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Abstract

Off-the-shelf Reinforcement Learning (RL) algorithms suffer from slow learning per-
formance, partly because they are expected to learn a task from scratch merely through
an agent’s own experience. In this thesis, we show that learning from scratch is a lim-
iting factor for the learning performance, and that when prior knowledge is available
RL agents can learn a task faster. We evaluate relevant previous work and our own
algorithms in various experiments.

Our first contribution is the first implementation and evaluation of an existing inter-
active RL algorithm in a real-world domain with a humanoid robot. Interactive RL was
evaluated in a simulated domain which motivated us for evaluating its practicality on a
robot. Our evaluation shows that guidance reduces learning time, and that its positive
effects increase with state space size.

A natural follow up question after our first evaluation was, how do some other
previous works compare to interactive RL. Our second contribution is an analysis of
a user study, where naı̈ve human teachers demonstrated a real-world object catching
with a humanoid robot. We present the first comparison of several previous works in a
common real-world domain with a user study.

One conclusion of the user study was the high potential of RL despite poor usabil-
ity due to slow learning rate. As an effort to improve the learning efficiency of RL
learners, our third contribution is a novel human-agent knowledge transfer algorithm.
Using demonstrations from three teachers with varying expertise in a simulated do-
main, we show that regardless of the skill level, human demonstrations can improve
the asymptotic performance of an RL agent.

As an alternative approach for encoding human knowledge in RL, we investigated
the use of reward shaping. Our final contributions are Static Inverse Reinforcement
Learning Shaping and Dynamic Inverse Reinforcement Learning Shaping algorithms
that use human demonstrations for recovering a shaping reward function. Our experi-
ments in simulated domains show that our approach outperforms the state-of-the-art in
cumulative reward, learning rate and asymptotic performance.

Overall we show that human demonstrators with varying skills can help RL agents
to learn tasks more efficiently.
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Chapter 1

Introduction

Reinforcement Learning (RL), the problem of mapping situations to actions in order

to maximize a reward signal [1], provides a convenient sequential decision making

framework for conducting research on task learning. One of the major limitations of RL

solutions is the high number of repetitions of observation and action selections a typical

RL agent has to perform before the agent can reach a desired level of task performance.

Slow learning performance and the difficulty of defining a reward function are major

obstacles preventing practical use of RL solutions.

One of the main causes of the slow learning rates of RL algorithms, is the fact that

the agents are assumed to have no prior knowledge of the task they are expected to

solve. In this thesis, we show that learning from scratch is a limiting factor for the lear-

ning performance of standard RL agents and that when prior knowledge is available,

if the agent is provided means of leveraging this prior knowledge it can learn a task

faster.

In RL problems the reward function can be thought of as a compact definition of the

task. This reward function is often intuitive to define in most benchmarking domains.

However, in the context of complex domains and real world problems, it may not be

practical or feasible to define a task in advance as this may require a detailed knowledge

of the state-space. This particular knowledge may be unavailable and hard-coding a
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reward function may not be an option, or simply the definition of a task may change

based on external requirements of users. In this thesis, we address this problem by

implementing Inverse Reinforcement Learning for leveraging human demonstrations

and computing a complementary reward function for an RL agent. We show that this

secondary human reward function can be used for reward shaping for an RL agent to

be able to fuse an environment reward signal with the learned reward signal.

The general theme of this thesis is Reinforcement Learning from Demonstration: a

combination of RL and Learning from Demonstration (RLfD). In a nutshell, we define

RLfD as the class of agents that can leverage prior knowledge, specifically the prior

knowledge obtained from an entity other than the agent itself, in an RL setting. In this

thesis, we show that this class of agents have superior learning capabilities compared

to off-the-shelf RL learners.

Augmenting the abilities of RL agents with prior knowledge is a relatively new

topic of research within the field of RL. Design of RLfD agents is an underconstrained

process. Some of the challenges are:

• Lack of infrastructure: Widely used RL algorithms are not equipped with

means for collecting priors about the task or possible solutions for the task.

• Source of prior: There are many possible sources for gathering prior knowledge

with varying consistency and quality; a previously trained RL agent, an online

database for directing queries, a previously generated policy for a task and a

human teacher can all be valid sources of prior knowledge.

• Use of prior: The structure in which the prior is conveyed to an RL agent is

crucial and it is not immediately clear how an agent can take advantage of this

new input.
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1.1 Contributions and Overview

In this thesis, we address all three of the challenges listed above. Our focus on obtaining

the priors from humans and evaluating the use of human knowledge for RL agents in

several ways. The overview of this thesis is as follows:

• In Chapter 2 we provide background material on Learning from Demonstration,

the Reinforcement Learning problem, the Inverse Reinforcement Learning prob-

lem and Reinforcement Learning from Demonstration, specifically by the means

of Reward Shaping and Transfer Learning.

• In Chapter 3 we present a study of a previously introduced RL algorithm that al-

lows a human demonstrator to provide online guidance and rewards to the agent.

Our study is the first evaluation of this method in real-world robotic systems [2].

We show that guidance reduces the number of explored state and the learning

time, and that its positive effects increase with state space size. In the presence

of guidance the teacher reduces the number of interactions earlier in the training

process and the teacher provides more positive rewards.

• In Chapter 4 we present our findings on a user study where naı̈ve teachers help a

robot learn a task with three previously introduced learning from demonstration

algorithms, one of which is the algorithm we evaluated with an expert teacher

in the previous chapter. Here we evaluate the effect of human-agent interactions

and present the results where we quantitatively and qualitatively compare the

algorithms on a common real-world task [3].

• In Chapter 5 we show that it is possible to collect human demonstrations from

teachers and use the teacher as an offline resource for modeling policies and

for action selection advice. We contribute a novel RL algorithm Human-Agent

Transfer (HAT) and evaluate the algorithm in a simulated soccer domain with

three different teachers of varying skills [4]. We show that regardless of the skill

level, human demonstrations can improve the asymptotic performance of an RL
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agent.

• In Chapter 6 we introduce two novel RL algorithms, Static Inverse Reinforce-

ment Learning Shaping (SIS) and Dynamic Inverse Reinforcement Learning

Shaping (DIS) where human demonstrations serve as an offline resource for

learning a secondary reward function [5] for reward shaping [6].We present two

sets of experiments in a two dimensional Maze domain, and the 27 dimensional

Mario AI domain. We compare the performance of our algorithms to previously

introduced reinforcement learning from demonstration algorithms. Our exper-

iments show that our approach outperforms the state-of-the-art in cumulative

reward, learning rate and asymptotic performance.

Overall the contributions of this thesis show that in several simulated domains

RLfD agents can surpass the abilities of RL agents. An RL agent can benefit from

human priors in order to learn a task, improve its learning rate of a task, and it can do

so by combining priors with its own experience.
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Chapter 2

Background

This section provides background information on topics discussed throughout this the-

sis. We organize the sub-sections to narrate why we talk about the topic, what has

been done in that field of research, and finally how previous work relates to topics we

present. We use a general-to-specific pattern with the hope to convey our deductive

reasoning throughout this work.

2.1 Learning from Demonstration

In their book, Chernova and Thomaz define Robot Learning from Demonstrations as

the field that explores techniques for learning a task policy from examples provided by a

human teacher [7]. Algorithms for robot LfD seek to enable human users to expand the

capabilities of robots through teaching instead of explicit programming. Specifically,

LfD methods enable new robot behaviors to be learned based on demonstrations of

the desired actions performed by the teacher. Many LfD algorithms are inspired by

naturally occurring learning paradigms in humans and other animals, and the broad

research goal is to develop an intuitive method of programming that is accessible to

untrained, naı̈ve, users.

There are many ways to define a LfD algorithm, which often creates confusion
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when one tries to understand where an approach stands within the field. Conveniently

enough, one recent survey of the field presents a categorization of existing algorithms

in order to help comparative assessments. In this survey Argall et al. [8] categorize

then existing algorithms by:

• Demonstration Technique: teleoperation [9, 10, 11], shadowing [12, 13], sen-

sors on the teacher [14, 15, 16] or external observation [17, 18]; the categoriza-

tion is dependent on who performs the task during demonstration (the human or

robot) and what information about the demonstrator’s actions is available.

• Policy Derivation Method: mapping functions (e.g., classification [9, 19, 20]

and regression [10] techniques), system model (e.g., reinforcement learning [21,

22]) and planning [23] approaches.

Previous work has proposed dozens of variants of learning from demonstration algo-

rithms within each category mentioned above. However following three algorithms are

of specific interest to us, as we will see them being used later in Chapter 4: Interac-

tive Reinforcement Learning [24], Behavior Networks [12, 25], and Confidence-Based

Autonomy [9].

We introduce in detail and evaluate these three algorithms later in Chapter 4 in a

comparative user study on a common real world task. We specifically chose these three

algorithms because they are good representatives of the three different categories as

presented by Argall et al. for (high level) task learning [8]. What we have learned from

the implementation, and the naı̈ve users’ feedback on these different approaches influ-

enced the algorithms we present in this thesis. Throughout our literature search and

the user study we found that a complementary approach that would bring the positive

aspects of multiple algorithms together can potentially improve teaching experience,

learning efficiency, and the task performance.
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2.2 Reinforcement Learning

Throughout this work we will frequently refer to concepts related to Reinforcement

Learning, and that is why here we introduce a formal definition of Reinforcement

Learning problems. We also talk about how previous work has used Learning from

Demonstration within Reinforcement Learning framework, mainly as a way to convey

prior knowledge to an agent.

Reinforcement learning (RL) is a common approach to agent learning from experi-

ence. We define reinforcement learning using the standard notation of Markov decision

processes (MDPs) [26, 27]. At every time step the agent observes its state s ∈ S as a

vector of k state variables such that s = 〈x1, x2, . . . , xk〉. The agent selects an action

a from the set of available actions A at every time step, transitions into another state

s′ and subsequently receives a reward r based on a reward function R(s′). An MDP’s

reward function R : S × A 7→ R and (stochastic) transition function T : S × A 7→ S

fully describe the system’s dynamics. The agent will attempt to maximize the long-

term reward determined by the (initially unknown) reward and transition functions.

The agent chooses which action to take in a state via a policy, π : S 7→ A. Policy

π(s) is modified by the agent over time to improve performance, which is defined as

the expected total reward. Instead of learning π directly, many RL algorithms instead

approximate the action-value function, Q : S ×A 7→ R, which maps state-action pairs

to the expected real-valued return of an action chosen at a state. Value functions V (s)

quantify how valuable a given state is, and action-value functionsQ(s, a) describe how

valuable is to take an action, at a given state. Depending on the RL approach, an agent

may use either V or Q to assess the potential return of a state, or an action.

In Chapter 5, we introduce (RL) agents that learn using Sarsa [28, 29], a well

known but relatively simple temporal difference RL algorithm. Sarsa agents learn to

estimate a state-action value function Q(s, a). While some RL algorithms are more

sample efficient than Sarsa (i.e. agents can reach to same task performance with less
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experience), in Chapter 5 we will focus on Sarsa for the sake of clarity, as it is more

likely that a wider audience would be familiar with Sarsa. We record demonstrations

as temporal sequences of t state-action pairs {(s0, a0), ..., (st, at)}. However, these

sequences typically only cover a small subset of all possible states in a domain. Typ-

ically an RL agent’s goal is to generalize from the demonstrations and learn a policy

π : S 7→ A, covering all states that imitates the demonstrated behavior. Most sim-

ilar to our approach in Chapter 5 is the work of Smart and Kaelbling, which shows

that human demonstration can be used to bootstrap reinforcement learning in domains

with sparse rewards by initializing the Q(s, a) (i.e. action-value function) using the

observed states, actions and rewards [30]. In contrast to this approach, our work uses

demonstration data to learn generalized rules, which are then used to bias the reinforce-

ment learning process.

For RL agents, policies are as important as value functions since π defines which

action to take next. To clarify the connection between a policy and a value function,

consider an agent that employs a greedy policy which dictates the agent to take the most

valuable action at a given state s. An agent could use a policy argmax
a

Q(s, a) which

would return the action that maximizes Q(s, a) for s. This is just a simple example,

and when an agent uses V (s) instead of Q(s, a) learning a more sophisticated policy

π(s) may be necessary instead of simply using a greedy policy [27]. Previous work

proposed different algorithms for using demonstration data to learn π. Deisenroth et

al. present a survey on model-free and model-based policy search algorithms with a fo-

cus on applications in robotics [31]. Fernandez et al. present Probabilistic Policy Reuse

algorithm where an agent can exploit a previously learned policy in a new task. This

work is at the intersection of policy learning with transfer learning. For the algorithm

we present in Chapter 6, we suggest to use a human reward function recovered from

demonstrations via Inverse Reinforcement Learning. We introduce Inverse Reinforce-

ment Learning and Transfer Learning in the following sections of this chapter.
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There is one big problem with LfD algorithms that RL can help. Typically, the

final performance of LfD algorithms are inherently limited by the quality of the infor-

mation provided by the human teacher. Most algorithms assume the dataset to contain

high quality demonstrations performed by an expert. In reality, teacher demonstrations

may be ambiguous, unsuccessful, or suboptimal in certain areas of the state space. A

naı̈vely learned policy will likely perform poorly in such areas [21]. To enable the

agent to improve beyond the performance of the teacher, learning from demonstration

may be combined with learning from experience, for which RL provides a theoreti-

cally sound framework. In a recent work we investigated the use of reward shaping

with LfD [32]. In RL, for reward shaping an agent sums one or more extra reward

function(s) with the environment reward. In environments where the pre-coded reward

function is sparse (e.g. r := 0 throughout the task and r := 1 when the agent reaches

the goal), a shaping reward can provide data for a faster value approximation, which

in turn can improve learning speed. In our approach, we allowed a demonstrator to

make suboptimal demonstrations that lead to successful states. By using a shaping re-

ward, their algorithm uses the demonstrations to speed up learning while dropping the

requirement for the demonstrations to be given by an expert.

Just as RL algorithms can improve an LfD technique’s final performance, LfD al-

gorithms possess a number of key strengths that can be beneficial for solving RL prob-

lems. Most significantly, demonstration leverages the vast task knowledge of the hu-

man teacher to speed up learning either by eliminating exploration entirely [33, 34], or

by focusing learning on the most relevant areas of the state space [30]. Demonstration

also provides an intuitive programming interface for humans, opening possibilities for

policy development to naı̈ve teachers.

In robotics, RL approaches have enjoyed multiple past successes (e.g., inverted

Helicopter control [35], and agent locomotion [36]). However they frequently take

substantial amounts of data to learn a reasonable control policy. In many domains,

9



collecting such data may be slow, expensive, or infeasible, motivating the need for

ways of making RL algorithms more sample-efficient.

2.3 Inverse Reinforcement Learning

Here we formally introduce the Inverse Reinforcement Learning (IRL) problem, and

some commonly known solution techniques. IRL problem is also known as Inverse

Optimal Control (IOC), or Inverse Optimal Planning (IOP) problem. We will use the

name IRL in this thesis, and refer to IRL later in Chapter 6. Here we give details that

motivate the use of IRL in our work.

We saw in the previous section that RL problems consist of learning a value func-

tion, or a policy given a reward function. In contrast, IRL research deals with the

problem of recovering a reward function (or a cost function) given an optimal policy

and a state transition model (i.e. environment model). However, there are IRL algo-

rithms that do not require the environment model to recover a reward function and we

will refer to these as model-free IRL algorithms.

Even though the history of IOC goes back to Kalman’s question “When is a linear

control system optimal?” [37], the number of publications show that in robotics and

agents research the topic became more popular in early 2000’s. In an early paper,

Ng and Russell base the motivation of IRL approaches to natural phenomena, stating

that a reward function for humans’ and animals’ behavior control is often unknown

[38]. For instance, for a bee that flies off to collect nectar, it is hard to know how

the bee weights the relative benefit of flight distance against flight time, and risk from

wind and predators in advance. Another similar example is human economic behavior.

Therefore, it makes sense to try learn these relative weights based on observation of

world states and executed actions. In his lecture notes Abbeel adds to this motivation a

presupposition that a reward function also provides the most compact and transferable

definition of a given task [39].
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The general formal definition of an IRL problem is as follows: For a reward func-

tion that consists of linear combinations of a set of reward features R(s) = w>φ(s),

φ(s) is the vector of reward features that we compute based on the state vector, and

w is a vector feature weights. An IRL algorithm aims to find a set of optimal feature

weights w∗ such that for all policies: w∗>µ(π∗) ≥ w∗>µ(π) (note that µ(π) symbol-

izes the expected cumulative sum of reward feature values (i.e. feature expectations)

given a policy π. Also, π∗ is the optimal policy, whereas π is a suboptimal policy).

Some of the challenges for finding solutions to IRL problems are: the ambiguity

of the solution (that is, more than one reward function may satisfy the constraints), the

assumption that the expert demonstrations are optimal, and the assumption that we can

enumerate all policies in order to compare one against another when finding an optimal

set of reward features.

Abbeel divides existing IRL solution approaches into three main categories [39]:

• Maximum Margin approach: Ratliff et al. introduce a margin function m(π∗, π)

that returns an evaluation of disagreement between a given policy and the optimal

policy, and aims to find a set of reward feature weights so that for all policies:

w>µ(π∗) ≥ w>µ(π) +m(π∗, π) [40, 41, 42].

• Feature Expectation Matching: Builds on the observation that for a policy π to

be guaranteed to perform as well as the optimal policy π∗, it is sufficient that the

feature expectations match within a certain error threshold ε:

|w∗>µ(π)−w∗>µ(π∗)| ≤ ε [22, 43, 44, 45].

• Reward Function as a Parameter: Assumes that an expert behaves according to

a probabilistic policy π(a|s,R, α), that is the expert’s policy is a function of

the reward function. This formulation allows the use of Bayesian inference and

evaluation of likelihood of a trajectory for a given R, and α. Previous work then

used various methods to find a reward function by sampling from this distribution

and optimizing the likelihood of the policy [46, 47, 48].
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Example applications of the IRL algorithms implemented in the work we cite above

are simulated highway driving, aerial imagery based navigation, parking lot naviga-

tion, destination prediction for urban navigation, human path planning, human goal

inference, and quadruped robot locomotion.

