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Abstract

Limitations imposed on control functions can significantly affect the performance

of a linear controller. When applied to the real physical system, such limitations

convert a linear function to a nonlinear input signal that alters the convergence

or stability of the solution. The main focus of this study is to identify, classify

and propose appropriate techniques to overcome such problems. In this regard, we

propose an exact definition for a conditionally controllable problem and investigate

control function formulations for such problems under the lenses of planning-based

and optimization-based methods.
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The contour lines indicate Hamiltonian isoclines on ΣL and ΣR. The

× and o markers are used to illustrate the singular points. Please

refer to discussions in Section 2.2 and Figure 2.1 for more detailed

description of the depicted phase planes. . . . . . . . . . . . . . . . . 83

viii



Chapter 1

Introduction

A sparrow perching on a narrow vibrating twig, a squirrel jumping over branches

of an old oak tree in pursuit of a tasty acorn, or a seagull diving into the water

for an afternoon meal are few examples of complex maneuvers performed in nature

that exploit nonlinear dynamics. Such nonlinearities, that are nightmares for con-

trol engineers, seem to be the key to develop elegant solutions for control problems.

Unfortunately, due to unruly behavior of nonlinear systems, there are only a few

systematic approaches available that help with synthesizing nonlinear control func-

tions. As a result, numerous control problems are solved by linearizing the associated

dynamics about an operating point and using the vastly developed techniques for

linear systems to formulate a linear controller. Bearing in mind that the real system

is still nonlinear, the performance of the developed linear controller may drastically

vary from the original criteria. Owing to their simplicity, such linearized models and

controllers are desirable, and to some extent effective, for industrial systems. How-

ever, they are not advisable for control of modern robotic systems with convoluted

dynamics, limited actuations, and unavoidable interactions with the environment.
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1.0.1 Outline of contributions

Since one can easily get lost in the labyrinth of nonlinear systems without an Ari-

adne’s thread, we will tie our rope around a subset of control problems that provide

a suitable framework for a systematic cascading of linear and nonlinear control ap-

proaches. Given this set of problems, namely conditionally controllable, we then

investigate appropriate techniques to synthesize control functions. The definition

provided for conditionally controllability is rooted in the concept of regions of at-

traction of dynamic systems [1, 2] and could be assumed as an extension of small

time stability in nonlinear dynamics [3].

In the second chapter of this manuscript, we give an exact definition for con-

ditional controllability and show how a problem can morph to being conditionally

controllable as we change the limitations imposed on the control function. In par-

ticular, we investigate swing-up control of a simple point-mass pendulum and the

effect of input saturations on the performance of the control function. Then, in what

follows, we investigate possible techniques to formulate a control function for condi-

tionally controllable problems by means of planning-based and optimization theories.

In Chapter 3 we propose a method to construct controller for conditionally control-

lable problems by cascading projected linear and piecewise constant functions. The

associated parameters of the piecewise functions are obtained by solving a planning

problem in the state space of the system via Ariadne’s clew framework. To construct

details of this approach, we present a formal setting for exploring trees as a building

block for planning based methods in normed vector spaces. We further extend the

setting to include time and solving planning problems on spatio-temporal grids. The

obtained tools are then used to construct a method for synthesizing control func-

tions to solve regularization problems and the proposed method is used to synthesize

control functions for three case studies of: point-mass pendulum, double-pendulum

2



and cart-pole. Chapter 4 is dedicated to some preliminaries of optimal control the-

ory and presentation of a method to synthesize control functions for conditionally

controllable problems by solving an optimization problem. In particular, the con-

trol function is constructed through composition of a piecewise constant function

with a linear controller. The coefficients of the piecewise function are determined by

solving an optimization problem for which the cost is defined as the norm of state

vector at a given finite time. If the constructed signal for specific discretization in

time does not satisfies a given convergence criteria, the process will start again with

a finer time intervals for the piecewise terms. The dissertation is concluded with

the materials presented in Chapter 5 at which we also discuss the application of

energy-based control in solving conditionally controllable problems.

3



Chapter 2

Conditional controllability

The current chapter is dedicated to the definition of a conditional controllable prob-

lem and in depth study of an example that highlight the motivations of this research.

The presented discussions will provide the necessary foundation for the methodolo-

gies discussed in the proceeding chapters. In what follows, we present the prelim-

inaries required to give a formal definition for conditional controllability. In order

to capture the essence of the proposed definition, we proceed with a case study of a

simple point-mass pendulum and investigate the effect of control input saturations

on the performance of a controller that is designed based on the linearized system

model.

2.1 Formal setting

Throughout this text, N and R represent the sets of natural and real numbers,

respectively. The set of positive real numbers is denoted with R+ := {x ∈ R :

x > 0}. All vectors, matrices and vector-valued functions are denoted with boldface

letters or symbols. The space of n-dimensional vectors x = [x1, · · · , xn] where xi ∈ R

for every i ∈ {1, 2, · · · , n} is denoted by Rn. The inner product of two vectors x

4



and y in Rn is defined as

〈x,y〉 = x1y1 + · · ·+ xnyn, (2.1)

and the norm of a vector x ∈ Rn is ‖x‖ = 〈x,x〉1/2. Let f : X → Y to be a function,

and W ⊂ Y , then f ⊂ W is an equivalent statement to f(x) ∈ W , ∀x ∈ X.

Moreover, to simplify notations, we will use f to indicate the function itself and

f(x) to indicate a point in the image of f for an arbitrary x ∈ X. Let A to be a set,

the characteristic function for A is denoted with χA such that χA(x) = 1 if x ∈ A

and = 0 if x 6∈ A. A property is said to hold almost everywhere (a.e.) if the measure

of set of points where it fails to hold is zero.

Despite the fact that analogous definitions for control systems based on concepts

of differential geometry and vector fields on manifolds exists (such as the definition

presented in [4]), here we will work with a statement of control system that is in

line with the definitions presented in [5] as follows.

Definition 2.1.1 (Control system). An ordinary differential equation of the form

ẏ(t) = f(t,y(t),u(t)), (2.2)

with f : R× Rn × Rm → Rn is a control system if the initial value problem


ẏ(t) = f(t,y(t),u(t)),

y(t0) = η0,

(2.3)

has a unique solution in the class of absolutely continuous functions1 for any initial

state η0 ∈ Rn and any arbitrarily assigned control function u : R → Rm. We will

1A real-valued function f on a compact interval I = [a, b] is absolutely continuous if f has a
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denote a control system with function f . Moreover, let y be the solution of (2.3) for

specific initial condition y(t0) = η0 ∈ Rn and control u, then y is the trajectory of

the control system2 associated to u and is denoted by yu.

Definition 2.1.2 (Equilibrium point and equilibrium input). Point (ηe, we) ∈ Rn×

Rm is an equilibrium point of a control system, if f(t,ηe, we) = 0 for every t ≥ t0.

