
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2007-03-01

Tamper-Resistant Arithmetic for Public-Key
Cryptography
Gunnar Gaubatz
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Gaubatz, G. (2007). Tamper-Resistant Arithmetic for Public-Key Cryptography. Retrieved from https://digitalcommons.wpi.edu/etd-
dissertations/64

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212998334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/64?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/64?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu


Tamper-Resistant Arithmetic for Public-Key
Cryptography

by
Gunnar Gaubatz

A Dissertation
Submitted to the Faculty

of the

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in
Computer Engineering

March, 2007

Approved:

Prof. Berk Sunar
ECE Department
Dissertation Advisor

Prof. Mark G. Karpovsky
ECE Department
Boston University

Prof. William J. Martin
Department of Mathematical
Sciences

Prof. Brian M. King
ECE Department

Prof. Fred J. Looft
ECE Department Head





For my parents.





Abstract

Cryptographic hardware has found many uses in ubiquitous and pervasive security de-

vices with a small form factor, e.g. SIM cards, smart cards, electronic security tokens,

and soon even RFIDs. With applications in banking, telecommunication, healthcare, e-

commerce and entertainment, these devices use cryptography to provide security services

like authentication, identification and confidentiality to the user.

However, the widespread adoption of these devices into the mass market, and the lack

of a physical security perimeter have increased the risk of theft, reverse engineering, and

cloning. Despite the use of strong cryptographic algorithms, these devices often succumb to

powerful side-channel attacks. These attacks provide a motivated third party with access to

the inner workings of the device and therefore the opportunity to circumvent the protection

of the cryptographic envelope. Apart from passive side-channel analysis, which has been the

subject of intense research for over a decade, active tampering attacks like fault analysis have

recently gained increased attention from the academic and industrial research community.

In this dissertation we address the question of how to protect cryptographic devices

against these kinds of attacks. More specifically, we focus our attention on public key

algorithms like elliptic curve cryptography and their underlying arithmetic structure. In our

research we address challenges such as the cost of implementation, the level of protection,

and the error model in an adversarial situation. The approaches that we investigate all

apply concepts from coding theory, in particular the theory of cyclic codes. This seems

intuitive, since both public key cryptography and cyclic codes share finite field arithmetic

as a common foundation.

The major contributions of our research are (a) a generalization of cyclic codes that

allow embedding of finite fields into redundant rings under a ring homomorphism, (b) a new

family of non-linear arithmetic residue codes with very high error detection probability, (c)

a set of new low-cost arithmetic primitives for optimal extension field arithmetic based on

robust codes, and (d) design techniques for tamper-resilient finite state machines.
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Chapter 1

Introduction

In the course of only a few decades the field of cryptography has changed from a

black art that only few people in the military and secret services knew about, to an

active and openly researched science that is one of the key ingredients of the modern

internet economy. Beyond e-commerce it also starts to affect more and more aspects

of the public sector, with some examples being the adoption of cryptographic smart

cards for health care providers, and digital signature enabled electronic passports.

The pervasive use of cryptography brings with it many new challenges that were

not foreseen only a few years back when information security was mainly server-

centric. Ubiquitous security devices such as smart cards and security tokens lack the

traditional physical security perimeter of a server-based infrastructure. The small

form factor of these devices facilitates theft and reverse engineering techniques, and

thus requires new protection mechanisms for the sensitive data that is stored on them.

The current generation of cryptographic algorithms and protocols is rarely chal-

lenged by the computational resources of an attacker. Key sizes of 128 bits and more

for symmetric schemes and matching sizes for public key schemes offer sufficiently

large security margins to withstand even huge leaps in cryptanalytical progress. The

real, tangible threat stems from side-channel attacks in which an attacker uses certain

1



2 CHAPTER 1. INTRODUCTION

implementation-specific physical phenomena of the device to break the cryptosystem,

rather than to attack the algorithm directly.

Over the last decade a large body of industrial as well as academic research has

been devoted to the study of side channel attacks. In terms of high-level classifica-

tion we need to distinguish between passive attacks (attacker confined to the role of

observer), and active attacks (attacker can manipulate the device). Most of the R&D

effort to date has been focused on the development of countermeasures against passive

attacks, although early on Boneh, DeMillo and Lipton [BDL97] and also Joye, Lenstra

and Quisquater[JLQ99] effectively demonstrated the strong need for the protection

of various public-key systems against active attacks. Biham and Shamir [BS97] and

later Piret and Quisquater [PQ03] demonstrated successful fault attacks against the

data paths of various block ciphers, while only recently attacks on the control logic

of block ciphers have been reported by Choukri and Tunstall [CT05].

Fault injection based attacks have potentially devastating consequences on the

security of embedded systems. While their uses have been well known among practi-

tioners in the field, i.e. hackers and security evalutation professionals, treatment from

the academic community was until recently quite sparse compared to passive attacks

such as timing or power analysis. Even then, most papers on the subject matter seem

to focus mainly on the invention of new attacks or modification of existing attacks

to various cryptosystems. The contributions that deal with countermeasures to these

attacks seem to be in the minority.

Designers of security-critical embedded systems are in a perpetual struggle to

devise new countermeasures against adversaries, while at the same time keeping a

bound on the cost of the implementation. Ever new attack vectors keep appearing

which are easy to implement and difficult to anticipate. It seems surprising that pas-

sive attacks are generally better studied in the open literature than active tampering

attacks, given that the latter have been successfully (ab-)used in real-world scenarios
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such as to produce counterfeit smart-cards for accessing pay-TV services [AK96].

For manufacturers of devices prone to any sort of tampering, it seems prudent to

invest not only in physical countermeasures such as tamper-proof coating and envi-

ronmental sensors, but also in error detection mechanisms. After all, the methods

of fault-injection are manifold (photo-flash, laser, ion-beam, power-glitch, radiation,

etc.), while the outcome is always the perturbation of data. Sensors for detecting

tampering activity are certainly a useful tool for increasing the level of physical secu-

rity, but they can never protect against all possible attack-vectors. By this reasoning,

error detection is an essential building block for secure systems under adversarial

conditions.

The current research effort to prevent active fault attacks is based on two strategies

which complement each other. On one hand there are techniques to reduce side

channel leakage in case of a successful fault insertion [JY02]. The other strategy is

aimed at increasing the fault-tolerance of cryptographic devices. The work presented

in this dissertation falls into the latter category.

1.1 Motivation

The security of several public-key cryptosystems relies on the intractability of the

discrete logarithm problem (DLP) in large finite groups. Such groups may be large

multiplicative subgroups of a finite field K, or the group of points on an elliptic curve

defined over K. The most common choices for K are prime fields Fp and binary

extension fields F2k . In the literature these are often referred to as Galois Fields,

in honor of the french mathematician Évariste Galois, and denoted as GF(p) and

GF(2k).

Arithmetic in Galois Fields serves as the mathematical foundation not only of

public key cryptography, but also many concepts in coding theory. Indeed cryp-
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tography and coding theory are two very closely related fields with a large amount

of overlap. Finite fields and rings are mathematical structures that are common to

both areas and have found applications in the definition of cyclic codes, public-key

and symmetric cryptosystems. While the applications of both areas can be broadly

characterized as communication-centric, in practice they have traditionally remained

separate. Stated simply, coding theory provides for reliable communication over a

noisy channel, while cryptography provides for secure communication over an ideal

channel.

By viewing the data path of a public key arithmetic operation as a noisy environ-

ment that may be disturbed by an attacker, we aim to apply concepts from coding

theory to this “computational channel” in the hope to provide for reliable arithmetic

operation. This is not unlike early techniques in fault tolerant computing that aimed

to protect the arithmetic unit of a space-flight computer against errors caused by

radiation, albeit more focussed on the specific properties of finite field arithmetic.

1.2 Dissertation Outline

This dissertation consists of four major chapters (5 through 8) that represent the

major results of the author’s research. It is organized as follows: In Chapter 2 we

will provide the reader with an overview of related work specific to each of the four

major chapters. In Chapter 3 we will give an introduction into common side-channel

analysis techniques and their classification. Chapter 4 defines the adversarial error

model that forms the basis of our research. Chapter 5 contains the results of our

research on homomorphic embedding techniques for finite fields. We show how these

techniques may be used to provide redundancy and error detection mechanisms, and

how they relate to the theory of cyclic codes. In Chapter 6 we consider a worst-case

scenario with respect to attacker capability and introduce robust arithmetic codes
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which offer nearly perfect error detection properties. Since the strong error detection

properties of these codes come at the price of large overhead, we show in Chapter 7

how one may strike a balance between robustness and low overhead, based on a

special class of finite fields. The data path-centric view of the previous chapters is

complemented by Chapter 8 in which we present novel techniques for the protection

of control structures in cryptographic circuits.
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Chapter 2

Related Work

2.1 Homomorphic Embedding

Early work on fault tolerant cryptography has either revolved around the use of sim-

ple parity prediction schemes or adapted traditional mechanisms like triple modular

redundancy (TMR) and time redundancy for determining the correct result in the pres-

ence of errors. It seems, however, that most of the current effort is concentrated on

concurrent error detection (CED) schemes for symmetric ciphers. Efforts to provide

error detection capabilities to public key schemes based upon finite field arithmetic

have so far only seen sporadic treatment. The prevailing approach is augmentation

of finite field multipliers over Fk
2 with parity prediction capabilities [RH02, RMH04].

These techniques, however, do not make use of the rich mathematical structures

provided by finite rings and fields, which form the arithmetic foundation for many

cryptographic schemes. Furthermore, their error detecting capabilities are mostly

aimed at simple faults with only a single bit-flip, caused for example by single event

upsets (SEU) due to background radiation, but not multiple faults induced by an

intelligent attacker.

A strategy that has not been explored yet is the use of error detecting codes

7
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(EDC) with an arithmetic structure, specifically cyclic binary and arithmetic codes,

upon which our approach is based. The main difficulty is that our purpose is not

only to encode and decode data for transmission over a noisy channel. In viewing

the computation itself as a noisy channel, we aim to compute with encoded operands

while preserving arithmetic operations. We thus propose to embed finite field elements

into a larger ring via a suitable ring homomorphism, and to utilize the redundancy

for error detection purposes. Embedding techniques for finite fields have been used

before, e.g. for the implementation of efficient finite field multiplier architectures based

on redundant representation in cyclotomic rings [WHBG02]. The authors, however,

have not explored the usefulness of this redundancy for fault tolerance. Our work on

scaled embedding was motivated by earlier work on modulus scaling [Wal92, ÖSS04],

and the connection to coding theory. In [ÖSS04] a scaled modulus of special low

Hamming-weight form was used to enable low-complexity modular reduction, but the

redundancy was not used for error detection. By additionally scaling the operands

with a constant factor, the information is spread out across an extended range of bits.

This allows the detection of errors by simply dividing out that factor and checking

for the remainder to be zero.

The results of this chapter were originally presented at the Fault Diagnosis and

Tolerance in Cryptography Workshop in 2005 and published in [GS05].

2.2 Robust Arithmetic Residue Codes

During the early years of fault-tolerant computing, residue codes were proposed

[RG71] as a means for systematically encoding integer operands and checking their

arithmetic operations for errors. The check symbol in residue codes is computed as

the remainder of the operand (or its complement) with respect to the check modulus,

usually a prime. Several variations such as multi-residue codes were also introduced
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early on, as well as non-systematic arithmetic codes such as AN codes1. Designed

for the purpose of detecting only sporadically occurring bit errors, their arithmetic

distance is limited to 2 or 3. Mandelbaum [Man67] introduced arithmetic codes with

larger distance properties, however, with an unattractively large amount of redun-

dancy.

Unfortunately, due to the linear nature of their encoding scheme, standard arith-

metic residue codes do not offer robustness properties, since any error pattern which

itself is a codeword can not be detected, irrespective of the actual data. In this work

we extend the idea of residue codes to non-linear residue codes and show how their

arithmetic properties can be used to provide strong error detection under even the

most challenging adversarial conditions. Our construction for robust arithmetic codes

is versatile enough to be applied to any fixed width data-path for digit serial general

purpose arithmetic. Using this code it is possible to protect any type of integer ring

or prime field arithmetic, e.g. RSA, Diffie-Hellman, Elliptic Curves over GF(p), etc.,

against active adversaries.

We presented our results at the Fault Diagnosis and Tolerance in Cryptography

Workshop in 2006 and published them in [GSK06].

2.3 Low Cost Techniques

A common approach to prevent errors in cryptographic hardware involves the use of

existing redundancy, for example by decrypting an encrypted result and comparing

to the input. In other cases simple concepts from classic linear coding theory (parity

prediction, Hamming codes) are applied to standard circuits, for low-cost protection

against basic faults.

However, with the advent of more advanced attack techniques and more accurate

1Named after their multiplicative encoding procedure N ′ = AN , where A is the code generator

value and N is an operand
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error and attacker models, these simple techniques may prove to be inadequate. Ef-

fective hardening of systems against sophisticated and malicious fault attacks requires

strong error detection under worst case assumptions rather than average case. At the

same time there is always the concern about overhead of error detection solutions,

since more complex circuits are also more likely to fail. The robust arithmetic residue

codes mentioned above, unfortunately fall into this category.

In order to strike a balance between robustness and overhead we show in this

chapter how Karpovsky and Taubin’s [KT04] original construction may be applied

to a type of specialized finite extension fields named optimal extension fields (OEF).

This new construction preserves the original code’s strong error detection properties,

yet with almost negligible overhead.

The results of this chapter are currently under preparation for publication.

2.4 Tamper Resilient Control Structures

So far most of the work in fault tolerant cryptography is centered around concurrent

error detection (CED) techniques applied to the data path [RMH04, GS05]. Other

techniques take advantage of architectural features, such as independent encryption

and decryption units to compute the inverse operation for parallel computation and

comparison of the result [JWK04]. While this strategy works well with symmetric key

algorithms such as the AES [BBK+02], it may not work in a public-key setting, for ex-

ample if the private key is not available to check the result of an encryption [ABF+02].

We are currently unaware of any strategies to also protect the control logic (state

machine, sequencer, execution pipeline, etc.) of cryptographic systems against in-

terference from the outside. A literature search revealed that there are several

decades worth of research on the design of fault-tolerant state machines in clas-

sic application domains like automation control, avionics, and space-borne systems
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[Ren78, CT91, Ber04]. While it is true that many of those findings could also apply

to cryptographic systems, our main concern is that the fault model is fundamentally

different. Fault-tolerant digital systems are typically designed around the premise

that faults only occur one at a time and that there is sufficient time to recover be-

tween faults. Thus all that is needed to build a fault secure system is the ability to

recover from the set of single faults [Pra86]. Such an assumption seems reasonable as

long as the faults are caused by stochastic events like natural background radiation,

or the random failure of components over time. In a cryptographic setting we deal

with faults of an adversarial nature, caused by an intelligent attacker, who can be

assumed to know about the structure and thus certain weaknesses of the system. In

this chapter we therefore explore design techniques for tamper resilient finite state

machines that employ error detecting codes with large minimum distance.

Our results have been accepted for publication in the IEEE Transactions on Com-

puters [GSS07].
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Chapter 3

Side-channel Analysis: A

Taxonomy

The standard literature on cryptography defines a cryptographic system abstractly

as a black box with an input and an output. The input accepts the plain text, while

the output provides the cipher text. Implicitly we also shall assume that the key is

loaded into the black box during a safe time via some appropriate mechanism, and

stored for later use in the field, but cannot be retrieved out of the box. In the physical

world this description is insufficient, as it is nearly impossible to completely isolate

a device from its environment. In reality there are many unintentional input and

output channels, in the following named side-channels, which can reveal the inner

workings of the device.

A side-channel attack, or more formally a side-channel analysis, is an attack on a

cryptographic device that makes use of one or more of these covert channels to obtain

information about the key material, thus breaking the cryptosystem. Over the last

two decades, many different classes of side-channel attacks have been studied in the

literature and also applied in practice.

In general one may classify side-channel analysis into two major categories, de-

13



14 CHAPTER 3. SIDE-CHANNEL ANALYSIS: A TAXONOMY

pending on whether a device is simply observed or whether it is being acted upon by

the attacker. Observation-only attacks are termed passive, while attacks involving

interaction with the device are termed active. Just like the regular interface of a

cryptosystem defines input and output channels, side-channels may also be classified

in terms of the direction of information flow. Physically observable phenomena that

result from activity inside the device consitute a covert output channel. Similarly, any

kind of external manipulation that the device is exposed to and which has an effect on

the device’s inner workings can be considered a covert input channel. Moreover, an

external manipulation that has a discernible effect, i.e. that can be observed through

any (overt or covert) output channel, constitutes an interaction with the device.

3.1 Passive Side-Channel Analysis

The following physical phenomena have been identified in the literature as effective

for passive side-channel analysis:

• Timing information

• Power consumption

• Electromagnetic emissions (including thermal phenomena)

• Accoustic emissions

Timing analysis, first introduced by Kocher [Koc96] in 1996, works by measur-

ing the data-dependent differences in execution timing of näıve implementations to

determine the Hamming weight of the secret key. It applies mainly to modular expo-

nentiation based public key cryptosystems, such as RSA or Diffie-Hellman, where the

exponentiation is implemented as a simple square-and-multiply algorithm. Common

countermeasures include multiply-always strategies aimed at constant time execution.
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Power [KJJ99] and electromagnetic analyses [GMO01, QS01] measure the power

consumption and the radio frequency spectrum of a cryptographic device over time

to deduce information about the data that is being processed, specifically the key-

dependent data. It can be successful even if precautions to timing analysis have been

taken. Simple power (SPA) and electromagnetic analysis (SEMA) operate on a single

power or EM trace acquisition, while differential analysis (DPA and DEMA) acquires

several thousands of traces and computed their average signal to filter out random

variations. Then, by computing the difference between the average power trace and a

single acquisition, even subtle data-dependent power consumption becomes visible in

the trace, making this attack very powerful. While power analysis may be mitigated

by supply power filtering at the terminals of the device, EM analysis can bypass

these countermeasures by sampling the emissions with high accuracy directly above

the circuit using micro-coils.

Common countermeasures against power and EM analysis require a tremendous

effort on the part of the circuit designers, who need to go to great lengths to bal-

ance power consumption or shield the device from emitting EM radiation. Other ap-

proaches use adaptive masking techniques for randomization and hence, de-correlation

between the power signature and the secret information.

3.2 Active Side-Channel Analysis

Active attacks are much more powerful than passive attacks, since they no longer

confine the attacker into the role of an observer. Through the deliberate insertion

of faults into the computation an adversary might cause the leakage of secret key

information. The consequences of not employing at least an error detection scheme

have been demonstrated vividly in [BDL97]. Protecting against this class of attacks

requires more than elaborate circuit tricks; it requires a mechanism for detecting mod-
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ification of data, faulty behavior of the arithmetic circuit, or both. Just as traditional

mission critical applications like avionics and systems working under harsh environ-

mental conditions require fault tolerant design techniques, it becomes increasingly

important for embedded security devices operating in a hostile environment.

Active side channel attacks rely on the manifestation of injected faults as erroneous

results which can then be observed either at the output of the device, or through

some covert side-channel. The error is therefore the difference between the expected

output x and the observed output x̃ = x + e. We will define the error model and the

capabilities of the adversary more precisely in the following chapter.

In 1996 Boneh, DeMillo and Lipton [BDL97] demonstrated painfully how vulner-

able straightforward implementations of public-key cryptographic algorithms are to

a class of attacks now commonly referred to as “Bellcore attacks”. Here we give a

short summary of the attack as it applies to the RSA signature scheme.

It is commonly known that the Chinese Remainder Theorem (CRT) may be used

to speed up the computation of the RSA signature algorithm, due to availability

of the factors p and q of the RSA modulus N . Let n = dlog2 Ne be the length

of the modulus in bits, and thus typically p and q are of size n/2 bits. The RSA

signature algorithm computes the modular exponentiation y = xd mod N , where x is

the message digest, d is the private key, and y is the resulting signature. Instead of

computing a n-bit exponentiation which has a time complexity of O(n3) assuming a

quadratic complexity multiplication algorithm, the CRT allows one to compute two

n/2-bit exponentiations yp = xdp mod p and yq = xdq mod q and combining them

into the final result y = yq + q((yp − yq)q
−1 mod p). This reduces the complexity of

exponentiation to O((n/2)3) and results in an overall speed-up of almost factor 4.

The Bellcore attack consists of obtaining one correct signature S and one faulty

one S ′ by inducing a random fault in one of the two n/2-bit exponentiations. The only

requirement for success is that the fault only affects either yp or yq but not both. After
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obtaing S and S ′, the attacker may simply compute the greatest common divisor of

the signatures’ difference and the RSA modulus N to obtain the factorization of N :

gcd(S − S ′, N) = r, where either r = p or r = q with high probability.

Shortly after their findings were discussed in the cryptographic community, Shamir

[Sha99] proposed a simple and “low-cost” countermeasure which consists of scaling

the moduli p, q by some small random factor j and a slightly modified derivation of

the partial exponents. These modifications of the standard CRT algorithm allow the

detection of random errors during the exponentiation. Shamir’s trick, however, was

shown to be flawed by Aumüller et al. [ABF+02], since it does not protect all steps of

the computation. More advanced protection schemes were proposed by Blömer et al.

[BOS03] and Yen et al. [YJ00], and there exist claims that some of them can be broken,

too [Wag04], although this seems to be disputed. The discoveries of the Bellcore team

triggered additional work by other researchers who extended the technique to other

cryptosystems [JLQ99], and also spawned a new type of active attack on symmetric

key cryptosystems such as block and stream ciphers, called differential fault attack

(DFA) [BS97].

Apart from Bellcore style attacks there exists another type of fault attack, which is

aimed at common countermeasures to passive attacks. In order to prevent power and

electro-magnetic analysis techniques, many VLSI implementations nowadays employ

power balanced logic gate libraries, whose power consumption and hence electro-

magnetic emanations are data-independent. New fault attacks are aimed at intro-

ducing glitches into the circuit which cause such gates to ‘lose balance’, i.e. reveal

data through power imbalances. This opens the door to various classical attacks

on the circuit, like simple and differential power (SPA,DPA) and electromagnetic

(SEMA,DEMA) analysis. All this demonstrates the urgent need for a truly robust

error detection scheme.
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Chapter 4

An Adversarial Error Model

Based on the discussion of active tampering attacks we will now establish an adver-

sarial error model which allows us to analyze the effectiveness of countermeasures.

We will make use of existing definitions borrowed from the testing and fault-tolerance

communities.