All of the solutions we cite above are model based, where a transition model of

the world – either deterministic, or probabilistic – is assumed to be known. Although

outnumbered by model-based approaches , there are model-free IRL solutions that do

not require an environment model. Klein et al. [49] approach the IRL problem as a

supervised learning problem, where they suggest a two-layer approach. First layer

consists of training a classifier to choose a score function q(s, a) that evaluates the

association of a state with an action, and the second layer learns a regressor to predict a

reward r̂ = q(s, a) − γq(s′, a′), i.e. the difference between the past state-action score

and the current state-action score.

Boularias et al. also introduce Relative Entropy Inverse Reinforcement Learning

(RE-IRL), a model-free IRL algorithm [5]. RE-IRL aims to minimize the KL - diver-

gence between two probability distributions: a conditional distribution P (τ|w), and a

user-defined distribution Q(τ), where τ = 〈(s0, a0), . . . , (sH , aH)〉 is a demonstrated

trajectory of length H , and w is the vector of reward feature weights. The distribu-

tion Q can be defined so that samples from a particular part of the trajectory space are

weighted with more importance than others. If we want to recover the most informative

reward feature weights then we can chooseQ(τ) to be a uniform distribution across the

trajectory space. Boularias et al. [5] define the RE-IRL problem as:

max
w

g(w) = w>fπE − lnZ(w)− λ‖w‖1

Z(w) = ΣτQ(τ) exp(w>fτi )

P (τ|w) =
1

Z(w)
Q(τ) exp(w>fτi )
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For finding the vector of reward feature weights that maximize the objective function

g(w), the algorithm empirically estimates the subgradient of the objective function

with importance sampling of trajectories and executes gradient ascent.

Boularias et al. evaluate the algorithm on a simulated robot for ball-in-a-cup task,

based on human expert demonstrations where a human tries to catch a ball attached to

a string hanging off the bottom of a cup [5]. Muelling et al. used RE-IRL for inferring

strategies for table tennis based on human gameplay tracking data [50]. They show

that the estimated reward function was able to capture strategic information enough to

distinguish the expert among players with different skill levels and styles.

In Chapter 6 we use RE-IRL algorithm as an off-the-shelf solution for recovering

a reward function from demonstration data. We do not intend to improve RE-IRL nor

do we plan to go in the direction of IRL research. The requirement of the algorithms

we present is to employ a simple to implement, yet usable, model-free IRL algorithm

that can recover a function that would help a learner assess how desirable is a change

in the world state. Using relative weights of reward features, we execute gradient

ascent in order to reach a goal state on a path that prioritizes the relative importance

of the features along the path (e.g. approach in x direction can be more desirable than

approach in y direction).

2.4 Transfer Learning

Transfer Learning (TL) allows an agent to begin learning with an informative prior

instead of relying on random exploration [51]. The intuition behind TL is that general-

ization may occur not only within tasks, but also across tasks.

In Chapter 5 we introduce Human-Agent Transfer HAT algorithm. For HAT, we use

Rule Transfer [52], a particularly appropriate transfer method that is agnostic to the

knowledge representation of the source learner. The ability to transfer knowledge be-

tween agents that have different state representations and/or actions is a critical ability
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when considering transfer of knowledge between a human and an agent.

The following steps summarize Rule Transfer:

1a: Learn a policy (π : S 7→ A) in the source task. Any type of reinforcement

learning algorithm may be used.

1b: Generate samples from the learned policy After training has finished, or during

the final training episodes, the agent records some number of interactions with

the environment in the form of (S,A) pairs while following the learned policy.

2: Learn a decision list (Ds : S 7→ A) that summarizes the source policy. After

the data is collected, a propositional rule learner is used to summarize the col-

lected data to approximate the learned policy by mapping states to actions.1 This

decision list is used as a type of inter-lingua, allowing the following step to be

independent of the type of policy learned (step 1a).

3: Use Dt to bootstrap learning of an improved policy in the target task. For

instance, previous work [52] provided three ways of leveraging this knowledge;

we discuss two of these methods later in Chapter 5.

Transfer learning methods for reinforcement learning can transfer a variety of infor-

mation between agents. However, many transfer methods restrict what type of learning

algorithm is used by both agents (for instance, some methods require temporal differ-

ence learning [53] or a particular function approximator [54] to be used in both agents).

However, when transferring from a human, it is impossible to copy a human’s “value

function” — both because the human would likely be incapable of providing a com-

plete and consistent value function, and because the human would quickly grow wary

of evaluating a large number of state-action pairs.

1Additionally, if the agents in the source and target task use different state representations or have differ-
ent available actions, the decision list can be translated via inter-task mappings [52, 53] (as step 2b). For our
work, this translation is not necessary, as the source and target agents operate in the same task.
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In a recent work by Knox and Stone [55], their TAMER [56] system learns to predict

and maximize a reward that is interactively provided by a human. The learned human

reward is combined in various ways with Sarsa(λ), providing significant improvements.

The primary difference between HAT and this method is that we focus on leveraging

human demonstration, rather than estimating and integrating a human reinforcement

signal.

The idea of transfer between a human and an agent is somewhat similar to implicit

imitation [57], in that one agent teaches another how to act in a task, but HAT does not

require the agents to have the same (or very similar) representations.

Allowing for such shifts in representation gives additional flexibility to an agent de-

signer; past experience may be transferred rather than discarded if a new representation

is desired. Representation transfer is similar in spirit to HAT in that both the teacher

and the learner function in the same task, but very different techniques are used since

the human’s “value function” cannot be directly examined.

High-level advice and suggestions have also been used to bias agent learning. Such

advice can provide a powerful learning tool that speeds up learning by biasing the be-

havior of an agent and reducing the policy search space. However, existing methods

typically require either a significant user sophistication (e.g., the human must use a

specific programming language to provide advice [58]) or significant effort is needed

to design a human interface (e.g., the learning agent must have natural language pro-

cessing abilities [59]). Allowing a teacher to demonstrate behaviors is preferable in

domains where demonstrating a policy is a more natural interaction than providing

such high-level advice.

2.5 Reward Shaping

Reward shaping, derived from behavioral psychology [60], is a way of incorporating

prior knowledge in the learning process. A shaping reward F provides an agent with
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additional information after each state transition. With shaping rewards, an agent is

rewarded for taking appropriate steps toward the goal. This extra reward supplements

the environment reward which is typically defined as a sparse function for practical

reasons.

The extra reward signal F , defined by agent designers, is added to the environment

reward R, defined by problem designers. The agent learns a task using the shaped

reward R′:

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′) (2.1)

F function usually encodes heuristic knowledge, and is intended to complement the

typically less informative signalR. As we mentioned earlier, the agent’s goal is defined

by the reward function, and by manipulating the reward signal we may risk changing

the task. Ng et al. [61] proved that potential-based shaping is a sound way to provide a

shaping reward without changing the reinforcement learning problem.

2.6 Reinforcement Learning from Demonstration

RL from Demonstration (RLfD) is a learning setting for RL agents where both de-

monstrations and an environment reward signal are available. Algorithms use different

methods to convert demonstrations into a representation that the agent will be able to

use as heuristic information and the environment reward is treated as the ground truth

for learning. Early work on Reinforcement Learning from Demonstration (RLfD) was

presented by Schaal [62], in which the term described a set of approaches that lever-

aged initial training for learning a policy and a value function from demonstrations,

followed by a “trial by trial learning” with RL.

Most recently, Brys et al. introduced a new algorithm we refer to as Similarity

Based Shaping (SBS) [32]. With the SBS algorithm Brys et al. took a different ap-

proach to investigate the use of prior knowledge as a potential-based shaping reward.
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The SBS algorithm uses human demonstrations as a potential function ΦD(s, a) for

potential-based shaping. With this approach each demonstrated state-action pair is as-

sumed to be desirable for the agent, and using a similarity metric, the SBS algorithm

computes a shaping reward F . During learning, the agent receives a shaped reward sig-

nalR′ = R+F which is the combination of the environment reward (i.e. ground truth)

and the shaping reward. The SBS algorithm uses non-normalized multi-variate Gaus-

sian distributions to compute the similarity between demonstrated states and observed

states throughout learning.
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Chapter 3

Effect of Human Guidance and
State Space Size on
Interactive Reinforcement
Learning

In this chapter, we study how Reinforcement Learning can be made more efficient for

real-world robotic systems by enabling human teachers to provide feedback at run-

time. Our feedback differs from the related work in the sense that the teacher can

provide not only reward for the preceding action but also guidance for the subsequent

action. Our work builds upon a series of studies by Thomaz et al. that show that in

a reinforcement learning scenario users tend to not only reward past actions but also

provide anticipatory rewards to guide the learner in future actions [63]. Based on this

analysis, Thomaz and Breazeal present Interactive Reinforcement Learning (Interactive

RL), an algorithm that enables a human trainer to 1) provide positive and negative

rewards in real time in response to robot actions, and 2) provide anticipatory guidance

input that restricts action selection choice and guides the learner towards performing

the desired behavior [24]. The authors show that incorporating user guidance into the

policy learning process significantly improves the learning rate of a software agent by

reducing the number of states it explores.
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We report the results of a case study in which Interactive Reinforcement Learning

was applied to teaching an Aldebaran Nao robot. To our knowledge, this work is the

first to apply this type of learning algorithm to a real-world robotic system. To evaluate

the approach, we closely reproduce the interactive reward interface proposed in [24]

and perform four experiments comparing Interactive RL with and without anticipatory

guidance for two different state space sizes. We discuss modifications made to apply

this learning approach to a real-world system. Our results show that guidance signif-

icantly reduces the learning rate, and that its positive effects increase with state space

size. We conclude with a discussion of the benefits and challenges of using Interactive

Reinforcement Learning in real-world robotic applications.

3.1 Overview

The ability to acquire and customize robot behavior through learning is vital for the

successful deployment of robots in a broad range of consumer and service applications.

In order for robots to become effective assistants in diverse human environments we

must develop the capability to quickly and efficiently customize robot behavior and

learn new tasks. Numerous works have addressed the challenges of learning in complex

real-world environments [64, 65]. One popular technique is Reinforcement Learning

(RL) [66], which enables a robot to learn from rewards it obtains while attempting to

perform its task. Although RL algorithms have had great success in offline learning

and software applications, the large amount of data and high exploration times that

such algorithms require make them intractable for many real-world robotic domains.

A number of recent work has shown that in the presence of a human, robotic sys-

tems can be designed to take advantage of human input [67, 9]. In the case of Rein-

forcement Learning, one example is the work of Kaplan et al. where they present a

technique in which user-generated reward and punishment signals are used to train the

robot new tasks in a form of clicker training [68]. Another related work was presented
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by Smart and Kaelbling, where human demonstrations of robot actions can be used to

make learning of otherwise intractable policies possible [11]. Also, Knox and Stone

introduce the TAMER framework that allows a human trainer to interactively shape an

agents policy via reinforcement signals [69].

The motivation behind our work is similar to these past examples.

3.2 Description of Interactive RL Algorithm

The Interactive Reinforcement Learning algorithm with human guidance, as described

in [24], modifies traditional Q-learning by integrating human input into the reward and

action selection mechanisms. In Interactive RL, all reward input to the robot comes

from the human teacher instead of the environment; the teacher is given a short pe-

riod of time following each action to provide positive or negative feedback. Addition-

ally, during a short delay period between actions, the user can provide guidance input.

Guidance is given with respect to an object or location (e.g., table), with the effect of

restricting the choice of immediately available actions to those related to the target ob-

ject (e.g., look at table, put down object on table). This technique can be thought of as

a means of directing the robot’s attention to the target object or area. In the following

sections, we first present the details of the Interactive RL algorithm and then describe

the interaction interface used by the human teacher.

Algorithm 1 presents the pseudo-code for Interactive RL. The algorithm extends

traditional Q-learning with the addition of human reward input (lines 18-21) and human

guidance (lines 6-8). When learning begins, the agent has no knowledge of the task and

the Q-table contains only the robot’s current state. The table expands (line 17) as the

robot performs actions, receives rewards and encounters new states, and the Q-values

are updated (lines 23-24). In our implementation, we set the learning rate α = 0.3 and

the discount factor γ = 0.75. We initialize the Q-values for every new state that the

agent discovers to 0.5.
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Our initial implementation of Interactive RL followed the exact description pro-

vided in [24]. Following preliminary testing, we implemented a change to the ac-

tion selection mechanism. Specifically, in the original implementation, in the absence

of teacher guidance the agent uses the Q[s, a] values to weight available actions and

probabilistically select the next action to perform. During preliminary experiments,

we found that this approach resulted in very long learning times for the robot (over 80

minutes for the small domain described in Section 3.3.2). In followup experiments, we

found that ε-greedy action selection (lines 1-2, 12-15) results in significantly improved

learning times. In this selection method, the robot performs the optimal action with

probability 1− ε and a random action with probability ε. Over time, the value of ε de-

cays (line 25) until eventually the robot always performs the optimal action (i.e., policy

exploitation).

The ε-greedy action selection method is used to select the next action both when a

guidance signal is present and when it is absent. If none of the actions specified by the

guidance message are valid (not physically possible), the robot ignores the guidance

message and uses ε-greedy selection to pick among all available actions. For example,

in the domain described in Section 3.3.1, the PickUp action is not valid before the robot

determines whether there is an object in front of it using the TakePicture action.

A key contribution of the original Interactive RL paper is the interactive reward

interface that enables an online user to train a virtual robot to bake a cake in a domain

called Sophie’s Kitchen1. The human trainer uses the left mouse button to provide

reward signals r = [−1, 1] for the agent’s actions, and the right mouse button to provide

guidance for future actions. In this work, we recreate the interactive reward interface

for a real robot by providing the human trainer with a fixed view of the environment

via a web-cam (Figure 3.2a). As with the algorithm, we began by implementing the

interface described in [24] in order to evaluate its use in real-world systems. Following

1The original Sophie’s Kitchen web application is available at
http://www.cc.gatech.edu/∼athomaz/sophie
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(a) (b)

Figure 3.1: Screen-shots of our interface (Top row) and Sophie’s Kitchen (Bottom row).
(a) shows positive reward given with a left click and drag upwards; (b) shows guidance
given with a right click on the object that the teacher wants the agent to interact with.

preliminary evaluations we found the need to make one modification to the interface in

order to improve the ease of interaction for our domain.

In our evaluation, the reward interface functions as in the original web application,

in which left clicking anywhere in the image brings up a reward bar (Figure 3.1a) that

the user can fill with a positive or negative reward value representing the desirability of

the current state. The guidance interface differs slightly; instead of allowing the user to

click anywhere, our interface highlights five rectangular regions as potential guidance

targets. The teacher provides guidance by right-clicking within the highlighted boxes

(Figure 3.1b). Table 3.1 lists the five regions and their effect on action selection.
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Figure 3.2: Experiment Setup. (a) Web camera captures the table and the robot for the
user interface. (b) The table is divided in three zones. Orange, cyan blue and purple
show z1, z2, and z3 respectively. The robot has an object at the tip of its right hand and
is about to drop it in the right cup.

3.3 Experimental Setup

To investigate the ways in which human guidance impacts the policy learning rate in

real-world systems we developed an object sorting domain using an Aldebaran Nao

humanoid robot. The domain setup consists of a stationary work table where the Nao

is seated on a chair. Magnetic objects are placed in front of the robot one at a time. The

robot must learn to use its camera at the appropriate time to identify the characteristics

of the object and then to pick up and place the object in one of two cups located on

the table. The user observes the robot’s actions via a web-cam (see Figure 3.2a) and

provides feedback to the robot through the graphical user interface. The described

setup enables us to evaluate the impact that human guidance input has on robot learning

performance and the usability of the user interface.

3.3.1 Domain

The experimental domain D = (Z, S,A, T ) is defined by a finite set of zones Z, a

finite number of world states S, a finite set of possible robot actionsA and the transition

function T : S ×A→ S that determines transitions between states by way of actions.
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Zones Z represent the regions where the robot’s arms or an object can be located. In

our domain, Z = {z1, z2, z3} corresponds to the left, front and right side of the robot

respectively (Fig. 3.2b).

The state of the world S = {Sr ∪ So} consists of the union of the state of the

robot Sr and state of the object being classified So. The robot state is defined by

Sr = (zlh, zrh, hando), where zlh, zrh ∈ Z correspond to the current zone of the left

and right hands, respectively, and hando ∈ {left, right, none} represents whether an

object is located in either of the robot’s hands, or not. For example, in Fig. 3.2b the

robot’s state is represented by Sr = (z1, z3, right).

The object state is defined by So = (I, oz, op), where I is an object descriptor that

specifies the characteristics of the object using a set of features described in Section

3.3.2. oz ∈ Z is the current zone of the object, and op ∈ P is the placement of the

object such that P = {z1, z2, z3, right cup, left cup}. For example, in Fig. 3.2b the

object state is represented by So = (pattern, z3, z3).

The robot has eleven possible actions, TakeP icture, xPickUp, xPutDown, xDrop,

xLeft, and xRight where x ∈ {L,R} determines the arm with which the action is

performed. The TakeP icture action makes the robot take a snapshot of the table in

front of it and extract features from the image to determine the characteristics of the ob-

ject currently placed there (if any) (see Fig. 3.3). xRight and xLeft actions move the

hands between zones (e.g. LLeft moves left hand left, that is, to Zone 1 and RLeft

moves right hand left, that is, Zone 2. Note that the robot’s left hand can operate only

in z1,2, and the right hand can operate only in z2,3, which enables the robot to pick

up an object with either hand but allows only one hand to reach each cup and Drop

the object into it. If the robot initially picks up the object with the wrong hand, it can

switch hands by performing a xPutDown action followed by a xPickUp.