Accordingly, ηe is the equilibrium state and we is the equilibrium input associated

with ηe.

From a practical point of view, the differential equation (2.2) represents the time

evolution of a real physical system. Accordingly, a trajectory of the system may

require to satisfy constraints arising from system’s physical characteristics. Such

constrains could be categorized into three groups: (i) achievable state vectors, (ii)

attainable range of f(t,y(t),u(t)), and (iii) feasible control functions applicable to

the system. Considering such constraints, we can define control and regularization

problems as:

Definition 2.1.3 (Control problem). Given a control system f , a time interval

T = [t0, tf ] ⊂ (R ∪∞) and a set-valued function t 7→ Yd(t) ⊂ Rn to denote the set

of desired state vectors in time. Let t 7→ Y (t) be a set-valued function representing

set of feasible state vectors in time such that for t ∈ T , Yd(t) ⊂ Y (t) and Y (t) is a

connected subset of Rn with usual topology3. Moreover, let t 7→ Ŷ (t) ⊂ Rn indicate

the feasible range of f in time and U to be the set of feasible control functions. A

Lebesgue integrable derivative f ′ and

f(b) = f(a) +

∫ b

a

f ′(t) dt.

2The terms “system” and “control system” are used interchangeably throughout the text.
3Clearly, Rn with the usual (open ball) topology T := {‖x− x0‖ < ε : ∀x0 ∈ Rn, ∀ε ∈ R+} is

a topological space. A connected subset of a topological space is a set that cannot be partitioned
into two nonempty subsets that are open in the relative induced topology.
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control problem, denoted by (f , U, Y, Yd, Ŷ , T ), is to find a set of control functions4

W ⊂ U such that for any η ∈ Y (t0), exists uη ∈ W satisfying

yuη(t) := η+

∫ t

t0

f(τ,y(τ),uη(τ))dτ ∈ Y (t), ∀t ∈ T,

f(t,yuη(t),uη(t)) ∈ Ŷ (t), ∀t ∈ T, and

yuη(tf ) ∈ Yd(tf ).

Definition 2.1.4 (Regularization problem). Given a control system f , an initial

time t0 ∈ R; Let t 7→ Y (t) be a set-valued function representing set of feasible state

vectors in time such that for t ∈ T , Y (t) is a connected subset of Rn with usual

topology. Moreover, let t 7→ Ŷ (t) ⊂ Rn indicate the feasible range of f in time and

U to be the set of feasible control functions. Given a desired trajectory yd : R→ Rn,

yd ∈ C1([t0,∞]), such that yd(t) ∈ Y (t) and ẏd(t) ∈ Ŷ (t) for t ≥ t0, a regularization

problem, denoted by (f , U, Y,yd, Ŷ , t0), is to find a set of control functions W ⊂ U

such that for any η ∈ Y (t0), there exists uη ∈ W satisfying

yuη(t) := η+

∫ t

t0

f(τ,y(τ),uη(τ))dτ ∈ Y (t), ∀t ≥ t0,

f(t,yuη(t),uη(t)) ∈ Ŷ (t), ∀t ≥ t0, and

lim
t→∞
‖yd(t)− yuη(t)‖ = 0.

We can explore the connection between control and regularization problems

through the following lemmas.

Lemma 2.1.1. If W is a solution to regularization problem R = (f , U, Y,yd, Ŷ , t0),

4Alternatively, specific η0 ∈ Y could be assigned to be the only initial state of the problem; that
is, the control problem is to find a function u ∈ U such that yu(t0) = η0 and yu(tf ) ∈ Yd. Such a
definition may be interpreted as a trajectory planning problem. Here, to avoid such specification,
we define the control problem of finding uη for every η ∈ Y .
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then there exists a control problem C = (f , U, Y, Yd, Ŷ , T ) such that W is also a

solution of C.

Proof. Let ε > 0 be given. Since W is a solution to R, then ∀η ∈ Y (t0), ∃u ∈ W

and tu,η such that ‖yu(t) − yd(t)‖ < ε for all t ≥ tu,η. Let Wη := {u ∈ W :

limt→∞ ‖yu(t)− yd(t)‖ = 0} and define τ(η) := infu∈Wη tu,η. Then W is a solution

to C with tf := supη∈Y τ(η), T = [t0, tf ] and Yd(t) = {η ∈ Y (tf ) : ‖η − yd(t)‖ ≤

ε}.

Lemma 2.1.2. If W is a solution to a control problem C = (f , U, Y, Yd, Ŷ , T ) such

that Yd(t) = {ηd} for all t ≥ tf and (ηd,uη(t)) is an equilibrium point of f for all

t ≥ tf , then W is a solution to regularization problem S = (f , U, Y,yd, Ŷ , t0) with

yd(t) = ηd.

Proof. Since W is a solution of C, then for all η ∈ Y (t0), there exists a u ∈ W such

that

η+

∫ tf

t0

f(τ,y(τ),u(τ)) dτ ∈ Yd = {ηd}.

On the other hand, since (ηd,u(t)) is an equilibrium point of f for all t ≥ tf , then

f(t,ηd,u(tf )) = 0 = ẏ(t). Consequently, the value of yu(t) remains at ηd and

f(t,y(t),u(t)) = 0 for all t ≥ tf . Thus, for all t ≥ tf we have

‖yd(t)− yu(t)‖ = ‖ηd − ηd −
∫ t

tf

f(τ,y(τ),u(τ)) dτ‖ = 0,

that implies limt→∞ ‖yd(t)− yu(t)‖ = 0.

Since the objective of a regularization problem is to reduce the error between

yu(t) and yd(t), it is natural to define e(t) := yd(t)−y(t). In addition, let ud : R→

Rm to be a given operating control function (ud(t) could represent the equilibrium

8



input associated with yd(t)), we can define v(t) := ud(t)− u(t). Writing f in terms

of e and v yields

ė(t) = ẏd(t)− f
(
t,yd(t)− e(t),ud(t)− v(t)

)
. (2.4)

Equation (2.4) represents the error dynamics for the corresponding regularization

problem. Moreover, applying Taylor series expansion to (2.4) leads to

ẏd(t)− ė(t) = f
(
t,yd(t)− e(t),ud(t)− v(t)

)
(2.5)

≈ f
(
t,yd(t),ud(t)

)
− ∂f

∂y(t)

∣∣∣yd(t)
ud(t)

e(t)− ∂f

∂u(t)

∣∣∣yd(t)
ud(t)

v(t). (2.6)

Noting that ẏd(t) = f
(
t,yd(t),ud(t)

)
, equation (2.6) simplifies to

ė(t) ≈ ∂f

∂y(t)

∣∣∣yd(t)
ud(t)

e(t) +
∂f

∂u(t)

