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Abstract

Because of the high volume and unpredictable arrival rates,stream processing sys-

tems may not always be able to keep up with the input data streams, resulting in buffer

overflow and uncontrolled loss of data. To continuously supply online results, two alter-

nate solutions to tackle this problem of unpredictable failures of such overloaded systems

can be identified. One technique, called load shedding, drops some fractions of data from

the input stream to reduce the memory and CPU requirements ofthe workload. However,

dropping some portions of the input data means that the accuracy of the output is reduced

since some data is lost. To produce eventually complete results, the second technique,

called data spilling, pushes some fractions of data to persistent storage temporarily when

the processing speed cannot keep up with the arrival rate. The processing of the disk res-

ident data is then postponed until a later time when system resources become available.

This dissertation explores these load reduction technologies in the context of XML stream

systems.

Load shedding in the specific context of XML streams poses several unique oppor-

tunities and challenges. Since XML data is hierarchical, subelements, extracted from

different positions of the XML tree structure, may vary in their importance. Further,

dropping different subelements may vary in their savings ofstorage and computation.

Hence, unlike prior work in the literature that drops data completely or not at all, in this

dissertation we introduce the notion of structure-oriented load shedding, meaning selec-

tively some XML subelements are shed from the possibly complex XML objects in the

XML stream. First we develop a preference model that enablesusers to specify the rela-

tive importance of preserving different subelements within the XML result structure. This

transforms shedding into the problem of rewriting the user query into shed queries that



return approximate answers with their utility as measured by the user preference model.

Our optimizer finds the appropriate shed queries to maximizethe output utility driven by

our structure-based preference model under the limitationof available computation re-

sources. The experimental results demonstrate that our proposed XML-specific shedding

solution consistently achieves higher utility results compared to the existing relational

shedding techniques.

Second, we introduces structure-based spilling, a spilling technique customized for

XML streams by considering the spilling of partial substructures of possibly complex

XML elements. Several new challenges caused by structure-based spilling are addressed.

When a path is spilled, multiple other paths may be affected.We categorize varying

types of spilling side effects on the query caused by spilling. How to execute the reduced

query to produce the correct runtime output is also studied.Three optimization strategies

are developed to select the reduced query that maximizes theoutput quality. We also

examine the clean-up stage to guarantee that an entire result set is eventually generated

by producing supplementary results to complement the partial results output earlier. The

experimental study demonstrates that our proposed solutions consistently achieve higher

quality results compared to the state-of-the-art techniques.

Third, we design an integrated framework that combines bothshedding and spilling

policies into one comprehensive methodology. Decisions onthe choice of whether to

shed or spill data may be affected by the application needs and data arrival patterns. For

some input data, it may be worth to flush it to disk if a delayed output of its result will

be important, while other data would best directly dropped from the system given that

a delayed delivery of these results would no longer be meaningful to the application.

Therefore we need sophisticated technologies capable of deploying both shedding and

spilling techniques within one integrated strategy with the ability to deliver the most ap-

propriate decision customers need for each specific circumstance. We propose a novel

ii



flexible framework for structure-based shed and spill approaches, applicable in any XML

stream system. We propose a solution space that represents all the shed and spill can-

didates. An age-based quality model is proposed for evaluating the output quality for

different reduced query and supplementary query pairs. We also propose a family of

four optimization strategies, OptF, OptSmart, HiX and Fex.OptF and OptSmart are both

guaranteed to identify an optimal solution of reduced and supplementary query pair, with

OptSmart exhibiting significantly less overhead than OptF.HiX and Fex use heuristic-

based approaches that are much more efficient than OptF and OptSmart.

iii
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Chapter 1

Introduction

1.1 General Concepts of XML Stream Processing

Recent years have witnessed a rapidly increasing attentionon streaming database systems

[1,2,6,9,17,34,50,64] because of the development of web and network techniques. Dif-

ferent from traditional database systems with statically stored data and one-time queries,

in a streaming database, data arrives on-the-fly. User queries are generally long-running

or continuous, and the results of the queries are also in the format of output streams. This

type of query is generally referred to as a continuous query.

Continuous queries significantly differ from traditional static queries in following as-

pects.

1. Data availability. For traditional relational queries,the data is knowna priori and

is persistently stored on disk. However, the stream data arrives at the system via

some network link in a never ending stream. For instance, monitoring applications

process data streams from sensor networks to monitor storehouse temperature or

road traffic. In network analysis applications, streams of network packets are sent

to the system to detect intrusions. In these scenarios, system has no data stored
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before new data arrives.

2. Result generation. Generation of query results for static queries is driven by a pull-

based execution strategy. However, when stream data arrives on-the-fly, the query

processing will be driven by the data and will thus produce results in a push-based

fashion.

Due to the proliferation of XML data in web services, there isalso a surge in XML

stream applications [15, 16, 22, 29, 32, 33, 44, 51, 52, 55]. For instance, a message broker

routes the XML messages to interested parties [29]. In addition, message brokers can

also perform message restructuring or backups. For example, in an online order handling

system [16], suppliers can register their available products with the broker. The broker

will then match each incoming purchase order with the subscription and forward it to the

corresponding suppliers, possibly in a restructured format at the request of the suppliers.

Other typical applications include XML packet routing [55], selective dissemination of

information such as personalized newspaper delivery [4], and XML monitoring systems

[51] for online auctions.

In XML streams, it is possible that an XML tuple (the basic unit to generate output

result) is split into many small pieces. Thus the incoming data is entering the system at

the granularity of a continuous stream of tokens [22, 44] or fragments [25], instead of

complete tree structured XML element nodes. Different fromrelational stream systems,

XML stream processing experiences new challenges.

1. Stream data arrives at the granularity of tokens or fragments. Since a single se-

quential scan of input data is only allowed, the engine has toeither extract relevant

tokens to form XML elements or to compose XML fragments to complete XML

structures.
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2. We need to conduct dissecting, restructuring, and assembly of complex nested XML

elements specified by query expressions, such as XQuery [65].

1.2 Motivation for Structure-based Shedding and Spilling

After giving a brief introduction about XML stream processing, now we motivate structure-

based shedding and spilling for XML streams. For most streamapplications, immediate

online results are required. However, stream applicationsare often characterized by push-

based data sources in which the arrival rates can be high and unpredictable. When the

arrival rate is very high, stream processing systems may notalways be able to keep up

with the input data streams–resulting in buffer overflow anduncontrolled loss of data.

Since such overload situations are usually unforeseen and immediate attention is vital,

adapting the system capacity to the increased load by addingmore resources or distribut-

ing computation to multiple nodes may not be feasible or economically meaningful. In

this case, the only immediate solution is to reduce some of the load. Load shedding and

load spilling are two load reduction techniques proposed tosolve the issue of insufficient

system resources to keep up with the processing of the data stream. Load shedding is a

strategy for solving this overflow problem by discarding a subset of the input data (tuples)

without processing–whenever the rate of processing data isnot able to keep pace with the

input rate [10, 21, 28, 59]. Load spilling flushes some subsetof the input steam to disks

temporarily. The processing of the disk resident data is postponed until a later time, for

instance, when there is a lull in the input stream.

We note that shedding applied to complex data types, such as XML streams, brings

new opportunities and challenges due to the complex nested nature of the XML element

structures. To generate as many output results as we can, we now instead propose to

throw away some sub patterns from an XML query result tree–which the initial query



1.2. MOTIVATION FOR STRUCTURE-BASED SHEDDING AND SPILLING 4

specification was supposed to extract. This may result in savings in the processing for

each output result, however this is at the cost of reducing the accuracy of the output

structure itself. How to assure a certain accuracy while still returning as much output as

possible is a challenging open issue.

In some applications, shedding may not be applicable since complete results may

still be required to be generated or at least retrievable at some later time. For instance,

in network intrusion detection systems, we need to analyze the packet information to

detect potential attacks. If some packets are dropped, the thrown packets may contain

the information related to the attack. In this case, throwing packets directly may lead

to a later failure to detect some attacks–possibly in a post-analysis process. Thus load

shedding techniques may not be suitable for such applications.

For the applications that require complete results, we would instead deploy a structure-

based spill technique, namely, to flush some sub patterns from an XML query result to

disks temporarily. Later when system resources become available again, we can continue

to finish the processing of the remaining disk resident data to produce the supplementary

output. Here we propose the notion of structure-based spilling in XML streams. We aim

to provide solutions for structure-based spilling that produce partial results, supplemented

later by refreshed delta result structures as to maximize the output data utility.

Last but not least, we develop an integrated load reduction framework that combines

both structure-based shedding and spilling policies within one uniform manner. The intu-

ition is that some input data may be worthwhile waiting for, as even a delayed output of

a result will be important so we temporarily spill data, thatcan be salvaged by a later un-

spill). Otherwise we may as well directly shed the input datafrom the system–given that

a delayed delivery of any result produced based on this inputdata at a later time would

no longer be of relevance to the application. Our goal is to design a carefully calibrated

multi-method framework that successfully applies both technologies to achieve maximal
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effectiveness in processing input streams while serving the needs of the applications best.

1.3 State-of-the-Art Load Shedding and Spilling Tech-

niques

1.3.1 Load Shedding Techniques

In streaming systems, load shedding has been considered an effective method for trading

off performance with accuracy [21, 49, 56, 59, 61]. Currently most load shedding tech-

niques have been developed for relational streams. Load shedding on streaming data was

first proposed in the Aurora system [59]. This work introduces two types of load shed-

ding: random and semantic load shedding. Based on the analysis of the loss/gain rate,

the random load shedding strategy will determine the amountof tuples to shed to guar-

antee that the remainder of the input can indeed be handled. For semantic drop, they

assume that different tuple values may vary in terms of theirutility to the application. A

frequency-based stream model [21] is proposed for sliding window joins. In this model,

each join value has a fixed frequency of the data streams and hence drops tuples based

on their popularity. An age-based stream model is proposed in [56]. In this age-based

model, every tuple in the data stream is confined to follow an aging process such that the

expected join multiplicity of a tuple is dependent on its arrival time. A load shedding

approach for join processing is proposed based on this age-based stream model in [56]

. An adaptive CPU load shedding approach [28] is provided forwindow stream joins

that follows the selective processing tuple methodology inwindows. However, for XML

streams, we must consider the complexity as well as importance of XML result structures

in order to make reduced query decisions.
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1.3.2 Data Spilling Techniques

In many cases, long running queries may need to produce complete result sets, even

though the query system may not have sufficient resources forthe query workload at a

particular time. As an example, decision support applications rely on complete results

to eventually apply complex and long-ranging historic dataanalysis, i.e., quantitative

analysis. One viable solution to address the problem of run-time main memory shortage

while satisfying the needs of complete query results is to push memory resident states

temporarily into disks when memory overflow occurs. Such solutions have been discussed

in XJoin [63], Hash-Merge Join [48] and MJoin [19]. These solutions aim to ensure a high

runtime output rate as well as the completeness of query results for a query that contains a

single operator. The processing of the disk resident states, referred to as state cleanup, is

delayed until a later time when more resources become available. The spilling solutions

for query plan with multiple query operators are proposed in[43] where data spilling from

one operator can affect other operators in the same pipeline. We could directly apply

the above techniques from the literature to coarse-grainedspilling in XML, namely, to

spilling complete topmost elements to disk; however, such coarse-grained spilling misses

the XML-specific opportunities for spilling. In this dissertation, we instead focus on the

fine-grained XML-specific structural spilling approach.

Generating partial XQuery results is discussed in [54] whenthe output is requested

in Internet applications. However, they only address how toproduce partial results when

only partial data is available. They did not consider the problem of resource management

under limited resources scenario in general, nor the specifics of producing partial results

in the XML stream context when the output from one operator ismissing due to spilling

some patterns.
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1.4 Research Focus

In this dissertation, we explore structure-based sheddingand spilling for XML streams.

The overall goal of this dissertation is to develop load reduction techniques including

structural shedding and spilling to optimize the production of output results for XML

streams. The dissertation is focused on the following threetopics: 1) Structure-based

shedding for XML streams, 2) Structure-based spilling for XML streams, and 3) An

integrated framework with a hybrid structure-based drop and flush approach for XML

streams.

1.4.1 Structure-based Shedding for XML Streams

The first dissertation goal is structural shedding for XML streams which selectively drops

XML subelements to achieve a high processing speed.

Now let us look at a concrete example. Consider an online store, customers may have

periods of heavy usage during some promotions or near holidays. The online store would

receive huge numbers of order from customers during these times. When the processing

capacity is not sufficient to keep up with the data arrival rate, the data will accumulate

in the buffer resulting in an overflow. In this case, we have toeither drop some data

or improve the processing speed. We consider the topmost “transaction” element in the

schema a basic unit based on which we can generate results. However, dropping complete

“transaction” elements means that we may lose important information. In this scenario,

dropping unimportant but resource-intensive subelementsmay be more meaningful to

output applications compared to the complete-tuple-granularity shedding. We call this

type of “element” granularity dropstructural sheddingsince it changes the structure of

query results.

Let us consider the online store query in Figure 2.1. This query returns the item list
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and contact information including telephone, email and address when customers spend

more than 100 dollars. To process as many transaction elements as possible, consumers

of the query result may prefer to selectively obtain partialyet important content as result

while dropping less important subelements in each transaction tuple. In this case we may

choose to drop “addr” information for two reasons.

1. “addr” element is much more complex than “email,” as shownin the schema shown

in Figure 1.2. This means we process more tokens for each single “addr” element

2. “addr” element may be “optional” to output consumers because “email” may be the

more likely means of contacting customers

By dropping the “addr” element, several savings arise. First, we do not need to process

“addr” element from the input tokens. In this case, we bypassthe processing of tokens

from “<addr>” to “</addr>.” Second, we no longer need to buffer “addr” element

during processing. Thus the buffering costs for “addr” element are saved. Note here this

shedding can be achieved by removing the “addr” element fromthe initial query. We call

the new reduced queryshed query.

FOR $a in stream( "transactions" )/list/transaction
WHERE $a/order/price > 100
RETURN $a//name, $a/contact/tel, 

$a/contact/email, $a/contact/addr, 
$a/order/items

Figure 1.1: Query Q1

There are many options to drop subelements from a given query. However, different

shed queries vary in their importance and their processing costs. Hence the correct choice

of appropriate shed queries raises many challenges. First,what model do we employ
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Figure 1.2: The Schema Definition for Q1

to specify the importance of each subelement? Second, aftergenerating different shed

queries, how can we estimate the cost of these shed queries atruntime? Third, which of

the potential shed queries should be chosen to obtain maximum output utility? Our solu-

tion tackles these challenges using a three-pronged strategy. One, we propose a preference

model for XQuery to enable output consumers to specify the relative utility (preference)

of preserving different sub-patterns in the query. Two, we develop a cost model to es-

timate the processing cost for the candidate shed queries. Three, we transform the shed

query decision problem into an optimization problem, and propose two solutions. The

main goal of our shedding technique is to maximize output utility given the stream input

rate and limited computational resources.

Contributions. This part of the dissertation work contributes to research in load shedding

in XML streams in the following ways:

1. First, a structure-based preference model is proposed that uniquely exploits the

relative importance of different sub-patterns in XML queryresults.

2. Second, we formulate the shedding problem as an optimization problem to find
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the appropriate shed queries to maximize the output utilitybased on our structure-

based preference model and the estimated cost derived from our cost model for

XML streams.

3. Third, to solve the shedding problem, we develop two algorithms, OptShed and

FastShed. OptShed guarantees to find an optimal solution however at the cost of

an exponential complexity. FastShed achieves a close-to-optimal result in a wide

range of cases with much smaller search costs than OptShed.

4. Fourth, we propose a simple yet elegant in-automaton shedding mechanism by sus-

pending the appropriate states in the automaton-based execution engine for XML

streams, in order to drop data early (and efficiently).

5. Finally, we provide a thorough experimental evaluation that demonstrates that our

approach maximizes the utility while keeping CPU costs under the available system

capacity.

1.4.2 Structure-based Spilling for XML Streams

The second dissertation goal is to explore structural spilling in XML streams. We aim to

provide solutions for structure-based spilling that produce partial results, supplemented

later by refreshed delta result structures so to maximize the output data utility. To the best

of our knowledge, there is no prior work on exploring structure-based spilling. We now

describe the practicability of structure-based spilling via concrete application scenarios

below.

Example 1. In online auction environments, sellers may continuouslystart new auc-

tions. When customers search for “SLR cameras,” all matching cameras and their product

information should be returned. Some key portions of the results, such as price and cus-

tomer ratings, will be displayed first, which aid customers in making decisions. Many
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consumers tend to use a two-stage process to reach their decisions [31] instead of inspect-

ing complete product information immediately. Consumers typically identify a subset of

the most promising alternatives based on the displayed results. Other product attributes,

such as sizes, and features, are often evaluated later afterconsumers have identified their

favorite subsets. When system resources are limited, the query engine may spill unimpor-

tant attributes to disk while producing partial results containing key information such as

price and customer ratings.

Example 2. In network intrusion detection systems, XML streaming data may come

from different nodes of the wide-area network. We need to analyze the incoming packet

information to detect potential attacks. If some packets are dropped, the discarded packets

may contain the information related to the attack. In this case, dropping packets directly

may lead to a later failure to detect and understand the ins and outs of attacks. Instead,

pushing unimportant fractions of data to disks temporarilywhen system resources are

limited can avoid such problem.

Example 3. FaceBook users may edit their personal profiles and send messages to

their friends at any time. Status updates, composed of possibly nested structures includ-

ing updates from friends, recent posts on the wall and news from the subscribed group,

are generated continuously. However, different users might be interested in specific pri-

mary updates. For instance, a college student wants to make new friends. He wants to

be notified when his friends add new friends. A girl who likes seeing pictures of her

friends hopes to get notified as soon as her friends update their albums. When the system

resources are limited, it may be favorable to delay the output of unimportant updates and

instead only report “favorite updates” to the end users.

Let us look at a structural spilling example. Query Q2 and itsplan are shown in

Figure 1.3. Query Q2 returns three path expressions,$a//b, $a/d and$a/b/c. The plan

conducts structural joins on the binding variable$a and these three path expressions. In
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Q2: 
FOR $a in stream()/a
RETURN 

<pairQ2>
$a//b, $a/d, $a/b/c

</pairQ2> 

SJ $a=/a

Query Plan

3 4
$a/b/c

(b)

2
$a//b $a/d

1

Query Q2(a)

Figure 1.3: Query Q2 and Its Plan

this work, we assume any path and any number of paths in the query can be spilled to

disk when the system cannot keep up with the arrival rate. Assume the path/a//b is

chosen to be spilled, i.e., all b elements on path/a//b are flushed to disk1. Note that

data corresponding to paths 2 and 4 in the plan is actually affected (as side effect) by

such spilling. For each output tuple (e.g.,<pairQ2> in Q2), partial result structures are

produced since bothb and c elements are missing. In this case, several savings arise.

First, since completeb elements are pushed to disk from the token stream, we do not need

to bother to extract “c” elements from the input at this time.In other words, we bypass

the processing of tokens from “<c>” to “</c>.” Second, we no longer need to conduct

structural joins between$a and$a//b nor between$a and$a/b/c. Henceforth, we refer

to the user query after spilling has been applied asreduced queryand the early output

produced by it asreduced output.

Such structural-based spilling brings new challenges thatdo not exist in relational

streams. There are many options to spill paths from a given query. Different reduced

queries may vary in their processing costs and output quality. Hence the correct choice of

appropriate reduced query raises many issues: 1) which additional paths in the query are

affected by spilling a particular path; 2) how to estimate the cost of alternative reduced

1Terms spill and flush are synonymous and refer to the process of pushing data to disk. We use spill and
flush interchangeably in this dissertation.
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queries as well as the partial result quality; and 3) which potential reduced query should

be chosen to obtain maximum output quality. We tackle these challenges using a three-

pronged strategy. One, we examine how to execute reduced queries given varying spilling

effects on the query. Two, we provide metrics for measuring the quality and cost of the

alternative reduced queries. Three, we transform the reduced query selection problem into

an optimization problem, namely, the design of the reduced query that maximizes output

quality. Our goal is to generate as many high-quality results as possible given limited

resources.

In addition, to eventually produce entire yet duplicate-free result set, we need to gen-

erate supplementary results correctly at a later time when the system has sufficient com-

puting resources. For this, we design an output model to match supplementary “delta”

structures with partial result structures produced earlier. To generate supplementary re-

sults, we determine what extra data to flush to disk to guarantee that the entire result set

can be produced.

Contributions. This part of the dissertation work contributes to research in load spilling

in XML streams in the following ways:

1. A general framework to address structure-based spillingwhich can be applied in

any XML stream system is proposed.

2. The structure-based spilling problem is formulated intoan optimization problem,

namely, to find the reduced query that maximizes the output quality based on our

structure-based quality and cost model for XML streams.

3. The spilling effect on different paths in the query for a particular spilled path is

examined. How to execute the reduced query to produce the correct runtime output

is studied.

4. A family of three optimization strategies, OptR, OptPrune and ToX, is proposed to
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maximize the output quality for structural spilling. Both OptR and OptPrune are

guaranteed to identify an optimal reduced query, with OptPrune exhibiting signif-

icantly less overhead than OptR. Using a heuristic-based approach, ToX is much

more efficient than OptR and OptPrune.

