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Abstract

This dissertation was conducted as part of the efforts related to WPI’s Precision Personnel Lo-

cation (PPL) project, the purpose of which is to locate emergency personnel in hazardous indoor

environments using radio location techniques. The current PPL system prototype uses a radio trans-

mitter worn by the personnel, indoors, and receivers on reference units, outdoors. This dissertation

proposes a new system architecture with bidirectional radio transmissions to replace the current uni-

directional system architecture. This allows the development of a synchronization scheme that can

extract additional Time of Arrival (TOA) information for estimating the location of personnel. This

dissertation also describes an extension of the multi-signal fusion technique previously used that

incorporates this TOA information. At the cost of a more complicated mobile unit design, resultant

benefits of this approach include rejection of signal reflectors as solutions, improved accuracy with

limited reference unit geometries, improved noise rejection and significant computation reduction.

In this dissertation the mathematical underpinnings of this approach are presented, a performance

analysis is developed and the results are evaluated in the context of experimental data.
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Chapter 1

Introduction

This dissertation was written in support of the Precision Personnel Location (PPL) project which

is being conducted by the Electrical and Computer Engineering Department of Worcester Polytech-

nic Institute (WPI). This project has received funding from the Department of Justice, Department

of Homeland Security, Federal Emergency Management Agency and Honeywell. The goal of the

project is to design a precision location system capable of locating first responders in indoor en-

vironments. This dissertation deals specifically with improving the accuracy of this system with

additional timing information obtained via two-way signal exchanges between mobile devices worn

by the first responders and reference units at fixed positions outdoors.

Throughout this document several acronyms are used. Each are defined in the text, but are also

provided in Table 1.1 as a quick reference. Similarly mathematical conventions are provided in

Table 1.2 and variable names used in Table 1.3.

1.1 Precision Personnel Location Problem

On December 3, 1999 a veritable tragedy occurred in Worcester, Massachusetts. An aging brick

warehouse, the former Worcester Cold Storage and Warehouse Co. building, became host to a fierce

inferno. What at first seemed like a routine response by the Worcester Fire Department turned out

to be deadly. Two firefighters entered the building initially, concerned that people might be inside.

The two men soon found themselves in trouble and called for help using their radios. Four more

firefighters were sent in to search for them, but soon became missing themselves. Several other
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ADC Analog to Digital Converter
DAC Digital to Analog Converter
DFT Discrete Fourier Transform
DSS Direct State Space
FFT Fast Fourier Transform
GAC Geometric Autoconfiguration
GPS Global Positioning System
PPL Precision Personnel Location
RF Radio Frequency
RMS Root Mean Square
RX Receiver
σART Singular Value Array Reconciliation Tomography
SNR Signal to Noise Ratio
TART Transactional Value Array Reconciliation Tomography
TCVR Transceiver
TDOA Time Difference Of Arrival
TOA Time Of Arrival
TX Transmitter
WPI Worcester Polytechnic Institute
1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional

Table 1.1: Acronyms
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Time and frequency x(t)
F
⇔ X(ω) = X(2π f )

Imaginary unit j =
√
−1

Set of all real numbers �

Set of all complex numbers �

Real part of complex number Re(z)
Imaginary part of complex number Im(z)
Element in set ∈

Natural logarithm lnx
Base of natural logarithm e
Angle of complex number z = xe jθ, ∠z = θ + 2πa, for integer a

Unit impulse function [23]
δ(t) =

{
+∞, t = 0
0, t , 0

,∫ ∞
−∞

δ(t)dt = 1

Convolution [23]
z(t) = x(t) ∗ y(t),
z(t) =

∫ ∞
−∞

y(t)x(t − τ)dτ
Vector x
Matrix X
Element in matrix (X)a,b

Absolute value or complex magnitude | · |

Euclidean norm || · ||

Random variable x̃

Test value
#
x

Conjugate transpose (Hermitian) XH

Entrywise, Hadamard or Schur product Z = X ◦ Y, (Z)a,b = (X)a,b(Y)a,b

Entrywise complex magnitude Z = elm(X),(Z)a,b = |(X)a,b|

Argument of the maximum argmax
Expectation operator E{·}
Is distributed as ∼

Determinant of matrix detX
Variance of random variable varx̃
Covariance of random variable covx̃
Standard deviation of random variable stdx̃
Root Mean Square of random variable rmsx̃
Normal distribution N(µ, σ2)
Multivariate normal distribution N(µ,Σ)
Multivariate complex normal distribution C(µ,Γ)
Rice distribution R(ν, σ2)
Del operator ∇

Table 1.2: Mathematical Conventions
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Speed of light [meters/second] c
Range [meters] [meters]
Time [seconds] t
Discrete time [samples] k
Number of time samples K
Frequency [Hz] f
Angular frequency [radians/second] ω

Signal period [seconds] T
Frequency spacing between carriers ∆f , ∆ω

Signal index n
Number of signals N
Carrier index m
Number of carriers M
Reference unit index p
Number of reference units P
Mobile unit index q
Number of mobile units Q
Time delay for signal n tn
Time delay for signal n and Reference Antenna p tn,p
Attenuation for signal n γn

Attenuation for signal n and Reference Antenna p γn,p

Vector of carrier frequencies f or ω
Centered vector of carrier frequencies ωc

Transmitted signal x(t),X(ω), x(k), x
Received signal r(t),R(ω),r
Channel response h(t),H(ω),h
Sample clock frequency fs

RF mixer frequency fc
Random time-offset τ̃

Random phase offset θ̃

Position vector v
Mobile unit position vl

Mobile unit position test value
#
vl

Mobile unit position estimate
?
vl

Reference unit position vp

Received signals matrix R
Rephased received signals matrix R′

Ideal synchronization rephased received signals matrix R′ideal

Received signals matrix rephased to correct location
?

R′

Time delay test value for Reference Antenna p
#
t0,p

Rectified received signal s
Ideal TART metric function f (v)

Table 1.3: Variable Names
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firefighters searched for their comrades for some time, but to no avail. The fire was too fierce, and

they were forced to evacuate. None of the six men made it out of the building alive. [11, 27]

This depressing event left many questions in people’s minds. How could this happen? What

could have been done to prevent such a tragedy? If only the firefighters had better knowledge of

where to look for their fallen companions, they may have been able to all get out safely. Could

this have been possible? Does the technology exist to keep track of individuals in such an envi-

ronment? Sadly, it does not. It is for this reason that the Electrical and Computer Engineering

Department of Worcester Polytechnic Institute assembled a team of researchers, currently funded

by the United States government’s Department of Homeland Security and Federal Emergency Man-

agement Agency, to create such a technology.

The goal that our team is trying to achieve is the creation of a location system for personnel such

as firefighters that requires no preexisting infrastructure and can perform accurately in hazardous

indoor environments. This project has been titled the Precision Personnel Location project. In our

proposed system, an incident commander would be constantly updated with the knowledge of the

location of his/her personnel. The system needs to be able to be put into operation quickly, without

any preexisting knowledge of the site, since it is never known when or where a fire response (or

similar event) is needed. [29]

The desired level of accuracy is such that our position estimates are within 1 foot of the true

position. This is so that there is as little ambiguity as possible as to where the personnel are located,

whether on one side of a wall or another for example. The system should also record position

estimates over time so that the paths taken by personnel are available in case they are needed to

direct personnel back the way they came or send someone after them. Other features of the system

include a wireless data channel for sending information such as environmental and physiological

conditions. [29]

1.2 RF-based Indoor Position Estimation

There are many avenues that may lead to a solution to the indoor location problem. The existing

Global Positioning System (GPS) uses radio frequency electromagnetic waves to perform position

estimation, but suffers from poor accuracy indoors in its standard operation.[22] Other methods
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include inertial navigation and even ultrasound based systems.[21]

Our team decided to use radio frequency electromagnetic waves (RF) as our means for position

estimation. In the proposed scheme, inside a building each person to be located would wear a

transmitter device with an antenna to generate a signal. Outside the building this signal would be

received by units with antennas on them.

Let c be the speed of light in our environment. If the time the signal took to propagate through

the air from the transmit antenna to the receive antennas could be determined, then the distance

between the antennas, called the range, can be deduced.

r = ct, (1.1)

where r is the range in meters, c is the speed of light in meters per second, and t is the time of

propagation in seconds from the transmit antenna to the receive antenna.

It is known that in air electromagnetic waves at radio frequencies travel at very close to the

speed of light in a vacuum, 299,792,458 meters per second. In some cases however, it is useful to

compute a more precise value of the speed of light in air based upon atmospheric conditions.[26]

If the range from the transmit antenna to several receive antennas outside the building can be

measured, then the position of the transmitter may be determined geometrically. This assumes that

the locations of the receive antennas are known. Thus some sort of procedure must be executed

when the system is deployed to determine these receive antenna positions. This may performed

manually by surveying with measuring devices, although in an emergency situation this would

not be practical. Thus the locations of the receive antennas should be measured automatically

by the system using a radio ranging approach similar to how the personnel-attached transmitter

is located. This is known as Geometric Autoconfiguration (GAC), and has been an active research

area for the PPL team.[32, 33] In the firefighter application the receive antennas would most likely

be fixed to firetrucks extended upon ladders outside the building. The system concept is illustrated

in Figures 1.1.

The greatest challenge with performing indoor location with radio frequency electromagnetic

waves is the complexity of the radio propagation environments involved. Radio waves are reflected

by metal objects, which are plentiful in indoor environments. This results in the signals received

being a combination of the so called direct path signal, and reflected signals, called multipath. This
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Figure 1.1: Precision Personnel Location System [30]
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behavior is illustrated in Figure 1.2. The direct path is always the shortest path, since it travels

ReceiverTransmitter

Direct Path

Reflection

Reflectio
n

Figure 1.2: Multipath

directly from the transmit antenna to the receive antenna. But before one could hope to make such a

distinction the direct path signal and multipath signals must be disentangled somehow. This problem

contributes strongly to why current GPS systems do not function accurately indoors. A successful

RF indoor location system development must find a way to take the multipath problem into account

and mitigate its effects.

There are different possible RF signal structures that may be used to solve the indoor location

problem. One notable approach is known an Impulse Ultra-Wideband (UWB) which uses a series

of pulses that are very narrow in time, and thus very broad in frequency. This causes the signal to

occupy frequencies in use by other services so such sources are regulated to use low power levels

so as to not interfere with these other services. The low power levels make it difficult to perform

location at larger distances or through building materials. [28]

The Impulse Ultra-Wideband approach attempts to perform one-dimensional ranging between

the transmit antenna and each receive antenna. Then from these one-dimensional ranges a position

estimate is deduced. In practice it is generally not possible to determine the absolute distance from a

transmitter to a receiver. Instead the relative differences of the ranges is determined, adding an extra

degree of freedom that is resolvable with an additional receive antenna position. This is known as

the Time Difference Of Arrival (TDOA) approach, as opposed to absolute Time Of Arrival (TOA).

From these range estimates (or relative range estimates) the position can be deduced using a solution

method called multilateration. One algorithm that can achieve this is the Bard algorithm.[7]

Because of the issues inherent with the Impulse Ultra-Wideband approach, the early efforts in

the WPI Precision Personnel Location project considered alternate location systems and associated

ranging signals. The next chapter will introduce the method that was chosen, which uses a so
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called multicarrier signal. In addition to using a unique ranging signal, the WPI PPL team devel-

oped a unique algorithm called Singular Value Array Reconciliation Tomography (σART ). This

algorithm estimates the position of a mobile transmitter based upon received multicarrier signals.

Unlike existing RF location systems which estimate one-dimensional ranges before multilateration,

σART performs a multi-signal fusion operation to solve for a position estimate directly.[12]

This dissertation contributes an extension to both the PPL system architecture as well as the

multi-signal fusion algorithm in order to obtain benefits from TOA information. This disserta-

tion will show that TOA information has significant advantages over TDOA information in many

cases of for our application. As discussed, TOA information is generally unattainable with a uni-

directional signal from a transmitter to a receiver. With an transactions of bidirectional signals

between transceivers however, it is possible to attain this TOA information. Existing location sys-

tems use bidirectional signals to obtain TOA information, but only for the classical approach of

one-dimensional ranging and multilateration.[13, 19]

The following chapter will discuss the theory governing the existing PPL prototype system. Sub-

sequently, in Chapter 3 the novel extension to the PPL system, Transactional Array Reconciliation

Tomography (TART), will be introduced and compared to the existing σART method using simu-

lated signal data. Also in Chapter 3, the synchronization scheme necessary to support TART will be

described. Various technical challenges that arise in the implementation of the TART approach with

real system hardware will be discussed in Chapter 4. Chapter 5 will explore the behavior of TART

when using received signals that are corrupted with noise, by deriving an analytic perturbation ap-

proximation of the position error for various levels of signal to noise ratio and system geometries.

Finally, Chapter 6 will present the performance of TART using real data in various system tests,

showing superior performance to the existing system using σART.
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Chapter 2

A Multicarrier Approach to Precision

Indoor Location

This chapter presents the mathematical model of an indoor RF environment and how the partic-

ular signal that our system uses extracts information from that environment, to be used to estimate

the position of a unit indoors.

2.1 Channel Response

Consider an RF transmitter broadcasting a signal x(t) which is received by a receiver. If the

transmitter and the receiver are some distance apart r0, then in an ideal RF environment (free space)

the signal at the receiver would be a time delayed version of the original γ0x(t − t0), where t0 =
r0
c

and γ0 is an attenuation factor. Assuming a passive channel γ0 < 1. If we interpret our signals in

the frequency domain

x(t)
F
⇔ X(ω), (2.1)

γ0x(t − t0)
F
⇔ γ0X(ω)e− jωt0 , (2.2)

based on the properties of the Fourier transform.[23]

In an indoor RF environment however, we must use a model that takes multipath into account.

Recall Figure 1.2 on page 8. We will use the convention depicted, which is that the direct path signal

will be labeled signal 0 with corresponding delay t0 and attenuation γ0. We may have any number
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of reflected signals, so we will say generally that we have N signals, and will index a particular

signal with n. The received signal is a sum of these individual contributions. Therefore our discrete

multipath channel model in the time domain is

h(t) =

N−1∑
n=0

γn δ(t − tn). (2.3)

This function h(t) is the impulse response of the channel, and δ(t) is the unit impulse function.

Taking the Fourier transform we obtain the frequency response of the channel,

H(ω) =

N−1∑
n=0

γn e− jωtn . (2.4)

These functions are different representations of the same information, which will be referred to as

the channel response.

This channel model is a linear system, therefore its input-output relationship can be expressed

r(t) = x(t) ∗ h(t), (2.5)

R(ω) = X(ω)H(ω), (2.6)

where the operator ∗ represents the convolution integral and r(t), R(ω) represent the output, or

received signal. [23]

2.2 Multicarrier Signal

The WPI PPL project group decided to use an RF-based location system with a signal struc-

ture quite different from GPS and Impulse Ultra-Wideband, a multicarrier approach.[14] Using this

method we interpret received signals to obtain position estimates by frequency domain analysis,

where these methods have been determined to be very effective in their ability to accept direct path

signals and reject multipath signals. The chosen multicarrier signal consists of several unmodulated

sinusoids evenly spaced in frequency.

Consider our signal, which is a sum of several sinusoids. They are evenly spaced in frequency

and each sinusoid has a respective initial phase angle of θm.

x(t) =

M−1∑
m=0

e− j(t(ω0+m∆ω)+θm) (2.7)
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where we have M sinusoids spaced ∆ω apart in frequency, and the lowest frequency sinusoid has a

frequency ω0. Taking the Fourier transform of x(t) we get

X(ω) =

M−1∑
m=0

δ((ω − (ω0 + m∆ω))e jθm , (2.8)

which is a series of impulses in the frequency domain. Figure 2.1 shows an example of what the

magnitude spectrum of a Multicarrier signal with 10 carriers looks like in the frequency domain.

ω
0

ω
0
+(M−1)∆ωFrequency [rad/sec]

|X
(ω

)|

0

1

Figure 2.1: Example Multicarrer Magnitude Spectrum

Since we are able to choose the signal that is transmitted, we choose the phase angles θm of

each carrier. Theoretically they can be arbitrary, however in practice we choose these phase angles

in order to minimize the signals crest factor [8], the ratio of the signal’s peak value to its average

power. This is important in order to optimize the power handling capacity of the transmitter RF

power amplifier.

Recall our received signal R(ω) = X(ω)H(ω). If X(ω) is a train of impulses, then multiplication

by H(ω) is a sampling process. Thus we can consider our multicarrier signal as sampling the channel

response. This reduces our carrier representation effectively to an ordered list. Our analog received

signal is discretized and becomes the entry-wise product (see Table 1.2)

r = x ◦ h, (2.9)

where r, x and h are defined as

r =

[
R(ω0) . . . R(ω0 + ∆ωm) . . . R(ω0 + ∆ωM)

]T
, (2.10)

x =

[
X(ω0) . . . X(ω0 + ∆ωm) . . . X(ω0 + ∆ωM)

]T
, (2.11)

h =

[
H(ω0) . . . H(ω0 + ∆ωm) . . . H(ω0 + ∆ωM)

]T
. (2.12)
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Similarly we will define ω as the vector set of our carrier angular frequencies,

ω =

[
ω0 . . . ω0 + ∆ωm . . . ω0 + ∆ωM

]T
. (2.13)

Received signals can be subsequently analyzed in this vector form.

2.2.1 Aliasing Issues

Any signal consisting of a sum of harmonically related sinusoids must be periodic. Let us

consider first the simplest case, a single real sinusoid with period T

f1(t) = cos
(
2πt
T

)
. (2.14)

Since the signal repeats itself every time one period elapses, we have ambiguity on trying to assign

its time delay. We can only determine the time delay modulo T . This problem is not just true

of sinusoids, but any periodic function. Any Multicarrier signal with rational carrier spacing will

be periodic. For example, with a two-carrier signal, if one of our sinusoids repeats itself every

two seconds and the other every three seconds, then their sum will repeat itself every six seconds,

see Figure 2.2. The period or aliasing window of a Multicarrier signal is determined by the least

0 1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1
Sinusoid with T = 2

t [s]

0 1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1
Sinusoid with T = 3

t [s]

0 1 2 3 4 5 6 7 8 9 10 11 12
−2

0

2
Sum of Sinusoids with T = 6

t [s]

Figure 2.2: Sinusoid Periodicity

common multiple of the periods of the individual frequencies.
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Alternatively we can interpret this aliasing issue in the same way one interprets aliasing with

sampling signals in the time domain. The Nyquist-Shannon sampling theorem states that from

samples of a continuous-time signal, the signal can be exactly reconstructed if the signal is band-

limited and the sampling frequency is greater than twice the signal highest frequency in the signal.