∣∣∣yd(t)
ud(t)

v(t) = A(t)e(t) + B(t)v(t). (2.7)

Owing to its linear nature and significant developments of techniques for linear

systems, using a linear approximation of the system can significantly simplify solving

control and in particular regularization problems. Moreover, if v(t) is defined as a

linear function of e(t), that is v(t) := K(t)e(t) for a specific K(t) ∈ Rm×n, then

ė(t) = A(t)e(t) + B(t)v(t) =
(
A(t) + B(t)K(t)

)
e(t) = Ac(t)e(t), (2.8)

where Ac(t) ∈ Rn×n defines the closed-loop form of the system. Since (2.8) could

be solved as a simple initial value problem (without the explicit dependency on u),

then solving the corresponding regularization problem reduces to finding K(t) such

that eigenvalues of Ac(t) coincide with some desired values (further discussions on

linear systems and corresponding linear control synthesis are available in [6]).
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Linear controllers of the form v(t) := K(t)e(t) are effective under two assump-

tions: (i) if ‖e(t)‖ is small enough such that the linear model (2.7) is a valid approx-

imation of (2.4); (ii) if the output of v(t) could be directly applied to the system5.

In real physical systems, due to the limited power of the actuators and system prop-

erties, range of u(t) may be constrained to only a specific subset of Rm, denoted by

D. Consequently, we can define u as

u(t) = Proj
D

(
ud(t)− v(t)

)
:= arg min

w∈D
‖ud(t)−K(t)e(t)−w‖. (2.9)

Let U denote the space of feasible control functions and D to be the acceptable

range for u ∈ U , then we can define two subsets of U that are: the set of realizable

functions, UN , and the set of projected linear functions, UL, defined as:

UN :=
{
u ∈ U : u(t) ∈ D for a.e. t ∈ R

}
, (2.10)

UL :=
{
u ∈ U : u(t) = Proj

D

(
ud(t)−K(t)e(t)

)
, ud ∈ U, K(t) ∈ Rm×n}. (2.11)

In this research, we will focus our discussions on a specific class of control prob-

lems, named as conditionally controllable problems, defined as the following.

Definition 2.1.5 (Conditionally controllable problem). Let R = (f , U, Y,yd, Ŷ , t0)

be a regularization problem and D ⊂ Rm be the feasible range for u ∈ U . Let UN

and UL be defined as (2.10) and (2.11) for the given D. Then, R is conditionally

controllable if the following conditions hold:

(i) The regularization problem (f , UL, Y,yd, Ŷ , t0) does not have a solution; How-

ever, there exists t 7→ YN(t) ⊂ Y (t) such that the modified regularization

5Clearly if conditions (i) and (ii) are not satisfied, the real representation of error dynamics
(2.4) diverges drastically from its linear approximation (2.7). Consequently, the linear techniques
used in synthesizing the control functions may be no longer valid.
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Figure 2.1: A portrait of a condition-
ally controllable problem. As illustrated,
since η ∈ Y , ∃uη ∈ UL such that
limt→∞ ‖yd(t)−yuη(t)‖ = 0. On the other
hand, since ξ ∈ YN , yu2 does not con-
verge to yd for any u2 ∈ UL. However,
we can find a function u1 ∈ UN such that
yu1(tf ) ∈ Y for some finite tf .

problem (f , UL, Y \ YN ,yd, Ŷ , t0) has a solution.

(ii) The control problem (f , UN , Y, Y \ YN , Ŷ , [t0, tf ]) has a solution for a finite tf .

In other words, for conditionally controllable problems, a subset of saturated

linear controllers in UL, which could be synthesized based on relatively simple and

general techniques of linear control theory, can solve the control problem in a neigh-

borhood of desired states, but there also exists certain subsets of the state space,

for which no function in UL can lead the system to any point in the set of desired

states. As it is discussed in this manuscript, extending the control functions to

UN can lead to more interesting solutions that harness the inherent complexities of

nonlinear systems. A conceptual portrait of a conditionally controllable problem is

illustrated in Figure 2.1.

Theorem 2.1.3. Let R = (f , U, Y,yd, Ŷ , t0) with D ⊂ Rm, be a conditionally con-

trollable problem. Moreover, let ud : R→ Rm, ud ∈ U to be a given operating control

function. If Re = (fe, V, E,0, Ê, t0) with e(t) := yd(t) − y(t), v(t) := ud(t) − u(t),

fe := ẏd(t)−f(t,yd(t)−e(t),ud(t)−v(t)), E(t) := yd(t)−Y (t), Ê(t) := ẏd(t)− Ŷ (t)

and V := {ud(t)− u(t) : u ∈ U} be the error regularization problem associated with

R, then Re is conditionally controllable if and only if R is conditionally controllable.

Proof. Based on the definition of E, it is immediate that if y(t),yd(t) ∈ Y (t) and

ẏd(t), ẏ ∈ Ŷ (t) if and only if e(t) ∈ E(t) and ė(t) ∈ Ê(t). First we show that if R is
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conditionally controllable, then Re is also conditionally controllable. Let WL ⊂ UL

be a solution for R1 = (f , UL, Y \YN ,yd, Ŷ , t0), first we show that QL ⊂ VL := {v ∈

V : v(t) = ud(t) − u(t), u ∈ UL} is a solution for Re = (fe, VL, E \ EN ,0, Ê, t0),

where EN := yd(0)− YN . Let η ∈ Y , since WL is a solution for R1, then ∃u ∈ WL

such that

lim
t→∞
‖yd(t)− yu(t)‖ = ‖yd(t)− η−

∫ t

t0

f(t,y(t),u(t))dt‖ = 0.

On the other hand, we have

e(t) = ξ+

∫ t

t0

ẏd(t)− f(t,yd(t)− e(t),ud(t)− v(t)) dt,

where ξ ∈ E, ξ = yd(t0) − η. Based on the definition of QL, ∃v ∈ QL such that

v(t) = ud(t)− u(t). Substituting e(t) = yd(t)− y(t) and v(t) = ud(t)− u(t) in the

definition for e(t), we get

−
∫ t

t0

f(t,y(t),u(t)) dt = e(t)− ξ−
∫ t

t0

ẏd(t) dt.

Knowing that η = yd(0)−ξ and using the obtained expression for
∫ t
t0

f(t,y(t),u(t)) dt

in ‖yd(t)− yu(t)‖ yields

‖yd(t)− yu(t)‖ = ‖yd(t)− η−
∫ t

t0

f(t,y(t),u(t))dt‖

= ‖yd(t)− η+ e(t)− ξ−
∫ t

t0

ẏd(t) dt‖

= ‖yd(t)−
(
yd(0) +

∫ t

t0

ẏd(t) dt
)

+ e(t)‖ = ‖e(t)‖.