Generally one can say that errors are the manifestations of faults occurring in a

system. Some classes of faults may not cause an error, others may have devastating

consequences and cause multiple errors at the same time. Faults can be broadly

categorized into permanent and transient faults:

Permanent Faults can be caused by manufacturing defects, long-term slowly de-

structive effects such as electromigration, or by a sudden disruptive force, for

example a static discharge. In an adversarial setting, a permanent fault may be

caused by an attacker who has access to a focussed ion beam (FIB) workstation,

intent on manipulating the functionality of a device.

Transient Faults are non-permanent faults, which have an effect only for a lim-

ited amount of time, usually only a couple of clock-cycles or fractions thereof.

These may be caused by environmental effects that temporarily drive the op-

erating conditions of the device outside of the normal range for which it was

19
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designed, such as fluctuations in supply voltage or temperature. As before, we

are more interested in adversarial faults, which may be induced in a variety

of ways. An attacker may try to emulate environmental effects and raise the

operating temperature of the device or manipulate the power supply. Other

specific techniques are described further below.

Successful induction of faults depends on a variety of factors, such as the physical

characteristics of the device under attack, the method of fault induction and the

existence and type of countermeasures. Starting with the latter, the presence of

countermeasures determines which methods of fault injection can be applied in the

first place. For example, if the device has a unit for monitoring the quality of the

supply voltage and can perform an emergency shutdown if necessary, then a glitching

attack is unlikely to succeed.

Every method of fault injection has different characteristics in terms of location

and effect of the fault. Some techniques such as power supply glitching may have a

more global effect, for example in the case where there is only a single power connector.

In other cases such as a general purpose CPU, there may be several ground and supply

voltage connectors (GND and VCC), each of which may supply power to a particular

functional group of the device. With a finer granularity of power supply lines the

attacker also gains better control over the locality of the fault.

The precision of fault injection can be characterized in terms of spatial and tempo-

ral resolution of faults, which ultimately determines the precision with which specific

error patterns can be caused in the device:

Spatial resolution is a measure of precision with regard to the physical dimensions

of the device.

Temporal resolution measures the precision with regard to fault insertion at a

particular time.
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In addition to the classification of faults based on resolution, we may additionally

distinguish between two modes of failure that we define as follows: A common-mode

failure (CMF) [MM00] is a set of multiple, simultaneously occurring faults resulting

from a single cause, e.g. due to a glitch in the power supply, or a large area ionization

of an unpackaged integrated circuit with a radiation source. Highly regular circuits

made from replicated components are the most prone to common-mode failure, if the

cause of the fault is not one of limited locality. In contrast, a single-mode failure

(SMF) is a single fault that occurs due to a single cause. Oftentimes the effect of

the fault is locally limited. Examples of this type of fault are single stuck-at faults

caused early on by manufacturing flaws or later through breakdown resulting from

electro-migration. In an adversarial setting, a transient single-mode failure may also

be induced by means of a ‘light-attack’. This refers to the introduction of single bit

errors into an unpackaged integrated circuit by means of a highly focused laser beam

or other ionization source [SA02]. It requires a high degree of spatial and potentially

also temporal precision.

4.1 Faults from an Attacker’s Perspective

From an attacker’s point of view transient faults are more useful than permanent

faults for many reasons. For one, he may only possess a single device to attack and

a permanent fault may render the device non-functional. Secondly, several of the

known fault attacks require faulty and non-faulty output in order to succeed. In the

case of permanent faults there is only a single opportunity to obtain useful output

on which to mount the attack. The infamous fault attack on the CRT-based RSA

signature scheme by Boneh et al. [BDL97], for example, assumes a simple register

fault model, in which an almost arbitrary portion of an intermediate value (possibly

a single bit) is changed during one of the two modular exponentiations. It does not
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matter which of the two exponentiations is affected, as long as it is only one of them

and not both.

4.2 Fault Attack Categories

Adversarial faults may be introduced into the cryptosystem in a variety of ways. The

spatial resolution with which an attacker is able to carry out the procedure depends

largly on the type of fault attack, which may be from one of the following three

categories.

Non-invasive Fault Induction In a non-invasive setting the mechanical integrity

of the device under attack and its shell is unharmed. This means essentially that

no attempt has been made to remove any protective coating of the chip, neither the

regular IC packaging, nor an additional layer of tamper-proof coating. Any method

of fault induction under this category would be limited to either the device’s electrical

terminals or electromagnetic radiation.

Invasive Fault Induction When the device’s mechanical integrity has been sev-

ered, e.g. for modification of the electric circuit or circumvention of anti-tampering

countermeasures, we speak of an invasive attack. This method gives the attacker

the highest level of control over the fault insertion, but it also carries the highest

risk of accidentally erasing key material in the process, for example by triggering a

countermeasure such as those mentioned in the beginning of this section.

Semi-invasive Fault Induction The hybrid approach of removing the packaging

material of the chip but keeping the circuit intact is characteristic of a semi-invasive

attack. With access to the chip’s surface, an attacker may use optical ionization

sources to trigger transient faults in the device with high spatial resolution.
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Advanced attacks have been demonstrated under laboratory conditions, e.g. in

[BOS03] where an electric spike generator was used to influence the power supply

with precise control. Also, Skorobogatov reported on semi-invasive techniques such

as optical fault inductions [SA02], where a high-energy light source, e.g. a camera

flash or a laser pointer, were used to induce single bit-flips in SRAM cells of a de-

packaged micro-controller. These advanced attacks do not require a great deal of

sophistication or expense, yet are very powerful.

4.3 Abstract Error Model

Our aim is to abstract the effect of a fault induction (the error) from its method,

in order to obtain an analytical model, which we can then use to derive effective

countermeasures. We thus model a successful fault induction as the additive distortion

of data or logic values in the device.

Depending on the concrete function of the area of the device which is affected

by the fault, there are two principle ways to characterize the error. A logical error

is a bitwise distortion of the data, usually modeled as the exclusive OR of data and

error, i.e. x̃ = x ⊕ ex, while arithmetical errors admit the propagation of carries up

to the range limit: x̃ = x + e mod 2k, where k is the width of the data path. The

former is appropriate for storage dominated devices (register files, RAM, flip-flops,

etc.), the arithmetic error model is more useful for arithmetic circuits such as adders

and multipliers.

The multiplicity of an error is an important parameter with consequences for the

performance of error detection strategies. In information theory the weight of a code

word denotes the number of non-zero symbols. Similarly, the distance between two

code words denotes the number of symbols in which the two values differ.
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Logical Errors can be modeled in exactly the same way that transmission errors

in basic coding theory are modeled. The weight of an error term ex is its Hamming

weight (short: HW(ex)) and the distance between two codewords x, y is the Hamming

weight of their difference HW(x− y).

Arithmetical Errors are modeled slightly different, due to the influence of carry

propagation. The binary arithmetic weight (BAW) of an integer N is defined as

the number of non-zero coefficients in the minimal non-adjacent representation of

N =
∑k

i ni2
i with ni ∈ {−1, 0, 1}.

Due to the arithmetic structure of public-key cryptographic primitives addressed

in this dissertation, we model all data-path errors as arithmetical errors and all errors

on the control logic as logical errors. As a consequence of the adversarial nature of

fault attacks, our error model is not limited to any error patterns of a specific weight,

nor does it assume certain errors to occur more frequently than others.



Chapter 5

Cyclic Codes and Homomorphic

Embedding

In this chapter we introduce a technique for fault-tolerant finite field arithmetic with

applications to public-key cryptosystems defined over finite abelian groups (usually

the group of points on an elliptic curve or the multiplicative subgroup of a finite field).

Since elliptic curve based systems are also defined over finite fields, fault-tolerant finite

field arithmetic is therefore at the heart of tamper-resistant public-key cryptography.

We propose scaled embedding as a new approach to fault tolerant finite field arith-

metic that is based in principal on two important classes of linear codes, which are

arithmetic codes and binary cyclic codes. The usefulness of these codes for our pur-

poses stems from the fact that they possess the same basic arithmetic structure as

most public key cryptographic schemes. Public-key arithmetic is commonly based on

integer and binary polynomial rings and fields, most notably in Elliptic Curve Cryp-

tography. The theories of both classes of codes contain a significant amount of overlap,

which suggests a unified treatment. It is possible and useful to view the encoding of

operands along with their arithmetic operations as a ring homomorphism.

Under a ring homomorphism elements from the non-redundant ring or field F

25
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can be embeddded into a larger, redundant ring R by means of multiplication with

a constant scaling factor. While the techniques that we introduce in the following

sections may not always adhere to the strict definition of cyclic codes, a less stringent

definition allows a more flexible choice of scaling factors. When robustness with

respect to minimum distance is required, one can always fall back on the special case

of cyclic codes, for which a designed distance metric can be calculated.

In our scheme, arithmetic operations executed in R preserve the operations that

otherwise would have to be executed without redundancy in F . This redundancy

can be utilized in every step of the computation to detect errors caused either by

transient faults due to circuit crosstalk and radiation, or by malicious fault insertion

from an adversary. Our method serves two mutually beneficial purposes: on one

hand the redundancy of the larger ring can be used for error detection, which is our

main objective. On the other hand, the particular low-weight representation of the

ring modulus lends itself particularly well to the efficient direct method for modular

reduction, based on shifts and additions / subtractions. The negative performance

impact of the larger encoded operands is therefore mitigated to some degree.

Our method constitutes a generalization of classic cyclic codes for fault-tolerant

arithmetic. This generalization is what enables us to obtain a larger choice of code pa-

rameters, thereby allowing hardware implementations with flexible time-space trade-

offs.

5.1 Introduction

Finite field arithmetic operations such as addition and multiplication form the foun-

dations on which most cryptosystems are built. Our goal in this chapter is to define

a redundant representation of a finite field along with its associated arithmetic oper-

ations, which (a) preserves the original field operation and (b) allows the detection of
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errors which may arise due to either random or malicious insertion of faults into the

computation.

Our intention is to devise an error detection scheme which utilizes the rich math-

ematical structure of finite fields and rings. For this we want to use a transformation

through which we introduce redundancy in our representation and thereby gain error

detection capabilities. We would like to be able to map from a ring or field F to a

redundant ring G, while preserving the arithmetic. Here F may be, for example, the

ring Zm of integers modulo m. Formally the elements of Zm are cosets of the form

a+mZ, but it is usual and customary to simply refer to them as a, where 0 ≤ a < m.

We need a transformation function φ : F → G which maps between the additive

identities and preserves the addition and multiplication operations in the rings (or

fields) F and G, and thus forms a ring homomorphism:

Definition 5.1.1. Let F and G be two finite rings. A ring homomorphism is a

function φ : F → G, which satisfies the following properties:

1. Addition is preserved: φ(a + b) = φ(a) + φ(b), for all a, b ∈ F

2. Multiplication is preserved: φ(ab) = φ(a)φ(b), for all a, b ∈ F

Example 5.1.1. A function φ : Z16 → Z20 becomes a ring homomorphism via

a 7→ 5a.

There are two potential strategies to achieve fault tolerant arithmetic using ring

homomorphisms. They are based on the difference between the two major classes

of codes: separable and non-separable. The former ones are also called systematic

codes, since each codeword can be split into an information part (the original data

in unchanged format) and a redundant part which contains extra digits, the check-

symbols. For non-separable codes the roles of information- and check-symbols are

not clearly defined, since encoding procedures tend to ‘spread’ the information over
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multiple digits in the resulting codeword. We differentiate between the following two

principal strategies:

• A homomorphism φ which is not one-to-one may be used to create an additional

verifier datapath besides the original main data path. It mimics all computa-

tions on the main data path using the homomorphic images of the operands

obtained through the encoding φ(·) (cf. Fig. 5.1(a)). At the end of the opera-

tion the image φ(c) of the result from the regular main data path is compared to

the output of the verifier data path. This strategy is somewhat similar to that

used in parity prediction circuits, e.g. in [RH02], although a bit more general.

• If φ is one-to-one (i.e. φ(a) 6= φ(b) whenever a 6= b) then we speak of embedding

F into G, and the difference in cardinality establishes the amount of redundancy

present in the embedding. After mapping all operands from F to G via the

homomorphism φ(·), all computation is carried out in G. The integrity of the

mapping is verified at intermittent check-points between operations. At the

very end of the computation the result is converted back to F via the decoding

function φ−1(·) (cf. Fig. 5.1(b)), which exists when φ is one-to-one.

5.1.1 Separate Codes

The main idea of this approach is to have two individual data paths perform equivalent

operations on different, yet related, sets of data. The original data path is unchanged

from the non-redundant version, while the redundant data path may be smaller,

operating on images of the original data, the check-symbols, which are usually not

unique. The smaller bitlength representation of the check-symbols implies that the

mapping function φ(·) is not one-to-one, and |F| > |G|. If φ is a ring homomorphism,

it preserves the arithmetic of the original data in the image. We can thus compare
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Figure 5.1: Two Strategies for Error Detection Under a Ring Homomorphism

the resulting image φ(a)◦φ(b) to the image of the result of the operation φ(a◦ b) and

check for errors.

The following example illustrates this approach.

Example 5.1.2. Let F = GF(p)[x]/(x2−1) the polynomial quotient ring with a(x) =

a1x + a0 ∈ F an element. Let further G = GF(p). The mapping φ : F → G
becomes a ring homomorphism via polynomial evaluation at x = 1, i.e. φ(a(x)) =

a(1) = a1 + a0 mod p, since it satisfies the properties in Definition 5.1.1. It preserves

arithmetic operations on two elements a = a1x+a0 and b = b1x+b0, such as addition

φ(a + b) = φ((a1 + b1)x + (a0 + b0))

= (a1 + a0) + (b1 + b0)

= φ(a) + φ(b)



30 CHAPTER 5. CYCLIC CODES AND HOMOMORPHIC EMBEDDING

and multiplication

φ(ab) = φ(a1b1x
2 + (a0b1 + a1b0)x + a0b0)

≡ φ((a0b1 + a1b0)x + (a1b1 + a0b0)) (mod x2 − 1)

= a0b1 + a1b0 + a1b1 + a0b0

= (a1 + a0)(b1 + b0)

= φ(a)φ(b) .

An implementation of this strategy would require only the addition of a small

secondary arithmetic data path to the existing primary ALU. Another example for

this strategy is the use of arithmetic residue codes. These are popular in traditional

fault-tolerant systems design and detect any single arithmetic error ±2i.

Although this approach appears interesting, its merits are limited. While residue

codes work nicely for regular integer arithmetic, the finite field and ring arithmetic

of most public-key cryptosystems introduces additional constraints which are hard

to overcome. For example, the natural mapping from a polynomial quotient ring

to its coefficient ground field that works so nicely in Example 5.1.2 is the exception

rather than the norm (notice that we evaluated at a root of the modulus x2 − 1).

Cryptographic fields are either large prime fields or binary extension fields of prime

degree, for which either no such natural subfield mappings exist1, or their usefulness

is severely limited.

5.1.2 Non-separate Codes

This leads us to an alternative approach to defining codes for fault tolerant arithmetic,

which is again based on homomorphic mapping. This time, however, the ring F is

mapped into a larger ring G, and arithmetic is only performed in G instead of in both

1With the notable exception of optimal extension fields (OEF).
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rings in parallel (cf. Fig. 5.1(b)). We speak of embedding F into G and using the

additional redundancy for error detection.

One may be tempted to exploit the natural embedding provided by the field / sub-

field relationship of field extensions. For instance, we may carry out arithmetic in a

finite field F = GF(qk) by embedding all operands into an extension G = GF((qk)m).

This method has the advantage of carrying the same field operations, i.e. addition,

multiplication, inversion. To construct such an embedding we need a function map-

ping elements from F to G, i.e. an injective map φ : F 7→ G. However, having

both the domain and the range of the mapping to be fields may prove to be too

restrictive, as the smallest extension would already double the size of the represen-

tation. As an alternative we may define the mapping from a field F = GF(qk) to a

ring R = GF[x]/r(x), with deg(r(x)) > k, which offers more flexibility in choosing

suitable parameters.

As described in the previous section the mapping function φ(·) needs to represent

a homomorphism and preserve the addition and multiplication operations. Inciden-

tally, this is the same principle behind cyclic codes, which also possess the arithmetic

structure of finite rings. Unfortunately, the precise definition of a cyclic code in the

literature is relatively restrictive, which makes it hard to find codes that allow the

embedding of cryptographically significant prime degree extension fields. By chang-

ing the definition slightly we can find a similar class of codes with a much larger

set of parameters, in which we can embed these fields. But before we talk about

these changes in definition, we would like to start with a brief review of cyclic codes.

Also, we will talk about cyclic arithmetic codes which represent the integer analogy

to cyclic codes.
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5.2 Review of Relevant Coding Theory

In coding theory the alphabet over which codes are defined is typically chosen as a

finite field Fq = GF(q). The code itself is a subset or, in the case of linear [n, k]q

codes, a k-dimensional subspace of the n-dimensional vector space Fn
q . Codewords

are usually represented as ordered n-tuples c = (cn−1, cn−2, . . . , c0), with ci ∈ GF(q).

5.2.1 Cyclic Codes

Cyclic codes are a family of linear codes with a rich algebraic structure, which is

tremendously helpful in their analysis. It is therefore customary to associate with each

codeword c = (cn−1, cn−2, . . . , c0) the code polynomial c(x) = cn−1x
n−1 + cn−2x

n−2 +

. . . + c0 of degree less than n.

The distinct property of cyclic codes that sets them apart from other linear codes

is their invariance under cyclic shifts.

Definition 5.2.1. The cyclic shift c′ = c ª 1 of the codeword c by one position to the

left denotes the q-ary n-tuple (cn−2, cn−3, . . . , c0, cn−1) with its associated polynomial

c′(x) = cn−2x
n−1 + cn−3x

n−2 + . . . + c0x + cn−1. A linear code C is a cyclic code if for

any codeword c in C, c′ = c ª 1 is also in C.

It is easy to see that the polynomial c′(x) is equivalent to the product xc(x)

mod xn − 1, thus establishing the correspondence

c ª 1 ←→ c(x) 7→ xc(x) mod xn − 1 .

The cyclic shift c′(x) = c(x) ª i by i positions is therefore equivalent to computing

the remainder modulo xn−1 of the product xic(x) : c′(x) = cn−i−1x
n−1+cn−i−2x

n−2+

. . . + cn−i+1x + cn−i. Due to the finite length n of codewords it is straightforward to

see that a right cyclic shift can be expressed as a series of n− 1 left cyclic shifts.
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By linearity, any scalar multiple of a code polynomial ac(x), where a ∈ Fq, is

also in C. Accordingly, any linear combination of scalar multiples and cyclic shifts of

codewords, again yields a codeword in C, e.g.

(a0 + a1x + a2x
2)c(x) = a0c(x) + a1xc(x) + a2x(xc(x)) .

is a codeword (when reduced modulo xn− 1) whenever c(x) is. This provides us with

a one-to-one correspondence between cyclic codes of length n over Fq and the ideals

I of the polynomial quotient ring Fq[x]/(xn − 1), which is essentially the well-known

theorem first recognized by Eugene Prange in 1957 [Pra57].

In order to find cyclic codes, we briefly review an algebraic formulation of the

problem. Using this formalism, cyclic codes of length n can be constructed by finding

the monic divisors of xn−1 over GF(q). Specifically we need to construct a generator

polynomial g(x) of degree r, which will be used to encode data polynomials of degree

less than k = n− r by means of regular polynomial multiplication.

Definition 5.2.2. Let d1(x), d2(x), . . . , d`(x) be the irreducible monic divisors of xn−
1 over GF(q). Any product of these divisors g(x) =

∏`
i=0 di(x)ci , ci = {0, 1} can serve

as a generator polynomial, since the only requirement for g(x) is that it be a divisor

of xn − 1 itself.

For cyclic codes, the encoding process is easy. For a given generator polynomial

of degree r = n − k and a data polynomial a(x) of degree less than k we obtain

its codeword as c(x) = a(x)g(x) mod xn − 1. For example, let q = 2, n = 7: the

irreducible monic divisors of x7 − 1 over GF(2) are

d1 = x + 1

d2 = x3 + x + 1

d3 = x3 + x2 + 1 ,
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and thus for g(x) = d1d3 = x4 +x2 +x+1, the ideal C = {a(x)g(x) : a(x) ∈ F2[x]} is

the [7,3]-Simplex code (the dual of the [7,4]-Hamming code) as a set of polynomials

in F2[x]/(x7 − 1).

5.2.2 Arithmetic Codes

While linear cyclic codes were developed principally for the transmission of data,

arithmetic codes were developed as a means to protect the arithmetic unit (AU) of

mission critical computers, most notably the STAR computer at JPL [Avi67].

Non-separate arithmetic codes, often also referred to as AN codes, are conceptu-

ally similar to cyclic codes in many aspects, although there are some fundamental

differences. Both types of codes form an ideal in a ring, but for arithmetic codes this

ring is the integers modulo m, Zm, as opposed to the previously mentioned polyno-

mial quotient ring for non-arithmetic cyclic codes. Codewords of both types may be

represented as n-tuples, but must be interpreted differently due to the difference in

arithmetic structure. Specifically, codewords of a cyclic code are n-tuples over the

finite alphabet Fq that may be represented as polynomials, but the codewords of an

arithmetic code are elements of the integer ring Zm, and the components of the n-

tuples are digits in base-q representation. Apart from a different notion of distance

and weight of codewords (cf. Section 4.3), this has consequences for the propagation

of single bit errors in the representation. Despite similar representation an error in

a single component of an arithmetic codeword may affect other digits of the result

of an addition, while for a non-arithmetic code the error is constrained to the same

digit position.

We will now give a precise definition for arithmetic AN codes.

Definition 5.2.3. [Gor87] Let m ∈ Z+. An arithmetic AN code is a subgroup

C = {AN |0 ≤ N < M} of Zm, where m = AM , for some A,M ∈ Z+.
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According to this definition the arithmetic AN code C is the ideal in Zm generated

by A, and M is the number of codewords in C.

Definition 5.2.4. For m = qn − 1, the left cyclic shift of a q-ary n-tuple c =

(cn−1, cn−2, . . . , c0) in Zm is the n-tuple c′ = (cn−2, cn−3, . . . , c0, cn−1). As before,

we say a code is cyclic if the left cyclic shift of any codeword is again a codeword.

It is straightforward to see that this representation is equivalent to the product

qc mod m, thus establishing the correspondence

c ª 1 ←→ c 7→ qc mod m .

As usual, a right cyclic shift can be represented as a series of n− 1 left cyclic shifts.

