water solvent. The probability distribution function known as Boltzmann function is 

used to describe the positions of mobile ions in a solution: 

 
(12) 

 

In equation (12) n(r) is the concentration of the positive or negative ions in the solution. φ(r) is 

the mean potential at a particular location r in the solution. N is the bulk concentration of the 

ions, k is the Boltzmann's constant (1.38 × 10
-23

J/K) and q is the charge of ion considered. The 

charge density of the mobile ions can be calculated from the concentration of ions in the solution. 

 

 (13) 
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These equations (12) and (13) account for all the mobile ions in the system and combined with 

the Poisson equation forms the Poisson Boltzmann equation (PBE) used for modeling the 

electrostatic interactions in the continuum solvation models (Equation 14). 

  

 
(14) 

 

In the PBE equation (14), K is the Debye-Huckel inverse length parameter dependent on the 

ionic strength, I, of the solution according to the equation 15 

 

 
(15) 

 

NA, is the Avogadro’s number and e, k, and T represent the electronic charge, Boltzmann constant 

and temperature respectively.  

 

The ionic strength of the solution affects the electrostatic attractions/repulsions in the protein-

solvent solutions and changing the ionic strength between the charges can result in the value of 

quantity being calculated.  

 

Equation (14) is the non-linearized form of PBE equation and the linear form of Poisson-

Boltzmann Equation can be written by assuming sinhφ(r) ~ φ(r): 
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(16) 

 

This equation (16) combined with the nonpolar component that accounts for the van der Waals 

solute-solvent interactions and the entropy penalty for the cavity formation of solute together 

forms the total solvation energy.  

Although PBE equation gives the most accurate treatment of electrostatic interactions, the high 

cost involved in solving this equation has limited its applications in many areas such as 

molecular dynamics (MD) simulations. There are methods suggested to overcome above 

limitations by not optimizing the forces due to the solvent at every simulation step or the 

solutions to Poisson equation for similar conformations in subsequent time steps.  

 

Poisson Boltzmann Solvation Model   

The Poisson-Boltzmann model based on Poisson Boltzmann Equation relates the electrostatic 

potential of a complex molecule to the charge density, ionic strength and the dielectric 

constants.
65

 PBE is the most rigorous theoretical method for formulating and computing the 

electrostatic solute-solvent and solvent-solvent interactions of the total free energy of solvation. 

 

PB solvation model involves explicit representation of solute in a cavity with atomic 

coordinates including the corresponding atomic radii and partial charges on each atom. The 

solute is placed in a cavity of low dielectric constant embedded in a continuum solvent of high 

dielectric constant. The solute and the solvent boundary are obtained by rolling the probe of the 

size of solvent over the van der Waals surface as shown in figure 8. The electrostatic potentials 

are then calculated with PB equation using iterative procedures for quick solutions.  
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Figure 8: Schematic representation of the Poisson Boltzmann model of a molecule. The atoms 

in the molecule are represented by green spheres with partial charges and van der Waals radii. 

The high dielectric constant solvent is depicted in blue. The PB equation is solved on a three 

dimensional grid depicted in gray. The black line contour is obtained by rolling sphere with 

radius of water molecule shown in yellow on the van der Waals surface of the molecule. The 

boundary of ion-accessible volume is denoted by dashed line contour.
66

 

 

The higher dielectric constant of the solvent in the PBE equation includes the induced, 

permanent dipoles and the orientation of the solvent around the solute. The dielectric constant of 

the solute, mainly in case of protein, has lower dielectric constant in the range of ε ~ 2-20. Its 

value varies depending on the type of protein and the simulation method used in PBE model. The 

lower dielectric constant value, ε = 2, is used if only electronic polarizability of the protein is 

considered where as higher value (~ 20) can be used to account for the polarizability and charges 

reorganization.
67, 68

 The dielectric constant of solute particularly in case of protein is a 
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nontransferable parameter. It is required to calculate the electrostatic interactions such as charge-

charge interactions or charge-solvation which depends on the shape and the exact location of the 

charges in the solute. The accuracy of the biomolecular applications require separate 

parameterization of macromolecule dielectric constant depending on the applications used. 

 

PB model is a physically simple method to compute the electrostatic component but its 

numerical solutions for complex shapes and charge distributions are associated with high 

computational cost and do not scale well with increase in the size of the system. Typically, this 

differential integral equation is solved using finite-difference method (FDM) 
69

 in molecular 

mechanics simulations. In this method, molecular charges and dielectric are discretized on the 

grid and the Poisson-Boltzmann equation is solved and recast in a finite difference form. There 

are several problems associated with the discretization procedure such as the grid must be fine 

enough to represent accurately solute-solvent interactions and not merge opposite charges on the 

same node. Also, the free energy will depend on the grid spacing and the relative position of 

charges on the grid. Since the algorithms for solving Poisson-Boltzmann equation using finite 

difference methods is still computationally demanding many advancements such as multigrid 

methods are applied in biochemistry for faster simulations. Other methods that avoid the 

discretization problems are boundary element and finite element methods (FEM). The boundary 

element approach is less popular in molecular mechanics and is mostly applied in quantum 

calculations for small organic molecules.
70

  

 

Although several methods have been devised to solve PB equation but it is still not feasible to 

solve it for molecular dynamics (MD) or Monte Carlo (MC) simulations where large 
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conformational sampling is required. The earliest attempts of wide applicability of PB equation 

to dynamic simulations demanded high computational effort and thus had limited scope. It was 

observed that simulation cost per-step with FD method even with 1-Å grid spacing was higher 

than with the explicit water simulation although the latter took longer time to equilibrate whereas 

with PB model, water is always equilibrated. This limits the practical applications of PB equation 

in MD simulations of biological molecules.  

 

Though there is a continuous progress in numerical methods to solve PB equation but high 

computational effort and complexity in case of macromolecules has led to the development of 

approximations to the PB equation through methods such as Generalized Born (GB) model,
71

 

Dielectric Screening model,
72

 Induced Multipole Solvent models
73

 and others. These 

approximate models are widely used to treat solvation but none of them model the solvation 

effects as accurately as the PB equation especially in case of desolvation of charged groups 

occurring often in protein dynamics. 

 

The approximations to Poisson-Boltzmann equation such as Born equation and its modifications 

are used for more faster simulations of complex systems. The Born equation is the simplest case 

of calculating electrostatic solvation free energy of a charged ion from gas phase to the solution.  
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Born Equation
 
(Generalized Born (GB) model) 

71
  

Born Equation 

Born equation illustrates the electrostatic free energy in transferring a spherical charged ion 

with radius α from a medium of dielectric constant εi to a medium of dielectric constant εo  

(Equation 17).  

 
(17) 

Born equation was first derived by setting the dielectric constant εi = 1 as in the case of vacuum. 

Born equation can be used with Coulomb’s law to calculate the free energy change in moving a 

point charge between the two homogeneous media (Figure 9).  

 

Figure 9: Schematic illustration of Born equation (ion). Spherical ion of radius α transferred 

from vacuum to water. The reaction field due to surface charges produced as a result of 

induced polarization in water stabilizes the ion. 

 

Born equation is derived from classical electrostatics theory according to which the total 

electrostatic energy in the dielectric media is given by the equation (18) and equation (19) 

 

(18) 

  (19) 
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E and D in the equation (18) and (19) represent the electric field and electric field displacement 

respectively. ε is the dielectric constant of the medium.  

 

Gauss law is used to obtain E and D.   

 

 

or 

 

(20) 

 

The left integral in the equation (20) depict the area integral over the surface whereas the right 

integral is the volume integrated over the whole space enclosed by the surface. Here n(r) 

represent the normal of the surface and ρ is the free charge density.  

 

The electric field and electric displacement inside and outside of the uniformly charged spherical 

shell with dielectric εi inside and outside can be given 

 

  

(21) 

  

In the equation (21), q represents the total charge of the sphere and the center of the coordinate 

is set at the center of the sphere. The total electrostatic energy of the system can now be 

calculated using the above equations as 
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(22) 

 

In the equation (22), α represents the radius of the sphere. Similarly, the total electrostatic 

energy for a system of uniformly charged sphere with dielectric constant inside and outside as εi 

and εo respectively can be written as 

 

 
(22) 

 

The energy difference between the two systems is evaluated as Born equation.  

 

However if there is more than one charge, an approximation to the Born equation known 

as Generalized Born Equation (GBE) is used.  

 

Generalized Born (GB) model) 
71

 

The pairwise GB model is based on the same dielectric continuum solvent model as PBE. 

Generalized Born model have been widely used to calculate the ligand binding free energies, in 

conformational analysis of proteins and in drug designing. It is one of the most efficient 

approximations of the solution of Poisson-Boltzmann equation for a charge in the centre of an 

ideal spherical solute of radius α and dielectric constant εi for the interior and the ε0 for the 

exterior solvent. This model is extension of Born model which evaluates the change in free 

energy in moving a point charge from vacuum to spherical cavity of the solvent.  
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The generalization of Born model to solutes of different cavity shape and simulating the solutes 

as a collection of small spheres of atoms of charges qi and radius αi or point charges placed in the 

center of the spheres with the inner dielectric constant of the sphere as εi forms the GB 

formalism.  

 

The electrostatic interactions between the point charges are calculated as a sum of Coulomb 

interactions in vacuum and the self-energies of the spheres. The self-energy can be decomposed 

into the total electrostatic energy of spheres placed in medium with dielectric constant εi, and the 

electrostatic solvation energy. In case of real solutes the Still and coworkers used pairwise sum 

over interacting point charges approximation to calculate solvent induced reaction field energy 

known as Generalized Born (GB) equation (Equation 24-26) 

 

 

(24) 

 (25) 

 

(26) 

 

In equation (27) εi and ε0 are dielectric constant of interior and exterior medium, rij is the 

distance between the atoms i and j, and αi is the generalized Born radius of atom i.  

 

The estimation of effective Born solvation radius, αi, or the distance between charge and the 

protein-solvent boundary is central to accurate determination of electrostatic solvation free 
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energy. This is adjustable parameter and can be calculated using solvation free energy from 

Poisson-Boltzmann equation or less expensive alternating methods. Although PB solvation 

model is the most accurate representation of continuum solvation, GB methods provide 

potentials for faster simulations of larger systems.  GB models are also combined with the 

surface area and referred to as GBSA models to estimate the hydrophobic contributions to the 

solvation free energy as well. These models are particularly useful in many ligand docking 

programs.   

 

Implicit Solvation Models based on solvent-accessible surface area 

The continuum solvent accessible surface area (SASA) solvation models are based on 

assumption that interactions between the solute and the solvent are proportional to the surface 

area. It computes the nonpolar contribution of total free energy of solvation. This model was first 

parameterized by Eisenberg and McLachlan
74

 to compute free energy of transfer of amino acids 

between octanol and water. The solvent-accessible surface area as defined by Lee and Richards 

and others is the area moved by center of water molecule of radius 1.4Å around the group 

without any unobstructed contact with the group. The SASA based continuum model was also 

parameterized by Ooi
75

 et al to compute thermodynamic solvation parameters for seven classes 

of groups occurring in peptides by fitting to the experimental free energy of solvation of small 

aliphatic and aromatic molecules.  

 The non-electrostatic contributions to the total free energy of solvation are usually given as a 

linear function of the solvent-accessible surface area according to the equation (27) 
58(e), 61(d), 76

 

 

 (27) 
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 ΔGnp represents the nonpolar free energy and A is the solvent accessible surface area in the 

equation 27. The proportionality constant γ or the surface tension is the contribution to the 

solvation energy per unit surface area obtained by fitting to the experimental data. Another 

constant b represents the free energy of hydration for a point solute. 

 

Although surface area models have worked well based on theoretical and experimental 

observations of transfer free energies of small chain alkanes from oil to water and vacuum to 

water in being related linearly to surface area, there are discrepancies in this model. Some of 

these include the wide range of surface tension proportionality constant corresponding to the 

definition of solute surface area
77

 (van der Waal, molecular or solvent accessible surface area), 

parameterization of the model to the different experimental data as well as the application of the 

model to small organic molecule solvation and complex molecules and binding.  

 

On the careful analysis of nonpolar contribution to the solvation energy in case of small and 

complex molecules such as proteins, this has been decomposed into energy penalty for cavity 

formation due to excluded volume effects and van der Waal dispersion forces between the solute 

and solvent (Equation 28).
57

 

 

 (28) 

 

It has also been shown that ΔGvdW or free energy change for establishing attractive interactions 

between the solute and solvent for a set of alkanes of similar size is a function of the solute 

composition and not its surface area. This explains not only the small hydration energy of cyclic 
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alkanes in comparison to the linear alkanes but also the requirement of two surface tension 

parameters of alkanes to reproduce their hydration free energies and conformational equilibria. 

 

The applications of these models have been limited due to the high cost of calculating accurate 

solvent accessible surface areas. Some of these limitations have been circumvented by 

approximating solvent accessible surface areas using fast methods
78

, or by extensive 

parameterization of atomic solvation parameters.
79

 

 

Implicit Solvation Model Based on Dielectric Screening Functions 

The simplest is the distance-dependent dielectric model where dielectric effect is accounted due 

to both the solute atoms and the surrounding water molecules. This model directly evaluates the 

electrostatic field due to the dipoles induced by polarizing the protein atoms and orienting the 

surrounding water molecules. The model was used to study the factors affecting the stabilization 

of carbonium ion in reaction of lysozyme. This is the most convenient and low cost solvation 

model; however, it is the crude representation of the solvation effects. Recent advancements in 

this approach is the EEF1
80

 (effective energy function1) model that modulates the dielectric 

screening as a function of surface excluded volume and screening functions adjustment to the 

distance of charge site from the surface. The other advancements include the consideration of 

relative atomic position within the solvent and using dielectric screening functions without 

defining the specific solute solvent boundary.
81

  

 

The main goal of this work is parameterizing and validating Fuzzy-Border (FB) continuum 

model of solvation to work with POlarizable Simulations Second-order Interaction Model 
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(POSSIM) force field for proteins. There are two distinct features of implicit FB model. 

Firstly, the formalism of FB model is an approximation to Poisson-Boltzmann methodology 

truncating the self-consistent equations and thus leading to better convergence. Second, the 

use of fixed three dimensional grid results in reduction of noise in the solvation energy 

calculations. Both the convergence and less noise in continuum model simulations are 

achieved without any loss in accuracy of the simulations. 

 

The rest of the thesis is divided as follows. The second chapter introduces the underlying theory 

of first-order Fuzzy-Border (FB) continuum solvation model. It also presents the 

parameterization and acidity constant calculations of substituted alcohols with FB model and 

fixed charge OPLS-AA force field. The parameterization of FB model with polarizable POSSIM 

force field followed by computing pKa values of protein residues is discussed in chapter 3. The 

fourth chapter is the study of impact of high pressure on the backbone conformational equlibria 

of N-acetyl-L-alanine-N'-methylamide in aqueous solution with Polarizable Simulations Second-

order Interaction Model (POSSIM) and fixed charge OPLS-AA force field. The fifth chapter 

discusses the future directions.  



52 
 

References 

1. (a) Daggett, V., Protein folding-simulation. Chemical reviews 2006, 106 (5), 1898-

1916. (b) Elcock, A. H., Molecular simulations of cotranslational protein folding: 

fragment stabilities, folding cooperativity, and trapping in the ribosome. 2006. 

2. (a) Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, J.; Corbeil; CR, Towards the 

development of universal, fast and highly accurate docking/scoring methods: a long 

way to go. British journal of pharmacology 2008, 153 (S1), S7-S26. (b) McGuffee, S. 

R.; Elcock, A. H., Atomically detailed simulations of concentrated protein solutions: 

the effects of salt, pH, point mutations, and protein concentration in simulations of 

1000-molecule systems. Journal of the American Chemical Society 2006, 128 (37), 

12098-12110. (c) Ritchie, D. W., Recent progress and future directions in protein-

protein docking. Current Protein and Peptide Science 2008, 9 (1), 1-15. 

3. Taft, C. A.; Da Silva, V. B.; da Silva, C. H. T. d., Current topics in computer‐aided 

drug design. Journal of pharmaceutical sciences 2008, 97 (3), 1089-1098. 

4. Gilson, M. K.; Zhou, H.-X., Calculation of protein-ligand binding affinities*. Annu. 

Rev. Biophys. Biomol. Struct. 2007, 36, 21-42. 

5. Beckstein, O.; Biggin, P. C.; Bond, P.; Bright, J. N.; Domene, C.; Grottesi, A.; 

Holyoake, J.; Sansom, M. S., Ion channel gating: insights via molecular simulations. 

FEBS letters 2003, 555 (1), 85-90. 

6. Jensen, F., Introduction to computational chemistry. John Wiley & Sons: 2013. 

7. Young, D., Computational chemistry: a practical guide for applying techniques to real 

world problems. John Wiley & Sons: 2004. 

8. Jorgensen, W. L.; Tirado-Rives, J., Potential energy functions for atomic-level 

simulations of water and organic and biomolecular systems. Proceedings of the 

National Academy of Sciences of the United States of America 2005, 102 (19), 6665-

6670. 



53 
 

9. Rappé, A. K.; Casewit, C. J.; Colwell, K.; Goddard Iii, W.; Skiff, W., UFF, a full 

periodic table force field for molecular mechanics and molecular dynamics 

simulations. Journal of the American Chemical Society 1992, 114 (25), 10024-10035.  

10. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and 

testing of a general amber force field. Journal of computational chemistry 2004, 25 

(9), 1157-1174. 

11. (a) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. 

M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A., A second generation 

force field for the simulation of proteins, nucleic acids, and organic molecules. 

Journal of the American Chemical Society 1995, 117 (19), 5179-5197. (b) Wang, J.; 

Cieplak, P.; Kollman, P. A., How well does a restrained electrostatic potential (RESP) 

model perform in calculating conformational energies of organic and biological 

molecules? Journal of Computational Chemistry 2000, 21 (12), 1049-1074.  

12. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; 

Cieplak, P.; Luo, R.; Lee, T., A point‐charge force field for molecular mechanics 

simulations of proteins based on condensed‐phase quantum mechanical calculations. 

Journal of computational chemistry 2003, 24 (16), 1999-2012. 

13. MacKerell, A. D.; Brooks, B.; Brooks, C. L.; Nilsson, L.; Roux, B.; Won, Y.; Karplus, 

M., CHARMM: the energy function and its parameterization. Encyclopedia of 

computational chemistry 1998. 

14. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., Development and testing of the 

OPLS all-atom force field on conformational energetics and properties of organic 

liquids. Journal of the American Chemical Society 1996, 118 (45), 11225-11236. 

15. Halgren, Thomas A. "Merck molecular force field. I. Basis, form, scope, 

parameterization, and performance of MMFF94." Journal of computational chemistry 

17.5‐6 (1996): 490-519. 



54 
 

16. Schuler, L. D.; Daura, X.; Van Gunsteren, W. F., An improved GROMOS96 force 

field for aliphatic hydrocarbons in the condensed phase. Journal of Computational 

Chemistry 2001, 22 (11), 1205-1218. 

17. Zimmerman, S. S.; Pottle, M. S.; Némethy, G.; Scheraga, H. A., Conformational 

analysis of the 20 naturally occurring amino acid residues using ECEPP. 

Macromolecules 1977, 10 (1), 1-9. 

18. Cieplak, P.; Dupradeau, F.-Y.; Duan, Y.; Wang, J., Polarization effects in molecular 

mechanical force fields. Journal of Physics: Condensed Matter 2009, 21 (33), 333102. 

19. (a) Lii, J. H.; Allinger, N. L., The MM3 force field for amides, polypeptides and 

proteins. Journal of computational chemistry 1991, 12 (2), 186-199. (b) Ewig, C. S.; 

Berry, R.; Dinur, U.; Hill, J. R.; Hwang, M. J.; Li, H.; Liang, C.; Maple, J.; Peng, Z.; 

Stockfisch, T. P., Derivation of class II force fields. VIII. Derivation of a general 

quantum mechanical force field for organic compounds. Journal of computational 

chemistry 2001, 22 (15), 1782-1800. (c) Sun, H., COMPASS: an ab initio force-field 

optimized for condensed-phase applications overview with details on alkane and 

benzene compounds. The Journal of Physical Chemistry B 1998, 102 (38), 7338-

7364. (d) Derreumaux, P.; Vergoten, G., A new spectroscopic molecular mechanics 

force field. Parameters for proteins. The Journal of chemical physics 1995, 102 (21), 

8586-8605. (e) Halgren, T. A., Merck molecular force field. I. Basis, form, scope, 

parameterization, and performance of MMFF94. Journal of computational chemistry 

1996, 17 (5‐6), 490-519. (f) Palmo, K.; Mannfors, B.; Mirkin, N. G.; Krimm, S., 

Potential energy functions: from consistent force fields to spectroscopically 

determined polarizable force fields. Biopolymers 2003, 68 (3), 383-394. 

20. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., DREIDING: a generic force field for 

molecular simulations. Journal of Physical Chemistry 1990, 94 (26), 8897-8909. 

21. Allinger, N. L.; Yuh, Y. H.; Lii, J. H., Molecular mechanics. The MM3 force field for 

hydrocarbons. 1. Journal of the American Chemical Society 1989, 111 (23), 8551-

8566. 



55 
 

22. Buckingham, A.; Fowler, P., A model for the geometries of van der Waals complexes. 

Canadian journal of chemistry 1985, 63 (7), 2018-2025. 

23. Dauber‐Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; 

Hagler, A. T., Structure and energetics of ligand binding to proteins: Escherichia coli 

dihydrofolate reductase‐trimethoprim, a drug‐receptor system. Proteins: Structure, 

Function, and Bioinformatics 1988, 4 (1), 31-47. 

24. Halgren, T. A., MMFF VII. Characterization of MMFF94, MMFF94s, and other 

widely available force fields for conformational energies and for 

intermolecular‐interaction energies and geometries. Journal of Computational 

Chemistry 1999, 20 (7), 730-748. 

25. Allinger, N. L.; Chen, K. H.; Lii, J. H.; Durkin, K. A., Alcohols, ethers, 

carbohydrates, and related compounds. I. The MM4 force field for simple 

compounds. Journal of computational chemistry 2003, 24 (12), 1447-1472. 

26. Halgren, T. A.; Damm, W., Polarizable force fields. Current opinion in structural 

biology 2001, 11 (2), 236-242. 

27. Rick, S. W.; Stuart, S. J., Potentials and algorithms for incorporating polarizability in 

computer simulations. Reviews in computational chemistry 2002, 18, 89-146. 

28. Warshel, A.; Levitt, M., Theoretical studies of enzymic reactions: dielectric, 

electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. 

Journal of molecular biology 1976, 103 (2), 227-249. 

29. Caldwell, J. W.; Kollman, P. A., Cation-. pi. Interactions: Nonadditive Effects Are 

Critical in Their Accurate Representation. Journal of the American Chemical Society 

1995, 117 (14), 4177-4178. 

30. Stuart, S. J.; Berne, B., Effects of polarizability on the hydration of the chloride ion. 

The Journal of Physical Chemistry 1996, 100 (29), 11934-11943. 

31. (a) Ren, P.; Ponder, J. W., Polarizable atomic multipole water model for molecular 

mechanics simulation. The Journal of Physical Chemistry B 2003, 107 (24), 5933-

5947. (b) Ren, P.; Ponder, J. W., Temperature and pressure dependence of the 



56 
 

AMOEBA water model. The Journal of Physical Chemistry B 2004, 108 (35), 13427-

13437. 

32. Gresh, N.; Cisneros, G. A.; Darden, T. A.; Piquemal, J.-P., Anisotropic, polarizable 

molecular mechanics studies of inter-and intramolecular interactions and ligand-

macromolecule complexes. A bottom-up strategy. Journal of chemical theory and 

computation 2007, 3 (6), 1960-1986. 

