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1 Introduction

Sandia National Laboratories is interested in numerical methods for solving con-
tinuation problems on large scale systems. Some methods of particular interest
are the Recursive Projection Method (RPM) of Shroff and Keller [8] and the
Newton-Picard methods (NPs) of Lust et al.[5]

Often information about a dynamical system is given in the form a time-
stepper. A time-stepper is a map that brings a solution from a time t to a time
t+ T . It may be described by the integration of a system of ODEs or PDEs. It
may also be given by a “black-box” time integrator; a compiled code which takes
the state of a system at time t as input, and outputs the state of the system
at time t + T . The RPM and NP algorithms are used in tracking parameter
dependent steady states of systems for which only “black-box” time-steppers
are available.

Many dynamical systems of interest to Sandia National Laboratories are only
available in the form of “black-box” time-steppers. John Shadid at Sandia is
particularly interested in studying the macroscopic behavior of systems for which
there exist only microscopic physical descriptions, for example using molecular
dynamics codes to describe reaction-diffusion systems. Here the molecular dy-
namics simulation acts as a time–stepper for macroscopic parameters of interest.

In this project I studied a specific NP algorithm, Newton-Picard Gauss-
Seidel (NPGS) for tracking periodic solutions of parameter dependent problems.
I implemented a version of the algorithm as a subroutine in a code under devel-
opment at Sandia to gain insights into practical considerations and limitations
of the method.

Section two of this report gives a general idea of the NPGS method. For
a more thorough presentation, see the original paper by Lust et. al. [5]. Sec-
tion three presents a continuation problem used to verify the functionality of
my code. The fourth section describes the algorithms as coded in the subrou-
tine, including information about constants and specific routines called by the
code. The final section presents the numerical solution of the test problem,
reproducing the results presented in [5].

2 Derivation of Algorithm

2.1 Problem Formulation and Notation

Newton–Picard Gauss–Seidel was developed to “compute and determine the
stability of both stable and unstable periodic orbits”[5] in large-scale dynamical
systems within a continuation framework.
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Problem: Given

dx

dt
= f(x, λ), x ∈ IRN , λ ∈ IR, (1)

fix λ and find x(0) and T such that

x(T )− x(0) = 0
s(x(0), T, λ) = 0 (2)

It is assumed that there is an accurate initial guess of the solution x(0) and the
period T , for a given λ. In the second equation, s is a phase condition needed to
eliminate the translational invariance of periodic solutions. In the computations
discussed below, s is a linear phase condition independent of T :

f(x(0)(0), λ)T (x(0)− x(0)(0)) = 0 (3)

where x(0)(0) is the starting value for the Newton–Picard iterations.

Clearly we do not have a direct method of obtaining x(T ). An approximate
solution is obtained by numerically solving the initial value problem formed by
(1) with initial data x(0). Its solution is denoted by ϕ(x(0), T, λ). Then (2) is
written

F (x(0), T ) ≡
[
ϕ(x(0), T, λ)− x(0)

s(x(0), T, λ)

]
= 0 (4)

and the solution is denoted by (x(0)∗, T ∗, λ). The functions ϕ and s are assumed
to be twice differentiable with respect to x(0), T , and λ.

The matrix M∗ given by

M∗ :=
∂ϕ

∂x

∣∣∣∣
(x(0)∗,T∗,λ)

(5)

is the monodromy matrix. Its eigenvalues (called Floquet multipliers) are de-
noted by µ∗i , i = 1 . . . N . The stability of the periodic orbit is determined by
the magnitude of the eigenvalues. The orbit is linearly stable if |µ∗i | < 1 for all
i, otherwise the orbit is considered unstable.

2.2 Newton-Picard Gauss-Seidel

A common method for computing x(0) and T satisfying (4) is Newton’s method.
Newton’s method generates a sequence {(x(0)(k), T (k))} such that under certain
conditions {(x(0)(k), T (k))} → (x(0)(∗), T (∗)) where F (x(0)(∗), T (∗)) = 0. Given
a current guess (x(0)(k), T (k)), the (k + 1) guess is the root of the local linear
model of F (x(0), T ) in the neighborhood of (x(0)(k), T (k)).
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Algorithm NEWT: Newton’s method
GIVEN: (x(0)(0), T (0))

While (not converged)

(x(0)(k+1), T (k+1)) = −J−1F ((x(0)(k), T (k))) + (x(0)(k), T (k))

where J is the (N+1)×(N+1) Jacobian matrix of F evaluated at (x(0)(k), T (k)).

