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Abstract

Direct survey estimates for small areas are likely to yield unacceptably large

standard errors due to the small sample sizes in the areas. This makes it necessary to

use models to “borrow strength” from related areas to find more reliable estimate for

a given area or, simultaneously, for several areas. For instance, in many applications,

data on related multiple characteristics and auxiliary variables are available. Thus, mul-

tivariate modeling of related characteristics with multiple regression can be implemented.

However, while model-based small area estimates are very useful, one potential

difficulty with such estimates when models are used is that the combined estimate from

all small areas does not usually match the value of the single estimate on the large area.

Benchmarking is done by applying a constraint to ensure that the “total” of the small

areas matches the “grand total”. Benchmarking can help to prevent model failure, an

important issue in small area estimation. It can also lead to improved prediction for

most areas because of the information incorporated in the sample space due to the ad-

ditional constraint. We describe both the univariate and multivariate Bayesian nested

error regression models and develop a Bayesian predictive inference with a benchmarking

constraint to estimate the finite population means of small areas. Our models are unique

in the sense that the benchmarking constraint involves unit-level sampling weights and

the prior distribution for the covariance of the area effects follows a specific structure.

We use Markov chain Monte Carlo procedures to fit our models. Specifically,

we use Gibbs sampling to fit the multivariate model; our univariate benchmarking only

needs random samples. We use two datasets, namely the crop data (corn and soybeans)

from the LANDSAT and Enumerative survey and the NHANES III data (body mass

index and bone mineral density), to illustrate our results. We also conduct a simulation

study to assess frequentist properties of our models.
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Chapter 1

Introduction

This dissertation is focused on implementing a Bayesian predictive inference to

estimate the finite population means of small domains with benchmarking. We use a

Bayesian nested-error regression model with an internal benchmarking constraint that

incorporates unit-level sampling weight.

In this chapter, we introduce the concept of benchmarking and discuss the rea-

sons for implementing it in small area estimation. In Section 1.1, we discuss the issues

in model-based small area estimation and how benchmarking would help resolve some

of the issues. We introduce our univariate nonbenchmarking Bayesian model in Section

1.2. Moreover, we present detailed discussions of the different studies related to our work

in Section 1.3. Lastly, we will introduce in Section 1.4 the form of the benchmarking

constraint we use in our study. Our benchmarking constraint incorporates unit-level

survey or sampling weights, so we also give a brief discussion of that in Section 1.4. We

would also introduce in Section 1.5 the two applications on which we apply our results,

as well as discuss some of the literature related to our study.

This dissertation has three additional chapters following the introduction. In

Chapter 2, we describe our benchmarking Bayesian model for the univariate case. Here

we introduce the Bayesian version of the Battese, Harter, and Fuller (1988) nested-error

regression model. We present in Chapter 2 how we incorporate the constraint into the

regression model. We use the resulting univariate Bayesian benchmarking model to

estimate the finite population means of small areas by means of Bayesian predictive

inference procedures. We will present the results of our univariate Bayesian models us-
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ing the crop data (Battese, Harter, and Fuller (1988)) and the body mass index (BMI)

and bone mineral density (BMD) data from NHANES III (1996). We also present a

simulation study drawing data similar to the corn hectares data to further compare the

univariate nonbenchmarking (NBM) and univariate benchmarking (BM) models.

In Chapter 3, we extend the univariate results of Chapter 2 to the multivari-

ate setting. We discuss the Bayesian version of the multivariate nested-error regression

model of Fuller and Harter (1987). There is a practical significance to this extension

of the benchmarking model to the multivariate case because in many small area prob-

lems, data on related multiple characteristics and auxiliary variables are available. For

instance, the two crops, corn and soybean, in the survey and satellite data would be

more appropriately benchmarked simultaneously, so as the two health variables, BMI

and BMD, in the NHANES III data.

Finally, in Chapter 4 we discuss our methodological contributions, summarize

our results, present concluding remarks, and discuss the different problems we want to

do in the future that are related to this research.

1.1 Benchmarking in Small Areas

Small area estimation has gained popularity in recent years due to the growing

demand for reliable small area statistics from both the public and the private sectors

worldwide. For instance, in many countries, including United States and Canada, the

government use small area statistics in the apportionment of funds, as well as in regional

and city planning. On the other hand, the private sectors have demands for small area

statistics because the policy making of many businesses and industries relies on local

socio-economic conditions. One major problem in small area estimation is that the sam-

ple sizes for small areas are typically too small. This is because these sample sizes depend

on the overall sample size in a survey. But the overall sample size is usually determined

to provide specific accuracy at a much higher level of aggregation than that of small

area. For instance, sample survey data are typically used to derive reliable estimators of

totals and means for large areas or domains. Thus, the usual direct survey estimators

for a small area, based on data only from the small units in the area, are likely to yield

2



unacceptably large standard errors due to the unwarranted small size of the sample in

the area. Thus, making the direct estimates from the small areas unreliable. In or-

der to provide reliable estimates, a common practice in small area estimation is to use

appropriate models that “borrow strength” from neighboring or related small areas, or

other correlated variables (via multivariate approach) and relevant covariate informa-

tion available from other sources, such as administrative records. This concern about

the unreliability of small area estimates led to the development of various model-based

methods in small-area estimation; see Rao (2003) for a complete discussion of small area

estimation, and Ghosh and Rao (1994) for an appraisal of some of these methods.

Appropriate models are often used to produce reliable small area estimates by

“borrowing strength” from the ensemble. For instance, since there are many appli-

cations with multiple characteristics and auxiliary variables in small area problems, a

multivariate modeling of related characteristics using a multiple regression model can be

implemented (Fay, 1987). The success of such modeling rests on the strength of depen-

dence among these characteristics. Multivariate analysis can help increase precision by

using data from other characteristics. For instance, in the LANDSAT and Enumerative

Survey data (see Battese, Harter, and Fuller (1988)), the yield of corn may be related

to the yield of soybean, synergistically or antagonistically. This can also be true with

the body mass index (BMI) and bone mineral density (BMD) from NHANES III (1996).

The model-based small area estimates can differ widely from the direct estimates of the

individual areas, especially for areas with very low sample sizes. Thus, while model-

based small area estimates are very useful, one potential difficulty with such estimates

is that when aggregated, the combined estimate of all the small areas may be quite

different from the corresponding direct estimate on the large area, the latter being usu-

ally believed to be quite reliable. For example, sample surveys are usually designed to

achieve specified inferential accuracy at a higher level of aggregation. Thus, the samples

from each small area might not yield accurate or reliable estimates.

In the government and public sector, an overall agreement with the direct es-

timates at an aggregate level may sometimes be politically necessary to convince the

legislators of the utility of small area estimates. One way to ensure that the combined

model-based estimates matches the direct design-based estimate is by implementing

benchmarking, which is done by applying a constraint, internally or externally, to ensure
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that the “total” of the small areas matches the “grand total.” Internal benchmarking

occurs when the pre-specified estimator can be a weighted average of the direct small

area estimators, and external benchmarking occurs when the pre-specified estimator is

obtained from external sources, such as a different survey census, or other administrative

records. Through benchmarking, the model-based estimates are modified in order to get

the same aggregate estimate for the larger area. We are forcing the combined small

area estimates to match the direct estimate of the large area obtained when the small

areas are collapsed into a single area. Model failure is an important issue in small area

estimation. The problem of non-overall agreement between combined small area esti-

mates and the overall estimate from using model-based estimates can be a more severe

issue if the model fails. This can cause serious problems since most often, there is no

real way to check for validity of the assumed model. Benchmarking can help to prevent

this model failure, because the implementation of benchmarking corrects for some bias.

Thus, it provides some guard against model failure. Benchmarking also shifts the small

area estimators to accommodate the benchmark constraint. In doing so, it can provide

some increase in the precision of the small area estimators of the finite population means

or totals because the sample space is reduced by the constraint. This makes the bench-

marking technique desirable to practitioners of model-assisted small area estimation.

1.2 Basic Problem

Assume that there are ℓ small areas. Let Ni be the population size of the ith

area of a finite population (i = 1, . . . , ℓ) and N =
ℓ∑

i=1

Ni be the total population size.

Let {yij, i = 1, 2, . . . , ℓ, j = 1, 2, . . . , Ni} denote a finite population where yij

is the response associated with the jth unit within the ith small area. Assume that

yij, i = 1, . . . , ℓ, j = 1, . . . , ni, are observed from the finite population, where ni is the

size of the sample from the ith area (i = 1, . . . , ℓ) and n =
ℓ∑

i=1

ni is the total sample size.

We assume Ni and ni are fixed known quantities. We write the n× 1 vector of observed

values as y
˜

s =
(
y
˜

′

s1
, . . . , y

˜

′

sℓ

)
′

with y
˜

si
= (yi1, . . . , yini

)′ for i = 1, 2, . . . , ℓ.

Our main goal is to make inference about the finite population mean of the ith

4



area, Y i = Ni
−1

Ni∑

j=1

yij, i = 1, . . . , ℓ, based on the sample data y
˜

s under the nested-error

regression model of Battese, Harter, and Fuller (1988). To predict the finite population

mean, we need to predict the nonsample values in the population. Our approach is to

use Bayesian predictive inference to generate values of the finite population means from

the small areas based on the sample data. We predict the values of the nonsample data

from its posterior predictive distribution.

The nested-error regression model of Battese, Harter, and Fuller (1988) for finite

population means accommodates covariates at the unit level. Assume x
˜

ij is the p × 1

vector of covariates associated with yij, i = 1, 2, . . . , ℓ, j = 1, 2, . . . , Ni. Note that each

x
˜

ij contains an intercept. Let Xs be the n × p matrix of covariates for the sample data

y
˜

s. Similarly, let Xns be the (N − n) × p matrix of covariates for the nonsample data

y
˜

ns
. Also, denote by Xns(N)

the (N − 1− n) ×p matrix of covariates for the nonsampled

observations without yℓ,Nℓ
. Note that these matrices of covariates are assumed to be

full-rank.

The population model of the Battese, Harter, and Fuller (1988) nested-error re-

gression model for finite population means is given by

yij = x
˜
′

ijβ
˜

+ νi + eij,

i = 1, 2, . . . , ℓ, j = 1, 2, . . . , Ni, where β
˜

= (β0, . . . , βp−1)
′ is the p× 1 vector of regression

parameters. Let ν
˜

= (ν1, . . . , νℓ)
′ be the ℓ × 1 vector of random effects. These area

effects are assumed to be independent and each follows a normal distribution. That is,

νi
iid
∼ Normal

{
0,

(
ρ

1 − ρ

)
σ2

}
, i = 1, 2, . . . , ℓ

and independent of the unit errors eij, which are also assumed to follow

eij
ind
∼ Normal

{
0, σ2

}
.

We define ρ as the intra-class correlation within areas and is the same for each area. We

assume that 0 < ρ < 1. The introduction of ρ in the model is a novel idea in this study.
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Using the prior

p
(
β
˜
, σ2, ρ

)
∝

1

σ2
, σ2 > 0,

the Bayesian nonbenchmarking model (NBM) is given by

yij|ν
˜
, β
˜
, σ2 ind

∼ Normal
{
x
˜
′

ijβ
˜

+ νi, σ
2
}

, i = 1, . . . , ℓ, j = 1, . . . , Ni, (1.1)

νi|ρ, σ2 iid
∼ Normal

{
0,

(
ρ

1 − ρ

)
σ2

}
, 0 < ρ < 1, (1.2)

p
(
β
˜
, σ2, ρ

)
∝

1

σ2
, σ2 > 0. (1.3)

Essentially, the model specified by (1.1) and (1.2) is a reparameterization of the

Battese, Harter, and Fuller (BHF) model, and in fact, it is equivalent to the BHF model.

To see this, suppose we replace (1.2) by

νi|σ
2, δ2 iid

∼ Normal
{
0, δ2

}
,

then ρ =
δ2

δ2 + σ2
is the intra-class correlation of the yij within each area. This is also

the same as

yij = x
˜
′

ijβ
˜

+ νi + eij,

where eij
ind
∼ Normal {0, σ2} and independently νi

iid
∼ Normal {0, δ2} , as in the BHF

model. However, there is a minor difference which is ρ must be strictly less than 1 in

(1.2). This reparameterization is helpful to prove propriety of the joint posterior density,

and it also helps to simplify the computation.

Using Bayes’ theorem in (1.1) - (1.3), the joint posterior density of the nonbench-

marking model is

π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
∝

(
1

σ2

)1+(n+ℓ)/2(
1 − ρ

ρ

)ℓ/2

× exp

{
−

1

2σ2

[
ℓ∑

i=1

(
ni

λi

(
νi − λi

(
ysi

− x
˜
′

si
β
˜

))2
+ λi

(
1 − ρ

ρ

)(
ysi

− x
˜
′

si
β
˜

)2

+

ni∑

j=1

[(
yij − ysi

)
−
(
x
˜

ij − x
˜

si

)
′

β
˜

]2
)]}

,
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where ysi
=

1

ni

ni∑

j=1

yij, x
˜

si
=

1

ni

ni∑

j=1

x
˜

ij, and λi =
ρni

ρni + (1 − ρ)
for i = 1, 2, . . . , ℓ.

Assuming that 0 < ρ < 1 and the design matrix is full rank, the joint posterior density

π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
is proper; see Nandram, Toto, and Choi (2010) for a similar proof.

Based on the observed values y
˜

s, we want to make inference for the finite

population mean Y i. Let x
˜

nsi
=

1

Ni − ni

Ni∑

j=ni+1

x
˜

ij and define the sampling fraction

fi =
ni

Ni

, i = 1, 2, . . . , ℓ. To be able to make inference for Y i (i = 1, . . . , ℓ) , given the

sample observations y
˜

s, a possible approach is to sample from the distribution Y i|y
˜

s.

The distribution of Y i|y
˜

s is

p
(
Y i|y

˜
s

)
=

∫
p
(
Y i|ν

˜
, β
˜
, σ2, y

˜
s

)
π
(
ν
˜
, β
˜
, σ2|y

˜
s

)
dν
˜
dβ
˜
dσ2. (1.4)

This is called Bayesian predictive inference. Under the nonbenchmarking Bayesian model

(NBM), Y i given y
˜

s, ν
˜
, β
˜
, σ2, for i = 1, . . . , ℓ, has the following distribution

Y i|ν
˜
, β
˜
, σ2, y

˜
s ∼ Normal

{
fiysi

+ (1 − fi) x
˜

nsi

′β
˜

+ (1 − fi) νi,
σ2

Ni

(1 − fi)

}
. (1.5)

Notice that the mean of the distribution of Y i|ν
˜
, β
˜
, σ2, y

˜
s depends on information

both from the sample data and nonsample data from the ith area, and are independent

from the distribution of the finite population means of the i∗th areas, i∗ = 1, 2, . . . , ℓ, i∗ 6=

i.

1.3 Literature Review

In this section we mention some of the existing benchmarking literature for

small area estimation. Benchmarking in small area estimation has been an active area

of research in recent years, with the use of Bayesian analysis becoming a more popular

method in executing the procedure.

Pfeffermann and Tiller (2006) used state-space models to benchmark small area

estimators to aggregates of survey direct estimators within a group of areas. Their

method is implemented to improve the procedure of the US Bureau of Labor Statistics

7



(BLS), which produces monthly employment and unemployment estimates for different

census divisions and states. The work of Pfeffermann and Tiller (2006) is an example

of internal benchmarking, where their benchmark constraint depended on a weighted

direct estimator of the small area means. Using hierarchical Bayes (HB) approach,

You, Rao, and Dick (2004) studied benchmarked estimators for small area means based

on unmatched sampling and linking area level models proposed by You and Rao (2002b).

Their method is evaluated using the 1991 Canadian census under-coverage estimation.

You, Rao, and Dick (2004) used external benchmarking to develop their hierarchical

Bayes (HB) estimators for area level unmatched sampling and linking models.

Hillmer and Trabelsi (1987) developed a statistical model-based approach to the

benchmarking problem in the study of time series data. Benchmarking is done when

data from a monthly sample survey are combined with data from an annual census for

the purpose of improving the survey estimates. Previous authors have used numerical

analysis techniques to derive methods to perform benchmarking. This article formulates

the benchmarking problem in a statistical framework and uses times series methods to

derive a solution. This solution is based in part upon the statistical properties of the

time series being benchmarked and upon the properties of the survey errors associated

with that time series. The article makes use of the theory of signal extraction that

has been derived for non stationary time series. Two common types of benchmarking

problems are studied in greater detail. The results of the theory derived in the article

are illustrated by an example.

Wang, Fuller, and Qu (2008) gave a characterization of the “best” linear unbi-

ased predictor (BLUP) for small area means under an area level model

Yi = x
˜
′

iβ
˜

+ bi + ei, i = 1, 2, . . . , n,

that satisfies a benchmarking constraint involving the small area predictors ŷi

n∑

i=1

ωiŷi =
n∑

i=1

ωiYi,

where ωi are the area-level sampling weights such that
n∑

i=1

ωiYi is a design consistent

8



estimator of the total (or the mean). They aim at minimizing the ‘loss function’ criterion

Q (ŷa) =
n∑

i=1

ϕiE(ŷa − yi)
2,

where ϕi, i = 1, 2, . . . , n are a chosen set of positive weights, while satisfying the bench-

marking constraint above. In fact, all linear unbiased predictors satisfy this ‘loss func-

tion’ criterion. In benchmarking, this characterization led to a unifying view of some

BLUP based predictors (e.g., Battese, Harter, and Fuller (1988), Isaki, Tsay, and Fuller

(2000), Pfeffermann and Barnard (1991)). Wang, Fuller, and Qu (2008) also presented

an alternative way of imposing the benchmarking constraint. In this approach, the

BLUP estimator would have a self-calibrated property. They used an approach in which

the weights are included in an augmented model, that is, we have

Y
˜

= X
˜

1β
˜

+ b
˜

+ e
˜

where X
˜

1 = (X
˜

, ω
˜
) and ω

˜
= (ω1, ω2, . . . , ωn)′ . This is used to obtain the best linear unbi-

ased predictor (BLUP) or Empirical BLUP (EBLUP). With the weights ω
˜

in the model,

their adjustment met the benchmarking criterion above, which has smaller adjustment

for the model than without the weights. Their proposed self-calibrated augmented model

reduces bias both at the overall and small area level. However, their model does not

predict finite population means, and so their benchmarking constraint is different from

ours. We wish to benchmark the finite population mean.

You and Rao (2003, 2002a) developed self-calibrated estimators for small area

means under the unit level nested error regression model

yij = x
˜
′

ijβ
˜

+ vi + eij, j = 1, 2, . . . , ni, i = 1, 2, . . . , ℓ.

You and Rao (2003) benchmarked the Battese, Harter, and Fuller (1988) regression mod-

els using survey weights. They proposed three pseudo-hierarchical Bayes estimators for

the small area means based on survey weights. The use of survey weights in their mod-

els ensured design-consistency of their estimators. Like You and Rao (2003, 2002a),

we also combine a unit-level benchmarking constraint with a nested error regression

model. They also illustrated the resulting survey-weighted univariate model using the

crop data. You and Rao (2003) proposed a pseudo-HB estimator obtained from a two-
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step estimation process involving both area and unit level models, while You and Rao

(2002a) used a pseudo-EBLUP procedure to find the estimator. The pseudo-HB (or

similarly, pseudo-EBLUP) estimates depend on the survey weights and satisfy design

consistency. An advantage of their proposed estimator is that it automatically satisfies

the benchmarking property when the estimators θ̂iw are aggregated over i, if the weights

ω̃ij are calibrated to agree with the known population total Ni of the ith area, that is,

ni∑

i=1

ω̃ij = ω̃i· = Ni.

This means

ni∑

i=1

Niθ̂i equals the direct survey regression estimator Ŷω +
(
X − X̂ ′

ωβ
˜

w

)
,

of the overall total Y, where

Ŷω =
ℓ∑

i=1

ni∑

j=1

ω̃ijyij,

is the direct estimator of the overall total Y. They used the Gibbs sampler to obtain

samples of the estimates of the regression coefficients and error-term variance parame-

ters. However, because of the awkwardness of the joint posterior density, it was difficult

for You and Rao (2003, 2002a) to perform complete Bayesian analyses. Our work is

different from the work of You and Rao because we discuss a full Bayesian predictive

inference of the finite population means of small areas. Without transforming the data,

we show in Chapter 2 how to do a full Bayesian analysis to estimate the finite population

means of small areas; we also show this for multivariate outcomes in Chapter 3.

Datta, Ghosh, Steorts, and Maples (2009) discussed several Bayesian benchmarked

estimators for area-level models. That is, they found the benchmarked Bayes estimator

of θ̂
˜

=
(
θ̂1, . . . , θ̂ℓ

)
of the small area means vector θ

˜
= (θ1, . . . , θℓ) such that

ℓ∑

i=1

ωiθ̂ = t,

where t is either pre-specified from some other source or t =
ℓ∑

i=1

ωiθ̂i, and ωi are the

weights attached to the direct estimators. They implemented two sets of benchmarking

constraints, one with respect to some weighted mean and another with respect to both
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weighted mean and weighted variability. Datta, Ghosh, Steorts, and Maples (2009) de-

veloped a class of constrained empirical Bayes estimators for area-level models using

either internal or external benchmarking. They applied their results to produce model-

based estimates of the number of poor school-aged children at the state, county, and

school district levels. Their Bayes estimators are obtained by minimizing the posterior

expectation of the weighted squared error loss

ℓ∑

i=1

φiE
[
(θi − ei)

2|θ̂
˜

]

with respect to the ei’s satisfying eω =
ℓ∑

i=1

ωiei = t. Moreover, the φi’s may be the

same as the wi, but this does not necessarily have to be the case. They mentioned that

these φi may be regarded as weights for a multiple-objective decision process, that is,

each specific weight is relevant only to the decision-make for the corresponding small

area, who may not be concerned with the weights related to decision-makers in other

small areas. One advantage of their Bayesian approach is its ability to adjust to any

general Bayes estimator, linear or non-linear. This is a decision-theoretic approach to

benchmark small areas with only area-level data. It is interesting that they also showed

that the standard raking procedure arises as a special case from their procedure. Our

approach is different from the work of these authors because they do not make inference

directly about the finite population mean of an area.

