
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2005-05-02

Software Engineering Using design RATionale
Janet E. Burge
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Burge, J. E. (2005). Software Engineering Using design RATionale. Retrieved from https://digitalcommons.wpi.edu/etd-dissertations/
244

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212998566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/244?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/244?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Software Engineering Using design RATionale

by

Janet E. Burge

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy
in

Computer Science
by

May 2005

APPROVED:

Dr. David C. Brown, Major Advisor

Dr. George T. Heineman, Committee Member

Dr. Feniosky Peña-Mora, External Committee Member
University of Illinois Urbana-Champaign

Dr. Carolina Ruiz, Committee Member

Dr. Michael Gennert, Head of Department

ii

Abstract

For a number of years, members of the Artificial Intelligence (AI) in Design community
have studied Design Rationale (DR), the reasons behind decisions made while designing.
DR is invaluable as an aid for revising, maintaining, documenting, evaluating, and
learning the design.

The presence of DR would be especially valuable for software maintenance. The rationale
would provide insight into why the system is the way it is by giving the reasons behind the
design decisions, could help to indicate where changes might be needed during
maintenance if design goals change, and help the maintainer avoid repeating earlier
mistakes by explicitly documenting alternatives that were tried earlier that did not work.

Unfortunately, while everyone agrees that design rationale is useful, it is still not used
enough in practice. Possible reasons for this are that the uses proposed for rationale are not
compelling enough to justify the effort involved in its capture and that there are few
systems available to support rationale use and capture. We have addressed this problem by
developing and evaluating a system called SEURAT (Software Engineering Using
RATionale) which integrates with a software development environment and goes beyond
mere presentation of rationale by inferencing over it to check for completeness and
consistency in the reasoning used while a software system is being developed and
maintained.

We feel that the SEURAT system will be invaluable during development and maintenance
of software systems. During development, SEURAT will help the developers ensure that
the systems they build are complete and consistent. During maintenance, SEURAT will
provide insight into the reasons behind the choices made by the developers during design
and implementation. The benefits of DR are clear but only with appropriate tool support,
such as that provided by SEURAT, can DR live up to its full potential as an aid for
revising, maintaining, and documenting the software design and implementation.

iii

Acknowledgements

This dissertation could never have been completed without the support of many people
over the past eight years.

The advice and support of my advisor, David C. Brown, has been immeasurable. His
knowledge of the area was of considerable help, of course, as was his experience as a
researcher, but I appreciated even more the amount of time he was willing to dedicate
toward my growth as a researcher. He knew the right time to put on pressure to keep me
moving in the right direction but also when to give encouragement and space when things
got rough. I would never have made it through these years without him and cannot
imagine having a better advisor.

Many in the WPI CS department have supported me during this time. My Ph.D.
committee provided considerable guidance on my research. I was able to present and
discuss this work in two research groups: the AI Research Group (AIRG) that Carolina
Ruiz coordinated for much of my time at WPI as well as the AI in Design Research Group
(AIDG) lead by David Brown. George Heineman let me participate in his Software
Engineering Research Group (SERG) and also gave me invaluable support in preparing to
teach my graduate software engineering course. Karen Lemone first offered me a TA
position and gave me the incentive to leave my job to go to school full time. Steve Taylor,
Stanley Selkow, Isabel Cruz, and Glynis Hamel put up with my fledgling TA efforts.
Glynis Hamel then helped me put together my own undergraduate class with considerable
help from her extensive notes and files. I would never have survived that experience
without her help. Micha Hofri let me teach my first undergraduate class and Mike Gennert
let me teach my graduate course. I’m very grateful to both of them for giving me the
experience and especially to Mike for his encouragement to keep trying even though my
first teaching experiences were somewhat discouraging. Mike and Dave were both very
generous with funding over the years both for conference travel and for funding the
experiment described in this dissertation. There are very few faculty members in the WPI
CS department who did not get involved in my education here either in teaching a course I
took or in giving me advice on my research or teaching. I also appreciate the help and
support I received from my fellow graduate students, especially those who were willing to

iv

serve as experiment subjects. I greatly appreciate the time they gave to contribute towards
this dissertation.

I’d like to give special thanks to one professor who is no longer with us: Dr. Lee Becker.
Lee’s optimism and encouragement is something that I’ll always remember when faced
with adversity. When I started to have doubts and did not think it would be possible to
finish I thought of what Lee would say and just kept going.

I also was very fortunate to get financial support through a very flexible part-time job at
Charles River Analytics. Eva Hudlicka, who also co-advised my MS thesis, helped me get
the job. I am very grateful to Greg Zacharias, president, and my immediate supervisor,
Paul Gonsalves, for their infinite patience with my constantly changing work hours. I also
appreciate the support I received from my many colleagues and friends there. There were
many times when someone had to pick up something that I needed to drop because of my
academic obligations yet this was done with grace and understanding. Several of my co-
workers also participated in the SEURAT evaluation experiment and to their credit no one
who I asked to participate (in person) turned me down.

I have many friends who supported me during this time. My friend Shirley Rieven
inspired me to go back to school through her example. She and her husband Steve have
been a great support to me over the twenty some years that I have known them. My friend
Mark Mezger was always there to listen to me complain and go catch a movie. Mikhail
Mikhailov watched countless SEURAT presentations, gave InfoRat its name, and helped
me create embedded postscript diagrams when I was forced to submit documents in
LaTex. The D&D group (Eric, Amy, Anne, Kevin, and Steve) gave me a much needed
escape from reality once a week. Chuck Jones and Pam Barz were there to celebrate
special occasions with me. I also escaped my studies during game night with Thom and
Colleen Goodsell and the rest of the game-night gang (Rachel, Alan, Igor, Marina, Sean,
Darlene, Anne, Kurt, Magnus, Adine, and more) and my with my friends in Symphony
Pro Musica. I’m also blessed with wonderful neighbors who did not complain when my
lack of funds turned my house into the neighborhood eyesore. Their understanding and
tolerance was truly outstanding.

Of course, my family offered considerable support during this time. Not too many parents
would be so encouraging when their 30-something child announces they are quitting their
job to go back to school. Of course, it is all their fault since my father had been talking for
years about how being a college professor was the ideal job. This is not a job he has held
so I’m not sure why I believed him. I hope he’s right!

v

Table of Contents

CHAPTER 1 Introduction..1
1.1. The Goal of the Research ..2

1.2. The Importance of the Research ...2
1.3. Expected Benefits ...2

1.4. Design Rationale ...3

1.5. Why Isn’t Rationale Used Now?...4
1.6. The Challenge of DR in Software Engineering6

1.7. Expected Results ...6

1.8. Organization of the Dissertation ...8

CHAPTER 2 The Problem...9
2.1. Design Rationale and the Software Development Process9
2.2. Uses of Rationale in Software Development and Maintenance....12

2.3. Encouraging DR Use in Software Design.....................................14

2.4. Summary ...15

CHAPTER 3 Relevant Research..16
3.1 Design ...16
3.2 AI in Design ..17

3.3 Design Rationale ...18
3.3.1 Design Rationale Representation ...18
3.3.2 Design Rationale Capture ..20
3.3.3 Design Rationale Use ..22

vi

3.3.4 Design Rationale for Software Design23
3.4 Software Design ..25
3.4.1 Software Development Processes ...25
3.4.2 Requirements Engineering ..26
3.4.3 Software Architecture ...28
3.4.4 Software Maintenance ...29

3.5 Summary ...30

CHAPTER 4 Investigating DR Uses: Inferencing over Design Rationale32
4.1 Using Rationale for Validation and Evaluation.............................32
4.2 Prototype System for Inferencing Over Rationale32
4.2.1 Approach ...32
4.2.2 Inferences ..37
4.2.3 Vocabulary ..39
4.2.4 Tradeoff Evaluation ...40

4.3 Implementation and Examples..42
4.3.1 Browse Rationale ..42
4.3.2 Modify Rationale ...45

4.4 Summary ...46

CHAPTER 5 The Software Development Process and Rationale48
5.1 Study Goals ...48
5.2 Study Description..49
5.2.1 Initial Design ...49
5.2.2 Corrective Maintenance - Minor Bug in the Program51
5.2.3 Adaptive Maintenance - Revisiting the Design for Usability .51
5.2.4 Enhancive Maintenance - Extending the Functionality51

5.3 Study Results...52
5.3.1 Initial Design ...52
5.3.2 Corrective Maintenance ..54
5.3.3 Adaptive Maintenance ...54
5.3.4 Enhancive Maintenance ..55

vii

5.4 Summary and Conclusions..55

CHAPTER 6 The Approach ..57
6.1. Uses of Rationale for Software Maintenance58
6.2. Tool Support for Rationale Use...60

CHAPTER 7 Software Engineering Using RATionale (SEURAT)61
7.1. System Architecture ..61

7.2. Rationale Representation ..62
7.2.1. Motivation ...63
7.2.2. Related Work ...64
7.2.3. Representation Format ..68

7.3. Inferences Supported...90
7.3.1. Syntactic ..91
7.3.2. Semantic ..92
7.3.3. Queries ..95
7.3.4. Historical ...96

7.4. Argument Ontology ..96
7.4.1. Affordability Criteria ...98
7.4.2. Adaptability Criteria ..99
7.4.3. Dependability Criteria ...101
7.4.4. End User Criteria ...102
7.4.5. Needs Satisfaction Criteria ..104
7.4.6. Maintainability Criteria ...104
7.4.7. Performance Criteria ...104
7.5. Rationale Entry and Presentation ..105

CHAPTER 8 SEURAT Software Design and Implementation107
8.1. SEURAT Software Architecture ...107

8.2. Rationale Repository and Argument Ontology.............................111
8.2.1. Requirements ...111
8.2.2. Decision ...112
8.2.3. Alternative ...113

viii

8.2.4. Argument ...114
8.2.5. Claim ...116
8.2.6. Assumption ..116
8.2.7. Ontology Entry ..117
8.2.8. Tradeoffs ...118
8.2.9. Questions ...119
8.2.10. History ...119
8.2.11. Status ...120
8.2.12. Associations ..121

8.3. Rationale Explorer ..122
8.3.1. Requirement Menu ..125
8.3.2. Decision Menu ..125
8.3.3. Alternative Menu ...126
8.3.4. Argument Menu ..126
8.3.5. Claim Menu ...126
8.3.6. Assumption Menu ...127
8.3.7. Question Menu ..127
8.3.8. Tradeoff and Co-Occurrence Menu ..127
8.3.9. Ontology Entry Menu ..127
8.4. Inference Engine ...128
8.4.1. Error and Warning Visualization ..128
8.4.2. Error and Warning Detection ..130
8.5. Rationale to Code Associations ..134

8.6. Rationale Display and Editing ..137
8.6.1. Requirement ..137
8.6.2. Decision ...138
8.6.3. Alternative ...138
8.6.4. Argument ...139
8.6.5. Claim ...141
8.6.6. Assumption ..141
8.6.7. Question ..141
8.6.8. Tradeoff ...142
8.6.9. Co-occurrence ...143

ix

8.6.10. Ontology Entry ..143
8.7. Rationale Query Interface ...144
8.7.1. Find Rationale Entity ..144
8.7.2. Find Common Arguments ...145
8.7.3. Find Requirements ..146
8.7.4. Find Status Overrides ..147
8.7.5. Find Importance Overrides ..148

CHAPTER 9 System Demonstration ...149
9.1. Software Maintenance Examples..149
9.1.1. Adaptive Maintenance ...149
9.1.2. Corrective Maintenance ..155
9.1.3. Enhancive Maintenance ..157
9.2. Inferencing Examples ...160
9.2.1. Changing Priorities ..160
9.2.2. Disabling Assumptions ...162
9.3. Summary ...165

CHAPTER 10 Evaluation ..166
10.1. Experiment Design..166
10.1.1. Experiment Goals ..166
10.1.2. Experiment Design ..166
10.1.3. Experiment Subject Selection ...172

10.2. Experiment Results ...173
10.2.1. Support for Maintenance ...173
10.2.2. SEURAT Usability ..188
10.2.3. SEURAT Usefulness ...189
10.2.4. Experiment Evaluation ..191
10.3.1. Experiment Shortcomings ...192
10.3.2. Suggested Improvements/Additional Experiments194

CHAPTER 11 Conclusion ...196
11.1. Contributions...197

x

11.2. Future Work ..198
11.2.1. Investigation of Rationale for Different Phases199
11.2.2. Multi-User Rationale ...199
11.2.3. Longer-Term SEURAT Study ..200
11.2.4. Rationale Capture ..200

11.3. Summary ...200

References..202
APPENDIX A SEURAT User’s Guide..A-1
A.1. What is SEURAT? ..A-5
A.2. Rationale in SEURAT...A-6
A.2.1. Rationale Structure ..A-6
A.2.2. Entering New Rationale ..A-10
A.2.3. Editing Existing Rationale ..A-17
A.3. The Rationale-Code Connection ...A-17
A.3.1. Associating Rationale with Code ..A-17
A.3.2. Finding Associated Rationale ..A-18
A.3.3. Removing Rationale Associations ..A-19
A.4. Rationale Tasks ...A-20
A.5. Rationale Queries ..A-21
A.5.1. Find Rationale Entity ..A-21
A.5.2. Find Common Arguments ...A-22
A.5.3. Find Requirements ..A-23
A.5.4. Find Status Overrides ..A-24
A.5.5. Find Importance Overrides ..A-25
A.6. Using the Rationale ...A-25
A.6.1. Modifying Importance Values ..A-26
A.6.2. Disabling Rationale Items ...A-26
APPENDIX B Experimental Surveys ..B-1

xi

List of Figures

FIGURE 2-1. Software Development Phases and Rationale .. 11
FIGURE 3-1. SEURAT Relationships... 31
FIGURE 4-1. Design Rationale in the Design Process ... 33
FIGURE 4-2. Intersection Diagram... 34
FIGURE 4-3. Design Rationale Elements ... 35
FIGURE 4-4. Subset of Alternatives for Requirement “Four Traffic Lights” 36
FIGURE 4-5. Goals and Sub-goals for the Unsatisfied Requirement ... 37
FIGURE 4-6. Unsatisfied Requirement Check ... 38
FIGURE 4-7. Arguments Against Outweigh For .. 38
FIGURE 4-8. Best Alternative Not Chosen .. 38
FIGURE 4-9. Contradictory Arguments.. 39
FIGURE 4-10. Completeness for a Goal... 39
FIGURE 4-11. Consistency for a Goal.. 39
FIGURE 4-12. Standard Claim Vocabulary .. 40
FIGURE 4-13. User Defined Claim Vocabulary ... 40
FIGURE 4-14. Causality Violation ... 41
FIGURE 4-15. Missing Claim... 41
FIGURE 4-16. Tradeoff Importance Violation.. 42
FIGURE 4-17. Requirement Listing ... 42
FIGURE 4-18. Goal Listing .. 43
FIGURE 4-19. Alternative Listing .. 43
FIGURE 4-20. Alternative Blinking Red/Yellow.. 44
FIGURE 4-21. Version History ... 44
FIGURE 4-22. Modify Rationale Options .. 45
FIGURE 4-23. Modify Alternative Options.. 46
FIGURE 5-1. Rationale Components .. 50
FIGURE 7-1. SEURAT System Architecture.. 62
FIGURE 7-2. Representation Elements... 70
FIGURE 7-3. RATSpeak Argumentation Structure .. 70
FIGURE 7-4. Rationale Top Level Representation... 71
FIGURE 7-5. Requirement Schema .. 72

xii

FIGURE 7-6. Requirement Status ... 73
FIGURE 7-7. History and History Records... 73
FIGURE 7-8. Requirement Example... 73
FIGURE 7-9. Decision Problem Schema .. 74
FIGURE 7-10. Decision Type ... 75
FIGURE 7-11. Development Phase... 75
FIGURE 7-12. Decision Status ... 76
FIGURE 7-13. Example Decision Problem ... 76
FIGURE 7-14. Question Schema .. 77
FIGURE 7-15. Question Status Schema.. 78
FIGURE 7-16. Question Example... 78
FIGURE 7-17. Alternative Schema... 79
FIGURE 7-18. Alternative Status Schema .. 79
FIGURE 7-19. Alternative Example ... 80
FIGURE 7-20. Argument Schema... 81
FIGURE 7-21. Argument Type Schema.. 82
FIGURE 7-22. Importance Schema... 82
FIGURE 7-23. Amount Schema.. 83
FIGURE 7-24. Plausibility Schema... 83
FIGURE 7-25. Argument Example ... 84
FIGURE 7-26. Claim Schema ... 84
FIGURE 7-27. Direction Schema.. 85
FIGURE 7-28. Claim Example ... 85
FIGURE 7-29. Assumption Schema ... 86
FIGURE 7-30. Assumption Example .. 86
FIGURE 7-31. Argument Ontology Schema... 86
FIGURE 7-32. Ontology Entry Schema.. 87
FIGURE 7-33. Argument Ontology Example ... 88
FIGURE 7-34. Background Knowledge Schema.. 88
FIGURE 7-35. Tradeoff Schema ... 89
FIGURE 7-36. Co-Occurrence Relationship Schema ... 89
FIGURE 7-37. Background Knowledge Example .. 90
FIGURE 7-38. Affordability Criteria .. 100
FIGURE 7-39. Adaptability Criteria ... 101
FIGURE 7-40. Dependability Criteria... 102
FIGURE 7-41. End User Criteria .. 103
FIGURE 7-42. Needs Satisfaction Criteria ... 104
FIGURE 7-43. Maintainability Criteria... 104
FIGURE 7-44. Performance Criteria... 105
FIGURE 8-1. SEURAT Software Architecture ... 108
FIGURE 8-2. Rationale Update Flowchart ... 110

xiii

FIGURE 8-3. SEURAT and Eclipse.. 111
FIGURE 8-4. Requirement SQL Definition.. 112
FIGURE 8-5. Decision SQL Definition .. 113
FIGURE 8-6. Alternative SQL Definition .. 114
FIGURE 8-7. Argument SQL Definition .. 115
FIGURE 8-8. Claim SQL Definition... 116
FIGURE 8-9. Assumption SQL Definition ... 117
FIGURE 8-10. Ontology Entry SQL Definition ... 118
FIGURE 8-11. Ontology Relationships SQL Definition... 118
FIGURE 8-12. Tradeoff SQL Definition... 119
FIGURE 8-13. Question SQL Definition .. 120
FIGURE 8-14. History SQL Definition .. 120
FIGURE 8-15. Status SQL Definition... 121
FIGURE 8-16. Association SQL Definition.. 122
FIGURE 8-17. Rationale Explorer – Top Level Rationale.. 122
FIGURE 8-18. Rationale Explorer with Expanded Rationale... 123
FIGURE 8-19. Rationale Element Icons .. 124
FIGURE 8-20. Icon Overlay Examples... 124
FIGURE 8-21. Requirement Relationship Display ... 125
FIGURE 8-22. Rationale Task List ... 128
FIGURE 8-23. Package Explorer with Associations... 135
FIGURE 8-24. Association Icon ... 135
FIGURE 8-25. Bookmark View .. 136
FIGURE 8-26. Alternative Showing Code Association.. 137
FIGURE 8-27. Requirement Editor... 138
FIGURE 8-28. Decision Editor ... 139
FIGURE 8-29. Alternative Editor ... 140
FIGURE 8-30. Argument Editor ... 140
FIGURE 8-31. Claim Editor.. 141
FIGURE 8-32. Assumption Editor .. 142
FIGURE 8-33. Question Editor ... 142
FIGURE 8-34. Tradeoff Editor.. 143
FIGURE 8-35. Ontology Entry Editor .. 143
FIGURE 8-36. Find Entity Display... 144
FIGURE 8-37. Select Claim Display .. 145
FIGURE 8-38. Find Common Arguments... 145
FIGURE 8-39. Common Argument Display ... 146
FIGURE 8-40. Find Requirements Display .. 146
FIGURE 8-41. Addressed Requirements .. 147
FIGURE 8-42. Status Override Display .. 147
FIGURE 8-43. Importance Override Display.. 148

xiv

FIGURE 9-1. Rationale for “how to store user information”.. 150
FIGURE 9-2. Warning Message for “save in a text file” .. 150
FIGURE 9-3. Decision “how to store user information” .. 151
FIGURE 9-4. Alternative “serialize user information” ... 152
FIGURE 9-5. Alternative “save in a text file”... 153
FIGURE 9-6. Bookmark Showing Association for “save in a text file” 153
FIGURE 9-7. Method Where User Information is Saved ... 154
FIGURE 9-8. Rationale for “where to load user information”.. 154
FIGURE 9-9. Rationale for “which week to display when room changes” 155
FIGURE 9-10. Error for the Selected Alternative ... 156
FIGURE 9-11. Bookmark Display Showing Association for “display meetings for current week”156
FIGURE 9-12. Method Where Dates are Reset .. 157
FIGURE 9-13. Violated Requirement “Administrator can cancel any meeting”............................ 158
FIGURE 9-14. Error Showing Violated Requirement... 158
FIGURE 9-15. Rationale for “who is allowed to cancel meetings” .. 159
FIGURE 9-16. Bookmark Showing Association for “only owner can cancel meetings” 159
FIGURE 9-17. Method Where Meetings are Cancelled.. 160
FIGURE 9-18. Common Argument Display with Ontology Entries .. 161
FIGURE 9-19. Ontology Entry “Reduces Development Time”.. 161
FIGURE 9-20. Rationale Task Display with New Warnings .. 162
FIGURE 9-21. Assumptions for Conference Room Scheduling System.. 163
FIGURE 9-22. Assumption “standard working hours 8 to 6”... 163
FIGURE 9-23. Rationale for Decision “schedule duration” ... 164
FIGURE 9-24. Rationale Task List with New Warning .. 164
FIGURE 10-1. Adaptive Maintenance - Time to Find Change... 174
FIGURE 10-2. Adaptive Maintenance - Time to Complete Task ... 174
FIGURE 10-3. Adaptive Maintenance - Variance in Time to Find the Change............................. 175
FIGURE 10-4. Adaptive Maintenance - Variance in Time to Complete Task 176
FIGURE 10-5. Adaptive Maintenance - Time to Find Change vs. Experience 176
FIGURE 10-6. Adaptive Maintenance - Time to Complete Task vs. Experience........................... 177
FIGURE 10-7. Corrective Maintenance - Time to Find Change... 178
FIGURE 10-8. Corrective Maintenance - Time to Complete Task ... 178
FIGURE 10-9. Corrective Maintenance - Variance in Time to Find Change.................................. 179
FIGURE 10-10. Corrective Maintenance - Variance in Time to Complete Task 180
FIGURE 10-11. Corrective Maintenance - Time to Find Change vs. Experience 180
FIGURE 10-12. Corrective Maintenance - Time to Complete Task vs. Experience......................... 181
FIGURE 10-13. Enhancive Maintenance - Time to Find Change... 182
FIGURE 10-14. Enhancive Maintenance - Time to Complete Task ... 182
FIGURE 10-15. Enhancive Maintenance - Variance in Time to Find Change.................................. 183
FIGURE 10-16. Enhancive Maintenance -- Variance in Time to Complete Task............................. 184
FIGURE 10-17. Enhancive Maintenance - Time to Find Change vs. Experience 184

xv

FIGURE 10-18. Enhancive Maintenance -- Time to Complete Task vs. Experience 185
FIGURE 10-19. Usefulness Summary .. 189
FIGURE A-1. SEURAT Main Display .. A-6
FIGURE A-2. Relationships between rationale entities... A-8
FIGURE A-3. Rationale Explorer .. A-9
FIGURE A-4. Rationale Icons ... A-10
FIGURE A-5. Requirement Editor... A-11
FIGURE A-6. Decision Editor ... A-12
FIGURE A-7. Alternative Editor ... A-13
FIGURE A-8. Argument Editor ... A-14
FIGURE A-9. Claim Editor.. A-14
FIGURE A-10. Assumption Editor .. A-15
FIGURE A-11. Question Editor ... A-15
FIGURE A-12. Tradeoff Editor.. A-16
FIGURE A-13. Ontology Entry Editor .. A-17
FIGURE A-14. Package Explorer with Associations... A-18
FIGURE A-15. Bookmark View .. A-18
FIGURE A-16. Alternative Showing Code Association.. A-19
FIGURE A-17. Rationale Task List ... A-20
FIGURE A-18. Find Entity Display... A-21
FIGURE A-19. Select Claim Display .. A-22
FIGURE A-20. Find Common Arguments... A-22
FIGURE A-21. Common Argument Display ... A-23
FIGURE A-22. Find Requirements Display .. A-23
FIGURE A-23. Addressed Requirements .. A-24
FIGURE A-24. Status Override Display .. A-24
FIGURE A-25. Importance Override Display.. A-25

xvi

List of Tables

TABLE 7-1. DRL/RATSpeak Comparison ... 65
TABLE 8-1. Rationale Task Messages .. 129
TABLE 10-2. GQM Analysis Results ... 167
TABLE 10-3. Experimental Group Summary ... 173
TABLE 10-4. F-Test Analysis Results... 186
TABLE 10-5. ANACOVA Analysis Results ... 186
TABLE 10-6. Mann-Whitney Analysis Results .. 187
TABLE 10-7. GQM Analysis with Results ... 193

1

CHAPTER 1 Introduction

For a number of years, members of the Artificial Intelligence (AI) in Design community
have studied Design Rationale (DR), the reasons behind decisions made while designing.
Standard design documentation consists of a description of the final design itself: effec-
tively a “snapshot” of the final decisions. Design rationale (DR) offers more: not only the
decisions, but also the reasons behind each decision, including its justification, other alter-
natives considered, and argumentation leading to the decision [Lee, 1997]. This additional
information offers a richer view of both the product and the decision making process by
providing the designer’s intent behind the decision [Sim & Duffy, 1994]. DR is invaluable
as an aid for revising, maintaining, documenting, evaluating, and learning the design.

The presence of DR would be especially valuable for software development. This is true
for several reasons. One is that the inherent mutability of software increases the chance
that it will be modified during its lifetime. Another is that the software lifetimes tend to be
long, often longer than expected, and this requires that it be changed as the world around it
does. Software maintenance is a very expensive part of the software development process
and is made more difficult because the original designers are often not available. This is an
area where we feel that DR could be of some assistance. The rationale would provide
insight into why the system is the way it is by giving the reasons behind the design deci-
sions, could help to indicate where changes might be needed during maintenance if design
goals change, and help the maintainer avoid repeating earlier mistakes by explicitly docu-
menting alternatives that were tried earlier that did not work.

In this chapter we discuss the goal of the research (Section 1.1), the potential importance
of the research (Section 1.2), the expected benefits of the research (Section 1.3), design
rationale (1.4), why rationale is not used now (1.5), the challenge of using design rationale
in software engineering (1.6), methods and expected results for the research (1.7), and an
outline of this dissertation (1.8).

2

1.1. The Goal of the Research

Design Rationale has significant potential for having great value to the software devel-
oper, yet it is rarely captured in practice. One reason for this is that it is unclear whether
the cost of collecting this information is outweighed by its usefulness. In this research, we
chose to investigate how DR can be used during software maintenance and developed a
system that would support those uses. The goal, in summary, is to show that with appropri-
ate tool support, rationale can provide useful support to the software maintainer. This is an
important step in the direction toward showing that the cost of rationale capture can be
justified during software development.

1.2. The Importance of the Research

Software development is an interesting application for DR in a number of ways. In one
sense, software development is really system development where the code itself is but one
piece of the resulting delivered system. The larger the system, the more decisions will be
made during its creation. Also, because of software’s mutability, design decisions are
more likely to be changed during software development than in other types of product
development. Many changes will also occur during the maintenance phase as problems are
discovered and fixed, as the system is adjusted to the meet the changing needs of the user,
and as it is adapted to respond to changes in the underlying technology.

All these reasons argue for as much support as can be provided during maintenance. Semi-
automatic maintenance support systems, such as Reiss's constraint-based system [Reiss,
2002], that work on the code, abstracted code, design artifacts, or meta-data, assist with
maintaining consistency between artifacts. Design Rationale, however, assists with main-
taining consistency in designer reasoning and intent. This would fit nicely into a software
development environment such as the one proposed by Nuseibeh, et. al. [2000], where
inconsistency management is a primary concern.

1.3. Expected Benefits

The largest obstacle to adopting rationale capture and use as part of standard software
development practices is the underlying fear that its usefulness will not be sufficient to
justify the time and cost involved in its capture. Providing integrated tool support for spe-
cific uses of the rationale will help to both show how useful rationale can be as well as
provide the ability to use it. In this work, we go beyond mere presentation of the rationale
by using inferencing over the rationale to help ensure that design decisions are well sup-
ported and to help the software maintainer learn about the system.

3

While we focused on using rationale to support software maintenance, the representation
of the rationale that was used to support inferencing and many of the inferences them-
selves are applicable to fields other than software development and will add to the general
body of knowledge in the field of AI in design.

1.4. Design Rationale

Design rationale (DR) differs from other design documentation because it captures the
reasoning behind the design decisions, not just capturing the final design result. This
includes documenting what could have been done but was not (and why) and what had
been tried but failed (and why). This information is valuable because it provides insight
into the intent behind the original decisions. Documenting what was tried earlier that did
not work can help prevent the maintainer from repeating mistakes made before.

Most work on design rationale has concentrated on capture and representation. Capture
refers to the recording of the design rationale, either during or after designing. There are a
number of methods proposed for capture, ranging from capturing design discussions on
video tape to requiring that the designers manually record each decision as it is made. The
amount of data captured also varies — some systems take a “kitchen sink” approach and
record everything that may be of interest while others are more focused.

Representation of design rationale has also been studied extensively. Design rationale rep-
resentations range from formal to informal. A formal approach allows the computer to use
the data but does not always output information in a form that a human can understand. In
addition, it requires that data be provided to the system in a rigid format. An informal
approach provides data in formats that are easily generated and understand by a human but
can not easily be used by the computer (e.g., natural language). Semi-formal approaches
attempt to use the advantages of both approaches.

We hypothesize that the key to making the capture worthwhile, as well as providing
requirements for DR representation, is the use for, and usefulness of, the rationale. Captur-
ing large amounts of detailed rationale is not useful if it is never looked at again. If ratio-
nale is useful to a designer, there is a greater incentive for the designer to assist with the
capture of the needed information, particularly if that designer can immediately use the
rationale. Also, knowing how the information will be used provides guidance about what
information should be captured and how it should be represented. Karsenty [1996] studied
the use of design rationale documents and found that while DR was useful for some
designers, it was not sufficient to answer all of the designers’ questions. It may be possible
to increase the usefulness of the rationale if it can be collected for a specific use, rather
than as general documentation. Bratthall, et. al. [2000] performed an experiment looking
specifically at using rationale to assist in performing changes on two different systems.

4

For one system, rationale was shown to be helpful in decreasing the time used to make the
changes and improving the correctness of the changes but results were inconclusive for
the second system.

There are many potential uses including:

• Design verification – using rationale to verify that the design meets the requirements
and the designer’s intent.

• Design evaluation – using rationale to evaluate (partial) designs and design choices rel-
ative to one another to detect inconsistencies that may affect design quality.

• Design maintenance – using rationale to locate sources of design problems, to indicate
where changes need to be made in order to modify the design, and to ensure that
rejected options are not inadvertently re-implemented.

• Design reuse – using rationale to determine which portions of the design can be reused
and, in some cases, suggest where and how it should be modified to meet a new set of
requirements.

• Design teaching – using rationale to teach new personnel about the design.
• Design communication – using rationale to communicate the reasons for decisions to

other members of the design team.
• Design assistance – using rationale to clarify discussion, check impact of design modi-

fications, perform consistency checking and assist in conflict mitigation by looking for
constraint violations between multiple designers.

• Design documentation – using rationale to document the design by offering a picture of
the history of the design and reasons for the design choices as well as a view of the final
product.

Unfortunately, despite all these potential uses, there are very few concrete examples of
actual use. Much of the current research is on ways to capture and represent the rationale.
These are important areas, but their value depends on how the resulting rationale can be
used. This work will begin by focusing on the uses of DR, and then address capture and
representation as needed to support those uses.

1.5. Why Isn’t Rationale Used Now?

If rationale has such potential value, then why is it not in widespread use? There are a
number of reasons why there are few, if any, successful DR systems in existence. One dif-
ficulty, despite a good deal of research, is the capture of design rationale. Recording all
decisions made, as well as those rejected, can be time consuming and expensive. The more
intrusive the capture process, the more designer resistance will be encountered. Because it

5

is time consuming and viewed as documentation, DR capture may be viewed as expend-
able if deadlines are an issue [Conklin and Burgess-Yakemovic, 1995].

Documenting the decisions can impede the design process if decision recording is viewed
as a separate process from constructing the artifact [Fischer, et. al., 1995]. Designers are
reluctant to take the time to document the decisions they did not take, or took and then
rejected [Conklin and Burgess-Yakemovic, 1995]. There may also be issues with liability
if potential problems with a decision are recorded and shown later to be the cause of a cat-
astrophic failure of the system. DR that documents the reasons for the problem could be
used against the designer [Conklin and Burgess-Yakemovic, 1995]. An even more fright-
ening possibility is the risk that the overhead of capturing the rationale may impact the
project schedule enough to make the difference between a project that meets its deadlines
and is completed versus one where the failure to meet deadlines results in cancellation
[Grudin, 1995].

Another issue affecting the likelihood of designers recording their decisions is that those
who take the effort to record the decisions are unlikely to be those benefiting from them.
This provides very little incentive to take the extra time and effort to record the DR, espe-
cially given the potential drawbacks of liability, disruption in the design process, and
schedule impact stated previously. In some cases, the personnel doing the maintenance on
the system may even belong to a different company than personnel who did the initial
development, which gives the original developers even less incentive to record the ratio-
nale [Grudin, 1995]. It is not uncommon for companies to compete for the maintenance
contract, which can be worth a great deal of money over an extended period of time. Any-
thing that makes it easier for a new company to understand the system may weaken the
developing company’s case for why they are best suited to have the maintenance contract,
since the developing company’s superior knowledge of the system is usually their main
argument as to why they are most qualified for the maintenance contract.

There are also issues with developing a useful representation. The information needs to be
represented in a form that supports easy access and interpretation. Choosing a representa-
tion is a tradeoff between an informal representation, which takes less effort to record and
is easily understood by a human reader, and a formal structured representation, which
lends itself to manipulation by a computer program. While natural language rationale is
readable, the readability is only useful if there is a way to ensure that it can be retrieved
and examined. On the other hand, translating the designers’ thoughts into a structured for-
mat is both labor intensive and likely to result in lost information and interpretation errors.

6

1.6. The Challenge of DR in Software Engineering

The primary focus of this work is to determine when and how rationale can best be put to
use. Decisions are made all throughout the software life-cycle. For the designer, the incen-
tive to record the rationale is inversely proportional to the time between capture and use. If
capturing rationale provides immediate payback then designers are more likely to record
it. For the project manager, rationale becomes more valuable over time since the original
designer is less likely to be available or remember why they made the decisions. In this
case, the person using the rationale is less likely to be the one who spent the time and
effort to record it. This contradiction can only be resolved by either making the rationale
immediately useful or by having rationale capture and use be an integral part of the devel-
opment process, where the designer knows that the rationale is essential to someone, even
if not immediately useful to him/herself.

Another difficulty with software design rationale is that it is not immediately obvious what
software design rationale is. When designing a physical object it is easy to envision choos-
ing between alternatives such as different types of materials, colors, or shapes. For soft-
ware, the obvious analogy is choosing between different algorithms. The difficulty with
this analogy is that except in extremely time- or space-critical systems, choosing between
two different algorithms that ultimately perform the same function may not have the same
impact on the resulting system as the choice of material in mechanical design. Many of the
key software decisions do not have an “outward” impact on the final product but instead
affect the development process itself. These decisions include choice of language, type of
persistent data storage and development platform. While these may not have an externally
visible impact on the system, they have a huge impact on how much the software will cost,
how long it will take to develop, and how easy it is to work with in the future. The type of
decisions made will vary depending on the stage of the development process with the
alternatives becoming more concrete as the system moves from requirements definition
into implementation.

1.7. Expected Results

Our goal in this research was to investigate ways that rationale could be used during soft-
ware maintenance and to build a system to support these uses that allows us to investigate
using DR for software maintenance. This was done by producing the following:

1. Uses for DR during maintenance and what has to be done with the DR to support
these uses: this was necessary in order to create a representation and system that sup-
ports maintenance.

2. A method for using rationale to detect inconsistencies within the reasoning behind
software decisions: the software life-cycle is very long and it is highly likely that the

7

design and rationale will continue to change. It is important to ensure that decisions
made for changes to the design and implementation are consistent with those made ear-
lier.

3. A representation for rationale that supports the following:

a. Rationale occurring at multiple levels in the development process from
requirements through maintenance: this representation will support rationale
for the requirements, rationale for the use cases and analysis classes, rationale
for the class structure, and rationale for the code.

b. Rationale to support inferencing: this representation will be structured as
argumentation that can be used to support both semantic and syntactic
inferencing. The rationale must contain enough detail to be useful yet will also
be general enough so that contents can be compared.

c. Rationale to support maintenance: this will include both the rationale for why
changes are necessary as well as the rationale for how the changes were
performed.

4. A design rationale ontology that supports inferencing by indicating the relation-
ships between arguments at different levels of abstraction: this ontology will allow
arguments to be captured in a level of detail appropriate to the stage of development
and also support the ability to compare arguments in order to evaluate the design.

5. A way of attaching the rationale to the software implementation so that it can be
presented to and modified by the user: one method for minimizing the intrusiveness
of rationale capture is to integrate it as closely to the development process as possible.
One way to do this is to integrate it into a development tool already used by the
designer. This requires associating the design rationale with the development artifacts
so that it can both be entered by the user as decisions are made and viewed by the user
later when the artifacts are updated. We chose to associate rationale with the code
because that is the artifact most likely to be accessed by the software maintainer.

6. A prototype system that uses these methods to support the maintainer: the proto-
type system allowed us to test out the representation and ensure that it supports the
intended uses.

7. Evaluation results for the prototype system: the prototype system was used in an
experiment to evaluate the usefulness of the system and the rationale during a series of
maintenance tasks. The performance of users performing maintenance with the assis-
tance of the system was compared with that of users who performed the same tasks
without assistance.

8

1.8. Organization of the Dissertation

The remainder of this dissertation presents our approach to using DR to support software
maintenance in more detail. Chapter 2 presents the problem we are trying to solve: using
rationale to assist in software maintenance. Chapter 3 describes relevant research in
design, AI in design, design rationale, and software design. Chapter 4 presents prior work
in investigating DR users while Chapter 5 describes a software maintenance study that
assisted in developing requirements for our rationale representation. Chapter 6 describes
our approach, Chapter 7 describes the system architecture and initial design of the
SEURAT system, and Chapter 8 describes the SEURAT implementation. Chapter 9 pre-
sents a demonstration of how SEURAT is used to perform several software maintenance
tasks. Chapter 10 describes the evaluation of SEURAT and presents the experiment
results. Chapter 11 concludes the dissertation with the conclusions of the research and
some goals for future work.

9

CHAPTER 2 The Problem

As described earlier, while everyone agrees that design rationale is useful, it is still not
used enough in practice. Possible reasons for this are that the uses proposed for rationale
are not compelling enough to justify the effort involved in its capture and that there are
few systems available to support rationale use and capture. Software development is one
area where we feel that rationale use could be beneficial and should be used. In particular,
we feel that rationale would be especially valuable during software maintenance. For this
reason this dissertation will address the following research problem:

Can rationale improve the effectiveness and efficiency of software mainte-
nance?

In this chapter we discuss design rationale and its relationship to the software develop-
ment process (Section 2.1), potential uses for design rationale in software development
and maintenance (Section 2.2), how design rationale use could be encouraged (Section
2.3), and a summary of this chapter (Section 2.4).

2.1. Design Rationale and the Software Development Process

The software development process has multiple phases. While there are a number of dif-
ferent well-established software development processes in common use, they generally
have the same phases in common (although terminology may differ):

• Requirements – this phase is where the needs of the customer are examined and trans-
formed into requirements for the resulting system.

• Analysis – this phase is where the requirements are analyzed and mapped on to specific
functions that the system must perform.

• Design – this phase is where the system structure is defined based on the results of the
analysis and requirements phases.

10

• Implementation – this phase is where the system is implemented, based on the
design.

• Testing – this phase is when the system is tested to ensure that it functions prop-
erly and meets all the requirements defined in the analysis phase.

• Maintenance – this phase is when the system is running in the field and changes
are made periodically to correct problems and/or add new functionality.

These phases do not necessarily take place in a linear format. Some software
development processes are performed in an iterative fashion where small portions
of the final system pass through design, implementation, and testing either in par-
allel with each other or in sequence.

Design rationale could be generated at any stage of the design process and describe
many different types of decisions:

• Requirements – rationale could exist for the existing requirements and for
requirements that were considered but then rejected. There would be rationale
for the user interface design if the interface was prototyped or story-boarded
during the requirements phase.

• Analysis – rationale could be associated with use-cases and with the partitioning
of the problem into analysis classes and collaboration diagrams.

• Design – rationale could be associated with any portion of any design artifact.
This could include reasons behind the choice of the design classes, the attributes
(including reasons for data types and visibility), the methods, etc.

• Implementation – rationale could describe the choice of algorithms, data struc-
tures, persistent storage, and more.

• Testing – rationale could provide the reasons behind the choice of test cases and
test inputs.

• Maintenance – rationale could describe both why the modifications were neces-
sary, as well as the reasons behind the design and implementation choices nec-
essary for the modification.

Figure 2-1 shows the requirements, analysis, design, and implementation phases
and the rationale that could be generated during each of them. Capturing all this
information, however, would present a significant amount of overhead to the soft-
ware developer.

11

FIGURE 2-1. Software Development Phases and Rationale

While only one phase is explicitly named design, design activity, and decisions
requiring rationale, occurs at all phases of the software development process. In
addition, the rationale for these decisions may be required at a later phase in the
process or, in the case of an iterative process or re-use of an existing system, at ear-
lier phases in a subsequent iteration or new system design.

