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Abstract

Because of the high volume and unpredictable arrival ratiesam processing sys-
tems may not always be able to keep up with the input datamssregesulting in buffer
overflow and uncontrolled loss of data. To continuously $yippline results, two alter-
nate solutions to tackle this problem of unpredictablaifai$ of such overloaded systems
can be identified. One technique, called load shedding stsome fractions of data from
the input stream to reduce the memory and CPU requiremetite @forkload. However,
dropping some portions of the input data means that the acgwf the output is reduced
since some data is lost. To produce eventually completdtseshe second technique,
called data spilling, pushes some fractions of data to gienrsi storage temporarily when
the processing speed cannot keep up with the arrival raie piidtessing of the disk res-
ident data is then postponed until a later time when systswurees become available.
This dissertation explores these load reduction techmedag the context of XML stream
systems.

Load shedding in the specific context of XML streams posesragwunique oppor-
tunities and challenges. Since XML data is hierarchicabetements, extracted from
different positions of the XML tree structure, may vary ireithimportance. Further,
dropping different subelements may vary in their savingstofage and computation.
Hence, unlike prior work in the literature that drops datenptetely or not at all, in this
dissertation we introduce the notion of structure-oridntad shedding, meaning selec-
tively some XML subelements are shed from the possibly cemnIML objects in the
XML stream. First we develop a preference model that enalsess to specify the rela-
tive importance of preserving different subelements withe XML result structure. This

transforms shedding into the problem of rewriting the usesry into shed queries that



return approximate answers with their utility as measunethe user preference model.
Our optimizer finds the appropriate shed queries to maxithize@utput utility driven by
our structure-based preference model under the limitaifcavailable computation re-
sources. The experimental results demonstrate that opoped XML-specific shedding
solution consistently achieves higher utility results pamed to the existing relational
shedding techniques.

Second, we introduces structure-based spilling, a sgileéthnique customized for
XML streams by considering the spilling of partial substures of possibly complex
XML elements. Several new challenges caused by structaseebspilling are addressed.
When a path is spilled, multiple other paths may be affectéé categorize varying
types of spilling side effects on the query caused by spilllHow to execute the reduced
guery to produce the correct runtime output is also studiddee optimization strategies
are developed to select the reduced query that maximizesutpait quality. We also
examine the clean-up stage to guarantee that an entire sesu$ eventually generated
by producing supplementary results to complement theglaesults output earlier. The
experimental study demonstrates that our proposed snfutionsistently achieve higher
quality results compared to the state-of-the-art techesqu

Third, we design an integrated framework that combines bb#dding and spilling
policies into one comprehensive methodology. Decisionshenchoice of whether to
shed or spill data may be affected by the application needslata arrival patterns. For
some input data, it may be worth to flush it to disk if a delayatpat of its result will
be important, while other data would best directly droppeanf the system given that
a delayed delivery of these results would no longer be megéulito the application.
Therefore we need sophisticated technologies capablepyyleg both shedding and
spilling techniques within one integrated strategy with #bility to deliver the most ap-

propriate decision customers need for each specific cintamos. We propose a novel



flexible framework for structure-based shed and spill apphhes, applicable in any XML
stream system. We propose a solution space that repredletiits shed and spill can-
didates. An age-based quality model is proposed for evaéhe output quality for

different reduced query and supplementary query pairs. M @opose a family of

four optimization strategies, OptF, OptSmart, HiX and FéptF and OptSmart are both
guaranteed to identify an optimal solution of reduced aqbkmentary query pair, with
OptSmart exhibiting significantly less overhead than OptiX and Fex use heuristic-

based approaches that are much more efficient than OptF aseag.
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Chapter 1

Introduction

1.1 General Concepts of XML Stream Processing

Recent years have witnessed a rapidly increasing attemtistreaming database systems
[1,2,6,9,17,34,50,64] because of the development of wdlmatwork techniques. Dif-
ferent from traditional database systems with staticatlyesl data and one-time queries,
in a streaming database, data arrives on-the-fly. Useregiare generally long-running
or continuous, and the results of the queries are also irotinesft of output streams. This
type of query is generally referred to as a continuous query.

Continuous queries significantly differ from tradition&hsc queries in following as-

pects.

1. Data availability. For traditional relational queri¢se data is knowm priori and
is persistently stored on disk. However, the stream dateearat the system via
some network link in a never ending stream. For instance jtoramg applications
process data streams from sensor networks to monitor steseltemperature or
road traffic. In network analysis applications, streamseifuork packets are sent

to the system to detect intrusions. In these scenariosersyks no data stored
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before new data arrives.

2. Result generation. Generation of query results forcstpteries is driven by a pull-
based execution strategy. However, when stream data swsivéhe-fly, the query
processing will be driven by the data and will thus produsilts in a push-based

fashion.

Due to the proliferation of XML data in web services, theraliso a surge in XML
stream applications [15, 16, 22,29, 32, 33,44,51,52, 5&i.ifstance, a message broker
routes the XML messages to interested parties [29]. In exhditnessage brokers can
also perform message restructuring or backups. For examgea online order handling
system [16], suppliers can register their available prégludth the broker. The broker
will then match each incoming purchase order with the susen and forward it to the
corresponding suppliers, possibly in a restructured foahéhe request of the suppliers.
Other typical applications include XML packet routing [S5SElective dissemination of
information such as personalized newspaper delivery [, aML monitoring systems
[51] for online auctions.

In XML streams, it is possible that an XML tuple (the basictuni generate output
result) is split into many small pieces. Thus the incomintads entering the system at
the granularity of a continuous stream of tokens [22, 44]raginents [25], instead of
complete tree structured XML element nodes. Different fretational stream systems,

XML stream processing experiences new challenges.

1. Stream data arrives at the granularity of tokens or fragseSince a single se-
guential scan of input data is only allowed, the engine hasther extract relevant
tokens to form XML elements or to compose XML fragments to ptete XML

structures.
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2. We need to conduct dissecting, restructuring, and adg@itomplex nested XML

elements specified by query expressions, such as XQuery [65]

1.2 Motivation for Structure-based Shedding and Spilling

After giving a brief introduction about XML stream procasgi now we motivate structure-
based shedding and spilling for XML streams. For most strapplications, immediate
online results are required. However, stream applicagoa®ften characterized by push-
based data sources in which the arrival rates can be high goedictable. When the
arrival rate is very high, stream processing systems maylways be able to keep up
with the input data streams—resulting in buffer overflow amdontrolled loss of data.
Since such overload situations are usually unforeseenrantediate attention is vital,
adapting the system capacity to the increased load by adadng resources or distribut-
ing computation to multiple nodes may not be feasible or engoally meaningful. In
this case, the only immediate solution is to reduce someeofdhd. Load shedding and
load spilling are two load reduction techniques proposesbtee the issue of insufficient
system resources to keep up with the processing of the datnst Load shedding is a
strategy for solving this overflow problem by discarding bset of the input data (tuples)
without processing—whenever the rate of processing datatigble to keep pace with the
input rate [10, 21, 28,59]. Load spilling flushes some subg#te input steam to disks
temporarily. The processing of the disk resident data isgooed until a later time, for
instance, when there is a lull in the input stream.

We note that shedding applied to complex data types, suchvilsstreams, brings
new opportunities and challenges due to the complex nestedlenof the XML element
structures. To generate as many output results as we canpwénstead propose to

throw away some sub patterns from an XML query result treéelwthe initial query
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specification was supposed to extract. This may result imgavn the processing for
each output result, however this is at the cost of reduciegaitcuracy of the output
structure itself. How to assure a certain accuracy whilersturning as much output as
possible is a challenging open issue.

In some applications, shedding may not be applicable sioogptete results may
still be required to be generated or at least retrievabl®meslater time. For instance,
in network intrusion detection systems, we need to analieeptacket information to
detect potential attacks. If some packets are droppedhtiogvh packets may contain
the information related to the attack. In this case, thrgwpackets directly may lead
to a later failure to detect some attacks—possibly in a poatysis process. Thus load
shedding techniques may not be suitable for such applitatio

For the applications that require complete results, we dimsgtead deploy a structure-
based spill technique, namely, to flush some sub patterns &o XML query result to
disks temporarily. Later when system resources becom&ahl@again, we can continue
to finish the processing of the remaining disk resident dafaaduce the supplementary
output. Here we propose the notion of structure-basedrgpith XML streams. We aim
to provide solutions for structure-based spilling thatdaree partial results, supplemented
later by refreshed delta result structures as to maximigetitput data utility.

Last but not least, we develop an integrated load reducteomdwork that combines
both structure-based shedding and spilling policies witime uniform manner. The intu-
ition is that some input data may be worthwhile waiting far,ewen a delayed output of
a result will be important so we temporarily spill data, tbah be salvaged by a later un-
spill). Otherwise we may as well directly shed the input dedan the system—given that
a delayed delivery of any result produced based on this idat# at a later time would
no longer be of relevance to the application. Our goal is wgitea carefully calibrated

multi-method framework that successfully applies botthtexdogies to achieve maximal
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effectiveness in processing input streams while serviagtteds of the applications best.

1.3 State-of-the-Art Load Shedding and Spilling Tech-

nigues

1.3.1 Load Shedding Techniques

In streaming systems, load shedding has been considerdfative method for trading
off performance with accuracy [21, 49, 56, 59, 61]. Curnemtiost load shedding tech-
niques have been developed for relational streams. Loattisigeon streaming data was
first proposed in the Aurora system [59]. This work introdsibso types of load shed-
ding: random and semantic load shedding. Based on the @&alythe loss/gain rate,
the random load shedding strategy will determine the amotituples to shed to guar-
antee that the remainder of the input can indeed be handled sdfmantic drop, they
assume that different tuple values may vary in terms of tidity to the application. A
frequency-based stream model [21] is proposed for slidimglow joins. In this model,
each join value has a fixed frequency of the data streams amwgk ltrops tuples based
on their popularity. An age-based stream model is propas¢86]. In this age-based
model, every tuple in the data stream is confined to followgingprocess such that the
expected join multiplicity of a tuple is dependent on its\airtime. A load shedding
approach for join processing is proposed based on this agedbstream model in [56]
. An adaptive CPU load shedding approach [28] is providedmmdow stream joins
that follows the selective processing tuple methodologyimdows. However, for XML
streams, we must consider the complexity as well as impogtahXML result structures

in order to make reduced query decisions.
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1.3.2 Data Spilling Techniques

In many cases, long running queries may need to produce etenpsult sets, even
though the query system may not have sufficient resourcethéoquery workload at a
particular time. As an example, decision support applcetirely on complete results
to eventually apply complex and long-ranging historic damtelysis, i.e., quantitative
analysis. One viable solution to address the problem otime-main memory shortage
while satisfying the needs of complete query results is tshpmemory resident states
temporarily into disks when memory overflow occurs. Suchtsohs have been discussed
in XJoin [63], Hash-Merge Join [48] and MJoin [19]. Theseausimns aim to ensure a high
runtime output rate as well as the completeness of querjtsdeua query that contains a
single operator. The processing of the disk resident stegesred to as state cleanup, is
delayed until a later time when more resources become alaildhe spilling solutions
for query plan with multiple query operators are proposdd& where data spilling from
one operator can affect other operators in the same pipelive could directly apply
the above techniques from the literature to coarse-graspéting in XML, namely, to
spilling complete topmost elements to disk; however, swarge-grained spilling misses
the XML-specific opportunities for spilling. In this dissation, we instead focus on the
fine-grained XML-specific structural spilling approach.

Generating partial XQuery results is discussed in [54] wtenoutput is requested
in Internet applications. However, they only address hoprtmluce partial results when
only partial data is available. They did not consider thebpgm of resource management
under limited resources scenario in general, nor the spedafiproducing partial results
in the XML stream context when the output from one operatonissing due to spilling

some patterns.
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1.4 Research Focus

In this dissertation, we explore structure-based shedaimayspilling for XML streams.
The overall goal of this dissertation is to develop load rtigun techniques including
structural shedding and spilling to optimize the produttad output results for XML
streams. The dissertation is focused on the following thopécs: 1) Structure-based
shedding for XML streams, 2) Structure-based spilling faviXstreams, and 3) An
integrated framework with a hybrid structure-based drog #unsh approach for XML

streams.

1.4.1 Structure-based Shedding for XML Streams

The first dissertation goal is structural shedding for XMiteatns which selectively drops
XML subelements to achieve a high processing speed.

Now let us look at a concrete example. Consider an online stoistomers may have
periods of heavy usage during some promotions or near lyslidéhe online store would
receive huge numbers of order from customers during thesesti When the processing
capacity is not sufficient to keep up with the data arrivadrélhe data will accumulate
in the buffer resulting in an overflow. In this case, we haveitber drop some data
or improve the processing speed. We consider the topmastsaction” element in the
schema a basic unit based on which we can generate resuitgvielg dropping complete
“transaction” elements means that we may lose importaotimétion. In this scenario,
dropping unimportant but resource-intensive subelemerag be more meaningful to
output applications compared to the complete-tuple-deaityy shedding. We call this
type of “element” granularity drogtructural sheddingince it changes the structure of
qguery results.

Let us consider the online store query in Figure 2.1. Thigyueturns the item list
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and contact information including telephone, email andresisl when customers spend
more than 100 dollars. To process as many transaction eterasmpossible, consumers
of the query result may prefer to selectively obtain pasteglimportant content as result
while dropping less important subelements in each trammsatiple. In this case we may

choose to drop “addr” information for two reasons.

1. “addr” element is much more complex than “email,” as showthe schema shown

in Figure 1.2. This means we process more tokens for eaclesiaddr’ element

2. “addr” element may be “optional” to output consumers lbsed’email” may be the

more likely means of contacting customers

By dropping the “addr” element, several savings arise tFire do not need to process
“addr” element from the input tokens. In this case, we byphssprocessing of tokens
from “<addr-" to “</addr-." Second, we no longer need to buffer “addr” element
during processing. Thus the buffering costs for “addr” edetrare saved. Note here this

shedding can be achieved by removing the “addr” element thannitial query. We call

the new reduced queshed query

FOR $a in stream( "transactions" )/list/transaction

WHERE $a/order/price > 100

RETURN $a//name, $a/contact/tel,
$a/contact/email, $a/contact/addr,
$a/order/items

Figure 1.1: Query Q1

There are many options to drop subelements from a given gtwever, different
shed queries vary in their importance and their processatscHence the correct choice

of appropriate shed queries raises many challenges. Rihgtt model do we employ
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transaction(0s°)

surve
billing

O
tel email items cardNo  brand comments

zip St city state

Figure 1.2: The Schema Definition for Q1

to specify the importance of each subelement? Second, gdtesrating different shed
gueries, how can we estimate the cost of these shed querigstime? Third, which of
the potential shed queries should be chosen to obtain maxioufput utility? Our solu-
tion tackles these challenges using a three-prongedgyradme, we propose a preference
model for XQuery to enable output consumers to specify thaive utility (preference)
of preserving different sub-patterns in the query. Two, weelop a cost model to es-
timate the processing cost for the candidate shed querlegeTwe transform the shed
guery decision problem into an optimization problem, anoppse two solutions. The
main goal of our shedding technique is to maximize outpuitytiiven the stream input
rate and limited computational resources.

Contributions. This part of the dissertation work contributes to reseandbad shedding

in XML streams in the following ways:

1. First, a structure-based preference model is propossdutiiquely exploits the

relative importance of different sub-patterns in XML queggults.

2. Second, we formulate the shedding problem as an optimizatoblem to find
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the appropriate shed queries to maximize the output ubkised on our structure-
based preference model and the estimated cost derived fooraost model for

XML streams.

3. Third, to solve the shedding problem, we develop two allgars, OptShed and
FastShed. OptShed guarantees to find an optimal solutioevesvat the cost of
an exponential complexity. FastShed achieves a closgticral result in a wide

range of cases with much smaller search costs than OptShed.

4. Fourth, we propose a simple yet elegant in-automatordshgdhechanism by sus-
pending the appropriate states in the automaton-basedtexeengine for XML

streams, in order to drop data early (and efficiently).

5. Finally, we provide a thorough experimental evaluatiwet demonstrates that our
approach maximizes the utility while keeping CPU costs utfuzavailable system

capacity.

1.4.2 Structure-based Spilling for XML Streams

The second dissertation goal is to explore structuralisgilh XML streams. We aim to
provide solutions for structure-based spilling that praepartial results, supplemented
later by refreshed delta result structures so to maximig@thput data utility. To the best
of our knowledge, there is no prior work on exploring struetbased spilling. We now
describe the practicability of structure-based spilling soncrete application scenarios
below.

Example 1 In online auction environments, sellers may continuoslyt new auc-
tions. When customers search for “SLR cameras,” all magcb@ameras and their product
information should be returned. Some key portions of thaltessuch as price and cus-

tomer ratings, will be displayed first, which aid customersriaking decisions. Many
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consumers tend to use a two-stage process to reach thesratedi31] instead of inspect-
ing complete product information immediately. Consumgpsdally identify a subset of
the most promising alternatives based on the displayedtsesdther product attributes,
such as sizes, and features, are often evaluated latecaftsumers have identified their
favorite subsets. When system resources are limited, they @mgine may spill unimpor-
tant attributes to disk while producing partial resultstaiming key information such as
price and customer ratings.

Example 2 In network intrusion detection systems, XML streamingadaay come
from different nodes of the wide-area network. We need tdyaeahe incoming packet
information to detect potential attacks. If some packetdaopped, the discarded packets
may contain the information related to the attack. In thise¢aropping packets directly
may lead to a later failure to detect and understand the idats of attacks. Instead,
pushing unimportant fractions of data to disks temporasihen system resources are
limited can avoid such problem.

Example 3 FaceBook users may edit their personal profiles and sendages to
their friends at any time. Status updates, composed of lpgssested structures includ-
ing updates from friends, recent posts on the wall and news the subscribed group,
are generated continuously. However, different users tighnterested in specific pri-
mary updates. For instance, a college student wants to meakdriends. He wants to
be notified when his friends add new friends. A girl who likeeigg pictures of her
friends hopes to get notified as soon as her friends updadteatbems. When the system
resources are limited, it may be favorable to delay the duipunimportant updates and
instead only report “favorite updates” to the end users.

Let us look at a structural spilling example. Query Q2 andble are shown in
Figure 1.3. Query Q2 returns three path expressi®ns,b, $a/d and$a/b/c. The plan

conducts structural joins on the binding variableand these three path expressions. In
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t
Q2: 1 )
FOR $a in stream()/a $a=/a
RETURN / I\
<pairQ2>
$a/lb, $a/d, $a/blc @ G @

</pairQ2> $a/lb  $a/d $a/b/c
(a) Query Q2 (b) Query Plan

Figure 1.3: Query Q2 and Its Plan

this work, we assume any path and any number of paths in they gae be spilled to
disk when the system cannot keep up with the arrival rate.uisgsthe pathya//b is
chosen to be spilled, i.e., all b elements on path/b are flushed to disk. Note that
data corresponding to paths 2 and 4 in the plan is actualgci& (as side effect) by
such spilling. For each output tuple (e.gpairQ2> in Q2), partial result structures are
produced since both and ¢ elements are missing. In this case, several savings arise.
First, since completeelements are pushed to disk from the token stream, we do edt ne
to bother to extract “c” elements from the input at this tinhe other words, we bypass
the processing of tokens from<t>" to “ </c>."” Second, we no longer need to conduct
structural joins betwee$u and$a//b nor betweer$a and$a/b/c. Henceforth, we refer
to the user query after spilling has been appliedeakiced queryand the early output
produced by it aseduced output

Such structural-based spilling brings new challenges dibahot exist in relational
streams. There are many options to spill paths from a givemyquDifferent reduced
gueries may vary in their processing costs and output quélgnce the correct choice of
appropriate reduced query raises many issues: 1) whichi@aalipaths in the query are

affected by spilling a particular path; 2) how to estimate tost of alternative reduced

Terms spill and flush are synonymous and refer to the prodgasshing data to disk. We use spill and
flush interchangeabily in this dissertation.
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gueries as well as the partial result quality; and 3) whicteptial reduced query should
be chosen to obtain maximum output quality. We tackle thésdlenges using a three-
pronged strategy. One, we examine how to execute reducedsgeen varying spilling
effects on the query. Two, we provide metrics for measurivegduality and cost of the
alternative reduced queries. Three, we transform the estigeery selection problem into
an optimization problem, namely, the design of the reduceshgthat maximizes output
quality. Our goal is to generate as many high-quality resatt possible given limited
resources.

In addition, to eventually produce entire yet duplicatefresult set, we need to gen-
erate supplementary results correctly at a later time whersystem has sufficient com-
puting resources. For this, we design an output model to hmaipplementary “delta”
structures with partial result structures produced earlie generate supplementary re-
sults, we determine what extra data to flush to disk to gueeathtat the entire result set
can be produced.

Contributions. This part of the dissertation work contributes to reseandbad spilling

in XML streams in the following ways:

1. A general framework to address structure-based spilihigh can be applied in

any XML stream system is proposed.

2. The structure-based spilling problem is formulated emooptimization problem,
namely, to find the reduced query that maximizes the outpality§ytbased on our

structure-based quality and cost model for XML streams.

3. The spilling effect on different paths in the query for atalar spilled path is
examined. How to execute the reduced query to produce theatountime output

is studied.

4. A family of three optimization strategies, OptR, OptRramd ToX, is proposed to
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maximize the output quality for structural spilling. BotiptR and OptPrune are
guaranteed to identify an optimal reduced query, with QutBrexhibiting signif-
icantly less overhead than OptR. Using a heuristic-basedoaph, ToX is much

more efficient than OptR and OptPrune.