5. A complementary output model is proposed, that enables usto match supplemen-

tary “delta” result structures with partial output produced earlier.

6. The experimental results demonstrate that our optimization strategies consistently

achieve higher quality results compared to the state-of-the-art techniques.

1.4.3 An Integrated Framework For Structure-based Shedding and

Spilling

When the arrival rates are high and unpredictable, load shedding and spilling are two

load reduction techniques proposed to solve the issue of insufficient system resources to

keep up with the processing of the stream. However, the state-of-the-art literature has

so far overlooked that critical disadvantages exist for both the shed as well as the spill

techniques. On the one hand, shedding data means that partial output is lost forever. In

addition, dropped data may lead to blocked output, especially when there is a lull in the

input. On the other hand, spilling makes the strong assumption that system resources

will be ample to process all disk-resident data sooner or later. However, this ignores the

fact that in some situations, e.g., network monitoring applications, the data arrival rate of

traffic data may remain extremely high for extended periods of time. Huge volumes of

data may end up being collected and pushed to disk for archival, wasting CPU resources

on the archival and data preparation process. Worst yet, thespilled data may become

obsolete before there ever is any opportunity to bring it back into main memory to take

advantage of it. This wastes precious resources at a time when instead we should be
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devoting all resources to pushing out the most critical results in time. Therefore, in some

circumstances, neither a strict shed nor a strict spill strategy will be satisfactory, especially

in scenarios when the latency of output affects the output quality. Some input data may

be worthwhile waiting for, as even a delayed output of a result will be important, thus

warranting a temporary spill, that can be salvaged with a later unspilling. While other

data would best directly be shed from the system given that a delayed delivering of results

would no longer be of relevance to the application resultingin an unnecessary wastage

of processing resources. In short,there is an urgent need for a technology at the middle

ground capable of deploying both shedding and spilling techniques within one integrated

strategy with the ability to deliver the most appropriate decision customers need for each

specific circumstance.

Motivating Application Scenarios. We now describe the importance and relevance of

such an integrated strategy via concrete application scenarios.

In online auction environments where sellers continuouslystart new auctions, fraud

detection is critically important. Fraudulent sellers mayuse unapproved payment ser-

vices, such as an unapproved escrow service. For instance, after we detect that a seller

uses an escrow service other than the approved www.escrow.com, we should report the

seller as fraudster in the output. A fraud detection query and its plan are shown in Fig-

ure 1.4 and Figure 1.5 respectively. This query returns three path expressions,$a/seller/ID,

$/a/bidder/tel and$a/bidder/price. The plan conducts structural joins on the binding

variable$a and these three path expressions. Let us assume any query path can be shed or

spilled to disk. Assume we can shed or spill one or more query paths. When the system

is overloaded, we can choose one or more paths from three query paths$a/seller/ID,

$/a/bidder/tel and$a/bidder/price to shed or spill. Which paths among them are cho-

sen to be shed permanently versus being spilled to achieve highest output quality is ex-

tremely critical in achieving user satisfaction.
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FOR $a in stream()/list/auction
WHERE ($a/seller/payment [contains(., "escrow service")])

and ($a/seller/payment[ not(contains(., "Escrow.com")])  
RETURN <pairQ1>

$a/seller/ID, $a/bidder/tel, $a/bidder/price
</pairQ1> 

Fraud detection query:

Figure 1.4: Fraud Detection Query

SJ
$a=/open_auction/auction

$a/bidder/tel

1

3 4 σ
$a/payment

2

$a/seller/ID $a/bidder/price

Figure 1.5: Plan for Fraud Detection Query

The naive approach would be to apply the existing algorithmsfor optimizing either

shedding or spilling decisions separately. The shed optimizer would pick the substruc-

tures to shed to achieve the highest output quality. For instance, for the fraud detection

query, shedding{$a/bidder/price, $a/bidder/tel} is optimal since the quality for the

partial output is the highest. While saying the reduced query can be processed with the

given system resources, a spill optimizer on the other hand may choose the reduced query

spilling {$a/ seller/ID,$a/bidder/tel} as the optimal spill candidate. Clearly spilling

comes with higher processing costs compared to shedding thesame substructure because

spilling data to disk comes with the additional overhead of having to execute the disk spill.

Therefore this naive approach would ultimately picks the optimal shed solution from the

shed optimizer.

Assuming we indeed had the optimal pure shed and pure spill solutions, then an-
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other possible solution maybe instead choose some substructures to shed from the opti-

mal shed solution and other substructures to spill from the optimal spill solution. For

example, in Q1, we may pick path$a/bidder/price from the shed solution and the

path $a/bidder/tel from the spill solution. Let us call this composed solution{$a/

bidder/priceD, $a/bidder/telP} a fusion candidatesince such a candidate may be a

mixture of shed and spill decisions. Here we use a superscript to indicate the action des-

ignated for each substructure.D indicates shed andP indicates spill. However, we don’t

know whether this fusion candidate is the best or even a good solution for a given arrival

pattern and available resources in our environment. For this, we would need to compare

this particular fusion candidate against other candidates. Instead of conducting such an

ad-hoc approach, we clearly need a methodological approachtowards tackling this fusion

candidate design and fusion candidate selection problem efficiently yet correctly.

Such fine-grained fusion candidates raise many technical challenges: 1) since each

path in the query could potentially be either shed or spilled, we need to explore the search

space of fusion and its complexity; 2) we need a means to specify and interpret the quality

for different substructures to evaluate whether a delayed output of a substructure is sat-

isfactory to the user; 3) fusion candidates may vary in theirprocessing costs and output

quality. We need to choose optimal fusion candidates whose corresponding reduced and

supplementary queries achieve the highest output quality.

To tackle these challenges, we propose a three-pronged strategy. One, we represent all

possible fusion candidates using a Fusion Candidate (FC) lattice. Two, we provide metrics

for measuring quality and cost of the alternative reduced queries as well as supplementary

queries given some resources. Three, we transform the fusion candidate selection problem

into an optimization problem, namely, the design of the fusion candidate that maximizes

total output quality.

Contributions. Our contributions are summarized as below:
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1. We propose a new calibrated integrated framework for an integrated structure-based

shed and spill approach which is able to be applied in any XML stream systems.

2. We formulate our structure-based shedding and spilling problem into an optimiza-

tion problem, namely, to find a pair of the reduced and supplementary queries that

maximizes the output quality based on our structure-based quality and cost model

for XML streams.

3. We propose a solution space for fusion candidates which isrepresented by a Fusion

Candidate (FC) lattice. The complexity of FC lattice isO(3f
d

), whered and f

indicate the depth and fan-out of the query pattern tree.

4. We propose an age-based quality model for evaluating the output quality for differ-

ent reduced and supplementary query pairs.

5. We develop a family of four optimization strategies: OptF, OptSmart, HiX and Fex.

OptF and OptSmart are both guaranteed to identify an optimalpair of reduced query

and supplementary query, with OptSmart exhibiting significantly less overhead than

OptF. HiX and FeX use heuristic-based approaches, which aremuch more efficient

than OptF and OptSmart.

6. Our experimental results demonstrate that our strategies consistently achieve higher

quality results compared to the state-of-the-art techniques.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. The three research topics are dis-

cussed in detail in Part I, Part II and Part III in this dissertation respectively. The dis-

cussions on each of the three research topics include the relevant research motivation,
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problem introduction, background, solution description,experimental evaluation and re-

lated work respectively. Chapter 24 concludes this dissertation and Chapter 25 describes

possible future work.
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Part I

Structure-based Shedding for XML

Streams
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Chapter 2

Preliminaries

2.1 Query Pattern Tree

We support the core subset of XQuery in the form of “for... where... return...” expressions

(referred to as FWR) where the “return” clause can contain further FWR expressions;

and the “where” clause contains conjunctive selection predicates, each predicate being an

operation between a variable and a constant. We assume the queries have been normalized

as in [18].

FOR $a in stream( "transactions" )/list/transaction
WHERE $a/order/price > 100
RETURN $a//name, $a/contact/tel, 

$a/contact/email, $a/contact/addr, 
$a/order/items

Figure 2.1: Query Q1

The example query Q1 in Figure 2.1 is introduced in Chapter 1.4.1. This query returns

the item list and contact information including telephone,email and address when they

spend more than 100 dollars. The query pattern tree for queryQ1 is given in Figure 2.2.
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In Figure 2.2, each navigation step in an XPath is mapped to a tree node. We use single

line edges to denote the parent-children relationship or attributes and double line edges to

denote the ancestor-descendant relationship.

We define the following terms in an XQuery. First, acontext nodecorresponds to

a context variable in the “FOR” clause, e.g.,$a in Figure 2.2. Context variables must

evaluate to a non-empty set of bindings for the FWR expression to return any result. Sec-

ond, a pattern that correspond to an XPath in the “RETURN” clause, e.g.,$a/contact/tel

or $a//name, is calledreturn pattern(“r” pattern). Return patterns are optional, mean-

ing even if$a/contact/tel evaluates to be empty, other elements will still be constructed.

Third, aselection pattern(“s” pattern) correspond to an XPath in the “WHERE” clause,

i.e., it has associated predicates. For instance, the XPath, $a/order/price in Figure 2.2 is a

selection pattern. The “r” and “s” pattern for query Q1 are annotated on their destination

elements in Figure 2.2. We call the destination nodes of the return and selection patterns

“r” and “s” nodes respectively.

addr

transaction $a

name

tel email

order

itemsprice

contact
r

r r rsr

c c:context
r: return
s:selection

Figure 2.2: Query Pattern Tree for Q1

2.2 Generating Shed Queries

We now investigate how to generate shed queries based on a given query. We distinguish

between two terms, sub query and shed query. Sub queries are generated by removing
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one or multiple nodes from the initial query tree. A shed query is a valid sub query, and

it obeys the following rules:

1. A shed query always has the same root as the initial query.

2. The leaf nodes of a shed query have to be either “r” or “s” nodes.
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Figure 2.3: Shed Query Trees

For instance, Figure 2.3(a) is not valid because this tree does not need to keep the “con-

tact” element because all children of the “contact” elementare removed and the XPath

$a/contactis neither an “r” nor an “s” pattern. In other words, keeping pattern$a/contact

in the query does not make any sense since it does not contribute to any returned element

or predicate. Figures 2.3(b) and (c) show two valid sub queries for query Q1.

Assume B denotes the number of all “r” and “s” patterns for a given query tree. When

the query tree is a completely flat tree of height 1 and width B,the maximum number of

shed queries is2B. When the query tree is deep and has only one node on each level, at

mostB shed queries exist. Thus the number of shed queries for a query varies between

B and2B.
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Chapter 3

Cost Model

3.1 Automaton Processing Model

As is known, automata are widely used for pattern retrieval over XML token streams [22,

30,44]. The relevant tokens are assembled into elements to be further filtered or returned

as final output elements. The formed elements are then passedup to perform structural

join and filtering. An algebra plan located on top of the automaton for query Q1 is shown

in Figure 3.1. An Extract operator is responsible for collecting tokens for some pattern and

composing them into XML elements. For instance,Extract$a//name collects tokens to

form “name” elements. Structural join operator is responsible for combining the elements

from its branch operators based on structural relationshipand form a transaction tuple.

Observe that the context node$a in the “FOR” clause is mapped to a structural join. In

addition we perform selection on $a/order/price to judge whether the “price” is greater

than 100. Thus we have the following query processing tasks in XML stream systems: 1.

Using automaton to locate tokens. 2. Extracting tokens. 3. Manipulating buffered data,

which includes structural join and selection.
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StructuralJoin $a
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$a/order/price
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$a/order/items

Sel
$a/order/price

Figure 3.1: An Example Plan

3.2 CPU Cost Model for a Query

We now design a cost model to estimate the processing costs ofshed queries for XML

streams. This cost model is adapted from the cost model proposed in [57]. In XML

streams we measure the query cost for a complete topmost element since it is the basic

unit based on which we generate query results. We call the processing time of handling

such a topmost element theUnit Processing Cost(UPC). For instance, the cost of query

Q1 thus is the unit processing cost of handling one “transaction” element.

We divide the UPC for XQuery into three parts:Unit Locating Cost(ULC) that mea-

sures the processing time spent on automaton retrieval,Unit Buffering Cost(UBC) spent

on pattern buffering andUnit Manipulation Cost(UMC) spent on algebra operations in-

cluding selection and structural join. UPC is equal to the sum of the cost of these three

parts. When we drop either “r” patterns or “s” patterns from the query, we estimate the

cost change for these three parts. Note that for a new shed query, its processing cost might

not be reduced when dropping “s” pattern. Although it appears that the evaluation cost

of the selection pattern is saved, it might need to constructmore nodes. In this case the

UPC might even be increased if the selectivity of the “s” pattern is not 1. However, due

to limited space, we only discuss ULC and UBC here. UMC and thediscussion about the
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Notation Explanation
NPi Number of elementsPi for topmost element.
nstart Total number of start or end tags for a topmost element.
SPi Number of tokens contained for aPi element.
A Set of states in automaton.
APi Set of states of patternPi and its dependent states.
nactive(q) the number of times that stack top contains a state q when a

start tag arrives
Ctransit cost of processing a start tag of an element in the query
Cnull cost of processing a start tag of an element not in the query
Cbacktrack cost of popping off states at the stack top
Cbuf cost of buffering a token

Table 3.1: Notations Used in Cost Model

selectivity of “s” patterns can be seen in [66].

Unit Locating Cost (ULC). In locating tokens, when an incoming token is a start tag, we

need to check whether this start tag will lead to any transitions. If it is transitioned to a

new state, tasks to be undertaken may include setting a flag tohenceforth buffer tokens

or to record the start of a pattern. We call such a transition costCtransit. Note that the

start tokens of all elements in the query tree will cause sucha transition. When there are

no states to transition to, an empty state is instead pushed to the stack top. Note that all

start tokens of patterns that do not appear in the query tree will lead to such an empty

state transition. The cost associated with this case isCnull. For instance, when< id > is

encountered, an empty state is pushed to the stack top. When the incoming token is an end

tag, the automaton pops off the states at the top of the stack.We refer to such popping off

cost asCbacktrack. The popping costs for all end tags are the same. The relevantnotations

are given in Table 3.1.

We split the ULC into two parts, one considers the cost of locating the start and end

tags for elements in the query tree, and the other considers the cost for locating the start

and end tags for other elements. The first part can be measuredby considering the invo-
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Figure 3.2: Snapshots of Automaton Stack

cation times for each state and the transition cost for a token as below:

∑

q∈A
nactive(q)(Ctransit + Cbacktrack) (3.1)

∑

q∈A nactive(q) denotes the number of start tags for which non-empty transition exists in

automaton. The number of other start tags, namely for elements which are not in the query

tree, can be written asnstart−
∑

q∈A nactive(q). Thus the second part of the transition cost

is as below:

(nstart −
∑

q∈A
nactive(q))(Cnull + Cbacktrack) (3.2)

We now look at how to estimate the locating cost we can save by switching from the

initial query Q to a shed query. Assume the shed queryQs is generated by removing

patternPi from Q. This means that the patternPi and all its descendant patterns will be

dropped. Then in the automaton for shed query, the states corresponding toPi and its

descendant patterns will be cut from the initial automaton of Q. Let us call the set of
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states corresponding toPi and its dependent statesAPi . The locating cost for patternPi

in the initial automaton can be represented as:

∑

q∈APi
nactive(q)(Ctransit + Cbacktrack) (3.3)

However, in the shed query, since these states are never reached, they are now treated as

elements that are not in the query. Their locating cost is thus changed to:

∑

q∈Api
nactive(q)(Cnull + Cbacktrack) (3.4)

Thus Eq(3.3)- Eq(3.4) indicate the savings in locating costs gained by switching from the

initial query to this shed queryQs.

Unit Buffering Cost (UBC). In our query engine, we only store those tokens that are re-

quired for the further processing of the query. As we mentioned, the Extract operators are

responsible for buffering those tokens. Thus each “r” and “s” pattern has a correspond-

ing Extract operator. Such buffering cost for a topmost element is defined as UBC (Unit

Buffering Cost). Extract operators are invoked when the corresponding states are reached

in the automaton. For example, in Figure 3.2, states4 would invoke an Extract operator

to store the whole “name” element. In addition we assume herethe buffering cost is the

same for all individual tokens.

Our buffer manager uses pointers to refer to elements. Thus we do not store the same

token more than once. Three query examples are shown in Figure 3.3. In Figure 3.3(a)

and 3.3(b), the parent pattern and its children patterns overlap. Since both the parent

and the children are to be returned, we only need to store the parent patternp1 and set

a reference for its childrenp2, p3 andp4 pointing top1. In this case, the buffering cost

is equal to the buffering cost of the parent patternp1. However, in Figure 3.3(c), since

the parent is not an “r” pattern, only its children are to be returned. The buffering cost is
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Figure 3.3: Buffer Sharing Examples

equal to the buffering cost of all the children. Hence, for a given query, we need to find

all non-overlapping topmost patterns which are either “r” patterns or “s” patterns, called

henceforth thestoring pattern set. The storing pattern set can be obtained by traversing

the query tree in a breadth-first manner [66].

Assume the storing pattern set for our query Q is denoted asR. UBC can be written

as:

UBC(Q) =
∑

p∈R
NpSpCbuf (3.5)

Runtime Statistics Collection.We collect the statistics needed for the costing using the

estimation parameters described above. We piggyback statistics gathering as part of query

execution. For instance, we attach counters to automaton states to calculateNPi , nstart

andnactive(q). And we collectsPi in Extract operators. We then use these statistics to

estimate the cost of shed queries using the formulas given above. Note that some cost

parameters in Table 3.1 such asCtransit, Cnull andCbuf are constants. We do not need to

measure them during the query execution.
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Chapter 4

Preference Model for Queries

Value-based Preferences vs. Structure-based Preferences. In many practical applica-

tions, some output results are considered more important than other output tuples. For

instance, the user might be interested in red cars when buying new cars. In this case

the utility of the tuple whose color attribute is equal to “red” is higher than those of the

tuples whose colors are not “red.” Aurora first considered such value-based preference

as part of the QoS requirement and proposed semantic load shedding techniques [59] to

maximize output utility. In this case, semantic load shedding is achieved by adopting

a value-based filter. We can easily incorporate such value-based preferences and their

filter-based shedding approach in the XML stream scenario. However, this is not our

main interest. Instead, we are interested in exploring the structure-based preference in

XML stream processing. In the XML stream scenario, the inputstream as well as the

output result are composed of different XML subelements, and hence more complex than

relational tuples. The importance of different elements inan XML tree may vary due to

their semantics. As illustrated in Chapter 1.4.1, in query Q1, the “email” element is con-

sidered more important than the “addr” element as “email” isa faster and more convenient

means to contact customers.
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Q1:

FOR $a in stream(”transactions”)/list/transaction

WHERE $a/order/price> 100

RETURN $a//name, $a/contact/tel, $a/contact/email,

$a/contact/addr, $a/order/items

Specifying Preferences in Query.For structure-based preferences, we distinguish be-

tween two options to specify preferences, one is to specify preferences in the data schema

and then derive the preferences for the patterns in the query, and the other is to specify

preferences directly in the query. The former case is somewhat rigid when the same data

is consumed by different applications. For instance, givenstore sale data, the data min-

ing expert would think the customers’ information including gender, age, education and

their shopping lists are important since they want to learn about the correlation between

customers’ background with their shopping interests. However, the stock manager would

be interested in the products and their sale quantity. In this case, users may assign prefer-

ences rather differently to the same subelements. Thus having a single fixed preference on

data schema is an unnecessary restriction. For this reason,we propose that users specify

preferences to the patterns in the query.

To support this, we need a metric to measure the importance ofeach pattern for a

given query. We define a quantitative preference model that represents preferences of

preserving different elements in the query result. The preferences can be specified by

the user who issues the query or the consumer of the query result. By binding different

patterns with their corresponding preferences, shed queries vary in their perceived utilities

to the user. In our preference model, we do not distinguish utility assignment of “r” and

“s” pattern. Instead, users decide their utilities. The differences on processing cost for “r”

and “s” patterns are handled by the cost model.

We support two alternative types of preference specification on query patterns. One
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uses prioritized preference [36] to qualitatively expressthe relative ranking among dif-

ferent patterns. The other uses a quantitative approach [26, 27] that directly scores the

importance of the patterns. Users are free to choose either the Numerical Preference

Model (NPM) or the Prioritized Preference Model (PPM) to represent their preferences

on query patterns. For preferences specified by PPM, we translate the prioritized pref-

erences to numerical forms using a score formula. Note that in both cases we use the

quantitative metric to compute the utilities for the shed queries.

4.1 Numerical Preference Model (NPM)

If a user chooses to specify preferences using NPM, he or she can assign customized

utilities (preferences) for different patterns in the query in a numerical form. Note that

users only need to specify the utility values for the “r” patterns and “s” patterns. The

utility of patternPi wherePi is an “r” pattern or “s” pattern is represented below:

ν(Pj) 7→ [0, 1]

Hereν(Pj) is a constant value between [0,1]. An example of utility assignment for

query Q1 is shown in Figure 4.1 (the utility is labeled on the destination node of each

pattern).