One area that needs more investigation is the relationship between rationale col-
lected at different development phases. For some cases, the rationale at a later
phase will be an elaboration on the rationale collected earlier. For example, an
object class defined in the analysis phase may be split into several in the design

PROGRAM RATIONALE
Requirements:

- what it must do (F)
- constraints on how

- NFRs , scheduling, re-use
- User Interface

Analysis:
- Use Cases
- Collaboration Diagrams

Design:
- Class Diagrams (S)
- Sequence Diagrams (B)

- for each use-case (F)

Implementation:
- Code

what decisions are made that are not
captured in the design?

error handling
persistent storage
logic/control/branching
algorithms
…

“why” for requirements
application specific
domain specific
customer specific

alternative or rejected requirements
and reasons

why these use-cases
alternative or rejected use-cases
and reasons
why these classes
why these interactions

why these classes
why these attributes
why these methods

why these relationships

why these types
why these types
why this visibility

why these parameters
why these returns

why this order
why these messages
why these collaborators

why handle errors this way
why this type of storage
why these control structures
why this algorithm
…

12

phase. Conversely, in some cases, the decisions could be less dependent on the ear-
lier decisions. For example, off-the-shelf components used in the system may not
be chosen until implementation time (assuming this choice is compatible with the
overall design).

What if a decision made at a later phase does affect an earlier decision? There may
be more information available then there was earlier. In this case, the new decision
affects both the design and the design rationale. One difficulty in maintaining a
software design (or more accurately, the software design description) is that as
changes are made at lower levels, the developers often fail to go back to the design
documentation and update it. As decisions change, the rationale changes also will
require this backward propagation.

2.2. Uses of Rationale in Software Development and Maintenance

There are many ways that rationale could be used in software development and
maintenance. The following paragraphs describe some uses that will be considered
during this work:

1. Rationale as Documentation: Having the reasons behind the decisions
recorded can be invaluable as people leave and join the software team. This
would allow the knowledge of those leaving to still be available to the newcom-
ers. The software development cycle is often very long and turnover can be
quite high. This makes the availability of rationale particularly valuable, partic-
ularly during maintenance where the maintainer may not even work for the
same company as the original developer.

Another way that rational can assist in documenting software is to use it to pro-
vide traceability between different design phases (traceability refers to the abil-
ity to trace a requirement, or other element of the design, forwards and
backwards through the phases of development). This is an aspect of design doc-
umentation that is often missing. It is very important to ensure that all require-
ments are met by the system and that no requirements are invalidated by making
changes to the software in the future. If design rationale captures the relation-
ships between decisions made at different stages in the design then these prob-
lems can be averted.

2. Rationale for Revision: Rationale can also be very useful when a design is
revised, either due to a change in requirements or due to an error in the initial
design. By recording those alternatives considered but not selected, rationale

13

provides two useful services to the designer: it indicates which alternative deci-
sions are not good, and the reasons, and also provides a list of decisions that
were not chosen but that may be worth a second look. This is information that
would have to be painfully recreated by trial and error if it were not present in
the rationale. Presence of the rationale helps avoid repeating bad decisions and
helps avoid overlooking potentially good ones. This could potentially decrease
maintenance costs by helping the maintainer take advantage of what was
learned earlier in the development process.

Because rationale captures the relationships between decisions, it can also be
used to analyze the impact of design changes (revisions). The rationale can be
used to determine which upstream and downstream decisions would need to be
revisited if the proposed design change were made. This impact analysis is very
valuable by giving insight into how difficult the change is likely to be and by
ensuring that all the affected portions of the design are known so that they can
be changed as needed. This will help in maintenance by giving the maintainer a
way to ensure that the revisions are complete and consistent with the rest of the
system.

Rationale can also assist in changes needed if the technology changes. The rea-
sons given in the rationale can be used to infer where decisions were driven by
the technology available at that time. This information can be used to see where
the design requires modification to exploit new technology and indicate if deci-
sions rejected previously should now be reconsidered. Changing technology is a
frequent reason why software needs to be changed during maintenance.

3. Rationale for Reuse: Rationale is also valuable when a design is reused. Gen-
erally, this involves some modification of the reused design either due to chang-
ing requirements or changing technology. If rationale provides traceability, the
design can be analyzed by determining which portions of it are a result of which
requirements. This helps to provide the information needed to assess the impact
of a requirement change and to determine where changes need to be made to the
design.

4. Rationale for Validation: Validating the rationale involves making sure that
the rationale is complete. The reason why this is valuable is that well docu-
mented decisions may be more likely to be well thought out decisions. If the
rationale is complete then the decision making process is more likely to have
been thorough than if rationale was only partially entered.

14

There are several ways in which rationale can be validated:

a. Is there an alternative selected for each decision required or do some
decisions still need to be resolved?

b. Are there decisions recorded that have no alternatives?

c. Can each requirement be traced to a selected alternative?

d. Were any alternatives chosen where only reasons for rejecting them were
recorded?

e. Are there any alternatives recorded that have no reasons for choosing or
rejecting them?

While missing rationale does not necessarily mean that decisions were poorly
thought out, the presence of rationale is a good indication that some thought
went into the decisions and that multiple alternatives were considered.

5. Rationale for Evaluation: Rationale can also be used to evaluate the quality of
the design. This evaluation is done by using the strengths and weaknesses of the
arguments in the rationale to determine whether the decisions made were well
supported. If not, then this indicates that either the designer did not make the
best decision or the designer did not fully and accurately record his or her rea-
sons. This could be a simple omission, or it may indicate that there are reasons
that the designer prefers to not admit to. One example of this would be a soft-
ware designer choosing a particular programming language because he or she
wants a reason to learn it to increase their marketability, even though the lack of
experience in the language is a valid argument against the choice. Evaluating
the design will be useful during maintenance as a way to ensure that the priori-
ties of the maintainer are consistent with those of the original developers.

2.3. Encouraging DR Use in Software Design

In order for DR to be useful, it needs to be used. This is not as simple as it sounds.
This problem has two main issues that must be addressed. The first is to ensure that
the DR is available and easily accessible to the designer. The designer needs to
know when there is DR available without having to go out of their way to hunt for
it. Also, the designer needs to have the tools available that make DR use a benefit,
not just another time-consuming task.

15

The second issue is how to encourage the use. It is not enough to assume that if the
DR is available and there are tools to access it then the designers will use it. There
needs to be a way of enforcing, or at least encouraging, the designer to use the DR.
If the DR support tools are integrated into tools already used by the designers then
it might be possible to present the DR when it is needed without extra effort from
the designer. This would be the most automated approach and is preferable to a
manual one where DR use must be indicated before a task can be considered com-
plete. The automated approaches range from simply presenting a designer with
related rationale at the appropriate time or a more active approach where the past
rationale is used to evaluate current decisions and provide feedback to the
designer.

2.4. Summary

As described above, crucial decisions are made at many points in the software
development process. Documentation of these decisions, and the rationale for
them, could be very useful in both subsequent development phases and in develop-
ing new systems with similarities to the current one. The obstacle to this is that the
rationale is not easy to capture, and while there are many potential uses, the tools
and methods are not in place to support them.

One area where rationale could be especially useful is during software mainte-
nance. The goal of this work is to study how rationale could be used during main-
tenance and to provide tools and methods that use design rationale to support the
software maintainer.

16

CHAPTER 3 Relevant Research

It would be nearly impossible to cover in depth all the relevant work in all the areas
connected to the problem we intend to address. Therefore we will have to look primarily at
the significant contributions in four related directions:

• Design
• AI in design
• Design rationale
• Software design

3.1 Design

There are a number of interpretations of the meaning of design. Hubka and Eder [1996]
state that design can be interpreted as a noun, indicating the structure of artifacts and
systems, or as a verb, indicating a process. The latter definition is particularly appropriate
to this work:

“a process of establishing which of several alternative ways (and with what tools)
things could be done, which of these is most promising, and how to implement that
choice, with continual reviews, additions and corrections to the work — design-
ing” (p. ix)

This definition is not complete — it does not indicate where the alternatives come from. It
also, while indicating that the “most promising” alternatives should be used, does not
indicate what that means. Tong and Sriram’s definition [1992] emphasizes the
requirements placed on the design — the need to conform to a specification, meet certain
criteria (such as performance criteria and resource constraints), and work within
constraints such as technology and time limitations. The conformance with requirements
and constraints is what will make an alternative “most promising.”

Despite being overly simplistic, Hubka and Eder’s definition is important for two reasons.
First, it clearly states that design is about selecting from alternatives. Second, it indicates

17

that design continues past the specification and into the implementation. This indicates
that designing is not limited to a phase of development that takes place between defining
the requirements and building the product, it is something that continues throughout the
product life-cycle. Interpreting design to apply to the entire cycle is also done by Pugh
[1991] who defines a design core that starts with marketing (identifying customer needs)
and continues through selling the resulting product.

Design can be categorized along many dimensions. One is by the design domain. Different
domains, such as civil engineering design, mechanical engineering design, architectural
design, and software design, while sharing many common issues, also bring their own
unique difficulties to the design process. Another is by its level of abstraction, or stage in
the design process, such as conceptual design or detailed design [Pugh, 1991]. Another
way is by the amount of creativity involved in the design process (creative vs. routine
design) [Brown & Chandrasekaran, 1989]. Still another is by what task or tasks must be
accomplished in order to complete the design. Parametric design [Brown, 1992] involves
assigning values to known parameters while configuration design [Brown, 1998; Mittal &
Frayman, 1989] involves determining how known components can be connected together
to achieve the desired result. These dimensions overlap considerably but help to indicate
how, if, or to what degree the design task can be automated as well as providing insight
into the types of knowledge required.

3.2 AI in Design

While automating design sounds like a good idea, it is not a simple task. Design is
considered an “ill-structured problem” [Tong & Sriram, 1992] where the mapping from
requirements to implementation is not straightforward. Because automating design is not
easy, design researchers have turned to AI techniques. Over the past twenty years, work
has been done in applying AI techniques to a variety of design tasks (tasks performed
while designing) and a variety of design problems (types of things being designed).

As with design itself, AI in design research can be categorized among a number of
overlapping dimensions. Some systems target specific application domains. These include
circuit design [Mitchell, et. al, 1985; Mostow, et. al., 1992], mechanical design [Murthy &
Addanki, 1987; Goel, 1991; Joskowicz & Sacks; 1999; Navinchandra, et. al, 1991; Araya
& Mittal, 1987; Dixon, et. al, 1986; Ramchandran, et. al., 1988], algorithm design [Kant,
1985], and even table design [Bentley & Wakefield, 1995]. Other systems, such as TEAM
[Lander & Lesser, 1992], and DIDS [Runkel, et. al., 1992] are domain independent.

The type of design performed can be categorized (although subjectively) by the amount of
creativity or innovation involved. Some systems perform design that is more routine:
Brown & Chandrasekaran’s AIR-CYL [1989] falls into that category. Others strive for

18

more creative or innovative designs: William’s [1992] interaction-based design approach,
for example, aims at creating novel devices.

Systems generally target a particular type of design task. Some, focus on parametric
design: HIPAIR [Joskowicz & Sacks, 1999] designs mechanical assemblies, DPMED
[Ramachandran, et. al., 1988] performs parametric design of transmissions, DOMINIC I
[Dixon et. al., 1986] is a domain independent parametric design system. Others focus on
configuration design: COSSACK [Frayman & Mittal, 1987] and R1 [McDermott, 1982]
perform configuration of computer systems, while VT [Marcus, et. al., 1992] designs an
elevator system.

A variety of AI techniques are used in design, often in combination with each other. Case-
Based reasoning is used by CADET [Sycara & Navinchandra, 1992] and KRITIK [Goel,
1991]. Constraint-based reasoning is used by PROMPT [Murthy & Addanki, 1987] and
PRIDE [Mittal & Araya, 1992]. Planning is used by MOLGEN [Stefik, 1981]. Machine
learning is used in A-Design [Cambell, et. al., 1998] and LEAP [Mitchell, et. al., 1985].
Many systems use rules in some form, as well as other general AI techniques such as
search and backtracking methods.

Additional information about research in AI in Design can be found in [Tong & Sriram,
1999], [Brown, 1992], [Birmingham & Brown, 1997], [Stahovich, 2001], in the AIEDAM
journal (Cambridge University Press), and in the collected proceedings of the AI in
Design conferences.

3.3 Design Rationale

Design rationale also falls into the category of AI in Design because at its core it is a
knowledge representation problem. There are many ways of categorizing design rationale
techniques and systems. In the following subsections, we describe related work by
examining design rationale representation, capture, and use. We also examine DR systems
developed specifically for software design.

3.3.1 Design Rationale Representation

Design Rationale representations vary from informal representations such as audio or
video tapes, or transcripts, to formal representations such as rules embedded in an expert
system [Conklin and Burgess-Yakemovic, 1995]. A formal approach allows the computer
to use the data but does not always output information in a form that a human can
understand. In addition, it requires that data be given to it in a more rigid format. An
informal approach provides data in forms that are easily generated and understand by a
human but can not be used by the computer. A compromise is to store information in a

19

semi-formal representation that provides some computation power but is still
understandable by the human providing the information. Semi-formal representations are
often used to represent argumentation (arguments for and against alternative solutions to
design decisions).

Informal Representations

Representations are categorized as informal when they capture information in the form
generated by the designer during design, rather than requiring a new structure to be used.
An example of a system using an informal representation is the Process Technology
Transfer Tool (PTTT) [Brown & Bansal, 1991]. This tool, developed to capture
manufacturing process design information, falls into the informal representation category
because it records information in the original form in which it is created/used by the
designer. This information is in the form of design documents (reports, process sheets,
experiment descriptions, etc.) that are generated during the design of a manufacturing
process.

Formal Representations

Formal representations contain information in a machine-readable format that makes it
easy to manipulate and interpret the information using a computer, but is less easily
understood by a human. One example of a system using a formal representation is M-LAP
[Brandish, et. al., 1996], a machine-learning apprentice system that is integrated with
design tools. It records user actions at a low level and then forms them into useful
sequences. These sequences are parts of tasks, which are then parts of higher level tasks,
etc. These sequences are formed using machine-learning techniques. These sequences are
classified as a formal representation because sequences of mouse-clicks and movements
are not generally understandable to a human. Another example of a system that uses a
formal representation is Gruber’s Device Modeling Environment (DME) [Gruber, 1990].
In this system, the reasons behind the design are stored as part of a model of the designed
device and are only accessible through the DME system.

Semi-Formal Representations

As stated above, semi-formal representations are typically in the form of argumentation.
The origins of argumentation theory are described in Stumpf & McDonnell [1999]. One of
the earlier argumentation notations was developed by Toulmin [Toulmin, 1958] [Shumm
& Hammond, 1993]. In this notation, an argument consists of a datum, which is a fact or
observation, a claim, a claim made about that argument, a warrant, an argument
supporting the claim, a backing, additional information supporting the warrant, and a
rebuttal, an argument specifying exceptions to the claim. This was the origin of many
currently used argumentation notations.

20

A number of semi-formal notations form the basis of design rationale approaches and
systems. Design Space Analysis (DSA) uses the Questions, Options, and Criteria (QOC)
representation [MacLean, et. al., 1995]. This notation is used by Desperado [Ball, et al.,
1999]. QOC represents the argumentation as questions, options, and criteria for choosing
the options.

Another notation is called Issue Based Information Systems (IBIS), used by gIBIS
(graphical IBIS), and itIBIS (text based IBIS) [Conklin and Burgess-Yakemovic, 1995].
IBIS represents the argumentation as issues, positions, and arguments. IBIS is the basis of
another notation, PHI, that is used in JANUS [Fischer, et al., 1995]. PHI captures similar
concepts to IBIS but links them together differently. A number of systems use IBIS. These
include KBDS [Bañares-Alcantara, et. al., 1995], a design support system for chemical
process design, and DRAMA [Brice & Johns, 1998], a design rationale tool used in
process engineering.

There have also been many notations created for specific DR tools. Examples of this are
DRCS (the Design Rationale Capture System) [Klein, 1992] and DRIM (Design
Recommendation and Intent Model) [Peña-Mora, et al., 1995]. DRCS represents
argumentation using entities and claims about the entities. DRIM is used in SHARED-
DRIM, which captures recommendations, justification, and intent for each participant in
the design process.

3.3.2 Design Rationale Capture

Design rationale capture is a very difficult problem. There are a number of different
methods that have been proposed. These include reconstruction, automatic rationale
generation, apprentice, rationale as a methodological by-product [Lee, 1997] and also the
historian approach [Chen, 1990]. The following paragraphs describe some of the
approaches that use these methods. Capture methods are not mutually exclusive and a tool
or approach may fall into several categories. It is also possible for a tool to fall into a
different category depending on how it is used.

Reconstruction

Reconstruction consists of retrospectively creating the rationale after the design has been
complete. One example of work that used this capture method is Hyper-Object Substrate
(HOS). HOS [Shipman & McCall, 1996] is a hypermedia representation of DR combined
with knowledge-based system features. HOS captures design rationale by capturing
design communication informally and then converting portions of that communication
into a more formal representation. gIBIS [Conklin & Burgess-Yakemovic, 1995] was used
retrospectively at NCR, although it could be used during the design process as well.

21

Automatic Generation

In this approach, design rationale is generated automatically from an execution history
[Lee, 1997]. One example of a system doing this is the Rationale Construction Framework
(RCF) [Myers, et al., 1999]. RCF uses its theory of design metaphors to interpret actions
recorded in a CAD tool and convert them into a history of the design process. Another
system is M-LAP [Brandish, et. al., 1996]. M-LAP is integrated with design tools and
captures rationale by recording user actions at a low level and then forming them into
useful sequences. These sequences are parts of tasks, which are then parts of higher level
tasks, etc. These sequences are formed using machine-learning techniques.

Apprentice

In the apprentice approach [Lee, 1997], the system watches the actions taken by the
designer and asks questions when it does not understand an action. In these systems, the
rationale is, to some extent, pre-generated— if the designer’s actions match the system’s
prediction then the system-generated rationale is saved. An example of an apprentice
system is Active Design Documents (ADD) [Garcia, et. al., 1993]. ADD is a design
rationale system for routine, parametric design. The designer uses the system to assign
parameters for the system. If the designer’s recommendation matches the system, the
system records rationale already built into the knowledge base. If there is a conflict
between the designer’s action and the systems, the designer is informed and allowed to
either modify the criteria, change their action, or override the system's recommendation.

Historian

In this approach, a person or computer program keeps track of all actions during the
design process. This method is similar to the apprentice approach, except the system does
not make suggestions. It is also similar to automatic generation except that the rational is
specifically recorded during the design process, not generated later. An example of this
approach is the Design History Tool (DHT) [Chen, et. al., 1990]. DHT records the
constraints and decisions that occur from the initial design specification to the detailed
design. This system is intended to both document and playback the design and design
process.

Methodological-Byproduct

The idea behind rationale as a methodological-byproduct is for design rationales to
“naturally emerge” from the design process [Lee, 1997]. What this actually means is open

22

to interpretation; certainly design processes designed around tools that automatically
capture rationale (as described earlier) could be considered to produce rationale as a
methodological-byproduct. Another way would be to use a design process that forces
rationale capture. This is done by Ganeshan, et. al. [1994]. In their method, the design
description is modified only by changes to and refinements of the design objectives, thus
capturing the rationale as part of the design process.

3.3.3 Design Rationale Use

There are a number of different ways that design rationale is used. Some systems only
support retrieval of the rationale; how it is used after being retrieved is up to the designer.
An example of a retrieval system is JANUS [Fischer, et. al., 1995], a design environment
for kitchen design. JANUS consists of two components: a JANUS-CONSTRUCTION,
used in making the design, and JANUS-ARGUMENTATION, that contains rationale from
previous design cases. If the user makes a design decision that violates a design rule,
JANUS-ARGUMENTATION is used to explain the rule and give examples of previous
designs that did not violate the rule.

Some systems support retrieval and also offer the ability to check the rationale and/or the
design for consistency and/or completeness. One example of this is SYBYL [Lee, 1990].
Services provided by SYBYL include maintaining consistency of the knowledge base as
well as evaluating the alternatives based on claims for or against them. The Knowledge-
Based Design System (KBDS) [King & Bañares-Alcantara, 1997] uses keywords to check
the consistency of IBIS networks that contain the rationale. C-Re-CS [Klein, 1997]
performs consistency checking on requirements and recommends a resolution strategy for
detected exceptions. An Intelligent Design Evolution Management System (AIDEMS)
[Thompson & Lu, 1990] uses constraint-based reasoning to check for inconsistencies and
propagate revisions to a product description. In this system, the rationale consists of the
explanations for the inconsistencies. The Accord system [Ullman, 2004] uses belief
networks to combine rationale in order to perform a risk analysis of concepts, or systems,
being developed. This assessment shows if the best possible decisions are being made.

Another useful feature offered by some retrieval systems is the ability to ask questions
about the design and/or rationale. ADD [Garcia, et. al., 1993] allows the designer to ask
for explanations of why various parameter values were assigned. The designer can ask
both “why” and “why not” questions. Gruber’s Device Modeling Environment (DME)
[Gruber, 1990] supports a set of queries (pre-enumerated) that can be used to obtain
explanations of design decisions. The Engineering History Base System [Taura & Kubota,
1999] also uses constraints to provide teleological and causal explanations of the
designers thought processes. The Integrated Design Information System (IDIS) [Chung &
Goodwin, 1998] integrates several systems together: a design system (using AutoCAD), a

23

viewpoint system (supporting multiple views of the design and encouraging exploration),
an issue-based system (containing the rationale), and a rule-based system (used to check
for design violations).

Another use of rationale is to support collaboration: using the rationale as a means of
communicating between different stakeholders in the design. An example of this is
SHARED-DRIM. SHARED-DRIM is a system built using the Design Recommendation
and Intent Model (DRIM) [Peña-Mora, et. al, 1995]. Its main goal is to capture design
rationale for use in conflict mitigation. SHARED-DRIM records design decisions and the
rationale (argumentation) behind them and shares the information among the participating
designers. By capturing rationale for each decision, and rationale for when decisions are
not accepted, the design modification and approval cycle is shortened.

Rationale use can be taken yet another step further and used to assist in designing. An
example of this is Reconstructive Derivational Analogy (RDA) [Britt & Glagowski,
1996]. RDA is part of a larger system, the Circuit Designer's Apprentice (CDA). When
CDA is given the requirements for a new electrical circuit, it searches a database of
already designed circuits to find the closest match. If there are no circuits that match, or
match after minor adjustments, RDA is used inductively to create a design plan from the
existing circuit. This design plan is then 'replayed' with the new requirements to create the
new circuit design. One thing to note, however, is that the plan is a history of the design,
and does not supply the reasons for any decisions. The Design-Requirements-Embedding
(DRE) approach [Vanwelkenhuysen, 1995] captures rationale for a generic conceptual
design. This rational then provides assistance in modifying this pre-defined design to meet
more specific needs.

3.3.4 Design Rationale for Software Design

Design rationale research ranges from general notations, such as IBIS [Conklin and
Burgess-Yakemovic, 1995] to tools designed for specific types of design in specific
domains, such as ADD [Garcia, et. al., 1993], which is specifically for parametric design
in the HVAC domain. There has also been work done in software design, surveyed by
Dutoit and Paech [2001]. Potts and Bruns [1988] created a model of generic elements in
software design rationale that was then extended by Lee [1991] in his Decision
Representation Language (DRL), the language used in SYBYL. DRIM (Design
Recommendation and Intent Model) was used in a system to augment design patterns with
design rationale [Peña-Mora & Vadhavkar, 1996]. This system is used to select design
patterns based on the designers intent and other constraints. REMAP [Ramesh & Dhar,
1994] extended the IBIS argumentation format to capture the rationale behind functional
specifications. Zaychik and Regli [2002] developed Code-Link, a rationale support tool

24

that captured rationale by associating code with e-mail messages. This resulted in a
context-aware e-mail system.

CoMo-Kit [Dellen, et. al., 1996] uses a software process model to obtain design decisions
and causal dependencies between them. These causal dependencies then are considered to
be the design rationale. The system looks at tasks (goals to be reached during the process);
products (the products produced, such as specifications); methods (the way that the task is
accomplished); and agents (the human or computer who works on the task). When the
process model is designed, the information flow between the tasks is captured and used to
deduce the dependencies between them. The rationale consists of the justification for
choosing a particular method. This is inferred from the dependencies in the model. For
example, choosing a particular method may mandate specific values for system variables.
The rationale for those variable assignments is the validity of the method choice. There are
several types of justifications for a decision [Maurer, 1996]: justification based on validity
or invalidity of previous decisions and justification based on validity or invalidity of
existing parameter values.

CoMo-Kit, unlike the work described in this document, is not an argumentation system—
it does not keep track of alternatives tried and rejected and the reasons behind them.
Instead, it uses the dependencies to trace through the dependency chain to find the
justification for each decision. If a decision is changed, the system detects if this then
invalidates the reasons for other dependent decisions.

WinWin [Boehm & Bose, 1994] is an approach aimed at coordinating decision making
activities made by various “stakeholders” in the software development process. Bose
[1995] defined an ontology for the decision rationale needed in order to maintain the
decision structure. The goal was to model the decision rationale in order to support
decision maintenance by allowing the system to determine the impact of a change and
propagate modification effects. The Bose ontology provides a relatively general
argumentation structure for the decision rationale. WinWin focuses on the need for
collaboration and primarily focuses on decisions made when determining requirements.

Sutcliffe [1995] proposed the use of rationale to aid in knowledge elicitation. He
performed a study that used a prototype system and directed questioning to get
requirements. One of the experimental groups asked questions intended to find design
alternatives. The rationale collection promoted user participation in design decisions. The
results of this study contributed to the development of the SCenario Requirements
Analysis Method (SCRAM) which involved four techniques: use of a prototype that the
users can work with, scenarios put that artifact in the context of its use, design rationale to
expose the designers reasoning and encourage user participation, and finally a white-board

25

summary that identified dependencies and priorities. The rationale format used for the
presentation of the results was the QOC [MacLean, et al., 1995] argument format.

Lougher and Rodden [1993] investigated maintenance rationale and built a system that
attaches rationale to source code. Their approach differs from ours, however, in that they
feel that maintenance rationale is very different from that captured during development
and is not in the form of argumentation. We will discuss this later in this dissertation.
Canfora et al. [2000] also address maintenance rationale and break rationale into two
parts: rationale in the large (rationale for higher level decisions in maintenance) and
rationale in the small (rationale for change and testing). The focus on the rationale in the
small is on how the change will be implemented but does not appear to focus on reasons
behind implementation choices at a low level. They developed the Cooperative
Maintenance Conceptual Model (CM2) which is also based on the QOC [MacLean, et al.,
1995] argumentation format.

3.4 Software Design

Software design can be viewed in a number of ways. As with design in general (defined in
section 3.1), software design encompasses the entire software life-cycle since design in
some form is taking place at each point in the process. Design can refer to the design of the
system, design of the code, design of the tests to be performed on the system, and so forth.
Most software development processes have a phase called “design” as well, referring to
the stage that takes place between determining the requirements and writing the code.

There are a number of research areas that relate to our work in Design Rationale. Four of
them are discussed here:

• software development processes;
• software requirements analysis;
• software architecture;
• software maintenance.

3.4.1 Software Development Processes

One way to encourage capture and use of rationale is to make it an integral part of the
development process. Because software projects are often developed over a period of
years, there has been a great deal of importance placed on using a well defined process for
development. Process improvement initiatives, such as the Software Engineering
Institute’s Capability Maturity Model [Paulk, et. al., 1993] are intended to meet the
primary software development goals of increased quality and reduced development costs
[Osterweil, 1997].

26

Software development processes are commonly defined as software life-cycle models
[Madhavji, 1991]. There are a number of different models that have been used over the
past thirty years or so of software development. These include linear sequential models
such as the step-wise model [Benington, 1956] and its more commonly known descendant
the waterfall model [Royce, 1970]. In these models, the development process proceeds
through a number of phases which may or may not have feedback loops between them.

Other models take a more iterative approach [Basili & Turner, 1975] which aim for
incremental development. One iterative approach is the spiral model [Boehm, 1988]. This
model is risk-driven—each time a development spiral is completed, the risk (likelihood of
project failure) is examined. The number of tasks in the spiral varies: the variation
proposed by Pressman [1997] shows a spiral starting with customer communication, then
moving on to planning, risk analysis, engineering, construction and release, and finally
customer evaluation. This is a high level model: within some of the phases, such as
engineering, other processes could be used.

Besides the model development, other work has looked at process execution. Osterweil
[1987][1997] suggests that software processes should be viewed as software. He proposes
implementing processes in coding languages to allow them to be expressed more clearly.
Song & Osterweil [1994] developed a prototype system, Debus-Booch, in order to execute
design processes based on the Booch Object-Oriented design methodology [Booch, 1991].

In order to encourage DR use in software development, the process chosen should be one
that has been given wide acceptance in the software community. One process that has been
widely supported is the Unified Process [Jacobson, et. al., 1999]. This process is an
evolutionary process that grew out of a number of processes and modeling techniques. It is
based on the object-oriented programming paradigm and is centered on use-cases
[Jacobson, 1987]. Use-cases are descriptions of the dialog between the system and the
user during an interaction. An interaction is when the user invokes the system, usually to
perform a specific function, and terminates when the user has completed their action. The
process is represented using the Unified Modeling Language (UML) [Rumbaugh, et. al.,
1998]. One major advantage of this process is that it is has tool support — it is supported
by Rational Corporation’s “Rational Rose” [Rationale, 1999].

3.4.2 Requirements Engineering

Requirements Engineering (RE) is a very active area of research. Zave [1997] provides the
definition:

“Requirements engineering is the branch of software engineering concerned with
the real-world goals for, functions of, and constraints on software systems. It is

27

also concerned with the relationship of these factors to precise specifications of
software behavior, and to their evolution over time and across software families.”

Research is being performed for a number of aspects of RE [Nuseibeh & Easterbrook,
2000]: eliciting requirements, modeling and analyzing requirements, communicating the
requirements, reaching agreement on requirements, and evolving requirements. Much of
the research performed within these aspects either utilizes rationale or could make use of
rationale.

One common area of research is Requirements Traceability. Requirements traceability is
the ability to follow, or trace, the life of a requirement forwards and backwards [Gotel &
Finklestein, 1994]. According to Nuseibeh & Easterbrook [2000], requirements
traceability can provide rationale for the requirements. This is certainly true of pre-
requirement specification traceability [Gotel & Finklestein, 1994]: i.e. being able to trace
to the origins of a requirement would give its rationale. Being able to trace back to the
requirements from the design would, in turn, give at least partial rationale for the design
decisions. Work in requirements traceability is also valuable because many of the
obstacles to requirements traceability are the same as obstacles to rationale capture. These
obstacles include the problems that requirements traceability is viewed as a low priority
task, that rationale traceability is not managed as a priority, that rationale traceability has a
cost/benefit imbalance, and more [Gotel & Finkelstein, 1994].

Another related area is Requirements Interaction Management [Robinson, et. al., 1999].
Requirements Interaction Management (RIM) is concerned with interrelationships
between requirements. Often these relationships may involve conflicts and contradictions.
It is necessary to be able to detect and correct these. There are a number of approaches to
this problem. In one, ViewPoints [Easterbrook & Nuseibeh, 1995], the specification is
broken into different views. These views may correspond to the perspectives of different
participants in the development process. Working with different views can be very useful
since the developer can focus only on the aspects of the system that he/she is concerned
with. One danger, however, is that inconsistencies between views may arise. The
ViewPoints approach detects these inconsistencies and allows development to continue
without immediate resolution. It is assumed that at some point the inconsistencies will be
resolved.

Another area related to RIM is work done on Non-Functional Requirements [Burge &
Brown, 2002]. These requirements, also known as “ilities” or quality requirements, refer
to overall qualities of the resulting system, as opposed to functional requirements which
refer to specific functionality. This area is related to RIM because NFRs can often conflict
with each other and result in tradeoffs that must be made (cost vs. flexibility, speed vs.
memory use, etc.). The NFR Framework [Chung, et. al., 1995] represents the NFRs as

28

goals that must be satisfied by the system. The design consists of a goal-graph giving the
NFRs, alternative ways of satisfying them, and claims for and against these alternatives.
This is very similar to other methods that use design rationale. One thing that is not always
clear is how the NFR goal-graphs relate to the functional requirements, which also give
goals for the system.

One potential use of rationale is in evaluating tradeoffs. Yen and Tiao [1997] represent
requirements using fuzzy logic. These are referred to as “imprecise requirements” — this
means that there is a range of values that satisfy them. When tradeoffs are detected, the
requirement values are adjusted to achieve the most satisfactory solution for the
conflicting requirements.

Another Requirements Engineering area where rationale may be of use is in requirements
scrubbing [Nuseibeh & Easterbrook, 2000]. In requirements scrubbing, requirements are
removed in order to save cost. If the rationale for the requirements were available, it could
be used to choose which requirements could most safely be eliminated. Additionally, if the
mapping between NFRs and functional requirements was available (with rationale being
one way to do this) then this could be used to both determine which requirements
contributed toward cost and which contributed toward the various quality factors.

3.4.3 Software Architecture

Important decisions are made at all stages of the design process. Those made earlier
become increasingly more expensive to change as the process progresses [Pressman,
1997]. The potential impact of these decisions implies that it is important that they are
well justified. Capturing the rationale for these early decisions could help to ensure this.
After determining the requirements, the next phase of development is designing the
software architecture. The exact definition of what a software architecture is varies, but it
is generally believed to be a high level of design giving an overall picture of the software
system. Perry and Wolf [1992] present a model of software architecture with three
components: elements (pieces of the architecture), form (relationships between the
elements), and rationale (the reasons behind the architectural choices). Except for defining
it as a necessary component, little has been done with rationale for software architecture.

One common approach to software architecture is the use of Architectural Styles [Garlan
& Shaw, 1993]. There are a number of standard architectural styles in common use; one
example is a pipe and filter architecture. Klein & Kazman [1999] look at architectural
styles as ways of fulfilling certain quality attributes, or non-functional requirements. Each
style is intended to satisfy specific quality attributes. Styles can be combined in order to
obtain an architecture that best satisfies the quality attributes that are required. Use of

29

architectural styles has also been proposed as a means of facilitating reuse [Medvidovic &
Taylor, 1997].

Just as a number of architectural styles have been created to meet a variety of needs,
different Architecture Description Languages (ADL) have been developed to represent
them [Medvidovic & Taylor, 1997]. Some were developed to support a specific
architecture. For example, the C2 architecture [Taylor, et. al., 1995] has its own ADL. An
ADL can also be used for a specific type of system. Darwin [Magee, et. al, 1995], for
example, is a notation for describing architectures of distributed systems. As there is
unlikely to be any agreement on a common ADL, an architecture interchange language,
ACME [Garlan, et. al., 1997] has been developed to translate between ADLs. It is also
possible to represent an architecture in UML, either directly [Hofmeister, et. al., 1999] or
by extending UML to mimic an existing ADL [Robbins, et. al., 1998]. It may be possible
to augment ADLs in order to capture the rationale along with the architecture description.

3.4.4 Software Maintenance

Software maintenance encompasses a wide range of activities that take place after the
software system has been delivered to the customer. Chapin [2000] took a wide approach
when he identified twelve types of software maintenance: training, consultive, evaluative,
reformative, updative, groomative, preventive, performance, adaptive, reductive,
corrective, and enhancive. Of these, the first five do not involve modifying the software.
Software maintenance can be viewed as different from development because it provides a
service, rather than creating a product [Niessink & Vliet, 2000]. Kitchenham, et. al. [1999]
try to further define maintenance by building an ontology of factors that influence
maintenance.

One system that assists in understanding large software systems (something necessary for
software maintenance to be successful) is LaSSIE (Large Software System Information
Environment) [Devanbu et. al., 1991] LaSSIE provides access to the software via a
number of different viewpoints by making use of intelligent indexing and a domain model.
This is intended to help the maintainer deal with complexity and invisibility, two of
Brooks’ [1995] essential difficulties in building large software systems.

Many studies have been performed to study software maintenance. The need for more
attention to maintenance was demonstrated by a study performed by Hall, et al. [2001].
This showed that the formal process improvement models did not sufficiently address
maintenance. Singer [1998] performed interviews at ten industrial sites. One especially
interesting observation is that “source code is king”, meaning that the source code is the
main source of information about the system and that other documentation might be used
but is not always trusted. A study of eighteen organizations in Sweden [Kajko-Mattsson,

30

2001] against a set of maintenance requirements (goals) showed that there was a great deal
of room for improvement.

3.5 Summary

The work described in this dissertation, the SEURAT system, uses design rationale (DR)
to support software maintenance. SEURAT contributes to work performed in AI in Design
by defining the knowledge representation for the rationale, a semi-formal argumentation
structure, and by using inference to detect errors in the rationale structure and content. The
representation is similar, although an extension of, the DRL representation used in SYBIL
[Lee, 1990]. Inferencing over content requires that there be a common vocabulary that
allows comparison of different arguments. This need is what drove the keywords used by
KBDS [King & Bañares-Alcantara, 1997] and the common vocabulary used in InfoRat
[Burge & Brown, 2000]. SEURAT supports semantic inference via an argument ontology
that describes a hierarchy of reasons for making software decisions that contains several
levels of abstraction.

SEURAT is both related to and applicable to a number of areas in software design
research. SEURAT supports requirements engineering by providing requirements
traceability through using requirements as arguments for and against alternatives.
SEURAT also allows rationale for requirements to be captured and used. SEURAT also
can allow capture of rationale generated for the software architecture as well as decisions
made elsewhere in the development process.

The main focus of SEURAT, however, is on software maintenance. The inferencing
performed by SEURAT provides insight into the original intent behind the design and
implementation of the software. This is information that is often unavailable in standard
design documentation. SEURAT was evaluated for three types of software maintenance:
adaptive, corrective, and enhancive. The results of that evaluation are presented later in
this document.

SEURAT contributes to the fields of AI in Design, Software Design, and Software
Maintenance through its representation, inference, argument ontology, and integration
with a software development environment. Figure 3-1 shows the relationship between
SEURAT and the research areas described in this chapter.

31

FIGURE 3-1. SEURAT Relationships

SEURAT
Design rationale = knowledge representation (argumentation +
argument ontology) + inference

 Design

creative vs.
routine

 AI
Knowledge rep, CBR,
planning, rule-based
systems, inference, etc.

AI in Design

analogy, configuration,
constraint-based design,
functional reasoning,
design rationale

Stage/Phase:
conceptual,
detailed, etc.

Domain:
mechanical,
electrical,
software, etc.

 Software
Design and
Development

Stage/Phase:
requirements
engineering,
architecture,
design,
implementation,
testing
maintenance, etc.

Uses DR to support software maintenance by integration with a
standard development environment

32

CHAPTER 4 Investigating DR Uses:
Inferencing over Design
Rationale

As discussed earlier, there are a variety of different uses for design rationale. The
following sections describe work done on a prototype system that investigated using
rationale for validation (of the rationale) and evaluation (of the design). This was done in
preparation for building the larger system described later in the dissertation.

4.1 Using Rationale for Validation and Evaluation

Two interesting uses of DR are using it for validation of the rationale and evaluation of the
design. Validating the rationale involves verifying that the rationale is structurally
complete and that there are no obvious discrepancies, such as decisions made that had no
arguments in their favor. Validation is important because completed rationale may indicate
that decisions were well thought out: i.e., designers were able to explicitly justify their
design decisions.

Rationale can be used to evaluate the design by checking to see if the decisions made were
well supported. For example, if a decision has more, or stronger, arguments against it than
for it then it may not be the best choice. Also, there may be alternatives that have more
support than the ones that were chosen; this may indicate that there is either missing
rationale or that the choice made should be reconsidered.

4.2 Prototype System for Inferencing Over Rationale

A prototype system, InfoRat (Inferencing Over Rationale) [Burge & Brown, 2000], was
built to investigate how inferencing over rationale could support validation and evaluation
using rationale. The following sections describe the approach and implementation.

4.2.1 Approach

In the InfoRat approach, design rationale is viewed as a bridge between design phases,
where the rationale can be used to trace through the decisions, starting with the

33

requirements. The design begins with a set of requirements defining the system being
designed. These requirements are then mapped to goals and, if required, sub-goals. Goals
and sub-goals then can be satisfied by one or more alternatives. Each alternative then
maps to an artifact, or a requirement for the next stage of design. The rationale for each
choice is represented as arguments, expressed as claims, for or against each alternative.
Figure 4-1 shows how design rationale links the requirements and the design.

FIGURE 4-1. Design Rationale in the Design Process

The resulting rationale serves both to document the design and to provide a means for
design verification. This verification involves ensuring that the design is consistent and
complete, i.e., all requirements correspond to goals and all goals have selected
alternatives. The following subsections describe the important aspects of this approach.

4.2.1.1 Example Problem

For illustrative purposes, a simple example of a traffic light design [Gogolla, 1998] was
used. This was done to provide rationale that was simple to construct but rich enough to
demonstrate the concepts. For more detailed information on traffic signal phase and cycle
selection, see Zozayza-Gorostiza and Hendrickson [1987].

The traffic light example describes the conceptual design of the traffic lights for an
intersection between two streets where one street had a heavier flow of traffic than the
other, except during rush hour. This intersection also had frequent traffic turning from
traveling South to traveling East. In addition to supporting those aspects of the
intersection, the light system also had to be designed so that it would handle failure as
safely as possible. Figure 4-2 shows the intersection.

Requirement

Goal Alternative Claim

Artifact

Requirement
Space

Rationale
Space

Design
Space

34

FIGURE 4-2. Intersection Diagram

This results in the following requirements for the traffic light system:

• Use four traffic lights;
• Provide safe traffic flow;
• Allow for heavier traffic on the North-South road;
• Allow for traffic turning South to East;
• Safely handle light failures.

Each of these requirements can be satisfied in a number of ways. For example, choosing
four traffic lights involves deciding what types of phases the lights should have, deciding
if all four lights should be identical, and deciding if the lights should have arrows for
turning or not. Providing safe traffic flow requires controllers for the lights to ensure that
traffic can not be flowing on the E-W road at the same time that it is flowing on the N-S
road. There are also a number of ways that the heavier traffic flow on the N-S road can be
handled. Sensors can be used to monitor the flow of traffic or the lights can go to flashing
yellow or red at times when traffic on the E-W road is lighter. Assistance for turning can
be provided by delaying the lights or by using turn signals. There are also different ways
that light failures that can be handled. One way is to shut down the intersection
completely, although it might be better to turn it into a “four way stop” so that some traffic
flow can still occur.