When N is large, Newton’s method is infeasible because the Jacobian must
be calculated using finite differences, with each function evaluation requiring
the solution of an initial value problem. The Newton–Picard methods seek to
reduce the computational cost of Newton’s method on problems with F of the
form (4) and for which the following assumption holds:

Assumption 1 Let y∗ = (x(0)∗, T ∗) denote an isolated solution to the system
(4), and let B be a small neighborhood of y∗. Let M(y) = ∂ϕ

∂x (y) for y ∈ B
and denote its eigenvalues by µi, i = 1, . . . , N . Assume that for all y ∈ B
precisely p eigenvalues lie outside the disk Cρ = {|z| < ρ}, 0 < ρ < 1 and that
no eigenvalue has modulus ρ; i.e., for all y ∈ B, |µ1| ≥ |µ2| ≥ . . . ≥ |µp| > ρ >
|µp+1|, . . . , |µN |.

Each iteration of Newton’s method requires the solution of a linear system
of the form:[

∂ϕ
∂x(0) − I

∂ϕ
∂T

∂s
∂x(0)

∂s
∂T

] [
∆x(0)

∆T

]
= −

[
ϕ(x(0), T, λ)− x(0)

s(x(0), T, λ)

]
(6)

Denote by U the subspace spanned by the eigenvectors associated with the p
eigenvalues of M with largest magnitude. Its orthogonal complement is given by
U⊥. Denote by Vp ∈ IRN×p and Vq ∈ IRN×(N−p) matrices the columns of which
are orthonormal bases for the spaces U and U⊥ respectively. Now x(0) ∈ IRN

can be decomposed:

x(0) = Vpp̃+ Vq q̃

with p̃ ∈ IRp and q̃ ∈ IRN−p. Left multiply the first N equations of (6) with
[Vq, Vp]T . The following facts are easily deduced; V Tp Vq = 0, V Tq Vp = 0 and
V Tq

∂ϕ
∂x(0)Vp = 0. Also V Tq

∂ϕ
∂T → 0 as the Newton iterates converge because at

the solution ∂ϕ
∂T is an eigenvector of ∂ϕ

∂x(0) with eigenvalue 1 ([4],pp.29-30) and
thus a vector in U . Equation (6) can be rewritten V Tq

∂ϕ
∂xVq − Iq 0 0
V Tp

∂ϕ
∂xVq V Tp

∂ϕ
∂xVp − Ip V Tp

∂ϕ
∂T

∂s
∂xVq

∂s
∂xVp

∂s
∂T

 ∆q̃
∆p̃
∆T

 = −

 V Tq (ϕ− x)
V Tp (ϕ− x)

s

 (7)

where the explicit function dependencies have been dropped. The first set of
N − p equations is solved using Picard iterations:

∆q̃[0] = 0,
∆q̃[i] = V Tq

∂ϕ
∂xVq∆q̃

[i−1] + V Tq (ϕ− x), i = 1, . . . , l,
∆q̃ = ∆q̃[l]

(8)
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Substitute ∆q̃ into (7); a linear system in ∆p̃ and ∆T remains. This new system
is p+ 1 equations in p+ 1 unknowns.[

V Tp
∂ϕ
∂xVp − Ip V Tp

∂ϕ
∂T

∂s
∂xVp

∂s
∂T

] [
∆p̃
∆T

]
= −

[
V Tp (ϕ− x)− V Tp

∂ϕ
∂xVq∆q̃

s− ∂s
∂xVq∆q̃

]
(9)

If we assume p � N then Vq has dimension close to N × N , making the
computation of Vq expensive. To avoid explicitly computing and storing Vq we
rewrite (8) and (9) in terms of ∆q = Vq∆q̃ and Q = VqV

T
q = IN − VpV Tp :

∆q[0] = 0,
∆q[i] = Q∂ϕ

∂x∆q[i−1] +Q(ϕ− x), i = 1, . . . , l,
∆q = ∆q[l]

(10)

[
V Tp

∂ϕ
∂xVp − Ip V Tp

∂ϕ
∂T

∂s
∂xVp

∂s
∂T

] [
∆p̃
∆T

]
= −

[
V Tp (ϕ− x)− V Tp

∂ϕ
∂x∆q

s− ∂s
∂x∆q

]
(11)