If this condition is not met, then frequency content above twice the sampling frequency is aliased

back into the lower part of the band.[23]

Our situation is exactly the same, except instead of sampling signals in the time domain we

are sampling signals in the frequency domain at each of our carrier frequencies. Suppose we are

sampling a simple time delay channel, H(ω) = e− jωt0 . If t0 is large relative to our carrier spacing

then we will have aliasing. Thus our carrier spacing is what determines the aliasing window (or

period) of our Multicarrier signal, via this equation:

T = 1/(2π∆ω) = 1/∆f . (2.15)

We need to ensure that this aliasing window is large enough to avoid any ambiguity. For radio

waves, time delays translate into ranges via Equation 1.1. If we assume that the range from the

receive antenna to the transmit antenna is less than a certain amount (several hundred meters in our

problem of interest) then we can determine how large our aliasing window needs to be.

2.2.2 Software Radio Approach

The hardware implementation of the PPL system uses a software radio approach to allow us to

flexibly change the parameters of our multicarrier signal. In the current version of the prototype

system, the transmitted multicarrier signal consists of about 100 carriers spread over 550-700MHz.

Figure 2.3 summarizes the various stages undergone by our ranging signal before it is finally ana-

lyzed at the receiving station.

Our signal originates in a discrete state in the memory of the transmitter worn by the person-

nel. This discrete version of our signal x(k) is a digitized version of our multicarrier signal in the

baseband. As discussed, the multicarrier signal is repetitive, hence we can repeatedly transmit a

waveform that consists of an integer number of signal periods to produce a continuous multicar-

rier output. These blocks of samples, which are repeated, are called “symbols” which consist of K

samples. In our current system K = 2048.
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Figure 2.3: System Diagram of Software Radio Approach

Our chosen carrier frequencies are generally too high to be the direct output of an economic

digital to analog converter (DAC). In the current prototype our DAC sample frequency f ′s is 400

MHz, which means that its output signal must have frequency content no higher than 200 MHz in

keeping with the Nyquist sampling theorem.[23] Using our DAC generated signal and appropriate

filters, we obtain a baseband (30-180 MHz) multicarrier signal which is then upconverted by an RF

Mixer, a shift of f ′c = 520MHz, to the desired 550-700MHz band. After further filtering at these

higher frequencies, the signal is transmitted.

After traveling through the indoor radio channel, our signal arrives at each of our receive an-

tennas outside the building. The process on the receive side is very similar to that on the transmit

side. After being captured by the antenna, the signal is filtered at RF and then downconverted using

an RF mixer with nominally the same fc = 520MHz. After baseband filtering the signal is then

sampled by an analog to digital converter (ADC) at nominally the same sample rate as the DAC

fs = 400MHz. The signal in its digital state can now be sent to a computer for signal processing to

make position estimates.

Figure 2.4 illustrates the system architecture of the PPL system. The mobile transmitter broad-

casts the multicarrier ranging signal, which is received by multiple reference stations outside the

building. This data is sent over a wireless data link to the base reference station, which analyzes
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Figure 2.4: PPL System Architecture

digitized received signals in order to estimate the location of the mobile transmitter.

2.2.3 Received Signal Preprocessing

Signals received at the ADCs are also processed as symbols, blocks of K samples. All of our

signal processing is done in the frequency domain, whereas our received symbols are in the time

domain. For this reason our multicarrier signal was chosen with Discrete Fourier Transform (DFT)

processing in mind. We use the Fast Fourier Transform algorithm (FFT) to compute the DFT, taking

a discrete time signal of some K samples and convert it into a frequency domain representation. The

spectral energy of the signal is distributed into K frequency bins.

Consider a sampled time domain signal of K samples at a sampling frequency fs. If the DFT

is performed on this signal then K frequency bins are created. These bins represent frequencies

evenly spaced from − fs
2 to fs

2 , with a spacing of fs
k . The complex values in these bins represent the

magnitude and phase of positive and negative frequencies up to half of the sampling frequency.[23]

If a sinusoid in the time signal has an exact frequency corresponding to one of the frequency bins,

then all of its energy will be present in that bin. If the frequency is not precisely a bin frequency,

then most of the energy will be present in the closest bin but some of the energy will reside in

neighboring bins. This is known as leakage, and can reduce signal to noise ratio and also cause
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sinusoids of different frequencies to interfere with each other, muddling the underlying information.

Figure 2.5 shows this behavior, where we can see one case where the DFT was taken of a signal

with the exact frequency of a DFT bin; this contrasts with another signal with the same amplitude

wherein the frequency is in between two bins. We can see the energy has leaked into neighboring

bins.

DFT bin
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Figure 2.5: Magnitude of DFT Output for Frequencies on and off DFT bins

We chose our carrier spacing carefully such that it is an integer number of DFT bins, and the

mixer frequency by which we downconvert, such that our multicarrier signal frequencies are cen-

tered on the DFT bins to minimize leakage. That means that after we take the DFT of our sampled

signal the magnitude and phase of our received signal carriers are directly represented in the appro-

priate bins, which are indexed to form the received signal vector r.

2.3 Effects of Non-Ideal Synchronization

Unfortunately in our real world system the sample and mixer frequencies do not perfectly match

on the transmit and receive sides. This is due to the fact that our transmitter must be a wireless unit

driven by its own oscillator, which itself can not be overly expensive. The result is that there is gen-

erally a mismatch and significant frequency drift between the mixer frequencies as well as sample

clock frequencies. Furthermore the frequency of each oscillator is stochastically time-varying due
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to thermal fluctuations.

fs(t) , f ′s (t) (2.16)

fc(t) , f ′c (t) (2.17)

There are ways to share a common frequency reference instead of having to depend upon inde-

pendent oscillators; a master frequency beacon could be transmitted over the air for the transmitter to

use. Multipath causes problems with this approach however, as it is possible for the transmitter to be

at a location where the direct path and a reflected path happen to superimpose destructively resulting

in signal loss. This is unacceptable for our application. While transmitting a single frequency over

the air presents the problem just discussed, it may be possible to transmit a more complicated signal,

such as a multicarrier signal, and assure that there will always be frequency content for the trans-

mitter to lock onto, thanks to the frequency dependence of multipath channels. Such approaches

require that our transmitter has the capability of receiving such a signal and processing it, which

would add to the hardware requirements. Also a unit receiving a beacon signal may not be able to

differentiate motion induced Doppler effects from a drifting frequency reference.

2.3.1 Sample Clock Drift

Let us first consider issues caused by sample clock drift. In the current hardware configuration

that our system uses, we have our software radio transmitter using one sample clock with rate f ′s and

our receiving ADCs running on another independent sample clock with rate fs. The ideal sample

clock frequency chosen for our system is 400 MHz. The transmitter’s sample clock comes from

a crystal oscillator (FOX924B-10) with 2.5 ppm of frequency drift.[16] The receive ADCs have a

sample clock derived from a Rubidium atomic oscillator with less than 0.01 ppm of frequency drift.

The relative drift between the two clocks is approximately 2.5 ppm in the worst case.

Consider what happens when we generate our waveform with a different sampling frequency

than with which we receive it. If our transmitter’s sample clock frequency f ′s is faster or slower than

the desired frequency fs, then the signal generated will be accordingly compressed or stretched in

time. Similarly on the receiving end, if the ADCs’ sample clock is faster or slower than desired then

the recorded signal will appear stretched or compressed accordingly. What ultimately determines

the stretch/compression of the received signal is the difference in frequency between the transmit
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sample clock and the receive sample clock.

Since our concern is with the relative frequency drift between the two clocks, we will treat the

receive sample clock as the reference frequency about which the transmit sample clock drifts. Our

worst case difference in frequency leads to a ratio of

f ′s
fs

= 1 ± 2.5 · 10−6. (2.18)

This means that the duration of the symbols transmitted and recorded by the ADCs will be slightly

different. The reference symbol duration of the receive ADCs

T =
a
fs
, (2.19)

where a is a proportionality constant. The period of the symbols from the transmitter DAC is

T ′ =
a
f ′s
. (2.20)

Hence in the worst case we have

f ′s
f

=
T ′

T
= 1 ± 2.5 · 10−6. (2.21)

For each symbol of data we use K = 2048 samples at 400 MHz so T = 5.12µs. The transmitted

symbol duration is then at most

T ′ = T (1 + 2.5 · 10−6) = 5.12001280µs, (2.22)

and at least

T ′ = T (1 − 2.5 · 10−6) = 5.11998720µs. (2.23)

The difference in symbol duration is at most 25.6 ps. This difference is small enough not to affect

the output of our FFT and thus can be ignored. This was proven in a previous thesis conducted and

written in support of this project.[9]

Assuming a transmit symbol and receive symbol start at the same time, the drift between the

two sample clocks does not cause a problem since they end at the same time within 25.6 ps which

we have accepted as negligible. The next pair of symbols however will not start at exactly the

same time, as these errors build up after several symbol periods. Figure 2.6 illustrates this behavior,

though in a more extreme case for illustrative reasons, where T
T ′ = 1.2, so the symbols become
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Figure 2.6: Temporal Symbol Alignment

misaligned after just a few symbol periods. In our case the symbols can become misaligned by at

most 25.6 ps every symbol period, so that our symbols can be completely misaligned (offset by T
2 )

after as few as 100,000 symbol periods, which is 0.512 seconds. Thus in a short amount of time

(relative to our real-time operation) the transmitted symbols can become completely misaligned

from the receive symbol window. Since the ratio f ′s
fs

depends on random wandering of the clock

frequencies, we must accept that there will be a random time-varying time-offset τ̃(t) between the

transmit and receive window. We may approximate f ′s
fs

to be constant over small enough periods

of time (on the order of tens of symbols), but over large periods of time it must be recognized that

it changes randomly. When working with received signals captured close enough in time to make

this approximation, we will use the shorthand τ̃ and assumed the value to be a random constant. As

result of this model reduction our received signals can be more fully modeled:

r = R(ω) = X(ω)H(ω)e− jωτ̃. (2.24)

Since the drift is unknown, we record symbols at our receive ADCs with unknown time-offsets,

while our means to determine position estimates is based upon the relative time of arrival of our

signals. This may seem to undermine the hopes of using our received data to estimate position, but

while the absolute distance information in each received symbol has been destroyed by f ′s
fs
, 1, there

remains relative distance information between the received signals from several receivers that can

be used to estimate position. For this reason our current system is described as a Time Difference

of Arrival (TDOA) system, as opposed to a Time of Arrival (TOA) system.
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2.3.2 Mixer Frequency Drift

The purpose of an RF mixer is to shift the frequency content of a signal by some constant value.

The dual of the time delay property of the Fourier transform, the frequency shift property is

x(t)e− jtωc
F
⇔ X(ω − ωc). (2.25)

Based upon this, RF mixers operate by multiplying an input signal by an sinusoid with the desired

shift frequency. As discussed, our system uses RF mixers in our transmitter units as well as our

receiver units.

Our mixer frequencies fc and f ′c are derived from the same source oscillator as our sample clocks

so their accuracies with respect to one another are the same, about 2.5 ppm worst case. The shift

frequency used by our current system is 730 MHz. Our two mixer frequencies therefore have a

worst case difference of 1.8 kHz. In comparison, the frequency spacing of our DFT bins is 195.1

kHz. This results in our carriers remaining very close to the center of their respective DFT bins with

minimal leakage.

The magnitude of our received signal is not affected significantly by mixer frequency offset and

drift; this is not true however of the phase. The issue arises from the fact that the mixer oscillators on

the transmit and receive sides are not synchronized, and thus go in and out of phase unpredictably

with one another in the same way that our symbols do, as depicted in Figure 2.6.

Ideally a signal that is upconverted with one mixer, and subsequently downconverted with an-

other mixer would reproduce the original signal.

rbb(t) = xbb(t)e− jtωce jtωc (2.26)

rbb(t) = xbb(t)e− jt(ωc−ωc) (2.27)

rbb(t) = xbb(t)e− jt0 (2.28)

rbb(t) = xbb(t) (2.29)

If however the two mixers are out of phase, with phases θ̃t(t) on the transmit side and θ̃r(t) on

the receive side, we observe the following:

rbb(t) = xbb(t)e− j(tωc+θ̃t(t))e j(tωc+θ̃r(t)) (2.30)
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rbb(t) = xbb(t)e− jtωce jtωce j

θ̃(t)︷          ︸︸          ︷(
θ̃r(t) − θ̃t(t)

)
(2.31)

rbb(t) = xbb(t)e jθ̃(t) (2.32)

Thus the effect of unsynchronized mixers on our received signal is a phase offset θ̃, which is

time-varying but constant across frequency. For simplicity of notation, we substituted θ̃ for θ̃r(t) −

θ̃t(t). Just like our sample clock drift term τ̃(t), θ̃(t) is time-varying, yet for short enough time periods

can be assumed to be constant. Again, the unpredictable relationship between transmit and receive

oscillators means that θ̃ is considered to be random.

Combining the effects of sample clock drift and mixer drift, we can present a more complete

model of our received signal,

r(t) = x(t − τ̃) ∗ h(t − τ̃)e jθ̃, (2.33)

r = R(ω) = X(ω)H(ω)e− j(ωτ̃−θ̃). (2.34)

Thus we observe two non-ideal synchronization effects on our received signals, a random time-offset

τ̃ and a random frequency independent phase offset θ̃.

2.4 Singular Value Array Reconciliation Tomography

We have now presented our model for received signals; the next issue to be addressed is how

the PPL system processes these received signals in order to obtain an estimate of the transmitter

location. The precision location algorithm developed within the WPI PPL project that is currently

used in our system was named Singular Value Array Reconciliation Tomography (σART). This

novel algorithm obtains a position estimate directly with received data from all of the receive anten-

nas, rather than determining the ranges from the transmitter to each receive antenna independently

followed by a multilateration solution of the indicated source position.

2.4.1 Rephasing

σART is an exhaustive algorithm. The entire space that the transmitter may reside in is dis-

cretized as a grid with some spatial resolution. This grid is scanned and a metric is evaluated at each

scan location in the grid. Our metric is chosen such that in a zero noise, no multipath scenario it is
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maximized at the transmitter location. The sampling density of the grid is chosen based upon the

bandwidth of our multicarrier signal. The spatial resolution of the location of the maximum may

also be increased using interpolation techniques after the completion of the σART scan.

To describe this process, we start with our frequency domain data rp, the received signal vectors

from a total of P receive antennas. These vectors form the columns in our raw data matrix R, with

one column for each receive antenna.

R =

[
r1 . . . rp . . . rP

]
(2.35)

At each point in space which is scanned, the distance from that location to each of the receive

antennas is determined from the known locations of the receive antennas. Figure 2.7 illustrates this

procedure. The left side of Figure 2.7 shows the ideal behavior of our transmitted signal in which

Received Signal Rephasing Grid

Transmit Antenna Receive Antenna

Figure 2.7: Rephasing Procedure

only a direct path signal is present. In this case the signal simply gets delayed as it propagates

from the transmit antenna to the receive antennas, with a different delay t0,1, t0,2, . . . t0,P determined

by the range from the transmitter to each receiver via Equation 1.1. The space that the transmitter

may be located within is scanned in a grid pattern as depicted on the right side of Figure 2.7. At

each scan location the ranges from the scan location to the receive antennas is computed, and then

the corresponding values
#
t0,1,

#
t0,2, . . .

#
t0,P are the hypothetical time delays of the direct path signal
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which will subsequently be tested. The hypothetical time delay

#
t0,p=

∥∥∥∥∥ #
vl −vp

∥∥∥∥∥
c

(2.36)

represents the time delay a direct path signal would undergo traveling from the mobile locator

position vl to the pth reference antenna location vp, where ‖ · ‖ represents the Euclidean norm.

Next the received data matrix R has the hypothetical time delays inversely applied to all its

columns. This is performed by multiplying our frequency data by a complex exponential term. This

is an entry-wise multiplication, which was described in Table 1.2. This operation undoes the time

delay that would have been applied to the data by propagating through free space if the transmitter

was at that location. So for every point in space we have a different “rephased” version of R we’ll

denote R′, where

R′ =

[
r1 ◦ e jω

#
t0,1 . . . rp ◦ e jω

#
t0,p . . . rP ◦ e jω

#
t0,P

]
. (2.37)

An important point to make is that this rephasing does not change the “energy” or Frobenius

Norm of the matrix. The Frobenius norm of a matrix A with b elements, regardless of shape is

defined as [31]

||A||F =

√√√ b∑
a=1

|(A)a|
2. (2.38)

Since the rephasing only affects the phase, and not the magnitude of the elements of R, we can

conclude that the energy in the matrix remains constant as R is rephased to create R′.

2.4.2 The First Singular Value

At each location an operation is performed on R′ to obtain a metric indicating how strongly that

location is judged as a potential position estimate, meaning the consistency of the rephased data

with the ideal signal structure for that location. The metric is the first singular value of R′.

Let us assume momentarily that our system has ideal synchronization, θ̃ = τ̃ = 0. Thus the

received signal for antenna p is simply the channel response vector hp, which we know to consist

of our multipath model.

rp = hp =

Np−1∑
n=0

γn,p e− jωtn,p =

direct path︷       ︸︸       ︷
γ0,p e− jωt0,p +

Np−1∑
n=1

γn,p e− jωtn,p (2.39)



25

Above the multipath model is rewritten such that the direct path term is separated from the paths

due to reflections.

If our received signal is simply hp, then our rephased matrix

R′ideal =

 . . . γ0,p e jω(
#
t0,p−t0,p) + e jω

#
t0,p ◦

Np−1∑
n=1

γn,p e− jωtn,p . . .

 . (2.40)

The above equation is denoted R′ideal, representing the rephased matrix under ideal synchronization.

We see that each column is a sum of complex sinusoids. We can say that generally the periodicities

of these sinusoids are unrelated. The time delays associated with the multipath signals, as well

as the time shift
#
t0,p at an arbitrary location have no particular relation to one another. Thus the

columns of R′ideal generally have low correlation.

At the correct test location however, we have the special case that t0,p =
#
t0,p for all antennas.

Thus the direct path term in each columns is multiplied by e
jω

(
#
t0,p−t0,p

)
= e jω0 = 1M×1. This

simplifies to
?

R′ideal=

 . . . γ0,p1M×1 + e jω
#
t0,p ◦

Np−1∑
n=1

γn,p e− jωtn,p . . .

 . (2.41)

We observe that each column has the term γ0,p that is constant across frequency, which can be

referred to as a direct current (DC) component by virtue of its constancy, when scanned to the

correct location. The presence of this DC component in each column causes the correlation of

the columns to grow as well as the first singular value.[31] If one considers the reflection free case,

each column is simply γ0,p1M×1, which clearly results in a rank 1 matrix with all of the energy in the

first singular value. The presence of reflected signals with unrelated periodicities in the rephased

matrix cause the direct path to be the main contributor to the first singular value. In this fashion

σART attempts to ignore reflected signals.