Nandram, Toto, and Choi (2010) did a full Bayesian analysis of the finite popula-

tion mean of each area using the Scott-Smith superpopulation model (Scott and Smith,

1969)

yij
iid
∼ Normal

{
θ + νi, σ

2
}

, j = 1, . . . , Ni, i = 1, . . . , ℓ,

where θ is an overall effect and the νi are area effects. Note that the nested-error

regression model of Battese, Harter, and Fuller (1988) used in this study is an extension

of the Scott-Smith model to accommodate covariates at the unit level. Similar to the goal

of our study, Nandram, Toto, and Choi (2010) wanted to benchmark the estimators of

the Ȳi, i = 1, . . . , ℓ. In this case, Nandram, Toto, and Choi (2010) allowed a practitioner

to specify the finite population mean for all areas combined; one can estimate the finite

population mean for all areas combined and use that as the specified value ignoring the
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variability. They included the benchmark constraint

ℓ∑

i=1

Ni∑

j=1

yij = aN,

where it is assumed that a is a fixed known quantity. If a is not known, one would need

to fit an independent model that does not distinguish the small areas to get a “precise”

value of a. Our approach is similar to Nandram, Toto, and Choi (2010), but we are doing

internal benchmarking, which is considerably more difficult.

Lastly, Datta, Day, and Maiti (1998) discussed a multivariate model for Bayesian

small area estimation. They implemented Bayes prediction of small area mean vec-

tors using the multivariate nested error regression model of Fuller and Harter (1987).

Datta, Day, and Maiti (1998) developed a multivariate hierarchical Bayes approach to

predict the small area mean vectors based on the multivariate nested error regression

model

Y
˜

ij = x
˜

ijB + u
˜

ij, (1.6)

where Y
˜

ij is an q−dimensional row vector of observations on the variables for which

small area estimates are desired, x
˜

ij is a p−dimensional row vector of auxiliary variables

for which the small area totals (or means) are known, B is a q× p matrix of coefficients,

and u
˜

ij are the q−dimensional row vector of errors. Our multivariate benchmarking

Bayesian model in Chapter 3 is similar to this model. Note that in (1.6),

u
˜

ij = v
˜

i + e
˜

ij,

v
˜

i ∼ Normal (0
˜
, Σvv) ,

e
˜

ij ∼ Normal (0
˜
, Σee) ,

where v
˜

i is independent of e
˜

ij for all i, j, k. They were interested in predicting

γ
˜

i
= N−1

i

Ni∑

j=1

Y
˜

ij,

the finite population mean for the ith domain, i = 1, 2, . . . , ℓ. Datta, Day, and Maiti

(1998) also applied their model to estimate the finite population means of the crop (corn
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and soybeans) data (Battese, Harter, and Fuller, 1988). They used Gibbs sampling to

generate their Monte Carlo samples using the full conditional distributions from the

joint posterior distribution, which is the same approach we implement in our numeri-

cal calculation. However, like Battese, Harter, and Fuller (1988), Datta, Day, and Maiti

(1998) did not incorporate any means of benchmarking in their hierarchical Bayesian

model. Datta, Day, and Maiti (1998) observed some efficiency gains in the use of the

multivariate model over its univariate counterpart. One of the main difference of our

model with Datta, Day, and Maiti (1998) is the form of the joint prior imposed in their

hierarchical Bayes model. They used an improper prior of the form

π
(
β
˜
, Σee, Σvv

)
∝ |Σvv|

−av/2|Σee|
−ae/2.

This type of prior belongs to the family of inverse-Wishart distributions. Gelman (2006)

discussed the problems with the inverse-gamma family of “noninformative” prior distri-

bution for the variance of the area effects in the two-level normal data. The inverse-

gamma(ǫ, ǫ) model is one of the commonly used improper prior of the scalar area effects

variance. This prior does not have any proper limiting posterior distribution. As a result,

posterior inferences are sensitive to ǫ. It cannot be comfortably set to a low value such as

0.001. This problem can generalize in the inverse-Wishart family of prior distributions.

Despite the use of these improper inverse-Wishart priors, Datta, Day, and Maiti (1998)

obtain a set of necessary and sufficient conditions for the propriety of the posterior dis-

tributions corresponding to this class of improper priors on the components of variance

matrices. As a difference with the work of Datta, Day, and Maiti (1998), we use a more

specific form of prior for the distribution of the area effects ν
˜

to alleviate some of the

issues that Gelman (2006) brought up in the use of the “noninformative” prior distribu-

tions for variance components. Our prior distribution is more specific that it makes the

numerical computations easier, but it also led to a more complex joint posterior distribu-

tion. To compare the performance of the multivariate approach with the usual univari-

ate approach they analyzed the survey and satellite data of Battese, Harter, and Fuller

(1988). Their simulations show that the multivariate approach may result in substantial

improvement over its univariate counterpart.
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1.4 The Benchmarking Constraint

Many surveys use differential probabilities of selection (e.g., probability propor-

tional to size) and sampling weights are used to correct for other sources of bias as well.

Sampling weights are used to adjust for oversampling of certain populations; sampling

weight adjustment for noncoverage and nonresponse. Generally, models used in small

area estimation do not make use of the unit level survey weights. For instance, the Third

National Health and Nutrition Examination Survey (NHANES III, 1996), has a large

oversampling of young children, older persons, black persons, and Mexican-Americans

because there are many nonrespondents among children and adolescents, and blacks

and Mexican-Americans are selected with higher probability. To account for this com-

plex survey design, including oversampling and survey non-response, sampling weights

were assigned to each sampled individual; see NHANES III (1996) for more details. To

achieve design consistency, it is essential that sample weights be incorporated into the

model. Otherwise, it is likely that users will misinterpret the results. The sampling

weights are used to produce estimates of population means and standard errors of the

mean.

For i = 1, . . . , ℓ, j = 1, . . . , ni, denote the sampling weight corresponding to

the sampled unit y
˜

ij
as ωij. Note that the sample weights for the nonsampled units are

not generally available for secondary data analysts. So, the jth sampled unit within

the ith area must represent ωij units in the entire population including itself. Thus, for

i = 1, . . . , ℓ,

ni∑

j=1

ωij
∼= Ni. The sampling weights can be ωij = N/n, i = 1, . . . , ℓ, j =

1, . . . , ni (e.g., proportional allocation), or ωij = Ni/ni for i = 1, . . . , ℓ, j = 1, . . . , ni

(e.g., simple random sampling within areas).

To estimate the small area mean Y i, we want to determine a standard predic-

tor Ŷ i, i = 1, 2, . . . , ℓ. A practitioner might want to use design-consistent estimator to

predict Y i. Given fixed known sampling weights ωij, i = 1, . . . , ℓ, j = 1, . . . , ni, a di-

rect design-based estimator of the small area mean Y i that is popular among survey

practitioners is the Horvitz-Thompson estimator,

ŷi =

ni∑

j=1

ωijyij

Ni

.
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If the design is simple random sampling within areas, that is, ωij = Ni/ni, then a design-

consistent estimator of Y i is the ith sample mean yi.

But, as mentioned earlier, the problem with the use of direct design-based esti-

mators is that the sample sizes for the small areas might be too small and these standard

survey estimators would yield unacceptably large standard error. This enforces the use

of model-based estimators. However, model-based estimators of the small area means

based on unit level model, such as a nested error regression model, do not use the unit

level survey weights, ωij, attached to yij. Ignoring the sampling weights when using a

unit level model can lead to a small area estimator that is not design-consistent. One

way to achieve design consistency when using model-based estimators is by incorporating

the design-consistent estimator in the model as a benchmarking constraint.

For the area level models, a common form of the benchmarking constraint is,

ℓ∑

i=1

ωiŷi =
ℓ∑

i=1

ωiyi, (1.7)

where ωi is the area level sampling weights, ŷi are the small area predictors (i.e., model-

based), and yi are the direct area estimators (i.e., design-based). Wang, Fuller, and Qu

(2008) used (1.7) as the restriction satisfied by their proposed EBLUP estimator for

small area mean. In an alternative way of estimating the small area means that satisfy

(1.7), they included the fixed survey weights ωi in the constraint as part of the covariates

in their augmented area level model.

It is reasonable to expect
ℓ∑

i=1

Ni∑

j=1

yij =
ℓ∑

i=1

Niŷi. Thus, because

ni∑

j=1

ωij = Ni, a

possible benchmarking constraint is given by

ℓ∑

i=1

Ni∑

j=1

yij =
ℓ∑

i=1

ni∑

j=1

ωijyij. (1.8)

Note that both sides of (1.8) are random, thereby providing an internal benchmarking.

For instance, in the left-hand side of (1.8), yij, i = 1, . . . , ℓ, j = 1, . . . , ni, are observed,

and yij, i = 1, . . . , ℓ, j = ni + 1, . . . , Ni, are to be predicted using Bayesian predictive

inference. If a simple random sampling design is assumed, one possible form of the

sampling weight ωij is given by ωij = N/n, for i = 1, . . . , ℓ; j = 1, . . . , ni. Thus, the
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benchmarking constraint in (1.8) simplifies to

1

N

ℓ∑

i=1

Ni∑

j=1

yij =
1

n

ℓ∑

i=1

ni∑

j=1

yij. (1.9)

Note that (1.9) can be written as

ℓ∑

i=1

NiY i

N
=

ℓ∑

i=1

niyi

n
.

Nandram and Toto (2010) used (1.9) as the benchmarking constraint in the nested-error

regression model with unequal sampling variances.

However, note that ys is not the only choice for an overall direct estimator of Y .

A practitioner could use other values as the direct estimator of Y . For instance, one can

use the constraint
ℓ∑

i=1

Ni∑

j=1

yij = Na, where a is a fixed known constant to be specified

by the practitioner. The value of the benchmark constraint can be specified either by

using a direct estimate of the finite population mean of the large area based on some

auxiliary data or by determining a model that would give a value of a with relatively

small standard error; for example, Nandram, Toto, and Choi (2010) used a fixed and

known value of a. However, we focus on the benchmark constraints, where both sides of

the equation are random. This avoids the uncertainty in the specification of a, and in

fact, ys is a design consistent estimator of Y .

In Chapter 3, we incorporate q benchmarking constraints

ℓ∑

i=1

Ni∑

j=1

yijk =
ℓ∑

i=1

ni∑

j=1

ωijyijk, k = 1, 2, . . . , q. (1.10)

Once again in these q constraints, the ωij is the sampling weight of the jth unit in the

ith population. Because the sampling weight are unit-based, the sampling weights are

the same for all q benchmarking equations.
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1.5 Applications

We apply our results to two illustrative examples. Our first example involves crop

data based on the survey and satellite data conducted by the United States Department

of Agriculture (USDA). The second example is from one of the large-scale national

studies of the US government, the National Health and Nutrition Examination Survey

(NHANES III), which was conducted by the Center for Disease Control, National Center

for Health Statistics (CDC-NCHS). These applications show the diversity of the usage

of the results of our study.

1.5.1 Corn and Soybeans Hectares Data

Knowledge of the area under different crops is important to the U.S. Depart-

ment of Agriculture. Different surveys have been designed to estimate crop areas for

large regions, like crop-reporting districts, individual states, and the whole United States.

However, prediction of crop areas for small domains such as counties has been one of the

problems of the National Agriculture Statistics Service (NASS) because of the lack of

enough available data from farm surveys with small areas. In recent years, the United

States Department of Agriculture (USDA) has been investigating the use of LANDSAT

satellite data in association with farm-level survey observations, both to improve its es-

timates of crop area for crop-reporting districts and to develop estimates for individual

counties (Battese, Harter, and Fuller, 1988).

Most of the corn grown in the United States comes from the Corn Belt, which

consists of ten major states; Iowa is the largest corn-producing state in the U.S.. Iowa

is also among the major states for soybean production. Producers in the U.S. feed most

of the corn crop to cattle, hogs, sheep and poultry. The rest is used for processed food,

industrial products such as cornstarch and plastic, renewable energy and ethanol. Corn

is the U.S. largest crop, both in volume and value. Iowa has produced the largest corn

crop over the current decade. In an average year Iowa produces more corn than most

countries (e.g., three times as much corn as Argentina). Soybean and corn are grown

in rotation in Iowa. Soybean is a healthy and rich source of protein for both animals

and humans (e.g., tofu). Nearly all soybeans are processed into oils, many industrial

products such as lubricants, solvents, cleaners and paints. Soybeans are also used for

animal feed, biodiesel, cleaning product and candles. Thus, it is important to study the
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production of corn and soybean in Iowa; in fact, corn and soybeans are the main products

of the “Breadbasket” or “Grain Belt” of the United States. The “Breadbasket,” also

known as the Granary, of the country is a region which, because of richness of soil and/or

advantageous climate, produces an agricultural surplus which is considered vital for the

country as a whole. “Grain Belt” is an informal name for the prairie-region states across

the Midwest that produces a substantial amount of the world’s grain and soybean. This

region includes the state of Iowa, from which our data is based upon. The National

Agricultural Statistics Service (NASS) has an enormous amount of data, but these data

are highly confidential and are kept under strict surveillance.

In this application, we are interested in predicting the mean crop (corn and

soybeans) acreage for a number counties (small area) in north central Iowa using the

enumerative survey and satellite data (see Battese, Harter, and Fuller, 1988). Corn and

soybeans are important crops grown in the United States and they are of enormous

support to the U.S. economy. Our variable of interest yij is the number of hectares

of corn (or soybeans) in the jth segment of the ith county. This study used a simple

random sampling within county (i.e., no weighting for individual sampled unit); we

have taken the survey weight for sampled unit j in area i as ωij = N/n, for all i =

1, . . . , ℓ, j = 1, . . . , ni. A strong linear relationship between the reported hectares of corn

(soybeans) and the number of pixels of corn (soybean). Thus, we use a linear regression

model to describe the relationship between the survey and satellite data and apply it

to predict the mean crop area per segment in the sample counties. Table 1.1 presents

the sampled crop data from the 1978 June Enumerative survey and LANDSAT satellite

data. Table 1.1 is taken from Battese, Harter, and Fuller (1988). Table 1.1 provides

information from n = 37 sampled segments (units) in the ℓ = 12 counties. Observe that

the sample size ni (i = 1, . . . , ℓ) within each county ranges from 1 to 6, while the total

number of segments Ni (population size) within each county ranges from 395 to 965.

The population mean pixels of corn and soybeans were also provided in the data.

1.5.2 Body Mass Index and Bone Mineral Density Data

The National Health and Nutrition Examination Survey (NHANES III) is one

of the surveys used to assess an aspect of health of the United States population. The

general structure of the NHANES III sample design is the same as that of the previous

NHANES. Each of the surveys used a stratified, multi-stage probability design. The
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NHANES III sample represented the total civilian, noninstitutionalized population, two

months of age or over, in the 50 states and the District of Columbia in the United States.

Two of the variables in this survey are body mass index (BMI) and bone mineral density

(BMD), which are used as measures to diagnose obesity and osteoporosis respectively.

Obesity is one of the leading public health concern in the United States. Obesity

is associated with increased health-care costs, reduced quality of life, and increased risk

for premature death. Body mass index (BMI) is calculated from a person’s weight and

height. It provides a reasonable indicator of body fatness and weight categories that

may lead to health problems. “Overweight” and “obese” are defined by the person’s

body mass index (BMI). An adult with a BMI between 25 and 30 is classified as over-

weight, while an adult with a BMI of 30 or greater is classified as obese. People who are

overweight are at increased risk for diabetes, heart disease, stroke, high blood pressure,

arthritis, and cancer. Reports in the last two decades showed that the prevalence of

overweight and obesity in the United States remains high. There is little indication

that the prevalence is decreasing in any subgroup of the population. Given the overall

high prevalence of obesity, effective policies and environmental strategies that promote

healthy eating and physical activity are needed for all populations and geographic areas,

but particularly for those populations and areas disproportionately affected by obesity.

This makes the design of the NHANES III and the study of obesity considerably inter-

esting. See Nandram and Choi (2005, 2010) for extensive analysis of the BMI data.

On the other hand, osteoporosis is a disease that causes bones to become thin

and weak, often resulting in fractures (broken bones). A broken bone can interfere with

one’s daily activities and can have serious consequences. For instance, once an elderly

person suffered a fracture, it can negatively impact the standard of living and may lead

to permanent disability. It has been found that the lower the bone mass, the greater

the risk for fracture. Low bone mass, often called osteopenia, is a condition in which

the bone density or bone thickness is lower than the average bone density of healthy

adults of the same gender. The development of osteoporosis or osteopenia is a major

concern as it is estimated that as many as four out of every ten women over the age of

50 in the USA will suffer a bone fracture, to the wrist, spine, or hip in their lifetime.

Bone mineral density (BMD) is used to characterize osteoporosis. Women who suffer

from osteopenia have a 1.8 fold increase in the likelihood of suffering a bone fracture
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compared to a non-osteopenia person, whilst this increases to four times the risk if a

person has osteoporosis. Research also showed that depression is a possible risk factor

for low BMD. The World Health Organization (WHO) uses T-scores to define normal

bone mass, low bone mass (or osteopenia), and osteoporosis. If a person has a BMD

T-score between −1 and −2.5 then the person is diagnosed as having osteopenia, while

a patient has a full blow osteoporosis if the BMD T-score is −2.5 or less. It is estimated

that the risk of suffering a bone fracture doubles with every decrease in BMD T-score

of 1.

In this example, we study the body mass index (BMI) and bone mineral density

(BMD) of the adult domains in the state of New York. We define the adult domains

as the Mexican-American gender domains of the population over 20 years of age in

five counties of the state of New York with over 500, 000 people. We obtain the sample

data from the Third National Health and Nutrition Examination Survey, (NHANES III,

1996). We have five counties and two gender groups (male, female). Hence, we get

ℓ = 5 × 2 = 10 adult domains, representing the small areas for this example. We

model BMI and BMD both as a linear function of age, although this is a very rough

approximation for the age group. As in the crop data example, we note that there is

a very large difference between the sample sizes and the population sizes. The sample

size ni (i = 1, . . . , ℓ) within each domain ranges from 1 to 8, while the population size Ni

within each youth domain ranges from 6 to 150. The information about the population

sizes of the adult domains were obtained from the United States Decennial Census

(2000). We used the information from the Census to also calculate the population total

age by multiplying the population size with the median age of the different age groups.

Table 1.2 gives the data for BMI and BMD. We include in Table 1.2 the information on

the survey weights provided by NHANES III.
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Table 1.1: Data for the crop data from Enumerative Survey and LANDSAT

County
Number of segments Reported Hectares Number of Pixel Mean Pixel
Sample County Corn Soybeans Corn Soybeans Corn Soybeans

1 1 545 165.78 8.09 374 55 295.29 189.70
2 1 566 96.32 106.03 209 218 300.40 196.65
3 1 394 76.08 103.60 253 250 289.60 205.28

4 2 424
185.35 6.47 432 96

290.74 220.22
116.43 63.82 367 178

5 3 564
162.08 43.50 361 137

318.21 188.06152.04 71.43 288 206
161.75 42.49 369 165

6 3 570
92.88 105.26 206 218

257.17 247.13149.94 76.49 316 221
64.75 174.34 145 338

7 3 402
127.07 95.67 355 128

291.77 185.37133.55 76.57 295 147
77.70 93.48 223 204

8 3 567
206.39 37.84 459 77

301.26 221.36108.33 131.12 290 217
118.17 124.44 307 258

9 4 687

99.96 144.15 252 303

262.17 247.09
140.43 103.60 293 221
98.95 88.59 206 222

131.04 115.58 302 274

10 5 569

114.12 99.15 313 190

314.28 198.66
100.60 124.56 246 270
127.88 110.88 353 172
116.90 109.14 271 228
87.41 143.66 237 297

11 5 965

93.48 91.05 221 167

298.65 204.61
121.00 132.33 369 191
109.91 143.14 343 249
122.66 104.13 342 182
104.21 118.57 294 179

12 6 556

88.59 102.59 220 262

325.99 177.05

88.59 29.46 340 87
165.35 69.28 355 160
104.00 99.15 261 221
88.63 143.66 187 345

153.70 94.49 350 190

See Battese, Harter, and Fuller (1988).
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Table 1.2: Data for the adult domains in the state of New York from NHANES III and Census

2000

Domain Sample Population Survey
ℓ Size, n Size, N BMI BMD Age Weights, ω

1 1 6 19.3 0.965 30 2178.11
2 1 112 26.8 0.983 39 4400.50

3 2 96
22.4 1.003 28 2913.42
24.2 0.920 44 3061.85

4 8 150

20.1 0.653 20 1970.84
22.0 0.971 20 1970.84
25.1 0.900 20 1970.84
22.5 0.880 22 1970.84
21.4 0.806 26 1970.84
24.6 1.097 29 1996.15
25.4 1.206 34 1996.15
26.4 0.809 35 2097.44

5 4 39

28.5 1.003 23 2320.99
21.9 1.400 20 2274.38
20.3 0.916 23 2513.96
21.3 1.032 28 2274.38

6 2 6
21.3 0.727 24 3524.08
24.1 0.948 30 1872.93

7 2 118
24.5 0.934 20 3609.89
28.8 0.792 34 3609.89

8 5 101

23.6 0.834 23 2389.98
19.5 0.856 26 2389.98
20.0 0.726 28 2396.26
19.3 0.646 34 2396.26
24.5 0.822 36 2322.29

9 3 142
34.9 0.923 23 1952.89
25.3 0.875 35 1952.89
23.2 0.609 48 1605.64

10 2 37
23.1 0.865 28 1865.75
29.1 0.890 29 2062.29

See NHANES III (1996).
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Chapter 2

Univariate Benchmarking

In this chapter, we discuss the univariate Bayesian benchmarking model. We

have introduced our Bayesian version of the Battese, Harter, and Fuller (1988) nested-

error regression model. With the benchmarking constraint, our model would include

both covariates and survey weights at the unit-level. We show in this chapter how to

incorporate the constraint into the model. Given the sampled data, we use Bayesian pre-

dictive inference to estimate the finite population means of small areas. We analyze the

two examples and perform some simulation studies to characterize the resulting model.

Let us begin with some basic notations we will use.