4.2.1.2 Representation

As described above, there are a variety of methods for representing rationale. In order to
support inferencing, a structured or semi-structured representation is required. DRL [Lee,
1990] has the richest rationale representation of the systems studied. A meaningful subset
of DRL was chosen to allow exploration of possible inferences and to keep the

N

Heavier Flow
of Traffic

35

representation relatively simple. The elements represented are artifact, requirement, goal,
alternative, claim, group, viewpoint, and question. DRL also supports several relations
between these elements including: is-a-part-of, is-a-subclass-of, is-argument-for, and is-
argument-against.

The InfoRat system implements a subset of these elements: requirement, goal, alternative,
and claim. It also allows several relationships: supported-by, sub-goal, alternative-for,
argument-for, and argument-against. Figure 4-3 shows the elements represented in
InfoRat and the relationships between them.

FIGURE 4-3. Design Rationale Elements

As the figure indicates, each goal can have multiple sub-goals, an alternative can be used
to satisfy more than one goal, and a claim can be an argument for or against multiple
alternatives. Figure 4-4 shows the goals as well as a partial set of alternatives and claims
for the requirement to use four traffic lights.

has-argument-against

has-argument-for
has-alternative

Goal Alternative Claim

Requirement

has-subgoal one-to-many

many-to-many

36

FIGURE 4-4. Subset of Alternatives for Requirement “Four Traffic Lights”

When a claim is used as an argument for or against an alternative, it is given two values to
indicate its influence on the design decision: an amount, between one and ten, that
indicates “how much” the alternative meets the claim (i.e. how safe) and an importance,
between zero and one (not important to essential), indicating how important the claim is
when trying to meet the goal.

The amount and importance are multiplied together and then added to the ratings of other
arguments to indicate the overall rating for an alternative. For example, if the alternative
“Arrows” (as shown in Figure 4-4) has a claim in its favor of “Safety”, with an amount of
seven and an importance of one, and claims against it of “NOT Affordability”, with a
amount of five and an importance of 0.5 and “NOT Simplicity”, with an amount of four
and an importance of 0.3, its overall rating would be 3.3:

 For Against Result
(7 * 1) – (5 * 0.5 + 4 * 0.3) = 3.3

This algorithm was used because it is simple, yet is rich enough to support the types of
inferencing desired for the system.

against against against for

for for

satisfied-by satisfied-by

subgoal subgoal

satisfied-by

Four Traffic
Lights

Arrows

Select
Configuration

Select
Directionals

Select Types
of Phases

Select Four
Lights

No
Arrows

NOT
Safety

Simplicity

Affordability Safety

NOT
Affordability

NOT
Simplicity

subgoal Requirement

Goal

Alternative

Claim

37

4.2.2 Inferences

The InfoRat system inferences over the rationale to check for completeness and
consistency. The inferencing can be broken into two categories: syntactic inferencing that
uses the structure of the rationale, and semantic inferencing that looks at the contents/
values of the different rationale elements.

Syntactic inferencing looks for the following inconsistencies in the rationale:
requirements with no corresponding goals, and goals (or sub-goals) with no selected
alternatives. The syntactic checks are primarily concerned with ensuring that the rationale
is complete. Figure 4-5 shows the requirement “Four Traffic Lights” and its relationships.
In this example, the goal “Select Type of Directionals” has two alternatives but neither has
been selected. Figure 4-6 shows a syntactic check that looks to see if there are any
requirements that do not trace to goals with selected alternatives. This check detects that
the requirement “Four Traffic Lights” was not satisfied. Both these figures, as well as
those that follow, show actual output from InfoRat.

FIGURE 4-5. Goals and Sub-goals for the Unsatisfied Requirement

Semantic inferencing looks at the reasons for and against the alternatives. There are three
types of discrepancies looked for at the argument level: selected alternatives where the
arguments against the alternative outweigh the arguments for the alternative, (as shown in
Figure 4-7), selected alternatives where the alternative selected is not the best choice, (as
shown in Figure 4-8), selected alternatives where the same argument is used both for and
against the alternative, (as shown in Figure 4-9).

Requirement: Four Traffic Lights
 Goals:
 Goal: Select Four Lights
 Subgoals:
 Goal: Select Types of Phases
 Alternatives:
 German 4-Phase Lights
 Italian 3-Phase Lights (Selected)
 Goal: Select Type of Directionals
 Alternatives:
 Light w/o Turn Signals
 Light with Turn Signal
 Goal: Select Light Configuration
 Alternatives:
 Mixed Light Types (Selected)
 All Lights the Same

38

FIGURE 4-6. Unsatisfied Requirement Check

FIGURE 4-7. Arguments Against Outweigh For

FIGURE 4-8. Best Alternative Not Chosen

* Verify Design Rationale *

Choose one of the following:

 1: Show Full Verification Report
 2: Check for Unsatisfied Requirements
 3: Check for Unsubstantiated Alternatives
 4: Check for Non-Optimal Alternatives
 5: Check for Contradictory Arguments
 6: Check for Invalid Tradeoffs
 7: Check for Consistant Arguments
 8: Check for Incomplete Rationale

 E: Exit Menu

Enter Selection: 2

Unsatisfied Requirements:

None!

 Arguments AGAINST outweigh FOR:

 For Goal: Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -1.5)

 Best Alternative not chosen for Select Light Configuration

 Selected Alternative: Mixed Light Types
 (Rating = 1.5)
 Best Rated Alternative: All Lights the Same
 (Rating = 2.5)

39

FIGURE 4-9. Contradictory Arguments

There are two types of consistency checks made at the goal level: completeness, where
alternatives are examined to ensure that the same arguments are considered for each
alternative, as shown in Figure 4-10, and consistency, where alternatives for a specific
goal are examined to ensure that a particular argument is given the same importance for
each alternative, as shown in Figure 4-11.

FIGURE 4-10. Completeness for a Goal

FIGURE 4-11. Consistency for a Goal

4.2.3 Vocabulary

In order to support semantic inferencing, it is necessary to have a known vocabulary for
claims (arguments for or against an alternative). The vocabulary consists of two
categories: a pre-defined, standard vocabulary, and a user-defined, domain-oriented
vocabulary. For the InfoRAT system, we refer to these as the Standard Claim Vocabulary
and the User-Defined Claim Vocabulary respectively.

Enter Selection: 5
Same argument for and against:
 For Goal:If EW traffic, no NS traffic
 Alternative: Individual Light Control
 Claim FOR:Safety and Claim AGAINST: Safety

 For Goal:If NS traffic, no EW traffic
 Alternative: Individual Light Control
 Claim FOR:Safety and Claim AGAINST: Safety

 Rationale is not complete for Goal: Select Types of Phases

 Alternative: [Italian 3-Phase Lights] is missing arguments for:
 Safety

 Inconsistent importance values found for Goal:
 Select Types of Phases

 For Argument: [Availability] and Alternatives:
 German 4-Phase Lights
 Italian 3-Phase Lights

40

The Standard Claim Vocabulary was pre-defined to match the design task. For software
design, a vocabulary was been built based on the “ilities” [Filman, 1998]. Figure 4-12
shows the Standard Claim Vocabulary used by InfoRat.

FIGURE 4-12. Standard Claim Vocabulary

Claims can be added to the User-Defined Claim Vocabulary at any time during the design
process. These are arguments that are specific to the design project. Figure 4-13 shows the
User-Defined Claim Vocabulary for the traffic light design problem.

FIGURE 4-13. User Defined Claim Vocabulary

4.2.4 Tradeoff Evaluation

Anther type of semantic inferencing makes use of background knowledge to evaluate
tradeoffs. The background knowledge specifies two types of information:

• Does a causal relationship exist between two claims and;
• Which claim, if either, is more important.

If two claims are causally related, i.e. more of one means less of another, then InfoRat will
check to ensure that these claims never appear on the same side of an argument. Figure 4-
14 shows an example of a causality error. InfoRat also checks to ensure that if two claims
are causally related they never appear individually. Figure 4-15 shows an example of a
missing claim. In addition, if the background knowledge indicates that one claim is more

Standard Arguments:

 Affordability
 Safety
 Availability
 Simplicity
 Reliability
 Adaptability
 Configurability
 Trustability

User Defined Arguments:

 Starves one direction
 Optimizes Traffic Flow

41

important than another, this will also be checked for. Figure 4-16 shows an importance
violation along with a causality violation.

Tradeoffs are inconsistent for Goal:
 Select Type of Directionals

 For Alternative: [Light w/o Turn Signals] inconsistent
 tradeoffs are:

 Causally related arguments Safety and Affordability
 appear on the same side of an argument and Affordability
 is rated as more important

FIGURE 4-14. Causality Violation

Tradeoffs are inconsistent for Goal: Select Types of Phases

 For Alternative: [German 4-Phase Lights] inconsistent
 tradeoffs are:

 Argument Safety appears without normally opposing argument
 Affordability

FIGURE 4-15. Missing Claim

42

Tradeoffs are inconsistent for Goal: Priority to NS Traffic

 For Alternative: [Configuration Changes w/Time inconsistent
 tradeoffs are:

 Causally related arguments Safety and Affordability
 appear on the same side of an argument and Affordability
 is rated as more important

FIGURE 4-16. Tradeoff Importance Violation

4.3 Implementation and Examples

InfoRat was implemented in CLIPS [CLIPS, 1998] and performs three main functions:
Rationale Browsing, Rationale Modification, and Rationale Verification.

4.3.1 Browse Rationale

The browse function is used to examine the rationale stored in the system. The designer
can examine the status of each element and its relationship. with other elements.

 The first option, List DR Element Types, allows the user to quickly view the different DR
elements currently in the system. Figure 4-17 through 4-19 show the element listings for
requirements, goals, and alternatives.

FIGURE 4-17. Requirement Listing

The remaining options give the user a more detailed view of each element. Figure 4-5
showed the information displayed about a requirement and its goals. Figure 4-20 shows
the contents of an alternative, Blinking Red/Yellow.

Requirements:

 Four Traffic Lights (Satisfied)
 Safe traffic flow (Satisfied)
 Traffic heavier N-S (Satisfied)
 Frequent South to East Turning Traffic (Satisfied)
 Safely Handle Light Failures (Satisfied)

43

FIGURE 4-18. Goal Listing

FIGURE 4-19. Alternative Listing

Each rationale element contains a version number and a description of the element. The
version number is used to keep track of changes in the rationale so that it can be
determined if the state of any rationale element was changed during the design process.
The description is used to describe the element to the user. InfoRat also allows the user to
view the version history to see the changes made to the rationale and the reasons for the
changes in the rationale. Figure 4-21 shows an example of a version history.

Goals:

 Select Types of Phases (Satisfied)
 Select Type of Directionals (Satisfied)
 Select Light Configuration (Satisfied)
 If EW traffic, no NS traffic (Satisfied)
 If NS traffic, no EW traffic (Satisfied)
 Safe Flow of Traffic (Satisfied)
 Priority to NS Traffic (Satisfied)
 Turn Assistance to SE Traffic (Satisfied)
 Select Four Lights (Satisfied)
 Stop all if Light Fails (Satisfied)

Alternatives:

 German 4-Phase Lights
 Italian 3-Phase Lights (Selected)
 Light with Turn Signal (Selected)
 Light w/o Turn Signals
 All Lights the Same
 Mixed Light Types (Selected)
 Central Light Controller (Selected)
 Individual Light Control
 Blinking Red/Yellow
 Sensor Controlled E/W
 Configuration Changes w/Time (Selected)
 Turn Arrow for S->E (Selected)
 Delayed Green
 All Lights go to Blinking Red (Selected)
 All Lights go to Solid Red

44

FIGURE 4-20. Alternative Blinking Red/Yellow

FIGURE 4-21. Version History

 Name: <Instance-always_blinking>
 Alternative: Blinking Red/Yellow

 Alternative for:
 Priority to NS Traffic (Not Selected)

 Claims For:

 Claim: Simplicity
 Applicability: IS
 Amount: 3
 Importance: MODERATE

 Claim: Affordability
 Applicability: IS
 Amount: 4
 Importance: MODERATE

 Claims Against:

 Claim: Safety
 Applicability: NOT
 Amount: 7
 Importance: MODERATE

 Version History:
 Version: 1

 Change: Removed claim [Safety] from

[Configuration Changes w/Time]
Reason: Duplicate Argument

 Version: 2
 Change: Removed claim [Affordability] from

[All Lights the Same]
Reason: Contradiction with another argument

 Version: 3
 Change: Added new Argument: [Optimizes Traffic Flow] for

Alternative: [Mixed Light Types]
Reason: Mixed lights can optimize flow

 Version: 4
 Change: Removed claim [Safety] from

[Individual Light Control]
Reason: Individual lights are less safe (synch problems)

 Version: 5
 Change: Changed weight of argument [Optimizes Traffic Flow]

to 5
 Reason: Traffic flow is very important

45

The first two changes were made in response to errors detected by InfoRat. The remaining
three changes could either be responses to errors or inconsistencies shown by the system
or in response to changes in the requirements. Notice that the reasons given for the first
two changes are reasons for changes to the rationale, not reasons for changes to the design,
i.e. design rationale rationale, not just design rationale.

4.3.2 Modify Rationale

InfoRat allows the user to modify the different DR elements. Figure 4-22 shows the
modification choices.

FIGURE 4-22. Modify Rationale Options

For requirements, the user is allowed to add a requirement, delete a requirement, or
change which goals are associated with the requirement. Goals can either be associated or
disassociated with the requirement. If a requirement is deleted, the delete cascades, i.e.
any goals, sub-goals, and alternatives that only relate to this requirement are also removed.

For goals, the user can add a new goal or modify a goal already in the system. Allowable
modifications for existing goals are adding a sub-goal, deleting a sub-goal, adding an
alternative, removing an alternative, or selecting an alternative. When an alternative is
selected, any alternative for that goal that may have been selected earlier is deselected to
ensure that only one alternative can be selected for a goal.

For alternatives, the user again has the option of adding a new alternative or modifying an
existing one. For an existing one, the user must first specify which goal the alternative is
for. This is required because an alternative can apply to more than one goal. The user is
then presented with several options for changing the arguments for and against the
alternative. Figure 4-23 shows the options for modifying alternatives.

* Modify Design Rationale *

Choose one of the following:

 1: Modify Requirements
 2: Modify Goals
 3: Modify Alternatives
 4: Modify Arguments
 5: Modify Tradeoffs

 E: Exit Menu

46

For arguments, the only option is adding additional arguments. When each modification is
made, the user is prompted for a reason for the change. This provides additional
information that can be retrieved by the user as part of the version history.

FIGURE 4-23. Modify Alternative Options

4.4 Summary

InfoRat was developed to demonstrate some potential uses for DR as preparation for
building a larger prototype system. InfoRat supports a designer by inferencing over DR to
check for completeness and consistency, as well as other problem indicators. This
augments existing approaches, such as constraint satisfaction, that only reason about the
design. Our work complements the work by Klein and by Lee on reasoning over design
rationale.

A predefined vocabulary is provided so that the contents of the arguments can be used for
inferencing. The user can extend this vocabulary by adding additional arguments that are
more design problem specific. When the user modifies the design rationale, the system
prompts them for modification rationale. This combination of a standard, machine-
interpretable vocabulary and user-supplied rationale allows the design history to be kept,
and enables the system to reason over the rationale.

The concepts developed in this work, as demonstrated by the InfoRat system, was a first
step towards providing a new and different way of looking at DR use. InfoRat
demonstrated that intelligent reasoning over DR could provide more beneficial uses for
the collected DR than just its retrieval and presentation. Such reasoning can provide

* Modify Alternative *

Target Goal: [Select Light Configuration]
Target Alternative: [Mixed Light Types]

Choose one of the following:

 1: Select the Alternative
 2: Add an Argument for the Alternative
 3: Add an Argument against the Alternative
 4: Remove an Argument for/against the Alternative
 5: Change the weight of an Argument for/against the Alternative
 6: Change the importance of an Argument for/against the Alternative

 E: Exit Menu

47

strategic guidance for the design process. In addition it can provide a novel way of
checking for design quality, as designs with poor rationale are less likely to be of high
quality. The inferences developed when building InfoRat formed the core of the inference
engine of our final prototype system. The vocabulary was a first step towards what
eventually became the Argument Ontology described later in this dissertation.

48

CHAPTER 5 The Software Development
Process and Rationale

One of the difficulties in studying potential uses of rational for software design is that
there are few (if any) examples of rationale available for analysis. In order to better
understand software design rationale, its role in software maintenance (both as a product
and an input), and to provide a research agenda for further investigation, we performed a
small design study that looked at rationale for an initial software design and at rationale
that was generated/changed when software modifications were performed. Modifications
were examined because our main interest is in how rationale can be used to assist software
maintenance. The following sections describe this study.

5.1 Study Goals

There were two different goals for this study. The primary goal was to determine a
research agenda by studying how rationale was used and modified during several different
maintenance tasks. A secondary goal was to gain a better understanding of what the
rationale for the various software development phases looks like. We used a simple
meeting scheduler system as the software being maintained. This system let the user enter
meetings into a schedule, browse ahead and back through the schedule, and cancel
meetings already scheduled.

There are a number of different classifications for types of software maintenance tasks
[Chapin, 2000]. Three types were examined in this study: corrective, perfective, and
enhancive.

1. Corrective - Corrective maintenance involves correcting failures of the system [Lientz
and Swanson, 1980]. For example, in the meeting scheduler, there was a minor bug
where meetings could not be cancelled after saving the schedule if the time period indi-
cated exactly overlapped the meeting duration.

2. Adaptive - Adaptive maintenance involves making changes to the system that do not
change the functionality seen by the customer. This is a combination of four of Chapin's
types: groomative (improving elegance or security), preventive (improving maintain-
ability), performance (improving performance), and adaptive (changing to account for

49

different technology or resource use) [Chapin, 2000]. For example, the meeting sched-
uler will not allow users to schedule two meetings that overlap. The initial version of
the system did not check for this until after prompting the user for the name of the
meeting. An improvement was proposed to verify the validity of the time range before
asking the user for more information. This change was put into the perfective category
since it did not affect the result of the scheduling operation but improved the experience
for the user. In retrospect, this was not an appropriate categorization because perfective
maintenance typically does not change the functionality perceived by the user.

3. Enhancive - Enhancive maintenance involves replacing, adding, or extending “cus-
tomer-experienced functionality” [Chapin, 2000]. For example, the initial meeting
scheduler system allowed the user to create a single meeting schedule. An enhancement
was proposed that allowed the system to be used as a conference room scheduler where
the user could select a room and then reserve a time slot for the meeting. This extended
the original functionality by maintaining a meeting schedule for each conference room.

5.2 Study Description

Since the focus of our work is how DR can be used during software maintenance, an
existing system, a Meeting Scheduler, was used. This system was written in Java and used
a previously developed component (provided as an input to the Meeting Scheduler
developer) as part of its user interface that allowed the user to enter meeting information
into a schedule. This system had the following useful properties:

• Requirements, use-cases, and source code were available;
• The system made use of a pre-existing component;
• The system had (at least) one error in the current implementation that would need to be

repaired during maintenance.

The following sections describe the artifacts and rationale created for the initial design and
each of the proposed modifications.

5.2.1 Initial Design

The system being modified had the following design artifacts available: requirements,
use-cases, and source code. These were augmented by reverse-engineering the system to
produce Unified Process [Jacobson, et. al., 1999] development artifacts, focusing on parts
of the system that were most likely to be affected by the proposed modifications. This
involved creating user interface storyboards, collaboration diagrams, class diagrams, and
event trace diagrams.

50

During this process, rationale was collected for decisions that involved conscious choices
between multiple alternatives. The rationale format was kept simple in order to lessen the
burden on the developer. Figure 5-1 shows the graphical convention used in documenting
the rationale.

FIGURE 5-1. Rationale Components

This contained the following components:

• Process artifact - this could be a requirement, a display element, a use-case, a piece of
code, or any portion of the system being developed.

• Decision - this is the decision that the rationale is documenting.
• Alternatives - these are the different alternatives considered to implement the decision.
• Argument - reasons for and against the alternatives (for marked with a “+” and against

marked with a “−”).
• Explanation - the (optional) reason explaining why an argument applies to a particular

alternative.

During each phase of the development process, the applicable Unified Process artifacts
were created along with the rationale for the decisions made during their creation:

• Requirements Phase - In most cases, the system is developed to meet a set of customer
needs and desires that may not be fully explained. Requirements are developed to indi-
cate what the system must do to satisfy these needs. There may be more than one way
in which this can be done, hence the need to choose between alternative requirements
and to provide reasons for the requirements chosen. For the Meeting Scheduler system,

selected

-

-
+

decision

argument

explanation

argument

alternative

alternative

argument

process
artifact

51

the rationale was recorded for the requirements developed and for requirements that
were considered but rejected. Initial user interface design was also done during this
phase.

• Analysis Phase - In the Analysis Phase, use-cases, analysis classes, and collaboration
diagrams were developed. In the Unified Process, there are three types of analysis
classes: boundary, control, and entity. Rationale was collected to indicate the reasons
behind the type of class used, specifically the reasons for distinguishing between
boundary and control classes.

• Design Phase - The Design Phase consisted of developing class diagrams and sequence
diagrams. Rationale was collected to indicate the reasons behind the choice of classes
and allocation of class responsibilities.

• Implementation Phase - The primary output of the Implementation Phase was the
source code. Rationale was collected to indicate reasons behind the lower level (more
detailed) design decisions made while writing the code. This included detailed informa-
tion about data structures and algorithms.

5.2.2 Corrective Maintenance - Minor Bug in the Program

This exercise consisted of looking for a fairly minor error that occurred under a specific
set of circumstances. The error turned out to be due to a misunderstanding on the part of
the developer of how a particular Java method call worked. This was easily corrected by
writing a new method that performed the desired function, rather than using an existing
method that did not work as expected. The modification affected the design level, since a
new method was added, and the implementation level, the coding and use of the method.
The rationale was updated to capture both the original decision and the alternative used to
replace it.

5.2.3 Adaptive Maintenance - Revisiting the Design for Usability

In this case, a design decision from the original design was revisited to improve the
usability of the scheduling system. Unlike the previous modification, this one started at
the analysis level with the collaboration diagrams and then continued the artifact
modifications down to the implementation.

5.2.4 Enhancive Maintenance - Extending the Functionality

This exercise involved extending the Meeting Scheduler system into one that scheduled
meetings in different conference rooms. This was a significant increase in functionality

52

since it involved saving several different schedules that the user could move between by
selecting different conference rooms.

5.3 Study Results

The following sections describe what was learned about rationale during the initial design,
the corrective maintenance modification, the perfective maintenance modification, and the
enhancive maintenance modification.

5.3.1 Initial Design

Rationale was generated for each phase of the development process. Some observations,
described in the following sections, were specific to design phases while others applied to
the rationale overall.

5.3.1.1 Phase Specific Observations

In the Requirements Phase, rationale consisted of the arguments for and against the
candidate requirements as well as relationships between requirements. There are a number
of different types of arguments. In some cases, the arguments capture a relationship
between requirements and indicate which requirements cannot exist independently from
each other. An argument could be that a candidate requirement supports a non-functional
requirement (NFR) that is part of the base set of requirements (i.e., it is an NFR that
directly supports a user request, such as a requirement to use a pre-existing component). In
other cases, the arguments can be quality attributes that are not specifically mentioned as
requirements but that are compelling reasons for preferring one alternative over another
(where, in this phase, alternatives are in fact different requirements).

Much of the rationale captured during the Analysis Phase consisted of reasons for the
categories (boundary, entity, or control) assigned to the analysis classes. This rationale is
specific to the Unified Process since other software development methodologies do not
use different types of classes during the analysis phase. Rationale was also collected to
explain why some requirements were not given use-cases. Again, this is process-specific
rationale.

Rationale captured during the Design Phase centered on the class diagrams, rather than the
sequence diagrams. Many of the major sequencing decisions were made at the analysis
level and were captured in the collaboration diagrams. The detailed sequencing of events
represented at the design level seemed to obscure more than it revealed by capturing a
large number of language-specific event traffic that, while necessary to the
implementation, was not crucial to the design.

53

In the Implementation Phase, the rationale collected made a dramatic leap in the level of
detail. The explanations for why particular arguments applied to particular decisions
became extremely detailed. Some decisions were fairly generic. For example, when
choosing the type of data structure (such as hash table vs. vector), the different structures
could have default rationale.

5.3.1.2 General Observations

There needs to be a way to represent arguments at different levels of abstraction. In some
cases, the same argument was used for different alternatives but with different meanings.
For example, two different user interface designs could both be considered to be usable
but for different reasons or to a different degree (one design may have the best utilization
of screen real estate while the other may minimize keystrokes). There are also many
different types of arguments—some will map back to an NFR, others are based on
assumptions or on preferences. Recording detailed arguments is the most informative but
makes it difficult to compare arguments when performing inferencing over the rationale. If
an ontology of arguments existed, it could be used to capture detailed arguments yet still
allow them to be compared at a higher level. For example, screen real estate and keystroke
minimization arguments could be rolled up into an evaluation of usability.

One surprise was that in most cases (except at the requirement level), requirements were
not used as arguments for or against alternatives. Instead, the requirements were the
reasons that the decisions were necessary. Usually alternatives were not recorded in the
rationale if they were clearly in violation of the requirement that spawned the decision. On
the other hand, it is quite possible that an alternative chosen to meet one requirement may
violate other requirements. It is very important to record requirement violations in the
rationale.

The original, simplified format proposed for the rationale did not have an “explanation”
component. The explanations were added because there was a need to explain why an
argument applied to a particular situation. For this reason, explanations are attached to the
relationship between the argument and the alternative, not to the arguments themselves. It
would be desirable to make arguments specific enough that explanations would be less
necessary. This is not easy: as the decisions became more specific, so did the reasons
behind the alternatives. It became more and more difficult to create general names and
categories for the arguments. Similarly, during the latter development phases, the
explanations for the alternatives became very detailed—not something that could be
reasoned over. This indicated that there needs to be a vocabulary of arguments that has
different levels of abstraction so that general arguments could be used in the early phases
and more specific ones used later.

54

The representation used in this study, with its simple +/− links for the arguments, was
insufficient to express enough information to accurately document decisions. Arguments
to be made more detailed, possibly using the InfoRat [Burge and Brown, 2000] format of
amount and importance.

5.3.2 Corrective Maintenance

In this maintenance example, an alternative selected during the initial design was rejected
because it did not work. This raised a number of questions. First, there needs to be a way
to specify in the rationale that an alternative was tried and failed. This needs to be more
specific than simply giving a reason of “failed” as an argument against an alternative. The
conditions under which the alternative failed and the reasons for failure also need to be
specified. In some cases, the circumstances under which an alternative failed (or
conversely, succeeded) may change. The rationale can be used to point out if decisions
should be re-evaluated.

When modifications are made, both the rationale for the decisions made as part of
implementing the change, and the rationale for the reason the change was necessary, need
to be represented. This could be rolled into the reasons for rejecting previously selected
alternatives but that would not be as explicit as linking the reason for the change to the
decision affected.

An interesting observation about rationale was that it is not a flat structure, even within a
development phase. Making a specific decision will spawn sub-decisions, with rationale at
both levels. For example, the bug in the Meeting Scheduler was due to a decision to use a
Java-provided Equals method to compare two date classes. This method did not do what
was expected so the alternative was rejected and the alternative to create a custom
comparison method was chosen. This choice then spawned a number of sub-decisions that
concerned how to implement the new method.

It was not clear how multi-level rationale would affect inferencing over the rationale for
decision evaluation. If the support for two alternatives is being compared, would rationale
for the sub-decisions for those alternatives be used in this evaluation?

5.3.3 Adaptive Maintenance

In this maintenance example, poor choices were made in the original user interface design
that required some modifications to improve efficiency. This was a case where assigning
more detailed information to the arguments (such as amount and importance) would have
captured exactly why the alternative was selected. Was it necessary to change that
decision because the preferences changed, thereby making the original choice sub-

55

optimal, or was the original decision poorly thought out? This is an important distinction
to make and was not captured by the original rationale.

If a detailed rationale representation involving amount and importance (how much the
argument applies and how important the argument is) were available then the rationale
would have been useful in pointing out that the user interface change was required. If the
alternative chosen was rated as less desirable than others, this could be detected
automatically by evaluating each alternative. If the importance assigned to an argument
was inconsistent with that elsewhere in the system, this could be checked for as well. If
external preferences changed, therefore affecting the importance of the various arguments,
this could be used to re-evaluate each alternative and point out ones that are no longer the
best choice.

5.3.4 Enhancive Maintenance

This modification involved adding two new requirements. The rationale recorded for the
modification was used as the rationale for these new requirements. It did not look any
different than any other rationale and the requirements did not look any different from the
requirements that were already present. One thing that occurred when adding the new
requirements was that a requirement spawned additional requirements. In this example, a
new requirement was added to state the new functionality and a second requirement was
added to provide support for that functionality.

During the enhancement, some alternatives were chosen because they supported future
enhancements. This needs to be clearly indicated in the rationale since often this results in
choices that may appear to be less efficient in the current implementation. There were also
cases where some code was “temporary”, i.e. this code would need to be removed when
the anticipated additional enhancements were made. This code needs to be clearly marked
so that it can be removed or modified later. Rationale can help to point out places that will
require modification. There were also some design decisions made based on assumptions.
Again, rationale could be used to point out these places if the assumptions later prove to be
untrue.

5.4 Summary and Conclusions

This study was a crucial component in determining the requirements for the rationale
representation used in the system produced as part of this dissertation. In particular, it
showed that the arguments needed to have detail similar to that used in InfoRat (i.e.,
amount and importance for each argument, not just a positive or negative direction) and
that a hierarchy of common arguments would be useful so that arguments could be

56

expressed at a level of abstraction appropriate to the phase of the development process at
which the decisions were made.

The study also showed that rationale captured during maintenance could be expressed in
an argumentation format. This is different from what was posited by Lougher and Rodden
[1993], who felt that maintenance rationale was not in the form of argumentation. The
capture of the arguments for and against the alternatives implemented in the code (whether
selected during initial development or during maintenance) is what differentiates rationale
from standard comments.

57

CHAPTER 6 The Approach

In this chapter, we describe the approach we took to using rationale to support software
maintenance. We feel that rationale can make maintenance both more efficient and effec-
tive and that there are uses that go beyond simply presenting the rationale to the main-
tainer.

In the proposal that preceded this work, we posed a number of interesting questions:

1. How can rationale be used to assist in software maintenance?

2. How can decisions be captured with enough specificity to be useful yet still general
enough to allow for inferencing?

3. Does rationale differ for different types of software modifications?

4. Does maintenance rationale differ from original rationale?

5. Are there portions of the design or phases of the design process where rationale cap-
ture would be more useful than others?

6. What is the relationship between rationale collected at different phases?

7. How can rationale changes be propagated?

For this work, we decided to defer questions concerning rationale captured at different
phases of the development process (questions 5 and 6) because we were limited to ratio-
nale that could be generated retrospectively for existing systems. For question 4, we did
not see significant differences in the rationale for the different modifications. The remain-
ing questions concentrate on rationale use during software maintenance and the represen-
tation and inferences required to support them. The uses are outlined in this chapter and
the details of the representation and inferences are described later in the dissertation.

58

In this chapter, we review some potential uses of rationale during software maintenance
(6.1), and our plan for tool support for these uses (6.2).

6.1. Uses of Rationale for Software Maintenance

As described earlier, there are many different ways that rationale can be of assistance dur-
ing software development and maintenance. The rationale is often the only way to find out
why the system was designed and implemented the way it was. Even simply presenting the
rationale to the maintainer would be of assistance by giving them insight into the reasons
behind the decisions. In this work, we expand on that by inferencing over the rationale to
look for potential problems in both the rationale itself (such as incompleteness or contra-
dictions) and the system (such as poor or inconsistent choices). Some of the uses that we
wish to support are:

1. Presentation of the rationale. The maintainer needs to be able to access the rationale to
understand the reasoning behind the decisions. This means that the rationale needs to
be presented in a format that is human-readable, not just machine-interpretable.

2. Checking for incomplete rationale. We need to be able to detect when rationale is miss-
ing. Missing rationale could mean decisions where there were no alternatives selected,
or even specified. It could also mean alternatives selected where there were no argu-
ments. If parts of the rationale are missing, it could indicate that the decisions were not
well thought out or just that the developers did not bother recording all of their reason-
ing. Incomplete rationale could be misleading during maintenance if the reasons behind
the development of the original system are not all expressed.

3. Checking for inconsistent rationale. We need to insure that there are no contradictions
within the rationale. This would include things like using the same argument for and
against an alternative.

4. Evaluating the support for the alternatives. One especially important check is to evalu-
ate the arguments for and against each alternative to see if the alternative that was cho-
sen is the one with the most support. If a less-supported alternative is chosen that could
be a poor design decision or it could mean that rationale is missing or incorrect.

5. Expression and use of design tradeoffs. There needs to be a way to explicitly represent
and check for known tradeoffs that are made for design decisions.

6. Propagate argument evaluations to support consistency. There are many different rea-
sons why some alternatives are better than others. If a reason is important for one part

59

of the system it is likely to be important for the rest. We need to support a way that the
design priorities can be propagated through the rationale to assist in consistent deci-
sions.

7. Support “what-if” inferencing for changing requirements and assumptions. With a
completed system, it is often difficult to determine what the impact of changing a
requirement or assumption might be. We need a way to be able to use the rationale to
determine what decisions were affected by the requirements and assumptions and what
parts of the system would need to be changed if a requirement or assumption is no
longer valid.

These uses support the different types of software maintenance examined in this thesis:
adaptive maintenance (make improvements that do not change the functionality), correc-
tive maintenance (fixing defects), and enhancive maintenance (adding new features).

There are a number of different things that could signal the need for adaptive maintenance.
Most often, it is to improve some desirable quality that was not addressed by the initial
system. For example, there may be a need to scale the system up to larger numbers of
users or a larger amount of data. Rationale can assist with this by showing what decisions
involved scalability as arguments for or against alternatives. The scalability improvement
may involve choosing a different alternative that was already considered but not imple-
mented because of other concerns. The more scalable alternative will have arguments for
and against it that will indicate if it is a good or bad choice, and why.

In corrective maintenance, how the rationale is used will depend on the type and source of
the error. If the error was the result of a decision made when designing or implementing
the decision, the rationale can be used to find where the change needs to be made. The
rationale may even give a better alternative for how to implement the functionality that
has the problem. The rationale could also be used to point out potential problems by show-
ing where there were decisions made that are not well supported or that violate require-
ments.

Enhancive maintenance can make use of rationale in a number of ways. First, if the
enhancements are related to decisions made earlier, the rationale could help point out
where the code needs to be modified in order to make the enhancements. Second, the
rationale can be used to check to ensure that the rationale behind the enhancements is con-
sistent with the rationale for the rest of the system. The rationale can also be helpful in
suggesting possible enhancements to the system by pointing out where some requirements
and design priorities are not met.

60

6.2. Tool Support for Rationale Use

One key to making rationale useful is to incorporate it into the tools and process already in
use for software development. This lessens the burden on the developer to remember that
the rationale is present and makes it easier for them to learn how to access and use it. A
tool developed to support rationale use needs to have the following characteristics:

1. Integration with the development environment. The developers and maintainers should
not need to open up an additional tool just to create and access the rationale. The ratio-
nale needs to be made available within the tools they are already using.

2. Association of rationale with development artifacts. There needs to be a way to explic-
itly associate the rationale, particularly the alternatives, with the code that implements
them.

3. “Automatic” rationale presentation. The maintainer should be informed or cued that
rationale is available when they are working with the code that is justified by it. They
should not have to deliberately search to see if there is or is not rationale associated
with the code they are working on.

4. Rationale argumentation display. The rationale needs to be displayed in a hierarchical
format that takes advantage of the structure of the argumentation. This would provide a
way to view the different rationale elements in context.

5. Automatic checking of the rationale. The rationale status (errors and warnings gener-
ated during inferencing) should be updated automatically as rationale is added,
removed, or modified.

6. Rationale query interface. There needs to be a way to easily search through the ratio-
nale for different rationale elements and relationships.

These tool features make the tool more useful and usable for the software maintainer and
greatly increase the usefulness of rationale as an aid to software maintenance.

61

CHAPTER 7 Software Engineering Using
RATionale (SEURAT)

To drive and evaluate this research, we developed a system called Software Engineering
Using RATionale (SEURAT). SEURAT supports the use of rationale during software
maintenance by associating rationale with the code and by performing a series of
inferences over the rationale to ensure consistency and completeness. SEURAT also
provides the ability to enter the rationale into the system.

This chapter describes the design of the major functions performed by SEURAT. This
consists of the SEURAT system architecture (Section 7.1), the representation (Section
7.2), the inferences performed (Section 7.3), the Argument Ontology (Section 7.4), and
the plan for rationale entry and presentation (Section 7.5).

7.1. System Architecture

Figure 7-1 shows the overall system architecture for SEURAT. This shows the four major
functional components of the system: the Argument Editor and Analyzer which interfaces
with the user and the software system the rationale is for, the Rationale Repository,
containing the rationale for the system, the Inference Engine, which performs inferencing
over the rationale, and the Argument Ontology, which provides a common vocabulary for
expressing the reasons for selecting alternative software design and implementation
choices.

62

FIGURE 7-1. SEURAT System Architecture

Implementing SEURAT involved developing a representation for the rationale stored in
the repository, designing and selecting inferences to perform over that rationale, defining
the argument ontology, and developing ways to edit and view the rationale, to examine the
results of the inferencing, and to associate the rationale with the software. The following
sections describe how this was done.

7.2. Rationale Representation

This section describes RATSpeak, the Design Rationale (DR) representation used in
SEURAT (Software Engineering Using RATionale). SEURAT is being developed to allow
software maintainers to use rationale when performing a variety of maintenance tasks and
we needed a representation that was both flexible and expressive.

There are many different representations that have been proposed for rationale. These vary
from informal representations such as audio or video tapes, or transcripts, to formal
representations such as rules embedded in an expert system [Conklin and Burgess-
Yakemovic, 1995]. For SEURAT, we have taken what we feel to be the most useful
features of several of these representations and incorporated them into this representation.
In this document, we have chosen to express this representation using an XML schema

 PROGRAM

Requirements

Analysis

Design

Implementation

Rationale
Repository

Inference
Engine

Argument
Editor
and
Analyzer

Argument
Ontology

 User

SEURAT

63

because it allows us to easily express the format of the rationale using simple editing tools.
Using an XML schema also allows us to validate the actual rationale to ensure that it
conforms to the schema, as well as allowing us to indicate which portions of the rationale
are required and which are optional.

The following sections describe the elements of the SEURAT representation, how they are
represented in XML, and give examples using that representation.

7.2.1. Motivation

We have chosen to represent our rationale in a semi-structured argumentation format. We
feel that argumentation is the best means for expressing the advantages and disadvantages
of the different software design options considered. Argumentation formats date back to
Toulmin’s representation [Toulmin, 1958] of datums, claims, warrants, backings and
rebuttals. This is the origin of most argumentation representations. More recent
argumentation formats include Questions, Options, and Criteria (QOC) [MacLean, et al.,
1995], Issue Based Information System (IBIS) [Conklin and Burgess-Yakemovic, 1995],
and Decision Representation Language (DRL) [Lee, 1991].

We studied these representations to learn what information could be contained in DR and
to see if there was an existing representation we could use, or adapt, to meet our needs. We
generated the following list of representation requirements:

1. Support for argumentation. We wanted to choose a representation that would express
the various alternatives considered and the reasons for and against them. These reasons
can be different for different alternatives for a given decision. This representation needs
to include:

a. Representation of alternative interactions. We want to be able to capture
interaction between alternatives to depict the case where choosing one
alternative precludes or requires the choice of another. These would typically be
alternatives that relate to different decisions.

b. Mutually exclusive and “multiple choice” alternatives. Some decisions may
involve choosing one option, others may allow choosing multiple options.

c. Arguments for and against other arguments. In some cases, there may be
disagreement with the reasons for or against selecting an alternative. For
example, one designer might give an argument for an alternative saying it is
safe but another designer might dispute that argument with a counter-argument
giving information that states it is not safe.

d. Plausibility of arguments. There needs to be a way to indicate which arguments

64

are facts and which are assumptions. In the case of assumptions, the rationale
needs to represent the designer’s confidence in the argument.

e. Explicit representation of direction. We want to be able to explicitly state the
difference between an alternative being detrimental to a goal rather than simply
failing to meet or contribute to it. For example, we want to make clear if an
alternative is not safe (i.e., dangerous) versus having a low (or unknown) safety
rating. This can be done by including a direction in the argument—explicitly
saying if the alternative IS or IS NOT safe.

f. Hierarchical decision representation. Decision problems can be broken down
into sub-decisions in two different ways: there are sub-decisions that result
from a parent decision being broken into sub-problems that can be handled indi-
vidually and there are sub-decisions that arise because a particular alternative
was selected. In the latter case, the sub-decision is explicitly tied to the selection
of a particular alternative. These sub-decisions describe new problems that
must be solved because of the particular choice of alternative.

2. Traceability to requirements. We want to be able to explicitly represent which alter-
natives met, supported, or violated requirements. The reasons for and against an alter-
native do not have to be requirements but when they are it is important to represent that.

3. Argument ontology. We want to be able to map the non-requirement arguments to an
argument ontology in order to support semantic inferencing over the rationale.

4. Natural language descriptions. We want the designer to be able to fully explain his or
her choices and not be restricted to only the vocabulary provided by the ontology.

5. Representation of questions. We want to be able to use the rationale to express ques-
tions that need to be answered before selecting alternatives. The rationale also needs to
indicate how the question could be, or was, answered.

6. Design history. We want to be able to use the rationale to generate a design history by
indicating which decisions were made, or changed, at what time. This requires that the
rationale be time stamped and that a version history be maintained. This version history
must include the reason why the changes were made to the rationale.

7.2.2. Related Work

As described earlier, semi-formal representations are typically in the form of
argumentation. The notation that seemed to be the most comprehensive was DRL [Lee,

65

1991]. For this reason, we chose to use DRL as a starting point. It was necessary to make
some change because DRL did not provide a sufficiently explicit representation of some
types of argumentation (such as indicating if an argument was for or against an
alternative) and because the DRL relationships between Goals, Decision Problems, and
Alternatives was not always clear. We also drew on the rationale ontology work performed
by Bose [1996] to give the different status values for each rationale element. Table 7-1
shows the DRL elements and how they map to our representation.