33. Palmo, K.; Mannfors, B.; Mirkin, N. G.; Krimm, S., Potential energy functions: from 

consistent force fields to spectroscopically determined polarizable force fields. 

Biopolymers 2003, 68 (3), 383-394. 

34. Hermida‐Ramón, J. M.; Brdarski, S.; Karlström, G.; Berg, U., Inter‐and 

intramolecular potential for the N‐formylglycinamide‐water system. A comparison 

between theoretical modeling and empirical force fields. Journal of computational 

chemistry 2003, 24 (2), 161-176. 

35. Kaminski, G. A.; Ponomarev, S. Y.; Liu, A. B., Polarizable Simulations with Second-

Calculations: Parameters for Small Model Systems and Free Energy Calculations. 

Journal of chemical theory and computation 2009, 5 (11), 2935-2943. 

36. (a) Cieplak, P.; Caldwell, J.; Kollman, P., Molecular mechanical models for organic 

and biological systems going beyond the atom centered two body additive 

approximation: aqueous solution free energies of methanol and N‐methyl acetamide, 

nucleic acid base, and amide hydrogen bonding and chloroform/water partition 

coefficients of the nucleic acid bases. Journal of Computational Chemistry 2001, 22 

(10), 1048-1057. (b) Wang, Z. X.; Zhang, W.; Wu, C.; Lei, H.; Cieplak, P.; Duan, Y., 

Strike a balance: optimization of backbone torsion parameters of AMBER polarizable 

force field for simulations of proteins and peptides. Journal of computational 

chemistry 2006, 27 (6), 781-790. 

37. (a) Lamoureux, G.; Roux, B. t., Modeling induced polarization with classical drude 

oscillators: Theory and molecular dynamics simulation algorithm. The Journal of 

Chemical Physics 2003, 119 (6), 3025-3039. (b) Patel, S.; Brooks, C. L., CHARMM 



57 
 

fluctuating charge force field for proteins: I parameterization and application to bulk 

organic liquid simulations. Journal of computational chemistry 2004, 25 (1), 1-16. (c) 

Patel, S.; Mackerell, A. D.; Brooks, C. L., CHARMM fluctuating charge force field 

for proteins: II protein/solvent properties from molecular dynamics simulations using 

a nonadditive electrostatic model. Journal of computational chemistry 2004, 25 (12), 

1504-1514. 

38.  Xie, W.; Pu, J.; MacKerell, A. D.; Gao, J., Development of a polarizable 

intermolecular potential function (PIPF) for liquid amides and alkanes. Journal of 

chemical theory and computation 2007, 3 (6), 1878-1889. 

39. (a) Friesner, R. A., Modeling polarization in proteins and protein–ligand complexes: 

Methods and preliminary results. Advances in protein chemistry 2005, 72, 79-104. (b) 

Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A., Development of an 

accurate and robust polarizable molecular mechanics force field from ab initio 

quantum chemistry. The Journal of Physical Chemistry A 2004, 108 (4), 621-627. (c) 

Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.; Cao, Y. X.; Murphy, R. B.; 

Zhou, R.; Halgren, T. A., Development of a polarizable force field for proteins via ab 

initio quantum chemistry: first generation model and gas phase tests. Journal of 

computational chemistry 2002, 23 (16), 1515-1531. (d) Maple, J. R.; Cao, Y.; Damm, 

W.; Halgren, T. A.; Kaminski, G. A.; Zhang, L. Y.; Friesner, R. A., A polarizable force 

field and continuum solvation methodology for modeling of protein-ligand 

interactions. Journal of Chemical Theory and Computation 2005, 1 (4), 694-715. 

40. Jorgensen, W. L.; Jensen, K. P.; Alexandrova, A. N., Polarization effects for 

hydrogen-bonded complexes of substituted phenols with water and chloride ion. 

Journal of chemical theory and computation 2007, 3 (6), 1987-1992. 

41. Geerke, D. P.; van Gunsteren, W. F., On the calculation of atomic forces in classical 

simulation using the charge-on-spring method to explicitly treat electronic 

polarization. Journal of Chemical Theory and Computation 2007, 3 (6), 2128-2137.  

42. (a) MacDermaid, C. M.; Kaminski, G. A., Electrostatic polarization is crucial for 

reproducing pKa shifts of carboxylic residues in turkey ovomucoid third domain. The 



58 
 

Journal of Physical Chemistry B 2007, 111 (30), 9036-9044. (b) Click, T. H.; 

Kaminski, G. A., Reproducing Basic p K a Values for Turkey Ovomucoid Third 

Domain Using a Polarizable Force Field. The Journal of Physical Chemistry B 2009, 

113 (22), 7844-7850. 

43. Ponomarev, S. Y.; Click, T. H.; Kaminski, G. A., Electrostatic polarization is crucial in 

reproducing Cu (I) interaction energies and hydration. The journal of physical 

chemistry B 2011, 115 (33), 10079-10085. 

44. Click, T. H.; Ponomarev, S. Y.; Kaminski, G. A., Importance of electrostatic 

polarizability in calculating cysteine acidity constants and copper (I) binding energy 

of Bacillus subtilis CopZ. Journal of computational chemistry 2012, 33 (11), 1142-

1151. 

45. Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald: An N⋅ log (N) method for 

Ewald sums in large systems. The Journal of chemical physics 1993, 98 (12), 10089-

10092. 

46. Rick, S. W.; Stuart, S. J.; Berne, B. J., Dynamical fluctuating charge force fields: 

Application to liquid water. The Journal of chemical physics 1994, 101 (7), 6141-

6156. 

47. Van Belle, D.; Froeyen, M.; Lippens, G.; Wodak, S. J., Molecular dynamics 

simulation of polarizable water by an extended Lagrangian method. Molecular 

physics 1992, 77 (2), 239-255. 

48. Rick, S. W.; Stuart, S. J., Potentials and algorithms for incorporating polarizability in 

computer simulations. Reviews in computational chemistry 2002, 18, 89-146. 

49. Sharma, I.; Kaminski, G. A., Calculating pKa values for substituted phenols and 

hydration energies for other compounds with the first‐order fuzzy‐border continuum 

solvation model. Journal of computational chemistry 2012, 33 (30), 2388-2399. 

50. Levy, R. M.; Gallicchio, E., Computer simulations with explicit solvent: recent 

progress in the thermodynamic decomposition of free energies and in modeling 

electrostatic effects. Annual review of physical chemistry 1998, 49 (1), 531-567. 



59 
 

51. Roux, B.; Simonson, T., Implicit solvent models. Biophysical chemistry 1999, 78 (1), 

1-20. 

52. Kaminski, G. A.; Jorgensen, W. L., A quantum mechanical and molecular mechanical 

method based on CM1A charges: applications to solvent effects on organic equilibria 

and reactions. The Journal of Physical Chemistry B 1998, 102 (10), 1787-1796. 

53. Gao, J.; Xia, X., A priori evaluation of aqueous polarization effects through Monte 

Carlo QM-MM simulations. Science 1992, 258 (5082), 631-635. 

54. Barone, V.; Cossi, M.; Tomasi, J., A new definition of cavities for the computation of 

solvation free energies by the polarizable continuum model. The Journal of chemical 

physics 1997, 107 (8), 3210-3221. 

55. Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C., Refinement and parametrization of 

COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074-5085. 

56. Cramer, C. J.; Truhlar, D. G., SMx continuum models for condensed phases. Trends 

and Perspectives in Modern Computational Science 2006, 6, 112-140. 

57. Levy, R. M.; Zhang, L. Y.; Gallicchio, E.; Felts, A. K., On the nonpolar hydration free 

energy of proteins: surface area and continuum solvent models for the solute-solvent 

interaction energy. Journal of the American Chemical Society 2003, 125 (31), 9523-

9530. 

58. (a) Honig, B.; Nicholls, A., Classical electrostatics in biology and chemistry. Science 

1995, 268 (5214), 1144-1149. (b) Gilson, M. K.; Honig, B., Calculation of the total 

electrostatic energy of a macromolecular system: solvation energies, binding energies, 

and conformational analysis. Proteins: Structure, Function, and Bioinformatics 1988, 

4 (1), 7-18. (c) Cramer, C. J.; Truhlar, D. G., Implicit solvation models: equilibria, 

structure, spectra, and dynamics. Chemical Reviews 1999, 99 (8), 2161-2200. (d) 

Cramer, C. J.; Truhlar, D. G., An SCF solvation model for the hydrophobic effect and 

absolute free energies of aqueous solvation. Science 1992, 256 (5054), 213-217. (e) 

Sitkoff, D.; Sharp, K. A.; Honig, B., Accurate calculation of hydration free energies 

using macroscopic solvent models. The Journal of Physical Chemistry 1994, 98 (7), 



60 
 

1978-1988. (f) Luo, R.; Moult, J.; Gilson, M. K., Dielectric screening treatment of 

electrostatic solvation. The Journal of Physical Chemistry B 1997, 101 (51), 11226-

11236. 

59. Ben‐Naim, A., Hydrophobic interaction and structural changes in the solvent. 

Biopolymers 1975, 14 (7), 1337-1355. 

60. (a) Honig, B.; Yang, A.-S., Free energy balance in protein folding. Advances in 

protein chemistry 1994, 46, 27-58. (b) Dill, K. A., Dominant forces in protein folding. 

Biochemistry 1990, 29 (31), 7133-7155. (c) Kauzmann, W., OF PROTEIN 

DENATURATION1. Advances in protein chemistry 1959, 14, 1. (d) Privalov, P. L.; 

Makhatadze, G. I., Contribution of hydration to protein folding thermodynamics: II. 

The entropy and Gibbs energy of hydration. Journal of molecular biology 1993, 232 

(2), 660-679. 

61. (a) Sturtevant, J. M., Heat capacity and entropy changes in processes involving 

proteins. Proceedings of the National Academy of Sciences 1977, 74 (6), 2236-2240. 

(b) Williams, D. H.; Searle, M. S.; Mackay, J. P.; Gerhard, U.; Maplestone, R. A., 

Toward an estimation of binding constants in aqueous solution: studies of 

associations of vancomycin group antibiotics. Proceedings of the National Academy 

of Sciences 1993, 90 (4), 1172-1178. (c) Froloff, N.; Windemuth, A.; Honig, B., On 

the calculation of binding free energies using continuum methods: Application to 

MHC class I protein‐peptide interactions. Protein Science 1997, 6 (6), 1293-1301. (d) 

Lee, M. R.; Duan, Y.; Kollman, P. A., Use of MM‐PB/SA in estimating the free 

energies of proteins: Application to native, intermediates, and unfolded villin 

headpiece. Proteins: Structure, Function, and Bioinformatics 2000, 39 (4), 309-316. 

62. Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological 

Membranes 2d Ed. J. Wiley.: 1980. 

63. Kukic, P.; Nielsen, J. E., Electrostatics in proteins and protein-ligand complexes. 

Future medicinal chemistry 2010, 2 (4), 647-666. 



61 
 

64. Ghosh, A.; Rapp, C. S.; Friesner, R. A., Generalized Born model based on a surface 

integral formulation. The Journal of Physical Chemistry B 1998, 102 (52), 10983-

10990. 

65. Baker, N. A., Biomolecular applications of Poisson-Boltzmann methods. Reviews in 

computational chemistry 2005, 21, 349. 

66. Grochowski, P.; Trylska, J., Continuum molecular electrostatics, salt effects, and 

counterion binding—a review of the Poisson–Boltzmann theory and its modifications. 

Biopolymers 2008, 89 (2), 93-113. 

67. Tynan‐Connolly, B. M.; Nielsen, J. E., Redesigning protein pKa values. Protein 

science 2007, 16 (2), 239-249. 

68. Baran, K. L.; Chimenti, M. S.; Schlessman, J. L.; Fitch, C. A.; Herbst, K. J.; Garcia-

Moreno, B. E., Electrostatic effects in a network of polar and ionizable groups in 

staphylococcal nuclease. Journal of molecular biology 2008, 379 (5), 1045-1062. 

69. (a) Warwicker, J.; Watson, H., Calculation of the electric potential in the active site 

cleft due to α-helix dipoles. Journal of molecular biology 1982, 157 (4), 671-679. (b) 

Klapper, I.; Hagstrom, R.; Fine, R.; Sharp, K.; Honig, B., Focusing of electric fields 

in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and 

amino‐acid modification. Proteins: Structure, Function, and Bioinformatics 1986, 1 

(1), 47-59. (c) Davis, M. E.; McCammon, J. A., Solving the finite difference 

linearized Poisson‐Boltzmann equation: A comparison of relaxation and conjugate 

gradient methods. Journal of computational chemistry 1989, 10 (3), 386-391. (d) 

Nicholls, A.; Sharp, K. A.; Honig, B., Protein folding and association: insights from 

the interfacial and thermodynamic properties of hydrocarbons. Proteins: Structure, 

Function, and Bioinformatics 1991, 11 (4), 281-296. 

70.  Tomasi, J.; Persico, M., Molecular interactions in solution: an overview of methods 

based on continuous distributions of the solvent. Chemical Reviews 1994, 94 (7), 

2027-2094. 



62 
 

71. (a) Zhang, L. Y.; Gallicchio, E.; Friesner, R. A.; Levy, R. M., Solvent models for 

protein–ligand binding: Comparison of implicit solvent Poisson and surface 

generalized Born models with explicit solvent simulations. Journal of Computational 

Chemistry 2001, 22 (6), 591-607. (b) Still, W. C.; Tempczyk, A.; Hawley, R. C.; 

Hendrickson, T., Semianalytical treatment of solvation for molecular mechanics and 

dynamics. Journal of the American Chemical Society 1990, 112 (16), 6127-6129. 

72. (a) Luo, R.; Moult, J.; Gilson, M. K., Dielectric screening treatment of electrostatic 

solvation. The Journal of Physical Chemistry B 1997, 101 (51), 11226-11236. (b) 

Mehler, E.; Eichele, G., Electrostatic effects in water-accessible regions of proteins. 

Biochemistry 1984, 23 (17), 3887-3891. 

73. (a) Davis, M. E., The inducible multipole solvation model: A new model for solvation 

effects on solute electrostatics. The Journal of chemical physics 1994, 100 (7), 5149-

5159.  (b) David, L.; Field, M. J., Adapting the inducible multipole solvation model 

for use in molecular dynamics simulations. Chemical physics letters 1995, 245 (4), 

371-376. 

74. Eisenberg, D.; McLachlan, A. D., Solvation energy in protein folding and binding. 

1986. 

75. Ooi, T.; Oobatake, M.; Nemethy, G.; Scheraga, H. A., Accessible surface areas as a 

measure of the thermodynamic parameters of hydration of peptides. Proceedings of 

the National Academy of Sciences 1987, 84 (10), 3086-3090. 

76. (a) Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; 

Sitkoff, D.; Honig, B., New model for calculation of solvation free energies: 

correction of self-consistent reaction field continuum dielectric theory for short-range 

hydrogen-bonding effects. The Journal of Physical Chemistry 1996, 100 (28), 11775-

11788. (b) Hünenberger, P. H.; Helms, V.; Narayana, N.; Taylor, S. S.; McCammon, J. 

A., Determinants of ligand binding to cAMP-dependent protein kinase. Biochemistry 

1999, 38 (8), 2358-2366. (c) Simonson, T.; Bruenger, A. T., Solvation free energies 

estimated from macroscopic continuum theory: an accuracy assessment. The Journal 

of Physical Chemistry 1994, 98 (17), 4683-4694. (d) Rapp, C. S.; Friesner, R. A., 



63 
 

Prediction of loop geometries using a generalized born model of solvation effects. 

Proteins: Structure, Function, and Bioinformatics 1999, 35 (2), 173-183. (e) Fogolari, 

F.; Esposito, G.; Viglino, P.; Molinari, H., Molecular mechanics and dynamics of 

biomolecules using a solvent continuum model. Journal of computational chemistry 

2001, 22 (15), 1830-1842. (f) Pellegrini, E.; Field, M. J., A generalized-born solvation 

model for macromolecular hybrid-potential calculations. The Journal of Physical 

Chemistry A 2002, 106 (7), 1316-1326. (g) Curutchet, C.; Cramer, C. J.; Truhlar, D. 

G.; Manuel, F.; Rinaldi, D.; Orozco, M.; Luque, F. J., Electrostatic component of 

solvation: comparison of SCRF continuum models. Journal of computational 

chemistry 2003, 24 (3), 284-297. 

77. (a) Hermann, R. B., Theory of hydrophobic bonding. II. Correlation of hydrocarbon 

solubility in water with solvent cavity surface area. The Journal of Physical 

Chemistry 1972, 76 (19), 2754-2759. (b) Chothia, C., Hydrophobic bonding and 

accessible surface area in proteins. Nature 1974, 248 (5446), 338-339. (c) Reynolds, 

J. A.; Gilbert, D. B.; Tanford, C., Empirical correlation between hydrophobic free 

energy and aqueous cavity surface area. Proceedings of the National Academy of 

Sciences 1974, 71 (8), 2925-2927.  

78. (a) Ferrara, P.; Apostolakis, J.; Caflisch, A., Evaluation of a fast implicit solvent 

model for molecular dynamics simulations. Proteins: Structure, Function, and 

Bioinformatics 2002, 46 (1), 24-33. (b) Guvench, O.; Brooks, C. L., Efficient 

approximate all‐atom solvent accessible surface area method parameterized for folded 

and denatured protein conformations. Journal of computational chemistry 2004, 25 

(8), 1005-1014. (c) Weiser, J.; Shenkin, P. S.; Still, W. C., Approximate 

solvent‐accessible surface areas from tetrahedrally directed neighbor densities. 

Biopolymers 1999, 50 (4), 373-380. 

79. Hou, T.; Qiao, X.; Zhang, W.; Xu, X., Empirical aqueous solvation models based on 

accessible surface areas with implicit electrostatics. The Journal of Physical 

Chemistry B 2002, 106 (43), 11295-11304. 

80. Lazaridis, T.; Karplus, M., Effective energy function for proteins in solution. Proteins: 

Structure, Function, and Bioinformatics 1999, 35 (2), 133-152. 



64 
 

81. (a) Haberthür, U.; Majeux, N.; Werner, P.; Caflisch, A., Efficient evaluation of the 

effective dielectric function of a macromolecule in aqueous solution. Journal of 

computational chemistry 2003, 24 (15), 1936-1949. (b) Hassan, S. A.; Mehler, E. L.; 

Zhang, D.; Weinstein, H., Molecular dynamics simulations of peptides and proteins 

with a continuum electrostatic model based on screened Coulomb potentials. 

Proteins: Structure, Function, and Bioinformatics 2003, 51 (1), 109-125. 



65 
 

 

 

 

 

 

CHAPTER 2 

Developing and parameterizing first-order Fuzzy-
Border (FB) continuum solvation model with OPLS-
AA force field and calculating hydration energies of 

small molecules and pKa values of substituted 
phenols 

 

 

 

 

 

 

Part of the material covered in this chapter was also published in the following journal: 

"Calculating pKa values for substituted phenols and hydration energies for other compounds 

with the first‐order fuzzy‐border continuum solvation model."  

Sharma, Ity and George A. Kaminski, Journal of computational chemistry 33.30 (2012): 2388-

2399. 

 

Portion of this work was also presented at the following meeting: 

“Developing first-order continuum Fuzzy-Border solvation model and applying for calculating 

pKa values of substituted phenols and hydration energies of small molecules.” 

Ity Sharma, George A Kaminski, American Chemical Society (ACS), 244th ACS National 

Meeting & Exposition - August 19-23, 2012, Philadelphia , USA, 2012 



66 
 

2.1 Introduction 

Since many organic, physical and almost all biophysical and biochemical processes take place in 

water, an accurate and efficient representation of the solvent is crucial in computer simulations of 

such systems. Some properties simply cannot be addressed without having an adequate water 

model for fundamental reasons. Calculating pKa values is one example of such simulations. 

Accurate assessment of acidity constants is both an important and a challenging task. Success of 

many applications depend on robustness of these calculations, including those in pharmaceutical 

industry and related to protein-ligand binding in general, as protein structure and function depend 

on the states of ionizable residues. At the same time, the problem of calculating pKa values 

correctly is not trivial as it involves finding a careful balance between two components of almost 

equally large magnitude, the bond breaking (gas-phase) deprotonation energy and the energy of 

the ionic hydration. Therefore, utilizing a good model for the surrounding water is crucial in pKa 

calculations.  

 

There are two main ways to simulate aqueous environment around a solute. One of them consists 

of representing water molecules explicitly. While this method has proved to be successful in a 

number of studies, it suffers from one significant drawback. Even a small molecular system has 

to be surrounded by hundreds of water molecules, and this number grows rapidly as the system 

protein size increases. There are also other issues which may preclude use of an explicit 

solvation model for particular tasks, for example, the need to approximate an essentially 

infinitely large bulk solvent with a finite number of solvent molecules.  

 

This is why continuum solvation models have proven to be of great help in assessing solvation 
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free energy. Our lab is just one of those utilizing the benefits of such models, and we have been 

able to do so in a number of projects, including those which involve calculating acidity constant 

values for both proteins and smaller molecular systems.
1-3

  

 

The two most common continuum solvent models in the surface formulation are the Poisson-

Boltzmann and the Generalized Born models. In both the models, the whole space is divided into 

the part occupied by the solute and the rest of the space which is taken up by the solvent. The 

interface between these two parts of the space is assumed to have a certain charge density. The 

electrostatic component of the solute-solvent interactions is assumed to be the most important 

one. The Poisson-Boltzmann continuum solvation technique is based on the Poisson-Boltzmann 

equation which relates the electrostatic potential to the integral containing this surface density 

over the interface. In turn, this field affects the surface density itself, as any two different points 

of the surface polarize each other, and the resulting formalism leads to a self-consistent equation 

not entirely dissimilar from the regular electrostatic polarization equation.
4
 While the above 

method permits the exact answer to the problem of finding the electrostatic potential of the 

solvent as interacting with the solute, and thus finding the exact value of the solvation energy, a 

more approximate Generalized Born formalism can also be used.
4
  

 

The Poisson-Boltzmann approach relies on solving the corresponding equations on a numerical 

grid, and some versions of Generalized Born model use a grid to compute effective Born radii. 

This can and does lead to two kinds of problems. First, even a small movement of a solute can 

lead to generation of a new grid, in which a point is added, omitted or significantly shifted, 

depending on the specific solute geometry and the rules applied in grid building. This leads to a 
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noise in the solvation energy which can be as high as several kcal/mol, which presents obvious 

problems in energy minimizations and thermodynamic sampling, especially molecular dynamics, 

because of the non-smoothness of the solvation energy as a function of the solute coordinates. 

The second problem arises from the fact that convergence of the self-consistent Poisson-

Boltzmann problem is not always achieved automatically on a numerical grid. Methods have 

been suggested to address the above issues. For example, the numeric Poisson-Boltzmann 

solution can be sought on a fixed equally spaced grid which is built independently of the solute 

coordinates.
5
 Smoothing, antialiasing and careful choosing of the grid parameters can also be 

employed to ensure convergence.
5,6 

 

The Fuzzy-Border (FB) continuum solvation methodology combines the following two features. 

First, the above mentioned solutions are followed making use of a fixed-position equally spaced 

three dimensional grid with position of the nodes not dependent on the solute coordinates. 

Second, an approximation to the full-scale Poisson-Boltzmann procedure is used which is similar 

to fast second-order polarization technique for solutes and explicit solutions and pure liquids 

developed and tested in our lab.
7,8a

 It truncates the self-consistent procedure of solving the 

complete Poisson-Boltzmann equation at either the first or the second iteration. While this 

method increases the computational speed as compared to the full-scale Poisson-Boltzmann 

formalism, its main advantage in the case of applying it to a continuum solvent is in reducing the 

self-consistent problem to an analytical one. The resulting model, while being an approximation 

as compared to the true Poisson-Boltzmann technique, is still functionally closer to reproducing 

the true many-body nature of the solvation energy than the Generalized Born method.  