We denote by 1
˜

m a column vector of size m with each of its elements being unity,

the identity matrix of size m by Im and the r× s matrix with each of its elements being

unity by Jr
s . If r = s, we write Jr. Also, let Zs be the n × ℓ block diagonal matrix with

1
˜

ni
on the ith diagonal, i = 1, 2, . . . , ℓ, Zns be the (N −n)× ℓ block diagonal matrix with

1
˜

Ni−ni
on the ith diagonal, i = 1, 2, . . . , ℓ, and Zns(N)

as the (N −1−n) ×ℓ corresponding

block diagonal matrix with 1
˜

Ni−ni
on the ith diagonal entry, i = 1, 2, . . . , ℓ − 1, and

1
˜

Nℓ−nℓ−1 on the ℓth diagonal entry.

We add benchmarking constraint (1.8) onto our Bayesian version of the nested

error regression model of Battese, Harter, and Fuller (1988).
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2.1 Univariate Nested-Error Regression Model

The Bayesian benchmarking model (BM) is

yij|ν
˜
, β
˜
, σ2 ind

∼ Normal
{
x
˜
′

ijβ
˜

+ νi, σ
2
}

,
ℓ∑

i=1

Ni∑

j=1

yij =
ℓ∑

i=1

ni∑

j=1

ωijyij, (2.1)

νi|σ
2, ρ

iid
∼ Normal

{
0,

(
ρ

1 − ρ

)
σ2

}
, 0 < ρ < 1, (2.2)

p
(
β
˜
, σ2, ρ

)
∝

1

σ2
, σ2 > 0. (2.3)

Conditional on the benchmarking constraint, we derive the distribution of the

data. Let y
˜

(N) =
(
y
˜

s
′, y

˜
ns(N)

′

)
′

, where y
˜

ns(N)
is the vector of N−n−1 unobserved yij val-

ues excluding the N th
ℓ unit yℓ,Nℓ

from the ℓth area. That is, y
˜

ns(N)
=
(
y
˜

′

ns1
, . . . , y

˜

′

nsℓ(N)

)
′

with y
˜

nsi
= (yi,ni+1, . . . , yi,Ni

)′ for i = 1, 2, . . . , ℓ − 1, and y
˜

nsℓ(N) = (yℓ,nℓ+1, . . . , yℓ,Nℓ−1)
′.

Also, anticipating a transformation of yℓNℓ
, let φ =

ℓ∑

i=1

Ni∑

j=1

yij −
ℓ∑

i=1

ni∑

j=1

ωijyij. Further-

more, define µij = x
˜
′

ijβ
˜
+νi, for i = 1, . . . , ℓ, j = 1, . . . , Ni, and write µ

˜
=
(
µ
˜

(N)
′, µℓ,Nℓ

)
′

,

where µ
˜

(N) =
(
µ
˜

s
′, µ

˜
ns(N)

′
)
′

. We write the n × 1 vector of sampling weights as ω
˜

=

(ω11, . . . , ωℓnℓ
) . Lastly, write ω∗

˜
= (ω

˜
− 1

˜
n) , a

˜
=
(
ω∗

˜
′,−1

˜
′

N−n−1

)
′

, and

D =

(
1

ω
˜
∗′ω

˜
∗ + ω

˜
∗′1
˜

n

)[
(ω
˜
∗ω
˜
∗′) −

(
ω
˜
∗1
˜
′

(N−1−n)

)

−
(
1
˜

(N−1−n)ω
˜
∗′
)

J(N−1−n)

]
.

Note that we can also write the matrix D in terms of the vector a
˜

as follows

D =
a
˜
a
˜
′

1 + a
˜
′a
˜

.

Lemma 2.1. Under the benchmarking model, conditional on the benchmarking con-

straint,

y
˜

(N)|µ
˜
, σ2, φ = 0 ∼ Normal

{
µ
˜

(N) +

(
1

ω
˜
∗′ω

˜
∗ + ω

˜
∗′1
˜

n

)(
µℓ,Nℓ

− a
˜
′µ
˜

(N)

)
a
˜
, σ2 (IN−1 − D)

}
,

and

yℓ,Nℓ
= ω

˜
∗′y
˜

s − 1
˜
′

N−n−1y
˜

ns(N)
.
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Note that the multivariate normal distribution is a generalization of the

one-dimensional (univariate) normal distribution to higher dimension. A random vector

X
˜

= (X1, X2, . . . , Xk) has a multivariate normal distribution if the support of X
˜

is the

entire space Rk and there exist a k−vector µ
˜

and a positive-definite k×k matrix Σ such

that the probability density function of X can be expressed as

fX (x
˜
) =

1

2πk/2|Σ|1/2
exp

{
−

1

2

(
x
˜
− µ

˜

)
′

Σ−1
(
x
˜
− µ

˜

)}
,

where |Σ| is the determinant of Σ. This expression reduces to the density of the univari-

ate normal distribution if Σ is a scalar (i.e., a 1 × 1 matrix).

Proof.

First, consider the slightly simpler notation in which Zk|αk, σ
2 ind
∼ Normal (αk, σ

2) , k =

1, 2, . . . , N, subject to the constraint
N∑

k=1

zk =
n∑

k=1

ωkzk. Make the transformation φ =

N∑

k=1

zk −

n∑

k=1

ωkzk with Z1, . . . , ZN−1 untransformed. We can show that the jacobian is

1, and the joint distribution is given by

p
(
z1, . . . , zN−1, φ|α

˜
, σ2
)

=

(
1

2πσ2

)N/2

exp



−
1

2σ2






N−1∑

k=1

(zk − αk)
2 +

[(
φ −

N−1∑

k=1

zk +
n∑

k=1

ωkzk

)
− αN

]2







 ,

where zN = φ−
N−1∑

k=1

zk +
n∑

k=1

ωkzk. But since our distribution is subject to the constraint,

N∑

k=1

zk =
n∑

k=1

ωkzk, φ = zN +
N−1∑

k=1

zk −
n∑

k=1

ωkzk = 0. Equivalently, zN =
n∑

k=1

ωkzk −
N−1∑

k=1

zk.

Therefore, the joint density is p (z1, . . . , zN−1, φ = 0|α
˜
, σ2). There is some simplic-

ity when we normalize this density over (z1, . . . , zN−1) to get p (z1, . . . , zN−1|φ = 0, α
˜
, σ2),

which is the joint density we use. Hence, conditional on the benchmarking constraint,

we have the distribution

Z
˜

(N)|α
˜
, σ2, φ = 0 ∼ Normal

{
α
˜

(N) +

(
1

ω∗

˜
′ω
˜

)(
αN − a

˜
′α
˜

(N)

)
a
˜
, σ2 (IN−1 − D)

}
,
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where α
˜

(N) = (α1, . . . , αN−1)
′. Now, match the original vector y

˜
=
(
y
˜

s
′, y

˜
ns

′
)
′

with

(z1, . . . , zn, zn+1, . . . , zN)′, as well as µ
˜

with α
˜

=
(
α
˜

(N), αN

)
, to obtain the desired result.

Lemma 2.1 is a simple result that incorporates the benchmark constraint into the

distribution of the data given the parameters. From the resulting density in Lemma 2.1,

the addition of the benchmark constraint into the model causes the yij’s to be correlated.

It is interesting that the sample values are negatively correlated and nonsample values are

also negatively correlated but a sample value is positively correlated with a nonsample

value; this will reduce the variance of the sum of the nonsample values. Theorem 2.4

has the conditional distribution of y
˜

ns(N)
given y

˜
s and other parameters. Note that

yℓ,Nℓ
inherits its distributional properties from y

˜
(N)|µ

˜
, σ2, φ = 0. Henceforth, we drop

the notation φ = 0, but it must be understood that all distributions are conditional on

φ = 0.

Remark 2.2. Applying the marginal distribution property of the multivariate normal

density in Lemma 2.1, we find that y
˜

s|ν
˜
, β
˜
, σ2 follows a Normal distribution with

E
[
y
˜

s|ν
˜
, β
˜
, σ2
]

= Cxβ
˜

+ Czν
˜

and Var
[
y
˜

s|ν
˜
, β
˜
, σ2
]

= σ2 [In − W ] ,

where

W =
ω
˜
∗ω
˜
∗′

ω
˜
∗′ω

˜
∗ + ω

˜
∗′1
˜

n

,

Cx = [In − W ] Xs +

(
ω
˜
∗

ω
˜
∗′ω

˜
∗ + ω

˜
∗′1
˜

n

)(
1
˜
′

N−nXns

)
,

and

Cz = [In − W ] Zs +

(
ω
˜
∗

ω
˜
∗′ω

˜
∗ + ω

˜
∗′1
˜

n

)(
1
˜
′

N−nZns

)
.

From Remark 2.2, the likelihood function is given by

p
(
y
˜

s|ν
˜
, β
˜
, σ2
)
∝

(
1

σ2

)n/2

exp

{
−

1

2σ2

[(
y
˜

s −
[
Cxβ

˜
+ Czν

˜

])
′

[In − W ]−1 (y
˜

s −
[
Cxβ

˜
+ Czν

˜

])]}
.

Now, applying Bayes’ theorem on p
(
y
˜

s|ν
˜
, β
˜
, σ2
)

with the distribution of ν
˜
|σ2, ρ in (2.2),
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and prior distribution given in (2.3), we get the joint posterior density

π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
∝

(
1

σ2

)1+(n+ℓ)/2(
1 − ρ

ρ

)ℓ/2

× exp

{
−

1

2σ2

(
1 − ρ

ρ

)[(
ν
˜
− B−1C ′

zA
(
y
˜

s − Cxβ
˜

))
′

B
(
ν
˜
− B−1C ′

zA
(
y
˜

s − Cxβ
˜

))]}

× exp

{
−

1

2σ2

(
1 − ρ

ρ

)[(
y
˜

s − Cxβ
˜

)
′
(
A−1 + CzC

′

z

)
−1 (

y
˜

s − Cxβ
˜

)]}
,

where A =

[(
1 − ρ

ρ

)
(In − W )

]
−1

and B = Iℓ + C ′

zACz.

Lemma 2.3. Assuming that 0 < ρ < 1 and the design matrix is full rank, under the

benchmarking model the joint posterior density π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
is proper.

Lemma 2.3 shows that the addition of the benchmarking constraint to the model

does not affect the propriety of the joint posterior distribution. To prove Lemma 2.3,

we use the multiplication rule

π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
= π1

(
ν
˜
|β
˜
, σ2, ρ, y

˜
s

)
π2

(
β
˜
|σ2, ρ, y

˜
s

)
π3

(
σ2|ρ, y

˜
s

)
π4

(
ρ|y

˜
s

)
,

and show that π1

(
ν
˜
|β
˜
, σ2, ρ, y

˜
s

)
, π2

(
β
˜
|σ2, ρ, y

˜
s

)
, π3

(
σ2|ρ, y

˜
s

)
, and π4

(
ρ|y

˜
s

)
are all

proper densities.

Proof.

Recall that the joint posterior density is

π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
∝

(
1

σ2

)1+(n+ℓ)/2(
1 − ρ

ρ

)ℓ/2

× exp

{
−

1

2σ2

(
1 − ρ

ρ

)[(
ν
˜
− B−1C ′

zA
(
y
˜

s − Cxβ
˜

))
′

B
(
ν
˜
− B−1C ′

zA
(
y
˜

s − Cxβ
˜

))]}

× exp

{
−

1

2σ2

(
1 − ρ

ρ

)[(
y
˜

s − Cxβ
˜

)
′
(
A−1 + CzC

′

z

)
−1 (

y
˜

s − Cxβ
˜

)]}
.

Taking 0 < ρ < 1, it is easy to show that A =

[(
1 − ρ

ρ

)
(In − W )

]
−1

is positive definite.
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Therefore, B = Iℓ + C ′

zACz is positive definite. First, it can be shown that

ν
˜
|β
˜
, σ2, ρ, y

˜
s ∼ Normal

(
B−1C ′

zA
(
y
˜

s − Cxβ
˜

)
, σ2

(
ρ

1 − ρ

)
B−1

)
. (2.4)

Integrating out ν
˜

from π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
, we get

π
(
β
˜
, σ2, ρ|y

˜
s

)
∝

(
1

σ2

)1+n/2(
1

|B|

)1/2

exp

{
−

1

2σ2

(
1 − ρ

ρ

)[(
β
˜
− β̂

˜

)
′

V
(
β
˜
− β̂

˜

)]}

× exp

{
−

1

2σ2

(
1 − ρ

ρ

)[
y
˜

s
′
(
D − DCxV

−1C ′

xD
)
y
˜

s

]}
,

and it can be shown that

β
˜
|σ2, ρ, y

˜
s ∼ Normal

{
β̂
˜
, σ2

(
ρ

1 − ρ

)
V −1

}
, (2.5)

where β̂
˜

= V −1C ′

xDy
˜

s, D = (A−1 + CzC
′

z)
−1

, and V = C ′

xDCx. Then, integrating out β
˜

from π
(
β
˜
, σ2, ρ|y

˜
s

)
, we have

π
(
σ2, ρ|y

˜
s

)
∝

(
1

σ2

)1+(n−p)/2(
ρ

1 − ρ

)p/2(
1

|V |

)1/2(
1

|B|

)1/2

× exp

{
−

1

2σ2

(
1 − ρ

ρ

)[
y
˜

s
′
(
D − DCxV

−1C ′

xD
)
y
˜

s

]}
,

and it can be shown that

σ−2|ρ, y
˜

s ∼ Gamma

(
n − p

2
,
G

2

)
, (2.6)

where G =

(
1 − ρ

ρ

)[
y
˜

s
′ (D − DCxV

−1C ′

xD) y
˜

s

]
.

Finally, integrating out σ2 from π
(
σ2, ρ|y

˜
s

)
, we get

π4

(
ρ|y

˜
s

)
∝

(
ρ

1 − ρ

)n/2

(|V |)−1/2(|B|)−1/2[y
˜

s
′
(
D − DCxV

−1C ′

xD
)
y
˜

s

]
−(n−p

2 )
. (2.7)

To complete the proof, we showed that π4

(
ρ|y

˜
s

)
is proper for all ρ, 0 < ρ < 1. Because A

is a function of ρ, the matrices B and D are functions of ρ. The distribution of π4

(
ρ|y

˜
s

)
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is proper as long as ρ is set to a value strictly between 0 and 1, say 0.0001 < ρ < 0.9999.

To be able to make inference for Y i (i = 1, . . . , ℓ) , given the sample observations

y
˜

s, a possible approach is to sample from the distribution Y i|y
˜

s. Theorem 2.4 below

gives us the Bayesian predictive distribution of Y i|y
˜

s.

Theorem 2.4. The distribution of Y i|y
˜

s is

p
(
Y i|y

˜
s

)
=

∫
p
(
Y i|ν

˜
, β
˜
, σ2, y

˜
s

)
π
(
ν
˜
, β
˜
, σ2|y

˜
s

)
dν
˜
dβ
˜
dσ2, (2.8)

where under the benchmarking model,

Y i|ν
˜
, β
˜
, σ2, y

˜
s

∼ Normal

{
fiysi

+ (1 − fi) x
˜

nsi

′β
˜

+ (1 − fi) νi + Ai,
σ2

Ni

(1 − fi) Vi

}
, (2.9)

where Ai =

(
1 − fi

N − n

)[
ω
˜
∗′y
˜

s −
(
1
˜
′

N−nXns

)
β
˜
−
(
1
˜
′

N−nZns

)
ν
˜

]
and Vi = 1−

(
Ni − ni

N − n

)
, i =

1, . . . , ℓ.

Proof.

Note that Y i can be written as

Y i =
1

Ni

[
niysi

+ (Ni − ni) ynsi

]
=

1

Ni

(
1
˜
′

ni
y
˜

si
+ 1

˜
′

Ni−ni
y
˜

nsi

)
, i = 1, 2, . . . , ℓ.

Hence, to prove Theorem 2.4, we need the distribution of y
˜

s and y
˜

ns. Using the condi-

tional distribution property of the multivariate normal density on Lemma 2.1, we find

that y
˜

ns(N)
|ν
˜
, β
˜
, σ2, y

˜
s also follows a normal distribution with

E
[
y
˜

ns(N)
|ν
˜
, β
˜
, σ2, y

˜
s

]
=

(
1

N − n

)
1
˜

N−1−nω
˜
∗′y
˜

s +

[
Xns(N)

−

(
1

N − n

)
JN−1−n

N−n Xns

]
β
˜

+

[
Zns(N)

−

(
1

N − n

)
JN−1−n

N−n Zns

]
ν
˜
,
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and

Var
[
y
˜

ns(N)
|ν
˜
, β
˜
, σ2, y

˜
s

]
= σ2

[
IN−1−n −

(
1

N − n

)
JN−1−n

]
.

The distribution of Y i|ν
˜
, β
˜
, σ2, y

˜
s follows from these results and the following expression

for Y ℓ from the benchmarking constraint Y ℓ =
1

Nℓ

(
1
˜
′

nℓ
y
˜

sℓ
+ ω

˜
∗′y
˜

s −

ℓ−1∑

i=1

1
˜
′

Ni−ni
y
˜

nsi

)
.

Note that the distribution of Y i|ν
˜
, β
˜
, σ2, y

˜
s does not depend on ρ. From Lemma 2.3,

π4

(
ρ|y

˜
s

)
is proper. Thus, π

(
ν
˜
, β
˜
, σ2|y

˜
s

)
=

∫
π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
dρ is proper.

Thus, we can compare the two distributions of Y i|ν
˜
, β
˜
, σ2, y

˜
s without the bench-

marking constraint in (1.5) and with the benchmarking constraint in (2.9) to observe

the effects of the benchmarking constraint on the distribution of the finite population

mean. First, we see an overall adjustment Ai, i = 1, 2, . . . , ℓ, to the expected value in

the distribution of Y i|ν
˜
, β
˜
, σ2, y

˜
s under the benchmarking model, with respect to the

nonbenchmarking model. Note that unlike Nandram, Toto, and Choi (2010), where the

overall adjustment is constant throughout all areas, here the adjustment Ai is different

for each small area, since fi depends on the sample and population sizes in each area;

covariates are not included in Nandram, Toto, and Choi (2010). Furthermore, observe

that in the benchmarking model, the variance of the finite population mean in each

small area is reduced by different amounts Vi, i = 1, 2, . . . , ℓ.

2.2 Posterior Inference

We use Bayesian predictive procedure to make posterior inference about Y i|y
˜

s.

Our approach is to combine samples from the posterior distribution ν
˜
, β
˜
, σ2, ρ|y

˜
s, and

the distribution of Y i|ν
˜
, β
˜
, σ2, y

˜
s via Theorem 2.4.

The proof of propriety of the joint posterior density provides a prescription of how

to draw samples from the posterior density. Note that by the multiplication rule,

π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)
= π1

(
ν
˜
|β
˜
, σ2, ρ, y

˜
s

)
π2

(
β
˜
|σ2, ρ, y

˜
s

)
π3

(
σ2|ρ, y

˜
s

)
π4

(
ρ|y

˜
s

)
.

Since the conditional densities π1

(
ν
˜
|β
˜
, σ2, ρ, y

˜
s

)
, π2

(
β
˜
|σ2, ρ, y

˜
s

)
and π3

(
σ2|ρ, y

˜
s

)
are

known distributions [see (2.4), (2.5) and (2.6)], we can draw samples from π
(
ν
˜
, β
˜
, σ2, ρ|y

˜
s

)

using the composition method. We would first draw samples from ρ|y
˜

s [see (2.7)]using a
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grid method. With each sample of ρ, we draw a sample from σ−2|ρ, y
˜

s. Then, with the

resulting pair of values of ρ and σ2, we draw a sample from β
˜
|σ2, ρ, y

˜
s. Also, with the

sampled values of ρ, σ2, and β
˜
, draw values of ν

˜
from ν

˜
|β
˜
, σ2, ρ, y

˜
s. Once the parameters

are obtained, we use them to draw values of the finite population means for each of the

areas from the distribution of Y i|ν
˜
, β
˜
, σ2, y

˜
s; see Theorem 2.4. We apply this algorithm

to draw samples in both the nonbenchmarking and benchmarking models.

To facilitate inference, we generate M = 10, 000 iterates from the sampling

method. We use 200 grids in (0, 1) to approximate π4

(
ρ|y

˜
s

)
. This is a reasonable

approximation because the width of each grid is 0.005. It is convenient to use the grid

method because ρ is bounded in the interval (0, 1) , and the function π4

(
ρ|y

˜
s

)
is easy

to compute for each ρ. It is interesting that we do not need to use Markov chain Monte

Carlo (MCMC) to fit the nested error regression model, with or without benchmarking.

2.3 Applications

In this section, we present two illustrative examples to compare the benchmark-

ing model with its nonbenchmarking counterpart. We summarize the results using the

posterior mean (PM), posterior standard deviation (PSD), and the 95% credible inter-

val (Int) of the finite population mean of each area. In our first example, we apply our

model to estimate the corn and soybeans hectares from the 1978 Enumerative survey

and satellite data. We model the number of hectares of corn (or soybeans) yij using the

nested error regression model of Battese, Harter, and Fuller (1988) with two covariates

(p = 3). That is, x
˜

ij = (1, xij1, xij2)
′ , where xij1 is the number of pixels of corn, and xij2

is the number of pixels of soybeans. Information from n = 37 sampled segments (units)

in the ℓ = 12 counties are available. The sample size ni (i = 1, . . . , ℓ) within each county

ranges from 1 to 6, while the total number of segments Ni (population size) within each

county ranges from 395 to 965. The population mean pixels of corn and soybeans were

also provided in the data.

In our second example, we estimate the body mass index (BMI) and bone mineral

density (BMD) of the adult domains (gender groups of Mexican American population

over 20 years). Note that for the enumerative survey and satellite data the design is self-

weighting within areas, but for the BMI and BMD, there are differential probabilities

of selection (i.e., varying sampling weights). See Section 1.5 to learn more about the
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background of these two examples.