One could also define a left cyclic shift of a codeword by i positions, thus obtaining

the general correspondence

c ª i ←→ qic (mod qn − 1)

or

c ª i ←→ (cn−i−1, cn−i−2, . . . , c0, cn−1, . . . , cn−i+1, cn−i) .

Theorem 5.2.1. We immediately observe that any arithmetic AN code is cyclic in

the sense of Definition 5.2.4.

Example 5.2.1. We can construct a cyclic arithmetic code based on the factorization

of m = 2n − 1. Let n = 6, then m = AM factors into A = 9 and M = 7. This AN

code consists of the 7 codewords from the set C = {0, 9, 18, 27, 36, 45, 54}, represented

as the binary 6-tuples

(0, 0, 0, 0, 0, 0) (0, 0, 1, 0, 0, 1) (0, 1, 0, 0, 1, 0)

(0, 1, 1, 0, 1, 1) (1, 0, 0, 1, 0, 0) (1, 0, 1, 1, 0, 1)

(1, 1, 0, 1, 1, 0)

and can be used to embed the prime field Z7 in Z63.
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Remark. Due to the Mersenne-like form of the ring modulus there exist two equiv-

alent binary encodings of the zero codeword, the all-zero and the all-one bit vector.

Although the latter is strictly speaking not a codeword, it may arise as a result of

the addition of two codewords.

5.2.3 Cyclic Code-Based Homomorphic Embedding

We can now begin to describe a connection between cyclic codes (in both senses) and

ring homomorphisms. For example, the arithmetic AN code of Example 5.2.1 can be

viewed as the image of the homomorphism φ : Z7 → Z63 via a 7→ 9a. Analogously, the

dual of the Hamming code can be viewed as an embedding of GF(8) inside F2[x]/(x7−
1) via φ : (a2, a1, a0) 7→ (a2x

2 + a1x + a0)(x
4 + x2 + x + 1). In both above cases, while

the additive structure is preserved in the ring, field multiplication is not preserved

under the product operation of the target ring, due to the extra multiplicative factor

introduced by encoding with the generator, i.e.

φ(a · b) = g · a · b 6= g2 · a · b = φ(a) · φ(b) .

This can be corrected in several ways, e.g. with an alternative definition of the product

operation, as we shall see a bit later on.

Choosing cyclic code-based embedding for error detection has an extremely useful

side benefit: by embedding the finite field into a quotient ring, arithmetic operations

are no longer subject to modular reduction by the field defining irreducible polynomial

or modulus. Any result of an arithmetic operation with a representation that exceeds

n digits, can be reduced very efficiently due to the congruences xn ≡ 1 and qn ≡ 1.

Low-weight ring and field moduli are well studied in applied cryptography: The

finite fields recommended by NIST for the elliptic curve digital signature algorithm

(EC-DSA [oSN00]) are defined by low-weight primes and irreducible trinomials or

pentanomials. In [ÖSS04], modulus scaling was used to obtain low-weight ring moduli
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for efficient scaled modular arithmetic. The authors, however, did not make use of

the redundancy for error detection, which is the objective in this dissertation.

5.3 Cryptographically Significant Finite Fields

It is our goal to embed a finite field GF(q) into a larger ring, for q some prime power.

In the case where the target is to be a binary cyclic code, i.e. q = 2k, this means that

xn − 1 needs as a factor some degree k irreducible polynomial over GF(2). Similarly,

in the case of arithmetic codes, we require 2n − 1 to contain a large prime factor p of

bitlength |p| ≈ k bits.

At this point it seems as if all we need to do is to search for some suitable parame-

ters n, k, by way of factorization of the ring modulus. Unfortunately, with respect to

specific applications such as Elliptic Curve Cryptography (ECC) not all finite fields

are suitable choices for defining secure elliptic curve groups. Binary fields GF(2k)

with k composite are believed to be susceptible to a class of attacks based on Weil

descent [GHS02]. Without going too much into the details, Weil descent allows one to

map the elliptic curve discrete logarithm problem (EC-DLP), upon which the secu-

rity of elliptic curve cryptosystems is based, to a related problem on a hyper-elliptic

curve of larger genus, but much smaller subfield. This gives rise to index-calculus

attacks on the EC-DLP for which the time complexity depends largely on the field

size. In short, composite degree field extensions may reduce the security of elliptic

curve cryptosystems.

As a result we want to find cyclic [n, k]2 codes where xn − 1 (mod 2) factors into

a large irreducible polynomial of prime degree k and some other smaller polynomials.

For fields with an extension degree in the range that is of interest for elliptic curve

cryptography, i.e. 130 ≤ k ≤ 500, there are exactly ten suitable choices, and each

carries a large amount of redundancy, in fact, they all have n = 2k + 1 as shown
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in Table 5.1, which means that codewords are more than twice as long as the field

elements which we would like to embed. The situation is only slightly better with

cyclic arithmetic codes which are defined in a similar way. In this case the field

modulus and the amount of redundancy is determined by the integer factorization of

2n ± 1.

The advantage of using cyclic codes for embedding is that we can make certain

statements about the worst-case minimum distance (designed distance) of the code,

and therefore about its error detection capability, based on the BCH bound [van92]:

Theorem (BCH bound). Let C be a q-ary [n, k] cyclic code with generator poly-

nomial g(x). Let m be the multiplicative order of q modulo n (GF(qm) is thus the

smallest extension field of GF(q) that contains a primitive n-th root of unity). Let α

be such a primitive n-th root of unity in GF(qm). Select g(x) to be a minimal-degree

polynomial in GF(q)[x] such that g(αb) = g(αb+1) = . . . = g(αb+δ−2) = 0 for some

integers b ≥ 0 and δ ≥ 1, so g(x) has (δ − 1) consecutive powers of α as zeros. It

follows that the code defined by g(x) has minimum distance at least δ.

The designed distance δ given by this theorem (and listed in Table 5.1 for the code

parameters mentioned earlier) is not necessarily a tight bound. The true minimum

distance is often larger, so this theorem only gives a lower bound.

n 263 359 383 479 503 719 839 863 887 983

k 131 179 191 239 251 359 419 431 443 491

δ 8 9 9 13 9 11 11 9 9 11

Table 5.1: Cyclic Codes with Prime Degree Irreducible Divisors
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5.4 A Generalization of Cyclic Codes

In order to mitigate this scarcity of useful code parameters, we move from purely

cyclic codes to a new and more general family of codes with a slightly different

definition. This departure from cyclic codes was inspired by the techniques for scaled

modular arithmetic described in the reference mentioned earlier [ÖSS04]. By relaxing

the notion that the code has to be strictly cyclic, we can find rings in which we can

embed fields of nearly arbitrary cardinality, with flexible trade-offs between field size

and amount of redundancy. We thus obtain a generalized interpretation of codes

with homomorphic structure, in which arithmetic and cyclic codes constitute special

cases. The ring modulus can now take any form, although for performance reasons

we prefer a “Mersenne-like” form qn ± u (xn − u(x) in the polynomial case). Since

each arithmetic operation in the ring is followed by a modular reduction step, it

is desireable to keep the complexity of modular reduction low. Therefore, the best

choices for u (and likewise u(x)) are typically those that are small (resp., of small

degree) and of low weight. 2

For lack of better terminology we shall name this class of codes ‘accumocyclic’.

This name was chosen for two reasons: (a) to indicate the close relationship to cyclic

codes and (b) to distinguish its behavior with regard to shifted codewords. Upon

a single shift of to the left, the ring defining polynomial mandates that the most

significant coefficient does not just simply wrap around back to the least significant

position, but that it is multiplied with u(x) and added to the remaining shifted

coefficients, i.e. cn−1u(x) is accumulated in the lower part of the codeword. We define

this concept formally as an accumocyclic shift with respect to u(x).

Definition 5.4.1. Let u = (un−1, un−2, . . . , u0) denote the q-ary n-tuple associated

2Since implementation of q-ary arithmetic in digital circuits is more complex and less common

for bases q 6= 2, we shall focus on codes with a binary representation throughout the remainder of

this chapter.
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with the polynomial u(x) over GF(q). The accumocyclic shift c′ = c
+

ªu 1 of the

codeword c by one position to the left with respect to u denotes the q-ary n-tuple

resulting from the linear combination of (cn−2, cn−3, . . . , c0, 0) and the scalar multiple

cn−1u over GF(q), i.e. c′ = (cn−2 + cn−1un−1, cn−3 + cn−1un−2, . . . , c0 + cn−1u1, cn−1u0).

Derive an associated polynomial c′(x) = (cn−2+cn−1un−1)x
n−1+(cn−3+cn−1un−2)x

n−2+

. . . + (c0 + cn−1u1)x + cn−1u0. It is easy to see that this polynomial is equivalent to

the product xc(x) mod xn − u(x), thus establishing the correspondence

c
+

ªu 1 ←→ c(x) 7→ xc(x) mod xn − u(x) .

Accumocyclic shifts by i positions and those to the right can be defined in a similar

manner. We can now define accumocyclic codes as codes invariant under accumocyclic

shifts according to Definition 5.4.1:

Definition 5.4.2. Let C a linear block code of length n over GF(q), viewed as a

vector subspace of GF(q)[x]. Further, let u(x) denote a polynomial of some degree

m < n, specific to the code. We say the code C is accumocyclic with respect to u if

and only if any accumocyclic shift of a codeword c ∈ C, according to Definition 5.4.1

again yields a codeword c′ ∈ C.

Observe that, due to linearity, any addition of two codewords a and b modulo q

yields another codeword. Even though this new class of codes is not cyclic according

to Definition 5.2.1, its codes possess certain useful properties which are of interest to

us, mainly the possibility to embed cryptographically significant fields and efficient

modular arithmetic. We can obtain a broad range of suitable field and scaling factor

parameters via factorization of the ring moduli. For illustration we have included a

selection of parameters in Tables A.1, A.2 and A.3 in the Appendix.

Example 5.4.1. Let n = 18, k = 13, q = 2, and u(x) = x + 1. One can easily verify

that g(x) = x5 + x2 + 1 is a polynomial such that g(x)|xn + u(x). The accumocyclic



5.5. HOMOMORPHIC EMBEDDING IN RINGS 41

code C = {g(x)a(x) : a(x) ∈ GF(2)[x]} generated by g(x) thus forms an ideal in the

quotient ring GF(2)[x]/(x18 + x + 1). It is the set of all codewords c(x) = g(x)a(x)

for data polynomials a(x) of degree less than k.

We want to illustrate the difference to classical cyclic codes. Consider the code-

word c(x) = x17 + x14 + x9 + x5 + x4 + 1. In contrast to a cyclic code, a cyclically

shifted codeword c′(x) = a(x) ª 1 = x15 +x10 +x6 +x5 +x+1 is not in C, since it is

not a multiple of g(x). Yet, an accumocyclic shift of a codeword with respect to u(x)

c′′(x) = c(x)
+

ªx+1 1

= xa(x) (mod x18 + x + 1)

= x18 + x15 + x10 + x6 + x5 + x (mod x18 + x + 1)

= x15 + x10 + x6 + x5 + 1

produces a new codeword, since c′′(x) = x15 + x10 + x6 + x5 + 1 = g(x)(x10 + x7 +

x4 + x2 + 1).

5.5 Homomorphic Embedding in Rings

Consider the case when a field F is embedded in a larger ring R. Embedding works

by mapping any element a ∈ F to an element φ(a) ∈ R via a suitable embedding

function, i.e. φ is an injective ring homomorphism. Therefore we can carry out all

arithmetic operations originally defined for F in R instead. At the end of the com-

putation it will be required to use the inverse mapping φ−1 : R→ F to transform the

result back from the ring to the field. In the following we will define explicit map-

ping functions to make our approach more transparent. We investigate two different

methods for embedding: Basic and Idempotent scaled embedding. Both methods tie

into the theory of cyclic codes for certain parameter selections, but can also be seen

as a generalization of the concept without making claims about any sort of minimum
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distance metric. We already indicated this link to coding theory in Section 5.2.3. We

would like to point out that both methods apply equally well to integer and poly-

nomial rings. For sake of simplicity, however, we will refrain from making explicit

distinctions in notation unless such a distinction is required.

The idea of scaled embedding is closely related to the modulus scaling techniques

set forth in [ÖSS04]. There a scaling factor s was applied to the field modulus p to

obtain a scaled modulus m = s · p of Mersenne-like form that allows efficient shift-

and-subtract modular reduction. The redundancy introduced by scaling the modulus

allows us to implement an error detection scheme. A näıve direct mapping φ(a) = a,

however, does not provide error detection capabilities, since mapped elements do not

form an ideal over the ring and errors would be indistinguishable from data. Scaled

embedding, on the other hand, multiplies operands by a generator value g which may

actually be distinct from the modulus scaling factor s. It effectively partitions the

ring R into cosets, of which only one contains valid codewords. Error detection can

therefore be based upon checking for membership in the correct coset. With respect

to the choice of a suitable modulus scaling factor we strive to achieve two goals:

1. to select the target ring large enough to have sufficient redundancy for error

detection purposes, i.e. an amount proportional to the length of the scaling

factor, i.e. log2 s;

2. to obtain a ring modulus m = p · s for which an efficient reduction technique

exists. This helps to offset some of the overhead in complexity that we incur by

adding redundancy.

If the field F and its associated modulus (prime integer or irreducible polynomial)

p are determined by the application, then the choices for a suitable scaling factor

might be limited. If, however, the value of the modulus is not fixed, then one can

choose a suitable pair (s, p) based on the required levels of security (modulus size)
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and redundancy. The computationally most efficient moduli of Mersenne-like form

have very small Hamming-weight, e.g. less than 5. Therefore, in order to find such a

pair we let m = 2n ± u, with u small and n = dlog2 p + log2 se, be the preferred ring

modulus and find a suitable field by way of factorization. Depending on the size of n

factorization might take a long time, especially in the case of finding suitable prime

fields.

For polynomial moduli the ideal form is a binomial m(x) = xn ± 1, as in cyclic

codes, but other moduli xn±u(x) with small degree u(x) are also conceivable. When

u(x) = 1 then the reduction of partial products, e.g. during the shifting step of bit-

serial multiplication, becomes trivial since the shift with reduction can be simplified

to a bit rotation due to the equivalence xn ≡ ∓1 mod p(x). The factorization of

binomials is well studied, and there exist many efficient methods. What we are looking

for specifically are large irreducible factors of prime degree. This is important mainly

for applications in elliptic curve cryptography, as previously discussed.

5.5.1 Basic Scaled Embedding

Once we have found suitable parameters (p, s) for the modulus and its scaling factor,

we can encode the input operands by means of multiplication with the generator value

g. For basic scaled embedding this is the same value as the modulus scaling factor s,

i.e. g = s. The function φs(a) = g · a maps an element a from F to R. It provides

error detection capabilities since all valid elements of R must be proper multiples

of g. Note that while the mapping preserves addition, it does not preserve regular

multiplication, i.e.

φs(a · b) = g · a · b 6= φs(a) · φs(b) .

With an alternative definition3 of the product operation of the ring, however, that

implicitly absorbs the extra scaling factor, φs(·) becomes a ring homomorphism with

3We use the symbol ? to prevent confusion with regular multiplication.
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respect to (+, ·) and (+, ?) operations, i.e. φs(a · b) = φs(a) ? φs(b).

Definition 5.5.1 (g-absorbing multiplication). LetR be a ring under + and ·, g ∈ R.

Further, let a, b ∈ F and A = φs(a), B = φs(b) ∈ R. Define ? : R × R → R via

A ? B = AB/g, when this belongs to R, otherwise A ? B will be left undefined.

Observe that ? is associative

(A ? B) ? C = A ? (B ? C)

and distributive

A ? (B + C) = A ? B + A ? C

when defined.

Therefore, multiplications in R are implemented using the ? operation instead of

regular ring multiplication, while addition in the ring remains the same. Since the

value for g is constant for a specific modulus, division may be implemented more

efficiently than in the general case. Algorithms for division by constants have been

treated, for example, in [Par00].

Error Detection

As mentioned earlier, detection of errors can be based on computing the remainder

of a division by g. A value of zero indicates that the operand is likely to be free

of errors. We have to use caution here, because quite naturally our scheme cannot

detect error patterns that are proper multiples of g. We apply a relatively simple

error model to determine the error coverage of this method: We assume that errors

only occur as additive terms on input operands and that the operation itself is fault-

free. Consequently, the output is the sum of the correct result and another additive

error term related to the input errors and the operation. While such an error model

may be rather simple, we would like to make a point for its validity in the context of
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fault-insertion attacks. From an adversarial point of view, the most accessible targets

with high probability of success for introducing an error are storage elements like

registers and SRAM memory cells. A glitch attack on such a bi-stable device, e.g.

using optical fault induction with a focussed laser beam [SA02], is able to cause an

error regardless of the exact point in time during which it is carried out (with respect

to the clock interval). A glitch in a combinational part of a circuit will manifest itself

as an error only if it reaches the next register in time for the next clock edge and if

it does not significantly violate setup and hold time requirements.

We will now determine the conditions under which we can detect errors. Let

A = φs(a), B = φs(b) ∈ R denote the fault-free input operands of the multiplication

operation A ? B and C the fault-free result.

C = A ? B = (A ·B)/g (mod m) = ((g · a · g · b)/g) (mod m) = g · a · b (mod m)

Furthermore let C ′ denote the result in the presence of additive error terms eA, eB ∈ R
on the inputs:

C ′ = (A + eA) ? (B + eB)

= (g2 · a · b + g(a · eB + b · eA) + eA · eB)/g (mod m)

= C + a · eB + b · eA +
eA · eB

g
(mod m)

= C + eC

Here eC ∈ R is the resulting error on the output. Certain errors can be detected

immediately during the division step of the ? multiplication procedure, e.g. when the

remainder C ′ mod g 6= 0, which means that g does not divide eA · eB. There are two

other non-trivial cases of potentially undetectable errors:

1. Certain one-sided errors, e.g. eA = 0, eB 6= 0, such that eC = a · eB mod m,

which are not detectable if g|eC .
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2. Some two-sided errors eA, eB 6= 0. Now we have eC = a·eB+b·eA+ eA·eB

g
mod m.

The error is undetectable iff g|eC .

The procedure for error detection is based on modular reduction of the operands with

respect to the scaling factor g and checking for a non-zero remainder. Here it can be

performed outside of the critical path of the computation. As long as there is no error

in any of the previous operations, the result can immediately be used as the input

for subsequent operations, while an error check is performed in parallel. The major

problem we face with basic scaled embedding is the division step that is intrinsic to

the ? multiplication, since it adds to the critical path. Division is notoriously complex

in hard- and software implementations unless the divisor is a constant of special form,

which is not usually the case. In the next section we present a modification to the basic

scaled embedding idea, which completely avoids the division step of ? multiplication.

5.5.2 Idempotent Scaled Embedding

The division step of ? multiplication in the basic scaled embedding scheme is required

because both operands contain a multiplicative factor g which results in a square

factor g2 for the product. One way to avoid the extra g is to perform multiplication

with only one scaled input, the other unscaled, but this introduces a host of other

problems. First we would lose error detection capabilities in the unscaled operand,

and secondly the product of two results from previous multiplications would again

require division.

One elegant solution is to find a scaling factor that is idempotent with respect

to the scaled modulus, i.e. g ≡ g2 mod m. A class of non-separate arithmetic codes

known as AN codes use the same encoding principle as scaled embedding and suffer

from the same problem of an extra residue of the generator value. In [Pro89] Proudler

introduced a class of idempotent AN codes that preserve addition and multiplication

in the ring. These codes can therefore be used to form a ring homomorphism φi(·)
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that avoids division altogether. A critical flaw of idempotent AN codes is, however,

that a one-sided error, i.e. one that only appears in one of two input operands, will be

masked in a multiplication with the other error-free operand due to the distributive

law:

A′ = φi(a) + eA

B = φi(b)

A′ ·B = (g · a + eA)(g · b) (mod m)

= g2 · a · b + g · b · eA (mod m)

= φi((a + eA)b)

This flaw can be compensated for by extending from idempotent AN to idempotent

AN+B codes. These were also introduced in [Pro89] and like AN codes derive their

names from the encoding procedure. In addition to being scaled by the generator

value g, a constant term c is added to the operands during encoding. AN+B codes

exist whenever the ring modulus m = p · s and gcd(p, s) = 1. Then we can construct

the values g and c as orthogonal idempotents with respect to the modulus m as

follows:

g = (s−1 mod p) s (5.1)

c = (p−1 mod s) p (5.2)

where

g2 ≡ g (mod m) , (5.3)

c2 ≡ c (mod m) and (5.4)

g · c ≡ 0 (mod m) . (5.5)

Unlike AN codes, AN+B codes are no longer addition preserving. In the presence of a

heterogeneous mix of addition and multiplication operations it is therefore necessary
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to convert4 operands back and forth between codes. Luckily this is a rather trivial

exercise since both codes share the same generator g. We can re-define multiplication

to implicitly handle the conversion steps by adding the constant term c to each

operand before multiplication and subsequently subtracting it from the result. The

difference to ordinary multiplication in the ring is indicated through the use of the ?

symbol:

Definition 5.5.2. Let A = φi(a) and B = φi(b) denote operands embedded in

R, where φi(x) = g · x mod m. Then addition in the ring is defined as usual and

multiplication is re-defined as

A ? B = (g · a + c) · (g · b + c)− c (mod m)

= g2 · a · b + c · g(a + b) + c2 − c (mod m)

= φi(a · b) = g(a · b) (mod m)

due to the equivalences defined in (5.3), (5.4) and (5.5).

We can thus define an idempotent ring homomorphism with respect to (+, ?) and

(+, ·) operations as

φi(0) = 0,

φi(a) + φi(b) = φi(a + b) and

φi(a) ? φi(b) = φi(a · b) .

Now a one-sided error eA will not be masked anymore, provided that s - eA:

A′ ? B = (g · a + c + eA)(g · b + c)− c (mod m)

= g(a · b) + eA(g · b + c) (mod m)

≡ eA mod s

4Note that conversion is only necessary at the boundary between heterogeneous operations like

addition and multiplication. It can be omitted for homogeneous operations like modular exponen-

tiation, which are based exclusively upon multiplication.
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Once all computations have been performed the non-redundant result needs to be

converted back from the ring to the field via the inverse homomorphism φ−1
i (·). This

is achieved through modular reduction of the result with respect to the field modulus

p.

We now have an efficient method for embedding a field into a larger ring with

meaningful redundancy that we want to use for error detection purposes. Since valid

codewords need to be proper multiples of the generator value g ≡ 0 mod s, an error

check can be performed by computing the remainder of a division by s. An additive

error eR on the result will be detected as e′R = eR mod s, if it is not evenly divisible

by s. Hence, if e′R = 0, the result can be assumed free of errors with high probability.