TABLE 7-1. DRL/RATSpeak Comparison

DRL RATSpeak
Alternative Alternative
Goal – these are the items
that the alternatives support.
They also map to decision
problems. In DRL, a deci-
sion problem is a subtype of
Goal.

RATSpeak uses Requirements and items
from the Argument Ontology. The
requirements will map to both the decision
and to the alternative-arguments (as appli-
cable). The argument ontology items will
only map to alternative-arguments.

Decision Problem – maps
to goals and a sub-type of
goal.

Decision – maps to requirements or to alter-
natives (i.e., sometimes selecting an alterna-
tive means that we need to decide how to do
it).

Claim (plausibility, evalua-
tion, degree) – facts,
assumptions, statements, or
rules. Plausibility – how
probable that the claim is
true; Evaluation – how
important the claim is;
Degree – to what extent the
claim is true. Evaluation is a
function of degree and plau-
sibility.

RATSpeak has split out general Claims
from the arguments that indicate how they
are used. The plausibility and evaluation
belongs to the argument, not the claim
(which will be a simple characteristic like
flexibility or scalability). RATSpeak has
added in the notion of importance as sepa-
rate from evaluation (in RATSpeak evalua-
tion is an overall measure taking into
account the plausibility and the amount that
the claim applies). RATSpeak uses impor-
tance to indicate how important it is that the
alternative meet this claim/goal or that the
system meet this claim/goal.

66

Achieves (alternative, goal) We will use types of claims as the reasons
for and against the alternatives. There will
be some variant of the achieves relation for
linking alternatives to requirements (via
arguments for the alternative). There will
also be the reverse of achieves.

Is a (good) alternative for
(alternative, decision prob-
lem)

We will provide a list of alternatives consid-
ered for each decision.

Supports(claim, claim) This would be used to support other claims.
Denies(claim, claim) This is used to contradict a claim.
Presupposes(claim, claim)
– something can be an alter-
native only if some other
claim is true.

We use this relationship to indicate if an
alternative requires that another alternative
be selected.

Qualifies(claim, claim) –
C1 qualifies C2 if the plausi-
bility of C2 becomes null
when that of C1 becomes
low enough.

We have added an Opposes and Pre-
Opposes relationship that indicates conflicts
between alternatives.

Is-a-subgoal-of (goal, goal) RATSpeak does not have an element called
Goal. Instead, there are requirements,
claims, and assumptions.

Is-a-subprocedure-of (pro-
cedure, procedure)

RATSpeak does not allow hierarchies of
procedures. We have chosen to keep this
simpler than allowed in DRL.

Answers(claim, question) RATSpeak does not have this relationship.
Are possible answers to
(group, question)

RATSpeak does not represent possible
answers.

Is an answering procedure
for (procedure, question)

This will be implemented in RATSpeak.

Is a result of (claim, proce-
dure)

RATSpeak only uses procedures to answer
questions. If the answer to a question affects
an alternative, this will be captured by other
means.

Tradeoffs(object, object,
attribute)

RATSpeak allows tradeoffs to be expressed
as background knowledge.

67

Is-a-kind-of (object, object) There are several sub-relationships
expressed in RATSpeak. There is no generic
version like in DRL.

Is-a-part-of Covered by a number of hierarchical rela-
tionships in RATSpeak (hierarchies of deci-
sions, arguments).

Suggests(object, object) There is no Suggests relationship in
RATSpeak.

Raises(object, question) In RATSpeak this is captured in the rela-
tionship between questions and decision
problems.

Comments(claim, object) There is no Comments relationship in
RATSpeak.

Facilitates(alternative, goal) We have a similar relationship between
requirements and alternatives when an
alternative facilitates meeting a require-
ment.

Queries(object, question) In RATSpeak this is captured in the rela-
tionship between questions and decision
problems.

Influences(question, claim)
– question influences a
claim if the plausibility of
the claim depends on the
answer to the question.

In RATSpeak, questions are attached to
decision problems. The relationship
between the question and specific argu-
ments is not given explicitly although it is
possible to check to make sure all questions
are answered before making a decision.

Question We will support the ability to attach ques-
tions.

Group Groups can be created dynamically by the
user creating queries on the rationale but are
not expressed explicitly.

Viewpoint Viewpoints can be created dynamically by
the user creating queries on the rationale
but are not expressed explicitly.

68

7.2.3. Representation Format

In order to support the SEURAT system, we created the RATSpeak representation.
RATSpeak uses the following elements as part of the rationale:

1. Requirements – these include both functional and non-functional requirements. They
can either be represented explicitly in the rationale or be pointers to requirements stored
in a requirements document or database. Requirements serve two purposes in
RATSpeak. One is as the basis of arguments for or against alternatives. This allows
RATSpeak to capture cases where an alternative satisfies or violates a requirement. The
other purpose is so that the rationale for the requirements themselves can be captured.

2. Decision Problems – these are the decisions that must be made as part of the develop-
ment process.

3. Questions – these are questions that need to be answered before the answer to the deci-
sion problem can be defined. A question can include the procedures or programs that
need to be run or who should be asked to get the answer. Questions augment the argu-
mentation by specifying the source of the information used to make the decisions (the
procedure, program, or person).

4. Alternatives – these are alternative solutions to the decision problems. Each alternative
will have a status that indicates if it is accepted, rejected, or pending.

5. Arguments – these are the arguments for and against the proposed alternatives. They
can either refer to requirements (i.e., an alternative is good or bad because of its rela-
tionship to a requirement), claims about the alternative, assumptions that are reasons
for or against choosing an alternative, or relationships between alternatives (indicating
dependencies or conflicts). Each argument is given an amount (how much the argument
applies to the alternative, e.g., how flexible, how expensive) and an importance (how

Procedure We will support procedures.
Status RATSpeak has a status attached to the deci-

sions, to the questions, to the alternatives,
etc.
Bose [1996] gives a good set of states,
which can be attached to options, issues,
and agreements. The states in RATSpeak
were based on these.

69

important the argument is to the overall system or to the specific decision).

6. Claims – these are reasons why an alternative is good or bad. Each claim maps to an
entry in an Argument Ontology of common arguments for or against software design
decisions. Each claim also indicates what direction it is in for that argument. For exam-
ple, a claim may state that a choice is NOT safe or that an alternative IS flexible. This
allows claims to be stated as either positive or negative assertions. Claims also contain
an importance, which can be inherited or overridden by the arguments referencing the
claim.

7. Assumptions – these are similar to claims except that it is not known if they are true or
will continue to hold in the future. Assumptions do not map to items in the Argument
Ontology.

8. Argument Ontology – this is a hierarchy of common argument types that serve as types
of claims that can be used in the system. These are used to provide the common vocab-
ulary required for inferencing. Each ontology entry contains a default importance that
can be overridden by claims that reference it.

9. Background Knowledge – this contains Tradeoffs and Co-Occurrence Relationships
that give relationships between different arguments in the Argument Ontology. This is
not considered part of the argumentation but is used to check the rationale for any vio-
lations of these relationships.

The relationships between these elements are shown in Figure 7-2. The arrows in the
direction show composition relationships. For example, a decision problem has alternative
solutions for the problem; each alternative has arguments for and against the decision that
either relate to claims about the alternative or relationships between the alternative and
requirements. Figure 7-3 shows another view of the argumentation structure of the
rationale. The thin lines indicate hierarchical relationships while the thick lines indicate
the type of argument.

70

FIGURE 7-2. Representation Elements

FIGURE 7-3. RATSpeak Argumentation Structure

Background Kn.

specify relationships
between

is-argued-by

requires-answer to

specified-in

is-argued-by

is-alternative-for requires-making

is-reason-for

sub-requirement

Decision
Problem

Alternative Argument

Claim Argument
Ontology

Requirement

has-argument-
for/against

is-about

Question

sub-decision

Assumption

is-reason-for

Co-Occurrence
Relationships

Tradeoffs

 Decision Problem

Alternative Alternative

Claim Requirement Alternative

or

sub-Decision sub-Decision

satisfies
addresses
violates pre-supposes

pre-supposed-by
opposes
opposed-by

supports
denies

Claim

Claim

Claim Claim

Decision Problem

arguments

argument
ontology

Assumption

supports
denies

71

Figure 7-4 shows the top level XML representation of the XML. This shows that the
rationale is made of the Argument Ontology, requirements, decisions (also known as
decision problems), and background knowledge.

FIGURE 7-4. Rationale Top Level Representation

In the following subsections, we break the XML rationale representation down into the
different components and describe each of them along with an example. The example
rationale is from the design of a system to play competition Solitaire.

7.2.3.1. Requirement

The requirements represent the software requirements of the system that rationale is being
collected for. These requirements provide the most important reasons for making design
decisions. Figure 7-5 shows the XML schema for requirements in RATSpeak.

The attributes of the requirement are an ID, used to reference the requirements in
arguments, a description giving the text of the requirement, the type (Functional or Non-
Functional), the artifact (used if the rationale needs to map to some other design artifacts).
The requirement also has a status and arguments for and against the requirement (the
requirement rationale). The rationale is given so that the reasons for and against making
something a requirement are saved. This can be very important if the requirements ever
need to be revisited.

Each requirement can have sub-requirements that must be met for the parent to be met.
These sub-requirements are indicated by nesting them underneath the parent requirement.

<xsd:complexType name="Rationale">
 <xsd:sequence>
 <xsd:element name="argOntology" type="ArgOntology"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="requirement" type="Requirement"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="decisionproblem" type="DecisionProblem"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="backgroundKn" type="BackgroundKn"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

72

FIGURE 7-5. Requirement Schema

The requirement also has a status attribute defined as the type “ReqStatus” this is specifies
the requirement status and is shown in Figure 7-6.

<xsd:complexType name="Requirement">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="argument" type="Argument"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="requirement" type="Requirement"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="history" type="StatusHistory"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="reqtype" type="ReqType"
 use="required"/>
 <xsd:attribute name="artifact" type="xsd:string"
 use="required"/>
 <xsd:attribute name="status" type="ReqStatus"
 use="required"/>
</xsd:complexType>

<xsd:simpleType name="ReqStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Satisfied"/>
 <xsd:enumeration value="Violated"/>
 <xsd:enumeration value="Addressed"/>
 <xsd:enumeration value="Retracted"/>
 <xsd:enumeration value="Rejected"/>
 <xsd:enumeration value="Undecided"/>
 </xsd:restriction>
</xsd:simpleType>

73

FIGURE 7-6. Requirement Status

The requirement representation contains a history showing how the status of the item has
changed over time. Each history contains a sequence of history records. Figure 7-7 shows
the definitions for the status history and history records.

FIGURE 7-7. History and History Records

Figure 7-8 shows an example of a requirement defined using this schema (the examples
are displayed in color because that is how they are rendered in a web browser).

FIGURE 7-8. Requirement Example

<xsd:complexType name=”StatusHistory">
 <xsd:sequence>
 <xsd:element name="record" type="HistoryRecord"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="HistoryRecord">
 <xsd:attribute name="status" type="xsd:string"
 use="required"/>
 <xsd:attribute name="datestamp" type="xsd:string"
 use="required"/>
 <xsd:attribute name="reason" type="xsd:string"
 use="required"/>
</xsd:complexType>

- <DR:requirement id="r660" name="next hand" reqtype="FR"
 artifact="" status="Undecided">
 <DR:description>A player can move to the next hand at

 any point during the game.</DR:description>
- <DR:history>
 <DR:record status="Undecided" reason="Initial Entry"

 datestamp="Sat May 03 13:53:42 EDT 2003" />
 </DR:history>

74

7.2.3.2. Decision Problem

Decision problems describe the decisions that need to be made while designing. Figure 7-
9 shows the XML schema for a decision problem.

FIGURE 7-9. Decision Problem Schema

Each decision problem has a description, giving the problem that must be solved, the type
of decision being made, the development phase it is made in, and a pointer to the
development artifact it affects (if applicable). The decision problem consists of either a set
of alternatives for that decision or a set of sub-decisions that break the problem into
smaller decisions that together solve the problem. Decision problems can also have a

<xsd:complexType name="DecisionProblem">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:choice>
 <xsd:element name="alternative" type="Alternative"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="decisionproblem"
 type="DecisionProblem" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:choice>
 <xsd:element name="question" type="Question"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="history" type="StatusHistory"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="type" type="DecisionType"
 use="required"/>
 <xsd:attribute name="phase" type="Phase" use="required"/>
 <xsd:attribute name="status" type="DecisionStatus"
 use="required"/>
 <xsd:attribute name="artifact" type="xsd:string"/>
</xsd:complexType>

75

question associated with them and also have a status indicating if the problem has been
solved or not. Figure 7-10, Figure 7-11, and Figure 7-12 give the XML schema for the
decision type, the phase, and the status, respectively. The values for decision status are
taken from the Issue status given in [Bose, 1996].

FIGURE 7-10. Decision Type

FIGURE 7-11. Development Phase

<xsd:simpleType name="DecisionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SingleChoice"/>
 <xsd:enumeration value="MultipleChoice"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="Phase">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Requirements"/>
 <xsd:enumeration value="Analysis"/>
 <xsd:enumeration value="Design"/>
 <xsd:enumeration value="Implementation"/>
 <xsd:enumeration value="Test"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="DecisionStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Resolved"/>
 <xsd:enumeration value="Unresolved"/>
 <xsd:enumeration value="Non-resolvable"/>
 <xsd:enumeration value="Addressed"/>
 <xsd:enumeration value="Retracted"/>
 </xsd:restriction>
</xsd:simpleType>

76

FIGURE 7-12. Decision Status

Figure 7-13 gives an example of a decision problem. This example contains arguments
and alternatives, which will be described later.

FIGURE 7-13. Example Decision Problem

- <DR:decisionproblem id="r675" name="How much state to
 share?" type="SingleChoice" phase="Design"
 status="Unresolved">
 <DR:description>How much state needs to be shared

 between client and server?</DR:description>
- <DR:alternative id="r677" name="Share no state"
 evaluation="0.0" status="Adopted">
 <DR:description>Share no state directly between

 clients.</DR:description>
- <DR:argument id="r678" name="State sharing is a
 bottleneck" argtype="Supports"
 plausibility="High" amount="10">
 <DR:description>"Once you start sharing state it

 just gets horrible"</DR:description>
- <DR:claim id="r680" name="Decreased Speed"
 direction="IS">
 <DR:description>Sharing state will increase

 message traffic and increase latency.
 </DR:description>
 <ref>r641</ref>
 </DR:claim>
 </DR:argument>

- <DR:history>
 <DR:record status="At_issue" reason="Initial

 Entry" datestamp="Sat May 03 14:10:20 EDT
 2003" />
 </DR:history>
 </DR:alternative>

- <DR:history>
 <DR:record status="Unresolved" reason="Initial

 Entry" datestamp="Sat May 03 14:11:35 EDT
 2003" />
 </DR:history>
 </DR:decisionproblem>

77

7.2.3.3. Questions

Questions can be associated with each decision problem. These are questions that need to
be answered during the course of making the decision. Figure 7-14 gives the XML schema
for a question.

FIGURE 7-14. Question Schema

The question contains a description, which states the question. It also can contain a
procedure (which could be an executable procedure or the description of how to find the
answer), the answer to the question, and the status of the question. Figure 7-15 shows the
XML schema for the question status. Figure 7-16 gives an example of a question.

<xsd:complexType name="Question">
<xsd:sequence>
<xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="procedure" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="answer" type="xsd:string" minOccurs="0"
 maxOccurs="1"/>
<xsd:element name="history" type="StatusHistory"
 minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="status" type="QuestionStatus"
 use="required"/>
</xsd:complexType>

<xsd:simpleType name="QuestionStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Unanswered"/>
 <xsd:enumeration value="Answered"/>
 </xsd:restriction>
</xsd:simpleType>

78

FIGURE 7-15. Question Status Schema

7.2.3.4. Alternatives
Alternatives are the different potential solutions to the decision problem. Figure 7-17
gives the schema for an alternative.

FIGURE 7-16. Question Example

Each alternative contains one or more arguments for and/or against it. Alternatives also
have a status to indicate if they have been selected as the answer to the decision problem
(i.e. will be implemented in the software system) or not. Alternatives can also contain
additional decision problems that need to be solved if the alternative is chosen.

Figure 7-18 gives the schema for the status of an alternative. The status in RATSpeak is
based on the Option status described by Bose [1996].

- <DR:question id="r676" name="What do clients need to
know?" status="Answered">
 <DR:description>What do the clients need to know about

each other during the game?</DR:description>
 <procedure>Ask the game developer</procedure>
 <answer>Very little - scores would be nice but not

needed</answer>
- <DR:history>
 <DR:record status="Unanswered" reason="Initial Entry"

datestamp="Sat May 03 14:07:55 EDT 2003" />
 <DR:record status="Answered" reason="Game developer

answered question." datestamp="Sat May 03 14:11:06 EDT
2003" />
 </DR:history>
 </DR:question>

79

FIGURE 7-17. Alternative Schema

FIGURE 7-18. Alternative Status Schema

<xsd:complexType name="Alternative">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="argument" type="Argument"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="history" type="StatusHistory"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="question" type="Question"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="decisionproblem"
 type="DecisionProblem" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="evaluation" type="xsd:float"
 use="required"/>
 <xsd:attribute name="status"
 type="AltStatus" use="required"/>
</xsd:complexType>

<xsd:simpleType name="AltStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Admissible"/>
 <xsd:enumeration value="Valid"/>
 <xsd:enumeration value="Adopted"/>
 <xsd:enumeration value="At_issue"/>
 <xsd:enumeration value="Rejected"/>
 <xsd:enumeration value="Retracted"/>
 </xsd:restriction>
</xsd:simpleType>

80

Figure 7-19 gives an example of an alternative. This contains the arguments for the
alternative which will be described in more detail later. Also, some of the arguments have
been left out for the purpose of this example.

FIGURE 7-19. Alternative Example

7.2.3.5. Arguments

Arguments are used to contain the reasons to select, or not select, each alternative.
Figure 7-20 shows the argument schema.

- <DR:alternative id="r677" name="Share no state" evalua-
tion="0.0" status="Adopted">
 <DR:description>Share no state directly between

 clients.</DR:description>
- <DR:argument id="r678" name="State sharing is a
 bottleneck" argtype="Supports" plausibility="High"
 amount="10">
 <DR:description>"Once you start sharing state it

 just gets horrible"</DR:description>
- <DR:claim id="r680" name="Decreased Sped"
 direction="IS">
 <DR:description>Sharing state will increase

 message traffic and increase latency.
 </DR:description>
 <ref>r641</ref>
 </DR:claim>
 </DR:argument>

- <DR:history>
 <DR:record status="At_issue" reason="Initial Entry"

 datestamp="Sat May 03 14:10:20 EDT 2003" />
 <DR:record status="Adopted" reason="No good reason

 why state should be shared, many reasons not to"
 datestamp="Sat May 03 14:11:33 EDT 2003" />
 </DR:history>
 </DR:alternative>

81

FIGURE 7-20. Argument Schema

The argument contains a number of attributes that are used in evaluating the strength of
the argument for and against the alternative. The argument type indicates which type of
argument is being given. The type is what is used to determine if the argument is for or
against the associated alternative. Figure 7-21 gives the schema for the argument type.

<xsd:complexType name="Argument">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:choice>
 <xsd:element name="reqRef" type="xsd:IDREF"/>
 <xsd:choice>
 <xsd:element name="ref" type="xsd:IDREF"/>
 <xsd:element name="claim" type="Claim"/>
 <xsd:element name="assumption"
 type="Assumption"/>
 </xsd:choice>
 <xsd:element name="altRef" type="xsd:IDREF"/>
 </xsd:choice>
 <xsd:element name="argument" type="Argument"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="question" type="Question"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="argtype" type="ArgType"
 use="required"/>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="importance" type="Importance"
 use="optional"/>
 <xsd:attribute name="plausibility" type="Plausibility"
 use="required"/>
 <xsd:attribute name="amount" type="Amount" use="required"/>
</xsd:complexType>

82

FIGURE 7-21. Argument Type Schema

The argument type depends on whether the argument is for or against the alternative and if
the argument is given by a requirement (Addresses, Satisfies, or Violates), a claim
(Supports or Denies), an assumption (Supports or Denies) or an alternative (Pre-supposes
or Pre-supposed-by).

Other attributes of the argument are used in determining the evaluation. These are the
importance of the argument (Figure 7-22), the amount of the argument (e.g., “how safe”)
(Figure 7-23), and the plausibility of the argument specifying how certain the designer is
that it is true (Figure 7-24).

FIGURE 7-22. Importance Schema

<xsd:simpleType name="ArgType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Supports"/>
 <xsd:enumeration value="Denies"/>
 <xsd:enumeration value="Pre-supposes"/>
 <xsd:enumeration value="Pre-supposed-by"/>
 <xsd:enumeration value="Opposes"/>
 <xsd:enumeration value="Opposed-by"/>
 <xsd:enumeration value="Addresses"/>
 <xsd:enumeration value="Satisfies"/>
 <xsd:enumeration value="Violates"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="Importance">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Not"/>
 <xsd:enumeration value="Low"/>
 <xsd:enumeration value="Moderate"/>
 <xsd:enumeration value="High"/>
 <xsd:enumeration value="Essential"/>
 </xsd:restriction>
</xsd:simpleType>

83

FIGURE 7-23. Amount Schema

FIGURE 7-24. Plausibility Schema

The main body of the argument consists of one of three things: a reference to a
requirement, a reference to an alternative, or either a claim or a reference to a claim.
References in XML are like pointers – they are used to point towards an entity that is
defined elsewhere in the document.

The reference to a requirement is used if the reason behind the argument is that it meets,
supports, or violates a requirement. The reference to an argument is used if there is another
alternative that either must be selected for this one to be valid or that requires that this
alternative be selected in order to be valid. Other, non requirement-specific, reasons are
expressed as claims. The argument can either be a reference to a claim used elsewhere or
the claim itself.

Figure 7-25 shows an example of an argument.

<xsd:simpleType name="Amount">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="11"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="Plausibility">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Low"/>
 <xsd:enumeration value="Medium"/>
 <xsd:enumeration value="High"/>
 <xsd:enumeration value="Certain"/>
 </xsd:restriction>
</xsd:simpleType>

84

FIGURE 7-25. Argument Example

7.2.3.6. Claims

Claims are the reasons why an alternative is good or bad. Figure 7-26 shows the schema
for a claim.

FIGURE 7-26. Claim Schema

The claim contains an ID, which is used if the claim is referenced elsewhere, a description
saying what the claim does, the importance of the claim, the direction of the claim, such as

- <DR:argument id="r664" name="burden on server"
 argtype="Denies" plausibility="High" amount="8">
 <DR:description>This places a heavy burden on the

 server if it has to support many players.
 </DR:description>
- <DR:claim id="r665" name="Bottleneck if many players"
 direction="IS">
 <DR:description>Causes problems if there are many

 players</DR:description>
 <ref>r230</ref>
 </DR:claim>
 </DR:argument>

<xsd:complexType name="Claim">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="ref" type="xsd:IDREF"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="importance" type="Importance"
 use="optional"/>
 <xsd:attribute name="direction" type="Direction"
 use="required"/>
</xsd:complexType>

85

“is safe” or “is not” safe (Figure 7-27), and a reference that is a pointer to an entry in the
argument ontology. This indicates a general type for the claim and is there so that semantic
inferencing can be performed over the rationale. Figure 7-28 shows an example of a claim.

FIGURE 7-27. Direction Schema

FIGURE 7-28. Claim Example

7.2.3.7. Assumptions

Assumptions are reasons for making decisions, or reasons behind arguments, that are not
necessarily, or not always, true. These are kept separate from claims because they do not
belong in the argument ontology. This also makes them easier to detect. Figure 7-29
shows the assumption representation. Figure 7-30 shows an example of an assumption.

7.2.3.8. Argument Ontology
The argument ontology is used to store a hierarchy of arguments used in the rationale.
These are based on the “ilities” (e.g., scalability, flexibility, maintainability, usability, etc.)
[Filman, 1998] but contain other general arguments as well. These allow semantic infer-
encing by providing a common vocabulary for the claims that can be used to look for sim-
ilarities and contradictions in reasoning. Figure 7-31 gives the schema for the argument

<xsd:simpleType name="Direction">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="IS"/>
 <xsd:enumeration value="NOT"/>
 </xsd:restriction>
</xsd:simpleType>

- <DR:claim id="r680" name="Decreased Speed"
 direction="IS">
 <DR:description>Sharing state will increase message

 traffic and increase latency.</DR:description>
 <ref>r641</ref>
 </DR:claim>

86

ontology.

FIGURE 7-29. Assumption Schema

FIGURE 7-30. Assumption Example

FIGURE 7-31. Argument Ontology Schema

The ontology consists of a hierarchy of ontology entries. Figure 7-32 gives the schema for
an ontology entry.

<xsd:complexType name="Assumption">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name = "id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

- <DR:assumption id="r1" name="only start and end needed.">
 <DR:description>According to game developer - only

 start and end information is needed.
 </DR:description>
 </DR:assumption>

<xsd:complexType name="ArgOntology">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="ref" type="xsd:IDREF"/>
 <xsd:element name="ontEntry" type="OntologyEntry"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

87

FIGURE 7-32. Ontology Entry Schema

Each ontology entry contains a description, an ID, and any ontology entries beneath it in
the hierarchy. The ID is necessary so that the rest of the rationale can reference it.
Figure 7-33 gives an example of an argument ontology.

<xsd:complexType name="Entry">
 <xsd:choice>
 <xsd:element name="ref" type="xsd:IDREF" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="ontEntry" type="OntologyEntry"
 minOccurs="0" maxOccurs="1"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="OntologyEntry">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="subEntry" type="Entry" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="importance" type="Importance"
 use="required"/>
</xsd:complexType>

88

FIGURE 7-33. Argument Ontology Example

7.2.3.9. Background Knowledge

The background knowledge gives any tradeoffs and co-occurrence relationships that are
likely to apply to the design as a whole. Figure 7-34 shows the XML schema
representation for the background knowledge.

FIGURE 7-34. Background Knowledge Schema

The two types of relationships shown are tradeoffs and co-occurrence relationships.

- <DR:argOntology>
- <DR:ontEntry id="r0" name="Argument-Ontology"
 importance="Moderate">
 <DR:description />

- <DR:subEntry>
- <DR:ontEntry id="r2" name="Affordability
 Criteria" importance="Moderate">
 <DR:description>These arguments refer to the

 cost of the software</DR:description>
- <DR:subEntry>
- <DR:ontEntry id="r4" name="Development
 Cost" importance="Moderate">
 <DR:description />
 </DR:ontEntry>
 </DR:subEntry>
 </DR:ontEntry>
 </DR:subEntry>
 </DR:ontEntry>
 </DR:argOntology>

<xsd:complexType name="BackgroundKn">
 <xsd:sequence>
 <xsd:element name="tradeoff" type="Tradeoff"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="co-occurrence" type="CoOccurrence"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

89

Figure 7-35 and Figure 7-36 show the schemas describing the tradeoffs and co-occur-
rences.

FIGURE 7-35. Tradeoff Schema

FIGURE 7-36. Co-Occurrence Relationship Schema

Figure 7-37 shows an example of background knowledge.

<xsd:complexType name="Tradeoff">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="ref" type="xsd:IDREF" minOccurs="2"
 maxOccurs="2"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="symmetric" type="xsd:boolean"
 use="required"/>
</xsd:complexType>

<xsd:complexType name="CoOccurrence">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="ref" type="xsd:IDREF" minOccurs="2"
 maxOccurs="2"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="symmetric" type="xsd:boolean"
 use="required"/>
</xsd:complexType>

90

FIGURE 7-37. Background Knowledge Example

7.3. Inferences Supported

Design Rationale is very useful even if it is only used as a form of documentation that
provides extra insight into the designer’s decision-making process. It can provide even
more useful information about the design if there is a way to perform inferences over it. In
the following sections we describe a number of different inferences that could be
performed over rationale that is structured using the RATSpeak representation.

A specific inference may or may not directly correspond to a specific use for the rationale.
For example, the rationale could be used to see if any decisions were made that violated
requirements. That would require inferencing that looked at the selected alternatives to see
if there were any arguments against them that referred to violated requirements. In that
case, there is a direct correspondence between the use, checking for requirements
violations, and the inference. On the other hand, there could be a general rationale
validation that is performed using multiple inferences.

De-coupling the description of the inference from how it is used encourages flexibility in
the different types of uses that could be made of the rationale. For this reason, the focus of
this chapter will be on the inferences themselves, not their use.

There are a number of different ways that the inferences can be categorized. The two main
groups are syntactic and semantic. Syntactic inferences are those that are concerned
mostly with the structure of the rationale. They look for information that is missing.
Semantic inferences require looking into the content of the rationale.

Another categorization is between inferences that require background knowledge and
those that do not. Ideally, all inference would be stand-alone, i.e., utilizing only
information that is inside the rationale. This could be done by mining rationale for

- <DR:backgroundKn>
- <DR:tradeoff id="r687" name="flexibility vs. cost" symmetric="false">
 <DR:description>A more flexible solution costs more to deve-
lope</DR:description>

 <ref>r194</ref>

 <ref>r4</ref>

 </DR:tradeoff>

 </DR:backgroundKn>

91

interesting patterns to be used in inference, such as common tradeoffs. This is not an easy
task and is beyond the scope of this work. Instead, there the background knowledge will
supply the patterns that need to be checked.

A third category is inferences that concern changes in the rationale over time. These
require that the history of changes to the rationale be maintained somehow.

7.3.1. Syntactic

As described earlier, syntactic inferencing looks mostly at the structure of the rationale.
The following sections describe the syntactic inferences used in SEURAT.

7.3.1.1. No Reason For Selection
Purpose: This applies when an alternative has been selected where there are no argu-

ments for the alternative. Used to detect when a poor decision has been
made. This could either indicate that the wrong alternative was selected or
that the rationale is not complete. In either case, this is an error and should
be reported.

Checked: This is checked automatically when an alternative is selected.
Applies to: Selected Alternatives
Level: Violation

7.3.1.2. Selection Contradicted
Purpose: This applies when an alternative has been selected where there are argu-

ments against the alternative but no arguments for the alternative. Used to
detect when a poor decision has been made. This could either indicate that
the wrong alternative was selected or that the rationale is not complete. In
either case, this is an error and should be reported.

Checked: This is checked automatically when an alternative is selected.
Applies to: Selected Alternatives
Level: Violation

7.3.1.3. No Selected Alternative
Purpose: Indicates that the rationale and/or the design is not complete. In this case,

there is a decision where a selected alternative has not been specified.
Checked: This is checked as soon as the decision is created. This means that there

will be errors reported because the rationale is incomplete, but that is con-
sidered an advantage because the error messages remind the developer that

92

they need to make the decision.
Applies to: Decision
Level: Violation

7.3.1.4. Too Many Selected Alternatives
Purpose: Indicates that two alternatives have been selected for a decision when the

decision is only supposed to have one.
Checked: This is checked whenever any of the alternatives is edited.
Applies to: Decision
Level: Violation

7.3.1.5. Missing Sub-Decisions
Purpose: Indicates that a decision which is supposed to be expanded by sub-deci-

sions does not have any sub-decisions listed in the rationale. This indicates
that the rationale is incomplete.

Checked: This is checked whenever a decision is edited or created. The check is
made for the updated decision and, if applicable, its parent decision.

Applies to: Decision
Level: Violation

7.3.1.6. Unanswered Questions
Purpose: Indicates that there is a question in the rationale that has not been

answered.
Checked: This is checked as soon as the question is created and will remind the

developer that they need to answer the question in order to make their deci-
sion.

Applies to: Decision or Alternative
Level: Warning

7.3.2. Semantic

Semantic inferences look inside the structure of the rationale to look for errors in the con-
tents of a particular argument.

7.3.2.1. Best Supported Alternative not Selected
Purpose: Indicates that the alternative that was selected is not as well supported as

one or more of the other alternatives for the decision.
Checked: This is checked as soon as an alternative is selected for the decision. It is

93

also checked whenever any of the arguments for any of the alternatives for
the decision are modified. This allows detection of problems introduced if
a requirement or assumption is disabled or if new arguments are added.

Applies to: Decision
Level: Warning

7.3.2.2. Requirements Violation
Purpose: Indicates that an alternative was selected that violates a requirement.
Checked: This is checked each time an alternative and/or its arguments are edited.

This includes a check whenever an alternative is selected.
Applies to: Alternative and Requirement
Level: Error

7.3.2.3. Contradictory Arguments
Purpose: This looks to see if the same argument is used both for and against an alter-

native. This indicates a probable error in the rationale.
Checked: This is checked whenever an alternative or one of its arguments is modi-

fied.
Applies to: Alternative
Level: Violation

7.3.2.4. Duplicate Arguments
Purpose: This looks to see if the same argument is used multiple times for an alterna-

tive. This indicates a probable error in the rationale.
Checked: This is checked whenever an alternative or one of its arguments is

modified.
Applies to: Alternative
Level: Violation

7.3.2.5. Pre-Supposed Not Selected
Purpose: This looks to see if there is an alternative that requires that another alterna-

tive is selected that is not (i.e., the first alternative pre-supposes the latter).
This is done by checking in both directions (making sure the alternative
does not pre-suppose another and that no alternatives pre-suppose it).

Checked: This is checked whenever a selected alternative or one of its arguments is

94

modified to ensure that it does not depend on a non-selected alternative.
Applies to: Alternative
Level: Violation

7.3.2.6. Opposed Selected
Purpose: This looks to see if there is an alternative that requires that another alterna-

tive must not be selected.
Checked: This is checked whenever a selected alternative or one of its arguments is

modified to ensure that it is not opposed by another alternative is selected.
This is done by checking in both directions to make sure that each alterna-
tive is not opposed by, or in opposition to, another selected alternative.

Applies to: Alternative
Level: Violation

7.3.2.7. Co-occurrence Relationship Violation
Purpose: Makes use of background knowledge to detect arguments that have co-

occurrence relationships. In this case, these arguments must go together on
the same side of the argument and a violation is present if they are on oppo-
site sides instead.

Checked: This is checked whenever arguments are edited.
Applies to: Decision
Level: Warning

7.3.2.8. Co-Occurrence Relationship Missing
Purpose: Makes use of background knowledge to detect arguments that have co-

occurrence relationships. In this case, these arguments must go together on
the same side of the argument and should both be present.

Checked: This is checked whenever arguments are edited.
Applies to: Decision
Level: Warning

7.3.2.9. Tradeoff Violation
Purpose: Indicates that a known tradeoff (as specified in background knowledge)

was violated in the rationale. This occurs when traded off items were on the
same side of the argument when normally they are opposing. This could

95

point out an error in the rationale.
Checked: This is checked whenever arguments are edited.
Applies to: Decision
Level: Warning

7.3.2.10. Tradeoff Missing
Purpose: Indicates that a known tradeoff (as specified in background knowledge)

was not taken into account in the rationale. This occurs when only one side
of the tradeoff is accounted for in the rationale. This could indicate that the
rationale is incomplete because the opposing arguments are not present.

Checked: This is checked whenever arguments are edited.
Applies to: Decision
Level: Warning

7.3.3. Queries

Rationale queries are used to get information about the rationale on request. The following
sections describe some queries supported by SEURAT.

7.3.3.1. Find Entity

The Find Entity query allows the user to search for a rationale entity of a particular type
and edit that entity. This allows the system to be more scalable to large amounts of
rationale.

7.3.3.2. Find Requirement

The Find Requirement query lets the user search for requirements with a specific status:
satisfied, addressed, or violated. This status only applies to requirements that relate to
selected alternatives – if an requirement is violated by an alternative that is not selected it
does not count as a violation.

7.3.3.3. Find Common Arguments

The Find Common Arguments query gives a list of either claims, arguments, or argument
ontology entries that are sorted by the number of times the item appears in the rationale.
This is useful to see if what criteria were the most involved in making design decisions.

7.3.3.4. Find Status Overrides

The Find Status Overrides query shows a list of any status messages that were overridden
by the user. The user is allowed to override any of the error and warning messages

96

displayed by SEURAT if they feel that these errors are not reflective of the true state of the
system and/or the rationale. The overrides can be easily removed, however, from the
results returned by the Find Status Overrides query.

7.3.3.5. Find Importance Overrides

The user can assign importance values to arguments or claims or choose to inherit the
importance of the item below it (argument ontology entries in the case of claims and
claims in the case of arguments). The Find Importance Overrides gives a list of what has
been overridden for each of these three types of items. The user can then choose to edit the
item and remove the override. It is important to know when values are being overridden
because this rationale will not be affected by any global importance changes in claims or
ontology entries.

7.3.3.6. Find Related Arguments

The Find Related Arguments query can be run on any requirement to look for alternatives
that satisfy, address, or violate the requirement. This is a helpful way to determine what is
affected by any given requirement.

7.3.4. Historical

Historical inferences make use of a history of rationale changes that is maintained
whenever the status of a rationale item changes. This provides additional insight into how
the design changes over time.

7.3.4.1. Detecting Rejected Alternatives

SEURAT will alert the user if they try to select an alternative that was rejected earlier. This
is intended to help prevent earlier mistakes from being inadvertently repeated.

7.3.4.2. Element History

A history of all the status changes can be shown for each requirement, decision,
alternative, and question. This can show how the rationale has been changed and why over
time.

7.4. Argument Ontology

One key element in the RATSpeak representation is the Argument Ontology. Our work on
InfoRat showed the importance of providing a common vocabulary to support inferencing
over the content of the rationale as well as over its structure. To support this, we have

97

developed an ontology of reasons for choosing one design alternative over another. This
ontology forms a hierarchy of terms with abstract reasons at the root and increasingly
detailed reasons towards the leaves.

RATSpeak provides the ability to express several different types of arguments for and
against alternatives. One type of argument is if an alternative satisfies or violates a
requirement. Other arguments refer to assumptions made or dependencies between
alternatives. Another type of argument involves claims that an alternative supports or
denies a Non-Functional Requirement (NFR). These NFRs, also known as “ilities”
[Filman, 1998] or quality requirements, refer to overall qualities of the resulting system, as
opposed to functional requirements, which refer to specific functionality. As we describe
in [Burge and Brown, 2002], the distinction between functional and non-functional is
often a matter of context. RATSpeak also allows NFRs to be represented as explicit
requirements.

There have been many ways that NFRs have been organized. CMU’s Quality Measures
Taxonomy [SEI, 2000] organizes quality measures into Needs Satisfaction Measures,
Performance Measures, Maintenance Measures, Adaptive Measures, and Organizational
Measures. Bruegge and Dutoit [2000] break a set of design goals into five groups:
performance, dependability, cost, maintenance, and end user criteria. Chung, et al. [2000]
provides an unordered list of NFRs, which provided many elements for the ontology, as
well as specific criteria for NFRs relating to performance and auditing.

For the RATSpeak argument ontology, we took a bottom-up approach by looking at what
characteristics a system could have that would support the different types of software
qualities. This involved reviewing literature on the various quality categories to look for
how a software system might choose to address these qualities. For example, one quality
attribute that is a factor in design decisions is scalability. We looked to see what might
contribute toward scalability in a software design and added these attributes to the
ontology. For example, one way to increase scalability is to minimize the number of
connections a system must set up, another is to avoid using fixed data sizes that may limit
the capacity of the system. Our aim was to go beyond the idea of design goals or quality
measures to look at how these qualities might be achieved by a software system.

In maintenance, the maintainers are more likely to be looking at the lower-level decisions
and will need specific reasons why these decisions contribute to a desired quality of the
overall system. It is probable that decisions made at the implementation level are likely to
correspond to detailed reasons in the ontology, while higher level decisions are more
likely to use reasons at the more abstract levels.

After determining a list of detailed reasons for choosing one alternative over another, an
Affinity Diagram [Jiro, 2000] was used to cluster similar reasons into categories. These

98

categories were then combined again. The more abstract levels of the hierarchy were
based on a combination of the NFR organization schemes listed earlier (the CMU
taxonomy as well as Bruegge and Dutoit’s design goals). Also, NFRs from the Chung list
were used to fill in gaps in the ontology. The high level criteria were as follows:

• Affordability Criteria;
• Adaptability Criteria;
• Dependability Criteria;
• End User Criteria;
• Needs Satisfaction Criteria;
• Maintainability Criteria;
• Performance Criteria.

Each of these criteria then have sub-criteria at increasingly more detailed levels. As an
example. The more detailed ontology terms are worded in terms of arguments: i.e.,
<alternative> is a good choice because it <ontology entry >, where ontology entry starts
with a verb, e.g., “supports”. The SEURAT system has been designed so that the user can
easily extend this ontology to incorporate additional arguments that may be missing. With
use, the ontology will continue to be augmented and will become more complete over
time. It is possible to add deeper levels to the hierarchy but that will make it more time
consuming for the developer to find the appropriate item when adding rationale.

 One thing to note is that the ontology is not a strict hierarchy—there are many cases
where items contributing toward one quality also apply to another. One example of this is
the strong relationship between scalability and performance. Throughput and memory use,
while primarily thought of as performance aspects, also impact the scalability of the
system. In this case, and others that are similar, items will belong to more than one
category.

The following sections present the Argument Ontology entries for each of the high level
categories.

7.4.1. Affordability Criteria

Affordability refers to the cost to develop the software system. This is a non-functional
requirement that is great concern to the software developer, manager, and customer. The
affordability criteria given in the ontology are divided into the five major categories given
by Bruegge and Dutoit [2000]: Development cost, Deployment cost, Upgrade cost, Main-
tenance cost, Administration cost. More detailed ways that cost can be reduced are listed

99

under these categories. Many of these involve time since time generally translates into
money. Most of these come from Chung, et al. [2000]. Figure 7-38 shows the affordability
criteria in SEURAT.

7.4.2. Adaptability Criteria

Adaptability refers to how easy it is to modify the software to adapt it to changing
circumstances or to add new functionality. Adaptability includes two particularly crucial
sub-criteria: portability and scalability. Scalability is one of the elements in the ontology
that has sub-elements that also appear elsewhere in the ontology This is because
scalability is often linked to performance. Many of the scalability criteria came from
Bondi [2000]. Figure 7-39 shows the adaptability criteria.