It is also important to mention that FB method is distinct enough from the other continuum 
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solvation techniques available from other research groups. Unlike the PCM models,
9
 it is geared 

toward use with empirical force fields and not quantum mechanics. It contains no conductor-like 

screening of COSMO
10

 and is not based on the Generalized Born methodology of the SMx 

models.
11

 Moreover, while there have been successful attempts in noise reduction in Poisson-

Boltzmann calculations by using a fixed grid or smoothing functions,
12

 as well as in Generalized 

Born models,
13

 it has not been combined with the iteration truncation implemented in the FB 

model to avoid possible convergence problems. This truncation is consistent in spirit with the 

fast polarization technique for explicit all-atom simulations of solutes and solvents developed in 

our lab.
7,8a

 And the differences from the standard Poisson-Boltzmann technique have been 

outlined above. 

 

The first-order version of the FB method, implemented by augmenting POSSIM software suite
8a

 

developed by Dr. Kaminski is applied to calculate pKa values of substituted phenols and to find 

hydration energies of 40 other molecules simulated with the OPLS-AA force field.
14

 The 

accuracy of 0.41 pH units and ca. 0.076 kcal/mol in the acidity constants and the hydration 

energies, respectively is achieved in these simulations. It should be noted that this accuracy is 

achieved with direct fitting to the pKa and hydration energies data. Therefore, it is not claimed 

that the OPLS/FB methodology exceeds in accuracy to the best available quantum mechanical 

techniques, but only that it is physically correct enough to permit such a fitting and to assure a 

reasonable level of parameter transferability.  

 

The rest of this chapter is divided into three sections. Section 2.2 discusses the fixed-charge 

Optimized Potential for Liquid Simulations (OPLS) force field formulation followed by 
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detailed methodology of continuum first-order Fuzzy Border solvation model and protocol 

for calculating absolute acidity constants of molecules. Section 2.3 discusses the results and 

discussions. Conclusions presented in section 2.4 followed by references. 

 

2.2 Methods 

2.2.1 Force Field – Optimized Potential for Liquid Simulations-All Atom (OPLS-AA) 
force field 14 

 

Professor William Jorgensen group has developed fixed-charge OPLS force field and is used for 

benchmarking in many molecular mechanics calculations. In OPLS force field the total energy 

(Etotal ) is evaluated as a sum of bond stretching (Estretch), angle bending (Ebend), torsion energy 

(Etorsion) and electrostatic (Eelectrostatic) and van der Waal (EvdW) interactions evaluated for all the 

atoms in the system (Equation 1). 

 

 (1) 

 

The bond stretching, angle bending functions are represented by the harmonic terms (Equation 

2-3): 

 

 
(2) 

 
(3) 
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 In equation (2) and (3), r, req, θ and θeq denote the actual and equilibrium values of bond lengths 

and angles. Kr and Kθ represent the force constants. 

 

The torsional energy is given by the Fourier series (Equation 4) 

 

(4) 

 

In this intramolecular energy term presented in equation (4),  ϕi is the dihedral angle, V1,   

V2 and V3 are the Fourier series coefficients and f1, f2 and f3 are phase angles. 

 

The non-bonded Coulomb and Lennard-jones interactions between atoms a and b 

separated by three or more bonds is given in equation 5 

 

 

(5) 

 

The non-bonded interactions are also evaluated for intermolecular pairs of atoms to obtain 

intermolecular energy.  

 

(6) 

 

The first term in equation (5) and (6) represents the electrostatic term calculated over all the 

atom pairs. The value of factor fij is 0.0 for 1,2 and 1,3 pairs of atoms belonging to the same 
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valence bond or angle and 0.5 for 1,4-interactions in atoms in the same dihedral. For all the other 

pairs of atoms, fij is set to 1.0. 

 

The van der Waal interactions are calculated by Lennard Jones formalism given by second term 

in these equations. Geometric combining rules used for Lennard-Jones parameters are σij = (σi σj 

)
1/2 

and εij = (εi εj )
1/2 

. In the AA (all-atom) model, for the charges q and the Lennard-Jones terms, 

an interaction site is placed on each atom.   

 

2.2.2. Fuzzy-Border (FB) continuum solvation model 

2.2.2.1 The Electrostatic Component of the Solvation Energy  

 

The overall solvation energy (ΔGsolvation) is calculated as a sum of the electrostatic (ΔGelectrostatic) 

and non-polar terms (ΔGnonpolar): 

 (7) 

The electrostatic part of the energy is calculated by using an approximation to the Poisson-

Boltzmann formalism.
4
 Briefly, the solute-solvent surface can be considered as shown in Figure 

1. 

In figure 1, E1 and E2 are the values of the electrostatic field in the solute and solvent regions 

respectively and n is the unit vector normal to the interface. 

 

                                                                                                 E2  
                                                 solvent                n 
 

                                                 solute 

                                                                  E1  
 

Figure 1: Electrostatic field at the solute-solvent interface. 
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The continuity of the normal component of the electric displacement across the surface requires 

that: 

 

 (8) 

 

In equation (8) ε1 and ε2 stand for the dielectric constants inside and outside of the solute, 

respectively. Setting ε1 =1, Equation 8 can be rewritten as (Equation (9)): 

 

 (9) 

 

According to the Gauss law, 

 

 (10) 

with σ being the surface charge density at the interface. Combining equations (9) and (10), 

 

 
(11) 

 

Because the electrostatic field E1 itself depends on the surface charge density distribution, 

Equation (11) describes a self-consistent problem, just like the general electrostatic polarization 

case. The electrostatic part of the solvation energy can be then found as: 

 



74 
 

 

(12) 

 

In equation (12) ϕ
0
 represents the electrostatic potential created by the charges and/or 

other electrostatic multipoles of the solute only (not by the polarized solvent) and the integration 

is carried out over the whole solute-solvent interface surface.  

When the equation is solved numerically, the surface is represented by a discrete set of 

points i. In this case, Equations (11) and (12) are approximated by Equations (13) and (14): 

 

 
(13) 

 

 
(14) 

 

The electrostatic field E1,i is calculated as (Equation 15): 

 

 

(15) 

 

The first sum is taken over the solute charges (this expression can be easily extended to include 

higher-order multipoles), while the second one goes over the other solute-solvent interface 

points. Rij stands for the vector from point j to point i. Specific details about our choice of the 

numeric grid points will be discussed in the next subsection.  
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The fast polarization approximation, which constitutes an integral part of the Fuzzy-Border (FB) 

model is introduced at this point. Equations (13) and (15) together form a self-consistent 

problem which can be solved iteratively. The first step consists of replacing E1,i with E1,i
0
, the 

field created by the solute only and not by the polarized solute-solvent interface. If we stop at 

this stage, we obtain our first-order approximation. It still contains many-body interactions, since 

the electrostatic field is a vector quantity and it contains contributions from all the solute charges. 

But the problem is now analytical, not self-consistent, and the convergence is no longer an issue. 

If we now recompute the electrostatic field E2,i taking into the account the field created by the 

interface charges using Equation (15), obtain the new charges with the Equation (13), but do 

not perform the next iteration, we obtain the second-order model, which is still safe from the 

electrostatic charges convergence problems since there are only two iterations and magnitudes of 

the charges cannot increase beyond the value they achieve at the first of the second iteration.  

The rest of the formulation of the Fuzzy-Border model is given in the next subsection. 

  

2.2.2.2. Choosing the Numerical Grid to Represent the Solute-Solvent 
Interface 

A fixed cubic three-dimensional equally-spaced grid is used to minimize the noise resulting from 

grid rebuilding after moving a solute atom or a group of atoms. The interface between solute and 

solvent is assumed to consist of points with distances from R-Δ to R+Δ from the solute atom, as 

shown in Figure 2. 
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Figure 2: Schematic depiction of a solvated atom and the solvent grid. 

 

The values of parameters R and Δ can be different for different solute atom types. Only those 

solvent points that were located in the solvent-accessible region were used. Therefore, the overall 

solvation surface is constructed with the knowledge of positions and solvation parameters of all 

the solute atoms. A point is defined as solvent-accessible if there is no solvent atom i which 

would be closer to the grid point than Ri – Δi. Because the “real” radius of the solvation surface is 

Ri and not Ri – Δi or Ri + Δi, the surface points j corresponding to the solute atom i, has weights wj 

associated with them calculated as shown in Equation (16): 

 

 
(16) 

 

Rij in equation (16) is the distance between the solvent grid point and the solute atom, a0,i is a 

parameter which depends on the solute atom type, and the whole weight is maximum at the 

nominal solvation radius Ri  and decreases to zero at distances Ri – Δi and Ri + Δi. Since one grid 

point can be within the solvation surface range of more than one solute charge, several weights 

wji may be needed for the same grid point j and different solute atoms i. 
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The weights are normalized in the following way (Equation 17):  

 






i

ji

i

ji

j
w

w

w

2

 

(17) 

 

The unit normal vector nji for each solute atom i and the grid point j is assumed to be in the 

direction from the solute atom to the grid point. The overall unit normal vector for the grid point 

is then calculated as given in Equation (18):  

 

 
(18) 

 

The overall FB continuum solvation formalism can now be written. Once the solvation surface 

grid points j are defined as described above, the zeroth-order electrostatic field at those points is 

found as shown in Equation (19):  

 

 
(19) 

 

The summation goes over all the solute points. The first-order FB charge on the grid point j is 

then found as shown in Equation (20): 
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(20) 

 

Ascale is a scaling factor and an adjustable parameter of the theory. The first-order electrostatic 

part of the solvation energy can then be calculated as shown in Equation (21): 

 

 

(21) 

 

If the second-order approximation is to be produced, the first-order electrostatic field is found as 

described in Equation (22): 

 

 

(22) 

 

The additional summation done over the solute-solvent interface point’s k, and Aself being another 

adjustable parameter (with its value being the same for all the grid points). Equation (20) in then 

modified to include the first-order and not the zeroth-order field: 

 

 
(23) 

 

The resulting second-order energy is found as shown in equation (24) in accordance with 

equation (23): 
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(24) 

 

It should also be noted that effect upon the energy of shifting the position of the fixed cubic grid 

by one half of the spacing between the grid points is assessed every time the hydration energy is 

calculated, and the energy is averaged with respect to this transformation.  

 

Finally, the electrostatic part of the energy, regardless of whether it is calculated with the first- or 

second-order model, is multiplied by 332.0657418 in order to obtain the final result in kcal/mol.  

 

This formulation of the electrostatic part of the Fuzzy-Border (FB) method lies between the 

Poisson-Boltzmann (PB) and Generalized Born (GB) models in the sense of being close to the 

physical correctness of PB one. The difference between the FB and PB techniques is clear – the 

former truncates some advanced iterations in the self-consistent procedure which is usually 

involved in solving the equations of the latter one. As far as the GB continuum solvation model 

is concerned, its surface formulation includes two terms:
4
  

 

 
(25) 

 

The second term in equation (25) represents screened pairwise electrostatic interactions: 
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(26) 

 

The first term in equation (25) stands for the single-charge solvation energy: 

 

 

(27) 

It should be noted that this first term contains no reference to electrostatic interactions between 

the charge qk and other charges of the solute (except in an indirect form, by shaping the solute-

solvent interface S). And the value of the Use term is what ultimately defines the Born parameter 

α in equation (26). Therefore, the Generalized Born formalism contains no directly defined 

many-body electrostatic interactions, while the Fuzzy-Border one includes this part of the 

physical picture explicitly as the electrostatic field is calculated with all the solute charges, even 

in the first-order FB model. Thus, we place the FB technique between its PB and GB 

counterparts. 

 

At the same time, it should be emphasized very strongly that such a relation among the physical 

bases of these three methods does not at all mean that the actual accuracy of computing 

hydration energies will be the best with the Poisson-Boltzmann formalism, somewhat worse with 

the Fuzzy-Border method and even worse with the Generalized Born one (as is witnessed by the 

data presented in the next Section of this paper). There are many factors which are affecting the 

accuracy. They include the size of the fitting set, the number of parameters used in the fitting, the 

fitting technique, etc. Generally speaking all physically reasonable models should be able to 
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produce reasonably accurate results for solvation energies of small molecular systems. And our 

aim is, first and foremost, to demonstrate that the Fuzzy-Border technique is in fact one of such 

reasonable and robust approaches. Moreover, the FB model is formulated without the true self-

consistency of the true Poisson-Boltzmann method. Thus, in principle, all the expressions for the 

surface charges can be written analytically. This should make it possible to directly derive 

analytical gradients for this model in the future.  

 

The grid generation for continuum solvation model is based on three steps to compute and 

visualize the solute molecular surface and its interaction with the solvent. Since a molecule do 

not have any definite boundaries, the surface and volume of a molecule can be described as van 

der Waals surface, solvent accessible surface area and molecular surface. The two dimensional 

representation of van der Waals surface, solvent accessible surface area and molecular surface is 

shown in the Figure 3.
15

  

 

 

 

Figure 3: Two dimensional molecular surface representation
15 
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Van der Waals surface of a molecule is the surface area of the atoms represented by spheres of 

van der Waals radius. Solvent accessible surface is the surface generated by rolling a probe of 

radius of a solvent molecule over the van der Waals surface. Molecular or the solvent excluded 

surface is the boundary of contact between the solvent surface and the van der Walls surface.  

The solute as atomic coordinates is placed on three dimensional grid. The size of the grid in the 

three dimensions is held fixed in the simulations. The molecular surface of the solute is 

computed in three steps.  

Firstly, outward marching front is used to compute the van der Waals and solvent accessible 

surface. All the grid cells are considered outside the two surfaces. The volume inside the solvent 

accessible surface area and the van der Waals is marked for each atom in the molecule by 

considering the centers of the cells whose centers fall inside the volume of these surfaces as 

inside as shown in Figure 4.    

 

 

Figure 4: Location of van der Waals and solvent-accessible surface by marking the grid cells
15

 

whose centers fall inside the volume defined by the solvent-accessible surface as inside (shaded 

grid cells). 
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The second step is using inward marching front to mark out the parts inside the solvent molecule 

or the solvent excluded surface. The probe spheres centered in the solvent accessible area are 

found followed by identifying each grid centered in the probe sphere as outside or white as 

shown in the Figure 5. The grid cells that fall in the solvent marked inside in step one are now 

marked as outside 

 

 

Figure 5: The grid cells whose centers fall inside the probe circles are marked as outside (white 

grid cells).
15 

 

The first two steps result in a grid illustrating the volume occupied by solvent excluded surface 

of the molecule. However, the volume occupied by inaccessible interior cavities inside the 

molecule need to be discarded while computing the molecular surface. The third step detect the 

interior cavities inside the molecule using Fast Marching method. This method first builds 

surface enclosing the molecule followed by shrinking the surface with a fixed signed speed. The 

grid cell marked as interior is used as the stopping criterion in the speed function. The evolving 

surface stops completely when in touch with the inside grid cells. In the shrinkage process, a grid 

cell is only visited once by the surface. This Fast Marching Method allows detection of outer 
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surface as well as the inaccessible interior cavities inside the molecule.  

 

2.2.2.3. The Non-Polar Part of the Solvation Energy  

The non-polar part of the solvation energy was calculated as a sum of two terms, one with a 

positive and one with a negative contribution (Equation 28): 

 

 

(28) 

 

The first term contains a sum taken over all the grid points. This is essentially the overall 

solvent-accessible surface area (SASA) contribution which is commonly employed in continuum 

solvation models (see for example Reference 16) adapted to the Fuzzy-Border formalism. The 

second term is calculated with a double summation going over all the grid points j and all the 

solute atoms i. It approximates the attraction part of the Lennard-Jones energy for interactions 

between the solute and solvent atoms. 

  

Once the electrostatic and non-polar terms of the solvation energy are found, the overall 

solvation energy can be calculated according to equation (7). 

  

2.2.3. The general protocol used in the pKa calculations 

The following closed thermodynamic cycle is used in order to calculate the acidity constants 

(Figure 6): 
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Figure 6: Thermodynamic cycle used to calculate pKa 

 

Thus, 

 (29) 

 

 (30) 

 

 (31) 

 

  Finally,  

 
(32) 

 

Because we concentrated on the accuracy of the solvation model in this work, the values of 

ΔG(gas) taken from literature are experimental values. The quantum mechanical values were 

adopted for the molecules whose experimental data was not available. Thus, we were calculating 

the ΔG(aq, AH→A
-
) and ΔG(gas, AH→A

-
) terms in equation (31). They were found as 

differences of the corresponding energies, just as we did in the previous studies described in 

References 1-3 and 17. Moreover, since the proton free energy of solvation ΔGsol(H
+
) has the 
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same value for any molecular system, a carefully determined literature result
18

 of -269.0 

kcal/mol was used. This choice was the same as previous work in our group on calculating 

absolute pKa values for substituted phenols with explicit solvation model and a polarizable force 

field.
17

  

 

Values of the energies G(A
–
), G(A-H), G(Acid

–
), and G(Acid-H) were obtained via geometry 

optimizations with the Fuzzy-Border (FB) model. All the geometry optimizations were carried 

out with our POSSIM software suite
8a,19

. The pKa values were obtained at 298.15 K.  

 

2.3 Results and Discussions 

The different combinations of the values of the solvation parameters were tried but the grid 

spacing was set to be 0.25Å in each dimension. All calculations were carried out for water as the 

solvent. The radius of the solvent molecule was set at 1.4Å, and the value of the dielectric 

constant was ε = 80.4.
20

 All the calculations presented in this chapter were done with the first-

order Fuzzy-Border model. The scaling factor Ascale = 0.07069. The non-polar factor Anp   in the 

part of the non-polar solvation energy which corresponded to the positive contribution associated 

with the solvent-accessible surface area, had the same value of 3.747 for all the solute atoms and 

all the grid points at the solute-solvent interface. Finally, a value of the parameter Δ (the 

“fuzziness” of the border) of 0.25Å was picked for all the atom types considered. 

OPLS-AA force field
14,15

 was used for all the solute parameters employed in this study. The 

calculations were carried out with the POSSIM software
8a

 modified to include the Fuzzy-Border 

(FB) continuum solvent model. The solvation energies were found as: 
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 (33) 

 

In equation (33) E(solvated)  and  E(gas) are the computed energies of the system in the aqueous 

solution and in gas-phase, respectively. Both these energies were obtained by energy 

minimizations, therefore, the resulting calculated hydration energy could differ from the nominal 

solvation energy obtained for the hydrated solute molecule in accordance with the equation (33). 

All the geometry optimizations were completely unconstrained, and when applicable, the lowest-

energy conformations were used.  

The calculated pKa values are listed in Table 1, the related hydration energies are given in Table 

2, and the remaining energies of hydration are presented in Table 3. The values of the hydration 

parameters are shown in Table 4. In addition to calculating the hydration energies with the 

POSSIM/FB formalism, Poisson-Boltzmann (PBF) and Generalized Born (SGB) continuum 

solvent models as implemented in IMPACT software suite
8b,c 

was also used to calculate 

hydration energies for comparison as shown in Table 3.  
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Table 1: Calculated and Experimental Values of Acidity Constants 

System pKa, OPLS/FB pKa, experiment 
a
 

phenol 9.98 9.98 

o-chlorophenol 8.57 8.56 

m-chlorophenol 8.51 9.02 

p-chlorophenol 10.07 9.38 

m-cyanophenol 8.48 8.61 

p-cyanophenol 7.42 7.95 

m-nitrophenol 8.14 8.40 

p-nitrophenol 7.87 7.15 

o-methylphenol 10.02 10.29 

m-methylphenol 9.11 10.08 

p-methylphenol 10.50 10.14 

Average Error 0.41 – 

a
Reference 17 
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Table 2: Values of Hydration Energy for Compounds Related to Phenol, in 

kcal/mol 

System 

Calculated Hydration Energies 

OPLS / Fuzzy-Border 

Hydration Energy, 

Quantum Mechanics 
a
 

Phenol -6.61 -7.21, -7.92 

Phenoxide ion -73.02 -73.26, -73.49 

ortho-chlorophenol 

 
-8.34 -4.20, -4.61 

ortho-chlorophenoxide ion 

 
-64.75 -67.32,-67.58 

meta-chlorophenol 

 
-8.49 -7.16, -7.73 

meta-chlorophenoxide ion 

 
-63.18 -65.83, -66.34 

para-chlorophenol 

 
-7.77 -7.50, -8.08 

para-chlorophenoxide ion -61.54 -67.13, -67.80 

meta-cyanophenol 

 
-17.08 -9.71, -10.48 

meta-cyanophenoxide ion 

 
-65.51 -63.99, -64.55 

para-cyanophenol 

 
-18.05 -10.42, -11.21 

para-cyanophenoxide ion -64.44 -61.35, -62.10 

meta-nitrophenol 

 
-9.20 -9.64, -10.54 

meta-nitrophenoxide ion 

 
-56.71 -63.20, -63.89 

para-nitrophenol 

 
-11.37 -10.65, -11.58 

Para-nitrophenoxide ion -56.44 -57.92, -58.89 

ortho-methylphenol -6.41 -6.60, -7.18 
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ortho-methylphenoxide ion 

 
-73.70 -70.65, -70.91 

meta-methylphenol 

 
-6.46 -7.01, -7.70 

meta-methylphenoxide ion 

 
-75.79 -72.90, -73.26 

para-methylphenol 

 
-6.89 -7.04, -7.72 

para-methylphenoxide ion 

 
-75.71 -73.23, -74.06 

a
Reference 17 
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Table 3: Calculated and Experimental Values of Hydration Energy for Other 

Compounds, in kcal/mol 

Compound 

Hydration Energy, calculated 

Hydration 

Energy, 

Experimental 
a
 

Fuzzy-Border 
Poisson-

Boltzmann 

Generalized 

Born 

CH4 1.936 1.587 1.446 1.9 – 2.0
b
 

C2H6 1.948 1.658 1.674 1.82 

C3H8 2.005 1.760 1.813 1.96 

C4H10 2.118 1.870 1.994 2.08 

iso-C4H10 2.154 1.936 1.966 2.32 

C2H4 1.056 1.332 1.361 1.27 

1-propene 1.512 1.350 1.116 1.27 

1-butene 1.429 1.463 1.228 1.38 

butadiene 0.643 0.870 0.564 0.60 

acetylene –0.224 1.607 –0.076 –0.010 

1-propyne –0.190 0.963 –0.052 –0.310 

1-butyne –0.016 0.732 –0.042 –0.160 

CH3OH –5.100 –5.410 –5.013 –5.11 

C2H5OH –4.989 –5.345 –4.037 –5.01 

CH3COCH3 –3.900 –3.653 –3.709 –3.85 

2-butanone –3.675 –3.564 –3.521 –3.640 

2-pentanone –3.567 –3.251 –2.899 –3.530 
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3-pentanone –3.537 –3.381 –3.636 –3.410 

CH3OCH3 –2.092 –1.537 –1.470 –1.90 

C2H5OC2H5 –1.728 –1.552 –1.765 –1.63 

methyl amine –4.566 –5.104 –2.803 –4.560 

ethyl amine –4.375 –4.309 –3.033 –4.500 

n-propyl amine –4.486 –4.331 –2.309 –4.390 

n-butyl amine –4.173 –5.750 –2.269 –4.290 

dimethyl amine –4.485 –4.533 –3.443 –4.290 

diethylamine –3.879 –3.901 –3.026 –4.070 

ammonia –4.301 –4.839 –0.660 –4.310 

C6H6 –0.866 –1.466 –0.256 –0.870 

toluene –0.933 –1.917 –0.703 –0.89 

C6H5OH –6.612 –6.720 –5.624 –6.62 

CH3CONH2 –9.797 –8.910 –8.349 –9.71 

NMA –10.069 –7.670 –10.637 –10.08 

4-methyl-

imidazole 
–10.243 –11.356 –11.955 –10.25

c
 

3-methyl-indole –5.879 –9.104 –6.088 –5.88
c
 

CH3SH –1.246 –1.423 –0.782 –1.24 

C2H5SH –1.299 –1.045 –0.803 –1.30 

CH3SCH3 –1.528 –1.709 –1.297 –1.540 
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C2H5SC2H5 –1.451 –1.360 –1.133 –1.43 

CH3COOH –6.702 –7.056 –6.051 –6.70 

C2H5COOH –6.448 –6.828 –6.440 –6.48 

Average error 0.076 0.527 0.639  

a
Experimental data are from Reference 19, except where noted. 

b
Reference 23. 

c
Reference 24.  
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Table 4: Fuzzy-Border Hydration Parameters 

  

Atom 

 

OPLS-AA Atomtypes
a
 

 

R , 

Å 

 

 , Å 

 

0a
 

LJA , 

kcal/mol∙ 

Å
6
 

Aliphatic C and C(=O) in 

NMA 

135, 136, 137, 138, 148, 

157, 181, 182, 206, 209, 

210, 217, 235, 242, 505, 

903, 906 

1.900 0.25 0.02748 166.3 

sp
2
 C, alkenes 142, 143, 150 2.015 0.25 0.02748 196.5 

Aliphatic H and H on sp
2
 

carbons 
140, 144, 156, 185, 911 1.357 0.25 0.01034 1.327 

sp C, alkynes 925, 927 2.050 0.25 0.01700 250.0 

H, alkynes 926 1.500 0.25 0.0200 1.327 

Aromatic C 
145, 166, 500, 501, 502, 

506, 507, 508, 514 
2.050 0.25 0.02748 161.5 

Aromatic H 146 1.320 0.25 0.01034 10.00 

Polar H 
155, 168, 204, 270, 240, 

241, 504, 909 
1.300 0.25 0.01034 1.327 

N in amines 900, 901 1.650 0.25 0.00900 262.0 

N in ammonia 127 1.357 0.25 0.00650 122.9 

O, (CnH2n+1)OH, ethers, 

O(H) in carboxylic acids, 

NMA 

154, 180, 235, 268 1.735 0.25 0.02748 118,7 
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O, phenol 167 1.700 0.25 0.02748 143.3 

O
–
 in phenoxide 420 2.690 0.25 0.01734 142.9 

Cl, chlorophenols 264 1.905 0.25 0.00808 250.0 

C (CN) 261 1.300 0.25 0.00600 100.0 

N (CN) 262 1.825 0.25 0.02100 200.0 

O(NO2) 761 1.550 0.25 0.00821 110.0 

N(NO2) 767 1.370 0.25 0.00900 1.327 

O, O(=C) in carboxylic 

acids and acetone 
269, 281 1.750 0.25 0.02748 118.7 

C(OOH) in carboxylic 

acids 
267 1.950 0.25 0.02748 150.0 

C(O), –COO
–
, carboxylate 

ion 
271 1.900 0.25 0.01000 150.0 

O
–
, –COO

–
, carboxylate 

ion 
272 1.700 0.25 0.01800 1.327 

C(=O), acetone 280 2.050 0.25 0.02748 140.0 

N, primary amines 900 1.700 0.25 0.02000 210.0 
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N, acetamide 237 1.870 0.25 0.01800 135.0 

N, NMA 238 1.770 0.25 0.02000 190.0 

NA (–N-H) in 

heterocycles 
503 1.700 0.25 0.02000 167.0 

NB in heterocycles 511 1.850 0.25 0.02000 167.0 

S, thiols 200 2.050 0.25 0.07270 183.8 

S, sulfides 202 2.150 0.25 0.04600 150.0 

a
Atomtypes used in this work, according to in implementation in BOSS, see Reference 15. 