2.3.1 Corn and Soybeans Hectares Data

Table 2.1 shows that the posterior means from the two models are mostly the same,

with a slight shifting in the posterior means from NBM to BM. These estimates from

NBM are similar to those in Battese, Harter, and Fuller (1988). Notice too that there

is a slight increase in precision in BM, relative to NBM. In Table 2.1, the posterior

standard deviations (PSD) in BM for most counties in both crops (corn and soybeans)

are smaller than the PSDs in NBM; with the exception of the PSD of County 12 for

soybeans in the NBM. These decreases in the PSDs are also reflected in the 95% credible

intervals in Table 2.1. However, notice that the gains in precision observed are not

significantly large. There are even few counties or domains where the NBM has smaller

posterior SD than BM. If the values of ni were more comparable to Ni, larger gains in

precision in the benchmarking model could be expected. From Table 2.1, the means

for the corn (soybeans) data are N−1

ℓ∑

i=1

Niyi = 120.32(95.35) = N−1

ℓ∑

i=1

NiPMi(BM),

but N−1

ℓ∑

i=1

NiPMi(NBM) = 119.67(96.87). That is, the value of the overall posterior

mean from BM is equal to the sample mean of the data, but that of NBM is not

equal. This observation reflects the benchmarking constraint incorporated into BM. To

further assess the performance of BM over NBM, we looked at the distance between the

direct estimators yi and the PMi from both NBM and BM. As a summary measure, we

computed the shrinkage SHR =

√√√√
ℓ∑

i=1

(PMi − yi)
2. For the corn data, SHR(NBM) =

81.05 and SHR(BM) = 80.84. On the other hand, for the soybeans data, SHR(NBM) =

92.81 and SHR(BM) = 91.03. For both corn and soybeans data, we find that BM has a

slightly lower shrinkage than NBM, indicating that BM is slightly more design-consistent

than NBM. We use box plots to show the general features in Figure 2.1.
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Table 2.1: Comparison of NBM and BM using posterior means (PM) and the posterior stan-

dard deviations (PSD) and 95% credible intervals (Int) for the finite population mean
(
Y
)

by

county (area) of the corn and soybeans hectares data

Corn
Nonbenchmarking Benchmarking

County
Sample Population Direct Posterior Credible Posterior Credible

Size Size Estimate Mean SD Interval Mean SD Interval
1 1 545 165.78 123.47 9.32 (105.72,143.26) 124.04 8.32 (108.40,142.34)
2 1 566 96.32 124.20 9.28 (106.42,143.61) 124.89 8.22 (109.09,142.29)
3 1 394 76.08 110.95 10.04 (88.68,128.66) 111.68 9.34 (90.38,127.25)
4 2 424 150.89 114.16 8.37 (96.38,130.14) 114.74 7.83 (97.84,129.33)
5 3 564 158.62 138.82 8.37 (123.69,156.10) 139.31 7.95 (125.88,156.42)
6 3 570 102.52 109.78 7.66 (95.60,126.05) 110.48 6.83 (98.04,124.89)
7 3 402 112.77 116.05 7.20 (101.02,129.52) 116.51 6.72 (102.67,129.35)
8 3 567 144.30 122.90 7.20 (108.76,137.60) 123.46 6.49 (110.69,136.80)
9 4 687 117.59 112.07 7.00 (98.78,126.74) 112.74 6.33 (101.27,126.04)
10 5 569 109.38 123.99 6.25 (111.29,136.04) 124.55 5.91 (112.29,135.69)
11 5 965 110.25 111.71 6.96 (97.67,124.48) 112.36 6.47 (98.79,123.43)
12 6 556 114.81 131.25 5.92 (119.35,142.97) 131.69 5.69 (120.05,143.14)

Soybeans
Nonbenchmarking Benchmarking

County
Sample Population Direct Posterior Credible Posterior Credible

Size Size Estimate Mean SD Interval Mean SD Interval
1 1 545 8.09 78.76 11.27 (55.99,100.120) 77.31 10.33 (56.75,97.29)
2 1 566 106.03 94.34 10.92 (72.74,115.87) 92.77 9.98 (73.61,112.99)
3 1 394 103.60 87.71 10.70 (66.48,108.55) 86.20 10.19 (65.32,105.61)
4 2 424 35.15 82.04 10.09 (62.09,101.88) 80.66 9.39 (62.03,99.08)
5 3 564 52.47 67.15 7.93 (51.97,83.16) 65.46 7.51 (50.53,80.26)
6 3 570 118.70 113.83 7.34 (99.71,128.24) 112.32 6.91 (98.91,125.91)
7 3 402 88.57 97.23 7.63 (82.15,112.27) 95.95 7.41 (81.48,110.43)
8 3 567 97.80 111.93 7.60 (96.72,126.95) 110.41 7.20 (96.08,124.70)
9 4 687 112.98 110.06 6.54 (97.18,123.09) 108.39 6.16 (96.46,120.66)
10 5 569 117.48 100.36 6.13 (88.15,112.39) 98.97 5.98 (86.97,110.69)
11 5 965 117.84 118.28 6.48 (105.02,130.66) 116.73 6.07 (104.26,128.30)
12 6 556 89.77 75.04 5.65 (63.85,85.98) 73.53 5.75 (62.33,84.94)

2.3.2 Body Mass Index and Bone Mineral Density Data

The Third National Health and Nutrition Examination Survey, (NHANES III,

1996), has a complex sampling design and there are survey weights. The sample weights

are calibrated such that

ni∑

j=1

ωij = Ni, i = 1, . . . , ℓ. To see the importance of taking into

consideration the sampling weights in small area estimation, we will fit the benchmark-

ing model to the BMI and BMD data without survey weights. that is, we implement the

use of the benchmarking constraint in 1.9. This model will be called the self-weighting

benchmarking model (SBM). Thus, we will apply to the BMI and BMD data the three

models (NBM, SBM, BM). Note that while BM contains survey weights, SBM and NBM

do not.

Table 2.2 shows that the posterior means (PM) of the benchmarking models
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(both BM and SBM) are mostly smaller than the posterior means from NBM, shift-

ing the distribution down with reference to NBM. Under BM, the benchmarking con-

straint implies that Ŷ = N−1

10∑

i=1

ni∑

j=1

ωijyij. On the other hand, under SBM, we have

Ŷ = n−1

10∑

i=1

ni∑

j=1

yij. From our calculations, we find that N−1

10∑

i=1

ni∑

j=1

ωijyij = 24.992 =

N−1

10∑

i=1

NiPMi(BM). Similarly, n−1

10∑

i=1

ni∑

j=1

yij = 23.780 = N−1

ℓ∑

i=1

NiPMi(SBM), but

N−1

10∑

i=1

NiPMi(NBM) = 24.330. The two benchmarking models are closer to each other

than the nonbenchmarking model. But BM, which is the more appropriate model for the

BMI data, has the smaller shrinkage of SHR(BM) = 5.606, while SHR(SBM) = 5.667.

NBM has the greatest shrinkage with SHR(NBM) = 6.482. For the BMD data, we

find that N−1

10∑

i=1

ni∑

j=1

ωijyij = 0.895 = N−1

10∑

i=1

NiPMi(BM). Similarly, n−1

10∑

i=1

ni∑

j=1

yij =

0.903 = N−1

10∑

i=1

NiPMi(SBM), but N−1

10∑

i=1

NiPMi(NBM) = 0.878. For the shrinkage, the

most appropriate model for BMD, the benchmarking model with unequal survey weights,

has a shrinkage of SHR(BM) = 0.102, while SHR(SBM) = 0.029. This implies that the

shrinkage of the model with equal survey weights is smaller than the benchmarking with

unequal weights. NBM again has the greatest shrinkage with SHR(NBM) = 0.258. How-

ever, overall, in this example, the two benchmarking models are closer to each other than

the nonbenchmarking model. The PSDs of all three models are very close to each other.

However, we observe that the PSDs from BM are mostly smaller than those from NBM

and SBM, which reflects the adjustments from the survey weights in the constraint. As

the survey weights are not incorporated in an informative manner (i.e., non ignorable

design) in the model, there may not be gains in precision. We use box plots to show

the general features in Figure 2.2. Figure 2.2 shows that the posterior means (PM) of

the benchmarking models (both BM and SBM) are mostly smaller than the posterior

means from NBM, shifting the distribution down with reference to NBM. Moreover, we

see that the length of the whiskers of the boxplots for each domain is shorter for the BM

and SBM models compared to that of NBM.

In summary, the two examples showed us the diversity of the applications of

the univariate benchmarking model presented in this section. From the results, we
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observe the effects of the benchmarking constraint. As our theory shows, we observe

that the model-based estimates from the small areas match the chosen direct estimator

for the single large area when these small areas are collapsed. We also observe that in

most cases there is a gain in precision in using the benchmarking models, relative to the

nonbenchmarking model, although the gains are not so much significant. This is perhaps

due to the samples being relatively too small compared to the population size. Now, we

will compare NBM and BM further using a simulation study, and we will discuss effects

of benchmarking on biases.
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Table 2.2: Comparison of the nonbenchmarking (NBM), self-weighted benchmarking (SBM)

and survey-weighted benchmarking (BM) models using posterior means (PM), the posterior

standard deviations (PSD) and the 95% credible intervals for the finite population mean
(
Y
)

of the BMI and BMD data for the adult domains, gender domains of Mexican American

population over 20 years, in the state of New York

Body Mass Index
Nonbenchmarking Self-Weighting Benchmarking

Benchmarking

i n N
Direct Posterior Credible Posterior Credible Posterior Credible

Estimate Mean SD Interval Mean SD Interval Mean SD Interval
1 1 6 19.30 22.42 2.09 (18.13,26.40) 21.92 2.04 (17.55,25.62) 22.80 2.15 (18.21,26.74)
2 1 112 26.80 24.68 1.82 (21.21,28.54) 24.12 1.51 (21.21,27.46) 25.55 1.59 (22.50,29.04)
3 2 96 23.30 23.77 1.52 (20.61,26.73) 23.23 1.35 (20.28,25.75) 24.34 1.41 (21.36,27.06)
4 8 150 23.44 23.78 1.12 (21.54,26.00) 23.24 0.96 (21.19,24.99) 24.33 1.00 (22.25,26.24)
5 4 39 23.00 23.61 1.42 (20.71,26.40) 23.09 1.29 (20.32,25.44) 24.12 1.34 (21.27,26.60)
6 2 6 22.70 23.43 1.64 (20.16,26.58) 23.01 1.56 (19.83,25.96) 23.84 1.62 (20.56,26.99)
7 2 118 26.65 25.10 1.66 (22.03,26.58) 24.49 1.32 (22.05,27.41) 25.93 1.38 (23.38,28.86)
8 5 101 21.38 22.64 1.36 (19.87,25.20) 22.11 1.30 (19.39,24.31) 23.09 1.34 (20.38,25.41)
9 3 142 27.80 25.74 1.60 (22.85,29.08) 25.18 1.31 (22.97,28.07) 26.48 1.35 (24.11,29.38)
10 2 37 26.10 24.92 1.63 (21.82,28.37) 24.42 1.45 (21.62,27.46) 25.57 1.48 (22.73,28.66)

Bone Mineral Density
Nonbenchmarking Self-Weighting Benchmarking

Benchmarking

i n N
Direct Posterior Credible Posterior Credible Posterior Credible

Estimate Mean SD Interval Mean SD Interval Mean SD Interval
1 1 6 0.965 0.900 0.09 (0.732,1.078) 0.921 0.08 (0.759,1.095) 0.914 0.08 (0.750,1.087)
2 1 112 0.983 0.914 0.08 (0.765,1.084) 0.941 0.07 (0.812,1.092) 0.935 0.06 (0.812,1.091)
3 2 96 0.962 0.915 0.07 (0.789,1.066) 0.940 0.06 (0.826,1.074) 0.931 0.06 (0.818,1.066)
4 8 150 0.927 0.890 0.05 (0.791,0.992) 0.913 0.04 (0.834,0.997) 0.904 0.04 (0.820,0.988)
5 4 39 1.088 0.971 0.07 (0.838,1.120) 0.992 0.06 (0.881,1.132) 0.984 0.06 (0.873,1.115)
6 2 6 0.838 0.836 0.07 (0.691,0.978) 0.852 0.07 (0.712,0.988) 0.846 0.07 (0.704,0.981)
7 2 118 0.863 0.864 0.07 (0.724,1.000) 0.889 0.06 (0.766,1.003) 0.886 0.06 (0.769,0.997)
8 5 101 0.776 0.813 0.06 (0.688,0.926) 0.836 0.05 (0.725,0.929) 0.826 0.05 (0.712,0.920)
9 3 142 0.802 0.849 0.06 (0.721,0.970) 0.874 0.05 (0.760,0.970) 0.867 0.05 (0.753,0.964)
10 2 37 0.878 0.871 0.07 (0.731,1.008) 0.893 0.06 (0.763,1.018) 0.886 0.06 (0.752,1.011)
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2.4 Simulation Study

We perform a simulation study to further compare the nonbenchmarking and

the benchmarking models. For simplicity, we assume that the design is self-weighting.

We present four data generating models. We simulate the corn hectares data in the crop

example in Section 3.5. To facilitate the simulation, we generate M = 1, 000 datasets

from each of the four generating models.

2.4.1 Design

We used four simulation models to generate data for this simulation. The first

model is a homogeneous model, which ignores the small areas,

yij
ind
∼ Normal

{
x
˜
′

ijβ
˜
, σ2
}

, i = 1, 2, . . . , ℓ, j = 1, 2, . . . , Ni. (2.10)

The second model is the nested error regression model,

yij
ind
∼ Normal

{
x
˜
′

ijβ
˜

+ νi, σ
2
}

, i = 1, 2, . . . , ℓ, j = 1, 2, . . . , Ni; (2.11)

νi
iid
∼ Normal

{
0,

(
ρ

1 − ρ

)
σ2

}
, 0 < ρ < 1, i = 1, 2, . . . , ℓ.

Note that model (2.11) is simply model (2.10) with an addition of the area effect νi, for

each area i, i = 1, 2, . . . , ℓ [i.e., if νi = 0, i = 1, . . . , ℓ, (2.11) becomes (2.10)].

The third model is the benchmarking model described in Section 2.1. Note that

the third model is the second model in (2.11) with the benchmarking constraint. We use

the results from Lemma 2.1, Remark 2.2, and Theorem 2.4 to generate the values of y.

To do this, we first generate the sampled y values, y
˜

s, from the distribution in Remark

2.2. Then, we use these generated values of y
˜

s to find the values of the nonsampled y’s

from the results in Lemma 2.1 and the proof of Theorem 2.2.

Note that the distributions of y
˜

s|ν
˜
, β
˜
, σ2 and y

˜
ns(N)

|y
˜

s, ν
˜
, β
˜
, σ2 have similar forms

and both can be written in a more general form as

Y
˜
∼ Normal

{
δ
˜
, σ2 (I − aJ)

}
, 0 < a < 1. (2.12)
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Observe that from (2.12), we can write

T
˜

=
1

σ
(Y
˜
− δ

˜
) ∼ Normal {0

˜
, (I − aJ)} . (2.13)

So, if we can generate values of t
˜

from (2.13), we can use these values to get the cor-

responding values of y
˜
. Using properties of multivariate normal and some algebraic

manipulation in (2.13), we find that

T1 ∼ Normal (0, 1 − a) (2.14)

and

Tk|t
˜
k−1 ∼ Normal

{
−

(
a

1 − a(k − 1)

) k−1∑

i=1

ti,
1 − ak

1 − a(k − 1)

}
, (2.15)

where t
˜
k−1 = (t1, t2, . . . , tk−1) , k = 2, 3, . . . . So, to generate values of y

˜
, we generate

values of t
˜

via (2.14) and (2.15), and solve for the corresponding values of y
˜

using

the relation y
˜

= σt
˜

+ δ
˜
. We apply this technique to generate both the sampled and

nonsampled values of y. Then, we use Lemma 2.1 to get the value of the last observation,

yℓ,Nℓ
.

Since the first three models are either the homogeneous model, the NBM or the

BM, the results might favor either one of the models. Thus, it is sensible to generate data

from a different model. In this fourth model, we use the Parzen-Rosenblatt estimator

f̂ (y|x1, x2) =
n∑

k=1

wk
1

h
(3)
opt

Φ

(
y − yk

h
(3)
opt

)
, wk =

2∏

j=1

Φ

(
xj − xjk

h
(j)
opt

)

n∑

k=1

2∏

j=1

Φ

(
xj − xjk

h
(j)
opt

) ,

where h
(1)
opt, h

(2)
opt, and h

(3)
opt are the window widths for x1, x2, and y, respectively, with

hopt =
1.06

n1/5
min

{
STD,

IQR

1.34

}
; the values of STD and IQR are based on all observed

data for the respective variables. We use the following algorithm to generate the values

of y :

(1) Draw an integer value k (1 ≤ k ≤ n) with corresponding probability wk of being

chosen.
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(2) Based on the drawn k in step (1), draw the value of yij from y ∼ Normal
(
yk, h

(3)2
opt

)
.

We also need to generate the values of the covariates for the nonsampled units.

The approach used in the method is similar to our benchmarking technique. Again, we

use the Parzen-Rosenblatt kernel density estimator f(x) =
1

n

n∑

j=1

1

hopt

Φ

(
x − x∗

j

hopt

)
. The

distribution of X
˜

ns(N) given the sample covariate vector x
˜

s = (x1, . . . , xn) is

X
˜

ns(N)|x
˜

s ∼ Normal

{[
t

N
−

n

N − n

(
xs −

t

N

)]
1N−n−1, h

2
opt

[
IN−n−1 −

JN−n−1

N − n

]}
.

Note that the distribution of X
˜

ns(N)|x
˜

s also takes the general form we stated in (2.12).

Hence, we can also generate the values of Xn+1, . . . , XN given x1, . . . , xn, by using the

technique mentioned above to generate the y values.

In our study we simulate the corn acreage data. We first generate the two

covariates, namely, the number of corn pixels and the number of soybeans pixels, for all

the Ni units in each of the i = 1, . . . , ℓ = 12 counties (area) using the above method

for generating covariates. Based on the n = 37 samples from the crop data, we got

hopt(corn) = 32.99 and hopt(soybeans) = 24.20. We use these constants and the sampled

covariates to generate all the values of the covariates that would match the information

given in the crop data. The number of sampled units and population units generated

for each data is based on the sample and population sizes given in the corn data. Once

all the values of the two covariates have been generated for the population units, we

fix these values and use them to generate the values of y from all four generating data

models for y. We use the posterior means from the conditional distributions of ρ, σ2,

and β
˜

= (β0, β1, β2) obtained by fitting the original corn data as the fixed values of the

parameters ρ, σ2, and β
˜

= (β0, β1, β2) to generate the simulated data. The area effects,

νi, i = 1, 2, . . . , ℓ, are simulated from its distribution given in the nested error regression

model conditional on the observed values of ρ and σ2 in the corn data. To make the

comparison, we run both NBM and BM in the simulated datasets from the four models.

Again we use M = 10, 000 iterates in the model fitting.

2.4.2 Results

To compare the nonbenchmarking and benchmarking models, for each area and

simulation run, we compute the accuracy ratios Racc =
(
PM − Y

)
/Y , and the shrink-
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age ratios Rshr = (PM − ys) /ys, where PM is the posterior mean for each area, Y

is the true finite population mean of each area, and ys is the direct estimate and the

sample mean of each area. In Table 2.3, we present a comparison of the distribution of

the Racc and Rshr in BM and NBM in all four scenarios. Observe that the medians are

very close to zero in all areas and the interquartile ranges are very small. These results

indicate that the point estimators of the finite population means are very close to the

true values and that there is not much shrinkage or bias using our estimator.

As in the examples above, we also calculated the posterior mean (PM), posterior

standard deviation (PSD) and the 95% credible interval (Int) for each area under each

model fitting of all the simulated datasets. The results are summarized in Table 2.4 for

the first two models, the homogeneous and the nonbenchmarking models while the results

for the benchmarking and nonparametric modelsand are given in Table 2.5. We present

the average posterior mean, the average posterior standard deviation, the average width

of the 95% credible intervals, and the coverage probabilities for each area. Note that

the coverage probability (C) is calculated as the proportion of 95% credible intervals

containing the true finite population mean Y for each area over the 1, 000 simulated

data. It is possible to compute these proportions since we know the value of the true

finite population mean Y for each area from the simulated data. The average of the true

values of the finite population mean for each area are also presented in Table 2.4 and

Table 2.5. We also computed the ‘root posterior mean squared error’ for the kth data set,

RMSEk =
√

PMSEk =

√
(PMk − Y k)2 + PSD2

k for each area. We summarize these

values by presenting the average RMSE over the 1, 000 data sets and its corresponding

standard error for each area.

The results show that the average posterior means are relatively the same for

both BM and NBM. Moreover, note that the average PSDs from BM are smaller than

NBM in all four cases, exhibiting a better precision in BM. In terms of the interval

estimations, the coverage probabilities for both NBM and BM are reasonably close to

the nominal value of 95%, with those from BM closer to the nominal value in most

areas in all four cases. (The closer coverage to the 95% nominal values are highlighted.)

For the mean squared error, the RMSEs are generally smaller under BM. Observe that

the few cases where BM’s RMSEs are not smaller than those of NBM, the coverage

probabilities of NBM are also better. The standard errors of the RMSEs offset these

extreme differences.

Thus, these results are in concordance with what we have seen in the illustrative
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examples. Both models give roughly the same accuracy and shrinkage. The posterior

means are similar but with BM always giving smaller posterior standard deviations. This

is natural because the benchmarking constraint reduces the sample space. Lastly, the

mostly smaller posterior mean squared error from BM shows that the BM is performing

better in estimating the finite population mean than NBM. Overall, we saw that in

all four models, BM shows better estimation than NBM, with a few non-significant

exceptions.
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2.5 Concluding Remarks

In this chapter, we presented the univariate Bayesian benchmarking model based

on the nested-error regression model of Battese, Harter, and Fuller (1988). We used

Bayesian predictive inference to estimate the finite population means of small areas; see

Toto and Nandram (2010a) for the journal article written based on the results of this

chapter. We discussed both the theoretical and numerical effects of adding the bench-

marking constraint into the Bayesian model. From the results of the examples as well

as the mathematical calculation, we found that there were adjustments in the posterior

mean of the finite population mean after the benchmarking constraint was included in

the model. We also observed that the benchmarking model with the appropriate weights

produces the most precise results. There is a definite gain in precision due to the in-

clusion of the benchmarking constraint into the model. However, we do not see too

much improvement, because our sample sizes are relatively too small compared to the

population sizes.

In the next chapter, we will extend the univariate Bayesian benchmarking model

to the multivariate Bayesian benchmarking model to accommodate multivariate out-

comes. That is, we discuss the Bayesian regression model for any number of responses,

q ≥ 2. There is a practical significance to the extension of the benchmarking model to

the multivariate case because in many small area problems, data on related multiple

characteristics and auxiliary variables are available. For instance, the two crops, corn

and soybean, in the survey and satellite data of Battese, Harter, and Fuller (1988) would

be more appropriately analyzed simultaneously because these two are correlated. Simi-

larly, the body mass index (BMI) and bone mineral density (BMD) from NHANES III

(1996) are also correlated characteristics that would be better analyzed at the same time.