Next we will remove the simplifying assumption that we have perfect synchronization. Re-

introducing our non-ideal synchronization term, our received signal at each antenna is

rp = hp ◦ e− j(ωτ̃+θ̃p). (2.42)

The random time-offset τ̃ affects the phase of the received signal as a trend across frequency (our

columns), yet is constant for each receive antenna, so it can be expressed as the pre-multiplication
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of a diagonal matrix. Similarly the random frequency independent phase offset θ̃p is constant across

frequency but varies for each receive antenna, so it can be represented as a post-multiplication term.

rp =


e− j(ω)1τ̃ . . . 0

...
. . . 0

0 0 e− j(ω)M τ̃

 hp


e jθ̃1 . . . 0
...

. . . 0

0 0 e jθ̃P

 (2.43)

The reason θ̃p differs by receive antenna is because in our system each receive antenna has its own

mixer oscillator, each drifting relative to the transmitter oscillator. There may also be differing

random time-offsets τ̃p on different receive antennas, however σART assumes this is not the case.

Received data with any differing time-offsets between receive antennas would need to be rectified

before it could be used with σART. This problem has been a major research topic over the past

several years for myself. This problem is detailed in my Master’s Thesis[2] and a recent conference

presentation[3].

Similarly to Equation 2.43 we can also express the non-ideal rephased matrix R′ in terms of

ideal R′ideal.

R′ =


e− j(ω)1τ̃ . . . 0

...
. . . 0

0 0 e− j(ω)M τ̃

 R′ideal


e jθ̃1 . . . 0
...

. . . 0

0 0 e jθ̃P

 (2.44)

It can be shown that both of these diagonal matrices are unitary. Consider some diagonal matrix

with unit magnitude elements and arbitrary phases:

A =


e jφ1 . . . 0
...

. . . 0

0 0 e jφB

 (2.45)

The matrix A is unitary if AAH = I, where AH is the Hermitian conjugate transpose operation.

A =


e jφ1 . . . 0
...

. . . 0

0 0 e jφB




e− jφ1 . . . 0
...

. . . 0

0 0 e− jφB


=


e j(φ1−φ1) . . . 0

...
. . . 0

0 0 e j(φB−φB)

 =


1 . . . 0
...

. . . 0

0 0 1

 = I (2.46)



27

Thus the two diagonal matrices used in Equation 2.43 are also unitary.

Unitary matrices have the property that multiplication of a matrix by a unitary matrix retains

the singular values of the original matrix.[17] Thus the singular values of R′ must be the same as

R′ideal. This means that σART is unaffected by these two synchronization effects, which is one of

the reasons why the first singular value was chosen as our search metric.

Because of this property, σART ignores any constant time-offset on all receive antennas’ data.

This is a beneficial property in that we ignore the effects of sample clock drift. This also implies

however that any absolute distance information from a particular receive antenna is ignored, and

σART bases its position estimates on relative distance information from the different receive anten-

nas. In this way σART is fundamentally a Time Difference of Arrival approach.

Figure 2.8 displays the outcome of the σART algorithm using ideal simulated data. The spatial

scan for this two-dimensional simulation consisted of a horizontal plane at the height of the antenna.

The circular markers represent 16 receive antenna locations, while the square marker represents the

transmitter location. An “X” marker represent the location of the σART solution at the transmitter

location. The background image represents the value of theσART metric, with blue being the lowest

and red being the strongest. These graphical conventions will be used consistently with subsequent

plots. We observe that the σART metric in this case indeed has a peak at the transmitter location.
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Figure 2.8: Ideal σART Simulation
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σART is currently implemented and used by the real-time WPI PPL system. It has produced

accurate results with real data in various environments, and is considered the current state of the art

in precision indoor location.
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Chapter 3

Transactional Array Reconciliation

Tomography

Ever in pursuit of avenues to improve our system, it is often useful to question the assumptions

on which an approach is based, and even explore the ramifications of these not being true. Such

was the origin of Transactional Array Reconciliation Tomography (TART), the contribution of this

dissertation.

3.1 TART Algorithm

The assumption challenged was that our received signals must be subject to a random time-

offset τ̃. What if there were no random time-offset on received data? With τ̃ = 0 our received

signals would have TOA-like synchronization. Reconsidering our rephased received signal matrix,

R′ = R′ideal


e jθ̃1 . . . 0
...

. . . 0

0 0 e jθ̃P

 . (3.1)

We can then remove the premultiplication matrix that applied the random time-offset and simply

apply a random frequency independent phase offset on each column of the R′ideal.

In Equation 2.41 we observed a constant term across frequency when rephased to the correct

location with ideal data. Once the non-ideal synchronization was considered, this DC component
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was shifted to some random frequency by the random time-offset. With τ̃ = 0 however, our DC

term remains, albeit with a random frequency independent phase term applied to each column.

?

R′=

 . . . γ0,pe jθ̃p1M×1 + e j(ω
#
t0,p+θ̃p) ◦

Np−1∑
n=1

γn,p e− jωtn,p . . .

 . (3.2)

We can therefore evaluate a metric more directly than by using the first singular value, by computing

the DC component of each column.

If we take the sum of the columns of our rephased matrix, the DC terms will add constructively

(in phase), whereas the other sinusoids will average out to zero, assuming a large signal bandwidth.

This issue of bandwidth will be discussed further in Section 3.2.2.

11×M

?

R′= M
[
γ0,1e jθ̃1 . . . γ0,pe jθ̃p . . . γ0,Pe jθ̃P

]
(3.3)

We can then take the absolute value of each element (the “elm” operation defined in Table 1.2) to

get the magnitude of the DC term.

elm(11×M

?

R′) = M
[
γ0,1 . . . γ0,p . . . γ0,P

]
(3.4)

We then sum those terms in order to get a measure of the DC present in all columns, which is the

metric for Transactional Array Reconciliation Tomography (TART).

elm(11×M

?

R′)1P×1 = M
[
γ0,1 + . . . γ0,p + . . . γ0,P

]
(3.5)

The scale factor M is a constant which would scale the value of the TART metric the same amount at

all scan locations, not changing the location of the global maximum, which is the position estimate.

The allowed random phase offset on different antennas accommodates data which is not coher-

ent, a freedom not allowed by traditional phased array techniques.[6]

3.2 Simulated Results

An alternative approach to σART has been proposed, TART, which assumes τ̃ = 0 and uses an

alternative metric computation. This section will illustrate advantageous properties that TART has

compared to σART, using simple cases with simulated signal data.

First we will re-examine the case depicted in Figure 2.8, in which ideal data with no reflections

was received by 16 receive antennas surrounding a test area. The effects of distance based amplitude
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Figure 3.1: σART vs. TART - Ideal Simulation

decay is ignored, γ = 1. Figure 3.1 shows this case using both σART and TART. We see that both

metrics have a peak at the correct location, with no error in this ideal case. The images of the metrics

are slightly different, but there is no clear indication of which approach is preferable.

3.2.1 Reflectors

Next we will consider the effects of introducing an ideal omnidirectional reflector. In this case

the received signal at each receiver will consist of the sum of two paths with different delays. First,

the direct path t0,p (the delay undergone from the transmitter to receiver) and then the reflected path

t1,p = ∆1 + ∆2,p (the delay undergone from the transmitter to the reflector ∆1 in addition to the delay

undergone from the reflector to each receiver ∆2,p).

rp = x ◦
(
e− jωt0,p + e− jω(∆1+∆2,p)

)
e jθ̃p (3.6)

As discussed previously, it is expected that both σART and TART will have a maximum at the

location of the transmitter even in the presence of multipath. Let us consider for this case what

happens when scanned to the location of the reflector,
#
t0,p= ∆2,p.

∆

R′=
[
. . . e− j(ω(t0,p−∆2,p)+θ̃p) + e− j(ω∆1+θ̃p) . . .

]
. (3.7)

We observe that the reflected signal component becomes a sinusoid with a frequency that the same

in all columns. This causes the first singular value to be large and a maximum in the σART metric.
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Since the reflected signal component is not DC, TART will not identify the reflector location as a

maximum.
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Figure 3.2: σART vs. TART - Single Reflector Simulation

This behavior is illustrated in Figure 3.2 which shows a simulation result with an omnidirectional

reflector as described. The reflector location (marked with a triangle) indeed shows a maximum at

both the transmitter and reflector location for σART, whereas TART does not identify the reflector

location as a maximum. Indeed, the simulation actually chose the incorrect peak yielding a 8.68

meter error. The TART result shows an error of 0.10 meters; it is important to note that the presence

of multipath does have an degradative effect on the accuracy of TART, however the performance in

this case is clearly preferable to σART.

Figure 3.3 shows a more drastic example with six reflectors randomly distributed throughout the

test region. We see again that σART fails to identify the correct solution and has a gross error of

10.77 meters. TART avoids identifying reflectors as maxima and yields a much smaller 0.40 meter

error.

3.2.2 Bandwidth

When describing the computation of the TART metric it was mentioned that any AC terms

present in the rephased matrix would have an average value of zero. This is only true if the AC

sinusoids happen to have an integer number of periods in the window sampled by our multicarrier
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Figure 3.3: σART vs. TART - Multi-Reflector Simulation

signal, or in the ideal case of an infinitely large window (infinite bandwidth). Using finite bandwidth

signals in our real system causes the AC components to not be orthogonal to DC, but to have some

finite correlation. This is the reason why the metric images presented thus far do not have peaks that

are infinitely narrow. The width of these peaks is proportional to the bandwidth of the multicarrier

signal.
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Figure 3.4: σART vs. TART - Single Reflector Simulation with Double Bandwidth

Figure 3.4 shows the same single reflector case as Figure 3.2, with the only change being that
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the bandwidth of the multicarrier signal was doubled. We observe that for both σART and TART the

peaks in the metric images become tighter. The position estimation error for TART also is reduced

by one half as well. The cause of the error is the lack of true orthogonality between the reflected

signal components and the direct path components in the rephased matrix. Increasing the bandwidth

makes them more orthogonal and more separable.

Thus, increasing the bandwidth has desirable effects on performance, and is a parameter of the

system that should be maximized. Factors limiting the amount of possible bandwidth of the system

are RF design challenges (circuits, antennas) and spectral licensing from the Federal Communica-

tions Commission.

3.2.3 Limited Geometry
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Figure 3.5: σART vs. TART - 8 Receiver Simulation

Next we will consider the effect of limited receiver geometry. In a system deployed by first

responders, it will likely not be feasible to have receive antennas fully surrounding a building. The

next simulation presented shows the performance of σART and TART with receive antennas on only

two sides of the scan region and no reflections.

We observe that the σART metric image seems to have a high degree of ambiguity in one

direction, while the TART metric image has a peak which is much more localized. In this ideal

simulation both methods have no error. However, previous work with σART has indicated that in



35

the presence of noise and multipath this type of ambiguity in the metric images often coincides

with large errors in the direction of ambiguity. This will also be shown directly in Chapter 5. This

suggests that TART will perform better in a limited geometry situation such as this one.
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Figure 3.6: σART vs. TART - 2 Receiver Simulation

A similar case is shown in Figure 3.6 in which only 2 receive antennas are used. This example

clearly illustrates the fundamental difference between σART and TART. Like a classic TOA triangu-

lation system, we observe how the TART metric image consists of intersecting circles. In contrast,

σART is like a TDOA system, depending on only relative range information and is underdetermined

in this case. The transmitter could be at any location along a hyperbola that is the locus of identical

time delay differences between the received signals.

3.2.4 Three-Dimensional Scanning

While much can be learned from two-dimensional σART /TART scans as presented previously,

our requirement is to estimate position in three-dimensions. We will now observe the behavior of a

full three-dimensional scan in the ideal case shown in Figure 3.1. A three-dimensional scan results

in a metric volume as opposed to an image, which we can depict using slices through the volume, as

shown in Figure 3.7. We observe the horizontal slice through our metric volume matches the metric

images in Figure 3.1.

The vertical slice for TART reveals the intersecting spheres summed to create a maximum at the



36

(a) σART (b) TART

Figure 3.7: σART vs. TART - Three-Dimensional Simulation

true location. We see that the TART metric forms a tighter peak in the horizontal plane than it does

in the vertical plane. This is an effect of the geometry in use which has the transmitter and receivers

in one plane, thus the intersecting spheres are nearly parallel to each other at the transmitter location,

increasing solution ambiguity.

The vertical slice for σART reveals far more ambiguity in the vertical dimension than TART

however. The relative distance information used by σART results in large vertical ambiguity when

the receive antennas are co-planar, or even close to co-planar. Results with real data over the past

several years using σART in our system have shown that this ambiguity directly results in large

vertical position errors.

The next simulation presented is identical to the previous one but with the location of the trans-

mit antenna being raised out of the plane of the receive antennas, shown in Figure 3.8. We again

observe similar ambiguity of σART metric peak in the vertical dimension, while the TART metric

peak is now more symmetrical, as the intersecting spheres are no longer all parallel.

Finally we will show an example that reflects a more general situation likely to be found in

practice. This example again uses only 8 reference antennas on two sides of the scan region. In

this example height diversity has been added to the reference antennas so that they are not all copla-

nar. Alternating antennas have been raised to a height of 2 meters. The mobile antenna has been
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Figure 3.8: σART vs. TART - Three-Dimensional Simulation with Raised Transmitter

elevated to a height of 3 meters, so it is above the region encompassed by the reference antennas.

Although the reference antennas are no longer coplanar, they still have much more spatial diversity

in the horizontal dimensions, which results in σART still having significant ambiguity in the ver-

tical dimension. TART however has a significantly more localized metric peak both vertically and

horizontally. It is important to note however that it is not symmetrical, it is considerably elongated

in the vertical dimension; system geometry certainly does have an effect on the shape of the TART

peak.

3.2.5 Computation Time

Another important comparison between σART and TART is computation time. The algorithms

are identical in many respects. The pre-processing steps (described in Section 2.2.3) are the same,

as well as the rephasing. The sole difference is the evaluation of the metric at each scan location.

σART requires the computation of the first singular value of R′. The current implementation of

the PPL system uses MATLAB for processing received signals at the base station PC. The fastest

known method of computing uses the relationship

σ1(A) =
√
λ1(AHA), [24] (3.8)

where σ1(A) is the largest singular value of a matrix A and λ1(AHA) is the largest eigenvalue of
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Figure 3.9: σART vs. TART - Three-Dimensional Simulation with Practical Geometry

AHA. This is implemented in MATLAB as:

sigma2 = eig(R prime’*R prime);

sART metric = sqrt(sigma2(end));

To determine a typical computation time for a metric evaluation, this was performed on a complex

matrix R′ ∈ �16×100, representing the typical case of 16 receive antennas and 100 carriers. This

was performed on the current PPL base station PC, with dual quad-core Intel Xeon CPUs clocked at

2.33 GHz and 4 GB of RAM. The metric was evaluated 100,000 times with an average computation

time of 104.7 µs.

Alternatively, the TART metric is elm(11×MR′)1P×1. This is implemented in MATLAB as:

TART metric = sum(abs(sum(R prime,1)).ˆ2);

This metric was tested under the same condition and showed to have an average computation time

of 8.5 µs per metric evaluation, more than 10 times faster than the σART metric.

Of course, when scanning a large solution space, each position estimate is the result of a large

number of metric evaluation. Most of the computation time for each position estimate is used

during the metric evaluation and the rephasing multiplication at each scan location. For this reason
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the promise of faster computation time is another potential advantage of using TART rather than

σART.

3.3 Transactional Synchronization

The simulated results presented in Section 3.2 suggest various improvements to the performance

of the PPL system by replacing the current σART algorithm with the TART algorithm. However,

with the architecture of the current system our received signals are subject to a random time-offset

τ̃, which is not in compliance with the requirements of the TART algorithm. In this section an

alternative system architecture is proposed, along with a synchronization scheme to support it, in

which the received signal data is suitable for TART, meeting the requirement that τ̃ = 0.

The current system architecture involves a unidirectional ranging signal, transmitted from the

personnel within the building to the receiver stations outside the building. The alternative system

architecture being proposed involves bidirectional signals. The mobile units to be tracked inside the

building would be transceivers, capable of both transmitting and receiving a multicarrier ranging

signal. Similarly the stationary reference units outside the building (mounted on firetrucks, deploy-

able ladder systems, etc.) would also be transceivers. A signaling transaction would occur, in which

a signal is transmitted by each reference unit and captured by the mobile unit, and also a signal

transmitted by the mobile unit is captured by each reference unit.

3.3.1 Transactional Synchronization Concept

A simplified version of this transactional scheme is illustrated in Figure 3.10. Consider momen-

tarily that the transmitted signal is simply an impulse in the time domain, x(t) = δ(t). The ideal

received signal received after the signal travels through a multipath channel is the impulse response

of the channel h(t). This input/output relationship is illustrated by an example in the top portion

of Fig. 3.10. We see the impulse response consists of several summed versions of the input signal,

with various attenuations and delays, which is consistent with our multipath channel model.

Now consider a two unsynchronized transceivers, a mobile transceiver q and a reference transceiver

p. At the time of a transaction, the two units will have a random time-offset between τ̃p. Thus the

symbol windows will not line up in time, but be shifted from one another by τ̃p as shown in Fig 3.10.
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Figure 3.10: Transactional Synchronization

If the mobile transceiver transmits the signal x(t), the reference transceiver would receive h(t − τ̃p).

This complies with our notion of received signals having a random time-offset. Shortly after this

initial signal capture however, a second capture takes place where the reference transceiver trans-

mits and the mobile transceiver receives. This received signal will be h(t + τ̃), the same as the first

received signal but in with a shift of τ̃p in the opposite direction. This assumes that the radio channel

response obeys Lorentz Reciprocity.[6] It will be shown that knowledge of h(t − τ̃p) and h(t + τ̃p)

allows solving for the unknown random time-offset τ̃p.

3.3.2 Time-offset Ambiguity

Next we will consider a transaction with our multicarrier signal and non-ideal synchronization

model. The received signals in the frequency domain would be:

rq = x ◦ hq,p ◦ e− j(ωτ̃p+θ̃q), (3.9)

rp = x ◦ hq,p ◦ e− j(−ωτ̃p+θ̃p). (3.10)

Where rq and rp are the signals received by the mobile transceiver q and reference transceiver p

respectively, x is the transmitted signal and hq,p is the reciprocal channel response between the two

units. We see that each received signal has the same random time-offset in the opposite direction.
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If we entrywise divide the received signals, the transmitted signal and channel response terms

cancel:
[rp]
[rq]

= e j(ω2τ̃p−θ̃p+θ̃q). (3.11)

The result is a complex sinusoid with a periodicity that corresponds to 2τ̃p. We can estimate the

periodicity of this complex sinusoid using the Direct State Space pole solver [2, 34], a frequency

estimation technique using the Singular Value Decomposition. This technique ignores frequency in-

dependent phase terms, this the random frequency independent phase terms −θ̃p + θ̃q are acceptable.