 

2.3.1 Hydration Energies of Benzene, Phenol and Phenoxide and the Phenol pKa 
Value 

Hydration energies of aromatic compounds and the calculation of pKa of phenol required first 

developing parameters for the unsubstituted phenol (Figure 7). The natural course in developing 

aromatic parameters was undertaken by starting with benzene. The final FB hydration radii for 

the benzene carbon and hydrogen atomtypes were 2.050Å and 1.320Å, respectively. The values 

of the parameter a0 for the aromatic carbon and hydrogen atoms were set at 0.02748 and 

0.01034, and these were kept unchanged for all the further development of the carbon and 

hydrogen FB parameters to avoid over parameterization. 
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(a) (b) 

 

Figure 7: Schematic description of a) phenol and b) phenoxide ion simulated with FB solvation 

model and OPLS-AA force field 

 

The best values of the A
LJ

 parameters for the aromatic carbon and hydrogen atoms were found to 

be 161.5 and 10.00 kcal/mol∙ Å
6
. The error in the calculated hydration energy of benzene (–

0.866kcal/mol) as compared with the experimental data (–0.87kcal/mol)
19

 was less than 

0.01kcal/mol. 

  

Then the FB hydration parameters for the –OH group in phenol were produced. The best 

performance was found with the phenol oxygen radius of 1.700Å. The parameter a0 was equal to 

0.02748 (the same as for the aromatic carbons), and the Lennard-Jones factor was 143.3 

kcal/mol∙ Å
6
. For the hydrogen, the values were 1.300Å, 0.01034 and 1.327. Moreover, this set 

of hydrogen parameters was found to be suitable for the other polar hydrogens as well, and the 

only difference in the aliphatic hydrogen was in a slight change in the radius. The error in the 

hydration energy of phenol was only 0.01kcal/mol, with the calculated value of –6.612 kcal/mol 

and the reference of –6.62 kcal/mol.
19 

The next step in our pKa calculations required hydration parameters for the deprotonated phenol, 
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C6H5O
–
, to be developed. We used the OPLS-AA atomtype 420 for the oxygen atom, with the 

Lennard-Jones parameters of σ = 3.15 Å and ε = 0.25 kcal/mol (the O
–
 in CH3O

–
). The hydration 

parameters for the aromatic ring remained unchanged, as only the hydration parameters of 

oxygen were fitted. The following strategy was adopted for the fitting of the parameters. The 

target hydration energy for the ion was chosen so as to lead to the experimental pKa value of 9.98 

pH units
17

 of the unsubstituted phenol. This required the C6H5O
–
 system to have a hydration 

energy of –73.02 kcal/mol with the reference ΔG(gas) of 349.0 kcal/mol.
21

 The –73.02 kcal/mol 

solvation energy for the ion is consistent with the experimental range of –72 to –75 kcal/mol.
17

 

The target hydration energy with the O
–
 radius of 2.690 Å, a0 = 0.01734 and the Lennard-Jones 

factor of 142.9 kcal/mol∙ Å
6 

was obtained.  

 

This lead to the phenol pKa which was exactly same as the experimental value of 9.98 pH 

units. 

 

2.3.2 pKa Values of the Substituted Phenols and Hydration Energies of Related 
Molecules 

The next molecules for which pKa values were calculated contained phenol systems with methyl 

group at ortho- meta- and para positions (Figure 8). In order to demonstrate transferability of our 

hydration parameters and to avoid overparameterization, we decided to produce parameters for 

aliphatic carbon and hydrogen atoms first and then to use them in the methyl phenols as well in 

all the other compounds which contain alkyl groups without any further modifications.  
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(a) (c) (e) 

 
  

(b) (d) (f) 

 

Figure 8: Schematic description of (a), (b) ortho-methylphenol and ortho-methylphenoxide ion, 

(c) (d) meta-methylphenol and meta-methylphenoxide (e) (f) para-methylphenol and para-

methylphenoxide ion respectively simulated with FB solvation model and OPLS-AA force field 

 

The series of species considered contained methane, ethane, propane, butane and iso-butane. The 

solvation parameters for all the aliphatic carbons were kept the same, and the same condition was 

observed for the aliphatic hydrogens. Moreover, we used the same aliphatic carbon and hydrogen 

hydration parameters in all cases when such a group was present, regardless of the chemical 

functionality of the remaining molecule (for example, in the –CH3 groups in methyl phenol, 

NMA and methanol, in the -C2H5 group of ethanol and diethyl ether, the methyl group of the 

toluene molecule, etc.).  

As has been mentioned earlier, the value of Δ was set to be the same for all the atomtypes 
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considered and equal to 0.25Å. The radius of the carbon atom was R = 1.9Å. In the OPLS 

formalism, the Lennard-Jones radius of an atom is 2
1/6

 times one half of the parameter   which 

has a value of 3.5Å for the OPLS aliphatic carbon. Therefore, the Lennard-Jones radius for these 

atoms is 1.964Å. The solvation radius is fairly close to this number. While we did not 

specifically have a target of the Lennard-Jones radii as the solvation radii, it is worth noting that 

they were generally not too different. The value of a0 for the aliphatic carbons in the FB model is 

equal to 0.02748 (the same as for the aromatic carbons and phenol oxygen), and the Lennard-

Jones factor of 166.3 kcal/mol∙ Å
6
. The corresponding hydrogen parameter values were 1.357 Å, 

0.01034 and 1.327 kcal/mol∙ Å
6
.  

 

It can be seen from the data in Table 3, that the hydration energies for methane, ethane, propane, 

butane and iso-butane follow the general experimental trend. Moreover, we correctly reproduce 

the trend of hydration energy in iso-butane and n-butane, which is not always represented 

correctly by continuum solvation models.
19

 The overall average error for the hydration energies 

of the aliphatic hydrocarbons was ca. 0.1 kcal/mol.  

The pKa values for the methyl phenols were in a very good agreement with the experimental 

data. The calculated values for the o-, m- and p-methyl phenols were found to be 10.02, 9.11 and 

10.50 pH units, respectively, with their experimental counterparts being 10.29, 10.08 and 10.14 

units. Therefore, the general trend of the m-methyl phenol being more acidic was followed 

(although our p-methyl phenol is somewhat more basic than it should be), and the overall error 

for these three acidity constants was 0.53 pH units, well within the range for which meaningful 

comparison with experiment. Moreover, it should be explicitly noted that no specific fitting for 

methyl phenols was carried out, with the hydration parameters taken directly from the 
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unsubstituted phenol calculations and the alkane hydration energy fitting. This attests to the 

robustness of our methodology and portability of the produced parameter values, which is 

especially important for the aliphatic groups which are present in a variety of compounds.  

 

The next series of the compounds for which we calculated pKa values were the o-, m-, and p-

chlorophenols. In this case, the hydration parameters for the chlorine atom were fitted 

specifically to reproduce the experimental acidity constants of these substituted phenols (Figure 

9).  

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 9: (a) ortho-cholorophenol (b) meta-chlorophenol (c) para-chlorophenol and their 

respective phenoxide ions (d)-(f) simulated with Fuzzy-Border continuum solvation model. 

 

The parameter fitting has led to the following final values of the Cl
-
 hydration parameters: R = 
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1.905 Å, a0 = 0.00808 and the A
LJ

 = 250.0 kcal/mol∙ Å
6
. The final calculated pKa values were 

8.57, 8.51 and 10.07 pH units for the o-, m-, and p-chlorophenol, respectively. The experimental 

counterparts are 8.56, 9.02 and 9.38 units.
17

 The average error is just under 0.40 pH units, and 

the calculated value of the acidity constant generally follows the experimental trend of growing 

from the ortho- to para-compound. In the case of m- and p-cyanophenols (Figure 10) we also did 

the substituent (-C≡N) hydration parameter fitting with the explicit goal of reproducing the 

experimental pKa values of these substituted phenols.  

  

(a) (c) 

  

(b) (d) 

Figure 10: Schematic description of (a), (b) metacyanophenol, metacyanophenoxide ion and (c) 

(d) para-cyanophenol and para-cyanophenoxide ion respectively simulated with the FB 

continuum solvent model. 

 

The final values of the parameters for the carbon and nitrogen atoms were R = 1.300 Å, a0 = 
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0.00600 and the A
LJ

 = 100.0 kcal/mol∙ Å
6
 and R = 1.825 Å, a0 = 0.02100 and the A

LJ
 = 200.0 

kcal/mol Å
6
, respectively. The calculated values of the acidity constant for the m- and p-

cyanophenols were 8.48 and 7.42 pH units (as can be seen from the data in Table 1). These 

values have the same relative order as the experimental numbers of 8.61 and 7.95 pH units
17

 and 

the average error is 0.33 units.  

The last set of the substituted phenols which we considered was the m- and p-nitrophenols 

(Figure 11).  

  

(a) (c) 

  

(b) (d) 

 

Figure 11: Schematic description of (a), (b) meta-nitrophenol and meta-nitrophenoxide (c) (d) 

para-nitrophenol and para-nitrophenoxide ion respectively simulated with parameterized FB 

model. 

 

The experimentally measured pKa values for m- and p-nitrophenol are 8.40 and 7.15 pH units 
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respectively.
17

 The N and O hydration parameters for the nitro group was fitted to obtain the 

values of the acidity constants of 8.14 and 7.87 units. Therefore, the para- isomer is more acidic, 

in agreement with the experiment, and the average error is 0.49 pH units. The values of the 

solvation parameters for the nitrogen and oxygen atoms in the nitrogroup are R = 1.550 Å, a0 = 

0.00821 and the A
LJ

 = 110.0 kcal/mol∙ Å
6
 and R = 1.370 Å, a0 = 0.00900 and the A

LJ
 = 1.327 

kcal/mol∙ Å
6
, respectively. 

The average error in the pKa values of the substituted phenols, as calculated with the 

Fuzzy-Border model, is only 0.41 pH units. This is comparable with the best quantum error of 

0.38 units for these molecules
17

 and is better than some lower-level quantum mechanical data 

from the same reference. Of course, a direct comparison of these two sets of data would not be 

appropriate. A big advantage of the QM calculations is that they were performed without any 

specific refitting for the pKa calculations, and many of our hydration parameters were fitted to 

reproduce the pKa values (though even in these cases the relative order of pKa values of phenols 

with substituents in different positions was still reasonably good, thus we can assume at least 

some transferability of the parameters in every single case). The values of the parameters R, a0 

and A
LJ

 were fitted for the following atomtypes: the O
-
 in phenoxyde, Cl atom, carbon and 

nitrogen of the –C≡N group, as well as nitrogen and oxygen atoms in –NO2. The results have 

clearly demonstrated that our Fuzzy Border model can, with proper fitting of the parameters, 

reproduce magnitudes and relative orders of the absolute acidity constants rather well. 

 

Moreover, listed in Table 5 are the pKa values for the unsubstituted phenol and para-

chlorophenol, as calculated with the Fuzzy –Border continuum solvation model in this work and 

calculated with the explicit aqueous solvation.
16

  



105 
 

Table 5: pKa Values for Phenol and p-chlorophenol  

 

 

System 

pKa 

Modified OPLS
a
, 

explicit solvent 

OPLS/FB 

(this work) 

 

QM
b
 

 

Experiment
b
 

 

Phenol 
4.50 9.98 9.88/10.23 9.98 

p-chlorophenol –1.06 10.07 9.84/9.77 9.38 

 

Average Error 

 

6.90 

 

0.35 

 

0.28/0.32 
– 

a
Reference 16. 

b
Reference 17.  

 

Both sets of the results were obtained for the OPLS-AA solute model. It can be easily seen that 

the explicit solvent simulations produce a much greater average error of 6.90 pH units, while the 

FB model permits to reduce the deviation to the average of only 0.35. Although, once again, this 

is achieved by the specific pKa-targeted fitting of the solvation parameters, this is an additional 

reason to believe that the Fuzzy-Border model will be a useful tool in modeling of hydrated 

molecular systems described by the generally very successful OPLS-AA force field.   

 

The gas-phase deprotonation energies for the phenol and substituted phenol molecules used in 

this work are given in Table 6. 
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Table 6: Gas-Phase Deprotonation Energies for the Phenol Systems and Propanoic and Butanoic 

Acids, in kcal/mol  

Molecule Deprotonation Energy Source 

Phenol 349.0 Reference 21 

o-chlorophenol 337.1 Reference 17 

m-chlorophenol 335.3 Reference 17 

p-chlorophenol 336.5 Reference 17 

m-cyanophenol 329.0 Reference 17 

p-cyanophenol 325.5 Reference 17 

m-nitrophenol 327.6 Reference 17 

p-nitrophenol 324.8 References 17 and 21 

o-methylphenol 349.95 Reference 25 

m-methylphenol 350.75 Reference 25 

p-methylphenol 352.13 References 21 and 25 

propanoic acid 347.20 Reference 26 

butanoic acid 347.26 Reference 27 

 

2.3.3. Hydration Energies for the Non-Phenol Compounds 

Finally, the results of producing parameters for other compounds not related to the above pKa 

calculations for the substituted phenols are reported here.  

The four alkenes, ethylene, 1-propene, 1-butene and butadiene were simulated. The hydration 
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parameters for the hydrogen atoms were adopted directly from the alkanes and not refitted in any 

way. The sp
2
 carbon parameters were slightly different from those for the alkane carbons, with R 

= 2.015 Å, a0 = 0.02748 and the A
LJ

 = 196.5. The resulting hydration energies are listed in Table 

3. It can be seen that the general agreement with the experimental data is good, the average error 

is only 0.14 kcal/mol, and the only mismatch in the order of these calculated solvation energies is 

observed for the ethylene, which is less hydrophobic than 1-propene (1.056 kcal/mol vs. 1.512 

kcal/mol), while their experimental solvation energies are the same within 0.01 kcal/mol.
19

  

 

The hydration parameters for the following alkynes: acetylene, 1-propyne and 1-butyne were 

also produced. In this case, solvation parameters for both the sp-hybridized carbons and for the 

hydrogens were refitted. The values for the carbon and hydrogen atoms are, respectively: R = 

2.050 Å, a0 = 0.01700 and the A
LJ

 = 250.0 and R = 1.500 Å, a0 = 0.02000 and the A
LJ

 = 1.327. As 

can be seen from the data in Table 3, the average error in the solvation energy for these 

compounds is 0.16 kcal/mol.  

 

Methanol and ethanol were simulated to represent aliphatic mono-alcohols. As shown in Table 3, 

the average error is only ca. 0.015 kcal/mol, with the trend of methanol being solvated better by 

about 0.1kcal/mol reproduced correctly. The solvation radius of the oxygen atom was 1.735Å. 

This correlates well with the OPLS-AA Lennard-Jones radius of 1.751Å for this atomtype.  

As was mentioned above, all the polar hydrogen atoms have the same set of the first-order FB 

hydration parameters for OPLS solutes. Such atoms are assigned a van-der-Waals radius of zero 

in the OPLS-AA force field. The methanol and ethanol OH hydrogen was given a hydration 

radius of 1.3Å in our model.  
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The next class of compound that we considered was that of ketones. We simulated hydration for 

acetone, 2-butanone, 2-pentanone and 3-pentanone. As with all the other cases, the hydration 

parameters for analogous atoms in these systems were not dependent on the specific substance 

(thus, for example, the oxygen in acetone had exactly the same set of FB parameters as the 

oxygen atom in 3-pentanone). Moreover, the oxygen parameters were rather similar to those of 

the alcohols. The hydration radius of the ketone oxygen was slightly larger than that of the 

aliphatic alcohols (1.75 Å vs. 1.735 Å), otherwise the parameters were the same. The overall 

average error in the ketone hydration energies, as compared with their experimental 

counterparts,19 was just 0.065 kcal/mol. And the trend of the slight energy magnitude reduction 

from acetone (calculated solvation energy of –3.900 kcal/mol and experimental result of –3.85 

kcal/mol) to 3-pentanone (calculated and experimental energies of –3.537 kcal/mol and –3.41 

kcal/mol, respectively) was reproduced successfully. Moreover, the success with these 

compounds has demonstrated a good level of transferability of both our ketone and aliphatic 

hydration parameter values.  

 

The dimethyl- and diethyl-ethers were considered next. As can be seen from the table, the errors 

were somewhat greater in this case, though still in the acceptable range, with the both hydration 

energies slightly overestimated, with an average error of ca. 0.15 kcal/mol. At the same time, the 

oxygen solvation parameters were taken directly from the alcohol oxygen, and the methyl and 

ethyl parameters were the same as produced in fitting hydration energies of the saturated 

hydrocarbons. This is an added proof of the robustness of the method. Moreover, the trend in 

reduction of the magnitude of the hydration energy with transition from the dimethyl- to diethyl-

ether was reproduced correctly.  
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The next series of compounds in Table 3 are amines – methyl amine, ethyl amine, n-propyl 

amine, n-butyl amine, dimethyl amine and diethylamine. The solvation parameters for the polar 

hydrogen atoms were the same as for the other polar hydrogens, as discussed above. Only the 

nitrogen solvation parameters were fitted. The resulting values are R = 1.650 Å, a0 = 0.00900 and 

the A
LJ

 = 262.0  As shown in Table 3, the average error in the solvation energies is 0.12 kcal/mol, 

and the trend of the hydration energy magnitude decreasing in this series from methyl amine to 

diethyl amine is generally reproduced. Ammonia nitrogen parameters were fitted separately, with 

the final values of R = 1.357 Å, a0 = 0.00650 and the A
LJ

 = 122.9. Deviation of the calculated 

hydration energy for ammonia (–4.301 kcal/mol) from the experimental value of –4.310 

kcal/mol
19

 is about 0.01 kcal/mol.  

 

The benzene parameters described above were employed together with the parameters for 

alkanes to calculated the hydration energy of toluene, and found it within an error of 

0.04kcal/mol from experiment. This result was obtained with no parameter refitting.  

 

Acetamide and NMA are compounds which are important in their own rite and also have a great 

significance as building blocks of proteins. This is especially true for the NMA, which 

essentially represents the repeating unit in the protein and peptide backbones. Fitting parameters 

for amides often represents a challenge, and it is not unusual to have different parameter sets for 

the acetamide and NMA cases.
22

 Our solvation parameters were the same for similar atoms in 

these two amides except for the nitrogens (which also have different atomtype designations in 

the OPLS-AA). The methyl groups had the standard FB solvation parameters for both the carbon 

and hydrogen atoms. The hydration parameters for the polar hydrogens were also preserved at 
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the same values as for the previously discussed molecule. We have discovered that the aliphatic 

version of the carbon hydration parameters and the aliphatic alcohol values for the oxygen work 

well for the amide C=O group. The only adjusted parameters were those of the amide nitrogen 

atoms. In both the cases, the radii were greater than those for the amines (1.770Å and 1.870Å for 

the NMA and acetamide nitrogens, respectively, compared to the 1.650Å for the R-NH2). As 

shown in Table 3, the average error in the hydration energy of the amides was 0.05 kcal/mol.  

 

In order to include examples of heterocyclic molecules and to have parameters for the histidine 

and tryptophan residues in the potential future development of a FB solvation parameter set for 

peptides and proteins, 4-methyl-imidazole and 3-methyl-indole were fitted. Once again, a good 

transferability of the solvation parameters was observed. All the aromatic carbon and hydrogen 

atomtypes retained the same values as those in benzene and toluene. The same is true with 

relation to the aliphatic carbons and hydrogens in these two molecules and all the other saturated 

hydrocarbon groups. The polar hydrogens had our standard FB polar hydrogen hydration 

parameter values. Only the nitrogen parameter values were refitted, and the parameters for the 

N(H) in both these molecules were the same. The average error in hydration energy for the two 

compounds was less than 0.01 kcal/mol.  

Both the thiol and sulfide molecules, represented by the methane- and ethane-thiol and dimethyl- 

and diethyl-sulfides, respectively, used the standard hydration parameters for the methyl and 

ethyl groups, but the sulfur parameters were different for the two groups of compounds. The 

solvation radii of the both S atomtypes were greater than that of the aliphatic carbon. Values of 

these parameters are listed in Table 4. The average error in the hydration energy was only about 

0.01 kcal/mol.  
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Finally, FB solvation parameters for two acids, acetic (CH3COOH) and propanoic (C2H5COOH) 

were produced. The aliphatic tails had the standard FB parameter values for both carbon and 

hydrogen atoms. In the –COOH groups, the hydration parameters for the –OH part were 

transferred from the FB aliphatic alcohols without change, and the =O atom had parameters 

adopted directly from the acetone oxygen value. The only adjusted parameter set was that of the 

carbon, with the radius slightly greater than that of the aliphatic carbon and the Lennard-Jones 

parameter reduced by ca. 10%. As can be seen from the data in table 3, the resulting average 

error in the hydration energies for the acid molecules was only about 0.02 kcal/mol. Once again, 

this proves, albeit still anecdotal, of the generally good transferability of the FB parameters. 