We simultaneously model these examples in Chapter 3. We want to find out if

the possible correlation between the responses would add significant contribution to the

results. The work of Datta, Day, and Maiti (1998) presented a hierarchical Bayes predic-

tion of the small area mean vector using the multivariate nested-error regression model of

Fuller and Harter (1987). They compared the performance of the multivariate approach

with the usual univariate approach and found that the multivariate approach may result

in substantial improvement over its univariate counterpart through some data analysis
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and simulations. Our model is also adapted from the multivariate nested-error regression

model of Fuller and Harter (1987). However, the work of Datta, Day, and Maiti (1998)

does not include benchmarking in their model, so we can only compare it to our non-

benchmarking model. Like that of Datta, Day, and Maiti (1998), we will also compare

the performance of the multivariate approach with the univariate approach both under

nonbenchmarking and benchmarking.
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Figure 2.1: Box plots of the distribution of the finite population mean
(
Y
)

by county (area)

of the corn and soybeans acreage data
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Note: There is a consistent upward shift in the center of the distributions for the corn acreage. On

the other hand, there is a downward shift in the center of the distributions for the soybeans acreage.

Most of the whiskers of the box plots in both corn and soybeans acreage results for the BM are shorter

compared to the NBM boxplots, indicating an increase in the precision in most of the counties.
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Figure 2.2: Boxplots of the distribution of the finite population mean
(
Y
)

by domain of the

BMI and BMD data
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Note: There is a shift in the center of the distribution of the finite population means for BMI and

BMD. For the BMI data, notice the downward shift in the center of the distributions. On the other

hand, there is an upward shift in the center of the distributions for the BMD data. Notice also the

shorter whiskers of most of the BM and SBM boxplots compared to the NBM boxplots, indicating an

increase in the precision in most of the domains.
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Table 2.3: Comparison of the distribution of the accuracy ratio Racc and the shrinkage ratio

Rshr in the nonbenchmarking and the benchmarking models for estimating the finite population

mean

Racc Rshr

NonBenchmarking Benchmarking NonBenchmarking Benchmarking
i Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Data generated using homogeneous model

1 -0.042 -0.006 0.025 -0.034 0 0.031 -0.092 -0.021 0.072 -0.089 -0.015 0.083
2 -0.036 -0.001 0.036 -0.028 0.005 0.041 -0.081 0.004 0.105 -0.077 0.012 0.117
3 -0.019 0.022 0.056 -0.013 0.028 0.062 -0.057 0.024 0.125 -0.053 0.031 0.133
4 -0.037 0.003 0.038 -0.028 0.01 0.044 -0.046 0.002 0.062 -0.042 0.012 0.072
5 -0.064 -0.032 0.000 -0.059 -0.027 0.007 -0.059 -0.032 0 -0.054 -0.025 0.007
6 0.025 0.076 0.117 0.035 0.083 0.125 0.026 0.068 0.117 0.033 0.079 0.126
7 -0.024 0.013 0.046 -0.016 0.018 0.054 -0.021 0.014 0.051 -0.013 0.022 0.057
8 -0.04 -0.002 0.033 -0.033 0.003 0.04 -0.033 -0.002 0.037 -0.026 0.006 0.044
9 0.013 0.060 0.103 0.021 0.066 0.109 0.023 0.052 0.085 0.029 0.06 0.091
10 -0.053 -0.020 0.017 -0.047 -0.014 0.026 -0.038 -0.02 0.003 -0.032 -0.013 0.01
11 -0.038 0.000 0.029 -0.032 0.006 0.036 -0.025 -0.003 0.02 -0.019 0.004 0.028
12 -0.062 -0.034 0.002 -0.059 -0.028 0.011 -0.047 -0.029 -0.01 -0.041 -0.023 -0.004

Data generated using Nonbenchmarking model

1 -0.042 0.007 0.052 -0.030 0.019 0.061 -0.062 0.008 0.102 -0.051 0.02 0.116
2 -0.088 -0.044 -0.002 -0.075 -0.036 0.007 -0.1 -0.043 0.024 -0.093 -0.034 0.039
3 -0.096 -0.057 -0.006 -0.085 -0.046 0.003 -0.106 -0.052 0.009 -0.099 -0.041 0.023
4 -0.074 -0.032 0.013 -0.064 -0.023 0.022 -0.071 -0.03 0.015 -0.06 -0.018 0.027
5 -0.061 -0.016 0.025 -0.050 -0.005 0.037 -0.036 -0.014 0.01 -0.027 -0.002 0.022
6 -0.003 0.0490 0.097 0.010 0.061 0.109 0.013 0.045 0.081 0.023 0.059 0.095
7 -0.043 0.000 0.043 -0.033 0.012 0.054 -0.029 -0.006 0.021 -0.018 0.007 0.034
8 -0.016 0.034 0.089 0.001 0.046 0.103 0.006 0.038 0.072 0.019 0.05 0.088
9 0.036 0.102 0.166 0.05 0.118 0.178 0.07 0.099 0.13 0.089 0.116 0.146
10 -0.064 -0.027 0.012 -0.057 -0.017 0.024 -0.039 -0.024 -0.008 -0.03 -0.013 0.005
11 -0.027 0.016 0.056 -0.015 0.027 0.068 -0.001 0.014 0.031 0.009 0.027 0.045
12 -0.078 -0.041 -0.001 -0.071 -0.031 0.009 -0.05 -0.036 -0.021 -0.04 -0.026 -0.01

Data generated using Benchmarking model

1 -0.014 0.047 0.111 0.026 0.081 0.142 -0.027 0.049 0.145 0.004 0.084 0.191
2 -0.044 0.019 0.071 -0.009 0.05 0.102 -0.045 0.015 0.096 -0.021 0.051 0.142
3 0.005 0.068 0.135 0.042 0.102 0.162 -0.002 0.066 0.149 0.027 0.104 0.191
4 -0.058 -0.002 0.045 -0.026 0.028 0.075 -0.04 -0.004 0.04 -0.011 0.028 0.074
5 -0.047 -0.001 0.053 -0.017 0.029 0.084 -0.016 0.003 0.024 0.012 0.036 0.06
6 0.022 0.106 0.177 0.067 0.146 0.214 0.065 0.1 0.143 0.105 0.143 0.186
7 -0.059 -0.013 0.03 -0.03 0.015 0.059 -0.029 -0.011 0.009 0 0.02 0.041
8 -0.023 0.028 0.085 0.008 0.062 0.118 0 0.026 0.057 0.033 0.061 0.093
9 -0.015 0.038 0.09 0.021 0.073 0.123 0.012 0.028 0.051 0.047 0.065 0.088
10 -0.069 -0.029 0.005 -0.047 -0.004 0.033 -0.043 -0.03 -0.019 -0.02 -0.004 0.01
11 -0.045 -0.008 0.033 -0.015 0.021 0.064 -0.012 0 0.012 0.016 0.032 0.046
12 -0.074 -0.039 -0.003 -0.056 -0.016 0.025 -0.052 -0.041 -0.027 -0.032 -0.016 -0.001

Data generated using nonparametric model

1 -0.05 -0.019 0.025 -0.043 -0.014 0.028 -0.105 0.059 0.129 -0.103 0.065 0.137
2 -0.04 -0.004 0.04 -0.034 0.003 0.043 -0.109 0.031 0.117 -0.108 0.036 0.125
3 -0.01 0.020 0.063 -0.004 0.027 0.066 -0.044 0.072 0.145 -0.044 0.078 0.155
4 -0.036 0.005 0.049 -0.03 0.01 0.052 -0.052 0.029 0.103 -0.048 0.037 0.11
5 -0.074 -0.034 0.014 -0.068 -0.029 0.019 -0.069 -0.026 0.029 -0.065 -0.02 0.035
6 0.019 0.048 0.091 0.025 0.055 0.097 0.021 0.065 0.107 0.024 0.073 0.116
7 -0.036 0.007 0.046 -0.032 0.014 0.051 -0.038 0.008 0.054 -0.033 0.012 0.062
8 -0.045 -0.007 0.037 -0.04 -0.002 0.042 -0.057 -0.008 0.046 -0.053 -0.002 0.052
9 0.009 0.040 0.08 0.014 0.045 0.086 0.019 0.054 0.086 0.024 0.061 0.093
10 -0.063 -0.024 0.015 -0.059 -0.02 0.021 -0.05 -0.021 0.006 -0.046 -0.016 0.013
11 -0.032 0.004 0.042 -0.025 0.008 0.048 -0.022 0.006 0.037 -0.018 0.013 0.044
12 -0.067 -0.034 0.011 -0.064 -0.03 0.018 -0.052 -0.026 0.002 -0.046 -0.021 0.006
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Table 2.4: Comparison of the Average Posterior Mean (PM), Average Posterior Standard

Deviation (PSD), Average Width of the 95% credible intervals (width), Coverage Probabili-

ties (C), and average Root ‘Posterior’ MSE (and its standard error) of the finite population

means for each area over the 1, 000 simulation runs for the nonbenchmarking (NBM) and the

benchmarking (BM) models

Nonbenchmarking Benchmarking

i n N
FPM Posterior Interval

C RMSE(SE)
Posterior Interval

C RMSE(SE)
Y Mean SD width Mean PSD width

Data generated using homogeneous model

1 1 545 122.65 121.76 11.43 45.97 1 13.55(4.05) 122.58 10.23 41.37 1 12.34 (3.60)
2 1 566 121.8 121.86 11.36 45.68 1 13.61(3.79) 122.7 10.18 41.23 1 12.49 (3.52)
3 1 395 118.41 120.53 11.26 45.16 1 13.83(4.09) 121.34 10.38 41.86 0.99 13.17 (3.90)
4 2 424 119.77 119.73 10.19 40.59 0.99 12.75 (3.62) 120.57 9.39 37.64 0.99 12.05 (3.48)
5 3 564 129.24 125.36 8.74 34.6 0.96 11.97 (3.29) 126.19 8.05 32.03 0.95 11.21 (3.08)
6 3 570 106.72 114.13 9.16 36.07 0.89 14.06 (3.69) 114.97 8.34 32.89 0.84 13.94 (3.93)
7 3 402 118.73 120.02 8.72 34.58 0.98 11.24 (2.86) 120.86 8.17 32.52 0.96 11.01 (3.02)
8 3 567 121.23 120.74 8.83 35.04 0.99 11.35 (2.75) 121.58 8.01 32.04 0.97 10.65 (2.63)
9 4 687 108.22 114.2 8.33 32.79 0.91 12.52 (2.93) 115.03 7.55 29.75 0.85 12.36 (3.16)
10 5 569 128.24 126.13 7.59 29.95 0.95 10.57 (2.40) 126.95 7.25 28.68 0.94 10.44 (2.65)
11 5 965 122.21 121.73 7.39 29.25 0.97 10.10 (2.64) 122.56 6.51 25.9 0.94 9.41 (2.60)
12 6 566 133.26 129.51 7.47 29.34 0.93 10.76 (2.34) 130.34 7.31 28.67 0.92 10.72 (2.52)

Data generated using Nonbenchmarking model

1 1 545 119.56 119.92 13.76 54.86 1 16.59 (5.47) 121.33 12.49 49.9 1 15.32 (4.56)
2 1 566 130.68 125.14 13.74 54.68 0.99 17.46 (5.45) 126.57 12.53 49.92 0.99 15.87 (4.58)
3 1 395 132.89 126.06 13.57 53.89 0.98 17.94 (5.72) 127.5 12.75 50.67 0.98 16.69 (5.03)
4 2 424 128.38 124.31 11.87 47.02 0.98 15.60 (5.98) 125.69 11.16 44.29 0.97 14.64 (5.28)
5 3 564 126.36 124.33 9.85 38.97 0.98 13.09 (3.63) 125.75 9.2 36.42 0.97 12.48 (3.57)
6 3 570 108.43 113.3 10.11 39.87 0.94 14.14 (3.83) 114.72 9.38 37 0.92 14.03 (4.13)
7 3 402 122.43 122.5 9.87 38.98 0.98 12.92 (3.51) 123.91 9.42 37.35 0.97 12.75 (3.76)
8 3 567 110.08 113.8 10.18 40.15 0.97 13.94 (3.83) 115.21 9.47 37.38 0.94 13.69 (3.99)
9 4 687 93.5 102.79 9.91 38.8 0.86 16.27 (5.59) 104.21 9.27 36.18 0.79 16.64 (5.98)
10 5 569 133.39 130.11 8.49 33.42 0.94 11.98 (2.92) 131.53 8.3 32.63 0.94 11.80 (3.08)
11 5 965 115.66 117.23 8.23 32.51 0.97 11.12 (2.55) 118.65 7.41 29.25 0.94 10.71 (2.65)
12 6 566 142.61 137.15 8.42 33.12 0.9 12.91 (3.45) 138.56 8.42 33 0.9 12.81 (3.45)
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Table 2.5: Comparison of the Average Posterior Mean (PM), Average Posterior Standard

Deviation (PSD), Average Width of the 95% credible intervals (width), Coverage Probabili-

ties (C), and average Root ‘Posterior’ MSE (and its standard error) of the finite population

means for each area over the 1, 000 simulation runs for the nonbenchmarking (NBM) and the

benchmarking (BM) models

Nonbenchmarking Benchmarking

i n N
FPM Posterior Interval

C RMSE(SE)
Posterior Interval

C RMSE(SE)
Y Mean SD width Mean PSD width

Data generated using Benchmarking model

1 1 545 110.37 115.56 15.32 60.63 0.99 19.57 (7.03) 119.32 13.97 55.31 0.96 19.53 (7.74)
2 1 566 117.55 119.3 15.09 59.66 1 18.57 (6.00) 123.07 13.81 54.83 0.98 17.95 (6.19)
3 1 395 107.66 114.7 14.91 58.94 0.98 19.91 (7.04) 118.44 14.02 55.56 0.93 20.68 (8.41)
4 2 424 120.02 119.65 12.7 50.11 0.99 16.24 (5.45) 123.38 12.02 47.52 0.97 15.95 (6.12)
5 3 564 119.74 120.11 10.4 40.98 0.97 14.08 (4.49) 123.84 9.78 38.57 0.93 14.22 (5.29)
6 3 570 91.07 99.95 11.31 44.45 0.89 17.72 (6.40) 103.69 10.5 41.21 0.78 19.23 (7.91)
7 3 402 125.71 124 10.41 41.04 0.97 13.61 (3.52) 127.68 10.07 39.71 0.97 13.47 (3.84)
8 3 567 110.27 113.31 10.7 42.13 0.97 14.40 (4.09) 117.03 9.96 39.28 0.92 14.99 (5.08)
9 4 687 106.98 110.81 9.48 37.3 0.95 13.20 (3.59) 114.54 8.84 34.83 0.88 14.27 (4.78)
10 5 569 141.95 137.66 8.92 35.11 0.93 12.83 (3.51) 141.38 8.99 35.32 0.94 12.58 (3.43)
11 5 965 121.34 120.77 8.51 33.56 0.96 11.44 (2.78) 124.49 7.78 30.7 0.94 11.30 (3.33)
12 6 566 154.55 148.71 8.89 35.04 0.91 13.60 (4.07) 152.41 9.19 36.17 0.93 13.22 (3.71)

Data generated using nonparametric model

1 1 545 109.55 108.67 11.24 45.42 1 13.24 (3.19) 109.24 9.97 40.63 1 12.02 (2.92)
2 1 566 109.1 109.39 11.2 45.27 1 13.14 (3.29) 109.97 9.95 40.56 1 12.01 (3.14)
3 1 395 105.04 108.44 11.09 44.64 0.99 13.60 (4.74) 109 10.13 41.29 0.98 12.90 (4.74)
4 2 424 106.2 107.11 10.2 40.72 0.99 12.64 (3.51) 107.7 9.3 37.52 0.98 11.91 (3.51)
5 3 564 114.55 111.47 8.92 35.43 0.95 12.39 (3.73) 112.05 8.12 32.42 0.93 11.68 (3.67)
6 3 570 98.77 104.24 9.04 35.87 0.97 12.12 (3.11) 104.83 8.15 32.5 0.94 11.68 (3.15)
7 3 402 107.63 108.43 8.83 35.13 0.99 11.11 (2.43) 109 8.2 32.85 0.98 10.75 (2.62)
8 3 567 109.4 109.22 8.98 35.76 0.98 11.55 (3.12) 109.8 8.1 32.47 0.97 10.87 (3.31)
9 4 687 99.31 103.74 8.36 33.04 0.97 11.12 (2.65) 104.31 7.48 29.77 0.94 10.67 (2.71)
10 5 569 114.79 112.51 7.82 30.87 0.93 11.20 (3.22) 113.09 7.35 29.23 0.91 10.96 (3.51)
11 5 965 107.33 107.96 7.58 30.03 0.99 9.83 (2.10) 108.55 6.57 26.27 0.96 9.09 (2.11)
12 6 566 117.04 113.88 7.59 29.94 0.91 11.15 (2.90) 114.45 7.32 28.94 0.89 11.15 (3.33)

48



Chapter 3

Multivariate Benchmarking

In this chapter, we extend the Bayesian benchmarking model discussed in Chap-

ter 2 for any finite number of responses, q ≥ 2. The extension of the benchmark-

ing model to the multivariate case is interesting because in many small area prob-

lems, data on related multiple characteristics and auxiliary variables are available.

For instance, the two crops, corn and soybean, in the survey and satellite data of

Battese, Harter, and Fuller (1988) would be more appropriately analyzed simultane-

ously. Similarly, the body mass index (BMI) and bone mineral density (BMD) from

NHANES III (1996) are also correlated characteristics that would be better analyzed

at the same time. Datta, Day, and Maiti (1998) presented a hierarchical Bayes predic-

tion of the small area mean vector also using the multivariate nested-error regression

model of Fuller and Harter (1987). We will compare our results with the results of

Datta, Day, and Maiti (1998) for the nonbenchmarking case. We will also compare the

performance of the multivariate approach with the univariate approach with and with-

out the benchmarking constraint. The work of Datta, Day, and Maiti (1998) did not

incorporate a benchmarking constraint in their model, but they found that the non-

benchmarking multivariate approach may result in substantial improvement over its

univariate counterpart. We present some data analysis and comparison of results for

both the crop and health data.

We first describe the notation used for the Cholesky decomposition.
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Let

P =





1 φ12 · · · φ1q

φ21 1 · · · φ2q

. . .

φq1 φq2 · · · 1





be a positive definite matrix. Then Cholesky decomposition of P , denoted by

Chol (P ) , is given by

Chol(P ) =





1 φ12 · · · φ1q

0 (1 − φ2
12)

1
2 · · ·

φ2q − φ12φ1q

(1 − φ2
12)

1
2

. . .

0 0 · · ·

(
1 −

q−1∑

k=1

c2
kq

) 1
2





,

where c11 = 1, and c1i = φ1i, i = 2, . . . , q. Moreover, for i = 2, . . . , q − 1,

cij = 0, j = 1, 2, . . . , i − 1; cii =

(
1 −

i−1∑

k=1

c2
ki

) 1
2

;

cij =

φij −
i−1∑

k=1

ckickj

cii

, j = i + 1, . . . , q; cqq =

(
1 −

q−1∑

k=1

c2
kq

) 1
2

.

With most, if not all of our applications in this dissertation, being bivariate vec-

tors (q = 2), we describe the covariance matrix structure for the bivariate nested-error

regression model. Thus, for q = 2, we will obtain the matrices G and P, given by

G =





(
γ1

1 − γ1

) 1
2

0

0

(
γ2

1 − γ2

) 1
2




and P =

[
1 φ

φ 1

]
.

Thus, applying the Cholesky decomposition on P, we get

Chol(P ) =

[
1 φ

0 (1 − φ2)
1
2

]
.
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Hence, we will write

Γ = Chol(P )G =





(
γ1

1 − γ1

) 1
2

φ

(
γ2

1 − γ2

) 1
2

0 (1 − φ2)
1
2

(
γ2

1 − γ2

) 1
2




,

and

Γ′Γ = G′PG =





(
γ1

1 − γ1

)
φ

(
γ1

1 − γ1

) 1
2
(

γ2

1 − γ2

) 1
2

φ

(
γ1

1 − γ1

) 1
2
(

γ2

1 − γ2

) 1
2

(
γ2

1 − γ2

)




.

3.1 Multivariate Nested-Error Regression Model

Fuller and Harter (1987) introduced the multivariate nested-error regression

model with components-of-variance error structure. This model is the multivariate ver-

sion of the model of Battese, Harter, and Fuller (1988). The multivariate nested-error

regression model is given by

y
˜

ij =





yij1

yij2

...

yijq




ind
∼ Normal










x
˜
′

ij1β
˜

1
+ νi1

x
˜
′

ij2β
˜

2
+ νi2

...

x
˜
′

ijqβ
˜

q
+ νiq




, Σ






(3.1)

= Normal
{
X ′

ijβ
˜

+ ν
˜

i, Σ
}

,

where Xij =





x
˜

ij1 · · · 0
˜

p
...

. . .
...

0
˜

p · · · x
˜

ijq



 , ν
˜

i = (νi1, νi2, . . . , νiq)
′, for i = 1, . . . , ℓ, β

˜
=
(
β
˜

1

′, . . . , β
˜

q

′

)
′

,

with β
˜

k
= (βk1, . . . , βkp)

′, for k = 1, . . . , q, and Σ is a symmetric, positive-definite matrix.

Suppose that ni samples are given for each i = 1, 2, . . . , ℓ. Since each unit yij, i =

1, 2, . . . , ℓ, j = 1, 2, . . . , ni, are independent, the sample data vector y
˜

s =
(
y
˜

′

11, . . . , y
˜

′

ℓnℓ

)
′
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has the following distribution function

p
(
y
˜

s|ν
˜
, β
˜
, Σ
)

∝
ℓ∏

i=1

ni∏

j=1

(
1

2π

)1/2(
1

|Σ|

)1/2

× exp

{
−

1

2

(
y
˜

ij − X ′

ijβ
˜
− ν

˜
i

)
′

Σ−1
(
y
˜

ij − X ′

ijβ
˜
− ν

˜
i

)}
. (3.2)

In Chapter 2, we introduced a novel structure on the distribution of the area

effect νi. In this chapter, we extend that structure for q ≥ 2. That is, for i = 1, 2, . . . , ℓ,

the area effects vector ν
˜

i has distribution

ν
˜

i = (νi1, νi2, . . . , νiq)
′ ind
∼ Normal {0

˜
q, Γ

′ΣΓ} ,

where Γ = {chol(P )}G is an upper-triangular matrix such that Γ′Γ = G′PG with

G =





(
γ1

1 − γ1

)1/2

· · · 0

...
. . .