Table 3.1 shows how different guidance messages restrict the set of available robot

actions. Note that the degree to which guidance reduces the set of actions has a signif-
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Guidance ActionSet
Zone 1 LLeft, LDrop

Zone 2
LPutDown, LPickUp, RPutDown,
RPickUp, TakeP icture

Zone 3 RRight, RDrop

Left Shoulder
LPickUp, LRight, LLeft,
LPutDown, LDrop

Right Shoulder
RPickUp, RRight, RLeft,
RPutDown, RDrop

Table 3.1: Guidance messages restrict action selection to the set of available actions
as shown. The first letter L and R denotes either Left or Right hand depending on the
hand with which the action is executed.

icant effect on the learning rate. If guidance does not significantly reduce the choice

of available actions, then the effect of this input method is reduced since the robot will

have to choose randomly among them. In contrast, if the guidance message limits the

robot to a single action, then all choice is taken away from the robot; this approach

would be equivalent to the human demonstration techniques applied in learning from

demonstration approaches [70, 11]. The effect on learning would be to eliminate ex-

ploration, resulting in a policy that is only as good as the decisions demonstrated by

the human, and is poorly defined in areas of the state space not encountered during

training. Further studies are needed to determine the precise impact of these choices.

In our implementation we chose to design guidance as an effective teaching method

that always restricts the list of available actions but never reduces action selection to a

single choice.

3.3.2 Experimental Conditions

We performed four sets of experiments to evaluate the Interactive RL algorithm and

study the effects that 1) teacher guidance, and 2) size of the state space have on learning

performance. The same object sorting task was used for all experimental conditions.

In the no-guidance condition, the user was restricted to only the reward input, and the
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Figure 3.3: Images of different objects taken by robot’s camera. Light blue spots show
SURF, red lines show the outline, and yellow rectangles show the bounding box or
rectangle of interest of the object found.

guidance condition allowed for both types of input. To vary the state space size we

changed the number of features used to describe the object being sorted. Specifically

we used the following two experimental conditions:

• Small deterministic state space: In the small state space condition, the object

descriptor I of So = (I, oz, op) consists of a single variable with two possible

values, plain or pattern, representing the color class of object. This mapping

is determined based on the number of Speeded Up Robust Features (SURF) [71]

identified in the image of the object and identifies the object as either a solid

colored ball or a character magnet, respectively. Specifically, objects for which

over 50 SURF features were identified were characterized as pattern, otherwise

the object was plain. In our tests we found that the number of SURF features

deterministically separate these two object types. Combining this binary object

representation with other state information, such as object location and robot

state, results in 360 possible states.

• Large, non-deterministic state space: In the large state space condition, the ob-

ject descriptor I consists of four elements, where measured values are rounded

to the closest defined category: the number of SURF features (50, 100, or 150),

smoothness (0.05 or 0.1), entropy (5.0 or 10.0) and area of the bounding box of

the object (15,000, 20,000 or 25,000). We calculate smoothness and entropy as

described in [72]. After image processing, the value for each descriptive fea-
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ture is thresholded into the categories listed above. This representation was pur-

posefully designed to reduce the size of the state space by providing a small

set of possible values for each variable, while at the same time making sure that

none of the descriptive elements alone is sufficient for distinguishing between the

plain and patterned object types. For example, although they are the same type

of object, the plain green and plain yellow magnets have different smoothness,

perceived area and entropy states. To the robot these objects therefore appear

distinct and it must learn that they belong to the same group. Furthermore, this

representation is non-deterministic and variations in object placement will result

in slightly different state representations, allowing us to evaluate how Interactive

RL performs under these conditions. In total, the large state space representation

results in 6480 states.

During the experiments all processing was performed on a PC connected to the

robot over the network. For image processing we used OpenCV [73], examples of

the processed images are shown in Figure 3.3. All experiments were performed by

author of this thesis. The teacher used the following consistent guidance and reward

shaping protocol. For the first 20 actions of the experiments, all actions were given

reward and guidance (in case of experiments with guidance). After 20 actions, reward

and guidance were given only after the incorrect action that the robot performed. After

each incorrect action, the following 5 actions were rewarded and guided. If the action

was correct, no reward or guidance was given until the next incorrect action. In the

small state space condition we used ε = 0.1 and δε = 0.002 (ε reaches 0 after 50 time

steps), and in the large state space condition ε = 0.1 and δε = 0.001 (ε = 0.1 reaches

0 after 100 time steps). We terminate learning once the robot is able to correctly sort

three objects into each cup without guidance or reward. Objects were presented to

the robot in random order. A video of the experiment and the interface can be found
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online2.

3.4 Results

We ran three trials for each of the four experimental conditions, the averaged results are

presented in Figure 3.4. Graphs plot the level of teacher involvement over time in terms

of the percentage of actions for which the teacher provided reward and/or guidance. A

summary of experimental statistics is given in Table 3.2.

A comparison of plots Fig. 3.4a to 3.4c and Fig. 3.4b to 3.4d, shows that the use

of guidance remarkably reduces the learning time (small state space: 28%, large state

space: 44%) as well as the number of states explored (small state space: 51.5%, large

state space: 38%). In effect, the robot learns more quickly with guidance because

it selects the correct action more frequently and therefore avoids exploring irrelevant

areas of the state space. As a result, we observe that in the presence of guidance the

teacher reduces the number of interactions earlier in the training process compared to

the no-guidance condition.

We also observe differences in teacher behavior between the guidance and no-

guidance conditions. The cumulative reward for the trials is positive in the presence

of guidance and negative in its absence. This is a direct consequence of the fact that

the robot selects more inappropriate actions when learning without guidance and the

teacher spends more time giving praise to the robot than punishment. This is an inter-

esting result given that a number of studies show that given the option between reward

and punishment most human teachers prefer to use positive reward and avoid punish-

ment when training an agent [63].

In summary, the comparison study shows that teacher guidance significantly re-

duces learning time by reducing the number of states explored. This result supports the

findings of [63], in which average reductions of 30% in case of expert teachers and 49%

2http://www.youtube.com/WPIrail
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Figure 3.4: User interaction and training time with (a,b) and without (c,d) guidance
input. Figures (a,c) and (b,d) show the results obtained in small and large state space
respectively. The y-axis and legend are common for all graphs.

in case of non-expert teachers were observed in the number of trials. Furthermore, we

find that the impact of teacher guidance increases as the size of the state space grows.

We hypothesize that similar benefits would be observed with respect to growth in the

size of the action space, although further studies are required to verify this effect.

3.5 Discussion

The Interactive Reinforcement Learning approach has several key strengths: 1) its sim-

ple action selection mechanism can be integrated into a broad range of existing RL

approaches, 2) its application results in a flexible learning system that can learn inde-

pendently but is able to take advantage of human guidance when it is available, and

3) guidance is combined with independent exploration in a way that enables the robot

29



Fig.3.4a Fig.3.4b Fig.3.4c Fig.3.4d
#States 11.33 42.67 22 68.67
#Actions 82 201 134.67 366.67
Cumul. Rew. 16.67 58 -44.67 -74.67
Total #G. 44 113.67 0 0
Training Time
[min.] 14 31 18 55

Table 3.2: Experiment statistics. All results are shown as the average of three trials
for each experiment. Number of states discovered (#States), total number of actions
performed (#Actions), sum of the positive and negative rewards given (Cumul. Rew.),
total number of guidance given (Total #G.) and training time.

to not only imitate the demonstrated behavior but also to surpass the performance of

the teacher if necessary.

However, there are a number of challenges to deploying this approach in real-world

applications. The current implementation of the teaching interface assumes a fixed-

camera setup that enables the human user to select relevant areas of the state space for

guidance. While this interface may translate into some service and factory applications,

it is not suitable for mobile robotic systems or unconstrained environments. Further

work is required to evaluate how other input methods, such as portable tablets, speech,

and gestures, can be used to interact with the robot in this setting.

The running time of the algorithm is another area for potential improvement. Cur-

rently, the robot requires approximately half an hour to learn a relatively simple task.

Much of this learning time is dependent on the time required to execute each action.

For example, an average of 201 actions was required to learn the large task, which

is a relatively small number compared to the total number of states in the domain, but

each action had an average time of 9.8 seconds. Other critical factors include the explo-

ration rate, state representation, and the degree to which guidance reduces the choice of

available actions. In order to enable this approach to scale to more complex domains,

we must explore the effects that these factors have on learning time, as well as study

how Interactive RL can be applied to RL algorithms that utilize continuous state space

representations which model complex world state more effectively [74, 75]. An inter-
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esting future work is a comparison of the Interactive RL algorithm with the TAMER

framework [56] and the SABL algorithm [76]. The TAMER framework learns a human

reward function however does not contain any guidance input. The SABL algorithm

is able to interpret the lack of feedback which is different from both the Interative RL

and the TAMER algorithms. A fair comparison of these three RL algorithms that learn

tasks from humans can be informative for discovering future directions for developing

more capable and efficient algorithms.

We compared two conditions, the large state space, in which the generalization

across multiple sensory inputs had to be learned, and the small state space, in which a

single sensory input automatically generalized across the two object types. Both con-

ditions were designed through manual selection of the appropriate state features in a

preliminary testing stage. In the case of the small state space, the chosen representa-

tion enabled us to teach the task more effectively because instructing the robot through

the use of just one to two patterned magnets enabled it to automatically generalize the

behavior to all patterned shapes. In the case of the large domain, each patterned item

was described by a unique set of features, and more examples were required for the

algorithm to learn the appropriate generalization. The large state space more closely

represents a real-world scenario; robots designed for operation in real-world environ-

ments in the presence of non-expert users are likely to have an even larger number of

sensory inputs, possibly with many irrelevant features, which will lead to longer lear-

ning times. This motivates the need for semi-autonomous feature selection methods

that reduce the size of the state space and enable the robot to learn more effectively.

Finally, when designing interactive learning algorithms we must consider their us-

ability for non-expert users. This chapter focused on empirical evaluation of the best-

case scenario in which the robot was taught by a roboticist after numerous practice

trials.
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Algorithm 1 Interactive Q-Learning with human generated reward and guidance

1: ε = initial value
2: δε = ε / number of desired time steps to stop exploration
3: Initialize Q-table with starting state
4: while learning do
5: while waiting for guidance do
6: if receive human guidance then
7: g = guidanceTarget
8: end if
9: end while

10: if received guidance then
11: A = set of legal actions that only contain g
12: else
13: A = set of legal actions for the current state
14: end if
15: rand = random number [0,1]
16: if rand > ε then
17: a = arg maxaQ[s, a]
18: else
19: a = randomly selected action in A
20: end if
21: execute a and transition to s′

22: if s′ not in Q then
23: add s′ to Q-table
24: end if
25: while waiting for reward do
26: if receive human reward then
27: r = human given reward
28: else
29: r = 0
30: end if
31: end while
32: update values:

Q[s, a]← Q[s, a] + α(r + γ(maxa′Q[s′, a′])−Q[s, a])

33: if ε > 0 then
34: ε← ε− δε
35: end if
36: end while
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Chapter 4

A Comparison of Three
Learning from Demonstration
Algorithms

In the previous chapter we studied how Reinforcement Learning can be made more ef-

ficient for real-world robotic systems, however our study was evaluated using an expert

teacher’s demonstrators. In this chapter, we present findings from a user study in which

we asked non-expert users to use and evaluate three different robot Learning from De-

monstration algorithms. The three algorithms we chose – Behavior Networks, Inter-

active Reinforcement Learning, and Confidence Based Autonomy – utilize distinctly

different policy learning and demonstration approaches. This enables us to examine a

broad spectrum of the field.

4.1 Overview

Research on robot Learning from Demonstration has seen significant growth in recent

years, but the field has had only limited evaluation of existing algorithms with respect

to algorithm usability by naı̈ve users. Despite the existence of a diverse body of work,

research in Learning from Demonstration lacks a comparative user study that focuses
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on the performance and preferences of naı̈ve users on a common domain. The lack

of comparison leaves many critical questions unanswered. Without the comparison

of existing methods, future researchers have no guidance with respect to which algo-

rithms and interaction techniques are most effective, and what underlying algorithmic

assumptions accurately reflect the real-world use case. These problems are further

heightened by the fact that many LfD techniques have only been evaluated through use

of expert roboticists, typically the authors themselves [77, 9, 78, 11, 10]. As a result,

the correctness of the underlying assumptions with respect to the type and quality of

demonstrations, and the ease of use of interaction methods have not been evaluated.

For example, human teachers often make noisy demonstrations to robots [9]. Since as

computer scientists and roboticists we know the inhibiting effects such noise can have

on learning algorithms, we may take great care in providing reasonably clear training

data. This certainly cannot be expected of a naı̈ve teacher. If naı̈ve teachers expect

certain types of interactions and responses from the robot, then we as engineers and

scientists must address these issues in our own work. It is only then that the success of

LfD can progress in the population of non-expert users.

Previous studies typically focus on evaluating policy performance [79, 80], and

often compare learning time against non-interactive methods, such as Reinforcement

Learning [27, 11, 81]. However, we are not aware of any user studies that have exam-

ined the usability of LfD methods on a common test domain with naı̈ve test subjects.

We note that this fact is not due to the lack of academic rigor in LfD research, but in-

stead highlights some of the challenges of this research problem. The use of different

robotic platforms, interfaces, and demonstration techniques leads to different repre-

sentations and characteristics of demonstration data that makes comparisons difficult

across applications. The use of standard data sets, which is common in other research

fields, is not possible due to the human interaction component and the diversity of

interaction techniques. As a result, comparison requires full reimplementation of algo-
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rithms a highly time consuming and challenging effort due to the absence of existing

open source solutions.

4.2 Description of Selected LfD Algorithms

To further investigate the issues raised above, we present a user study of three estab-

lished LfD algorithms, each representing a different variant of policy learning:

• Interactive Reinforcement Learning [24]: A technique inspired by reinforce-

ment learning, where the reward signal is provided by the human user at runtime

instead of a pre-coded environment reward. Interactive Reinforcement Learning

is designed in light of successive user studies and works based on positive or

negative feedback for the preceding action and guidance for the following action

of an agent. The teacher interacts with the robot by providing reward and guid-

ance input – in our case through an on-screen interface. With reward feedback,

the teacher can tell the agent whether the preceding action was the right or the

wrong thing to do. With guidance, the teacher has control over narrowing down

the action choices of the agent (i.e., limits the action space when choosing an

action); however, the user cannot give a specific action command for the agent

to execute.

• Behavior Networks [12, 25]: A planning-based policy learning technique. Be-

havior Networks is a planning algorithm which is meant to be used in conjunction

with teleoperation. In our implementation the teacher interacts with the robot

through kinesthetic teaching [16], a type of experienced demonstration [78] in

which the user physically guides the robot through the task. This algorithm di-

vides a task into behaviors with pre and post conditions where each behavior can

be any low level control or high level action. A behavior gets activated depend-

ing on the preconditions defined for that specific behavior. The definition of each
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behavior depends on several factors such as the task, environmental conditions,

implementation preferences, hardware limitations etc. Later in Chapter 4 we

will see how this flexibility (or loose definitions) will reflect on the test subjects’

experience.

• Confidence-Based Autonomy [9]: An approximation technique based on a clas-

sification algorithm. Confidence Based Autonomy is an active learning method

where a learner asks for help from a human teacher when the classification con-

fidence of an action is lower than a certain threshold. For each state of the world,

the teacher interacts with the robot either by selecting (labeling) the next action

or correcting a past action choice through an on-screen interface. It is different

from previous algorithms in that: i) the agent initiates the interaction with the

teacher, and ii) the algorithm requires to list all available action choices to the

user which, allows for robot teleoperation.

When selecting the algorithms above, we were motivated by several factors: the

difference in task representation (e.g. state-action mapping versus sequential action

planning), the difference in the learning process (e.g. optional feedback versus active

learning) and general acceptance in the LfD community (each of the chosen algorithms

has over 100 citations in the literature). We believe that it is reasonable and fair to

compare these methods on a common ground; the methods selected have elements that

can possibly be attractive for different reasons. They can be thought as complementary

elements or contradictory elements depending on the perspective.

The central goals of our evaluation are to examine three well-established LfD al-

gorithms and to 1) identify and analyze mismatches between core algorithmic assump-

tions and naı̈ve user behavior, 2) examine user preferences for three distinct robot

teaching interaction styles, and 3) compare algorithm usability and performance in

a common domain. To reach our goals, we applied all three algorithms to a single task

and ran a user study with 31 participants. Each participant trained a robot using each
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of the three algorithms. In this work, we report the qualitative and quantitative results

we obtained. We examine not only the test subjects’ performance with these methods,

but also take a closer look at the preferences of the user and types of demonstrations

they provide to each algorithm.

We present our quantitative findings about: a) the correlation between the num-

ber of user-agent interactions and the performance of the agent and b) the correlation

between agent’s final performance and its perceived accuracy by the participant. Com-

paratively, we found the strongest correlation in CBA data. We also discuss the possible

reasons of our qualitative results. Additionally, we identify common trends and mis-

conceptions that arise when non-experts are asked to use these algorithms, with the

aim of informing future Learning from Demonstration approaches. Our results show

that users achieved better performance in teaching the task using the CBA algorithm,

whereas the Interactive Reinforcement Learning algorithm modeled user behavior most

accurately.

Next, we explain our experimental setup and task domain. We then present our

qualitative and quantitative findings in Sections 4.4 and 4.5. Finally, in Section 4.6 we

discuss the implications of our findings.

4.3 Evaluation

To evaluate the three algorithms, we recruited participants to teach a robotic agent

accomplish a simple task using all three methods. We recruited 31 participants from

the WPI area, 21 male and 10 female, with ages ranging from 18 to 35. Six of the

participants self-identified as an expert roboticist, while 14 were novice and 11 had no

robotics background.

Since the training time can be quite lengthy in certain domains [80], we aimed to

find a domain that was simple enough to see a progress in learning in a relatively short

amount of time, yet dynamic and random enough to not be trivial. With this in mind,
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we designed the DBug domain for the Aldebaran Nao humanoid robot, which required

the humanoid robot to catch and remove small hexbug robotic toys from a table.