 
2.3.4 Comparison of Fuzzy-Border Hydration Energies with Poisson-Boltzmann 
and Generalized Born Results  

The Fuzzy-Border (FB) results can be compared with those obtained with the Poisson-

Boltzmann (PBF) and Generalized Born (SGB) formalisms. All the energies are listed in Table 3. 

It can be observed that the average error in the FB solvation energies (0.076 kcal/mol) is 

significantly smaller than those of the PBF and SGB models (0.527 kcal/mol and 0.639 kcal/mol, 

respectively). 

  

The Poisson-Boltzmann continuum solvation gives a somewhat better result than the Generalized 

Born one, as can be expected from the more physically grounded formalism of the former. It 

should be emphasized very strongly that the smaller average error afforded by the Fuzzy-Border 

continuum solvent does not mean that the FB methodology is intrinsically better than the PBF 

and SGB ones. The latter models implemented in IMPACT have been parameterized for a larger 

set of molecules, and thus a somewhat greater error is natural to observe. What we do conclude 
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though is that out technique is robust enough, and, even if extending the currently available 

parameter sets to more classes of compounds does reduce the overall average accuracy, it is still 

likely to stay within the respectable range observed for the Poisson-Boltzmann and Generalized 

Born methods.  

 

To further compare the FB, PBF and SGB results, the values of the electrostatic component of 

the hydration energy computed with these techniques are listed in Table 7.  
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Table 7: Calculated Values of Electrostatic Components of Hydration Energy for Other 

Compounds, in kcal/mol 

 

Compound 

Electrostatic Hydration Energy, calculated 

Fuzzy-Border Poisson-Boltzmann Generalized Born 

CH4 –0.040 –0.043 –0.004 

C2H6 –0.144 –0.098 –0.003 

C3H8 –0.228 –0.123 0.017 

C4H10 –0.288 –0.145 0.086 

iso-C4H10 –0.299 –0.120 0.081 

C2H4 –0.945 –0.642 –0.664 

1-propene –0.511 –0.607 –0.635 

1-butene –0.711 –0.612 –0.553 

Butadiene –1.145 –1.244 –1.199 

Acetylene –1.202 0.000 0.000 

1-propyne –0.853 –0.080 –0.084 

1-butyne –0.821 –0.249 –0.229 

CH3OH –5.575 –6.473 –7.269 

C2H5OH –5.611 –7.193 –5.300 

CH3COCH3 –4.996 –4.988 –5.224 

2-butanone –4.914 –4.942 –5.273 

2-pentanone –4.837 –4.750 –4.857 

3-pentanone –4.887 –4.776 –5.592 

CH3OCH3 –2.776 –2.951 –3.106 

C2H5OC2H5 –2.696 –2.874 –3.186 

methyl amine –2.349 –6.316 –3.309 

ethyl amine –2.439 –5.477 –3.231 

n-propyl amine –2.687 –5.285 –2.737 
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n-butyl amine –2.560 –6.297 –2.721 

dimethyl amine –2.868 –5.082 –3.609 

Diethylamine –2.569 –4.536 –3.088 

Ammonia –3.078 –7.224 –2.158 

C6H6 –2.108 –2.488 –2.508 

Toluene –2.551 –2.970 –2.989 

C6H5OH –5.52 –7.749 –7.521 

CH3CONH2 –8.949 –10.175 –10.791 

NMA –7.650 –8.135 –9.161 

4-methyl-imidazole –7.695 –10.427 –10.989 

3-methyl-indole –4.180 –6.880 –7.529 

CH3SH –4.902 –2.642 –2.303 

C2H5SH –4.667 –2.382 –2.069 

CH3SCH3 –6.253 –3.005 –2.790 

C2H5SC2H5 –5.985 –2.889 –2.549 

CH3COOH –5.294 –8.346 –7.470 

C2H5COOH –5.106 –8.155 –7.975 

Average signed difference 

from FB 
– –0.662 –0.065 

 

From the comparison of electrostatic component of hydration energy calculated by FB, Poisson 

Boltzmann and Born methods in table 7, the following conclusions can be drawn. Generally 

speaking, the Poisson-Boltzmann electrostatic energy tends to be somewhat more negative than 

the Fuzzy-Border one, with the average signed difference of -0.662 kcal/mol. At the same time, 
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the Generalized Born electrostatic component is on average about the same as the Fuzzy-Border 

one (only 0.065 kcal/mol more negative). At the same time, deviations for particular components 

can be noticeably greater, and even the PBF model does not yield uniformly more negative 

results.  

 

For example, the PBF electrostatic component for the compounds containing sulfur can be about 

two times smaller than that produced with the Fuzzy-Border model. At the same time, all the 

solutes were modeled with the same OPLS-AA force field. Therefore, we conclude that the 

differences in the electrostatic hydration energies given by the three continuum solvent models 

are not representing greater or smaller deviations from a physically correct set of results but 

rather are simply following from differences in fitting techniques employed to produce overall 

hydration energies, and the quality of these overall energies is adequately good for all the three 

methods (as can be seen from the results in Table 3).  

 

2.3.5 Absolute Acidity Constants for Propanoic and Butanoic Acids  

Finally, hydration parameters were fitted for reproducing absolute pKa values of propanoic and 

butanoic acids. These compounds were chosen as relevant in calculating pKa shifts of aspartic 

and glutamic acid residues of proteins (such as those calculated in Reference 1). Relevant results 

are presented in Table 8. The only two atom types for which solvation parameters were fitted are 

the -COO
–
 carbon and oxygen in the deprotonated forms of the acids.  

 

The hydration energies of the protonated propanoic and butanoic acids as calculated with 

POSSIM/FB were equal to –6.443 kcal/mol and –6.197 kcal/mol, respectively (as can be seen 

from Table 8).  
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Table 8: Data and Results from pKa Calculations for Propanoic and Butanoic Acids (Energies 

are in kcal/mol)   

 
Hydration Energy, 

Protonated Form 

Hydration Energy, 

Deprotonated Form 

 

pKa 

System FB
a
 Reference

b
 FB

a
 Reference FB

a
 Reference

c
 

propanoic acid –6.443 –6.480 –77.964 –79.100
b
 4.90 4.87 

butanoic acid –6.197 –6.360 –78.112  4.66 4.83 

a
This work. 

b
Reference 19. 

c
Reference 1.  

 

The hydration energies of propanoic and butanoic acid deviate by an average of only 0.1 

kcal/mol from the experimental numbers. These data were obtained with the same parameters as 

the hydration energies for CH3COOH and C2H5COOH, no refitting was done. The overall values 

of the acidity constants for these acid were 4.90 and 4.66 pH unites (compared to the reference 

4.87 and 4.83 units). The agreement is good, but it was achieved with the direct fitting of the 

parameters for the deprotonated acids, therefore the ultimate quality of this result will have to be 

tested by using the same parameters with other systems in future work. 
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2.4. Conclusions  

The first order Fuzzy-Border (FB) solvation model was applied with the OPLS-AA solute to 

calculate absolute pKa values of several substituted phenols and hydration energies of a number 

of small molecules. The compounds were chosen to represent several classes which are 

important not only in themselves but also as building blocks in protein simulations. The FB 

model was implemented in a modified version of our POSSIM software suite for molecular 

simulations.  

The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH 

units and the average error in the solvation energies was ca. 0.08 kcal/mol. While these results 

were achieved with fitting of the hydration parameters to the specific pKa and hydration energy 

targets, the results still prove that the physical and numerical basis of the model is robust enough 

to permit such a good level of the performance, and the model can be expected to work well in 

further simulations of organic and biophysical systems. The parameter transferability also seems 

to be good.  

 

The features of the FB model include utilizing a fixed three-dimensional grid for finding 

continuum solvation energy and an approximation to the Poisson-Boltzmann formalism which is 

designed to speed up the calculations and, more importantly, to remove the unfortunate potential 

problems which accompany the accuracy of the complete self-consistency of the standard 

Poisson-Boltzmann method and thus to avoid any issues related to convergence of the solvation 

energy. At the same time, the overall FB technique is still closer to the exact electrostatic model 

than the Generalized Born approximation.  
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CHAPTER 3 

Developing and parameterizing first-order Fuzzy-
Border (FB) continuum solvation model with 
Polarizable Simulations Second-Order Interaction 
Model (POSSIM) force field and computing pKa 
values of carboxylic and basic residues of OMTKY3 
protein 

 

 

 

 

 

Portion of this work was also presented at the following meeting: 

“Computing acidity constants for turkey ovomucoid third domain protein using POSSIM 

(polarizable simulations second-order interaction model) force field and Fuzzy-Border (FB) 

continuum solvation model.”  

Ity Sharma and George A Kaminski, 248th American Chemical Society National Meeting & 

Exposition, San Francisco, California, 2014 
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3.1 Introduction 

Structure, stability, solubility, and catalytic functioning of a protein are closely related to proton 

transfer reactions of its ionizable residues and, hence, to their pKa values.  These reactions are 

important since the locations of acid and basic sites on peptides affect the hydrogen bonding in 

the biomolecules and therefore impact their biological activity. The protonation states of 

biomolecules depend on the relative proton affinities of different sites and determining pKa 

values is one way of gaining information on the protonation sites of the biomolecules. 

 

Evaluation of pKa values of protein residues are of particular interest in pharmaceutical 

applications and designing more robust industrial enzymes that are stable over a wide pH ranges. 

The pKa values of ionizable functional groups such as –COOH, -SH, phenol, -NH3
+
, 

imidazolium and guanidinium are significantly affected by neighboring residues in the protein. 

The experimental determination of pKa for the above mentioned ionizable groups is not always 

straightforward. It is usually obtained by measuring spectroscopic properties of the residue as a 

function of pH. The acidity constants of amino acids with ionizable groups such as -SH and 

phenolic-OH (cysteine and tyrosine) can be measured using UV/vis spectroscopy.
1
 For other 

amino acids, NMR is used to obtain individual pKa.
2
 However, assignment of NMR chemical 

shifts in proteins is not a trivial task. Therefore, accurate and rapid prediction of acidity constant 

shifts of individual protein residues is very important in computational protein research. 

However, the intrinsically many-body interactions in the protein residue makes it difficult for 

having one best standard technique to calculate these values. The protein conformation and the 

local environment of the residue in the protein affect the pKa shifts of the residues. 
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There are numerous computational approaches to calculate pKa values of proteins and 

protein residues within different proteins.
3-27

 These can be broadly classified into three major 

methods. The first method comprises ab initio and DFT quantum mechanics (QM) to treat the 

residue or the part of protein containing the titrable group and the aqueous solvent as a dielectric 

continuum.
12, 16-18

 This method is limited by the size of the protein that can be simulated quantum 

mechanically, the level of the theory used for quantum calculations and the parameterization of 

continuum solvation model to be employed with the quantum model used. These problems can 

be overcome using combined quantum mechanical/molecular mechanical (QM/MM) methods 

but this solution leads to the need to parameterize the solvation model, the correct choice of QM 

and MM regions and careful modeling of QM/MM coupling.  

 

Second, pKa values and shifts can be evaluated by employing a large database and fitting a linear 

free energy relationship.
22

 This is useful only for cases in which the values are close to the fitting 

data set, and the issue of choosing the optimal way to fit the linear free energy arises. Finally, 

empirical force fields using explicit
11, 13, 25 

or continuum solvent models
2-9, 17-21, 23, 25, 26 

can be 

used to calculate pKa shifts in proteins. The solvation energy and the energy of interaction of the 

residue with its environment can be calculated by a number of techniques. In some cases, the 

“effective dielectric constant” approach is used for simulating the protein. But these methods do 

not always work well, and the value of the dielectric constant for the interior of the protein varies 

significantly, sometimes reaching ca. 20, 
5, 7, 8, 21, 23, 28

 which raises the question of its physical 

meaning and undermines the ability of the method to be adequately applicable to a wide variety 

of cases.  In addition, these calculations include electrostatic interactions of residues separated by 

large distances whereas experimental and theoretical evidence suggests immediate environment 
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of ionizable residue is most (and sometimes exclusively) important in calculating the values of 

acidity constants.
18, 29  

 The standard empirical fixed charge force fields like AMBER and 

CHARMM are widely used for calculating pKa of protein residues. These force fields treat the 

polarization of the solute molecules in the mean-field manner and lack the explicit polarization 

term. Simonson et al
25

 did molecular dynamics simulations to compute pKa shifts of two aspartic 

acid residues (Asp20 and Asp26) in thioredoxin and Asp14 in ribonuclease A using AMBER and 

CHARMM force fields and explicit water and continuum solvation model. The average error 

using the explicit solvent model in these residues was 1.91 and 2.64 pH units respectively with 

calculated 3.2-4.5 unit maximum deviation. These results are not different from the pKa of 

aspartic acid residues (Asp7 and Asp27) in OMTKY3 protein presented in reference 19 using the 

fixed-charge force field. The explicit polarization treatment absent in these calculations is 

necessary to account for all the protein electrostatic interactions and hence accurate 

determination of pKa shifts of the residues.
25

 The pKa values for Asp residues in thioredoxin 

were also calculated with continuum solvation model with an average error of only 1.10-0.81pH 

units which cannot be considered as good as the results using the Polarizable Force Field (PFF) 

and Poisson-Boltzmann continuum solvation model (PBF) in reference 19.    

 

Alternatively the polarization is accounted for in the force fields by incorporating conformation 

dependent charges for proteins for more accurate pKa calculations. In one such pKa calculation 

the authors use the force field with polarized protein-specific charges (PPC) for molecular 

dynamics simulations.
30

 In PPC procedure, protein sub system is simulated using quantum 

mechanics to derive charges by fitting to the electrostatic potential. The error in the pKa of Asp26 

and Asp20 using the above methodology was 0.15 pH unit and 0.73 pH unit respectively. The 
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PPC charges producing accurate results use fixed charges specific for protein structure and 

environment, thus essentially providing tabulated polarization charge adjustment, while explicit 

treatment of polarization achieves the same goal automatically based on physical equations.  

The average error in the pKa of Asp26 and Asp20 calculated using PCC charges were also 

compared to the fixed-charge AMBER force field results with an error of 3.15 pH unit and 1.15 

pH respectively. This show thermodynamic sampling in itself, as in reference 25, is not sufficient 

for reproducing pKa of the protein residues but the adjustable electrostatics plays key role in such 

calculations.  

 

Continuum solvation models have been effectively used to simulate the aqueous environment 

around the solute as they are relatively computationally inexpensive and do not require large 

number of water molecules to be present explicitly. The most popular and accurate implicit 

solvation model is the Poisson Boltzmann (PB) one based on the Poisson-Boltzmann equation. 

The electrostatic potential is usually computed by integration over the solute-solvent interface. 

Both the electrostatic field and the surface density affect each other resulting in self-consistent 

equations similar to the electrostatic polarization equation.
31 

A further approximation of 

essentially the same model is known as the Generalized Born (GB) solvation technique. 

 

The solution of the PB and GB model relies on solving the corresponding equations on 

numerical grid. This results in noise in the solvation energy due to grid rebuilding with the 

movements in the solute. Also, the self-consistent convergence in solving the PB equations is 

sometimes difficult to achieve on a numerical grid with arbitrary parameter values. The above 
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problems can be overcome by using a fixed equally spaced grid independent of the solute 

coordinates
32

 and smoothing, antialiasing and proper choice of grid parameters.
32, 33 

 

Our Fuzzy-Border continuum solvation model
34

 is capable of addressing these issues. It has two-

fold distinguishing features. First, it uses fixed-position equally spaced 3-D grid in which 

coordinates of the solute are independent of the positions of nodes of the grid. Second, an 

approximation to the full scale Poisson-Boltzmann procedure was employed similar to our 

previously developed fast second-order polarization technique for solutes and explicit solutions 

and pure liquids.
35, 36

 This methodology converts the self-consistent equations in the PB (or any 

full-scale polarization technique) model into an analytical one but is closer in reproducing many-

body interactions to the PB than to the Generalized Born one.   

  

In this chapter, the results of previously modified Fuzzy-Border (FB) continuous solvent model 

are introduced, its parameterization for the polarizable POSSIM force field and calculation of 

pKa shifts of residues in OMTYK3. The turkey ovomucoid third domain (OMTKY3) protein was 

chosen since this has been extensively studied experimentally and computationally and its pKa 

shifts have been measured and calculated.
37, 38

 It is a 56-residue protein with five acidic (Asp7, 

Glu10, Glu19, Asp27 and Glu43) and six basic (Lys13, Arg21, Lys29, Lys34, His52 and Lys55) 

ionizable residues. The importance of including many body electrostatic polarizations explicitly 

in empirical force fields has already been demonstrated in calculations such as pKa shifts, 

accurate determination of dimerization energies, modeling of sugar protein binding
39

 and ion 

binding by proteins and small molecules. 
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The force field used for representing the solutes is POSSIM (Polarizable Simulations Second 

Order Interaction Model). It is a combination of inducible point dipole method and the fast 

second-order approach that has been successfully used to increase the speed of simulations by ca. 

an order of magnitude without any loss in accuracy.
36,40,41

 The hydration energies, including 

those used in obtaining the pKa values, are assessed with the modified Fuzzy-Border continuum 

solvation model. The FB approach has been used previously to compute hydration energy of 

small molecules and acidity constants of substituted phenols, but in that work the fixed charge 

OPLS-AA force field was employed for the solutes as discussed in reference34. The fixed-

position grid points in the Fuzzy-Border limit the noise and the first order approximation for 

truncating the solvent polarization energy calculations is consistent with the second-order 

polarization scheme for the solutes and can also be used with any other formalism for the 

explicitly simulated molecules.  Briefly, the modifications of the FB technique introduced is 

included, in addition to parameterizing it for the polarizable POSSIM force field to be used for 

the solutes, changing some general parameter values (for example, the spacing between the grid 

points) and adaptation of the multiple-marching level-set technique
42

 modified for generation of 

the solvent-accessible grid points list suitable for FB calculations. The physical level of the true 

solvent energy approximation in our Fuzzy-Border methodology lies between Generalized Born 

and Poisson-Boltzmann solvation. 

  

3.2 Methods  

3.2.1 Polarizable Simulations Second-order Interaction Model  

 

 Formulation of POSSIM force field 
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Polarizable Simulations Second-Order Interaction Model (POSSIM) force field was developed 

and successfully applied by Kaminski et al for studying biomolecular processes
36,40,41

. The 

polarizable POSSIM force field has an additional electrostatic polarization energy term in 

comparison to the fixed-charge OPLS force field. In general, the total energy of a molecule, Etotal 

is described as sum of electrostatic, van der Waal energy, harmonic bond stretching, angle 

bending energy and torsional energy, equation (1).  

 

 (1) 

 

The electrostatic energy added to the total energy in POSSIM force field includes the sum of 

polarization energy, Epol, and the contribution from interactions of permanent charges, Eadditive, 

equation (2). The total electrostatic energy is computed using point charges and induced point 

dipoles thus including all the interactions between the charge-charge, charge-dipole and dipole-

dipole interactions.  

 

 (2) 

 

The electrostatic polarization energy, Epol is computed with inducible point dipole for the ith 

polarizable site, µi, shown in equation (3). is the electrostatic field due to the fixed atomic 

charges in the absence of the induced dipoles. 
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(3) 

 

The induced dipole moment µi is given as a product of scalar polarizabilites, αi, and the total 

electric field,  as represented in equation (4).  

 

 (4) 

 

The total electric field,  computed as equation (5) includes the field due to both the 

permanent charges and the induced dipoles.  

 

 
(5) 

 

Tij in equation (5) is the dipole-dipole interaction tensor. It is calculated using equation (6) 

where I is the unit tensor and Rij stands for the distance between atomic sites i and j. 

 

 
(6) 

 

From equations (4) and (5), the induced dipole moment on the ith polarizable site is calculated 

as equation (7): 
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(7) 

 

The equation (7) is self-consistent and is usually solved iteratively. The first three iterations lead 

to “first-order” equation (8), “second-order” equation (9) and “third-order” equation (10) 

approximations for the induced dipoles: 

 

 (8) 

 

 
(9) 

 

 
(10) 

 

POSSIM employs the second-order iteration given in equation (9) and has shown to increase 

the computational speed by about an order of magnitude without any compensation in the 

accuracy. This second order expression also makes the equation analytical, thus eliminating the 

danger of polarization catastrophe.  

The total electrostatic energy also includes the pairwise-additive Coulomb fixed charges 

interactions between the atoms i and j: 

 

 
(11) 
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The factor fij is equal to zero for 1, 2 and 1, 3 pairs, (atoms which belong to the same valence 

bond or angle), 0.5 for 1,4 interactions (atoms in the same dihedral angle) and 1.0 for all other 

pairs.  

Another distinguishing feature in POSSIM is the short-distance cutoff parameter, Rcut = 0.8Å to 

reduce unphysical growth of electrostatic interactions due to induced dipoles at distances close to 

each other and to the permanent electrostatic for small interatomic distances Rij. If the overall 

distance between two atoms i and j, Rij, is smaller than sum of these parameters  

 , smoothing function is used represented in equation (12). 

 

 

(12) 

 

For the non-electrostatic part of POSSIM the standard Lennard-Jones formalism for van der 

Waal's energy is used: 

 

 

(13) 

 

Following geometric combining rules are applied for Lennard-Jones coefficients:  εij = (εi . εj)
1/2

 

and  σij = (σi . σj)
1/2

 .  

Standard harmonic formalism is used to calculate bond stretch and angle bend and the torsional 

term is represented in equation (14). 
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(14) 

 

The bond stretch and angle bend terms were adopted from the OPLS-AA force field as 

implemented in BOSS.
43

  

 

 POSSIM Force Field Paramterization 
 

Fitting the potential energy parameters for small molecules starts with producing atomic 

electrostatic polarizabilities. The three-body energies were used as targets as in the previous 

work to fit the polarizabilities. Briefly, the molecule is exposed to two dipolar electrostatic 

probes interacting with hydrogen-bonding sites. Each dipolar probe has charges of magnitude of 

+/- 0.78e that are positioned 0.58Å apart (for the dipole moment to be equal to that of 

nonpolarizable SPC/E water model
44

 of 2.17D). An example of one such molecule with the 

probes is shown in the figure 1. The electrostatic part of the energy is calculated by using an 

approximation to the Poisson-Boltzmann formalism.  
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Figure 1: Calculating three-body energies of methylguanidine using dipolar probe 

 

The target three-body energy is calculated according to equation (15): 

 (15) 

Jaguar software suite
45

 was used to compute the values of the QM energies using the density 

functional theory (DFT) with the B3LYP method and cc-pVTZ(-f) basis set.  The resulting target 

three-body energies were the used to fit the isotropic atomic polarizabilities, αi. The values of 

atomic polarizabilities were chosen so as to minimize the deviation of the energies calculated 

using POSSIM and quantum mechanical DFT three-body energies.   

The next step in parameterization is producing permanent atomic charges and Lennard-Jones 

(LJ) parameters fitted to reproduce quantum mechanical dimerization energies and 

intermolecular distances. The atomic polarizabilities, αi, produced in the previous step are kept 
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fixed. The dimerization energies in case of electrostatically neutral molecule were calculated for 

the homodimer and molecule binding to single water molecule at hydrogen bonding positions. 

The geometries of these dimers were optimized quantum mechanically by LMP2 optimizations 

using the cc-pVTZ(-f) and cc-pVQZ basis sets.  