...

0 · · ·

(
γq

1 − γq

)1/2




, P =





1 φ12 · · · φ1q

φ21 1 · · · φ2q

. . .

φq1 φq2 · · · 1




,

with 0 < γk < 1, k = 1, . . . , q; and φij = φji, −1 < φij < 1, i, j = 1, . . . , q.

Since each ν
˜

i, i = 1, . . . , ℓ, are independent, the distribution function of ν
˜

=

(ν
˜
′

1, . . . , ν
˜
′

ℓ)
′ is given by

π (ν
˜
) ∝

ℓ∏

i=1

(
1

2π

)1/2(
1

|Γ′ΣΓ|

)1/2

exp

{
−

1

2
ν
˜

i(Γ
′ΣΓ)

−1
ν
˜

i

}
. (3.3)

3.2 The Nonbenchmarking Bayesian Model

In this section, we introduce the nonbenchmarking multivariate model. This

is an extension of the nonbenchmarking Bayesian model discussed in Chapter 2. This

model can also be considered as a Bayesian version of the multivariate nested-error re-

gression model discussed by Fuller and Harter (1987). This is similar to the multivariate

Bayesian model of Datta, Day, and Maiti (1998). The difference between the model of

Datta, Day, and Maiti (1998) and our nonbenchmarking model lies in the prior specifi-

cation in the model. Datta, Day, and Maiti (1998) imposed inverse-Wishart priors on

both covariance matrices in the model, whereas, in our model, we applied reparameteri-
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zation, so that we do not have to put priors on one of the covariance structures. This is

one of the novel ideas that we are contributing to this study. We will elaborate on this

in the next paragraphs.

Since our approach is to use Bayesian methodology, we need to put prior distribu-

tions on the following model parameters, β
˜
, Σ, γ

˜
= (γ1, . . . , γq) , and φ

˜
= (φ12, . . . , φq−1,q) ,

in our model.

We assume the following prior distribution on the parameters β
˜
, Σ, γ

˜
, φ
˜

π
(
β
˜

)
∝ 1, ;

π (Σ) ∝

(
1

|Σ|(q+1)/2

)
(Jeffrey’s prior);

γk
iid
∼ Uniform (0, 1) , k = 1, . . . , q − 1;

φij
iid
∼ Uniform (−1, 1) , i = 1, 2, . . . , q, j = 2, . . . , q, i 6= j.

Assuming that the parameters are independent of each other, the joint prior distribution

for β
˜
, Σ, Γ is given by

π
(
β
˜
, Σ, Γ

)
∝

(
1

|Σ|(q+1)/2

)
, (3.4)

where Γ = Γ
(
γ
˜
, φ
˜

)
. As a result of the structure of the priors on the model parameters

in our model, note that the joint prior distribution is a Wishart-type prior, a degenerate

case. Observe that this generalizes the structure of the prior in the univariate problem.

Note that in the bivariate model,

Γ = Chol(P )G =





(
γ1

1 − γ1

) 1
2

φ

(
γ2

1 − γ2

) 1
2

0 (1 − φ2)
1
2

(
γ2

1 − γ2

) 1
2




.

With the structure of the covariance matrix of the area effects ν
˜

i, we only need to esti-

mate the values of the scalar parameters. In this case, the three scalar parameters γ1, γ2,

and φ, of the covariance matrix, instead of estimating the covariance matrix as a whole.

This makes the numerical calculations easier, at the same time avoids the problems of

using the commonly-used inverse-Wishart family of distribution in hierarchical models
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(Gelman, 2006). For instance, in our sampling procedure, we simply need to generate

samples from Uniform (0, 1) to obtain values of the parameters γk, k = 1, 2, . . . , k − 1,

and φ∗

ij. We use a grid to generate the samples from the Uniform (0, 1) . Then to generate

samples from φij, and get an appropriate prior value of the φij’s, which are supposed

to be Uniform (0, 1) , i = 1, 2, . . . , q, j = 2, . . . , q, i 6= j, we use linear transformation,

φij = 2φ∗

ij − 1. Thus, φij
iid
∼ Uniform (−1, 1) , for i = 1, 2, . . . , q, j = 2, . . . , q, i 6= j.

Using Bayes’ theorem in (3.2), (3.3), and (3.4), we find that the joint posterior density

of ν
˜
, β
˜
, Σ, Γ given the sample data y

˜
s is given by

π
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝ p

(
y
˜

s|ν
˜
, β
˜
, Σ, Γ

)
× π (ν

˜
) × π

(
β
˜
, Σ, Γ

)

∝

[
ℓ∏

i=1

ni∏

j=1

(
1

(2π)1/2|Σ|1/2

)
exp

{
−

1

2

[
y
˜

ij
−
(
Xijβ

˜
+ ν

˜
i

)]′
Σ−1

[
y
˜

ij
−
(
Xijβ

˜
+ ν

˜
i

)]}
]

×

[(
ℓ∏

i=1

(
1

(2π)1/2|Γ′ΣΓ|1/2

)
exp

{
−

1

2

(
ν
˜

i − 0
˜

q

)
′

(Γ′ΣΓ)
−1 (

ν
˜

i − 0
˜

q

)}
)](

1

|Σ|(q+1)/2

)
.

Simplifying the above equation, the joint posterior density of ν
˜
, β
˜
, Σ, Γ given the sample

data y
˜

s is

π
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝

(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2

exp

{
−

1

2

ℓ∑

i=1

(
ν
˜

i − 0
˜

q

)
′

(Γ′ΣΓ)
−1 (

ν
˜

i − 0
˜

q

)
}

× exp

{
−

1

2

ℓ∑

i=1

ni∑

j=1

[
y
˜

ij
−
(
Xijβ

˜
+ ν

˜
i

)]′
Σ−1

[
y
˜

ij
−
(
Xijβ

˜
+ ν

˜
i

)]
}

.

We use Gibbs sampling (see Gelfand and Smith (1990)) to draw samples from the

above joint distribution. Hence, we need to know the full conditional distributions of

the parameters we want to estimate. From the joint posterior distribution ν
˜
, β
˜
, Σ, Γ|y

˜
s,

under the nonbenchmarking model, we have the following full conditional distributions

of the parameters of the model.

1. For i = 1, 2, . . . , ℓ, the full conditional distribution of ν
˜

i|y
˜

s, β
˜
, Σ, Γ is given by

ν
˜

i|y
˜

s, β
˜
, Σ, Γ

ind
∼ Normal

{
Bi

−1Σ−1

ni∑

j=1

(
y
˜

ij − X ′

ijβ
˜

)
, Bi

−1

}
, (3.5)
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where Bi = niΣ
−1 + (Γ′ΣΓ)−1.

2. The full conditional distribution of β
˜
|y
˜

s, ν
˜
, Σ, Γ is given by

β
˜
|y
˜

s, ν
˜
, Σ, Γ ∼ Normal

{
β̂
˜
, D−1

}
, (3.6)

where β̂
˜

=

(
ℓ∑

i=1

ni∑

j=1

XijΣ
−1X ′

ij

)−1( ℓ∑

i=1

ni∑

j=1

XijΣ
−1
(
y
˜

ij − ν
˜

i

)
′

)
and

D =
ℓ∑

i=1

ni∑

j=1

XijΣ
−1X ′

ij.

3. The full conditional distribution of Σ|y
˜

s, ν
˜
, β
˜
, Γ is given by

Σ|y
˜

s, ν
˜
, β
˜
, Γ ∼ Inverse-Wishart (n + ℓ, S) (3.7)

where n + ℓ > q − 1 and S is a positive definite q × q scale matrix given by

S =
ℓ∑

i=1

[(
Γ−1
)
′

(ν
˜

iν
˜
′

i)
(
Γ−1
)]

+
ℓ∑

i=1

ni∑

j=1

(
y
˜

ij − X ′

ijβ
˜
− ν

˜
i

) (
y
˜

ij − X ′

ijβ
˜
− ν

˜
i

)
′

.

The Inverse-Wishart distribution is the conjugate prior distribution for

the multivariate normal covariance matrix. A degenerate form occurs when ν < k.

The probability density function of the inverse-Wishart random k × k matrix W

is

p (W |S, ν) =

|S|ν/2|W |−(ν+k+2)/2 exp

{
−

1

2
trace

(
SW−1

)}

2νk/2Γk (nu/2)
,

where ν is the degrees of freedom, S is a k × k symmetric positive definite scale

matrix, and Γk(·) is the multivariate gamma function.

4. The full conditional density of Γ|y
˜

s, ν
˜
, β
˜
, Σ is given by

π
(
Γ|y

˜
s, ν

˜
, β
˜
, Σ
)
∝

(
1

|Γ|

)ℓ

exp

{
−1

2
trace

[
(Γ′ΣΓ)

−1

(
ℓ∑

i=1

ν
˜

iν
˜
′

i

)]}
(3.8)
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Now, we describe the distribution of the finite population mean under the non-

benchmarking model. For i = 1, . . . , ℓ, the q × 1 finite population mean vector for the

ith area is defined as

Y
˜

i =
1

Ni

ni∑

j=1

y
˜

ij
.

Also, denote by y
˜

si
=
(
ysi1

, . . . , ysiq

)
′

, the q×1 sample mean vector for the ith area, and

by fi = ni/Ni the ith sampling fraction. Moreover, Xsi
= block diagonal

(
x
˜

si1
, . . . , x

˜
siq

)

and X i = block diagonal
(
x
˜

i1, . . . , x
˜

iq

)
are the qp × q matrices of the means of the p

covariates for the ith area, and the ith population, i = 1, 2, . . . , ℓ respectively, where

x
˜

sik
=
(
xsik1

, . . . , xsikp

)
′

, and x
˜

ik = (xik1, . . . , xikp)
′, for k = 1, 2, . . . , q.

Theorem 3.1. Using properties of multivariate normal distribution, under the

nonbenchmarking model, the distribution of the finite population mean vector, Y
˜

i given

y
˜

s, ν
˜
, β
˜
, Σ is

Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ

ind
∼ Normal

{
fiy

˜
si

+ (1 − fi)
(
X

′

nsi
β
˜

+ ν
˜

i

)
,

(
1 − fi

Ni

)
Σ

}
. (3.9)

Observe that if q = 1, the distribution in (3.9) reduces to (1.5) given in Chapter 1.

Proof.

We can write Y
˜

i as

Y
˜

i =
1

Ni

Ni∑

j=1

y
˜

ij
= fiy

˜
si

+ (1 − fi)y
˜

nsi

=
1

ni

(
1′ni

⊗ Iq

)
y
˜

si
+

1

Ni − ni

(
1′Ni−ni

⊗ Iq

)
y
˜

nsi
.

The above expression implies that the distribution of the finite population mean

vector Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ depends on the distribution of the sampled units, y

˜
si
, and the non-

sampled units, y
˜

nsi
, in the ith area. Using properties of multivariate normal distribution,

the nonsampled units, y
˜

nsi
, are normally distributed. Hence, for i = 1, 2, . . . , ℓ, the fi-

nite population mean vector Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ follows a multivariate normal distribution with

mean vector

E
[
Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ
]

= fiy
˜

si
+ (1 − fi)

(
X

′

nsi
β
˜

+ ν
˜

i

)
,
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and covariance matrix

V ar
[
Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ
]

=

(
1 − fi

Ni

)
Σ.

As mentioned earlier, Datta, Day, and Maiti (1998) presented a multivariate

Bayesian nonbenchmarking model for the finite population mean and they used the

crop data as the illustration of their model. Datta, Day, and Maiti (1998) also applied

Bayesian methodology to estimate the small area mean vector in the Fuller and Harter

(1987) regression model. But they used inverse-Wishart priors (see Appendix) on all

their covariance matrices. Thus we can compare the results from their model with our

nonbenchmarking (NBM) results from both univariate and multivariate Bayesian mod-

els. Table 3.1 shows the comparison of the crop data example.

Table 3.1: Comparison of the Univariate Nonbenchmarking model (uNBM), Multivariate
Nonbenchmarking (mNBM), and the Datta, Day, and Maiti model (DDM) results for the finite
population mean of the crop hectares data for the counties in Iowa.

County Corn Soybean Correlation

mNBM DDM uNBM mNBM DDM uNBM mNBM DDM

i
Posterior
Mean(SD)

1 124.05(8.75) 119.98(13.90) 123.47(9.32) 79.16(11.47) 83.69(13.47) 78.76(11.27) −0.51 0.02
2 122.08(7.98) 130.00(14.03) 124.20(9.28) 95.03(10.89) 98.72(13.43) 94.34(10.92) −0.55 −0.13
3 116.26(8.66) 98.83(13.65) 110.95(10.04) 87.09(11.76) 78.54(12.86) 87.72(10.70) −0.45 −0.07
4 120.19(8.92) 99.79(12.19) 114.16(8.37) 81.23(10.98) 81.01(12.13) 82.04(10.09) −0.35 −0.26
5 138.66(8.20) 133.13(10.76) 138.82(8.37) 67.68(8.48) 75.90(9.94) 67.15(7.93) −0.44 −0.44
6 108.14(6.58) 111.43(10.36) 109.78(7.66) 114.10(7.54) 118.23(9.47) 113.83(7.34) −0.36 −0.38
7 115.03(6.45) 120.08(9.93) 116.05(7.20) 97.13(7.60) 94.40(9.47) 97.23(7.63) −0.41 −0.39
8 120.94(6.83) 126.62(10.30) 122.90(7.20) 112.07(7.30) 111.79(9.44) 111.93(7.60) −0.42 −0.36
9 111.23(6.23) 111.40(9.71) 112.07(7.00) 110.47(6.69) 114.09(9.21) 110.06(6.54) −0.45 −0.53
10 123.45(5.19) 126.31(8.97) 123.99(6.25) 100.44(5.76) 97.74(8.35) 100.36(6.13) −0.45 −0.49
11 110.94(6.99) 116.69(9.46) 111.71(6.96) 117.50(6.71) 111.43(8.97) 118.28(6.48) −0.41 −0.55
12 132.12(5.43) 129.65(8.45) 131.25(5.92) 75.28(5.99) 75.86(7.86) 75.04(5.65) −0.42 −0.51

Observe from Table 3.1 that the multivariate nonbenchmarking results have the

most improved precision compared to both the Datta, Day, and Maiti (1998) and the

univariate nonbenchmarking results. There are some instances in Table 3.1 that our

univariate nonbenchmarking yielded some better precision compared to the multivariate

results, however, their values are not so far from each other. Also, observe the last
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two columns of Table 3.1 in which we see that the posterior correlation between corn

and soybeans is more consistent over all the areas for the multivariate nonbenchmarking

model than the Datta, Day, and Maiti (1998) correlations; note the correlation in the

first county from the Datta, Day, and Maiti (1998) output.

3.3 The Benchmarking Bayesian Model

We now extend the univariate benchmarking model to include multivariate out-

comes. We incorporate to the nonbenchmarking model described in (3.2), (3.3), and

(3.4), the following q benchmarking constraints

ℓ∑

i=1

Ni∑

j=1

yijk =
ℓ∑

i=1

ni∑

j=1

ωijyijk, k = 1, 2, . . . , q. (3.10)

Recall that ωij is the sampling weight of the jth unit in the ith area and these weights are

the same for all outcomes. As in the univariate case, this type of benchmarking is called

internal benchmarking, since we are using a weighted average of the direct estimators.

Incorporating the benchmarking constraints in (3.10) to the nonbenchmarking

model, we get the multivariate Bayesian benchmarking model (MBM) is

y
˜

ij
ind
∼ Normal

{
X ′

ijβ
˜

+ ν
˜

i, Σ
}

, i = 1, 2, . . . , ℓ, j = 1, 2, . . . , Ni, (3.11)

ℓ∑

i=1

Ni∑

j=1

yijk =
ℓ∑

i=1

ni∑

j=1

ωijyijk, k = 1, 2, . . . , q,

ν
˜

i
ind
∼ Normal {0

˜
q, Γ

′ΣΓ} , i = 1, 2, . . . , ℓ, (3.12)

π
(
β
˜
, Σ, Γ

)
∝

1

|Σ|

(q+1)/2

(3.13)

Let y
˜

s =
(
y
˜

′

s1
, . . . , y

˜
sℓ

′
)
′

, where y
˜

si
=
(
y
˜

′

i1
, . . . , y

˜

′

ini

)
′

. Similarly, y
˜

ns =
(
y
˜

′

ns(N)
, y
˜

′

ℓNℓ

)
′

,

where y
˜

ns(N)
=
(
y
˜

′

ns1
, . . . , y

˜
nsℓ

′
)
′

, y
˜

nsi
=
(
y
˜

′

ini+1
, . . . , y

˜

′

iNi

)
′

, for i = 1, 2, . . . , ℓ − 1,

and y
˜

nsℓ
=
(
y
˜

′

ℓnℓ+1
, . . . , y

˜

′

ℓNℓ−1

)
′

. Also, write ω
˜
∗ = (ω

˜
− 1

˜
n) , W =

ω
˜
∗ω
˜
∗′

ω
˜
∗′ω

˜
∗ + ω

˜
∗′1
˜

n

,

W̃ =
ω
˜
∗1
˜

N−n
′

ω
˜
∗′ω

˜
∗ + ω

˜
∗′1
˜

n

. Lastly, we write Xs = (X11, . . . , Xℓ,nℓ
) , Xns = (X1n1+1, . . . , Xℓ,Nℓ

) ,

58



Zs = block diagonal
(
1
˜

n1
, . . . , 1

˜
nℓ

)
, and Zns = block diagonal

(
1
˜

N1−n1
, . . . , 1

˜
Nℓ−nℓ

)
.

Conditional on the benchmarking constraint, we find the distribution of the data,

both sampled and nonsampled, in the next two lemmas. Before we state our remarks,

we define first the Kronecker product, which we use in a lot of our results.

We note that the direct product, sometimes called the Kronecker product or

Zehfuss product, of two matrices Ap×q and Bm×n is defined as

A ⊗ B =





a11B · · · a1qB

...
. . .

...

ap1B · · · apqB



 . (3.14)

Remark 3.2. Under the benchmarking model, conditional on the benchmarking con-

straint,

y
˜

s|ν
˜
, β
˜
, Σ ∼ Normal

{
Cxβ

˜
+ Czν

˜
, (In − W ) ⊗ Σ

}
,

Cx = [(In − W ) ⊗ Iq] X
′

s +
(
W̃ ⊗ Iq

)
X ′

ns,

and

Cz = [(In − W ) ⊗ Iq] [Zs ⊗ Iq] +
[
W̃ ⊗ Iq

]
[Zns ⊗ I2] .

Remark 3.3. Under the benchmarking model, conditional on the benchmarking con-

straint,

y
˜

ns|y
˜

s, ν
˜
, β
˜
, Σ ∼ Normal

{
Kxβ

˜
+ Kzν

˜
+ Kyy

˜
s,

(
IN−n −

1

N − n
JN−n

)
⊗ Σ

}
,

Kx =

[(
IN−n −

1

N − n
JN−n

)
⊗ Iq

]
X ′

ns, Ky =

(
1

N − n

)
(1
˜

N−nω
˜
∗′ ⊗ Iq) , and

Kz =

[(
IN−n −

1

N − n
JN−n

)
⊗ Iq

]
[Zns ⊗ Iq] .

Using Bayes’ theorem in (3.11), (3.12), and (3.13), we find that the joint posterior

density of ν
˜
, β
˜
, Σ, Γ given the sample data y

˜
s under the multivariate benchmarking model

is
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π
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝ p

(
y
˜

s|ν
˜
, β
˜
, Σ
)
π(ν

˜
)π(β

˜
, Σ, Γ)

∝

(
1

|Σ|

)n/2

exp

{
−

1

2

(
y
˜

s − Cxβ
˜
− Czν

˜

)
′

[(In − W ) ⊗ Σ]−1 (y
˜

s − Cxβ
˜
− Czν

˜

)}

×

(
1

|Γ|

)ℓ

exp

{
−

1

2
ν
˜
′(Iℓ ⊗ Γ′ΣΓ)

−1
ν
˜

}(
1

|Σ|

)(q+1)/2

.

Simplifying the above equation, the joint posterior density of ν
˜
, β
˜
, Σ, Γ given the sample

data y
˜

s is

π
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝

(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2

exp

{
−

1

2
ν
˜
′(Iℓ ⊗ Γ′ΣΓ)

−1
ν
˜

}

× exp

{
−

1

2

(
y
˜

s − Cxβ
˜
− Czν

˜

)
′

[(In − W ) ⊗ Σ]−1 (y
˜

s − Cxβ
˜
− Czν

˜

)}
.

As in the nonbenchmarking model, we will use Gibbs sampling to generate

estimates of the model parameters. From the joint posterior distribution ν
˜
, β
˜
, Σ, Γ|y

˜
s,

under the benchmarking model, we have the following full conditional distributions:

1. The full conditional distribution of ν
˜
|y
˜

s, β
˜
, Σ, Γ is given by

ν
˜
|y
˜

s, β
˜
, Σ, Γ ∼ Normal

{
A−1C ′

z[(In − W ) ⊗ Σ]−1 (y
˜

s − Cxβ
˜

)
, A−1

}
(3.15)

where A = [Iℓ ⊗ Γ′ΣΓ]−1 + C ′

z[(In − W ) ⊗ Σ]−1Cz.

2. The full conditional distribution of β
˜
|y
˜

s, ν
˜
, Σ, Γ is given by

β
˜
|y
˜

s, ν
˜
, Σ, Γ ∼ Normal

{
β̂
˜
,
[
C ′

x{(In − W ) ⊗ Σ}−1Cx

]−1
}

, (3.16)

where

β̂
˜

=
{
C ′

x[(In − W ) ⊗ Σ]−1Cx

}−1 {
C ′

x[(In − W ) ⊗ Σ]−1 [y
˜

s − Czν
˜

]}
.