100

FIGURE 7-38. Affordability Criteria

Development Cost
• Uses Standard Tools and Environments
 • {is a | uses a} standard development

tool(s)
 • {is a | uses a} standard language
• Uses Familiar Tools and Environments
 • {is a | uses a} familiar language
 • utilizes developer experience
 • {is a | uses a} familiar development

environment
 • {is a | uses a} familiar hardware plat-

form
• Reduces Development Time
 • is component based
 • uses COTS/GOTS software
 • reduces customization
 • utilizes existing code developed in-

house
 • uses automatically generated code
• Reduces Project Success Risk
 • {is a | uses a} mature language
 • {is a | uses a} mature process
• Reduces Prototyping Cost
 • reduces prototyping time
• Reduces Risk Analysis Cost
 • reduces risk analysis time
• Reduces Component Integration Cost
 • reduces component integration time
• Reduces Domain Analysis Cost
 • reduces domain analysis time
• Reduces Inspection Cost
 • reduces inspection time
Operating Cost
• Minimizes Communication Cost

Deployment Cost
• Minimizes Equipment Cost
 • reduces hardware cost
• Minimizes External Software Cost
 • {is | uses} open source
• Minimizes Deployment Time
 • reduces software production time
 • reduces customer evaluation time
Maintenance Cost
• Reduces Maintenance Time
 • reduces re-compilation
• Reduces Support Cost
 • increases hardware support available
 • increases software support available
• Reduces Re-engineering Cost
• Reduces Retirement Cost
Upgrade Cost
• Reduces COTS Risk
 • isolates code dependent on outside soft-

ware
 • reduces vendor dependencies
 • reduces version dependencies
 • isolates version dependencies
Administration Cost
• Reduces Coordination Cost
 • reduces coordination time
• Reduces Planning Cost
 • reduces planning time
• Reduces Project Tracking Cost
• Reduces Process Management Cost
 • reduces process management time

101

FIGURE 7-39. Adaptability Criteria

7.4.3. Dependability Criteria

Dependability criteria include the many factors that contribute to a system being
dependable. This includes security, which contains many criteria from Chung, et. al.
[2000], fault tolerance [Siewiorek, 1990], and safety [Rushby, 1994]. Figure 7-40 shows
the dependability criteria.

Extensibility
• Minimizes Modification Impact
 • isolates likely to change code
 • reduces modification impact
 • reduces change coordination
 • facilitates wrappability
 • uses replaceable modules
• Minimizes the Amount of Code to Modify
 • increases commonality
 • reduces coupling
 • increases encapsulation
 • increases cohesion
• Simplifies Modification
 • uses a design pattern
 • reduces duplication
 • provides modularity
 • provides information hiding
Modifiability
• Increases Flexibility
 • {provides | supports} reflection
 • provides tunable parameters
Adaptability
• Increases Additivity
• Increases Elasticity
• Increases Composibility
Portability
• Reduces Hardware Dependencies
 • isolates hardware dependent code
• Reduces Software Dependencies
 • {avoids | reduces} OS dependencies

Scalability
• Increases Scalability
 • {allows | supports} additional users
 • {provides | supports} policy/mechanism

separation
 • adapts to increase in intensity of use
 • minimizes connections to be set up
 • supports functionality reuse
 • avoids fixed data sizes
• Response Time and Throughput (see Per-

formance)
• Memory Efficiency (see Performance)
Reusability
Interoperability
• Provides Interface Standardization
 • {is a | uses a} defined interface
 • {is a | uses a} standard interface
 • conforms to an API
 • {provides | supports} consistent inter-

faces
 • {is a | conforms to a} standard protocol
• Supports Easier Integration
 • exposes the API
 • reduces shared data
 • provides compatibility

102

FIGURE 7-40. Dependability Criteria

7.4.4. End User Criteria

End User Criteria give reasons for why the software system assists the user. This falls into
two major categories: usability and integrity. Many of the usability criteria originated in an
extensive list from Dix, et. al. [1998]. Chung, et. al, [2000] provided detailed criteria that
contribute to accuracy. Figure 7-41 shows the end user criteria.

Security
• Provides Access Control
 • require authorization
 • {provides | supports} multiple authori-

zation/access levels
 • {provides | supports| mandatory access

controls
 • {provides | supports} discretionary

access controls
• Increases Data Security
 • {provides | supports} data encryption
 • {provides | supports} network isolation
• Responds to Threats
 • {provides | supports} countermeasures
 • prevents denial of service
 • {provides | supports} threat detection
 • {provides | supports} threat prevention
 • {provides | supports} threat recovery
Robustness
• Responds to User Error
 • prevents user error
 • minimizes user error
 • detects user error
 • recovers from user error
 • requests action confirmation
 • requires action confirmation
Availability
• Reduces Error Rates

Fault Tolerance
• Handles Faults
 • {provides | supports} graceful degrada-

tion
 • {provides | supports} replication
 • {provides | supports} failover
 • {provides | supports} fault masking
 • {provides | supports} retry when failure
 • {provides | supports} restart when fail-

ure
 • {provides | supports} reconfigure when

failure
 • {provides | supports} failure repair
 • provides recovery blocks
• Tolerates Faults
 • {provides | supports} data recoverability
 • {provides | supports} state recoverabil-

ity
 • {provides | supports} fault detection
 • {provides | supports} fault confinement
Reliability
• Prevents Data Loss
 • {is a | supports a} reliable protocol
 • prevents data overwrites
Safety
• Increases Maturity
 • {is an | uses an} evaluated technology
• Increases Predictability
 • provides stability
 • provides a contract

103

FIGURE 7-41. End User Criteria

Usability
• Increases Physical Ease of Use
 • {provides | supports} effective use of

screen real-estate
 • minimizes keystrokes
 • {provides | supports} increased visual

contrast
 • is easy to read
• Increases Cognitive Ease of Use
 • provides reasonable default values
 • provides user guidance
 • {encourages | supports} direct manipu-

lation
 • minimizes memory load on user
 • provides feedback
 • {conforms to | utilizes} user experience
 • increased visibility of function to users
 • uses predictable sequences
 • intuitiveness
 • {provides an | supports an} appropriate

metaphor
• Increases Interface Consistency
 • {provides | supports} data entry consis-

tency
 • {provides | supports} data display con-

sistency
 • {provides | supports} color and style

consistency
• Increases Recoverability
 • supports undo of user actions
 • corrects user errors
 • prevents user error
• Increases Learnability
• Increases Acceptability
 • increases aesthetic value
 • avoids offensiveness

• Provides User Customization
 • {provides | supports} customization
 • supports different levels of user exper-

tise
• Supports Internationalization
 • Reduces cultural dependencies
• Increases Accessibility
 • Visual accessibility
 • Auditory accessibility
 • Mobility accessibility
 • Cognitive accessibility
Integrity
• Increases Completeness
• Increases Consistency
 • {provides | supports} internal consis-

tency
 • {provides | supports} external consis-

tency
• Increases Accuracy
 • {provides | supports} exception han-

dling
 • supports resource assignment
 • provides validation
 • provides justification enforcement
 • provides verification
 • {provides | supports} a checkpoint
 • {provides | supports} better information

flow
 • {provides | supports} authentication

enforcement
 • {provides | supports} auditing
 • {provides | supports} consistency

checking
 • requests confirmation
 • performs cross examination
 • provides tracking assistance
 • provides certification
 • requests authorization
 • provides precision

104

7.4.5. Needs Satisfaction Criteria

Needs Satisfaction Criteria refer to the support given to ensure that the software meets the
needs of the user. This category name came from the CMU’s Quality Measures Taxonomy
[SEI, 2000] but many of the sub-categories from that taxonomy ended up in different
categories for the Argument Ontology. The category that remains, includes criteria from
Voas and Miller [1995]. Figure 7-42 shows the needs satisfaction criteria.

FIGURE 7-42. Needs Satisfaction Criteria

7.4.6. Maintainability Criteria

These criteria give ways that the software can be easier to maintain. The major categories
are readability, supportability, and traceability. No sub-categories have been determined
for supportability and traceability. Figure 7-43 shows the maintainability criteria.

FIGURE 7-43. Maintainability Criteria

7.4.7. Performance Criteria

These criteria give ways that performance can be improved. Most performance criteria
come from Bondi [2000] (in the context of scalability) and from Chung, et. al. [2000].
Figure 7-44 shows the performance criteria.

Verifiability
• Increases Testability
 • increases visibility of function to be

evaluated
 • supports instrumentation
 • provides re-entry points
 • provides triggers

 • minimizes variable reuse
 • supports internal information capture
 • facilitates repeatability
• Increases Auditability

Readability
• Increases Code Understandability
 • Provides good documentation
 • {provides | supports} code consistency
 • {provides | supports} consistent method naming

 • {provides | supports} code readability
 • {provides | supports} decomposability
Supportability
Traceability

105

FIGURE 7-44. Performance Criteria

7.5. Rationale Entry and Presentation

The ability to view and edit the rationale is a crucial component to any rationale support
system. One of the concerns about capturing rationale is the possibility that the rationale
will not be consulted even when it is present. In order to encourage this, a primary goal
was to provide a way to know if rationale was present while editing the code.

The following requirements were developed for the editing and presentation of the
rationale:

• Explicit rationale to code associations where the user would be informed that there was
rationale for the code that he or she was editing;

• Visualization of the rationale structure by showing the argumentation in a hierarchical
form;

• Easy entry and modification of the rationale items.

To meet these requirements, we designed an interface where the rationale would be stored
in a tree format where expanding a decision node would show the alternatives beneath it,
expanding an alternative would show the arguments beneath it, etc. This tree would also

Response Time and Throughput
• Increases Speed
 • {provides | supports} distribution
 • {provides | supports} parallelism
 • {provides | supports} congestion control
 • {provides | supports} efficient resource

scheduling
 • {provides | supports} caching
 • {provides | supports} load shedding
 • {provides | supports} multi-threading
 • {is a | uses a} fast language
 • {is a | uses a} efficient algorithm
• Reduces Latency
 • {provides | supports} increased process-

ing speed
 • decreases latency/perceived delay

• Minimizes Resource Conflicts
 • avoids deadlock
 • avoids starvation
 • minimizes contention
• Optimizes Resource Use
 • {provides | supports} increased compo-

nent capacity
 • reduces component load
 • minimizes bandwidth
 • minimizes persistent storage
 • {provides | supports} bandwidth change

adaptation
Memory Efficiency
• Minimizes Memory Use
 • avoids paging
 • prevents memory leaks
 • minimizes secondary storage use

106

support editing of the rationale by giving the user a way to open an editor to display and
modify the rationale by double-clicking on the item in the tree.

The ability of the maintainer to know if there was rationale present was a more difficult
problem. This required integrating the rationale display with an editor that could be used
to modify the code. This problem was solved when the Eclipse framework was selected
for implementation of SEURAT. Eclipse, and how it was used to associate rationale with
code, is described in the chapter on implementation.

107

CHAPTER 8 SEURAT Software Design
and Implementation

SEURAT was developed as an Eclipse Plugin (www.eclipse.org). Eclipse is an open-
source development framework that provides (among other things) a Java IDE. This
allows the SEURAT capabilities (rationale presentation and use) to be available within the
same development environment used by the software maintainer. This is a key feature to
our approach and one that has been lacking in most rationale support tools. All of the
SEURAT implementation was written using Java.

This chapter describes the software design and implementation of the SEURAT system.
Section 8.1 presents the SEURAT software architecture. Section 8.2 describes the design
and implementation of the Rationale Repository. Section 8.3 describes the Rationale
Explorer, Section 8.4 describes how tasks are determined (via inference) and presented in
SEURAT, and Section 8.5 talks about the way the code and rationale are connected.
Section 8.6 describes the Rationale Editor/Viewer capability and Section 8.7 describes the
Rationale Query implementation.

8.1. SEURAT Software Architecture

The previous chapter presented the system architecture for the SEURAT system which
showed the main functions of the system: the Argument Editor and Analyzer, the
Inference Engine, the Rationale Repository, and the Argument Ontology. The SEURAT
software architecture maps these functions on to the different displays and software
components that were developed within the Eclipse Framework. Figure 8-1 shows the
Software Architecture.

108

FIGURE 8-1. SEURAT Software Architecture

This diagram contains the following parts:

• SEURAT Controller and Inference Engine – this serves as the main point of control for
the SEURAT application. It performs any inferencing needed to maintain the rationale
status and respond to rationale queries.

• Rationale Explorer – this will give a tree-format view into the Rationale. It will serve
two main purposes in the SEURAT system: it provides a way to access the rationale by
selecting rationale items in the tree and editing them, and also provides a high-level
picture of the rationale status. The status will be indicated by small graphical status
indicators that will appear in the tree next to the affected rationale elements. The icons
used to indicate errors and warnings on the rationale are the same as those used to indi-
cate errors and warnings within the code.

• Rationale Resource Marker Display – there are several ways that the associations
between the rationale and the code are displayed. One is by having a “decorator” icon
overlay the icon for the code associated with the rationale. This is shown in the Eclipse
package explorer. Another is by putting a “bookmark” on the associated code – this is

Artifact,
Rationale

Rationale Explorer
• Rationale
• Rationale

Status

Rationale Task Display
• Detailed explanation of

Rationale Status

Rationale Editor/Viewer

Rationale Query Display
• Queries
• Results

SEURAT
Controller

Rationale,
Status

Detailed
status

Queries,
Commands

Results

Rationale

Commands

Database (Rationale and
Ontology)

Add, Delete,
Query

Rationale

Commands

Rationale Resource
Marker Display

Inference
Engine

JDT Code Decorator

Commands

Artifact,
Rationale

109

shown by having the bookmark added to a list of bookmarks maintained by Eclipse and
by having a bookmark indicator shown next to the code when it is edited. When the
maintainer puts their mouse over this indicator, the applicable rationale is displayed.

• Rationale Editor/Viewer – this is the primary means of editing and viewing elements of
rationale. This can be invoked in a variety of ways, the primary one via the Rationale
Explorer.

• Rationale Query Display – this is the means for querying the rationale for specific com-
binations of information. It will have an interface that allows the user to build common
types of queries. The results will be a list of rationale elements that meet the query cri-
teria. This list can then be used to invoke the Rationale Editor/Viewer to look at spe-
cific elements.

• Rationale Task Display – this display provides a list and description of any problems
(errors or warnings) with the rationale. These are listed as tasks that the SEURAT user
should consider doing. This is analogous to the way that compilation errors and warn-
ings are displayed by Eclipse. The display will be updated automatically when the
rationale changes. The user can use this list to invoke the Rationale Editor/Viewer to
look at the elements causing the problem.

The flow-chart in Figure 8-2 shows what happens when a modification is made to the
rationale.

Figure 8-3 shows SEURAT as part of the Eclipse Java IDE. SEURAT participates in the
development environment in three ways: a Rationale Explorer (upper left pane) that shows
a hierarchical view of the rationale and allows display and editing of the rationale; a
Rationale Task List (lower right pane), that shows a list of errors and warnings about the
rationale; and Rationale Indicators that appear on the Java Package Explorer (lower left
pane) and in the Java Editor (upper right pane) to show where rationale is available for a
specific Java element. The examples in this dissertation come from a conference room
scheduling system. Note that the screenshots are in color, making the icons much easier to
distinguish than when reproduced in black and white.

The software developer enters the rationale to be stored in SEURAT while the software
system that the rationale describes is being developed. SEURAT supports the entry by
providing rationale entry screens for each type of rationale element.

110

FIGURE 8-2. Rationale Update Flowchart

Rationale is
Added/Modified

Inference Engine
checks to see if
status changes for
related rationale

Status
change

Updates
made to
Rationale
Task List

Updates
made to
Rationale
Explorer

Modifications are
made to the DB

Rationale
Editor

Inference
Engine

Rationale
Task Display

Rationale
Database

Rationale
Explorer

Y

N

111

FIGURE 8-3. SEURAT and Eclipse

8.2. Rationale Repository and Argument Ontology

The Rationale Repository and Argument Ontology are all stored in a relational database.
The database used for this was MySQL (http://www.mysql.com/). The repository was
created by translating the information stored in the XML format described in the previous
chapter into a series of database tables. These consist of tables for each rationale element
and, in some cases, tables giving the relationships between the rationale elements. Using
the relational database allows the inferences to be performed by taking advantage of the
power of SQL queries. The database also provides a more scalable solution than flat files
(such as XML) or facts in a rule base because the rationale does not all need to be in
memory at one time. The following sections describe what is stored, and how.

8.2.1. Requirements

Figure 8-4 gives the SQL table definition for a Requirement. This includes the following
fields:

112

• id – this provides the unique identifier for the requirement;
• name – this provides a short description that is used in the Rationale Explorer display;
• description – this gives a longer description presenting the text of the requirement;
• type – indicates if this is a functional or non-functional requirement;
• status – the status of the requirement;
• artifact – an artifact identifier that can be used to map the requirement to a require-

ments document or repository;
• ptype – indicates the type of “parent” for this requirement. This allows a requirement to

be a sub-element of another requirement;
• parent – the identifier of the parent;
• enabled – indicates if this is an active requirement. Requirements can be disabled if

they have been deferred or removed.

FIGURE 8-4. Requirement SQL Definition

8.2.2. Decision

Figure 8-5 gives the SQL table definition for a Decision. This includes the following
fields:

• id – this provides the unique identifier for the decision;
• name – this provides a short description that is used in the Rationale Explorer display;

CREATE TABLE Requirements (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 type ENUM("FR", "NFR"),

 status ENUM("Satisfied", "Violated", "Addressed",

 "Retracted", "Rejected", "Undecided",

 "Deferred"),

 artifact VARCHAR(80),

 ptype ENUM("None", "Requirement"),

 parent INT UNSIGNED,

 enabled ENUM ("False", "True"),

 index(name),

 index(ptype, parent));

113

• description – this provides a longer description with a more detailed description of the
decision;

• type – indicates if this is a single choice (only one alternative can be selected) or a mul-
tiple choice decision;

• status – the status of the decision;
• phase – the phase of development during which the decision is/was made;
• ptype – indicates the type of “parent” for this decision. This can be a requirement (the

decision had to be made because of the requirement), another decision (this decision is
a sub-decision of a higher-level one), or an alternative (choosing the alternative meant
that the decision needed to be made);

• parent – the identifier of the parent.

FIGURE 8-5. Decision SQL Definition

8.2.3. Alternative

Figure 8-6 gives the SQL table definition for an Alternative. This includes the following
fields:

• id – this provides the unique identifier for the alternative;
• name – this provides a short description that is used in the Rationale Explorer display;

CREATE TABLE Decisions (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 type ENUM("SingleChoice", "MultipleChoice"),

 status ENUM("Resolved", "Unresolved",

 "Non-resolvable", "Retracted",

 "Addressed"),

 phase ENUM("Requirements", "Analysis", "Design",

 "Implementation", "Test", "Maintenance"),

 subdecreq ENUM("Yes", "No"),

 ptype ENUM("None", "Requirement", "Decision",

 "Alternative"),

 parent INT UNSIGNED,

 index (name),
 index (ptype, parent));

114

• description – this provides a longer description with more details about the alternative;
• status – the status of the alternative;
• artifact – an artifact identifier that can be used to map the alternative to the associated

code or other development artifact(s);
• ptype – indicates the type of “parent” for this alternative. This is usually a decision;
• parent – the identifier of the parent.

FIGURE 8-6. Alternative SQL Definition

8.2.4. Argument

Figure 8-7 gives the SQL table definition for an Argument. This is the most complicated
of the rationale items because it gives the information needed to evaluate the strength of
the various alternatives. The Argument table includes the following fields:

• id – this provides the unique identifier for the argument;
• name – this provides a short description that is used in the Rationale Explorer display;
• description – this provides a longer description with more details about the argument;
• ptype – indicates the type of “parent” for this argument. This can be a Requirement,

Decision, Alternative, or another Argument;
• parent – the identifier of the parent;
• type – this is the type of argument. The values vary depending on what type of argu-

ment it is. For arguments about requirements, valid values are Addresses, Satisfies, and
Violates. For claims, valid values are Denies and Supports. For other alternatives, valid
values are Pre-supposes, Pre-supposed-by, Opposed, and Opposed-by;

CREATE TABLE Alternatives (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 status ENUM("Valid", "Adopted", "At_Issue",

 "Rejected", "Retracted"),

 evaluation FLOAT,

 ptype ENUM("None", "Decision"),

 parent INT UNSIGNED,

 index(name),

 index(ptype, parent));

115

• plausibility – provides the degree of confidence the developer has in the argument;
• importance – provides the importance of the argument. This can be inherited from a

claim by specifying it as Default;
• amount – provides the strength of the argument. For example, if an alternative is cheap,

how cheap?
• argtype – provides the type of item the argument is about. This can be a Claim, Alterna-

tive, Requirement, or Assumption;
• claim, alternative, requirement, assumption – only one of these fields has a non-null

value that gives the id of the element to which it maps.

FIGURE 8-7. Argument SQL Definition

CREATE TABLE Arguments (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 ptype ENUM("Requirement", "Decision", "Alternative",

 "Argument"),

 parent INT UNSIGNED DEFAULT NULL,

 type ENUM("Denies", "Supports", "Pre-supposes",

 "Pre-supposed-by", "Opposed",

 "Opposed-by", "Addresses", "Satisfies",

 "Violates"),

 plausibility ENUM("Low", "Medium", "High", "Certain"),

 importance ENUM("Default", "Not", "Low", "Moderate",

 "High", "Essential"),

 amount INT UNSIGNED,

 argtype ENUM("Claim", "Alternative", "Requirement",

 "Assumption"),

 claim INT UNSIGNED DEFAULT NULL,

 alternative INT UNSIGNED DEFAULT NULL,

 requirement INT UNSIGNED DEFAULT NULL,

 assumption INT UNSIGNED DEFAULT NULL,

 index(ptype, parent));

116

8.2.5. Claim

Figure 8-8 gives the SQL table definition for a Claim. Claims map to elements in the
Argument Ontology but provide additional information by adding a qualifier of “IS” or
“NOT”. This specifies the direction of the claim – it indicates if the argument is saying
that the alternative has the quality or is in violation of it. For example, this would let you
specifically state that an argument says “NOT reduces coupling,” i.e. this choice causes
coupling. The Claim table includes the following fields:

• id – this provides the unique identifier for the claim;
• name – this provides a short description that is used in the Rationale Explorer display;
• description – this provides a longer description with more details about the claim;
• direction – states if the claim is that an alternative “IS” or “IS NOT” a possessor of the

claimed property;
• importance – provides the importance of the claim. This can be inherited from an

Ontology Entry by specifying it as Default;
• ontology – provides the id of the corresponding Ontology Entry;
• enabled – states if this claim is enabled or disabled.

FIGURE 8-8. Claim SQL Definition

8.2.6. Assumption

Figure 8-9 gives the SQL table definition for an Assumption. Assumptions are things that
the developer believes to be true at the time the software is being developed and which
may change in the future. The Assumption table includes the following fields:

CREATE TABLE Claims (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 direction ENUM("IS", "NOT"),

 importance ENUM("Default", "Not", "Low", "Moderate",

 "High", "Essential"),

 ontology INT UNSIGNED,

 enabled ENUM ("False", "True"),

 index(name),

 index(id));

117

• id – this gives the unique identifier for the assumption;
• name – this provides a short description that is used in the Rationale Explorer display;
• description – this provides a longer description with more details about the assumption;
• enabled – states if this assumption is enabled or disabled.

FIGURE 8-9. Assumption SQL Definition

8.2.7. Ontology Entry

Figure 8-10 gives the SQL table definition for an Ontology Entry. The Ontology Entry
table includes the following fields:

• id – this provides the unique identifier for the ontology entry;
• name – this provides a short description that is used in the Rationale Explorer display;
• description – this provides a longer description with more details about the ontology

entry;
• importance – provides the importance of the ontology entry.

The Ontology Entries are stored in a hierarchy that forms the Argument Ontology. A
separate table is used to store the parent-child relationships between entries. Figure 8-11
shows that table.

CREATE TABLE Assumptions (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 importance ENUM("Default", "Not", "Low", "Moderate",

 "High", "Essential"),

 enabled ENUM ("False", "True"),

 index(name),

 index(id));

118

FIGURE 8-10. Ontology Entry SQL Definition

FIGURE 8-11. Ontology Relationships SQL Definition

8.2.8. Tradeoffs

Figure 8-12 gives the SQL table definition for Tradeoffs. Tradeoffs come in two types:
Tradeoffs, which give two ontology entries that are typically traded off against each other,
and Co-occurrences, two ontology entries that usually occur together on the same side of
an argument. The Tradeoff table includes the following fields:

• id – this provides the unique identifier for the tradeoff;
• name – this provides a short description that is used in the Rationale Explorer display;
• description – this provides a longer description with more details about the tradeoff;
• ontology1 – the first Ontology Entry traded off;
• ontology2 – the second Ontology Entry traded off;
• type – specifies if this is a tradeoff or co-occurrence;
• symmetric – indicates if the tradeoff is symmetric. For example, more flexible solutions

may cost more than cheaper ones but just because a choice is more expensive does not
mean it is more flexible.

CREATE TABLE OntEntries (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 importance ENUM("Not", "Low", "Moderate", "High",

 "Essential"),

 index(name),

 index(id));

CREATE TABLE OntRelationships (

 parent INT UNSIGNED,

 childINT UNSIGNED);

119

FIGURE 8-12. Tradeoff SQL Definition

8.2.9. Questions

Figure 8-13 gives the SQL table definition for Questions. Questions can be about
Requirements, Decisions, or Alternatives and refer to information that is needed to help
make decisions. The Question table includes the following fields:

• id – this provides the unique identifier for the tradeoff;
• name – this provides a short description that is used in the Rationale Explorer display;
• description – this provides a more detailed statement of the question;
• status – indicates if the question is answered or not;
• proc – provides the recommended procedure for finding the answer. This could specify

who to ask or if there are experiments that need to be run;
• answer – the answer to the question;
• ptype – specifies if this question is about a Requirement, Decision, or Alternative.

8.2.10. History

Figure 8-14 shows the history that is stored for each element that can change state based
on user action. These elements are Requirements, Decisions, Alternatives, and Questions.
The History table includes the following fields:

• ptype – specifies whether this history is for a Requirement, Decision, Alternative, or
Question;

• parent – the id of the Requirement, Decision, Alternative, or Question that the history is
for;

• date – the date the history element was recorded;
• reason – the reason the state of the item changed;

CREATE TABLE Tradeoffs (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 ontology1 INT UNSIGNED,

 ontology2 INT UNSIGNED,

 type ENUM("Tradeoff", "Co-Occurrence"),

 symmetric ENUM ("False", "True"));

120

• status – the new status of the item after the change.

FIGURE 8-13. Question SQL Definition

FIGURE 8-14. History SQL Definition

8.2.11. Status

When errors are detected in the rationale, they are stored in the Status table shown in
Figure 8-15. This table contains the following fields:

• ptype – specifies whether the status is for a Requirement, Decision, or Alternative
• parent – the id of the Requirement, Decision, or Alternative that the status is for
• date – the date the status element was recorded
• type – the error level

CREATE TABLE Questions (

 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY

 KEY,

 name VARCHAR(80),

 description VARCHAR(120),

 status ENUM("Unanswered", "Answered"),

 proc VARCHAR(80),

 answer VARCHAR(80),

 ptype ENUM("None", "Requirement", "Decision",

 "Alternative", "Argument"),

 parent INT UNSIGNED DEFAULT NULL,

 index(name),

 index(ptype, parent));

CREATE TABLE History (

 ptype ENUM("Requirement", "Decision", "Alternative",

 "Question"),

 parent INT UNSIGNED,

 date TIMESTAMP,

 reason VARCHAR(80),

 status VARCHAR(20),

 index(ptype, parent));

121

• description – a description of the problem
• status – a status identifier stored as a string (this allows additional status types to be

added without changing the table definition)
• override – a flag indicating if the display of this status item has been overridden by the

user

FIGURE 8-15. Status SQL Definition

8.2.12. Associations

The Associations table, shown inFigure 8-16, gives information about the associations
between the code and the alternatives. This table contains the following fields:

• alternative – gives the id for the alternative being associated;
• artifact – specifies the artifact associated with the alternative. This is a fully qualified

specification in the format needed by Eclipse;
• artResource – specifies the name of the code file;
• artName – specifies the name of the resource – this could be a file, class, method, or

attribute name;
• assocMessage – specifies the message displayed in the bookmark that describes the

association;
• lineNumber – gives the line in the code that is associated with the rationale.

CREATE TABLE Status (

 parent INT UNSIGNED,

 ptype ENUM("Requirement", "Decision",

 "Alternative"),

 date TIMESTAMP,

 type ENUM("Information", "Warning", "Error"),

 description VARCHAR(255),

 status VARCHAR(40),

 override ENUM("Yes", "No"),

 index(ptype, parent, status));

122

FIGURE 8-16. Association SQL Definition

8.3. Rationale Explorer

The user’s main access to the rationale is through the Rationale Explorer. The Rationale
Explorer is modeled after the Java Package Explorer used in Eclipse. The rationale is read
in from the MySQL database when SEURAT is started up. Figure 8-17 shows the top level
of rationale stored in the Rationale Explorer.

FIGURE 8-17. Rationale Explorer – Top Level Rationale

The rationale elements can be expanded to show the rationale in a hierarchical form.
Figure 8-18 shows the Rationale Explorer with parts of the tree expanded to show the
details of the rationale.

CREATE TABLE Associations (

 alternative INT UNSIGNED,

 artifact VARCHAR(255),

 artResource VARCHAR(120),

 artName VARCHAR(120),

 assocMessage VARCHAR(255),

 lineNumber INT UNSIGNED);

123

FIGURE 8-18. Rationale Explorer with Expanded Rationale

Each type of rationale element has a different icon describing it. These icons are listed in
Figure 8-19. In addition, the icons can have smaller icons overlaid to indicate the status of
the rationale item. There are several examples shown in Figure 8-18. The alternative
“Custom equals method” has a small “S” overlaid on the upper right side of the purple
triangle icon to indicate that the alternative has been selected. The decision “what to call
date compare method” has a yellow triangle with an exclamation point in it overlaid on the
lower left side of the green diamond that indicates that there is a warning. Other overlays
include a “D” for disabled, which would be shown in the upper right of the icon, and a red
square with a white “X” in it, which would be shown in the lower left of the icon and
would indicate that the element had an error. Figure 8-20 shows examples of each type of
overlay.

124

FIGURE 8-19. Rationale Element Icons

FIGURE 8-20. Icon Overlay Examples

The Rationale Explorer gives context sensitive menus for each of the rationale elements
that can be displayed by right-clicking on the element. These menus let the user perform
various actions. The following sections describe the items on each menu.

Requirement

Decision

Alternative

Argument

Claim

Assumption

Question

Tradeoff

Co-occurrence

Ontology Entry

Requirement with Error

Decision with Warning

Selected Alternative

Disabled Assumption

125

8.3.1. Requirement Menu

The top-level requirement gives only one menu item: New. This is a way to enter
requirements into the system. Each individual requirement has the following items in its
menu:

• Edit – brings up an editor for the requirement. This can also be done by double-clicking
the requirement.

• Delete – deletes the requirement. This is only allowed if there are no other references to
the requirement in the rationale (such as arguments that refer to it).

• New Argument – creates a new argument for or against the requirement.
• Find Relationships – looks for alternatives that are related to the requirement. Figure 8-

21 shows an example of this display. This shows how the alternative is related to the
requirement and whether the alternative is selected or not.

• Show History – shows a list of status changes, and the reasons behind them, for the
requirement.

FIGURE 8-21. Requirement Relationship Display

8.3.2. Decision Menu

The top-level decision gives only one menu item: New. This is a way to enter decisions
into the system. Each individual decision has the following items in its menu:

126

• Edit – brings up an editor for the decision. This can also be done by double-clicking the
decision.

• Delete – deletes the decision. This is only allowed if there are no sub-elements in the
rationale that refer to this decision.

• New Alternative – creates a new alternative for the decision.
• New Question – creates a new question about the decision.
• Show History – shows a list of status changes and the reasons behind them for the deci-

sion.

8.3.3. Alternative Menu

Each alternative has the following items in its menu:

• Edit – brings up an editor for the alternative. This can also be done by double-clicking
the alternative.

• Delete – deletes the alternative. This is only allowed if there are no sub-elements in the
rationale that refer to this alternative.

• Associate – associates the alternative with an element of code selected using the Java
Package Explorer. This will bring up a dialog box confirming the association.

• New Argument – creates a new argument for the alternative.
• New Question – creates a new question about the alternative.
• New Decision – creates a new decision required when, or if, the alternative is chosen.
• Show History – shows a list of status changes and the reasons behind them for the alter-

native.

8.3.4. Argument Menu

The Argument Menu has only two elements: Edit and Delete. Editing can also be
performed by double-clicking on the argument. If an argument is deleted, any Claims and
Assumptions associated with it will be deleted also unless they are referred to by more
than one argument. This is done to avoid cluttering the rationale database with Claims and
Assumptions that are no longer used.

8.3.5. Claim Menu

The Claim Menu only has an Edit option. A claim can only be deleted by removing the
associated Argument.

127

8.3.6. Assumption Menu

Assumptions, like claims, only have an Edit option.

8.3.7. Question Menu

Each alternative has the following items in its menu:

• Edit – brings up an editor for the question. This can also be done by double-clicking the
question.

• Delete – deletes the question.
• Show History – shows a list of status changes and the reasons behind them for the ques-

tion.

8.3.8. Tradeoff and Co-Occurrence Menu

The top-level tradeoff and co-occurrence gives only one menu item: New. This is a way to
enter new tradeoffs and co-occurrences into the system. Each individual item has the
following items in its menu:

• Edit – brings up an editor for the tradeoff/co-occurrence. This can also be done by dou-
ble-clicking the element.

• Delete – deletes the tradeoff/co-occurrence.

8.3.9. Ontology Entry Menu

The top-level ontology entry gives only one menu item: New. This is a way to enter
higher-level entries into the system. Each individual item has the following items in its
menu:

• Edit – brings up an editor for the ontology entry. This can also be done by double-click-
ing the element.

• New – adds a new ontology entry. This lets the user select an entry from the tree or cre-
ate a new one. This is done because an entry is allowed to be in multiple places in the
tree.

• Delete – deletes the ontology entry. This will only be allowed if the entry has no sub-
elements.

128

8.4. Inference Engine

As described in the previous chapter, there are many inferences that can be performed over
the rationale to check it for completeness and consistency. The following sections describe
what the possible errors are, how they are displayed, and how inference is performed by
SEURAT.

8.4.1. Error and Warning Visualization

Any errors or warnings computed by the inferences are displayed in two ways. One way is
by placing an error or warning icon on the icon for the rationale element. These are always
shown over the lower left hand corner of the element. The second way is on the Rationale
Task Display. This display is modeled after the Task List used to display Java compilation
warnings and errors. Figure 8-22 shows the SEURAT Rationale Task List.

FIGURE 8-22. Rationale Task List

There are a number of different errors and warnings that can be displayed by SEURAT.
Table 8-1 presents a table showing the error text displayed, the code identifying the error
type, and the type of rationale element that it will be displayed for. The error level is
indicated on the display by the type of icon used – a yellow triangle with an exclamation
point for warnings and a red square with an “X” in it for errors.

129

TABLE 8-1. Rationale Task Messages

Error Text Error Type Element
Type

Error
Level

No alternative selected NONE_SELECTED Decision Error

Sub-decisions are
required but missing

SUBDECISIONS_MISSING Decision Error

Multiple alternatives
selected for the decision

MULTIPLE_SELECTION Decision Error

Alt <name> selected but
not the best

LESS_SUPPORTED Decision Warning

Alt <name> selected for
<name> has arguments
against it but none for it

SELECTED_ONLY_AGAINST Decision Error

Alt < name> selected for
<name> has no
arguments in its favor

SELECTED_NONE_FOR Decision Warning

Selected alt <name>
violates requirement
<name>

ALT_REQ_VIOLATION Decision Error

Alt <name> requires non-
selected alt <name>

PRESUPPOSED_NOTSEL Decision Error

Alt <name> is opposed
by selected alt <name>

OPPOSED_SEL Decision Error

Question <name> about
selected alt is not
answered

UNANSWERED_ALT_QUEST Decision Warning

Question <name> is
unanswered

UNANSWERED_QUEST Decision Warning

Alt <name> violates
tradeoff <name> vs.
<name>: tradeoff is
contradicted

TRADE_VIOLATION Decision Error

Alt <name> violates
tradeoff <name> vs.
<name>: second element
is missing

TRADE_VIOLATION Decision Warning

130

8.4.2. Error and Warning Detection

The inferences that detect the errors and warnings were initially encoded as CLIPS rules
but the final implementation used a combination of SQL queries and Java code. Whenever
an element is modified, created, or deleted, an UpdateStatus method is called that will
return a list of RationaleStatus objects that are then used to update the status displayed in
the Rationale Explorer and on the Rationale Task List for that element, as well as on any
elements related to it. Each UpdateStatus method gets the element being tested from the
database, along with any other elements it is the parent of, and checks to see if the status
has changed. The list of RationaleStatus objects returned from the evaluation is compared
to the current status of the element so that if problems with the rationale that caused errors

Alt <name> violates
tradeoff <name> vs.
<name>: first element is
missing

TRADE_VIOLATION Decision Warning

Alt <name> violates co-
occurrence <name> vs.
<name>: co-occurrence
is contradicted

CO_OCCURRENCE_VIOLATION Decision Error

Alt <name> violates co-
occurrence <name> vs.
<name>: second element
is missing

CO_OCCURRENCE_VIOLATION Decision Warning

Alt <name> violates co-
occurrence <name> vs.
<name>: first element is
missing

CO_OCCURRENCE_VIOLATION Decision Warning

Question <name> about
alt is unanswered

UNANSWERED_ALT_QUEST Alternative Warning

The same, or opposite
argument, both supports
and opposes alt <name>

CONTRADICTORY_ARGUMENTS Alternative Error

Contradictory arguments
appear on the same side
for alt <name>

CONTRADICTORY_ARGUMENTS Alternative Error

Duplicate arguments
found regarding <name>

DUPLICATE_ARGUMENTS Alternative Warning

Violated by alt <name> REQ_VIOLATION Requirement Error

131

or warnings earlier have been corrected, those errors and warnings can be removed. The
following sections describe the checks made when the elements are modified.

8.4.2.1. Requirement Inferences

When a requirement is added or modified, and the requirement is “active” (i.e., not
disabled or deferred), the status of the requirement is computed. The first check is to see if
there are any selected alternatives that have arguments stating that they violate the
requirement. This is checked by using an SQL query to get the arguments that describe the
violation and then retrieving the alternatives referred to in those arguments. If the
alternatives are selected, the violation is reported as an error.

If the requirement has been disabled or deferred, inferencing is performed over any
alternatives that refer to it. This is done to re-evaluate the alternative without counting
arguments that refer to the no longer active requirement.

8.4.2.2. Decision Inferences

When a decision is added or modified, the status of that decision is computed. The
decision, and all rationale elements that refer to it (its alternatives and questions) are
retrieved from the database. The following checks are performed using Java:

• Selected alternatives – if the decision is not broken into sub-decisions, it should have a
selected alternative. If there is no selected alternative, that is reported as an error. If
there are more than one selected alternative, and the decision is a single-choice deci-
sion, that is also reported as an error.

• Sub-decisions – if the decision is supposed to be broken into sub-decisions, SEURAT
checks to make sure that the sub-decisions exist. If not, that is reported as an error.

• Arguments in favor – the arguments for the selected alternative are examined to see if
any of them are in favor of that alternative. A warning is reported if there are no argu-
ments referring to the alternative. An error is reported if there are no arguments in its
favor but are arguments against it.

• Requirements violations – the arguments for the selected requirement are checked to
see if any report requirement violations. If so, the violation is reported as an error and
inferences are performed on the requirement so that its status is updated also. This does
result in requirement violations reported in two different ways but this is not considered
a flaw because the seriousness merits the extra information given by reporting the vio-
lation twice.

• Alternative relationships – SEURAT checks to see if there are any arguments that pre-
suppose or oppose other alternatives. If pre-supposed alternatives are not selected, this
is reported as an error. If opposed alternatives are selected, this is reported as an error.

132

The reverse check is performed if an alternative is edited (see the section on Alternative
Inferences).

• Question status – if there are any questions associated with this decision that have not
been answered that is reported as an error. This is also performed for any questions
associated with the alternatives for the decision.

• Tradeoff violations – all tradeoffs stored in the rationale are checked to make sure that
the alternative selected for this decision does not violate any of them. This is done
using a combination of SQL queries (to find the applicable tradeoffs) and Java code.

• Decision evaluation – each argument is evaluated to determine how well it is sup-
ported. This was done using the following formula, based on the evaluations originally
done by our earlier prototype, InfoRat:

This calculation requires that three things be known about each argument: the amount,
the importance, and whether the argument is for or against the alternative. The amount
is entered by the user when they record the argument. The other two characteristics are
computed based on values stored in the rationale and on the type of rationale element
that is used in the argument.

For arguments concerning requirements, arguments that indicate that the alternative
violates a requirement are considered as being against the alternative, while arguments
that state the alternative addresses or satisfies the requirement are considered to be for
the alternative. The importance of an argument that is about a requirement is always
given the maximum importance (Essential), which translates to the number one.

For arguments concerning claims, arguments that indicate that the alternative denies
the claim are considered to be against the alternative, while arguments that state the
alternative supports the claim are considered as being for the alternative. The
importance of an argument is either taken directly from the argument itself (as entered
by the user) or, if the importance is the default, it is inherited from the claim or the
ontology entry the claim describes.

For arguments concerning assumptions, arguments that indicate that the alternative
denies the assumption are considered to be against the alternative, while arguments
that state the alternative supports the assumption are considered to be for the
alternative. The importance of an argument is taken directly from the argument itself
(as entered by the user).

∑∑
=−=−

−=
jagainst

jj
ifor

ii impamtimpamtionAltEvaluat
argarg

**

133

For arguments concerning other alternatives, the calculation is a bit more difficult.
These express dependencies between different alternatives and the role that the
dependency plays in the evaluation will depend on whether the other alternative is
selected or not. If the argument states that the alternative being evaluated opposes
another alternative, and that other alternative is selected, the argument will be given
the maximum importance and will be counted as an argument against the alternative
being evaluated. If the argument states that the alternative being evaluated pre-
supposes another alternative, and that other alternative is not selected, the argument
will be given the maximum importance and will be counted as an argument against the
alternative being evaluated.

8.4.2.3. Alternative Inferences

When an alternative is added or modified, the status of that alternative is computed. The
decision, and all rationale elements that refer to it (its arguments and questions) are
retrieved from the database. The following checks are performed using Java:

• Question status – if there are any unanswered questions about this alternative an error is
reported.