There may be cases, however, in which an error eA remains undetectable. In the

following we establish the probability of this happening.

Error Detection

We apply the same error model as before, which assumes that errors only occur at

the input operands. In the presence of additive error terms we can model system

behavior for addition as

A′ = A + eA , B′ = B + eB

A′ + B′ = g(a · b) + (eA + eB) mod m

eR+ = eA + eB (5.6)

and for multiplication as

A′ ? B′ = (g · a + eA + c) · (g · b + eB + c)− c mod m

= g(a · b) + eA(g · b + c) + eB(g · a + c) + eA · eB mod m

eR? = eA(g · b + c) + eB(g · a + c) + eA · eB mod m . (5.7)

From the reduction modulo s we obtain the detectable portion of the error term. In

the case of addition (5.6) this is e′R+ = eA+eB mod s. A faulty result is undetectable if
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eA ≡ −eB mod s. For simplicity we assume that the errors eA and eB are independent

and identically distributed random variables from uniform. Thus the probability of

an undetectable error is 1/s.

An error occurring during multiplication will produce the term e′R? = eA + eB +

eA · eB mod s which we obtained through application of the equivalences g ≡ 0 mod s

and c ≡ 1 mod s to (5.7). We can find the probability of an undetectable error during

multiplication using the following lemma:

Lemma. Let X,Y be two independent and identically distributed random variables

uniform over [0, s−1] and let the event A = {(X = x, Y = y) : x+y+x·y ≡ 0 mod s}.
Then the probability of A occurring is Pr[A] = Φ(s)/s2, where Φ() denotes the Euler

totient function.

Proof. We can rewrite the event A as follows: A = {(X = x, Y = y) : y = f(x)},
where f(x) = −x · (x + 1)−1 mod s. The function f(x) will only be defined if the

inverse of x + 1 exists. For any given modulus s this is the case only for Φ(s) choices

in the range 0 ≤ x < s. Hence, f(x) is defined and has a value with probability

pR = Φ(s)/s. Y takes on a specific value y with probability pL = 1/s. The joint

probability of the event A occurring is therefore p = pL · pR = Φ(s)/s2, due to the

independence of X (and hence f(X)) and Y .

Here the event A stands for the occurrence of an undetectable error at the output

of the multiplier. It is easy to see that the best error coverage can be obtained when

the modulus scaling factor s is composite and large. We would like to re-iterate that

the error detection mechanism requires a full modular reduction by s, which in the

general case does not have a suitable special form as the scaled modulus m. While

this might be viewed as a drawback, it should be noted that checking for errors can

be done outside of the critical path (in hardware) or at regular intervals (software

realization), while the main computation continues operation. As a matter of fact,
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the regular field modulus p does not in general have a suitable special low Hamming-

weight form either, such that the overhead due to error detection is easily offset by

the efficient reduction modulo m = s · p.

5.5.3 Error Correction Using Algorithm-Based Fault Toler-

ance

Quite naturally one would like to build an arithmetic architecture with the ability

to also correct errors that occur during computation. For cyclic codes, syndrome

decoding allows the correction of the most likely error pattern (assuming blind fault

induction). It does not, however, give good results in the presence of burst errors,

which would likely occur if an adversary tried to attack the computation. The reason

is that in an adversarial setting one has to make worst case assumptions and cannot

expect that decoding to the nearest codeword will successfully correct the error.

A different approach is the use of algorithm-based fault tolerance. The princi-

pal idea here is to keep valid input operands around until after the computation

has finished and an error check determines a valid result. If the error check fails,

the computation can be repeated (replayed) until a valid result is available. Alterna-

tively, if the computation fails repeatedly, an alarm can be signaled and the operation

canceled. The advantage of this method is clearly its robustness in the presence of

transient burst errors. It does not matter which of all possible errors covered under

a specific syndrome triggered the detection, when the computation can simply be

repeated. Another advantage is the relatively low overhead that is required, which is

mostly caused by the storage elements necessary to keep backup copies of operands.

A potential disadvantage is that the method does not degrade gracefully, meaning

that permanent faults due to stuck-at-0/1 errors can not be compensated for. Circuit

defects thus render this method completely useless and do not help, for example, to

increase the yield of circuit production.
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5.6 Analysis and Discussion

We have presented a novel scheme for fault-tolerant finite field computation with

applications in public-key cryptography. Homomorphic scaled embedding is practical

and allows designers of cryptographic systems to add fault tolerance with moderate

resource overhead. It provides adequate protection against transient faults of either

random or adversarial nature under the assumption of reasonable limitations to the

attacker’s capabilities. This kind of protection is particularly important, due to the

continuing success of fault-insertion attacks on cryptographic embedded systems.



Chapter 6

Robust Codes: Tamper Resistance

Under a Stronger Error Model

In chapter 4 we introduced a general error model for cryptographic devices in adver-

sarial situations. We left open the question of adversarial capability, i.e. the capacity

of an attacker to successfully introduce faults into the system. In general this is a

difficult property to assess, as much of it depends on the adversarial’s motivation and

resources, as well as the system’s physical countermeasures.

In the previous chapter we implicitly assumed that the necessary temporal and

spatial precision to cause errors of a particular bit-pattern were unavailable to the

adversary. If they were, the proposed methods for arithmetic with encoded operands

would fail, due to the linearity of the scheme; any linear combination of two codewords

will be a codeword again, and therefore the attacker may simply choose to cause an

error with the same pattern as a valid codeword. It would be relatively easy to

generate a valid codeword, since (paraphrasing Kerckhoff’s famous principle [Ker83])

one should always operate under the assumption that basic system parameters are

known to the adversary, with the notable exception of key material.

Although linear codes may seem sufficient for the protection of public-key arith-

53
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metic primitives today, advances in fault insertion methodologies may suddenly be-

come available which provide the necessary precision for feasible attacks. In this

chapter we address a scenario in which an attacker may introduce arbitrary error

vectors reliably, with nearly arbitrary precision.

In light of such worst-case assumptions, a linear code based error detection scheme

is bound to fail. We therefore turn our attention to non-linear schemes and develop

a family of robust arithmetic codes with a very high error detection probability. It is

capable of detecting errors of arbitrary weight, and the small portion of undetected

errors is highly data dependent, which makes it nearly impossible to find successful

error patterns without a priori knowledge of the data.

6.1 Introduction to Robust Codes

A family of systematic non-linear error detecting codes, termed ‘robust codes’, was

derived from systematic linear block codes in [KT04]. Their use in symmetric ciphers

like the AES has been proposed in [KKT04] and later refined in [KKT05]. The

robustness of these codes is due to the much more uniform error detection capabilities

these codes offer. Unlike linear codes, where the detection capability depends only on

the weight of the error vector, for robust codes the probability Q(e) of an undetected

error e depends on the combination of error and data patterns.

Thus, in the case of a cryptographic key which is not known to the attacker a

priori, a fault-injection attack is much more difficult to carry out than with a linear

encoding scheme.

Robust codes can achieve optimality according to the minimax criterion, that is,

minimizing over all (n, k) codes the maxima of the fraction of undetectable errors

Q(e) for e 6= 0. The following definition from [KT04] rigorously defines a particular

class of non-binary codes.
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Definition 6.1.1. Let V be a linear p-ary (n, k) code (p ≥ 3 is a prime) with

n ≤ 2k and check matrix H = [P |I] with rank(P ) = n − k. Then CV = {(x,w)|x ∈
GF (qk), w = (Px)2 ∈ GF (qr)}

For binary robust codes (q = 2) the definition is slightly different; instead of

squaring the check-symbol w is obtained through cubing. We will give a more detailed

introduction to robust non-linear block codes in Chapter 7.

While robust codes work well with symmetric ciphers that employ only little

more than table look-ups, XORs and byte-wise rotations, they are virtually unusable

within the finite field arithmetic structure that forms the basis of most public-key

algorithms.1

In the following sections we will introduce a construction for robust arithmetic

residue codes, inspired by the construction in [KT04]. Based on these codes we present

a scheme for robust multi-precision arithmetic over the positive integers. Our scheme

lends itself well for straightforward implementation of standard modular multiplica-

tion techniques, i.e. Montgomery or Barrett Multiplication, secure against active fault

injection attacks.

6.2 Robust Arithmetic Residue Codes

As mentioned before, a class of non-linear systematic error detecting codes, so-called

“robust codes”, were proposed by Karpovsky and Taubin [KT04]. They achieve

optimality according to the minimax criterion, that is, they minimize over all (n, k)

codes the maxima of the fraction of undetectable errors Q(e) for e 6= 0. While

they are suitable for data transmission in channels with unknown characteristics, and

also for robust implementation of symmetric-key cryptosystems with little arithmetic

structure, they do not preserve arithmetic. We thus propose a new type of non-

1Optimal extension fields are an exception, see Chapter 7
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linear arithmetic code, based on the concept of arithmetic residue codes. We define

robustness as follows:

Definition 6.2.1. Let C = {(x,w)|x ∈ Z2k , w = f(x) ∈ Fp} be an arithmetic single-

residue code with a function f : Z2k 7→ Fp to compute the check symbol w with

respect to the prime check modulus p of length r = dlog2 pe bits. A non-zero error

e ∈ {(ex, ew)|ex ∈ Z2k , ew ∈ Z2r} is masked for a message x, when (x+ex, w+ew) ∈ C,

i.e. iff

f
(
(x + ex mod 2k)

)
= f(x) + ew mod 2r . (6.1)

The error masking probability for a given non-zero error is thus

Q(e) =
|{x|(x + ex, w + ew) ∈ C}|

|C| . (6.2)

We call the code C robust, if it minimizes maxima of Q(e) over all non-zero errors.

Total robustness is achieved for maxe 6=0(Q(e)) = 2−r. We also call C ε-robust if it

achieves an upper bound maxe 6=0(Q(e)) ≤ ε · 2−r, where ε is a constant much smaller

than 2r.

In the following we propose a class of non-linear single-residue arithmetic codes

Cp based on a quadratic residue check symbol, which achieves ε-robustness. Since in

practice total robustness is hard to achieve, we will from now on refer to ε-robustness

simply as robustness.

Theorem 6.2.1 (Robust Quadratic Codes). Let Cp according to Definition 6.2.1,

with f(x) := x2 mod p. Cp is robust iff r = k and 2k − p < ε, and has the error

masking equation

(x + ex mod 2k)2 mod p = w + ew mod 2k (6.3)

Proof. To prove robustness we proceed by proving an upper bound ε on the number

of solutions of the error masking equation (6.3), as that directly translates into a
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bound on Q(e). The modulo 2k operator from the LHS of (6.3) stems from the

limitation of the data path to k-bits. This limits the ranges of both the message and

the message error to 0 ≤ x, ex < 2k. We can therefore remove the modulo 2k operator

by distinguishing between the two cases x + ex < 2k and x + ex ≥ 2k. Similarly, an

error is masked only if the faulty check symbol w < p, so for k = r we can distinguish

between the three cases w + ew < p, p ≤ w + ew < 2k and 2k ≤ w + ew < 2k + p. This

allows us to simplify the RHS of (6.3).

1. Solutions x < 2k − ex: An error (ex, ew) is masked iff

(x + ex)
2 mod p = w + ew mod 2k

Simplifying the RHS we have the following three cases:

(a) If w < p− ew, the error is masked iff

(x + ex)
2 mod p = w + ew (6.4)

If e = (p, 0) eq. (6.4) has exactly 2k−p solutions. For ex 6= p and ex ≥ 2k−p

there exists at most a single solution; at most two solutions exist in the

case of ex < 2k − p.

(b) If p − ew ≤ w < 2k, the error will never be masked, since a check symbol

w ≥ p will always be detected.

(c) For w ≥ 2k − ew the error will be masked iff

(x + ex)
2 mod p = w + ew − 2k . (6.5)

Eq. (6.5) has at most two solutions.

2. Solutions x ≥ 2k − ex: An error (ex, ew) is masked iff

(x + ex − 2k)2 mod p = w + ew mod 2k

For the RHS we distinguish the following three cases:
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(a) If w < p− ew, the error is masked iff

(x + ex − 2k)2 mod p = w + ew (6.6)

Eq. (6.6) has at most two solutions, unless we have an error e = (2k−p, 0),

in which case there are 2k − p solutions.

(b) If p − ew ≤ w < 2k, the error will never be masked, since a check symbol

w ≥ p will always be detected.

(c) For w ≥ 2k − ew the error will be masked iff

(x + ex − 2k)2 mod p = w + ew − 2k . (6.7)

Eq. (6.7) has at most two solutions.

Q(e) is determined by the number of solutions to the error masking equation (6.3).

This gives us the following bound:

There are at most 2k− p+2 solutions to (6.3) for errors of the form (p, 0)

or (2k − p, 0), and at most 8 solutions for all other errors.

We would like to point out that the transition from linear arithmetic to robust

quadratic codes with the same parameters k, r and p results in a much more uniform

distribution of the error detecting capability of the code. For example, for linear

codes with k = r there are double errors with ex = ew such that Q(e) is very close

to 1, i.e. the errors cannot be detected. For robust quadratic codes with the same

parameters, Q(e) is close to zero for all e.

We now give an intuitive argument to show the existence of practical robust codes

for cryptographic purposes with the help of the prime number theorem. The idea here

is that for fault-tolerance in an adversarial situation, the probability of not detecting
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an error should be insignificantly small. As we saw from the proof, in the worst case

we have a probability of at most Q(e) = 8 · 2−k = 2−k+3 of not detecting an error

(assuming a uniform distribution of messages, and 2k − p < 8). Therefore, a Q(e)

that makes insertion of an error infeasible for an attacker, requires a sufficiently large

digit size k and a prime p close enough to 2k so that the difference does not increase

Q(e) too much. For example, for k = r = 32 the distance from 2k to the closest

k-bit prime from below is less than 8, i.e. p = 232 − 5, thus bounding Q(e) by 2−29.

According to the prime number theorem the number of primes smaller than or equal

to x is approximately x/ ln x, i.e. for our case 2k/(k ln 2). Intuitively it thus seems

reasonable to expect to find a prime within the interval [2k−(k ln 2), 2k). In Table 6.1

we give the distance of the primes closest to 2k from below for practical values of k.

Table 6.1: Closest Prime Number Distances from 2k for Practical Values of k

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2k − p 1 5 1 3 9 3 15 3 39 5 39 57 3 35 1 5

k 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

2k − p 9 41 31 5 25 45 7 87 21 11 57 17 55 21 115 59

k 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

2k − p 81 27 129 47 111 33 55 5 13 27 55 93 1 57 25 59

6.3 Robust Arithmetic Operations

In the previous section we proved the robustness of quadratic codes for digits of size

k bits. We now wish to apply them in a generalized framework for multi-precision

arithmetic over the positive integers.

Due to the range limitation of the information bits to 0 ≤ x < 2k, we need to

handle any overflow resulting from arithmetic operations. This may be a carry bit
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generated by the addition of two k-bit operands, or the 2k-bit result of a multipli-

cation. The new digits that are created in this manner will need their own check

symbols, which cannot be derived from the input operands’ check symbols alone.

Thus they need to be derived purely from the information bits of the new digits,

creating a potential loophole for the insertion of an error. This can be avoided by

re-computing the joint check symbol from the newly generated individual check sym-

bols and comparing it to the output of the predictor. This re-computation represents

an integrity check which allows us bridge discontinuities introduced by interleaving

mixed modulus operations, here the check modulus p and the implicit range limiting

modulus 2k. Once the integrity check is in place we can perform standard arithmetic

operations, and implementing an algorithm like Montgomery’s for modular arithmetic

becomes straightforward.

In the following we show how this check may be implemented for various arithmetic

primitives. Let (a, |a2|p) and (b, |b2|p) denote encoded input operands a and b, where

|x2|p is short-hand notation for x2 mod p. We also introduce mnemonics for these

primitives, in order to tie them into a robust variant of the digit serial Montgomery

multiplication algorithm in the next section.

Addition (RADD and RADDC): RADD (Robust ADDition) and RADDC (Ro-

bust ADDition with Carry) compute the sum of the two input operands. This is

depicted in Figure 6.1. For reference, the operators ⊕p and ⊗p stand for addition

and multiplication modulo p, respectively. The sum c = a + b (+cin) may be larger

than 2k by at most a single bit. Let ch denote this new carry, and cl the k-bit

sum. The predictor computes the joint check symbol |c2|p as the sum of the check

symbols and additional terms involving the operands: |c2|p = |(a + b + cin)
2|p =

||a2|p + |b2|p + 2(ab + cin(a + b)) + cin|p. For error detection we first create the check

symbol for the k-bit sum |c2
l |p (the check symbol for the carry bit is the carry bit
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itself). Then we re-compute the joint check symbol as

|c2|∗p = |(ch2
k + cl)

2|p
=

∣∣ch · |22k|p + ch · |cl|p · |2k+1|p + |c2
l |p

∣∣
p

=
∣∣ch · |22k + cl · 2k+1|p + |c2

l |p
∣∣
p

(6.8)

If the check |c2|∗p = |c2|p holds, then the result is deemed to be free from errors.

The resulting carry from both RADD and RADDC is held in a register local to the

addition circuit. If the following addition operation is RADDC, then that carry is

used for computation of the new sum. If it is RADD, then a zero carry is used.

Multiplication (RMUL): The product of a and b and its joint check symbol is

(c, |c2|p) = (a · b, ||a2|p · |b2|p|p). However, the previous tuple is not a code word, since

c may exceed 2k. We therefore split c into two halves ch and cl (cf. Figure 6.2), both

of which are within the desired range:

c = ch · 2k + cl 0 ≤ ch, cl < 2k .

We then compute the check symbols |c2
h|p and |c2

l |p separately, and establish their

integrity with the composite check symbol |c2|p:

|c2|∗p =
∣∣(ch · 2k + cl)

2
∣∣
p

=
∣∣c2

h · 22k + ch · cl · 2k+1 + c2
l

∣∣
p

=
∣∣|c2

h|p · |22k|p + |ch|p · |cl|p · |2k+1|p + |c2
l |p

∣∣
p

(6.9)

Observe that the values |22k|p and |2k+1|p are constant for a given implementation

and that |ch|p and |cl|p are intermediate results from the computation of the separate

halves’ check symbols. Hence we have all the necessary ingredients to re-compute the

joint check symbol as |c2|∗p and compare it to the value obtained from the predictor.

If the comparison passes we assume there were no errors.
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Shifts, Subtraction, Logic Operations: We can apply similar re-computation

techniques for other operations. Out of space considerations and since we do not need

these other operations for the next section, we skip their details at this point.

Error Detection: The comparison between the predictor output and the re-com-

puted joint check symbol is an easy target for an attack if carelessly implemented.

We therefore require implementation as a totally self-checking circuit [Pra86]. The

same holds for any other integrity checks.

6.4 Robust Montgomery Multiplication

We now show how to apply our robust code in a digit serial Montgomery Multiplica-

tion scheme. A good overview over several variants of the Montgomery algorithm is

given in [KAK96]. In this example we will refer to the finely integrated operand scan-

ning (FIOS) variant. It is the most suitable one for hardware implementations since

it can be used in a pipelined fashion offering some degree of parallelization [Gau02].

Algorithm 6.1 k-bit Digit-Serial FIOS Montgomery Multiplication

Require: d = {0, . . . , 0}, M ′
0 = −M−1

0 mod 2k

1: for j = 0 to e− 1 do

2: (C, S) ⇐ a0bj + d0

3: U ⇐ SM ′
0 mod 2k

4: (C, S) ⇐ (C, S) + M0U

5: for i = 1 to e− 1 do

6: (C, di−1) ⇐ C + aibj + MiU + di

7: end for

8: (de, de−1) ⇐ C

9: end for

In the following we require some basic familiarity on part of the reader with
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the way of how Montgomery multiplication works. To review briefly: the objective

is to compute the modular product of two N -bit numbers with respect to the N -

bit modulus M . Montgomery’s algorithm requires the initial transformation of all

operands into residues of the form x̂ = xR mod M and some final transformation back

x = x̂R−1 mod M . Here R is the Montgomery radix, usually 2k·e, where e = dN/ke
represents the number of digits per operand. Without loss of generality we assume

that the transformation into the Montgomery residue system has already taken place

and we operate entirely within the residue system, so in order to simplify notation

we will refer to a residue x̂ simply as x.

The k-bit digit serial FIOS Montgomery algorithm takes as its inputs the e-digit

vectors a and b, and computes the product MM(a, b) = a·b·R−1 mod M . The value M ′
0

is pre-computed whenever the modulus changes. In terms of notation, a pair (C, S)

represents the concatenation of two variables as the destination for the result of an

operation. Furthermore, the variable C is slightly larger than the other variables, i.e.

k+1 bits. This is so to efficiently handle extra carries from the accumulation of C, di

and the two products aibj and MiU . The division by R is handled by the algorithm

implicitly. For example, in line 4 the sum (C, S) + M0U is assigned to (C, S), but in

the following step S is dropped. This shift to the right by k bits, repeated e times,

results in division by R.

As one can easily verify, Algorithm 6.1 consists of only very basic addition and

multiplication steps. We may therefore obtain a robust digit-serial Montgomery al-

gorithm (Alg. 6.2) simply by mapping all arithmetic steps to our robust arithmetic

primitives introduced in the previous section. Additionally we insert intermediate

checks during which we verify the integrity of operand values and their check sym-

bols. This is indicated by a call to the pseudofunction Check((x, |x2|p), . . .). Although

not indicated in the algorithm description, we further assume that the error signal

generated by the the internal integrity check within the arithmetic primitives RADD,
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RADDC and RMUL, is also constantly evaluated. In the case of an error the algo-

rithm is aborted with an exception.

Some comments about the robust algorithm: Algorithm 6.1 appears much shorter

than Algorithm 6.2, since it combines multiple arithmetic operations into a single

step. Also, while it handles carries implicitly using a larger width variable C, the

robust algorithm is restricted to a digit size of exactly k bits. Thus, extra carry

handling steps are required. In Alg. 6.2, line 6, the destination of the top half of the

result is not assigned: (−,−). This is equivalent to computing the result modulo 2k,

as in Alg. 6.1, line 3. A similar thing happens in Alg. 6.2, line 8, where the lower half

of the result is dropped due to the implicit shift to the right. The point of performing

the addition is purely to determine whether or not a carry is generated.

6.5 Analysis and Discussion

In this chapter we have presented a novel systematic non-linear arithmetic code which

is robust against adversarial injection of faults and statistically occurring random

faults (soft-errors). Based on this code we have introduced arithmetic primitives for

robust computation over encoded digits. We have further used the example of digit

serial Montgomery modular multiplication to demonstrate how robust arithmetic can

be deployed for fault-secure multi-precision public-key computations.