The resultant “pole” is:

pole
[rp]
[rq]

= e j(2∆ωτ̃p). (3.12)

Taking the angle of the complex pole:

∠pole
[rp]
[rq]

= 2∆ωτ̃p + 2πa, (3.13)

where a is an integer. Solving for τ̃p,

∠pole [rp]
[rq]

2∆ω
= τ̃p +

2πa
2∆ω

, (3.14)

τ̃p =
∠pole [rp]

[rq]

2∆ω
−
πa
∆ω

, (3.15)

πa
∆ω

=
πa

2π∆f
=

a
2∆f

=
aT
2
, (3.16)

τ̃p =
∠pole [rp]

[rq]

2∆ω
−

aT
2
. (3.17)

Where T is the period of our multicarrier signal. We observe that solving for τ̃p yields infinite

solutions, one for each integer value of a.

Since our multicarrier signal is periodic any transmitted or received signal is unaffected by a

time shift that is an integer number of periods.

r(t) = r(t + aT ) (3.18)

r = r ◦ e jωaT (3.19)
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For this reason we need only consider solutions for τ̃p in the interval [0,T ). This results in two

possible solutions,

τ̃p =
∠pole [rp]

[rq]

2∆ω
or τ̃p =

∠pole [rp]
[rq]

2∆ω
+

T
2
. (3.20)

Unfortunately there is no information to distinguish which of these solutions is correct, and choosing

incorrectly would result in a large timing error (T/2 is determined in practice by our choice of ∆ω

to be hundreds of meters).

3.3.3 Time-offset Ambiguity Resolution

We have observed that it is possible to use a transactional approach to measure the random time-

offset between two transceiver units τ̃p (mod T/2), when using a multicarrier signal with period T .

In order to have our estimate of this random time-offset be usable to rectify received signals we

would need τ̃p (mod T ) however.

While this issue was initially troubling, a relatively simple solution was discovered. Suppose

we have a multicarrier signal with twice as many carriers and half of the carrier spacing,

ẍ(t) =

2M−1∑
m=0

e− j(t(ω0+m ∆ω
2 )+θm). (3.21)

The period of this multicarrier signal would be 2T = 2
2π∆ω . Therefore, if this signal was used with

the proposed transactional synchronization scheme, the random time-offset could be estimated τ̃p

(mod T ), as desired for the original multicarrier signal.

τ̃p =
∠pole [r̈p]

[r̈q]

2∆ω
(3.22)

Where r̈p and r̈p denote received signal vectors at transceivers p and q respectively, when the trans-

mitted signal is ẍ(t).

Observe also that the carrier frequencies of the original signal x(t) are a subset of the frequencies

of ẍ(t). This means that a received signal vector r can be constructed as a subset of r̈:

r =
[
(r̈)1 (r̈)3 (r̈)5 . . . (r̈)2M

]T (3.23)

This relationship allows us to use ẍ(t) for the purpose of solving for the random time-offset, and

reverting to x(t) for subsequent processing.
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3.3.4 Received Signal Rectification

Recall the received signal from the reference transceiver p:

rp = x ◦ hq,p ◦ e− j(−ωτ̃p+θ̃p). (3.24)

We can use the known transmitted signal x and our estimate of τ̃p to rectify the captured signal rp

to form sp,

sp = rp ◦
1
x
◦ e− jωτ̃p , (3.25)

sp =
[x]
[x]
◦ h1,p ◦ e− j(−ωτ̃p+θ̃p) ◦ e− jωτ̃p , (3.26)

sp = h1,p ◦ e− jθ̃p . (3.27)

This new rectified signal sq now satisfies the TART assumption of having no random time-offset,

and may be used as the column p of the received data matrix R.

3.3.5 Alternative Scheme

In this section an alternative scheme for transactional synchronization is proposed, which has

the benefit of not requiring the signal received by the mobile unit to be sent to the base station via

a data communications channel. Suppose the previously described signal transaction takes place,

such that the received signal at the mobile transceiver q and the reference antenna p are,

rq = x ◦ hq,p ◦ e− j(ωτ̃p+θ̃q), and (3.28)

rp = x ◦ hq,p ◦ e− j(−ωτ̃p+θ̃p) (3.29)

respectively.

Now suppose that the mobile unit processes its received signal to generate a new transmit wave-

form, x←. To do this it inverts each value of the received signal vector.

x← =
[1]
[rq]

=
[1]

[x ◦ hq,p]
◦ e j(ωτ̃p+θ̃q) (3.30)
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This signal is then transmitted by the mobile unit. The reference unit receives a second signal,

r←p = x← ◦ hq,p ◦ e− j(−ωτ̃p+θ̃p)

=
[1]

[x ◦ hq,p]
◦ e j(ωτ̃p+θ̃q) ◦ hq,p ◦ e− j(−ωτ̃p+θ̃p) (3.31)

r←p ◦ x =
[1]
[x]
◦ e j(2ωτ̃p−θ̃p+θ̃q)r←p ◦ x

= e j(2ωτ̃p−θ̃p+θ̃q) (3.32)

We see that the second signal received by the reference transmitter can be multiplied by the known

original signal x to produce a complex exponential whose periodicity is proportional to 2τ̃p, identi-

cal to what is obtained in Equation 3.11. We can therefore estimate τ̃p in the same manner described

in Section 3.3.3 and use it to rectify the first signal received by the reference transceiver, without the

need for the signal received by the mobile transceiver to be sent to the base station via a data link.

Additional computation on the mobile unit would be required to support this approach. The

received time domain samples would need to be converted to the frequency domain via the FFT,

then the non-carrier frequencies would be set to zero and the values at the carrier frequencies would

be inverted. The signal would be converted back to the time domain with an inverse FFT and the

resulting time domain waveform would then be scaled so it could be transmitted using the full

dynamic range of the DAC.

Removing the need for the mobile transceiver unit to transmit data to the base station would be

desirable in a deployable system, as it would require a considerable amount of data bandwidth. For

example, a mobile transceiver sending received signals from 16 reference transceivers consisting of

32-bit complex numbers for 150 carriers at a rate of once per second would require 76.8 kbps of data

throughput. This an undesirable prospect as it requires costly high speed wireless communication

hardware on each mobile unit. Maintaining this data rate also becomes more difficult as the mobile

unit travels further into the building and the received signal strength weakens. The alternative

scheme described only requires data be sent from the reference units to the base station, where it is

less of an issue to add wireless communication hardware and the communication signal strengths

should remain constant.

The development of this alternative transactional synchronization scheme occurred late in the

writing of this thesis, so all experimental results to be presented in Chapter 6 used the original
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synchronization scheme. For remainder of this dissertation it will be implied that the original trans-

actional synchronization is in use, unless specified otherwise.
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Chapter 4

Hardware Considerations for TART

There are yet further issues that must be considered in order to implement the proposed trans-

actional synchronization scheme with the PPL system hardware. Figure 4.1 shows the proposed

system architecture which uses bidirectional ranging signals. In contrast to Figure 2.4, Figure 4.1

Building

Mobile 
Transceiver

Base Reference Station

Computer

Router

Wireless Link 

Wireless Link 

Transceiver

Transceiver

Reference Station

Router

Router

Transceiver

Reference Station

Bidirectional
Ranging Signal

Figure 4.1: Transactional PPL System Architecture

illustrates the bidirectional signal used in the transactional approach, and the use of transceivers

instead of a transmitter and receivers. Also depicted is the addition of a wireless data link to con-

vey received signals from a mobile transceiver to the base station to be processed. The data link

between the mobile unit and the base station may be removed by using the alternative transactional
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synchronization scheme described in Section 3.3.5.

We have shown that a transaction between two unsynchronized transceivers can produce a rec-

tified received signal with no random time-offset, suitable for TART processing. TART of course

uses data from several reference antennas outside of the building, attached to different transceivers,

so several transactions would need to be performed in succession in order to obtain all of the sig-

nal data to perform TART. These transactions would need to be completed fast enough so that the

channel response can be approximated to be constant. Also, it is important that the transactions be

fast enough so that τ̃(t) can be assumed to be constant as well. This will be discussed further in

Section 4.4.

4.1 Transceiver Units

The WPI PPL research team has recently a developed a custom, 4-channel transceiver unit in-

tended for use at the reference stations outside of the building. A picture of one of these units is

shown in Figure 4.2. Even when using σART with the existing PPL system, it is important that

Figure 4.2: PPL Transceiver

the reference stations have the ability to transmit as well as receive in order to perform Geomet-
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ric Autoconfiguration (GAC), as well as synchronizing the units for σART. It is for these reasons

the transceiver units were developed, however they have also proven useful to test the concept of

transactional synchronization with TART.

These units have four parallel receive channels with independent receive circuitry and ADCs.

This means that samples can be captured from four different antennas simultaneously. There is

a single transmitter circuit, the output of which is passed through a switch that selects a particular

antenna, so the unit can transmit out of any one antenna at a time. A Field Programmable Gate Array

(FPGA) controls the functionality of the unit and organizes received ADC data to be transmitted out

of an ethernet port through a wireless data link to the base station. The transceiver circuit boards

also provide the ability to access both input and output baseband signals, a feature intended for

debugging.

The base station PC communicates with each transceiver using the custom PPL Control And

Messaging Protocol (CAMP). This protocol allows the PC to send the transceiver various commands

including commands that indicate when to capture data, when to transmit, and even send to arbitrary

transmit waveforms.

4.2 Intra-unit Synchronization

A significant assumption that was tacitly made when describing the transactional synchroniza-

tion was that the transmit and receive symbol windows were synchronized on a given transceiver. In

Figure 3.10 for example, the illustration depicts the transmit and receive symbol windows in perfect

alignment.

Unfortunately this is not the case with our existing transceiver units, as it was not a requirement

of the design. Measurement on an oscilloscope showed the transmit and receive symbol windows

to be misaligned by several hundred nanoseconds, and worse yet the time-offset varied when the

transceiver circuit was powered on and off. Left unchecked, this time-offset between the transmit

and receive symbol windows within a transceiver unit would destroy the very timing information

that transactional synchronization aims to obtain.

Fortunately a way to circumvent this problem was found. Since the transceiver circuits were

designed with the baseband inputs and outputs accessible, it is possible to connect the transmitted
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baseband signal to the baseband input on one of the receive paths. Thus we can effectively connect

the transmitter DAC directly to one of our receiver ADCs in a loopback capture. By analyzing the

received symbols from that ADC, we can observe the timing relationship between the two.

Since we are only concerned with the transmit and receive symbol windows having no time-

offset relative to each other, we can assume that the receive symbol window is “correct” and the

transmitted signal is in error with a time-offset.

Recall the ideal transmitted signal is

X(ω) =

M−1∑
m=0

δ((ω − (ω0 + m∆ω))e jθm . (4.1)

Alternatively this can be represented as a vector of carrier values,

x = [e jθ0 e jθ1 . . . e jθm]. (4.2)

We will denote x̄ as the shifted transmit signal that we wish to rectify,

x̄ = x ◦ e− jωT̃ . (4.3)

Where T̃ represents the random unknown time-offset between the ADC and the DAC on a particular

transceiver. This is the signal we expect to receive at the ADC in this loopback mode.

If a received signal is captured, and entrywise divided by the ideal signal, then the result is a

complex exponential whose periodicity corresponds to T̃ .

[x̄]
[x]

= e− jωT̃ (4.4)

Figure 4.3 shows an example with real data captured from a PPL transceiver unit, displaying the

magnitude and phase of [x̄]
[x] . We observe a complex exponential as expected, characterized by a

nearly constant magnitude and linear phase versus frequency. The magnitude variation of about 1.5

dB across frequency is expected and is due to the characteristics of using non-ideal baseband filters.

The value of T̃ can be estimated using the Direct State Space pole solver mentioned previously.

pole
[x̄]
[x]

= e− j∆ωT̃ (4.5)

T̃ =
−∠pole [x̄]

[x]

∆ω
+ aT (4.6)
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Figure 4.3: Intra-Unit Synchronization: Real data [x̄]
[x]

In this case we can measure the time-offset T̃ (mod T ), which is acceptable without any ambigu-

ity problem like the transactional synchronization. For the real data shown in Figure 4.3 T̃ was

estimated to be -710.27 ns.

Once T̃ has been solved for on each transceiver unit, the value may be used to regenerate the

transmitted waveform such that the transmit symbol window matches the receive symbol window. If

the signal x◦e jωT̃ is generated and used as the digital waveform to be transmitted, then the transmit

and receive windows will be aligned.

Since our transceiver units have the ability to reset the transmit waveform at any time, we can

set the appropriate waveform each time the unit is powered on, after the intra-unit synchronization

procedure runs and T̃ is estimated.

4.3 Frequency Response Calibration

Another significant consideration that must be made before using TART in a real system, is

the frequency responses of non-ideal hardware. In a real system transmitter and receiver circuitry,

cables and antennas can have significant effect on received signals.

Figure 4.4 depicts the various stages the signal must undergo before being received. Let us
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Figure 4.4: Frequency Response Diagram

consider the original signal as the complex vector x. At the output of the DAC, we assume the

desired signal is produced. Next the signal must propagate through various filters, amplifiers and

a mixer before the RF signal is output from the transmitter/transceiver. The transmitter circuitry is

certainly not linear; the input is a baseband signal and the output is an RF signal. Nonetheless there

is a one-to-one correspondence between carriers at the input and output, and a theoretically known

relationship of the magnitude and phase of these carriers. Thus we can use the notion of a transfer

function commonly used for a linear system. For a classic linear system, the transfer function G(ω)

is defined as

G(ω) =
B(ω)
A(ω)

, (4.7)

where A(ω) is the input to the system represented in the frequency domain, and B(ω) is the resultant

output. For our transmitter circuitry we have a similar relation,

G(ω) =
Y(ω)

X(ω − fc)
, (4.8)

gtx =
[Y(ω)]

[X(ω − fc)]
=

[y]
[x]

, (4.9)

where Y is the output of the transmitter circuitry. The vector gtx behaves like a transfer function in

that it characterizes the relationship between the input and the output of the system.

After the RF signal is transmitted from the transmitter/transceiver, it must travel over a cable

which connects to the transmit antenna. Currently we use coaxial cables that are approximately

15 meters long. These cables have a significant effect on the signal. They add significant delay

and attenuation, and these effects vary from cable to cable since they can not be manufactured

identically. These cables can be modeled by a classic transfer function, or a transfer vector of values

at our carrier frequencies. We will denote the transfer vector for the cable from the transmitter to

the transmit antenna as gcable 1.

The cable connects to an antenna which radiates the signal into the radio channel. The antenna

itself however may have significant effects on the signal, which can be represented as a transfer
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vector gantenna.

The signal then propagates through the indoor RF channel, which has the transfer vector h. This

is, of course, what we’re ultimately interested in measuring because it contains information about

the relative position of the transmit and receive antenna.

Next the signal propagates through a receive antenna and cable with transfer vectors gantenna

and gcable 2 respectively. Next the signal propagates through receiver circuitry before being sam-

pled, which affects the signal similarly to the transmit circuitry, with transfer vector grx.

The received signal r is the aggregate of these effects, along with the non-ideal synchronization

term,

r = x ◦ gtx ◦ gcable 1 ◦ gantenna ◦ h ◦ gantenna ◦ gcable 2 ◦ grx ◦ e− j(ωτ̃+θ̃) (4.10)

Our goal is to determine h from our received signal, which is obscured by the other various effects

present in the system. Unlike the synchronization problems discussed, the transfer vectors are not

time-varying so they could potentially be removed with a one-time calibration. The following sec-

tions will discuss the procedures developed to estimate the necessary frequency response parameters

in order to calibrate out hardware effects to estimate h.

To estimate the calibration parameters of a particular cable a laboratory procedure was devel-

oped, depicted in Figure 4.5. Two transceiver units were used, however one was solely used as a

Figure 4.5: Cable Calibration Procedure

transmitter while the other was used solely as a receiver. The two units were driven with a com-

mon external oscillator, eliminating relative sample clock drift such that the time-offset between

transmitted and received symbols τ̃ was constant. The two units were connected by a short cable

α, which is not the cable we are interested in calibrating, but has its own frequency response vector
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gcable α. This configuration results in a received signal:

r1 = x ◦ gtx ◦ gcable α ◦ grx ◦ e− j(ωτ̃+θ̃1). (4.11)

Next the cable to be calibrated, Cable 1 for example, is inserted in series with Cable x. This config-

uration results in a received signal:

r2 = x ◦ gtx ◦ gcable α ◦ gcable 1 ◦ grx ◦ e− j(ωτ̃+θ̃2). (4.12)

Note that we have assumed that the frequency independent phase offset term θ̃ may be different

between the two captures, but τ̃ must be constant.

If the two received signal vectors are entrywise divided, we obtain

[r2]
[r1]

= gcable 1 ◦ e− j(θ̃2−θ̃1), (4.13)

which is the frequency response of the cable with an random frequency independent phase offset.

Since TART was designed to ignore frequency independent phase offsets on received signals, it is

sufficient that we have estimated gcable 1 with that additional degree of freedom. We will define

ccable 1 =
[r1]
[r2]

=
1

gcable 1
◦ e jθ̃, (4.14)

the “calibration vector” which inverts the frequency response of the cable.

In order to calibrate for the effects of transmit and receive circuitry, a similar procedure was

developed. This procedure involves two transceivers that are connected by a cable with a known

frequency response. A transactional capture takes place, producing received signals r1 and r2, as

depicted in Figure 4.6. Using the method described in Section 3.3, the random time-offset τ̃ can

be determined. The only difference when using the method here is that the reciprocal channel

response represents the aggregate of the cascaded frequency response vectors, instead of just the

radio channel.

The estimate of the random time-offset between the units τ̃ is then used to create a rectified

signal:

s = x ◦ gtx ◦ gcable 1 ◦ grx ◦ e− j(ωθ̃). (4.15)

Dividing by the known transmitted signal and frequency response of the cable we obtain,

[s]
[x ◦ gcable 1]

= gtx ◦ grx ◦ e− j(ωθ̃). (4.16)
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Figure 4.6: Transceiver Calibration Procedure

This can then be inverted to obtain the calibration vector which undoes the effects of the transmitter

and receiver circuitry of the transceivers.

ctx,rx =
[x ◦ gcable 1]

[s]
=

1
gtx ◦ grx

◦ e jωθ̃ (4.17)

Again this calibration vector has an acceptable unknown random frequency independent phase off-

set.

The calibration vectors for the antennas are more difficult to obtain. Such measurements can

be made in an anechoic chamber which allows the antennas to be measured using an accurately

known channel. Alternatively, the frequency response of the antennas may be simulated using

antenna modeling software. Neither of these approaches are readily implementable the author, so

the frequency responses of the antennas have been approximated as time delays of approximately

0.75 ns.

cantenna = e−0.75·10−9 jω (4.18)

This was value determined empirically from real signals captured in a line of sight configuration.

It is suggested that further research be performed in the area of antenna calibration, particularly to

compensate for phase changes as a function of antenna angle.

Now recall the received signal model from Equation 4.10. Applying our calibration vectors to

the received signal we obtain

r ◦ crx,tx ◦ ccable 1 ◦ cantenna ◦ cantenna ◦ ccable 2 ◦
1
x

= h ◦ e− j(ωτ̃+θ̃) (4.19)
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Thus after applying the calibration vectors, our received signal matches the model assumed by the

transactional synchronization approach.