Consequently, limt→∞ ‖yd(t) − yu(t)‖ = 0 =⇒ limt→∞ ‖e(t)‖ = 0. To show

that QL cannot solve Re, assume by contradiction that for ξ ∈ EN , ∃v ∈ QL
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such that limt→∞ ‖ev(t)‖ = 0. Based on the definition of QL, ∃u ∈ WL such

u(t) = ud(t)− v(t); Based on the derivation in the first part, we get

lim
t→∞
‖ev(t)‖ = lim

t→∞
‖ξ+

∫ t

t0

ẏd(t)− f(t,yd(t)− e(t),ud(t)− v(t)) dt‖

= lim
t→∞
‖ξ+

∫ t

t0

ẏd(t) dt−
∫ t

t0

f(t,y,u(t)) dt‖

= lim
t→∞
‖
(
yd(0) +

∫ t

t0

ẏd(t) dt
)
−
(
η+

∫ t

t0

f(t,y,u(t)) dt
)
‖

= lim
t→∞
‖yd(t)− yu(t)‖ = 0,

that is contradictions since ξ ∈ EN =⇒ η ∈ YN and @u ∈ WL such that

limt→∞ ‖yd(t)− yu(t)‖ = 0.

To show that Re also satisfies the second requirement for conditional control-

lability, let WN ⊂ UN to be a solution for C1 = (f , UN , Y, Yd, Ŷ , [t0, tf ]), ξ ∈ EN

and QN ⊂ VN := {v ∈ V : v(t) = ud(t) − u(t),u ∈ UN}. Moreover, let Ed(t) :=

yd(t)−Yd(t); we claim that QN is a solution for Ce = (fe, VN , E, Ed, Ê, [t0, tf ]). Since

ξ ∈ EN then η = yd(0) − ξ is in YN , thus ∃u ∈ WN such that yu(tf ) ∈ Yd. Pick

v ∈ QN such that v(t) = ud(t)− u(t), then

ev(tf ) = ξ+

∫ tf

t0

ẏd(t)− f(t,yd(t)− e(t),ud(t)− v(t)) dt

= ξ+

∫ tf

t0

ẏd(t) dt−
∫ tf

t0

f(t,y(t),u dt

=
(
yd(0) +

∫ tf

t0

ẏd(t) dt
)
−
(
η+

∫ tf

t0

f(t,y(t),u dt
)

= yd(tf )− yu(tf ).

Since yu(tf ) ∈ Yd, thus yd(tf ) − yu(tf ) ∈ Ed, that implies QN is a solution for

Ce = (fe, VN , E, Ed, Ê, [t0, tf ]). Using the same steps as presented here, we can show

that conditionally controllability of Re implies conditional controllability of R.
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There are many examples of conditionally controllable problems in physical sys-

tems with nonlinear dynamics. In particular, such problems are frequently observed

in control of multi rigid body systems. As it is highlighted in the following sections

and chapters, in the case of rigid body mechanics, such solutions are often related to

controlling the energy or momentum of the system that allows driving state vectors

from YN to YL.

To further examine conditionally controllable problems, we can proceed with

the case study of a simple point-mass pendulum model as discussed in the following

section.

2.2 Case study: swinging up a pendulum

Consider the point-mass pendulum system as depicted in Figure 2.2. The equation

of motion for the pendulum is

q̈(t) =
g

l
sin(q(t)) +

u(t)

ml2
, (2.12)

where q(t) ∈ R is the angle measured from an axis parallel to the gravitational

(free-fall) acceleration, g ∈ R, to the pendulum link in counterclockwise direction.

l ∈ R+ is the length of the pendulum, m ∈ R+ is the concentrated mass at the

bob. u(t) ∈ R is the torque applied at the joint of the pendulum. To simplify the

equations and without loss of generality, let g = l = m = 1 (with appropriate units).

Let y(t) := [q(t), q̇(t)]T be the state vector, then (2.12) leads to ẏ(t) = f(t,y(t), u(t))

where

f(t,y(t), u(t)) =

 y2(t)

sin
(
y1(t)

)
+ u(t)

 . (2.13)
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q(t)
l

u(t)

m

g

Figure 2.2: The pendulum system and the corresponding parameters.

Let R = (f , U, Y,yd, Ŷ , t0) to be a regularization problem defined for f in (2.13) with

the objective of moving and holding the pendulum at upward configuration where

y1(t) = y2(t) = 0. Since f does not explicitly depend on time, we may simply let

t0 = 0; moreover, y1(t) = y2(t) = 0, implies yd(t) ≡ 0. For simplicity, we assume

that there are no physical restrictions on the mechanical structure of the pendulum,

therefor Y = Ŷ = R2. Moreover, we follow the assumption that the motor used to

generate the input is just limited by its maximum applicable torque. Accordingly, we

define U := L∞ and D := [−wmax, wmax], where wmax ≥ 0 is the maximum torque

output of the motor. Thus, the exact definition of R is R = (f , L∞,R2,0,R2, 0) for

f as in (2.13).

Let e(t) := yd(t) − y(t) = −y(t) be the error vector. To set y(t) = 0 be an

equilibrium state for the system, we need f(t,0, ud(t)) to be zero for all t ∈ R, which

implies ud(t) ≡ 0. Thus, let v(t) = ud(t)− u(t) = −u(t), then the error dynamics of

the system ė(t) = 0− f
(
t,0− e(t), 0− v(t)

)
simplifies to

ė1(t)

ė2(t)

 =

 e2(t)

sin
(
e1(t)

)
− u(t)

 = fe(t, e(t), u(t)), (2.14)

with the corresponding linear approximation ė(t) = Ae(t) + Bu(t) with matrices A
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and B equal to

A =

0 1

1 0

 , B =

 0

−1

 . (2.15)

To explore the behavior of the linear system with linear controllers, let u(t) =

〈k, e(t)〉 for k = [k1, k2]T ∈ R2. Then, the closed-loop representation of the system

simplifies to ė(t) = Ac e(t), where

Ac =

 0 1

1− k1 −k2

 , (2.16)

with eigenvalues

σ(Ac) = {λ1(k), λ2(k)} =
{1

2

(
− k2 ±

√
k2

2 + 4(1− k1)
)}
. (2.17)

Since Ac has two distinct eigenvalues in C, it is diagonalizable [7]. Therefor, consider

the decomposition Ac = QΛQT, where Q ∈ C2×2 is the matrix of eigenvectors and

Λ = diag(λ1(k), λ1(k)). Using such decomposition, we can compute the solution of

ė(t) = Ac e(t) for a specific k as

ek(t) = Q

eλ1(k)t 0

0 eλ2(k)t

Q−1 e0, (2.18)

where e0 = −y(0) is the initial error value. Since our objective is to find a linear

control function that ensures limt→∞ ‖ek(t)‖ = 0, we can choose k1 and k2 such that

eλ1(k)t and eλ2(k)t → 0 as t→∞, that is <(λ1) and <(λ2) are negative. Let Ω to be

the set of k vectors such that <(λ1(k)) and <(λ2(k)) are negative, then

Ω = {k ∈ R2 : k1 > 1 and k2 > 0}. (2.19)
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Consequently, for every k ∈ Ω, limt→∞ ‖ek(t)‖ = 0. However, we have not yet ex-

plored the response of (2.13) when the input is constrained to setD = [−wmax, wmax].