4.2 Prioritized Preference Model (PPM)

If users choose to use the prioritized preferences, they describe the relationship among

patterns. This means that given a query, the user declares the relative ordering of “r” and

“s” patterns in term of their importance. Note that we do not require users to specify the

preference ordering for all the patterns since users may only specify the ordering for some
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Figure 4.1: Query Tree with Preference for Q1

patterns. An example prioritized preference for query Q1 is:

$a//name ≻ $a/order/price ≻ $a/contact/tel ≻ $a/order/items ≻

$a/contact/email ≻ $a/contact/addr

For the above qualitative preference representations, we need to translate them to

quantitative preferences. A score assignment strategy is applied based on the given prior-

itized preference ranking, where we assign scores using thefollowing formula:

ν(Pattern Ranking k) = 1/2k

For instance, the utility for pattern$a//nameis equal to1
2

and the utility for$a/contact/tel

is equal to 1
23

. The reason why the preference of pattern ranking k is translated to1
2k

is

explained below. When it is the case that only the ordering ofsome patterns are specified,

the scoring scheme below will generate the preferences for those patterns that are not

ranked.

4.3 Scoring Scheme for Patterns without Preferences

We do not require users to specify the preferences for all the“r” and “s” patterns. In this

case we obtain the utilities for those patterns using the following properties:
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1. Precedent parent: A parent pattern is more important than its descendant patterns.

This is because parent return nodes always contain all the descendant “r” and “s”

patterns. For a non-leaf pattern that has not been assigned preferences, its utility is

defined as the sum of scores of all its children.

2. Equivalent leaf: We assume the leaf nodes without assigned preferences are equally

important. Their preference values are thus the same. And they are less important

than the patterns who have been assigned preferences. Letw denotes the number

of patterns that are not assigned preferences, their utilities are all assigned to

min(ν(Pj)) ∗ 1/2w

wheremin(ν(Pj)) is the minimum value among all assigned preferences.

Now we observe that the translation formula for prioritizedpreference model can

guarantee the precedent parent property if the user specifies the pattern is more important

than any of its descendants.

4.4 Computing Utilities for Queries

After the quantitative preferences for all the patterns in the query are determined, we can

calculate the utility of the original query and the shed queries derived from the original

query. If a pattern appears in a query tree of a shed query, that means it will be considered

in the query and its utility is obtained. We use the utility ofa query to indicate the amount

of utility users gain by executing this particular queryQ on a single topmost element, in

other words, how much utility is obtained by including all the patterns in this shed query.
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It can be calculated as

ν(Q) =
∑

Pj∈Q

ν(Pj)

wherePj is either an “r” pattern or “s” pattern. For instance, the utility of Q1 is: 0.2

+ 0.1 + 0.1 + 0.25 + 0.2 + 0.05 = 0.9.

Particularly, we introduce the empty query, a special shed query that actually drops

the whole topmost element. For the empty queryQ0, we define its utilityν(Q0) = 0

since it does not contribute to any output.

After calculating the preference for a given query, we perform a simplenormalization

process. Assume the preference for a shed query isν(Qi) and the preference for the

original query isν(Q). The preferences for each shed query is normalized toν(Qi)/ν(Q)

and the preference for the original query is 1. After the normalization, we can observe

that the normalized preferences of the shed queries including original query and empty

query would fall into [0, 1]. Note that in the later chapters,we use normalized utility

values for the shed queries.

An extension of XPath is proposed in [37] that incorporates value-based preferences

into XPath. Similarly we can easily extend the XQuery syntaxto integrate our structure-

based preferences into an XQuery expression as below:

Q1: FOR $a in stream(”transactions”)/list/transaction

WHERE $a/order/price> 100

RETURN $a//name, $a/contact/tel, $a/contact/email,

$a/contact/addr, $a/order/items

PREFv(name)= 0.2,v(tel)= 0.1,v(email)=0.1...

| PREFname > price > tel > items...
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Chapter 5

Shedding Algorithms

5.1 Decide When to Shed

The problem of deciding when the system needs to shed input data has been discussed in

other works [59]. This is not specific to XML stream systems. In our system we adopt

the following approach for simplicity. We assume a fixed memory to buffer the incoming

XML stream data. As soon as all tokens in an XML element have been processed, we

clean those tokens from the buffer. We assume a threshold on the memory buffer that

allows us to endure periodic spikes of the input without causing any overflow. During

execution, we monitor the current memory buffer. When buffer occupancy exceeds the

threshold, we trigger the shedding algorithm.

5.2 Formulation of Shedding Problem

Let us assume that the shed query set is{Q0, Q1, ..Qn} whereQ0 is the empty query and

Q1 is the original query. Here empty query just drops all the tokens of a topmost element.

The reason why we introduce empty queryQ0 into shed query set is for the convenience
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of the formalization of the shedding problem, so that all theinput elements are consumed

by shed queries. Since this empty query does not generate anyoutput, we assume the

utility of empty queryQ0 denoted byν0 and the UPC ofQ0 denoted byC0 are both zero.

The goal of the shedding problem is to find which shed queries will be chosen to run in

order to achieve maximum utility. We have the following inputs to our shedding problem.

1. Data arrival rateλ in the unit of topmost elements per time unit.

2. Utilities of candidates in the query set{ν0, ν1, ..νn}.

3. Processing costs (in time units) of queries in the set{C0, C1, ..Cn}.

4. The number of time units for shedding query to execute,C, denoting the available

CPU resources.

We aim to find a set of shed queries that satisfy the two conditions: (1) consume all the

input elements inC time units– hereC is an integer to measure CPU resources, and (2)

maximize the output utility. Note that the shed queries hereinclude empty query, original

query and shed queries we derived from original query. We could consider variation of the

problem by imposing additional constraints. If we limit thenumber of qualified queries

in the result set to only one, we have to check all the shed queries to see whether any shed

query can consume all the input elements. If there exists such shed queries, we would pick

the query that yields the highest utility. However, it is possible that all the shed queries

except the empty query are too slow to be able to consume all the inputs. In this case,

the empty query is the only option since it can consume all theinputs. Unfortunately, the

output utility would be zero since we drop everything. Thus restricting to one query is

not sufficient to achieve optimal results.

Another option is to restrict the number of shed queries to two. As mentioned before,

there might not exist such a shed query from the query set whose processing speed is as

fast as input arrival rate except empty query. It implies that if picking two queries from

the shed queries and none of them is the empty query, we cannothandle all input data.
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Thus picking the empty query is necessary. Given that the empty query cost is zero, we

can formulate this problem below:

Given the constraint:xi ∗ Ci <= C, where1 ≤ i ≤ n andxi indicates the number

of dropped topmost elements for queryQi.

We want to maximize output utilityxi ∗ vi. The number of elements to drop (corre-

sponding to empty query) is thus equal toλ − xi. Note that the current state-of-the-art

shedding techniques [11, 59] can be regarded as a special case for allowing two shed

queries, as they typically pick the original query and emptyquery.

However, allowing only two shed queries might not be optimal. Consider the fol-

lowing example. The utility and cost of three shed queriesQ1, Q2 andQ3 are shown

below.

{(1, 55ms), (0.9, 45ms), (0.6, 30ms)}

Assume the available CPU resource is 80ms and three topmost elements arrive during

that time period. If we only allow two different shed queries, we have to let two elements

execute queryQ3 and one element execute empty query. The output utility is 0.6 * 2 + 0 =

1.2. However, note that if we let one element execute queryQ2, one element executeQ3

and one element execute empty query, the output utility is even higher and is given by 0.9

+ 0.6 + 0 = 1.5. We therefore do not limit the number of different shed queries in the result

set. Our goal is to find a coefficient vector{x0, x1, ..xn} for the shed query set, which

maximizes the utility of the total processed elements whilekeeping the processing cost

below the CPU processing capability. Herexi denotes the number of topmost elements

assigned to queryQi. The formal problem is represented below.

1. The total number of XML elements processed (including those processed by empty

query) can be calculated as:
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X(s) =
n

∑

i=0

xi (5.1)

2. Total execution cost by consuming all the input elements can be represented as

C(s) =
n

∑

i=0

xi ∗ Ci (5.2)

Using the above equations, the shed problem is to maximize the total data utility:

n
∑

i=0

xiνi (5.3)

Subject to

X(s) = C ∗ λ

and C(s) ≤ C (5.4)

Note that the cost of all shed queries are measured in time units, thus they are all

non-negative integers. We thus conclude that this problem is an instance of the knapsack

problem [35]. We propose two solutions for this problem as described below.
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5.3 OptShed Approach

OptShed uses a dynamic programming solution [53]. To state our approach, we construct

a matrix of sub-problems:

ψ0(0) ψ0(1) ... ψ0(C)

ψ1(0) ψ1(1) ... ψ1(C)

... ...

ψn(0) ψn(1) ... ψn(C)

Hereψj(c̃) is a sub-problem which uses queries fromQ0 toQj and its cost is less than or

equal toc̃.

Clearly,ψn(C) gives the optimal solution to the original problem we want tosolve,

whereC denotes the total available CPU resources.

Now, we defineφj(c̃) to be the maximum utility of sub-problemψj(c̃). This is pre-

sented recursively as follows:

φj(0) = 0 , 0 ≤ j ≤ n

φj(c̃) = max

{

φj−1(c̃− kCj) + kνj | 0 ≤ k ≤ ⌊ c̃
Cj
⌋
}

From the matrix of sub-problems, we can see that we need to repeat the calculation

of φ(c̃) nC times to get the final result, and each calculation can be finished using a

max-value searching algorithm, whose time cost is O(log2C) [53]. Thus the total time

complexity is O(nC log2C).
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5.4 FastShed Approach

Since the time complexity of OptShed is prohibitively expensive in practice, we want to

find a simple and effective way to solve this problem. We propose an efficient greedy

algorithm, called FastShed. Observe that load shedding will be invoked when the arrival

rate is greater than the processing speed of the original query, meaningλ ≥ 1
C1

. When

the arrival rate is greater than the processing speed of all the shed queries, we use a ratio-

sorting approach. We calculate the ratios of utility over processing cost,νi/Ci, for each

candidate queryQi. We sort all queries in terms of these ratios. Assume that theratios of

Qi1 , Qi2 ,...,Qin are in non-increasing order. We assignQi1 to as many as possible input

XML elements as long as it does not exceed our given CPU processing capability, and

then assignQi2 to as many as possible input XML elements according to the remaining

CPU processing capability, and so on.

However, if the arrival rate can not satisfy the condition that it is greater than the

processing speeds of all shed queries, i.e., there exists atleast one shed query whose

processing speed is greater than the arrival rate, the utility over cost ratio sorting approach

might be sub-optimal. Let us examine the following example.Assume the arrival rate is

30 topmost elements/s which is equal to 0.03 elements/ms. Assume the utilities and costs

of four shed queriesQ1,Q2,Q3 andQ4 are shown below:

{(1, 40ms), (0.9, 25ms), (0.8, 20ms), (0.7, 50ms)}

Assume the CPU resources are limited to 1000ms. If we rank these queries based

on their utility by cost ratio, the decreasing order isQ3, Q2, Q1, Q4. However, if we

choose queryQ3 ,the utility it can reach is actually equal to 0.8 * 30 = 24 instead of 0.8

* 1000 / 20 = 40. This is because the number of elements on whichwe run a shed query

cannot exceed the amount of input data. Thus for the shed query whose processing speed

is greater than arrival rate, the output utility is limited to its utility * arrival rate. In this
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case, the output utilities for queryQ1, Q2, Q3 andQ4 are 25, 27, 24 and 14 respectively.

Thus queryQ2 is the shed query we should choose since it yields highest utility.

We account for this case by modifying the ratio sorting approach as follows. We

defineγi = νi ∗min{λ,
1
Ci
}, and the sorting is done based on theseγis.

The details are described in Algorithm 1.

Algorithm 1 FastShed
Input: λ, {ν0, ν1, ..νn}, {C0, C1, ..Cn}, C
Output: {x0, x1, ..xn}
void FastShed()
γi = νi ∗min{λ, 1

Ci
} (1 ≤ i ≤ n)

Sort queriesQ1,Q2,...,Qn so thatγi1 ≥ γi2 ≥ ... ≥ γin
C ′ ← C
λ′ ← C ∗ λ
for j = 1 to n do
xij ← min { ⌊C ′/Cij⌋, λ

′ }
C ′← C ′ − xij ∗ Cij

λ′← λ′ − xij
if C ′ ≤ 0 or λ′ ≤ 0 then break

end for
x0← λ−

∑n
j=1 xj

In FastShed, the ratio sorting cost is O(n logn) and cost of “for” loop is O(n) respec-

tively. So the total time complexity is O(n log n). Normally, n ≪ C, so FastShed is

much faster than OptShed, though FastShed cannot guaranteeto find an optimal solution.

However, in Chapter 7, the experimental results show that FastShed indeed tends to find

a solution very close to the optimal solution for most cases.
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Chapter 6

Shedding Mechanism Implementation

In this chapter, we examine the implementation of differentshedding approaches in XML

stream systems. For relational stream systems, one common implementation is to insert

drop boxes into the plan [7, 11, 59]. However, many XML streamsystems use automata

to recognize relevant elements on incoming token streams. In this case, we can consider

at least two options where the input data can be dropped. One place is when we recognize

the tokens using automaton, the other place is after we have form the elements from

extracted tokens. Since dropping them as early as possible can avoid wasted work, we

propose to push the shedding directly into the automaton as described below.

6.1 In-Automata Shedding Mechanism

Here we propose to incorporate shedding into the automaton by disabling states. Assume

we want to drop patterns $a//name and $a/contact/tel. Figure 6.1 shows where to insert

drop boxes in the automaton. To drop pattern $a//name, the automaton would temporarily

remove the transition from states2 to s3. When the start tag ofname element arrives,

states3 and s4 are not reachable. Thus it would not invoke its downstream operator,
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Extract$a//name. Extract$a//name will then be labeled with a “dropped” flag. This

flag guarantees that the downstreamStructuralJoin$a operator works correctly. Thus

whenStructuralJoin$a checks its input operators one by one, if an input operator is

labeled with a “dropped” flag,StructuralJoin$a skips this input.

StructuralJoin $a

s0
list transaction

s1 s2 s5 s7

s6tel

email

Extract $a/contact/tel Extract $a/contact/emailExtract $a//nameop2

op1

s4

contact

s8
order …

…

…

s3
*

λ

name

Figure 6.1: Disable Transition Strategy

6.2 Random Shedding in XML Streams

To compare our shedding solutions with the existing random shedding approach, we have

to realize random shedding for XML stream systems. In addition, we do not want to

disadvantage this existing solution by first storing data inbuffer before dropping. Instead

we propose to also perform random shedding in the automaton.Since the granularity

of incoming data in XML streams is tokens, the start token of the topmost elements is

recognized by the automaton. We then can set the “shedding phase” flag to be true. As

long as this flag is true, the incoming tokens are dropped. At the same time, we add

a drop counter to record how many topmost elements we have dropped. Whenever the

end token of the topmost element is identified, the counter’svalue is increased. If the
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desired dropping count is reached, the flag is disabled and the system switches back to

the “non-shedding” phase.

6.3 Shed Query Switching at Run-time

We support a mixture of shed queries. Assume OptShed provides a solution vector, say

<60, 10, 20>. In this case, we will first drop 60 topmost elements, then runqueryQ1

for 10 topmost element, then switch to queryQ2 for the next 20 topmost elements. We

use a counter to record the number of topmost elements that have been run with query

Qi. After processing the last end tag of thexith topmost element, the system restores the

removed state transition and then switches to the next shed query. Since the switching

happens only after the processing of the last token of the topmost element, it is safe to

switch to another query for the next topmost element. Note that here we simply apply

the state transition disabling and labeling “dropped” flag,we do not otherwise physically

change the plan. Thus the overhead is very small.
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Chapter 7

Experimental Results

We used ToXgene [12] to generate XML documents as our testingdata. All experiments

were run on a 2.8GHz Pentium processor with 512MB memory. We used query Q1

as testing query and the testing data files are about 30 MB. We performed four sets of

experiments. The first one shows that output utility changeswith varying arrival rates

for all three shedding approaches (Random, OptShed and FastShed). The second set of

experiments demonstrates that different distributions ofpattern preference settings and

pattern sizes impact the output utility. The third set compares the overhead of three shed-

ding strategies. It shows that FastShed has little overhead, similar to Random shedding.

However, the overhead of OptShed becomes big for large querysizes. The final set of

experiments shows FastShed achieves close-to-maximum utility in practically all cases

considered.

7.1 Comparison Among Three Shedding Approaches

In this set of experiments, we studied the output utility changes with varying arrival rates

for the three shedding approaches. Fig. 7.1 shows the outputdata utility per second for
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query Q1. Note that in Fig. 7.1 the three slopes increased thesame way when arrival

rate is less than 180 topmost elements/s because no sheddinghappens at that time. After

the arrival rate reaches 180 topmost elements/s, the utility of Random remained stable

because it has reached its processing capacity. However, FastShed and OptShed achieved

higher utility because they chose a shed query which generates higher utility than the

Random approach.
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Figure 7.1: Output Utility Changes with Varying Arrival Rates

7.2 Effect of Preference and Pattern Size

Next, we illustrated the output utility is affected by the distribution of pattern preferences

as well as the pattern sizes in the query. It also implies thatthe assignment of preferences

indeed affects which shed query will be chosen to run at shedding phase. The definition of

pattern size is given by:Pi = NPi*SPi whereNPi is the number of elements correspond-

ing to patternPi in a topmost element andSPi is the average number of tokens contained

in aPi element.
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Figure 7.2: Data Utilities for Varying Preference Assignments

We used five different sets of preference settings which differ in their standard devia-

tions. We run query Q1 on the same data set. Each pattern had the same size and each set

has the same utility for the initial query. Figure 7.2 shows that the output utility is higher

when there is a bigger variance among pattern preference settings for FastShed and Opt-

Shed. We observe that the utilities of the query achieved by the Random approach are

the same because the initial query is executed in this case. However, OptShed and Fast-

Shed performed differently when the standard deviation forpreferences changes. Observe

that when the standard deviation of preference values was small, there is little difference

among utilities for the three approaches. However, the difference of output utility was

significant when the standard deviation of preference values reaches 0.5.

To illustrate the output utility is affected by the pattern sizes, we generated five testing

data files which differed in their standard deviation of element size. We ran the query Q2

below.
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Q2: FOR $o in stream(”sample”)/list/o

RETURN $o/P1, $o/P2, $o/P3, $o/P4

Note that each data file only contained the elements in the query and the sums of

all element sizes in each data file were all equal to 200 tokens. In addition we assume

all patterns in the query are independent and of equal preference. Figure 7.3 shows the

output utility changes with varying standard deviation of pattern size during the same

time period. Observe that for the Random approach, the output utilities did not change

a lot since the UPC of the original query for these four data files are almost the same.

However, for FastShed and OptShed, the output utility was much higher than the utilities

achieved by Random approach when the standard deviation of pattern size increased. This

is because the shed queries with smaller patterns has smaller locating cost and buffering

cost, resulting in lower overall processing cost. In this case, FastShed and OptShed would

pick such shed queries since they have relatively higher utility/cost ratios and thus higher

utilities.
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Figure 7.3: Data Utilities for Varying Pattern Size
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7.3 Overhead of Shedding Approaches

Here we studied the overhead of the three shedding strategies. The overhead was mea-

sured by the time spent on choosing which shed query to run during the shedding phase.

We studied whether with more complex query the overhead increases dramatically. We

used five queries which vary in the number of patterns. From Figure 7.4, we observe even

when the query became complex, the overhead of FastShed was still very small, although

it was a bit higher than Random shedding. But it did not scale when the query became

more complex. However, for OptShed, overhead was already very high when the number

of patterns in the query is 5. Thus the overhead of OptShed is very big, implying it as an

undesirable choice.
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Figure 7.4: Overhead of Three Shedding Approaches
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7.4 Additional Experiments on Three Approaches

In the first two experiments above, we observed that FastShedand OptShed performed

better than Random shedding on output utility. However, we only compared them based

on a limited number of preference settings. Now, we want to study performance of these

methods over a wide range of cases. We generated 1000 sets of sample costs and utility

measures, where a sample set is generated by assigning preferences to different query

patterns randomly. The costs of different shed queries in a sample set were assigned

randomly in the range [10, 20], and at the same time ensuring that the cost of a “smaller”

query was less than the cost of a “bigger” query. Then we ran the three approaches on

these 1000 sets of sample data and compared their output utility. Figure 7.5(a) shows the

histogram on the utility ratios of FastShed over OptShed. Weobserve that these ratios are

skewed to the left. About 80% of them are over 0.8. This means that FastShed can get

close to optimal results in most cases. Figure 7.5(b) shows the histogram of output utility

ratios of Random over FastShed. Observe that these ratios were skewed to the right. Most

of them are less than 0.6. Thus FastShed is much better than Random shedding.
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(a) (b)

Figure 7.5: Utility Ratios of (a) FastShed over OptShed (b) Random over FastShed
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Chapter 8

Related Work

In streaming systems, approximate query processing has been considered an effective

method for trading off performance with accuracy [21,49,56,59,61]. However, most ap-

proximate query processing work has been focused on relational streams. Load shedding

and sampling data are two most common ways to reduce system workload. Load shed-

ding on streaming data has firstly been proposed in the Aurorasystem [59]. This work

introduces two types of load shedding: random and semantic load shedding. Based on

the analysis of the loss/gain rate, the random load sheddingstrategy will determine the

amount to shed to guarantee the output rate. For semantic drop, they assume that different

tuple values may vary in term of utility to application. In this case, maximizing the utility

of output data is their goal. We have the same goal of maximizing the output data utility

in XML streams. However, instead of a simplistic model of certain domain value denot-

ing utility, we consider the complexity as well as importance of XML result structures in

order to make shed query decisions.