4.4 Clock Stability

Next we must address the issue that the time-offset between two transceivers driven by indepen-

dent oscillators is time-varying, τ̃(t). Our transactional synchronization method however assumes

that this time-offset is the same for the pair of received signals. The signals exchanged during a

transaction can not be simultaneous, so there must be some difference τ̃(tb) − τ̃(ta) between the

time-offset on each received signal, where ta and tb are the times at which each signal in the trans-

action is captured.

If the difference tb − ta is significantly large, then τ̃(tb) − τ̃(ta) may be so large that this timing

error will corrupt the rectified received signal after transactional synchronization. Thus in order for

our approach to work tb− ta must be small enough relative to the rate at which the transceiver clocks

drift apart to ensure τ̃(tb) ≈ τ̃(ta). A trade-off exists between shortening the amount of time between

the pair of signal captures and using a more accurate clock to extend the amount of time it takes for

τ̃(tb) − τ̃(ta) to become significant.

Let us reconsider the case described Section 2.3.1. Suppose we used the same crystal oscillator

on the mobile transceiver unit and Rubidium atomic clock on the reference transceiver units. The

worst case relative clock drift is approximately 2.5 ppm. Historically on this project we have used

the value 0.5 ns as the allowable timing error threshold.[2] This corresponds to approximately 15

cm of ranging error. With a relative drift rate of 2.5 ppm, the difference between two clocks would

reach the 0.5 ns threshold in 200 µs. Thus to directly perform the transactional synchronization

approach with the current oscillators used by our system, the time between the exchanged signals

should be less than 200 µs.

If this time is prohibitively small, there are measures that can be taken to increase it. First, a

more accurate clock may be used on the mobile unit, such as an oven controlled crystal oscillator

or Rubidium atomic clock. This generally comes at the cost of increased size, power consumption

and price.

Additionally clock modeling may allow for better performance. If the relationship between
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a pair of clocks is measured at times ti and ti+1, then the average of the instantaneous frequency

difference between the two clocks over that interval is

ȳT
i =

τ̃(ti+1) − τ̃(ti)
T

(4.20)

where T = ti+1 − ti for all i. The Allan Variance is defined as

σ2
y (T) =

1
2

E
{(

ȳT
i+1 − ȳT

i

)2
}

(4.21)

where E {·} represents the expectation operator.[1] The Allan Variance is a measure of clock stability,

and is often plotted as a function of size of the interval T. The Allan Deviation is the square root of

the Allan Variance, σy (T) =

√
σ2

y (T).

This implies that if the clock drift function τ̃(t) was evaluated at times t0, t1 and t2, then difference

between the average frequencies over the two intervals, (t0, t1) and (t1, t2), would have variance

2σ2
y (T) over set of many repeated trials. If τ̃(t0) and τ̃(t1) are known, they they may be used to

estimate τ̃(t2) with a linear projection

τ̃(t2) = τ̃(t1) + TȳT
1 ≈

˜τ(t1) + TȳT
0 , (4.22)

based on the assumption that the average frequencies of the two intervals are approximately equal.

The estimation error would be

E = T
(
ȳT

1 − ȳT
0

)
, (4.23)

with corresponding variance (assuming zero mean)

σ2
e = E

{
E2

}
= 2T2σy (T)2 , (4.24)

and standard deviation

σe =
√

2Tσy (T) . (4.25)

Figure 4.7 shows the Allan Deviation of common oscillator types. According to Fig.4.7, a

quartz crystal oscillator may actually have comparable stability to a more expensive atomic clock

for shorter time intervals, whereas in the long term the atomic clocks have better performance. Our

goal is to provide position estimates once per second, so we are only interested in time intervals less

than one second.
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Figure 4.7: “A frequency stability diagram, for most of the precision clocks and oscillators used
widely within the time and frequency community and by an ever-increasing number of users of
precision timing devices. The dashed region at the bottom of the cesium (CS) stability plot shows
the improved long-term stability of the HP 5071A Frequency RB Standard. QZ=Quartz Crystal
Oscillator, RB=Rubidium Gas-Cell Frequency Standard, CS=Cesium-beam Frequency Standard,
HM=ActiveHydrogen-Maser Frequency Standard.”[1]
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So suppose we modify our transactional synchronization approach slightly, capturing three sig-

nals instead of two. At times t0 and t1 the reference transceiver p will receive signals transmitted by

the mobile transceiver q, and at time t2 transceiver q will receive a signal transmitted by transceiver

p.

rq(t0) = hq,p ◦ e− j(ωτ̃p(t0)+θ̃q) (4.26)

rq(t1) = hq,p ◦ e− j(ωτ̃p(t1)+θ̃q) (4.27)

rp(t2) = hq,p ◦ e− j(−ωτ̃p(t2)+θ̃p) (4.28)

The average frequency over the interval (t0, t1) can be estimated,

ȳT
0 =

τ̃(t1) − τ̃(t0)
T

=
∠pole [rq(t1)]

[rq(t0)]

2∆ωT
. (4.29)

This can then be used to predict τ̃p(t2) with Equation 4.22. This method can also be extended for

the case of the alternative transactional synchronization described in Section 3.3.5.

A test was conducted to determine whether this scheme would perform accurately enough for

our needs. Our current mobile transmitter prototype was directly connected to one of our PPL

transceiver units. The mobile unit used an internal crystal oscillator and the transceiver used an

atomic clock, just as would be used in a TART implementation. The transceiver performed succes-

sive signal captures at times t0,t1 and t2 with spacing T. The error in predicting τ̃(t2) from τ̃(t0),τ̃(t1)

then measured. This procedure was repeated for 1000 trials and different interval sizes. The results

of this experiment are shown in Figure 4.8.

Figure 4.8 shows the 3σ error for the clock predictions, which is three times the standard devia-

tion. For a normal distribution 99.7 percent of estimates will have an error of less than the 3σ value.

This means that for interval sizes less than 0.3 seconds, we can expect to have clock prediction

errors of less than our 0.5 ns threshold 99.7 percent of the time.

This shows that a typical crystal oscillator on the mobile units may be acceptable with a time

between transactions as large as 0.3 seconds, significantly improved over the worst case analysis

described. In practice the interval size would certainly be chosen to be significantly smaller than

0.3 seconds, since TART also relies on the constant channel assumption. It is possible that in 0.3

seconds the mobile unit or other object in the RF environment has moved to significantly change
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Figure 4.8: 3σ Clock Prediction Error for Different Interval Sizes

the channel response. For this reason the interval size should be no more than the order of tens of

milliseconds.
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Chapter 5

TART Perturbation Analysis

This chapter explores the behavior of TART when received signals are corrupted by noise. An

analytic approximation for the performance of TART as a function of signal to noise ratio (SNR)

will be presented, which is intended to provide intuition as to how TART position error is affected in

different system geometries. This analysis will make simplifying assumptions to obtain a tractable

analytic approximation, considering only the multipath-free case. The utility of the analytic approx-

imation will then be verified with numerical simulation results. Ideal frequency response calibration

and ideal transactional synchronization will also be assumed.

5.1 TART Reformulation

Let us first consider a more compact definition of the TART algorithm.

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
e jω

#
t0,p

(
#
vl

)T

rp

∣∣∣∣∣∣∣ (5.1)

where the
#
t0,p is a function of

#
vl as described in Equation 2.36, and

?
vl is the TART position estimate.

In summary, the received signal vector from reference antenna p is first rephased by
#
t0,p; then the

resulting vector’s entries are summed. Both of these operations occur within the inner product

in Equation 5.1. The resultant scalar has it’s complex magnitude computed, and these magnitude

values are summed over all P reference antennas to produce the TART metric. Whichever position

vector
#
vl maximizes this quantity is the estimate of the position of the mobile locator.
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A received signal vector to be processed by TART has the form rp = hpe jθ̃. TART however was

specifically defined to ignore the frequency independent phase offset θ̃, as discussed in Section 3.1.

Thus without loss of generality, we can assume that θ̃ = 0; that is hp and hpe jθ̃ must produce the

same TART metric and position estimate.

We will consider the ideal channel where rp = e− jωt0,p . After the rephasing and first summation

step, we have e jω
#
t0,p

(
#
vl

)T

e− jωt0,p =

M∑
m=1

e
− j(ω)m

(
t0,p−

#
t0,p

(
#
vl

))
(5.2)

which is actually a multicarrier signal expressed as a function of t0,p−
#
t0,p

(
#
vl

)
, the error between the

test time delay and the true time delay. Unlike our original multicarrier definition in Equation 2.7,

the terms have no phase shift relative to each other, so at the correct location t0,p−
#
t0,p

(
#
vl

)
= 0 all

terms add constructively to the value M. Thus our overall expression for the TART algorithm for

this special case simplifies to

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
M∑

m=1

e
− j(ω)m

(
t0,p−

#
t0,p

(
#
vl

))∣∣∣∣∣∣∣ . (5.3)

Let ω̄ = ω0 + M∆ω
2 , the average value of the carrier frequencies. The TART expression can be

rewritten as,

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
M∑

m=1

e
− j(ω)m

(
t0,p−

#
t0,p

(
#
vl

))∣∣∣∣∣∣∣ = argmax
#
vl

P∑
p=1

∣∣∣∣∣∣∣
M∑

m=1

e
− j((ω)m−ω̄)

(
t0,p−

#
t0,p

(
#
vl

))
e
− jω̄

(
t0,p−

#
t0,p

(
#
vl

))∣∣∣∣∣∣∣ .
(5.4)

Since

∣∣∣∣∣∣∣e− jω̄
(
t0,p−

#
t0,p

(
#
vl

))∣∣∣∣∣∣∣ = 1,

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
M∑

m=1

e
− j((ω)m−ω̄)

(
t0,p−

#
t0,p

(
#
vl

))∣∣∣∣∣∣∣ . (5.5)

By subtracting the average carrier frequency we have centered the carrier frequencies about zero,

with pairs of corresponding positive and negative frequencies. Henceforth we will make the substi-

tution ωc = ω − ω̄1M×1, and name the outcome the “centered” set of carrier frequencies. In the case

where M is even we have,

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
M/2∑
m=1

e
− j(ωc)m

(
t0,p−

#
t0,p

(
#
vl

))
+ e

j(ωc)m

(
t0,p−

#
t0,p

(
#
vl

))∣∣∣∣∣∣∣ , (5.6)



62

which simplifies to
?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))∣∣∣∣∣∣∣ . (5.7)

In the case where M is odd we have,

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣1 + 2
(M−1)/2∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))∣∣∣∣∣∣∣ . (5.8)

For the remainder of this perturbation analysis we will treat on the case where M is even. This is

for the sake of having a less cluttered argument. The treatment of the odd case may be derived in a

nearly identical fashion if desired.

In the noise-free, multipath-free case it is known that the TART metric will be maximized at the

true position, vl. For illustrative purposes we will consider a very simple case, in which there is a

single reference antenna (P = 1) located at v1 = [−10 0 0]T , the mobile locator at vl = [0 0 0]T

and the solution scan space is restricted to the one-dimensional case along the x-axis, that is
(

#
vl

)
1
∈

(−10, 10) and
(

#
vl

)
2

=

(
#
vl

)
3

= 0. We will consider the multicarrier signal to be a typical case

in practice for our past experiments, with M = 86, ω0 = 3.7699 · 109 and ∆ω = 7.3631 · 106.

The resultant TART metric for each scan location along the x-axis is depicted by the blue curve in

Figure 5.1. We see that the value of the curve is always greater than zero, as implied by the fact that

the TART metric results from an absolute value operation.

We are interested in how the central peak of this curve will be perturbed when the received

signals are corrupted with noise. As we are considering the small noise case, we will assume that

only the shape of the curve near the peak is relevant. Recall our expression for TART,

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))∣∣∣∣∣∣∣ . (5.9)

For the case that
#
vl is close to the true location vl, the expression inside the absolute value must

be positive and therefore the absolute value operation can be ignored in that case. Thus the TART

metric near the central peak can be expressed as

?
vl= argmax

#
vl

P∑
p=1

M∑
m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))
. (5.10)

This equivalent expression for the central peak is depicted as the dashed red line in Figure 5.1 for

the one-dimensional case.
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Figure 5.1: Simulation: One-Dimensional TART Scan

5.2 Received Signals with Complex Gaussian Noise

Next we will define the complex normal distribution. Suppose that ã and b̃ are vectors in �m

where each element is a normally distributed random variable. Then the vector

z̃ = ã + jb̃ (5.11)

has the complex normal distribution. This distribution can be characterized with three parameters,

µ = E {z̃} , Γ = E
{
(z̃ − µ) (z̃ − µ)H

}
, and C = E

{
(z̃ − µ) (z̃ − µ)T

}
, (5.12)

where H denotes the Hermitian (conjugate) transpose operation. The parameter µ represents the

mean value, Γ is the covariance matrix, and C is the relation matrix. A complex normal distribution

is said to be circular if C = 0. For the purposes of this perturbation analysis we will assume circular

complex normal distributions defined with only two parameters, e.g. z̃ ∼ C (µ,Γ). The probability

density function for the circularly symmetric case is

p(w) =
1

πm detΓ
e−(w−µ)HΓ−1(w−µ), (5.13)

where “det” represents the determinant operation.[18]
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We will define a particular zero-mean complex Gaussian random variable w̃p ∼ C(0, σ2I), to

be the noise vector added to the ideal signal for the pth reference antenna. It is assumed that all of

the noise terms in each vector w̃p are independent and uncorrelated (hence Γ = σ2I) and the noise

vectors for each reference antenna are also independent and uncorrelated. This is true when the

received signal noise is dominated by thermal noise, as is encountered in practice.

The received signal for antenna p in this case for an ideal channel with noise is therefore

rp = e− jωt0,p + w̃p. (5.14)

Using this as our received signal in our TART expression we have,

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
e jω

#
t0,p

(
#
vl

)T (
e− jωt0,p + w̃p

)∣∣∣∣∣∣∣ , (5.15)

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
 M∑

m=1

e
− j(ω)m

(
t0,p−

#
t0,p

(
#
vl

)) +

e jω
#
t0,p

(
#
vl

)T

w̃p

∣∣∣∣∣∣∣ . (5.16)

We can again “center” our frequencies by removing ω̄.

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
 M∑

m=1

e
− j(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)) + e
jω̄

(
t0,p−

#
t0,p

(
#
vl

)) e jω
#
t0,p

(
#
vl

)T

w̃p

∣∣∣∣∣∣∣ , (5.17)

?
vl= argmax

#
vl

P∑
p=1

∣∣∣∣∣∣∣
 M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

))) + e jω̄t0,p

e jωc
#
t0,p

(
#
vl

)T

w̃p

∣∣∣∣∣∣∣ . (5.18)

5.3 Rephasing and Summation Step

Let us consider the effects of the rephasing and summation step with a noisy received signal.

Using our transformation to “centered” frequencies, the rephasing step becomes,e jω
#
t0,p

(
#
vl

)T (
e− jωt0,p + w̃p

)
=

 M∑
m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

))) + e jω̄t0,p

e jωc
#
t0,p

(
#
vl

)T

w̃p (5.19)

A useful property of complex multivariate normal random vectors is that after a linear transforma-

tion the output also has a complex multivariate normal distribution. Specifically, for a complex

multivariate Gaussian vector ã ∼ C (µ,Γ), if b̃ = Cã, then b̃ ∼ C
(
Cµ,CΓCH

)
.[18] This implies

that the rephased noise term

e jω̄t0,p

e jωc
#
t0,p

(
#
vl

)T

w̃p ∼ C

e jω̄t0,p

e jωc
#
t0,p

(
#
vl

)T

0, e jω̄t0,p

e jωc
#
t0,p

(
#
vl

)T

σ2I

e jω̄t0,p

e jωc
#
t0,p

(
#
vl

)T 
H ,

(5.20)
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which simplifies to
w̃r

p

(
#
vl

)︷                      ︸︸                      ︷
e jω̄t0,p

e jωc
#
t0,p

(
#
vl

)T

w̃p ∼ C
(
0,Mσ2

)
. (5.21)

For convenience we will denote this quantity, the noise component that has been rephased and

summed to test location
#
vl, as w̃r

p

(
#
vl

)
. The superscript r is an abbreviation for “rephased and

summed.” As we propagate the noise terms through the various steps of the TART algorithm we will

also introduce w̃r,m
p

(
#
vl

)
and w̃r,m,s

(
#
vl

)
, where the superscript m is an abbreviation for “magnitude”

and s for “summed.”

Equation 5.21 implies that the result of the rephasing and summation step has a distribution that

does not depend on the time shift
#
t0,p

(
#
vl

)
. We are interested in rephasing with many possible time

shifts as TART scans the solution space to maximize its metric. Consider the received signal being

rephased to two different locations,
#
vl,1 and

#
vl,1. We can observe the relationship of the results of

the rephasing and summation step for the two cases by creating a vector from the two results, which

can be factored as follows,

 w̃r
p

(
#
vl,1

)
w̃r

p

(
#
vl,2

)
 =


e jω̄t0,p

e jωc
#
t0,p

(
#
vl,1

)T

w̃p

e jω̄t0,p

e jωc
#
t0,p

(
#
vl,2

)T

w̃p

 = e jω̄t0,p

e jωc
#
t0,p

(
#
vl,1

)
e

jωc
#
t0,p

(
#
vl,2

)T

w̃p. (5.22)

We again have a complex multivariate normal random vector undergoing a linear transformation.

The the joint distribution can be determined to be w̃r
p

(
#
vl,1

)
w̃r

p

(
#
vl,2

)
 ∼ C

0, σ2


M

∑M
m=1 e

j(ωc)m

(
#
t0,p

(
#
vl,1

)
−

#
t0,p

(
#
vl,2

))

∑M
m=1 e

j(ωc)m

(
#
t0,p

(
#
vl,2

)
−

#
t0,p

(
#
vl,1

))
M


 . (5.23)

Since we are using centered frequencies, w̃r
p

(
#
vl,1

)
w̃r

p

(
#
vl,2

)
 ∼ . . .

C

0, σ2

 M
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl,1

)
−

#
t0,p

(
#
vl,2

)))
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl,2

)
−

#
t0,p

(
#
vl,1

)))
M


 .

(5.24)
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5.4 Complex Magnitude Step

In summary, after the rephasing and summation step, the received signal vector from each an-

tenna has been reduced to a scalar value with an ideal component and a noise component (see

Equation 5.19). The sum of the zero-mean noise term with the ideal term can be said to have

distribution
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))
+ w̃r

p

(
#
vl

)
∼ C

 M∑
m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))
,Mσ2

 , (5.25)

where the ideal term has become the mean of this complex normal distribution.