4.3.1 User Study

For this user study we do not have a baseline control group. Instead of changing a

specific variable and observing how user preference changes [82], we are interested

in obtaining broader results. For example, instead of changing only the frequency of

asking for help using a single learning technique, we give our test subjects completely

different techniques, which are not variations of each other. Each participant was allot-

ted one hour to perform the study. The study followed the following process:

• Introduction

• Training Session 1 (10 minutes)

• Survey Questions for Algorithm 1

• Training Session 2 (10 minutes)

• Survey Questions for Algorithm 2

• Training Session 3 (10 minutes)

• Survey Questions for Algorithm 3

• General Survey

Upon arrival, the participant was given a broad overview of the task that was being

trained as well as the capabilities of the Nao. It was noted that the Nao would be able

to track the bugs with its own vision system and each of the three preprogrammed

actions were also explained.

Following the introduction, the participant used each algorithm in turn to train the

agent. Before beginning a trial, the participant was given verbal and written instruc-

tions about how the algorithm worked and allowed to ask any questions. Following

each training session the participant was asked to fill out a brief questionnaire relating
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(a) (b)

Figure 4.1: (a) Experimental setup, (b) View of the table from the Nao’s on-board
camera. Sweep zone: bottom-left portion of the figure. Pick-up zone: bottom-center
portion of the figure. Any other portion of the image is Wait zone.

to the method that they had just used. The order of the algorithms was varied with

participants, subdivided into three subgroups, based on the order in which they used

the algorithms:

• Int-RL/BNets/CBA (10 participants),

• BNets/CBA/Int-RL (10 participants), and

• CBA/Int-RL/BNets (11 participants).

The training session for each algorithm was limited to 10 minutes. Participants

were allowed to end training early, although none chose to do so. Once all three meth-

ods and questionnaires had been completed, a final general questionnaire was given

which asked questions related to user preferences among the three methods.

4.3.2 Experimental Setup

The experimental setup, depicted in Fig. 4.1a, consisted of the Nao’s tabletop setup,

a laptop used by the participant to interact with the robot, and a webcam used for

recording the session.

The tabletop setup consisted of the Nao seated at a small table (25" × 19"). A

red, blue, and green hexbug toy were placed on the table and allowed to move around.
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For each test, bugs were randomly put on the table. The test subject had the option

of turning the hexbugs on and off, or moving them around at will. A short wall was

added to the perimeter of the table to prevent the bugs from walking over the edge.

By default hexbugs move forward until either of their antenna touches to an obstacle

(i.e. our short wall at the perimeter of the table, another hexbug, the test subject’s

hand, or our humanoid robot’s manipulator). When the toy bumps into an obstacle, it

moves backwards while rotating for a short period of time. In this manner, the bugs

continuously move around the table unless turned off by the user.

When learning, the Nao’s camera was directed straight at the center of the table.

The field of view covered the majority of the table with small portions on the left and

right being out of sight. The test subjects were not told how much of the workspace

was exactly covered by the camera. Using its camera, the Nao was able to continuously

track the x and y position of all bugs in its field of view (as seen in Fig. 4.1b). We used

OpenCV [73] for all image processing.

In order to assist the Nao in picking up the bug toys, a magnet was placed into its

right hand. A pickup zone was marked with an× on the table in front of the Nao where

it could reach down and attempt to attach a bug to the magnet (shown in Fig. 4.1b).

Once a bug was attached to the magnet, the Nao raised its arm and asked the user to

remove it manually. Additionally, a small foam brush was placed into the robot’s left

hand to help sweep bugs toward the pickup location. Both robot actions followed a

precoded motion trajectory.

Participants used a laptop to start and stop the learning process and perform most of

the interactions with the robot. A tablet computer was also provided, presenting written

and pictorial instructions about how to use each training method. The task described

was kept consistent across all three teaching methods.

The DBug Domain The domain representation, D = (S,A), was defined by a finite

set of states S and actions A. Each state s = (x, y) ∈ S was defined by the x and
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y coordinates of the hexbug in picture’s coordinate system, considering the top left

corner to be (0, 0). Since there were more than one hexbug on the table most of the

time, bug with the smallest Euclidean distance to the pickup location was used as the

current state. If no bugs were detected by the robot, the state was taken as (0, 0).

Using a 320 by 240 pixel image from the Nao, a total of 76,800 uniquely identifi-

able states were possible in the domain. The domain space was considered to be large

enough such that the solution was not trivial yet small enough that a user could make

reasonable progress teaching the agent within a short period of time. In the case of

Int-RL, we subsampled the state space to 100 states. This composed of a 10x10 grid

(a rectangle of 32 by 24 pixels per (x, y) state) overlayed over the image. This was to

increase the probability of visiting the same state more than once during the training so

that the agent can make progress in learning during the relatively short period of time

of the study.

The action spaceA is defined by three actions: picking up a bug at the center pickup

location using the magnet in its right hand, sweeping inwards towards the center pickup

location using the foam brush in its left hand, and waiting for 1 second (i.e., doing

nothing). All actions were preprogrammed. The pickup action took ∼9 seconds and

the sweep action took∼5 seconds from start to finish. The wait action was an important

action to include as it was useful in teaching the robot when it was not appropriate to

either sweep or pickup (e.g., when no bugs were present around the pickup location).

Sampled across the complete state space, approximately 12.5% of the states fall

into the sweep zone, 10.4% fall into the pick-up zone, and 77.1% fall into the wait

zone (zones are shown in Fig. 4.1b).

4.4 Qualitative Results

In this section, we present the results of the qualitative analysis of the user study and

our general observations. We take look at the algorithmic assumptions compared tech-
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niques make and we comment on the usability of the algorithms from a practical per-

spective.

Algorithmic Assumptions We begin by examining the assumptions that the algo-

rithms make and how naı̈ve user behavior differed from those assumptions.

The Interactive Reinforcement algorithm makes the following assumptions:

1. A positive feedback will follow most correct actions,

2. A negative feedback will follow most incorrect actions.

3. Guidance will be given in order to narrow down the choice of the action it pre-

cedes.

This approach was very straightforward for the participants and we feel that all

of the assumptions listed above held when users taught the task. We believe that the

design process of the Int-RL algorithm has a big influence on that finding. Int-RL was

originally designed alongside user studies with an online agent [24, 83], and, with this

study, we can confirm that with a physical robot, the users interacted in a similar way

compared to the online agent.

The Behavior Networks algorithm makes the following assumptions:

1. The teacher will make a sequence of demonstrations for each task, beginning

each demonstration with START, performing one or more actions through kines-

thetic teaching, and ending the demonstration with DONE.

2. If more than one demonstration sequence is performed for a given task (i.e. mul-

tiple START to DONE sequences), the demonstrations will result in complemen-

tary dependencies in the model, with no contradictory actions dependent on the

same set of preconditions.

In our implementation of BNets, for the agent to understand that there was a hexbug

to pick-up, we used a “found a bug in pick-up zone” behavior. Likewise, for under-

standing that there was a bug in sweep zone we used a “found a bug in sweep zone”
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behavior. The precondition for these behaviors to be activated was to detect a hexbug in

the pick-up or sweep zone. Ideally these behaviors should have been the precondition

for a second behavior, either “pick-up the bug” or “sweep”. As stated in assumptions

(1) and (2), the algorithm expects the teacher to demonstrate the task in the correct

sequence. For instance, after a demonstration of “found a bug” (either by putting a

hexbug in front of the camera manually, or by waiting for a hexbug to arrive ran-

domly), a demonstration of “pick-up the bug” (by lowering the right arm of the robot

and lifting it back up) would create a correct behavior network for picking up a hexbug

upon detection.

We observed that the dynamic nature of the environment created a particular chal-

lenge for non-expert teachers using BNets. The pre-conditions for “found a bug in

pick-up zone” or “found a bug in sweep zone” behaviors were often met unintention-

ally if the user did not control the location of the hexbugs (e.g., by turning them off and

displacing them manually). This violated the first assumption. It was hard for most

users to realize which behavior was activated when, because there was no visualization

for the mental model of the agent.

Users were given the option of deleting the whole network and re-teaching the task,

or keeping the current knowledge and adding new demonstrations on top of the exist-

ing network. Although users tried to erase and re-teach the task multiple times, none

of them actually succeeded to teach the sweep action in the correct states. On the other

hand an expert roboticist who knew about the necessary order of preconditions, could

teach the task with only two demonstrations (one for pick-up and one of sweep) by

controlling the location of hexbugs manually. Almost every study participant had an

unintended behavior dependency. An example of an unintended dependency is exe-

cuting a pickup action after every sweep, even if there is no bug in the pickup zone.

Similar unintended dependencies were taught by every user, in many occasions repeat-

edly. The user intention conformed to assumption (2). In general the users tried to
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demonstrate behaviors for the ultimate goal of sweeping and picking-up hexbugs as

opposed to series of some random and conflicting series actions.

Confidence Based Autonomy with GMMs, makes the following assumptions:

1. The user will provide training data with multiple demonstrations for each action,

effectively sampling the state space.

2. The user performs a correction for an incorrectly selected action during the time

interval between the beginning of the incorrect action, and the beginning of the

next action.

In our domain, each action had one area of the state space where the agent should

have learned to execute it. With an ideal set of demonstrations the agent would have

3 - 4 Gaussian models in total (e.g., one model per action centered in that specific

zone). We observed that the demonstrations given by the participants were very scat-

tered and often resulted in multiple Gaussians for each action. Instead of being grouped

around one center per action, Gaussian models were scattered in the state space. This

decreased the efficiency of decision making and accuracy of the model.

Samples were often given either too sparse to be in the same Gaussian model, or dif-

ferent models were overlayed due to different action labels given in very similar states.

Furthermore, three users violated assumption (1) by not providing enough training data

for the classifier to confidently make any predictions (minimum of 3 demonstrations of

each action).

Several users also violated assumption (2) by not providing corrections within the

required timeframe. The delay between the transition time of the real world (e.g.,

time = t) and the state that the users wanted to give correction for (e.g., time = k<t)

led to a mismatch between states and labels, corrupting some of the training data.

Usability For Int-RL, in terms of usability, we observed that 10 minutes was not suf-

ficient to enable inexperienced users to train the task well (task performance is further
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evaluated in Section 4.5). However, we note that the authors of this chapter, who are

familiar with the inner workings of the algorithms, were able to teach the task using all

three methods within this time frame. This highlights the difference between experts

and inexperienced users. Many users could not see an improvement in learning until

the end of the experiment, which led some to stop rewarding or to vary their reward

strategy to try and achieve a better response.

In BNets, we received positive comments about the ease of kinesthetic teaching;

however, users often tried to teach the task by making new, yet incorrect, demonstra-

tions to the agent. Even when they erased the learned network and restarted teaching,

instead of adding behaviors one by one (such as teaching picking-up the hexbug in one

demonstration, then teaching sweeping the hexbug in a second demonstration) they

moved both arms at the same time thus creating simultaneous actions. Since the envi-

ronment was dynamic, it caused learned networks to be overly complicated.

Many users were able to achieve relatively high performance using the CBA algo-

rithm. Due to the dynamic nature of the DBug domain, the environment did not pause

when the robot requested help, as in previous applications of CBA [9]. The robot was

in a constant cycle of “perception–decision–execution” and the decision process (with

added small wait commands to give people a time to do corrections) was perceived

as lag by our participants. This is a practical issue. The study of inexperienced users

across dynamic domains and ones in which the state does not change while the robot

asks for help on teaching could be an interesting future work.
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4.5 Quantitative Results

To evaluate user performance at teaching the task, we examine the final policy of each

algorithm at the end of the 10 minute training session and evaluate its performance

in selecting the correct action for each state. For each method, we check if the agent

executes the correct action at a given zone (shown in Fig. 4.1b). The correct action

label for each state was pre-determined by the region in which that state was located.

Figure 4.2 compares the percentage of correctly taught state-action pairs for each

algorithm. On average, our subjects taught the pick-up action (the left three plots) and

the sweep action (the middle three plots) with highest accuracy using CBA. The second

most accurate result was achieved with Int-RL for these two actions. However subjects

taught the wait action with higher accuracy using BNets. It is worth noting that the wait

action was implicitly taught in BNets, that is, if the teacher does not demonstrate any

action by moving the arms of the robot (for instance when there is no bug in pick-up

zone), then the agent learns to not-to-act, i.e. to wait. Based on the lower accuracy rate

of the other two actions, we think that this implicit definition is the reason why people

had more success with BNets for this specific action.

In the rest of this section we evaluate algorithm-specific performance statistics. We

are specifically interested in two data patterns: a) the correlation between the number

of user-agent interactions and the accuracy of the final policy, and b) the correlation

between the accuracy of agent’s final policy and the user’s satisfaction with the agent’s

performance (i.e. perceived accuracy). We use the Pearson correlation coefficient to

report our findings. For each algorithm we also give a visual example of one successful

and one unsuccessful final policy (or plan) in order to highlight the difference.

Interactive Reinforcement Learning Results For our implementation of Interactive

Reinforcement Learning, we used Q-learning with ε-greedy action selection. We used

the following parameters for Q-learning: 0.5 for initial Q-values, with a learning rate

46



0
2
4
6
8

10 0 2 4 6 8 10

(a) An Example of Successful Policy

0
2
4
6
8

10 0 2 4 6 8 10

SWEEP
P-UP
WAIT

(b) An Example of Unsuccessful Pol-

icy

Figure 4.3:
Example Int-
RL Policies.

%
C

or
re

ct
A

ct
io

ns

0

5

10

15

20

25

20 40 60 80 100 120
Num. Reward Clicks

(a) Effect of user interaction on

agent’s performance

U
se

rS
at

is
fa

ct
io

n

0

1

2

3

4

5

0 5 10 15 20 25
% Correct Actions

(b) User satisfaction vs. performance

Figure 4.4:
Int-RL
User
Statistics.

α = 0.3 and discount factor γ = 0.75. Fig. 4.3 shows a successful and unsuccess-

ful sample Int-RL policy. Each triangle shows a sub-sampled state that was not “tied”

(where, more than one action had the same Q-value). Although every (x, y) pair sym-

bolizes a subsampled state, to increase the readability of the plots, we left “tied” states

empty. Ties can be caused by that state being unexplored or more than one action being

equally rewarded by the teacher, i.e. noisy demonstrations. For example in Fig. 4.3

(a), approximately 20% of the states were rewarded enough to assign a higher Q-value

to one action than the others. For a given state, the action that has the highest Q-value

(shown in Fig. 4.3) is executed during exploitation of the policy. If the state is equal to

one of the empty states, then the action is selected randomly.

Fig. 4.4 (a) shows how the frequency of demonstrations is correlated with the

agent’s final accuracy. The scatter plot presents the number of inputs given by the user

(positive or negative rewards) and the resulting policy accuracy. The correlation coef-

ficient is found as R = 0.35 for this plot. This shows a very weak positive correlation
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between the two variables. That is, the increase in the number of rewards given is app-

roximately 35% responsible of the increase in final accuracy of the agent. Fig. 4.4 (b)

shows the scatter plot for agent’s final policy accuracy versus the users’ self-reported

satisfaction with the agent’s performance in response to the question “How well did

the robot learn the task?” (1-Not at all, 4-Very well). The correlation coefficient for

this plot is R = 0.16011, which shows almost no correlation between the participants’

perceived accuracy and the real performance of the agent. We believe that one reason

for this finding can be the overall poor performance of the final policies. When we look

at the y-axis, we can see that the maximum accuracy shows that approximately 22% of

the state space was labeled correctly.

Behavior Networks Results Two of the networks taught by our participants are

shown in Fig. 4.5. Each behavior is shown in an ellipse. Start and restart are pseudo-

behaviors that signal the beginning and the end of the network. Dotted lines indicate

that the behaviors above must happen before those below. Dashed lines are enabling

preconditions, which indicate behaviors that enable the activation of others. Solid lines

show permanent preconditions, that is, the behavior above should remain active while

behaviors below are also active.

Fig. 4.5(a) shows a simple and correct Behavior Network. When executed, this

network would execute the pick-up action in presence of a bug in the pick-up zone,

which is the correct behavior. Fig. 4.5(b) shows a network that waits until it finds a

hexbug in pick-up zone for 4 cycles (FBIPZ 23,24,25,26), then picks up the hexbug (P-

UP 7), it also requires to find another hexbug in order to restart executing the network

(FBIPZ 27 is a precondition of restart 1). This network is inefficient for the target

task, and although it still executes the pick-up action after finding several hexbugs, the

unnecessary interdependencies between behaviors reduce the efficiency of this policy.

The Behavior Networks algorithm differs from the other two techniques in that the

user demonstrations do not accumulate over time. The BNets algorithm generates a

48



P-UP_1

restart_1

FBIPZ_1

start_1

(a) A simple and correct

Behavior Network.

FBIPZ_23

FBIPZ_24

FBIPZ_25

FBIPZ_26

FBIPZ_27

P-UP_7

restart_1

start_1

(b) A relatively more complicated Behavior

Network produced by a participant.
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numbers.
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policy from the ordered set of demonstrations performed between the user-indicated

START and END signals. As a result, the entire policy can be taught in a very short

period of time by an expert (under a minute for the authors).

A non-expert teacher who has little experience with the algorithm can demonstrate

the task multiple times and the agent may still perform poorly. Indeed, we observed

this outcome with several of our participants, who explored the behavior of the algo-

rithm through trial and error to gain understanding of kinesthetic teaching, the robot’s

perception, and the conditioning behavior of the algorith (pre- vs. post-condition). In

summary, a large number of demonstrations is not required to teach a successful policy,

however, we expected our participants to get better at demonstrating the task over time.

Fig. 4.6(a) shows the scatter plot of the total number of demonstrations versus

policy performance. We note that there are only three levels for the agent’s accuracy.

This behavior results from the pre and post-conditions precoded into the algorithm.

For example, once the BNets agent learns to pick-up a hexbug when it is located in

the pick-up zone, the correct pickup behavior is automatically learned for every state

in the pickup zone. This is due to the fact that the pre-condition of the pickup action

generalizes across a region of states (the entire pickup area) and not a single (x, y)

location.