This formulation does not require the matrix Vq. The term ∂ϕ
∂xVp is formed

with only p matrix–vector products using the approximation ∂ϕ
∂x v ≈

1
ε [ϕ(x(0) +

εv, T ) − ϕ(x(0), T )]. Similarly each iteration of (10) requires a single matrix–
vector product. Therefore, approximately p+l integrations are needed to obtain
∆q and solve (11). Then (∆x(0),∆T ) = (∆q + Vp∆p̃,∆T ) solves the original
system (6). With p � N this is a significant reduction in computational cost
over Newton’s method using a Jacobian formed by finite differences.

Solving first for ∆q and using it to obtain ∆p̃ and ∆T is similar to a single
sweep of a Gauss–Seidel method, hence the name Newton–Picard Gauss–Seidel
method.

In summary the Newton-Picard methods combine the efficiency of the Pi-
card algorithm with the robustness of Newton’s Method. The idea, put forth
by Shroff and Keller[8] and Jarausch and Mackens[1, 2, 3] and summarized by
Lust et. al.[5], is “to use Newton’s Method on a small-dimensional subspace,
where the Picard iteration is slowly convergent or unstable, and to use the Pi-
card iteration on the complement of that subspace.”

3 Brusselator Problem

3.1 Problem

The Brusselator problem [6] involves a coupled nonlinear system of equations
derived from a hypothetical set of chemical reactions:

∂X

∂t
=
Dx

L2

∂2X

∂z2
+X2Y − (B + 1)X +A (12)
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∂Y

∂t
=
Dy

L2

∂2Y

∂z2
−X2Y +BX (13)

X and Y are concentrations of different chemical species; the parameters A and
B are fixed at values of 2 and 5.45 respectively, Dx = .008 and Dy = .004.
The characteristic length L is the bifurcation parameter of the problem. The
Dirichlet boundary conditions are given by

X(t, z = 0) = X(t, z = 1) = A (14)

Y (t, z = 0) = Y (t, z = 1) = B/A (15)

A steady-state solution of this problem is given by X = A and Y = B/A.
From this we may form a trivial steady-state branch of the corresponding
continuation problem. Hopf bifurcations occur at the parameter values of
Lk = 0.5130k, k = 1, 2, . . .. A Hopf bifurcation is characterized by “the ap-
pearance, from equilibrium state, of small–amplitude periodic oscillations.” [4]
Branches of periodic solutions extend from these bifurcation points. In the Lust
et. al paper [5] the NPGS algorithm is used to compute solutions along the first
three of these branches. As a test of the code written for this project, these
curves are reproduced.

3.2 Integrator

The NPGS algorithm requires a function which acts as a time-stepper. (Recall
that a time-stepper is a map that brings a solution from a time t to a time
t + T ). In the context of the Brusselator problem this is a function which
takes the concentrations at t = 0, X(0) and Y (0), and returns X(T ) and Y (T ).
The integration of the system is performed with the operator splitting method
discussed by D. Ropp and J. Shadid in [7].

Given an initial guess u(0) = [X(0), Y (0)]T and some time t, find u(t) =
[X(t), Y (t)]T . Form two operators FR(u) and FD(u) for the reaction and diffu-
sion terms respectively.

FR(u) =
[
A− (B + 1)X +X2Y

BX −X2Y

]
(16)

FD(u) =

[
Dx
L2

∂2X
∂2z

Dy
L2

∂2Y
∂2z

]
(17)

The system is written

du

dt
= FD(u) + FR(u), z ∈ [0, 1], t > 0 (18)

“A single step of a first-order splitting method advancing the solution from tn

to tn+1 = tn + ∆t amounts to an application of time discretizations applied to
the system

du∗

dt = FR(u∗) on (tn, tn+1), u∗(tn) = un,

du∗∗

dt = FD(u∗∗) on (tn, tn+1), u∗∗(tn) = u∗(tn+1),
(19)
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with un+1 = u∗∗(tn+1).”[7] The reaction part has no spatial dependence; its
integration is performed by the classical 4th–order Runge-Kutta method. The
diffusion part does have a spatial dependence; its integration is performed by
the backward Euler method.