3. The full conditional distribution of Σ|y
˜

s, ν
˜
, β
˜
, Γ is given by

Σ|y
˜

s, ν
˜
, β
˜
, Γ ∼ Inverse-Wishart (n + ℓ, S) (3.17)

where n + ℓ > q − 1 and S is a positive definite q × q scale matrix given by

S = S1S
′

1 + S2 (In − W )−1 S ′

2,
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and S1 is the q×ℓ matrix obtained by unstacking the vector (Iℓ ⊗ Γ)−1ν
˜

taking each

consecutive q elements of the vector as columns, S2 is the q × n matrix obtained

by unstacking the vector y
˜

s−Cxβ
˜
−Czν

˜
taking each consecutive q elements as the

columns.

4. The full conditional density of Γ|y
˜

s, ν
˜
, β
˜
, Σ is given by

π
(
Γ|y

˜
s, ν

˜
, β
˜
, Σ
)
∝

(
1

|Γ|

)ℓ

exp

{
−1

2
trace

[
(Γ′ΣΓ)

−1

(
ℓ∑

i=1

ν
˜

iν
˜
′

i

)]}
. (3.18)

Using similar notations as in the nonbenchmarking model, we describe the dis-

tribution of the finite population mean under the benchmarking model.

Theorem 3.4. The Bayesian predictive distribution of Y
˜

i|y
˜

s is

p
(
Y
˜

i|y
˜

s

)
=

∫
p
(
Y i|ν

˜
, β
˜
, σ2, y

˜
s

)
π
(
ν
˜
, β
˜
, σ2|y

˜
s

)
dν
˜
dβ
˜
dΣ. (3.19)

Using properties of multivariate normal distribution, the distribution of the finite pop-

ulation mean vector, Y
˜

i given y
˜

s, ν
˜
, β
˜
, Σ is

Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ

ind
∼ Normal

{
fiy

˜
si

+ (1 − fi)
(
X

′

nsi
β
˜

+ ν
˜

i

)
+ A

˜
i, Vi

(
1 − fi

Ni

)
Σ

}
, (3.20)

where

A
˜

i =

(
1 − fi

N − n

)[(
ω
˜
∗′ ⊗ Iq

)
y
˜

s −
(
NX − nXs

)
′

β
˜
−
(
1
˜
′

N−nZns ⊗ Iq

)
ν
˜

]
,

and

Vi = 1 −

(
Ni − ni

N − n

)
.

Note that the mean of the distribution of the finite population mean under the

benchmarking model has an additional q × 1 vector term A
˜

i compared to the mean of

its nonbenchmarking counterpart. Moreover, there is an adjustment of a scalar factor

of Vi to the covariance matrix of the distribution of the finite population mean in the

benchmarking model with reference to the nonbenchmarking model. Observe that if

we set q = 1, (3.20) will be equivalent to distribution of the finite population mean
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Y i, i = 1, 2, . . . , ℓ in the benchmarked univariate case (see Equation (2.9) in Section

2.1). Below is the proof of the distribution of Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ under the multivariate

benchmarking model given in Theorem 3.4 above.

Proof.

Note that Y
˜

i can be written as

Y
˜

i =
1

Ni

Ni∑

j=1

y
˜

ij
= fiy

˜
si

+ (1 − fi)y
˜

nsi

=
1

ni

(
1′ni

⊗ Iq

)
y
˜

si
+

1

Ni − ni

(
1′Ni−ni

⊗ Iq

)
y
˜

nsi
.

Hence, to prove Theorem 3.4, we need the distribution of y
˜

s and y
˜

ns. Using

the conditional distribution property of the multivariate normal density, we find that

y
˜

ns(N)
|ν
˜
, β
˜
, Σ, y

˜
s also follows a normal distribution (see Remark 3.3). The distribution

of Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ follows from the distribution of the nonsampled units. Thus, under the

benchmarking model, the finite population mean vector Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ, i = 1, 2, . . . , ℓ,

follows a multivariate normal distribution with mean vector

E
[
Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ
]

= fiy
˜

si
+ (1 − fi)

(
X

′

nsi
β
˜

+ ν
˜

i

)

+

{(
1 − fi

N − n

)[(
ω
˜
∗′ ⊗ Iq

)
y
˜

s −
(
NX − nXs

)
′

β
˜
−
(
1
˜
′

N−nZns ⊗ Iq

)
ν
˜

]}
,

and covariance matrix

V ar
[
Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ
]

=

{
1 −

(
Ni − ni

N − n

)}(
1 − fi

Ni

)
Σ.

3.4 Posterior Inference

As in the univariate case, we use Bayesian predictive procedure to make pos-

terior inference about Y i|y
˜

s. Our approach is to combine samples from the posterior

distribution ν
˜
, β
˜
, Σ, Γ|y

˜
s and the distribution of Y i|ν

˜
, β
˜
, Σ, y

˜
s.
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We use Gibbs sampling method to draw samples from ν
˜
, β
˜
, Σ, Γ|y

˜
s, using the full con-

ditional distributions given in Section 3.1 for the multivariate nonbenchmarking Bayesian

model and 3.3 for the multivariate benchmarking Bayesian model. Using the obtained

values of the model parameters, we draw samples from Y i|ν
˜
, β
˜
, Σ, y

˜
s from the distri-

butions in Theorem 3.1 and Theorem 3.4. We initialize the values of all our model

parameters ν
˜
, β
˜
, Σ, Γ using some frequentist calculations. In the Gibbs sampling pro-

cess, we first draw samples from Γ|y
˜

s, ν
˜
, β
˜
, Σ using a grid method on its elements γ

˜
and φ

˜
. With each set of samples of these parameters, we form the matrix Γ and use

it to draw a sample from Σ|y
˜

s, ν
˜
, β
˜
, Γ. Then, with the new sampled values of Σ and Γ

we draw a sample from β
˜
|ν
˜
, Σ, Γ, y

˜
s. Moreover, with the sampled values of Γ, Σ and β

˜
,

draw values of ν
˜

from ν
˜
|β
˜
, Σ, Γ, y

˜
s. Once the parameters are obtained, we use them to

draw values of the finite population means for each of the areas from the distribution of

Y
˜

i|ν
˜
, β
˜
, Σ, y

˜
s. We apply this algorithm to draw samples in both the nonbenchmarking

and benchmarking models.

To facilitate inference, we generate M = 20, 000 iterates for the Gibbs sampling

method. We use 5000 burn-in values and thinned our results to 750 Gibbs samples by

taking every 20th sampled value. We also use 200 grids in (0, 1) to obtain our values of

the γ
˜

and φ∗

˜
. Then we use the linear transformation φij = 2φ∗

ij − 1 to generate φ. We

then form the matrix Γ by simple algebra into the matrix

Γ = Chol(P )G =





(
γ1

1 − γ1

) 1
2

φ

(
γ2

1 − γ2

) 1
2

0 (1 − φ2)
1
2

(
γ2

1 − γ2

) 1
2




.

3.5 Applications

In this section, we present two illustrative examples to compare the benchmark-

ing model with its nonbenchmarking counterpart. We summarize the results using the

posterior mean (PM), posterior standard deviation (PSD), and the 95% credible interval

(Int) of the finite population mean of each area. In our first example, we apply our model

to simultaneously estimate the crop data, that is, corn and soybeans hectares, from the

1978 enumerative survey and satellite data. In our second example, we simultaneously

estimate the body mass index (BMI) and bone mineral density (BMD) of the Mexican

American adult domains (gender-county groups of population over 20 years). These are
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the same examples discussed in Chapter 2. We will compare later the results of the

multivariate with their univariate counterpart. As in Chapter 2, the enumerative survey

and satellite data use equal weights, but for the BMI and BMD, there are differential

probabilities of selection (i.e., varying sampling weights).

3.5.1 Corn and Soybeans Hectares Data

Below is the summary of the posterior outcomes of the Gibbs sampling for the multi-

variate result for the finite population means of the crop data.

Table 3.2: Comparison of the NBM and BM models for the finite population mean of the crop

hectares data for the counties in Iowa

Nonbenchmarking Benchmarking
Domain Direct Posterior Corr Posterior Corr

i Estimates Mean(SD) Mean(SD)

Corn Soy Corn Soy Corn Soy
1 165.78 8.09 124.05(8.75) 79.16(11.47) −0.53 124.51(7.48) 77.96(10.12) −0.47
2 96.32 106.03 122.08(7.98) 95.03(10.89) −0.44 122.96(7.15) 93.69(10.69) −0.49
3 76.08 103.60 116.26(8.66) 87.09(11.76) −0.44 116.05(8.62) 85.36(11.04) −0.42
4 150.89 35.15 120.19(8.92) 81.23(10.98) −0.35 121.07(8.42) 79.41(10.69) −0.38
5 158.62 52.47 138.66(8.20) 67.68(8.48) −0.49 139.70(7.50) 66.04(7.45) −0.42
6 102.52 118.70 108.14(6.58) 114.10(7.54) −0.42 108.89(6.14) 112.91(7.37) −0.42
7 112.77 88.57 115.03(6.45) 97.13(7.60) −0.37 115.22(6.01) 95.55(7.17) −0.45
8 144.30 97.80 120.94(6.83) 112.07(7.30) −0.38 121.60(5.74) 110.16(7.46) −0.39
9 117.60 112.98 111.23(6.23) 110.47(6.69) −0.40 111.80(5.83) 108.62(6.42) −0.47
10 109.38 117.48 123.45(5.19) 100.44(5.76) −0.42 124.04(5.15) 98.90(5.82) −0.44
11 110.25 117.84 110.94(6.99) 17.50(6.71) −0.44 111.36(6.47) 116.11(6.16) −0.33
12 114.81 89.77 132.12(5.43) 75.28(5.99) −0.46 132.77(4.98) 73.65(5.72) −0.37

As in the univariate results, Table 3.2 shows that the posterior means from the

two models are mostly the same, with a slight shifting in the posterior means from NBM

to BM. These estimates from NBM are similar to those in Battese, Harter, and Fuller

(1988). In Table 3.2, the posterior standard deviations (PSD) in BM for all counties in

both crops (corn and soybeans) are smaller than the PSDs in NBM. However, notice that

the gains in precision observed are not significantly large, as we have seen in the uni-

variate case. From Table 2.1, the means for the corn (soybean) data are N−1

ℓ∑

i=1

Niyi =
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120.32(95.35) = N−1

ℓ∑

i=1

NiPMi(BM), but N−1

ℓ∑

i=1

NiPMi(NBM) = 119.48(96.89). Once

again, this is the effect of our benchmarking constraint, that is, the value of the overall

posterior mean from BM is equal to the sample mean of the data, but that of NBM

is not equal. To further assess the performance of BM over NBM, we looked at the

distance between the direct estimators yi and the PMi from both NBM and BM. As a

summary measure, we computed the shrinkage SHR =

√√√√
ℓ∑

i=1

(PMi − yi)
2. For the corn

data, SHR(NBM) = 81.05 and SHR(BM) = 80.84. On the other hand, for the soybeans

data, SHR(NBM) = 92.81 and SHR(BM) = 91.03. For both corn and soybeans data, we

find that BM has a slightly lower shrinkage than NBM, indicating that BM is slightly

more design-consistent than NBM. We use box plots to show the general features in

Figure 3.1.
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3.5.2 Body Mass Index and Bone Mineral Density Data

Table 3.3 presents the posterior results of the Gibbs sampling for the multivari-

ate result for the finite population means of the BMI and BMD data from NHANES III

(1996).

Table 3.3: Comparison of the nonbenchmarking and benchmarking models for the finite pop-
ulation mean body mass index (BMI) and finite population mean bone mineral density (BMD)
of adult domains (gender domains of Hispanic population over 20 years) in the state of New
York

Nonbenchmarking Benchmarking

i n N
Direct Posterior Corr Posterior Corr

Estimate Mean(SD) Mean(SD)

BMI BMD BMI BMD BMI BMD
1 1 6 19.30 0.97 22.81(1.92) 0.92(0.095) 0.03 23.98(1.82) 0.87(0.061) 0.18
2 1 112 26.80 0.98 24.60(1.77) 0.91(0.088) 0.04 24.33(1.68) 0.91(0.051) 0.17
3 2 96 23.30 0.96 23.49(1.52) 0.92(0.074) 0.07 25.62(1.45) 0.90(0.045) 0.16
4 8 150 23.44 0.93 23.75(1.11) 0.89(0.053) 0.16 24.17(1.12) 0.87(0.041) 0.30
5 4 39 23.00 1.09 23.32(1.51) 0.97(0.077) 0.03 24.23(1.31) 0.88(0.048) 0.22
6 2 6 22.70 0.84 23.71(1.47) 0.86(0.073) 0.06 26.53(1.97) 0.89(0.065) 0.09
7 2 118 26.65 0.86 25.18(1.58) 0.85(0.081) 0.01 25.19(1.37) 0.90(0.043) 0.13
8 5 101 21.38 0.78 23.12(1.43) 0.83(0.069) 0.21 24.86(1.23) 0.92(0.043) 0.18
9 3 142 27.80 0.80 25.79(1.64) 0.83(0.078) 0.06 25.96(1.23) 0.89(0.043) 0.14

10 2 37 26.10 0.88 24.89(1.57) 0.86(0.079) 0.07 25.20(1.48) 0.90(0.050) 0.24

Table 3.3 present the multivariate results for the finite population mean BMI

and BMD of the Mexican American adult domains. Observe that the tables show that

the posterior means (PM) of the benchmarking models shifts the direct estimates, as

well as the posterior means from NBM. Under BM, the benchmarking constraint implies

that Ŷ = N−1

10∑

i=1

ni∑

j=1

ωijyij. From our calculations, we find that N−1

10∑

i=1

ni∑

j=1

ωijyij =

24.99 = N−1

10∑

i=1

NiPMi(BM) for the BMI data, while N−1

10∑

i=1

ni∑

j=1

ωijyij = 0.90 =

N−1

10∑

i=1

NiPMi(BM) for BMD. However, N−1

10∑

i=1

NiPMi(NBM) = 24.35 for BMI while

N−1

10∑

i=1

NiPMi(NBM) = 0.80 for the BMD value.

The BMI data has a shrinkage of SHR(BM) = 5.3049, while the BMD data has a
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shrinkage of SHR(BM) = 0.0151. The corresponding NBM shrinkages has for BMI and

BMD, respectively are SHR(NBM) = 5.645, and SHR(NBM) = 0.1777. The PSDs of all

models are very close to each other. However, we observe that the PSDs from BM are

mostly larger than those from NBM, which reflects the adjustments from the survey

weights in the constraint. As the survey weights are not incorporated in an informative

manner (i.e., non ignorable design) in the model, there may not be gains in precision.

But observe that there is a great increase in precision in most of the benchmarking

results for BMD compared to its nonbenchmarking counterpart. This more significant

gain in precision might be due to the correlation between BMI and BMD, which we see

to be always positive in all areas. This positive correlation is due to the fact that we

have modeled them against age, and since BMI and BMD both depend on factors that

relate to age, we see a positive correlation between BMI and BMD. Again, we use box

plots to show the general features in Figure 3.2.

As a summary, in the two examples we observe the effects of the benchmarking

constraint. As our theory shows, we observe that the model-based estimates from the

small areas match the chosen direct estimator for the single large area when these small

areas are collapsed. We also observe that there is a gain in precision in using the

benchmarking models, relative to the nonbenchmarking model, although the gains are

not always so significant because the samples are much too small, with a few exceptions.

3.6 Comparison of Univariate and Multivariate Re-

sults

In Table 3.4 we present a comparison of the univariate and multivariate results for

BMI and BMD. Observe that the multivariate benchmarking results has the most precise

result, with a few exceptions in the case of the BMI, where the univariate benchmarking

result is better. We can say that most of the gains in precision can be attributed to

the incorporation of the benchmarking constraint in the models and the borrowing of

strength of the two responses between each other, as well as with the other small areas.
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Table 3.4: Comparison of the nonbenchmarking (NBM) and benchmarking (BM) models
(univariate and multivariate) for the finite population mean body mass index (BMI) of adult
domains (gender domains of Hispanic population over 20 years) in the state of New York

Univariate Multivariate

i n N
Direct Posterior

Estimate Mean(SD)

NBM BM NBM BM
Body Mass Index (BMI)

1 1 6 19.30 22.42(2.09) 22.80(2.15) 22.81(1.92) 23.98(1.82)

2 1 112 26.80 24.68(1.82) 25.55(1.59) 24.60(1.77) 24.33(1.68)

3 2 96 23.30 23.77(1.52) 24.34(1.41) 23.49(1.52) 25.62(1.45)

4 8 150 23.44 23.78(1.12) 24.33(1.00) 23.75(1.11) 24.17(1.12)

5 4 39 23.00 23.61(1.42) 24.12(1.34) 23.32(1.51) 24.23(1.31)

6 2 6 22.70 23.43(1.64) 23.84(1.62) 23.71(1.47) 26.53(1.97)

7 2 118 26.65 25.10(1.66) 25.93(1.38) 25.18(1.58) 25.19(1.37)

8 5 101 21.38 22.64(1.36) 23.09(1.34) 23.12(1.43) 24.86(1.23)

9 3 142 27.80 25.74(1.60) 26.48(1.35) 25.79(1.64) 25.96(1.23)

10 2 37 26.10 24.92(1.63) 25.57(1.48) 24.89(1.57) 25.20(1.48)

Bone Mineral Density (BMD)
1 1 6 0.97 0.90(0.089) 0.92(0.084) 0.92(0.095) 0.87(0.061)

2 1 112 0.98 0.91(0.079) 0.94(0.070) 0.91(0.088) 0.91(0.051)

3 2 96 0.96 0.92(0.070) 0.94(0.062) 0.92(0.074) 0.90(0.045)

4 8 150 0.93 0.89(0.051) 0.91(0.041) 0.89(0.053) 0.87(0.041)

5 4 39 1.09 0.97(0.072) 0.99(0.064) 0.97(0.077) 0.88(0.048)

6 2 6 0.84 0.84(0.073) 0.85(0.069) 0.86(0.073) 0.89(0.065)

7 2 118 0.86 0.86(0.069) 0.89(0.057) 0.85(0.081) 0.90(0.043)

8 5 101 0.78 0.81(0.060) 0.84(0.053) 0.83(0.069) 0.92(0.043)

9 3 142 0.80 0.85(0.062) 0.87(0.052) 0.83(0.078) 0.89(0.043)

10 2 37 0.88 0.87(0.070) 0.89(0.064) 0.86(0.079) 0.90(0.050)

3.7 Concluding Remarks

In this chapter, we presented the multivariate Bayesian benchmarking model.

We discuss the Bayesian regression model for any number of responses, q ≥ 2. There is

a practical significance to the extension of the benchmarking model to the multivariate

case because in many small area problems, data on related multiple characteristics and

auxiliary variables are available. As in the univariate case, we used Bayesian predictive

inference to estimate the finite population mean vector of small areas. We discussed

both the theoretical and numerical effects of adding the benchmarking constraint into

the Bayesian model. From the results of the examples as well as the mathematical cal-

culation, we found that there were adjustment in the posterior mean vector of the finite

population mean after the benchmarking constraint was included in the model, as well
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as a gain in precision due to the decrease in the covariance of the distribution of the

finite population mean vector. However, sometimes, not much improvement is observed,

because our sample sizes are relatively too small compared to the population sizes.

We used again the two crops, corn and soybean, in the survey and satellite

data of Battese, Harter, and Fuller (1988) and the body mass index (BMI) and bone

mineral density (BMD) from NHANES III (1996), both pairs being correlated charac-

teristics as illustration of our multivariate results. We compared also our work with

the work of Datta, Day, and Maiti (1998) who presented a super population approach

to obtain a hierarchical Bayes prediction of the small area mean vector using the mul-

tivariate nested-error regression model of Fuller and Harter (1987). They compared

the performance of the multivariate approach with the usual univariate approach and

found that the multivariate approach may result in substantial improvement over its

univariate counterpart through some data analysis and simulations. Our model is also

adapted from the Fuller and Harter (1987) multivariate nested-error regression model.

However, the work of Datta, Day, and Maiti (1998) does not include benchmarking in

their model, so we can only compare it to our nonbenchmarking model. Like that of

Datta, Day, and Maiti (1998), we also compared the performance of the multivariate

approach with the univariate approach both under nonbenchmarking and benchmark-

ing. We are currently working on the journal article on the results of this chapter; see

Toto and Nandram (2010b).
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Figure 3.1: Box plots of the distribution of the finite population mean
(
Y
)

by county (area)

of the corn and soybeans acreage data
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Note: As in the univariate case, we see a consistent upward shift in the center of the distribution of

the finite population means for the corn acreage finite population means. For the soybeans data, we

observe a consistent downward shift in the center of the distributions. There are minimal difference in

the lengths of the whiskers of most of the BM boxplots compared to the NBM boxplots, indicating a

slight increase in the precision in most of the domains; see i = 8 and i = 10 for soybeans, where there

the variability in the NBM model is slightly better than the BM results.
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Figure 3.2: Boxplots of the distribution of the finite population mean
(
Y
)

by domain of the

BMI and BMD data
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Note: Aside from the boxplots for each of the ℓ = 10 small areas, we also plot the direct estimates

for each areas, the sample means yi. We observe a shift in the center of the distribution of the finite

population means for BMI and BMD when we compare the center for the BM and the NBM models. For

the BMI data, notice that most of the time, there is an upward shift in the center of the distributions

of the BM results compared to the NBM model. On the other hand, there is a downward shift in the

center of the distributions for the BMD data in the BM model compared to the NBM model. Notice

also the shorter whiskers (especially for the BMD results) of most of the BM boxplots compared to the

NBM boxplots, indicating an increase in the precision in most of the domains.
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Chapter 4

Conclusion

In this chapter, we summarize our contributions both in methodology and ap-

plications and discuss some future work.

4.1 Methodological Contributions

We developed a Bayesian predictive inference to estimate finite population means

under a nested error regression model using internal benchmarking. The benchmarking

constraint was constructed using a direct consistent estimator of the overall population

mean based on the unit-level data. We incorporated unit level survey weights into the

benchmarking constraint with the sampled data.