Based on Theorem 2.1.3 if Re = (fe, L
∞,R2,0,R2, 0) is conditionally controllable,

then R is also conditionally controllable. Accordingly, we can focus our discussions

solely on the error dynamics of the system. In what follows we will develop the tools

required to investigate how Re morphs into a conditionally controllable problem as

wmax decreases. First we need to identify functions in UN and UL. Since D ⊂ R is

an interval, then UL is

UL =
{
u ∈ L∞ : u(t) = sat

D
〈k, e(t)〉, k and e(t) ∈ R2

}
, (2.20)

where for a given A ⊂ R and x ∈ R, satA x is

sat
A
x := min

{
max

{
x, inf(A)

}
, sup(A)

}
. (2.21)

Similarly, we can identify functions in UN as

UN =
{
u ∈ L∞ : u(t) = D for a.e. t ∈ R

}
. (2.22)

Let k ∈ R2, we define Γ := {ξ ∈ R2 : |〈k,ξ〉| ≤ wmax} that corresponds to the

set of points between two affine lines 〈k,ξ〉 = −wmax and 〈k,ξ〉 = wmax. Moreover,

let ΣL := {ξ ∈ R2 : 〈k,ξ〉 ≤ −wmax} and ΣR := {ξ ∈ R2 : 〈k,ξ〉 ≥ wmax} 6. For

every u ∈ UL, if e(t) ∈ Γ, then u(t) = 〈k, e(t)〉 with the error dynamic defined as

ė1(t) = e2(t),

ė2(t) = sin(e1(t))− k1e1(t)− k2e2(t).

(2.23)

6Note that based on the definitions of Γ, ΣL and ΣR, we have ΣL ∩ Γ = {ξ ∈ R2 : 〈k,ξ〉 =
−wmax}, ΣR ∩ Γ = {ξ ∈ R2 : 〈k,ξ〉 = wmax} and ΣL ∩ ΣR = ∅ for any wmax > 0.
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Let EΓ(e(t)) to denote the total energy of the system for e(t) ∈ Γ, then

EΓ(e(t)) =
1

2
e2

2(t) + cos(e1(t))− 1 +
1

2
k1e

2
1(t). (2.24)

Taking derivative of EΓ(e(t)) with respect to time leads to

ĖΓ(e(t)) = e2(t)ė2(t)− sin(e1(t))ė1(t) + k1e1(t)ė1(t). (2.25)

Substituting ė1(t) and ė2(t) from (2.23) in (2.26) yields

ĖΓ(e(t)) = −k2e
2
2(t), (2.26)

which is negative for every k ∈ Ω and zero if e2(t) = 0. On the other hand, for

every u ∈ UL, if e(t) ∈ ΣL ∪ ΣR, then u(t) = ±wmax. Thus, the input of the

system serves as a conservative force and provides the possibility of characterizing

the trajectories in the phase portrait7 of the error dynamics using work-energy

principle. Let ta ≤ tb ∈ R, then for every e ⊂ ΣL or ⊂ ΣR based on the work-

energy principle we have

EΣL
(e(tb)) = EΣL

(e(ta)) +We(ta)→e(tb), (2.27)

EΣR
(e(tb)) = EΣR

(e(ta)) +We(ta)→e(tb), (2.28)

where EΣL
(e(t)) and EΣL

(e(t)) denote the energy of the system for e(t) in ΣL and

ΣR, respectively. We(ta)→e(tb) is the work required to take the system from e(ta) to

e(tb). The total energy associated with the simplified pendulum model in (2.13)

7A phase portrait is a set of trajectories in the phase plane of the system that illustrates evolution
of the dynamics form various initial conditions.
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with an arbitrary input is

E(y(t)) =
1

2
y2

2(t) + cos(y1(t)), (2.29)

that implies

EΣL
(e(t)) = EΣR

(e(t)) = EΣ(e(t)) =
1

2
e2

2(t) + cos(−e1(t)) =
1

2
e2

2(t) + cos(e1(t)).

(2.30)

Moreover, the work done by constant external force u(t) = ±wmax on the pendulum

is

We(ta)→e(tb) = −
∫ e1(tb)

e1(ta)

u(t) de1 =


wmax

(
e1(tb)− e1(ta)

)
, if e(t) ∈ ΣL,

wmax
(
e1(ta)− e1(tb)

)
, if e(t) ∈ ΣR,

(2.31)

for all t ∈ [ta, tb]. Substituting (2.31) and (2.30) in (2.27) and (2.28) yields

for ΣL :

e2
2(tb)

2
+ cos(e1(tb))− wmaxe1(tb) =

e2
2(ta)

2
+ cos(e1(ta))− wmaxe1(ta), (2.32)

for ΣR :

e2
2(tb)

2
+ cos(e1(tb)) + wmaxe1(tb) =

e2
2(ta)

2
+ cos(e1(ta)) + wmaxe1(ta). (2.33)

Noting that (2.32) and (2.33) are true for any initial condition e(t) ∈ ΣL and ΣR,

respectively; we can define

HΣL
(e(t)) :=

1

2
e2

2(t) + cos(e1(t))− wmaxe1(t), (2.34)

HΣR
(e(t)) :=

1

2
e2

2(t) + cos(e1(t)) + wmaxe1(t). (2.35)
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The following lemma highlights the connection between HΣL
(e(t)) and HΣR

(e(t))

with trajectories in ΣL and ΣR, respectively 8.

Lemma 2.2.1. If e(t) ∈ ΣL for t ∈ [t0, t1], then e(t) coincides with a level set

of HΣL
(e(t)) for all t ∈ [t0, t1]. Similarly, if e(t) ∈ ΣR for t ∈ [t0, t1], then e(t)

coincides with a level set of HΣR
(e(t)) for all t ∈ [t0, t1].

Proof. If a level set of HΣL
(e(t)) coincides with a trajectory in ΣL for t ∈ [t0, t1], then

HΣL
(e(t)) must be constant for every point of that trajectory; that is HΣL(e(t))=C

for all t ∈ [t0, t1], where C ∈ R is a constant. Taking the derivative of HΣL
(e(t))

with respect to time leads to

d

dt
HΣL

(e(t)) = e2(t)ė2(t)− sin(e1(t))ė1(t)− wmaxė1(t).

Moreover, for every trajectory in ΣL we have

ė1(t) = e2(t),

ė2(t) = sin(e1(t)) + wmax.