Quite naturally the robustness of our scheme adds overhead, which has a neg-

ative impact on performance. This is a price we have to pay for the non-linearity

that enables robustness. On the other hand this scheme offers unprecedented and

quantifiable robustness against even the most motivated and capable adversaries.

In terms of critical path delay we estimate that multiplication incurs a performance

hit of a little less than 100%, compared to a linear scheme, due to the re-computation

of the quadratic check symbol. For addition, the absolute overhead is roughly the
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same, however, in terms of relative overhead it fares much worse.

There are a couple of ways to reduce the complexity, based on the properties of the

check modulus p, which is constant for a given implementation. Future research will

quantify more precisely the performance and area overhead, and compare a variety

of system parameters, i.e. digit size k, check modulus p, degree of parallelism, etc.

For example, for certain values of k there exist Mersenne prime check moduli, which

enable very efficient implementations for check symbol computation.

Our scheme scales reasonably well, since once the digit size is determined, the

complexity of the predictor and error detection networks remain constant. We would

like to emphasize that we clearly prioritize robustness over performance. Given the in-

creased vulnerability level of mobile and ubiquitous security devices, and the progress

in adversarial fault analysis techniques, we believe that this is a sensible argument.
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Algorithm 6.2 Robust Montgomery Multiplication

Require: d = {(0, 0), . . . , (0, 0)}, M ′
0 = −M−1

0 mod 2k

1: for j = 0 to e− 1 do

2: if Check((a0, |a2
0|p), (bj, |b2

j |p), (d0, |d2
0|p), (M ′

0, |(M ′
0)

2|p), (M0, |M2
0 |p)) then

3: ((T1, |T 2
1 |p), (T0, |T 2

0 |p)) ⇐ RMUL((a0, |a2
0|p), (bj, |b2

j |p))
4: (T0, |T 2

0 |p) ⇐ RADD((T0, |T 2
0 |p), (d0, |d2

0|p))
5: (T1, |T 2

1 |p) ⇐ RADDC((T1, |T 2
1 |p), (0, 0))

6: ((−,−), (U, |U2|p)) ⇐ RMUL((T0, |T 2
0 |p), (M ′

0, |M ′2
0 |p))

7: ((T3, |T 2
3 |p), (T2, |T 2

2 |p)) ⇐ RMUL((M0, |M2
0 |p), (U, |U2|p))

8: (−,−) ⇐ RADD((T0, |T 2
0 |p), (T2, |T 2

2 |p))
9: (T0, |T 2

0 |p) ⇐ RADDC((T1, |T 2
1 |p), (T3, |T 2

3 |p))
10: (T1, |T 2

1 |p) ⇐ (carry, carry)

11: for i = 1 to e− 1 do

12: if Check((ai, |a2
i |p), (bj, |b2

j |p), (di, |d2
i |p), (U, |U2|p), (Mi, |M2

i |p)) then

13: (T0, |T 2
0 |p) ⇐ RADD((T0, |T 2

0 |p), (di, |d2
i |p))

14: (T1, |T 2
1 |p) ⇐ RADDC((T1, |T 2

1 |p), (0, 0))

15: ((T4, |T 2
4 |p), (T3, |T 2

3 |p)) ⇐ RMUL((ai, |a2
i |p), (bj, |b2

j |p))
16: (T0, |T 2

0 |p) ⇐ RADD((T0, |T 2
0 |p), (T3, |T 2

3 |p))
17: (T1, |T 2

1 |p) ⇐ RADDC((T1, |T 2
1 |p), (T3, |T 2

3 |p))
18: (T2, |T 2

2 |p) ⇐ (carry, carry)

19: ((T4, |T 2
4 |p), (T3, |T 2

3 |p)) ⇐ RMUL((Mi, |M2
i |p), (U, |U2|p))

20: (di−1, |d2
i−1|p) ⇐ RADD((T0, |T 2

0 |p), (T3, |T 2
3 |p))

21: (T0, |T 2
0 |p) ⇐ RADDC((T1, |T 2

1 |p), (T3, |T 2
3 |p))

22: (T1, |T 2
1 |p) ⇐ (carry, carry)

23: else

24: ABORT

25: end if

26: end for

27: (de−1, |d2
e−1|p) ⇐ (T0, |T 2

0 |p)
28: (de, |d2

e|p) ⇐ (T1, |T 2
1 |p)

29: else

30: ABORT

31: end if

32: end for
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Chapter 7

Low Cost Techniques for Robust

Finite Field Arithmetic

Two important aspects in the selection of an error detection scheme are the overhead

that is imposed by the scheme, and its capability of detecting errors (coverage). In an

adversarial setting it is desirable to achieve error coverage close to 100%, simply be-

cause the probabilities of different classes of errors to occur are unknown. Such a high

degree of coverage may come at a cost too high to be justifiable. Depending on the

threat level and underlying error model, however, it may be possible to accommodate

a slight decrease in coverage if it significantly reduces the cost of implementation. In

this chapter we show how a special class of systematic non-linear codes with strong

error detection properties [KT04] may be applied to elliptic curves defined over a

specialized class of finite fields, dubbed optimal extension fields (OEF). We define

robust versions of common components, i.e. adder, multiplier, shifter etc. with non-

linearly encoded check-symbols, which are required for the realization of elliptic curve

cryptosystems. Our design drastically reduces the overhead in both area and speed

while maintaining a high level of confidence for detecting errors induced by an active

adversary.

69
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7.1 Optimal Extension Fields and their Arithmetic

Optimal extension fields were introduced by Bailey and Paar in [BP98]. The main

idea is to use a generating polynomial of the form f(x) = xk − w to construct the

extension field GF (qk), where q is selected as a pseudo-Mersenne prime given in the

form 2m±c with log2 c < bm
2
c. The pseudo-Mersenne form allows efficient reduction in

the ground field. The following Theorem [LN83] provides a simple means to identify

irreducible binomials that can be used in OEF construction:

Theorem 7.1.1. Let k ≥ 2 be an integer and w ∈ GF (q)∗. Then the binomial xk−w

is irreducible in GF (q)[x] if and only if the following three conditions are satisfied:

1. each prime factor of k divides the order e of w in GF (q)∗;

2. the prime factors of k do not divide q−1
e

;

3. q = 1 mod 4 if k = 0 mod 4.

The representation of OEF elements utilizes the standard basis. An element A ∈
GF (qk) is represented as

A =
k−1∑
i=0

aix
i = a0 + a1x + a2x

2 + . . . + ak−1x
k−1

where ai ∈ GF (q). The OEF arithmetic operations are performed as follows.

Addition/Subtraction:

The addition/subtraction of two field elements A,B ∈ GF (qk) is performed in the

usual way, by adding/subtracting the polynomial coefficients in GF (q) as follows.

A±B =
k−1∑
i=0

aix
i ±

k−1∑
i=0

bix
i =

k−1∑
i=0

(ai ± bi)x
i

Multiplication:

Let A,B ∈ GF (qk). Their product C = A ·B is computed in two steps:
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1. Polynomial multiplication:

C ′ = A ·B =
2k−2∑
i=0

c′ix
i

2. Modular reduction:

C = C ′ (mod f(x))

=
2k−2∑
i=0

c′ix
i (mod xk − w)

=
k−2∑
i=0

(c′i + wc′i+k)x
i + c′k−1x

k−1

In the first step the ordinary product of two polynomials is computed. In the reduc-

tion step the binomial f(x) = xk − w facilitates efficient reduction. The reduction

may be realized by only k − 1 constant coefficient multiplications by w, and k − 1

additions.

Inversion:

Standard algorithms to compute the multiplicative inverse of field elements are based

either on the extended Euclidean algorithm, or Fermat’s little theorem. These meth-

ods, however, are usually computationally expensive. Alternatively, there exists an

elegant method for inversion in binary extension fields was introduced by Itoh and

Tsujii [IT88], and later generalized by Guajardo and Paar [GP02]. For certain classes

of fields, but particularly optimal extension fields, this method is the most efficient

algorithm known to date. We will address some specifics of the algorithm a bit later

and refer the reader to [GP02] for full details.

7.2 Robust Block Codes

A class of non-linear systematic error detecting codes, so-called “robust codes”, were

proposed by Karpovsky and Taubin [KT04]. They can achieve optimality according
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to the minimax criterion, that is, minimizing over all (n, k) codes the maxima of the

fraction of undetectable errors Q(e) for e 6= 0. The following definition from [KT04]

rigorously defines a particular class of non-binary codes.

Definition 7.2.1. Let V be a linear p-ary (n, k) code (p ≥ 3 is a prime) with

n ≤ 2k and check matrix H = [P |I] with rank(P ) = n − k. Then CV = {(x,w)|x ∈
GF (qk), w = (Px)2 ∈ GF (qr)}

To quantify the performance of CV we need a metric. The error masking proba-

bility for a given non-zero error e = (ex, ew) may be quantified as

Q(e) =
|{x|(x + ex, w + ew) ∈ CV }|

|CV | . (7.1)

Note that we call the code CV robust, if it minimizes maxima of Q(e) over all possible

non-zero errors. Reference [KT04] provides the following theorem which quantifies

the error detection performance of the non-linear code CV .

Theorem 7.2.1. For CV the set E = {e|Q(e) = 1} of undetected errors is a (k −
r)-dimensional subspace of V , pk − pk−r errors are detected with probability 1 and

remaining pn − pk errors are detected with probability 1− p−r.

These codes achieve total robustness for the case r = k, when the subspace of

undetectable errors collapses to the zero codeword and all non-zero error patterns

can be detected with a probabilty of either 1 − p−r or 1. The reduced overhead for

the case r < k is obtained at the expense of the loss of total robustness. Nonetheless,

some important properties of robust codes are retained: Contrary to linear encoding

schemes, the probability of missing an error is largely data-dependent. This has one

very important consequence. An active adversary trying to induce an undetected

error in the data would need to a) know the value of the data a priori in order

to compute an undetectable error pattern, and b) to induce a fault with sufficient

spatial and temporal accuracy such as to successfully re-create the matching error
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in the device. In a linear scheme, any error pattern that is a codeword itself will

lead to a successful compromise. Although there also exist some error patterns in the

robust scheme which will escape detection, their number is significantly smaller than

in linear schemes.

7.3 Suitable Codes for OEF Arithmetic

Our objective is to protect OEF arithmetic against a sufficiently large class of er-

ror patterns, while keeping the overhead in performance low. As mentioned in the

previous section, full robustness can only be achieved with r = k, resulting in a du-

plication of the operand size and likely more than 100% overhead. Furthermore, as

we will show in the next section, only very specific choices of the sub-matrix P allow

us to define arithmetic operations in such a way that the check-symbol of the result

can be predicted efficiently based on the input operands’ check-symbol.

An alternative method for robust multi-precision arithmetic was presented in

[GSK06], which achieves total robustness by encoding single digits separately. Such

a high degree of protection, however, can only be obtained by accepting a substantial

amount of overhead on the predictor and error detection networks. Depending on the

anticipated threat level, such rigor may not be required. As long as the probability

of error detection is sufficiently high to render malicious fault insertions infeasible, a

lighter-weight scheme will work as well.

For our purposes we need a linear code over GF (q) with rank(P ) = n− k, which

we will transform into a robust code. The error correcting properties and ease of

decoding are irrelevant in this setting. For our purposes it suffices to select a simple

linear code which will allow us to build robust versions of the arithmetic operations

(as described in the next section) in an efficient manner. We therefore pick a simple

parity code of length n = k + 1. Note that by choosing r = 1 the r × n error
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check matrix H = [P |Ir] becomes simply H = [1 1 1 · · · 1 1]. Hence, for a vector a

representing an element of GF (qk), the matrix-vector product Pa may be computed

by simply summing the coefficients of a, i.e. Pa =
∑k−1

i=0 ai. Thus the robust encoded

form of a ∈ GF (qk) is simply

(
a, (Pa)2

)
=


< a0, a1, a2, . . . , ak−1 >,

(∑

k

ai

)2



7.4 Robust OEF Arithmetic

To build an error detection network we need to provide robust realizations of the basic

OEF arithmetic operations, i.e. addition and multiplication. We wish to minimize

the overhead associated with computing and verifying the check-symbol. Hence, we

choose the linear code such that P maps elements of GF (qk) to GF (q). Note that

field inversions and elliptic curve point operations are implemented through various

compositions of these basic operations and hence there is no need to consider them

here explicitly.

The general architecture for implementation of robust OEF arithmetic is depicted

in Figure 7.1 and can be described as follows. A robust arithmetic operation consists

of three major components: a) the main data-path, b) the check-symbol predictor

and c) the error detection network (or, in the case of software implementation, the

error detection procedure).

Main Data-Path: The basic arithmetic operation which computes the result c =

c0 + c1x + c2x
2 + . . . + ck−1x

k−1 without the check-symbol.

Predictor: Computes the expected check-symbol from input data. Whenever pos-

sible only the input operands’ quadratic check-symbols shall be used, i.e. (Pa)2

or (Pb)2. When this is not feasible, a linear check-symbol Pa or some portion

of the operands’ data may be used as well.
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Result and Check−Symbol

0,a1,a2, . . .,ak−1 b0,b1,b2, . . .,bk−1 (Pa) (Pa)2, (Pb) (Pb)2,

c0,c1,c2, . . .,ck−1 (Pc) (Pc)2,

(Σ)2 =?

Error
Detection
Network

Non−redundant
Data Path

Predictor

Error?
yes/no

Input Operands Input Check−Symbols

a

Figure 7.1: General Error Detection Architecture

Error Detection Network: Computes the actual check-symbol (Pc)2 from the re-

sult of the operation and compares it to the output of the predictor. If both

match, the result is deemed correct. If not, an alarm is raised and the opera-

tion is aborted. In hardware this error detection network is typically assumed

to be free of errors and thus may need to be implemented as a self-checking

architecture.

The intermediate result Pc that is computed in the error detection network as a

by-product of the check-symbol should be saved as part of an extended check-symbol,

since in many cases it is required for efficient realization of predictors, as we will see

in the following sections.
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7.4.1 Initial Encoding and Detection Network

Operands entering the device are typically not encoded in redundant form. We require

an initial encoding operation to establish a relation between the operand and its

(extended) check-symbol. As mentioned above, there is a clear benefit to retaining

the intermediate linear sum of coefficients as part of the extended check-symbol. We

thus represent encoded operands in the extended form

A =
[
< a0, a1, . . . , ak−1 >,Pa, (Pa)2

]
.

Initial encoding of an operand a and integrity checks of intermediate results can both

be realized in the same way. It requires k − 1 additions in the ground field GF(q)

to produce the linear sum Pa, followed by a squaring which yields the non-linear

check-symbol (Pa)2. The only difference lies in the subsequent comparison with a

predicted check-symbol, which is absent in the initial encoding.

7.4.2 Addition

Given two encoded inputs A = (a, Pa, (Pa)2) and B = (b, P b, (Pb)2) we want to

compute S = (s, Ps, (Ps)2) such that s = a + b ∈ GF (qk). This is done by first

computing the component-wise addition of the two field elements to form the sum

s = a + b, then computing the associated check-symbol ws = (Ps)2.

However, since we want to protect against faults that may occur during the

computation, we need a reference value that predicts the value of the new check-

symbol. The output of this predictor should ideally be based exclusively on the input

operands’ check-symbols, but intermediate values obtained during their computation

may be used as well. By using the extended check-symbols for a and b, Pa, (Pa)2
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and Pb, (Pb)2, we can predict the value of the sum’s check-symbol (Ps)2 as follows.1

(Ps)2 = (P (a + b))2 = (Pa)2 + 2(Pa)(Pb) + (Pb)2

Since the computation of (Ps)2 takes place entirely in the ground field GF (q), it

is relatively inexpensive compared to the addition in GF (qk), thereby adding just a

minor amount of overhead. In the final step of the computation the error detection

network compares the output of the predictor to the actual check-symbol (Ps)2 of

the sum s that was computed by summing the coefficients si and squaring the result.

If they match, then the result (s, Ps, (Ps)2) is considered free of errors and passed on

to the next stage of the computation. In case of a mismatch an alarm signal is raised.

7.4.3 Multiplication

The check-symbol of the product c = ab ∈ GF (qk) is computed directly as Pc, (Pc)2.

The predicted check-symbol needs to be computed as

(Pc)2 = (P (ab))2 .

Normally we would be stuck at this point, since in general multiplication by matrix

P does not associate with the multiplication operation in GF (qk). Note, however,

that due to our particular choice of P the check-symbol of a is explicitly computed

as
(∑k−1

i=0 ai

)2

. Furthermore, observe the identity

(Pa)(Pb) =

(
k−1∑
i=0

ai

)(
k−1∑
i=0

bi

)
=

∑

i,j=0,1,...,k−1

aibj . (7.2)

1Here we are abusing the notation slightly by using juxtaposition for both matrix-vector prod-

ucts as well as for multiplication in GF (qk). Also we use vector and polynomial representations

interchangeably.
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On the other hand, assuming a modulus of f(x) = xk−w is used for the construction

of GF (qk), the actual value of the computed check-symbol for ab mod f(x) is

(Pc)2 = (P (ab))2 =

( ∑

0≤i+j<k

aibj +
∑

k≤i+j

waibj

)2

=

( ∑

0≤i,j<k

aibj +

(
(w − 1)

∑

k≤i+j

aibj

))2

After applying the identity from (7.2) and binomial expansion we obtain

(Pc)2 = (Pa)2(Pb)2 +

(
(w − 1)

∑

k≤i+j

aibj

)[
2(Pa)(Pb) +

(
(w − 1)

∑

k≤i+j

aibj

)]

which can be written in a more compact way as

(Pc)2 = (Pa)2(Pb)2 + TM [2(Pa)(Pb) + TM ] .

Hence, we can build a predictor with little cost. The key is to compute the term

TM = (w − 1)
∑

k≤i+j aibj efficiently. The summation may be realized by collecting

the bj terms that are multiplied by the same ai, i.e. a1 is multiplied with bk−1, a2 with

(bk−1+bk−2), . . . , ak−1 with (bk−1+bk−2+. . .+b1). Together with the multiplication by

the constant (w− 1) the computation requires k multiplications and (k + 1)(k− 2)/2

additions in GF (q). In a digit serial architecture, however, we can compute even

more efficiently. Note how the collections of bj terms can be expressed as a partial

sums xi = xi−1 + bk−i for 0 < i < k and x0 = 0. Thus it suffices to simply compute

the current xi from a buffered previous value xi−1 and accumulate the products aixi

as depicted in Figure 7.2. This reduces the complexity to k multiplications and

2(k − 2) additions. The overall complexity for a digit-serial predictor is thus k + 3

multiplications and 2k − 2 additions in the ground field GF (q).
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M

bk−1...b1

a1...ak−1

T

xi−1

aixiΣ
i=1

k−1

xi

w−1

Figure 7.2: Data-flow Graph for the Digit-Serial Computation of TM

7.4.4 Squaring

It is generally known that one can compute the square of a field element more effi-

ciently than a general multiplication, by taking advantage of the symmetry of partial

products [Par00]. For the computation of the check-symbol we can apply the same

general procedure as for multiplication, only that now both operands are the same.

This opens the door to further optimization:

(Pc)2 = (P (a2))2 =

( ∑

0≤i+j<k

aiaj + w
∑

k≤i+j

aiaj

)2

=

(
(Pa)2 +

(
(w − 1)

∑

k≤i+j

aiaj

))2

=
(
(Pa)2 + TS

)2

As one can easily see, not only is the check-symbol computation shorter, but just like

with general squaring, we can take advantage of partial product symmetries in the

computation of the value TS. This symmetry is twofold. Since the partial product

aiaj is the same as ajai, we only need to compute it once for i < j. Once accumulated,

we double the temporary result with a shift to the left, add the sum of the squares
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a2
i and multiply by w − 1, as follows.

TS = (w − 1)


2

∑

k≤i+j,i<j

aiaj +
∑

i>k/2

a2
i




The second symmetry is due to the possibility of grouping partial products into

products of sums, i.e. (a1 + ak−2)ak−1, (a2 + ak−3)(ak−1 + ak−2), (a3 + ak−4)(ak−1 +

ak−2 +ak−3), and so forth. Here the first sum consists of two coefficients ai and ak−1−i

whose indices are symmetric about (k − 1)/2. Only if k is odd, the last iteration is

the product of the single term abk/2c and the sum (ak−1 + ak−2 + . . . + abk/2c+1). This

grouping of terms can be easily translated into a digit-serial computation involving

only k multiplications and 2k−5 additions in GF(q). This brings the total complexity

for computing the check-symbol of a squaring to k + 1 multiplications and 2(k − 2).

7.4.5 Multiplication by Scalar

The multiplication of a field element a ∈ GF (qk) by a scalar, i.e. a single ground field

element c ∈ GF (q), is required in various situations arising in elliptic curve cryp-

tography. It is, for example, required in modular reduction and as part of inversion

operations based on the extended euclidean and similar algorithms. Further it serves

as the foundation for simple intra-coefficient shifting, i.e. multiplication by a scalar

which is a power of two. The coefficients of the field elements all have to be multiplied

by the same scalar ca = ca0 + ca1x + ca2x
2 + . . . + cak−1x

k−1. The predictor output,

however can be computed very easily:

(P (ca))2 =

(
k−1∑
i=0

cai

)2

= c2(Pa)2

All that is needed to compute the new check-symbol, therefore, is one squaring and

one multiplication operation in GF (q). If the scalar is an operand in memory, i.e. not

hard-wired or -coded, then in all likelihood it is already protected by a check symbol
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(Pc)2 = c2, and thus the predictor requires only a single multiplication. This is the

case, e.g. during a step in the Itoh-Tsujii inversion algorithm, where the outcome of

an operation is an element in the ground field, i.e. with all higher degree coefficients

set to zero.

7.4.6 Shifting of Coefficients

While shifting is not (directly) an arithmetic operation it is sometimes needed in the

implementation of arithmetic functions. In many cases, shifting is only needed when

the least significant coefficient of the GF (qk) element has already been made zero

by simply adding the properly scaled version of the modulus polynomial. Note the

following simple yet useful property: As long as the shifted coefficients have a value

of zero the check-symbol for an element a ∈ GF (qk) which is defined as the linear

sum of the coefficients, i.e. (Pa)2 =
(∑k−1

i=0 ai

)2

is not altered. Hence, shifting does

not affect the check-symbol and comes for free.

7.4.7 Frobenius Maps

Iterates of the Frobenius automorphism are of particular interest to OEF arithmetic.