Most approximate query processing works focus on the max-subset goal, which is, to

maximize the output rate [7, 21, 28]. [21] provides an optimal offline algorithm for join

processing with sliding windows where the tuples that will arrive in the future are known
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to the algorithm. An online algorithm that does not know which tuples will arrive in the

future is given under assumption about certain arrival possibilities. [56] proposes a novel

age-based stream model and describes the load shedding approach for join processing

with sliding windows under limited memory resources. We could apply their techniques

into join processing among multiple XML stream systems if our goal is to get max-subset

instead of maximizing output utility. In addition, we explore how to choose shed queries

to maximize output utility for XML streams under limited CPUresources. [28] provides

an adaptive CPU load shedding approach for window stream joins in relational stream

systems. It follows a selective processing methodology by keeping tuples within the

windows, but processing them against a subset of the tuples in the opposite window. We

cannot apply these approximate processing techniques directly into our work since we are

targeting a single XML stream without window constraints.

[7] investigates the approach to do load shedding for sliding windows on conjunctive

queries. The goal is to choose the plan with drop boxes inserted that maximize the output

rate of the partial answer query. It addresses two problems,one is the optimal placement

of the drop boxes in an execution plan and the optimal settingof the sampling rate. The

second is the choice of the plan to shed load from. This work combines the problem of

finding an optimal execution plan and exploring the strategyon the placement of the drop

boxes into a single optimization problem. Their approach isorthogonal to our approach.

Some works reduce the workload by changing the query explicitly. [49] changes the query

at the operator level. This is similar to our removal of some patterns from the query.

However, we consider the complexity of XML result structures.

Preference model is a natural way for decision making purpose. It is used in many ap-

plications, including e-commerce and personalized web services. As mentioned before,

Aurora [59] combines the utility of different tuple values into quality of service met-

ric. [38] proposes Preference SQL, an extension language SQL which is able to support
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user-definable preference for personalized search engines. It supports some basic prefer-

ence types, like approximation, maximization and favorites preference, as well as com-

plex preference. Preference XPath [37] provides a languageto help users in E-commerce

to express explicit preference in the form of XPath query. For view synchronization in

dynamic distributed environments, EVE [40] proposes E-SQL, an extended view defini-

tion language by which view definer can embed their preferences about view evolution

into the view definition.
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Part II

Structure-based Spilling for XML

Streams
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Chapter 9

Overview of Structure-based Spilling

Approach

The architecture of our spilling framework is shown in Figure 9.1. After the queries are

registered with the query engine, an initial plan is generated and optimized. The execution

engine will instantiate the query plan and start processinginput streams. The problem of

deciding when the system needs to spill data is not a questionspecific to XML streams.

Any existing approach from the literature [48, 63] could be employed here. We employ

a memory buffer to store input stream data. As soon as a token is processed, we clean

this token from the buffer. We assume a threshold on the memory buffer that allows us to

endure periodic spikes of the input. When buffer occupancy exceeds the given threshold,

we trigger the spilling.

When spilling is triggered, first, the possible spilling candidates are examined. We

then derive the reduced queries for each spilling candidate. The query optimizer runs the

optimization algorithm to pick the optimal reduced query. Finally the reduced query is

instantiated, in place of the previously active query, initiating the spilling process. Later

when the arrival speed becomes near zero, we invoke the cleanup processing to generate
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supplementary results based on disk-resident data.

Execution Engine Disk
Manager

Plan
Generator

Result
Monitoring

Register
Query

Plan
Optimizer

stream

GUI

Spill Candidate
Generation

Reduced 
Query
Generation

Figure 9.1: Architecture for Spilling Framework

Q2: 
FOR $a in stream()/a
RETURN 

<pairQ2>
$a//b, $a/d, $a/b/c

</pairQ2> 

SJ $a=/a

Query Plan

3 4
$a/b/c

(b)

2
$a//b $a/d

1

Query Q2(a)

Figure 9.2: Query Q2 and Its Plan

Recall that any path and any number of paths in the query can bespilled. We describe

the details of possible spilling candidates in Chapter 11. Let us use query Q2 introduced in

Chapter 1.4.2 as our example (query Q2 and its plan are shown in Figure 9.2). Now let us

illustrate how to pick the optimal spilling candidate to produce maximum output quality.

We require the optimal reduced query should be able to consume all the input, i.e., the

processing speed of the optimal reduced query should be faster than or equal to the arrival

rate. For example, assume we have two spilling candidates for Q2, /a//b and/a/b/c.
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The data is shown in Figure 9.3(a). Figures 9.3(b) and (c) list output results after spilling

/a//b and/a/b/c respectively. Assume the arrival rate is 500 topmost elements/sec (for

Q2, a is the topmost element). Assume the cost to produce each<pairQ2> element

when spilling/a//b is 0.6 milliseconds. The cost of producing each<pairQ2> when

spilling /a/b/c is 1 millisecond. The processing rates when spilling/a//b and/a/b/c

are 1000/0.6 =1333 and 1000/1=1000 respectively. Both values are greater than the arrival

rate. Therefore spilling either/a//b or /a/b/c can both meet our goal of consuming all

the input. However, the output quality for each spilling path is different. When spilling

/a//b, since onlyd elements are present in the results, the quality for each<pairQ2>

is 1 (quality computation is detailed in Chapter 13). The quality when spilling/a/b/c is

3 sinceb (including partialb and completeb) andd elements are returned. In this case,

the output quality when spilling/a/b/c within 1 second is 500 * 3 and the quality when

spilling/a//b is 500 * 1. Therefore spilling path/a/b/c yields higher output quality than

/a//b. We will describe the detailed algorithm to find an optimal candidate in Chapter 15.

This structural spilling framework is general and can be applied in any XML stream

engine. The detailed explanation of why our spilling framework is general is explained

later in this chapter.

(a) Data (b) Result after spilling /a//b (c) Result after spilling /a/b/c

b1 b2 b3 d1

e1 e2

pairQ2

d1

pairQ2

b1 e3

a1

b2 d1

e1c1 e2c2 b3

…

Figure 9.3: Data and Output for Q2

To eventually produce the entire, yet duplicate-free result set, we have to generate sup-

plementary results correctly. We propose a complementary output model, which extends

from the hole-filler model in [25], to facilitate the matching of the supplementary results
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with prior generated output. In addition, we examine what extra data must be flushed to

guarantee the generation of the correct “delta” structure in supplementary results. The

details of generating supplementary results can be found inChapter 14.

General Framework for Structural Spilling. The framework we propose to use to

address the structural spilling problem described in this work is general, meaning it could

be applied to any XML stream management system. Recall that to solve the structural

spilling problem, we have to examine the possible spilling candidates, derive the spilling

effects, measure the quality as well as cost of the reduced queries, and run the optimiza-

tion algorithm to choose the optimal reduced query. The spill candidates are generated

based on the query pattern tree, which is directly derived from the query. For each spilling

candidate, determining the spilling effects in the query isresolved by deciding the data

dependency relationship between the spilled path and pathsin the query. Hence deter-

mining spilling effects is related to the query semantics. It is not related to the specifics

of the implementation of query processing. The quality model in Chapter 13 measures

the output quality based on the query result. Again this is solely based on the query se-

mantics and thus, general. Note that our optimization algorithms to search the optimal

reduced query are cost-based approaches. Obviously, the execution cost measurement for

each spilling candidate in other stream engines may be different from that of our system

because of the specifics of query processing. For this, we canplug in the cost model of

other stream engines. In this case, the optimality of our search algorithms can still be

guaranteed.
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Chapter 10

Background

Queries Supported. We support a subset of XQuery in this work. Basically, we allow

(1) “for... where... return...” expressions (referred to as FWR) where the “return” clause

can further contain FWR expressions; and (2) conjunctive selection predicates where each

predicate is an operation between a variable and a constant.The grammar of the supported

XQuery expressions is shown in Figure 10.1. A large range of common XQueries can

be rewritten into this subset [47]. A query with “let” clauses can be rewritten into an

XQuery without “let” clauses (by Rule NR1 in [47]). A query with FWR expressions

nested within a “for” clause can also be rewritten into our supported subset format (by

RuleNR4 in [47]). The filter expression in an XPath can be moved into the “where”

clause.

Algebraic Query Processing.We assume the queries have been normalized using the

techniques in [18]. Queries are then translated into a plan.Namely, for each binding

variable in the “for” clause, a structural join is conductedbetween the binding variable

and the paths in the “return” clause. Paths in the “return” clause are translated into inputs

to the structural join operator. The expressions in the “where” clause are mapped to select

operators. Finally a tagging function is on top of the plan taking care of the element
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CoreExpr ::= ForClause WhereClause? ReturnClause
| PathExpr

PathExpr ::= PathExpr “/”|“//” TagName|“∗”
| varName
| streamName

ForClause ::= “for” “$”varName “in” PathExpr
(“,” “$”varName “in” PathExpr)∗

WhereClause :: = “where” BooleanExpr
BooleanExpr ::= PathExpr CompareExpr Constant

| BooleanExpr and BooleanExpr
| PathExpr

CompareExpr ::=“ =′′|“! =′′|“ <′′|“ <=′′|“ >′′|“ >=′′

ReturnClause = “return” CoreExpr
|<tagName>CoreExpr (“,” CoreExpr)∗ </tagName>

Figure 10.1: Grammar of Supported XQuery Subset

construction. Here we focus primarily on the structural join, the core part of the XQuery

plan, while tagging is not further discussed. For instance,for the plan in Figure 1.3,

structural join is conducted between$a and each of its branches.

Basic Processing Unit (BPU)refers to the smallest input data unit based on which we

can produce results independently. It can be a document or a topmost element extracted

by the query. When we encounter the end of a BPU in the incomingdata, we can produce

the result structure. For example, for query Q2, the BPU is ana element on path/a.

When</a> is encountered, we can produce<pairQ2> result structures. This provides

an efficient way to produce output as early as possible for XMLstreams [30]. In this

work, BPU is the topmost element in the query tree.
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Chapter 11

Spill Candidate Space

In this chapter we examine all possible spill candidates. Todo this, we represent the

query using a query pattern tree. For example, the query pattern tree for Q2 is given in

Figure 11.2(a). Each node in the query tree indicates an XPath expression. The semantics

of the supported XPath expression can be found in Chapter 10.We use single line edges

to denote the parent-children relationship and double lineedges to denote the ancestor-

descendant relationship.

We assume any node and any number of nodes in the query tree canbe spilled. Each of

them forms a spill candidate. To analyze the total number of potential spilling candidates,

consider a complete query pattern tree with depthd and fixed fan-outf . The total number

of nodes in the query tree|T | =
d−1
∑

i=1

f i=fd−1
f−1

. Since any number of nodes in the query tree

can be spilled, the total number of potential spilling candidates isC0
|T |+C

1
|T |+ ...+C

|T |
|T | =

2|T |, which is bounded byO(2f
d

) .

An example query tree and its possible candidates are shown in Figure 11.1. Query

tree is shown on the left and its possible candidates are shown on the right. Each node in

the lattice represents one candidate. The top candidate means spilling nothing (i.e., initial

query). The bottom candidate indicates spilling everything (i.e., empty query). Each level
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i lists all candidates spillingi nodes from query tree. The candidate space scales quickly

since it is exponential in the number of nodes in the query tree.

We now reduce the spill candidate space using the insight that some candidates may

result in the same spilling effects. Recall that when we spill data corresponding to a pathp

from the query tree, all its descendants are also flushed to disk. This leads to the following

observation:

Observation 11.0.1.If a spill candidate includes two nodes that satisfy the ancestor-

descendant (or parent-child) relationship, it has the samespilling effect as the candidate

containing the ancestor (parent respectively) node.

∅∅∅∅

{a}

{b,c}

{a,b,c}

{a,b}

{b} {c}

{a,c}

a

b

c

(a) Query Tree (b) Possible Candidates

Figure 11.1: Query Tree and Its Spill Candidates

For instance, in Figure 11.1(b), the underlined candidate{b, c} has the same spilling

effect as{b}. The candidates with strike-through have the same spillingeffect as{a}.

Clearly, we should avoid examining such candidates with thesame spilling effects. Hence

we introduce a minimum non-redundant spill candidate space.

Minimum Candidate Space. We design an algorithm that generates the minimum

set of all non-redundant spill candidates. The idea is to generate non-redundant candi-

dates from the subtrees recursively. For a tree of heighth, to generate all possible non-

redundant candidates, it picks zero or one candidate from the set of candidates generated

by each subtree of heighth − 1 and composes them to one new candidate. Or, it can
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also generate a new candidate which consists of a single rootnode. The algorithm that

generates the minimum set of all non-redundant spill candidates is described below:

Algorithm 2 minCandidates
Input: Query TreeT
Output: candidate setS
void minCandidates(Node root)
if root is leaf then

return{root};
else

for each childCi do
Si = minCandidates(Ci);
Si = Si ∪ {∅};

end for
//Assume root has w children. Generate candidates.
S = S1 × S2...× Sw;
S = S ∪ {root};
returnS;

end if

The total number of potential spilling candidates generated using this algorithm is

O(2fd). The minimum spill candidate space for query Q2 is shown in Figure 11.2(b). Its

size is much smaller than that of the original candidate space which is25 = 32.

(a) Query Tree for Q2

{c}

{//b,c}{ b,c}

{d} {//b}

{c,d} {//b,d}

{b,//b,c}{b,c,d} {//b,c,d}

{ b,//b,c,d}

{ a,b,//b,c,d}

∅∅∅∅

(b) Minimum Spill Candidate Space

b

a

d b

c

Figure 11.2: Minimum Candidate Space for Q2
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Chapter 12

Generate Correct Reduced Output

12.1 Determine Spilling Effects

For each spill candidate, we need to derive its corresponding reduced query and generate

the correct reduced output. As shown in chapter 1.4.2, when apath is spilled, multiple

paths in the query may be affected. To generate the reduced output correctly, we have

to determine the spilling effects on the paths in “for”, “where” and “return” clauses for

each spilling candidate. Each path in the query correspondsto a set of subtrees in the

document. For instance,/a/b returns the subtrees rooted at nodesb whose parents are of

typea. Due to spilling, either the root or the non-root nodes in thesubtree can be missing.

Here we define two categories of spilling effects on paths in the query to distinguish

between different missing locations of the subtrees:

• Root missing or unaffected. When the roots of subtrees for a query path are

missing, we call thisroot missing. Otherwise, it isunaffected. For instance, for

path/a//b, the roots of some subtrees are missing when spilling/a/b. This is

because path/a/b is contained by/a//b. In other words, they satisfy the following
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relationship:

P
⋂

S//∗ 6= ∅ (12.1)

HereP indicates a path in the query andS indicates the spilled path.

• Subpart missing or unaffected. When non-root nodes in the subtrees correspond-

ing to a path in the query are missing, we call itsubpart missing. Otherwise, it is

unaffected. For instance,/a/b is subpart missing when spilling/a/b/c becausec

nodes in the subtrees are missing due to spilling. The query paths which are subpart

missing satisfy the following relationship:

P/ ∗ // ∗
⋂

S//∗ 6= ∅ (12.2)

To determine root missing and subpart missing, we use the approach in [46] which con-

structs the product automaton ofP andS. The complexity of this approach is O(|P|* |S|).

Since these two categories are orthogonal, there are 2*2=4 combinations. They are:

• Root missing and subpart missing(SRAM). E.g., when spilling/a//b, /a/b is

SRAM because both root and subpart are missing.

• Root unaffected and subpart missing(SAM). E.g., /a/b is SAM when spilling

/a/b/c sincec nodes in subtrees are missing.

• Root missing and subpart unaffected(RAM). This is not possible. Because we

assume when a path is spilled, all its descendants are also spilled.

• Root unaffected and subpart unaffected(UA). In this case, both root and subpart

are unaffected.
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12.2 Reduced Query Execution

We now describe how to execute a reduced query based on the knowledge of spilling

effects. The reduced query results are output as long as the result is correct, even if the

result structures are partial. In other words, the reduced query execution should satisfy the

maximal output property [54]. Therefore we propose the following policies for reduced

query execution so that we can produce as much correct outputas possible.

• Affected path in “for” clause . When the binding variable is SRAM, the number

of bindings may be reduced. In this case we can still produce output as long as

the binding variable does not return empty. When the bindingvariable is subpart

missing (SAM), although a subpart of the binding variable ismissing, it does not

affect the number of iterations of the “loop counter”. Therefore SAM on the “for”

path does not affect result generation.

Example 12.2.1.Figure 12.1(a) shows the case when the binding variable is SAM.

In Figure 12.1(a), the spilled path is/a/b. The binding variable$a is SAM due to

spilling /a/b. The iterations of “for” loop are unaffected.

(a) Spill /a/b

SJ $a=/a

3 4
$a/b/c$a//b $a/d

1

SR UA SR

Disk

S

(b) Spill /a/d

SJ $a=/a

3 4
$a/b/c

2
$a//b $a/d

1

UA SR UA

Disk

S

2

USAM UA SRAMS SR

Figure 12.1: Plan for Q2 with Spilling Effects

• Affected path in “return” clause . The structural join is conducted between a

binding variableV and all its branches. Based on query semantics, the structural
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join between a binding variableV and one branchB(i) is independent from the

structural join betweenV and other branches. Therefore a “return” path being

affected by spilling does not block the output of other “return” paths in the same

FWR block.

Example 12.2.2.Figure 12.1(a) shows the case that the returned paths$a//b and

$a/b/c are both SRAM due to spilling/a/b. For data in Figure 9.3(a), onlyb3 and

d1 are present in the< pairQ2 > results. In Figure 12.1(b),/a/d is spilled. Only

$a//b and $a/b/c produce results. In both cases, returned pairQ2 elements are

partial since they are not composed of all the returned substructures.

• Affected path in “where” clause. When a “where” path falls into SAM, if the

missing subpart is not needed for the predicate evaluation,we do not block the

predicate evaluation. However, when the “where” path is SRAM, the predicate

evaluation cannot be conducted on all the elements. In this case, we may not know

whether the results should be output or not. Therefore we treat affected SRAM on

the “where” paths as blocking. Whenever a “where” path is SRAM, the output for

its corresponding FWR and its inner FWR block thus do not produce anything in

our model.

Q3: FOR $a in stream()/a

WHERE $a/d=“55”

RETURN<pairQ3>

$a/d/f, $a/e, $a/b/c

</pairQ3>
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Q4: FOR $a in stream()/a

RETURN<result>$a/c,

FOR $b in $a/b

WHERE $b/e =“6”

RETURN $b/f

</result>

SJ $a=/a

4
$a/b/c $a/d/f $a/e

1

UA S

Disk

S

3
$a/d

2 σ
UA

5
SR $b=$a/b

SJ $a=/a

5

$a/c

$b/f

1

UA

S

$b/e

2

σ SR

SJ
S

Disk

UA

4

3

(a) Spill /a/d/f (b) Spill /a/b/e

Figure 12.2: Reduced Query Plans for Q3 and Q4

Example 12.2.3.Query Q3 has a predicate on$a/d. Figure 12.2(a) shows the

reduced query plan when spilling/a/d/f . “Where” path $a/d is SAM. In this

case, the predicate evaluation is not affected and we can return partial results. Now

let us look at Q3 which has a predicate in the inner FWR block. Figure 12.2(b)

shows the reduced plan when spilling/a/b/e. For the inner FWR block, since

$b/e is SRAM, the predicate evaluation cannot be conducted. Therefore the inner

FWR block cannot produce$b/f . However, since$a/c in the outer FWR block is

unaffected, we can produce$a/c in the result.
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Chapter 13

Metrics for Quality and Cost

Our optimization goal is to select the optimal paths to spillto maximize output quality.

In this work we focus on maximizing the quality of the reducedoutput. We now describe

the metrics of quality and cost for measuring the alternative reduced queries.

13.1 Output Quality Model

Previous studies on approximate query answering tend to focus on the relational model,

where the output quality is usually measured by the throughput or the cardinality [10,59].

However, in our work, since each output result may be partial, measuring the throughput

or cardinality of the output is no longer so meaningful. Herewe propose a “fine-grained”

output quality model which aims to measure the quality of partial XML output results.

We measure the quality of the reduced output based on the following factors:

1. Cardinality . Since a return structure may be composed of nested substructures,

some substructure may only return a subset. So we incorporate the cardinality of

each substructure into the output quality.

2. Shape. Returned substructures may not be of the full shape when thecorresponding
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paths in the query fall into SAM. To differentiate such substructures from others,

we now define ashape indicatorto indicate how full each substructure is.

The shape indicator for a pathq in the query can be calculated as

Sq = Size of element after spilling
Size of element without spilling

(Here we assume the size of an element is fixed).

When a path falls in SAM, its shape indicator is less than 1. Inthis sense the quality

is “punished ” because of returning incomplete substructures.