Next we will define the Rice probability distribution. For independent normal random variables

ã ∼ N
(
ν cos θ, σ2

)
and b̃ ∼ N

(
ν sin θ, σ2

)
, then z̃ =

√
ã2 + b̃2 is said to have a Rice distribution

for any real number θ. Thus the magnitude of a complex normal random variable has the Rice

distribution. The Rice distribution is uniquely determined by the two parameters ν and σ2, e.g.

z̃ ∼ R
(
ν, σ2

)
. The probability density function is

p
(
x |ν, σ2

)
=

x
σ2 e

(
−(x2+ν2)

2σ2

)
I0

( xν
σ2

)
, (5.26)

where I0 is a modified Bessel function of the first kind with order 0. The parameters ν, σ2 do

not represent the mean and the variance of the distribution. Determining these requires the more

complicated formulations below:

E {z̃} = σ

√
π

2
L1/2

(
−ν2

2σ2

)
, (5.27)

E
{
(z̃ − E {z̃})2

}
= 2σ2 + ν2 −

πσ2

2
L1/2

(
−ν2

2σ2

)
, (5.28)

where L1/2 denotes a Laguerre polynomial,

L1/2(x) = e
x
2

[
(1 − x)I0

(
−x
2

)
− xI1

(
−x
2

)]
, (5.29)

where I0 and I1 are modified Bessel functions of the first kind with orders 0 and 1 respectively.[5]

After the rephasing and summation step of the TART process, the resultant complex scalar has

its magnitude computed, which results in a random variable with the Rice distribution,∣∣∣∣∣∣∣
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))
+ w̃r

p

(
#
vl

)∣∣∣∣∣∣∣ ∼ R

 M∑
m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))
,Mσ2

 . (5.30)
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As shown, the equations governing the Rice distribution are considerably more complicated than the

Gaussian distribution. These must be represented in terms of modified Bessel functions for which

no closed form exists. Further, representations of the joint distribution between two Rice distributed

random variables are even more complicated, generally being expressed as an infinite series.[15]

The purpose of the analytic perturbation analysis to follow is to gain intuition as to how the

performance in TART degrades for different geometries, which would almost certainly be obscured

by the complexity of the Rice distribution equations. For this reason, an approximation will be

made at this step in the analysis, where the Rice distribution will be approximated as a Gaussian

distribution. This is valid for cases with large signal to noise ratio; in terms of the Rice parameters

this is the case wherein ν is large relative to σ2. This relationship is depicted in Figure 5.2, which

shows the probability density functions for normal distributions N(µ, σ2) and Rice distributions

R(ν, σ2). The value of σ is set to 1, while the value of µ is varied from 0 to 8. Since µ is real in this

case we have µ = ν. We see that for large values of ν
σ2 the distributions are approximately equal.
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Figure 5.2: Relationship between Rice and Gaussian Distributions

Next we will discuss how to determine the Gaussian distribution with which to approximate the

Rice distribution for our case. Conveniently, in our case ν takes on only real values. Consider an

example in which we have a random variable w̃ ∼ C (8 + 0 j, 1). Figure 5.3 shows level contours of

the probability density function of w̃ (given in Equation 5.13), which are concentric circles about
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the mean, 8 + 0 j. Also shown are the level contours of |w̃| from the corresponding Rice distribution

which are centered about the origin, as the magnitude of a complex number is the Euclidean distance

to the origin in the context of this Cartesian plot. We can see that the absolute value of the real part

Re(w)

Im
(w

)

 

 

0 2 4 6 8 10
−6

−4

−2

0

2

4

6
Gaussian
Rice

Figure 5.3: Gaussian and Rice Level Contours

of the Gaussian distribution is approximately equal to its magnitude.

For values of
#
vl near the central peak, we have the case that ν is both real and positive. Thus we

can make the approximation that∣∣∣∣∣∣∣
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))
+ w̃r

p

(
#
vl

)∣∣∣∣∣∣∣ ≈
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))
+ Re

(
w̃r

p

(
#
vl

))
.

(5.31)

The real and imaginary components of a circular complex random vector w̃ ∼ C (µ,Γ) can be

considered a real multivariate normal distribution with Re (w̃)

Im (w̃)

 ∼ N


 Re (µ)

Im (µ)

 , 1
2

 Re (Γ) −Im (Γ)

Im (Γ) Re (Γ)


 .[18] (5.32)

Since w̃r
p

(
#
vl

)
∼ C

(
0,Mσ2

)
, this implies Re

(
w̃r

p

(
#
vl

))
∼ N

(
0, 1

2 Mσ2
)
. We will denote w̃r,m

p

(
#
vl

)
to

be equal to Re
(
w̃r

p

(
#
vl

))
, the noise term after the rephasing/summation and magnitude steps.

Now let us again consider the relationship between the results of rephasing at two different test
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locations. From Equations 5.24 and 5.32 we have w̃r,m
p

(
#
vl,1

)
w̃r,m

p

(
#
vl,2

)
 ∼ . . .

N

0, σ2

2

 M
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m=1 cos
(
(ωc)m
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t0,p

(
#
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)
−

#
t0,p

(
#
vl,2

)))
∑M
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(
(ωc)m
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(
#
vl,1

)
−

#
t0,p

(
#
vl,2

)))
M




(5.33)

5.5 Second Summation Step

After the complex magnitude is computed, the resultant values are summed for each of P refer-

ence antennas generating the TART metric value for a particular test location. With the aforemen-

tioned approximation

P∑
p=1

∣∣∣∣∣∣∣
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
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)))
+ w̃r

p

∣∣∣∣∣∣∣ ≈
P∑

p=1

∣∣∣∣∣∣∣
M∑

m=1

cos
(
(ωc)m

(
t0,p−

#
t0,p

(
#
vl

)))∣∣∣∣∣∣∣ +

w̃r,m,s
(

#
vl

)︷        ︸︸        ︷
P∑

p=1

w̃r,m
p

(
#
vl

)
.

(5.34)

The noise term after this summation will be denoted w̃r,m,s
(

#
vl

)
. After the summation over the

antennas the noise term becomes

w̃r,m,s
(

#
vl

)
= 11×P

[
w̃r,m

1

(
#
vl

)
. . . w̃r,m

p

(
#
vl

)
. . . w̃r,m

P

(
#
vl

)]T
. (5.35)

As stated previously, the noise terms for each antenna are assumed to be independent, therefore[
w̃r,m

1

(
#
vl

)
. . . w̃r,m

p

(
#
vl

)
. . . w̃r,m

P

(
#
vl

)]T
∼ N

(
0,

1
2

Mσ2I
)
. (5.36)

After the summation over antennas we have,

w̃r,m,s
(

#
vl

)
∼ N

(
0,

1
2

MPσ2
)
. (5.37)
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Relating two different test locations,

 w̃r,m,s
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#
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)
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#
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)
 =

 1 0 . . . 1 0 . . . 1 0

0 1 . . . 0 1 . . . 0 1
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P
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(5.38)

The distribution is found to be w̃r,m,s
p
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)
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vl,2

)
 ∼ . . .

N

0, σ2

2

P∑
p=1

 M
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl,1

)
−

#
t0,p

(
#
vl,2

)))
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl,1

)
−

#
t0,p

(
#
vl,2

)))
M




(5.39)

In summary we have shown that the TART metric for received signals with noise can be approx-

imated with an additive noise model, in which an ideal metric value is summed with a normally

distributed noise term. Expressions for the mean and variance of the metric noise term, and covari-

ance of the metric noise between any two test locations have been derived.

5.6 Argument of the Maximum Step

Next we will consider the final step the TART algorithm, in which the position that maximizes

the TART metric is chosen as the position estimate. We will approximate the TART position estimate

error by using a second order Taylor series model of the ideal TART metric and a first order Taylor

series model of the noise term near the ideal solution. If we denote the ideal TART metric as f
(

#
vl

)
,
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then our current model of the TART metric will be approximated near the true location vl by,

f
(

#
vl

)
+ w̃r,m,s

(
#
vl

)
≈ f (vl) + [

#
vl −vl]T∇ f (vl) +

1
2

[
#
vl −vl]T∇∇T f (vl) [vl−

#
vl] . . .

+ w̃r,m,s (vl) + [
#
vl −vl]T∇w̃r,m,s (vl) . (5.40)

Note that ∇∇T f (vl) produces the Hessian matrix of f (vl), which is assumed to be symmetric as all

derivatives of f (vl) are continuous. Since ∇ f (vl) = 0 (the ideal metric has a maximum at the true

location), we have

f
(

#
vl

)
+ w̃r,m,s

(
#
vl

)
≈ f (vl) +

1
2

[
#
vl −vl]T∇∇T f (vl) [vl−

#
vl] . . .

+ w̃r,m,s (vl) + [
#
vl −vl]T∇w̃r,m,s (vl) . (5.41)

Figure 5.1 depicts the second order Taylor series approximation of the ideal TART metric for our

one-dimensional example.

The position estimate
?
vl is the value of

#
vl at which the TART metric is maximized, which is the

location at which the gradient of our model of the peak is zero. Taking the gradient of the above

expression with respect to
#
vl and equating it to zero we obtain,

0 =∇
(
f (vl) +

1
2

[
?
vl −vl]T∇∇T f (vl) [[

?
vl −vl] . . .

+ w̃r,m,s (vl) + [
?
vl −vl]T∇w̃r,m,s (vl)

)
=

1
2
∇[

?
vl −vl]T∇∇T f (vl) [

?
vl −vl] + ∇[

?
vl −vl]T∇w̃r,m,s (vl) (5.42)
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We can rewrite the quadratic term as,

1
2
∇[

?
vl −vl]T∇∇T f (vl) [

?
vl −vl] =

1
2
∇[

?
vl −vl]T


d2 f (vl)

dx2
d2 f (vl)
dxdy

d2 f (vl)
dxdz

d2 f (vl)
dxdy

d2 f (vl)
dy2

d2 f (vl)
dydz

d2 f (vl)
dxdz

d2 f (vl)
dydz

d2 f (vl)
dz2

 [
?
vl −vl]

=
1
2
∇

(
d2 f (vl)

dx2

((
?
vl

)
1
− (vl)1

)2
+

d2 f (vl)
dxy

((
?
vl

)
1
− (vl)1

) ((
?
vl

)
2
− (vl)2

)
. . .

+
d2 f (vl)

dxz

((
?
vl

)
1
− (vl)1

) ((
?
vl

)
3
− (vl)3

) d2 f (vl)
dy2

((
?
vl

)
2
− (vl)2

)2
. . .

+
d2 f (vl)

dyz

((
?
vl

)
2
− (vl)2

) ((
?
vl

)
3
− (vl)3

) d2 f (vl)
dz2

((
?
vl

)
3
− (vl)3

)2
)

=


d2 f (vl)

dx2

((
?
vl

)
1
− (vl)1

)
+

d2 f (vl)
dxy

((
?
vl

)
2
− (vl)2

)
+

d2 f (vl)
dxz

((
?
vl

)
3
− (vl)3

)
d2 f (vl)

dxy

((
?
vl

)
1
− (vl)1

)
+

d2 f (vl)
dy2

((
?
vl

)
2
− (vl)2

)
+

d2 f (vl)
dyz

((
?
vl

)
3
− (vl)3

)
d2 f (vl)

dxz

((
?
vl

)
1
− (vl)1

)
+

d2 f (vl)
dyz

((
?
vl

)
2
− (vl)2

)
+

d2 f (vl)
dz2

((
?
vl

)
3
− (vl)3

)


= ∇∇T f (vl) [
?
vl −vl] (5.43)

Substituting this result into Equation 5.42, it simplifies to,

0 = ∇∇T f (vl) [
?
vl −vl] + ∇w̃r,m,s (vl) . (5.44)

It follows that,

∇∇T f (vl) [
?
vl −vl] = −∇w̃r,m,s (vl) . (5.45)

The position estimate error is therefore found using the inverse of the Hessian matrix,

[
?
vl −vl] = −

(
∇∇T f (vl)

)−1
∇w̃r,m,s (vl) . (5.46)

The probablity distribution of the position estimate error is therefore,

[
?
vl −vl] ∼ N

(
0,

(
∇∇T f (vl)

)−1
cov

(
∇w̃r,m,s (vl)

) ((
∇∇T f (vl)

)−1
)T

)
(5.47)

In the following sections derivations for the Hessian of the ideal TART metric and the gradient of

the noise term will be presented.
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5.6.1 Hessian of Ideal TART metric

Let us consider the first element of the Hessian matrix of the ideal TART metric,
d2 f

(
#
vl

)
dx2 . Taking

the derivative of the ideal TART metric near the central peak from Equation 5.10 we obtain

d f
(

#
vl

)
dx

= −

P∑
p=1

M∑
m=1

(ωc)m

c
sin

(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))
(

#
vl

)
1
−

(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣ . (5.48)

The previous step also involved substitution of ranges for time delays via Equation 2.36.

In order to differentiate a second time we must use the product rule. Let us first compute the

derivatives of the two components,

d
dx

(
#
vl

)
1
−

(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣ =
1∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣ −
((

#
vl

)
1
−

(
vp

)
1

)2

(∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)3 (5.49)

d
dx

(ωc)m

c
sin

(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)) = . . .(
#
vl

)
1
−

(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣
(ωc)2

m

c2 cos
(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)) . (5.50)

Using these expressions we can now use the product rule to differentiate Equation 5.48,

d2 f
(

#
vl

)
dx2 = −

P∑
p=1

M∑
m=1

(ωc)m

c
sin

(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))
 1∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣ −
((

#
vl

)
1
−

(
vp

)
1

)2

(∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)3

 . . .

+
(ωc)2

m

c2 cos
(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))
((

#
vl

)
1
−

(
vp

)
1

)2

∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣2 . (5.51)

We are interested in the Hessian evalutated at vl. For this term we obtain,

d2 f (vl)
dx2 = −

P∑
p=1

M∑
m=1

 (ωc)m

c

(vl)1 −
(
vp

)
1∣∣∣∣∣∣vl − vp

∣∣∣∣∣∣


2

. (5.52)

Similiarly we can obtain,

d2 f (vl)
dy2 = −

P∑
p=1

M∑
m=1

 (ωc)m

c

(vl)2 −
(
vp

)
2∣∣∣∣∣∣vl − vp

∣∣∣∣∣∣


2

,
d2 f (vl)

dz2 = −

P∑
p=1

M∑
m=1

 (ωc)m

c

(vl)3 −
(
vp

)
3∣∣∣∣∣∣vl − vp

∣∣∣∣∣∣


2

,

(5.53)
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Next we will consider the off-diagonal terms of the Hessian matrix, starting with d2 f (vl)
dxy . We can

obtain this by differentiating Equation 5.48 with respect to y. Again we must use the product rule,

using the following derivative terms

d
dy

(
#
vl

)
1
−

(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣ =

((
#
vl

)
1
−

(
vp

)
1

) ((
#
vl

)
2
−

(
vp

)
2

)
∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣3 (5.54)

d
dy

(ωc)m

c
sin

(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)) = . . .(
#
vl

)
2
−

(
vp

)
2∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣
(ωc)2

m

c2 cos
(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)) . (5.55)

Applying the product rule we then obtain,

d2 f
(

#
vl

)
dxy

= −

P∑
p=1

M∑
m=1

(ωc)m

c
sin

(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))
((

#
vl

)
1
−

(
vp

)
1

) ((
#
vl

)
2
−

(
vp

)
2

)
∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣3 . . .

+
(ωc)2

m

c2 cos
(
(ωc)m

c

(∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))
((

#
vl

)
1
−

(
vp

)
1

) ((
#
vl

)
2
−

(
vp

)
2

)
∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣2 . (5.56)

Evaluating at vl we obtain,

d2 f (vl)
dxy

= −

P∑
p=1

M∑
m=1

(ωc)2
m

c2

(
(vl)1 −

(
vp

)
1

) (
(vl)2 −

(
vp

)
2

)
∣∣∣∣∣∣vl − vp

∣∣∣∣∣∣2 . (5.57)

Similarly we obtain,

d2 f (vl)
dxz

= −

P∑
p=1

M∑
m=1

(ωc)2
m

c2

(
(vl)1 −

(
vp

)
1

) (
(vl)3 −

(
vp

)
3

)
∣∣∣∣∣∣vl − vp

∣∣∣∣∣∣2 , (5.58)

d2 f (vl)
dyz

= −

P∑
p=1

M∑
m=1

(ωc)2
m

c2

(
(vl)2 −

(
vp

)
2

) (
(vl)3 −

(
vp

)
3

)
∣∣∣∣∣∣vl − vp

∣∣∣∣∣∣2 . (5.59)

The full Hessian matrix can be populated as,

∇∇T f (vl) = −

P∑
p=1

[vl − vp][vl − vp]T

c2
∣∣∣∣∣∣vl − vp

∣∣∣∣∣∣2
M∑

m=1

(ωc)2
m

= −
||ωc||

2

c2

P∑
p=1

[vl − vp][vl − vp]T∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣2 (5.60)
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5.6.2 Gradient of Noise Term

Now let us consider the gradient of the noise term. Since we have an additive noise model where

our metric is the sum of an ideal component and a noise term, the gradient of the metric must be

the sum of the gradient of the ideal term and the gradient of the noise term because the gradient is

a linear operation. Let us define the unit vectors associated with the x, y and z axes of the solution

space,

î =


1

0

0

 , ĵ =


0

1

0

 and k̂ =


0

0

1

 . (5.61)

First we will consider the first element of the gradient vector, which is the derivative with respect to

x; that is, in the î direction. The derivative of the noise term can be defined as the limit of the finite

difference approximation,

d
dx

w̃r,m,s
(

#
vl

)
= lim

ε→0

w̃r,m,s
(

#
vl +îε

)
− w̃r,m,s

(
#
vl

)
ε

. (5.62)

This can equivalently be expressed as,

d
dx

w̃r,m,s
(

#
vl

)
= lim

ε→0

1
ε

[
−1 1

]  w̃r,m,s
(

#
vl

)
w̃r,m,s

(
#
vl +îε

)
 (5.63)

From the Equation 5.39 it is known that, w̃r,m,s
(

#
vl

)
w̃r,m,s

(
#
vl +îε

)
 ∼ . . .

N

0, σ2

2

P∑
p=1

 M
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl

)
−

#
t0,p

(
#
vl +îε

)))
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl

)
−

#
t0,p

(
#
vl +îε

)))
M


 .

(5.64)
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Since we have another multivariate normal distribution undergoing a linear transformation we have,

d
dx

w̃r,m,s
(

#
vl

)
∼ N

(
0,

1
ε2

[
−1 1

]
. . .