The torsional parameters in equation (14) were computed for dihedrals in methylguanidine 

molecule as well as for dihedrals in ethylamine and propylamine. These parameters were fitted to 

the constrained geometry optimizations at fixed dihedral angles calculated with LMP2/cc-pVTZ 

quantum mechanical level of theory. 

 

3.2.2 Fuzzy-Border Solvation Model  

The Fuzzy-Border continuum solvation model was employed together with the second-order 

polarization POSSIM force field in calculating protein pKa shifts. This model limits the noise in 

the continuum solvation model using fixed position equally spaced grid points. It also uses first-

order approximation for the solvent polarization developed previously to be consistent in spirit 

with in the second-order POSSIM. 

The solvation energy is calculated as sum of electrostatic and non-polar parts of the solvation as 

given in equation (16): 

 

 (16) 

 

The electrostatic part of the total solvation energy is calculated as an approximation to the 

Poisson-Boltzmann formalism. It includes the integration over the whole solute-solvent interface 

of surface charge density, σ, and the electrostatic potential ϕ
0
 created by the charges of the solute 

only, equation (17). 
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(17) 

 

The surface charge density σ at the interface is given by the self-consistent equation (18) 

as the electrostatic field E1 in turn is dependent on surface charge density distribution. 

 

 
(18) 

 

The numerical solution of these equations leads to the surface being represented by a discrete set 

of points i. This result in set of approximate self-consistent equations (19) and (20) solved 

iteratively. 

  

 
(19) 

 
(20) 

 

The electrostatic field, E1,i is computed as summation of fields produced by solute charges and 

solute-solvent interface points represented in equation (21). 

 

 

(21) 

Rij in this equation represents the vector pointing from j to i.  
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The first term in equation 21 correspond to the summation over all the solute charges whereas 

the second term represents summation for all the solute-solvent interface points. 

 

The fast first order polarization approximation used in Fuzzy-Border model constitutes replacing 

E1,i with E1,i
o 

which is the field created by the solute alone. Although, this does not include the 

field due to the polarized solute-solvent interface, it still contains many-body interactions as 

electric field being a vector quantity includes interactions from all the solute charges. This 

approach converts the self-consistent equations (20) and (21) to analytical one, thus alleviating 

the convergence problem. The second-order FB model will include the field created by the first 

order interface charges (without iterations), thus replacing E1,i by E2,i using equations (20) and 

(21). This second-order model also has no convergence issue as only two iterations are involved 

and there is no increase in the magnitude of charges in the first of the second iteration. 
 
 

The solute-solvent interface in FB model is represented by three dimensional cubic numerical 

grid. We aimed at reducing the noise arising from movement of solute atom or group of atoms by 

employing a fixed cubic three dimensional equally spaced grid. The interface between the solute 

and solvent is assumed to consist of points on the solvent-accessible solute surface with distances 

from R-∆ to R+∆ from the solute atoms (where R would be the distance for the exact location of 

the solute surface accessible by the solvent). Thus, the solvent-accessible surface is “fuzzy”, with 

a non-zero thickness. The surface points j corresponding to the solute atom i has weights wj 

associated with it as the real solvation surface radius is different from points in the R-∆ to R+∆ 

range that are not exactly at R, equation (22): 
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(22) 

 

In equation (22), Rij represents the distance between the solvent grid point and the solute atom. 

The value of the parameter depends on the solute atom type. The weights are normalized and 

the unit vector between the grid point j and solute atom i, nji is calculated. 

The zeroth-order electrostatic field at the surface grid points can now be calculated via 

summation over all the solute atoms, equation (23). 

 

 
(23) 

 

The fuzzy border first order charge on the surface grid point j can be written as in equation (24) 

 

 
(24) 

 

Ascale is an adjustable scaling factor. The first-order electrostatic component of the solvation 

energy in fuzzy-border formalism can now be determined as 

 

 
  (25) 

 

The non-polar part of the total solvation energy is calculated as sum of the two terms. 
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(26) 

 

The first term is the contribution of the solvent accessible surface area and is taken as summation 

over all the grid points. The second term in the above equation approximates the Lennard-Jones 

attraction between the solute and the solvent atoms and is taken in double summation over all the 

solute atoms i and the grid points j. 

The solvent-accessible part of the grid is chosen using a Fuzzy-Border modification of the level-

set method.
42 

Briefly, the technique proceeds in three steps: first, an outward propagation from 

the interior of the solute creates the surface accessible to centers of solvent molecules. Second, 

an inward propagation is used to produce the contact surface (the truly solvent-excluded surface). 

The R referenced above refers to position of this very surface. Finally, another inward 

propagation is employed to identify interior cavities that can be distinguished from the outside 

solvent-accessible space.   

3.2.3 General Scheme for pKa calculations of protein residues  

The pKa shifts
19

 of protein residue can be calculated using pKa values of the reference systems. 

The relative pKa value is computed from the free energy difference for the residue A and its 

acidic or basic reference system (acid or side chain) in aqueous solution. Consider deprotonation 

reaction of acid as given in equation (27): 

        (27) 

The change in the free energy for the above reaction can be written as: 

        (28) 
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The free energy change for the protein residue deprotonation reaction is, equation (29): 

        (29) 

 

The values of the acidity constants for the acid, pKa(acid) and the residue  pKa(A) for the above 

deprotonation process are: 

 
       (30) 

 
       (31) 

 

The difference between the acidity constants for the residue A and the reference system (acid) or 

the pKa shift is calculated as: 

        (32) 

 

 
       (33) 

 

The pKa of the residue A can therefore be written as equation (34): 

 

 
       (34) 

 

The following thermodynamic cycle
13

 can be used to find absolute pKa values of reference acids 

AH with respect to which the pKa shift can be determined: 
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Figure 2: Thermodynamic cycle used to calculate pKa 

 

The energies of all the residues and the acid and basic reference systems, G(A
-
), G(A-H), G(acid

-

), G(A-H)are obtained via geometry optimizations with polarizable simulations second-order 

interaction model (POSSIM) force field and Fuzzy Border continuum solvation model using 

POSSIM software suite.
36,40,46

 The experimental and calculated pKa values listed in this study is 

at 298.15K. The above technique is similar to that used in the previous calculations of pKa shifts 

of acid
19

 and base 
47

 residues of the OMTKY3 protein.  

3.3 Results and Discussions 

3.3.1 POSSIM Force Field Parameterization  

Most of the POSSIM parameters for the pKa calculations of acid and basic residues of OMTKY3 

protein were adopted from the previous work.
36,40,41,48

 New parameters were produced whenever 

they did not exist before.  This included three-body energies, dimerization energies and torsional 

fitting for methylguanidine molecule needed for arginine pKa calculations in OMTKY3 basic 

residues and torsional parameters for C-C-N-H, H-C-C-N dihedrals in ethylamine and C-C-C-N 

dihedral angle in propylamine for lysine pKa calculations.  
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Methylguanidine molecule: Three-Body Energies, Dimerization Energies and 

Torsional Fitting 

The previously established procedure
36,40,41

 was used to fit the electrostatic polarizabilities, 

permanent electrostatic charges, Lennard-Jones and the torsional parameters. All these 

calculations were carried out using our POSSIM software suite. 

Three body energies were first fitted to the QM results to produce atomic polarizabilities. There 

were 6 hydrogen bonding positions of dipolar probes around methylguanidine and fifteen 

possible three-body energies. Four of these dipolar probes were acceptors and two had positive 

point charges at the hydrogen bonding distance from the nitrogen atoms as shown on Figure 3. 

The only fitted polarizability was that for the nitrogen atom with only two covalent bonds.  The 

average absolute error in the three-body energies of methylguanidine was 0.151kcal/mol, which 

is consistent with our previously observed results. 

 

 
Figure 3: Dipolar probes used for calculating three-body energies for methylguanidine. Symbols 

P and N in the probe represent positive and negative charges, respectively. 
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The next step in the parameterization involved reproducing quantum mechanical 

methylguanidinium-water dimerization energies and distances. The Lennard-Jones parameters 

were fitted. The POSSIM water molecule was developed previously.
36

 There were two 

methylguanidine-water dimers, and their geometries were optimized with the LMP2/cc-pVTZ(-f) 

level of theory using Jaguar program.
45

 The geometries of these dimers simulated with POSSIM 

are shown in Figure 4.  

 

The quantum mechanical distances are reproduced well within ca.  0.03 Å and the dimerization 

energies are fitted within the error range of 0.09 kcal/mol (Table 1). 

 

Most of the torsional parameters for methylguanidine were adopted from the methylguanidinium 

ion.
41

 Only the  coefficients for key rotations of C-N-C-N(H) and H-N(H)-C-N torsions were 

obtained by fitting the POSSIM energies to LMP2/cc-pVTZ(-f) quantum mechanical values 

shown in Table 2.  The nonbonded parameters and torsion parameters for methylguanidine are 

given in table 3 and 4 respectively.  
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(a) (b) 

Figure 4: Gas-phase dimers of methylguanidine with water molecule 

 

Table1: Computed dimerization energies (kcal/mol) and distances (Å) of methylguanidine-water 

dimers 

Dimer 

Energy Distance 

QM POSSIM QM POSSIM 

Methylguanidine-water(a) -8.32 -8.21 2.91 2.90 

Methylguanidine-water(b) -6.43 -6.35 

3.24 

3.34 

3.26 

3.04 
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Table 2: Torsional energies of methylguanidine, kcal/mol 

Molecule Dihedral Angle Values Energy, QM Energy, POSSIM 

Methylguanidine 

C-N-C-N(H) 0̊ 0.00 0.00 

 15̊ 3.01 3.39 

 30̊ 12.88 12.77 

H-N(H)-C-N 0̊ 0.00 0.00 

 15̊ 6.41 6.25 

 30̊ 11.55 8.99 

 

In both the cases, the deviation in the torsional fitting was less than 0.1kcal/mol.  

 

Table 3: Nonbonded parameters for methylguanidine in POSSIM force field 

Atom Atom Types 
Charge, 

electrons 
σ, Å ε, kcal/mol α

-1
, Å

-3 

C, (sp
3
) 807 -0.116 3.500 0.066 

0.5069 

 

H(NH2) 1001 0.338 0.0 0.0 
9999.99 

 

C, central 1002 0.310 3.290 0.170 
2.20 

 

N(H) 1003 -0.547 3.440 0.170 
1.40 

 

H(NH), on type 

1003 
1004 0.393 0.0 0.0 9999.99 

N(H) 1006 -0.770 3.350 0.170 
0.90 

 

H(NH), on type 

1006 
1008 0.395 0.0 0.0 9999.99 

N(H2) 1009 -0.693 3.170 0.170 
1.40 
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Table 4: Torsional parameters (kcal/mol) in methylguanidine in POSSIM force field 

Molecule 
 

Dihedral angle 
V1 V2 V3 

Methylguanidine 
C-N-C-N(H) 

 
0.000 7.500 -6.100 

 
H-N(H)-C-N 

 
0.000 6.000 -1.000 

 

Ethylamine and Propylamine molecule: Torsional Fitting 

The torsion coefficients V1 - V3 for amines were produced for CCNH, HCCN in ethylamine and 

CCCN dihedrals in propylamine following the established procedure.
36

 The gas phase LMP2/cc-

pVTZ (-f) QM energies of the conformations were obtained with these dihedral angles restrained 

to their positions. These energies were then used to fit the torsional coefficients for POSSIM. 

The overall RMSD error in the torsional fitting of both the amines was less than 0.1kcal/mol as 

can be seen from data in Table 5. Table 6 represents the torsional parameters in ethylamine and 

propylamine.  

Table 5: Relative energies in kcal/mol, for ethylamine and propyl amine conformations 

Molecule dihedral Angle values Energy, QM Energy, POSSIM 

Ethylamine 

C-C-N-H 60
̊
 0.03 0.00 

 120
̊
 2.34 2.14 

 180
̊
 0.00 0.00 

 240
̊
 1.94 2.14 

H-C-C-N 0̊ 3.32 3.32 

 60
̊
 0.00 0.00 

Propylamine 

C-C-C-N 0
̊
 5.08 4.72 

 60
̊
 0.01 0.02 

 120
̊
 3.61 3.96 

 180
̊
 0.00 0.00 
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Table 6: Torsional parameters (kcal/mol) in ethylamine and propylamine in POSSIM force field 

Molecule 

 
Dihedral angle V1 V2 V3 

Ethylamine 

 
C-C-N-H 0.252 0.100 0.362 

 

 
H-C-C-N 0.000 0.000 0.228 

Propylamine 

 
C-C-C-N 2.724 0.000 0.906 

 

3.3.2 Fuzzy-Border Parameterization  

The numerical grid spacing in each dimension was chosen as 0.40Å in the reported FB model. 

All the simulations using FB model were carried out in water as the solvent. The radius of water 

molecule was taken as 1.4Å and the value of dielectric constant, ε, of water was set at 80.4 as in 

Reference 34. The scaling factor Ascale was set at 0.07069. The value of ∆ or the “fuzziness” in 

the solvation radius was the same for all the atom types at 0.25Å. The nonpolar component of the 

total solvation energy, ∆G(np) has a factor, Anp,  that has the same value of 3.200 for all the solute 

atoms and all the grid-points at the solute-solvent interface. 

 

All the simulations presented in this article are performed with revised first-order Fuzzy-Border 

model. These calculations are done with modified POSSIM software suite including revised FB 

continuum solvation model. POSSIM force field 
36,40,41,46,48

 was used for simulating all the 

solutes in the pKa calculations of both the acid and the base residues of OMTKY3 protein. 

Values of the hydration parameters of the small molecules were produced by fitting to the 

experimental or quantum mechanical solvation energies of these systems. These solvation 

energies are calculated according to equation (35): 

        (35) 
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In equation (35), E(solvated) and E(gas) are the computed energies of the solute molecules in the 

aqueous and the gas phase respectively. Geometry optimizations were carried out, and the lowest 

energy conformer was chosen whenever applicable. The hydration energies of the small 

molecules parameterized with POSSIM force are listed in Table 7. The overall average error in 

the hydration energy of these molecules is 0.136kcal/mol. The fuzzy border hydration paramters 

with POSSIM force field for small molecules are presented in Table 8. 

 

Table 7: Calculated and Experimental Values of Hydration Free Energies in kcal/mol 

 

Compound 

Hydration Energy, 

calculated 

Hydration Energy, 

experimental
a
 

 

Error 

CH4 1.904 1.9 – 2.0
b
  

C2H6 1.736 1.82 -0.084 

C3H8 1.958 1.96 -0.002 

C4H10 2.205 2.08 0.125 

iso-C4H10 2.405 2.32 -0.085 

CH3OH -5.22 -5.11 -0.110 

C2H5OH -4.84 -5.01 0.170 

CH3COOH -6.854 -6.70 -0.150 

C2H5COOH -6.325 -6.48 0.150 

CH3CONH2 -9.74 -9.71 -0.030 

NMA -10.09 -10.08 -0.010 

C6H6 -0.872 -0.870 -0.002 

Toluene -0.936 -0.89 -0.046 

C6H5OH -6.62 -6.62 0.000 

methylamine -4.571 -4.560 -0.01 

ethylamine -4.430 -4.500 0.07 

n-propylamine -3.765 -4.390 0.63 

n-butylamine -3.327 -4.290 0.96 

4-methylimidazole -10.199 -10.250
b
 0.05 

n-propylguanidine -10.958 -10.920
c
 -0.04 

Average error   0.136 
a
Reference 49, 

b
Reference 34, 

c
Reference 50 

 

 



149 
 

Table 8: Fuzzy-Border hydration parameters 

Atom 
OPLS-AA 

atom types 
R, Å ∆, Å a0 

A
LJ

, 

kcal/mol-Å
-6

 

Aliphatic C 

135, 136, 

137, 138, 

148, 157, 

223, 224, 

242, 244, 

235, 274, 

292, 906 

1.952 0.25 0.04000 240.0 

Aliphatic H 140, 156, 911 1.415 0.25 0.04000 0.280 

Aromatic C 145, 166 2.050 0.25 0.04000 128.7 

Aromatic H 146 1.320 0.25 0.04000 12.00 

Polar H 

155, 168, 

240, 241, 

270, 909 

1.200 0.25 0.04000 2.800 

N in amine 900, 901     

O, CnH2n+1, 

carboxylic acids, 

NMA 

154, 236, 268 1.725 0.25 0.04000 115.5 

O, phenol 167 1.750 0.25 0.04000 75.40 

N, acetamide 237 1.960 0.25 0.00600 0.200 

N, NMA 238 1.700 0.25 0.04000 161.8 

C(OOH) in 

carboxylic acids 
267 1.942 0.25 0.04000 70.00 

O, O(=C) in 

carboxylic acids 
269 1.74 0.25 0.04000 57.00 

C(O), -COO
-
, 

carboxylate ion 
271 1.900 0.25 0.02010 78.00 

O
-
,  -COO

-
, 

carboxylate ion 
272 1.530 0.25 0.02010 96.00 

N(RNH3
+
) 287 1.700 0.25 0.01900 13.00 

H(RNH3
+
) 290 1.350 0.25 0.01900 22.00 

N, primary amine 900 1.703 0.25 0.02010 237.7 

NA, heterocycle 503 1.700 0.25 0.04000 228.0 

NB, heterocycle 511 1.750 0.25 0.04000 200.1 

NA, protonated 

heterocyle 
512 1.700 0.25 0.02000 30.00 

H, protonated 513 1.296 0.25 0.01423 1.000 
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heterocycle 

N(H2), 

methylguanidinium 
300 1.703 0.25 0.04000 100.0 

 

3.3.3 pKa values of carboxylic residues of OMTKY3 protein and hydration 
energies of related molecules  

Coordinates of atoms in the five carboxylic residues (Asp7, Glu10, Glu19, Asp27 and Glu43) of 

the serine protease inhibitor turkey ovomucoid third domain (OMTKY3) were obtained from 

Protein Data Bank (PDB ID 1PPF). It has been demonstrated both experimentally and 

computationally that the local environment of a residue plays the most important role in defining 

the acidity constant shift of these residues.
18, 31

 Therefore, only a part of the protein was 

explicitly simulated to compute the pKa shifts. The hydrogen atoms were added with the 

IMPACT software suite while the carboxylic acid group protons that were added manually. The 

experimental pKa values for the acid reference systems propanoic acid (Asp) and butanoic acid 

(Glu) is 4.87 and 4.83 units respectively.
51

 

 

The initial conformations of the five systems (the parts of the protein containing Asp7, Glu10, 

Glu19, Asp27 and Glu43 residues) were obtained from the Reference 19.  Propanoic acid (pKa = 

4.87) was used as the reference pKa model for the aspartic acid residues and butanoic acid (pKa = 

4.83) was used for the glutamic acid residues of proteins respectively. 

 

 The deprotonated and the protonated acid forms for the aspartate and glutamate reference 

system are shown in Figure 5. The protonation of both the available sites of the acid was carried 

and the one with the lower total energy was used for the final pKa calculations. In all the 
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structures shown, terminal carboxylic groups and the hydrogens in the molecular systems were 

kept flexible during the geometry optimizations. 

 

 

Protonated Form Ι 

 

Deprotonated Form 

 

Protonated Form ΙΙ 

(a) 

 

Protonated Form Ι 

 

Deprotonated Form 

 

Protonated Form ΙΙ 

(b) 

Figure 5: (a) Propanoic Acid used as the reference pKa model for aspartate residues (pKa = 4.87) 

(b) Butanoic Acid used as the reference pKa model for glutamate residues (pKa = 4.83) 

 

The pKa calculations of propanoic acid and the butanoic acid required calculating the protonation 

and deprotonation energies of the two acids in the gas and in solution.  

 

First, the hydration parameters of aliphatic carbon and hydrogen atoms were produced by fitting 

to the experimental solvation energies of methane, ethane, propane, butane and isobutane. The 

solvation energies of the molecules were calculated according to the equation35. It can be seen 

from table 4 the calculated solvation energies of alkanes follow the general experimental trend 
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with the overall average error of 0.06kcal/mol. The solvation radius of carbon atom R is 1.952Å, 

which is in agreement with the Lennard-Jones radius in the OPLS formalism. The value of 

Lennard-Jones factor for the aliphatic carbon atoms is 240.0kcal/mol Å
6
. The corresponding 

values for aliphatic hydrogen atoms are 1.415Å and 0.280kcal/mol Å
6
. The value of a0 for both 

aliphatic carbon and hydrogen atoms is 0.04000.  

Next, the alcohols-methanol and ethanol were simulated to produce the hydration 

parameters of oxygen and the polar hydrogen atoms. The average error in the solvation energies 

of these molecules is 0.14kcal/mol. The solvation radius of oxygen atom is R is 1.725Å and the 

Lennard-Jones factor is 115.5 kcal/mol Å
6
.
 
The polar hydrogens in the two alcohols had radius, R 

= 1.200Å and the LJ factor is 2.800 kcal/mol Å
6
. The value of a0 for both oxygen and hydrogen 

atoms is 0.04000. 

Fuzzy-border hydration parameters for C (COOH) and O, O (=C) in carboxylic acids 

were now produced by fitting to the solvation energies of ethanoic and propanoic acid. The 

overall average error in the solvation energies of the two acids – ethanoic and propanoic acid was 

0.154 kcal/mol. The FB hydration radius for carboxylic carbon, C (-COOH), was set to be 

1.942Å. The parameter a0 = 0.04000 and the Lennard-Jones factor was 70.00 kcal/molÅ
6
.  The 

best values of the solvation energies of the acids were obtained with O (=C) radius of 1.740Å, a0 

= 0.04000 and the Lennard-Jones factor as 57.00 kcal/mol Å
6
. These parameters were used to 

calculate the aqueous energy of protonated propanoic and the butanoic acids.  

Fuzzy Border parameters for the carbon and oxygen of the carboxylate ion, (-COO
-
) were 

required to calculate pKa of carboxylic acids. We produced them by fitting to the experimental 

pKa values of the two acids. The carbon radius of carboxylate ion is 1.900Å, and the Lennard-

Jones factor is 78.00 kcal/mol Å
6
. The oxygen atom of the carboxylate ion had the final radius of 
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1.530Å with the Lennard-Jones factor of 96.00 kcal/mol Å
6
. The parameter a0 was set to 0.02010 

for the both the atoms. Summarized in Table 9 are the energies of the protonated and 

deprotonated forms of the reference systems (propanoic acid and butanoic acid) and the 

calculated and experimental pKa values.  

The gas phase deprotonation energies ∆G(gas) for propanoic acid and butanoic acid were 

347.20kcal/mol
50

 and 347.26kcal/mol
51

 respectively.  

 

Table 9: Results from pKa calculations of reference systems of acid residues of OMTKY3 

protein using POSSIM force field and Fuzzy-Border (FB) continuum solvation Model 

System 

Energy,kcal/mol pKa 

Protonated Deprotonated FB
a
 Expt

b
 

Propanoic acid 
gas -23.68 -15.82 

4.20 4.87 
aq -29.86 -94.48 

Butanoic acid 
gas -24.49 -25.85 

5.27 4.83 
aq -29.97 -102.41 

a 
Calculations with POSSIM/FB (this work) 

b 
Reference 19 

 

The overall average error in the absolute pKa of propanoic and butanoic acid was 0.55 pH units. 

These pKa values of the two acids were obtained by direct fitting of the carbon and oxygen atom 

FB hydration parameters for the propanoate and butanoate ions. 

 

For calculating the pKa of protein residues, hydration parameters of other significant 

molecules required are NMA and acetamide. The aliphatic carbon and hydrogen atoms had the 

same solvation parameters as in the alkane molecules discussed above. Also, the hydration 

parameters of alcohol oxygen and polar hydrogens were transferable in these molecules. The 
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only atoms fitted in the two molecules were the amide nitrogen atoms. In acetamide molecule, N 

solvation parameters are 1.960Å, 0.00600 and 0.200kcal/mol where as in NMA they are 1.700Å, 

0.04000 and 161.8kcal/mol. The average error in the solvation energies of the two amides is 

0.02kcal/mol shown in table4. 