Keeping these facts in mind, the three levels in Fig. 4.6(a) are respectively at 0%,

10.4% and 77.1%, referring to accurate performance of none of the actions, pick-up,

and wait. No participant was able to teach the sweep action successfully in their final

policy. Importantly, we note that although the policy performance is 77.1% for cor-

rectly teaching the wait action, this is caused by the fact that in most states, our domain

required to wait.

The correlation coefficient found for this plot is R = 0.48. This shows some

(although not so strong) correlation between the participants’ experience in teaching

(i.e. number of demonstrations) and the accuracy of the final policy.
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Finally, Fig. 4.6(b) shows the scatter plot of the agent’s accuracy versus the partic-

ipants’ self-reported satisfaction in response to the question “How well did the robot

learn the task?”. Although weak, the correlation coefficient R = −0.35 shows a nega-

tive correlation between these two variables. We believe that the correlation coefficient

is negative because of the fact that users evaluated performance based on the success

of picking up as many hexbugs as possible. Hence, waiting at appropriate times was

not considered as successful as picking up or sweeping. Our measure of accuracy gives

equal weight to all state-action pairs across the state space.

Confidence Based Autonomy Results In order to assess the user statistics with

CBA, we look at the final GMM classifier that was constructed for each user.

A sample of a successful and unsuccessful CBA policy is given in Fig. 4.7. To help

the reader compare both policies, we highlight several characteristics of the learned

classifier. First, when we look at the Gaussian models for the wait action in Fig. 4.7(a),

we see two distinct models, covering most of the correct zones, whereas the Gaussian

for the same action in Fig. 4.7(b) covers only a small part of the correct zone, and

is mostly overlayed with other Gaussians. Second, in Fig. 4.7(a), the Gaussian for

pick-up action is centered very close to its zone, whereas in Fig. 4.7(b), it covers

most of the wait zone. Third, the biggest Gaussian model for sweep action is centered

close to its zone in Fig. 4.7(a) whereas in Fig. 4.7(b) Gaussians are in the wait zone.

Finally, two more Gaussian models for pick-up action can be seen in Fig. 4.7(a), it is

possible that they are the results of the violation of our assumption (2) mentioned in the

previous section; when the user trains the agent with more training samples, the risk

of obtaining more Gaussian models than necessary increases. Furthermore, incorrectly

timed corrections introduce noise and lead to poor model accuracy.

As in previous methods, we calculate policy performance as the percentage of cor-

rectly labeled states. The scatter plot in Fig. 4.8(a) shows how number of demons-

trations is correlated with policy performance. The correlation coefficient found for
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this plot is, R = 0.64, which implies a somewhat strong correlation between these two

variables. Note that it would be inaccurate to compare the strength of this correlation to

our previous number of demonstrations versus performance plots; although the policy

performance is calculated using the equivalent data, the values representing the number

of demonstrations have inherently different mearning due to the differences in the al-

gorithms. As a result, we can not conclude that in CBA user demonstrations were more

effective to improve the accuracy of the agent than in previous methods. However, we

can conclude that when using CBA, user demonstrations seem to be accountable for

64% of the improvement in policy performance.

Fig. 4.8(b) shows the scatter plot of participant self-reported performance evalua-

tion versus final policy performance. The correlation coefficient found for this plot is

R = 0.39, which implies a weak correlation between our participants’ votes and the

actual performance of their agents. The question we asked was the same across all

methods, hence the variable on x-axis is comparable to previous methods. Likewise,
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the agent accuracy was calculated in the same way accross all methods. As a result, we

can compare the correlation coefficient we obtain for this plot to our previous findings.

We found no correlation in Fig. 4.4(b), a negative correlation in Fig. 4.6(b), and a

positive correlation in Fig. 4.8(b). Based on these result, we conclude that participants

were able to assess performance of their agents most accurately when using the CBA

algorithm.

4.6 Discussion

Moving away from performance statistics, in this section we discuss several design

factors for these algorithms.

Participant Feedback The general survey included space where participants were

able to write free-form feedback about the algorithms in the study. All 31 participants

included feedback on their form; the following three topics were most frequently re-

peated:

• the need for additional feedback from the robot regarding what it was sensing,

• the need for better understanding of what the robot “is thinking”, or what it

understands about the task,

• the need of communicating with the robot more naturally, specifically through

speech.

These three points, especially the importance of feedback, are surely not unprecedented

findings. However, their importance is often underestimated in existing LfD methods,

and our aim is to draw attention to these factors for future research.

Factors Affecting Agent Performance Our user study has four main components for

each method: the teacher, the interface, the algorithm and the task domain. The teacher
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and the task domain were the common components across all three experiments per-

formed with each participant, whereas the interface and algorithms were held constant

across participants. Quantifying the effect of each component on different aspects of

the agent’s performance requires a narrower, more focused user study. However based

on our observations we can make general comments on how human and algorithmic

factors contribute to each algorithm’s performance.

Teaching the policy using the Int-RL algorithm requires more time than when using

other methods. This is an algorithmic factor due to the fact that the agent selects its

actions probabilistically and converges to a stable policy only after repeated exposure

to feedback. The occurance of users abandoning rewards before the agent converges

to a stable policy (possibly due to lack of feedback) is a human factor. People quitting

early because learning is too slow might be considedered to be a combination of both.

Teaching a BNets agent often requires trial and error. This is an algorithmic factor;

the necessity of defining pre/post-conditions for each behavior leaves a knowledge gap

between the person who defines them and the person who makes demonstrations. On

the other hand, realizing the relationship between given demonstrations and resulting

behaviors of the robot is a human factor. Again, people giving up on trial and error

process after a few demonstrations (because robot is now behaving any differently)

might be considered to be a mixed effect of both factors on agent’s final performance.

Teaching a CBA agent requires demonstrations and corrections. There is require-

ment minimum number of demonstrations for the agent to begin classifying the taining

data. This is an algorithmic factor which may change based on the classifier imple-

mented. Modeling the timing of corrections, on the other hand, is a human factor.

Depending on the situation, for instance if the teacher is distracted and reacts slowly,

corrections may have a negative impact on agent’s final performance.

Required Task Knowledge by the Programmer For the Int-RL and CBA algo-

rithms, all that must be defined by the programmer is the state and action sets of the
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robot. For the Behavior Networks algorithm, the programmer needs to know not only

the state and actions, but also the state values that will result from the execution of

different actions in order to form the pre/post-conditions of behaviors. We found that

coding the Behavior Networks required a significantly higher degree of knowledge

of the domain, as well as a precise measurement of the sensor values that would be

observed. Without this pre-coded information, the robot’s state would not match the

post-conditions of any behaviors and no behaviors would be activated and learned.

To sum up, in this chapter we present the findings we obtained from a user study

implemented in a real-world domain, in which we asked non-expert users to use and

evaluate three different robot learning from demonstration algorithms. The three algo-

rithms selected – Behavior Networks, Interactive Reinforcement Learning, and Confi-

dence Based Autonomy – utilize distinctly different policy learning and demonstration

approaches, enabling the study of a broad spectrum of the field.

We analyzed the user study data with respect to robot policy performance and user

feedback. Our results show that users achieved better performance in teaching the task

using the CBA algorithm. Users also positively rated the usability of the CBA algo-

rithm, with many users showing preference for the ability to give direct commands to

the robot. Many participants also positively reviewed the kinesthetic teaching interface

used in the BNets algorithm. However, users were often confused by the opaqueness

of the teaching experience and performance of the result.

In case of the Interative Reinforcement Learning algorithm, despite our use of a

sub-sampled state-space to improve algorithm performance, the experiment time was

not sufficient to allow participants to train the complete task. However, we found that

the Int-RL algorithm most accurately modeled user behavior, whereas both CBA and

BNets made algorithmic assumptions that did not hold when the algorithms were ap-

plied to naı̈ve users.

An interesting next step is to extract the strengths of the three individual algorithms
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and to design a new integrated method for learning from demonstration. The results of

our study indicate that presenting a model of the agent’s internal policy to the teacher

during training may improve transparency and usability of future algorithms.
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Chapter 5

Human-Agent Transfer: HAT

In the previous chapter we presented the results of a user study where non-expert teach-

ers demonstrated a real-world task to a humanoid robot during run-time. One of the

findings of the user study was that the participants were not able to teach the task

to the robot using Interactive Reinforcement Learning within the allocated time, even

though an expert demonstrator was able to do so. In this chapter, we introduce Human-

Agent Transfer (HAT), where teachers can make off-line demonstrations without a strict

time limitation. HAT combines transfer learning, learning from demonstration and re-

inforcement learning to achieve rapid learning and high performance in complex do-

mains. Through experiments in a simulated robot soccer domain, we show that human

demonstrations transferred into a baseline policy for an agent and refined using rein-

forcement learning significantly improve both learning time and policy performance.

Our evaluation compares three algorithmic approaches to incorporating demonstration

rule summaries into transfer learning, and studies the impact of demonstration quality

and quantity, as well as the effect of combining demonstrations from multiple teachers.

Our results show that all three transfer methods lead to statistically significant improve-

ment in performance over learning without demonstration. The best performance was

achieved by combining the best demonstrations from two teachers.
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5.1 Overview

Agent technologies for virtual agents and physical robots are rapidly expanding in in-

dustrial and research fields, enabling greater automation, increased levels of efficiency,

and new applications. However, existing systems are designed to provide niche so-

lutions to very specific problems and each system may require significant effort to

develop. The ability to acquire new behaviors through learning is fundamentally im-

portant for the development of general-purpose agent platforms that can be used for a

variety of tasks.

Existing approaches to agent learning generally fall into two categories: indepen-

dent learning through exploration and learning from labeled training data. Agents of-

ten learn independently from exploration via Reinforcement learning (RL) [84]. While

such techniques have had great success in offline learning and software applications,

the large amount of data and high exploration times they require make them intractable

for most real-world domains.

On the other end of the spectrum are learning from demonstration (LfD) algo-

rithms [70]. These approaches leverage the vast experience and task knowledge of a

person to enable fast learning, which is critical in real-world applications. However,

human teachers provide particularly noisy and suboptimal data due to differences in

embodiment (e.g., degrees of freedom, action speed) and limitations of human abil-

ity. As a result, final policy performance achieved by these methods is limited by the

quality of the dataset and the performance of the teacher.

In this chapter, we propose a novel approach: use RL transfer learning meth-

ods [51] to combine LfD and RL and achieve both fast learning and high performance

in complex domains. In transfer learning, knowledge from a source task is used in a

target task to speed up learning. Equivalently, knowledge from a source agent is used

to speed up learning in a target agent. For instance, knowledge has been successfully

transferred between agents that balance different length poles [85], that solve a series
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of mazes [86, 87], or that play different soccer tasks [53, 88, 54]. The key insight

of transfer learning is that previous knowledge can be effectively reused, even if the

source task and target task are not identical. This results in substantially improved

learning times because the agent no longer relies on an uninformed (arbitrary) prior.

5.2 Description of HAT Algorithm

In this work, we show that we can effectively transfer knowledge from a human to an

agent, even when they have different perceptions of state. Our method, Human-Agent

Transfer (HAT): 1) allows a human teacher to perform a series of demonstrations in a

task, 2) uses an existing transfer learning algorithm, Rule Transfer [52], to learn rule-

based summaries of the demonstration, and 3) integrates the rule summaries into RL,

biasing learning while also allowing improvement over the transferred policy.

We perform empirical evaluation of HAT in a simulated robot soccer domain. We

compare three algorithms for incorporating rule summaries into reinforcement lear-

ning, and compare learning performance for multiple demonstration source, quantity,

and quality conditions. Our findings show statistically significant improvement in per-

formance for all variants of HAT over learning with no prior. Additionally, we find that

exposure even to suboptimal demonstration training data results in significant improve-

ments over random exploration, and combining demonstrations from multiple teachers

leads to the best performance.

Our approach for combining LfD and RL (HAT) consists of three steps, motivated

by those used in Rule Transfer:

1. Demonstration: The agent performs the task under the teleoperated control by

a human teacher, or by executing an existing suboptimal controller. During ex-

ecution, the agent records all state-action transitions. Multiple task executions

may be performed.
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2. Policy Summarization: HAT uses the state-action transition data recorded dur-

ing the Demonstration phase to derive rules summarizing the policy. These rules

are used to bootstrap autonomous learning.

3. Independent Learning: The agent learns independently in the task via rein-

forcement learning, using the policy summary to bias its learning. In this step,

the agent must balance exploiting the transferred rules with attempting to learn a

policy that outperforms the transferred rules.

In contrast to transfer learning, HAT assumes that either 1) the demonstrations are

executed on the same agent, in the same task, as will be learned in the Independent

Learning phase, or that 2) any differences between the agent or task in the demonstra-

tion phase are small enough that they can be ignored in the independent learning phase.

Instead of transferring between different tasks, HAT focuses on transferring between

different agents with different internal representations. For instance, it is not possi-

ble to directly use a human’s “value function” inside an agent because 1) the human’s

knowledge is not directly accessible and 2) the human has a different state abstraction

than the agent.

We next present three different ways that HAT can use a decision list to improve

independent learning.

Value Bonus The intuition behind the Value Bonus method [52] is similar to that

of shaping in that the summarized policy is used to add a reward bonus to certain

human-favored actions. When the agent reaches a state and calculates Q(s, a), the

Q-value of the action suggested by the summarized policy is given a constant bonus

(B). For the first C episodes, the learner is forced to execute the action suggested by

the rule set. This is effectively changing the initialization of the Q-value function, or,

equivalently [89], providing a shaping reward to the state-action pairs that are selected

by the rules.

We use B = 10 and C = 100 to be consistent with past work [52]; the Q-value for
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the action chosen by the summarized policy will be given a bonus of +10 and agents

must execute the action chosen by the summarized policy for the first 100 episodes.

Extra Action The Extra Action method [52] augments the agent so that it can select

a pseudo-action. When the agent selected this pseudo-action, it executed the action

suggested by the decision list. The agent may either execute the action suggested by

the transferred rules, or it can execute one of the “base” MDP actions. Through ex-

ploration, the RL agent can decide when it should 1) follow the transferred rules by

executing the pseudo-action or 2) execute a base MDP action (e.g., the transferred

rules are sub-optimal). Were the agent to always execute the pseudo-action, the agent

would never learn but would simply mimic the demonstrated policy.

As with the Value Bonus algorithm, the agent initially executes the action suggested

by the decision list, allowing it to estimate the value of the decision list policy. We again

set this period to be 100 episodes (C = 100).

Probabilistic Policy Reuse The third method used is Probabilistic Policy Reuse,

based on the π-reuse Exploration Strategy [90, 86]. In Probabilistic Policy Reuse,

the agent will reuse a policy with probability ψ, explore with probability ε, and exploit

the current value function with probability 1 − ψ − ε. By decaying ψ over time, the

agent can initially leverage the decision list, but then learn to improve on it if possi-

ble. Note that Probabilistic Policy Reuse is similar to the recent TAMER+RL method

#7 [55], where the agent tries to execute the action suggested by the learned human

shaping reward, rather than follow a transferred policy.

5.3 Evaluation

In this section, we first introduce Keepaway [91], a simulated robot soccer domain and

then we explain the experimental methodology we used to evaluate HAT.
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Figure 5.1: This diagram shows the
distances and angles used to construct
the 13 state variables used for learning
with 3 keepers and 2 takers. Relevant
objects are the 3 keepers (K) and the
two takers (T), both ordered by dis-
tance from the ball, and the center of
the field.

5.3.1 Keepaway

Keepaway is a domain with a continuous state space and significant amounts of noise in

the agent’s actions and sensors. One team, the keepers, attempts to maintain possession

of the ball within a 20m × 20m region while another team, the takers, attempts to steal

the ball or force it out of bounds. The simulator places the players at their initial

positions at the start of each episode and ends an episode when the ball leaves the play

region or is taken away from the keepers.

The keeper with the ball has the option to either pass the ball to one of its two

teammates or to hold the ball. In 3 vs. 2 Keepaway (3 keepers and 2 takers), the state

is defined by 13 hand-selected state variables (see Figure 5.1) as defined in [91]. The

reward to the learning algorithm is the number of time steps the ball remains in play

after an action is taken. The keepers learn in a constrained policy space: they have the

freedom to decide which action to take only when in possession of the ball. Keepers

not in possession of the ball are required to execute the Receive macro-action in

which the player who can reach the ball the fastest goes to the ball and the remaining

players follow a handcoded strategy to try to get open for a pass.

For policy learning, the Keepaway problem is mapped onto the discrete-time, episo-

dic RL framework. As a way of incorporating domain knowledge, the learners choose

not from the simulator’s primitive actions but from a set of higher-level macro-actions

implemented as part of the player [91]. These macro-actions can last more than one

time step and the keepers have opportunities to make decisions only when an on-going
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macro-action terminates. Keepers can choose to Hold (maintain possession), Pass1

(pass to the closest teammate), and Pass2 (pass to the further teammate). Agents

then make decisions at discrete time steps (when macro-actions are initiated and termi-

nated).

To learn Keepaway with Sarsa, each keeper is controlled by a separate agent. Many

kinds of function approximation have been successfully used to approximate an action-

value function in Keepaway, but a Gaussian Radial Basis Function Approximation

(RBF) has been one of the most successful [92]. All weights in the RBF function

approximator are initially set to zero; every initial state-action value is zero and the

action-value function is uniform. Experiments in this chapter use the public versions

11.1.0 of the RoboCup Soccer Server [93], and 0.6 of UT-Austin’s Keepaway play-

ers [92].

5.3.2 Experimental Setup

In the Demonstration phase of HAT, Keepaway players in the simulator are controlled

by the teacher using the keyboard. This allows a human to watch the visualization

and instruct the keeper with the ball to execute the Hold, Pass1, or Pass2 actions.

During demonstration, we record all (s, a) pairs selected by the teacher. It is worth

noting that the human has a very different representation of the state than the learning

agent. Rather than observing a 13 dimensional state vector like the RL agent, the

human uses a visualizer (Figure 5.2). It is therefore critical that whatever method used

to glean information about the human’s policy does not require the agent and the human

to have identical representations of state.