σ2

2

P∑
p=1

 M
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl

)
−

#
t0,p

(
#
vl +îε

)))
∑M

m=1 cos
(
(ωc)m

(#
t0,p

(
#
vl

)
−

#
t0,p

(
#
vl +îε

)))
M


 −1

1




d
dx

w̃r,m,s
(

#
vl

)
∼ N

0, limε→0

σ2

ε2

PM −
P∑

p=1

M∑
m=1

cos
(
(ωc)m

(#
t0,p

(
#
vl

)
−

#
t0,p

(
#
vl +îε

)))
 . (5.65)

Substituting ranges for time delays we have,

d
dx

w̃r,m,s
(

#
vl

)
∼ N

0, limε→0

σ2

ε2

PM −
P∑

p=1

M∑
m=1

cos
(
(ωc)m

c

(∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))

 . (5.66)

In this case we have the limit of a fraction. The limit of the denominator, ε2, clearly is zero as ε

approaches zero. The numerator of this expression also has a limit of zero, as the argument of the

cosine terms become zero, which when summed cancel with the PM term. This implies that we

need to use l’Hôpital’s rule to find the limit of the expression. Applying this yields,

d
dx

w̃r,m,s
(

#
vl

)
∼ N

0, limε→0

1
2ε

d
dε
σ2

PM −
P∑

p=1

M∑
m=1

cos
(
(ωc)m

c

(∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))

 .
(5.67)

Differentiating we obtain,

d
dx

w̃r,m,s
(

#
vl

)
∼ . . .

N

0, limε→0

1
2ε
σ2

c

P∑
p=1

(
#
vl

)
1

+ ε −
(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣
M∑

m=1

(ωc)m sin
(
(ω)m

c

(∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))
 . (5.68)

We again have the limit of a fraction where both the numerator and denominator have a limit of

zero. The limit of the numerator is clearly zero because each of the sine terms approach zero as

epsilon approaches zero. We need to apply l’Hôpital’s rule a second time,

d
dx

w̃r,m,s
(

#
vl

)
∼ . . .

N

0, limε→0

d
dε
σ2

2c

P∑
p=1

(
#
vl

)
1

+ ε −
(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣
M∑

m=1

(ωc)m sin
(
(ω)m

c

(∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣))
 . (5.69)
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To take the remaining derivative the product rule is required. Let us first compute the derivatives of

the two components.

d
dε

(
#
vl

)
1

+ ε −
(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ =
1∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ −
((

#
vl

)
1

+ ε −
(
vp

)
1

)2

(∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣)3 (5.70)

d
dε

M∑
m=1

(ωc)m sin
(
(ωc)m

c

(∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)) = . . .(
#
vl

)
1

+ ε −
(
vp

)
1∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣
M∑

m=1

(ωc)2
m

c
cos

(
(ωc)m

c

(∣∣∣∣∣∣∣∣∣∣#vl +îε − vp

∣∣∣∣∣∣∣∣∣∣ − ∣∣∣∣∣∣∣∣∣∣#vl −vp

∣∣∣∣∣∣∣∣∣∣)) (5.71)

We can use these to take the derivative in Equation 5.69,

d
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Taking the limit of this expression as ε goes to zero yields,

d
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which further simplifies to
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In the same manner we can obtain,
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Next we will consider the covariance first two elements of the gradient vector, which can be

expressed as 
d
dx w̃r,m,s
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)
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As this represents another multivariate normal random vector undergoing a linear transformation

we can obtain
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We must again apply l’Hôpital’s rule twice in order do determine the limit.
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Distributing we obtain,
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)))
. . .

−
d2

dε2

σ2

4

P∑
p=1

M∑
m=1

cos
(
(ωc)m

(#
t0,p

(
#
vl

)
−

#
t0,p

(
#
vl +ĵε
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(5.80)

Let us consider each of these four second derivative terms individually. The first term involves

differentiating a constant, and so reduces to zero. The second term is identical to that which we
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differentiated twice previously, starting with Equation 5.65. Therefore we know that,
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Similarly we know that,
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The final second derivative term must be examined more closely; via a similar procedure to the

derivation of the distribution of d
dx w̃r,m,s
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)
we can obtain,
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Combining these terms we obtain,
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The other covariance terms can be found in the same manner. The distribution of the gradient of the

noise term can now be fully represented as,

∇w̃r,m,s ∼ N
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(
σ||ωc||
√

2c

)2 P∑
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[
#
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 . (5.85)
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5.7 Position Estimate Error

Recall Equation 5.47 which described the probability distribution of the TART position estimate

error. Now that we have computed the Hessian of the ideal TART metric and the gradient of the

noise term, we can use them to evaluate this equation. First however, we must note the similarity

between our expression for the Hessian matrix of the ideal TART metric at the true location and the

covariance of the gradient of the noise term. Indeed the relation is as simple as

cov
(
∇w̃r,m,s (vl)

)
=
−σ2

2
∇∇T f (vl) . (5.86)

We can use this relation to simplify Equation 5.47,[
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2
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2

((
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0, σ2c2
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2

 P∑
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[vl − vp][vl − vp]T∣∣∣∣∣∣vl − vp
∣∣∣∣∣∣2


−1 (5.87)

We now have an expression for the distribution of position estimate errors. We see that it is unbiased

(has zero mean). The covariance matrix is a function of several parameters. The variance of the

errors is linearly proportional to σ2, the variance of the original noise added to the received signal.

We also see the variance of the errors is inversely proportional to ||ωc||
2, which implies that having

more bandwidth will reduce the size of the errors. We also see that the covariance matrix is affected

by the geometry of the system, as the matrix inverse term depends on the mobile transceiver location

vl and reference transceiver locations, vp.

As with any expression containing the inverse of a matrix, we must concern ourselves with the

conditions under which the matrix is singular and can not be inverted. For example, if P = 1 the

matrix to be inverted is simply the outer product of a vector with itself, which has rank 1 and can

not be inverted. This makes sense because with a single reference unit one can not perform three-

dimensional location as the problem is underdetermined. This is reflected by the singularity of the

matrix to be inverted. Only by summing the outer product terms from several reference antennas

with diverse geometry do we obtain a valid expression for the three-dimensional error covariance.

Suppose we construct a matrix V where each column is the unit vector in the direction from a
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reference antenna to the mobile antenna,

V =

[
vl−v1

||vl−v1 ||
2 . . .

vl−vp

||vl−vp||
2 . . . vl−vP

||vl−vP ||
2

]
. (5.88)

Equation 5.87 can be rewritten as,[
?
vl −vl

]
∼ N

(
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σ2c2

2||ωc||
2

(
VVT

)−1
)

(5.89)

It is known that rank(V) = rank(VVT ) [31], therefore in order for the inverse in this expression

to exist the rank of V must be three (in the three-dimensional case). This implies for example our

perturbation approximation is invalid for certain degenerate geometry cases, as for the example the

case of all antennas being coplanar. For reasonably chosen geometries of interest, it is expected that

this will not be the case.

Let us also note that while this derivation has been carried out for the three-dimensional case, we

can easily reduce it to analyze two-dimensional cases, even for geometries that would be considered

degenerate in the three-dimensional case.

We also are interested the root mean square (RMS) error of the distance between the true position

and the estimate, ∥∥∥∥∥?vl −vl

∥∥∥∥∥ =
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The RMS error is defined as,
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This can be rewritten as,
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By the linearity of the expectation operator we have,

rms
(∥∥∥∥∥?vl −vl

∥∥∥∥∥) =

√
E

{(
?
vl −vl

)
1

}2
+ E

{(
?
vl −vl

)
2

}2
+ E

{(
?
vl −vl

)
3

}2
. (5.93)

The three expectation terms above are simply the x, y, z position error variances, which are the

diagonal elements of our covariance matrix. Therefore we have,

rms
(∥∥∥∥∥?vl −vl

∥∥∥∥∥) =

√
trace

(
σ2c2

2||ωc||
2

(
VVT )−1

)
. (5.94)
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5.8 Test Cases

Next we will observe the perturbation of TART position estimates in various test cases, com-

paring our analytical approximation to results from repeated trials of a numerical simulation. For

comparison we will also observe the perturbation of σART position estimates using simulated re-

sults.

First however, let us define signal to noise ratio (SNR) in our context. Since the magnitude of

the ideal component for each carrier has been set equal to 1, we have

SNR = −20 log10 σ, (5.95)

which is the signal to noise ratio expressed in decibels (dB). This value represents the ratio of signal

power to noise power for each received signal carrier on each reference antenna.

5.8.1 1D Perturbation Simulation

The first test case we will examine is the one-dimensional case very similar to the one described

in Section 5.1 and depicted in Figure 5.1, where we let the solution space be along the x axis and

in which we had a single reference antenna at v1 = [10 0 0]T . The only difference is that for this

case we will add a second reference antenna at v2 = [10 0 0]T , so that both TART (which needs

only one reference antenna in the one-dimensional case) and σART (which requires 2 reference

antennas in the one-dimensional case) can be performed with this example. In this example we are

only interested in errors in the x-direction.

Figure 5.4 shows both the TART and σART metrics for several trials of the perturbation simula-

tions for this one-dimensional case. Each sub-plot contains curves which represent metric values for

10 different trials at a particular value of SNR. These curves have been normalized to have the same

scale. Each curve has an “X” associated with it that indicates the location of the maximum value of

the metric. The top left sub-plot shows the TART metric in the infinite SNR case, that is the ideal

TART metric for this geometry, which resembles Figure 5.1. Similarly the top right sub-plot shows

the ideal σART metric. We can see how as the SNR is reduced, both TART and σART degrade. For

relatively high SNR the metrics maintain a single central peak and the distribution of peaks appears

to be Gaussian where the variance gradually increases as the SNR decreases. After a certain point
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Figure 5.4: 1D Perturbation Simulation Trials
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however we have a “breakdown” effect, where secondary peaks begin to become comparable in size

to the central peak causing large position errors. We see that TART has significant breakdown at

-15 dB SNR, whereas σART breaks down at the much higher -5 dB SNR.
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Figure 5.5: 1D Perturbation Simulation

Figure 5.5 shows the position estimate error standard deviation as a function of SNR as predicted

by our analytic approximation for TART and as estimated from 100,000 simulation trials for both

TART and σART. As expected for high SNR, the predicted and simulated errors become smaller.

We also see that for higher SNR the predicted curve matches the simulated curve for TART. This

is expected because the approximations made were accurate for high SNR. We see that σART has

larger errors than TART for all values of SNR. When the signal to noise ratio becomes lower than

approximately -8 dB we see that the simulated standard deviation for TART begins to deviate sig-

nificantly from the predicted value. This is the breakdown effect which was illustrated in Figure 5.4.

We see in Figure 5.4 that for very low SNR, the distribution of maxima locations appears to be

uniform over the search space. Thus in heavy noise the resulting estimates convey no information.

Since the truth location is at the origin in this case, the positions of the maxima are the errors. Thus

distribution of position errors is approximately uniform over [-10, 10], which is known to have a

standard deviation of
√

(10−(−10))2

12 ≈ 5.7735.[5] This value is plotted on Figure 5.5 as a horizontal

black line. We see that the simulated error standard deviations for both TART and σART take on
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approximately this value for very low SNR as expected.

5.8.2 2D Perturbation Simulation

Next we will consider the two-dimensional case depicted in Figure 3.5, with 16 reference an-

tennas on two sides of the scan region. Figure 5.6 shows the perturbation results for both TART and

σART in this configuration. The simulated results in this figure were obtained from 10,000 repeated

simulations. This plot shows the error standard deviations in the x and y direction, as well as the

square root of the x, y covariance. As this is a logarithmic plot we must show the absolute value of

the covariance.
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Figure 5.6: 2D Perturbation Simulation

Again we see that the simulated result matches our approximation closely for high SNR. In

comparison to the one-dimensional case in Figure 5.5, we see that the position errors are smaller for

a given SNR. This is due to the presence of several reference antennas with independent noise, which

has an averaging effect on the position estimate. We also see that σART performs significantly

worse than TART (by approximately a factor of two), even at high SNR. Both methods approach

some constant value as the distribution of maxima becomes uniform at very low SNR. In this case

we observe that σART breaks down at an SNR approximately 6 dB higher than TART.

While the plot does not display it, the σART x, y covariance is negative in this example, whereas
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the TART x, y covariance is positive. This makes intuitive sense looking at Figure 3.5, which shows

that the σART metric is elongated in the y = −x direction, and the TART metric is slightly elongated

in the y = x direction. We see that that once TART and σART reach complete breakdown the x and

y errors become less correlated.
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Figure 5.7: Histogram of Simulated Position Estimates at -6 dB SNR

Figure 5.7 shows a two-dimensional histogram of the σART and TART position errors for this

case at -6 dB SNR. This plot was created by discretizing the solution space with a rectangular grid

with 0.2 meter spacing. For each square area in the grid, the number of position estimates within

that area was computed and the corresponding pixel of the histogram was colored accordingly. The

color bar on the right shows the logarithmic mapping between color and number of occurrences.

We see that these histograms look very similar to the metric images in Figure 3.5. We see that there

is a direct correspondence between the shape of the σART and TART metrics and the distribution

of position estimates, which validates our intuition that metric ambiguity in a certain direction can

cause increased position error in that direction.

The probability density function of a multivariate normal random vector x ∼ N (µ,Σ) with m

elements is known to be

p(x) =
1

(2π)m det(Γ)1/2 e−
1
2 (x−µ)TΣ−1(x−µ).[5] (5.96)
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Taking the natural logarithm of this function we have,

lnp(x) = ln
1

(2π)m det(Γ)1/2 −
1
2

(x − µ)T Σ−1 (x − µ) . (5.97)

This can be rewritten as

lnp(x) + k = −
1
2

(x − µ)T Σ−1 (x − µ) , (5.98)

where k is an arbitrary constant. If we substitute the parameters for the TART position estimate

distribution, which is the TART error distribution from Equation 5.89 shifted to be centered about

the true position, we obtain,
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Recall our Taylor series approximation of the ideal TART peak,
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From Section 5.6.1 we know that,
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Therefore we have,
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which has a very similar form to Equation 5.99. We can say that
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)
+ k ∝ f

(
#
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)
, (5.103)

where ∝ represents proportionality. We see that the shape of the ideal TART metric peak is pro-

portional to the logarithm (ignoring the constant offset k) of the probability distribution of position

estimates when noise is introduced. This explains why our histogram of TART position estimates

looks similar to the original TART image, and while not shown explicitly, the same behavior appears

to be true for σART.



88

5.8.3 3D Perturbation Simulation

Finally we will examine an example in the full three-dimensional case. This case is identical

to that depicted in Figure 3.9, with eight reference antennas on two sides of the scan region having

staggered heights and the mobile unit is positioned at vl = [8 14 3]T . The scan limits in the vertical

dimension were from 0 to 6 meters.

The results for this case are shown in Figure 5.8. The simulated results for this case were the

result of 10,000 repeated trials. Again we see that TART outperforms σART significantly (by a
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Figure 5.8: 3D Perturbation Simulation: Error vs. SNR

factor of approximately two), and our approximation for TART error closely matches the simulated

results for high SNR. We observe that σART breaks down at an SNR approximately 6 dB higher

than TART in this case. We also see that for both σART and TART the vertical error is significantly

larger (by a factor of approximately six) than the horizontal error. This corresponds to the shape of

the metric peaks observed in Figure 3.9, and is expected since the reference antennas have much

more diversity in the horizontal dimensions.

With the ability to determine error variances for various system geometries and any level of

SNR with repeated simulation trials begs the question: what is the value of having an error variance

approximation for high SNR only? First we must note that the derivation of the error variance ap-

proximation itself was a useful path that provided significant insight to the TART process and how
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it behaves. Second, our approximation can be evaluated much more quickly than a numerical sim-

ulation with thousands of repeated trials, while still revealing the error sensitivities for a particular

geometry. For example, for a particular reference antenna geometry, our high SNR approxima-

tion can quickly provide the error statistics for an entire span of mobile antenna locations, i.e. all

locations in the scan region.
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Figure 5.9: Predicted TART Error vs. Mobile Location at 0 dB SNR, z = 3

An example of this is shown in Figure 5.9. This again represents the “practical” reference

antenna geometry from Figure 3.9, but in this case we show the corresponding error statistics for

the mobile antenna being located at different positions in space for 0 dB SNR. In this figure we see
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various error statistics for (vl)1 ∈ [−1, 21], (vl)2 ∈ [−1, 21], (vl)3 = 3, all possible locations in the

horizontal dimensions when the height is fixed at 3 meters.

We see that for this geometry the error is predominantly in the vertical dimension, and that the

smallest errors occur when the mobile antenna is close to the reference antennas. As the mobile

antenna gets farther from the reference antennas the vertical error grows considerably.
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Chapter 6

Experimental Results

The measures described in Chapter 4 have been implemented to create a system capable of

performing TART with real data. This chapter describes a series of tests that were performed to

observe the location estimation performance of TART in real situations. The tests described in this

chapter all used a multicarrier signal with 100 MHz of bandwidth and 156 carriers. Additionally a

bandwidth extrapolation technique was used to synthetically increase the bandwidth to 133 MHz.

This technique fits a autoregressive model to the received frequency data from which additional

frequency samples are extrapolated.[25] This technique has been used for years by the PPL system

for σART processing and has showed improved results consistently.

All tests described in this chapter use the original transactional synchronization scheme, as

opposed to the alternative scheme proposed in Section 3.3.5. This was simpler to implement for

these proof-of-concept tests. Testing of the alternative scheme was conducted in the laboratory

which showed that both techniques produce nearly identical estimates for the random time offset,

implying that they would have the same level of performance for indoor location testing.

6.1 Laboratory Proof of Concept

The first test of TART was performed inside of our laboratory. For this test two of our transceiver

units were used. One of the transceivers acted as the stationary reference unit with four antennas

connected to it, whereas the other transceiver acted as the mobile unit to be located, with a single

antenna connected to it. One significant unrealistic attribute of this test was that both transceivers
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were driven by a common oscillator. This allowed the time varying time-offset τ̃(t), discussed in

Section 4.4, to be assumed to be constant. In a final system this would not be the case, but it was

an accepted assumption for this initial proof of concept test. Still in the proof of concept stage, the

firmware for the transceivers was not optimized for efficient transactional data captures, so capturing

the data from the set of transactions at a given mobile antenna location took as much as 30 seconds to

complete. Thus real-time positioning was not possible, but the data was analyzed in post processing.

Since the random time-offset was fixed, the time between transactions was not critical.

Figure 6.1: Laboratory Test Setup

Figure 6.1 shows the interior of the laboratory used for this test. Two of the four reference

antennas are visible, as well as the mobile antenna at one of its locations. In some cases the mobile

antenna has direct line of sight to the reference antennas, but in other cases it was obscured by the

various objects in the room. There were also many metal objects and structural beams creating a

moderate multipath environment. The transceiver units themselves were co-located and connected

with cables to the antennas, as shown in Figure 6.2.

The mobile antenna was placed at 18 surveyed locations throughout the lab, at a constant height

that matched the reference antennas. At each location, the necessary transactional signals were

recorded in order to perform TART. This data was then analyzed with both σART and TART. The
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Figure 6.2: Laboratory Test - Transceivers

σART algorithm ignores the additional timing information obtained by the transactional synchro-

nization procedure and behaves as it would in the traditional TDOA system. The data was first

analyzed using a two-dimensional scan.