Algorithm RK: 4th–order Runge-Kutta Method
Given a time step h and initial value un
K1 = FR(un)
K2 = FR(un + 1

2hK1)
K3 = FR(un + 1

2hK2)
K4 = FR(un + hK3)
un+1 = un + h

6 (K1 + 2K2 + 2K3 +K4)

Algorithm BE: backward Euler Method
Given a time step h and initial value un
un+1 = un + hFD(un+1)

Algorithm BI: Brusselator Integrator
Given a time interval [0, T ] and initial value u0.

Let h = T/1000
For i = 0, i < 1000, i+ +

u∗i+1 = RK(h, ui)
ui+1 = BE(h, u∗i+1)

end loop

uT = u1000

The backward Euler method applied to the diffusion term of the Brusselator
problem requires the solution of a sparse linear system. A tri-diagonal matrix
solver is used. The Runge-Kutta method requires four function evaluations.

4 Code

This project involved implementing the Newton–Picard Gauss–Siedel method
as a subroutine for Andrew Salinger’s CAPO code. The CAPO code is envi-
sioned to be a set of numerical routines for performing standard continuation
and bifurcation computations using only “black box” time integrators to obtain
necessary information of function behavior.

The NPGS(2) algorithm is Algorithm 3.2 in [5]. I present it here including
details specific to my implementation. Following the algorithm are the addi-
tional subroutines called by NPGS(2).

Algorithm NPGS(2): Newton–Picard Gauss-Siedel
Given: x(0)(0)

, T (0)
, starting basis Ve,

M(x(0), T )v routine, ϕ(x(0), T ) routine.
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Compute: finit = f(x(0)(0), T, λ) = (ϕ(x+ ε, T )− ϕ(x, T ))/ε
v = ϕ(x(0)(0), T )
r = v − x(0)(0)

while (not converged)

Create We,Se,Re
Call SubspaceIterations(We,Se,Re,p)
if (p > 0)

Build Vp
Calculate dq
Calculate dp, dT
x(0)+ = dq + Vpdp
T+ = dT

else

dq = M(x(0), T )r + r
lhs = ϕ(x(0), ε, λ)− x(0)/ε
rhs = finit · (x(0)− x(0)(0) + dq)
dt = −rhs/lhs
x(0)+ = dq
T+ = dT

Adjust Basis size Ve
Orthonormalize Ve
v = ϕ(x(0), T )
r = v − x(0)

end while

Algorithm SI: Subspace Iterations
Given: We, Se, Re, p.
for (1 : subspaceIters)

We = M(x(0), T )Ve
Se = V Te We

Perform Ordered Schur Decomposition on Se → YeReY
T
e

if (i < subspaceIters)
Ve = WeYe
Orthonormalize Ve

end if

end for

An approximation of the initial subspace is calculated by Algorithm InitSub
below. The general idea is to form vectors of random numbers and perform
subspace iterations until a “good” approximation of the dominant eigenspace
is found. Through trial and error it was found performing 15 iterations tends
to converge the vectors to the desired eigenvectors. A future implementation
should use a more sophisticated method for stopping the iterations. For the
tests an initial subspace consisting of four vectors is used. The random vectors
are produced in an ad hoc manner; the only restriction used is there are no zero
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entries in the vector.

Algorithm InitSub: Initialize Subspace
for (1 : 4)

Tperturbed = (rand()%10) + 20T
r = ϕ(x(0)(0), Tperturbed)
r+ = .01 (an N vector of .01’s)

Add r as a column of Ve.
end for

Orthonormalize Ve
for (1 : 15)

Perform Subspace Iterations

end for

Orthonormalize Ve

In NPGS(2) the matrix Vp is formed by multiplying the first p columns of Ve
by the p× p matrix consisting of the upper left p× p block of Se. The Ordered
Schur Decomposition routine is the LAPACK routine dgees. The details for
calculating dq, dp, and dT can be found in [5]. NPGS(2) as written here assumes
a linear phase condition of the form

f(x(0)(0), λ)T · (x(0)− x(0)(0)) = 0 (20)

5 Results

This implementation of the Newton–Picard Gauss–Seidel algorithm successfully
reproduces the results presented in Figure 4.1 of [5] for the Brusselator problem.
The following three figures are the branches of periodic solutions extending from
the Hopf bifurction points along the trivial steady–state solution X = A/B. The
horizontal axis represents the reactor length, L, while the vertical axis represents
the period of the solution, T .
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Figure 1: Solution Branches
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