To be consistent with past work [92], our Sarsa learners use α = 0.05, ε = 0.10,

and RBF function approximation. After conducting initial experiments with five values

of ψ, we found that ψ = 0.999 was at least as good as other possible settings. In the

Policy Summarization Phase, we use a simple propositional rule learner to generate
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Figure 5.2: This figure shows a screen-
shot of the visualizer used for the human
to demonstrate a policy in 3 vs. 2 Keep-
away. The human controls the keeper
with the ball (shown as a hollow white
circle) by telling the agent when, and to
whom, to pass. When no input is re-
ceived, the keeper with the ball executes
the Hold action, attempting to maintain
possession of the ball.

a decision list summarizing the policy (that is, it learns to generalize which action

is selected in every state). For these experiments, we use JRip, as implemented in

Weka [94].

Finally, when measuring speedup in RL tasks, there are many possible metrics.

In this chapter, we measure the success of HAT along three related dimensions. The

initial performance of an agent in a target task may be improved by transfer. Such a

jumpstart (relative to the initial performance of an agent learning without the benefit

of any prior information), suggests that transferred information is immediately useful

to the agent. In Keepaway, the jumpstart is measured as the average episode reward

(corresponding to the average episode length in seconds), averaged over 1,000 episodes

without learning. The jumpstart is a particularly important metric when learning is slow

and/or expensive.

The final reward acquired by the algorithm at the end of the learning process (at

30 simulator hours) indicates the best performance achieved by the learner. This value

is computed by taking the average of the final 1,000 episodes to account for the high

degree of noise in the Keepaway domain.

The total reward accumulated by an agent (i.e., the area under the learning curve)

may also be improved. This metric measures the ability of the agent to continue to learn

after transfer, but is heavily dependent on the length of the experiment. In Keepaway,

the total reward is the sum of the average episode durations at every integral hour of
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training: ∑
t:0→n

(average episode reward at training hour t)

where the experiment lasts n hours and each average reward is computed by using a

sliding window over the past 1,000 episodes.1

5.4 Results

In this section, we present results showing that HAT can effectively use human demons-

tration to bootstrap RL in Keepaway agents.

To begin, we recorded a demonstration from a teacher (Subject A) which lasted for

20 episodes (less than 3 minutes). Next, we used JRip to summarize the policy with a

decision list. The following rules were learned, where statek represents the kth state

variable, as defined in the keepaway task [92]:

if (state11 ≥ 74.84 and state3 ≤ 5.99 and

state11 ≤ 76.26) → Action = 1

elseif (state11 ≥ 53.97 and state4 ≤ 5.91 and

state0 ≥ 8.45 and state8 ≤ 7.06) → Action = 1

elseif (state3 ≤ 4.84 and state0 ≥ 7.33 and

state12 ≥ 43.66 and state8 ≤ 5.57) → Action = 2

else → Action = 0

While not the focus of this work, we found it interesting that the policy was able to be

1Recall that the reward in Keepaway is +1 per time step, where a time step is a 10th of a simulator second.
Thus, the reward for the first hour of training is always 60 × 60 × 10 = 36000 — a metric for the total
reward over time must account for the reward per episode and simply summing the total amount of reward
accrued is not appropriate.
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Figure 5.3: This graph
summarizes perform-
ance of Sarsa lear-
ning in Keepaway us-
ing four different algo-
rithms. One demons-
tration of 20 episodes
was used for all three
HAT learners. Error
bars show the standard
error in the perform-
ance.

summarized with only four rules, obtaining over 87% accuracy on when using stratified

cross-validation. The data was dealt out pseudo-randomly to ensure that each fold had

similar mean values.

We note that without employing independent learning, just following the learned

rules, results in poor performance. The primary cause is that the rules represent a

concise summary of the behavior but fail to cover many edge cases, as well as fail to

adapt to states that deviate remarkably from the demonstrated behavior.

Finally, agents are trained in 3 vs. 2 Keepaway without using transfer rules (No

Prior), using the Value Bonus, using the Extra Action, or using the Probabilistic Policy

Reuse method. All learning algorithms were executed for 30 simulator hours (proces-

sor running time of roughly 2.5 hours) to ensure convergence.

Figure 5.3 compares the performance of the four methods, averaged over 10 in-

dependent trials. Using 20 episodes of transferred data from Subject A with HAT can

improve the jumpstart, the final reward, and the cumulative reward. The horizontal

line in the figure shows the average duration of the teacher’s demonstration episodes;

all four of the RL-based learning methods improve upon and outperform the human

teacher. The performance of the different algorithms is measured quantitatively in Ta-

ble 5.1, where significance is tested with a Student’s t-test.
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Method Jumpstart Final Total Reward
No Prior N/A 14.3 380
Value Bonus 0.57 15.1 401
Extra Action -0.29 16.0 407
Probabilistic Policy Reuse -0.30 15.2 411

Table 5.1: This table shows the jumpstart, final reward and total reward metrics for
Figure 5.3. Values in bold have statistically significant differences in comparison to
the No Prior method (p < 0.05).

While the final reward performance of the all four methods is very similar (only Ex-

tra Action has a statistically significant2 improvement over No Prior), the total reward

accumulated by all three algorithms is significantly higher than with No Prior learning.

This result is an indication that although the same final performance is achieved in the

long term because the learning algorithm is able to learn the task in all cases, high

performance is achieved faster by using a small number of demonstrations. This dif-

ference can be best observed by selecting an arbitrary threshold of episode duration

and comparing the number of simulation hours each algorithm takes to achieve this

performance. In the case of a threshold of 14 seconds, we see that No Prior learning

takes 13.5 hours, compared to 10.1, 8.57 and 7.9 hours for Value Bonus, Extra Action

and Probabilistic Policy Reuse respectively. These results show that transferring in-

formation via HAT from the human results in significant improvements over learning

without prior knowledge.

Section 5.4 will explore how performance changes with different types or amounts

of demonstration, while Section 5.4 discusses how teacher ability affects learning per-

formance. In all further experiments we use the Probabilistic Policy Reuse method as

it was not dominated by either of the other two methods. Additionally, in some tri-

als with other methods we found that the learner could start with a high jumpstart but

fail to improve as much as other trials. We posit this is due to becoming stuck in a

local minimum. However, because ψ explicitly decays the effect from the rules, this

2Throughout this chapter, t-tests are used to calculate significance, defined as p < 0.05.
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phenomena was never observed when using Probabilistic Policy Reuse.

Comparison of Different Teachers Above, we used a single demonstration data set

to evaluate and compare three algorithms for incorporating learned rules into reinforce-

ment learning. In this section, we examine how demonstrations from different people

impact learning performance of a single algorithm, Probabilistic Policy Reuse. Specif-

ically, we compare three different teachers:

1. Subject A: This teacher has many years of research experience with the Keep-

away task. (The same as Figure 5.3.)

2. Subject B: This teacher is new to Keepaway, but practiced for approximately 100

games before recording demonstrations.

3. Subject C: This teacher is an expert in LfD, but is new to Keepaway. The teacher

practiced 10 games before recording demonstrations.

Each teacher recorded 20 demonstration episodes while trying to play Keepaway to

the best of their ability. Figure 5.4 summarizes the results and compares performance

of using these three demonstration sets against learning the Keepaway task without

a prior. All reported results are averaged over 10 learning trials. Table 5.2 presents

summary of the results, highlighting statistically significant changes in bold.

Method Jumpstart Final Total Reward
No Prior N/A 14.3 380
Subject A -0.30 15.2 411
Subject B 3.35 15.7 423
Subject C 0.15 16.2 424

Table 5.2: This table shows the jumpstart, final reward and total reward metrics for
Figure 5.4, where all HAT methods use Probabilistic Policy Reuse with 20 episodes of
demonstrated play. Values in bold have statistically significant differences in compari-
son to the No Prior method.

All three HAT experiments outperformed learning without a bias from demonstra-

tion, with statistically significant improvements in total reward. However, as in any

68



 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Training Time (simulator hours)

No Prior
Subject A
Subject B
Subject C

Figure 5.4: This graph
summarizes perform-
ance of no prior lear-
ning and Probabilistic
Policy Reuse learning
using demonstrations
from three different
teachers. Each teacher
performed demonstra-
tions for 20 episo-
des. Error bars show
the standard error in
performance across 10
trials.

game, different Keepaway players have different strategies. While some prefer to keep

the ball in one location as long as possible, others pass frequently between keepers. As

a result, demonstrations from three different teachers led to different learning curves.

Demonstration data from Subjects A and C resulted in a low jumpstart, while Subject

B’s demonstration gave the learner a significant jumpstart early in the learning process.

The final reward also increased for all three HAT trials, with statistically significant

results in the case of Subjects B and C. These results indicate that HAT is robust to

demonstrations from different people with varying degrees of task expertise.

An important factor to consider with any algorithm that learns from human input,

is whether combining demonstrations from two or more different teachers helps the

agent to learn faster, or whether exposure to possibly conflicting demonstrations from

different teachers slows the learning process. In the following evaluation we compared

five demonstration types:

1. Subject A (20): Set of the original 20 demonstrations by Subject A: average

duration of 10.4 seconds/episode

2. Subject A (10): Set of 10 randomly selected demonstrations by Subject A: aver-

age duration 7.5 seconds/episode

3. Subject C (20): Set of the original 20 demonstrations by Subject C : average
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duration of 11.3 seconds/episode

4. Subjects A + C Best (20): The 10 best (longest) demonstration episodes each

from Subjects A and C: average duration of 17.2 and 18.0 seconds/episode, re-

spectively

5. Subjects A + C Worst (20): The 10 worst (shortest) demonstration episodes each

from Subjects A and C: average duration of 4.6 seconds/episode for both

This analysis provides insight about the impact of combining demonstrations from

multiple teachers (conditions 1 and 3 vs. 4 and 5) and the impact of demonstration

quantity (condition 1 vs. 2) and quality (condition 4 vs. 5). Figure 5.5 presents a com-

parison of the five learning conditions, and Table 5.3 summarizes the results.

Method Jumpstart Final Total Reward
Subject A (20) -0.30 15.2 411
Subject A (10) -2.23 15.8 407
Subject C (20) 0.15 16.2 424
Subjects A + C Best 2.15 15.7 431
Subjects A + C Worst 0.37 16.1 419

Table 5.3: This table shows the jumpstart, final reward and total reward metrics for
Figure 5.5, where all HAT methods use Probabilistic Policy Reuse with 20 demonstrated
episodes. Values in bold have statistically significant differences in comparison to the
No Prior method (not shown).

With respect to learning from multiple teachers, results show that combining data

from different subjects leads to performance as good as or better than learning from a

single teacher. Condition Subjects A + C Best performs better than either Subject A or

Subject C alone, and significantly outperforms all other methods in the group, in large

part due to the early lead it has due to its high jumpstart. Condition Subjects A + C

Worst shows no statistically significant change in performance between it and learning

from Subject A or Subject C alone.3 This result is significant because it indicates that

3Note that because we have few subjects, our claims of significance are limited to results from demons-
trations with the three subjects tested. Future work will generalize our findings by considering many more
subjects.
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Figure 5.5: This graph
summarizes perform-
ance of Probabilistic
Policy Reuse learning
using five different de-
monstration sets. Er-
ror bars show the stan-
dard error in perform-
ance across 10 trials.

while quality is important, as shown by the difference between Subjects A + C Best

and Worst, any demonstration is beneficial. The fact that the worst demonstrations still

lead to performance well above No Prior learning is an indication that exposure to any

training data is better than random exploration.

In fact, quantity of demonstration may matter more than quality, as shown by the

comparison of conditions 1 and 2. Reducing the number of demonstrations by half

resulted in a significant decrease in jumpstart. Although performance eventually re-

covered to achieve a final reward comparable to that of the other methods, achieving

that result took longer and there is a statistically significant difference between the total

reward of the two conditions.

Most significantly, we highlight that all demonstration-based methods, regardless

of data source, quantity or quality, resulted in statistically significant performance im-

provements over No Prior learning. This critical result indicates that HAT learning can

benefit from variable degrees of demonstration quality. The algorithm does not require

the teacher to be a task expert and easily surpasses the performance of the teacher. In

the following section, we further explore the effects of suboptimal demonstrations.

Impact of Teacher Ability on Learning In the above experiments, all three teachers

demonstrated the task to their best ability. In this evaluation, we alter the simulation

71



environment to make the teacher’s demonstrations inherently suboptimal. Specifically,

we compare three types of demonstration:

1. Subject B: Same as above: average duration 10.5 sec./episode

2. Subject B Fast: Simulator speed during training was increased to approximately

5 times faster than real time: average duration 4.3 seconds/episode

3. Subject B Limited Actions: The teacher was limited to executing only two ac-

tions, Hold and Pass1, disallowing passes to the further keeper: average dura-

tion 5.2 seconds/episode

The two test conditions are designed to handicap the teacher and reduce the quality of

demonstrations, either by affecting reaction time (Subject B Fast) or by providing the

learning agent with demonstrations of only a subset of the state/action space (Subject

B Limited Actions). The handicapping effects were successful, reducing the average

duration of the teacher’s demonstration episodes by more than half.

Figure 5.6 presents a comparison of the three learning conditions and Table 5.4

summarizes the results. Importantly, we see again that poor teacher performance does

not negatively impact the final performance of the agent. The data further supports our

earlier findings that in the long-term, Probabilistic Policy Reuse can learn the task re-

gardless of the initialization method, and there is no statistically significant difference

in final reward values between conditions 1 and 2, and conditions 1 and 3. Statisti-

cally significant differences are observed, however, in the rate of learning, both with

respect to jumpstart and total reward, indicating that suboptimal demonstrations slow

the learning process. However, even with the added handicaps, learning from human

data shows statistically significant improvements over No Prior learning.
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Figure 5.6: This graph
summarizes performance
of Probabilistic Policy
Reuse learning using three
sets of demonstrations
from Subject B recorded
under different simulator
conditions: normal, fast
and with limited actions.
Each demonstration set
consists of 20 episodes.
Error bars show the stan-
dard error in performance
across 10 trials.

Method Jumpstart Final Total Reward
Subject B 3.35 15.7 423
Limited Actions -1.26 16.0 404
Fast Demonstration -2.37 16.0 401

Table 5.4: This table shows the jumpstart, final reward and total reward metrics for
Figure 5.6, where all HAT methods use Probabilistic Policy Reuse. All demonstrations
are 20 episodes, recorded by Subject B. Values in bold have statistically significant
differences in comparison to the No Prior method (not shown).

5.5 Discussion

In this chapter, we introduced HAT, a novel method to combine learning from demons-

tration with reinforcement learning by leveraging an existing transfer learning algo-

rithm. Using empirical evaluation in the Keepaway domain we showed that given

training data from just a few minutes of human demonstration, HAT can increase the

learning rate of the task by several simulation hours. We evaluated three different vari-

ants which used different methods to bias learning with the human’s demonstration.

All three methods performed statistically significantly better than learning without de-

monstration. Probabilistic Policy Reuse consistently performed at least as well as the

other methods, likely because it explicitly balances exploiting the human’s demonstra-

tion, exploring, and exploiting the learned policy. Additional evaluation using demons-
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trations from different teachers, combined demonstrations from multiple teachers, and

suboptimal demonstrations all showed that HAT is robust to variations in data qual-

ity and quantity. The best learning performance was achieved by combining the best

demonstrations from two teachers.

One of the key strengths of this approach is its robustness. It is able to take data

of good or poor quality and use it well without negative effects. This is very important

when learning from humans because it can naturally handle the noisy, suboptimal data

that usually occurs with human demonstration. Its ability to deal with poor teachers

opens up opportunities for non-expert users.

As a future work investigating the agreement between learned rule sets by different

teachers more deeply could potentially provide more insight about the demonstrators

and which demonstrations can be combined to obtain either a diverse set of demons-

trations or a consistent set of demonstrations. The effect of parameters on the learned

set of rules is also worth investigating as a future work.
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Chapter 6

Learning from Demonstration
for Shaping through Inverse
Reinforcement Learning

In the previous section we presented HAT, an offline, robust, transfer learning algorithm

that improves the learning performance of an RL agent over learning without demons-

tration. The best performance was achieved by combining the best demonstrations

from two teachers. Our evaluation compared algorithmic approaches to incorporating

demonstration rule summaries into transfer learning. In this chapter, we introduce two

novel RL algorithms that incorporate prior knowledge as reward functions learned from

human demonstrations. We show that in two domains, both of our approaches result in

significantly (p-values < 0.0001) more cumulative reward and have better asymptotic

performance than the human demonstrator.

6.1 Overview

Model-free episodic Reinforcement Learning (RL) problems require agents to explore

the state space and iteratively find a solution, which can be costly in terms of lear-

ning time. These problems are typically defined by an environment reward that rarely
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changes throughout the state-space. For example, in the Cart-Pole domain [95, 96],

the environment provides a reward of renv = +1 after each step of the task until the

terminal state, where the reward is renv = 0 to emphasize that the cart has failed at bal-

ancing the pole. The information provided by the environment is sparse as the change

in the reward signal is infrequent. The environment lets the agent know about an ob-

stacle or the terminal state without providing much information right until then. On the

one hand, it is easy to define a sparse reward function manually and the interpretation

of rewards becomes very intuitive for humans. On the other hand, with this type of en-

vironment reward agents are not given enough information about how appropriate the

chosen actions are throughout the task. A model-free RL agent can benefit immensely

from having a dense reward function that provides more information about the task.

An extensively explored way to provide denser information is through shaping the

existing reward function by adding an extra signal, thus providing the agent with a

composite reward [61, 97, 32, 98, 99]. Research in reward shaping shows that po-

tential based shaping functions provide a theoretically sound way of incorporating

additional, informative reward functions in existing reinforcement learning problems

without altering the problem definition [61]. Potential based shaping rewards can im-

prove an agent’s learning efficiency by reducing the number of episodes before conver-

gence [61]. To give an example for the Cart-Pole problem, a potential based shaping

reward could be the negative of the angular distance of the pole from the center at

each step. There are multiple ways to define a shaping reward function. One way is

to use a priori knowledge of the domain characteristics, however, doing so requires

extensive knowledge of the state space and becomes infeasible as the number of state

variables increases. Recent work has shown that shaping reward can also be effec-

tively extracted from an expert’s demonstration by computing the similarity between

demonstrated states and observed states throughout learning [32].