Recall that the topmost element is the smallest data unit which can produce a result

structure. We defineunit qualityas the quality gained by executing the reduced query on

a topmost element. We measure unit quality using the formulabelow:

ν =
∑

n

j
∑

i=0

∑

q∈B(i)

Nq ∗ Sq (13.1)

Heren indicates the number of return structures generated per topmost element. Each

returned structure is composed of j substructures.q denotes the type of nodes matching

branchB(i). Nq andSq denote the cardinality and shape indicator ofq, respectively.

Path Quality

Spill /a/b Spill /a/b/c

$a//b 1*1 1*1+2*0.5

$a/d 1*1 1*1

$a/b/c 0 0

Figure 13.1: Quality for Q2

Example 13.1.1.We calculate the unit quality of Q2 for data in Figure 9.3(a) (plan is

shown in Figure 1.3). The quality of each substructure is shown in Figure 13.1. For

each topmost elementa, a result structure<pairQ2> is returned. In this example, only

one result structure is produced. Hencen=1. The result structure is composed of three
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substructures,$a//b, $a/d and $a/b/c. This indicatesj=3. When spilling path/a/b,

d1 and b3 are returned. The unit quality of the reduced query is 1+1=2.When spilling

/a/b/c, $a//b returns three elements,b1, b2 andb3. For b1 andb2, their shape indicators

are both equal to 0.5 since theirc children are missing. So the output quality for$a//b is

1+2*0.0.5= 2. The unit quality for Q2 is 1+2=3.

13.2 Evaluating Reduced Query Costs

We now define a cost model for comparing alternative reduced queries. We measure the

cost as the average time of processing a topmost element (we call it the unit processing

cost). We divide the processing cost into the following parts: Locating Cost(LC) that

measures the cost spent on retrieving data andJoin Cost(JC) spent on structural joins. In

addition, in the spilling stage, since we need to flush data todisk, we call the cost spent on

spilling dataSpilling Cost(SC). Since our goal is to optimize the quality of the reduced

query, we focus on the cost model of measuring runtime cost savings for the reduced

query.

Locating Cost. The locating cost indicates the cost spent on retrieving tokens. Automata

are widely used for pattern retrieval over XML streams [22, 44]. The relevant tokens are

“recognized” by the automaton and then assembled into elements. The formed elements

are passed up to the algebra plan to perform structural join and filtering. While the detailed

locating cost model is discussed in [67], we estimate the locating cost savings using the

formula below [67]:

∑

q∈Api
nactive(q)Ctransit (13.2)

HerePi indicates the query paths whose subtrees are contained by subtrees of spilled
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Notation Explanation
APi Set of states of patternPi and its de-

pendent states.
nactive(q) The number of times that stack top

contains a state q when a start tag
arrives

Ctransit Cost of transition to states in au-
tomaton

NP Number of elements matchingP
for a topmost element

S1 Join Selectivity
MP Size ofP (number of tokens con-

tained in each element)
Cj Cost of comparing two elements
CI/O Cost of disk I/O
Cs Cost of stack operation

Table 13.1: Notations Used in Cost Model

paths.Api denotes the set of states corresponding toPi and its dependent states in the

automaton. nactive(q) denotes state invoking times andCtransit denotes the transition

cost. The notations are in Table 13.1.

Join Cost. Since we assume stream data arrives in order, the elements for both join

inputs are sorted. We can apply an efficient structural join algorithm, such as Stack-Tree-

Anc [3], since both inputs are sorted. Using the cost model for this algorithm [70], we

estimate the cost of structural join using the formula as below :

2 ∗NVNB(i)S1Cj + 2NVCs (13.3)

HereNV andNB(i) indicate the number of binding variables and branches per top-

most element. Based on Equation 20.3, we can easily calculate the structural join savings

for the reduced query.

Spill Cost. Although join computations are saved due to spilling, we nowhave to consider
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the additional costs associated with spilling. As will be discussed in Chapter 14, we may

have to spill other paths to enable future supplementary result generation. Let us useSP

to denote the set of paths to be spilled to disk. The spill costcan then be calculated as

follows:

∑

p∈SP

NpMpCI/O (13.4)

Runtime Statistics Collection. We collect the statistics needed for the costing using

the estimation parameters described above. We piggyback statistics gathering as part of

query execution. For instance, we attach counters to automaton states to calculateNP and

nactive(q). And we collectMP andS1 in algebra operators. We then use these statistics

to estimate the cost of reduced queries using the formulas given above. Note that some

cost parameters in Table 20.1 such asCtransit,APi, Cj andCI/O are constants. We do not

need to measure them during the query execution.
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Chapter 14

Generate Supplementary Results

In this chapter, we first describe the complementary output model we propose to utilize

to match the supplementary “delta” structure with partial reduced outputs produced ear-

lier. Then we examine what extra data must be flushed to guarantee the generation of

supplementary results.

14.1 Complementary Output Model

In the clean up stage, supplementary results are generated to “complement” the reduced

output produced earlier. So that together these two output “pieces” can be united logi-

cally to represent the full content. Since partial result structures may be generated for

each output tuple, this requires us to design an output modelthat can efficiently match

the supplementary “delta” structure with the reduced output produced earlier. Here we

proposecomplementary output model, which extends from the hole-filler model [25].

The hole-filler model has been designed to organize out-of-order data fragments when an

XML document is split into multiple fragments. Our idea is toexplicitly mark a hole in

the output element with a unique identifier to indicate missing data. In the later cleanup
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stage, we produce fillers to fill in these holes, which in our context are supplementary

results. The reduced outputs and supplementary results forQ2 when spilling/a/b are

shown in Figures 14.1(c) and (d) respectively.

To distinguish and match efficiently between holes and fillers, we define three types

of IDs, namely, BPU ID (BID), Result Structure ID (RID) and Path ID (PID). Only fillers

and holes with the same IDs can be matched. For instance, the first filler in Figure 14.1(d)

indicates the missingb1 andb2 for path$a//b (whose PID is 2) in the<pairQ2> element

for the first BPU (a element). The second filler indicates the missingc1 andc2 for path

$a/b/c (whose PID is 4) for the first BPU.

<pairQ2>
<Hole: Bid="1" Rid ="1" Pid="2" / >
<b> ...  </b>
<d>d1</d>
<Hole: Bid="1" Rid ="1" Pid="4" />
</pairQ2>

<pairQ2>
…
</pairQ2>

<Filler: Bid = "1" Rid ="1" Pid = "2">
<b> b1 </b>
<b> b2 </b>

</ Filler >

<Filler :Bid = "1" Rid ="1" Pid = "4">
<c> c1</c>
<c> c2 </c>
<//Filler >

(c) Reduced Output (d) Supplementary Output

b1 e3

a1

b2 d1

e1c1 e2c2 b3

(1,26)

(2, 9)

(3,5) (6,8)

(10, 17)

(11,13) (14,16)

(18, 20) (21, 25)

(22, 24)

…

(a) Plan for Q2 (b) Data

SJ $a=/a

3 4
$a/b/c

2
$a//b $a/d

1

Figure 14.1: Example for Output Model
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ID For Return ID For Return
1 SAM UA 7 UA UA
2 SAM SRAM 8 UA SRAM
3 SAM SAM 9 UA SAM
4 SRAM UA
5 SRAM SRAM
6 SRAM SAM

Table 14.1: Possible Combinations Between For Binding and Its Branches

14.2 Determine Extra Data to Spill for

Supplementary Query Execution

To produce eventually complete results set, we have to generate supplementary results

correctly. We determine what extra data must be flushed to disk to guarantee the gen-

eration of supplementary results. Our goal is to spill a minimum set of data needed for

supplementary query execution. The eventual result set must be guaranteed to be both

complete and duplicate-free.

Since structural join is the core component in the queries weconsider, we focus on

how to spill extra data to reconstruct the structural join results correctly. Either the “for”

path or the “return” path can be of three types, namely, SRAM,SAM, or UA. There are

totally 3*3 =9 combinations between the binding variable and branches. The possible

combinations are listed in Table 14.1. Note that if “where” path is SRAM, the output is

blocked. Hence we ignore this case.

Note when the binding variable is SAM, query execution is notaffected. Hence cases

1, 2 and 3 can be regarded to be the same as cases 7, 8 and 9 respectively. Clearly, it is not

necessary to consider case 7 since complete results are produced in this case. Finally we

only need to consider cases 4-6, 8 and 9. We now describe a typical case, case 8, to show

how to determine what extra data to flush to disk and how to compute supplementary
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results. Similarly, we can generate supplementary resultsfor other cases. The details

about those cases can be found in [68].

Binding Variable is UA and Branch is SRAM. In this case, multiple branches may

fall into SRAM at the same time. However, the output of the structural join ofV with

branchB(i) is independent from the output of the structural join between V and other

branches. The case that one branch operator falls into SRAM is considered first and

can be easily extended to the case that multiple branches areSRAM. Assume that the

binding variableV is UA and one branchB(i) is SRAM. We use superscriptm andd to

distinguish between data kept in memory and data on disk. We represent the structural

join results between the binding variableV andB(i) using the following equation:

V ⊲⊳S B(i) = V ⊲⊳S (Bm(i) ∪Bd(i))

= (V ⊲⊳S B
m(i)) ∪ (V ⊲⊳S B

d(i))
(14.1)

Obviously, the results ofV ⊲⊳S Bm(i) have already been produced by the reduced

query execution. We only need to calculate the supplementary resultsV ⊲⊳S Bd(i).

Hence we have to reconstruct the structural join betweenV andBd(i) and the extra data

to be spilled is the data corresponding to the binding variable V . We use a subscript to

indicate the time the data was spilled. Assume that structuresV andB have been pushed

k times to disk, meaning the spilled data isV1, V2, ... Vk andBd
1 , Bd

2 , ... Bd
k respectively.

As we mentioned in Chapter 10, the query results generated based on a basic processing

unit are independent from others. We assume we spill data in batch of one or more basic

processing units. We thus conclude thatVx does not need to join withBd
y if x is not equal

to y since they do not belong to the same basic processing unit. Therefore the missing

structural join results betweenV andB(i) at time k can be calculated asVk ⊲⊳S Bd
k(i).

For instance, for the plan of Q2 in Figure 14.2, when path/a/b is spilled, path$a//b is

SRAM. The structural join between$a and$a//b can be calculated using Equation 14.1.



14.2. DETERMINE EXTRA DATA TO SPILL FOR
SUPPLEMENTARY QUERY EXECUTION 80

Q2: 
FOR $a in stream()/a
RETURN 

<pairQ2>
$a//b, $a/d, $a/b/c

</pairQ2> 

SJ $a=/a

Query Plan

3 4
$a/b/c

(b)

2
$a//b $a/d

1

Query Q2(a)

Figure 14.2: Query Q2 and Its Plan
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Chapter 15

Choose the Optimal Structure to Spill

15.1 Formulation of Optimization Problem

For each spill candidate, a reduced query is derived to produce the reduced output. For

each reduced query, we measure its unit quality and unit processing cost. Unit quality

for a reduced query is defined as the quality gained by executing the reduced query on

a topmost element. Unit processing cost is the average time of processing a topmost

element. Our goal is to pick structures to spill so as to optimize the output quality. The

problem can be formulated as follows. Given the following inputs: 1. data arrival rateλ

in the number of topmost elements per time unit, 2. unit quality gained by executing each

reduced query{ν0, ν1, ..νn}, 3. unit processing costs for each candidate reduced query

{C0, C1, ..Cn}. We aim to find a spill candidate whose corresponding reducedquery

satisfies the following two conditions: (1) consume all input elements in 1 time unit, and

(2) maximize total output quality.

Given a spill candidate, we first derive its corresponding reduced queryQi. We use

1/Ci to calculate how many elements can be processed when executingQi per time unit.

Since the processed data cannot exceed the incoming data, the total output quality is
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calculated using the formula below:

νi ∗min{λ, 1/Ci} (15.1)

15.2 Algorithms for Spill Optimization

Optimal Reduction(OptR). The first algorithm we propose, called Optimal Reduction

(OptR), employs an exhaustive approach. It searches the entire candidate space and picks

the candidate that yields the highest output quality.

The procedure proceeds as follows: 1) iterate over each spill candidate in a top-down

manner in the candidate lattice and derive a reduced queryQi. and 2) then estimate the

cost, unit quality as well as total output quality ofQi. The candidate query that has the

highest output quality will be chosen as the reduced query atthe spilling phase.

Remember from Chapter 11 thatf is the fan-out andd is the depth of the query pattern

tree. Since it is an exhaustive approach, the search complexity is equal to the size of the

minimum candidate space, which isO(2fd).

Example 15.2.1.Assume the arrival rate is 20 topmost elements/s. The unit cost and unit

quality for the initial query are 0.1s and 6 respectively. The available CPU resources are

1 second. In this case, the reduced query needs to process 20 topmost elements while

achieving the highest output quality. The unit processing cost and unit quality for each

candidate are shown in Figure 15.1. We pick spill candidate{b, c} since its corresponding

reduced query yields the highest output quality, namely, (1/ 0.05) * 2 = 40.

Optimal Reduction with Pruning (OptPrune) . Optimal Reduction with Pruning (Opt-

Prune) applies additional pruning to eliminate suboptimalsolutions. It explores the spill

candidate space in a top-down manner and removes less promising solutions based on the

observation below.
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∅∅∅∅

{c}

{//b,c}{ b,c}

{d} {//b}

{c,d} {//b,d}

{b,//b,c}{b,c,d} {//b,c,d}

{ b,//b,c,d}

{ a,b,//b,c,d}

[0.1,6]

[0.0625,4] [0.079,5] [0.0375,1]

[0.05,2] [0.0375,1] [0.016,0] [0.054,3]

[0.024,1] [0.02,1] [0.015,0]

[0.012,0]

[0.012,0]

Figure 15.1: Optimization Using OptR

Observation 15.2.1.In the top-down candidate space traversal, when we reach a can-

didatedi and find it is capable of consuming all input data, then the candidates below it

(candidates that include all paths indi) can all be pruned.

The reason is that if candidatedi can produceri result structures, the candidates below

it tend to spill more paths. The quality of each result structure is not higher than that

of candidatedi. However, the number of output result structures may stay unchanged

since all input data is consumed. Therefore, the total quality of the candidate belowdi is

guaranteed not to be higher than that ofdi.

Example 15.2.2.In Figure 15.2(a), candidate{b, c} can consume all input. In this case,

we can prune candidates below it,{b, c, d}, {b, //b, c} and{b, //b, c, d} directly. Simi-

larly, candidates below{//b} and{c, d} can be removed.

To estimate the search complexity, since the worse case for OptPrune is checking ev-

ery candidate without pruning anything, therefore the worst case for OptPrune isO(2fd).

However, our experimental results will show that the actually complexity is much smaller
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(a)Optimization Using OptPrune

{c}

{//b,c}{b,c}

{d} {//b}

{c,d} {//b,d}

{b,//b,c}{b,c,d} {//b,c,d}

[0.0625,4] [0.079,5] [0.0375,1]

[0.05,2] [0.0375,1]

∅∅∅∅
[0.1,6]

…

{c}

{//b,c}{b,c}

{d} {//b}

{c,d} {//b,d}

[0.0625,4] [0.079,5] [0.0375,1]

∅∅∅∅
[0.1,6]

…

(b)Optimization Using ToX

Figure 15.2: OptPrune and ToX Example

thanO(2fd).

Top-down Expansion Heuristic (ToX). We now present a Top-down eXpansion heuristic

(ToX), which has much more efficient running time compared toOptR and OptPrune.

ToX starts from simple spill candidates and stops at the firstcandidate that is able to

consume all the input.

ToX proceeds as follows:

Step 1. Check candidates that spill one leaf node (candidates on thetop level of the

lattice). If we find a candidate that is able to consume all input and achieve highest total

output quality among candidates considered so far, stop. Otherwise go to Step 2.

Step 2.Pick the candidate that has the highest quality/cost ratio on this level and move to

candidates connecting it one level lower.

Step 3. If one of the new candidates can consume all the input and achieve the highest

total output quality among candidates considered so far, stop. Otherwise go back to Step

2.

The complexity of ToX isO(f 2d) which is much smaller than that of OptR and Opt-

Prune.
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Example 15.2.3.In Figure 15.2(b), we first check the candidates that only spill one node.

We find{//b} can consume all input. We consider{//b} optimal and stop. The total

output quality ismin{20, 1/0.0375} * 1 = 20.
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Chapter 16

Experimental Evaluation

In this chapter, we conducted a comparative study of the three optimization algorithms

OptR, OptPrune and ToX. In addition, we also employed an algorithm, calledRandom,

which iteratively selects one among all possibly substructures randomly until enough sub-

structures are spilled so that the input load can be handled by the corresponding reduced

query. The experimental results demonstrated that our proposed solutions consistently

achieved higher quality compared to the Random approach. The experiments are divided

into three categories:

• The first set of experiments compared the performance of our proposed spilling

strategies with Random approach in two cases. One case is when the network is

fast and reliable, i.e, the input sources are never blocked.The other case is when

the network is unreliable. When the network is unreliable, the input data has a

mixture of high and low arrivals. When the arrival rate is low, the disk on data can

be processed and generate supplementary output.

• The second set of experiments tested the impact of differentselectivity and different

query path sizes on the performance of our approaches.
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• The third set of experiments compared the overhead of different spilling approaches.

Experimental Setup. We have implemented our proposed approaches in an XML

stream system called Raindrop [30]. The data sets were generated using ToXgene [12].

All experiments were run on a 2.8GHz Pentium processor with 512MB memory.

16.1 Comparison of Spilling Approaches

16.1.1 Reliable Networks

A reliable network never incurred suspensions of data transmission. For achieving this,

we set arrival interval between two topmost elements to a fixed value. In this set of ex-

periments, we set arrival interval to 0.025s and 0.02s respectively. The arrival rates under

these two settings were higher than the processing speed. Weused Q2 as the running

query. Spilling was invoked as soon as the memory buffer threshold is reached.

To compare the performance of alternative approaches, we used a new “fine-grained”

quality metric to measure the quality of partial outputs instead of using traditional through-

put metric. The reason is that throughput typically refers to the number of (complete)

output elements in XML produced. However, in this work of producing partial structures,

a traditional throughput metric is not so meaningful. The detailed quality model can be

found in Chapter 13.

We studied the output quality gained by taking different optimization approaches. Fig-

ures 16.1 and 16.2 show the cumulative output quality using four optimization strategies

when the arrival interval is 0.025s and 0.02s respectively.Observe that OptR, OptPrune

and ToX gained higher quality than Random after spilling starts. OptR and OptPrune

both gained higher quality than Random and ToX. This is because OptR and OptPrune

guarantee to find the optimal structures to spill.
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Because the reliable network never incurred suspension of data transmission, the clean

up processing was invoked after all the data has arrived (after time 5500). In the clean up

phase, the supplementary results were generated based on the disk-resident data. Finally

all four spilling approaches produced the complete result set and reached the same output

quality.

When the arrival interval is 0.02s, the cumulative quality increased slower than the

case that the interval is 0.025s. This is because when the arrival rate was increased, the

reduced query may need to spill more structures to consume all the input.
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Figure 16.1: Reliable Network, 0.025s

16.1.2 Unreliable networks

Having evaluated our spilling approaches in the absence of transmissions, we proceed to

examine the performance for unreliable networks. To simulate unreliable network, we
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Figure 16.2: Reliable Network, 0.02s

generated arrival intervals using Pareto distribution that is widely used in case of bursty

network [20]. Figure 16.3 shows the cumulative quality for four approaches. Observe that

all of them had step-like performance due to switching between the spilling and clean up

phase. The slope of segments corresponding to the spilling phase for OptR and OptPrune

was larger than that of ToX and Random. This indicates that output quality for OptR and

OptPrune is increased faster than that of ToX and Random.

16.2 Impact of Selectivity and Path Size

Next, we illustrated that the output quality is affected by the selectivity distribution of the

binding variable and each branch. We ran the query Q5 below:

Q5: FOR $o in stream(“test”)/list/o

RETURN $o/P1, $o/P2, $o/P3, $o/P4
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Figure 16.3: Unreliable Network

We generated five test data sets which satisfy the following requirements: 1) all test

data sets contained the same number of tokens; and 2) the numbers of elements corre-

sponding to each returned path were equal; and 3) the elementsizes corresponding to

each returned path were equal. Based on the cost model in Chapter 13.2, the locating

costs spent on locating each returned path are the same. The join costs between the bind-

ing variable and each returned path are the same too. In addition, the spilling costs when

spilling each returned path are also the same. For each data set, the selectivity between

the binding variable and its branches can be different. We used five different sets of selec-

tivity which differ in their standard deviations. Figure 16.4 shows that the output quality

is higher when there is a bigger variance among selectivity for OptR and OptPrune. This

is because OptR and OptPrune tend to spill the return paths with low selectivity which

yield low output quality given the same spilling and computation cost. We observe that

the quality of the reduced query achieved by the Random approach did not change a lot

because Random approach did not keep the returned paths having large selectivity.
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Figure 16.4: Quality for Varying Selectivity

We now illustrate that the output quality is affected by the pattern size. All testing

data sets had the same number of elements and selectivity foreach returned paths. And

all test data sets contained the same number of tokens. Figure 16.5 shows that the output

quality changes with varying standard deviation of return path size. For the Random

approach, the output quality did not change a lot. However, for OptR and OptPrune, the

output quality was much higher than the quality achieved by Random approach when the

standard deviation of pattern size increased. This is because the reduced queries with

smaller returned path size have smaller spilling cost, resulting in lower overall processing

cost. In this case, OptR and OptPrune would pick such reducedqueries since they have

relatively higher quality/cost ratios and thus higher quality.