Substituting ė1(t) and ė2(t) in d
dt
HΣL

(e(t)) yields

d

dt
HΣL

(e(t)) = e2(t)ė2(t)− sin(e1(t))ė1(t)− wmaxė1(t)

= e2(t)
(

sin(e1(t)) + wmax − sin(e1(t))− wmax
)

= 0,

that implies HΣL
(e(t)) is constant for all t ∈ [t0, t1]. Similarly, substituting ė1(t) =

8It is interesting to note that HΣL
(e(t)) and HΣR

(e(t)) are the Hamiltonian functions [8] of the
system for u(t) = ±wmax. As an example

ė1(t) =
∂HΣL

(e(t))

∂e2(t)
= e2(t), ė2(t) = −∂HΣL

(e(t))

∂e1(t)
= sin(e1(t)) + wmax,

which is exactly the dynamic equation that represents the trajectories in ΣL.
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e2(t) and ė2(t) = sin(e1(t))− wmax in d
dt
HΣR

(e(t)) leads to d
dt
HΣR

(e(t)) = 0.

Let ∇HΣL
(e(t)) and ∇HΣR

(e(t)) denote gradients of HΣL
(e(t)) and HΣR

(e(t))

with respect to e(t), respectively; then

∇HΣL
(e(t)) =

− sin(e1(t))− wmax

e2(t)

 , ∇HΣR
(e(t)) =

− sin(e1(t)) + wmax

e2(t)

 .
(2.36)

Let SL and SR to be the set of stationary points of HΣL
(e(t)) and HΣR

(e(t)), re-

spectively. Then

SL = {ξ = [ξ1, 0]T ∈ ΣL : sin(ξ1) + wmax = 0}, (2.37)

and

SR = {ξ = [ξ1, 0]T ∈ ΣR : sin(ξ1)− wmax = 0}. (2.38)

We can further decompose both SL and SR into disjoint subset S1
L, S2

L, S1
R and S2

R

defined as

S1
L :=

{[
− 2jπ − sin−1(wmax), 0

]T
: j ∈ {0} ∪ N

}
, (2.39)

S2
L :=

{[
− (2j + 1)π + sin−1(wmax), 0

]T
: j ∈ {0} ∪ N

}
, (2.40)

S1
R :=

{[
2jπ + sin−1(wmax), 0

]T
: j ∈ {0} ∪ N

}
, (2.41)

S2
R :=

{[
(2j + 1)π − sin−1(wmax), 0

]T
: j ∈ {0} ∪ N

}
. (2.42)

Let∇2HΣL
(e(t)) and∇2HΣR

(e(t)) denote Hessians of HΣL
(e(t)) and HΣR

(e(t)) with
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respect to e(t), respectively; then

∇2HΣL
(e(t)) = ∇2HΣR

(e(t)) = ∇2HΣ(e(t)) =

− cos(e1(t)) 0

0 1

 . (2.43)

Note that for every ξ ∈ S1
L ∪ S1

R and 0 ≤ wmax < 1,

∇2HΣ(ξ) =

−√1− w2
max 0

0 1

 , (2.44)

is indefinite, revealing that every stationary point in S1
L ∪ S1

R is a saddle point if

wmax ∈ [0, 1). On the contrary, for every ξ ∈ S2
L ∪ S2

R and 0 ≤ wmax < 1,

∇2HΣ(ξ) =

√1− w2
max 0

0 1

 , (2.45)

is a real positive definite matrix, indicating that every stationary point in S2
L ∪ S2

R

is a local minimum for
(
χΣL

HΣL
+ χΣR

HΣR

)
(e(t)) if wmax ∈ [0, 1). Given the

characteristics of singular points in SL and SR, we define

Qj
L :=

{
ξ ∈ ΣL : HΣL

(ξ) < HΣL
([−α(j), 0]T ) and ξ1 < −α(j)

}
, (2.46)

Qj
R :=

{
ξ ∈ ΣR : HΣR

(ξ) < HΣR
([α(j), 0]T ) and ξ1 > α(j)

}
, (2.47)

where α(j) := 2jπ + sin−1(wmax). The sets Qj
L and Qj

R represent the points in ΣL

and ΣR with smaller HΣL
and HΣR

with respect to the points in SjL and SjR that are

located at the left and right side of the points in S1
L and S1

R, respectively. Provide

the above statements, we proceed with the following theorem. The corresponding

lemmas and corollaries that are used in the proof of Theorem 2.2.2 are presented
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Appendix A.

Theorem 2.2.2. Let wmax ∈ (0, 1) and k ∈ Ω such that Γ∩
(⋃∞

j=0 Q
j
L

)
= ∅. Then,

limt→∞ ‖ek(t)‖ = 0 if ek(0) 6∈
⋃∞
j=0(Qj

L ∪Q
j
R).

Proof. Based on Lemmas A.0.6 and A.0.7, if ek(0) 6∈
⋃∞
j=0(Qj

L ∪Q
j
R), then ∃t′ > t0

such that ek(t′) ∈ ∂Γ. Moreover, by Lemmas A.0.2 and A.0.3 we have that ever

time the trajectory passes through Γ it enters into an orbit with lower HΣL
or

HΣR
(depending on the region). This decrease of Hamiltonian continues every time

the trajectory passes through Γ until it resides in Γ completely. Then, based on

Lemma A.0.1, limt→∞ ‖ek(t)‖ = 0.

Now we have all the tools necessary to prove the following theorem which states

that Re = (fe, L
∞,R2,0,R2, 0) for D ⊂ (−1, 1), D 6= {0} is a conditionally control-

lable problem.

Theorem 2.2.3. Let Re = (fe, L
∞,R2,0,R2, 0) be a regularization problem where

fe(t, e(t), u) =

 e2(t)

sin
(
e1(t)

)
− u(t)

 ,
Moreover, Let UL and UN defined as

UL =
{
u ∈ L∞ : u(t) = sat

D
〈k, e(t)〉, k and e(t) ∈ R2

}
,

UN =
{
u ∈ L∞ : u(t) ∈ D for a.e. t ∈ R

}
,

where D := [−wmax, wmax] for wmax > 0. Then, Re is conditionally controllable if

wmax ∈ (0, 1).

Proof. First we show that a solution for (fe, UL,R2 \ YN ,0,R2, 0) exists as a subset
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of UL, where YN :=
⋃∞
j=0(Qj

L ∪Q
j
R). Let α = sin−1(wmax) and

f(θ) :=

√
2
(
HΣL

(−α) + wmaxθ − cos(θ)
)

=

√
2
(
wmaxθ − cos(θ) + wmaxα +

√
1− w2

max

)
.