Figure 6.3 shows the result of from the first location for both σART and TART. We see that in

this case both algorithms result in an approximately the same error of about 0.2 meters. Careful

examination of the TART metric shows arcs centered at the reference antennas that pass through the

location of the mobile antenna, as observed in Figure 3.6.

Figure 6.4 summarizes the performance at all 18 mobile antenna locations. The plot on the

left illustrates the errors with a vector pointing from each truth location to the estimated location

for both σART and TART. We see that at most locations the errors for both σART and TART are

relatively small. The table provides error statistics, showing that TART had smaller RMS, median

and maximum errors than σART. There was one particular location in which σART had a large 2.11

meter error. The metric images for this case are shown in Figure 6.5. We see that the σART image

had multiple peaks; one close to the true location, and one 2.11 meters away that was chosen as

the largest peak. This suggests that the σART has incorrectly chosen a peak corresponding to a

reflector, as observed in simulation in Figure 3.2.
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Figure 6.3: σART vs. TART - Laboratory Test: 2D, 4 Reference Antennas, Location 1
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Figure 6.5: σART vs. TART - Laboratory Test: 2D, 4 Reference Antennas, Location 16

The data from this test was then analyzed with the data from one of the reference antennas dis-

carded. This simulates the effect of only having three reference antennas in a reduced geometry

situation. The results from this analysis are summarized in Figure 6.6. We see that the σART per-

formance degrades dramatically, having three large outliers and many other points with increased

error. In contrast, TART has only slight degradation. This agrees with the simulations that suggest

TART has superior performance in reduced geometry situations.

The data was then analyzed using a full three-dimensional scan. Figure 6.7 shows the result at

Transmitter Location 2. We see that the σART metric volume has significant ambiguity in the ver-

tical direction, as predicted by the simulations. The TART metric is much more localized vertically.

At Location 3, shown in Figure 6.8 we see that σART has a gross error due to this vertical ambi-

guity, whereas TART performs well. These two locations show the general trend that the height

errors from σART are sometimes small and sometimes very large, while TART has consistently

small height errors.

Figure 6.9 summarizes the three-dimensional scan results for all of the mobile antenna locations.
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(a) σART (b) TART

Figure 6.8: σART vs. TART - Laboratory Test: 3D, 4 Reference Antennas, Location 3

The error vector plot on the left displays the horizontal errors; we can see that even in the horizontal

direction σART suffers without knowledge of the correct height to scan. The table displays the

overall errors as well as the horizontal and vertical components of the error. We see that σART is

outperformed by TART most dramatically in the vertical direction.

This test was a major milestone in the development of TART. It showed that TART, along with

transactional synchronization and its many hardware considerations explained in Chapter 4, had

been implemented properly. It also confirmed the performance benefits suggested by the simulations

to be true for real data as well.

6.2 Line of Sight Test

After the initial laboratory proof of concept test, a full scale test was performed in a large

auditorium in WPI’s Alden Hall building. This was an unobstructed line of sight case with minimal

multipath, as close to an ideal case as possible to observe baseline performance. Figure 6.10 is a

photograph of the test setup in the auditorium. Visible is the mobile antenna that was moved about

the testing area, as well as several of the reference antennas, of which there were 12 in total. This

test used five transceiver units, four of which acted as reference transceivers with three antennas,

and one as the mobile transceiver with one antenna. The mobile antenna was mounted to a longer
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Figure 6.10: Alden Hall Test Setup
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pole to allow its height to be varied.

A significant change from the laboratory proof of concept test was that all of the transceivers

were driven by independent oscillators, which were Rubidium atomic clocks. The relative drift

of these clocks was determined experimentally to be negligible over the approximately 30 second

capture times, allowing us to assume τ̃ to be constant for each location capture.

Two sets of data or “runs” were obtained during this test. The first consisted of the mobile an-

tenna placed at 15 different locations throughout the testing area at the same height as the reference

antennas. The second run consisted of the mobile antenna being placed at one of those locations

and having its height varied.
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Figure 6.11: Error Summary - Alden Hall Test: 3D, Run 1, 12 Reference Antennas

The data from Run 1 was analyzed with a three-dimensional scan, the results of which are

summarized in Figure 6.11. We see once again that TART is more accurate than σART, particularly

in regards to the vertical error. There are however, two very striking entries in this error table. Both

σART and TART have zero median error in the vertical dimension. This implies that more than half

of the mobile antenna locations had no error, which seemingly should not happen. This behavior

is an effect of the particular geometry used for this run of the test, in which all reference antennas

were placed at the same height, thus being coplanar. This causes both the σART and TART metrics
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to be symmetrical about the plane. Since the mobile antenna is also in the same plane, the solution

peak is expected to be very close to this plane, and in some cases the symmetry of the σART/TART

metric about the plane causes the maximum to be located precisely in the plane. In a more realistic

case where the reference antennas have some height diversity this would not be an issue.

Further, if the mobile antenna is raised above the plane then the solution peak moves far enough

away so that a maximum does not exist in the plane, as we will see from the second run’s data.

However, by symmetry a pair of equally size maxima must exist, one above the plane and one

below the plane. This ambiguity is avoided by constraining the search space to only include the

space above the reference antennas. For this test we assume that the mobile antenna must be within

the auditorium and not below the floor. Similarly, in a real situation constraining the search space

to only include the building and immediately surrounding area would be advisable.

Figure 6.12 shows the results of analyzing the data from the first run using only six reference

antennas, showing a reduced geometry case. We see that σART degrades more that TART does,

having significantly larger errors in all categories. TART does have a rather large maximum error

of 3.79.
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Figure 6.12: Error Summary - Alden Hall Test: 3D, Run 1, 6 Reference Antennas

Run 2 consisted of six data captures with the mobile antenna at a constant horizontal (x,y)
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location (6,10) meters, but different heights (1.15, 2.00, 3.00, 4.00, 5.00, and 5.63) meters. The

reference antennas were all at a height of 1.15 meters. The results of analyzing this run with all 12

reference antennas are displayed in Figure 6.13. We see again that TART outperforms σART. We
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Figure 6.13: Error Summary - Alden Hall Test: 3D, Run 2, 12 Reference Antennas

also see that we no longer have the degenerate geometry issue causing solutions to be in the plane of

the reference antennas. The error vector plot illustrates that both methods have relatively accurate

horizontal performance, but σART has significantly larger vertical errors.

Finally we show the results of Run 2 with the 6 reference antenna reduced geometry in Fig-

ure 6.14. Again we see TART outperforms σART. Both methods seem to have minor degradation
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relative to the full geometry case.

The Alden Hall test proved to be a valuable step in showing the advantages and viability of TART

in full scale test, particularly in showing that TART functioned as expected with each transceiver

driven by an independent oscillator. This test shows us the level of accuracy that can be expected in

an environment with unobstructed direct path signals.

6.3 Building Test

A test was conducted at the WPI Religious Center, a three-story residential structure on campus.

This test used 16 reference antennas mounted on 4 ladders that were erected on one side of the

building, as depicted in Figure 6.15. With this test we hoped to show that TART would provide

accurate location performance in a situation with reference antennas on only one side of a building,

unlike various σART tests in recent years which utilized reference antennas fully surrounding the

building.

Figure 6.15: Religious Center Test

For this test data was collected with the mobile antenna at 19 different locations: 11 on the first
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floor, 5 on the second floor and 3 on the third floor. This data was analyzed with both σART and

TART with a three-dimensional scan region. Figure 6.16 displays the horizontal error vectors for

the mobile antenna locations on the first floor. We see that the TART has significantly smaller errors

than σART. We see that σART has particularly large errors in the x direction. This is expected as we

have seen that σART tends to have large errors when the reference antennas are nearly coplanar, in

the direction perpendicular to the plane. This behavior can be examined more closely in Figure 6.17,

which shows slices of the three-dimensional σART and TART metrics for one of the mobile antenna

locations on the first floor. We see that the σART metric is elongated in the x direction.
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Figure 6.16: Residential Building Test: 3D, First Floor Error Plot

Figure 6.18 and Figure 6.19 display the horizontal error vectors for the mobile antenna locations

on the second and third floors respectively. Again we see that TART generally outperforms σART.

Table 6.3 summarizes the errors for the points from all three floors. We see that TART outperforms

σART throughout, with an overall median error of 0.75 meters compared to 2.36 meters for σART.

We see that the σART error in the vertical dimension is actually comparable to σART in this test,

but this was achieved by sacrificing σART accuracy in the x direction.
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(a) σART (b) TART

Figure 6.17: σART vs. TART - Residential Building Test: 3D, Location 1
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Figure 6.18: Residential Building Test: 3D, Second Floor Error Plot
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Figure 6.19: Residential Building Test: 3D, Third Floor Error Plot

Error [m] σART TART
RMS 2.95 1.26
Med. 2.36 0.75
Max. 6.52 3.04
XY RMS 2.75 0.81
XY Med. 1.83 0.49
XY Max. 6.35 1.99
Z RMS 1.07 0.97
Z Med. 0.33 0.45
Z Max. 3.01 2.91

Table 6.1: Error Summary - Residential Building Test
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Chapter 7

Conclusion

This dissertation proposes a novel approach to precision indoor location, as an extension of

our existing prototype system. The current system is unique in that it uses a multicarrier signal and

multi-signal fusion algorithm to directly estimate the location of a radio transmitter without first esti-

mating the range of the mobile transmitter to each reference station. By introducing a new hardware

system architecture which utilizes bidirectional ranging signals it has been shown that additional

timing information can be extracted to obtain TOA-like synchronization, which provides various

advantages. This new approach has been named Transactional Array Reconciliation Tomography

(TART), which consists of an extension of the multi-signal fusion algorithm for synchronized data,

as well as the necessary synchronization scheme.

After describing the problem of precision personnel location and why we have chosen a radio

based approach, this dissertation described the multicarrier signal structure, which samples the ra-

dio channel response to that received signals contain position information. These received signals

are challenged by two notable non-ideal synchronization effects: a random frequency-independent

phase offset due to unsynchronized mixers and a random time-offset due to having an unsynchro-

nized DAC and ADC. These non-ideal synchronization effects have a substantial impact on the

design of algorithms for processing received signals. It was described how the σART algorithm

deals with these effects while estimating position from several received signals.

The TART algorithm however was designed with the assumption that there was no random time-

offset, only the frequency independent phase offset. Simulated results showed that the information
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obtained by removing the random time-offset offered substantial advantages in some cases. These

advantages include rejection of reflective objects as position estimate solutions, improved perfor-

mance with limited reference unit geometries and significant computation reduction. Efforts were

then made to show that obtaining this determining this random time-offset was possible using a

signal transaction, if the mobile unit to be tracked as well as the reference units outside the building

become transceivers that exchange signals with one another. The use of an alternative transactional

synchronization scheme was described in Section 3.3.5 which does not require received signal data

be sent over a digital data link to the base station to be processed. As a theoretical framework

and the practical testing, necessary to prove that this concept was valid, were implemented, var-

ious additional complications arose which needed to be overcome. These included the intra-unit

synchronization of the transmit and receive circuitry on the transceivers, frequency response cali-

bration of various hardware elements and verification that the stability of reference oscillators would

suit the needs of TART.

An approximation of TART error statistics for received signals corrupted by noise was derived

via a perturbation analysis and verified with simulated results. This gave insight into the behavior of

the TART algorithm and how it was affected by noise for different system geometries. These results

were compared to simulated results for σART which showed that the error variance for TART was

significantly smaller than σART, the equivalent of that obtained by an approximately 8 dB SNR

improvement.

The TART approach was verified using a series of experiments in which the position of a mobile

antenna was located in various indoor environments. TART performed as predicted showing that

the various synchronization and calibration procedures had been implemented correctly. We ob-

served that TART exhibited the analytically predicted advantages over the current σART approach

repeatedly throughout these tests.

There are disadvantages to using TART compared to the currentσART approach. TART requires

additional hardware complexity; transceivers required on both mobile and reference units instead

of dedicated transmitters and receivers. Also our treatment of TART requires twice the number

of carriers to acheive a particular range of signal aliasing. While doubling of carriers approach is a

valid and straightforward way to solve the time-offset ambiguity problem described in Section 3.3.2,

it may not be the most efficient solution. Essentially the additional carriers only provide one bit of
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additional information; it may be possible to relax this requirement to use fewer additional carriers

while still resolving the time-offset ambiguity.

The experiments conducted used the existing PPL transceiver hardware which was not originally

intended for TART, and was not suitable to perform “streaming” data captures, meaning repeated

data captures at a rate suitable to track a moving transmitter. For this reason the results presented

were from static captures where the mobile antenna was placed at different locations. Past expe-

rience using σART has shown that it is possible to estimate the position of a mobile antenna with

increased accuracy when it is moving by applying motion constraints in the estimation process. This

is most commonly implemented using the Kalman filter, a recursive tracking filter.[20] An example

of this is shown in Figure 7.1, which shows a result from a mobile antenna on a cart being moved

about the first floor of the WPI Religious Center. We can see that the raw σART position estimates

are filtered to produce a result that is more than twice as accurate overall. More information on this

topic can be found in reference [4].

Once hardware is in place to perform streaming TART captures it would be desirable to ap-

ply Kalman filter techniques to the raw TART position estimates to further improve accuracy. The

Kalman filter uses an estimate of measurement variances in order to optimize its state estimates.

Providing knowledge of the covariance of the position errors in the x, y and z directions would

provide additional information to the Kalman filter that has not been used previously; our TART

perturbation error expression could provide an approximation of this for a particular system geom-

etry. The Kalman filter assumes normally distributed error variances. TART errors may not fit this

distribution, as there are occasionally large errors due to bad multipath conditions. Occasional large

errors, or “outliers,” can often be rejected with simple additional logic, as long as most of the errors

are small and approximately normally distributed the Kalman filter with outlier rejection logic can

perform well. This technique was used on the filtered σART data in Figure 7.1.

The PPL team is currently developing a small mobile transceiver unit to support a full real time

TART prototype system. This unit is to have a single transmitter and receiver circuit and connect to

a single ranging antenna. One design challenge is choosing a high speed data radio module in order

to send received signals to the base station to be processed. Additionally these mobile transceivers

need to be “coarsely” synchronized with the reference transceiver units. This coarse synchronization

must be accurate on the order of microseconds, and is required in order to coordinate the timing of
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the transactions; as the units take turns transmitting and receiving. The coarse synchronization is

to be achieved by the detection of a pulsed signal, as described in [3]. This procedure must be

repeated periodically to maintain coarse synchronization. This new mobile unit is being designed

to be driven by an inexpensive crystal oscillator, requiring the use of the clock prediction scheme

described in Section 4.4. The design of this mobile transmitter is to be documented in an upcoming

thesis by another member of the PPL team.[10]

Although we have been allocated 150 MHZ of bandwidth by the FCC, the existing PPL transceiver

unit has a design flaw which causes us to restrict our bandwidth to 100 MHz to keep out of band

emissions to an acceptable level. This problem has been rectified in the new mobile transceiver

unit design, so that the full 150 MHZ can be used. This is expected to increase position accuracy

significantly, as discussed in Section 3.2.2.

TART is dependent on preexisting knowledge of the locations of the reference antennas. Au-

tomatically determining these locations, which is a very challenging problem in itself, is known as

Geometric Autoconfiguration (GAC), and is topic of another dissertation developed by a member

of the PPL team.[33] This work uses a rephasing algorithm similar to TART to solve for the refer-

ence antenna locations. Not surprisingly, this problem is substantially aided by using synchronized

TOA-like signal data. The transactional synchronization techniques developed in this dissertation

are directly applicable make a significant contribution to this problem as well.

An additional challenge to using TART to track emergency responders is the use of antennas

mounted on personnel. These antennas must be designed to have a small form factor and be close

to the human body, which can have an significant effect on the frequency response of the antenna

as a function of angle. This could result in weak received signals due to amplitude nulls in the

antenna pattern, or even unexpected signal delays due to the phase response of the antenna. This is

a challenge that needs to be addressed in the future for TART to be viable. A suggested approach

would be to simulate the antenna responses as a function of angle with antenna modeling software

and attempt to remove the effects with calibration. The positions and orientations of all of the an-

tennas would need to be known so that the relative angles could be determined. The position and

orientation of the reference antennas would presumably be known from the GAC process. The ori-

entation of the mobile antennas could be obtained by an inertial navigation supplementation.[4] The

position of the mobile unit is tested at each TART scan location; at each location the corresponding



111

hypothetical antenna response could be used to calibrate the signal data. At the correct location the

correct antenna response would allow the metric to be maximized.

TART is a proposed extension to the PPL system that has great promise to improve position es-

timate accuracy, particularly in situations with limited reference antenna geometry that is expected

to occur in practice. But is it good enough? Can it provide the performance required by emergency

responders to be accurate and trustworthy enough in emergency situations and be a source of in-

formation upon which life and death decisions could be made? In certain environments, such as

wooden residential structures like the WPI Religious center, this could very well be the case. In

more challenging settings, such as larger metal and concrete structures, TART may fail to provide

the necessary level of accuracy. TART is designed upon the assumption that at least some of the

reference antennas receive a direct path signal in order for them to produce a maximum at the cor-

rect location. The deeper the mobile transmitter is located in a large building the less likely it is

that there will be a direct path signal to any of the reference antennas. It is possible that all of the

channel responses measured will contain only reflected signals.

It is possible that TART could be extended to make use of channel response measurements

between mobile transceivers, in addition to the channel responses between mobile transceivers and

reference transceivers. These indoor-to-indoor channel response measurements may be of higher

quality than indoor-to-outdoor measurements if the mobile units are near one another with less

intervening material. Such an approach could potentially obtain higher position estimate accuracy

by simultaneously estimating the positions of multiple locators with this additional information.

This approach would be challenged by the fact that a joint estimation of the location of multiple

locators has a much higher dimensional solution space, and also the fact that additional received

signal data would need to be sent to the base station.

The TART algorithm is designed to ignore reflected signals and use direct path signals to produce

position estimates. Reflected signals do convey information about the location of the mobile unit,

albeit much less directly than direct path signals. A direct path signal with a delay t0 seconds

implies that the mobile unit is ct0 meters away from the reference antenna. A reflected signal with

a delay t0 seconds implies that the mobile unit must be less than ct0 meters away from the reference

antenna, since reflected signals must travel a longer distance than direct path signals. Thus reflected

signals can bound the region in which the mobile unit may be located. In more challenging radio
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environments, TART may need to be adapted to use such an approach. This will not however

provide as accurate a position estimate as is produced with direct path signals. In such situations it

is unlikely that TART will be accurate enough to stand alone to produce accurate position estimates.

TART would need to be supplemented with information from additional sources such as inertial and

barometric pressure sensors, as is commonly used in other navigation applications.

In conclusion, the future of TART, and more largely the Precision Personnel Location system,

appears to have both promise and challenge. The new TART approach may not be the final stride in

the development of a precision indoor location system for emergency responders, but it is certainly

a large step toward that end.
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