5. A complementary output model is proposed, that enablés osatch supplemen-

tary “delta” result structures with partial output proddezarlier.

6. The experimental results demonstrate that our optimizatrategies consistently

achieve higher quality results compared to the state-®fait techniques.

1.4.3 An Integrated Framework For Structure-based Sheddig and
Spilling

When the arrival rates are high and unpredictable, loaddghgdand spilling are two
load reduction techniques proposed to solve the issue officient system resources to
keep up with the processing of the stream. However, the-efatee-art literature has
so far overlooked that critical disadvantages exist fohlibe shed as well as the spill
techniques. On the one hand, shedding data means thatl patpat is lost forever. In
addition, dropped data may lead to blocked output, espgeidlen there is a lull in the
input. On the other hand, spilling makes the strong assempkbiat system resources
will be ample to process all disk-resident data sooner er.laiowever, this ignores the
fact that in some situations, e.g., network monitoring agapions, the data arrival rate of
traffic data may remain extremely high for extended periddsnte. Huge volumes of
data may end up being collected and pushed to disk for ai¢ckeating CPU resources
on the archival and data preparation process. Worst yetsghied data may become
obsolete before there ever is any opportunity to bring ikdato main memory to take

advantage of it. This wastes precious resources at a time wis¢ead we should be
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devoting all resources to pushing out the most criticalltesa time. Therefore, in some
circumstances, neither a strict shed nor a strict spiltesgsawill be satisfactory, especially
in scenarios when the latency of output affects the outpatityu Some input data may
be worthwhile waiting for, as even a delayed output of a tesil be important, thus
warranting a temporary spill, that can be salvaged with er lahspilling. While other
data would best directly be shed from the system given thataydd delivering of results
would no longer be of relevance to the application resulimgn unnecessary wastage
of processing resources. In shdhere is an urgent need for a technology at the middle
ground capable of deploying both shedding and spilling négphes within one integrated
strategy with the ability to deliver the most appropriateidéon customers need for each
specific circumstance
Motivating Application Scenarios. We now describe the importance and relevance of
such an integrated strategy via concrete application sicsna

In online auction environments where sellers continuossyt new auctions, fraud
detection is critically important. Fraudulent sellers mese unapproved payment ser-
vices, such as an unapproved escrow service. For instafteeyne detect that a seller
uses an escrow service other than the approved www.esormywwee should report the
seller as fraudster in the output. A fraud detection queryigsplan are shown in Fig-
ure 1.4 and Figure 1.5 respectively. This query returnsthegh expression$q /seller /1D,
$/a/bidder /tel and$a/bidder /price. The plan conducts structural joins on the binding
variable$a and these three path expressions. Let us assume any quenapdie shed or
spilled to disk. Assume we can shed or spill one or more quatiygp When the system
is overloaded, we can choose one or more paths from threg ga#rs$a/seller /1D,
$/a/bidder /tel and$a/bidder /price to shed or spill. Which paths among them are cho-
sen to be shed permanently versus being spilled to achighesti output quality is ex-

tremely critical in achieving user satisfaction.
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Fraud detection query:

FOR $a in stream()/list/auction
WHERE ($a/seller/payment [contains(., "escrow service")])
and ($a/seller/payment[ not(contains(., "Escrow.com")])
RETURN <pairQ1>
$a/seller/ID, $a/bidder/tel, $a/bidder/price
</pairQ1>

Figure 1.4: Fraud Detection Query

t
1 @ Sa=/open_auction/auction
> O

$a/seller/ID $a/bidder/tel $a/bidder/price $a/payment

Figure 1.5: Plan for Fraud Detection Query

The naive approach would be to apply the existing algoritfon®ptimizing either
shedding or spilling decisions separately. The shed opimivould pick the substruc-
tures to shed to achieve the highest output quality. Foants, for the fraud detection
query, shedding $a/bidder /price, $a/bidder /tel} is optimal since the quality for the
partial output is the highest. While saying the reduced yjgan be processed with the
given system resources, a spill optimizer on the other haangdahoose the reduced query
spilling {$a/ seller/ID,$a/bidder /tel} as the optimal spill candidate. Clearly spilling
comes with higher processing costs compared to sheddirgathe substructure because
spilling data to disk comes with the additional overheadasfihg to execute the disk spill.
Therefore this naive approach would ultimately picks theémal shed solution from the
shed optimizer.

Assuming we indeed had the optimal pure shed and pure spiltizos, then an-
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other possible solution maybe instead choose some sutstsdo shed from the opti-
mal shed solution and other substructures to spill from @@l spill solution. For
example, in Q1, we may pick patbu/bidder/price from the shed solution and the
path $a/bidder /tel from the spill solution. Let us call this composed solutifffu/
bidder [price?, $a/bidder/tel”} afusion candidatesince such a candidate may be a
mixture of shed and spill decisions. Here we use a supetgoripdicate the action des-
ignated for each substructurB.indicates shed an# indicates spill. However, we don’t
know whether this fusion candidate is the best or even a golodien for a given arrival
pattern and available resources in our environment. Fer e would need to compare
this particular fusion candidate against other candidatestead of conducting such an
ad-hoc approach, we clearly need a methodological apptoaards tackling this fusion
candidate design and fusion candidate selection probléoreetly yet correctly.

Such fine-grained fusion candidates raise many technidleciges: 1) since each
path in the query could potentially be either shed or spilegineed to explore the search
space of fusion and its complexity; 2) we need a means tofyyzewl interpret the quality
for different substructures to evaluate whether a delayggud of a substructure is sat-
isfactory to the user; 3) fusion candidates may vary in theacessing costs and output
guality. We need to choose optimal fusion candidates whosesponding reduced and
supplementary queries achieve the highest output quality.

To tackle these challenges, we propose a three-prongéegtrne, we represent all
possible fusion candidates using a Fusion Candidate (R©daTwo, we provide metrics
for measuring quality and cost of the alternative reduceatiga as well as supplementary
gueries given some resources. Three, we transform thefaaimdidate selection problem
into an optimization problem, namely, the design of thednstandidate that maximizes
total output quality.

Contributions. Our contributions are summarized as below:
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1. We propose a new calibrated integrated framework for egrated structure-based

shed and spill approach which is able to be applied in any Xigasn systems.

2. We formulate our structure-based shedding and spillinglpm into an optimiza-
tion problem, namely, to find a pair of the reduced and supelgary queries that
maximizes the output quality based on our structure-basatitg and cost model

for XML streams.

3. We propose a solution space for fusion candidates whigpresented by a Fusion
Candidate (FC) lattice. The complexity of FC Iattice@$3fd), whered and f

indicate the depth and fan-out of the query pattern tree.

4. We propose an age-based quality model for evaluatingutpibquality for differ-

ent reduced and supplementary query pairs.

5. We develop a family of four optimization strategies: Q@ptSmart, HiX and Fex.
OptF and OptSmart are both guaranteed to identify an oppaiabf reduced query
and supplementary query, with OptSmart exhibiting sigaifity less overhead than
OptF. HiX and FeX use heuristic-based approaches, whichaoh more efficient

than OptF and OptSmart.

6. Our experimental results demonstrate that our stregegiesistently achieve higher

quality results compared to the state-of-the-art techesqu

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. Thedhesearch topics are dis-
cussed in detail in Part |, Part 1l and Part Il in this disagdn respectively. The dis-

cussions on each of the three research topics include teeardglresearch motivation,



1.5. DISSERTATION ORGANIZATION 19

problem introduction, background, solution descriptiexperimental evaluation and re-
lated work respectively. Chapter 24 concludes this diaiert and Chapter 25 describes

possible future work.



20

Part |

Structure-based Shedding for XML

Streams



21

Chapter 2

Preliminaries

2.1 Query Pattern Tree

We support the core subset of XQuery in the form of “for... vehe return...” expressions
(referred to as FWR) where the “return” clause can contaithéw FWR expressions;
and the “where” clause contains conjunctive selectionipetes, each predicate being an
operation between a variable and a constant. We assumedhiegjnave been normalized

asin [18].

FOR $a in stream( "transactions" )/list/transaction

WHERE $a/order/price > 100

RETURN $a//name, $a/contact/tel,
$a/contact/email, $a/contact/addr,
$a/order/items

Figure 2.1: Query Q1

The example query Q1 in Figure 2.1 is introduced in Chapted 1 This query returns
the item list and contact information including telephoemail and address when they

spend more than 100 dollars. The query pattern tree for (qQérg given in Figure 2.2.
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In Figure 2.2, each navigation step in an XPath is mapped fieeartode. We use single
line edges to denote the parent-children relationshiptabates and double line edges to
denote the ancestor-descendant relationship.

We define the following terms in an XQuery. Firstcantext nodecorresponds to
a context variable in the “FOR” clause, e.@a in Figure 2.2. Context variables must
evaluate to a non-empty set of bindings for the FWR expredsioeturn any result. Sec-
ond, a pattern that correspond to an XPath in the “RETURNis#a e.g.$a/contacttel
or $a//lname is calledreturn pattern(“r’ pattern). Return patterns are optional, mean-
ing even if$a/contacttel evaluates to be empty, other elements will still be consddic
Third, aselection patterr“s” pattern) correspond to an XPath in the “WHERE” clause,
i.e., it has associated predicates. For instance, the X&atrderpricein Figure 2.2 is a
selection pattern. The “r” and “s” pattern for query Q1 araatated on their destination
elements in Figure 2.2. We call the destination nodes oféhem and selection patterns

“r’ and “s” nodes respectively.

c.context
r: return
s:selection

Figure 2.2: Query Pattern Tree for Q1

2.2 Generating Shed Queries

We now investigate how to generate shed queries based opagiery. We distinguish

between two terms, sub query and shed query. Sub querieeaeeated by removing
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one or multiple nodes from the initial query tree. A shed gusma valid sub query, and

it obeys the following rules:

1. A shed query always has the same root as the initial query.

2. The leaf nodes of a shed query have to be either “r’ or “s"asod

™ ™
r Corder) Coame> Gomag) Corde
oo Gems) CemaD)  SCrice) Crems)"
(a) not valid (b) valid (c) valid

Figure 2.3: Shed Query Trees

For instance, Figure 2.3(a) is not valid because this tres dot need to keep the “con-
tact” element because all children of the “contact” elenaetremoved and the XPath
$a/contactis neither an “r’ nor an “s” pattern. In other words, keepiragtprn$a/contact
in the query does not make any sense since it does not caettiany returned element
or predicate. Figures 2.3(b) and (c) show two valid sub gseor query Q1.

Assume B denotes the number of all “r” and “s” patterns foneegiquery tree. When
the query tree is a completely flat tree of height 1 and widtthB,maximum number of
shed queries i8%. When the query tree is deep and has only one node on eachdevel
most B shed queries exist. Thus the number of shed queries for & gages between

B and25.



24

Chapter 3

Cost Model

3.1 Automaton Processing Model

As is known, automata are widely used for pattern retrievat XML token streams [22,
30, 44]. The relevant tokens are assembled into elementsfiarther filtered or returned
as final output elements. The formed elements are then pagstdperform structural
join and filtering. An algebra plan located on top of the auiton for query Q1 is shown
in Figure 3.1. An Extract operator is responsible for cdltegtokens for some pattern and
composing them into XML elements. For instangeitract$a//name collects tokens to
form “name” elements. Structural join operator is respblesior combining the elements
from its branch operators based on structural relationahgbform a transaction tuple.
Observe that the context node in the “FOR” clause is mapped to a structural join. In
addition we perform selection on $a/order/price to judgetivar the “price” is greater
than 100. Thus we have the following query processing task#ML stream systems: 1.
Using automaton to locate tokens. 2. Extracting tokens. &nipulating buffered data,

which includes structural join and selection.
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{ StructuralJoin $a J

Sel
$a/order/price

™~

Extract Extract Extract Extract Extract
$a//name $a/contact/tel $a/contact/email $a/contact/addr $a/order/price

Extract
$a/order/items

Figure 3.1: An Example Plan

3.2 CPU Cost Model for a Query

We now design a cost model to estimate the processing costsedf queries for XML
streams. This cost model is adapted from the cost model pegpm [57]. In XML
streams we measure the query cost for a complete topmosteiesimce it is the basic
unit based on which we generate query results. We call theepsing time of handling
such a topmost element thnit Processing CosfUPC). For instance, the cost of query
Q1 thus is the unit processing cost of handling one “tramnsatelement.

We divide the UPC for XQuery into three partdnit Locating Cos{ULC) that mea-
sures the processing time spent on automaton retriewvat Buffering Cos{UBC) spent
on pattern buffering antdinit Manipulation Cos{UMC) spent on algebra operations in-
cluding selection and structural join. UPC is equal to thex s the cost of these three

parts. When we drop either “r’ patterns or “s” patterns frdma tuery, we estimate the
cost change for these three parts. Note that for a new shey gegrocessing cost might
not be reduced when dropping “s” pattern. Although it appehat the evaluation cost
of the selection pattern is saved, it might need to constnare nodes. In this case the
UPC might even be increased if the selectivity of the “s” @attis not 1. However, due

to limited space, we only discuss ULC and UBC here. UMC andliibeussion about the
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Notation | Explanation

NPFi Number of element®; for topmost element.

Nstart Total number of start or end tags for a topmost element.

SFi Number of tokens contained for/a element.

A Set of states in automaton.

AL Set of states of patterR; and its dependent states.

naetive(q) | the number of times that stack top contains a state g when a
start tag arrives

Chransit cost of processing a start tag of an element in the query

Crull cost of processing a start tag of an element not in the query

Chrackiract: | COSt Of popping off states at the stack top

Chuf cost of buffering a token

Table 3.1: Notations Used in Cost Model

selectivity of “s” patterns can be seenin [66].

Unit Locating Cost (ULC). In locating tokens, when an incoming token is a start tag, we
need to check whether this start tag will lead to any tramssti If it is transitioned to a
new state, tasks to be undertaken may include setting a flagrtoeforth buffer tokens
or to record the start of a pattern. We call such a transitast C;,.,.;. Note that the
start tokens of all elements in the query tree will cause suithnsition. When there are
no states to transition to, an empty state is instead pushéektstack top. Note that all
start tokens of patterns that do not appear in the query tikéead to such an empty
state transition. The cost associated with this cagg,is. For instance, wher id > is
encountered, an empty state is pushed to the stack top. \Waércbming token is an end
tag, the automaton pops off the states at the top of the st#ekefer to such popping off
cost a.cnirack- The popping costs for all end tags are the same. The relaesations
are given in Table 3.1.

We split the ULC into two parts, one considers the cost oftiogathe start and end
tags for elements in the query tree, and the other considersast for locating the start

and end tags for other elements. The first part can be mealsyr@shsidering the invo-
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) ) s3,54| |s3,s4
s2 s2 s2 s2 s2 s2
sl sl sl sl sl sl sl
sO sO sO sO sO sO sO sO
<stream><transaction> <id> 1 <fid> <name> Mike

Figure 3.2: Snapshots of Automaton Stack

cation times for each state and the transition cost for antalsdelow:

Z Nactive (Q) (Ctransit + Cbacktruck) (3 1)
qgeA

quA nactive(q) denotes the number of start tags for which non-empty trianséxists in
automaton. The number of other start tags, namely for eleswdmrich are not in the query
tree, can be written as;,,: — > geA Nactive (). Thus the second part of the transition cost

is as below:

(nstart - ZqEA nactive(Q))(Cnull + Cbacktrack) (32)

We now look at how to estimate the locating cost we can saveviigling from the
initial query Q to a shed query. Assume the shed qugrys generated by removing
patternP; from Q. This means that the pattefhand all its descendant patterns will be
dropped. Then in the automaton for shed query, the statesspamding toP; and its

descendant patterns will be cut from the initial automatb@olet us call the set of
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states corresponding 8 and its dependent statels”. The locating cost for patterf;

in the initial automaton can be represented as:

quAPi nactive(Q) (Ctransit + Cback:track:) (33)

However, in the shed query, since these states are nevéietabey are now treated as

elements that are not in the query. Their locating cost is tianged to:

qu s Mactive(0)(Crutt + Crackirack) (3.4)

Thus Eq(3.3)- Eq(3.4) indicate the savings in locatinggsined by switching from the
initial query to this shed queng,.

Unit Buffering Cost (UBC). In our query engine, we only store those tokens that are re-
quired for the further processing of the query. As we mermtihnhe Extract operators are
responsible for buffering those tokens. Thus each “r” aridoatern has a correspond-
ing Extract operator. Such buffering cost for a topmost elehis defined as UBC (Unit
Buffering Cost). Extract operators are invoked when theasponding states are reached
in the automaton. For example, in Figure 3.2, stdtevould invoke an Extract operator

to store the whole “name” element. In addition we assume theréuffering cost is the
same for all individual tokens.

Our buffer manager uses pointers to refer to elements. Tleusomot store the same
token more than once. Three query examples are shown ind=88r In Figure 3.3(a)
and 3.3(b), the parent pattern and its children patterndajve Since both the parent
and the children are to be returned, we only need to storedhenppattermpl and set
a reference for its childrep2, p3 andp4 pointing topl. In this case, the buffering cost
is equal to the buffering cost of the parent pattetn However, in Figure 3.3(c), since

the parent is not an “r” pattern, only its children are to blemeed. The buffering cost is
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AN

(@) (b) ()

$a

Figure 3.3: Buffer Sharing Examples

equal to the buffering cost of all the children. Hence, foriaeg query, we need to find
all non-overlapping topmost patterns which are either ‘attprns or “s” patterns, called
henceforth thestoring pattern setThe storing pattern set can be obtained by traversing
the query tree in a breadth-first manner [66].

Assume the storing pattern set for our query Q is denoted. d4BC can be written
as:

UBCQ) = Y NP5 Gz (3.5)

pe
Runtime Statistics Collection. We collect the statistics needed for the costing using the
estimation parameters described above. We piggybacktstatyjathering as part of query
execution. For instance, we attach counters to automadbessto calculatév’, ng.,;
andn..iv.(q). And we collects’ in Extract operators. We then use these statistics to
estimate the cost of shed queries using the formulas givemeabNote that some cost
parameters in Table 3.1 such@gsit, C.uu aNdCy, s are constants. We do not need to

measure them during the query execution.
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Chapter 4

Preference Model for Queries

Value-based Preferences vs. Structure-based Preferencds many practical applica-
tions, some output results are considered more important dther output tuples. For
instance, the user might be interested in red cars when puew cars. In this case
the utility of the tuple whose color attribute is equal todtes higher than those of the
tuples whose colors are not “red.” Aurora first considerechsealue-based preference
as part of the QoS requirement and proposed semantic loadisigetechniques [59] to
maximize output utility. In this case, semantic load shadds achieved by adopting
a value-based filter. We can easily incorporate such vahisedb preferences and their
filter-based shedding approach in the XML stream scenarioweder, this is not our
main interest. Instead, we are interested in exploring theture-based preference in
XML stream processing. In the XML stream scenario, the irgitgkam as well as the
output result are composed of different XML subelementd,l@nce more complex than
relational tuples. The importance of different elementannXML tree may vary due to
their semantics. As illustrated in Chapter 1.4.1, in quety Qe “email” element is con-
sidered more important than the “addr” element as “emad’fesster and more convenient

means to contact customers.
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Q1:

FOR $a in stream("transactions”)/list/transaction
WHERE $a/order/price- 100

RETURN $a//name, $a/contact/tel, $a/contact/email,

$a/contact/addr, $a/order/items

Specifying Preferences in Query.For structure-based preferences, we distinguish be-
tween two options to specify preferences, one is to specdfepences in the data schema
and then derive the preferences for the patterns in the gaedythe other is to specify
preferences directly in the query. The former case is soraendid when the same data
is consumed by different applications. For instance, gstene sale data, the data min-
ing expert would think the customers’ information inclugligender, age, education and
their shopping lists are important since they want to ledwuathe correlation between
customers’ background with their shopping interests. Harehe stock manager would
be interested in the products and their sale quantity. Bxdhse, users may assign prefer-
ences rather differently to the same subelements. Thuadpawsingle fixed preference on
data schema is an unnecessary restriction. For this reagsomropose that users specify
preferences to the patterns in the query.

To support this, we need a metric to measure the importaneadf pattern for a
given query. We define a quantitative preference model #yatesents preferences of
preserving different elements in the query result. Thegrezfces can be specified by
the user who issues the query or the consumer of the querly.r8subinding different
patterns with their corresponding preferences, shedegieary in their perceived utilities
to the user. In our preference model, we do not distinguigityaissignment of “r’ and
“s” pattern. Instead, users decide their utilities. Théetlénces on processing cost for “r”
and “s” patterns are handled by the cost model.

We support two alternative types of preference specifinatio query patterns. One
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uses prioritized preference [36] to qualitatively expréss relative ranking among dif-
ferent patterns. The other uses a quantitative approact2T2éhat directly scores the
importance of the patterns. Users are free to choose eitieeNtumerical Preference
Model (NPM) or the Prioritized Preference Model (PPM) toresent their preferences
on query patterns. For preferences specified by PPM, welatarthe prioritized pref-

erences to numerical forms using a score formula. Note thhbth cases we use the

guantitative metric to compute the utilities for the sheérigs.