• Alternative relationships – SEURAT checks to see if there are any arguments for other
alternatives that state that they pre-suppose or oppose this alternative. another alterna-
tive pre-supposes this one, and this one is not selected, an error is reported. If another
alternative opposes this one, and this one is selected, an error is reported.

• Contradictory arguments – if there is an argument for the alternative that is the same as
an argument against the alternative, the contradiction is reported as an error. This
includes arguments that refer to claims, assumptions, and requirements.

• Duplicate arguments – if there are two arguments for (or against) the alternative that
refer to the same claim, assumption, or requirement, that is reported as an error.

• Requirement inferences – if this alternative is not selected, inferencing is performed
over any requirements associated with it (via the arguments) to clear any violations that
may have been reported earlier.

• Decision inferences – the inferencing over the decision is repeated to account for any
changes in the status of the alternative (see the section on Decision Inferences).

8.4.2.4. Question Inferences

If a question is added, edited, or deleted, inferencing is performed over the decision or
alternative that it refers to.

134

8.4.2.5. Argument Inferences

If an argument is added, edited, or deleted, inferencing is performed over the alternative or
requirement that refer to it.

8.4.2.6. Claim Inferences

If a claim is added or edited, inferencing is performed over any arguments that refer to it
(claims can be referenced by multiple arguments).

8.4.2.7. Assumption Inferences

If an assumption is added or edited, inferencing is performed over any arguments that
refer to it (claims can be referenced by multiple arguments).

8.4.2.8. Ontology Inferences

If an element of the argument ontology is added or edited, inferencing is performed over
any claims that refer to it.

8.4.2.9. Tradeoff Inferences

If a tradeoff is added, edited, or deleted, inferencing is performed over all decisions to
insure that the tradeoff is not violated.

8.5. Rationale to Code Associations

The rationale provides useful insight into the reasons behind design and implementation
choices. This is only useful, however, if the maintainer is aware that the rationale is there
and is able to easily view it. One of the key features in SEURAT is the ability to make the
rationale to code associations explicit and to support the ability to go from rationale to
code and vice versa.

SEURAT allows the developer to associate each alternative with the code that implements
it. This can be done at the file, class, method, or attribute level. SEURAT shows that the
associations are present in several ways:

• “decorations” on the icons in the Package Explorer to show which files have associated
rationale;

• artifact names given in the alternative descriptions;
• bookmark icons inside the editor next to the affected code that lists the alternative(s)

when the mouse is placed over it;

135

• bookmarks giving the alternative and the associated code artifact that will bring up the
associated code when the maintainer double-clicks them.

The maintainer associates code with rationale by selecting the code in the Package
Explorer and then choosing “Associate” by right-clicking on the alternative. This will
display the name of the selected code item so the user can verify that this is the association
they want. The icon next to the class that contains the code will then be marked with a
small rat icon. Figure 8-23 shows the Package Explorer where some of the classes
(MeetingDate and MeetingObj) have rationale associated with them. This is denoted by a
small “rat” icon that is overlaid on the upper left-hand corner of the file icon. An example
icon is shown in Figure 8-24.

FIGURE 8-23. Package Explorer with Associations

FIGURE 8-24. Association Icon

When the code is associated with the rationale, the association is stored in the Rationale
Repository (as shown in the Associations table in Section Associations) and a
“Bookmark” is added to the Eclipse Bookmark View. This shows the name of the

File with Association

136

alternative, the file it is associated with, the folder the file can be found in, and the line
number in the file. Figure 8-25 shows the Bookmark View.

The user can also look for the alternative in the Bookmark View and, by double-clicking
the bookmark entry, can bring up the associated code in the editor.

FIGURE 8-25. Bookmark View

137

FIGURE 8-26. Alternative Showing Code Association

8.6. Rationale Display and Editing

Rationale can be viewed by either double-clicking on the item of interest or by selecting
“Edit” from the item’s context-sensitive menu (obtained by right-clicking the item). The
following sections show the edit displays for each of the rationale items.

8.6.1. Requirement

Figure 8-27 shows the Requirement Editor. The Name is mandatory and must be filled in.
Other fields will have default values. The “Arguments For” and “Arguments Against”
fields are for display only and will have values if this is an existing Requirement and has
arguments associated with it (as is shown here). Note the box at the lower left marked
“Enabled:” this is used to disable a requirement to determine the impact on the rationale.
Requirements that are not yet implemented in the current release of the software but which

138

are planned for the future can be disabled to avoid errors being displayed in the Rationale.
A disabled requirement will have a “D” superimposed on its icon.

FIGURE 8-27. Requirement Editor

8.6.2. Decision

Figure 8-28 shows the Decision Editor. As with all SEURAT elements, the Name is
required. There are two types of decisions: one where sub-decisions are required and one
where alternatives are required. Decisions requiring sub-decisions are ones that can be
broken into sub-components where answering all the sub-decision answers the parent. In
this case, alternatives are not present. The example given here shows a decision that has
alternatives.The numerical evaluation for the alternative is given along with its name.

8.6.3. Alternative

Figure 8-29 shows the Alternative Editor. This gives the information about the alternative
and lists the arguments for it, against it, and that have other relationships to it. These
relationships refer to a dependency on another alternative being selected. The Artifact
field will describe what part of the code implements this alternative.

139

FIGURE 8-28. Decision Editor

8.6.4. Argument

Figure 8-30 shows the Argument Editor. Arguments can be associated with claims (which
then point into the Argument Ontology), assumptions, requirements, or other arguments.
In this example, it argues a Claim, which is shown by the Argument Type field. When an
argument is initially created, it is mandatory that it be associated with something (the user
will not be able to save the argument without specifying the associated element). This is
done using the “Select” button. When this happens, the user is allowed to either select an
already existing item to use or create a new one.

Each argument gives the type, indicating if it is for or against the alternative. The possible
values vary depending on the type of the argument. These are as follows:

• Claim – supports or denies;
• Requirement – satisfies, addresses, or violates;
• Assumption – supports or denies;
• Argument – presupposes or opposes.

In addition, the user can give the Importance of the argument, the Amount (how much the
alternative meets the claim), and the Plausibility (how sure they are of the argument. The
Importance can be specified as default, in which case it will be inherited from the claim or
Argument Ontology. Arguments involving requirements or dependencies will default to an
importance of “Essential.”

140

FIGURE 8-29. Alternative Editor

FIGURE 8-30. Argument Editor

141

8.6.5. Claim

Figure 8-31 shows the Claim Editor. This is similar to the Argument Editor but with fewer
fields. The Direction indicates if the claim is that the alternative does what the ontology
entry says, such as “IS” Reduces Development Time, or that the alternative does not do
what the ontology entry says, as shown here by “NOT” Reduces Development Time. The
user can also specify an importance here or inherit it from the Argument Ontology.

When a claim is created the user must associate an ontology entry with it. This is done
using the “Select” button. This will bring up the ontology so the user can choose an entry
to associate.

FIGURE 8-31. Claim Editor

8.6.6. Assumption

Figure 8-31 shows the Assumption Editor. This only requires a Name although it is more
descriptive if a Description is specified as well.

8.6.7. Question

Figure 8-33 shows the Question Editor. For each question, there is the Status that indicates
if it is answered or not, a Procedure that describes the steps that must be taken to get the
answer, and the Answer (once known).

142

FIGURE 8-32. Assumption Editor

8.6.8. Tradeoff

Figure 8-34 shows the Tradeoff Editor. Tradeoffs are made between two Ontology Entry
items. Tradeoffs can be symmetric, which indicates that they are always traded off against
each other, or non-symmetric, which means the dependency is one-way. For example, in
this non-symmetric tradeoff, Ontology Entry 1, Increases Flexibility, always needs to be
traded off against Ontology Entry 2, Reduces Development Time. This means that if a
choice increases flexibility it will increase development time. The other way around,
however, is not true – if a choice increases development time it is not necessarily because
of added flexibility.

FIGURE 8-33. Question Editor

143

FIGURE 8-34. Tradeoff Editor

8.6.9. Co-occurrence

The Co-occurrence Editor is identical in content to the Tradeoff Editor.

8.6.10. Ontology Entry

Figure 8-35 shows the Ontology Entry Editor. This describes the entry and gives its
Importance. This Importance will be inherited by any claims that reference the ontology
entry.

FIGURE 8-35. Ontology Entry Editor

144

8.7. Rationale Query Interface

At the top of the Rationale Explorer there is a downward arrow that allows the user to
bring down a menu of query options (the Rationale Query Menu). These items are:

• Find Rationale Entity – used to search for a particular type of rationale entity.
• Find Common Arguments – used to display a list of the arguments (Claims and Ontol-

ogy Entries) used in the rationale.
• Find Requirements – used to display a list of requirements with a particular status (such

as all violated requirements). These are only shown for requirements that are used as
arguments for or against selected alternatives.

• Find Status Overrides – used to display a list of status messages overridden by the user
(i.e., removed from the Rationale Task List).

• Find Importance Overrides – used to display a list of Claims and Arguments that have
an importance other than “Default.”

 The following sub-sections describe each of these options.

8.7.1. Find Rationale Entity

The Find Rationale Entity option allows the user to search for particular types of rationale
entities (requirements, decisions, alternatives, etc.). The user is first instructed to specify
the type of entity as shown in Figure 8-36.

FIGURE 8-36. Find Entity Display

This then brings up a list of items of that type, as shown in Figure 8-37. The user can
search for all or part of the item name to find it in the list. After find it, the user then can
bring up the item in an editor by using the “Edit” button or expand the hierarchy in the
Rationale Explorer to show the item in context.

145

FIGURE 8-37. Select Claim Display

8.7.2. Find Common Arguments

Another useful query is to find out what the most common arguments are. This can be
done for each of the three types: argument, claim, and ontology entry. Selecting which
type is the first step, as shown in Figure 8-38. The user can also indicate if they are only
interested in common arguments for selected alternatives.

FIGURE 8-38. Find Common Arguments

After selecting the type, the arguments are then displayed in a table giving the total
references, the number of times it was used to argue in support for an alternative and the
number of times it opposed an alternative. Figure 8-39 shows the Common Argument
Display showing ontology entries.

146

FIGURE 8-39. Common Argument Display

8.7.3. Find Requirements

The Find Requirements query lets the user look for requirements by their status. For
example, they could get a list of all the violated, satisfied, or addressed requirements. The
user selects the type using the display shown in Figure 8-40.

FIGURE 8-40. Find Requirements Display

The list of requirements is shown in Figure 8-41. The user can either edit the requirement
or expand it in the Rationale Explorer hierarchy to see it in context.

147

FIGURE 8-41. Addressed Requirements

8.7.4. Find Status Overrides

The user can choose to override any of the items given in the Rationale Task List. This
will keep the error (or warning) from being displayed in the list or indicated by an error (or
warning) icon in the Rationale Explorer. The list of overridden items can be shown by
choosing “Find Status Overrides” in the Rationale Query menu. Figure 8-42 shows the
Status Overrides display. The user can remove any override from this list and the
Rationale Task List and Rationale Explorer will be updated when they exit from the
display.

FIGURE 8-42. Status Override Display

148

8.7.5. Find Importance Overrides

The user can also display a list of all claims and arguments where the default importance
has been overridden. Importance is overridden when a specific importance is chosen
rather than leaving the importance set as “Default.” This can happen in several ways:

• A claim (which could be used by many arguments) has been given an importance other
than the default inherited from the Argument Ontology.

• An argument that refers to a claim has been given an importance other than the default
inherited from the claim (which inherits from the Argument Ontology)

• An argument that refers to a requirement has been given an importance of something
other than “Essential.”

This display is brought up by selecting “Find Importance Overrides” from the Rationale
Query Menu. Figure 8-43 shows the Importance Override Display.

FIGURE 8-43. Importance Override Display

149

CHAPTER 9 System Demonstration

The following sections present a demonstration of the SEURAT system. All examples use
the Conference Room Scheduling system described earlier in this dissertation. This
chapter gives software maintenance examples (Section 9.1) and some inferencing
examples (Section 9.2).

9.1. Software Maintenance Examples

The following sub-sections give examples of three types of software maintenance tasks:
adaptive maintenance, where a change is made that does not add functionality to the
system; corrective maintenance, where SEURAT assists in fixing a defect in the code; and
enhancive maintenance, where SEURAT assists in adding a new feature to the system.

9.1.1. Adaptive Maintenance

The adaptive maintenance task concerns the persistent storage of user information. The
rationale contains a decision “how to store user information” where the two choices are
“save in a text file” and “serialize user information.” Figure 9-1 shows the Rationale
Explorer with the decision highlighted and expanded.

150

FIGURE 9-1. Rationale for “how to store user information”

The decision is shown with a yellow warning icon on it because the selected
alternative, “save in a text file”, was not the best choice. This is also shown in the
Rationale Task List in Figure 9-2.

FIGURE 9-2. Warning Message for “save in a text file”

151

If the decision is edited, the arguments for and against it, and their evaluation, are
shown to the user. Figure 9-3 shows the decision and that the selected alternative
“save in a text file” has a negative value, while the alternative “serialize user
information” has a positive one.

FIGURE 9-3. Decision “how to store user information”

Displaying the alternative “serialize user information” gives additional
information about that choice and tells how it can be implemented. Figure 9-4
shows the alternative and the description that tells the maintainer that they can use
ObjectOutputStream to serialize the user information.

The next step is to find the place in the code where the information is stored. A
logical place to start is to find where the currently selected alternative, “save in a
text file”, is implemented. Editing the alternative (see Figure 9-5) shows that it is
associated with the method “actionPerformed.” If this name is not familiar to the
maintainer, they can find the code via the Bookmarks Display. Figure 9-6 shows
the Bookmarks Display showing the bookmark that maps the alternative to the
code. Double-clicking on that alternative brings up the appropriate code in the
editor, shown in Figure 9-7. The code that does the saving is further down in the
method but can easily be found by the maintainer.

The maintainer can also use SEURAT to find the code where the user information
is loaded. Figure 9-8 shows the Rationale Explorer with a decision on “where to
load user information.” The selected alternative is “load from Login Users class”

152

and the maintainer can either find this class in the Eclipse Package Explorer or use
the bookmarks as described above.

After making the necessary changes, the maintainer should go back to the rationale
and select the new alternative, associate it with the appropriate code, and de-select
the old one. This is not currently enforced. When changing the status for the two
alternatives, the maintainer has the opportunity to enter a reason for the status
change. The maintainer should also remove the association to the code from the
alternative that is no longer selected.

FIGURE 9-4. Alternative “serialize user information”

153

FIGURE 9-5. Alternative “save in a text file”

FIGURE 9-6. Bookmark Showing Association for “save in a text file”

154

FIGURE 9-7. Method Where User Information is Saved

FIGURE 9-8. Rationale for “where to load user information”

155

9.1.2. Corrective Maintenance

The corrective maintenance task consists of fixing a bug in the Conference Room
Scheduling system that occurs when the user changes which conference room is
displayed. The system should show a schedule for the new room for the same week
that they were looking at before changing rooms but instead it goes back to show
the schedule for the current week.

The rationale, shown in Figure 9-9, indicates that the decision about what room to
display when the room changes has an error. This is indicated by the red icon
overlaying the decision icon. The Rationale Task list, shown in Figure 9-10,
explains that the alternative that was selected, “display meetings for current
week”, has arguments against it but none for it.

FIGURE 9-9. Rationale for “which week to display when room changes”

156

FIGURE 9-10. Error for the Selected Alternative

The user can find the code that selects which week is displayed by either editing
the alternative to get the name of the code element or, more quickly, by finding the
selected alternative in the Bookmark Display, shown in Figure 9-11. Double-
clicking on the bookmark brings up the code in the editor, shown in Figure 9-12.
After making the required change, the maintainer should change the rationale to
select the correct alternative and make sure it is associated with the code correctly.

FIGURE 9-11. Bookmark Display Showing Association for “display meetings for current
week”

157

FIGURE 9-12. Method Where Dates are Reset

9.1.3. Enhancive Maintenance

The enhancive maintenance task involves adding a new feature to the system. In
this case, it involves implementing a requirement that had initially been deferred:
allowing users with administrative privileges to cancel meetings scheduled by
other Conference Room System users. This is necessary in case a meeting has to
be moved due to a higher priority meeting and the originating user is not around to
do it.

When the requirement “Administrator can cancel any meeting” is enabled, it
shows up as having been violated in two places in SEURAT. The requirement
itself, as shown in the Rationale Explorer in Figure 9-13, has an error icon over it.
There is also an error message on the Rationale Task Display shown in Figure 9-
14.

When the maintainer looks at the decision list in SEURAT, there are several that
have error icons on them. One is the decision “who is allowed to cancel meetings”
shown in Figure 9-15. This has three alternatives, only one of which does not
violate any requirements. That alternative is “owner or administrator can cancel
meetings.”

158

FIGURE 9-13. Violated Requirement “Administrator can cancel any meeting”

FIGURE 9-14. Error Showing Violated Requirement

 The maintainer then needs to find the place in the code that checks if the meeting
can be cancelled or not. This can be done the most quickly using the Bookmarks
Display. Figure 9-16 shows the Bookmarks Display with the alternative “only
owner can cancel meetings” highlighted. When double-clicked, the editor comes
up with the appropriate code, as shown in Figure 9-17. When done with the
changes, the maintainer needs to update the rationale so that the correct alternative
is selected and the code associations are also correct.

159

FIGURE 9-15. Rationale for “who is allowed to cancel meetings”

FIGURE 9-16. Bookmark Showing Association for “only owner can cancel meetings”

160

FIGURE 9-17. Method Where Meetings are Cancelled

9.2. Inferencing Examples

SEURAT also lets the maintainer do “what-if” inferencing to see the effect of
certain changes on the system being maintained. The following sections
demonstrate two ways this can be done: changing design priorities and disabling
an assumption. The maintainer can also perform “what-if” by disabling
requirements but that is not shown here.

9.2.1. Changing Priorities

Design priorities are expressed in the rationale by the importance given to the
items in the Argument Ontology. SEURAT allows arguments and claims to inherit
importance values from the Argument Ontology. These importance values are used
to evaluate each alternative. If the importance in the ontology is modified, that
value will then propagate through the rest of the rationale. This may mean that
some alternatives that were selected may no longer be the best choice.

For this example, we first looked to see what items in the Argument Ontology
were appearing the most in arguments concerning selected alternatives. Figure 9-
18 shows the Common Argument Display with Ontology Entries listed in the order
of the number of references. The one that appears the most often is “Reduces
Development Time.” We then changed the importance value of “Reduces
Development Time” from “Moderate” to “Not” as shown in Figure 9-19. This

161

caused all the claims and arguments that inherited their importance values from it
to be re-evaluated. This resulted in several decisions where the best alternative was
no longer selected. The new warning messages generated are shown in the
Rationale Tasks Display given in Figure 9-20. Note, for purposes of this example
all other errors and warnings were overridden so they would not appear on the
display. This capability is very useful because priorities may change over the life
of a system. For example, reducing development time may have been a primary
concern when the system was first built because of schedule limitations, but some
of those decisions may be worth re-examining when time is no longer as
constrained.

FIGURE 9-18. Common Argument Display with Ontology Entries

FIGURE 9-19. Ontology Entry “Reduces Development Time”

162

FIGURE 9-20. Rationale Task Display with New Warnings

9.2.2. Disabling Assumptions

One of the features unique to SEURAT and the RATSpeak representation is the
explicit recording of assumptions. Assumptions can become invalid over time,
which is a key reason for why software needs to continually evolve [Lehman,
2003]. It is important to re-examine assumptions during maintenance to ensure that
they still hold. SEURAT lets the user disable an assumption to see the impact that
has on the rest of the rationale.

Figure 9-21 shows a list of all assumptions captured for the Conference Room
Scheduling System with the assumption “standard working hours 8 to 6”
highlighted. This assumption can be edited from this display and then disabled, as
shown in Figure 9-22.

Disabling the assumption causes the alternative that refers to it to be re-evaluated
again. This results in a warning for the decision “schedule duration.” Figure 9-23
shows the Rationale Explorer with the disabled assumption highlighted. Figure 9-
24 shows the Rationale Task List with the new warning message highlighted.

163

FIGURE 9-21. Assumptions for Conference Room Scheduling System

FIGURE 9-22. Assumption “standard working hours 8 to 6”

164

FIGURE 9-23. Rationale for Decision “schedule duration”

FIGURE 9-24. Rationale Task List with New Warning

165

9.3. Summary

This chapter gave some examples of how SEURAT could be used to assist in
maintenance. These included showing SEURAT assisting in adaptive, corrective,
and enhancive maintenance as well as showing SEURAT performing two types of
what-if inferencing where the maintainer made changes in the rationale to see the
affect on the decisions already made.

166

CHAPTER 10 Evaluation

This chapter describes the experiments conducted to evaluate using the SEURAT system
to support software maintenance. Section 10.1 describes the experiment design by giving
the overall goals for the experiment (10.1.1), a description of the experiment planning
process (10.1.2), the choice of tasks for the experiment (10.1.3), and the selection/
grouping of experiment subjects (10.1.4). Section 10.2 presents the time it took to perform
the experiment with and without SEURAT (10.2.1), the usability results (10.2.2), the
usefulness assessment (10.2.3), and user comments about the experiment (10.2.4). Section
10.3 provides the conclusions from the experiment.

10.1. Experiment Design

The following sections describe the experiment design and subject selection.

10.1.1. Experiment Goals

The first task towards creating the experiment was to determine what the overall goals
were. This was done by performing a Goal Questions Metric (GQM) analysis [Basili, et.
al., 1994]. This consists of determining what the goals of the evaluation are, what
questions need to be answered to achieve the goal, and what metrics can be used to answer
the questions. Table 10-2 shows the GQM analysis for the SEURAT evaluation.

This analysis indicated that the experiment needed to collect timing data on how long it
took to complete the tasks, the perceived assistance provided by SEURAT, and SEURAT’s
usability. To compare the results both with and without SEURAT, the experiment needed
to be designed so that there could be an experimental group using SEURAT and a control
group that did not use SEURAT.

10.1.2. Experiment Design

The GQM analysis showed that the questions that the experiment had to answer referred
to how long it took to perform three types of maintenance tasks: adaptive, corrective, and

167

enhancive. Adaptive maintenance consists of making modifications to the software that do
not add new functionality to the system. A typical example of an adaptive maintenance
task would be refactoring. Corrective maintenance refers to maintenance changes that
correct defects in the software (“fix bugs”). Enhancive maintenance involves extending
the functionality of the system.

Experiment design consisted of four phases. First, we needed to select a system to perform
maintenance on where we had rationale available. Second, we had to define the
experiment itself. Third, we needed to select the tasks that represent each type of
maintenance. Finally, we needed to dry-run the candidate experiment to detect any
unexpected problems with the experiment protocol, the experiment tasks, or the SEURAT
system.

TABLE 10-2. GQM Analysis Results

Goal: To Evaluate
SEURAT to determine
its usefulness

Question Metric

Purpose: Evaluate
Issue: using Rationale
to improve the effi-
ciency of
Object (process):
software maintenance
Viewpoint: from the
maintainer’s viewpoint

Can the maintainer fix problems
faster when there is rationale
available to help?

Effort (person hours)
or MTTR (mean time
to repair)

Perceived difficulty

Can the maintainer perform
adaptive maintenance faster when
there is rationale available to help?

Effort (person hours)
or MTTR (mean time
to repair)

Perceived difficulty

Can the maintainer make
enhancements to the system faster
when there is rationale available to
help?

Effort (person hours)
or MTTR (mean time
to repair)

Perceived difficulty

168

10.1.2.1. System Selection and Rationale Collection

Two candidate software systems were evaluated for use in the experiment. The first was a
multi-player solitaire game that could be played over a network (Kombat Solitaire).
Rationale was gathered for this system as part of the DR representation development. It
became apparent during rationale elicitation that this system would be far too complex to
give tasks that were simple enough to perform in the limited time available for the
experiment. The second system was a Meeting Scheduler system that had been developed
as part of a class project. This system was too simple to use but was easily extensible to a
slightly more complex Conference Room Scheduler system. The Conference Room
Scheduler system was then chosen to be the target system for the experiment, while the
Kombat Solitaire system and a partial set of rationale generated for it were used during the
experiment for SEURAT training so that the subject could learn SEURAT without being
exposed to the same code that they would use for the rest of the experiment.

Purpose: Evaluate
Issue: using Rationale
to improve the effec-
tiveness of
Object (process):
software maintenance
Viewpoint: from the
project manager’s
viewpoint

Is the maintainer better at detecting
problems in the software when there
is rationale available to help?

Number of problems
found

Time required to find
problems

Does the maintainer produce better
solutions to problems when there is
rationale available to help?

Number of errors in
solutions

Quality (subjective) of
solutions

Does the maintainer make better
choices when performing adaptive
maintenance when there is rationale
available to help?

Number of successful
adaptive
improvements (vs.
unsucessful)

Does the maintainer make better
improvements to the system when
there is rationale available to help?

Number of errors in
solutions

Quality (subjective) of
solutions

Purpose: Evaluate
Issue: the usability of
Object(process): the
SEURAT system
Viewpoint: from the
maintainer’s viewpoint

Is the SEURAT system easy to use? Perceived ease of use.

169

Rationale had already been collected for portions of the Conference Room Scheduler
system during the maintenance study described in Chapter 5. This was expanded for use in
the experiment, including adding new rationale specifically addressing areas of the code
that were going to be involved in the experiment.

10.1.2.2. Experiment Design

The experiment was broken into several parts:

• SEURAT Tutorial – The tutorial consisted of a walkthrough of the SEURAT system
and its functionality. This was be done using the code and partial rationale for the
Kombat Solitaire system so that the Experimental Group did not get any extra time with
the Conference Room Scheduling System code. A User’s Guide to SEURAT was pro-
vided at this time for use during the experiment.

• Eclipse training (if necessary – Some subjects were experienced Eclipse users).

• Conference Room Scheduler system training – The subjects were introduced to the sys-
tem to be maintained by giving them a copy of the requirements and demonstrating the
system’s functionality.

• Adaptive Maintenance Task – The subjects were told what the task was.

• Corrective Maintenance Task – The subjects were told what the task was and the error
in the system was demonstrated to them.

• Enhancive Maintenance Task – The subjects were told what the task was.

• Survey on Usability, Utility, and Experiment evaluation – The survey was designed to
obtain an assessment of the general usability of the system, the utility of the system,
and to determine whether the maintenance task explanations were clear. Copies of these
surveys are given in Appendix B.

The three maintenance tasks were given in a random order for each subject to help cancel
out the effects of earlier exposure to the code on the later tasks, i.e. learning and
maturation [Bratthall, et. al., 2000]. The control group did not have any SEURAT training
and were given a shorter survey that did not ask about SEURAT Usability and Utility.

170

10.1.2.3. Experiment Task Selection

The experiment tasks were developed to cover the three types of maintenance: adaptive,
corrective, and enhancive. This allowed us to get a comparison of how long each took
both with and without SEURAT. The tasks were chosen so that the experiment could be
performed in under three hours, preferably under two hours. This was because many of the
subjects were software professionals working full time who would be performing the
experiment at the end of their workday. This was a serious constraint because it limited the
complexity of the tasks given. The option of cutting off the tasks after a pre-determined
length of time was considered to limit the time required for the experiment but that then
makes the results more difficult to analyze because it is not clear if the subject was
minutes or hours away from completing the tasks.

1. Adaptive Maintenance: the task chosen was to change how the username and pass-
word information for the scheduler users was stored. The initial version of the system
stored and read this information from a text file (users.txt), which anyone could read
and edit. The subjects were asked to change how this was done so that the information
would be stored in binary.

The SEURAT subjects could look through the rationale to look for two key decisions: a
decision about how to store the user information, and a decision about where in the
code the user information should be loaded. Finding the key decisions is the first step
toward finding the alternative chosen, which can then take the subject directly to the
code that requires modification. The decision about how to store the user information
had two alternatives. The alternative chosen for the decision, to save in a text file, and a
better alternative, serializing the information. The serialization alternative description
said that the information could be serialized using ObjectOutputStream.

This was a fairly involved change that needed to take place in two different parts of the
code. There was more than one way the change could be implemented.

2. Corrective Maintenance: to support this task, a bug was inserted into the software that
would display the schedule for the current week when the user selected a different con-
ference room. Displaying the current week is a bug because often a user would be look-
ing to schedule a meeting in the future and would want to see what was available for
that date. If they had moved ahead in the schedule, they shouldn’t have to do that again
when the room changes since they probably want to see the same week for the different
room.

The fix for this defect is simple and involved removing a line of code that reset the

171

dates. The code was commented to point out what that line of code did. The comments
were added after subjects had trouble with the task during dry runs of the experiment.
The rationale included a decision about what room to display when the room changes.
There were two alternatives captured in the rationale for that decision. One alternative
was the chosen one of displaying the current date (the bug) and the other kept the dates
the same when changing rooms. The SEURAT group could use this to find the code
that needed to be changed.

3. Enhancive Maintenance: this task involved adding functionality to the system. The
scheduling system supported two types of users: regular users and those with adminis-
trative privileges. Administrative users could edit user information. The enhancement
was to also allow administrative users to cancel meetings scheduled by any other user.
This would be necessary if a meeting had to be moved or canceled and the user who
scheduled it was not around to cancel it. The code change required two things: adding a
check to see if the user had administrative privileges and passing that information into
the method that performed the check. The rationale had a decision about who was
allowed to cancel meetings and this rationale pointed to the code where the check
needed to be made.

The subjects had unexpected difficulty with this during the dry runs (described in the
next section) so the call to the cancel method was modified to make it obvious that the
caller had access to the administrative information but just chose to not pass it in.

10.1.2.4. Experiment Dry Runs

Experiment dry runs were then performed with two subjects of different levels of
experience: one at the expert level and one at the moderate level. This was done to gain
practice administering the experiment, to get timing information, and to obtain initial
insight into what some problems might be in the experiment and in SEURAT so that they
can be corrected prior to the start of the actual experiments. These dry runs proved to be
invaluable.

First, the SEURAT training took more time than initially anticipated. The original estimate
was 10 minutes, but the actual training took between 30 and 40 depending on the number
of questions from the subject. The training also needed to emphasize which parts of the
rationale were associated with the code, i.e. the decisions and alternatives. It was very
common during the dry run, and again during the experiment, for the subjects to fixate on
the system requirements (which were something that they were familiar with) rather than
the decisions and alternatives as places to look to find the solutions to the tasks.

172

Second, the tasks needed to be drastically shortened. This was done between the two dry
runs since the expert Java programmer took far more time than was expected, indicating
that moderate or inexperienced Java programmers would have difficulty completing the
experiment in a reasonable amount of time. Timing became especially critical because the
SEURAT tutorial took longer than expected. These adjustments were made in two ways.
One was by simplifying the tasks. The other was by adding additional comments (hints) to
the code describing how to complete the assignment and making other adjustments that
were designed to help lead the subject to a solution.

Third, there were a couple of usability problems with the system. One was that the
bookmarks for the system were too hard to read without a great deal of scrolling. Since the
bookmarks were the easiest way to navigate from rationale to the code it was crucial that
they be readable. There were similar readability issues with the error messages in the
Rationale Task Display. All of these messages were shortened, clarified, and made more
consistent with each other. Another discovery was that both subjects tried to edit rationale
entities by double-clicking on them in the hierarchy display. In retrospect, this is an
obvious thing to be doing since that is how you would edit files in an IDE. It was a simple
change to bring up the editor in response a double-click.

The dry runs proved to be invaluable as they indicated several significant problems with
both the experiment tasks and how I was administering them. Adjustments were made
prior to doing the actual experiments with the subjects.

10.1.3. Experiment Subject Selection

Experiment subjects were found by e-mailing WPI faculty and graduate students and by
asking personnel at Charles River Analytics (www.cra.com) to participate. Funding was
provided by WPI so WPI community members were given the first opportunity to
participate. The subjects were given a questionnaire, shown in Appendix B, that was used
to get their contact information, level of Java expertise (Some (S), Moderate (M), or
Expert (E)), work experience, and Eclipse experience. They were also asked to describe
their last three Java projects as a means of cross-checking their Java experience level. One
subject described themselves as a Java expert but only listed some simple class projects so
was downgraded to the moderate group.

Twenty subjects expressed interest and were divided into the two groups of 10: SEURAT
and Control. The groups were structured to balance Java expertise and work experience as
much as possible. Table 10-3 summarizes the SEURAT and Control groups.

173

TABLE 10-3. Experimental Group Summary

10.2. Experiment Results

Experimental data was collected in several ways. The first was by timing the maintenance
tasks, the second was using a usability survey, and the third was a usefulness survey.
These are described in the following sections.

10.2.1. Support for Maintenance

The two types of timing data were captured for each of the three maintenance tasks. First,
the time to initially find the change was recorded. This was done because this was the
portion of the task where SEURAT was expected to be of the most assistance. Second, the
total time to complete the task was recorded. The following sections give the results for
each of the three tasks.

10.2.1.1. Adaptive Maintenance

This was the most difficult of the three tasks, especially for the subjects who had only
some Java experience. It involved making changes in two parts of the code: one to write
out the user information and the other to read in the user information. Figure 10-1 shows
the average times to find the first of the two places to change. For some users this was the
write, for others the read. Figure 10-2 shows the average time to complete the task. Using
SEURAT decreased the time to find and make the changes for the Moderate and Some
Java user groups but did not improve the performance for the Expert Java user.

SEURAT Control
Java Experience (E/M/
S)

3/4/3 people,
respectively

3/4/3 people,
respectively

Average Work
Experience

6.85 years 5.65 years

Eclipse Experience 60% 60%

174

FIGURE 10-1. Adaptive Maintenance - Time to Find Change

FIGURE 10-2. Adaptive Maintenance - Time to Complete Task

One interesting observation is that the variance in times is much smaller for the SEURAT
group than for the control group. Figure 10-3 shows the variance for finding the first place

Adaptive Maintenance - Finding Change

0

2

4

6

8

10

12

Expert M oderate Some All

Java Expertise

A
ve

ra
ge

 T
im

e
to

 F
in

d
C

ha
ng

e
(m

in
ut

es
)

Control

SEURAT

Adaptive Maintenance

0

10

20

30

40

50

60

70

Expert M oderate Some All

Java Expertise

A
ve

ra
ge

 T
im

e
to

 C
om

pl
et

e
(in

m

in
ut

es
)

Control

SEURAT

175

to change and Figure 10-4 shows the variance for the time to complete the task. Plots
showing the times to find the change and complete the task are plotted versus the number
of years of subject experience in Figure 10-5 and Figure 10-6.

FIGURE 10-3. Adaptive Maintenance - Variance in Time to Find the Change

Adaptive Maintenance - Variance in Time to Find Change

0

2

4

6

8

10

12

14

16

Expert M oderate Som e All

Java Expertise

Va
ria

nc
e

(in
 M

in
ut

es
)

Control

SEURAT

176

FIGURE 10-4. Adaptive Maintenance - Variance in Time to Complete Task

FIGURE 10-5. Adaptive Maintenance - Time to Find Change vs. Experience

Adaptive Maintenance - Variance in Time to Complete Task

0

5

10

15

20

25

30

35

40

45

50

Expert M oderate Som e All

Java Expertise

Va
ria

nc
e

(in
 M

in
ut

es
)

Control

SEURAT

Adaptive Maintenance - Time to Find Change

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Years of Experience

Ti
m

e
(in

 M
in

ut
es

)

Control

SEURAT

177

FIGURE 10-6. Adaptive Maintenance - Time to Complete Task vs. Experience

10.2.1.2. Corrective Maintenance

This was by far the simplest of the three tasks, requiring that only a single line of code be
removed in order to fix the problem. Figure 10-7 shows the average time required to find
the change, Figure 10-8 shows the average time to complete the task. Results are similar to
those shown for the Adaptive Maintenance task except that the difference between using
and not using SEURAT was very different for the group of users with only Some Java.
These users had a very difficult time finding the change without the assistance of a tool.

Adaptive Maintenance - Time to Complete Task

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Years of Experience

Ti
m

e
(in

 M
in

ut
es

)

Control

SEURAT

178

FIGURE 10-7. Corrective Maintenance - Time to Find Change

FIGURE 10-8. Corrective Maintenance - Time to Complete Task

Another interesting observation is that the variance in the times to find the change and
complete the task were much larger for the control group than for the SEURAT group.
Figure 10-9 shows the variance in the time to find the change while Figure 10-10 shows

Corrective Maintenance - Finding Change

0

5

10

15

20

25

30

35

Expert M oderate Some All

Java Expertise

A
ve

ra
ge

 T
im

e
to

 F
in

d
C

ha
ng

e
(in

M

in
ut

es
)

Control

SEURAT

Corrective Maintenance

0

5

10

15

20

25

30

35

Expert M oderate Some All

Java Expertise

A
ve

ra
ge

 T
im

e
to

 C
om

pl
et

e
(in

M

in
ut

es
)

Control

SEURAT

179

the variance in the time to complete the task. The exception to this is in the group with
Moderate experience – this group had more variation in the SEURAT group. Plots
showing the times to find the change and complete the task are plotted versus the number
of years of subject experience in Figure 10-11 and Figure 10-12.

FIGURE 10-9. Corrective Maintenance - Variance in Time to Find Change

Corrective Mainteance - Variance in Time to Find Change

0

5

10

15

20

25

Expert M oderate Som e All

Java Expertise

Va
ria

nc
e

(in
 M

in
ut

es
)

Control

SEURAT

180

FIGURE 10-10. Corrective Maintenance - Variance in Time to Complete Task

FIGURE 10-11. Corrective Maintenance - Time to Find Change vs. Experience

Corrective Maintenance - Variance in Time to Complete Task

0

5

10

15

20

25

30

Expert M oderate Som e All

Java Expertise

Va
ria

nc
e

(in
 M

in
ut

es
)

Control

SEURAT

Corrective Maintenance - Time to Find Change

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Years of Experience

Ti
m

e
(in

 M
in

ut
es

)

Control

SEURAT

181

FIGURE 10-12. Corrective Maintenance - Time to Complete Task vs. Experience

10.2.1.3. Enhancive Maintenance

This task was intended to be fairly simple, although not as easy as the corrective
maintenance task. The intent was that the subjects would find the spot where meetings
were cancelled, realize that they did not have the information needed within the method,
find the call, and then realize that it was easy to pass the required information in as an
argument. Instead, most of the subjects spent time trying to get the required information
from within the method. Some even tried to get it from the class that originally read in the
data (LoginUser) with one person going to the desperate measures of trying to read in all
the user information a second time. Figure 10-13 shows the average time required to find
the change, Figure 10-14 shows the average time used to complete it. The results are
similar to the other experiments except that SEURAT did help the Expert user group find
the change faster, although the average time to complete for experts was still faster for the
control group.

Corrective Maintenance - Time to Complete Task

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Years of Experience

Ti
m

e
(in

 M
in

ut
es

)

Control

SEURAT

182

FIGURE 10-13. Enhancive Maintenance - Time to Find Change

FIGURE 10-14. Enhancive Maintenance - Time to Complete Task

Enhancive Maintenance - Finding Change

0

1

2

3

4

5

6

7

8

9

Expert M oderate Some All

Java Expertise

A
ve

ra
ge

 T
im

e
to

 F
in

d
C

ha
ng

e
(in

M

in
ut

es
)

Control

SEURAT

Enhancive Maintenance

0

5

10

15

20

25

30

35

40

Expert M oderate Some All

Java Expertise

A
ve

ra
ge

 T
im

e
to

 C
om

pl
et

e
(in

M

in
ut

es
)

Control

SEURAT

183

As with the other tasks, the variance was much larger for the control group than for the
group using SEURAT. Figure 10-15 shows the variance for the time required to find the
code that needed to be changed and Figure 10-16 shows the variance for the time required
to complete the task. Plots showing the times to find the change and complete the task are
plotted versus the number of years of subject experience in Figure 10-17 and Figure 10-
18.

FIGURE 10-15. Enhancive Maintenance - Variance in Time to Find Change

Enhancive Maintenance - Variance in Time to Find Change

0

2

4

6

8

10

12

Expert M oderate Som e All

Java Expertise

Va
ria

nc
e

(in
 M

in
ut

es
)

Control

SERUAT

184

FIGURE 10-16. Enhancive Maintenance -- Variance in Time to Complete Task

FIGURE 10-17. Enhancive Maintenance - Time to Find Change vs. Experience

Enhancive Maintenance - Variance in Time to Complete Task

0

2

4

6

8

10

12

14

16

18

20

Expert M oderate Som e All

Java Expertise

Va
ria

nc
e

(in
 M

in
ut

es
)

Control

SEURAT

Enhancive Maintenance - Time to Find Change

0

5

10

15

20

25

0 5 10 15 20 25 30

Years of Experience

Ti
m

e
(in

 M
in

ut
es

)

Control

SEURAT

185

FIGURE 10-18. Enhancive Maintenance -- Time to Complete Task vs. Experience

10.2.1.4. Statistical Analysis

A number of different statistical techniques were used to look at the data from the three
tasks to see if the improvement from SEURAT was statistically significant. The tests were
performed using StatView [StatView, 1999]. The three techniques used were the F-test, a
test that compares variances from two unpaired groups, the ANACOVA test, which looks
at the experimental factor (use of SEURAT) and other possibly involved co-variates (the
experience level and Java expertise of each subject), and the Mann-Whitney test, which
like the F-test is a technique for comparing two unpaired groups but unlike the F-test does
not assume a normal distribution. All tests were performed with an alpha level of 0.05 (the
null hypothesis would be incorrectly rejected 5% of the time). The goal behind the
statistical analysis is to show if the null hypothesis (the hypothesis that using SEURAT
had no effect on the time required to complete the tasks) could be rejected.

The F-test results are shown in Table 10-4. These results show that the null hypothesis can
be rejected for all of the tasks, with the strongest results being reported for the corrective
maintenance task. This is indicated by the P-Value, which is the probability that the null
hypothesis could be true, being less than 0.05. These results are somewhat suspect because
the F-test assumes that the data follows a normal distribution and that the variances
between the two groups are equal [Keppel, et. al., 1992]. The variances for the control
group were typically twice that of the experimental (SEURAT) group.