They play an important role in the inversion algorithm that was developed for normal

basis representation by Itoh and Tsujii [IT88] and later adapted for use with standard

basis by Guajardo and Paar [GP02]. The e-th iterate of the Frobenius map on the

field element a =
∑

k aix
i computes the exponentiation σe(a) = aqe

in a very efficient

manner. This efficiency is based on the fact that OEFs are defined over irreducible

binomials of the form f(x) = xk−w. Note that exponentiation to a power of the field

characteristic q, yields a much simpler expression for the result than for the general

case:

aqe

=

(∑

i<k

aix
i

)qe

=
∑

i<k

aix
iqe
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Reduction of this polynomial with respect to f(x) gives the result

aqe

=
∑

i<k

aiw
biqe/kcxiqe mod k =

∑

i<k

aiw
txs .

Observe that for a given parameter e the values wt and xs are constant and can be pre-

computed. Furthermore, note that the value of s is unique for each i = 0 . . . k−1, and

we may express the resulting re-ordering of coefficients as a permutation a′ = πe(a),

defined by the indexing function se(i) = iqe mod k. Hence, we can view the e-th

iterate of the Frobenius automorphism σe(a) as the component-wise multiplication

(indicated here by the operator symbol ¯) of field element a with a pre-computed

element d(e) = d
(e)
0 +d

(e)
1 x+ . . .+d

(e)
k−1x

k−1, followed by a permutation of the resulting

coefficients:

c = σe(a) = πe(a¯ d(e)) (7.3)

= a0d
(e)
0 + a1d

(e)
1 xse(1) + a2d

(e)
2 xse(2) + . . . + ak−1d

(e)
k−1x

se(k−1) (7.4)

= c0 + c1x + . . . + ck−1x
k−1 (7.5)

We now want to incorporate Frobenius maps into our error detection scheme. For the

sake of a less confusing notation we will from now on refer to d(e) and its coefficients

simply as d. Observe that we only need to build a predictor for the component-wise

multiplication, since permutation of the coefficients is completely transparent and

does not affect the check-symbol. Therefore we only need to predict the check-symbol

(Pc)2 = (P (a ¯ d))2 = (
∑k−1

i=0 aidi)
2. Unfortunately, we cannot simply multiply the

check-symbols (Pa)2 and (Pd)2 to do so. Rather take a subtractive synthesis approach

by first computing the product (Pa)(Pd) =
∑

i,j<k aidj and then subtracting a term

TF =
∑

i6=j aidj. Thus the predicted check-symbol is computed as follows:

(Pc)2 = (Pa)2(Pd)2 − TF (2(Pa)(Pd)− TF ) (7.6)

We will now demonstrate how to efficiently compute TF . Again, observe the identity

from (7.2). We may visualize the partial products aidj as a k × k matrix, with
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(Pa)(Pd) being the sum of all entries. The check-symbol of the component-wise

multiplication ai ¯ di is the square of the sum of all entries on the main diagonal.

Thus TF is the sum of all matrix coefficients other than the main diagonal, in other

words, the upper and lower triangular sub-matrices. We can compute these partial

products and their summation efficiently by grouping expressions with common terms.

For example, the upper triangular sub-matrix can be computed as the summation of

a1d0, a2(d0 + d1), a3(d0 + d1 + d2), etc. Similarly, we can compute the lower sub-

matrix in the exact same manner, only with the roles of a and d reversed. Figure 7.3

shows the data-flow graph for computing TF in a digit-serial fashion. This operation

requires 2(k − 1) multiplications and 4(k − 2) + 1 additions in GF(q). Together with

the operations in (7.6) the total cost of prediction is 2k+1 multiplications and 4(k−1)

additions.

i

ak−1...a0

bk−1...b0

TF

bixixi=xi−1+ai−1

yi=yi−1+bi−1 aiy

Figure 7.3: Data-Flow Graph for the Digit-Serial Computation of TF

7.4.8 Further Notes

Some remarks regarding our assumptions for the implementation of arithmetic: We

did not include fast multiplication algorithms like that of Karatsuba and Ofman[KO63]

in our complexity estimate, since their performance advantage depends on the latency

ratio of multiplication and addition operations. If both operations issue in a single
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clock cycle, as is the case for many modern RISC based processors, the increased cost

of more complicated control flow and irregular memory access patterns is not offset by

the little performance advantage[Har04]. The lower asymptotic complexity of KOA

mainly pays off for large operand sizes, as in RSA or Diffie-Hellman cryptosystems,

but not so much for the short operands used in elliptic curve schemes. Despite being

the slowest algorithm, Schoolbook multiplication is also relatively easy to implement.

7.5 Software Implementation on Embedded Pro-

cessors

The motivation for elliptic curve cryptosystems over optimal extension fields stems

primarily from the relatively weak performance of binary polynomial and large prime

field arithmetic in software based implementations. Most general purpose processors

do not support the arithmetic primitives that are required for efficient implementa-

tion, most importantly fast polynomial multiplication over GF(2). Instruction set

extensions that would help overcome these limitations have been proposed in [GS04],

but are unlikely to see implementation in mainstream processors in the near future.

OEF based implementations achieve a major speed-up due to the fact that the

size of field element coefficients and their arithmetic operations can be mapped near

perfectly to the native word size and ALU capabilities of microprocessors. The restric-

tion of coefficients to a modulus smaller than or equal to the wordsize also obviates

the need for elaborate carry-handling mechanisms as encountered in typical multiple

precision arithmetic.

The extension field operations we considered in the previous section can be real-

ized almost exclusively by using elementary ground field arithmetic, i.e. addition and

multiplication in GF(q). We will consider complexity only in terms of these basic

operations, since the individual implementation details are architecture dependent.
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Table 7.1 lists the complexity of OEF operations for standard implementation, plus

the additional overhead required for robust implementation. Naturally these expres-

sions depend on the field extension degree k, while the size of operands in the ground

field is irrelevant in most cases, as long as they fit in the native word size of the

processor.

Table 7.1: Complexity of Various Extension Field Operations

Standard Implementation

Field op. #Muls in GF(q) #Add/Subs in GF(q)

Addition/Subtr. - AA = k

Multiply† MM = k2 + k − 1 AM = k2 − k

Square† MS = k(k + 3)/2− 1 AS = k(k − 1)/2

Scalar Product MP = k -

Frobenius Map MF = k -

Fermat Inverse∗ MFI = (δ − 1)MS + δ
2
MM AFI = (δ − 1)AS + δ

2
AM

Itoh-Tsujii Inverse MITI = ΓMM + ∆MF +MP MITI = ΓAM

Robustness Overhead†

#Muls #Adds

Addition/Subtr. MR
A = 1 AR

A = 2

Multiply† MR
M = k + 4 AR

M = 2k − 2

Square† MR
S = k + 1 AR

S = 2k − 4

Scalar Product MR
P = 1 -

Frobenius Map MR
F = 2k + 1 AR

F = 4(k − 1)

Fermat Inverse∗ MR
FI = (δ − 1)MR

S + δ
2
MR

M AR
FI = (δ − 1)AR

S + δ
2
AR

M

Itoh-Tsujii Inverse MR
ITI = ΓMR

M + ∆MR
F +MR

P AR
ITI = ΓAR

M + ∆MR
F

∗Based on Fermat’s Little Theorem, δ = dlog2(q
k − 2)e

†Overhead for predictor. Overhead for detection is 1 Mul., k − 1 Adds. per Oper.

Γ = blog2(k − 1)c+ HW(k − 1)

∆ =





Γ if k is odd

log2 k if k is a power of 2

blog2(k − 1)c+ HW(k)− 1 otherwise.
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7.6 Analysis of the Performance Overhead in ECC

Point Multiplication

In this section we show how robust implementations of OEF cryptosystems on embed-

ded processors can be realized efficiently with a minimum of performance overhead.

We will base all of our performance analyses on the basic elliptic curve scalar point

multiplication, as this is the central and most complex operation of all ECC based

protocols. Based on the complexity analysis of OEF arithmetic in standard and

robust implementations in the previous section, we want to derive robust point mul-

tiplication overhead estimates for a couple of example fields. We begin by breaking

down the number of extension field operations required for a given set of parameters.

Table 7.2: Overhead of Robust OEF Arithmetic for ECC Point Multiplication

Field extension k 5 7 11 14 17

#MULs 40.27% 26.05% 14.88% 11.15% 8.89%

#ADDs 84.71% 63.44% 42.02% 33.49% 27.84%

#Instructions 62.49% 44.74% 28.45% 22.32% 18.37%

Table 7.3: Probability of Missing an Error in Robust OEF Arithmetic

size of ground field log2 q 45 32 21 16 14

k 5 7 11 14 17

Pr[e|Q(e) = 1] < 2−89 < 2−63 < 2−41 < 2−31 < 2−27

Pr[e|Q(e) = 0] < 2−44 < 2−31 < 2−20 < 2−15 < 2−13

Pr[e|Q(e) = q−1] ≈ 1, q−1 < 2−44 < 2−31 < 2−20 < 2−15 < 2−13

An elliptic curve over GF(qk) is specified by its defining equation y2 = x3 +ax+b,

and the parameters a, b ∈ GF(qk). In this dissertation, as in [BHLM01], we will

fix one parameter a = −3, since it allows faster arithmetic without sacrificing much
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flexibility. Let s ∈ Z2` be an `-bit scalar value with ` ≈ k log2 q, and P a base point

represented in affine coordinates by the tuple (xP , yP). Furthermore let Q be the

point resulting from multiplication of P with the scalar s, represented in Jacobian

projective coordinates by the triple (xQ, yQ, zQ). We opted to make use of mixed

Jacobian-affine coordinate representation for reasons of efficiency and popularity, but

note that other coordinate systems may be used in the same way.

Scalar point multiplication consists of repeated applications of point addition,

subtraction and doubling algorithms. For a detailed description of these algorithm

we refer the reader to [HMV04]. By representing s in non-adjacent form (NAF), a

scalar point multiplication requires `−1 point doublings and on average `/3 point ad-

ditions/subtractions. The NAF repeated-doubling algorithm, however, is susceptible

to sign-change fault attacks [BOS06]. We therefore recommend the use of a side-

channel resistant algorithm like the modified Montgomery-Ladder algorithm [FV06].

It requires 2(`− 1) point doublings and `− 1 point additions. We refer to [BHLM01]

for the operation count of point doubling (4 multiplications, 4 squarings, 5 addi-

tions/subtractions, and 4 multiplications with a scalar2) and point addition and/or

subtraction (8 multiplications, 3 squarings, and 7 additions/subtractions), without

going into too much detail. Conversion from Jacobian to affine coordinates at the

end of a point multiplication requires a single field inversion, one squaring and three

multiplications.

These instruction counts allow us to analyze the overall performance impact that

robust implementation of OEF arithmetic has on the performance of elliptic curve

point multiplication for various parameters, listed in Table 7.2. Since the relative

overhead only depends on the extension degree k, the table does not include the size

of q. The robustness of the scheme, i.e. the error detection probability, on the other

hand depends exclusively on the size of the ground field GF(q), a relationship that

2By scalar multiplication we refer to an operation M : GF(q)×GF(qk) 7→ GF(qk).
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is illustrated in Table 7.3. We would like to emphasize briefly that the security of an

elliptic curve system relies largely (but not exclusively!) on the size of the finite field

over which it is defined, as long as one can find a curve of prime order, approximately

the size of the field. The relatively large number of OEF parameters for field sizes

of practical interest [BP01], thus provides us with a straight-forward mechanism for

trading off the level of robustness and the acceptable performance overhead, without

sacrificing cryptographic strength. For example, the following two OEFs are 224 bits

in size: GF((216 − 15)14) and GF((232 − 5)7). The overhead for robustness with the

former field is around 10% in the number of GF(q) multiplications and 17% in GF(q)

additions, while it is 21% and 33% for the latter. By the same token, the chance of

missing an error in an operand of GF((232 − 5)7) with non-negligible probability is

approximately 232 times smaller than that in the field with higher extension degree,

and missing a random error is 216 times less likely.

7.7 Discussion

We have presented a strong scheme for error detection in optimal extension field arith-

metic, based on the theory of robust codes. Such schemes are necessary in defeating

ever new attack vectors on cryptographic hardware that keep being developed. Spe-

cial emphasis has been placed on keeping the overhead of error detection low and

tolerable for performance critical applications. The method is easily applicable to

both software and hardware implementations, and allows an easy trade-off between

error detection overhead and robustness.



Chapter 8

Tamper Resilient Control

Structures

In the previous chapters we focused exclusively on the protection of the data-path of

cryptographic circuits. Like any other computing machinery, however, these circuits

do not consist exclusively of a data path, but also of control structures like state

machines. Since any system is only as secure as its weakest component, it is impor-

tant to not leave Achilles’ proverbial heel uncovered and protect the control logic of

cryptographic circuits against fault attacks, as well.

Motivated by a hypothetical, yet realistic, fault analysis attack that in principle

could be mounted against any modular exponentiation engine, even one with appro-

priate data path protection, we set out to close this remaining gap. In the following

sections we present guidelines for the design of multi-fault resilient sequential control

logic based on standard Error Detecting Codes (EDC) with large minimum distance.

We introduce a metric which measures the effectiveness of the error detection tech-

nique in terms of the effort the attacker has to make in relation to the area overhead

spent in implementing the EDC. Our comparison shows that the proposed EDC based

technique provides superior performance when compared against regular N-modular

89
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redundancy techniques. Furthermore, our technique scales well and does not affect

the critical path delay.

8.1 Introduction

The goal of this chapter is to provide the control logic of a cryptographic circuit

with a level of protection that is on par with other mechanisms protecting its data

path. As stated in Chapter 4 we consider an adversarial situation in which we want

to protect a system under worst-case conditions, rather than maximizing average

case reliability. As such it is important to provide each and every component of

the system with a uniform level of resilience against attacks. A secondary goal is to

quantify this resilience and provide some practical design considerations. We would

like to briefly remark on the issue of complexity and cost of implementation: compared

to the data path the control logic tends to be fairly small in size. The overhead is

therefore secondary to the improvement in fault-resilience and in most cases even

irrelevant. That said, we will show in Section 8.5 that our solution exhibits much

better performance when compared to traditional fault tolerant techniques of the

same resilience level. Specifically, the contributions contained in this chapter may be

summarized as follows:

• We discuss how a hypothetical attack targeting the control unit can be mounted

utilizing an adversarial error model that was defined in Chapter 4.

• We define a useful metric for measuring the effectiveness of the error detection

technique in terms of the effort the attacker has to make to mount a successful

attack with respect to the area overhead spent in building the EDC.

• We provide a detailed analysis of the complexity of the proposed EDC and show

that it provides superior error detection capabilities when compared against tra-
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ditional modular redundancy based techniques, while not affecting the critical

path delay.

• We provide evidence that our technique provides better scalability compared to

traditional modular redundancy based techniques.

This chapter is structured as follows: Section 8.2 contains an example of a fault

attack on the control circuit of a hypothetical modular exponentiation based public

key accelerator. Section 8.3 will introduce notation and definitions of sequential

circuits, as well as classes of faults. State encoding schemes based on error detecting

codes (EDC) are introduced in Section 8.4 and used in Section 8.5 to design and

analyze fault resilient sequential circuits, complete with an example. Section 8.6

quantifies the error detection capabilities of various linear codes and explains the

importance of design diversity to counter certain classes of faults.

8.2 Motivation

We will motivate our research with an example attack scenario. We will demonstrate

the theoretical feasibility of an attack on a slightly simplified public key cryptographic

accelerator as it might be found in a ubiquitous security device such as a smart card.

For sake of simplicity let us assume a basic modular exponentiation algorithm without

CRT, using the secret private key, e.g. an RSA decryption or signature generation.

It should, however, be straightforward to adapt the attack to a CRT-based imple-

mentation. We consider a regular standard-cell ASIC implementation with sufficient

protection of the data path, but not the control logic, along with countermeasures to

prevent timing and power analysis (balanced power consumption, constant run-time).

We furthermore assume that the attacker has the ability to unpack the chip and in-

duce bit-flips on the state registers with some temporal precision [SA02], even though

it is our understanding that tamper-proof coating and/or packaging has become some-
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thing of a standard practice among smart card manufacturers. The work of Anderson

and Kuhn [AK96] gives reason to question the effectiveness of such measures against

determined attackers.

A particular algorithm that meets the requirements set above is Joye and Yen’s

[JY02] variant of the Montgomery Ladder (Alg. 8.1), computing y = xe mod N .

The state machine in Figure 8.1 implements the algorithm on a data path with a

single multiplier and three registers R0, R1 and R2. Each register is n-bits wide; the

size of the modulus N . This highly simplified state machine consist of seven states:

the six active states, which are listed in Algorithm 8.1 right besides their respective

instruction, and the idle state in which the circuit is inactive. The initial state after

activation of the circuit sets up constants and counters. The two load states read the

variables x and e via the input bus, while the result state returns the computed value

y on the output bus. The multiply and square states are self-explanatory from the

algorithm description. The control signals a and b for selecting between registers R0

and R1 are determined by scanning the exponent in R2 bit-wise, as indicated by the

superscript bit-index in parentheses.

The complete public-key accelerator circuit consists of a modular multiplication

unit, a memory block for storage of operands and temporary results, as well as the

exponentiation state machine which coordinates the movement of data between multi-

plier and memory. The multiplier can also be used for squaring operations. Although

we will mainly focus on the state machine itself, we want to give a brief overview

of the multiplier component, for a more complete picture. It is a pipelined, scal-

able Montgomery multiplier as described in [Gau02], which can perform arithmetic

on both integer and binary polynomial operands. Scalable here refers to the ability

to perform arithmetic with operands of nearly arbitrary precision only limited by

the amount of memory, as well as the design time configurability of parameters like

the number of pipeline stages and data path width. The multiplier computes the
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Figure 8.1: State Transition Diagram for Montgomery Ladder with Attack
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Algorithm 8.1 Joye and Yen’s Montgomery Ladder Exponentiation [JY02]

Require: x, e

Ensure: y = xe mod N

R0 ← 1 INIT

R1 ← x LOAD1

R2 ← e LOAD2

for i = n− 1 downto 0 do

a ← R
(i)
2 ; b ← ¬a

Rb ← Rb · Ra mod N MULTIPLY

Ra ← R2
a mod N SQUARE

end for

y ← R0 RESULT

Montgomery product C = A ·B ·R−1 using the word-level “finely integrated operand

scanning” (FIOS) algorithm, which consists of two nested loops. To reflect a typical

application scenario in an embedded system, we chose to implement a rather small

variant of the multiplier with an 8-bit data path and three pipeline stages. Each stage

consists of two 8×8-bit parallel multipliers and two adders, and can process one com-

plete inner loop of the algorithm. Intermediate results are computed LSW first and

can be passed from stage to stage. Delay registers with bypass-logic maintain proper

scheduling of data words between the pipeline stages. Each pipeline stage has its own

inner loop state machine, and the scheduling of each stage is controlled by a single

outer loop state machine. Since typically there are fewer pipeline stages than outer

loop iterations, a FIFO stores the result of the last stage and passes it back to the

first stage when it becomes available again. Table 8.5 in Section 8.5 gives the exact

area breakdown of the multiplier components.

We would like to point out that the multiplier currently has no fault detection

or other side-channel attack countermeasures. We use it mainly to demonstrate the



8.2. MOTIVATION 95

rather small percentage of control logic in relation to the overall area of the design.

Therefore the total increase in area will stay relatively small, even if the error detection

mechanism in the control logic adds significant overhead. This will become visible

later on in the synthesis results of our example.

Our main argument, however, is the following: Even if the data path of the circuit

were protected by attack countermeasures, the system would still be vulnerable to

fault attacks, unless the state machine is protected by an error detection mechanism.

The following is a brief outline of such a hypothetical attack, which reveals the n-bit

secret exponent e in short time:

1. Measure the total time of an (arbitrary) exponentiation and determine the com-

putation time required per exponent bit: tbit ≈ ttotal/n.

2. Set the round index k = 1, select a known ciphertext x and set the result of the

previous round as (R0, R1) = (1, x).

3. Compute the triple (A,B,C) = (R2
0, R0 ·R1, R

2
1) mod N and make a hypothesis

H0 about the exponent bit e(n−k) ∈ {0, 1}.

4. Start exponentiating x.

5. After k× tbit time steps, force the state machine into the state 111:RESULT, by

inducing a fault either on the least significant bit of the state or on the input

signal count < 0. This will cause the circuit to reveal its intermediate result

in R0.

6. Verify the hypothesis by comparing the actual value of R0 to A. If it matches

(e(n−k) = 0), set (R1, R0) = (A,B), else (e(n−k) = 1) set (R0, R1) = (B,C).

7. Repeat steps 3 through 6 for all other bits of the exponent (k = 2 . . . n).
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This attack works because there is no way to distinguish between a valid or a faulty

transition (cf. Figure 8.1: solid vs. dashed arc) from the 110:SQUARE state to the

final state 111:RESULT. Without a doubt, an actual attack on real hardware will

probably be much more involved and not as simple as described here in our näıve

scheme. Our basic point is, however, that the control logic of any cryptographic

circuit should be identified as a potential point of attack. This is especially true,

if other countermeasures against fault attacks on the data path are put into place,

since the control logic becomes the weakest element in the system and as such an

obvious target. To this end we propose an all-encompassing strategy to protect all

the components of embedded cryptographic devices with a certain minimum level of

guaranteed resilience to fault attacks.

8.3 Preliminaries and Definitions

A finite state machine can be formally defined by a six-tuple (S, I, O, ∆, Λ, s0). S is

the set of valid states (the state space), which has dimension k = dlog2 |S|e, and s ∈ S

denotes the current state. In a similar manner I and O define the input and output

sets, i ∈ I and o ∈ O the current inputs and outputs. The number of input and

output signals are ι = dlog2 |I|e and ω = dlog2 |O|e bits. The sets ∆ and Λ represent

the next state and output logic functions, which take s and i as their arguments.

They consist of a collection of boolean functions δj(s, i) and λl(s, i), each of which

compute a single bit in the next state or output vector. Finally, s0 indicates the initial

state. For simplicity and without loss of generality we will assume that all 2k states

are valid throughout the remainder of this article. In the following we will refer to

state machines that encode the state in a vector with n > k bits as redundant state

machines.