4.1 Numerical Preference Model (NPM)

If a user chooses to specify preferences using NPM, he or aheasgsign customized
utilities (preferences) for different patterns in the quer a numerical form. Note that
users only need to specify the utility values for the “r’ patts and “s” patterns. The

utility of pattern P, whereP; is an “r” pattern or “s” pattern is represented below:

v(F;) = [0,1]

Herev(P;) is a constant value between [0,1]. An example of utility gussient for
query Q1 is shown in Figure 4.1 (the utility is labeled on tlestthation node of each

pattern).

4.2 Prioritized Preference Model (PPM)

If users choose to use the prioritized preferences, thegritbesthe relationship among
patterns. This means that given a query, the user declaeslttive ordering of “r’ and
“s” patterns in term of their importance. Note that we do remjuire users to specify the

preference ordering for all the patterns since users mayspdcify the ordering for some
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0.1 0.1 0.05 0.25 0.2

Figure 4.1: Query Tree with Preference for Q1

patterns. An example prioritized preference for query Q1 is

$a//name = S$a/order/price = S$a/contact/tel > $a/order/items >
$a/contact/email = $a/contact/addr

For the above qualitative preference representations, eeel o translate them to
guantitative preferences. A score assignment strategypiseal based on the given prior-

itized preference ranking, where we assign scores usingliogving formula:

v(Pattern Ranking k) = 1/2"

For instance, the utility for pattefu//names equal to% and the utility for$a/contacttel
is equal toz%,. The reason why the preference of pattern ranking Kk is taamstltg% is
explained below. When it is the case that only the orderirgpafe patterns are specified,
the scoring scheme below will generate the preferenceshfuset patterns that are not

ranked.

4.3 Scoring Scheme for Patterns without Preferences

We do not require users to specify the preferences for allrthend “s” patterns. In this

case we obtain the utilities for those patterns using tHevahg properties:
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1. Precedent parentA parent pattern is more important than its descendané et
This is because parent return nodes always contain all theeddant “r’ and “s”
patterns. For a non-leaf pattern that has not been assigatzignces, its utility is

defined as the sum of scores of all its children.

2. Equivalentleaf We assume the leaf nodes without assigned preferenceglalkye
important. Their preference values are thus the same. Asmdarte less important
than the patterns who have been assigned preferences: demotes the number

of patterns that are not assigned preferences, theiiegibitre all assigned to

min(v(P;)) * 1/2w
wheremin(v(F;)) is the minimum value among all assigned preferences.

Now we observe that the translation formula for prioritiza@ference model can
guarantee the precedent parent property if the user sgettiBgoattern is more important

than any of its descendants.

4.4 Computing Utilities for Queries

After the quantitative preferences for all the patterndhimquery are determined, we can
calculate the utility of the original query and the shed tpgederived from the original
guery. If a pattern appears in a query tree of a shed quetyyiians it will be considered
in the query and its utility is obtained. We use the utilityaaduery to indicate the amount
of utility users gain by executing this particular quépyon a single topmost element, in

other words, how much utility is obtained by including aktpatterns in this shed query.
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It can be calculated as

PieQ

whereP; is either an “r’ pattern or “s” pattern. For instance, thditytiof Q1 is: 0.2
+0.1+0.1+0.25+0.2+0.05=0.9.

Particularly, we introduce the empty query, a special sheshgthat actually drops
the whole topmost element. For the empty quéxy we define its utilityv(Qy) = 0
since it does not contribute to any output.

After calculating the preference for a given query, we p@nfa simplenormalization
process. Assume the preference for a shed query(@s) and the preference for the
original query is/(Q). The preferences for each shed query is normalizedd) /v(Q)
and the preference for the original query is 1. After the radination, we can observe
that the normalized preferences of the shed queries indualiginal query and empty
query would fall into [0, 1]. Note that in the later chaptenge use normalized utility
values for the shed queries.

An extension of XPath is proposed in [37] that incorporata@sie-based preferences
into XPath. Similarly we can easily extend the XQuery syntaitegrate our structure-

based preferences into an XQuery expression as below:

Q1: FOR $ain stream("transactions”)/list/transaction
WHERE $a/order/price- 100
RETURN $a//name, $a/contact/tel, $a/contact/email,
$a/contact/addr, $a/order/items
PREFv(name)= 0.2yp(tel)= 0.1,v(email)=0.1...

| PREFname > price > tel > items...
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Chapter 5

Shedding Algorithms

5.1 Decide When to Shed

The problem of deciding when the system needs to shed inpaha@a been discussed in
other works [59]. This is not specific to XML stream systems.our system we adopt
the following approach for simplicity. We assume a fixed mgnio buffer the incoming
XML stream data. As soon as all tokens in an XML element haenl@ocessed, we
clean those tokens from the buffer. We assume a thresholdeomémory buffer that
allows us to endure periodic spikes of the input without aayisiny overflow. During
execution, we monitor the current memory buffer. When bufiecupancy exceeds the

threshold, we trigger the shedding algorithm.

5.2 Formulation of Shedding Problem

Let us assume that the shed query sétis, )1, ..Q0,,} whereQ), is the empty query and
@, s the original query. Here empty query just drops all thestesof a topmost element.

The reason why we introduce empty quély into shed query set is for the convenience
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of the formalization of the shedding problem, so that allitiput elements are consumed
by shed queries. Since this empty query does not generateudpyt, we assume the
utility of empty query@, denoted by, and the UPC of), denoted by, are both zero.
The goal of the shedding problem is to find which shed queri#s® chosen to run in
order to achieve maximum utility. We have the following itgto our shedding problem.

1. Data arrival rate\ in the unit of topmost elements per time unit.

2. Utilities of candidates in the query sgly, v, .., }.

3. Processing costs (in time units) of queries in the{égt ¢4, ..C,, }.

4. The number of time units for shedding query to exeatitedenoting the available
CPU resources.

We aim to find a set of shed queries that satisfy the two canditi(1) consume all the
input elements irC' time units— here&”' is an integer to measure CPU resources, and (2)
maximize the output utility. Note that the shed queries vackide empty query, original
guery and shed queries we derived from original query. Wédamansider variation of the
problem by imposing additional constraints. If we limit thember of qualified queries
in the result set to only one, we have to check all the shedepigr see whether any shed
guery can consume all the input elements. If there exists slied queries, we would pick
the query that yields the highest utility. However, it is pide that all the shed queries
except the empty query are too slow to be able to consumealhfuts. In this case,
the empty query is the only option since it can consume alirthets. Unfortunately, the
output utility would be zero since we drop everything. Thestricting to one query is
not sufficient to achieve optimal results.

Another option is to restrict the number of shed queries t s mentioned before,
there might not exist such a shed query from the query setevhaxessing speed is as
fast as input arrival rate except empty query. It implieg thpicking two queries from

the shed queries and none of them is the empty query, we caandte all input data.
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Thus picking the empty query is necessary. Given that thelyemqpery cost is zero, we

can formulate this problem below:

Given the constraintz; * C; <= C, wherel < ¢ < n andz; indicates the number

of dropped topmost elements for quepy.

We want to maximize output utility; x v;. The number of elements to drop (corre-
sponding to empty query) is thus equalte- x;. Note that the current state-of-the-art
shedding techniques [11, 59] can be regarded as a spece&faaallowing two shed
queries, as they typically pick the original query and entpigry.

However, allowing only two shed queries might not be optim@bnsider the fol-
lowing example. The utility and cost of three shed quetigs (), and Q3 are shown

below.
{(1, 55ms), (0.9, 45ms), (0.6, 30Ms)

Assume the available CPU resource is 80ms and three topteastets arrive during
that time period. If we only allow two different shed querie® have to let two elements
execute query); and one element execute empty query. The output utilityeg @.+ 0 =
1.2. However, note that if we let one element execute q@eryone element executg;
and one element execute empty query, the output utilityes éwgher and is given by 0.9
+0.6 + 0=1.5. We therefore do not limit the number of diffdrgmed queries in the result
set. Our goal is to find a coefficient vectpry, z;, ..z, } for the shed query set, which
maximizes the utility of the total processed elements wkéeping the processing cost
below the CPU processing capability. Heredenotes the number of topmost elements

assigned to quer);. The formal problem is represented below.

1. The total number of XML elements processed (includingéyrocessed by empty

guery) can be calculated as:
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X(s) = in (5.1)

2. Total execution cost by consuming all the input elemeatsh® represented as

Cls) =) z;xC; (5.2)
=0

Using the above equations, the shed problem is to maxime&total data utility:

Zl’il/i (53)
i=0
Subject to
X(s) =CxA
and C(s) < C (5.4)

Note that the cost of all shed queries are measured in tints, uhus they are all
non-negative integers. We thus conclude that this probéeam iinstance of the knapsack

problem [35]. We propose two solutions for this problem ascdeed below.
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5.3 OptShed Approach

OptShed uses a dynamic programming solution [53]. To statemproach, we construct

a matrix of sub-problems:

Here;(¢) is a sub-problem which uses queries frgmto (); and its cost is less than or
equal toc.

Clearly, v, (C') gives the optimal solution to the original problem we wanstdve,
whereC' denotes the total available CPU resources.

Now, we definep;(¢) to be the maximum utility of sub-problem;(¢). This is pre-

sented recursively as follows:

¢;(0)=0,0<j<n

0,(0) = max {040~ KCy) + ks [0 < k< 1]}

From the matrix of sub-problems, we can see that we need &atepe calculation
of ¢(¢) nC times to get the final result, and each calculation can behfisusing a
max-value searching algorithm, whose time cost i®&(C) [53]. Thus the total time

complexity is OtC log, C).
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5.4 FastShed Approach

Since the time complexity of OptShed is prohibitively exgige in practice, we want to
find a simple and effective way to solve this problem. We psgpan efficient greedy
algorithm, called FastShed. Observe that load sheddirid®@inhvoked when the arrival
rate is greater than the processing speed of the origina/goeaning\ > Cil When
the arrival rate is greater than the processing speed dfealilted queries, we use a ratio-
sorting approach. We calculate the ratios of utility ovesgassing costy; /C;, for each
candidate query);. We sort all queries in terms of these ratios. Assume thatates of
Qi Qiyy---s, are in non-increasing order. We assigp to as many as possible input
XML elements as long as it does not exceed our given CPU psoagsapability, and
then assigr®);, to as many as possible input XML elements according to their@ng
CPU processing capability, and so on.

However, if the arrival rate can not satisfy the conditioattht is greater than the
processing speeds of all shed queries, i.e., there exiséastt one shed query whose
processing speed is greater than the arrival rate, thgyutiler cost ratio sorting approach
might be sub-optimal. Let us examine the following exampglssume the arrival rate is
30 topmost elements/s which is equal to 0.03 elements/nmiMs the utilities and costs

of four shed querie®, @2, Q3 and@, are shown below:
{(1, 40ms), (0.9, 25ms), (0.8, 20ms), (0.7, 50jns)

Assume the CPU resources are limited to 1000ms. If we randetheeries based
on their utility by cost ratio, the decreasing orderds, @), Q1, Q4. However, if we
choose queryys ,the utility it can reach is actually equal to 0.8 * 30 = 24 & of 0.8
* 1000/ 20 = 40. This is because the number of elements on winkchun a shed query
cannot exceed the amount of input data. Thus for the shed auerse processing speed

is greater than arrival rate, the output utility is limitedits utility * arrival rate. In this
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case, the output utilities for quety,, @2, Q3 andQ), are 25, 27, 24 and 14 respectively.
Thus queryQ))- is the shed query we should choose since it yields highdyuti

We account for this case by modifying the ratio sorting apploas follows. We
definey; = v; x min{\, Ci} and the sorting is done based on these

The details are described in Algorithm 1.

Algorithm 1 FastShed
Input: A, {vo, 1, .00}, {Co, Cy,..CL}, C
Output: {zg,x1,..x,}
void FastShed()
i = v x min{\, C%} (1<i<n)
Sort querie®);,Qs,...Q, So thaty;, > v, > ... > ;.
C'+C
N+ Cx\
for j = 1ton do
zi, <~ min{ |C'/C;; ], N }
C' <+ C" =z, % Oy,

)\/ $— )\/ — .Z’Z'j
if C’ <0or)\ <0then break
end for

n
To— A — ijlflfj

In FastShed, the ratio sorting cost isrQ¢g n) and cost of “for” loop is Of) respec-
tively. So the total time complexity is @(ogn). Normally,n <« C, so FastShed is
much faster than OptShed, though FastShed cannot guataritee an optimal solution.
However, in Chapter 7, the experimental results show thstiSfeed indeed tends to find

a solution very close to the optimal solution for most cases.
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Chapter 6

Shedding Mechanism Implementation

In this chapter, we examine the implementation of diffesdr@dding approaches in XML
stream systems. For relational stream systems, one conmpamentation is to insert
drop boxes into the plan [7,11,59]. However, many XML stregystems use automata
to recognize relevant elements on incoming token streamthid case, we can consider
at least two options where the input data can be dropped. fane {3 when we recognize
the tokens using automaton, the other place is after we hawe the elements from
extracted tokens. Since dropping them as early as possbl@wid wasted work, we

propose to push the shedding directly into the automatoesarithed below.

6.1 In-Automata Shedding Mechanism

Here we propose to incorporate shedding into the automatalisbbling states. Assume
we want to drop patterns $a//name and $a/contact/tel. &igur shows where to insert
drop boxes in the automaton. To drop pattern $a//name, toenaton would temporarily
remove the transition from stat@ to s3. When the start tag afame element arrives,

states3 and s4 are not reachable. Thus it would not invoke its downstreaeratpr,
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Extract$a//name. Extract$a//name will then be labeled with a “dropped” flag. This
flag guarantees that the downstre&tnuctural Join$a operator works correctly. Thus
when Structural Join$a checks its input operators one by one, if an input operator is

labeled with a “dropped” flagStructural Join$a skips this input.

[StructuraIJoin $a Jopl

I

op2 {Extract $a//name} { Extract $a/contact/tel } { Extract $a/contact/email | ...
3

S OR
transactio

-@ list 5 g" bniagi o email@
order

Figure 6.1: Disable Transition Strategy

6.2 Random Shedding in XML Streams

To compare our shedding solutions with the existing randoeading approach, we have
to realize random shedding for XML stream systems. In aoldjtive do not want to
disadvantage this existing solution by first storing dathuiffer before dropping. Instead
we propose to also perform random shedding in the automéaamce the granularity
of incoming data in XML streams is tokens, the start tokenhef topmost elements is
recognized by the automaton. We then can set the “sheddimggpliiag to be true. As
long as this flag is true, the incoming tokens are dropped. hAtsame time, we add
a drop counter to record how many topmost elements we haypddo Whenever the

end token of the topmost element is identified, the counterfge is increased. If the
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desired dropping count is reached, the flag is disabled amdybtem switches back to

the “non-shedding” phase.

6.3 Shed Query Switching at Run-time

We support a mixture of shed queries. Assume OptShed pm@d®lution vector, say
<60, 10, 20-. In this case, we will first drop 60 topmost elements, thenquary ),

for 10 topmost element, then switch to quépy for the next 20 topmost elements. We
use a counter to record the number of topmost elements thatbdeen run with query
Q;. After processing the last end tag of theh topmost element, the system restores the
removed state transition and then switches to the next shed.qSince the switching
happens only after the processing of the last token of theasp element, it is safe to
switch to another query for the next topmost element. No&¢ lere we simply apply
the state transition disabling and labeling “dropped” flag,do not otherwise physically

change the plan. Thus the overhead is very small.
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Chapter 7

Experimental Results

We used ToXgene [12] to generate XML documents as our tedatey All experiments
were run on a 2.8GHz Pentium processor with 512MB memory. ‘¥éa wquery Q1
as testing query and the testing data files are about 30 MB. &fermed four sets of
experiments. The first one shows that output utility changigls varying arrival rates
for all three shedding approaches (Random, OptShed an8het The second set of
experiments demonstrates that different distributionpaifern preference settings and
pattern sizes impact the output utility. The third set corapahe overhead of three shed-
ding strategies. It shows that FastShed has little overtsadlar to Random shedding.
However, the overhead of OptShed becomes big for large ieeg. The final set of
experiments shows FastShed achieves close-to-maximlity itipractically all cases

considered.

7.1 Comparison Among Three Shedding Approaches

In this set of experiments, we studied the output utilityrales with varying arrival rates

for the three shedding approaches. Fig. 7.1 shows the odgbatutility per second for
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query Q1. Note that in Fig. 7.1 the three slopes increaseddhee way when arrival
rate is less than 180 topmost elements/s because no shédgipgns at that time. After
the arrival rate reaches 180 topmost elements/s, theyutifiRandom remained stable
because it has reached its processing capacity. Howewt§ghed and OptShed achieved
higher utility because they chose a shed query which gessetagher utility than the

Random approach.

Average Output Utility
60

50

40

30
/./( —o—Random
20

—m—FastShed
—&—OptShed
10 -
O T T T

20 40 60 80 100 120 140 160 180 200 220 240 260
Arrival Rate

Figure 7.1: Output Utility Changes with Varying Arrival Rest

7.2 Effect of Preference and Pattern Size

Next, we illustrated the output utility is affected by thetdibution of pattern preferences
as well as the pattern sizes in the query. It also impliesttreassignment of preferences
indeed affects which shed query will be chosen to run at shgqrhase. The definition of
pattern size is given byP; = Ni* SPi whereN* is the number of elements correspond-
ing to patternP; in a topmost element ansl’” is the average number of tokens contained

in a P, element.
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Figure 7.2: Data Utilities for Varying Preference Assigmise

We used five different sets of preference settings whiclediff their standard devia-
tions. We run query Q1 on the same data set. Each pattern @adnte size and each set
has the same utility for the initial query. Figure 7.2 shohat the output utility is higher
when there is a bigger variance among pattern preferentegsetor FastShed and Opt-
Shed. We observe that the utilities of the query achievechbyRandom approach are
the same because the initial query is executed in this caseevér, OptShed and Fast-
Shed performed differently when the standard deviatiopfeferences changes. Observe
that when the standard deviation of preference values wali,shere is little difference
among utilities for the three approaches. However, theegifice of output utility was
significant when the standard deviation of preference galeaches 0.5.

To illustrate the output utility is affected by the patteizes, we generated five testing
data files which differed in their standard deviation of edetnsize. We ran the query Q2

below.
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Q2: FOR %o in stream("sample”)/list/o
RETURN $0/P1, $0/P2, $0/P3, $0/P4

Note that each data file only contained the elements in theycqued the sums of
all element sizes in each data file were all equal to 200 tokémaddition we assume
all patterns in the query are independent and of equal gneder Figure 7.3 shows the
output utility changes with varying standard deviation aftprn size during the same
time period. Observe that for the Random approach, the outpities did not change
a lot since the UPC of the original query for these four datsfdre almost the same.
However, for FastShed and OptShed, the output utility washinigher than the utilities
achieved by Random approach when the standard deviatiatitefp size increased. This
is because the shed queries with smaller patterns has shoab¢ing cost and buffering
cost, resulting in lower overall processing cost. In thsssdastShed and OptShed would

pick such shed queries since they have relatively highktywitost ratios and thus higher

utilities.
70
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Figure 7.3: Data Utilities for Varying Pattern Size
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7.3 Overhead of Shedding Approaches

Here we studied the overhead of the three shedding strateflee overhead was mea-
sured by the time spent on choosing which shed query to runglthre shedding phase.
We studied whether with more complex query the overheactasss dramatically. We
used five queries which vary in the number of patterns. Frajariei 7.4, we observe even
when the query became complex, the overhead of FastShedillvasrg small, although

it was a bit higher than Random shedding. But it did not scdlemthe query became
more complex. However, for OptShed, overhead was alreagyhigh when the number

of patterns in the query is 5. Thus the overhead of OptShedrishig, implying it as an

undesirable choice.
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Figure 7.4: Overhead of Three Shedding Approaches
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7.4 Additional Experiments on Three Approaches

In the first two experiments above, we observed that Fast8hddOptShed performed
better than Random shedding on output utility. However, wlg oompared them based
on a limited number of preference settings. Now, we wantudysperformance of these
methods over a wide range of cases. We generated 1000 satspliescosts and utility
measures, where a sample set is generated by assigningepefe to different query
patterns randomly. The costs of different shed queries ianapte set were assigned
randomly in the range [10, 20], and at the same time ensuniithe cost of a “smaller”
guery was less than the cost of a “bigger” query. Then we rarthitee approaches on
these 1000 sets of sample data and compared their outptyt dtigure 7.5(a) shows the
histogram on the utility ratios of FastShed over OptShed oW&erve that these ratios are
skewed to the left. About 80% of them are over 0.8. This mehasRastShed can get
close to optimal results in most cases. Figure 7.5(b) shbe/histogram of output utility
ratios of Random over FastShed. Observe that these ratresskewed to the right. Most

of them are less than 0.6. Thus FastShed is much better thratoReshedding.
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Chapter 8

Related Work

In streaming systems, approximate query processing has dmesidered an effective
method for trading off performance with accuracy [21,493861]. However, most ap-
proximate query processing work has been focused on reldtstreams. Load shedding
and sampling data are two most common ways to reduce systekioad. Load shed-
ding on streaming data has firstly been proposed in the Awystem [59]. This work
introduces two types of load shedding: random and semaydit $hedding. Based on
the analysis of the loss/gain rate, the random load sheddiategy will determine the
amount to shed to guarantee the output rate. For semanficttiey assume that different
tuple values may vary in term of utility to application. Ingltase, maximizing the utility
of output data is their goal. We have the same goal of maximgittie output data utility
in XML streams. However, instead of a simplistic model oftagr domain value denot-
ing utility, we consider the complexity as well as importaraé XML result structures in
order to make shed query decisions.