16.3 Overhead of Spilling Approaches

In this work, optimization is conducted in an online fashionto assure continuous respon-

siveness of our system. Here we studied the overhead of four spilling strategies, measured
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by the time spent on choosing which structure to spill. We studied the relationship be-

tween the complexity of the query and the overhead of the optimization methods. We used

five queries which vary in the size of the query trees. In Figure 16.6, when the queries be-

came complex, the overhead of ToX was much smaller than OptPrune and OptR since it

stopped at the earliest candidate which consumes all input.We observe that the overhead

of OptPrune was much smaller than that of OptR. This indicates that our pruning method

is indeed effective at reducing the search cost. Given that both approaches can achieve

the highest quality, OptPrune is obviously a better option than OptR. However, when the

query became more complex, OptPrune may not be a practical solution since its overhead

is larger than ToX and Random. In this case, we resolved to utilize our lightweight ToX

solution.
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Chapter 17

Related Work

Complete result sets are often required for continuous queries, even though the query

system may not have sufficient resources for the query workload at a particular time. To

address this, prior works have focused on flushing data temporarily to disk to address the

problem of run-time main memory shortage while satisfying the needs of complete query

results for relational streams. Most of them are focused on maximizing the output rate or

generating a subset of results as early as possible [39,48,62,63].

[63] is the first to propose a non-blocking join operator, called XJoin, which produces

results event when one or more stream sources experience delays. [63] proposes to con-

duct hash join during three stages. The first stage joins memory resident tuples, acting

similarly to the standard symmetric hash join. The second stage joins tuples that have been

flushed to disk due to memory constraints. The third stage is aclean-up stage that makes

sure that all the tuples that should be in the result set are ultimately produced. Hash-Merge

Join [48] proposes a Hash-Merge join approach which produces non-blocking output by

employing an in-memory hash-based join algorithm at run time and employing a sort-

merge-like join algorithm in the merging phase. [23] proposes a non-blocking sort-merge

join approach to produce joined output which eliminates theblocking behavior of sort-
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based join algorithms.

[41] designs a PermJoin approach for producing early results in multi-join query

plans. [41] aims to maximize the early overall throughput and to adapt to fluctuations in

data arrival rates. [41] employs a flushing policy to write in-memory data to disk, once

memory allotment is exhausted, in a way that helps increase the probability of producing

early result throughput in multi-join queries. [43] tackles the query plan with multiple

state intensive operators where data spilling from one operator can affect other operators

in the same pipeline. We can apply the above techniques on coarse-grained spilling in

XML, which is spilling complete topmost elements to disk. However, such coarse-grained

spilling misses the novel XML-specific opportunities for spilling. In this work, we instead

focus on the fine-grained XML-specific structural spilling approach.

Niagara [54] proposes to produce approximate results for XQuery when no input for

some operators in the plan exists. However, they do not address the problem of producing

partial results in the XML stream context when the output from one operator is missing

due to spilling some patterns. Part I of this dissertation addresses structural shedding

problem in XML streams. However, it only considers queries containing independent

returned paths. Also, since it is focusing on shedding, how to generate supplementary

results is not discussed.

[15, 22, 29, 33, 44, 52] evaluate XQuery expressions over XMLstreaming data. One

approach [22, 33] combines automaton and algebra to processXML stream data. E.g.,

Tukwila [33] and YFilter [22] model the whole automaton processing as one mega op-

erator while modeling the rest data manipulation such as filtering and restructuring in

algebraic operators. [15, 29, 44, 52] use automata or automaton-like SAX event handlers

to process the whole query. One limitation of our structuralspilling framework is that the

cost model measuring processing costs is related to the specifics of the implementation of

query processing. Therefore, we can apply our spilling techniques to other XML stream
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systems as long as we plug in their cost models.
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Part III

An Integrated Framework for

Structural Shed and Spill Approach
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Chapter 18

Overview of Our Approach

The architecture of our integrated framework is shown in Figure 18.1. After the queries

are registered with the query engine, an initial plan is generated and optimized. The

execution engine will instantiate the query plan and start processing input streams. The

problem of deciding when the system needs to shed or spill data is not a question specific

to XML stream. Any existing approach from the literature [48, 63] could be employed

here. We employ a memory buffer to store input stream data. Assoon as a token is

processed, we clean this token from the buffer. We assume a threshold on the memory

buffer that allows us to endure periodic spikes of the input.When buffer occupancy

exceeds the given threshold, we trigger the optimization process.

Each fusion candidate corresponds to a pair of a reduced query and its matching sup-

plementary query. Thereduced query, which is devised from the initial query by reducing

some computations, is executed when the arrival rate is high. When the arrival rates be-

come slow,supplementary queryis executed to produce the output that complements the

partial output produced by the reduced query earlier. When the load reduction process

is triggered, the possible fusion candidates are examined.The query optimizer runs the

optimization algorithm to pick the optimal reduced and supplementary query pair. After
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Figure 18.1: Architecture for Integrated Framework

optimization, the reduced query is instantiated. The reduced query takes the place of the

previously active query, initiating the shedding or spilling processes whenever needed.

When arrival rates become slow and the system has enough resources to execute both the

original user query and the supplementary query, we retrieve the data back from disk and

then the supplementary query is executed.

In this work, we assume that any path and any number of paths inthe query can be

shed or spilled. We describe the space of possible fusion candidates in Chapter 19. Before

illustrating how to pick the optimal fusion candidate, we define feasible fusion candidate

and feasible queryas follows.

Definition 1. For a fusion candidate, if its reduced query can consume all the inputs, i.e.,

the processing speed of the reduced query is faster than or equal to the arrival rate, we

call this fusion candidate feasible and the reduced query a feasible query.

Our optimization goal is to pick the optimal fusion candidate that produces the highest

total output quality, and assure that the fusion candidate is feasible.
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Let us use the fraud detection query introduced in Chapter 1.4.3 as our example (the

query and its plan are shown in Figure 18.2). Assume we have two fusion candidates

for fraud detection query Q1. Fusion candidate 1{$a/bidder/priceD, $a/bidder/telP}

shedsprice permanently and spillstel to disk. The superscripts indicating the actions on

substructures.D indicates shed andP indicates spill. The reduced and supplementary

queries for candidate 1 are shown in Figure 18.4. Fusion candidate 2{$a/bidder/telD,

$a/bidder/priceP} shedstel and spillsprice to disk. The input stream data fragment

for Q1 is shown in Figure 18.3. Figure 18.5 shows the output produced by the reduced

and supplementary queries for these two fusion candidates.The arrival pattern for Q1

is shown in Figure 18.6. The arrival rate is 500 auction elements/second from time

0 to 1s and zero from 1s to 2s. Our goal is to pick an optimal feasible fusion can-

didate to maximize the total output quality. Assume substructures$a/bidder/tel and

$a/bidder/price are of the same size. In this case, the shedding costs for$a/bidder/tel

and$a/bidder/price are the same. The spilling costs for these two query paths arethe

same too. Assume the costs to produce each partial<pairQ1> element at runtime for

fusion candidates 1 and 2 are both 1.6 milliseconds (the detailed cost measurement can

be found in Chapter 20.2). The processing rates for both fusion candidates are 1000/1.6

=625. Both values are greater than the arrival rate. Therefore both fusion candidates

meet our requirement of feasible candidates. In addition, the unit quality for early partial

<pairQ1> is both 1 (the quality measurement can be found in Chapter 20.1). Therefore,

both two candidates achieve the same reduced output quality.

Now let us look at the supplementary query. The costs of producing supplementary

output for two fusion candidates are the same because elements tel andprice are of the

same size. Let us assume that the costs of producing supplementary output$a/ bidder/

tel and$a/bidder/price are both 0.5 milliseconds. However, the quality gained during

lull time periods for these two fusion candidates differs. Based on Figure 18.6, the quality
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Figure 18.4: Reduced and Supplementary Queries for Candidate 1
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Figure 18.6: Utility Function For Each Path and Arrival Pattern

for $a/ bidder/ tel is 0.5 since its quality sheds50% if its delivery is delayed. However,

the utility for delayed output$a/ bidder/ price drops to zero. Therefore during the lull

time period the delayed output$a/ bidder/ tel has higher quality than$a/bidder/price.

In this case, we choose candidate 1{$a/bidder /priceD, $a/bidder/telP} since its total

output quality is higher than that of candidate 2. We will describe the algorithms to find

an optimal fusion candidate in Chapter 21.
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Chapter 19

Fusion Candidates

In this section, we first give possible delivery options. Then we describe the representation

of possible fusion candidates.

19.1 Delivery Options

When data arrival speed is extremely high and the system resources are limited, partial

results instead of complete results may have to be produced.Since XML results are

composed of various substructures, output substructures may vary in their delivery time.

For each substructure, we have following three options to handle data:

• Keep. The first option is to deliver the substructure by processing and reporting

immediately. We label this substructure “Keep.”

• Spill. The second option is to push data to disk temporarily. The data on disk will

be brought back when sufficient resources are available in the future. We label this

substructure “Spill.”

• Shed. The third option is to permanently throw the data away when the arrival rate

is high. We label such substructures “Shed.”
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19.2 Representation of Fusion Candidates

In this section we examine all possible fusion candidates. Here a query is represented by

a query pattern tree. For example, the query pattern tree forQ1 is in Figure 19.1. In query

pattern tree, each navigation step in an XPath is mapped to a tree node. We use single line

edges to denote parent-child relationships.

seller payment

auction

bidder

ID pricetel

Figure 19.1: Pattern Tree for Q1

We assume any node in the query tree can be shed, spilled, or kept. Since each node

in the query pattern tree has three options, namely, keep, shed or spill, the combination of

selecting one of these options for each node in the query treerepresents a fusion candidate.

For instance,{auctionK , sellerK , bidderK , paymentK , IDK , telP , priceP } is a fusion

candidate. We use a vector, whose length is equal to the totalnumber of nodes in the

query tree, to represent a fusion candidate. For each node inthe query tree, there is a

corresponding value in the vector indicating the action conducted on this node. 0, 1, and

2 indicate “keep,” “spill” and “shed” respectively. The position for each node in the vector

is fixed and follows the node’s preorder in a tree traversal. For instance, for query Q1, the

preorder traversal follows the orderauction→ seller → bidder → payment → ID →

tel → price. Vector [0, 0, 0, 0, 0, 1, 1] represents fusion candidate{auctionK , sellerK ,

bidderK , paymentK , IDK , telP , priceP}. For readability, we keep a letter in the vector

to remind readers about the label of each node. So we use[a0, s0, b0, p0, i0, t1, r1] to

represent[0, 0, 0, 0, 0, 1, 1]. Thus the action is indicated on superscripts.
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19.3 Solution Space of Fusion Candidates

[a0,s0,b0,p0,i0,t0,r0]

[a1,s0,b0,p0,i0,t0,r0] [a0,s0,b0,p1,i0,t0,r0] [a0,s0,b0,p0,i0,t1,r0] [a0,s0,b0,p0,i0,t0,r1]

[a0,s0,b0,p2,i0,t0,r0] [a0,s0,b0,p0,i0,t1,r1] [a0,s0,b0,p0,i0,t2,r0][a0,s0,b0,p0,i0,t0,r2]

… …

[a1,s0,b0,p1,i0,t0,r0]…… …

[a0,s0,b0,p2,i0,t1,r0] [a0,s0,b0,p0,i1,t1,r1][a0,s0,b0,p0,i0,t2,r1][a0,s0,b0,p0,i0,t1,r2][a1,s0,b0,p2,i1,t0,r0]…
… …

[a1,s1,b1,p1,i1,t1,r1]

… …

Figure 19.2: FC Lattice for Q1

We now design a lattice to represent all possible fusion candidates, i.e., the FC search

space. Each fusion candidate corresponds to a reduced and supplementary query pair. For

instance,[a0, s0, b0, p0, i0, t0, r0] indicates that every node is kept during the reduced query

processing. In other words, the reduced query is the original query and the supplementary

query is an empty query. Fusion candidate[a2, s2, b2, p2, i2, t2, r2] located at the bottom

of the lattice indicates every node is shed during the reduced query processing. In this

case, not only is the reduced query an empty query, but the supplementary query is also

an empty query since everything is dropped. From level i to level i+1, only one node

changes its associated action and the action change of a query tree node follows the order

from “0” (“Keep”) to “1” (“Spill”) or from “1” (“Spill”) to “2 ” (“Shed”).

To analyze the total number of potential fusion candidates,consider a complete query

pattern treeq with depthd and fixed fan-outf . The total number of nodes in this query tree

can be calculated as:τ =
d−1
∑

i=1

f i=fd−1
f−1

. Since each position in vector can have three values,

“0,” “1” or “2”, and the vector length is equal to the total number of nodes in the query
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tree, the total number of fusion candidates can be calculated as3τ , which is bounded

by O(3f
d

). The number of levels in the FC lattice is2τ since each level increments

in 1 position and the initial vector[a0, s0, b0, p0, i0, t0, r0] needs to increment2τ times

before every value increments to 2. For a fusion candidate, the number of its direct child

candidates in the lattice is less than or equal toτ since the action for every node in the

vector may change until it reaches 2.

Based on our cost model in Chapter 20.2, we observe that when we change the action

of a node from “Keep” to “Spill” or from “Spill” to “Shed”, thecost for producing the

reduced output is decreased. This leads to the following observation.

Observation 19.3.1.For a fusion candidateFCi on leveli, the descendant fusion candi-

dates on leveli + 1 or below are guaranteed to have smaller reduced query processing

costs compared with candidateFCi.
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Chapter 20

Metrics for Quality and Cost

20.1 Quality Model

Our objective is to maximize the output quality of the reduced output as well as the sup-

plementary output while staying within given system resources. We now describe the

metrics of quality for measuring alternative reduced queries as well as their respective

supplementary queries.

20.1.1 Age-based Utility Specification

For stream applications, the quality may be affected when the delivery of output results is

delayed. If the output is delayed for a smaller period of time, it is likely more acceptable to

users compared to longer or even indefinite delays. In fact, if the delay is too long, the data

may become useless to users. Hence we need a metric to evaluate to what degree output

quality is affected. Relational stream systems [8] proposed a latency-based QoS graph

where a piece-wise linear function is specified to indicate the latency-based utility for a

query. For XML stream data, since output may be composed of multiple substructures,

we instead propose to use a corresponding utility function to indicate the utility of each
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XML substructure. Here, output elements are treated as atomic units. Similar to [8], the

utility function is a piece-wise linear function with the following properties: 1) maximum

utility at time zero, 2) incomplete utility value when the age gets older, and 3) a deadline

latency point after which output data provides zero utility. A utility function is defined as

follows:

µ =
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


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
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Figure 20.1: Utility Function Examples

An example age-based utility function is shown in Figure 20.1(b) and (c). Note that

the utility for both$a/bidder/tel and$a/bidder/price has the maximum utilty 1 at time

zero. The utility of$a/bidder/tel drops to 0.5 if its delivery is delayed by 5 seconds,

while the utility for delayed output$a/bidder/price drops to zero if its delivery is de-

layed by 5 seconds. Without loss of generality, we assume theutility for a query path is

normalized to [0,1].

20.1.2 Output Quality Computation

Previous studies on approximate query answering [10,59] tended to focus on the relational

model, where the output quality is measured by either the output rate or the cardinality.
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However, since each output result may be partial, measuringthe cardinality of the out-

put as a simple count without considering its output complexity is not sufficient for the

data. Here we propose a “fine-granularity” output quality model that aims to measure the

quality of partial XML output results. Our measure is based on the following factors:

1. Cardinality . For XML data, a return structure may be composed of multiplesub-

structures. We incorporate the cardinality of each substructure into the output qual-

ity.

2. Age-based utility. We consider age-based utility for each substructure as onekey

factor of the quality computation of partial XML results.

3. Shape. Returned substructures may not be of their complete shape when some part

of the substructure is missing. For example, suppose both paths$a/b and$a/b/c

are in the “return ” clause. When path$a/b/c is spilled to disk, the path$a/bwould

return incompleteb elements. To differentiate such substructures from others, we

define ashape indicatorto measure how full each substructure is (details can be

found in [69].).

The shape indicator for a query pathp in queryQ can be calculated as

Sp = Size of element after shedding/spilling
Size of element without shedding/spilling

1.

When some substructures of a path are missing, its shape indicator is less than 1. Put

differently, the quality of the path is “penalized ” becauseof incomplete substructures.

In this work, the top most element is the smallest data unit based on which we can

produce a result structure. We defineunit qualityas the quality gained by executing the

reduced or the supplementary query on a top most element. We measure unit quality for

a query using the formula below:

1Here we assume the size of an element is fixed.
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ν =
∑

n

∑

p

Np ∗ Sp ∗ µ(p) (20.1)

Heren indicates the number of return structures generated per topmost element.p

denotes each substructure.Np,Sp andµp denote the cardinality, shape indicator, and utility

of p respectively.

Example 20.1.1.Assume the input data stream for query Q1 as in Figure 20.2, now let

us calculate the unit quality of the reduced and supplementary query for fusion candidate

[a0, s0, b0, p0, i1, t2, r0]. First consider the quality computation for the reduced query.

Elementi (i is short for ID) is spilled to disk. Two elementst (t for tel) are permanently

dropped. In this case, the reduced output result is composedof only 1 substructurer (r for

price). For substructurer,N is 2 since there are twor elements returned. Shape indicator

S is 1 since completer elements are output.µ is 1 sincer is produced at runtime. Hence

the reduced query quality is2 ∗ 1 ∗ 1 = 2. For the supplementary query, only elementi

is returned. Its age-based utility remains 1 even if its delivery is late. The quality of the

supplementary query is 1 based on Equation 20.1 since only one i element is produced.

seller payment

a1

bidder1

ID pricetel visa

bidder2

pricetel

Figure 20.2: Data for Q1
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20.2 Evaluating Costs for Reduced and Supplementary

Queries

Our optimization goal is to optimize the total output quality for both the reduced and sup-

plementary query. A cost model is used to measure the processing costs for both queries.

We distinguish between two types of processing costs. One, the costs of processing a

reduced query when the arrival rate is high, calledreduced cost, and, two, the processing

costs for supplementary queries when arrival rates are low,calledsupplementary cost. We

first describe how to measure the costs for different processing operations, and then we

put them together into a complete definition of reduced and supplementary costs.

In general, we measure the cost as the average time of processing a topmost element

(we call it the unit processing cost). We divide the processing costs into the following

parts: Locating Cost(LC) that measures the cost spent on retrieving data,Join Cost(JC)

spent on structural joins andSpill Cost(FC) spent on flushing data.

Locating Cost. The locating cost indicates the cost spent on retrieving tokens. Automata

are widely used for pattern retrieval over XML streams [22, 44]. The relevant tokens are

“recognized” by the automata and then assembled into elements.

For both “shed” and “spill” paths, we need to locate the correct corresponding tokens.

Therefore the locating costs are not saved when shed or spillis invoked. While the detailed

locating cost model is discussed in [67], we estimate the locating cost savings using the

formula below [67]:

CL =
∑

q∈Api
nactive(q)Ctransit (20.2)

HerePi indicates the query paths whose subtrees are contained by subtrees of shed or

spilled paths.Api denotes the set of states corresponding toPi and its dependent states in
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Notation Explanation
APi Set of states of patternPi and its de-

pendent states.
nactive(q) The number of times that the stack

top contains a state q when a start
tag arrives

Ctransit Cost of transition to states in au-
tomaton

NP Number of elements matchingP
for a topmost element

S1 Join selectivity
MP Size ofP (number of tokens con-

tained in each element)
Cj Cost of comparing two elements
CI/O Cost of disk I/O
Cs Cost of stack operation

Table 20.1: Notations Used in Cost Model

the automaton.nactive(q) denotes state invoking times andCtransit denotes the transition

cost. The notations are in Table 20.1.

Join Cost. Since we assume stream data arrives in order, the elements for both join

inputs are sorted. We can apply an efficient structural join algorithm, such as Stack-Tree-

Anc [3], since both inputs are sorted. Using the cost model for this algorithm [70], we

estimate the cost of structural join using the formula below:

CJ = 2 ∗NVNB(i)S1Cj + 2NVCs (20.3)

HereNV andNB(i) indicate the number of binding variables and branches per top-

most element. Based on Equation 20.3, we can easily calculate the structural join savings

for the reduced query. If a query path is marked as “shed” or “spill,” the structural join

is not conducted at run time. Therefore for reduced queries,the join costs are saved for

“shed” and “spill” paths.



20.2. EVALUATING COSTS FOR REDUCED AND SUPPLEMENTARY QUERI ES 113

Spill Costs.For “spill” paths, we consider the additional spill costs. As discussed in [69],

we may have to flush other supporting paths to enable supplementary result generation.