A regular (read: non-fault resilient) state machine, Figure 8.2, encodes the current
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Figure 8.2: Non-redundant State Machine

state as a k-bit binary vector s = (s0, s1, . . . , sk−1). In linear algebra terminology

the state space S is a vector space over the field GF(2), spanned by a set of k

linearly independent basis vectors ν0 . . . νk−1. The current state is a linear combination

s = s0ν0 + s1ν1 + . . . + sk−1νk−1, with addition in GF(2) being equivalent to an

exclusive OR operation. In the simplest case the basis vectors form a standard basis

with orthogonal unit vectors:

ν0 = (1 0 . . . 0)

ν1 = (0 1 . . . 0)
...

...
...

. . .
...

νk−1 = (0 0 . . . 1)

The next state s′ is determined by evaluating the set of next state functions:

s′ = ∆k(s, i) = (δ0(s, i), δ1(s, i), . . . , δk−1(s, i))

Similarly, the ω-bit output vector o is computed by evaluating the set of output logic

functions Λω(s) = (λ0(s), λ1(s), . . . , λω−1(s)). At each clock-edge the current state

vector takes on the value of the next state vector s = s′. Mealy type state machines

are different only in that their output functions also depend on the input vector. In
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the following we will focus on Moore type machines, but the same principles also

apply to Mealy machines.

8.3.1 Attacker Model

In the following we will assume that an attacker is somehow able to induce a fault

into the device that results in the flipping of a bit. The attacker has control over

the location of the bit flip, but there is a cost (or effort) attached, which increases

with the number of bit flips. For example, if the attacker tries to change the state of

a circuit by attacking the state register such that s̃ = s ⊕ e, the cost of the attack

depends on the hamming weight of the induced error pattern e.

8.3.2 A Novel Effectiveness Metric: Attack Effort per Area

We need a metric by which to compare the effectiveness of various error detection

mechanisms. An intuitive approach is to compare the cost or effort of a successful

fault attack to the cost of preventing it. Before we can define this metric we need to

introduce a couple of further definitions:

Resilience or Resiliency is a measure of how many errors the circuit can with-

stand. More concretely, this is the number of errors that can be accurately

detected by the error detection network. Throughout this chapter we will re-

fer to resilience as the parameter t and to a fault tolerant sequential circuit as

t-resilient.

Fault Insertion Effort is a measure for the difficulty of inducing a fault into the

system that manifests itself as one or more errors. It can not be given in

absolute terms, since an attacker’s effort depends on a large variety of factors.

We will therefore only give the effort in relative terms, compared to the cost for

induction of a single bit-error. There exist multiple types of faults all of which
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warrant their own effort values. For simplicity we only model single bit faults,

which manifest themselves also as single bit errors at the gate level.

We now define the total attack cost as the sum of the total effort required for a

successful attack. We arbitrarily assign a nominal effort of 100% for a single bit error

as the basis of comparison for various countermeasures. If the circuit is more resilient,

then also the effort for a successful attack increases.

Definition 8.3.1. Let Ebf denote the effort required for inducing a change of value

for a single bit in the circuit (bit fault). Let t denote the degree of worst-case fault-

resilience of the circuit, i.e. the maximum number of errors that can be tolerated when

induced simultaneously. The total cost for the attack is defined as C = (t + 1) · Ebf .

In Definition 8.3.1, we implicitly assume that the fault insertion effort increases

at least linearly with resilience, t. Inducing change of values for more than one

bit in the circuit may not be much harder than changing one bit, especially when

those bits are stored in places close to each other (e.g. several consecutive bits in a

register). However, our proposed scheme necessitates changing a number of certain

bits, which are not particularly close to each other, if the fault induction attack is to

be successful. Many successful fault induction attacks do not necessarily need a high

spatial precision, and inadvertently changing several other bits than the target bits

is acceptable in these attack scenarios. The proposed technique, on the other hand,

forces the attacker to be very precise when changing certain bits lest the attack be

detected. Therefore, changing several bits, not necessarily next to each other in the

circuit, without changing other bits is indeed a daunting task for the attacker. The

exact relation of fault insertion effort to the resilience, t depends largely on the specific

implementation, and therefore is difficult to formulate. Nevertheless, our assumption

of a linearly increasing effort for fault insertion with respect to t may be justifiable at

least as a first order approximation, since it is our intuition that the relation is even

more complex and the effort should increase faster than just linearly.
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Based on Definition 8.3.1 and the area overhead which is required to implement

a specific countermeasure, we can define an effectiveness metric η which allows us to

compare the different approaches. The figure of merit is the ratio between cost and

area. Additionally we define a normalized effectiveness H which can be useful for

comparing countermeasures on circuits with completely different functionality.

Definition 8.3.2. Let A denote the circuit area and C the cost for successfully

implementing a fault attack. We define the effectiveness of the circuit as the ratio

η = C/A between the cost of the attack (in terms of effort) and the cost of the

countermeasure (in terms of circuit area). Let further η0 = C0/A0 be the effectiveness

of the unprotected circuit. The ratio H = η/η0 denotes the normalized effectiveness

of a countermeasure with respect to a particular basis circuit.

In Section 8.5 we will use the effectiveness metric to compare traditional fault

tolerance approaches with our method.

8.4 Redundant State Encoding

Looking at typical finite state machine implementations of cryptographic algorithms,

one may notice that oftentimes only relatively few different states are necessary, or

if a more complex algorithm is required the control logic can be broken down hierar-

chically. Typically only a few bits are necessary to store the state, depending on the

encoding scheme used. Compared to the size of the data path in a typical embedded

cryptographic system, the size of the control logic is often relatively small, even when

a highly redundant encoding scheme is being used. As an example we refer to the

Montgomery multiplier introduced above, which has a total area of 10,410 equivalent

gates, excluding the area for the data storage. The control logic occupies an absolute

area of 2,015 equivalent gates, around 20%; the remaining 80% belongs to the data

path.
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Electronic design automation tools often allow specification of a preferred state

encoding scheme for the automatic synthesis of finite state machines. The typical

styles to choose from are “one-hot”, “gray” or “binary” encoding, but they only

allow a trade-off between the speed and the area of the resulting circuit. We propose

to investigate a third trade-off alternative, i.e. the degree of fault tolerance or, put

differently, the resilience against fault attacks. Although fault tolerant sequential

circuits have been the subject of research in the context of reliable system design, there

are a couple of important aspects that require further investigation in the context of

cryptographic circuits, due to the fundamentally different adversarial fault model.

We place a special emphasis on the detection, rather than correction, of faults.

Our argument is quantitative in that the number of detectable faults (d− 1) is larger

than the number of correctable faults (b(d − 1)/2c), based on the minimum Ham-

ming distance d of the coding scheme. Since there is no way of telling whether the

multiplicity of the fault is strictly less than d/2 or not, there is a chance that the

error correction will produce a valid, but ultimately incorrect next state. On the

other hand we also argue qualitatively: due to the adversarial nature of faults in the

cryptographic context and their potentially devastating effects on the security of the

system, the detection of errors is far more important than producing a result under all

circumstances. Detected faults should rather be dealt with under a suitable exception

handling mechanism, that prevents side-channel leakage, e.g. by erasing sensitive key

material. As a side benefit, the area overhead for detection is typically much less

than that of correction and the circuit does not have to sit on the critical path.

One-hot encoding is preferred by digital logic designers whenever speed and a

simple next state logic are desired. Despite its large amount of redundancy, its mini-

mum distance properties are weak, since valid codewords only differ by two bits. In

the case of a double error which resets the active bit and sets another one there is

not enough information in the encoding to detect the error, and thus one-hot en-
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coding is not suitable for our purposes. Since performance is less of a priority in

security-critical applications, we can trade off the speed of one-hot encoding for the

capability to detect errors. One way of doing so is by choosing a state encoding based

on error detecting codes (EDC) with large minimum distance. For example, if we

had a state machine with m = 15 states, one-hot encoding would require a 15-bit

state vector. Encoding the states with a (15,4)-Simplex code, which is the dual of a

(15,11)-Hamming code, would require a state vector of exactly the same size. One-hot

encoding only has a minimum distance of 2, while the Simplex code has a distance of

8, which allows detection of all errors with a Hamming weight of up to 7.

8.5 Fault-Resilient Sequential Circuits

A fault-resilient state machine (Figure 8.3) must necessarily incorporate redundancy—

not only in the state encoding, but also in the combinational logic of next state and

output functions. In a state machine protected by a linear (n, k) code, the redundant

state vector s(n) = (s0, s1, . . . , sn−1) now consists of n bits. In the following we will

also implicitly assume that the input signal i is given in redundant form as well. Its

next-state logic is a set ∆n(s, i) of n functions δj, that each determine one bit of s.

In general, since there are only 2k states (but encoded in redundant form), each δj

is a boolean function over k + ιk variables (ιk denotes the number of non-redundant

bits in the input vector i).

Formally speaking, the state space S(n) is a k-dimensional subspace of an n-

dimensional vector space {0, 1}n. The basis vectors of this subspace are the n-bit row

vectors of the generator matrix G of the code. Any value of the state vector s which is

not a linear combination of these basis vectors is therefore treated as an error. While

this interpretation nicely illustrates the mapping of k-bit states into redundant n-bit

form, it is not useful for the definition of next state functions, because we want to keep
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the state only in redundant form. If we were to decode the current state, compute

the next state in only k bits and re-encode it to n bits, this would leave the system

with a single point of failure in the next state function rendering it vulnerable to

attacks. Rather, we keep the system state in redundant form at all times, to enhance

its resilience against attackers probing for the weakest spot of the system.

An alternative interpretation that is more suitable for our definition of a redundant

state machine is to view the columns of G as n redundant basis vectors of the non-

redundant k-dimensional state space S, which is isomorphic to S(n). Any k linearly

independent basis vectors form a complete basis for S and span the entire state space.

Thus, those k (out of n) state variables that are associated with the respective vectors

of such a basis can be used for specification of a next state or output function. In

the following we will let σj and ξj denote such sets of k state variables associated

with linearly independent basis vectors (columns of G), for the next state and output

functions, δj respectively λj. Additionally we introduce non-redundant subsets κj of

input variables (one per next state function). Each κj selects ιk input variables from

the redundant input vector i. If the columns of G were not linearly independent,

then this would introduce an ambiguity about the current state and certain functions

could not be implemented. It usually depends on the exact construction of the code

to determine which of all
(

n
k

)
possible sets of k state variables are suitable.

If enough many sets σj, κj, ξj are available, then the next state and output logic

functions can be defined over a variety of such sets. It is prudent to make use of such

alternative definitions, so as to minimize the hazardous effect that a single faulty

state variable has on the overall system.



104 CHAPTER 8. TAMPER RESILIENT CONTROL STRUCTURES

. .
 .

i     I δ1

δ0 s     S∈

∈o     O

σ0

σ1 ξ 1

ξ 0

λ1

λ0

λω−1

∆
ι

n

n

. .
 .

S
ta

te
 R

eg
.

n

Λ

. .
 .

k

k

k

Alarm

E
rr

or
D

et
ec

tio
n

(s
yn

dr
om

e)

κ

. .
 .

k

k

k

ξω−1

κ

κ0

1

n−1

σn−1 n−1δ

∈

Figure 8.3: Fault-resilient State Machine

Example

An example will help to illustrate the last point: Let G be the generator matrix of a

systematic (7, 3) Simplex code (dual of the (7,4)-Hamming).

G =




1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1




The rows of G form the k-dimensional basis for the state space S as a subspace

of {0, 1}n. Let s(n) = s(k)G be the redundant state vector. Using the modular

exponentiation example from Section 8.2, the states of a redundant state machine

would be encoded as in Table 8.1. Alternatively we can interpret the columns of G as

redundant basis vectors ν0, ν1, . . . , ν6 spanning S, and associated with s0, s1, . . . , s6,

respectively.

In a non-redundant state machine the next-state logic functions would be specified

as δj(s
(k), i). In the redundant case, we still have the same number of states, but now

we have n = 7 state variables (s0, s1, . . . , s6) that we can use to specify the next-state
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Table 8.1: Simplex State Encoding for the Modular Exponentiation Example

State s(k) = (s0, s1, s2) s(n) = (s0, s1, s2, s3, s4, s5, s6)

Idle 001 0010111

Init 010 0101011

Load1 011 0111100

Load2 100 1001101

Multiply 101 1011010

Square 110 1100110

Result 111 1110001

functions. Due to systematic encoding we have the following relationships between

redundant (s0, s1, s2, s3, s4, s5, s6)
(n) and non-redundant state variables (s0, s1, s2)

(k):

s
(n)
0 = s

(k)
0

s
(n)
1 = s

(k)
1

s
(n)
2 = s

(k)
2

s
(n)
3 = s

(k)
0 ⊕ s

(k)
1

s
(n)
4 = s

(k)
0 ⊕ s

(k)
2

s
(n)
5 = s

(k)
1 ⊕ s

(k)
2

s
(n)
6 = s

(k)
0 ⊕ s

(k)
1 ⊕ s

(k)
2

Let for example σj = (s1, s3, s6). Since columns 1, 3 and 6 of G are linearly inde-

pendent, it is generally possible to specify an arbitrary next state or output function

over this set of state variables, e.g. δj(σ, i) = δj(s1, s3, s6, i0). This is always possible

and does not depend on what the actual application of the state machine is1. The

boolean function definition of δj, however, does depend on the application.

1Once a specific function is defined, it might not need the complete state information in k variables

and the logic implementation may be minimized.
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Table 8.2: State Transition Table of the Fault-Resilient FSM

State s0 s1 s2 s3 s4 s5 s6 start cnt< 0 s′0 s′1 s′2 s′3 s′4 s′5 s′6

(illegal) 0 0 0 0 0 0 0 x x 0 0 0 0 0 0 0

idle 0 0 1 0 1 1 1 0 x 0 0 1 0 1 1 1

idle 0 0 1 0 1 1 1 1 x 0 1 0 1 0 1 1

init 0 1 0 1 0 1 1 x x 0 1 1 1 1 0 0

load1 0 1 1 1 1 0 0 x x 1 0 0 1 1 0 1

load2 1 0 0 1 1 0 1 x x 1 0 1 1 0 1 0

mult 1 0 1 1 0 1 0 x x 1 1 0 0 1 1 0

sqr 1 1 0 0 1 1 0 x 0 1 0 1 1 0 1 0

sqr 1 1 0 0 1 1 0 x 1 1 1 1 0 0 0 1

res 1 1 1 0 0 0 1 x x 0 0 1 0 1 1 1

Conversely, it should immediately become clear that we should not specify a

next-state function over the sets (s0, s1, s3) or (s0, s2, s4). The bases associated

with the selection of state variables are {ν0, ν1, ν3} = {(1, 0, 0), (0, 1, 0), (1, 1, 0)} and

{ν0, ν2, ν4} = {(1, 0, 0), (0, 0, 1), (1, 0, 1)}, both of which are not linearly independent:

ν0 + ν1 + ν3 = 0 and ν0 + ν2 + ν4 = 0 in GF(2). In both examples one coordinate

is always zero in all basis vectors. If a hypothetical next state function depends on

that coordinate to distinguish between two different states, the function cannot be

implemented.

We will now give a concrete example of a fault-resilient state machine imple-

mentation using the error detecting (7, 3) Simplex code. We will further compare our

approach to N -modular redundancy, a concept from traditional fault tolerant compu-

tation, with respect to area overhead and fault-resilience. In N -modular redundancy

functional modules are replicated N times, ideally employing design diversity tech-

niques. Their outputs are either voted on by a majority logic (i.e. for error correction)

or simply compared for consistency to detect any error that may occur in a module.
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The most common configuration is triple modular redundancy (TMR), sometimes also

referred to as triads [HJSI75], which allows either the detection of two errors or the

correction of a single error. Since a fault-resilient system requires redundancy not

only in the state machine but overall, redundant versions of the input and output

signals need to be present as well. In a system with non-redundant inputs, for exam-

ple, the attack described in Section 8.2 could be carried out by forcing the condition

count < 0, which may be indicated to the state machine by a single status bit. Such

an attack is harder to accomplish if input signals are available as multiple redundant

and independent variables. The amount of redundancy should be chosen to protect

against the same number of errors t as the state encoding scheme, to ensure a uni-

form level of resilience for the entire system. The level of resilience is measured by the

minimum number t of signals an attacker needs to change (bit-flips) for a successful

attack. For state encoding with linear codes over GF(2) we have t = d−1, where d is

the minimum distance (or non-zero Hamming weight) of all code words. In a modular

redundant scheme the overall resilience level can be found by concatenating the state

vectors of the individual modules and computing its total minimum distance D and

resilience t = D − 1. They are determined by the degree of modular redundancy N

and the distances dj of each module’s individual state encoding:

D =
N∑

j=1

dj

In the following we will therefore require a D-fold redundant set of input signals to be

available to the circuit, which in turn must provide an D-fold redundant set of output

functions. This provides coverage for the corner case that all t faults occur on the

inputs. For example, in the case of a TMR system with simple binary encoded states

the minimum distance between words of the concatenated state vectors is 3 (D = N)

with a worst case resilience of t = 2. Our EDC-based state machine implementation

is a special case with N = 1, d = 4 and therefore requires an input set of distance 4
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to maintain the same amount of resilience against D − 1 = 3 faults.

We will now provide an example using the Montgomery Ladder algorithm intro-

duced earlier in section 8.2. A very simple state machine implementation requires

two input signals, start and count!=0, and the D-fold redundant input vector

thus consists of the signals i = (i0,0, . . . , i0,D−1, i1,1, . . . , i1,D−1), with the mapping

i0,j = start and i1,j = count!=0. It computes three output signals for control-

ling the data path (multiplier): mul op a, mul op b and mul res. Again, these sig-

nals will be generated with D-fold redundancy and mapped to the output vector

o = (o0,0, o0,1, o0,2, . . . , o2,D−1).

As with the redundant state vector, we will not use all elements of i for definition

of the next state functions, but only subsets κj, each containing two input variables.

Finally, we need ω sets ξj of k state variables each as inputs to the output functions

λj, again with minimal overlap. For our example we chose:

σ0 = (s0, s2, s3)

σ1 = (s1, s3, s4)

σ2 = (s2, s4, s5)

σ3 = (s3, s5, s6)

σ4 = (s0, s4, s6)

σ5 = (s0, s1, s5)

σ6 = (s1, s2, s6)

,

κ0 = (i0,0, i1,0)

κ1 = (i0,1, i1,1)

κ2 = (i0,3, i1,2)

κ3 = (i0,0, i1,3)

κ4 = (i0,1, i1,0)

κ5 = (i0,2, i1,2)

κ6 = (i0,3, i1,3)

,

ξ0 = (s0, s1, s2)

ξ1 = (s0, s3, s5)

ξ2 = (s3, s4, s6)

ξ3 = (s2, s3, s4)

ξ4 = (s1, s2, s4)

ξ5 = (s3, s5, s6)

ξ6 = (s0, s4, s5)

ξ7 = (s2, s5, s6)

ξ8 = (s1, s2, s6)

ξ9 = (s0, s3, s4)

ξ10 = (s1, s5, s6)

ξ11 = (s0, s1, s6)

From the state transition table (Table 8.2) we can now derive the concrete next state
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functions based on the state and input variable sets σj and κj:

δ0(σ0, κ0) = s0s
′
2 + s2s3

δ1(σ1, κ1) = i0,1s1s
′
3s4 + i0,1s

′
3s4i1,1 + s′1s

′
3s4i1,1 + s3s

′
4

δ2(σ2, κ2) = s2s
′
4s
′
5 + s′2s4 + s′2s5 + s4s5i

′
1,2

δ3(σ3, κ3) = s′3s5s
′
6i
′
0,0 + s3s

′
5 + s3s6 + s5s6i1,3

δ4(σ4, κ4) = s0s
′
4 + s′0s4s

′
6 + s′0s4i

′
1,0 + s′4s6

δ5(σ5, κ5) = i′0,2s0 + s0s
′
5 + s′1s5

δ6(σ6, κ6) = i0,3s1s
′
6 + s1s2 + s2s6

We can derive the output logic equations in a similar fashion (omitted here due to

space considerations).

8.5.1 Synthesis Results and Overhead Analysis

Due to the principal difference in error detection capability between an N-modular re-

dundant and an EDC-based state machine, we decided to compare the non-redundant

implementation to four different redundant implementations with slightly varying pa-

rameters:

1. a 2-fault resilient triple modular redundant (TMR, N = 3) version

2. a 3-fault resilient quadruple modular redundant (QMR, N = 4) version

3. an internally 3-fault resilient EDC version with a 3-fold redundant I/O set (3-

EDC)2.

4. a 3-fault resilient EDC version with a 4-fold redundant I/O set (4-EDC).

Our initial analysis consisted of using the UC Berkeley SIS logic synthesis tool and

the MCNC synthesis script for mapping the five different circuit descriptions to the

2This effectively reduces the worst case fault resilience to 2 faults on the input set.
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MCNC standard libraries mcnc.genlib and mcnc latch.genlib and comparing the

results (Table 8.3).

8.5.1.1 Area Overhead

Table 8.3: Initial Analysis of Various EDC and NMR Schemes

Non-red 3-EDC 4-EDC TMR QMR

# Inputs 2 6 8 6 8

# Outputs 3 10 13 10 13

# SOP-Literals 42 155 155 135 179

Gate Count 19 56 60 59 77

# Latches 3 8 8 10 13

Total Area 64 207 210 210 276

Area Overhead (%) 0 223 228 228 331

Despite the higher literal count of 3- and 4-EDC compared to the TMR imple-

mentation, the actual circuit area is almost exactly the same. The lower resilience

of TMR against faults, however, makes a compelling argument for building fault re-

silient state machines based on error detecting codes, especially since the degree of

resilience will be even better for larger state space dimension k. A quadruple modu-

lar redundant design requires more than 100% more overhead for achieving the same

level of resilience. In addition, while N -modular redundancy schemes have a constant

overhead of approximately (N−1) ·100% independent of the state space dimension k,

the (storage) overhead of EDC based fault resilient state machines actually decreases

with a larger state space (cf. Fig. 8.4). It appears reasonable to expect a similar

trend for the complexity of the next state logic.