Most approximate query processing works focus on the magetigoal, which is, to
maximize the output rate [7, 21, 28]. [21] provides an optioféine algorithm for join

processing with sliding windows where the tuples that wilive in the future are known



CHAPTER 8. RELATED WORK 54

to the algorithm. An online algorithm that does not know vihiaples will arrive in the
future is given under assumption about certain arrival ibpdgges. [56] proposes a novel
age-based stream model and describes the load sheddirmpepgor join processing
with sliding windows under limited memory resources. Weldapply their techniques
into join processing among multiple XML stream systems ifgoal is to get max-subset
instead of maximizing output utility. In addition, we expéchow to choose shed queries
to maximize output utility for XML streams under limited CR&sources. [28] provides
an adaptive CPU load shedding approach for window streans joi relational stream
systems. It follows a selective processing methodology &gping tuples within the
windows, but processing them against a subset of the tupliaeiopposite window. We
cannot apply these approximate processing techniqueslglineto our work since we are
targeting a single XML stream without window constraints.

[7] investigates the approach to do load shedding for ghisindows on conjunctive
gueries. The goal is to choose the plan with drop boxes ieddnat maximize the output
rate of the partial answer query. It addresses two problenesjs the optimal placement
of the drop boxes in an execution plan and the optimal settfritbe sampling rate. The
second is the choice of the plan to shed load from. This workkines the problem of
finding an optimal execution plan and exploring the stramgyhe placement of the drop
boxes into a single optimization problem. Their approaabrisogonal to our approach.
Some works reduce the workload by changing the query edgligl9] changes the query
at the operator level. This is similar to our removal of sonagtgrns from the query.
However, we consider the complexity of XML result structure

Preference model is a natural way for decision making pw@plb$s used in many ap-
plications, including e-commerce and personalized webises. As mentioned before,
Aurora [59] combines the utility of different tuple valuasté quality of service met-

ric. [38] proposes Preference SQL, an extension languadev8(xh is able to support
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user-definable preference for personalized search endtregports some basic prefer-
ence types, like approximation, maximization and faverjieeference, as well as com-
plex preference. Preference XPath [37] provides a langtealgelp users in E-commerce
to express explicit preference in the form of XPath queryr \dew synchronization in
dynamic distributed environments, EVE [40] proposes E-S&¥lextended view defini-
tion language by which view definer can embed their prefegmbout view evolution

into the view definition.
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Structure-based Spilling for XML

Streams
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Chapter 9

Overview of Structure-based Spilling

Approach

The architecture of our spilling framework is shown in Fig®.1. After the queries are
registered with the query engine, an initial plan is geregtaind optimized. The execution
engine will instantiate the query plan and start processipgt streams. The problem of
deciding when the system needs to spill data is not a quesgiecific to XML streams.
Any existing approach from the literature [48, 63] could Ipepboyed here. We employ
a memory buffer to store input stream data. As soon as a tekprocessed, we clean
this token from the buffer. We assume a threshold on the mgmdfer that allows us to
endure periodic spikes of the input. When buffer occupancgeds the given threshold,
we trigger the spilling.

When spilling is triggered, first, the possible spilling datates are examined. We
then derive the reduced queries for each spilling candiddte query optimizer runs the
optimization algorithm to pick the optimal reduced querynay the reduced query is
instantiated, in place of the previously active query,atihg the spilling process. Later

when the arrival speed becomes near zero, we invoke the gfeprocessing to generate
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supplementary results based on disk-resident data.

_______________________________________________

! 1
1 .
1 Result Register :
! | Monitoring Query GUI !
e et ittt
1
A
Plan Spill Candidate
Generator Generation
| —
> P_Iar_1 Reduced
Optimizer Query
Generation

© )
Execution Engine >  Disk
stream " Manager

Figure 9.1: Architecture for Spilling Framework

Q2: 1 _
FOR $a in stream()/a @ $a=/a
RETURN / ] \
<pairQ2>
$al/b, $a/d, $a/bic @ & @
</pairQ2> $a/lb  $a/d Sa/bl/c
(a) Query Q2 (b) Query Plan

Figure 9.2: Query Q2 and Its Plan

Recall that any path and any number of paths in the query capilbed. We describe
the details of possible spilling candidates in Chapter ¥t .us use query Q2 introduced in
Chapter 1.4.2 as our example (query Q2 and its plan are shokigure 9.2). Now let us
illustrate how to pick the optimal spilling candidate to guze maximum output quality.
We require the optimal reduced query should be able to coasalhthe input, i.e., the
processing speed of the optimal reduced query should ke thsin or equal to the arrival

rate. For example, assume we have two spilling candidate®20/a//b and /a/b/c.
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The data is shown in Figure 9.3(a). Figures 9.3(b) and (tpligout results after spilling
/a//band/a/b/c respectively. Assume the arrival rate is 500 topmost eléstser (for
Q2, a is the topmost element). Assume the cost to produce egairQ2> element
when spilling/a//b is 0.6 milliseconds. The cost of producing eachairQ2> when
spilling /a/b/c is 1 millisecond. The processing rates when spilliag /b and /a/b/c
are 1000/0.6 =1333 and 1000/1=1000 respectively. Bothegadue greater than the arrival
rate. Therefore spilling eitheta//b or /a/b/c can both meet our goal of consuming alll
the input. However, the output quality for each spillinghpet different. When spilling
/a//b, since onlyd elements are present in the results, the quality for egoairQ2>

is 1 (quality computation is detailed in Chapter 13). Theligwahen spilling /a/b/c is

3 sinceb (including partialb and completé) andd elements are returned. In this case,
the output quality when spillinga/b/c within 1 second is 500 * 3 and the quality when
spilling /a//bis 500 * 1. Therefore spilling pathu/b/c yields higher output quality than
/a//b. We will describe the detailed algorithm to find an optimaidiaate in Chapter 15.
This structural spilling framework is general and can beliadpin any XML stream
engine. The detailed explanation of why our spilling fraroeis general is explained

later in this chapter.
al ==- pairQ2 pairQ2

-
KA

clelc2 e? b3

(a) Data (b) Result after spilling /a//b (c) Result after spilling /a/b/c
Figure 9.3: Data and Output for Q2

To eventually produce the entire, yet duplicate-free tesai| we have to generate sup-
plementary results correctly. We propose a complementatgud model, which extends

from the hole-filler model in [25], to facilitate the matclginf the supplementary results
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with prior generated output. In addition, we examine whataegata must be flushed to
guarantee the generation of the correct “delta” structnrsupplementary results. The
details of generating supplementary results can be foutthapter 14.

General Framework for Structural Spilling. The framework we propose to use to
address the structural spilling problem described in tluskvis general, meaning it could
be applied to any XML stream management system. Recall theolve the structural
spilling problem, we have to examine the possible spilliagdidates, derive the spilling
effects, measure the quality as well as cost of the reducedesg) and run the optimiza-
tion algorithm to choose the optimal reduced query. Thd spitdidates are generated
based on the query pattern tree, which is directly derivechfthe query. For each spilling
candidate, determining the spilling effects in the queresolved by deciding the data
dependency relationship between the spilled path and patime query. Hence deter-
mining spilling effects is related to the query semantitss hot related to the specifics
of the implementation of query processing. The quality nhad€hapter 13 measures
the output quality based on the query result. Again this islgdased on the query se-
mantics and thus, general. Note that our optimization #lgois to search the optimal
reduced query are cost-based approaches. Obviously,d¢bateon cost measurement for
each spilling candidate in other stream engines may bereliftdrom that of our system
because of the specifics of query processing. For this, welcanin the cost model of
other stream engines. In this case, the optimality of ourckealgorithms can still be

guaranteed.
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Chapter 10

Background

Queries Supported. We support a subset of XQuery in this work. Basically, wewllo
(1) “for... where... return...” expressions (referred $oFRAVR) where the “return” clause
can further contain FWR expressions; and (2) conjunctilexien predicates where each
predicate is an operation between a variable and a con3tamggrammar of the supported
XQuery expressions is shown in Figure 10.1. A large rangeoairnon XQueries can

be rewritten into this subset [47]. A query with “let” clagsean be rewritten into an

XQuery without “let” clauses (by Rule NR1 in [47]). A query thiFWR expressions

nested within a “for” clause can also be rewritten into oysmarted subset format (by
Rule NR, in [47]). The filter expression in an XPath can be moved in® ‘tvhere”

clause.

Algebraic Query Processing. We assume the queries have been normalized using the
techniques in [18]. Queries are then translated into a plamely, for each binding
variable in the “for” clause, a structural join is conductastween the binding variable
and the paths in the “return” clause. Paths in the “returatisé are translated into inputs

to the structural join operator. The expressions in the ‘e@helause are mapped to select

operators. Finally a tagging function is on top of the plakirtg care of the element
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CoreExpr ::= ForClause WhereClause? ReturnClause
| PathExpr
PathExpr ::= PathExpr “[*//” TagNamg* «”
| varName
| streamName
ForClause ::= “for” “$"varName “in” PathExpr
(“,” “$"varName “in” PathExpry
WhereClause :: = “where” BooleanExpr
BooleanExpr ::= PathExpr CompareExpr Constant
| BooleanExpr and BooleanExpr
| PathExpr
CompareExpr ::= ="|«l ="|« <"|“ <="|“ >"|“ >="
ReturnClause = “return” CoreExpr
|<tagName-CoreExpr (“,” CoreExpr) </tagName-

Figure 10.1: Grammar of Supported XQuery Subset

construction. Here we focus primarily on the structurahjdhe core part of the XQuery
plan, while tagging is not further discussed. For instaricethe plan in Figure 1.3,
structural join is conducted betwe&a and each of its branches.

Basic Processing Unit (BPUgfers to the smallest input data unit based on which we
can produce results independently. It can be a documentapradst element extracted
by the query. When we encounter the end of a BPU in the incontata, we can produce
the result structure. For example, for query Q2, the BPU is atement on patha.
When </a> is encountered, we can produe@airQ2> result structures. This provides
an efficient way to produce output as early as possible for X$#tfeams [30]. In this

work, BPU is the topmost element in the query tree.
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Chapter 11

Spill Candidate Space

In this chapter we examine all possible spill candidates.dddhis, we represent the
guery using a query pattern tree. For example, the quergrmpditee for Q2 is given in
Figure 11.2(a). Each node in the query tree indicates aniX@gression. The semantics
of the supported XPath expression can be found in ChapteWgQuse single line edges
to denote the parent-children relationship and doubleduges to denote the ancestor-
descendant relationship.

We assume any node and any number of nodes in the query trbe sailled. Each of
them forms a spill candidate. To analyze the total numbeotdmtial spilling candidates,
consider a complete query pattern tree with defdind fixed fan-ouf. The total number

d

—1
of nodes in the query tréd&’| = > fi:%. Since any number of nodes in the query tree
=1

can be spilled, the total number of potential spilling caladiés isC;, +Cy + ... +C|‘;F" =

27l which is bounded by (2/) .

An example query tree and its possible candidates are showigure 11.1. Query
tree is shown on the left and its possible candidates arersbawhe right. Each node in
the lattice represents one candidate. The top candidateswsedling nothing (i.e., initial

qguery). The bottom candidate indicates spilling evengt{ire., empty query). Each level
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1 lists all candidates spillingnodes from query tree. The candidate space scales quickly
since it is exponential in the number of nodes in the ques. tre

We now reduce the spill candidate space using the insighstimae candidates may
resultin the same spilling effects. Recall that when wd datia corresponding to a path
from the query tree, all its descendants are also flushedko @his leads to the following

observation:

Observation 11.0.1.If a spill candidate includes two nodes that satisfy the atae
descendant (or parent-child) relationship, it has the sapidling effect as the candidate

containing the ancestor (parent respectively) node.

| | |
{%{ {alre} b.c

b
|
C ] )

(a) Query Tree (b) Possible Candidates

Figure 11.1: Query Tree and Its Spill Candidates

For instance, in Figure 11.1(b), the underlined candidate} has the same spilling
effect as{b}. The candidates with strike-through have the same spi#ifect as{a}.
Clearly, we should avoid examining such candidates witls#ime spilling effects. Hence
we introduce a minimum non-redundant spill candidate space

Minimum Candidate Space We design an algorithm that generates the minimum
set of all non-redundant spill candidates. The idea is teeggr non-redundant candi-
dates from the subtrees recursively. For a tree of hdighd generate all possible non-
redundant candidates, it picks zero or one candidate frems¢hof candidates generated

by each subtree of heighit — 1 and composes them to one new candidate. Or, it can
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also generate a new candidate which consists of a singlenomte. The algorithm that

generates the minimum set of all non-redundant spill catd&lis described below:

Algorithm 2 minCandidates
Input: Query Treel’
Output: candidate sef
void minCandidates(Node root)
if root is leafthen
return{root};
else
for each childC; do
S; = minCandidates(;);
end for
/[[Assume root has w children. Generate candidates.
S =851 X S5... X Sy;
S =S5 U{root};
returns;
end if

The total number of potential spilling candidates generatging this algorithm is
O(274). The minimum spill candidate space for query Q2 is shown gufé 11.2(b). Its
size is much smaller than that of the original candidate spdtch is2° = 32,

PN

{c} {d} {//b}

| SNHATAA

{bc} {c,d} {/b,c} {/b,d}

b d b {b,c,d} {b,//b,c} {//b,c,d}
!; {b,//b,c,d}
{a,b,//b,c,d}
(a) Query Tree for Q2 (b) Minimum Spill Candidate Space

Figure 11.2: Minimum Candidate Space for Q2
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Chapter 12

Generate Correct Reduced Output

12.1 Determine Spilling Effects

For each spill candidate, we need to derive its correspgndiduced query and generate
the correct reduced output. As shown in chapter 1.4.2, whestthais spilled, multiple
paths in the query may be affected. To generate the redudedtatorrectly, we have
to determine the spilling effects on the paths in “for”, “wl&and “return” clauses for
each spilling candidate. Each path in the query corresptmdsset of subtrees in the
document. For instanceéq /b returns the subtrees rooted at notl@ghose parents are of
typea. Due to spilling, either the root or the non-root nodes inghiletree can be missing.
Here we define two categories of spilling effects on pathshenduery to distinguish

between different missing locations of the subtrees:

e Root missing or unaffected When the roots of subtrees for a query path are
missing, we call thisoot missing Otherwise, it isunaffected For instance, for
path /a//b, the roots of some subtrees are missing when spilliag. This is

because patfa/b is contained by'a//b. In other words, they satisfy the following
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relationship:

P()S//x#0 (12.1)
Here P indicates a path in the query asdndicates the spilled path.

e Subpart missing or unaffected When non-root nodes in the subtrees correspond-
ing to a path in the query are missing, we cabutopart missing Otherwise, it is
unaffected. For instancéq /b is subpart missing when spilling:/b/c because:
nodes in the subtrees are missing due to spilling. The quathspvhich are subpart

missing satisfy the following relationship:
P/x/]()S]/+#0 (12.2)

To determine root missing and subpart missing, we use theagpip in [46] which con-
structs the product automaton BfandS. The complexity of this approach is [B{*|S)).

Since these two categories are orthogonal, there are 2*@wbinations. They are:

e Root missing and subpart missitf§RAM). E.g., when spilling/a//b, /a/b is

SRAM because both root and subpart are missing.

e Root unaffected and subpart missi(®AM). E.g., /a/b is SAM when spilling

/a/b/c sincec nodes in subtrees are missing.

e Root missing and subpart unaffectt®AM). This is not possible. Because we

assume when a path is spilled, all its descendants are alsaisp

e Root unaffected and subpart unaffect&th). In this case, both root and subpart

are unaffected.
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12.2 Reduced Query Execution

We now describe how to execute a reduced query based on thdddye of spilling
effects. The reduced query results are output as long as#ut Is correct, even if the
result structures are partial. In other words, the reducedygexecution should satisfy the
maximal output property [54]. Therefore we propose theofeihg policies for reduced

guery execution so that we can produce as much correct cagadassible.

o Affected path in “for” clause . When the binding variable is SRAM, the number
of bindings may be reduced. In this case we can still produtpud as long as
the binding variable does not return empty. When the bindargable is subpart
missing (SAM), although a subpart of the binding variablenissing, it does not
affect the number of iterations of the “loop counter”. THere SAM on the “for”

path does not affect result generation.

Example 12.2.1.Figure 12.1(a) shows the case when the binding variable i.SA
In Figure 12.1(a), the spilled path i5:/b. The binding variabléa is SAM due to

spilling /a/b. The iterations of “for” loop are unaffected.

(a) Spill /a/b (b) Spill /a/d

$a//lb \$a/d/ $al/b/c $a/lb  $a/d \$alblc

Disk | [Sksav Mua Elsrav| | Disk

Figure 12.1: Plan for Q2 with Spilling Effects

o Affected path in “return” clause. The structural join is conducted between a

binding variablel” and all its branches. Based on query semantics, the stalictur
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join between a binding variabl& and one branctB(i) is independent from the
structural join betweer’ and other branches. Therefore a “return” path being
affected by spilling does not block the output of other “ratupaths in the same

FWR block.

Example 12.2.2.Figure 12.1(a) shows the case that the returned pé&thgb and
$a/b/c are both SRAM due to spilling:/b. For data in Figure 9.3(a), only3 and
d1 are present in the< pair@2 > results. In Figure 12.1(b)/a/d is spilled. Only
$a//b and $a/b/c produce results. In both cases, returned pairQ2 elemergs ar

partial since they are not composed of all the returned sulotires.

o Affected path in “where” clause. When a “where” path falls into SAM, if the
missing subpart is not needed for the predicate evaluatiendo not block the
predicate evaluation. However, when the “where” path is BR&he predicate
evaluation cannot be conducted on all the elements. In #sg8,ave may not know
whether the results should be output or not. Therefore v &ected SRAM on
the “where” paths as blocking. Whenever a “where” path is SR#ke output for
its corresponding FWR and its inner FWR block thus do not peedanything in

our model.

Q3: FOR $a in stream()/a
WHERE $a/d-"55"
RETURN <pairQ3>

$a/d/f, $ale, $a/b/c
</pairQ3>
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Q4: FOR $a in stream()/a
RETURN <result-$a/c,
FOR $b in $a/b
WHERE $b/e ="6"
RETURN $b/f

</[result>

(a) Spill /a/d/f (b) Spill /a/ble

Disk

Figure 12.2: Reduced Query Plans for Q3 and Q4

Example 12.2.3.Query Q3 has a predicate dfu/d. Figure 12.2(a) shows the
reduced query plan when spilling:/d/f. “Where” path $a/d is SAM. In this
case, the predicate evaluation is not affected and we camngtartial results. Now
let us look at Q3 which has a predicate in the inner FWR blocigufe 12.2(b)
shows the reduced plan when spillifig/b/e. For the inner FWR block, since
$b/e is SRAM, the predicate evaluation cannot be conducted.€efdrerthe inner
FWR block cannot produck/f. However, sincéa/c in the outer FWR block is

unaffected, we can produée/c in the result.
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Chapter 13

Metrics for Quality and Cost

Our optimization goal is to select the optimal paths to dpillmaximize output quality.
In this work we focus on maximizing the quality of the reducedput. We now describe

the metrics of quality and cost for measuring the altereataduced queries.

13.1 Output Quality Model

Previous studies on approximate query answering tend tesfon the relational model,
where the output quality is usually measured by the througbpthe cardinality [10,59].
However, in our work, since each output result may be paraiasuring the throughput
or cardinality of the output is no longer so meaningful. Heeepropose a “fine-grained”
output quality model which aims to measure the quality otipe XKML output results.

We measure the quality of the reduced output based on tleavioly factors:

1. Cardinality . Since a return structure may be composed of nested sutsesc
some substructure may only return a subset. So we incogtiratcardinality of

each substructure into the output quality.

2. Shape Returned substructures may not be of the full shape whesottnesponding
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paths in the query fall into SAM. To differentiate such substures from others,

we now define ahape indicatoto indicate how full each substructure is.

The shape indicator for a paitin the query can be calculated as

S, = zeof dement ajter spilling_ (erg e assume the size of an element is fixed).

Size of element without spilling

When a path falls in SAM, its shape indicator is less than lthissense the quality
is “punished ” because of returning incomplete substrestur

Recall that the topmost element is the smallest data unichwvt@n produce a result
structure. We definanit qualityas the quality gained by executing the reduced query on

a topmost element. We measure unit quality using the foriellaw:

v = ZZJ: > N,x8, (13.1)
)

n 1=0 qu(i
Heren indicates the number of return structures generated perdspelement. Each
returned structure is composed of j substructuredenotes the type of nodes matching

branchB(i). N, andS, denote the cardinality and shape indicatog afespectively.

Path Quality
Spill /a/b Spill /a/b/c
$allb 1*1 1*1+2*0.5
$a/d 1*1 1*1
$a/b/c 0 0

Figure 13.1: Quality for Q2

Example 13.1.1.We calculate the unit quality of Q2 for data in Figure 9.3(a@)an is
shown in Figure 1.3). The quality of each substructure iswsh@n Figure 13.1. For
each topmost element a result structure<pairQ2> is returned. In this example, only

one result structure is produced. Hengel. The result structure is composed of three
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substructures$a//b, $a/d and $a/b/c. This indicatesj=3. When spilling pathya/b,
d1 and b3 are returned. The unit quality of the reduced query is 1+1¥%hen spilling
/a/b/c, $a/ /b returns three elementsl, b2 andb3. For b1 andb2, their shape indicators
are both equal to 0.5 since theirchildren are missing. So the output quality far/ /b is

1+2*0.0.5= 2. The unit quality for Q2 is 1+2=3.