Enhancive Maintenance - Time to Complete Task

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Years of Experience

Ti
m

e
(in

 M
in

ut
es

)
Control

SEURAT

186

TABLE 10-4. F-Test Analysis Results

 A second analysis, the ANACOVA test, was performed to compare the effect of using
SEURAT while taking into account the experience of the participants and the level of Java
expertise. Table 10-5 shows the results from the ANACOVA test. This test showed that
only the results for the corrective maintenance task could be considered significant.

TABLE 10-5. ANACOVA Analysis Results

The Mann-Whitney tests is useful because it does not assume that the data follows a
normal distribution. The observations (in this case, the times) are not used, only their
ranks and this makes it more resistant to outliers [StatView, 1999]. There are outliers in
several of the data sets in this experiment which is another reason to consider using this
analysis. Table 10-6 shows the results of the Mann-Whitney test. The P-values from this

Degrees of Freedom
(N=D)

F-Value P-Value

Adaptive Delta 9 9.022 0.0031

Adaptive Total 9 4.053 0.0490

Corrective Delta 9 43.896 < .0001

Corrective Total 9 12.311 0.0009

Enhancive Delta 9 10.509 0.0017

Enhancive Total 9 4.326 0.0400

Adaptive
Delta

Adaptive
Total

Corrective
Delta

Corrective
Total

Enhancive
Delta

Enhancive
Total

P-Value P-Value P-Value P-Value P-Value P-Value

Group 0.6380 0.6796 0.0004 0.0058 0.3028 0.0689

Level 0.2908 0.8340 0.0051 0.0033 0.2654 0.3556

Experience 0.0950 0.2663 0.0015 0.0019 0.1290 0.0592

Group *
Level

0.8866 0.8517 0.0040 0.0511 0.4632 0.1913

Group *
Experience

0.2507 0.2957 0.0015 0.0026 0.1974 0.0245

Level *
Experience

0.1177 0.3030 0.0024 0.0022 0.1705 0.1212

Group *
Level *
Experience

0.4958 0.5522 0.0032 0.0080 0.2063 0.0465

187

test indicate that the null hypothesis (that SEURAT had no effect on time) could not be
rejected.

TABLE 10-6. Mann-Whitney Analysis Results

10.2.1.5. Summary

The timing information collected during the experiment shows that the SEURAT group
experts took longer to perform the tasks than the control group experts. There are a
number of reasons why this could be the case:

• Differences in the skill of the different users. There was quite a bit of variation within
each group that was not apparent from the survey results.

• Expert users tended to experiment more with the rationale, often looking for informa-
tion they hoped would be there that was not.

• Expert users were more likely to update the rationale to select a different alternative
before going to the previous alternative in the code.

• The time needed to learn SEURAT (the learning curve) had a greater effect on the
expert users because it took a larger percentage of the total time needed.

Using SEURAT did result in better performance for the subjects with Moderate and Some
Java experience. In particular, the users in the Control group that with only Some Java
experience had a very difficult time finding where they should make the change when they
did not have assistance from SEURAT. Another factor that influenced the experimental
results was that some of the subjects using SEURAT took the time to update the rationale

Adaptive
Delta

Adaptive
Total

Corrective
Delta

Corrective
Total

Enhancive
Delta

Enhancive
Total

U 47.5 43.0 38.0 37.0 28.0 49.0

U Prime 52.5 57.0 62.0 63.0 72.0 51.0

Z-Value -0.189 -0.529 -0.907 -0.983 -1.663 -0.76

P-Value 0.8501 0.5967 0.3643 0.3258 0.0963 0.9397

Tied Z-
Value

-0.189 -0.529 -0.907 -0.983 -1.664 -0.76

Tied P-
Value

0.8500 0.5967 0.3643 0.3258 0.0962 0.9397

Ties 2 0 0 0 1 0

188

to show that they had selected a different alternative. That resulted in a longer time
required to make the change.

There were also a number of general observations from the experiment:

• The subjects were far more familiar working with requirements than decisions and
often would explore the requirements before moving on to the decisions.

• Some subjects would jump into exploring code for an incorrect decision rather than
looking through the entire list for the decision that applies directly to the problem they
are trying to solve. Many of the pertinent decisions were further down in the list pro-
vided by SEURAT, which slowed down the time it took to find the correct one and the
corresponding code.

• The subjects did not use the Rationale Tasks to assist them in finding the appropriate
decisions even though several described warnings and/or errors that applied to the task
they were performing. This could be because SEURAT was new to them and they did
not understand how all the different parts could be useful.

10.2.2. SEURAT Usability

The ten subjects that used SEURAT filled out a survey that asked about the usability of the
system. The first question asked if they felt that SEURAT was easy to use. The answers
were on a Likert scale [Likert, 1932] which went from Strongly Agree (SA) to Strongly
Disagree (SD), with Undecided (U) in the middle. All subjects answered A, Agree, to the
question.

The next question asked what part of SEURAT was most difficult to understand/use.
Seven out of ten subjects said that the rationale to code association needed improvement
and that they wanted to be able to get to the code directly from the rationale rather than
having to go through a bookmark. One person said that choosing the selected alternative
was difficult and that they would like to see this automated more, especially the part of the
selection process where they un-associated the previously selected alternative with the
code. One person said it was difficult to find information of interest, one said that
navigating the hierarchy was difficult, and one person said that it was difficult to tell
which objects they wanted to examine in the tree and that it would be useful to have a
coders vs. architects view.

The final question asked what suggestions they would have for making SEURAT easier to
use. Six out of ten subjects repeated their request for better connections between rationale
and code. Other suggestions included providing more training, grouping the rationale in a
way to relate to the current focus, automating the de-selection of alternatives, and
providing better search mechanisms.

189

10.2.3. SEURAT Usefulness

The survey also asked the SEURAT users to answer several questions on how useful they
felt SEURAT was. Figure 10-19 shows a summary of the usefulness survey.

FIGURE 10-19. Usefulness Summary

Question 1: SEURAT would make it easier to maintain software

Answers: 3 SA, 6 A, 1 U

The person who was Undecided felt that the rationale given was to terse and that if it was
richer then it would be more useful. The other uses felt that the system would help quite a
bit but one commented that it would take discipline to keep the rationale up to date.

Question 2: It was easy to find the code associated with the rationale

Answers: 6 A, 3 U, 1 D

The person who disagreed felt that the way SEURAT pulled up the code was not very
intuitive and they preferred to use regular searches to look for the information. Two people
who were undecided said that they had some difficulty but felt it might be because they
were just learning the tool. The other person who was undecided said they had some
trouble with the bookmark interface.

Usefulness Assessment

0

1

2

3

4

5

6

7

Easier to M aintain

Software

Helped Find

Associated Code

Clear Error and

W arnings

Tasks Took Less

Tim e

Better Decisions Avoided M istakes W ould Use

SEURAT

Questions

R
es

po
ns

es

SD

D

U

A

SA

190

Question 3: The error and warning messages from SEURAT were clear and useful.

Answer: 2 SA, 2 A, 5 U, one left blank.

For the subjects answering Undecided, two did not use the errors and warnings, two did
not remember seeing them (and probably did not realize this question referred to errors in
the rationale, not responses to errors they might make with the tool). One said that the
messages were often helpful but were difficult to understand as a novice user, and that
experienced users would probably find them more useful.

Question 4: Performing the tasks took less time than they would have if SEURAT was not
available.

Answer: 4 SA, 5 A, 1 U

The subject who answered undecided felt that SEURAT did help the user focus in on the
problem area quickly but that after that changes were mostly driven by familiarity with the
code.

Question 5: Using SEURAT helped me make better decisions.

Answer: 2 SA, 3 A, 2 U, 2 D, one blank

One subject who disagreed did not explain their answer while the other said that SEURAT
helped them find the problem but that how to fix it was up to them. One of the undecided
subjects did say that having the alternatives laid out might be useful but that he was not
sure. The other undecided subject said that there was not much to decide but SEURAT did
save them time by documenting the alternative decisions and helping them pick the best
one.

Question 6: Using SEURAT helped me avoid mistakes.

Answer: 4 A, 3 U, 3 D

One subject who disagreed with this statement said that anyone could write bad code,
another said that they used it mostly as a code finding tool. The other did not provide an
explanation. For the undecided subjects, one felt that it did not prevent coding mistakes
but did help them pick the right alternative. The other said that it helped on a high level.

Question 7: If I had SEURAT available I would use it to do my work.

Answer: 2 SA, 4 A, 4 U

191

Two of the undecided subjects were concerned with the overhead of maintaining the
rationale. One said they would use SEURAT for large projects but not for quick
prototyping. The fourth said that the usefulness would be driven by the content of the
rationale.

The final question asked what features should be added (or removed) to make SEURAT
more useful. Seven out of ten subjects answered this question with one or more
suggestions.

The most common suggestion was to integrate SEURAT with source code – this was
mentioned by three people. Two people repeated their suggestion to have direct navigation
from the rationale to the source code. One person suggested that the rationale be
associated with blocks of code and that SEURAT would alert the user if this code was ever
changed. One person suggested linking decisions/requirements to unit tests. Integration
with a UML tool was another idea. There was also a suggestion to copy SEURAT
information when a java file is copied using “Save As” and one person said that the icons
needed to be more readable.

10.2.4. Experiment Evaluation

Both groups were asked if the time and explanation was sufficient for all the tasks and
they all agreed that it was. Some of the people in the SEURAT group felt that it was a
difficult task and that one said that they were not sure how it was related to using
SEURAT to improve the process.

In the control group, one person commented that the tasks would have been easier if they
knew more Java. Another felt that the tasks should have been one easy, one moderate, and
one difficult, rather than two that were easy and one that was difficult. Another comment
was that a big part of the task was figuring out where to make the change and that would
have been easier if they knew the IDE (Eclipse) or the existing code.

Three people felt that the experiment was fun – two from the SEURAT group and one
from the control group. Several people in each group had no comments.

10.3. Experiment Conclusions

This experiment examined some, but not all, of the questions raised during the GQM
analysis. Table 10-7 repeats the GQM analysis with a column giving results.

192

10.3.1. Experiment Shortcomings

The experiment was severely limited by the time constraints. As described earlier, even
simple software changes can take much longer than anticipated and the experiment had to
be simplified so that it could be completed in between two and three hours. Even with the
simplifications, some sessions took more than three hours. The SEURAT training portion
alone took thirty minutes. This was still not enough time for someone to become
completely comfortable using the tool. This meant that some of the benefit of SEURAT’s
support may have been mitigated by the subjects needing to use the unfamiliar system.

A longer test would have been more valuable but even with the two to three hour
experiment duration it was difficult to find willing subjects (even when paying them) and
difficult to find time available to conduct the tests. This was particularly the case when
working with subjects from industry since the tests had to be run after working hours. If
more subjects had been used the results may have been more statistically significant.

The tasks were also specified in a fair amount of detail so that the subjects had an idea of
what they needed to do. This meant that we could not test how SEURAT could be used to
find errors in the code – this would not have been possible in the time allotted, especially
for the people in the Control group because it would have required that the subjects test
the system to look for defects.

The experiment also limited SEURAT use to assisting the user in finding where the code
needed to be modified and, in the case of the adaptive maintenance change, suggesting a
method make the change. This was helpful to the subjects but not as valuable as some of
the other assistance that SEURAT could have provided that could not be readily compared
in the limited time available.

193

TABLE 10-7. GQM Analysis with Results

Goal: To Evaluate
SEURAT to determine
its usefulness

Question Metric Result

Purpose: Evaluate
Issue: using Rationale
to improve the effi-
ciency of
Object (process): soft-
ware maintenance
Viewpoint: from the
maintainer’s viewpoint

Can the maintainer fix
problems faster when
there is rationale available
to help?

Effort (person
hours) or MTTR
(mean time to
repair)

Perceived
difficulty

Faster for
users with
Moderate and
Some Java
experience.
Most viewed
SEURAT
assistance as
reducing
difficulty.

Can the maintainer
perform adaptive
maintenance faster when
there is rationale available
to help?

Effort (person
hours) or MTTR
(mean time to
repair)

Perceived
difficulty

Faster for
users with
Moderate and
Some Java
experience.
Most viewed
SEURAT
assistance as
reducing
difficulty.

Can the maintainer make
enhancements to the
system faster when there is
rationale available to help?

Effort (person
hours) or MTTR
(mean time to
repair)

Perceived
difficulty

Faster for
users with
Moderate and
Some Java
experience.
Most viewed
SEURAT
assistance as
reducing
difficulty.

194

10.3.2. Suggested Improvements/Additional Experiments

The ideal experiment for SEURAT would be to have a long-term study of an industry
project, an open source project, or possibly an academic project if one is available of

Purpose: Evaluate
Issue: using Rationale
to improve the effec-
tiveness of
Object (process): soft-
ware maintenance
Viewpoint: from the
project manager’s
viewpoint

Is the maintainer better at
detecting problems in the
software when there is
rationale available to help?

Number of prob-
lems found

Time required to
find problems

Not evaluated
because
problems were
given as part
of the task.

Does the maintainer
produce better solutions to
problems when there is
rationale available to help?

Number of
errors in solu-
tions

Quality
(subjective) of
solutions

Longer times
for some tasks
indicated ini-
tial solutions
did not work.
Final quality
not affected.

Does the maintainer make
better choices when
performing adaptive
maintenance when there is
rationale available to help?

Number of
successful
adaptive
improvements

Longer times
for some tasks
indicated that
subjects tried
approaches
that did not
initially work.

Does the maintainer make
better improvements to the
system when there is
rationale available to help?

Number of
errors in solu-
tions

Quality
(subjective) of
solutions

All solutions
eventually
worked.
Final quality
not affected.

Purpose: Evaluate
Issue: the usability of
Object(process): the
SEURAT system
Viewpoint: from the
maintainer’s viewpoint

Is the SEURAT system
easy to use?

Perceived ease
of use.

All subjects
felt that
SEURAT was
easy to use,
although most
had
suggestions
for
improvement.

195

sufficient size and duration where the length of the experiment could be measured in days
or weeks, not in hours. The more complex the system, the more valuable the rationale
becomes and the more necessary it is to provide tool support. This would also require the
collection of a rationale base to use with SEURAT. Longer term studies would also
remove learning curve issues.

Constraining the experiment to comparing results found using SEURAT with a control
group was a very limiting factor. There are many features of SEURAT that give the
maintainer useful information that cannot be obtained with just a Java IDE. For example,
SEURAT can be used to perform what-if inferencing by changing the importance of a
claim or by disabling requirements and/or assumptions. Someone using SEURAT can
answer the question “what decisions were made that took scalability into account” while
that information is not available without the rationale. It would be useful to perform some
experiments showing these features to find if they are useful to the software maintainers.

196

CHAPTER 11 Conclusion

In this dissertation we described our research on using design rationale to assist with
software maintenance. In it we defined rationale, described how it could assist in software
maintenance, presented a system that would support these uses, and presented the results
of an experiment we conducted using the system. We investigated answers to the
following questions:

1. How can rationale be used to assist in software maintenance? We implemented a sys-
tem that supported a number of uses of the rationale: presentation of relevant rationale
for the software being maintained, inferencing to verify that the rationale was complete
and consistent, and inferencing to check that the design decisions were well supported.
Our system, SEURAT, was tightly integrated with a Java IDE so that the rationale could
be captured and used from the development environment used by the developers and
maintainers.

2. How can decisions be captured with enough specificity to be useful yet still general
enough to allow for inferencing? We developed an Argument Ontology that supported
reasons behind design decisions at different levels of abstraction. This provided a stan-
dard vocabulary for reasons that allowed them to be compared during inferencing. The
user could also enter free text descriptions as part of the rationale.

3. Does rationale differ for different types of software modifications? We did not see any
significant differences during our evaluation because the modifications required were
very simple due to time restrictions. It is likely that the rationale will be more compli-
cated for more complicated changes but we feel the deciding factor will be how diffi-
cult the maintenance change is and how much reasoning is required to decide to how do
it, not the maintenance classification it fits into.

4. Does maintenance rationale differ from original rationale? The answer to this is simi-
lar to the question above. We feel the content of the rationale may be different, i.e. rea-

197

sons may refer to problems discovered during operation, but the structure will be the
same. The maintenance changes made during the experiment did not require any struc-
tural changes to the existing rationale because they all involved selecting alternatives
that were already documented in the rationale. The additional information collected
concerned the reasons why different alternatives were selected which typically stated
that it was because the old alternative was a poor choice and the new alternative was a
better choice (i.e., no information other than that).

5. How can rationale changes be propagated? We performed two types of propagation
through the rationale. One was during the error checking—if a change was introduced
into the rationale that affected the evaluation of other alternatives and decisions, that
information was propagated so that errors or warnings could be reported (or cleared) if
applicable. The other form of propagation was via the importance levels set of elements
in the Argument Ontology. If claims referencing the ontology had an importance value
of “Default” they would inherit that importance from the corresponding ontology entry.
This allows the maintainer to change the importance of that entry and propagate that
change throughout the rationale. All alternatives that reference that ontology entry
would be re-evaluated and warnings would be issued for cases where the alternative
selected no longer had the highest evaluation.

In this last chapter we give some final conclusions about the contributions of this research
(11.1) and give some recommendations for continuing this research (11.2). Finally, we
summarize our findings (11.3).

11.1. Contributions

In this research, we chose to investigate how DR can be used during software maintenance
and developed a system that would support those uses. The goal, in summary, was to show
that with appropriate tool support, rationale can provide useful support to the software
maintainer. This work contributed the following:

1. Uses for DR during maintenance and what has to be done with the DR to support
these uses: we defined a number of ways that rationale could be useful during mainte-
nance by helping to assure that decisions made were well supported, by verifying that
requirements were not violated by the selected alternatives, by providing a way to cap-
ture dependencies between alternatives, and by providing a way to support consistent
design and implementation priorities throughout the system.

2. A method for using rationale to detect inconsistencies within the reasoning behind
software decisions: the RATSpeak representation and SEURAT system provided two
ways to look for inconsistent reasoning: by inheriting argument importances using the

198

Argument Ontology, and by allowing the developer to explicitly define tradeoffs and
co-occurrences as background knowledge.

3. A representation for rationale that supports the following:

a. Rationale occurring at multiple levels in the development process from
requirements through maintenance: the RATSpeak representation allows
rationale to be captured for each development phase. The Argument Ontology
allows arguments to be expressed at different levels of abstraction.

b. Rationale to support inferencing: the RATSpeak representation used
argumentation to support both semantic and syntactic inferencing.

c. Rationale to support maintenance: the RATSpeak representation supports
both design and maintenance rationale. In addition, the reasons for making
changes to the rationale are also captured.

4. A design rationale ontology that supports inferencing by indicating the relation-
ships between arguments at different levels of abstraction: the Argument Ontology
allows arguments to be captured in a level of detail appropriate to the stage of develop-
ment and also supports the ability to compare arguments in order to evaluate the design.

5. A way of attaching the rationale to the software implementation so that it can be
presented to and modified by the user: one method for minimizing the intrusiveness
of rationale capture is to integrate it as closely to the development process as possible.
This was done by building SEURAT as an Eclipse Plug-In so that the rationale could be
associated directly with the code and so that the maintainer would be aware of when
rationale was present. This integration also facilitates capture because the developer or
maintainer does not need to go to a separate tool from the one they are already using to
do their work.

6. A prototype system that uses these methods to support the maintainer: the
SEURAT system allowed us to test the representation and ensure that it supports the
intended uses. SEURAT was used in an experiment to evaluate the usefulness of the
system and the rationale during software maintenance.

7. Evaluation results for the prototype system: the SEURAT system was evaluated
while being used to perform three types of software maintenance: adaptive, corrective,
and enhancive. The time it took to complete the tasks using SEURAT vs. not using
SEURAT was compared. The subjects using SEURAT also answered survey questions
about the perceived usefulness and usability of the system.

11.2. Future Work

The work with SEURAT done to date has shown a great deal of promise but there are
many more areas that could be explored. These include:

199

• Expansion of SEURAT to investigate use of rationale captured at different phases of the
development process;

• Expansion of SEURAT to study multi-user rationale;
• Longer term detailed evaluations;
• Investigating rationale capture.

11.2.1. Investigation of Rationale for Different Phases

This would involve integrating SEURAT with additional tools used at different stages of
the design process. These include requirements tools, design tools, and possibly testing
tools. This would let us investigate the differences in the rationale generated and used at
different stages in the development process.

This investigation would allow us to answer the two questions posed in the proposal for
this work that were not addressed in this dissertation:

1. Are there portions of the design or phases of the design process where rationale capture
would be more useful than others?

2. What is the relationship between rationale collected at different phases?

11.2.2. Multi-User Rationale

SEURAT is a single-user system but the MySQL database used to hold the rationale could
be accessed by more than one user if it was installed on a centralized server. This could be
taken a step further by associating each developer with the rationale that they enter into
the system. This would greatly enhance the types of reasoning that could be used to
perform evaluations.

The interactions between different developers could come in many forms:

• Developers could enter rebuttals to rationale entered by their colleagues;
• Developers could have their rationale given different values for plausibility – some

users might be more knowledgeable or credible than others;
• Developers could modify rationale entered by other users.

While allowing multiple people to enter rationale does capture the spirit of argumentation,
it would present some interesting challenges in evaluating alternatives when different
developers and maintainers provide conflicting rationale.

200

11.2.3. Longer-Term SEURAT Study

The evaluation described in this dissertation was somewhat limited by having a short
amount of time (2-3 hours) available with experiment subject and by being restricted to
tasks that could also be performed without the tool. With shorter tasks, the benefit gained
may not be surpassing the time required to learn SEURAT. The more complex the system,
the more valuable the rationale becomes and the more necessary it is to provide tool
support. A more realistic project would require a larger rationale base for either an
industry project, an open source project, or possibly an academic project if one is available
of sufficient size and duration. This would give results that would more accurately reflect
the utility of SEURAT in more realistic conditions.

11.2.4. Rationale Capture

The main focus of this work has been in the use of rationale, but if more studies are to be
done, there needs to be more rationale available to work with. Some tools that could be
valuable sources of rationale are Configuration Management Systems and Problem
Reporting Systems. Integrating SEURAT with these systems would greatly assist in
capturing the rationale.

Another promising source of rationale would be code reviews and inspections. Procedures
need to be developed to capture this information so that it can be made available later.
There are many possible places within the software development process where rationale
could be extracted. Policies, procedures, and tools need to be developed to exploit existing
processes to capture the rationale.

11.3. Summary

In this dissertation, we described and demonstrated the SEURAT system, a system that
integrates with a Java Interactive Development Environment to support capture and use of
rationale. Building this system required developing a new rationale representation based
on some of the better features of existing ones and required defining a set of useful
inferences that could be performed over the rationale so that uses other than presentation
could be supported. It also required developing an Argument Ontology that gives a set of
reasons for choosing one design alternative over another. These reasons were arranged in a
hierarchy to provide for different levels of abstraction.

SEURAT was used in a series of experiments to show how it could be used to support
several different types of rationale maintenance. The results showed indications that the
tool was helpful in that the average time to perform the maintenance tasks was less when

201

supported by SEURAT. The users with the least experience using Java enjoyed the most
significant benefit.

The work performed here also has application in areas of design other than software.
While the SEURAT system was designed specifically to support software development
and maintenance, the rationale representation and inferencing could be used in other
domains. The representation of the rationale could be easily extended to other areas of
design by substituting the software-specific portions of the Argument Ontology with
arguments applying to other design domains. The types of inferences implemented in
SEURAT would also be applicable to domains other than software.

Rationale has many potential uses but it is perceived to be too costly and time consuming
to capture. By developing a tool that provides support for capture and inferences over the
rationale for compelling uses, we hope to provide additional motivation for users to make
the effort to capture the rationale. The high cost of software development and maintenance
has been reflected by a strong effort by many companies to improve their software
development processes. This is often due to external pressure as customers expect their
software to be developed at the higher levels of the Capability Maturity Model [Paulk, et.
al., 1993]. Capture and use of rationale is a logical next step to continue the process
improvement effort. Rationale, particularly when supported by tools such as SEURAT, has
considerable promise for improving the effectiveness and efficiency of software
maintenance.

202

References

Araya, A., Mittal, S.: 1987, Compiling Design Plans from Descriptions of Artifacts and Problem-Solving
Heuristics. Proc. Int. Jnt. Conf. on AI, IJCAI-87, pp. 552-558.

Ball, L., Lambell, N., Ormerod, T., Slavin, Mariani, J.: 1999, Representing Design Rationale to Support

Innovative Design Reuse: A Minimalist Approach, from Proceedings of the 4th Annual Design Research
Thinking Symposium, MIT, May 1999, pp 1.75-1.87-

Bañares-Alcantara, R., King, M.P., Ballinger, G.: 1995, Egide: A Design Support System for Conceptual
Chemical Process Design, AI System Support for Conceptual Design: Proc. of the 1995 Lancaster Inter-
national Workshop on Engineering Design, Springer-Verlag, New York, pp. 138-152.

Basili, V.R., Turner, A.J.: 1975, Iterative enhancement: a practical technique for software development,
IEEE Transactions, SE-1, (4), pp. 390-396.

Basili, V., Caldiera, G., Rombach, G.: 1994, The Goal Question Metric Approach, Encyclopedia of Software
Engineering, J. Marciniak (ed.), Wiley, pp 528-532

Bennington, H.D.: 1956, Production of large computer programs, Proc. ONR Symp. on Advanced Program-
ming Methods for Digital Computers, pp. 15-27.

Bentley, P.J., Wakefield, J.P: 1985, The Table: An Illustration of Evolutionary Design using Genetic Algo-
rithms, Proc. Conf. Genetic Algorithms in Engineering Systems: Innovations and Applications, IEE Con-
ference Publication No. 414, pp. 412-418.

Birmingham, W.P., Brown, D.C.: 1997, IEEE Expert special issue on AI in Design, D.C. Brown and W.P.
Birmginham (Guest Eds.), Volume 12, Number 2, March/April 1997, Volume 12, Number 3, May/June
1997.

Boehm, B: 1988, A Spiral Model of Software Development and Enhancement, IEEE Computer, vol.21, #5,
May 1988, pp 61-72.

Boehm, B., Bose, P.: 1994, A Collaborative Spiral Software Process Model Based on Theory W, Third

203

International Conference on the Software Process, Reston, VA, pp. 59-68.

Bondi, A.: 2000, Characteristics of Scalability and Their Impact on Performance, Proceedings of the 2nd

International Workshop on Software and Performance, Ottawa, Ontario, Canada, pp. 195 - 203

Booch, G.: 1991, Object-Oriented Design with Applications, The Benjamin/Commings Publishing Com-
pany.

Bose, P.: 1995, A Model for Decision Maintenance in the WinWin Collaboration Framework, Knowledge
Based Software Engineering (KBSE '95), pp. 105-113.

Brandish M., Hague, M., Taleb-Bendiab, A.: 1996, M-LAP: A Machine Learning Apprentice Agent for
Computer Supported Design, AID’96 Machine Learning in Design Workshop.

Bratthall, L., Johansson, E., Regnel, B.: 2000, Is a Design Rationale Vital when Predicting Change Impact?
– A Controlled Experiment on Software Architecture Evolution, in Proc. of the Int. Conf. on Product
Focused Software Process Improvement, Oulu, Finland, pp. 126-139.

Brice, A., Johns, B.: 1998, Improving process design by improving the design process, QSL-9002A-WP-
001, QuantiSci, October 1998.

Britt, B., Glagowski, T.: 1996, Reconstructive derivational analogy: A machine learning approach to auto-
mating redesign, in Artificial Intelligence for Engineering Design, Analysis and Manufacturing, No.10,
Cambridge University Press, pp. 115-126.

Brooks, F.P. Jr.: 1995, The Mythical Man-Month, Addison Wesley

Brown, D.: 1992, Design, in Encyclopedia of Artificial Intelligence, S. Shapiro (Ed.), Vol. 1, New York:
John Wiley & Sons, pp. 331-339.

Brown, D. C.: 1998, Defining Configuring, invited paper, AI EDAM Special Issue on Configuration, T.
Darr, D. McGuinness and M. Klein (Eds.), Cambridge U.P., Vol. 12, pp. 301-305.

Brown, D. C., Bansal, R.: 1991, Using Design History Systems for Technology Transfer, in Computer Aided
Cooperative Product Development, D. Sriram, R. Logcher and S. Fukuda (Eds.), Lecture Notes Series,
No. 492, Springer-Verlag, New York, pp. 544-559.

Brown, D., Chandrasekaran, B.: 1989, Design Problem Solving: Knowledge Structures and Control Strate-
gies, California: Morgan Kaufmann.

Burge, J., Brown, D.C.: 2000, Inferencing Over Design Rationale, in Artificial Intelligence in Design ‘00, J.
Gero (Ed.), Kluwer Academic Publishers, pp. 611-629.

Burge, J., Brown, D.C.: 2002, NFRs: Fact or Fiction, Computer Science Technical Report, Worcester Poly-
technic Institute, WPI-CS-TR-02-01.

Cambell, M., Cagan, J., Kotovsky, K.: 1989, A-Design: Theory and Implementation of an Adaptive Agent-

204

Based Method of Conceptual Design, in Artificial Intelligence in Design ‘98, J. Gero (Ed.), Kluwer Aca-
demic Publishers, pp. 579-598.

Chapin, N.: 2000, Software Maintenance Types-A Fresh View, Proc. of the International Conf. On Software
Maintenance, IEEE Computer Society Press, CA, pp. 247-252.

Chen, A., McGinnis, B., Ullman, D., Dietterich, T.: 1990, Design History Knowledge Representation and Its

Basic Computer Implementation, The 2nd International Conference on Design Theory and Methodology,
ASME, Chicago, IL, pp. 175-185.

Chung, L., Nixon, A., Yu, E.: 1995, Using Non-Functional Requirements to Systematically Select Among
Alternatives in Architectural Design, Proc. ICSE-17 Workshop on Architectures for Software Systems,
Seattle, Washington, April 24--28.

Chung, P.W.H., Goodwin, R.: 1998, An integrated approach to representing and accessing design rationale,
in Engineering Applications of Artificial Intelligence, 11, pp. 149-159.

Chung, L, Nixon, BA, Yu, E, Mylopoulos, J: 2000, Non-Functional Requirements in Software Engineering,
Kluwer Academic Publishers.

CMU: 2002, Quality measures taxonomy,
 http://www.sei.cmu.edu/str/taxonomies/view_qm.html

Conklin, J., Burgess-Yakemovic, K.: 1995, A Process-Oriented Approach to Design Rationale, in Design
Rationale Concepts, Techniques, and Use, T. Moran and J. Carroll, (Eds.), Lawrence Erlbaum
Associates, Mahwah, NJ, pp. 293-428.

Dellen, B., Kohler, K., Maurer, F.: 1996, Integrating Software Process Models and Design Rationals, in Pro-
ceedings Knowledge-based Software Engineering, Syracuse, NY, IEEE Computer Society Press, pp. 84-
93.

Devanbu, P., Brachman, R., Selfridge, P., Ballard, B.: 1991, Lassie: A Knowledge-based Software
Information System, Communications of the ACM , Vol. 34, No. 5, pp. 34-49.

Dix, A., Finlay, J., Abowd, G. Beale, R.: 1998, Human Computer Interaction, 2nd Edition, Prentice Hall.

Dixon, J.R., Howe, A., Cohen, P.R., Simmons, M.K.: 1986, Dominic I: Progress towards Domain Indepen-
dence in Design by Iterative Redesign, Proceedings of the 1986 ASME Computers in Engineering, v. 4,
pp. 199.

Dutoit, A., Paech, B.: 2001, Rationale management in software engineering, S.K. Chang (Ed.), World
Scientific Publishing, pp 787-816.

Easterbrook, S.M., Nuseibeh, B.A.: 1995, Managing Inconsistencies in an Evolving Specification, Second
IEEE Symposium on Requirements Engineering, York, UK, March 27-29, pp. 48-55.

Filman, R. E.: 1998, Achieving Ilities, Workshop on Compositional Software Architectures, Monterey, Cal-

205

ifornia, http://www.objs.com/workshops/ws9801/papers/paper046.doc.

Fischer, G., Lemke, A., McCall, R., Morch, A.: 1995, Making Argumentation Serve Design, in Design
Rationale Concepts, Techniques, and Use, T. Moran and J. Carroll, (Eds.), Lawrence Erlbaum Associ-
ates, pp. 267-294.

Frayman, F., Mittal, S.: 1987, Cossack: A Constraints-Based Expert System for Configuration Tasks, in
Knowledge-Based Expert Systems in Engineering: Planning and Design, D. Sriram and R. A. Adey
(Eds.), Computational Mechanics Publications, 143-166.

Ganeshan R., Garrett J., Finger, S.:1994, A framework for representing design intent, Design Studies Jour-
nal, V15 No. 1, January, pp. 59-84.

Garcia, A., Howard, H., Stefik, M.: 1993, Active Design Documents: A New Approach for Supporting
Documentation in Preliminary Routine Design, Tech. Report 82, Stanford Univ. Center for Integrated
Facility Engineering, Stanford, CA.

Garlan, D., Shaw, M.: 1993, An Introduction to Software Architecture, Advances in Software Engineering
and Knowledge Engineering, Volume I, V. Ambriola, G. Tortora (Eds.), World Scientific Publishing
Company, New Jersey, pp. 1-39.

Garlan, D., Monroe, R.T., Wile, D.: 1997, ACME: An Architecture Description Interchange Language, Pro-
ceedings of CASCON '97, Ontario Canada, pp. 169-183.

Goel, A.: 1991, A Model-Based Approach to Case Adaptation, in Proc. Thirteenth Annual Conference of the
Cognitive Science Society, Chicago, Hillsdale, NJ: Lawrence Erlbaum, pp. 143-148.

Gogolla, M.: 1998, UML for the Impatient, Research Report 3/98, Universität Bremen.

Gotel, O., Finkelstein, A.: 1994, An Analysis of the Requirements Traceability Problem, 1st International
Conference on Requirements Engineering, Colorado Springs, pp. 94-101.

Gruber, T.: 1990, Model-based Explanation of Design Rationale, in Proceedings of the AAAI-90 Explanation
Workshop, Boston, July 30, 1990.

Gruber, T., Russell, D.: 1991, Design Knowledge and Design Rationale: A Framework for Representation,
Capture, and Use, Knowledge Systems Laboratory, KSL 90-45, Stanford University, Stanford: CA.

Grudin, J.: 1995, Evaluating Opportunities for Design Capture, in Design Rationale Concepts, Techniques,
and Use, T. Moran and J. Carroll, (Eds.), Lawrence Erlbaum Associates, Mahwah, NJ, pp. 453-470.

Hall, T., Rainer, A., Baddoo, N., Beecham, S.:2001, An Empirical Study of Maintenance Issues within
Process Improvement Programmes in the Software Industry, in Proc. of the International Conference on
Software Maintenance, Florence, Italy, pp. 422-430.

Hofmeister, C., Nord, R.L., Soni, D.: 1999, Describing software architecture with UML, in Proceedings of

206

the First Working IFIP Conference on Software Architecture, San Antonio, TX, Februrary 1999, pp. 145-
159.

Hubka, V., Eder, W.E.: 1996, Design Science, Springer-Verlang, London.

Jacobson, I.: 1987, Object-oriented development in an industrial environment, Proc. of OOPSLA’87, Special
issue of SIGPLAN Notices 22 (12), pp. 183-191.

Jacobson, I., Booch, Rumbaugh, J.: 1999, The Unified Software Development Process, Addison-Wesley,
MA, 1999.

Jiro, K: 2000, KJ Method: A Scientific Approach to Problem Solving, Tokyo: Kawakita Research Institute.

Joskowicz, L., Sacks, E.: 1999, Computer-Aided Mechanical Assembly Design Using Configuration
Spaces, IEEE Computers in Science and Engineering, Nov./Dec., pp. 14-21.

Kant, E.:1985 Understanding and Automating Algorithm Design. IEEE Transactions on Software Engineer-
ing, Vol. SE-11, No. 11, November 1985, pp. 1361-1374.

Kajiko-Mattsson, M.:2001, The State of Documentation Practice within Corrective Maintenance, in Proc. of
the International Conference on Software Maintenance, pp. 354-363.

Karsenty, L.: 1996, An Empirical Evaluation of Design Rationale Documents, in Proceedings of the Confer-
ence on Human Factors in Computing Systems, Vancouver, BC, April 13-18.

Keppel, G., Saufley, W.H. Jr., Tokunaga, H.: 1992, Introduction to Design & Analysis: A Student’s

Handbook, 2nd Edition, W.H. Freeman and Company, New York.

King, J.M.P., Bañares-Alcantara, R.: 1997, Extending the scope and use of design rationale records, in Arti-
ficial Intelligence for Engineering Design, Analysis, and Manufacturing, 11, Cambridge University
Press, pp. 155-167.

Kitchenham, B.A., Travassos, G.H., von Mayhauser, A., Niessink, F., Schneidewind, N.F., Singer, J.,
Takada, S., Vehvilainen, R., Yang, H.: 1999, Towards an ontology of software maintenance, Journal of
Software Maintenance: Research and Practice, vol 11, pp.365-389.

Klein, M.: 1992, DRCS: An Integrated System for Capture of Designs and Their Rationale, in Artificial
Intelligence in Design ‘92, Gero, J. (ed.), Kluwer Academic Publishers, pp. 393-412.

Klein, M.: 1997, An Exception Handling Approach to Enhancing Consistency, Completeness and Correct-
ness in Collaborative Requirements Capture, Concurrent Engineering Research and Applications,
March, pp. 37-46.

Klein, M. and Kazman, R.: 1999, Attribute-Based Architectural Styles, Software Engineering Institute Tech-
nical Report CMU/SEI-99-TR-22.

Lander, S.E., Lesser, V.R.: 1992, Customizing Distributed Search Among Agents with Heterogeneous

207

Knowledge. Proc. 5th Int. Symp. on AI Applications in Manuf. & Robotics, Cancun, Mexico,December.

Lee, J.: 1990, SIBYL: A qualitative design management system, in Artificial Intelligence at MIT: Expanding
Frontiers, P.H. Winston and S. Shellard (Eds.), Cambridge MA: MIT Press, pp. 104-133.

Lee, J.: 1997, Design Rationale Systems: Understanding the Issues, IEEE Expert, Vol. 12, No. 3, pp. 78-85.

Lee, J.: 1991, Extending the Potts and Bruns Model for Recording Design Rationale, in Proceedings of the
13th International Conference on Software Engineering, Austin, TX, pp. 114-125.

Lehman, M.: 2003, “Software Evolution Cause or Effect?”, Stevens Award Lecture, International
Conference on Software Maintenance, Amsterdam.

Lientz, B. P., Swanson, E. B.: 1980, Software Maintenance Management, Addison-Wesley, Reading, MA.

Likert R.: 1932, A technique for measuring attitudes, Principles of Social Psychology, N Hayes (Ed.)
Laurence Earlbaum Associates, pp. 110.

MacLean, A., Young, R.M., Bellotti, V., Moran, T.P.:1995, Questions, Options and Criteria: Elements of
Design Space Analysis, in Design Rationale Concepts, Techniques, and Use, T. Moran and J. Carroll
(Eds.), Lawrence Erlbaum Associates, NJ, 1995, pp. 201-251.

Madhavji, N.H.: 1991, The process cycle, Software Engineering Journal, 6, 5, pp. 234-242.

Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: 1995, Specifying Distributed Software Architectures, in
Proceedings of 5th European Software Engineering Conference (ESEC 95), Sitges, Spain, pp. 137-153.

Marcus, S., Stout, J., McDermott, J.: 1992, VT: An Expert Elevator Designer That Uses Knowledge-Based
Backtracking, in Artificial Intelligence in Engineering Design, Vol. 1, C. Tong and D. Sriram (Eds.),
Academic Press, 1992, pp. 317-355.

Maurer, F.: 1996, Coordinating System Development Processes, Proceedings Knowledge Acquisition Work-
shop 1996 (KAW-96), Banff, Vol. 2 pp. 49/1-49/20.

McDermott, J.: 1982, R1: A Rule-based Configurer of Computer Systems, Artificial Intelligence, Vol. 19,
North-Holland, pp. 39-88.

Medvidovic, N., Taylor, R.N.: 1997, A Framework for Classifying and Comparing Architecture Description
Languages, in Proceedings of the Sixth European Software Engineering Conference together with the
Fifth ACM SIGSOFT Symposium on the Foundations of Software Engineering, , Zurich, Switzerland,
September 22-25, pp. 60-76.

Mitchell, T.M., Mahadevan, S., and L. Steinberg, L.: 1985, LEAP:A Learning Apprentice for VLSI Design,
Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 573-580.

Mittal S., Araya, A.: 1992, A Knowledge-Based Framework for Design, in Artificial Intelligence in Engi-

208

neering Design, Vol. 1, C. Tong and D. Sriram (Eds.) , Academic Press, pp. 273-293.

Mittal, S., Frayman, F.: 1989, Towards a Generic Model of Configuration Tasks, Proc. Int. Jnt. Conf on AI,
pp. 1395-1401.

Mostow, J., Barley, M., Weinrich, T.: 1992, Automated Reuse of Design Plans in Bogart, in Artificial
Intelligence in Engineering Design, Vol II, C. Tong and D. Sriram (Eds.), Academic Press, Inc. pp. 57-
104.

Murthy, S., Addanki, S.: 1987, PROMPT: An Innovative Design Tool, in Expert Systems in Computer-Aided
Design, J. S. Gero (Ed.), North-Holland, 1987, pp. 323-341.

Myers, K., Zumel, N., Garcia, P.: 1999, Automated Capture of Rationale for the Detailed Design Process, in
Proceedings of the Eleventh National Conference on Innovative Applications of Artificial Intelligence,
AAAI Press, Menlo Park, CA, pp. 876-883.

Navinchandra, D., Sycara, K., Narasimhan, S.: 1991, A Transformational Approach to Case Based Syn-
thesis, Artificial Intelligence in Engineering, Manufacturing and Design, Vol. 5, No. 1, May 1991, pp.
31-45.

Niessink, F., Van Vliet, H.: 2000, Software Maintenance from a Service Perspective, Journal of Software
Maintenance: Research and Practice, Vol. 12, No. 2, March/April, pp. 103-120.

Nuseibeh, B., Easterbrook, S.:2000, Requirements engineering: a roadmap, in The Future of Software Engi-
neering, Special Volume published in conjunction with ICSE 2000, A. Finkelstein (Ed.), pp. 35-46.