Moreover, let

m(θ) :=
f(θ)

wmax
k1

+ θ
,

and θ∗ to be a zero of g(θ) := d
dθ
f(θ)−m(θ) in the interval θ ∈ [−π+α, −α) that is

g(θ∗) = 0. Note that such zero exists since g(θ) is continuous for θ ∈ [−π+α, −α),

g(−π + α) > 0 and limθ→(−α)− g(θ) = −(1 − w2
max)

1
4 < 0. Let Ψ ⊂ Ω be Ψ :=

{k ∈ Ω : −k1 < m(θ∗)k2}, then for every k ∈ Ψ, Γ ∩ YN = ∅. Thus, based on

Theorem 2.2.2, for every u ∈ WL := {u ∈ UL : k ∈ Ψ}, limt→∞ ‖eu(t)‖ = 0 if

eu(0) ∈ R2 \ YN . In addition, based on Lemma A.0.4 and A.0.5, if eu(0) ∈ YN , for

any u ∈ UL, eu(t) ∈ YN for all t ≥ t0. Since YN ∩ 0 = ∅ for every wmax > 0, then

there is no subset of UL that can be a solution for (fe, UL,R2,0,R2, 0).

As the final step, we need to show that there exists a subset of UN that solves

(fe, UN ,R2, Y \ YN ,R2, [0, tf ]) with tf <∞. Let j ∈ {0} ∪ N, s1
j := [−2jπ − α, 0]T ,

s2
j := [−(2j + 1)π + α, 0]T and e(0) ∈ Qj

L, then

HΣL
(s2
j) ≤ HΣL

(e(0)) < HΣL
(s1
j).

Consequently, we need to find a u ∈ UN such that HΣL
(eu(tf )) ≥ HΣL

(s1
j). Noting

that HΣL
(e(t)) = EΣ(e(t))− wmaxe1(t) we can define

∆H := HΣL
(s1
j)−HΣL

(e(0)) = EΣ(s1
j)− EΣ(e(0)) + wmax(e1(0)− (s1)1

j).
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Based on the results of Lemma A.0.4, every trajectory in Qj
L forms an orbit, thus

we can simply take e1(0) = (s1)1
j that leads to

∆H = EΣ(s1
j)− EΣ(e(0)).

Since Qj
L are disjoint, if u can increase the EΣ(eu(t)) by ∆H in tf , then eu(tf ) ∈

Y \ YN . To do so, we propose u(t) := −k3wmax sign(e2(t)) with 0 < k3 ≤ 1 that

yields

ĖΣ(e(t)) = k3wmaxe2(t) sign(e2(t)) ≥ 0.

Substituting u(t) in fe leads to

ė2(t) = sin
(
e1(t)

)
+ k3wmax sign(e2(t)),

that implies {[nπ, 0]T : n ∈ {0} ∪ N} is the set of equilibrium points for the error

dynamics endowed with control function u. Since for wmax ∈ (0, 1), YN ∪ {[nπ, 0]T :

n ∈ {0} ∪ N} = ∅, using u we can constantly increase EΣ(e(t)). Moreover, for any

j ∈ {0} ∪ N,

HΣL
(s1
j)−HΣL

(s2
j) = wmax(2α− π) + 2

√
1− w2

max.

Therefore, we can let tf be the time such that

∫ tf

0

k3wmaxe2(t) sign(e2(t)) = wmax(2α− π) + 2
√

1− w2
max.

Finally, since for every e(0) ∈ Qj
L, −e(0) ∈ Qj

R, we can extend the same conclusion

to the trajectories with e(0) ∈ Qj
R.
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Figure 2.3 illustrates Γ, Qj
L, Qj

R, SL, SR, level sets of HΣL
and HΣR

and tra-

jectories in Γ for wmax = 0.50, 0.75, 1.00 and 1.25 with k = [2, 1]T . Note that as

wmax increases to 1, points in S1
L and S1

R converge to points in S2
L and S2

R, respec-

tively. Consequently, the area of Qj
L and Qj

R decreases as wmax → 1 from below.

For wmax = 1, Qj
L = {−π(2j + 1

2
)} and Qj

R = {π(2j + 1
2
)}. Moreover Qj

L and Qj
R

cease to exist for wmax > 1, indicating that the problem is no longer conditionally

controllable.

2.3 Overview

As the presented discussion suggests, finding an exact definition of YN may be a

tedious task. In practice, such regions could be explored through numerous simula-

tions (or experiments) of the system with different initial conditions. However, the

nature of conditionally controllable problems provides the possibility of simplifying

nonlinear control synthesis into two subtasks of (i) finding a linear controller for the

linearized model using the well known techniques of linear control design and (ii)

developing a nonlinear control law that can lead the system trajectories from YN

to YL. Although such decomposition is achievable with various techniques, in this

study, we will focus our attention on two methods of Planning-based and Optimal

control.
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Figure 2.3: Phase portrait of fe for wmax ∈ {0.50, 0.75, 1.00, 1.25} with k = [2, 1]T .
Points in S1

L ∪ S1
R and S2

L ∪ S2
R are depicted with (×) and (o) markers, respectively.

Qj
L ∪ Q

j
R regions are highlighted with orange color and the level sets of χΣL

HΣL
+

χΣR
HΣR

are illustrated with color gradient changing from gray (low) to white (high).
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Chapter 3

Planning-based control

As an alternative to classical approaches of designing control functions, we can for-

mulate synthesizing a controller as solution of a motion-planning problem. Two com-

mon approaches in the literature that follow this technique are: Linear Quadratic

Regulators (LQR)1 trees [10, 11]2 and randomized kinodynamic planning [12].

LQR trees, and similar approaches, are used in controlling of a fixed-wing glider

to perform a bird-like perching maneuvers [13, 14], stabilizing a torque limited dou-

ble pendulum in the upward configuration [15], and demonstrating aggressive ma-

neuvers with quadrotors [16]. As an alternative, randomized kinodynamic planning

approaches [12] construct a Rapidly-exploring Random Tree (RRT) [17] in the state

space of the system to find feasible trajectories connecting an initial state to a given

1An LQR control function is a linear function v(t) := Ke(t) that minimizes the cost func-
tional J(e,v) :=

∫
t
eT (t)Qe(t) + vT (t)Rv(t) dt for a system with linear dynamics of the form

ė(t) = Ae(t) + Bv(t). Positive definite matrices Q and R are used to define the gains on state and
input vectors, respectively. Although some of the preliminaries of optimal control theory is covered
in Chapter 4. an interested reader may refer to [9] for detailed derivation of LQR controllers.

2It must be noted that, while both methods discussed in [10] and [11] share similar motivations,
there are a few major differences associated with them. In [10], the control function synthesis
problem is formulated as finding an optimal switching sequence of control gains for a discrete
time linear systems with respect to a quadratic cost function; while [11] discusses design of an
acyclic connected graph of LQR controllers that are constructed by considering corresponding
controllability regions in such a way that the union of controllable regions of the nodes covers a
desired subset of the state space.
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goal set.