13.2 Evaluating Reduced Query Costs

We now define a cost model for comparing alternative reducedies. We measure the
cost as the average time of processing a topmost elementafhie the unit processing
cost). We divide the processing cost into the following gart.ocating Cost(LC) that
measures the cost spent on retrieving dataJami Cost(JC) spent on structural joins. In
addition, in the spilling stage, since we need to flush dathsio, we call the cost spent on
spilling dataSpilling Cost(SC). Since our goal is to optimize the quality of the reduced

guery, we focus on the cost model of measuring runtime coshgs for the reduced

query.

Locating Cost. The locating cost indicates the cost spent on retrievingrisk Automata
are widely used for pattern retrieval over XML streams [2], & he relevant tokens are
“recognized” by the automaton and then assembled into eltsn&he formed elements
are passed up to the algebra plan to perform structural jmitikering. While the detailed
locating cost model is discussed in [67], we estimate thatiog cost savings using the

formula below [67]:

quAPi nactive(Q)Ctrcmsit (132)

Here P, indicates the query paths whose subtrees are containedbgas of spilled
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Notation | Explanation

Al Set of states of patter and its de-
pendent states.

nactive(¢) | The number of times that stack top
contains a state q when a start tag
arrives

Clransit Cost of transition to states in au-
tomaton

Np Number of elements matching
for a topmost element

S Join Selectivity

Mp Size of P (number of tokens con-
tained in each element)

C; Cost of comparing two elements

Cro Cost of disk I/O

C, Cost of stack operation

Table 13.1: Notations Used in Cost Model

paths. A?P: denotes the set of states corresponding’tand its dependent states in the
automaton. n,.i..(q) denotes state invoking times aiid,.,.; denotes the transition

cost. The notations are in Table 13.1.

Join Cost. Since we assume stream data arrives in order, the elemeni®tio join
inputs are sorted. We can apply an efficient structural jlgorithm, such as Stack-Tree-
Anc [3], since both inputs are sorted. Using the cost modetHis algorithm [70], we

estimate the cost of structural join using the formula aswel

2 % NVNB(i)SNCj + 2ch5 (133)

Here Ny and Ny (i) indicate the number of binding variables and branches ger to
most element. Based on Equation 20.3, we can easily catdhlatstructural join savings

for the reduced query.

Spill Cost. Although join computations are saved due to spilling, we hawe to consider
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the additional costs associated with spilling. As will bealissed in Chapter 14, we may
have to spill other paths to enable future supplementanyjtrgeneration. Let us useP
to denote the set of paths to be spilled to disk. The spill castthen be calculated as

follows:

> N,M,Crjo (13.4)

peESP
Runtime Statistics Collection. We collect the statistics needed for the costing using
the estimation parameters described above. We piggybatiktits gathering as part of
guery execution. For instance, we attach counters to adwtonséates to calculat¥» and
Nactive(q). And we collectMp and Sy in algebra operators. We then use these statistics
to estimate the cost of reduced queries using the formuleshgbove. Note that some
cost parameters in Table 20.1 such(@s,,si:, A, C; andCy /o are constants. We do not

need to measure them during the query execution.
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Chapter 14

Generate Supplementary Results

In this chapter, we first describe the complementary outpadehwe propose to utilize
to match the supplementary “delta” structure with parteluced outputs produced ear-
lier. Then we examine what extra data must be flushed to gtedhe generation of

supplementary results.

14.1 Complementary Output Model

In the clean up stage, supplementary results are genemtedrhplement” the reduced
output produced earlier. So that together these two outgmiecés” can be united logi-
cally to represent the full content. Since partial resuticures may be generated for
each output tuple, this requires us to design an output mbdelcan efficiently match
the supplementary “delta” structure with the reduced ougpaduced earlier. Here we
proposecomplementary output modelhich extends from the hole-filler model [25].
The hole-filler model has been designed to organize outadralata fragments when an
XML document is split into multiple fragments. Our idea isexplicitly mark a hole in

the output element with a unique identifier to indicate nmggata. In the later cleanup
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stage, we produce fillers to fill in these holes, which in ountest are supplementary
results. The reduced outputs and supplementary resul@Zarhen spilling/a/b are
shown in Figures 14.1(c) and (d) respectively.

To distinguish and match efficiently between holes and §jlere define three types
of IDs, namely, BPU ID (BID), Result Structure ID (RID) andtR#D (PID). Only fillers
and holes with the same IDs can be matched. For instancetghilier in Figure 14.1(d)
indicates the missingl andb2 for path$a//b (whose PID is 2) in thecpairQ2> element
for the first BPU ¢ element). The second filler indicates the misstihgand 2 for path

$a/b/c (whose PID is 4) for the first BPU.

al@a,2e) """

|

1$a=/a 4\

/' \ 29bl 10,17 b2 @8 200d1 e3(21,25)
| /N /N

o & @ cl el c2 e2 b3

$al/lb $a/d  S$a/blc @5 68 (@W13) (14,16 (22,24)
(a) Plan for Q2 (b) Data

<Filler: Bid ="1" Rid ="1" Pid = "2">

<pair02>
|<Hole: Bid="1" Rid ="1" Pid="2"/> | <b> b1 </b>

<b> ... </b> <b> b2 </b>

<d>di</d> </ Filler >
|<Hole: Bid="1" Rid ="1" Pid="4"/> |

</pairQ2> <Filler :Bid = "1" Rid ="1" Pid = "4">

<c> cl</c>

<pairQ2> <c>c2 </c>

</[Filler >

</pairQ2>

(c) Reduced Output (d) Supplementary Output

Figure 14.1: Example for Output Model
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ID |For Return ID |For Return
1 SAM UA 7 UA UA
2 SAM SRAM 8 UA SRAM
3 SAM SAM 9 UA SAM
4 SRAM UA
5 SRAM SRAM
6 SRAM SAM

Table 14.1: Possible Combinations Between For Binding sBrdanches

14.2 Determine Extra Data to Spill for
Supplementary Query Execution

To produce eventually complete results set, we have to gensupplementary results
correctly. We determine what extra data must be flushed totdiguarantee the gen-
eration of supplementary results. Our goal is to spill a mumn set of data needed for
supplementary query execution. The eventual result set bmuguaranteed to be both
complete and duplicate-free.

Since structural join is the core component in the queriesovesider, we focus on
how to spill extra data to reconstruct the structural josutes correctly. Either the “for”
path or the “return” path can be of three types, namely, SRBKIM, or UA. There are
totally 3*3 =9 combinations between the binding variablel #manches. The possible
combinations are listed in Table 14.1. Note that if “wherattpis SRAM, the output is
blocked. Hence we ignore this case.

Note when the binding variable is SAM, query execution isaftécted. Hence cases
1, 2 and 3 can be regarded to be the same as cases 7, 8 and 8velp&iearly, it is not
necessary to consider case 7 since complete results aneceobth this case. Finally we
only need to consider cases 4-6, 8 and 9. We now describeaatyise, case 8, to show

how to determine what extra data to flush to disk and how to ctenpupplementary
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results. Similarly, we can generate supplementary resoitsther cases. The details

about those cases can be found in [68].

Binding Variable is UA and Branch is SRAM. In this case, multiple branches may
fall into SRAM at the same time. However, the output of theicural join of V' with
branchB(i) is independent from the output of the structural join betw&eand other
branches. The case that one branch operator falls into SRABbnsidered first and
can be easily extended to the case that multiple brancheSR#&. Assume that the
binding variablel” is UA and one branci(i) is SRAM. We use superscript andd to
distinguish between data kept in memory and data on disk. épeesent the structural
join results between the binding variableand B(i) using the following equation:

Vixg B(i) = Vg (B™(i) UBi)) (14.1)
= (V15 B™(i)) U (V g B(4))

Obviously, the results of g B™(i) have already been produced by the reduced
query execution. We only need to calculate the supplememesultsV g B9(3).
Hence we have to reconstruct the structural join betwiéemd B%(i) and the extra data
to be spilled is the data corresponding to the binding végiab We use a subscript to
indicate the time the data was spilled. Assume that strastdrand B have been pushed
k times to disk, meaning the spilled datalis V5, ... V;, and B¢, BY, ... BY respectively.
As we mentioned in Chapter 10, the query results generatsetioan a basic processing
unit are independent from others. We assume we spill datatohlof one or more basic
processing units. We thus conclude thaidoes not need to join With if 2 is not equal
to y since they do not belong to the same basic processing unédreldre the missing
structural join results betweén and B(i) at time k can be calculated &3 <15 BZ(i).

For instance, for the plan of Q2 in Figure 14.2, when paitlb is spilled, patt$a//bis

SRAM. The structural join betweefu and$a//b can be calculated using Equation 14.1.
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Q2:
FOR $a in stream()/a
RETURN
<pairQ2>
$al//b, $a/d, $a/b/c
</pairQ2>

(a) Query Q2

1
1$a:/a
AN

@ ®© @

$a/lb  $a/d $alblc
(b) Query Plan

Figure 14.2: Query Q2 and Its Plan
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Chapter 15

Choose the Optimal Structure to Spill

15.1 Formulation of Optimization Problem

For each spill candidate, a reduced query is derived to methe reduced output. For
each reduced query, we measure its unit quality and unitegsieg cost. Unit quality
for a reduced query is defined as the quality gained by exegtitie reduced query on
a topmost element. Unit processing cost is the average tinpeocessing a topmost
element. Our goal is to pick structures to spill so as to optnthe output quality. The
problem can be formulated as follows. Given the followinguts: 1. data arrival rat®
in the number of topmost elements per time unit, 2. unit qugkined by executing each
reduced query vy, v4, .., }, 3. UNit processing costs for each candidate reduced query
{Cy, C4,..C,}. We aim to find a spill candidate whose corresponding redugesty
satisfies the following two conditions: (1) consume all inplements in 1 time unit, and
(2) maximize total output quality.

Given a spill candidate, we first derive its correspondirduoed query);. We use
1/C; to calculate how many elements can be processed when exg@@ytper time unit.

Since the processed data cannot exceed the incoming dat#ptéh output quality is
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calculated using the formula below:

vi * min{\,1/C;} (15.1)

15.2 Algorithms for Spill Optimization

Optimal Reduction(OptR). The first algorithm we propose, called Optimal Reduction
(OptR), employs an exhaustive approach. It searches tire eahdidate space and picks
the candidate that yields the highest output quality.

The procedure proceeds as follows: 1) iterate over eachcgpidlidate in a top-down
manner in the candidate lattice and derive a reduced querand 2) then estimate the
cost, unit quality as well as total output quality @f. The candidate query that has the
highest output quality will be chosen as the reduced quettyeaspilling phase.

Remember from Chapter 11 théts the fan-out and is the depth of the query pattern
tree. Since it is an exhaustive approach, the search coipiexqual to the size of the

minimum candidate space, whichix2/%).

Example 15.2.1.Assume the arrival rate is 20 topmost elements/s. The ustitecw unit

quality for the initial query are 0.1s and 6 respectivelyeTdvailable CPU resources are
1 second. In this case, the reduced query needs to procesypRst elements while
achieving the highest output quality. The unit processiogf @and unit quality for each
candidate are shown in Figure 15.1. We pick spill candidéte } since its corresponding

reduced query yields the highest output quality, namel{0(05) * 2 = 40.

Optimal Reduction with Pruning (OptPrune). Optimal Reduction with Pruning (Opt-
Prune) applies additional pruning to eliminate suboptismlitions. It explores the spill
candidate space in a top-down manner and removes less prgreidutions based on the

observation below.
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0
[0.1,6

s
{c} {d} {//b}
[0.0625,4] [0.079,5] [0.0375,1]

NN

{bc} f{c,d} {bc} {b,d}

[0.05,2] [0.0375,1] [0.016,0] [0.054,3]

ib,c,d} {b/b,cy  {lb.c,d}
0.024,1 = [0.02,1] [0.015,0]

{ b,//tlJ,c,d}/
[0.012,0]

|
{a,b,/Ib,c,d}
[0.012,0]

Figure 15.1: Optimization Using OptR

Observation 15.2.1.1n the top-down candidate space traversal, when we reachna ca
didated; and find it is capable of consuming all input data, then thedidates below it

(candidates that include all paths ify) can all be pruned.

The reason is that if candidadecan produce; result structures, the candidates below
it tend to spill more paths. The quality of each result stietis not higher than that
of candidated;. However, the number of output result structures may stahanged
since all input data is consumed. Therefore, the total tyafithe candidate below; is

guaranteed not to be higher than thatipf

Example 15.2.2.In Figure 15.2(a), candidatéb, c} can consume all input. In this case,
we can prune candidates below {t), ¢, d}, {b, //b,c} and{b, / /b, c,d} directly. Simi-

larly, candidates below//b} and{c, d} can be removed.

To estimate the search complexity, since the worse casedti?rOne is checking ev-
ery candidate without pruning anything, therefore the wease for OptPrune i9(2/4).

However, our experimental results will show that the adyuadmplexity is much smaller



15.2. ALGORITHMS FOR SPILL OPTIMIZATION 84

O O
[0.1,6] [0.1,6]
c /{d}\” . / ! \,w
[0.06{25},4] [0.079,5] m 5,1] [0.é6%5,4] [é.0}79,5] [0:0375,1]

> s \\\\ ,// \‘:\:\:’{~N;\~~: /~\:\\
//b,c} {ibd} {bc} {cd} {/b,c} {/b,d}
[0. 2] [0. 51] ,

‘'~

(a)Optimization Using OptPrune (b)Optimization Using ToX
Figure 15.2: OptPrune and ToX Example

thanO(2/%).
Top-down Expansion Heuristic (ToX). We now present a Top-down eXpansion heuristic
(ToX), which has much more efficient running time compare®f@R and OptPrune.
ToX starts from simple spill candidates and stops at the ¢asididate that is able to
consume all the input.
ToX proceeds as follows:
Step 1. Check candidates that spill one leaf node (candidates omoghéevel of the
lattice). If we find a candidate that is able to consume allitrgnd achieve highest total
output quality among candidates considered so far, stdper@ise go to Step 2.
Step 2.Pick the candidate that has the highest quality/cost ratithis level and move to
candidates connecting it one level lower.
Step 3.If one of the new candidates can consume all the input anceetihe highest
total output quality among candidates considered so fap, Dtherwise go back to Step
2.

The complexity of ToX isO( £2¢) which is much smaller than that of OptR and Opt-

Prune.
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Example 15.2.3.In Figure 15.2(b), we first check the candidates that onlil spe node.
We find{//b} can consume all input. We considgf/b} optimal and stop. The total
output quality ismin{20, 1/0.037% * 1 = 20.
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Chapter 16

Experimental Evaluation

In this chapter, we conducted a comparative study of theetbpgimization algorithms
OptR, OptPrune and ToX. In addition, we also employed anrdlgua, calledRandom
which iteratively selects one among all possibly substmgst randomly until enough sub-
structures are spilled so that the input load can be handi¢debcorresponding reduced
query. The experimental results demonstrated that ourosexp solutions consistently
achieved higher quality compared to the Random approaaheXperiments are divided

into three categories:

e The first set of experiments compared the performance of mpagsed spilling
strategies with Random approach in two cases. One case is tivbenetwork is
fast and reliable, i.e, the input sources are never blockéeé. other case is when
the network is unreliable. When the network is unreliable input data has a
mixture of high and low arrivals. When the arrival rate is Jole disk on data can

be processed and generate supplementary output.

e The second set of experiments tested the impact of diffsedattivity and different

guery path sizes on the performance of our approaches.
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e The third set of experiments compared the overhead of diftespilling approaches.

Experimental Setup We have implemented our proposed approaches in an XML
stream system called Raindrop [30]. The data sets were @edensing ToXgene [12].

All experiments were run on a 2.8GHz Pentium processor WigtVilB memory.

16.1 Comparison of Spilling Approaches

16.1.1 Reliable Networks

A reliable network never incurred suspensions of data tégson. For achieving this,
we set arrival interval between two topmost elements to alfisedue. In this set of ex-
periments, we set arrival interval to 0.025s and 0.02s w#sfedy. The arrival rates under
these two settings were higher than the processing speedus@ée Q2 as the running
qguery. Spilling was invoked as soon as the memory buffestiolel is reached.

To compare the performance of alternative approaches, agaisew “fine-grained”
guality metric to measure the quality of partial outputseasl of using traditional through-
put metric. The reason is that throughput typically refershte number of (complete)
output elements in XML produced. However, in this work ofgwmoing partial structures,
a traditional throughput metric is not so meaningful. Theaded quality model can be
found in Chapter 13.

We studied the output quality gained by taking differenimtation approaches. Fig-
ures 16.1 and 16.2 show the cumulative output quality using dptimization strategies
when the arrival interval is 0.025s and 0.02s respectiv@lyserve that OptR, OptPrune
and ToX gained higher quality than Random after spillingtstaOptR and OptPrune
both gained higher quality than Random and ToX. This is beeddptR and OptPrune

guarantee to find the optimal structures to spill.
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Because the reliable network never incurred suspensioataftchnsmission, the clean
up processing was invoked after all the data has arrivedr(fifhe 5500). In the clean up
phase, the supplementary results were generated based diskkresident data. Finally
all four spilling approaches produced the complete restilasd reached the same output
quality.

When the arrival interval is 0.02s, the cumulative qualitgreased slower than the
case that the interval is 0.025s. This is because when thvalaiate was increased, the
reduced query may need to spill more structures to consurtteedhput.

Cumulative Quality
20000

== OptR
18000

== ToOX

16000 A
Random

14000

=3¢= OptPrune

12000

10000

8000

6000

4000

2000

0 1 T 1 T T T T T T T T T T 1 T T T T T 1 T 1 T 1

O 0 o™ DB AN DD BN D WA Time
S D Q7 AT LW Y R X (X
LN A N A i e

Figure 16.1: Reliable Network, 0.025s

16.1.2 Unreliable networks

Having evaluated our spilling approaches in the absenacap$missions, we proceed to

examine the performance for unreliable networks. To siteulareliable network, we
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Cumulative Quality
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=9=—0ptR

25000

—f—ToX
20000

Ranaom

15000 =3&=0ptPrune

10000

5000 -

Y T T T T T T T T T T T T T T TT T TTT T T T T T T T T I

60 894 2171 3488 4901 6443 7700 9100 Time

Figure 16.2: Reliable Network, 0.02s

generated arrival intervals using Pareto distribution thavidely used in case of bursty
network [20]. Figure 16.3 shows the cumulative quality faufapproaches. Observe that
all of them had step-like performance due to switching betwie spilling and clean up
phase. The slope of segments corresponding to the spiliaggfor OptR and OptPrune
was larger than that of ToX and Random. This indicates thiggdudwuality for OptR and

OptPrune is increased faster than that of ToX and Random.

16.2 Impact of Selectivity and Path Size

Next, we illustrated that the output quality is affected bg selectivity distribution of the

binding variable and each branch. We ran the query Q5 below:

Q5: FOR $o in stream(“test”)/list/o
RETURN $0/P1, $0/P2, $0/P3, $0/P4
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Figure 16.3: Unreliable Network

We generated five test data sets which satisfy the followeggirements: 1) all test
data sets contained the same number of tokens; and 2) theensimibelements corre-
sponding to each returned path were equal; and 3) the elesimas corresponding to
each returned path were equal. Based on the cost model ineHd2, the locating
costs spent on locating each returned path are the sameointmgts between the bind-
ing variable and each returned path are the same too. In@udite spilling costs when
spilling each returned path are also the same. For each elatdhs selectivity between
the binding variable and its branches can be different. \i#d tige different sets of selec-
tivity which differ in their standard deviations. Figure.4&hows that the output quality
is higher when there is a bigger variance among selectigitptR and OptPrune. This
is because OptR and OptPrune tend to spill the return pattislov selectivity which
yield low output quality given the same spilling and compiota cost. We observe that
the quality of the reduced query achieved by the Random apprdid not change a lot

because Random approach did not keep the returned patingliarge selectivity.
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Figure 16.4: Quality for Varying Selectivity

We now illustrate that the output quality is affected by tlat@rn size. All testing
data sets had the same number of elements and selectivisadbrreturned paths. And
all test data sets contained the same number of tokens.eFlgus shows that the output
guality changes with varying standard deviation of retuathpsize. For the Random
approach, the output quality did not change a lot. HowewerOptR and OptPrune, the
output quality was much higher than the quality achieved agd®m approach when the
standard deviation of pattern size increased. This is lsecthe reduced queries with
smaller returned path size have smaller spilling cost ltiesuin lower overall processing
cost. In this case, OptR and OptPrune would pick such redquaedes since they have

relatively higher quality/cost ratios and thus higher gyal

16.3 Overhead of Spilling Approaches

In this work, optimization is conducted in an online fashiorassure continuous respon-

siveness of our system. Here we studied the overhead of jdling strategies, measured



16.3. OVERHEAD OF SPILLING APPROACHES

92

Avg Quality (/s)

60

B Random
50 ToX
40 B OptR

m OptPrune
30

0.82 2.31 2.94 3.92 5.1

Standard Deviation of Path Size

Figure 16.5: Quality for Varying Path Size

Time (ms)

600 -
B OptR

500 -
m OptPrune

400 - = ToX

300 - m Random

200 -

100 -

0 L] | 1 1 1
2 3 4 5 6

Qurey Tree Size
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by the time spent on choosing which structure to spill. Welistt the relationship be-
tween the complexity of the query and the overhead of theropéition methods. We used
five queries which vary in the size of the query trees. In FedL6.6, when the queries be-
came complex, the overhead of ToX was much smaller than @pé&Rand OptR since it
stopped at the earliest candidate which consumes all iNgeibbserve that the overhead
of OptPrune was much smaller than that of OptR. This indgc#tat our pruning method
is indeed effective at reducing the search cost. Given tbtt Bpproaches can achieve
the highest quality, OptPrune is obviously a better optil@ntOptR. However, when the
guery became more complex, OptPrune may not be a practicéilsosince its overhead
is larger than ToX and Random. In this case, we resolved liaaibur lightweight ToX

solution.
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Chapter 17

Related Work

Complete result sets are often required for continuousigsieeven though the query
system may not have sufficient resources for the query wadkéd a particular time. To
address this, prior works have focused on flushing data teamipoto disk to address the
problem of run-time main memory shortage while satisfyimgneeds of complete query
results for relational streams. Most of them are focused aximizing the output rate or
generating a subset of results as early as possible [3R4&3b

[63] is the first to propose a non-blocking join operatorleXJoin, which produces
results event when one or more stream sources experiereysdfd3] proposes to con-
duct hash join during three stages. The first stage joins menesident tuples, acting
similarly to the standard symmetric hash join. The secoagksjoins tuples that have been
flushed to disk due to memory constraints. The third stageisam-up stage that makes
sure that all the tuples that should be in the result set &ireately produced. Hash-Merge
Join [48] proposes a Hash-Merge join approach which praglnoa-blocking output by
employing an in-memory hash-based join algorithm at ruretand employing a sort-
merge-like join algorithm in the merging phase. [23] progma non-blocking sort-merge

join approach to produce joined output which eliminateshtoeking behavior of sort-
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based join algorithms.