Let us useSP to denote the set of paths to be pushed to disk. The spill costscan be

calculated as follows:

CS =
∑

p∈SP

NpMpCI/O (20.4)

For reduced query, since it may include the mixture of “keep”, “shed” and “spill”

paths, locating costs, join costs and spill costs need to be considered. The reduced query

costs can be calculated using the formula below:

C(FCi)
R = CL + CJ + CS

For the supplementary query, the spilled data is brought back from disk for query

processing. In this case, the join costs need to be considered.
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Chapter 21

Optimization Problem

21.1 Arrival Pattern

Prior work has focused on describing measuring arrival patterns in data stream [13,24,45,

60]. Most work either use statistics-based approaches or assume arrival patterns follow

some known distributions. For instance, [24] and [13] assume input stream data arrival

follows the exponential distribution. [45] assumes arrival rates follow uniform distribution

for the input data. Other work [60] assumes arrival patternscan be estimated based on

statistics. Here we utilize statistics to estimate the arrival pattern in the sense that we know

the time period of the high arrival load and low arrival load.Without loss of generality,

we assume the arrival pattern is a step-wise function. Now wefocus on solving problems

for the given arrival pattern–be it detected at runtime or formed a priori.

21.2 Formulation of Optimization Problem

Each fusion candidateFCi in the FC lattice corresponds to a reduced and supplementary

query pair. The reduced query performs “keep,” “spill” or “shed” actions on varying

substructures and produces the reduced output. The supplementary query generates the
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supplementary results based on disk-resident data when system resources are available.

Our quality and cost models introduced in Chapter 20.1 and Chapter 20.2 measure the

unit quality and unit processing costs respectively. Decisions on the optimal reduced and

supplementary query pair are affected by input data arrivalpatterns. Note that our quality

model incorporates the age-based utility; therefore, the quality for supplementary queries

is estimated based on by how much the supplementary results are delayed.

We aim to find an optimal fusion candidate that satisfies the following goals: the

reduced query even when arrival rates are high must be able tokeep up with the arrival

rate, i.e., the reduced query is feasible, and the total quality including the quality for the

reduced query and its matching supplementary query should be the highest among fusion

candidates.

The fusion candidate selection problem is represented below.

Given the following inputs:

1. Varying arrival rates and their duration time periods:

< λ1, t1 >, . . . < λi, ti >, . . . < λm, tm >

Hereλi denotes the arrival rate during time periodti.

2. The unit computation costs of the reduced and supplementary query for each fusion

candidateFCi, denoted byC(FCi)
R andC(FCi)

S respectively.

3. Estimated output quality for the reduced and supplementary query:

For reduced query, since the processed data cannot exceed the incoming data, the

output quality is calculated using the formula below:

Q(FCi)
R = νRi ∗min{λ, 1/C(FCi)

R}

HereνRi denotes the unit quality of reduced query.
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For supplementary query, its unit quality is affected by howmuch late the output is

delivered. The output quality is calculated by:

Q(FCi)
S = νSi ∗ 1/C(FCi)

S

HereνSi denotes the unit quality of supplementary query.

Our goal is find a optimal fusion candidate to maximize the total output quality:

Max( Q(FCi)
R +Q(FCi)

S)

21.3 Algorithms for Optimizing Total Output Quality

The problem of choosing the optimal reduced and supplementary query pair can be trans-

formed to choose the appropriate fusion candidate from the FC lattice which shed or spill

data from input so that total output quality is the highest. We propose four optimization

algorithms, OptF, OptSmart, HiX and FeX.

21.3.1 Optimal Fusion Search (OptF).

The baseline algorithm, that is guaranteed to return the optimal result, is to search the

entire FC lattice and picks the fusion candidate that yieldsthe highest total output quality.

Here we call it Optimal Fusion Search (OptF), which is described in Algorithm 3.

Example 21.3.1.Assume the arrival pattern is shown in Figure 21.1, with the fast arrival

rate equal to 500 top most elements/s and the slow arrival rate 0 top most elements/s).

In this case, the processing speed of the optimal reduced query needs to be faster than

500 top most elements/s. The data for Q1 is shown in Figure 21.2. The estimated unit

processing costs and quality for each fusion candidate are shown in Figure 21.3. OptF

searches the entire FC lattice and picks the fusion candidate [a0, s0, b0, p0, i1, t2, r0] as
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Algorithm 3 OptF Algorithm
1: // FCf indicates the optimal fusion candidate.
2: FCf = ∅; Qmax = 0;
3: for each levelLi in latticedo
4: for each fusion candidateFCj in Li do
5: if reduced query ofFCj is feasibleandQ(FCj) > Qmax then
6: FCf = FCj;Qmax = Q(FCj);
7: end if
8: end for
9: end for

Arrival Rate

500

8 s

0

12

Figure 21.1: Arrival Pattern for Q1

optimal fusion candidate since its processing speed is higher than the arrival rate and its

total output quality is the highest among all viable alternatives.

seller payment

a1

bidder1

ID pricetel visa

bidder2

pricetel

Figure 21.2: Data for Q1

Since OptF exhaustively traverses the search space, its search complexity is equal to

the size of the candidate space,O(3f
d

), with fan-outf and depth of the query pattern tree

d (details can be found in Chapter 19).
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Fusion

Candidate

Reduced 

Query

Supplementary 

Query

Quality

/cost

Ratio

Total 

Quality

Feasible

?

Unit

Quali

ty

Unit 

Cost

(ms)

Unit 

Quality

Unit 

Cost

(ms)

2 2.2 1+0.5*2 2.4 0.87 10600 N

4 2.8 0 0 1.43 11424 N

1 1.7 1+0.5*2 2.9 0.98 8000 Y

2 1.8 1 0.9 1.11 12000 Y

2 2.0 0.5*2 1.4 0.88 10856 Y

1 1.6 0 1.4 0.33 4000 Y

1 1.6 0.5*2 1.4 0.67 6856 Y

[a0,s0,b0,p0,i1,t1,r0]

[a0,s0,b0,p0,i2,t0,r0]

[a0,s0,b0,p0,i0,t1,r1]

[a0,s0,b0,p0,i1,t2,r0]

[a1,s0,b0,p0,i2,t1,r0]

[a0,s0,b0,p0,i0,t2,r1]

[a0,s0,b0,p0,i0,t1,r2]

Figure 21.3: Quality and Cost of Fusion Candiates

21.3.2 Optimal Search with Smart Pruning (OptSmart).

Since OptF needs to search the entire FC lattice, the complexity of OptF is high. We

now design the Optimal Search with Smart Pruning approach (OptSmart) that applies

pruning to eliminate suboptimal solutions. OptSmart succeeds in improving the efficiency

of the search cost without compromising the result optimality. OptSmart is described in

Algorithm 4.

Algorithm 4 OptSmart Algorithm
1: // FCf indicates the optimal fusion candidate.
2: FCf = ∅; Qmax = 0;
3: for each levelLi in latticedo
4: for each fusion candidateFCj in Li do
5: if reduced query ofFCj is feasible then
6: if Q(FCj) > Qmax then
7: FCf = FCj;Qmax = Q(FCj);
8: end if
9: Prune all descendants ofFCj on lattice;

10: end if
11: end for
12: end for
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OptSmart guarantees to find the optimal fusion candidate based on the following ob-

servation.

Observation 21.3.1.In the top-down FC lattice traversal, when we reach a candidate

FCi and find its reduced query is a feasible query, the quality of its descendants is guar-

anteed to be not higher than that ofFCi.

Proof. Assume fusion candidateFCi producesri result structures. Now let us com-

pare candidateFCi and its children on leveli+ 1. First consider reduced queries. Recall

that a child candidate either changes the action of some substructure from “keep” to “spill”

or from “spill” to “shed.” Thus the quality of each reduced output result structure for a

child candidate cannot be higher than that of candidateFCi. Furthermore, the number of

output result structures cannot increase since all input data is consumed. So the reduced

query quality of child candidates cannot be higher than thatof the initial parent candidate

FCi.

Now let us consider the quality of the supplementary queries. When the action on

some substructure for a child candidate is changed from “keep” to “spill,” then this im-

plies the supplementary query quality for those substructures is degraded due to delay. If

the action on some structure is changed from “spill” to “shed,” the supplementary query

quality of a child candidate can never increase since no datafor that substructure will

be brought back later. Therefore, the total output quality of a child candidate ofFCi is

guaranteed to be not higher than that ofFCi. Similarly, we can prove that the quality of

descendants ofFCi is guaranteed to be not higher than that ofFCi. 2

Example 21.3.2.In Figure 21.4, the reduced query of candidate[a0, s0, b0, p0, i0, t1, r1]

on level3 can keep up with the arrival speed. In this case, we can prune its children

[a0, s0, b0, p0, i0, t2, r1] and [a0, s0, b0, p0, i0, t1, r2] and other descendants. Similarly,

[a0, s0, b0, p0, i2, t1, r0] and [a0, s0, b0, p0, i1, t2, r0] can consume all the input. Thus their
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descendants can be pruned.

[a0,s0,b0,p0,i0,t0,r0]

[a0,s0,b0,p0,i1,t0,r0] [a0,s0,b0,p0,i0,t1,r0] [a0,s0,b0,p0,i0,t0,r1]

[a0,s0,b0,p0,i2,t0,r0] [a0,s0,b0,p0,i0,t1,r1] [a0,s0,b0,p0,i0,t2,r0][a0,s0,b0,p0,i0,t0,r2]

… …

[a0,s0,b0,p0,i1,t1,r0]… ……

[a0,s0,b0,p0,i1,t2,r0] [a0,s0,b0,p0,i0,t2,r1] [a0,s0,b0,p0,i0,t1,r2][a1,s0,b0,p0,i2,t1,r0]…
… …

[a1,s1,b1,p1,i1,t1,r1]

… …

[a1,s0,b0,p0,i0,t0,r0]

Search Procedure for OptSmart

Figure 21.4: OptSmart Search Example

To estimate the search complexity, the worse case for OptSmart is to check every

candidate without pruning anything. Therefore the complexity of OptSmart is the same

as that of OptF, which isO(3f
d

). However, our experimental results will show that the

complexity of OptSmart is much smaller than OptF.

21.3.3 Hill-climbing Heuristics (HiX).

We now present a Hill-climbing Heuristic (HiX), which has much more efficient running

time compared to OptF and OptSmart. The heuristic is based onthe conviction that the

candidate with highest quality/cost ratio should yield thehighest output quality. The

algorithm is described as below.

Example 21.3.3.The HiX search for query Q1 is shown in Figure 21.5. On level 2,

the quality/cost ratio of the fusion candidate[a0, s0, b0, p0, i1, t0, r0] is the highest. So
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Algorithm 5 HiX Algorithm
1: // FCf indicates the optimal fusion candidate.
2: FCf =root;Qmax = Qroot; Li = 1; // Li is the current level
3: while truedo
4: Check child candidates ofFCf on next level;
5: Pick child candidateFCf with highest quality/cost ratio;
6: if reduced query ofFCf is feasible then
7: Stop;
8: else
9: Li = Li + 1; //Move to the next level

10: end if
11: end while

we only explore its children on level 3. On level 3, the quality/cost ratio of candidate

[a0, s0, b0, p0, i2, t0, r0] is the highest. We finally stop at candidate[a0, s0, b0, p0, i2, t1, r0]

since it is feasible. However,[a0, s0, b0, p0, i2, t1, r0] is not the optimal candidate for this

problem since as we know, the total quality of[a0, s0, b0, p0, i1, t2, r0] is the highest.

[a0,s0,b0,p0,i0,t0,r0]

[a0,s0,b0,p0,i1,t0,r0] [a0,s0,b0,p0,i0,t1,r0] [a0,s0,b0,p0,i0,t0,r1]

[a0,s0,b0,p0,i2,t0,r0] [a0,s0,b0,p0,i0,t1,r1] [a0,s0,b0,p0,i0,t2,r0][a0,s0,b0,p0,i0,t0,r2]

… …

[a0,s0,b0,p0,i1,t1,r0]… ……

[a0,s0,b0,p0,i1,t2,r0] [a0,s0,b0,p0,i0,t2,r1] [a0,s0,b0,p0,i0,t1,r2][a1,s0,b0,p0,i2,t1,r0]…
… …

[a1,s1,b1,p1,i1,t1,r1]

… …

[a1,s0,b0,p0,i0,t0,r0]

Search Procedure for HiX

Figure 21.5: HiX Search Example
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Complexity analysis. As discussed in Chapter 19.3, every fusion candidate has at

mostτ children in the lattice (τ indicates the total number of nodes in query tree). Hence

we check at mostτ candidates on each level. The lattice has totally2τ levels. Thus in

the worse case we have to run this search2τ times. So the total search cost isτ 2, which

is bounded byO(f 2d). The complexity of HiX is much smaller than that of OptF and

OptSmart.

HiX may end up finding a locally optimal fusion candidate. Thereason is when

it explores the candidates from top to down, it only checks the child candidates of the

fusion candidate with highest quality/cost ratio. The neighbors of the candidate with

highest quality/cost ratio are skipped. Therefore, it is not guaranteed to return the globally

optimal candidate. However, HiX is more efficient than OptF and OptSmart.

21.3.4 Fast EXplore Heuristics (FeX).

When a query is very complex, HiX may still be a costly search.We design a Fast

EXplore heuristic (FeX), which is even more efficient than the above approaches. FeX

randomly picks a fusion candidate on each level in a top-downmanner until finding a

feasible candidate.

Algorithm 6 FeX Algorithm
1: // FCf indicates the optimal fusion candidate.
2: FCf =root;Qmax = Qroot; Li = 1; // Li is the current level
3: while truedo
4: Randomly pick a candidateFCf on next level;
5: if reduced query ofFCf is feasible then
6: Stop;
7: else
8: Li = Li + 1; //Move to the next level
9: end if

10: end while

We ran the above algorithmK times, finally we pick the one with highest total output
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quality.

The complexity of FeX is decided by the iteration input control K and the number

of levels in the FC lattice that is bounded byO(f dK). Although there is no optimal

candidate guarantee for FeX, the complexity of FeX is much smaller than that of OptF

and OptSmart.

21.4 Supplementary Query Execution Policy

When input data arrival slows down and thus CPU resources remain available, then we

can proceed to bring the data on the disk back to execute the corresponding supplementary

query. Note that we do not have the load overflow problem for supplementary queries due

to the slow arrival speed of the input data. The data is read from disk in a pull-based

manner, unlike in the push-based stream case on when reducedquery operate. We now

note that over time, the optimization algorithms may have been triggered multiple times.

This means several alternate pairs of optimal reduced queries and supplementary queries

may have been chosen over time. To avoid the old disk-resident to expire leading to

quality loss, we employ a freshness-based supplementary query execution policy. The

data spilled to disk is brought back for processing based on their spill time order. In

other words, through shipping any historical spilled data which may have become so stale

that its quality is estimated to be equal to zero now, the optimal supplementary query

generated earlier will be executed first.
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Chapter 22

Experimental Results

We conducted extensive experiments to compare four optimization algorithms OptF, OptS-

mart, HiX and FeX. We also employed an algorithm, calledRandom, which iteratively

selects one among all fusion candidates randomly until enough substructures are dropped

or spilled so that the input load can be handled by the corresponding reduced query.

We first compare the performance of our optimization algorithms with the Random ap-

proach. The experimental results demonstrate that our optimization algorithms consis-

tently achieve higher quality than the Random approach. In addition, we compared our

optimization approaches which generated optimal fusion candidates with pure shed and

pure spill optimization approaches. The experimental results demonstrate that our inte-

grated framework has better performance over the pure shed and pure spill approaches.

We performed the following four sets of experiments:

• The first set of experiments compared the performance of our optimization algo-

rithms with Random approach.

• The second set of experiments compared the performance of our optimization ap-

proaches with pure shed and pure spill optimization approaches.
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• The third set of experiments compared the performance of ouroptimization algo-

rithms for various selectivity settings.

• The fourth set of experiments examined the overhead of different optimization al-

gorithms.

Experimental Setup. We have implemented our proposed optimization approaches

in an XML stream system called Raindrop [30]. We use ToXgene [12] to generate our

testing data. All experiments are run on a 2.4GHz i3 processor with 4096MB memory.

22.1 Comparison of Our Optimization Approaches

The first set of experiments compared the performance of our optimization algorithms

with Random approach in two cases. One case is fast and reliable network. The other

case is the network that is unreliable, i.e., the arrival pattern shows a mixture of fast

arrival rates and slow arrival rates.

22.1.1 Reliable Networks

When the network is reliable, the network never incurs suspensions of data transmission.

In this set of experiments, we set arrival intervals betweentwo top most elements 0.03s.

The arrival rate was higher than the processing speed. In this case, the supplementary

query never had a chance to be invoked. We used Q1 as the running query. Optimization

was invoked as soon as the memory buffer threshold was reached. We measured the

cumulative output quality gained by using varying optimization approaches. Figures 22.1

shows the cumulative output quality using four optimization strategies when the arrival

interval is 0.03s.

We observed that OptF, OptSmart, HiX, and FeX gain higher total quality than the

Random approach. In addition, OptF and OptSmart both gainedmuch higher quality
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than HiX, FeX and Random. This is because OptF and OptSmart were designed to find

the optimal fusion candidate. Since the arrival speed was higher than the processing

speed, supplementary query was not invoked. In this case, OptF and OptSmart choose the

optimal reduced query to achieve highest output quality.

22.1.2 Unreliable Networks

Now let us examine the performance of the optimization approaches in the scenario of

unreliable networks. To simulate unreliable network, we generated arrival intervals using

Pareto distribution that is widely used in case of a bursty network [20]. The cumulative

quality for our optimization approaches is shown in Figure 22.2. Observe that Figure 22.2

shows step-like performance for all the optimization approaches due to switching between

the reduced query and the supplementary query. This is because when no data arrives,

supplementary query gets a chance to be executed. In addition, the slope of segments

corresponding to the spilling phase for OptF and OptSmart islarger than that of HiX,

FeX and Random. This indicates that output quality for OptF and OptSmart is increased

faster than that of HiX, FeX and Random.

22.2 Comparison of Our Approach with Pure Shed and

Spill Approaches

The second set of experiments compared our optimization approach with state-of-the-art

pure shed and spill optimization approaches. [67] proposedstructure-based shedding

approaches to selectively drop substructures to permanently reduce workload. We call

this purely shedding approach that chooses the optimal shedcandidateP-Shed. [68] pro-

posed a structure-based spilling approach that selectively flushes less time-critical XML
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Figure 22.2: Unreliable Network

substructures to disk. We call this pure spill approach thatproduces the optimal spill

candidateP-Spill.

In this set of experiments, the arrival intervals were generated using Pareto distri-
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bution to simulate fluctuating arrival pattern. Since P-Shed and P-Spill both generate

optimal candidates, we compared them with OptSmart which also guarantees to generate

the optimal fusion candidate.
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Figure 22.3: Performance Comparison of Our Approach with P-Shed and P-Spill

Let us fist examine the performance comparison between P-Shed and our approach.

We generated three data sets that vary on their age-based quality. For data set 1, the

quality of all query paths remained unchanged when output was delayed. For data set 2,

the quality of all query paths dropped to 1/2 of their initialquality when delayed. For



22.2. COMPARISON OF OUR APPROACH WITH PURE SHED AND SPILL
APPROACHES 129

data set 3, the quality of all query paths dropped to 0 if delayed. Figure 22.3(a) shows

the quality comparison of P-Shed and OptSmart. Observe thatfor data set 3, when the

quality of all query paths drops to 0 if delayed, OptSmart andP-Shed had the same output

quality since they both pick the shed candidate to achieve the highest output quality. For

data sets 1 and 2, the quality of OptSmart was higher than thatof P-Shed. The reason

is OptSmart chooses the optimal fusion candidate that is producing delayed output based

on disk-resident data even when no data arrives while P-Shedalways permanently drops

data and produces nothing when no data arrives.

To compare the performance of P-Spill with OptSmart, we generated the following

three data sets. For data set 1, the quality of all query pathsremained unchanged. For

data set 2, the quality of50% query paths dropped to 1/2 of their initial quality if delayed.

Quality of the other50% query paths remained unchanged. For data set 3, the quality of

all query paths dropped to 0 when delayed. Figure 22.3(b) shows the quality comparison

of P-Spill and OptSmart. Observe for data set 1, the quality of OptSmart and P-Spill was

the same. Since the quality of all the query paths remains unchanged if delayed, OptSmart

and P-Spill both choose to flush less time-critical data to disk to achieve the highest output

quality. For data set 2, our approach wins over P-Spill. The reason is to make the reduced

query fast enough to keep up with input arrival rate, OptSmart selectively drops the query

paths whose quality degrades quickly while spilling the query paths whose quality is

unchanged. However, the P-Spill is limited to always spilling data to disk to reduce the

workload. The P-Spill thus had higher reduced query costs than our approaches due to

always spilling data. For data set 3, the quality of OptSmartwas also higher than P-Spill

because of the same reason.
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22.3 Impact of Selectivity

In this set of experiments, we illustrate that the output quality was affected by the selec-

tivity distribution of the binding variable and each branch.

The test data sets satisfy the following requirements: 1) each returned query path con-

tained the same number of tokens and corresponded to the samenumbers of elements,

and 2) the element sizes corresponding to each returned pathwere equal. Based on the

cost model in Chapter 20.2, the locating and join costs spenton each returned path are

the same. We used five different sets of selectivity that differ in their standard deviations.

Figure 22.4 shows that the output quality was higher when there was a bigger variance

among selectivity for OptF and OptSmart. This is because OptF and OptSmart choose to

shed or spill the return paths with low selectivity which yield low output quality given the

same computation cost. However, the quality of the reduced query achieved by the Ran-

dom approach did not change much because Random approach didnot keep the returned

paths with large selectivity.
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22.4 Overhead of Optimization Approaches
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Figure 22.5: Overhead of Optimization Approaches

The fourth set of experiments examined the overhead of our optimization approaches.