Nuseibeh, B., Easterbrook, S., Russo, A.:2000, Leveraging Inconsistency in Software Development,
Computer, Vol. 33, No. 4, IEEE Computer Society Press, pp. 24-29.

Osterweil, L.J.: 1987, Software Processes are Software Too, in Proceedings of ICSE 9, Monterey, CA, pp. 2-
13.

Osterweil, L.J.: 1997, Software Processes are Software Too, Revisited: An Invited Talk on the Most Influen-
tial Paper of ICSE 9, in Proceedings of ICSE 97, Boston, MA, pp. 540-548.

Paulk, M. C., Curtis, W., Chrissis, M.B., Weber, C. W.:1993,Capability Maturity Model, Version 1.1, IEEE
Software, Vol. 10, No. 4, July 1993, pp. 18-27.

Peña-Mora, F., Vadhavkar, S.: 1996, Augmenting design patterns with design rationale, Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing, 11, Cambridge University Press, pp. 93-
108.

Peña-Mora, F., Sriram, D., Logcher, R.: 1995, Design Rationale for Computer-Supported Conflict Miti-
gation, ASCE Journal of Computing in Civil Engineering, pp. 57-72.

Perry, D.E., Wolf, A.L.: 1992, Foundations for the Study of Software Architecture, SIFSOFT Software Engi-

209

neering Notes, Vol. 17, No. 4, Oct. 1992, pp. 40-52.

Potts, C., Bruns, G.: 1988, Recording the Reasons for Design Decisions, Proceedings International Confer-
ence on Software Engineering, IEEE CS Press, pp. 418-427.

Pressman, R.S.: 1997, Software Engineering: A Practitioner’s Approach, McGraw Hill.

Pugh, S.: 1991, Total Design: Integrated Methods for Sucessful Product Engineering, Addison-Wesley.

Ramachandran, N., Shah, A., Langrana, N.: 1988, Expert System Approach in Design of Mechanical
Components, Proc. Computers in Engineering Conf., ASME, July, pp. 1-10.

Ramesh, B., Dhar, V.: 1994, Representing and Maintaining Process Knowledge for Large Scale Systems
Development, IEEE Expert, Vol. 9, No. 4, pp 54-60.

Rational: 1999, Rational Unified Process: Best Practices for Software Development Teams, http://
www.rational.com/products/whitepapers/100420.jsp

Rational: 2000, Rational Rose 2000e: Using Rational Rose, Rational Software Corporation 20 Maguire Rd.
Lexington, MA 02421

Reiss, S.P.: 2002, Constraining Software Evolution, in Proc. of the International Conference on Software
Maintenance, Montreal, Quebec, Canada, pp. 162-171.

Robbins, J.E., Medvidovic, N., Redmiles, D.F., Rosenblum, D.S.: 1998, Integrating Architecture Descrip-
tion Languages with a Standard Design Method, ICSE '98 Proceedings, Kyoto, Japan, pp. 209-218.

Robinson, W. N., S. Pawlowski, Volkov, S.: 1999, Requirements Interaction Management, GSU CISWork-
ing Paper 99-7, Georgia State University, Atlanta, GA.

Royce, W.W.: 1970, Managing the development of large software systems, Proc. IEEE Wescon, pp. 1-9.

Rumbaugh, J., Jacobson, I., Booch, G.: 1998, The Unified ModelingLanguage Reference Manual, Reading,
MA: Addison-Wesley.

Runkel, J.T., Birmingham, W.P., Darr, T.P., Maxim, B.R., Tommelein, I.D.: 1992, Domain Independent
Design System: Environment for Rapid Prototyping of Configuration Design Systems, in Proc. 2nd Int.
Conf. on AI in Design, J.S. Gero (Ed.), 22-25 June, Pittsburgh, PA, Kluwer Acad. Pub., pp. 21-40.

Rushby, J.:1994, Critical System Properties: Survey and Taxonomy, Reliability Engineering and System
Safety, Vol 43, No. 2, pp. 189-219.

Sim, S., Duffy, A.: 1994, A New Perspective to Design Intent and Design Rationale, in Artificial Intelligence
in Design Workshop Notes for Representing and Using Design Rationale, 15-18 August, pp. 4-12.

Singer, J.: 1998, Practices of Software Maintenance, in Proc. of the International Conference on Software

210

Maintenance (ICSM'98), 16-19 November, 1998, Bethesda, Maryland, USA, pp. 139-145.

Shipman, F., McCall, R.: 1996, Integrating different perspectives on design rationale: Supporting the
emergence of design rationale from design communication, Artificial Intelligence for Engineering
Design, Analysis, and Manufacturing, 11, Cambridge University Press, pp. 141-154.

Shum, S., Hammond, N.: 1993, Argumentation-Based Design Rationale: From Conceptual Roots to Current
Use, Tech. Report EPC-1993-106, Rank Xerox Research Centre, Cambridge.

Siewiorik, D:1990, Fault Tolerance in Commercial Computers, Computer, Volume 23 , Issue 7, pp. 26–37.

Song, X., Leon J. Osterweil, L.J.:1994, Engineering Software Design Processes to Guide Process Execu-
tion, in Proc. 3rd International Conference on the Software Process, Reston, VA, pp. 135-152.

Stahovich, T.F.: 2001, Artificial Intelligence for Design, Formal Engineering Design Synthesis, E.K.
Antonsson, and J. Cagan (Eds.), pp. 228-269.

Cambridge University Press, 2001, pp. 228-269

StatView: 1999, StatView Reference Manual, SAS Institute, Inc.

Stefik, M.: 1981, Planning with Constraints (MOLGEN: Part 1), Artificial Intelligence, Vol. 16, No. 2,
North-Holland, pp. 111-140.

Stumpf, S., McDonnel, J.: 1999, Relating Argument to Design Problem Framing, Proc. of 4th Design Think-
ing Research Symposium, Cambridge, USA, pp. 245-253.

Sutcliffe, A.G.: 1998, Scenario-based requirements analysis, Requirements Engineering Journal, 3(1), pp.
48-65.

Sutcliffe, A.G., Ryan, M.: 1998, Experience with SCRAM, a SCenario Requirements Analysis Method, in
Proceedings of the IEEE International Symposium on Requirements Engineering: RE '98, Colorado
Springs C. Los Alamitos, CA: IEEE Computer Society Press, pp.164-171.

Sycara, K.P., Navinchandra, D.: 1992, Retrieval Strategies in a Case-Based Design System, in Artificial
Intelligence in Engineering Design, Vol. 2, C. Tong and D. Sriram (Eds.), Academic Press, pp. 145-163.

Taura, T., Kubota, A.: 1999, A Study on Engineering History Base, in Research in Engineering Design, Vol.
11, No. 1, pp. 45-54.

Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J. Jr., Robbins, J.E.: 1995, A Component- and
Message-Based Architectural Style for GUI Software, in Proceedings of the Seventeenth International
Conference on Software Engineering (ICSE17), Seattle, WA, April 23-30, pp. 295-304.

Thompson, J., Lu, S.: 1990, Design Evolution Management: A Methodology for Representing and Utilizing

Design Rationale, in 2nd International Conference on Design Theory and Methodology, ASME, Chi-

211

cago: IL, pp. 185-191.

Tong, C., Sriram, D. (Eds.): 1992, Introduction, in Artificial Intelligence in Engineering Design, Vol. 1, C,
Academic Press, pp. 1-53.

Toulmin, S.: 1958, The Uses of Argument, Cambridge University Press, Cambridge.

Ullman, D.:2004, An Example of Decision Management, White Paper, http://www.robustdecisions.com/
decision-management.pdf

Voas, J., Miller, K.: 1995, Software Testability: the New Verification, IEEE Software, Vol. 12, No. 3, pp. 17-
28.

Vanwelkenhuysen, J.:1995, Using DRE to Augment Generic Conceptual Design, IEEE Expert, Vol. 10, No.
1, pp. 50-56.

Williams, B.C.: 1992, Interaction-Based Design: Constructing Novel Devices from First Principles, in Intel-
ligent Computer Aided Design, D. C. Brown, M. Waldron and H. Yoshikawa (Eds.), Elsevier Science
Publishers (North-Holland), pp. 255-274.

Yen, J., Tiao, W.: 1997, A Systematic Tradeoff Analysis for Conflicting Imprecise Requirements, in Pro-
ceedings of the Third IEEE International Symposium on Requirements Engineering, January 1997,
Annapolis MD, pp. 87-96.

Zave, P.: 1997, Classification of Research Efforts in Requirements Engineering, ACM Computing Surveys,
Vol. 29, No. 4, pp. 315-321.

Zozayza-Gorostiza, C. and Hendrickson, C.: 1987, An Expert System for Traffic Signal Setting Assistance,
ASCE Journal of Transportation Engineering, 113(2), pp. 108-126.

CLIPS Reference Manual: 1998, Volume I: Basic Programming Guide, Version 6.10, http://www.ghg-
corp.com/clips/download/documentation.

A-1

APPENDIX A SEURAT User’s Guide

This appendix presents the user’s guide that was given to the experiment subjects who
were using SEURAT to perform their maintenance tasks.

A-2

SEURAT User’s Guide

Janet E. Burge, David C. Brown
AI in Design Research Group

Computer Science Department
Worcester Polytechnic University

Worcester, MA 01609 USA

15 November, 2004

For more information, contact:
 jburge@cs.wpi.edu

A-3

Table of Contents
APPENDIX A SEURAT User’s Guide..A-1
A.1. What is SEURAT? ..A-5
A.2. Rationale in SEURAT...A-6
A.2.1. Rationale Structure ..A-6
A.2.2. Entering New Rationale ..A-10
A.2.3. Editing Existing Rationale ..A-17
A.3. The Rationale-Code ConnectionA-17
A.3.1. Associating Rationale with CodeA-17
A.3.2. Finding Associated RationaleA-18
A.3.3. Removing Rationale AssociationsA-19
A.4. Rationale Tasks ...A-20
A.5. Rationale Queries ..A-21
A.5.1. Find Rationale Entity ..A-21
A.5.2. Find Common Arguments ...A-22
A.5.3. Find Requirements ..A-23
A.5.4. Find Status Overrides ..A-24
A.5.5. Find Importance Overrides ..A-25
A.6. Using the Rationale ...A-25
A.6.1. Modifying Importance ValuesA-26
A.6.2. Disabling Rationale Items ...A-26

A-4

List of Figures
FIGURE A-1. SEURAT Main Display .. A-6
FIGURE A-2. Relationships between rationale entities... A-8
FIGURE A-3. Rationale Explorer .. A-9
FIGURE A-4. Rationale Icons ... A-10
FIGURE A-5. Requirement Editor... A-11
FIGURE A-6. Decision Editor ... A-12
FIGURE A-7. Alternative Editor ... A-13
FIGURE A-8. Argument Editor ... A-14
FIGURE A-9. Claim Editor.. A-14
FIGURE A-10. Assumption Editor .. A-15
FIGURE A-11. Question Editor ... A-15
FIGURE A-12. Tradeoff Editor.. A-16
FIGURE A-13. Ontology Entry Editor .. A-17
FIGURE A-14. Package Explorer with Associations... A-18
FIGURE A-15. Bookmark View .. A-18
FIGURE A-16. Alternative Showing Code Association.. A-19
FIGURE A-17. Rationale Task List ... A-20
FIGURE A-18. Find Entity Display... A-21
FIGURE A-19. Select Claim Display .. A-22
FIGURE A-20. Find Common Arguments... A-22
FIGURE A-21. Common Argument Display ... A-23
FIGURE A-22. Find Requirements Display .. A-23
FIGURE A-23. Addressed Requirements .. A-24
FIGURE A-24. Status Override Display .. A-24
FIGURE A-25. Importance Override Display.. A-25

A-5

A.1. What is SEURAT?

SEURAT is an Eclipse Plug-In used to capture, display, and evaluate rationale associated
with a Java project. Rationale, also known as Design Rationale (DR), is an argumentation
structure that describes the decisions made while developing the software, the alternatives
considered, and the arguments for and against each alternative. SEURAT can associate
this information with the applicable code and perform inferencing over the rationale to
look for areas where it is incomplete or inconsistent. In addition, the selected alternatives
are evaluated to check to see if they are as well supported as the alternatives that were not
chosen.

As the software system evolves, the rationale will grow and change. The rationale will
also give new developers insight into why things are the way they are within the system.
This is especially critical during software maintenance, the phase of the software life-
cycle that SEURAT was designed to target.

Figure A-1 shows the SEURAT main display. There are five main parts, four of which are
shown. These are:

• Rationale Explorer – The Rationale Explorer, shown in the upper left, gives a tree-hier-
archy view of the rationale. Each item has a context-sensitive menu attached to it that
allows editing and other actions to be taken.

• Package Explorer – This is the Eclipse standard Package Explorer, shown in the lower
left. It has been enhanced so that it will display when rationale is associated with a Java
file. There is an additional menu item that allows the user to remove these associations.

• Editor Window – This is the Eclipse editor, shown in the upper right pane. When ratio-
nale is associated with the code, it is shown in this window by the presence of a blue “i”
to the left of the code. A mouse-over shows the name of the rationale.

• Rationale Task List – This lower right pane shows a list of rationale tasks that is analo-
gous to the task display that shows compilation errors. For the Rationale Tasks List,
each item refers to an error or warning within the rationale. Individual tasks can be
overridden and not displayed.

• Bookmarks View – This pane shows the associations between rationale and code. It is
not displayed in SEURAT Main Display because it is behind the Rationale Task List.

A-6

FIGURE A-1. SEURAT Main Display

A.2. Rationale in SEURAT

Rationale in SEURAT is stored as an argumentation structure. Each item of rationale
contains a name as well as a more detailed description of the item. This is done to
maximize the expressive power yet make it easy to process the rationale. The name and
description are both stored as text strings.

A.2.1. Rationale Structure

SEURAT uses the following elements as part of the rationale:

• Requirements – these include both functional and non-functional requirements. They
can either be represented explicitly in the rationale or be pointers to requirements stored
in a requirements document or database. For the purposes of our examples, we will
show requirements as part of the rationale. Requirements serve two purposes in

A-7

SEURAT. One purpose is as the basis of arguments for and against alternatives. This
allows SEURAT to capture cases where an alternative satisfies or violates a require-
ment. The other purpose is so that the rationale for the requirements themselves can be
captured.

• Decision Problems – these are the decisions that must be made as part of the develop-
ment process. They are expressed in the form of questions.

• Questions – these are questions that need to be answered before the answer to the deci-
sion problem can be defined. A question can include the procedures or programs that
need to be run or simple requests for information. While questions are not a standard
argumentation concept, they can augment the argumentation by specifying the source
of the information used to make the decisions, which is useful during software mainte-
nance.

• Alternatives – these are alternative solutions to the decision problems. Each alternative
will have a status that indicates if it is accepted, rejected, or pending.

• Arguments – these are the arguments for and against the proposed alternatives. They
can either contain requirements (i.e., an alternative is good or bad because of its rela-
tionship to a requirement), claims about the alternative, assumptions that are reasons
for or against choosing an alternative, or relationships between alternatives (indicating
dependencies or conflicts). Each argument is given an amount (how much the argument
applies to the alternative, i.e., how flexible, how expensive) and an importance (how
important the argument is to the overall system or to the specific decision).

• Claims – these are reasons why an alternative is good or bad. Each claim maps to an
entry in an Argument Ontology of common arguments for and against software design
decisions. Each claim also indicates what direction it is in for that argument. For exam-
ple, a claim may state that a choice is NOT safe or that an alternative IS flexible. This
allows claims to be stated as either positive or negative assertions. Claims also contain
an importance, which can be inherited or overridden by the arguments referencing the
claim.

• Assumptions – these are similar to claims except that it is not known if they are always
true. Assumptions do not map to items in the Argument Ontology.

• Argument Ontology – this is a hierarchy of common argument types that serve as types
of claims that can be used in the system. These are used to provide the common vocab-

A-8

ulary required for inferencing. Each ontology entry contains an importance that can be
overridden by claims that reference it.

• Background Knowledge – this contains Tradeoffs and Co-Occurrence Relationships
that give relationships between different arguments in the Argument Ontology. This is
not considered part of the argumentation but is used to check the rationale for any vio-
lations of these relationships.

Figure A-2 shows the relationships between the different rationale entities.

FIGURE A-2. Relationships between rationale entities

requires-answer-to

is-argued-by

specified-in

requires

is-about

is-alternative-for

Alternative

sub-decision Decision
Problem

Argument

sub-requirement

Requirement

is-reason-for

Claim Assumption

is-reason-for

Question

Argument
Ontology

Background Knowledge

specify
relationships

between Co-Occurrence
Relationships

Tradeoffs

requires-answer-to

is-argued-by

A-9

SEURAT displays the rationale in a hierarchy in the Rationale Explorer pane of the GUI
as shown in Figure A-3.

Each type of rationale has its own icon as shown in Figure A-4.

FIGURE A-3. Rationale Explorer

A-10

FIGURE A-4. Rationale Icons

A.2.2. Entering New Rationale

Rationale items are added via a context menu from their parent that is accessed using a
right mouse click. This brings up an editor for the item that allows the user to enter the
new rationale. The exceptions to this are the Claims and Assumptions, which can only be
edited via the editor of a referring Argument. It is important to note that Claims and
Assumptions can be shared by multiple arguments so editing one will affect the others. To
find out how to check if a Claim or Argument is shared, see the Rationale Queries section
of this document.

The following sections describe how to enter the different rationale elements.

A.2.2.1. Requirement

Figure A-5 shows the requirement editor. The Name is mandatory and must be filled in.
Other fields will have default values. The “Arguments For” and “Arguments Against”
fields are for display only and will have values if this is an existing Requirement and has
arguments associated with it (as is shown here). Note the box at the lower left marked

Requirement

Decision

Alternative

Argument

Claim

Assumption

Question

Tradeoff

Co-occurrence

Ontology Entry

A-11

“Enabled” this is used to disable a requirement to determine the impact on the rationale.
Requirements that are not yet implemented in the current release of the software but are
planned for the future can be disabled to avoid errors being displayed in the Rationale. A
disabled requirement will have a “D” superimposed on its icon.

FIGURE A-5. Requirement Editor

A.2.2.2. Decision

Figure A-6 shows the Decision Editor. As with all SEURAT elements, the Name is
required. There are two types of decisions: one where sub-decisions are required and one
where alternatives are required. Decisions requiring sub-decisions are ones that can be
broken into sub-components where answering all the sub-decision answers the parent. In
this case, alternatives are not present. The example given here shows a decision that has
alternatives. Each alternative is displayed here but added by right-clicking on the decision
in the Rationale Explorer. Here, a numerical evaluation (rating) for the alternative is given
along with its name. Higher numbers signify more support.

A-12

FIGURE A-6. Decision Editor

A.2.2.3. Alternative

Figure A-7 shows the Alternative Editor. This gives the information about the alternative
and lists the arguments for it, against it, and that specify relationships. A relationship
refers to a dependency on another alternative being selected. The Artifact field will
describe what part of the code implements this alternative. In this example, the alternative
has not yet been associated with any code.

A.2.2.4. Argument

Figure A-8 shows the Argument Editor. Arguments can be associated with claims (which
then point into the Argument Ontology), assumptions, requirements, or other arguments.
In this example, it argues a Claim, which is shown by the Argument Type field. When an
argument is initially created, it is mandatory that it be associated with something. This is
done using the “Select” button. When this happens, the user is allowed to either select an
already existing item to use or create a new one.

Each argument gives the type, indicating if it is for or against the alternative. The possible
values vary depending on the type of the argument. These are as follows:

• Claim – supports or denies
• Requirement – satisfies, addresses, or violates
• Assumption – supports or denies

A-13

• Argument – presupposes or opposes
In addition, the user can give the Importance of the argument, the Amount (how much the
alternative meets the claim), and the Plausibility (how sure they are of the argument). The
Importance can be specified as “Default,” in which case it will be inherited from the claim
or Argument Ontology. Arguments involving requirements or dependencies will default to
an importance of “Essential.”

FIGURE A-7. Alternative Editor

A-14

FIGURE A-8. Argument Editor

A.2.2.5. Claim

Figure A-9 shows the Claim Editor. This is similar to the Argument Editor but with fewer
fields. The Direction indicates if the claim is that the alternative does what the ontology
entry says, such as “IS” Reduces Development Time, or that it does not, as shown here by
“NOT” Reduces Development Time. The user can also specify an importance here or
inherit it from the Argument Ontology.

When a claim is created the user must associate an ontology entry with it. This is done
using the “Select” button. This will bring up the ontology so the user can choose an entry
to associate.

FIGURE A-9. Claim Editor

A-15

A.2.2.6. Assumption

Figure A-10 shows the Assumption Editor. This only requires a Name although it is more
descriptive if a Description is specified as well.

FIGURE A-10. Assumption Editor

A.2.2.7. Question

Figure A-11 shows the Question Editor. For each question, there is the Status that
indicates if it is answered or not, a Procedure that describes the steps that must be taken to
get the answer, and the Answer (once known).

FIGURE A-11. Question Editor

A-16

A.2.2.8. Tradeoff

Figure A-11 shows the Tradeoff Editor. Tradeoffs are made between two Ontology Entry
items. Tradeoffs can be symmetric, which indicates that they are always traded off against
each other, or non-symmetric, which means the dependency is one-way. For example, in
this non-symmetric tradeoff, Ontology Entry 1, Increases Flexibility, always needs to be
traded off against Ontology Entry 2, Reduces Development Time. This means that if a
choice increases flexibility it will increase development time. The other way around,
however, is not true–if a choice increases development time it is not necessarily because of
added flexibility.

FIGURE A-12. Tradeoff Editor

A.2.2.9. Co-occurrence

The Co-occurrence Editor is identical in format to the Tradeoff Editor.

A.2.2.10. Ontology Entry

Figure A-13 shows the Ontology Entry Editor. This describes the entry and gives its
Importance. This Importance will be inherited by any claims that reference the ontology
entry.

A-17

FIGURE A-13. Ontology Entry Editor

A.2.3. Editing Existing Rationale

Editing existing rationale is done by right-clicking on the Rationale Element and selecting
“Edit.”

A.3. The Rationale-Code Connection

Each selected alternative should (eventually) have code that implements it. This could be a
method, a class, an attribute, or a combination of several of the above. By associating
alternatives with code, if the alternative needs to be re-examined it will be easier for the
developer or maintainer to find where it was implemented.

A.3.1. Associating Rationale with Code

Code is associated with rationale by selecting the code in the Package Explorer and then
choosing “Associate” by right-clicking on the alternative. This will display the name of
the selected code item so the user can verify that this is the association they want. The icon
next to the class that contains the code will then be marked with a small rat icon. Figure A-
14 shows the Package Explorer where the classes MeetingDate and MeetingObj have
rationale associated with them.

A-18

FIGURE A-14. Package Explorer with Associations

A.3.2. Finding Associated Rationale

There are several ways to find rationale associated with the code. If you have the code,
and want to know if there is rationale, and what it is, the first thing to do is to look if there
is a “Bookmark” in the code, denoted by an “i” in the left-hand margin. If yes, the name of
the rationale can be displayed by putting the mouse over the “i.” The rationale will also be
displayed on the Bookmark View. Figure A-15 shows the Bookmark View.

FIGURE A-15. Bookmark View

A-19

If the user has an alternative and they want to know the associated code, they can bring up
the alternative in the editor to see if the association has been made, and to what. Figure A-
16 shows an alternative with a code association listed.

FIGURE A-16. Alternative Showing Code Association

The user can also look for the alternative in the Bookmark View and by clicking the
bookmark entry, can bring up the associated code in the editor.

A.3.3. Removing Rationale Associations

Associations can be removed in two ways. The first is by right-clicking on the class in the
Package Explorer and choosing “Remove Association.” This will delete all associations
for the file. The other, which is more selective, is by right-clicking on the bookmark in the
Bookmark View and choosing “Remove Association.” This will only remove the
association that goes with that specific bookmark. This is useful if you do not want to
remove all associations with the file. It is also possible to remove bookmarks by choosing

A-20

“Delete” but that will not remove the association even though it will remove it from the
display.

A.4. Rationale Tasks

When problems are detected in the rationale, they are displayed in the Rationale Task List.
The icon next to the problem indicates if it is an error or a warning. The task states what
the problem is, what rationale item it is associated with, and the type of the rationale item.
Right-clicking on the task and selecting “View” will bring the rationale up in the editor. If
the problem is one that the user wants to ignore, they can override the task by selecting
“Override” when right-clicking on the task. This will not delete the task, it will just stop
displaying it. Figure A-17 shows the Rationale Task List.

FIGURE A-17. Rationale Task List

The following errors and warnings are detected and reported by SEURAT:

• Error: No alternative is selected for a decision.
• Error: A requirement is violated.
• Error: A tradeoff is contradicted by having normally opposing arguments on the same

side of the argument.
• Error: A co-occurrence is contradicted by having items appearing on opposing sides of

the argument rather than together.
• Error: An alternative pre-supposes another alternative that is not selected.
• Error: An alternative is opposed by another alternative that is selected.
• Error: An alternative is selected that has arguments opposing it but none supporting it.

A-21

• Error: An alternative has contradictory arguments (the same, or similar, argument
before and against).

• Error: More than one alternative has been selected for a decision when only one is
allowed.

• Error: A decision requires sub-decisions to be decided and the sub-decisions are miss-
ing.

• Warning: The alternative selected is not as well supported as other choices.
• Warning: The alternative selected has no arguments supporting it.
• Warning: A tradeoff is violated by missing an element
• Warning: A co-occurrence is violated by missing an element.
• Warning: A question has not been answered.
• Warning: An alternative has duplicate arguments.

A.5. Rationale Queries

At the top of the Rationale Explorer there is a downward arrow that allows the user to
bring down a menu of query options (the Rationale Query Menu). These are described in
the following sections.

A.5.1. Find Rationale Entity

The Find Rationale Entity option allows the user to search for particular types of rationale
entities (requirements, decisions, alternatives, etc.). The user is first instructed to specify
the type of entity as shown in Figure A-18.

FIGURE A-18. Find Entity Display

This then brings up a list of items of that type, as shown in Figure A-19. The user can
search for all or part of the item name to find it in the list. After find it, the user then can
bring up the item in an editor by using the “Edit” button. The user can also choose to
expand it in the hierarchy shown in the Rationale Explorer by using the “Show” button.
This is helpful if the user wants to know the context around the entity.

A-22

A.5.2. Find Common Arguments

Another useful query is to find out what are the most common arguments are. This can be
done for each of the three types: argument, claim, and ontology entry. Selecting which
type is the first step, as shown in Figure A-20. The user can also indicate if they are only
interested in common arguments for selected alternatives.

FIGURE A-19. Select Claim Display

FIGURE A-20. Find Common Arguments

After selecting the type, the arguments are then displayed in a table giving the total
references, the number of times it was used to argue in support for an alternative and the
number of times it opposed an alternative. Figure A-21 shows the Common Argument
Display showing ontology entries.

A-23

A.5.3. Find Requirements

The Find Requirements query lets the user look for requirements by their status. For
example, they could get a list of all the violated requirements or all the satisfied
requirements. The user selects the type using the display shown in Figure A-22. The list of
requirements is shown in Figure A-23.

FIGURE A-21. Common Argument Display

FIGURE A-22. Find Requirements Display

A-24

FIGURE A-23. Addressed Requirements

A.5.4. Find Status Overrides

The user can choose to override any of the items given in the Rationale Task List. This
will keep the error or warning from being displayed in the list or indicated by an error or
warning icon in the Rationale Explorer. The list of overridden items can be shown by
choosing “Find Status Overrides” in the Rationale Query menu. Figure A-24 shows the
Status Overrides display. The user can remove any override from this list and the
Rationale Task List and Rationale Explorer will be updated when they exit from the
display.

FIGURE A-24. Status Override Display

A-25

A.5.5. Find Importance Overrides

The user can also display a list of all claims and arguments where the default importance
has been overridden. This can happen in several ways:

• A claim (which could be used by many arguments) has been given an importance other
than the default inherited from the Argument Ontology.

• An argument that refers to a claim has been given an importance other than the default
inherited from the claim (which inherits from the Argument Ontology)

• An argument that refers to a requirement has been given an importance of something
other than “Essential.”

This display is brought up by selecting “Find Importance Overrides” from the Rationale
Query Menu. Figure A-25 shows the Importance Override Display.

FIGURE A-25. Importance Override Display

A.6. Using the Rationale

There are a number of interesting things that can be done using SEURAT and the
rationale. Two of these deserve special mention because they can be very useful in
performing software maintenance.

A-26

A.6.1. Modifying Importance Values

One thing that can help find places where decisions should be re-visited is to modify the
importance values and see if that results in any selected alternatives being less supported
than the non-selected alternatives. For example, it might be interesting to reduce the
importance of claims that refer to alternatives as being easy to code or reducing
development cost. This could point out alternatives that were chosen because they were
easier to code up than others. Conversely, making an item in the Argument Ontology more
important could find places where modification might be needed. For example, scalability
could be increased in importance to see if there were choices made that were less scalable
than their alternatives.

A.6.2. Disabling Rationale Items

There are two places where disabling an item would be useful. One is with the
assumptions made when developing a system. If the assumption no longer holds true in
the future, those decisions should be revisited. SEURAT can be used to find where the
code might need to be modified. The other useful place is with requirements. If a
requirement no longer is valid then it is good to know what alternatives were chosen in
order to meet the requirement and what alternatives were rejected because they violated
the requirement.

B-1

APPENDIX B Experimental Surveys

This appendix presents two types of surveys used in the experiment. The first is an initial
survey given to all subjects prior to the experiment. This asks general information about
their experience and was used to divide them into the two experiment groups. The second
type is the post-experiment survey. There are two versions: a survey for the experimental
group that asks them about SEURAT usability, SEURAT usefulness, and some general
questions about the experiment and a survey for the control group that asks general
questions about the experiment.

B-2

Initial Survey – SEURAT Evaluation

Please return to Janet Burge’s mail box by 5 pm, November 3.

The purpose of this survey is to get an idea of your background to aid in analyzing experi-
mental results. It is important that this information be accurate.

Name: _____________________

e-mail (so I can contact you if schedules change!): _____________________

If you’ve worked in the software industry, for how long (this should be actual time spent –
time in school between internships does not count):

College Degrees received and year:

BS: Area: ______________ Year: ______________
MS: Area: ______________ Year: ______________
PhD: Area: ______________ Year: ______________

Any degrees in progress? _______________________________

Level of Java Experience (circle one): None Some Moderate Expert

Please describe your last three Java projects:

1.

2.

B-3

3.

Have you used Eclipse before? (circle one): Yes No

What are the dates/dates/times when you are likely to be available to do the experiment (or
if it’s easier, what dates/times are bad – make sure you indicate which you are putting
down!)? All experiments will be performed at WPI in Worcester or CRA in Cambridge.

I understand that the results of this experiment will be published and give my permission
for this to happen under the condition that this will be done anonymously.

I would like to be listed as a contributor in Janet’s dissertation (circle one):

Yes No

B-4

Post-Experiment Survey - Experimental Group

Name: ____________________________
Date: ___________________

Most questions in this survey follow a Likert scale where a statement is made and your
level of agreement is one of the following:

SA: strongly agree
A: agree
U: undecided
D: disagree
SD: strongly disagree

Questions of this type will consist of a statement, followed by a choice of options. Please
circle the one that best applies.

Part I: SEURAT Usability

1. SEURAT was easy to use.

SA A U D SD

2. What part of SEURAT was the most difficult to understand/use?

3. What suggestions would you have for making SEURAT easier to use?

B-5

Part II: Usefulness of SEURAT

1. SEURAT would make it easier to maintain software

SA A U D SD

Explain:

2. It was easy to find the code associated with the rationale

SA A U D SD

Explain:

3. The error and warning messages from SEURAT were clear and useful.

SA A U D SD

Explain:

B-6

4. Performing the tasks took less time than they would have if SEURAT was not avail-
able.

 SA A U D SD

Explain:

5. Using SEURAT helped me make better decisions.

 SA A U D SD

Explain:

6. Using SERUAT helped me avoid making mistakes.

 SA A U D SD

Explain:

B-7

7. If I had SEURAT available I would use it to do my work.

SA A U D SD

Explain:

8. What features should be added (or removed!) that would make SEURAT more useful?

B-8

Part III: Experiment Evaluation

Quality of Explanation

1. Sufficient instruction was given to me to understand how SEURAT works

SA A U D SD

2. The explanation of task 1 was sufficient for me to understand what I needed to do

SA A U D SD

3. The explanation of task 2 was sufficient for me to understand what I needed to do

SA A U D SD

4. The explanation of task 3 was sufficient for me to understand what I needed to do

SA A U D SD

Time Allowed (if applicable)

5. Sufficient time was allowed to complete task 1

SA A U D SD

6. Sufficient time was allowed to complete task 2

SA A U D SD

7. Sufficient time was allowed to complete task 3

B-9

SA A U D SD

8. Any additional comments on the experiment?

B-10

Post-Experiment Survey - Control Group

Name or ID: ____________________________
Date: ___________________

Most questions in this survey follow a Likert scale where a statement is made and your
agreement is one of the following:

SA: strongly agree
A: agree
U: undecided
D: disagree
SD: strongly disagree

Questions of this type will consist of a statement, followed by a choice of options. Please
circle the one that best applies.

Experiment Evaluation

Quality of Explanation

1. The explanation of task 1 was sufficient for me to understand what I needed to do

SA A U D SD

2. The explanation of task 2 was sufficient for me to understand what I needed to do

SA A U D SD

3. The explanation of task 3 was sufficient for me to understand what I needed to do

SA A U D SD

Time Allowed (if applicable)

B-11

4. Sufficient time was allowed to complete task 1

SA A U D SD

5. Sufficient time was allowed to complete task 2

SA A U D SD

6. Sufficient time was allowed to complete task 3

SA A U D SD

7. Any additional comments on the experiment?

B-12

	Worcester Polytechnic Institute
	Digital WPI
	2005-05-02

	Software Engineering Using design RATionale
	Janet E. Burge
	Repository Citation

	Software Engineering Using design RATionale
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	CHAPTER 1 Introduction
	1.1. The Goal of the Research
	1.2. The Importance of the Research
	1.3. Expected Benefits
	1.4. Design Rationale
	1.5. Why Isn’t Rationale Used Now?
	1.6. The Challenge of DR in Software Engineering
	1.7. Expected Results
	1.8. Organization of the Dissertation

	CHAPTER 2 The Problem
	2.1. Design Rationale and the Software Development Process
	2.2. Uses of Rationale in Software Development and Maintenance
	2.3. Encouraging DR Use in Software Design
	2.4. Summary

	CHAPTER 3 Relevant Research
	3.1 Design
	3.2 AI in Design
	3.3 Design Rationale
	3.3.1 Design Rationale Representation
	3.3.2 Design Rationale Capture
	3.3.3 Design Rationale Use
	3.3.4 Design Rationale for Software Design
	3.4 Software Design

	3.4.1 Software Development Processes
	3.4.2 Requirements Engineering
	3.4.3 Software Architecture
	3.4.4 Software Maintenance
	3.5 Summary

	CHAPTER 4 Investigating DR Uses: Inferencing over Design Rationale
	4.1 Using Rationale for Validation and Evaluation
	4.2 Prototype System for Inferencing Over Rationale
	4.2.1 Approach
	4.2.2 Inferences
	4.2.3 Vocabulary
	4.2.4 Tradeoff Evaluation
	4.3 Implementation and Examples

	4.3.1 Browse Rationale
	4.3.2 Modify Rationale
	4.4 Summary

	CHAPTER 5 The Software Development Process and Rationale
	5.1 Study Goals
	5.2 Study Description
	5.3 Study Results
	5.4 Summary and Conclusions

	CHAPTER 6 The Approach
	6.1. Uses of Rationale for Software Maintenance
	6.2. Tool Support for Rationale Use

	CHAPTER 7 Software Engineering Using RATionale (SEURAT)
	7.1. System Architecture
	7.2. Rationale Representation
	7.2.1. Motivation
	7.2.2. Related Work
	7.2.3. Representation Format
	7.2.3.1. Requirement
	7.2.3.2. Decision Problem
	7.2.3.3. Questions
	7.2.3.4. Alternatives
	7.2.3.5. Arguments
	7.2.3.6. Claims
	7.2.3.7. Assumptions
	7.2.3.8. Argument Ontology
	7.2.3.9. Background Knowledge
	7.3. Inferences Supported

	7.3.1. Syntactic
	7.3.1.1. No Reason For Selection
	7.3.1.2. Selection Contradicted
	7.3.1.3. No Selected Alternative
	7.3.1.4. Too Many Selected Alternatives
	7.3.1.5. Missing Sub-Decisions
	7.3.1.6. Unanswered Questions

	7.3.2. Semantic
	7.3.2.1. Best Supported Alternative not Selected
	7.3.2.2. Requirements Violation
	7.3.2.3. Contradictory Arguments
	7.3.2.4. Duplicate Arguments
	7.3.2.5. Pre-Supposed Not Selected
	7.3.2.6. Opposed Selected
	7.3.2.7. Co-occurrence Relationship Violation
	7.3.2.8. Co-Occurrence Relationship Missing
	7.3.2.9. Tradeoff Violation
	7.3.2.10. Tradeoff Missing

	7.3.3. Queries
	7.3.3.1. Find Entity
	7.3.3.2. Find Requirement
	7.3.3.3. Find Common Arguments
	7.3.3.4. Find Status Overrides
	7.3.3.5. Find Importance Overrides
	7.3.3.6. Find Related Arguments

	7.3.4. Historical
	7.3.4.1. Detecting Rejected Alternatives
	7.3.4.2. Element History
	7.4. Argument Ontology

	7.4.1. Affordability Criteria
	7.4.2. Adaptability Criteria
	7.4.3. Dependability Criteria
	7.4.4. End User Criteria
	7.4.5. Needs Satisfaction Criteria
	7.4.6. Maintainability Criteria
	7.4.7. Performance Criteria
	7.5. Rationale Entry and Presentation

	CHAPTER 8 SEURAT Software Design and Implementation
	8.1. SEURAT Software Architecture
	8.2. Rationale Repository and Argument Ontology
	8.2.1. Requirements
	8.2.2. Decision
	8.2.3. Alternative
	8.2.4. Argument
	8.2.5. Claim
	8.2.6. Assumption
	8.2.7. Ontology Entry
	8.2.8. Tradeoffs
	8.2.9. Questions
	8.2.10. History
	8.2.11. Status
	8.2.12. Associations
	8.3. Rationale Explorer

	8.3.1. Requirement Menu
	8.3.2. Decision Menu
	8.3.3. Alternative Menu
	8.3.4. Argument Menu
	8.3.5. Claim Menu
	8.3.6. Assumption Menu
	8.3.7. Question Menu
	8.3.8. Tradeoff and Co-Occurrence Menu
	8.3.9. Ontology Entry Menu
	8.4. Inference Engine

	8.4.1. Error and Warning Visualization
	8.4.2. Error and Warning Detection
	8.4.2.1. Requirement Inferences
	8.4.2.2. Decision Inferences
	8.4.2.3. Alternative Inferences
	8.4.2.4. Question Inferences
	8.4.2.5. Argument Inferences
	8.4.2.6. Claim Inferences
	8.4.2.7. Assumption Inferences
	8.4.2.8. Ontology Inferences
	8.4.2.9. Tradeoff Inferences
	8.5. Rationale to Code Associations
	8.6. Rationale Display and Editing

	8.6.1. Requirement
	8.6.2. Decision
	8.6.3. Alternative
	8.6.4. Argument
	8.6.5. Claim
	8.6.6. Assumption
	8.6.7. Question
	8.6.8. Tradeoff
	8.6.9. Co-occurrence
	8.6.10. Ontology Entry
	8.7. Rationale Query Interface

	8.7.1. Find Rationale Entity
	8.7.2. Find Common Arguments
	8.7.3. Find Requirements
	8.7.4. Find Status Overrides
	8.7.5. Find Importance Overrides

	CHAPTER 9 System Demonstration
	9.1. Software Maintenance Examples
	9.2. Inferencing Examples
	9.3. Summary

	CHAPTER 10 Evaluation
	10.1. Experiment Design
	10.1.1. Experiment Goals
	10.1.2. Experiment Design
	10.1.2.1. System Selection and Rationale Collection
	10.1.2.2. Experiment Design
	10.1.2.3. Experiment Task Selection
	10.1.2.4. Experiment Dry Runs

	10.1.3. Experiment Subject Selection
	10.2. Experiment Results

	10.2.1. Support for Maintenance
	10.2.1.1. Adaptive Maintenance
	10.2.1.2. Corrective Maintenance
	10.2.1.3. Enhancive Maintenance
	10.2.1.4. Statistical Analysis
	10.2.1.5. Summary

	10.2.2. SEURAT Usability
	10.2.3. SEURAT Usefulness
	10.2.4. Experiment Evaluation
	10.3.1. Experiment Shortcomings
	10.3.2. Suggested Improvements/Additional Experiments

	CHAPTER 11 Conclusion
	11.1. Contributions
	11.2. Future Work
	11.2.1. Investigation of Rationale for Different Phases
	11.2.2. Multi-User Rationale
	11.2.3. Longer-Term SEURAT Study
	11.2.4. Rationale Capture
	11.3. Summary

	References
	APPENDIX A SEURAT User’s Guide
	A.1. What is SEURAT?
	A.2. Rationale in SEURAT
	A.2.1. Rationale Structure
	A.2.2. Entering New Rationale
	A.2.2.1. Requirement
	A.2.2.2. Decision
	A.2.2.3. Alternative
	A.2.2.4. Argument
	A.2.2.5. Claim
	A.2.2.6. Assumption
	A.2.2.7. Question
	A.2.2.8. Tradeoff
	A.2.2.9. Co-occurrence
	A.2.2.10. Ontology Entry

	A.2.3. Editing Existing Rationale
	A.3. The Rationale-Code Connection

	A.3.1. Associating Rationale with Code
	A.3.2. Finding Associated Rationale
	A.3.3. Removing Rationale Associations
	A.4. Rationale Tasks
	A.5. Rationale Queries

	A.5.1. Find Rationale Entity
	A.5.2. Find Common Arguments
	A.5.3. Find Requirements
	A.5.4. Find Status Overrides
	A.5.5. Find Importance Overrides
	A.6. Using the Rationale

	A.6.1. Modifying Importance Values
	A.6.2. Disabling Rationale Items

	APPENDIX B Experimental Surveys