[41] designs a PermJoin approach for producing early resalimulti-join query
plans. [41] aims to maximize the early overall throughput tmadapt to fluctuations in
data arrival rates. [41] employs a flushing policy to writemiemory data to disk, once
memory allotment is exhausted, in a way that helps incrdasprobability of producing
early result throughput in multi-join queries. [43] tacki#he query plan with multiple
state intensive operators where data spilling from oneaipecan affect other operators
in the same pipeline. We can apply the above techniques asesgaained spilling in
XML, which is spilling complete topmost elements to disk.viver, such coarse-grained
spilling misses the novel XML-specific opportunities foilkpg. In this work, we instead
focus on the fine-grained XML-specific structural spillingpaoach.

Niagara [54] proposes to produce approximate results fonet@when no input for
some operators in the plan exists. However, they do not addine problem of producing
partial results in the XML stream context when the outpubfrone operator is missing
due to spilling some patterns. Part | of this dissertatiodresises structural shedding
problem in XML streams. However, it only considers queriestaining independent
returned paths. Also, since it is focusing on shedding, hmgenerate supplementary
results is not discussed.

[15, 22,29, 33,44,52] evaluate XQuery expressions over Xdtteaming data. One
approach [22, 33] combines automaton and algebra to proddssstream data. E.g.,
Tukwila [33] and YFilter [22] model the whole automaton pessing as one mega op-
erator while modeling the rest data manipulation such asrifig and restructuring in
algebraic operators. [15, 29, 44, 52] use automata or adtoidke SAX event handlers
to process the whole query. One limitation of our structapalling framework is that the
cost model measuring processing costs is related to thdispex the implementation of

guery processing. Therefore, we can apply our spillingriepkes to other XML stream
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systems as long as we plug in their cost models.
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Part Il

An Integrated Framework for

Structural Shed and Spill Approach
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Chapter 18

Overview of Our Approach

The architecture of our integrated framework is shown iruFegl8.1. After the queries
are registered with the query engine, an initial plan is gatieel and optimized. The
execution engine will instantiate the query plan and stast@ssing input streams. The
problem of deciding when the system needs to shed or spdlidaiot a question specific
to XML stream. Any existing approach from the literature ,[88] could be employed
here. We employ a memory buffer to store input stream datasods as a token is
processed, we clean this token from the buffer. We assumeeghibld on the memory
buffer that allows us to endure periodic spikes of the inpWthen buffer occupancy
exceeds the given threshold, we trigger the optimizatiocess.

Each fusion candidate corresponds to a pair of a reduced gudrits matching sup-
plementary query. Theeduced querywhich is devised from the initial query by reducing
some computations, is executed when the arrival rate is Mgen the arrival rates be-
come slowsupplementary querng executed to produce the output that complements the
partial output produced by the reduced query earlier. Whenldad reduction process
is triggered, the possible fusion candidates are examimbd.query optimizer runs the

optimization algorithm to pick the optimal reduced and dapgentary query pair. After



CHAPTER 18. OVERVIEW OF OUR APPROACH 99

1 1
i Result Register User !
1 | Monitoring Query Preference !
e L T Ty - - - !
]
|
Plan Fusion Candidate Utility
Generator Generation Function
| |
v Ry
> Pl.an' <«— Reduced Query
Optimizer Generation

@ ‘

stream

A 4

Execution Engine

A

v

Figure 18.1: Architecture for Integrated Framework

optimization, the reduced query is instantiated. The redwguery takes the place of the
previously active query, initiating the shedding or spijiprocesses whenever needed.
When arrival rates become slow and the system has enouglrcesdo execute both the
original user query and the supplementary query, we redilee data back from disk and
then the supplementary query is executed.

In this work, we assume that any path and any number of pattieiquery can be
shed or spilled. We describe the space of possible fusiatidates in Chapter 19. Before
illustrating how to pick the optimal fusion candidate, wdide feasible fusion candidate

and feasible querys follows.

Definition 1. For a fusion candidate, if its reduced query can consumehalinputs, i.e.,
the processing speed of the reduced query is faster thanual ég the arrival rate, we

call this fusion candidate feasible and the reduced quergasible query.

Our optimization goal is to pick the optimal fusion candalttat produces the highest

total output quality, and assure that the fusion candidatesasible.
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Let us use the fraud detection query introduced in Chap#eB hs our example (the
guery and its plan are shown in Figure 18.2). Assume we hawefugion candidates
for fraud detection query Q1. Fusion candidatg$d/bidder /price?, $a/bidder /tel’}
shedsrice permanently and spills:l to disk. The superscripts indicating the actions on
substructures.D indicates shed ané indicates spill. The reduced and supplementary
queries for candidate 1 are shown in Figure 18.4. Fusionidated2{$a/bidder /tel®,
$a/bidder /price”} shedstel and spillsprice to disk. The input stream data fragment
for Q1 is shown in Figure 18.3. Figure 18.5 shows the outpatipced by the reduced
and supplementary queries for these two fusion candidaths. arrival pattern for Q1
is shown in Figure 18.6. The arrival rate is 500 auction el#sisecond from time
0 to 1s and zero from 1s to 2s. Our goal is to pick an optimaliliagusion can-
didate to maximize the total output quality. Assume sulestmesS$a/bidder /tel and
$a/bidder /price are of the same size. In this case, the shedding cos$afoidder /tel
and$a/bidder /price are the same. The spilling costs for these two query paththare
same too. Assume the costs to produce each parpairQl> element at runtime for
fusion candidates 1 and 2 are both 1.6 milliseconds (thelééteost measurement can
be found in Chapter 20.2). The processing rates for botlifusandidates are 1000/1.6
=625. Both values are greater than the arrival rate. Thexdfoth fusion candidates
meet our requirement of feasible candidates. In additlmpnit quality for early partial
<pairQL> is both 1 (the quality measurement can be found in Chaptet).Z0herefore,
both two candidates achieve the same reduced output quality

Now let us look at the supplementary query. The costs of priodusupplementary
output for two fusion candidates are the same because elgmaéandprice are of the
same size. Let us assume that the costs of producing suppi@meutputsa/ bidder/
tel and$a/bidder /price are both 0.5 milliseconds. However, the quality gainedrayri

lull time periods for these two fusion candidates differasBd on Figure 18.6, the quality
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Q1: FOR $a in stream()/list/auction
WHERE (Sa/seller/payment [contains(., "escrow service")])
and (Sa/seller/payment[ not(contains(., "Escrow.com")])
RETURN <pairQ1>
Sa/seller/ID, $a/bidder/tel, Sa/bidder/price
</pairQ1>

(a) Query Q1

1 Sa=/list/auction

@/@ '@\@

$a/seller/ID $a/bidder/tel $a/bidder/price $a/payment
(b) Query Plan for Q1

Figure 18.2: Query Q1 and its Plan
auctionl -

seller bidder payment

[ /\

ID tTI p[ice visa

508-309 200

Figure 18.3: Data Fragment for Q1

$a/s/l $a/bft"Sa/b/pr Sa/p $a/b/t

(a) Reduced Plan (b) Supplementary Plan

Figure 18.4: Reduced and Supplementary Queries for Caedlda
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Figure 18.5: Early and Delayed Output for Q1
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Figure 18.6: Utility Function For Each Path and Arrival att

for $a/ bidder/ tel is 0.5 since its quality shed®% if its delivery is delayed. However,
the utility for delayed outpu$a/ bidder/ price drops to zero. Therefore during the lull
time period the delayed outpdt/ bidder/ tel has higher quality thaba /bidder /price.

In this case, we choose candidaté$k /bidder /price?, $a/bidder /tel’’} since its total
output quality is higher than that of candidate 2. We willaése the algorithms to find

an optimal fusion candidate in Chapter 21.
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Chapter 19

Fusion Candidates

In this section, we first give possible delivery options. iTiae describe the representation

of possible fusion candidates.

19.1 Delivery Options

When data arrival speed is extremely high and the systenures® are limited, partial
results instead of complete results may have to be produ&&uce XML results are
composed of various substructures, output substructuagsvary in their delivery time.

For each substructure, we have following three options talleadata:

e Keep. The first option is to deliver the substructure by procegsind reporting

immediately. We label this substructure “Keep.”

e Spill. The second option is to push data to disk temporarily. Tha da disk will
be brought back when sufficient resources are availablesifutinre. We label this

substructure “Spill.”

e Shed The third option is to permanently throw the data away wineretrrival rate

is high. We label such substructures “Shed.”
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19.2 Representation of Fusion Candidates

In this section we examine all possible fusion candidatesekd query is represented by
a query pattern tree. For example, the query pattern tre@Xas in Figure 19.1. In query
pattern tree, each navigation step in an XPath is mappedé¢e adde. We use single line

edges to denote parent-child relationships.
auction

seller bidder payment

/\

ID tel price

Figure 19.1: Pattern Tree for Q1

We assume any node in the query tree can be shed, spilledpbr&eace each node
in the query pattern tree has three options, namely, keep, @hspill, the combination of
selecting one of these options for each node in the querydpgesents a fusion candidate.
For instance{auction®™, seller™, bidder™, payment®, ID¥ tel”, price’ } is a fusion
candidate. We use a vector, whose length is equal to thertataber of nodes in the
qguery tree, to represent a fusion candidate. For each notteiguery tree, there is a
corresponding value in the vector indicating the actionduarted on this node. 0, 1, and
2 indicate “keep,” “spill” and “shed” respectively. The sn for each node in the vector
is fixed and follows the node’s preorder in a tree traversat.iistance, for query Q1, the
preorder traversal follows the ordetiction — seller — bidder — payment — 1D —
tel — price. Vector[0,0,0, 0,0, 1,1] represents fusion candidafeuction, seller,
bidder™, payment™, IDX  tel” | price’}. For readability, we keep a letter in the vector
to remind readers about the label of each node. So wedise’, 0°, p°, %, t',7!] to

represenio, 0, 0, 0,0, 1, 1]. Thus the action is indicated on superscripts.
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19.3 Solution Space of Fusion Candidates
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Figure 19.2: FC Lattice for Q1

We now design a lattice to represent all possible fusionickatels, i.e., the FC search
space. Each fusion candidate corresponds to a reduced pplésientary query pair. For
instance(a?, s°, %, p¥, %, ¢, r°] indicates that every node is kept during the reduced query
processing. In other words, the reduced query is the oligueery and the supplementary
query is an empty query. Fusion candidai® s2, v?, p?,i?, t* r?] located at the bottom
of the lattice indicates every node is shed during the redlgeery processing. In this
case, not only is the reduced query an empty query, but thelementary query is also
an empty query since everything is dropped. From level i vellé+1, only one node
changes its associated action and the action change of nigeemnode follows the order
from “0” (“Keep”) to “1” (“Spill”) or from “1” (“Spill") to “2 " (“Shed”).

To analyze the total number of potential fusion candidatessider a complete query
pattern treg with depthd and fixed fan-ouy. The total number of nodes in this query tree
can be calculated as:= Cij flﬁ%. Since each position in vector can have three values,

“0,” “1” or “2”, and the vector length is equal to the total ntver of nodes in the query
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tree, the total number of fusion candidates can be calailasd™, which is bounded
by O(3/"). The number of levels in the FC lattice 25 since each level increments
in 1 position and the initial vectdi®, s°,8°, p°,:°,t° r°] needs to incremeritr times
before every value increments to 2. For a fusion candidagentimber of its direct child
candidates in the lattice is less than or equat ®ince the action for every node in the
vector may change until it reaches 2.

Based on our cost model in Chapter 20.2, we observe that whahange the action
of a node from “Keep” to “Spill” or from “Spill” to “Shed”, thecost for producing the

reduced output is decreased. This leads to the followingrebsion.

Observation 19.3.1.For a fusion candidaté’C; on leveli, the descendant fusion candi-
dates on level + 1 or below are guaranteed to have smaller reduced query psiogs

costs compared with candidaté&’;.
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Chapter 20

Metrics for Quality and Cost

20.1 Quality Model

Our objective is to maximize the output quality of the rediiocatput as well as the sup-
plementary output while staying within given system resear We now describe the
metrics of quality for measuring alternative reduced cegeds well as their respective

supplementary queries.

20.1.1 Age-based Utility Specification

For stream applications, the quality may be affected wherm#itivery of output results is
delayed. If the output is delayed for a smaller period of tiihie likely more acceptable to
users compared to longer or even indefinite delays. In fdbi idelay is too long, the data
may become useless to users. Hence we need a metric to eviawatat degree output
quality is affected. Relational stream systems [8] prodaséatency-based QoS graph
where a piece-wise linear function is specified to indichtelatency-based utility for a
qguery. For XML stream data, since output may be composed dipteusubstructures,

we instead propose to use a corresponding utility funcioimdicate the utility of each
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XML substructure. Here, output elements are treated asiatanits. Similar to [8], the
utility function is a piece-wise linear function with thellimving properties: 1) maximum
utility at time zero, 2) incomplete utility value when theeagets older, and 3) a deadline
latency point after which output data provides zero utilfyutility function is defined as

follows:
4

Mo if t <t

H= i if i1 <t<t

| e if t <t <,

Quality Quality Quality
A
11— 1 1
0.5 — |
20age 1 20age 1 20 age

a) Utility for 1D b) Utility for tel c) Utility for price
Figure 20.1: Utility Function Examples

An example age-based utility function is shown in Figurel®) and (c). Note that
the utility for both$a/bidder /tel and$a/bidder /price has the maximum utilty 1 at time
zero. The utility of$a/bidder /tel drops to 0.5 if its delivery is delayed by 5 seconds,
while the utility for delayed outputa/bidder /price drops to zero if its delivery is de-
layed by 5 seconds. Without loss of generality, we assumatiligy for a query path is

normalized to [0,1].

20.1.2 Output Quality Computation
Previous studies on approximate query answering [10, bée to focus on the relational

model, where the output quality is measured by either thpuiutte or the cardinality.
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However, since each output result may be partial, meastin@gardinality of the out-
put as a simple count without considering its output compteg not sufficient for the
data. Here we propose a “fine-granularity” output qualitydeldhat aims to measure the

guality of partial XML output results. Our measure is basadhe following factors:

1. Cardinality . For XML data, a return structure may be composed of mulsple-

structures. We incorporate the cardinality of each subsira into the output qual-
ity.

2. Age-based utility. We consider age-based utility for each substructure akeye

factor of the quality computation of partial XML results.

3. Shape Returned substructures may not be of their complete shapa some part
of the substructure is missing. For example, suppose bdls pa/b and$a/b/c
are in the “return ” clause. When péath/b/c is spilled to disk, the patba /b would
return incompleté elements. To differentiate such substructures from othegs
define ashape indicatoito measure how full each substructure is (details can be

found in [69].).

The shape indicator for a query patim query(@ can be calculated as

S — Size of element after shedding/spilling 1
P 7 Sizeof element without shedding/spilling *

When some substructures of a path are missing, its shapatodis less than 1. Put
differently, the quality of the path is “penalized ” becawséncomplete substructures.

In this work, the top most element is the smallest data uréetiaon which we can
produce a result structure. We defuneit quality as the quality gained by executing the
reduced or the supplementary query on a top most element. &slsure unit quality for

a query using the formula below:

IHere we assume the size of an element is fixed.
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v o= )Y Ny S, pup) (20.1)
n p

Heren indicates the number of return structures generated pemtigi elementp
denotes each substructuré,,S, andy, denote the cardinality, shape indicator, and utility

of p respectively.

Example 20.1.1.Assume the input data stream for query Q1 as in Figure 20.@, lsb
us calculate the unit quality of the reduced and supplenmgmaery for fusion candidate
[a®, s%, 00, p°, 4%, 2, 70). First consider the quality computation for the reduced ryue
Element; (: is short for ID) is spilled to disk. Two elemerit§t for tel) are permanently
dropped. In this case, the reduced output result is compokenly 1 substructure (r for
price). For substructure, N is 2 since there are twoelements returned. Shape indicator
S is 1 since complete elements are outpuf is 1 sincer is produced at runtime. Hence
the reduced query quality &* 1 « 1 = 2. For the supplementary query, only elemeént
is returned. Its age-based utility remains 1 even if its\wigly is late. The quality of the

supplementary query is 1 based on Equation 20.1 since oy element is produced.

al

N

seller bidderl bidder2 payment

/N /\ |

ID tel pricetel price visa

Figure 20.2: Data for Q1
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20.2 Evaluating Costs for Reduced and Supplementary
Queries

Our optimization goal is to optimize the total output quafir both the reduced and sup-
plementary query. A cost model is used to measure the priagesssts for both queries.
We distinguish between two types of processing costs. OQmecosts of processing a
reduced query when the arrival rate is high, calieduced costand, two, the processing
costs for supplementary queries when arrival rates areclaNedsupplementary costWe
first describe how to measure the costs for different pracgssperations, and then we
put them together into a complete definition of reduced apglementary costs.

In general, we measure the cost as the average time of prog@stpmost element
(we call it the unit processing cost). We divide the progegsiosts into the following
parts: Locating Cos{(LC) that measures the cost spent on retrieving detia, Cost(JC)

spent on structural joins ar&pill Cost(FC) spent on flushing data.

Locating Cost. The locating cost indicates the cost spent on retrievingrisk Automata
are widely used for pattern retrieval over XML streams [28, 4 he relevant tokens are
“recognized” by the automata and then assembled into elemen

For both “shed” and “spill” paths, we need to locate the atiroerresponding tokens.
Therefore the locating costs are not saved when shed oisspiioked. While the detailed
locating cost model is discussed in [67], we estimate thatiog cost savings using the

formula below [67]:

CL = quAPi nactive(Q)Ctrcmsit (202)

Here P; indicates the query paths whose subtrees are containedtrgas of shed or

spilled paths.AP: denotes the set of states corresponding;tand its dependent states in
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Notation |Explanation

AP Set of states of patterF and its de-
pendent states.

Nactive(q) | The number of times that the stack
top contains a state g when a start
tag arrives

Cuwansit | Cost oOf transition to states in au-
tomaton

Np Number of elements matching
for a topmost element

S Join selectivity

Mp Size of P (number of tokens con-
tained in each element)

C; Cost of comparing two elements

Crio Cost of disk I/O

Cs Cost of stack operation

Table 20.1: Notations Used in Cost Model

the automatonn,.;,.(q) denotes state invoking times aag.,,..;; denotes the transition

cost. The notations are in Table 20.1.

Join Cost. Since we assume stream data arrives in order, the elemenittio join
inputs are sorted. We can apply an efficient structural jlgorithm, such as Stack-Tree-
Anc [3], since both inputs are sorted. Using the cost modetHis algorithm [70], we

estimate the cost of structural join using the formula below

C; = 2% NvNB(Z-)SMCj + 2Ny C (203)

Here Ny and Ny (i) indicate the number of binding variables and branches ger to
most element. Based on Equation 20.3, we can easily caddilatstructural join savings
for the reduced query. If a query path is marked as “shed” pill;’sthe structural join
is not conducted at run time. Therefore for reduced quetiesjoin costs are saved for

“shed” and “spill” paths.
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Spill Costs. For “spill” paths, we consider the additional spill costs discussed in [69],
we may have to flush other supporting paths to enable supplanyeresult generation.
Let us useSP to denote the set of paths to be pushed to disk. The spill castdbe

calculated as follows:

Cs = Y N,M,Crjo (20.4)

peESP
For reduced query, since it may include the mixture of “keeghed” and “spill”
paths, locating costs, join costs and spill costs need tmbsidered. The reduced query

costs can be calculated using the formula below:

C(FC)F=0Cp + C;+ Cs

For the supplementary query, the spilled data is broughk fraen disk for query

processing. In this case, the join costs need to be considere
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Chapter 21

Optimization Problem

21.1 Arrival Pattern

Prior work has focused on describing measuring arrivabpastin data stream [13,24,45,
60]. Most work either use statistics-based approachessoumnas arrival patterns follow
some known distributions. For instance, [24] and [13] assumput stream data arrival
follows the exponential distribution. [45] assumes atnrages follow uniform distribution
for the input data. Other work [60] assumes arrival pattears be estimated based on
statistics. Here we utilize statistics to estimate thevarpattern in the sense that we know
the time period of the high arrival load and low arrival loallithout loss of generality,
we assume the arrival pattern is a step-wise function. Noviomes on solving problems

for the given arrival pattern—be it detected at runtime omfed a priori.