Expert demonstrations have also been applied in the context of Markov decision

76



processes for inverse reinforcement learning (IRL), that is, for extracting a reward func-

tion given observed optimal behavior [38]. In domains where the reward function is

unknown, IRL algorithms are used with the purpose of obtaining a reward function for

optimal control.

In this chapter, we introduce Static IRL Shaping (SIS), and Dynamic IRL Shaping

(DIS), two variations of a novel approach in which we combine reward shaping and

inverse reinforcement learning. SIS and DIS improve upon previous work’s use of an

expert’s demonstrations by capturing the demonstrator’s general policy over the state-

space for shaping, as opposed to using the observed demonstration samples directly.

By using model-free IRL, we encode a demonstrator’s task description as a heuristic

which complements the environment reward function. Our approach consists of three

main steps: i) collecting demonstrations, ii) recovering a potential function from de-

monstrations, and iii) using the recovered potential function for computing shaping

rewards in reinforcement learning. Reward functions we recover let us compute a lin-

ear potential based shaping reward. It is important to note that, even though we use

expert demonstrations in this chapter, there is no strict requirement for the demonstra-

tions to be optimal. We use reward shaping as a heuristic, while the agent still receives

the information provided by the environment reward. This means that even if demons-

trations are suboptimal, the agent will ultimately be able to learn the task. This is

due to the guarantees of policy invariance provided by potential-based reward shaping

approaches, and that reward shaping that is not potential-based may alter the optimal

policy of the problem. Our goal is to show that using a model-free IRL technique, we

can extract additional information for summarizing the task for a standard RL agent and

the agent can use this information to learn the task faster. To the best of our knowledge,

the use of IRL for potential-based shaping reward functions has not been investigated

in the literature.

In order to show that our approach is scalable over different number of state vari-
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ables, we evaluate our approach in two domains: a Maze domain and the Mario AI

domain. We compare SIS and DIS with the standard SARSA(λ) and Q(λ)-learning

agents, as well as with two previously introduced RL algorithms that leverage demons-

tration data. Our experiment results show that a) both of our approaches result in

significantly (p-values < 0.0001) more cumulative reward in both domains compared

to other techniques, b) DIS results in faster learning in both domains and c) both ap-

proaches have better asymptotic performance than the human demonstrator.

6.2 Methodology

In this section, we present our approach for using a model-free IRL algorithm to ob-

tain a shaping reward and speed up reinforcement learning. Our goal is to incorporate

human task demonstration in an intuitive way and incorporate this knowledge in rein-

forcement learning without changing the task (i.e. the main goal). We aim to reinforce

appropriate action selection as soon as an episode starts, much before the agent reaches

the terminal state. Each shaping reward signal can be thought of as a hint for the agent

to make better decisions. To the best of our knowledge, using a potential-based shap-

ing reward function recovered with IRL has not been investigated in the literature. Our

method has three main steps:

Collecting Expert Demonstrations: First, we collect observation data from a de-

monstrator. Each demonstration is a set of sequential observations in time. In this

chapter, our focus is on episodic, simulated environments and we collect the agent’s

state vector as demonstrations. The demonstrator was an expert teacher, however this

is not a requirement for our setup. We assume that the demonstrations are not mali-

cious, that is, the intent of each demonstrated state transition is to perform well on the

task. RE-IRL requires trajectories to start from the same initial state and have equal

lengths. To equalize the length of demonstrations we process the demonstration data
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by repeating the last observation (in our first test domain) or pruning longer demons-

trations (in the second test domain). Depending on the task, if demonstrating the goal

state carries importance one could prefer to append a repetition of the goal state in the

set of demonstrated observations, or otherwise prune the observations. In the end we

obtain a set of demonstrations T . The input for the next step (i.e. RE-IRL) is T , where

each trajectory τ ∈ T is a set of observations of equal length, τ = {s1, . . . , sl}.

Recovering a Linear Function: Once we obtain T , we use RE-IRL and compute the

vector of reward feature weights w to use inRIRL(s). RE-IRL recovers a reward func-

tion RIRL(s, a) for the set of demonstrations T as a linear combination of observed

reward features f = 〈f1, . . . , fn〉, weighted with w. The output is the vector of feature

weights w = 〈w1, . . . , wn〉:

RIRL(s) =

n∑
i=1

ωifi(s) (6.1)

where, fi is ith reward feature, ωi is ith feature weight, s is the state vector for the

current state of the agent. Each reward feature is computed from the state vector s

and the mapping from state variables to reward features is typically domain dependent,

defined by agent designers.

In our representation, we only use the state variables to represent the path of the

agent and the policy of the demonstrator, hence the potential function is independent

of the actions. RE-IRL obtains the weight vector w by finding a distribution P that

minimizes the KL-Information loss I(P,Q) over trajectories.

KL-Information loss I(P,Q) is the information lost when the distributionQ is used

to approximate the distribution P [100]. For this work we are interested in transferring

the expert demonstration policy from humans to agents, hence we use the distribution

Q as the distribution of observed expert trajectories in state space. RE-IRL tries to find

a vector w that minimizes the KL-Information loss. With w, during learning, when

fobserved ≈ fdemonstration feature weights return a higher reward to reinforce the
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agent’s state-action values.

For the full derivation of the solution we refer readers to [5]. An explanation of

RE-IRL with a pseudo-code for the algorithm is also presented by Muelling et al. [50].

Using The Recovered Function: Last, we compute potential-based shaping rewards

that the agent receives during learning. For this step we tested the use of the recovered

linear function as a traditional, static potential function and also as a dynamic potential

function. To implement potential-based shaping we define the above potential function

Φ : S 7→ R over the state space, and define the shaping reward F as the difference

between the potential of the new state s′ and the old state s:

F (s, a, s′) = γΦ(s′)− Φ(s) (6.2)

where 0 ≤ γ ≤ 1 is the discount factor which describes the present value of future

rewards and potentials [1]. The effect of shaping is that the agent’s exploration is less

random and the agent is biased towards states with high potential. In this work, we use

inverse reinforcement learning to obtain a linear function Φ(s) = RIRL(s) from expert

teacher demonstrations. We call this approach Static IRL Shaping (SIS). We name the

approach static since the potential function does not change over time.

The formulation given in Eq.(6.2) is limited in that the shaping reward is dependent

only upon the states encountered by the agent and not its actions. Wiewiora et al. [99]

extend the definition of F and Φ to state-action pairs (s, a) as:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (6.3)

This formulation allows more information to be incorporated, as it is not limited to

states but uses action choices for computing the shaping reward.

Devlin et al. [97] extended Ng’s potential-based reward shaping to dynamic potential-
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based shaping, allowing the shaping function to change over time:

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t) (6.4)

By changing the shaping function over time, this formulation allows incorporating

learning in the shaping function based on agent’s experience in order to improve the

shaping function. Harutyunyan et al. [98] combine these two extensions into dynamic

shaping over state-action pairs:

F (s, a, t, s′, a′, t′) = γΦ(s′, a′, t′)− Φ(s, a, t) (6.5)

Importantly, the above variants of shaping all preserve the guarantees such as policy

invariance and consistent Nash Equilibria proven by Ng et al [61], and Devlin and

Kudenko [97]. Using dynamic shaping, any expert provided reward function R† can

be transformed into a potential-based shaping function by learning a secondary Q-

function Φ†, which serves as the potential function for shaping. The formulation below

defines the dynamic potential-based shaping reward. The secondary value function

must be learned on-policy, with a technique such as SARSA [101]:

Φ†(s, a)← Φ†(s, a) + βδΦ†
(6.6)

Where β is the learning rate, and δΦ†
is defined as the temporal difference (TD) error

of the state transition:

δΦ†
= rφ

†
+ γΦ†(s′, a′)− Φ†(s, a) (6.7)

As the secondary Q-function Φ† gets updated after each step the shaping function be-

comes:

F = γΦ†(s′, a′)− Φ†(s, a) (6.8)
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By substitution we obtain:

δΦ†

t = rφ
†

+ F (6.9)

By definition, the temporal difference error (i.e. the error between the estimated Q-

value and the actual return) goes to 0 at the time of convergence. Thus for δΦ†
= 0:

rφ
†

+ F = 0 (6.10)

And finally at the time of convergence the potential-based shaping function becomes:

F (s, a) = R†(s, a) = −rφ
†

(6.11)

When the secondary value function has converged (i.e. when δΦ†
= 0), the main

value function Q(s, a) will be supplied with a potential-based reward shaping that is

equivalent to the reward function R†. Even before convergence, Φ† provides useful

information about R†, just like the main Q- function provides information about good

policies before converging to an optimal policy. As implied by the last equation above,

we learn the secondary Q-function Φ† using the negative of the expert defined reward

rφ
†

= −R†. In our work, R†(s, a, s′) = RIRL(s) is the reward function we recover

using inverse reinforcement learning. We call this approach Dynamic IRL Shaping

(DIS), as the potential function changes over time based on the learned, secondary

Q-function which uses Equation 6.1 as its reward input.

6.3 Experimental Validation

In order to validate our approach we compare the performance of our algorithms against

HAT with value-bonus [4] and SBS in two domains: a relatively simple Maze domain,

and the Mario AI [102] domain. For both domains, we investigate the initial perform-

ance, the asymptotic performance, and the total cumulative reward for evaluation.
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Figure 6.1: Maze domain. The state-space consists of two continuous variables x, y
that define the horizontal and vertical location of the agent in the maze with reference
to the lower-left corner. The agent starts from S and its goal is to navigate around the
gray walls and reach the goal destination G.

x

y

Figure 6.2: Suboptimal demonstrations in the Maze domain.

In both domains we have 5 agents: a standard RL agent, a SIS agent, a DIS agent, a

HAT agent and a SBS agent. For the Maze domain we use SARSA(λ) as the standard

learner and the underlying learning algorithm for all other agents. For the Mario AI

domain we use Q(λ)-learning as the standard learner and the underlying learning algo-

rithm for all other agents (with the exception of the secondary learner in DIS, which

has to be a SARSA learner).

6.3.1 Maze

The Maze domain shown in Fig.6.1 is a modified version of the Dyna Maze domain

introduced by Sutton and Barto [1]. In this domain, the goal of the agent is to start

from the position marked with S, navigate around the walls shown as dark gray cells

83



x

y

Figure 6.3: Optimal path in the Maze domain.

and reach the goal state marked with G. In our version the state-space consists of two

continuous variables 0 ≤ x, y < 1.0. The agent starts at s = (x : 0.08, y : 0.6), and

chooses one of four available actions: left, right, up, and down. Step size for each action

is 0.02. After each step the agent receives an environment reward of −1. If the agent

tries to get outside the domain boundaries in any direction, or hits a wall, it receives an

environment reward of −10. The terminal condition is (x ≥ 0.9) && (y ≥ 0.9) with

an environment reward of +10. This is an episodic task and each episode starts form

the initial state and ends at the goal state (or terminates with failure after 6000 steps).

In order to evaluate our approach we collected 10 suboptimal demonstrations in

the Maze domain. The demonstrator was the first author who also designed and im-

plemented the modifications to the original Dyna Maze domain. Fig. 6.2 shows the

suboptimal demonstrations. We measured suboptimality based on two metrics: the

demonstration path length and the number of actions that did not help the agent to nav-

igate toward the goal. Fig. 6.3 shows the optimal, piecewise linear path. The length

of the optimal path is 2.665. On average the demonstration paths are 27.4% longer

than the optimal path length and on average 1.5% of the performed actions during de-

monstrations are suboptimal. Features we recorded during demonstrations were the

horizontal and vertical location of the agent at each time-step, that is, st(xt, yt) for

each observation st. The shortest demonstration took 328 steps to reach the goal and

the longest demonstration was 353 steps long (µ = 337.5 and σ = 10.71 steps). None
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Figure 6.4: Maze domain experiment results.

Table 6.1: Average initial (first episode) performance, asymptotic performance, and
cumulative reward with standard deviations for all agents in the Maze domain. Maxi-
mum values are shown in bold. Higher values are better. SAR: SARSA, HMN: average
of the reward human demonstrator received in 10 demonstrations.

Agents µinit µasymp µcumul
SAR -3,730.36 -222.52 -151,525.96
SIS -7,973.16 -165.88 -93,591.96
DIS -3,494.08 -267.88 -113,689.12
HAT -164.68 -222.36 -150,141.28
SBS -324.04 -185.84 -159,634.52
HMN -327.5 -327.5

of the demonstrations had the agent collide with the walls or the borders of the maze.

For RE-IRL, we appended the last observation of the shorter demonstrations repeat-

edly in order to equalize the lengths of the demonstrations. We used the following

parameters for our agents: number of tiles = 32, α = 0.25/#tiles, β = 0.05/#tiles,

γ = 1.0, λ = 0.25, with ε−greedy action selection where ε = 0.02. Finally, we used

a scaling of 100 for all shaping reward signals, except for the HAT agent where the

scaling was 10.

Fig. 6.4 shows the agents’ performance in 150 episodes, averaged over 25 trials.

The vertical axis shows the agents’ performance in terms of total reward received per

episode and the horizontal axis shows the number of episodes. Each line shows the

performance of a different agent. For comparison we also show human demonstrator’s

performance averaged over 10 demonstrations. Average initial (first episode), asymp-
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Table 6.2: Statistical analysis for the Maze domain results show p-values for two-
sample t-tests. SAR stands for SARSA. Columns show the statistical significance of the
difference between the initial (first episode) performance, asymptotic (last episode) per-
formance, and cumulative reward (i.e. total reward throughout the trial).* p ≤ 0.05,**
p ≤ 0.01,*** p ≤ 0.001,**** p ≤ 0.0001.

Agents Initial Asymp. Cumulative
SAR vs SIS 3.8929e-16**** 0.051603 1.4592e-44****
SAR vs DIS 0.62928 0.56365 8.3354e-33****
SAR vs HAT 1.5995e-13**** 0.99673 0.51621
SAR vs SBS 1.6913e-12**** 0.26082 0.022387*
DIS vs HAT 3.4262e-13**** 0.56402 1.0199e-22****
DIS vs SIS 9.6501e-18**** 0.17313 5.2131e-26****
DIS vs SBS 4.1881e-12**** 0.28159 5.4586e-18****
SIS vs HAT 3.0772e-94**** 0.060007 4.3662e-32****
SIS vs SBS 2.597e-55**** 0.32015 9.6945e-25****

SBS vs HAT 0.062916 0.27499 0.015977*

totic (last episode), and cumulative reward are detailed in Table 6.1.

First, we note that all five algorithms are able to achieve a similar asymptotic per-

formance in this domain, although they reach it at different rates. For example, if we

consider the number of episodes each algorithm takes to surpass the performance of the

demonstrator, then we see that SARSA(λ), SIS, DIS, HAT and SBS require 110, 90,

115, 135, and 136 episodes, respectively. In summary, SIS learns the task remarkably

faster than all other methods.

The performance of the different techniques also varies largely during the learning

process. The standard SARSA(λ) agent starts from−3, 730 and reaches its asymptotic

performance after 130 episodes. The SIS approach starts with the worst performance,

−7, 973, however is the fastest to surpass the demonstrator’s performance only after 90

episodes. In comparison the DIS approach starts with an initial performance of−3, 494

and learns the task comparably fast.

The HAT algorithm, initializes the Q-function with the potential function at the

very beginning. The first column of Table 6.1 shows that the initialization results in

high performance during first episodes.However later on, as the agent probabilistically

86



explores the state-space its performance degrades over time. It is important to point

out that the performance boost gained by amount of initial jump-start is dependent of

the demonstration quality and demonstrator’s ability. Taylor et al. [4] have investigated

the impact of demonstration quality and demonstrator expertise. HAT suffers from a

performance loss after about 10 episodes due to the negative step reward. The agent

starts with the “good” policy, however receives negative reward at every step and thus

starts to explore beyond the good policy. After exploring different states only to learn

that they were “bad” states, the agent recovers and improves its performance to catch-

up with the learning speed of the standard SARSA(λ) agent. This finding is in parallel

with Taylor et al.’s [4] observations, in the sense that human demonstrations do not hurt

the agent’s final performance.

Similarly, the SBS approach implements Q-function initialization and starts with a

high performance which degrades over time with exploration. After about 136 episodes

the SBS agent reaches the demonstrator’s performance and soon after converges to its

asymptotic performance of −186.

Using the rewards agents collected per trial, we performed two-sample t-tests to

evaluate whether the agents’ initial performance, asymptotic performance and cumu-

lative reward were significantly different from each other (Table 6.2, sample size: 25

trials).

The difference in asymptotic performance is not significant as can be obvious from

Fig. 6.4. That being said, we would like to underline that all methods have surpassed

human demonstrator’s average performance. Especially SIS results in about a 50%

increase in asymptotic performance after 150 episodes w.r.t the demonstrator’s per-

formance (second column of Table 6.1).

As for the initial performance data, there wasn’t a significant difference between

the DIS and the SARSA agents. However, the HAT and the SBS agents performed

significantly better than the SARSA agent.

87



0 0.5 1 1.5 2

x 10
4

−500

0

500

1000

1500

Episode

A
v
e
ra

g
e
 R

e
w

a
rd

 

 

Q−Learning

SIS

DIS
HAT

SBS

Human

Figure 6.5: Mario domain experiment results.

Table 6.3: Performance metrics for the agents in Mario AI: initial performance, asymp-
totic performance, cumulative reward (average of 10 trials). Maximum values are
shown in bold. Higher values are better.

Agents µinit µasymp µcumul
QLR -424.6 1,410.4155 20,101,973.6
SIS -43.6 1,431.5328 22,341,947.6
DIS -391.2 1,398.7714 25,725,731.6
HAT -457 867.2241 13,250,664.4
SBS 129.8 1,267.8642 22,332,848.2
HMN 1,224 1,224

Finally, both the SIS and the DIS agents collected significantly more reward through-

out 150 episodes (i.e. cumulative reward) than the SARSA, the HAT and the SBS

agents.