The overhead of our optimization strategies was measured bythe time spent on choosing

the optimal fusion candidate. We examine the relationship between the complexity of

the query and the overhead of the optimization methods. In this set of experiments, we

used five queries which varied in the size of the query trees. Figure 22.5 shows the

overhead of optimization approaches. Note that the overhead of FeX remained low when

the query became more complex since it checks, at most, one fusion candidate on each

level of FC lattice. In Figure 22.5, when the queries become complex, the overhead of

OptF was much higher than that of other approaches since it was always searching the

optimal fusion candidate with the cost of the entire FC lattice. The overhead of OptSmart

was much smaller than that of OptF. This indicates that our pruning method is indeed

effective at reducing the search cost.
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Chapter 23

Related Work

The current state-of-the-art in load shedding for relational stream systems can be cate-

gorized into two main approaches [10, 21, 28, 59]. One is random load shedding [59],

where a certain percentage of randomly selected tuples is discarded. The other approach

is semantic load shedding which assigns priorities to tuples based on their utility to the

output application and then sheds those with low priority. Our shedding approach can be

regarded as semantic shedding, but on structural data. Thismeans shedding objects are

not whole tuples but rather substructures. We assign priorities to substructures instead of

tuple values.

Preference model is widely used for decision making purposes in many applications,

such as e-commerce and personalized web services. Aurora [59] combines the utility of

different tuple values into quality of service. [38] proposes Preference SQL, an extension

of SQL that is able to support user-definable preferences forpersonalized search engines.

Preference XPath [37] provides a language to help users in E-commerce to express ex-

plicit preferences in the form of XPath queries. We can use their language to express the

preferences of different substructure in the query.

Spilling techniques have been investigated in relational streams. Flush algorithms
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have been proposed to either maximize the output rate or to generate a subset of result set

as early as possible [39, 42, 43, 48, 58, 62, 63]. However, we cannot directly apply their

techniques into structure-based spilling in XML streams because of the following reasons:

1) the spilled objects in relational streams are tuples. However, in our context, spilled

objects are substructures of the hierarchical XML data, and2) these works are focusing

on providing non-blocking flush techniques when conductinga different relational join,

such as Symmetric Hash Join, Hash-Merge Join and Progressive Merge Join. However,

structural join is the core component of XQuery plans, whichcan be looked as aθ join

whose condition is to compare the regions of two elements [71].

[54] first proposes to produce approximate results for XQuery when no input for

some operators in the plan exists. However, they do not address the case that substruc-

tures are missing from the input. In addition, since they assume the data is persistent,

supplementary query result generation does not require spilling extra data.

My earlier work on structural shedding [67], as presented inPart I of this dissertation,

is the first to deal with the problem of selectively dropping XML subelements to achieve

high processing speed. [67] assumes the returned query patterns are independent from

each other. Hence the data dependency issue among varying query patterns is not ad-

dressed. [69] tackles the problem of selectively choosing substructures to spill to disk

and generating complete output. [69] addresses the issue ofproducing runtime output

by determining the correct spilling effect in query due to data dependency among varying

query patterns. In this work, we focus on examining fusion candidates which is the hy-

brid of structural shedding and spilling. We propose a carefully calibrated multi-method

load reduction framework that applies both structural shedding and spilling technology to

achieve maximal effectiveness in processing input streams.
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Part IV

Conclusions and Future Work
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Chapter 24

Conclusions of This Dissertation

24.1 Summary of Dissertation

Stream applications are often characterized by push-baseddata sources in which the ar-

rival rates can be high and unpredictable. When the arrival rate is very high, stream

processing systems may not always be able to keep up with the input data streams. In this

dissertation, two load reduction techniques, including structural shedding and spilling

techniques, were proposed for XML stream processing to solve the issue of insufficient

system resources to keep up with the processing of the stream.

In the first part of this dissertation, we focused on the problem of structural shedding

for XML streams. We proposed a new utility-driven load shedding strategy that exploits

features specific to XML stream processing. Our preference model for XQuery helped

users to customize their preferences on different XML result structures. We designed a

cost model for estimating the costs of different shed queries. The shedding problem was

formulated as an optimization problem, namely, to find the appropriate shed queries to

maximize the output utility. To solve the shedding problem,two shed query searching

solutions, OptShed and FastShed, were proposed to choose a subset of shed queries to
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be executed in order to maximize utility. OptShed guaranteed to find an optimal solution

however at the cost of an exponential complexity. FastShed achieves a close-to-optimal

result in a wide range of cases with much smaller search coststhan OptShed. In addition,

a simple yet elegant in-automaton shedding mechanism was proposed by suspending the

appropriate states in the automaton-based execution engine for XML streams, in order to

drop data early.

In the second part of this dissertation, we focused on the problem of structural spilling

for XML streams. We proposed the first structure-based spilling strategy that exploits

features specific to XML stream processing. Our structure-based spilling framework was

general and can be applied in any XML stream system. We analyzed the effect on dif-

ferent paths in query for a particular spilled path. How to execute reduced queries given

varying spilling effects on the query was examined. An output quality model was pro-

posed for evaluating the quality of partial returned structures. We proposed a cost model

for measuring the execution cost for different reduced queries. In addition, to eventu-

ally produce entire yet duplicate-free result set, an output model was proposed to match

supplementary “delta” structures with partial result structures produced earlier. To gen-

erate supplementary results, we determined what extra datato spill to disk to guarantee

that the entire result set can be produced. To solve the spilling problem, we developed

three strategies, OptR, OptPrune and ToX. OptR and OptPrunewere guaranteed to find

the optimal structures to spill. ToX cannot guarantee to findthe optimal structures to

spill. When the queries became complex, the overhead of ToX was much smaller than

OptPrune and OptR since it stopped at the earliest candidatewhich consumes all input.

We could use OptPrune approach when the query is not very complex since its pruning

method is indeed effective at reducing the search cost. However, when the query became

more complex, OptPrune may not be a practical solution sinceits overhead was larger

than ToX. In this case, we resolved to utilize our lightweight ToX solution.
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In Part I and Part II we discussed the structural shedding andstructural spilling tech-

niques for XML streams. However, in some scenarios, critical disadvantages exist for

both the shed as well as the spill techniques. On the one hand,shedding data means that

partial output is lost forever. In addition, dropped data may lead to blocked output, es-

pecially when there is a lull in the input. On the other hand, spilling makes the strong

assumption that system resources will be ample to process all disk-resident data sooner

or later. In the third part of dissertation work, we proposeda novel integrated framework

for a hybrid structure-based shed and spill approach which is able to be applied in any

XML stream system. The structure-based shedding and spilling problem was formulated

into an optimization problem, namely, to find a pair of the reduced and supplementary

queries that maximizes the output quality. We designed a solution space for fusion can-

didates that represents all the shed and spill candidates. An age-based quality model was

proposed for evaluating the output quality for different reduced and supplementary query

pairs. A family of four optimization strategies, OptF, OptSmart, HiX and Fex, were pro-

posed to find the optimal fusion candidate which maximizes the total output quality. Our

experimental results demonstrate that our proposed solutions consistently achieved higher

quality results compared to the state-of-the-art techniques.

24.2 Discussion of Three Parts

Part I and Part II of this dissertation explore the problems of structural shedding and struc-

tural spilling for XML streams respectively. Although structural shedding and spilling

look similar in the sense of reducing the workload when the arrival rates are high, they

vary in their assumption, quality measurement, and reducedcandidate representation.

For structural shedding problem, we assumed that returned paths in a query were

independent from one another. However, for structural spilling problems, this limita-
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tion was removed. Hence for structural spilling, the spilling side effects on the query

caused by pushing a single query path to disk were examined inPart II. For structural

shedding problem, we allowed users to assign preference to varying query paths. Two

types of preference settings, namely, prioritized and numerical preference models, were

utilized to represent the importance of query paths. In addition, a scoring scheme for pat-

terns without preferences was proposed in the preference model. However, for structural

spilling, prioritized and numerical preference models cannot be directly applied because

the assumption that return paths were independent from one another does not hold for this

problem.

Structural shedding employs a reduced candidate representation strategy different

from structural spilling problem. For structural sheddingproblem, we used shed queries,

the queries generated by removing one or more nodes from the query pattern tree for a

given query, to represent possible reduced candidates. We aimed to find a set of shed

queries to optimize output quality. As we mentioned earlier, for structural spilling prob-

lem, we must consider the spilling side effects caused by spilling a query path. In this

case, a minimum candidate space was proposed to avoid unnecessary investigation on

reduced queries resulting in the same spilling side effects.

In the integrated framework for structure-based shed and spill, we focused on inves-

tigating fusion candidates that is the hybrid of structuralshedding and spilling. For this

integrated framework, we cannot just plug in our methodologies from part I and part II.

Structural shedding solutions simply assume the delayed output was no longer needed,

thus a pure shedding approach would be sufficient. For structural spilling solution, a

clean up stage, which triggers supplementary query execution to produce supplementary

results to complements output generated earlier, was guaranteed when the system has

enough resources. For an integrated framework supporting the hybrid of shed and spill,

we needed a means to measure how much output quality was affected if output is delayed.
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Hence a new age-based utility model was proposed for the integrated framework.
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Chapter 25

Future Work

This dissertation explores the structural shedding and spilling in XML streams. There

are many open unsolved research challenges in this area. This chapter discusses sev-

eral future work topics that are important for load reduction techniques in XML streams.

In particular, the topics for future work include: 1) Combining automaton-in-out query

optimization with structural shedding/spilling, 2) Multi-query shedding/spilling in XML

streams, 3) Supporting hybrid preference model in load shedding/spilling, 4) Organizing

of indexing flushed data on disk, and 5) Load spilling for XQuery with window functions.

25.1 Combining Automaton-in-out Query Optimization

with Structural Shedding/Spilling

In this dissertation, the query plan generation follows thefollowing rule: all query patterns

are retrieved in the automaton. Then the collected data is passed up to the algebra plan.

The structural shedding/spilling algorithms mainly focuson choosing substructures to

drop or to flush so as to maximize the output quality. When the query processing rate

cannot keep up with the input data arrival rate, shedding/spilling is invoked. However,
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the query plan shape may affect query processing costs. Whenthe query processing rate

cannot keep up with the arrival rate, switching to another plan may be able to keep up

with the arrival rate. In other words, query optimization may generate a plan with lower

computation costs than the initial plan, which can keep up with the arrival rate. If this is

the case, shedding or spilling is not necessary. Let me illustrate this via an example query

as follows:

Q3: FOR $a in stream()/auctions/auction[reserve]

WHERE $a//profile contains “frequent”

RETURN<auction> $a/seller, $a/bidder</auction>

The corresponding automaton and algebra plan for Q3 are shown in Figure 25.1. In

Figure 25.1, pattern<auction> is retrieved by the automaton. In other words, when a

start tag<auction> is encountered, we start collecting tokens. We stop collecting when

an end tag</auction> is encountered. The collected tokens are further passed up to the

algebra plan on the top.

Clearly, in Figure 25.1, only one pattern/auctions/auction is retrieved in the au-

tomaton. Other patterns in the query, such as$a/reserve and$a//profile, are obtained

by navigating intoauction elements. However, this may not be an optimal plan. Fig-

ure 25.2 shows another plan. In this plan, we push pattern retrieval onreserve into the

automaton. In this case, only theauction elements that havereserve children will be

passed up to the plan on the top. When very fewauction elements havereserve chil-

dren, the plan in Figure 25.2 results in lower computation costs compared with the plan

in Figure 25.1. Based on the above observation, changing theretrieval of a pattern by

placing them inside or out of the automaton may affect the plan costs. We call itautoma-

ton in-out optimization[57]. Since each pattern in the query can be retrieved in or out of

automaton, alternative plans are generated by pulling the pattern retrieval out of automa-
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Figure 25.1: Plan for Q3

ton or pushing the pattern retrieval into the automaton. [57] describes the rewriting rule

that could be employed to produce these alternative plans byrewriting one plan into an

alternative one. We can examine these alternative query plans and find an optimal plan

with the lowest cost.

Query optimization can improve the query processing speed,while keeping the output

accuracy. In addition, load shedding/spilling has to be invoked when the optimal plan is

not fast enough to keep up with the arrival rate. Therefore, we need to consider the
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interrelationship between automaton-in-out optimization and structural shedding/spilling.

We can combine the automaton-in-out optimization with loadshedding/spilling into a new

optimization problem. The goal is to find a plan which can consume all the input data and

produce as many output results as possible. To accomplish this, we need to tackle the

following challenges. First, we need to determine whether the optimal plan generated

by the query optimizer can consume all the input data, i.e., the query processing rate of

the optimal plan can keep up with the arrival rate. Two, we need to estimate the cost of

finding an optimal plan. If the cost of finding an optimal plan is too high and the optimal

plan cannot keep up with the arrival speed, we have to switch to a reduced plan which

drops data from the input or flushes data to disk temporarily.
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25.2 Multi-Query Load Shedding and Spilling

In this dissertation, we focus on the structural shedding and spilling for a single query.

In the future work, one could explore structural shedding spilling for multiple queries.

Multi-query load shedding and spilling bring up new challenges. First, since multiple

queries may need to extract common XQuery expressions, an efficient query execution

paradigm which employs a shared processing approach must bedesigned. As discussed

earlier, query patterns are retrieved in the automaton. This requires us to design an au-

tomaton for multiple queries carefully so that duplicate transition in pattern retrieval can

be avoided. In addition, the changes on the automaton when adding a new query and

removing an existing query must be simple so that these can beconducted online. Sec-

ond, since queries may be submitted by different users, the query preference settings may

vary. How to choose the substructures to drop or spill to maximize the total output qual-

ity for multiple queries is an important issue. Finally, since we propose the solution for

structural shedding/spilling on a single query in this dissertation, whether we can apply

current structural shedding/spilling solutions to multi-query workload when faced with

insufficient main memory and CPU processing resources is an interesting problem.

25.3 Supporting Hybrid Preference Model in Load Shed-

ding/Spilling

In the future work, one could employ a hybrid preference which combines both structure-

based and value-based preference in load shedding/spilling techniques.

In the XML stream scenario, the input stream as well as the output result are composed

of different XML subelements instead of just flat attributes, and hence more complex than

relational tuples. As we discussed in Chapter 4, we propose astructure-based preference
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model for XML stream. In a structure-based preference model, the importance of different

elements in an XML tree may vary due to their semantics. However, this structure-based

preference model does not look at the values for a substructure, which may also affect

the output quality in practical applications. Consider a social network website scenario.

Users may edit their personal profiles and send messages to their friends at any time.

Status updates, composed of possibly nested structures including updates from friends,

recent posts on the wall and news from the subscribed group, are generated continuously.

Different users may be interested in specific primary updates. For instance, a college

student wants to make new friends in Boston area. He wants to be notified when his

friends add new friends. When the system resources are limited, it may be favorable to

delay the output of unimportant updates and instead only report “favorite updates” to the

end users. In this case, the “favorite” substructure for this user is “friend”. In addition, the

“favorite” value of a new friend’s location is “Boston” since he is interested in new friends

in Boston area. In this case, a hybrid preference model composed of both structure-based

and value-based preferences is needed to report “favorite updates” to the end users when

system resources are limited.

To support hybrid preference, a new means to represent both structure-based and

value-based preference for XML data needs to be explored. A quality model for eval-

uating the output quality based on the hybrid preference model needs to be addressed.

In addition, as discussed in Chapter 6, many XML stream systems use an automaton to

recognize relevant elements on incoming data streams. Since dropping input data as early

as possible can avoid wasted work, the unimportant substructures can be dropped when

we recognize the corresponding tokens using automaton. Similarly, for a hybrid prefer-

ence model, we need to drop the unimportant substructures with unimportant values as

early as possible. When detecting a substructure to drop using an automaton, how to add

a value-based filter on this substructure is an important issue.
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25.4 Organizing of Indexing Flushed Data on Disk

When spilling data to disk, the data should be organized in a fashion way so to facilitate

the processing of the supplementary query. In this dissertation, we take a simple approach

which arranges all the spilled data on disk based on their arrival order. Clearly this storage

pattern is simple, since we just need to append every newly spilled data at the end on

disk. However, the disadvantage of this storage pattern is that the spilled data for multiple

elements is mixed together. For instance, suppose bothtitle elements located on path

/auction/title and bidder elements on path/auction/bidder are flushed to disk. In

this case, both the title elements and author elements will be recognized from the input

stream and put together in their arrival order. Using this storage pattern, we would have

to distinguish between these two elements again in the supplementary query to produce

correct results. In addition, since the spilled data is sorted based on their arrival order,

the I/O costs of reading disk data is proportional to the position of the spilled data. The

elements which are spilled later would take longer time to read back into the memory.

In the future, to avoid such disk reading overhead and identification overhead, we can

build an element indexing storage pattern. When the data is spilled into the disk, it is

indexed based on the element name and its position in the input stream. For instance, we

could index disk-resident elements using a vector (DocID, StartPos, EndPos, Level). A

reference points to its physical location on the disk. In this case, we can locate the element

quickly based on the index. The cost of recognizing each element is thus a constant value.

In addition, the spilled data which belongs to the same document is placed on the same

disk page to save the disk reading costs.
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25.5 Load Spilling for XQuery with Window Functions

For data streams, since incoming data is infinite, storing the entire stream is obviously

impossible. For many applications, data from the recent past is more likely to be rele-

vant and interesting than older data. Continuous queries have been extended with sliding

window constraints for relational streams [5] to purge stale data. A window constraint

can be either time-based or count-based. A time-based window constraint indicates that

only data that arrives within the last window time-frame is useful and need to be stored.

A count-based window constraint indicates that only the most recent certain number of

tuples need to be stored.

For XML streams, [14] first proposes to extend XQuery with a window function.

In [14], a FORSEQ clause is proposed to represent windows using XQuery. Considering

XML stream as an infinite sequence of items, the FORSEQ clauseiterates over an input

stream and binds the variable to a sub-sequence (aka window)of the input sequence in

each iteration. An example window function (FORSEQ clause)is as follows:

DECLARE variable $seq as (string)**

FOR $a in $seq sliding window

START at $x WHEN $seq[$x]/@a eq S

END at $y WHEN $seq[$y]/@a eq E

RETURN $w

The boundaries of a window are defined by START and END clauses. START and

END clauses involve a WHEN clause which specifies a predicate. Intuitively, the WHEN

condition of a START clause specifies when a window should start. The WHEN condition

of a END clause specifies when an open window should be closed.The window func-

tion above generates subsequences of items from the input stream. It goes through input

stream item by item. If the attributea of an item is equal to “S”, a new window is opened.
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If the attributea of an item is equal to “E”, the open window is closed. Figure 25.3 shows

an example fragment of input sequence and the windows generated by the above window

function. Observe that three windows (subsequences) are generated. They are{b, c, d},

{c, d} and{e, f}.

<b  a=S t=1 />

<c  a=S t=2 />

<d  a=E t=3 />

<e  a=S t=4 />

<f  a=E t=5 />

<g  a=S t=6 />

w1

w2

w3

w4

1

2

3

4

5

6

Figure 25.3: An Example Fragment of Input Sequence and Generated Windows

Let us go through the data fragment in Figure 25.3 and examinethe generation of

windows. For data shown in Figure 25.3, we iterate the input sequence. For the first

item “b”, since its attributea is equal to “S”, a new windoww1 is opened. Similarly,

for item “c”, since its attributea is equal to “S”, windoww2 is opened. For item “d”,

since its attributea is equal to “E”, windowsw1 andw2 are closed. Here windoww1

has subsequence{b, c, d} andw2 has subsequence{c, d}. For item “e”, windoww3 is

opened. Windoww3 is closed when item “f” is encountered. Note that windoww4 is an

open window since item “g” is the last item in the input sequence. In this case, such open

window does not generate a subsequence.

Load spilling applied to XML streams with window functions brings new challenges.

Note that spilling different items may lead to varying output of windows. Figure 25.4 and

Figure 25.5 show the effect on output windows when spilling item “b” and “d” respec-

tively. When spilling item “b”, since it is the start item of windoww1, we cannot identify

the start of windoww1 in this case. Windoww1 hence is not produced in the runtime
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output. When spilling item “d”, since its attributea is equal to “E”, we cannot detect the

end of windowsw1 andw2. In this case, the output of these two windows is affected.

Observe that both the spilling of “b” and “d” element cause the loss of some windows.

This is because “b” as well as “d” element affect the predicate evaluation of START or

END clause. Therefore, we need to measure how an input item contributes to the output

of each window. In addition, algorithms must be designed to choose items to spill so to

maximize the number of output windows.

<b  a=S t=1 />

<c  a=S t=2 />

<c  a=E t=3 />

<d  a=S t=4 />

<e  a=E t=5 />

<f   a=S t=6 />

w1

w2

w3

w4

Spill b
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2
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Figure 25.4: Spilling Effect on Windows When Spilling b

<b  a=S t=1 />

<c  a=S t=2/>

<d  a=E t=3/>

<e  a=S t=4 />

<f  a=E t=5 />

<g  a=S t=6 />
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Figure 25.5: Spilling Effect on Windows When Spilling d
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