21.2 Formulation of Optimization Problem

Each fusion candidateC; in the FC lattice corresponds to a reduced and supplementary
query pair. The reduced query performs “keep,” “spill” ohésl” actions on varying

substructures and produces the reduced output. The suppiam query generates the
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supplementary results based on disk-resident data wheéensyssources are available.
Our quality and cost models introduced in Chapter 20.1 anab@n 20.2 measure the
unit quality and unit processing costs respectively. Denson the optimal reduced and
supplementary query pair are affected by input data ampiatierns. Note that our quality
model incorporates the age-based utility; therefore, tlaity for supplementary queries
is estimated based on by how much the supplementary resaltekayed.

We aim to find an optimal fusion candidate that satisfies thieviing goals: the
reduced query even when arrival rates are high must be albleefo up with the arrival
rate, i.e., the reduced query is feasible, and the totaitguatluding the quality for the
reduced query and its matching supplementary query sheulldebhighest among fusion
candidates.

The fusion candidate selection problem is represented belo

Given the following inputs:

1. Varying arrival rates and their duration time periods:

<Aty > < At >, < Ayt >

Here\; denotes the arrival rate during time perigd

2. The unit computation costs of the reduced and supplememtary for each fusion
candidatel’'C;, denoted byC'(FC;)® andC(FC;)® respectively.

3. Estimated output quality for the reduced and supplenngizery:

For reduced query, since the processed data cannot exceédctiming data, the

output quality is calculated using the formula below:

QFCHT = vl x min{\ 1/C(FC;)?}

Herev? denotes the unit quality of reduced query.



21.3. ALGORITHMS FOR OPTIMIZING TOTAL OUTPUT QUALITY 116

For supplementary query, its unit quality is affected by howch late the output is

delivered. The output quality is calculated by:

Q(FC)® = V2« 1/C(FC;)®

Herev? denotes the unit quality of supplementary query.

Our goal is find a optimal fusion candidate to maximize thaltotitput quality:

Mazx( Q(FC) + Q(FC;)®)

21.3 Algorithms for Optimizing Total Output Quality

The problem of choosing the optimal reduced and supplemegteery pair can be trans-
formed to choose the appropriate fusion candidate from @ka&ice which shed or spill
data from input so that total output quality is the highest propose four optimization

algorithms, OptF, OptSmart, HiX and FeX.

21.3.1 Optimal Fusion Search (OptF).

The baseline algorithm, that is guaranteed to return thenagptesult, is to search the
entire FC lattice and picks the fusion candidate that yitdddhighest total output quality.
Here we call it Optimal Fusion Search (OptF), which is ddsadliin Algorithm 3.
Example 21.3.1.Assume the arrival pattern is shown in Figure 21.1, with st &rrival
rate equal to 500 top most elements/s and the slow arriva @atop most elements/s).
In this case, the processing speed of the optimal reduced queds to be faster than
500 top most elements/s. The data for Q1 is shown in Figur2. Zllhe estimated unit
processing costs and quality for each fusion candidate haaws in Figure 21.3. OptF

searches the entire FC lattice and picks the fusion candi@iat s°, 0°, p°, ', %, 7°] as
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Algorithm 3 OptF Algorithm
1: /I FC; indicates the optimal fusion candidate.
2: FCf = Qmaz = 0;
3: for each levelL; in latticedo
4: for each fusion candidatéC’; in L, do
5 if reduced query of'C; is feasibleand Q(F'C;) > Qnq, then
6: FCp = FCj; Qe = Q(FCY);
7 end if
8
9:

end for
end for

Arrival Rate

500|————

8 12 s

Figure 21.1: Arrival Pattern for Q1

optimal fusion candidate since its processing speed isdnitjftan the arrival rate and its

total output quality is the highest among all viable altetinas.

al

N

seller bidderl bidder2 payment

/ /N /N |

ID tel pricetel price visa

Figure 21.2: Data for Q1

Since OptF exhaustively traverses the search space, itshssamplexity is equal to
the size of the candidate spaé)s(sfd), with fan-outf and depth of the query pattern tree

d (details can be found in Chapter 19).
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Fusion Reduced Supplementary | Quality | Total Feasible
Candidate Query Query /cost Quality | ?

Unit [Unit | Unit unit | Ratio

Quali | Cost Quality Cost

ty (ms) (ms)
[a2,8%,00,p0, L, tL,r9] | 2 22 1+0.5%2 |24 [0.87 |10600 |N
[20,50,6°,00,2,10,19] | 4 2.8 0 0 143 |11424 [N
[a%,s%,b?,p0,i0,t%,r] 1 17 1+0.5*2 |29 |[098 |8000 |Y
[a,s,b°,p0,iL 1,19 2 1.8 1 09 |1.11 [12000 |Y
[al,s%,b%,p%i2,tL,r0]| 2 2.0 0.5%2 1.4 ]0.88 10856 |Y
[a%,s°60,00,0,12,r1]| 1 16 0 14 |033 |4000 |Y
[a%,5%,b0,00,00,t1,12] 1 1.6 05*2 |14 |067 [6856 |Y

Figure 21.3: Quality and Cost of Fusion Candiates

21.3.2 Optimal Search with Smart Pruning (OptSmart).

Since OptF needs to search the entire FC lattice, the comyplaixOptF is high. We
now design the Optimal Search with Smart Pruning approagtS@art) that applies
pruning to eliminate suboptimal solutions. OptSmart sedsen improving the efficiency

of the search cost without compromising the result optitpa®ptSmart is described in

Algorithm 4.

Algorithm 4 OptSmart Algorithm

1: /Il FC} indicates the optimal fusion candidate.
2: FCf = @1 Qmax = Oa

3: for each levelL; in latticedo

10:
11:

4
5
6:
7
8
9

for each fusion candidateC; in L; do

if reduced query of'C; is feasiblethen

if Q(FC;) > Qmas then

FCf - FCj;Qmaa: = Q(ch)a

end if

Prune all descendants 61C; on lattice,

end if

end for

12: end for
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OptSmart guarantees to find the optimal fusion candidatedoas the following ob-

servation.

Observation 21.3.1.In the top-down FC lattice traversal, when we reach a cantéda
FC; and find its reduced query is a feasible query, the qualitysofiéscendants is guar-

anteed to be not higher than that B1;.

Proof. Assume fusion candidateéC; produces-; result structures. Now let us com-
pare candidaté’C; and its children on level+ 1. First consider reduced queries. Recall
that a child candidate either changes the action of somérschse from “keep” to “spill”
or from “spill” to “shed.” Thus the quality of each reducedtput result structure for a
child candidate cannot be higher than that of candid&te Furthermore, the number of
output result structures cannot increase since all inptat idaconsumed. So the reduced
guery quality of child candidates cannot be higher thandhtte initial parent candidate
FC;.

Now let us consider the quality of the supplementary queridhen the action on
some substructure for a child candidate is changed fromg'kee“spill,” then this im-
plies the supplementary query quality for those substrastis degraded due to delay. If
the action on some structure is changed from “spill” to “shéte supplementary query
guality of a child candidate can never increase since no foatthat substructure will
be brought back later. Therefore, the total output qualits ohild candidate of'C}; is
guaranteed to be not higher than thatraf;. Similarly, we can prove that the quality of

descendants af'C; is guaranteed to be not higher than thaff;. O

Example 21.3.2.In Figure 21.4, the reduced query of candidat, s°,8°, p®, °, ¢, r']
on level3 can keep up with the arrival speed. In this case, we can prtsmehildren
[a®, 80,00, p°, 0, ¢ 1] and [a®, s, 00, p°, 4% t!, %] and other descendants. Similarly,

[a®, 8%, 00, p°, 4% !, r°] and [a?, s°, %, p°, ¢!, ¢, r°] can consume all the input. Thus their
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descendants can be pruned.

[aolsol bo' pol ioltol ro]

_—

[a%,s%,b%,p%, 0010 ** [a%s%,b0p0,iLt0,r0] =+ [a%,s0,b0p0 %t 0]  [a%s%bC,p0,i0t0,r!]

*[a%,s%,b0p0, 10t rt [ao,so,bo,po,io,tz,r"][aO,sO,bQO,io,tO,rZ]
[a1,s0,b0, 0,2 tL )+ «oe  [20,80,00p0 101211 [a0,s% b0 p,i0,t1,r2]

- o

[a 1lsllbll pllilltll r‘1]

Search Procedure for OptSmart

[a_olsor bolpolilltll rO] . [aolsol bO' polizltol rO} oo

a%,s%,b0,p0,i,t2,10

Figure 21.4: OptSmart Search Example
To estimate the search complexity, the worse case for Opt3mto check every
candidate without pruning anything. Therefore the comipjexf OptSmart is the same
as that of OptF, which i©)(3/"). However, our experimental results will show that the

complexity of OptSmart is much smaller than OptF.

21.3.3 Hill-climbing Heuristics (HiX).

We now present a Hill-climbing Heuristic (HiX), which has otumore efficient running
time compared to OptF and OptSmart. The heuristic is base@teononviction that the
candidate with highest quality/cost ratio should yield thghest output quality. The

algorithm is described as below.

Example 21.3.3.The HiX search for query Q1 is shown in Figure 21.5. On level 2,

the quality/cost ratio of the fusion candidai, s°,0°, p°,4',t°, 70| is the highest. So
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Algorithm 5 HiX Algorithm
1: /I FC; indicates the optimal fusion candidate.
2: FCy =root; Qmaz = Qroot; Li = 1; 1l L; is the current level
3: while truedo
Check child candidates @fC'; on next level;
Pick child candidaté’C; with highest quality/cost ratio;
if reduced query of'C} is feasiblethen
Stop;
else
L; = L; + 1; //IMove to the next level
10: endif
11: end while

e N akr

we only explore its children on level 3. On level 3, the qy&dibst ratio of candidate
[a®, s, 00, p°, 4% 1% r0] is the highest. We finally stop at candidat®, s°, v°, p°, 2, ¢!, 0]
since it is feasible. Howevdr®, s, 0°, p°, 4%, t1, 0] is not the optimal candidate for this

problem since as we know, the total qualityj@¥, s°, 0°, p°, i*, 12, 7°] is the highest.

[aol sol bo' pol ioltol ro]

[al'so' bOIpO'iO'tO’ rO] cee [aO'SO' bO' pO'il'tOI rO] .o

i< 0 SOI bOI polizltol rO
[aolsolbol polilltzl rO] * [al,SO, bo, po, iz,tl,ro b A [aOISOIbOI polioltzl rl] [aO,SO, bo,po, io,tl, r2]

[al,st,blpLitthrl]

[aolsol bol pol ioltll rO] [aOISOI bo’ pol ioltol rl]

[a%,s°,bO, pO,it, £, ry- *++[a%s%,b%,p0 1%t r] [a%,s°,b%,p0,i%2,r][a%,s%, b0 p%, 0,10, r]

Search Procedure for HiX

Figure 21.5: HiX Search Example
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Complexity analysis. As discussed in Chapter 19.3, every fusion candidate has at
mostr children in the lattice{ indicates the total number of nodes in query tree). Hence
we check at most candidates on each level. The lattice has tot2hyevels. Thus in
the worse case we have to run this seachimes. So the total search cost#§ which
is bounded byO(f??). The complexity of HiX is much smaller than that of OptF and
OptSmart.

HiX may end up finding a locally optimal fusion candidate. Trieason is when
it explores the candidates from top to down, it only checleschild candidates of the
fusion candidate with highest quality/cost ratio. The héigrs of the candidate with
highest quality/cost ratio are skipped. Therefore, it isguaranteed to return the globally

optimal candidate. However, HiX is more efficient than Optid ®ptSmart.

21.3.4 Fast EXplore Heuristics (FeX).

When a query is very complex, HiX may still be a costly seardle design a Fast
EXplore heuristic (FeX), which is even more efficient thas #bove approaches. FeX
randomly picks a fusion candidate on each level in a top-dovanner until finding a

feasible candidate.

Algorithm 6 FeX Algorithm
1: /Il FC} indicates the optimal fusion candidate.
2: FCy =root; Qmaz = Qroot; Li = 1; 1l L; is the current level
3: while truedo

Randomly pick a candidateC; on next level,

if reduced query of'C} is feasiblethen
Stop;

else
L; = L; + 1; //IMove to the next level

9: endif

10: end while

e S R

We ran the above algorithifd times, finally we pick the one with highest total output
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quality.

The complexity of FeX is decided by the iteration input cohtk” and the number
of levels in the FC lattice that is bounded BY f¢K). Although there is no optimal
candidate guarantee for FeX, the complexity of FeX is muchlemthan that of OptF

and OptSmart.

21.4 Supplementary Query Execution Policy

When input data arrival slows down and thus CPU resourcesaireavailable, then we
can proceed to bring the data on the disk back to execute thesponding supplementary
guery. Note that we do not have the load overflow problem fppkmentary queries due
to the slow arrival speed of the input data. The data is reawh fiisk in a pull-based
manner, unlike in the push-based stream case on when redueeg operate. We now
note that over time, the optimization algorithms may havendeiggered multiple times.
This means several alternate pairs of optimal reducedegiarid supplementary queries
may have been chosen over time. To avoid the old disk-restdeexpire leading to
guality loss, we employ a freshness-based supplementamny gxecution policy. The
data spilled to disk is brought back for processing basedheir spill time order. In
other words, through shipping any historical spilled daléclv may have become so stale
that its quality is estimated to be equal to zero now, thenogltisupplementary query

generated earlier will be executed first.
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Chapter 22

Experimental Results

We conducted extensive experiments to compare four omtimizalgorithms OptF, OptS-
mart, HiX and FeX. We also employed an algorithm, calR&hdom which iteratively
selects one among all fusion candidates randomly untilgmsubstructures are dropped
or spilled so that the input load can be handled by the cooredipg reduced query.
We first compare the performance of our optimization alfpong with the Random ap-
proach. The experimental results demonstrate that oumaggattion algorithms consis-
tently achieve higher quality than the Random approach.dthiti@n, we compared our
optimization approaches which generated optimal fusiowickates with pure shed and
pure spill optimization approaches. The experimentallteslemonstrate that our inte-
grated framework has better performance over the pure sieeguare spill approaches.

We performed the following four sets of experiments:

e The first set of experiments compared the performance of ptimation algo-

rithms with Random approach.

e The second set of experiments compared the performance ofptimization ap-

proaches with pure shed and pure spill optimization appresc
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e The third set of experiments compared the performance obptimization algo-

rithms for various selectivity settings.

e The fourth set of experiments examined the overhead ofrdifteoptimization al-

gorithms.

Experimental Setup. We have implemented our proposed optimization approaches
in an XML stream system called Raindrop [30]. We use ToXger#} fo generate our

testing data. All experiments are run on a 2.4GHz i3 progesgh 4096MB memory.

22.1 Comparison of Our Optimization Approaches

The first set of experiments compared the performance of ptimaation algorithms
with Random approach in two cases. One case is fast andleshabnvork. The other
case is the network that is unreliable, i.e., the arrivatggatshows a mixture of fast

arrival rates and slow arrival rates.

22.1.1 Reliable Networks

When the network is reliable, the network never incurs sasjoas of data transmission.
In this set of experiments, we set arrival intervals betwentop most elements 0.03s.
The arrival rate was higher than the processing speed. $nctse, the supplementary
guery never had a chance to be invoked. We used Q1 as the guiuneny. Optimization
was invoked as soon as the memory buffer threshold was réaciie measured the
cumulative output quality gained by using varying optintiaa approaches. Figures 22.1
shows the cumulative output quality using four optimizatgirategies when the arrival
interval is 0.03s.

We observed that OptF, OptSmart, HiX, and FeX gain highex tpaality than the

Random approach. In addition, OptF and OptSmart both gaimach higher quality
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than HiX, FeX and Random. This is because OptF and OptSmaet eesigned to find
the optimal fusion candidate. Since the arrival speed wghkdnithan the processing
speed, supplementary query was not invoked. In this cad€, @yl OptSmart choose the

optimal reduced query to achieve highest output quality.

22.1.2 Unreliable Networks

Now let us examine the performance of the optimization apghmes in the scenario of
unreliable networks. To simulate unreliable network, weegated arrival intervals using
Pareto distribution that is widely used in case of a burstyaoek [20]. The cumulative

quality for our optimization approaches is shown in Figu2e22 Observe that Figure 22.2
shows step-like performance for all the optimization apptes due to switching between
the reduced query and the supplementary query. This is beaabien no data arrives,
supplementary query gets a chance to be executed. In agditie slope of segments
corresponding to the spilling phase for OptF and OptSmadriger than that of HiX,

FeX and Random. This indicates that output quality for Opté @ptSmart is increased

faster than that of HiX, FeX and Random.

22.2 Comparison of Our Approach with Pure Shed and
Spill Approaches

The second set of experiments compared our optimizatioroapp with state-of-the-art
pure shed and spill optimization approaches. [67] propasedcture-based shedding
approaches to selectively drop substructures to permigirexatuce workload. We call

this purely shedding approach that chooses the optimal chedidate?-Shed[68] pro-

posed a structure-based spilling approach that selegfivehes less time-critical XML
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Figure 22.2: Unreliable Network

substructures to disk. We call this pure spill approach ghatluces the optimal spill
candidateP-Spill.

In this set of experiments, the arrival intervals were gatest using Pareto distri-
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bution to simulate fluctuating arrival pattern. Since P<5head P-Spill both generate

optimal candidates, we compared them with OptSmart whiet gliarantees to generate

the optimal fusion candidate.
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Figure 22.3: Performance Comparison of Our Approach wighed and P-Spill

Let us fist examine the performance comparison between B-&fe our approach.

We generated three data sets that vary on their age-baséty.qier data set 1, the

quality of all query paths remained unchanged when outpstdedayed. For data set 2,

the quality of all query paths dropped to 1/2 of their initiplality when delayed. For



22.2. COMPARISON OF OUR APPROACH WITH PURE SHED AND SPILL
APPROACHES 129

data set 3, the quality of all query paths dropped to O if dedayFigure 22.3(a) shows
the quality comparison of P-Shed and OptSmart. Observedhalata set 3, when the
guality of all query paths drops to 0 if delayed, OptSmart Bfshed had the same output
quality since they both pick the shed candidate to achiexéditphest output quality. For
data sets 1 and 2, the quality of OptSmart was higher thanoftltShed. The reason
is OptSmart chooses the optimal fusion candidate that dymiaog delayed output based
on disk-resident data even when no data arrives while P-Shea/s permanently drops
data and produces nothing when no data arrives.

To compare the performance of P-Spill with OptSmart, we cptee the following
three data sets. For data set 1, the quality of all query patihsined unchanged. For
data set 2, the quality 600% query paths dropped to 1/2 of their initial quality if deldye
Quality of the otheb0% query paths remained unchanged. For data set 3, the quflity o
all query paths dropped to 0 when delayed. Figure 22.3(byshioe quality comparison
of P-Spill and OptSmart. Observe for data set 1, the quati@mSmart and P-Spill was
the same. Since the quality of all the query paths remainisanged if delayed, OptSmart
and P-Spill both choose to flush less time-critical datasé th achieve the highest output
guality. For data set 2, our approach wins over P-Spill. Hason is to make the reduced
guery fast enough to keep up with input arrival rate, Opt$selectively drops the query
paths whose quality degrades quickly while spilling thergugaths whose quality is
unchanged. However, the P-Spill is limited to always spijldata to disk to reduce the
workload. The P-Spill thus had higher reduced query costs thur approaches due to
always spilling data. For data set 3, the quality of OptSmag also higher than P-Spill

because of the same reason.
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22.3 Impact of Selectivity

In this set of experiments, we illustrate that the outputlitypevas affected by the selec-
tivity distribution of the binding variable and each branch

The test data sets satisfy the following requirements: &) eaturned query path con-
tained the same number of tokens and corresponded to thersamizers of elements,
and 2) the element sizes corresponding to each returnedygaéhequal. Based on the
cost model in Chapter 20.2, the locating and join costs spergach returned path are
the same. We used five different sets of selectivity thaediff their standard deviations.
Figure 22.4 shows that the output quality was higher wheretias a bigger variance
among selectivity for OptF and OptSmart. This is becausé@pt OptSmart choose to
shed or spill the return paths with low selectivity whichlgieow output quality given the
same computation cost. However, the quality of the reducedygachieved by the Ran-
dom approach did not change much because Random approaabt dielep the returned

paths with large selectivity.
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Figure 22.4: Quality for Varying Selectivity
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22.4 Overhead of Optimization Approaches
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Figure 22.5: Overhead of Optimization Approaches

The fourth set of experiments examined the overhead of dim@ation approaches.
The overhead of our optimization strategies was measuréddalyme spent on choosing
the optimal fusion candidate. We examine the relationskigvben the complexity of
the query and the overhead of the optimization methods. ignsét of experiments, we
used five queries which varied in the size of the query treaguré 22.5 shows the
overhead of optimization approaches. Note that the ovdrbEReX remained low when
the query became more complex since it checks, at most, @@nfgandidate on each
level of FC lattice. In Figure 22.5, when the queries becooraplex, the overhead of
OptF was much higher than that of other approaches sincesitaiveays searching the
optimal fusion candidate with the cost of the entire FCdattiThe overhead of OptSmart
was much smaller than that of OptF. This indicates that ounipg method is indeed

effective at reducing the search cost.
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Chapter 23

Related Work

The current state-of-the-art in load shedding for relala@iream systems can be cate-
gorized into two main approaches [10, 21, 28,59]. One isoantbad shedding [59],
where a certain percentage of randomly selected tupleséamdied. The other approach
is semantic load shedding which assigns priorities to g8ipksed on their utility to the
output application and then sheds those with low priorityr §hedding approach can be
regarded as semantic shedding, but on structural data.nféass shedding objects are
not whole tuples but rather substructures. We assign pésttio substructures instead of
tuple values.