These initial results encouraged us to proceed with the analysis of a more detailed

state machine model synthesized using Synopsys DesignCompiler and a 0.13µm ASIC
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standard cell library. Special care was taken to direct the synthesis not to share logic

between the next state functions δn. This is to avoid the manifestation of a single

stuck-at fault as an error on multiple outputs of the next state function ∆n(s, i). The

results3 are given in Table 8.4. It shows some clear differences in area requirements

Table 8.4: Analysis of Detailed FSM Models (∗10-state FSM with k = 4)

Non-red 3-EDC 4-EDC TMR QMR non-red.∗ EDC

Total Area 48 137 143 189 249 71 361

Area Overhead 0.0% 188.1% 199.3% 295.8% 422.4% 0.0% 413.3%

Resilience t 0 2 3 2 3 0 7

Attack Effort 100% 300% 400% 300% 400% 100% 800%

Effectiveness η 2.098 2.184 2.804 1.590 1.606 1.422 2.216

Norm. Effect. H 1.000 1.041 1.336 0.758 0.766 1.000 1.559

between the codes based and the TMR implementation, which are not visible from

the initial analysis. To some extent this is due to the more accurate modeling (we only

used a simplified state machine design for the SIS flow), but the main reason is the

fact that we used an industry-strength standard cell library with advanced complex

gates of varying drive strength. The size of these gates is often more compact than

a realization from simple gates, and given in precise decimal fraction area numbers.

The size of gates in the MCNC library on the other hand was only given in integers.

8.5.1.2 Effectiveness and Scalability

Table 8.4 also gives the performance of our examples in terms of the effectiveness met-

ric for fault resilience measures that we defined in Section 8.3, Definition 8.3.2. The

value η describes the relative effort per gate, while H is the normalized effectiveness

value relative to the effectiveness of the unprotected circuit. The results are quite

3The area is given in terms of equivalent gate size, i.e. the size relative to a 2-input NAND gate.
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interesting: As expected, the EDC based fault resilient circuits show the best effec-

tiveness in preventing fault attacks, however, the N-modular redundancy approach

fares much worse than having no countermeasure at all. We also experimented with

a slightly different implementation with 10 states and a much larger resilience t = 7.

Here we used a (15,4)-Simplex code for state encoding. Our results indicate that at

slightly more than 400% area overhead the EDC based scheme scales much better

than N-modular redundancy, for which we expect an overhead of well beyond 800%

at the same resilience level.

8.5.1.3 Critical Path Overhead

We could not determine any substantial critical path overhead with any of our ex-

amples. All designs synthesized at 1GHz clock frequency without problems, and we

would expect the critical path to be on the data path much rather than the control

logic. In the case of 3-EDC and 4-EDC the redundant state variables are computed

in parallel, completely independent of each other, and therefore do not add to the

critical path. Furthermore, the error detection network is not in the critical path

either, since it operates in parallel with the next state and output logic. We conclude

that there is no performance overhead associated with these fault resilience measures.

8.5.2 Influence of Control Logic Overhead on Total Circuit

Area

Following the overhead analysis of the exponentiation state machine we want to ex-

trapolate the total overhead of implementing fault resilient control logic throughout

the entire modular exponentiation circuit. We start from the break-down of area re-

quirements for the Montgomery multiplier described in Section 8.2. Table 8.5 shows

the components of the multiplier sorted by type and their size in equivalent gates.

For extrapolation we factored the overhead estimates from Table 8.4 into the area
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Table 8.5: Data Path / Control Logic Area Comparison of Montgomery Multiplier

Component (Type) Area (equiv. gates) Percentage

Pipeline Stages (Data Path) 6,756 64.90%

Delay Registers (Data Path) 1,640 15.75%

Inner Loop FSM (Control Logic) 1,079 10.36%

Outer Loop FSM (Control Logic) 848 8.15%

FIFO control (Control Logic) 87 0.84%

requirement for control logic, but not for the data path. Due to the fact that control

logic occupies less than 20% of the total area in a non-redundant implementation, the

overhead due to fault resiliency techniques is limited to around 40% for our method,

whereas for quadruple modular redundancy it exceeds 80% (Table 8.6).

Table 8.6: Total Overhead for Modular Exponentiation Circuit with FT Control

Non-red 3-EDC 4-EDC TMR QMR

Data Path 8,396 8,396 8,396 8,396 8,396

Control Logic 2,062 5,942 6,173 8,163 10,773

Total Area 10,458 14,338 14,569 16,559 19,169

Overhead 0.00% 37.09% 39.30% 58.33% 83.29%

8.6 Selection of Codes for t-Fault Resilient State

Machines

We have seen in the previous example how we can design a fault-resilient state machine

with up to 8 states using an ordinary (7,3) Simplex code. Since this code has a

minimum distance of four, it is able to detect up to three faults in the state vector
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s. In general, the number of errors that can be detected by means of a linear block

code with minimum distance d is t = d − 1. The selection of a particular code for a

fault-resilient state machine implementation therefore depends on the desired level of

resilience, i.e. the number of detectable errors t, as well as the dimension of the state

space k. These two parameters determine the length n of the block code, as shown in

Table 8.7. We obtained our numbers from the reference table of minimum-distance

bounds for binary linear codes [HS73]. We restructured the table in order to display

the minimum length n for a given dimension k and desired fault-resilience t.

Table 8.7: Minimum Code Lengths n for State Space of Dimension k and Fault

Resilience t

t \ k 1 2 3 4 5 6 7

1 2 s3 4 5 6 7 8

2 3 5 6 7 9 10 11

3 4 6 s7 8 10 11 12

4 5 8 10 11 13 14 15

5 6 9 11 12 14 15 16

6 7 11 13 14 15 17 18

7 8 12 14 s15 16 18 19

The first column of the table consists entirely of trivial repetition codes, because

of k = 1. The first row, on the other hand, consists of all parity codes with no

repetitions of column vectors, but with only a minimum distance of 2. These two are

the extremes between which we can trade off the fault resilience versus the code length

(or rather compactness). This is visualized in Figure 8.4, where EDC with different

levels of fault resilience are juxtaposed with one-hot and binary encoding in a double

log-scale graph. For a very small number of states adding resilience against multiple

faults incurs some overhead penalty, even when compared to one-hot encoding. But
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Figure 8.4: Lengths of Various t-Resilient Error Detecting Codes

as the state space grows, the complexity of one-hot encoding grows much more rapid

with each additional state and eventually becomes infeasible. On the other hand,

the relative overhead of error detecting codes over simple binary encoding decreases

monotonically.

Duplication of columns in G is an easy and efficient way to increase the minimum

distance—and therefore the resilience—of an EDC. This is helpful against adversar-

ial single-mode failures such as light attacks. In fact, whenever the code length n

exceeds 2k, G inevitably contains some duplicated column vectors. Take, for exam-

ple, the (10, 3) code of resilience four: With k = 3 there can only be seven unique

non-zero column vectors in G; hence there must be three duplicates. It turns out

that Simplex codes achieve maximum fault resilience possible without duplication of

columns. Their generator matrix consists of all non-zero column vectors of dimension
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k. They are marked in Table 8.7 with the small letter s. If G contains duplicate

columns, this means that two or more state variables associated with those columns

will have the same value (under fault-free conditions), and could thus be computed

by identical next state functions. The inherent problem of identical functions is their

susceptibility to common-mode failure as defined earlier in Section 4. If the cause of

a fault is not locally limited, it is likely to have the same effect on identical circuit

implementations of a boolean function, and therefore increase the fault multiplicity.

8.6.1 Using Design Diversity to Counter CMF

We can counter the effects of CMF using a technique called design diversity [MM00].

By implementing the next state function in several different, but ultimately equivalent

ways, the likelihood of combined failure under the same circumstances is reduced.

Design diversity is naturally promoted by defining functions over alternative sets of

k state variables, as described in Section 8.5. It is, however, important to not choose

the σj näıvely. For example, if we were to define the next state functions δj over only

those sets σj that all include the state variable s0, then we would have biased the

circuit. A fault in s0 might spread out to cause subsequent errors in all other state

variables. An active adversary could systematically test for such a bias and exploit

it. We must therefore balance the use of each state variable across all σj. In order to

reduce the influence of a single bit error in any of the state variables, the subsets σj

should uniformly cover all state variables, with minimum overlap. In a k-dimensional

state space the minimum cover implies that each state variable be used a maximum

of k times. The goal is therefore to find n sets σj chosen uniformly from s(n) such

that each state variable occurs only k times. Oftentimes a minimum cover can be

found relatively easy, simply by inspection. Automating the process should be fairly

straightforward, but lies outside of the scope of this work. Returning to our previous
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example with the (7,3) Simplex code we could choose the subsets as follows:




σ0

σ1

σ2

σ3

σ4

σ5

σ6




=




(s0, s2, s3)

(s1, s3, s4)

(s2, s4, s5)

(s3, s5, s6)

(s0, s4, s6)

(s0, s1, s5)

(s1, s2, s6)




One can readily verify that the basis vectors associated with the sets σj are all linearly

independent and no state variable gets used more than k times. In other words, there

is no single state variable that stands out over others as a potential target for an

attack.

8.6.2 Attack Resilience

Finally we would like to show intuitively how the fault resilient circuit holds up

in different attack scenarios. We start with the most likely point of attack for an

adversary with single-mode fault insertion capability, the state register, and continue

from there towards the boundaries of the sequential circuit.

State register. A transient fault can completely change the register contents past

the duration of the fault, since the flip-flops are made up from bistable devices.

Here the structural design of the fault-resilient state machine comes into play:

Since the error detection network is connected directly to the output of the state

register, all faults up to multiplicity t will be detected. Note that this would not

be the case if the detector were to directly follow the next state function. From

our choices of σj one can see that each state variable has an influence on up to k

variables of the next state and the attacker would only require a fraction dt/ke of
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faults to influence more than t state variables. With error detection right after

the state register this threat is eliminated. Furthermore, the detection network

does not add to the critical path, thereby avoiding a performance penalty.

Feedback path. Any fault on the feedback path from the state register to the inputs

of the next state function would be detected by the error detection circuit as

well.

Next state logic. Fault multiplicity stemming from shared logic between individual

next state functions is not likely, due to the minimum cover policy of selecting

the sets σj, i.e. there should not be any pair of state variables that is a member

of more than one σj. But even if that could happen, it would be easy to simply

disallow sharing of logic gates between individual functions during synthesis.

I/O set. The input and output vectors must also be considered as a potential point

of failure, as mentioned earlier. It is not clear at this point, if the error detec-

tion mechanism of the sequential circuit alone can guarantee t-fault resilience.

It might be necessary to have additional error detection outside of the state

machine, checking for faults on the I/O set, but this is outside of the scope

of this work. The minimum requirement is that the I/O set should contain a

sufficiently high amount of redundancy to enable t-fault resilience, as described

in the example in the previous section. One potential solution is to use weight-

based codes as described in [DT99].

As we can see from this intuitive analysis, the architecture of our sequential circuit

can withstand fault insertion of degree t, which was our design goal.
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8.7 Discussion

In this chapter we addressed the importance of not only protecting the data path of

cryptographic circuits against fault attacks, but also the control logic itself. Despite

the abundance of fault tolerance techniques for sequential circuits in other application

domains, those are based on a fundamentally different fault model and therefore

not suitable for the task. We strongly believe that these techniques have to be re-

evaluated and adapted to the new threat scenario that presents itself in the form

of cryptographic fault analysis. A determined attacker can probe a system for its

weaknesses and enforce a worst case scenario. For protection against an adversary

with the capability to induce t faults simultaneously, the circuit must be resilient up

to that degree. Most of the ideas proposed in the literature, however, are concerned

with efficiency and the ability to detect two and correct at most a single error. This

work is a first step towards fault resilient sequential circuits under an adversarial

fault model. We gave a motivating example of a hypothetical attack on a modular

exponentiation based crypto system that would succumb to this kind of attack, in

spite of a protected data path and other algorithmic countermeasures. While it is

impossible to ever completely protect against a determined adversary, we presented

some general principles of how to improve the resilience against an attack, to make

it infeasible beyond a certain level of effort.

We showed that the overhead incurred through the use of error detecting codes

is less than that of N-modular redundant implementations, while providing better

fault resilience properties. In addition to this we demonstrated that the percentage

of control logic in a typical cryptographic application is only a small fraction of the

data path. Thus, even a high amount of overhead due to fault resilience measures

does not significantly influence the complexity of the overall system. It is, however

important to understand the mechanisms of fault propagation to properly implement

fault resilience. The rule for minimal overlap between state variables in the sets σn
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is such an example. Furthermore, we defined a new metric which captures the ef-

fectiveness of a fault detection method in terms of the minimum effort the attacker

has to make to mount a successful attack with respect to the area overhead spent in

implementing the error detection scheme. Our analysis and implementation results

have shown that the proposed coding based techniques provide far superior perfor-

mance when compared against N-modular redundant error detection techniques. For

proof of concept we implementated a Montgomery muliplier whose control logic was

realized using various error detection techniques. Our implementation results show

that the control logic occupies less than 20% of the total area in a non-redundant im-

plementation, and the overhead due to fault resiliency techniques is limited to around

40% for our method, whereas for a comparable quadruple modular redundancy it ex-

ceeds 80%. Furthermore, the effectiveness metric gives a high value of 2.8 for the

proposed technique whereas for QMR it is a mere 1.6. At around 75% effectiveness

after normalization it is clear that N-modular redundancy performs even less effective

than the unprotected circuit. For the same implementation, we found that the critical

path delay was not affected by the EDC. We provided rationale to claim that this

result would hold for even higher degrees of resiliency.

Further research is certainly required in this area. It is our hope that this first

step will encourage others to further contribute to this important aspect of embedded

cryptography. One open question, for example, is whether other types of codes, e.g.

Reed-Solomon etc., would provide for higher effectiveness. For the time being we only

investigated linear block codes due to the simpler error detection mechanism.



Chapter 9

Conclusion and Outlook

This dissertation we addressed the question of how to protect hardware implementa-

tions of public key cryptography against tampering attacks of a skilled adversary.

We presented three different ways to protect the finite field arithmetic of pub-

lic key cryptosystems. Each technique has its unique applications, advantages and

disadvantages, and their uses should be carefully evaluated on an individual basis.

Additionally, we realized that it is insufficient to only protect the data path of a

cryptographic hardware implementation. An attack on the control logic of the circuit

may completely reveal the secret key without touching the data path. Consequently

we developed design techniques for tampering resilient control structures, in our case

finite state machines.

In the following we discuss each of these contributions and provide an outlook on

future research opportunities.

Homomorphic Embedding

The homomorphic embedding of a finite field into a redundant ring provides the

opportunity to detect errors that may be the result of tampering. It has many ben-

efits that make it a good choice for performance critical applications with moderate

121
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security needs. The overhead incurred by the larger operands and the additional op-

erations is minor and can be determined by the designer. Additionally the low-weight

form of the scaled modulus enables efficient modular reduction that can compete di-

rectly with other low-weight field moduli, for example those recommended by NIST

for the elliptic curve digital signature algorithm [oSN00]. The error checking pro-

cedure consists of a simple modular reduction that can be executed outside of the

critical path and thus does not affect the speed of the operation. The technique is in

principle applicable to fields of arbitrary characteristic, but since binary and prime

characteristic are the most commonly used field types, we only considered these here.

One of the limitations of homomorphic embedding is certainly the fact that not any

arbitrary field may be embedded, and not with an arbitrary amount of redundancy,

either. That said, a large choice of parameters exist that enable the designer to make

fine-grained trade-offs between the security level and the amount of redundancy—we

included a selection of suitable parameters in the appendix.

Future Research An interesting question regarding the generalization of cyclic

codes would certainly be if we can make any statement about their worst case error

detection capabilities, i.e. to provide a bound on their minimum distance properties.

Secondly, in our research we have focused mainly on error detection, while we did not

cover error correction (apart from an algorithm based fault tolerance perspective).

Nonlinear Arithmetic Codes

If we take a pessimistic point of view in terms of adversarial capabilities, linear codes

can never provide for adequate protection against errors that are induced precisely

and with a high degree of sophistication. In such a case it is absolutely necessary to

apply a non-linear scheme such as the one that we presented in chapter 6.

Nonlinear digit-based coding schemes can be problematic when it comes to design-
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ing a predictor for a linear arithmetic operation such as addition or multiplication.

Particularly in the context of multi-precision arithmetic, carry propagation issues

need to be considered. In our case we were able to work around this issue by employ-

ing a check-symbol recomputation strategy, which ensures the integrity of operands

and their check-symbols at all times.

The powerful error detection capability that these codes possess comes at a relative

high cost in terms of check-symbol predictor and error detection network, and thus

may be only of interest to highly security-sensitive applications.

Future Research Our construction of nonlinear arithmetic codes can be applied

to protect any digit based integer arithmetic scheme, for example, an RSA modular

exponentiation in an integer ring. It does not currently apply to polynomial arithmetic

that would be of interest in the implementation of an elliptic curve cryptosystem over

binary extension fields. Another open question is if there exist other constructions

for the check-symbol prediction and error detection networks with a lower overhead.

Low-Cost Codes

Finally we presented a set of low-cost tamper-proof arithmetic primitives for opti-

mal extension fields. These are based on the original construction of robust codes

by Karpovsky and Taubin [KT04] and represent a compromise between robustness

and overhead for error detection. Optimal extension fields have been proposed in the

context of fast field arithmetic on low-cost embedded processors. The techniques pre-

sented here may be applied to both hard- and software implementations. Our analysis

of an elliptic curve scalar point multiplication shows that the overhead incurred is

minimal.

Future Research Recently, Baktır [BS06] and Saldamlı [Sal05] introduced spec-

tral techniques for fast multiplication in finite fields. Operands are converted into a
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spectral representation by means of a number theoretic transform. Since after the

transformation the coefficients of the spectral representation of the operands are all

elements in GF(q), it appears to be possible to use robust codes to protect the spectral

arithmetic against adversarial faults.

Tamper Resilient Control Structures

Motivated by a hypothetical attack on a modular exponentiation based public key

accelerator, we explored the use of large minimum distance error detecting codes

for state machine encoding, along with other design considerations. We introduced

a novel design-metric and quantitively compared our approach to traditional N -

modular redundancy, with the result that our approach is more effective and scales

better. Following initial concerns of a reviewer about the overhead of our technique,

we also analyzed the ratio of control logic to data path in a typical cryptographic

circuit. We concluded that this ratio is typically very small and thus overhead in

control logic does not have a huge impact on the overall cost of the system, while

adding a valueable extra security margin.

Future Research Our work represents an initial step in the direction of fault

resilient control structures in this application domain. So far we only considered

finite state machines, but there are other control structures that present challenges of

their own, such as pipeline control circuits for security processors. Another direction

for future research may be to look into more suitable families of codes and potentially

online error recovery techniques.
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General Open Issues

Not all questions pertaining to the issue of adversarial faults in cryptographic systems

could be addressed in this dissertation. In this section we would like to mention a

couple of research objectives that are of general relevance in this context.

A major issue raised by our work is the question of accuracy of our error and

attacker models. In general, this is a difficult question to answer, since it depends

on a large number of factors. The literature on this subject is quite sparse, so that

we had to rely on a various assumptions about the fault induction capabilities of a

determined individual and how these faults may manifest themselves in the circuit.

Since we do not possess the infrastructure for experimentally verifying these as-

sumptions, we had to extrapolate from only a few reports available, e.g. [SA02]. That

being said, we provide one important argument that makes our assumptions more rea-

sonable: in contrast to previous work on fault tolerant cryptographic circuits, which

only assume random faults, we model a determined adversary with strong capabilities.

Our rationale here is that it is generally better to err on the safe side. Nonetheless,

more work on a realistic model (or better yet: several realistic models for a variety of

attacker profiles) is urgently needed. A good first step in this direction was provided

by Lemke-Rust and Paar in [LRP06].

Another open question that our work raises is the issue of fault simulation. So

far, we determined the failure modes of our approaches analytically under either

the logical or the arithmetic error model. We did not, however, verify the error

models experimentally, e.g. by simulating random faults in a computer model of our

circuit. Such an experiment could give valuable insights into the relative performance

benefits of our linear and non-linear error detection schemes under a weaker, i.e.

random fault capable, attacker model. Unfortunately, fault simulations require a

certain infrastructure that was not available to us at the time, so we had to leave this

issue open.
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Appendix

For practical purposes we present a selection of useful parameters for scaled em-

bedding. In all three tables the parameter n refers to the size in bits, respectively

degree, of the scaled modulus m = p ·s, while the parameter k is indicative of the size

(degree) of the field modulus of F to be embedded in the ring. Finally, the amount of

redundancy due to the scaling factor s is quantified by the difference n−k. Table A.1

provides parameters for prime field embedding, with k = dlog2 pe and n−k = dlog2 se,
while Tables A.2 and A.3 give parameters suitable for embedding binary extension

fields, where p(x) is of prime degree deg(p(x)) = k and the scaling factor s(x) has

degree deg(s(x)) = n− k.

n k u n-k

300 160 1 140

205 161 1 44

211 162 3 49

236 162 1 74

239 162 -1 77

232 163 1 69

209 166 -3 43

n k u n-k

203 168 -3 35

261 168 -1 93

208 171 3 37

227 172 -1 55

205 173 3 32

210 173 3 37

202 174 -3 28

n k u n-k

206 177 3 29

200 180 -3 20

221 181 -1 40

223 184 1 39

259 184 -1 75

233 186 -1 47

210 193 -3 17

n k u n-k

229 203 1 26

256 206 1 50

233 208 1 25

241 217 -1 24

248 227 1 21

251 232 1 19

Table A.1: Factorizations of m = p · s = 2n + u
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n k n-k

173 163 10

190 163 27

202 163 39

264 163 101

209 179 30

235 191 44

308 191 117

334 191 143

239 193 46

306 211 95

390 211 179

371 239 132

391 239 152

452 251 201

412 263 149

n k n-k

482 269 213

419 277 142

495 277 218

587 311 276

605 311 294

470 313 157

355 337 18

446 337 109

544 337 207

604 337 267

669 337 332

578 349 229

590 349 241

674 349 325

468 353 115

n k n-k

475 359 116

662 359 303

456 367 89

728 373 355

407 379 28

401 389 12

626 389 237

724 389 335

492 397 95

559 397 162

623 397 226

715 401 314

458 409 49

827 419 408

746 443 303

n k n-k

862 443 419

786 449 337

831 457 374

920 461 459

630 463 167

760 463 297

618 467 151

577 479 98

748 491 257

763 503 260

764 503 261

849 503 346

957 503 454

553 521 32

779 521 258

Table A.2: Factorizations of m(x) = p(x) · s(x) = xn + x + 1

n k n-k

235 167 68

283 179 104

199 181 18

207 199 8

319 199 120

405 223 182

357 229 128

281 233 48

n k n-k

291 251 40

383 269 114

321 281 40

417 281 136

543 281 262

295 293 2

341 293 48

509 317 192

n k n-k

381 373 8

473 389 84

463 401 62

617 409 208

477 431 46

521 431 90

471 433 38

615 457 158

n k n-k

765 457 308

823 457 366

785 463 322

965 487 478

675 503 172

Table A.3: Factorizations of m(x) = p(x) · s(x) = xn + x2 + 1
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