For the univariate Bayesian benchmarking model, conditional on the benchmark-

ing constraint, we obtained closed forms conditional distribution of the model param-

eters. The proof of the propriety of the joint posterior distribution showed a simple

procedure to obtain samples from the posterior distribution of the parameters. Thus,

we do not rely on Markov chain Monte Carlo (MCMC) methods to make inferences;

we simply draw random samples from the posterior density of ρ|y
˜

s and the composition

method to obtain samples of the other parameters, and the finite population means. The

introduction of the intra-class correlation ρ into the model is one of our novel ideas in this

dissertation. Because of the introduction of ρ into the model and the use of unit-level

survey weights in the benchmarking constraint are new, both the nonbenchmarking and

benchmarking Bayesian model are our own results. We developed Bayesian predictive
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distribution for the finite population means.

To get our multivariate Bayesian benchmarking model, we extended the struc-

ture of the univariate models to be able to accommodate the multivariate outcomes.

First, we generalize the implementation of the intra-class correlation into the nested-

error regression model by using a more specific structure of the covariance matrix for

the area effects vector, ν
˜

i, instead of using a simple positive-definite, symmetric matrix

for the covariance, as in Datta, Day, and Maiti (1998). This is another novel idea we

have in this dissertation. This covariance structure for the area effects gives a direct link

to the data and the area effects, however, it also made the model more complex. Due to

the complexity of the model, we cannot use the same sampling-based process (i.e., ran-

dom samples), we used for the univariate model to sample from our multivariate model.

We used Gibbs sampling to make inference about the finite population mean vector.

Thus, we generated the full conditional distributions of all the model parameters and

iterate between these resulting full conditional distributions to generate samples of the

parameters, as well as the finite population mean vector. Also, we have not found any

other literature on multivariate Bayesian model that incorporates benchmarking. Thus,

the introduction of benchmarking in the multivariate Bayesian nested-error regression

model is also our original idea.

In both the univariate and multivariate case, we observed important changes in

the distribution of the finite population mean when the benchmarking constraint was

added to the model. Let us consider the multivariate case, since the univariate case is a

special case when q = 1. First note that the distribution of the finite population mean

vector Y
˜

i given y
˜

s, ν
˜
, β
˜
, Σ under the nonbenchmarking model is

Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ

ind
∼ Normal

{
fiy

˜
si

+ (1 − fi)
(
X

′

nsi
β
˜

+ ν
˜

i

)
,

(
1 − fi

Ni

)
Σ

}
.
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With the addition of the benchmarking constraint into the model, the distribu-

tion of the finite population mean vector Y
˜

i given y
˜

s, ν
˜
, β
˜
, Σ under the benchmarking

model is

Y
˜

i|y
˜

s, ν
˜
, β
˜
, Σ

ind
∼ Normal

{
fiy

˜
si

+ (1 − fi)
(
X

′

nsi
β
˜

+ ν
˜

i

)
+ A

˜
i, Vi

(
1 − fi

Ni

)
Σ

}
,

where

A
˜

i =

(
1 − fi

N − n

)[(
ω
˜
∗′ ⊗ Iq

)
y
˜

s −
(
NX − nXs

)
′

β
˜
−
(
1
˜
′

N−nZns ⊗ Iq

)
ν
˜

]
,

and

Vi = 1 −

(
Ni − ni

N − n

)
.

From these two distributions, we note that there is an additional term +A
˜

i added to

the mean vector of the distribution of the finite population mean vector. This term

causes a shift in the center of the distribution of the finite population mean due to the

benchmarking constraint. Moreover, note that Vi = 1−

(
Ni − ni

N − n

)
< 1, so the addition

of this term in the covariance of the distribution of the finite population mean causes

the variances of the finite population mean to be smaller, which implies a possible gain

in precision in the distribution of the finite population mean. However, the gain in pre-

cision might be offset for some cases when the variability of ν
˜
, β
˜
, Σ is incorporated. In

general though, the gain in precision is small.

4.2 Applications

We applied our nonbenchmarking and benchmarking Bayesian predictive models

(both univariate and multivariate) to the corn and soybeans data (LANDSAT satellite

data and enumerative survey) and to the body mass index (BMI) and bone mineral

density (BMD) data (NHANES III and Census). We found that relative to the non-

benchmarking model, the benchmarking model contributes an improvement in estimat-

ing the finite population mean. The benchmarking results showed slightly more precise

estimates for most cases with an assurance that the combined estimates from all areas
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matches the single direct estimate from the large area when the small areas are collapsed.

This is a desirable result for a statistical practitioner of model-based estimation.

From the outcome of our numerical calculations, comparing the nonbenchmark-

ing and benchmarking models, both the univariate and multivariate for the finite popu-

lation mean, we found that the multivariate benchmarking model gives the most precise

estimates of the finite population mean. Moreover, we see that both the univariate and

multivariate benchmarking models showed that the combined estimates from all areas

match the single direct estimate from the large area when the small areas are collapsed;

see Table 4.1 has a summary of both datasets we studied. The values in Table 4.1 are

the values of the sample mean y = n−1

ℓ∑

i=1

ni∑

j=1

yij for each of the four dataset and the

combined average of the posterior means Ŷ = N−1

ℓ∑

i=1

ni∑

j=1

ωijPMij from both nonbench-

marking and benchmarking model. Table 4.1 summarizes the effect of benchmarking we

mentioned earlier. That is, the combined estimates of the finite population means from

the benchmarking model would match the direct estimate of the mean, which the non-

benchmarking model does not achieve.

Table 4.1: Comparison of the nonbenchmarking and benchmarking Bayesian models for Finite

Population Means

Variable Direct Nonbenchmarking Benchmarking
Name Estimate Univariate Multivariate Univariate Multivariate
Corn 120.32 119.67 119.48 120.32 120.32
Soybeans 95.35 96.87 96.89 95.35 95.35
BMI 24.99 23.78 24.35 24.99 24.99
BMD 0.90 0.88 0.88 0.90 0.90

Relative to the nonbenchmarking model, we observe in the two illustrative exam-

ples that there is a shift in the posterior densities of the Y i; see Figure 2.1 , Figure 2.2,

Figure 3.1 and Figure 3.2. Moreover, the examples showed an increase in the precision of

the estimates of the finite population mean in each area under the benchmarking model.

This increased precision is reflected in the slightly narrower 95% credible intervals in the

benchmarking model and shorter whiskers in the boxplots of the distributions shown in

the figures.
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Our simulation study also showed that the benchmarking model performs better

than the nonbenchmarking model. Both the point estimators of the finite population

means from the benchmarking and nonbenchmarking models were found to be very close

to the true values of the finite population means. Also, we note that there is not much

shrinkage or bias observed in using our estimators compared to the survey direct consis-

tent estimate of the finite population means. The simulation also indicated the gain in

precision from using the benchmarking model compared to the nonbenchmarking model.

The smaller RMSE from the benchmarking model showed that it does a better job in

estimating the finite population mean than the nonbenchmarking model. In most cases

the coverage probabilities are better under the benchmarking constraint. Thus, overall

we conclude that the benchmarking model contributed an improvement in estimating

the finite population means by giving more precise and less biased estimates than the

nonbenchmarking model. Of course, this makes the benchmarking approach appealing

to survey practitioners. The effects of sampling weights were not included in the simu-

lation study because we simulated the corn data with equal weights for all the samples.

4.3 Future Work

The following problems are next in this research.

1. Simulation

Similar to the univariate model, we also want to further study the prop-

erties of the multivariate benchmarking model. Thus, we want to perform some

simulation study on the multivariate benchmarking Bayesian model. Once all

these are done, we would like to create an R library of our computations so that

the statistical community would be able to use our results in doing their statis-

tical research. We also want to include sampling weight in the simulations, both

univariate and multivariate.
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2. Propriety of Models

(a) Propriety of the Multivariate Nonbenchmarking Bayesian Model

We believe that the joint posterior density from our multivariate non-

benchmarking model, πNBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
, is proper.

The joint posterior distribution of the multivariate Bayesian model under

the nonbenchmarking model is

πNBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝

(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2 ℓ∏

i=1

exp

{
−

1

2
ν
˜

i
′(Γ′ΣΓ)

−1
ν
˜

i

}

×
ℓ∏

i=1

exp

{
−

1

2

ni∑

j=1

(
y
˜

ij
−
[
Xijβ

˜
+ ν

˜
i

])′
Σ−1

(
y
˜

ij
−
[
Xijβ

˜
+ ν

˜
i

])
}

.

Conjecture 4.1. Under the nonbenchmarking model, the joint posterior den-

sity πNBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
is proper.

See Appendix A for a discussion.

(b) Propriety of the Multivariate Benchmarking Bayesian Model

Similarly, we may be able to show that the joint posterior distribution

from the multivariate benchmarking Bayesian model is proper. We have a

second conjecture.

Conjecture 4.2. Under the benchmarking model, the joint posterior density

πBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
is proper.

Proof.

To prove that the joint posterior density πBM
(
ν
˜
, β
˜
, σ2, Γ|y

˜
s

)
, our idea is

to implement a strategy which uses the propriety of the nonbenchmarking

Bayesian model, if the first conjecture is proved.

The joint posterior distribution of the multivariate Bayesian model under
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benchmarking model is

πBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝

(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2

(4.1)

× exp

{
−

1

2

[(
y
˜

s − Cxβ
˜
− Czν

˜

)
′

[(In − W ) ⊗ Σ]−1
] (

y
˜

s − Cxβ
˜
− Czν

˜

)}
.

We can do this process once we prove that the joint posterior distribution

under the nonbenchmarking model is proper. We would attempt to show that

the ratio of the joint posterior distribution from the benchmarking model to

the joint posterior distribution from the nonbenchmarking model,

πBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)

πNBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

) ,

is uniformly bounded.

3. Transformation

In the nested error regression model, we assume normality on the responses,

but normality may be tenuous. Thus, a transformation (e.g., logarithmic) may be

needed. This is true for the data on body mass index; see Nandram and Choi

(2005, 2010). However, the benchmarking is done on the original (untransformed)

responses. This is a difficult problem. You and Rao (2002b) attempted an approxi-

mation for unmatched linking models. Nandram, Toto, and Choi (2010) suggested

a different type of approximation using Taylor series expansion. However, it may

be possible to perform this analysis without making analytic approximation.

Of course, the variables in the multivariate model might need to be trans-

formed as well, which would make the problem more complex.

4. Robustification

Moreover, one can robustify the nested-error regression model and the benchmark-

ing process by using the general skew exponential power distribution instead of the

normal error; see, for example, Diciccio and Monti (2004) for an excellent discus-
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sion of inference in the skew exponential power distribution. This robustification

can help to reduce the effect of a possibly misspecified nested error regression

model in small area estimation. This is also an extremely difficult problem.

5. Informative Sampling

We would like to relate the sampling weights to the responses as in informative sam-

pling; see Pfeffermann, Krieger, and Rinott (1998), Sverchkov and Pfeffermann (2004),

Pfeffermann and Sverchkov (2007) and Nandram, Choi, Shen, and Burgos (2006).

Another approach can be obtained by improving the Horvitz-Thompson estimator

using variable weights (Deville and Sarndal, 1992).

6. Discrete Outcomes

We plan to incorporate benchmarking into models with discrete outcomes. For

example, the work of Nandram, Toto, and Katzoff (2009) on multiple responses

for categorical tables can be extended to include benchmarking.

7. Application

Our models are not only applicable to health statistics and agriculture

statistics data. We found an application of our results in modeling bacteria data.

Prof. Terri A. Camesano of the Chemical Engineering Department of WPI pro-

vided a dataset on the properties of the molecules on the surface of the Escherichia

coli (E.coli) bacteria. For this dataset, we are interested in estimating the finite

population mean force of adhesion of the different E. coli strains. Each strain is

represented by each of the eight slides of E.coli strains with different lipopolysac-

charide (LPS) structures. Each slide has an area of 25mm2 and it is estimated that

there are 69 bacteria for each 10 µm2. These are our small domains in this study.

We can also use the different core types as our small areas. Though in this case,

instead of eight (8) domains, there are only three core types as domains, namely

K12, O157, and O113. If we will be able to estimate the force of adhesion of the

different strains of E.coli, this can be used to better understand and characterize

how the E.coli bacteria attach to a surface under different condition and/or phys-
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ical properties.

The O-antigens is considered as a highly variable component of the LPS among

E. coli strains. It is useful for strain identification and assessing virulence. Atomic

force microscopy (AFM) is used to characterize the physicochemical properties

of the LPS of E. coli strains. Moreover, physical properties of the O-antigens,

such as length and density, are important for determining binding of bacteria to

biomolecules and epithelial cells. However, LPS length and density have not been

well studied in characterizing the bacteria. But, LPS length and LPS density

were found to be correlated with the force of adhesion. Thus, we can use this

relationship to estimate the finite population mean force adhesion of each of the

strains of the E. coli by using the LPS length and LPS density as the covariates.
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Appendix A

Discussion of the Conjectures

To prove that the joint posterior density π
(
ν
˜
, β
˜
, σ2, Γ|y

˜
s

)
under the nonbenchmarking

model is proper, we write the density as

πNBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝ π1

(
ν
˜
|β
˜
, Σ, Γ, y

˜
s

)
π2

(
β
˜
|Σ, Γ, y

˜
s

)
π3

(
Σ, Γ, |y

˜
s

)
,

and attempt to show that each conditional density is proper (as in our univariate proof).

Again, recall that

πNBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝

(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2 ℓ∏

i=1

exp

{
−

1

2
ν
˜

i
′(Γ′ΣΓ)

−1
ν
˜

i

}

×

ℓ∏

i=1

exp

{
−

1

2

ni∑

j=1

(
y
˜

ij
−
[
Xijβ

˜
+ ν

˜
i

])′
Σ−1

(
y
˜

ij
−
[
Xijβ

˜
+ ν

˜
i

])
}

.

After some algebraic manipulation, the joint posterior density is given by

πNBM
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝

{
ℓ∏

i=1

(|Bi|)
1/2

}

×

[
ℓ∏

i=1

exp

{
−

1

2

(
ν
˜

i − Bi
−1niΣ

−1b
˜

i

)
′

Bi

(
ν
˜

i − Bi
−1niΣ

−1b
˜

i

)}
]

(A.1)

×

{
ℓ∏

i=1

(|Bi|)
−1/2

}(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2
{

exp

{
−

1

2

ℓ∑

i=1

[
c
˜

i − b
˜
′

iΣ
−1B−1

i Σ−1b
˜

i

]
}}

,
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where Bi = niΣ
−1 + (Γ′ΣΓ)−1, b

˜
i =

1

ni

ni∑

j=1

(
y
˜

ij − X ′

ijβ
˜

)
,

and c
˜

i =

ni∑

j=1

(
y
˜

ij − X ′

ijβ
˜

)
′

Σ−1
(
y
˜

ij − X ′

ijβ
˜

)
for i = 1, 2, . . . , ℓ.

Observe that from (A.1), the conditional posterior density of the small area

effects parameters, ν
˜
, is given by

π1

(
ν
˜
|β
˜
, Σ, Γ, y

˜
s

)
∝

ℓ∏

i=1

π
(
ν
˜

i|β
˜
, Σ, Γ, y

˜
s

)
, (A.2)

where

π
(
ν
˜

i|β
˜
, Σ, Γ, y

˜
s

)
∝ (|Bi|)

1/2 exp

{
−

1

2

(
ν
˜

i − Bi
−1niΣ

−1b
˜

i

)
′

Bi

(
ν
˜

i − Bi
−1niΣ

−1b
˜

i

)}
.

Hence, given β
˜
, Σ, Γ, and y

˜
s, each of the ℓ area effects vector ν

˜
i = (νi1, νi2, . . . , νiq)

′, i =

1, 2, . . . , ℓ, follows a Normal distribution with mean vector E
[
ν
˜
|β
˜
, Σ, Γ, y

˜
s

]
= Bi

−1niΣ
−1b

˜
i

and covariance matrix Var
[
ν
˜
|β
˜
, Σ, Γ, y

˜
s

]
= Bi

−1. That is,

ν
˜

i|β
˜
, σ2, Ω

˜
, y
˜

s
ind
∼ Normal

{
Bi

−1niΣ
−1b

˜
i, Bi

−1
}

, i = 1, 2, . . . , ℓ.

Now, we can write

π
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
∝ π1

(
ν
˜
|β
˜
, Σ, Γ, y

˜
s

)
π
(
β
˜
, Σ, Γ|y

˜
s

)
.

However, integrating out ν
˜

in the joint distribution π
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
, we get

y
˜

s|β
˜
, Σ, Γ ∼ Normal

{
X ′

sβ
˜
, (In ⊗ Σ) + (Zs ⊗ Iq) (Iℓ ⊗ Γ′ΣΓ) (Zs ⊗ Iq)

′
}

.

Let R = In ⊗ Σ, F = Zs ⊗ Iq, G = Iℓ ⊗ Γ′ΣΓ, and Ω = R + FGF ′. Then,

y
˜

s|β
˜
, Σ, Γ ∼ Normal

{
X ′

sβ
˜
, R + FGF ′

)
= Normal

(
X ′

sβ
˜
, Ω
}

.

Hence,

π
(
y
˜

s|β
˜
, Σ, Γ

)
∝

(
1

|Ω|

)1/2

exp

{
−

1

2

(
y
˜

s − X ′

sβ
˜

)
′

Ω−1
(
y
˜

s − X ′

sβ
˜

)}
.
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Now, letting β̂
˜

= (XsΩ
−1X ′

s)
−1 (

XsΩ
−1y

˜
s

)
, we can write π

(
y
˜

s|β
˜
, Σ, Γ

)
as

π
(
y
˜

s|β
˜
, Σ, Γ

)
∝

(
1

|Ω|

)1/2

×

[
exp

{
−

1

2

(
y
˜

s − X ′

sβ̂
˜

)
′

Ω−1
(
y
˜

s − X ′

sβ̂
˜

)}][
exp

{
−

1

2

(
β
˜
− β̂

˜

)
′

XsΩ
−1X ′

s

(
β
˜
− β̂

˜

)}]
.

Thus, we can write π
(
β
˜
, Σ, Γ|y

˜
s

)
as

π
(
y
˜

s|β
˜
, Σ, Γ

)
∝

{
ℓ∏

i=1

(|Bi|)
−1/2

}(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2(
1

|Ω|

)1/2

×

[
exp

{
−

1

2

(
y
˜

s − X ′

sβ̂
˜

)
′

Ω−1
(
y
˜

s − X ′

sβ̂
˜

)}][
exp

{
−

1

2

(
β
˜
− β̂

˜

)
′

XsΩ
−1X ′

s

(
β
˜
− β̂

˜

)}]
.

Reordering the terms of this product, we get

π
(
β
˜
, Σ, Γ|y

˜
s

)
∝ π2

(
β
˜
|Σ, Γ, y

˜
s

)
π
(
Σ, Γ|y

˜
s

)

∝

{
1

det
[
(XsΩ−1X ′

s)
−1]
}1/2

exp

{
−

1

2

(
β
˜
− β̂

˜

)
′

XsΩ
−1X ′

s

(
β
˜
− β̂

˜

)}

×

{
1

det
[
(XsΩ−1X ′

s)
−1]
}

−1/2{ ℓ∏

i=1

(|Bi|)
−1/2

}(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2(
1

|Ω|

)1/2

× exp

{
−

1

2

(
y
˜

s − X ′

sβ̂
˜

)
′

Ω−1
(
y
˜

s − X ′

sβ̂
˜

)}
.

Hence, the vector of regression coefficients β
˜

=
(
β
˜

1

′, . . . , β
˜

q

′

)
′

, given Σ, Γ, and y
˜

s

follows a Normal distribution with mean vector E
[
β
˜
|Σ, Γ, y

˜
s

]
= β̂

˜
and covariance matrix

Var
[
β
˜
|Σ, Γ, y

˜
s

]
= (XsΩ

−1X ′

s)
−1

. That is,

β
˜
|Σ, Γ, y

˜
s ∼ Normal

{
β̂
˜
,
(
XsΩ

−1X ′

s

)
−1
}

.
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Then, integrating out β
˜

from π
(
β
˜
, Σ, Γ|y

˜
s

)
, we have

π
(
Σ, Ω|y

˜
s

)
∝

{
1

det (XsΩ−1X ′

s)

}1/2
{

ℓ∏

i=1

(
1

|Bi|

)1/2
}(

1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2(
1

|Ω|

)1/2

× exp

{
−

1

2

(
y
˜

s − X ′

sβ̂
˜

)
′

Ω−1
(
y
˜

s − X ′

sβ̂
˜

)}
.

After some algebraic manipulation, π3

(
Σ, Γ|y

˜
s

)
is given by

π3

(
Σ, Γ|y

˜
s

)
∝

(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2(
1

|Ω|

)1/2

×

{
1

det (XsΩ−1X ′

s)

}1/2
{

ℓ∏

i=1

(
1

|Bi|

)1/2
}

× exp

{
−

1

2
y
˜

s
′

(
Ω−1 − Ω−1

[
X ′

s

(
XsΩ

−1X ′

s

)
−1

Xs

]
Ω−1

)
y
˜

s

}
.

But note that
ℓ∏

i=1

|Bi| =
ℓ∏

i=1

∣∣∣niΣ
−1 + (Γ′ΣΓ)

−1
∣∣∣ =

∣∣∣
(
Z ′

sZs ⊗ Σ−1
)

+
(
Iℓ ⊗ (Γ′ΣΓ)

−1
)∣∣∣ .

Hence,

π3

(
Σ, Γ|y

˜
s

)
∝

(
1

|Γ|

)ℓ(
1

|Σ|

)(n+ℓ+q+1)/2(
1

|Ω|

)1/2

×

{
1

det (XsΩ−1X ′

s)

}1/2
{

1

det
[
(Z ′

sZs ⊗ Σ−1) +
(
Iℓ ⊗ (Γ′ΣΓ)−1)]

}1/2

× exp

{
−

1

2
y
˜

s
′

(
Ω−1 − Ω−1

[
X ′

s

(
XsΩ

−1X ′

s

)
−1

Xs

]
Ω−1

)
y
˜

s

}
.

To be able to conclude that π
(
ν
˜
, β
˜
, Σ, Γ|y

˜
s

)
is proper, we need to show that π3

(
Σ, Γ|y

˜
s

)

is proper. Once we show that π3

(
Σ, Γ|y

˜
s

)
is proper, we can conclude that the joint pos-

terior density π
(
ν
˜
, β
˜
, σ2, Γ|y

˜
s

)
is proper. We have a form similar to π3

(
Σ, Γ|y

˜
s

)
for the

benchmarking multivariate model.
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