Preference model is widely used for decision making purpasenany applications,
such as e-commerce and personalized web services. Au@radtbines the utility of
different tuple values into quality of service. [38] propssreference SQL, an extension
of SQL that is able to support user-definable preferencegdimonalized search engines.
Preference XPath [37] provides a language to help usersdontinerce to express ex-
plicit preferences in the form of XPath queries. We can usé& tanguage to express the
preferences of different substructure in the query.

Spilling techniques have been investigated in relatiotr@ass. Flush algorithms
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have been proposed to either maximize the output rate omergte a subset of result set
as early as possible [39,42,43,48,58,62,63]. However,amaat directly apply their
techniques into structure-based spilling in XML streantsalose of the following reasons:
1) the spilled objects in relational streams are tuples. &l@wr in our context, spilled
objects are substructures of the hierarchical XML data, nithese works are focusing
on providing non-blocking flush techniques when conductrdijfferent relational join,
such as Symmetric Hash Join, Hash-Merge Join and Progeed&wge Join. However,
structural join is the core component of XQuery plans, whiah be looked as @ join
whose condition is to compare the regions of two elements [71

[54] first proposes to produce approximate results for X@uwenen no input for
some operators in the plan exists. However, they do not addhe case that substruc-
tures are missing from the input. In addition, since theyassthe data is persistent,
supplementary query result generation does not requillengpextra data.

My earlier work on structural shedding [67], as presentddart | of this dissertation,
is the first to deal with the problem of selectively droppinglX subelements to achieve
high processing speed. [67] assumes the returned quesrmatre independent from
each other. Hence the data dependency issue among varyang jggtterns is not ad-
dressed. [69] tackles the problem of selectively choosuigssuctures to spill to disk
and generating complete output. [69] addresses the isspmdiicing runtime output
by determining the correct spilling effect in query due tteddependency among varying
qguery patterns. In this work, we focus on examining fusiondidates which is the hy-
brid of structural shedding and spilling. We propose a edisetalibrated multi-method
load reduction framework that applies both structural sivegland spilling technology to

achieve maximal effectiveness in processing input streams
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Part IV

Conclusions and Future Work
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Chapter 24

Conclusions of This Dissertation

24.1 Summary of Dissertation

Stream applications are often characterized by push-b#de@dsources in which the ar-
rival rates can be high and unpredictable. When the arrata is very high, stream
processing systems may not always be able to keep up withplié data streams. In this
dissertation, two load reduction techniques, includimgcttral shedding and spilling
techniques, were proposed for XML stream processing tcesthle issue of insufficient
system resources to keep up with the processing of the stream

In the first part of this dissertation, we focused on the pobof structural shedding
for XML streams. We proposed a new utility-driven load shiaddtrategy that exploits
features specific to XML stream processing. Our preferencdainfor XQuery helped
users to customize their preferences on different XML testnictures. We designed a
cost model for estimating the costs of different shed gsefléne shedding problem was
formulated as an optimization problem, namely, to find therapriate shed queries to
maximize the output utility. To solve the shedding probléwg shed query searching

solutions, OptShed and FastShed, were proposed to choageset ®f shed queries to
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be executed in order to maximize utility. OptShed guarahtedind an optimal solution
however at the cost of an exponential complexity. FastSkhagees a close-to-optimal
result in a wide range of cases with much smaller search twmtsOptShed. In addition,
a simple yet elegant in-automaton shedding mechanism veg®ged by suspending the
appropriate states in the automaton-based executioneef@ixXML streams, in order to
drop data early.

In the second part of this dissertation, we focused on thieleno of structural spilling
for XML streams. We proposed the first structure-basedisgiktrategy that exploits
features specific to XML stream processing. Our struct@®eld spilling framework was
general and can be applied in any XML stream system. We agdlire effect on dif-
ferent paths in query for a particular spilled path. How te@xe reduced queries given
varying spilling effects on the query was examined. An otiguality model was pro-
posed for evaluating the quality of partial returned suiues. We proposed a cost model
for measuring the execution cost for different reduced iggerin addition, to eventu-
ally produce entire yet duplicate-free result set, an autpedel was proposed to match
supplementary “delta” structures with partial result stanes produced earlier. To gen-
erate supplementary results, we determined what extratdagill to disk to guarantee
that the entire result set can be produced. To solve themgpplroblem, we developed
three strategies, OptR, OptPrune and ToX. OptR and OptRmene guaranteed to find
the optimal structures to spill. ToX cannot guarantee to firel optimal structures to
spill. When the queries became complex, the overhead of TaXmuch smaller than
OptPrune and OptR since it stopped at the earliest candidatd consumes all input.
We could use OptPrune approach when the query is not very legmsmce its pruning
method is indeed effective at reducing the search cost. Menverhen the query became
more complex, OptPrune may not be a practical solution sisceverhead was larger

than ToX. In this case, we resolved to utilize our lightweigbX solution.
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In Part | and Part Il we discussed the structural sheddingsemidtural spilling tech-
niques for XML streams. However, in some scenarios, cliticgadvantages exist for
both the shed as well as the spill techniques. On the one Bardding data means that
partial output is lost forever. In addition, dropped datayrfead to blocked output, es-
pecially when there is a lull in the input. On the other hargillisg makes the strong
assumption that system resources will be ample to procedsskiresident data sooner
or later. In the third part of dissertation work, we propoaatbvel integrated framework
for a hybrid structure-based shed and spill approach whsicble to be applied in any
XML stream system. The structure-based shedding andrgplioblem was formulated
into an optimization problem, namely, to find a pair of theueedd and supplementary
gueries that maximizes the output quality. We designed atisol space for fusion can-
didates that represents all the shed and spill candidateaga-based quality model was
proposed for evaluating the output quality for differerdueed and supplementary query
pairs. A family of four optimization strategies, OptF, Opt&t, HiX and Fex, were pro-
posed to find the optimal fusion candidate which maximizegdtal output quality. Our
experimental results demonstrate that our proposed sokitionsistently achieved higher

guality results compared to the state-of-the-art techesqu

24.2 Discussion of Three Parts

Part | and Part Il of this dissertation explore the problefretrmictural shedding and struc-
tural spilling for XML streams respectively. Although sttural shedding and spilling
look similar in the sense of reducing the workload when thivarrates are high, they
vary in their assumption, quality measurement, and redoaadidate representation.
For structural shedding problem, we assumed that returagiispn a query were

independent from one another. However, for structuralisgilproblems, this limita-
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tion was removed. Hence for structural spilling, the spgliside effects on the query
caused by pushing a single query path to disk were examin@arinll. For structural
shedding problem, we allowed users to assign preferencaryong query paths. Two
types of preference settings, namely, prioritized and migalepreference models, were
utilized to represent the importance of query paths. Intamdia scoring scheme for pat-
terns without preferences was proposed in the preferencelmidowever, for structural
spilling, prioritized and numerical preference modelsradrbe directly applied because
the assumption that return paths were independent fromrateer does not hold for this
problem.

Structural shedding employs a reduced candidate repegganistrategy different
from structural spilling problem. For structural sheddprgblem, we used shed queries,
the queries generated by removing one or more nodes fromuiy gattern tree for a
given query, to represent possible reduced candidates. iMé&dao find a set of shed
gueries to optimize output quality. As we mentioned earfar structural spilling prob-
lem, we must consider the spilling side effects caused hiirgpia query path. In this
case, a minimum candidate space was proposed to avoid wsaggenvestigation on
reduced queries resulting in the same spilling side effects

In the integrated framework for structure-based shed aii \wp focused on inves-
tigating fusion candidates that is the hybrid of structstedding and spilling. For this
integrated framework, we cannot just plug in our methodi@edom part | and part Il.
Structural shedding solutions simply assume the delaygoubwas no longer needed,
thus a pure shedding approach would be sufficient. For straicspilling solution, a
clean up stage, which triggers supplementary query exactdi produce supplementary
results to complements output generated earlier, was giee@ when the system has
enough resources. For an integrated framework suppotim@ybrid of shed and spill,

we needed a means to measure how much output quality wateaffeoutput is delayed.
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Hence a new age-based utility model was proposed for thgrated framework.
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Chapter 25

Future Work

This dissertation explores the structural shedding anidirgpin XML streams. There
are many open unsolved research challenges in this area clibpter discusses sev-
eral future work topics that are important for load redutctiechniques in XML streams.
In particular, the topics for future work include: 1) Cominig automaton-in-out query
optimization with structural shedding/spilling, 2) Mutiuery shedding/spilling in XML
streams, 3) Supporting hybrid preference model in loaddihgdspilling, 4) Organizing

of indexing flushed data on disk, and 5) Load spilling for X@ueith window functions.

25.1 Combining Automaton-in-out Query Optimization
with Structural Shedding/Spilling

In this dissertation, the query plan generation followsttewing rule: all query patterns
are retrieved in the automaton. Then the collected datasisgubup to the algebra plan.
The structural shedding/spilling algorithms mainly foeus choosing substructures to
drop or to flush so as to maximize the output quality. When tinery| processing rate

cannot keep up with the input data arrival rate, sheddingjrepis invoked. However,
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the query plan shape may affect query processing costs. Weajuery processing rate
cannot keep up with the arrival rate, switching to anothanphay be able to keep up
with the arrival rate. In other words, query optimizationynggenerate a plan with lower
computation costs than the initial plan, which can keep up te arrival rate. If this is

the case, shedding or spilling is not necessary. Let mariditesthis via an example query

as follows:

Q3: FOR $a in stream()/auctions/auction[reserve]
WHERE $a//profile contains “frequent”
RETURN <auction> $a/seller, $a/biddet/auction>

The corresponding automaton and algebra plan for Q3 arershofigure 25.1. In
Figure 25.1, patterrcauction> is retrieved by the automaton. In other words, when a
start tag<auction> is encountered, we start collecting tokens. We stop catigethen
an end tag</auction> is encountered. The collected tokens are further passeal thye t
algebra plan on the top.

Clearly, in Figure 25.1, only one patteflauctions/auction is retrieved in the au-
tomaton. Other patterns in the query, sucl8@g-eserve and$a//profile, are obtained
by navigating intoauction elements. However, this may not be an optimal plan. Fig-
ure 25.2 shows another plan. In this plan, we push patterievat onreserve into the
automaton. In this case, only tlection elements that haveeserve children will be
passed up to the plan on the top. When very tewtion elements haveeserve chil-
dren, the plan in Figure 25.2 results in lower computatiostccompared with the plan
in Figure 25.1. Based on the above observation, changingetheval of a pattern by
placing them inside or out of the automaton may affect tha ptests. We call iautoma-
ton in-out optimization57]. Since each pattern in the query can be retrieved in bobu

automaton, alternative plans are generated by pulling dtteqm retrieval out of automa-
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[ Navigate ]
Sa/bidder
\

Select
Sa//profile contains “frequent”
\

Navigate
Sa//profile
\
( Navigate )
\ Sa/seller )
( Select ]
L Sa/reserve )
T <auction>
. /auction>

auctions__ auction

Figure 25.1: Plan for Q3

ton or pushing the pattern retrieval into the automaton.] f€écribes the rewriting rule
that could be employed to produce these alternative planswgting one plan into an
alternative one. We can examine these alternative quens@ad find an optimal plan
with the lowest cost.

Query optimization can improve the query processing sp&bile keeping the output
accuracy. In addition, load shedding/spilling has to beked when the optimal plan is

not fast enough to keep up with the arrival rate. Therefore,nged to consider the
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( Navigate )
q Sa/bidder
/
( Select ]
| $a//profile contains “frequent”

/]

Navigate
Sa//profile
{ Navigate }
Sa/seller <auction>
. /auction>

auctions_ auction reserve

O—D——0—®

Figure 25.2: Alternative Plan for Q3

interrelationship between automaton-in-out optimizatad structural shedding/spilling.
We can combine the automaton-in-out optimization with Islaedding/spilling into a new
optimization problem. The goal is to find a plan which can cone all the input data and
produce as many output results as possible. To accompishvie need to tackle the
following challenges. First, we need to determine whetherdptimal plan generated
by the query optimizer can consume all the input data, he. query processing rate of
the optimal plan can keep up with the arrival rate. Two, wedneeestimate the cost of
finding an optimal plan. If the cost of finding an optimal plartéo high and the optimal
plan cannot keep up with the arrival speed, we have to switéhreduced plan which

drops data from the input or flushes data to disk temporarily.
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25.2 Multi-Query Load Shedding and Spilling

In this dissertation, we focus on the structural sheddirgygmlling for a single query.
In the future work, one could explore structural sheddingjisg for multiple queries.
Multi-query load shedding and spilling bring up new chafjea. First, since multiple
gueries may need to extract common XQuery expressions fiareef query execution
paradigm which employs a shared processing approach mulgdigned. As discussed
earlier, query patterns are retrieved in the automatons fidquires us to design an au-
tomaton for multiple queries carefully so that duplicatnsition in pattern retrieval can
be avoided. In addition, the changes on the automaton wheimgd new query and
removing an existing query must be simple so that these caomgucted online. Sec-
ond, since queries may be submitted by different users,ubeygreference settings may
vary. How to choose the substructures to drop or spill to m&e the total output qual-
ity for multiple queries is an important issue. Finally, @@nwe propose the solution for
structural shedding/spilling on a single query in this ditgtion, whether we can apply
current structural shedding/spilling solutions to mujtiery workload when faced with

insufficient main memory and CPU processing resources istareisting problem.

25.3 Supporting Hybrid Preference Model in Load Shed-
ding/Spilling

In the future work, one could employ a hybrid preference Whiembines both structure-
based and value-based preference in load shedding/gggéhniques.

In the XML stream scenario, the input stream as well as thewudugsult are composed
of different XML subelements instead of just flat attribyt@sd hence more complex than

relational tuples. As we discussed in Chapter 4, we propaseiature-based preference
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model for XML stream. In a structure-based preference maleimportance of different
elements in an XML tree may vary due to their semantics. Hewefkis structure-based
preference model does not look at the values for a substejotthich may also affect
the output quality in practical applications. Consider aiglonetwork website scenario.
Users may edit their personal profiles and send messagesitdriends at any time.
Status updates, composed of possibly nested structureslimg updates from friends,
recent posts on the wall and news from the subscribed groegemerated continuously.
Different users may be interested in specific primary uplatéor instance, a college
student wants to make new friends in Boston area. He wantg tookfied when his
friends add new friends. When the system resources arestimit may be favorable to
delay the output of unimportant updates and instead onlyrtéfavorite updates” to the
end users. In this case, the “favorite” substructure fa tisier is “friend”. In addition, the
“favorite” value of a new friend’s location is “Boston” siate is interested in new friends
in Boston area. In this case, a hybrid preference model ceetpof both structure-based
and value-based preferences is needed to report “favqritatas” to the end users when
system resources are limited.

To support hybrid preference, a new means to represent baittige-based and
value-based preference for XML data needs to be exploreduality model for eval-
uating the output quality based on the hybrid preferenceaihnnéeds to be addressed.
In addition, as discussed in Chapter 6, many XML stream systgse an automaton to
recognize relevant elements on incoming data streamse 8nopping input data as early
as possible can avoid wasted work, the unimportant sultatesccan be dropped when
we recognize the corresponding tokens using automatonila8iynfor a hybrid prefer-
ence model, we need to drop the unimportant substructutsunimportant values as
early as possible. When detecting a substructure to droy @si automaton, how to add

a value-based filter on this substructure is an importaneiss
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25.4 Organizing of Indexing Flushed Data on Disk

When spilling data to disk, the data should be organized ashibn way so to facilitate
the processing of the supplementary query. In this diss@ntave take a simple approach
which arranges all the spilled data on disk based on thewahorder. Clearly this storage
pattern is simple, since we just need to append every nevillegplata at the end on
disk. However, the disadvantage of this storage pattetraithe spilled data for multiple
elements is mixed together. For instance, suppose ttithelements located on path
Jauction/title and bidder elements on pathauction/bidder are flushed to disk. In
this case, both the title elements and author elements witebognized from the input
stream and put together in their arrival order. Using thisegie pattern, we would have
to distinguish between these two elements again in the sapgitary query to produce
correct results. In addition, since the spilled data isexbliased on their arrival order,
the 1/O costs of reading disk data is proportional to the tomsiof the spilled data. The
elements which are spilled later would take longer time &mlreack into the memory.

In the future, to avoid such disk reading overhead and itleation overhead, we can
build an element indexing storage pattern. When the datpilied into the disk, it is
indexed based on the element name and its position in thé $ty@am. For instance, we
could index disk-resident elements using a vector (DocliartBos, EndPos, Level). A
reference points to its physical location on the disk. Is tiase, we can locate the element
quickly based on the index. The cost of recognizing eacheteis thus a constant value.
In addition, the spilled data which belongs to the same da&tuns placed on the same

disk page to save the disk reading costs.
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25.5 Load Spilling for XQuery with Window Functions

For data streams, since incoming data is infinite, storiegethtire stream is obviously
impossible. For many applications, data from the recent igamore likely to be rele-
vant and interesting than older data. Continuous queries been extended with sliding
window constraints for relational streams [5] to purgees@dta. A window constraint
can be either time-based or count-based. A time-based wicdastraint indicates that
only data that arrives within the last window time-frame s&ful and need to be stored.
A count-based window constraint indicates that only thetmesent certain number of
tuples need to be stored.
For XML streams, [14] first proposes to extend XQuery with adaw function.

In [14], a FORSEQ clause is proposed to represent windowsu§Query. Considering
XML stream as an infinite sequence of items, the FORSEQ cliéeisges over an input
stream and binds the variable to a sub-sequence (aka wirafawg input sequence in

each iteration. An example window function (FORSEQ clausea} follows:

DECLARE variable $seq as (string)**
FOR $a in $seq sliding window
START at $x WHEN $seq[$x]/@a eq S
END at $y WHEN $seq[$yl/@a eq E

RETURN $w

The boundaries of a window are defined by START and END clauS@&RT and
END clauses involve a WHEN clause which specifies a preditateitively, the WHEN
condition of a START clause specifies when a window should.sthe WHEN condition
of a END clause specifies when an open window should be cloBed.window func-
tion above generates subsequences of items from the inpatist It goes through input

stream item by item. If the attributeof an item is equal to “S”, a new window is opened.
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If the attributeq of an item is equal to “E”, the open window is closed. Figure3Zihows
an example fragment of input sequence and the windows geddrg the above window

function. Observe that three windows (subsequences) arrated. They aréb, ¢, d},
{c,d} and{e, f}.

1 <b a=St=1/> w2

2 <c a=St=2/>

3 <d a=Et=3/> w3
4 <e a=St=4/>
5 <f a=Et=5/> w4

6 <g a=St=6/> | U _________

Figure 25.3: An Example Fragment of Input Sequence and @&te¥Vindows

Let us go through the data fragment in Figure 25.3 and exathimgeneration of
windows. For data shown in Figure 25.3, we iterate the inpguence. For the first
item “b”, since its attribute: is equal to “S”, a new windoww1 is opened. Similarly,
for item “c”, since its attribute: is equal to “S”, windoww?2 is opened. For item “d”,
since its attribute: is equal to “E”, windowsw1 andw?2 are closed. Here window1
has subsequend®, c, d} andw?2 has subsequende, d}. For item “e”, windoww3 is
opened. Windowu3 is closed when item “f” is encountered. Note that windewis an
open window since item “g” is the last item in the input seqeeenn this case, such open
window does not generate a subsequence.

Load spilling applied to XML streams with window functionsrigs new challenges.
Note that spilling different items may lead to varying outptiwindows. Figure 25.4 and
Figure 25.5 show the effect on output windows when spillitegni “b” and “d” respec-
tively. When spilling item “b”, since it is the start item ofimdow w1, we cannot identify

the start of windoww1 in this case. Windowuv1 hence is not produced in the runtime
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output. When spilling item “d”, since its attributeis equal to “E”, we cannot detect the
end of windowsw1 andw?2. In this case, the output of these two windows is affected.
Observe that both the spilling of “b” and “d” element cause libss of some windows.
This is because “b” as well as “d” element affect the pre@di@taluation of START or
END clause. Therefore, we need to measure how an input itenilsotes to the output
of each window. In addition, algorithms must be designedhimose items to spill so to

maximize the number of output windows.

1—<b a=St=1/>_ w2

2 <c a=St=2/>

3 <c a=Et=3/> w3
4 <d a=St=4/>
5 <e a=Et=5/> w4

6 <f a=St=6/> -D-

1 <b a=St=1/> w2

2 <c a=St=2/>

3 od a-Et=3/> w3

4 <e a=St=4/> | [ T
5 <f a=E t=5/> w4

6 <g a=St=6/> | U _________

Figure 25.5: Spilling Effect on Windows When Spilling d
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