 

The computed protonated and deprotonated energies of the carboxylic residues of turkey 

ovomucoid third domain are shown in Table 10.  Fuzzy-Border hydration parameters developed 

for the propanoic and butanoic acids were used without any change.  

Table 10: Results of carboxylic acid residues of OMTKY3 protein computed with Polarizable 

Simulations with Second-Interaction Model (POSSIM) and Fuzzy-Border (FB) continuum 

solvation Model using POSSIM software 

Carboxylic Residues 

OMTKY3 

Energy, kcal/mol 

 

pKa 

 

Protonated 

 

Deprotonated 

POSSIM/FB
a
 Experimental

b
 

Asp7 -120.37 -188.45 2.33 2.67(0.06) 

Glu10 -88.84 -162.57 3.89 4.11(0.09) 

Glu19 -90.93 -165.38 3.36 3.21(0.02) 

Asp27 -119.28 -188.26 1.66 2.28(0.07) 

Glu43 -110.47 -183.64 4.29 4.81(0.10) 
a 
Calculations with POSSIM/FB, this work 

b 
Reference19 

 

The error bars from the experimental results are given in the brackets in Table10. The 

experimental errors are small as compared to the POSSIM/FB results and although the deviations 

of the POSSIM/FB results from experiment can be partly due to the experimental errors, those 

experimental errors are not likely to be responsible for the most of it.  

The effect of two hydrogen bonds with Ser 9 on results for the Asp7 residue can be seen in Table 

10, with the overall energy change (and thus the pKa) being the lowest in the series after asp27. 
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The pKa of Asp7 is 2.33pH unit compared to experimental value of 2.67pH unit. The Glu10 

residue has no hydrogen bonds with neighboring residues. The pKa calculated for this residue is 

3.89pH unit with an unsigned error of only 0.22pH unit from the experimental value. Glu19 

residue shows a hydrogen bond from the hydrogen bonded to nitrogen of the backbone and also 

from the Thr17 residue in the crystal structure. Our model of Glu19 includes the Thr17 residue as 

well as the backbone part of Leu18.
19

 The computed pKa value for this residue is 3.36pH unit 

compared to the 3.21pH unit experimental value. The model of the Asp27 residue and its 

environment used in this study has three intramolecular hydrogen bonds as suggested by the 

PBD crystal structure of this residue. The predicted pKa of Asp27 residue is 1.66pH unit 

compared to the experimental value of 2.28pH unit. The strong electrostatic interactions between 

the carboxyl group and the amide hydrogens are taken into account in the polarizable POSSIM 

and can be seen reproducing pKa of this residue with error of 0.62pH units.  The residue Glu43 

has no hydrogen bonds for its carboxylic group. The pKa value of this residue is 4.29pH unit 

compared to the experimental value of 4.81pH units. All the above results are obtained with 

fitting of the parameters to the pKa values of the target atoms in the reference systems, and 

partial fitting to the protein residues. 
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Asp27 Glu43 
  

Figure 6: Models of the carboxylic acid residues and fragment of backbone of the OMTKY3 

protein and their environment used in this work  

 

Above results can also be compared with the pKa values for the carboxylic residues obtained 

with the OPLS-SGB, OPLS-PBF and PFF-PBF.
19

 These results are summarized in Table 11. 
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Table 11: Comparison between pKa values for carboxylic acid residues of OMTKY3 protein 

calculated in this work with results of previous studies
19

 

System 
OPLS-SGB

a
 OPLS-PBF

a
 PFF-PBF

a
 POSSIM/FB

b
 

pKa Error pKa Error pKa Error pKa Error 

Asp7 8.76 6.09 6.26 3.59 1.87 0.80 2.33 0.34 

Glu10 1.59 2.52 4.95 0.84 4.41 0.30 3.89 0.22 

Glu19 3.06 0.15 4.90 1.69 3.61 0.40 3.36 0.15 

Asp27 14.16 11.88 11.60 9.32 1.66 0.62 1.66 0.62 

Glu43 9.24 4.43 5.79 0.98 4.02 0.79 4.29 0.52 

Average error  5.01  3.28  0.58  0.37 

a 
Reference 19 

b 
Calculations with POSSIM/FB, this work 

 

The average error in the pKa values of carboxylic acid residues is 0.37pH units obtained with 

POSSIM/FB technique. This result is by 0.21 pH units better than with the previous version of 

the polarizable force field for proteins which in itself was a significant improvement over the 

fixed-charges OPLS case. This demonstrates the robustness of the Fuzzy-Border continuum 

solvation model in such calculations. The results also confirm the importance of the explicit 

treatment of electrostatic polarization in reproducing or prediction protein pKa shifts.   

 

3.3.4 pKa values of basic residues of OMTKY3 protein and hydration energies of 
related molecules  

The pKa of six basic residues of OMTKY3 (Lys13, Arg21, Lys29, Lys34, His52, and Lys55) 

were computed using POSSIM force field and FB continuum solvation model. The reference 

model systems for these residues are n-pentylamine (pKa 10.6)
47

 for lysine, by 4-ethylimidazole 
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(pKa 7.55)
47

 for histidine and by n-butylguanidine (pKa 12.48, from methylgyanidine)
47

 for 

arginine.  

The initial conformations for the six basic residues are obtained from the experimental 

OMTKY3 geometry (PDB ID 1omt
37

). These residues were capped with an acetyl group on the 

N-terminus and an N-methylamine group on the C-terminus except for Lys29 which will be 

discussed in the following section. The geometry optimizations of both the protonated and 

deprotonated forms were employed to determine their relative acidity constants. 

 

Lys13, Lys29, Lys34 and Lys55 Residues: Fuzzy Border hydration parameters for amines were 

produced by fitting the nitrogen atom to the amines solvation energies. The primary amines 

chosen were methylamine, ethylamine, n-propylamine and n-butylamine. The solvation 

parameters for the polar amine hydrogen atoms were same as before. The overall average error in 

the hydration energies was 0.42kcal/mol and the trend of decreasing hydration energy with 

increasing carbon chain length was successfully reproduced as shown in table 4. The resulting 

hydration parameters for nitrogen atom are R= 1.703Å, a0 = 0.2010 and A
 LJ

 = 237.7kcal/mol. 

 

The absolute acidity constant of lysine reference system (n-pentylamine) was computed by 

simulating its protonated and deprotonated forms, Figure 7, in gas and aqueous states. 

 

Hydration parameters of atom N and H were produced by fitting to the pKa value of n-

pentylamine. The gas phase deprotonation energy of n-pentylamine used for the calculations is 

212.5956 kcal/mol
54

 The unsigned error in the calculated pKa of n-pentylamine is 0.78 pH units 

as can be seen from Table 12. 



159 
 

   
(a) (b) 

Figure 7: Optimized geometries of the protonated (a) and deprotonated (b) forms of pentylamine 

used as reference system for lysine residues 

 

Table 12: Data and results from pKa calculations of reference system n-

pentylamine of lysine basic residues of OMTKY3 protein using POSSIM force 

field and Fuzzy-Border (FB) continuum solvation Model 

System 

Energy,kcal/mol pKa 

Protonated Deprotonated FB
a
 Expt

b
 

n-pentylamine 
gas 37.61 22.35 

11.41 10.63
c
 

aq -36.83 19.87 
c
 Reference 47 

 

The previously
19,47

 established procedure was followed and only a part of the protein in the 

immediate vicinity of the ionizable residues was used to calculate the pKa shifts. Hydration 

parameters were employed to compute pKa values of the four lysine residues in OMTKY3 

protein without any additional parameterizations.  The terminal functional group of the basic 

residue and the side chains were unconstrained for all the calculations. For Lys13, Lys34 and 

Lys55, there is no hydrogen bond with the other residues, Figure 8. The errors in the calculated 

pKa for Lys13, Lys34 and Lys55 are 0.49, 0.22 and 1.07 pH units, respectively. 
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Lys13 Lys34 Lys55 

Figure 8: Models of the Lys13, Lys34 and Lys55 residues and fragment of backbone of 

OMTKY3 protein used in the reported calculations 

 

Because of the close proximity between the Lys29 and Asp27 residues in the crystal structure of 

OMTKY3, the model for Lys29 includes the sequence of residues Ac-Asp-Asn-Lys-NMe as 

shown on Figure 9.  

  
(a)  (b)  

Figure 9: Lys29 chain geometries (a) protonated and (b) deprotonated Lys29 geometry without 

constraints on side chain after optimization. 

 

Although the side chain in Lys29 has potential hydrogen bonding in the NMR structure, the free 

movement allowed in the side chain in neutral Lys29 structure permitted more accurate 
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calculation of its pKa value.  The distance between the O and N atoms in NMR structure and the 

optimized neutral Lys29 structures are 4.252Å and 5.120Å respectively. The overall error in the 

pKa of Lys29 is an acceptable value of 0.06 pH units. The energies of the protonated, 

deprotonated lysine residues and the pKa values are summarized in Table 13. 

 

Table 13: Results of simulations of basic residues of OMTKY3 protein computed with 

Polarizable Simulations with Second-Interaction Model (POSSIM) and Fuzzy-Border (FB) 

continuum solvation Model using POSSIM software  

System 
Energy, kcal/mol 

pKa, Calculated
a
 pKa, Experiment

b
  Error 

Protonated Deprotonated 

Lys13 -93.30 -38.26 9.41 9.9 0.49 

Arg21 -155.75 -88.75 12.39 12.80 0.41 

Lys29 -321.07 -263.65 11.16 11.1 0.06 

Lys34 -71.13 -15.45 9.88 10.1 0.22 

His52 -103.40 -64.26 (Nε) 7.51 7.50 0.01 

  -22.69 (Nδ)    

Lys55 -86.03 -30.14 10.03 11.1 1.07 
a 
Calculations with POSSIM-FB, this work 

b 
Reference 8 

 

Arg21 Residue: The reference system for Arg21 is n-butylguanidine (pKa = 12.48
47

). The 

POSSIM potential energy parameters produced for methylguanidine were used to compute the 

pKa shift of Arg21.  

 

First the FB hydration parameters n-propylguanidine were produced. The standard hydration 

parameters of alkanes and polar hydrogens produced in this work were retained. Only the 

hydration parameters for the central C atom and the N (-NH, -NH2) bonded to the central C atom 

were fitted to reproduce the solvation energy of n-propylguanidine. The average unsigned error 

in the solvation energy of n-propylguanidine was 0.04 kcal/mol given in table 7.  
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These solvation parameters were used to compute the pKa of n-butylguanidine (Figure 10). 

  
(a) (b) 

Figure 10: Protonated (a) and deprotonated (b) forms of n-butylguanidine. These systems were 

used as reference system for the lysine residues 

 

The computed pKa of n-butylguanidine was 13.12pH units, compared to the experimental result 

of 12.48pH units
47

 shown in table14. 

 

Table 14: Results of simulations of pKa calculations of reference system n-butylguanidine of 

arg21 basic residues of OMTKY3 protein using POSSIM force field and Fuzzy-Border (FB) 

continuum solvation Model 

System 

Energy,kcal/mol pKa 

Protonated Deprotonated FB
a
 Expt

b
 

n-butylguanidine 
gas -0.81 14.06 

13.12 12.48
c
 

aq -55.20 11.91 

c
 Reference 47 

 

The same parameters were also used to compute pKa of Arg21 (Figure 11). 
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Figure 11: Arg21 residue and a fragment of the backbone of the OMTKY3 protein 

The average quantum value of the n-methylguanidine 
55

 gas-phase deprotonation energy was 

used in calculating pKa of Arg21. The error in the pKa of Arg 21 was 0.41pH units.  

 

His52 Residue: 4-ethylimidazole was used as the reference model for calculating pKa shift in 

His52 residue. The solvation parameters of the heterocyclic molecule are required to calculate its 

pKa. First, the solvation parameters of benzene and phenol were produced. The C and H 

hydration radius in benzene are 2.050Å and 1.320Å respectively. The a0 for both the atoms is 

0.04000 and the Lennard-Jones factor is 128.7 kcal/mol and 12.00kcal/mol respectively. The 

average unsigned errror of 0.00kcal/mol was observed in the solvation energy of benzene as 

presented in table4. In case of phenol, the same parameters for aromatic carbon and hydrogen as 

well as polar hydrogen were employed. Only the oxygen atom was refitted. The solvation 

parameters of oxygen in phenol are R = 1.750Å, a0 = 0.04000 and Lennard-Jones factor as 

75.40kcal/mol. The average error in the solvation energy is less than 0.01kcal/mol, table 7.  

The hydration energy of toluene was calculated using the hydration parameters of benzene 

without any further fitting. The overall average error in the toluene solvation energy was 

0.05kcal/mol. 
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There was good transferability of hydration parameters of aromatic carbon and hydrogen for 4-

methylimidazole. Only nitrogen atoms were fitted to the solvation energy. The calculated 

solvation energy of 4-methylimidazole is -10.20kcal/mol compared to the experimental value of -

10.25kcal/mol. The solvation parameters of the nitrogen atoms are 1.700Å, 0.04000 and 

121.7kcal/mol. 

 

The same set of parameters was employed to calculate the energy of deprotonated 4-

ethylimidazole molecule. Since there are two hydrogens covalently bonded to two different 

nitrogen atoms (Nδ and Nε) in the imidazole ring, two deprotonated structures shown in Figure 

12 were simulated for both the His52 residue and the reference molecule 4-ethylimidazole.  

Only the hydration parameters for the nitrogen atoms in the 4-ethylimidazolium were fitted to 

reduce the pKa error, with the final value of the latter being 0.79pH units (Table 15). The gas-

phase free energy of deprotonation was set at 216.6 kcal/mol.
56

 

 

 

 
 

 

(a) (Nδ) 4-thylimidazole (b) 4-ethylimidazolium (c)  (Nε) 4-ethylimidazole 
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(d) (Nδ) histidine (e) histdine (f) (Nε) histidine 

(g)  (h)  (i)  

Figure 12: 4-ethylimidazole, histidine reference system (deprotonated (Nδ) form (a), protonated 

form (b) and deprotonated (Nε) form (c)) and histidine residue capped with acetyl group on N-

terminus and N-methylamine on the C-terminus and fragment of backbone deprotonated (d), (f) 

and protonated (e) 

 

 

Table 15: Results of pKa calculations of reference system 4-ethylimidazole of histidine residue 

of OMTKY3 protein using POSSIM force field and Fuzzy-Border (FB) continuum solvation 

Model 

 

System 

Energy,kcal/mol pKa 

Protonated Deprotonated FB
a
 Expt

b
 

4-ethylimidazole 
gas 18.15 -6.41 (Nε) 4.31 (Nδ)  

8.34 7.55
c
 

aq -54.12 -14.92 ( Nε) -1.72 (Nδ) 
c
 Reference 47 

 

The same parameters were used to compute the acidity constant of His52 (Table 13). 
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The deprotonated His52 structure with hydrogen covalently bonded to Nε has lower energy value 

and was used to determine acidity constant of this residue.  The calculated pKa of His52 residue 

is 7.51pH units compared to experimental value of 7.50pH units. 

 

The pKa results of the basic residues of OMTKY3 produced with POSSIM force field and FB 

continuum solvation model can be compared with the results of previous pKa calculations using 

SGB/OPLS, PBF/OPLS and PBF/PFF (Table 16
47

).   

 

Table 16: Comparison Between pKa Values for Residues of OMTKY3 Computed with Different 

Techniques 

 

System 

OPLS-SGB
b
 OPLS-PBF

b
 PFF-PBF

b
 POSSIM/FB

c
 

Expt
a
 NMR

a
 

pKa 
Error 

Expt 
pKa 

Error 

Expt 
pKa 

Error 

Expt 
pKa 

Error 

Expt 

Lys13 16.7 6.9 9.0 0.8 10.4 0.5 9.4 0.5 9.9 11.2 

Arg21 15.0 - 12.4 - 12.3 - 12.3 0.4
d
 - 12.8 

Lys29 23.4 12.3 17.2 6.0 12.9 1.7 11.2 0.1 11.1 11.2 

Lys34 16.3 6.2 9.9 0.3 9.9 0.3 9.8 0.2 10.1 11.7 

His52 11.8 4.3 11.2 3.7 7.6 0.1 7.4 0.0 7.5 6.2 

Lys55 15.7 4.6 9.5 1.6 10.1 1.0 10.0 1.1 11.1 11.3 

Average  6.1  2.2  0.7  0.4   
a 
Reference 8, 

b 
Reference 47 

c 
Calculations with POSSIM-FB, this work 

d 
Arg21 error reported from NMR value 

 

 

The overall average pKa error in the basic residues using POSSIM/FB is 0.38pH units which is 

by 0.32 pH units more accurate than the previous pKa calculations using PFF force field and PBF 

solvation model
47

. Although these results are produced by fitting to the experimental hydration 

energy and pKa targets of the reference systems, it clearly demonstrates the Fuzzy-Border 

solvation model works well in predicting the protein acidity constants.  
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3.4. Conclusions  

The Fuzzy-Border continuum solvation model was parameterized with POlarizable Simulations 

Second-Order Interaction Model (POSSIM) force field to reproduce hydration energies of small 

molecules of biological significance and compute pKa values of carboxylic and the basic residues 

of OMTKY3 protein. The OMTKY3 protein was employed as a validation application. The 

Fuzzy-Border hydration parameters were obtained for small molecules and then transferred into 

the protein residues, and new POSSIM parameters for solutes were produced when required. All 

the simulations were carried out with a new version of POSSIM software including 

implementation of the FB model. 

The distinguishing features of FB model for calculating solvation energies include a 

three-dimensional fixed position grid independent of solute coordinates and an approximation to 

the Poisson-Boltzmann (PB) formalism for assessing solvent polarization. This approximation is 

consistent with the second-order polarization formalism of POSSIM force field.  

The pKa of five carboxylic (Asp7, Glu10, Glu19, Asp27 and Glu43) and six basic (Lys13, 

Arg21, Lys29, Lys34, His52 and Lys55) residues of OMTKY3 were reproduced with an overall 

average error of 0.37 and 0.38pH units, respectively. This was an improvement from the 

previously reported values obtained with the PFF polarizable force field for proteins
19, 47

 and this 

result validates both the Fuzzy-Border solvation model and the complete POSSIM protein force 

field
46

 employed for simulation of the solutes. These errors are produced without explicitly 

fitting to the acidity constants of the residues. The overall average unsigned error in the 

hydration energy of small molecules was 0.136 kcal/mol. 

The presented results demonstrate robustness of Fuzzy-Border continuum solvation 

model in calculating pKa values of both the acidic and the basic residues of the protein. It 
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also offers another piece of evidence that explicit treatment of electrostatic polarization is 

crucial to permit accurate calculations of acidity constants.  
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4.1 Introduction 

Interaction of low power ultrasound intensities with biological tissue is known to have effects 

that has several therapeutic advantages. It can be used in numerous biomedical applications such 

as treatment of cancer
1
, physiotherapy

2
, transdermal drug delivery

3
 and thrombolysis

4
. It is also 

known to facilitate drug delivery by increasing cell membrane permeability.
5
 These applications 

rely on damaging effects of mechanical stress caused by shock waves on biological materials.
6 

The shock waves can be induced by cavitation followed by collapse of cavitation bubbles in 

ultrasound treatments.
7,8

  The cavitation or formation and growth of fluid bubbles are caused by 

decrease in local static pressure in the fluid flow and these bubbles collapse due to rapid change 

in this pressure thus generating highly energetic large amplitude shock waves.  

The thorough understanding of the shock waves and their interaction with the biological soft 

matter is the key to develop new applications such as treatment of complex diseases like cancer 

and many new emerging techniques such as gene therapy and drug delivery.  

There has been significant progress in development of biomolecular modeling and computational 

methods
9
 to have an additional insight into processes such as interactions of shock waves with 

cell membranes
10

 at the molecular level. The large size of the biological molecules and its 

immediate environment such as cofactor, membrane or protein limits the accurate quantitative 

predictions of binding or free energies or dynamical features of subcellular structures. But 

molecular modelling can still provide qualitative picture of changes in the biological systems at 

the all-atom level in response to the external environment. 

Monte Carlo (MC) and molecular dynamics (MD) simulations are the two popularly used 

methods to study computational biology. The quantum mechanical simulations of biological 

molecules offers an accurate means of studying these molecules but is challenging owing to their 
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large size and the need to include its solvent environment or a cofactor bound to protein or 

membrane. The requirement of more computer resources and best level of quantum theory for 

specific application limits the applicability of quantum calculations. The molecular dynamics or 

Monte Carlo methods usually employ the molecular mechanics parameters or empirical force 

fields. Empirical force fields including the explicit treatment of many body interactions in 

particular the electrostatic polarization have become an important tool to simulate the structural, 

dynamic and equilibrium thermodynamic properties of biomolecules. Also, empirical force fields 

with explicit electrostatic polarization energy term offer accurate assessment of energy for larger 

biomolecules.  

Simple model system alanine dipeptide, Ace-Ala-Nme, has been the subject for many 

experimental and theoretical studies of the backbone conformational equilibria in complex 

proteins and peptides. The molecular conformational equilibrium is critical in both the chemical 

and biological phenomenon in the aqueous phase and is widely studied as it plays key role in the 

structural chemistry of chain molecules. The molecular conformation equilibrium in water is 

particularly important in case of biological systems. The external factors such as temperature, 

pressure or solvent affect the equilibrium conformations and this molecular flexibility is 

important in the chemical reactions as well as the biological phenomenon in liquid phase.  

Alanine dipeptide is used as a model molecule to parameterize and validate molecular mechanics 

empirical force fields.
11

 The similarities in the structural features of alanine dipeptide and 

polypeptide backbone are methyl group bonded to carbon atom at α position, two peptide groups 

having NH and CO that can make hydrogen bonds with each other or the polar solvent molecules 

and highly flexible ϕ and ψ backbone dihedral angles representing the rotations around C-N-C
α
-

C and N-C
α
-C-N bonds, figure 1. The peptide unit has another dihedral angle ω representing the 
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rotation around -CO-NH- is generally linear (~180°) due to the partial electron delocalization 

around the C-N bond. The conformations of alanine dipeptide can be approximated by the 

specific backbone ϕ and ψ dihedral angles around the central carbon atom.   

 

 

Figure 1: Alanine dipeptide molecule showing backbone ϕ and ψ dihedral angles. 

 

The conformations of alanine dipeptide have been studied in both vacuum and various solvents 

by theoretical methods such as MO
12

, MD
13

, RISM
14

 and experimental NMR
15

 and Raman
16

 

spectroscopy. These studies suggest the presence of four conformers, intramolecular hydrogen 

bonded equatorial type 7 membered ring C7eq, extended structure in C5, right handed alpha helix 

αR, and polyglycine type PII conformer in solution. The molecular dynamics simulations of 

alanine dipeptide conformers using CHARM22 force field and TIP3P water has shown that PII 

and αR are predominant in the solution 
13(d) 

where as C7eq and C5 are in majority in the 

vacuum.
12-16 

C7eq was also found to be in higher concentration in chloroform than in aqueous 

solution. Overall, C7eq conformer has the minimum energy in vacuum and is probably dominant 

in nonpolar solvents.  
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We have evaluated the effects of pressure on the conformations of alanine dipeptide in water 

using both the POlarizable Simulations Second-order Interaction Model (POSSIM) and fixed 

charge OPLS-AA force field. These simulations were carried out using the POSSIM software 

suite.  

 

4.2 Methods 

Monte Carlo (MC) simulations of alanine dipeptide conformers in solvent were carried out with 

fixed charge OPLS and polarizable POSSIM force fields. The details of OPLS and POSSIM 

force field are discussed in chap2 and chap3 respectively. The simulations of eight alanine 

dipeptide conformers (αL, αR, α
’
, β2, C5, C7eq, C7ax and PII) in aqueous phase are run with 

POSSIM software suite using the fixed-charges OPLS and polarizable POSSIM force fields. 