In summary, the SIS agent shows the steepest learning curve by converging to a sta-

ble policy fastest and collects the highest cumulative reward of approximately -93,000

after 150 episodes. The DIS agent performs comparably good with a better initial per-

formance than SIS, however collects less cumulative reward, approximately -113,000.

6.3.2 Mario AI

Super Mario Bros is a popular 2-D side-scrolling video game developed by the Nin-

tendo Corporation. In this work, we use the publicly available Mario AI version re-

leased by Karakovskiy and Togelius [102]. There are many possible representations of
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Table 6.4: Statistical analysis for the Mario AI domain results show p-values for two-
sample t-tests. QLR stands for Q-Learning. Columns show the statistical significance
of the difference between the initial performance, asymptotic (final) performance, and
cumulative reward (i.e. total reward throughout the trial).

Agents Initial Asymp. Cumulative
QLR vs SIS 0.018698* 0.99448 0.0010416**
QLR vs DIS 0.65987 0.11448 5.5167e-09****
QLR vs HAT 0.60982 0.71677 9.0692e-12****
QLR vs SBS 0.050229 0.059223 0.00014223***
DIS vs HAT 0.40846 0.23382 1.6551e-18****
DIS vs SIS 0.037257* 0.094503 1.9024e-06****
DIS vs SBS 0.067898 9.1049e-05**** 1.9184e-08****
SIS vs HAT 0.012506* 0.70797 4.121e-15****
SIS vs SBS 0.56634 0.040042* 0.98207
SBS vs HAT 0.039996* 0.023199* 4.0285e-21****

the state-space in this domain and here in order to test our approach in a large state-

space, we use 27 discrete state-variables. Boolean state variables jump, ground, and

shoot define whether Mario is able to jump, is standing on a tile, or is able to shoot

fireballs. We use x-dir and y-dir variables that can take on either one of {−1, 0, 1}

values to define the direction of the agent’s movements. The immediate surrounding of

the agent is discretized in 8 grid cells. For each grid cell we have a state variable close-

enemies defining whether there is a enemy in the matching cell. We also keep track of

the grid cells that are one step farther than the immediate cells, and we have 8 boolean

variables called mid-enemies. We keep four boolean state variables obstacle to identify

whether the four vertical cells to the immediate right of Mario are occupied by obsta-

cles such as pipes. Finally we have two variables closest-enemy-x and closest-enemy-y

that define the Euclidean distance between the agent and the closest enemy within a

22x22 grid. This state space is inspired by Liao’s work [103]. We note that this domain

is a relatively high dimensional domain compared to most standard RL benchmarking

domains. The main reason of our evaluation in the Mario AI domain is to show that

our model-free approach is scalable. The agent can choose one of 12 actions combin-

ing one of each options of the following three sets: {left, right, no-action}, {jump, do
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not jump}, {run, do not run}. The goal of the agent is to maximize the total reward it

receives throughout the level. The agent receives a reward of +10 for stepping on an

enemy, +58 for eating a mushroom, +64 for eating a fire-flower, +16 for collecting a

coin, +24 for finding a hidden block, +1024 for successfully finishing the level, −42

for getting hurt by an enemy (e.g. losing fire-flower), and −512 for dying. The maxi-

mum number of steps per episode is limited by the game’s timer and the default timeout

is 200 seconds. In the context of potential-based reward shaping, recent work by Haru-

tyunyan et al. [104] implements and evaluates their reward shaping framework [98] in

Mario AI domain as well.

We used the 10 demonstrations’ first 953 observations for RE-IRL, and used the

same demonstrations in full length for all other methods. For RE-IRL, the 10th longest

demonstration was 953 observations long and we pruned the first nine demonstrations

at this length to keep the demonstration length consistent. We used the following pa-

rameters for our agents: number of tiles = 32, α = 0.01/#tiles, beta = 0.05, γ = 0.9,

λ = 0.5, with ε−greedy action selection where ε = 0.05, and scaling = 1 for the

shaping reward.

We ran 10 trials for all five agents’ performance evaluation. The level our agent

played in Mario was designed as an episodic task where the agent finishes a level

either with success or the level ends with failure with the agent’s death, or a timeout of

200 seconds. Every episode, the agent plays a randomly generated level, starting from

a randomly selected mode (small, large, fire-mario).

Fig. 6.5 shows the agents’ performance in 20,000 episodes, averaged over 10 trials.

The vertical axis shows the average total reward (i.e. points) agents collected during

each episode. The horizontal axis shows the number of episodes. Each line shows the

performance of an agent. Again, for comparison, we also show the human demonstra-

tor’s performance. Table 6.3 shows the average initial performance, a-symptotic per-

formance, and cumulative reward for each agent. On average the demonstrator scored
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1224 points in this domain.

Unlike the previous domain not every agent was able to achieve the same asymp-

totic performance after 20,000. Three agents’ asymptotic performance (SIS, DIS, and

Q(λ)) is significantly better than the remaining two (HAT and SBS). Again, if we con-

sider the number of episodes each agent takes to surpass the performance of the user,

then we see that Q(λ), SIS, DIS, and SBS require 11, 000, 10, 000, 4, 000 and 12, 000

episodes respectively. The HAT agent was unable to reach or surpass the demonstra-

tor’s performance.

Similar to our previous experiment we observe a great difference in the learning

process. With the exception of the SBS agent, most agents start with similar initial

performance and negative total reward for their first several hundred episodes. The SBS

agent leverages Q-function initialization and starts with a positive initial performance.

The initial performance of the SIS agent was significantly better than the standard Q(λ)-

learning agent, the DIS agent and the HAT agent. That said, the SIS agent’s asymptotic

performance was only better compared to the SBS and the HAT agents.

In terms of cumulative reward, the SIS agent performed significantly better than all

other agents but the DIS agent. Table 6.3 shows that the DIS agent has the best overall

cumulative reward performance, exceeding a cumulative reward of 25M in 20,000 epi-

sodes. The DIS agent also is the fastest to reach to the demonstrator’s performance af-

ter about 4, 000 episodes, reaching the best asymptotic performance after about 8, 000

episodes before any of the other methods even reach the level of the demonstrator.

The SBS algorithm shows quick convergence however its final performance re-

mains limited at about 1,267 points, very close to demonstrator’s performance, after

20,000 episodes. This is because SBS takes observed state’s similarity with demonstra-

tions and rewards the agent if the agent acts similar to demonstrations. As pointed out

by Brys et al. [32] SBS performs better with minimum amount of consistent demons-

trations (even with a single demonstration in the case of Cart-Pole domain). Although
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Figure 6.6: Asymptotic performance of the DIS agent after 20,000 episodes in Mario
AI. Here the performance is a function of the length of demonstrations (the number of
state-action pairs recorded per demonstration). Each condition has 10 demonstrations.
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Values for the bar plot are the average of 10 trials.
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Figure 6.7: Cumulative reward the DIS agent received during 20,000 episodes in Mario
AI. Here the cumulative reward is a function of the length of demonstrations (the num-
ber of state-action pairs recorded per demonstration). Each condition has 10 demons-
trations. P-values obtained with two-sample t-tests between marked conditions for 10
trials.

given enough number of episodes the algorithm is guaranteed to reach the underlying

Q(λ)-learning’s performance, suboptimal demonstrations affect the speed of learning.

Finally, the HAT agent performs slightly better than standard Q(λ)-learning only for the

first 250 episodes. This is because it is difficult to summarize the demonstrator’s policy

based on a limited number of observations. This shows the slight performance boost

that policy transfer brings, however for the rest of the trials, HAT agent shows slow

improvement resulting in the significantly worst performance after 20,000 episodes.
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After an analysis of learning curves and the agents’ performance, we also briefly

investigated the effect of the length of demonstrations on the asymptotic performance

and the cumulative reward. For this set of experiments, we chose the Mario AI domain

as it is a harder task and we used the DIS agent as it was the fastest learner with the

highest cumulative reward in our previous experiment.

Fig. 6.6 shows the average asymptotic performance results for 10 trials using 100,

500 and 953 observations for 10 demonstrations. We did not find a significant differ-

ence between the asymptotic performance data for varying length of demonstrations.

We conclude that this is because the DIS agent learns using a secondary Q-function,

and even if the demonstrations do not contain enough information, in this case 20, 000

episodes were enough for using the environment reward to eventually achieve the same

asymptotic performance. However, we did find a significant difference in the cumu-

lative reward of the agents. Fig. 6.7 shows that as the number of observations per

demonstration increase, the cumulative reward significantly increases. The results in

Fig. 6.6 and Fig. 6.7 imply that the length of demonstrations do affect the learning

speed without affecting the asymptotic performance of the DIS agent.

6.4 Discussion

In this chapter, we introduced a novel, three step approach to use human demonstra-

tions for potential-based reward shaping in reinforcement learning. Specifically, with

our method, we collect demonstrations in a domain, we then use the demonstrations to

recover a linear function using inverse reinforcement learning, finally we use this re-

covered function to compute a shaping reward for potential-based shaping in reinforce-

ment learning. Our approach is model-free and scalable. To show the scalability of our

approach we ran two sets of experiments in a simple two dimensional continuous Maze

domain, and a complex, 27 dimensional Mario domain with discrete state-variables.

We compared our algorithm to standard RL and two previously introduced rein-
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forcement learning from demonstration algorithms:

• HAT algorithm has the ability to learn rules from human demonstrations. In

Chapter 5 we showed that for a domain that consists of 13 state variables, rule

learning can be effective. In this chapter we found that for a domain that consists

of 27 state variables, rule learning may have lost its efficacy. Even though HAT

algorithm has the strength of combining demonstrations from multiple demon-

strators without negatively affecting the asymptotic performance of the learner,

the size of the state space may be a limiting factor for the usability of the algo-

rithm.

• SBS algorithm assumes that each observed demonstration is a desired state-

action pair. Even though in optimal demonstration sets this assumption may

hold, often in real world domains human demonstrations are suboptimal and no-

isy. On the other hand, as Brys et al. [32] point out, the SBS algorithm has the

ability to bias the reward function with very short demonstrations as the method

uses a mixture of Gaussians to measure the similarity of the demonstrated states

to the agent’s observed state.

• SIS and DIS algorithms need demonstrations that are of equal lengths. Even

though there are ways to comply with this requirement, often in real-world do-

mains this can be impractical. In addition to the length of the demonstrations,

currently there is no way for the algorithms to assess the fitness of the reward

weights that are being recovered from the human demonstrations. As the num-

ber of state variables increases, interpreting the effect of reward feature weights

on the shaping reward signal becomes infeasible. On the other hand, inverse re-

inforcement learning methods learn a reward function that represents a task in a

very compact manner. This increases the robustness of the algorithm against the

noise that suboptimal demonstrations may contain. In contrast, the SBS algo-

rithm would be directly affected of the noise that SIS and DIS algorithms could
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potentially filter out by generalizing over the set of demonstrations.

Even though the short list above brings up some of the advantages and usability

concerns of these algorithms, a full empirical comparison of these different speed-up

methods is beyon the scope of this thesis.

Our experiments show that SIS and DIS agents collect significantly more cumula-

tive reward. Our agents’ asymptotic performance surpasses the human demonstrator’s

average performance. One of our approaches, Static IRL Shaping results in faster lear-

ning with higher cumulative reward in the simpler Maze domain, whereas our second

approach, Dynamic IRL Shaping results in faster learning with higher cumulative re-

ward in the more complicated Mario AI domains. One possible explanation for this

behavior is that the Maze task was not complex enough to observe the benefits of the

secondary policy the DIS algorithm learns. This indicates that in simple domains,

learning a reward function by demonstrations can be enough to improve a learner’s

performance compared to previously introduced transfer learning techniques. It is also

likely that the high dimensionality and the state representation of the Mario AI domain

makes it difficult for the IRL algorithm to recover a suitable reward function for all sec-

tions of the state space. The intuition behind the DIS algorithm is that the secondary

policy can generalize over the state space and provide a more informative, adaptive

shaping reward signal for the agent. Which may explain why the DIS agent performs

better in this domain. Finally we also briefly investigated the effect of the number of

observations on learning. We found that our approach learns faster as the demonstra-

tions contain more observations as this results in a more complete representation of the

task.
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Chapter 7

Discussion and Conclusion

This thesis introduced implementations and evaluations of different Reinforcement

Learning from Demonstration algorithms, particularly addressing three major chal-

lenges: i) enabling RL solvers to incorporate prior knowledge, ii) method of gather-

ing data for the prior particularly from human demonstrators, and iii) the use of the

resulting prior by agents. The algorithmic techniques introduced in this thesis leverage

human demonstrations in various ways.

The core contributions of this thesis are as follows: First, we introduced the first

implementation and evaluation of the previously introduced Interactive Reinforcement

Learning algorithm on a robot. With Interactive Reinforcement Learning, a human

demonstrator can provide guidance for focusing the action selection of a learner, and

rewards for expressing the fitness of an action. Second, we presented quantitative and

qualitative findings from a user study where naı̈ve human teachers were asked to teach

a real-world task to a humanoid robot with three different Learning from Demons-

tration algorithms. Next, we introduced a novel Transfer Learning algorithm for RL

agents: Human-Agent Transfer (HAT). We investigated three different methods for bi-

asing the agent’s learning process and the effect of the demonstrator’s task expertise

on the agent’s learning performance. Finally, we introduced two novel Transfer Lear-

ning algorithms, Static Inverse Reinforcement Learning Shaping (SIS) and Dynamic
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Inverse Reinforcement Learning Shaping (DIS) where we used human demonstrations

for reward shaping with a reward function recovered with a model-free inverse rein-

forcement learning technique.

We evaluated our algorithms in various real-world and simulated domains, with

human teachers with various skills and expertise in each domain. We showed that, for

a robot that employs Interactive Reinforcement Learning, an expert human teacher’s

guidance can remarkably reduce the number of explored states and the learning time,

under the condition that each guidance message restricts the set of choices for action

selection to a small number of actions. We also showed that guidance reduces the pos-

itive effects of guidance increase with state space size. In the presence of guidance

the teacher reduces the number of interactions earlier in the training process and the

teacher provides more positive reinforcement signals. With a comparative user study,

we showed that, naı̈ve human teachers preferred the simplicity of human-robot interac-

tion that Interactive Reinforcement Learning provides compared to two other Learning

from Demonstration algorithms. One critical finding we obtained as a result of the user

study was that the duration of the experiment was not enough for users to finish teach-

ing the task through Interactive Reinforcement Learning. This finding highlighted the

main motivation of this thesis, which is to improve the learning speed of of RL agents.

With the Human-Agent Transfer algorithm, we showed that, an RL agent can robustly

use human demonstration data regardless of the expertise of the human teacher in a

domain. Finally, with SIS and DIS algorithms, we showed that an RL agent can benefit

from a learned human reward function through inverse reinforcement learning.

One important limitation of our work was the limited number of demonstrators we

have employed for each evaluation. With the exception of the user study, we were

limited with the demonstrations provided by the authors of each work. Even thought

each author had a different level of expertise in our domains, running wider user studies

would be ideal for each algorithm.
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Another limitation was the manual selection of features for state representation.

Most benchmarking domains, such as the Keepaway domain or the Mario AI domain

come with a set of observable features for agents. This set of observable state features

does not have to be the exact set of features an agent uses for learning a task.

The choice of free parameters Reinforcement Learning algorithms use, such as the

step size and the discount factor, require tuning for each domain. Even though previous

work has employed ensemble methods to overcome this limitation, once we have found

a satisfactory set of parameters for each agent we have not ran an exhaustive search over

the space of parameters for our learners.

Algorithms we have introduced can be improved in many ways. Throughout the

work we presented in this thesis one extremely important future work has come up

after every evaluation: measuring the quality of human demonstrations. It is not im-

mediately clear how to quantify the quality of demonstrations in a domain-agnostic

manner. Ideal set of demonstrations would come from a diverse set of human teach-

ers, categorized consistently –with some variance to represent possible options– by

demonstrators’ level of expertise in a domain. Consistency of demonstrations is impor-

tant, however while being consistent, demonstrations would ideally cover interesting

parts of the state space that are rich in information for an agent. Collecting such de-

monstration data is very difficult and impractical, if not impossible. Often agents have

different state representations than a human demonstrators. This difference makes it

difficult for human demonstrators to comprehend what they are able to convey to an

agent through the demonstrations. One way of helping humans give more informative

demonstrations can be through providing feedback and active learning. However the

content, the number, the timing and the frequency of queries that would be initiated by

an agent is another topic for future work.

Most previous work, including the contribution of this thesis, focus on the algorith-

mic components and performance of agents, whereas Reinforcement Learning from
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Demonstration can be studied from a human-centric perspective as well. Meaningful

visualization of a high dimensional state-space, perhaps after dimensionality reduc-

tion, can result in improved user interfaces for human-agent interaction. There is a lot

of room on research for developing tools and user interfaces for helping humans teach

agents tasks, in ways that are most informative for agents.

Finally, many state-of-the-art algorithms have either a two-stage learning process,

or an online learning process. A two-stage learning process consists: collecting de-

monstrations and learning autonomously with the help of demonstrations. An online

learning process receives human input during runtime, similar to Interactive Reinforce-

ment Learning and the TAMER framework. What previous work has not investigated

is the use of the two-stage learning process repeatedly. An interesting future work in

this direction would be the investigation of a learning process where the two stages of

learning would be repeated many times, when deemed necessary by the agent or the

demonstrator. If this process involves different teachers at some repetitions, as a future

work we wish to investigate how demonstrations affect the agent’s performance over

time.
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advice,” in Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’15, (Richland, SC), pp. 1913–1914,
2015.

108


	Worcester Polytechnic Institute
	Digital WPI
	2016-04-25

	Reinforcement Learning from Demonstration
	Halit Bener Suay
	Repository Citation


	tmp.1530275769.pdf.RmuYy