These simulations are run at a pressure of 0.1MPa and 250MPa. The initial structures of alanine 

dipeptide conformers were set at the quantum mechanical values for (ϕ, ψ) at minimum energy 

points and the simulations proceeded with a) all the degrees of freedom unconstrained and b) all 

degrees of freedom unconstrained except backbone dihedral angles (ϕ, ψ). 

The periodic box of 512 water molecules was generated for alanine dipeptide simulations in 

water. The box size of water is 25.2 × 25.2 × 25.2Å.  

The dipole cutoff of 7 Å was used with quadratic smoothing of the interaction energy to zero 

over the last 0.5 Å before the cutoff distance. The cutoff distance of 8.5 Å was used for solute-

solute, solvent-solvent and solute-solvent charge interactions and 100 Å for the intramolecular 

interactions. In order to ensure convergence, atleast 20×10
6
 configurations of Monte Carlo 

simulations were run. Volume moves were attempted every 260 configurations.  

All Monte Carlo simulations were carried out at temperature of 298K. 
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4.3 Results and Discussions 

Monte Carlo simulations of the left and right handed helical αL and αR, α
’
, sheet type β2, C5, 

seven membered ring C7eq, C7ax and polyglycine type PII alanine dipeptide conformers were 

carried out using POSSIM force field at 298K and pressure of 0.1MPa and 250MPa. POSSIM 

force field has been parameterized previously against the alanine dipeptide molecule using the 

established procedure.
17

 These parameters were used to study the conformational equilibrium of 

alanine dipeptide in water and also to validate the applicability of the parameters in water in 

reproducing the conformers. Simulations with OPLS force field were also done for comparison. 

Secondly, the effect of high pressure on the general stability of the conformers in aqueous state 

along with their two backbone torsion angles ϕ and ψ were also examined with the POSSIM and 

OPLS force field. 

The starting conformations of all the eight conformers of alanine dipeptide (αL, αR, α
’
, β2, C5, 

C7eq, C7ax and PII) with the backbone dihedral angles (ϕ, ψ) at the quantum mechanical values 

were taken from the reference 17.  

 

4.3.1 Fixed dihedral angles (ϕ, ψ) at quantum mechanical values with POSSIM 

force field 

Monte Carlo simulations were carried on all the conformers of alanine dipeptide (αL, αR, α
’
, β2, 

C5, C7eq, C7ax and PII) in water at pressure of 0.1MPa and 250MPa at 298K. The backbone ϕ, ψ 

dihedral angles were constrained at their quantum mechanical values in these simulations. The 

other degrees of freedom of the conformers were completely unconstrained. Figure 2 depicts the 

Monte Carlo simulation of αR conformer in water in NPT ensemble (isobaric, isothermal) at 

298K and 0.1MPa atmospheric pressure, with fixed (ϕ, ψ) dihedral angles.  
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Figure 2: A box used in Monte Carlo simulation of αR conformer in water at 0.1MPa and 298K 

with POSSIM force field using POSSIM software suite 

 

The relative total average energy of the conformers at the two pressures 0.1MPa and 250MPa is 

plotted against the Monte Carlo simulation length as shown in figure 3. The numerical value of 

total free energies of the conformers in figure 3 is not significant for two reasons. Firstly the 

chemical structure of the conformers are different and second the force fields contain terms 

which may lead to different baseline energy values.
18

 Qualitatively, at the pressure of 0.1MPa, 

the order of lowest energy conformers due to high dielectric solvent effects with polarizable 

POSSIM force field is C7ax < C5 < C7eq < αR < β2, < α
’
< PII < αL. As mentioned before, 

theoretical and experimental studies of conformations of alanine dipeptide in different solvents 

suggest the presence of four conformers namely C7eq, C5, αR, PII in aqueous solution at 1atm 

and 298K. The two conformers predominant in aqueous solution out of the above mentioned four 
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conformers are PII and αR where as C7eq and C5 are in majority in the vacuum.
19

 It is also well 

known that molecular mechanical methods do not always reproduce correct geometry of the αL, 

αR, β2, and PII alanine dipeptide conformers very well.
17

 

 

At high pressure of 250MPa, the stability order of the alanine dipeptide conformers is PII > β2 > 

α
’
> αR > C7ax > C7eq > αL > C5 as seen in figure 3(a).  POSSIM force field indicate the increased 

stability of PII conformer compared to αR and other conformers at higher pressure. Figure 3 and 

4 are the plots of total free energy and volume of the eight conformers at the pressures 0.1MPa 

and 250MPa respectively. 

 

 

Figure 3: Plot of relative total energy of conformers (αL, αR, α
’
, β2, C5, C7eq, C7ax and PII) at 

0.1MPa and 250MPa with POSSIM force field 

 

The relative total average volume of the alanine dipeptide conformers at pressures of 0.1MPa 

and 250MPa with POSSIM force field is shown in the figure 4.  The average volume of the 

conformers at 0.1MPa pressure is C7ax < C7eq < PII < αR < β2 < C5 < αL < α
’
.  
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Figure 4: Plot of relative total average volume of conformers (αL, αR, α
’
, β2, C5, C7eq, C7ax and 

PII) at 0.1MPa and 250MPa with POSSIM force field 

 

The structures of alanine dipeptide conformers with the backbone dihedral angles (ϕ, ψ) fixed at 

the quantum values at 0.1MPa pressure with POSSIM force field are shown in the figure 5.  
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Figure 5: Alanine dipeptide conformers (a) PII (b) C7eq (c) αR (d) C5 (e) C7ax (f) β2 (g) αL (h) α
’
    

constrained at the (ϕ, ψ) torsion angles at the quantum mechanical values in aqueous solution at 

0.1MPa and 298K. TIP3P waters are omitted for clarity.  

 

The smallest total average volume is observed for the seven membered ring C7ax conformer 

followed by C7eq conformer in aqueous solution. This is attributed to the intramolecular 

hydrogen bonding (2.404Å in C7eq in figure 5(b)) in the seven membered conformers between 
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the acetyl group carbonyl oxygen atom and the methyl amide group NH hydrogen atom. The 

other conformers lack this intramolecular hydrogen bonding, although the acetyl carbonyl and 

methyl amide NH groups are exposed to the water molecules. The smallest volume of C7ax and 

C7eq conformers in water is considered to be mainly due to the intramolecular hydrogen bonding 

than the solute-solvent electrostatic interactions whereas the compact volume of the most 

extended C5 conformer is due to the preferable electrostatic interactions with the water 

molecules. 
20

 

 

4.3.2 Unconstrained dihedral angles (ϕ, ψ) at quantum mechanical values with 

POSSIM force field 

The additional insight into the difference between the conformational equilibrium of alanine 

dipeptide conformers at the two pressures of 0.1MPa and 250MPa is obtained by running Monte 

Carlo simulations of the conformers with unconstrained (ϕ, ψ) dihedral angles. The plot of 

average (ϕ, ψ) dihedral angles of the conformers as a function of number of Monte Carlo 

simulation length at the pressures 0.1MPa and 250MPa respectively are shown in figure 6 and 7 

respectively. . Each value of the backbone angles ϕ and ψ is averaged over the last 5 × 10
6
 Monte 

Carlo configurations. The straight lines in the figures 6 and figure 7 represent the quantum value 

of the dihedral angles ϕ and ψ respectively. Table 1 lists the ϕ, ψ torsion values obtained with the 

polarizable POSSIM force field for alanine dipeptide conformers at the 0.1MPa and 250MPa 

values of pressure.  
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Figure 6: Averaged ϕ dihedral angle (last 5x10
6 

MC configurations) in alanine dipeptide 

conformers as a function of number of Monte Carlo steps with POSSIM force field.  
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Figure 7: Averaged ψ dihedral angle (last 5x10
6 

MC configurations) in alanine dipeptide 

conformers as a function of number of Monte Carlo steps with POSSIM force field 
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Table 1: Dihedral angles (ϕ,ψ) for the alanine dipeptide in TIP3P water at 0.1MPa and 250 MPa 

pressure with POSSIM force field 

Conformer 
ϕ ψ 

QM 0.1MPa 250MPa QM 0.1MPa 250MPa 

PII -85.0 -79.7 -108.7 160.0 145.0 159.7 

C7eq -81.4 -79.6 -149.6 85.6 -29.2 -37.5 

C7ax 70.3 71.8 161.2 -76.8 -95.8 -173.0 

C5 -160.5 -154.9 -163.3 165.9 166.8 147.2 

β2 -105.1 -73.6 -168.8 10.6 -30.9 12.0 

αR -83.7 -162.0 -76.2 -3.9 57.2 -13.5 

α
'
 -162.0 -154.0 -75.3 -33.2 -18.9 -34.8 

αL 68.3 149.8 88.3 22.4 23.9 15.6 

 

At 0.1MPa, both (ϕ, ψ) torsion angles are fairly stable for PΙΙ and C5 conformers with average 

deviation of (5.3, 15.0) and (5.6, 0.9) from the quantum mechanical (QM) values. For C7eq 

conformer, torsion angle ϕ is more stable than ψ compared to the QM value with the change of 

(1.8, 56.4) degrees. The deviation in the (ϕ, ψ) dihedral angles of αR conformer from the quantum 

mechanical values is (78.3, 53.3).  The overall average deviation of the dihedral angle ϕ and ψ 

conformers at 0.1MPa and 298K from the quantum mechanical values is 26.7 and 22.6 

respectively for POSSIM force field, table 1. 

At higher pressure of 250MPa, the change in the (ϕ, ψ) angles of C7eq, PII and C5 conformer (70, 

8.3), (29.0, 14.7) and (8.4, 19.6) respectively, table 1. 

 

4.3.3 Fixed dihedral angles (ϕ, ψ) at quantum mechanical values with OPLS 

force field 

The alanine dipeptide conformers in water were also simulated with OPLS force field with 

isobaric isothermal ensemble at pressure of 0.1MPa and 250MPa at 298K. The relative total 

average energy of the conformers in water at the pressure of 0.1MPa and 250MPa at 298K is 
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shown in figure 8. All the ϕ, ψ dihedral angles are fixed at the quantum values of the conformers. 

The plot indicate the left handed helix αL conformer as the most stable conformer in aqueous 

solution followed by C7eq, αR and PII  at pressure of 0.1MPa.  The effect of high pressure on the 

stability trend of the alanine dipeptide conformers is not very significant in comparison to the 

POSSIM force field. The order of stability at 250 MPa is αL > C7eq > C7ax > PII > C5 > β2 > αR > 

α
’
. 

 

 

Figure 8: Plot of relative total energy of conformers (αL, αR, α
’
, β2, C5, C7eq, C7ax and PII) at 

0.1MPa pressure with OPLS force field 

 

The total average volume of the conformers at the two pressures 0.1MPa and 250MPa is 

shown in figure 9. 
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Figure 9: Plot of relative total average volume of conformers (αL, αR, α
’
, β2, C5, C7eq, C7ax and 

PII) at 0.1MPa and 250MPa with OPLS force field 

 

At 0.1MPa, the average volume of the conformers follow the trend C5 < PII < C7ax < αL < C7eq < 

β2 < αR < α
’
 where as at high pressure of 250MPa, the average volume of the conformers is PII < 

β2 < C5 < C7ax < α
’ 
< αR < αL < C7eq.  

 

4.3.4 Unconstrained dihedral angles (ϕ, ψ) at quantum mechanical values with 

OPLS force field 

The alanine dipeptide conformations with unconstrained ϕ and ψ dihedral angles were also run at 

0.1MPa and 250MPa pressure respectively with nonpolarizable OPLS force field. Figure 10 and 

figure 11 represent the plots of average ϕ and ψ angles of the conformers as a function of 

simulation length with OPLS force field. Table 2 summarizes the backbone (ϕ,ψ) dihedral angles 

at pressure 0.1MPa and 250 MPa. 
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Figure 10: Averaged ϕ dihedral angle (last 5x10
6
 MC configurations) in alanine dipeptide 

conformers as a function of number of Monte Carlo simulation length with OPLS force field 
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Figure 11: Averaged ψ dihedral angle (last 5x10
6
 MC configurations) in alanine dipeptide 

conformers as a function of number of Monte Carlo simulation length with OPLS force field 

 

Table 2: Dihedral angles (ϕ,ψ) for the alanine dipeptide in TIP3P water at 0.1MPa and 250 MPa 

pressure with OPLS force field 

Conformer 
ϕ ψ 

QM 0.1MPa 250MPa QM 0.1MPa 250MPa 

PII -85.0 -75.2 -86.5 160.0 118.8 151.7 

C7eq -81.4 -127.9 -57.4 85.6 175.0 164.2 

C7ax 70.3 119.2 58.2 -76.8 169.7 49.5 

C5 -160.5 -76.8 -84.1 165.9 -53.6 165.1 

β2 -105.1 -110.3 -76.3 10.6 24.8 -46.1 

αR -83.7 -94.8 -93.8 -3.9 -62.8 -46.8 

α
'
 -162.0 -59.0 -68.2 -33.2 - 49.7 -54.3 

αL 68.3 82.8 88.3 22.4 -163.3 50.5 
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The computed average deviation of the dihedral angles ϕ and ψ of alanine dipeptide 

conformations from the quantum values is 40.3 and 70.8 degrees respectively at 0.1MPa pressure 

(Table 2) which is higher compared to the 26.7 and 22.6 degrees shown by POSSIM force field. 

Both the torsion angles ϕ and ψ were unstable for the conformers C7ax, C7eq, C5 and PII 

conformations which are experimentally found to be stable in aqueous solution.  

The effect of high pressure on the conformers with OPLS force field is minimal except for the 

conformers C7ax and β2. The change in the torsion angles (ϕ, ψ) for C7ax and β2 is (61, 120.2) and 

(34, 21.3) respectively. For C7eq and C5, the change in dihedral angles (70.5, 10.8) and (7.3, 

111.5) are observed. 
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4.4. Conclusions  

Polarizable POSSIM force field was used to study alanine dipeptide conformations (αL, αR, α’, 

β2, C5, C7eq, C7ax and PII) in TIP3P water at pressure of 0.1MPa and 250MPa at 298K 

respectively. The same study was also conducted with fixed charge OPLS¬AA force field for 

comparison. Monte Carlo simulations were performed on alanine dipeptide conformers with their 

backbone φ, ψ dihedral angles both fixed first at the quantum mechanical values. All other 

degrees of freedom were unconstrained.   

Simulations of alanine dipeptide conformers in water with constrained φ, ψ dihedral angles with 

POSSIM force field predicted qualitative results fairly in agreement with the literature results. At 

0.1MPa pressure and 298K, the conformers C7ax, C7eq and αR have the lowest energies where as 

at high pressure of 250MPa PII is the stable conformation. Experimentally, Raman spectra of 

alanine dipeptide in aqueous solution suggest the presence of PII, αR conformers along with 

C7eq. At high pressure of 250MPa, PII is the most stable conformation as predicted by the 

POSSIM simualtion results.  

The total average volume of the conformers with POSSIM force field at constrained dihedral 

angles at 0.1MPa is lowest for the seven membered ring conformers, C7ax and C7eq followed by 

PII conformer. The lowest volume of C7eq has been shown to be the result of intramolecular H 

bonding causing it smaller in the solvent exclusion volume unlike the extended C5 conformer 

which preferably interacts with the water molecules. The small volume of PII conformer in 

aqueous solution has been linked to the preferable hydrogen bonding in aqueous solvent. 

POSSIM force field with unconstrained dihedral angle predicts stable dihedral angles of PII and 

C5 conformations of alanine dipeptide as compared to the other conformers at both the pressure 

of 0.1Mpa and 250MPa. 
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In comparison, Monte Carlo simulations of fixed dihedral angles alanine dipeptide in water at 

0.1MPa with OPLS force field predicted αL as the most stable conformer followed by C7eq, αR 

and PII at both the pressure of 0.1MPa. At high pressure of 250MPa, OPLS predicts the 

relatively high total average energy of αR conformer in comparison to the other four conformers 

mentioned.   

The average deviations in the torsion angles (φ, ψ) in alanine dipeptide conformations at 0.1MPa 

with POSSIM and OPLS force field are  force field are (26.7, 22.6) and (40.3, 70.8) degrees 

respectively. 

These results indicate that polarizable POSSIM and OPLS force field reproduces the 

qualitative results of alanine dipeptide in water fairly well. Further parameterization of 

alanine dipeptide torsion angles in water is required with POSSIM force field.    
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5.1 Introduction  

The long term objective of the work presented in this dissertation is development and application 

of chemically accurate and computationally efficient continuum solvation model for polarizable 

POSSIM and fixed-charge OPLS force fields for proteins. The previous chapters show 

development of hydration parameters of small organic molecules of biological significance by 

reproducing the solvation energies of the molecules. The overall average error in the hydration 

energies of the small molecules using OPLS force field is 0.08kcal/mol. The parameters were 

also fitted to the target atoms to calculate the absolute acidity constant of the substituted phenols 

with the overall unsigned average error of 0.41pH units. Following the successful 

implementation of first-order FB model of solvation with OPLS force field, it was expanded to 

work with polarizable POSSIM force field. The empirical hydration parameters were fitted for 

the solvation energies of the small molecules with an average error of 0.136kcal/mol. In addition, 

the FB model was also validated by reproducing the pKa shifts of five carboxylic and six basic 

residues of OMTKY3 protein within the acceptable error range by fitting the required atoms. 

There was a good transferability of the parameters of other atoms. In future, the FB model can be 

applied to reproduce acidity constants of other proteins. The acidity constants of ribonuclease sa 

protein with POSSIM force field can be computed using this solvation model. Secondly, FB 

model of solvation can be used to calculate the binding free energy of protein-ligand complexes. 

Thirdly the refined Fuzzy Border model including the second order approximation can be used to 

calculate the protein ligand binding affinity of HIV inhibitors.  
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5.2 Calculation of pKa values of proteins using polarizable POSSIM 
force field 

The continuum Fuzzy-Border solvation model can be used to accurately predict pKa values of 

ribonuclease Sa (Rnase Sa) protein using polarizable POSSIM force field
1
.  The pKa’s for 

ribonuclease Sa protein and its fragment have been extensively studied experimentally and 

computationally
2, 3, 4

, which will provide a very solid benchmark for assessing validity of the FB 

continuum model of solvation. The Ribonuclease Sa (Rnase Sa) is a small 96 amino acid 

globular protein isolated from the bacterial strain Streptomyces aureofaciens. It is an acidic 

protein with 7 Asp, 5 Glu, 2 His, 5 Arg and no lysine residues.  

It been explicitly demonstrated that the electrostatic interactions play dominant role in pKa shifts 

in Rnase Sa
5(a), 5(b)

. Also, the Asp residues in Rnase Sa have wide range of pKa values from 2.4 to 

7.4
5(a)

. Therefore, application of the fast polarizable technique of POSSIM force field combined 

with implicit solvation model is expected to be advantageous both as an application and as a test 

for the model. 

The pKa calculations of the Rnase Sa will help to establish robustness of the Fuzzy-Border 

solvation technique. It will once again prove that FB solvation model combined with POSSIM 

force field is adequate for calculations of pKa of proteins which will enable in long term to 

create an automated acidity constant predictor for proteins and ligands.  

 

5.3 Calculation of binding free energy of protein-ligand complexes 

The FB continuum model of solvation with polarizable POSSIM force field can be applied for 

computing binding affinities for protein–protein complexes or for protein–ligand interactions. 

This will provide an opportunity to not only validate the performance of continuum model of 
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solvation in calculations of protein-ligand binding affinity but also to predict currently unknown 

protein pka values. In particular, the continuum model of solvation/POSSIM force field can be 

used to evaluate the binding affinity of farnesyl transferase inhibitors (FTIs). Farnesyl transferase 

inhibitors are class of biologically active anti-cancer drugs that inhibit farnesylation of target 

proteins including Ras
6, 7, 8, 9

. The synthetic route of producing some of the potent natural 

inhibitors is challenging due to the structure of the inhibitors. The analysis of binding affinities 

of FTIs with accurate POSSIM force field and continuum solvent will help to propose more 

potent synthetic farnesyl transferase inhibitors.  

The following thermodynamic cycle, figure 1, can be used to obtain relative binding energy of 

the protein-ligand complex
10

. 

 

Figure 1 Thermodynamic cycle to calculate relative binding free energy
10 

 

From the figure 1, the binding affinity of protein ligand complex can be calculated according to 

the equation (1)
10

. 

 (1) 

Protein farnesyl transferase is an enzyme coupling a 15-carbon isoprenyl group to Ras proteins, 

(Figure 2) catalyzing farnesylation of the protein p21, which is a product of Ras onco-gene. The 

p21 undergoes a one-amino acid mutation resulting in permanent activation followed by 

uncontrolled cell growth and division. Thus, inhibiting the farnesyl transferase is critical step in 

cessation of cell growth and thus development of successful anti-cancer drugs. This has resulted 

in synthesis of large number of farnesyl transferase inhibitors. 
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Figure 2: Structure of the FTase heterodimer 

Based on their mechanism of action, FTIs can be divided into different groups. The direction 

here is study of CAAX peptidomimetics and analogues of naturally discovered CP-type 

inhibitors.   

This computational study of the binding affinity of FTIs will help to understand the underlying 

mechanisms of interactions and thus help in developing potent synthetic farnesyl transferase 

inhibitors.  

 

5.4 Applying second order FB model to compute binding affinity of 
HIV inhibitors 

The FB continuum formulation can be refined by incorporating the second order 

approximation
11

 for more accurate calculation of protein ligand binding affinity interactions. 

The details of the second-order fuzzy border formulation are discussed in chapter 2. This second 

order FB model of solvation with POSSIM force field can be applied to predict binding affinity 

of HIV-1 reverse transcriptase (RT) inhibitors.  
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Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus 

(HIV). According to the World Health Organization (WHO), there were approximately 35 

million people worldwide living with HIV/AIDS in 2013.
12

 The complexity of the disease makes 

it difficult to induce breakthrough in the treatment of AIDS. The HIV virus is a retrovirus, the 

viral RNA strand produces single stranded RNA and double stranded DNA through reverse 

transcriptase enzyme (RT). Thus RT (Figure 3) being a multifunctional enzyme is the most 

important target to block replication and stop evolution of virus inside host cell.  

 
Figure 3: Ribbon representation of HIV-1 RT in a complex with nucleic acid. The fingers, palm, 

thumb, connection, and RNase H subdomains of the p66 subunit are shown in blue, red, green, 

yellow, and orange, respectively. The p51 subunit is shown in dark brown. The template and 

primer DNA strands are shown in light gray and dark gray, respectively. 
13 

 

There are two main types of anti-AIDS/HIV drugs differing in structure and mechanism of the 

action targeting RT enzyme – nucleoside reverse transcriptase inhibitors (NRTIs) and non-

nucleoside reverse transcriptase inhibitors (NNRTIs). NNRTIs, an important class of 

antiretroviral therapy, bind to hydrophobic RT cavity 10Å away from polymerase active site 

causing conformational change and thus loss of catalytic function in the RT enzyme. There is a 
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need for new NNRTIs that are less toxic and in particular inhibit HIV-1 strains resistant to 

NNRTIs currently present.
13

  

 

The FB methodology combined with polarizable POSSIM formulation can be used to study the 

binding interactions of diaryltriazine (DATAs) inhibitors.
14

 The DATAs inhibitors are structurally 

related to FDA approved second generation diarylpyrimidine (DAPY) inhibitors with very low 

solubility such as etravirine and rilpivirine (Figure 4). The study of binding interactions between 

the structurally modified DATA inhibitors and HIV-RT enzyme can help in development of novel 

inhibitors with improved pharmacological properties. 

 

 

(a) (b) 

Figure 4:  (a) Structures of DAPY analogues of NNRTIs (b) Compound 1 and compound 2 are 

DATA derivatives. 
14
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