In what follows, we start with discussing a set of tools needed to solve a plan-

ning problem in a normed vector space and extend their application to synthesizing

control function. In particular, we present a generalization of exploring trees in

a normed vector space and their extension to include time. In the presented de-

velopments, we have considered paths and trajectories in the set of continuous and

absolutely continues functions, respectively. Such consideration allows direct utiliza-

tion of the proposed setting in solving path planning and control problems. Lastly,

based on the presented materials, we propose an algorithm to synthesize control

functions for conditionally controllable systems and test its effectiveness in three

different case studies.

3.1 Exploring trees

We start with a definition for paths connecting two points in a vector space.

Definition 3.1.1 (Path). Let (X, ‖ · ‖) be a normed vector space, x1,x2 ∈ X and

a, b ∈ R such that a < b . A path connecting x1 to x2 is a function φ ∈ C(R),

φ : R→ X such that φ(a) = x1 and φ(b) = x2. We will also use φx1→x2 or more

concisely φ1→2 as alternative notations when it is required to emphasize the points

that are connected via path φ.

In the remaining sections of this chapter, and without loss of generality, we

assume that every path starts at its source when the input is 0 and reaches to its

destination when the input is 1; that is, we substitute a = 0 with and b = 1 in

Definition 3.1.1.

Lemma 3.1.1 (Path compositions). Let (X, ‖ · ‖) be a normed vector space and

x1, . . . ,xp ∈ X, p <∞. Let gk(s) := (p− 1)s− k + 1 and φk be a path connecting
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xk to xk+1. Then φ1→p : R→ X defined as

φ1→p(s) :=

p−1∑
k=1

χIk(s)φk(gk(s)),

where I1 = (−∞, 1
p−1

), Ip−1 = [1− 1
p−1

,∞) and Ik = 1
p−1

[k− 1, k) for 1 < k < p− 1,

is a path between x1 and xp.

Proof. Since 0 ∈ I1, 1 ∈ Ip−1 and
⋃p−1
k=1 Ik = ∅, then φ1→p(0) = φ1(0) = x1 and

φ1→p(1) = φp−1(1) = xp. Thus, φ1→p satisfies the required boundary conditions.

Now we need to show φ1→p is in C(R). Let J := { k
p−1

: 1 ≤ k < p − 1}, for

every s ∈ L :=
⋃p−1
k=1 Ik \ J , φ1→p(s) = φk(gk(s)) + 0. Since gk and φk are both

continuous, then the composition φk ◦ gk is also continuous that implies continuity

of φ1→p(s) for every s ∈ L. Now, let s ∈ J , then s = k
p−1

for some 1 ≤ k < p − 1.

Thus

φ1→p(s) = φk(gk(s)) = φk(0) = xk,

On the other hand φk−1(gk−1(s)) = φk−1(1) = xk. Let ε > 0, since φk−1 ◦ gk−1 and

φk ◦ gk are both continuous, then there exists δk−1 > 0 and δk > 0 such that

‖φk−1(gk−1(s))−φk−1(gk−1(t))‖ = ‖xk −φk−1(gk−1(t))‖ < ε if |s− t| < δk−1,

‖φk(gk(s))−φk(gk(t))‖ = ‖xk −φk(gk(t))‖ < ε if |s− t| < δk.

Let δ := min{δk−1, δk}, then for every t such that |s − t| < δ, ‖φ1→m(s) −

φ1→m(t)‖ < ε that implies continuity of φ1→m for every s = J . Since J ∪ L = R,

thus φ1→p ∈ C(R).

Given the definition of a path and a tool to compose paths, we can proceed with

a definition of spatial directed rooted trees, which will form the foundation for the
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definition of spatial exploring trees.

Definition 3.1.2 (Spatial directed rooted tree). Let (X, ‖ · ‖) be a normed vector

space and V be a countable subset of X. Moreover, let

E :=
{
φx1→x2 : x1, x2 ∈ V, x1 6= x2

}
,

be a set of paths between the points in V . Given r ∈ V , the triple (V,E, r) is spatial

directed rooted tree with root r, if for every x ∈ V , one can construct a unique path

φr→x(s) :=
∑
k

χIk(s)φk(gk(s)),

as established in Lemma 3.1.1 such that φk ∈ E for every k. If such condition

holds, it is easy to verify3 that |E| < |V |.

Definition 3.1.3 (Spatial exploring tree). Let (X, ‖ · ‖) be a normed vector space,

Y ⊂ X, r ∈ Y and N ∈ N. Then, a spatial exploring tree of size N , donated by ΨN ,

is a spatial directed rooted tree (V,E, r) such that |V | = N , which is incrementally

constructed based on the following algorithm:

3Assume by contradiction that |E| ≥ |V |. Then there exists at least one pair x1 6= x2 in V and
two paths φa 6= φb in E such that φa(0) = φb(0) = x1 and φa(1) = φb(1) = x2. Consequently,
one can construct two not equal paths from r to x2 by composing φr→x1

with φa or φb, that
leads to a contradiction with uniqueness of φr→x for every x ∈ V .
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Data: r, Y

Result: ΨN

V := {r}, E := ∅;

while |V | < N do

(x,φv→x) := Expand(V, Y );

V := V ∪ {x}, E := E ∪ {φv→x};

end

ΨN := (V,E, r);

where Expand(V, Y ) is a sub-algorithm that returns a new vertex x ∈ Y and a path

from v ∈ V to x. The set Y represents a given workable4 subset of X.

The following method illustrates how a planning problem could be solved by

utilizing spatial exploring trees.

Method 3.1.1. Let Y ⊂ (X, ‖ · ‖), r ∈ Y , Ψ = (V,E, r) and N ∈ N be a maximum

given size for Ψ. A path from the source r to δ neighborhood of a destination g ∈ Y

could be constructed by iteratively exploring Y via the following algorithm.
Data: g, Ψ, N

Result: φ

if ∃v ∈ V such that ‖g − v‖ ≤ δ then

return φo→v;

else if |V | < N then

(x,φv→x) := Expand(V, Y );

V := V ∪ {x}, E := E ∪ {φv→x};

else

return ∅;

end

4The set workable subset is also refereed to as the free space, denoted as Cfree, in some planning
related literature such as [18] and [19].
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where 0 < δ ∈ R is a predefined acceptable distance from the goal point. Note that,

if |V | exceeds N and there is no vertex in V within a ball of radius δ around g, then

the solver will return φ = ∅ to indicate incapability of finding a path from r to g

for the defined Y , N and δ values.

Depending on details of Expand(V, Y ) in Definition 3.1.3, we can construct dif-

ferent spatial search trees. As an example, we proceed with a definition for rapidly-

exploring random trees, which are commonly abbreviated as RRT.

Definition 3.1.4 (Rapidly-exploring random tree). Let D be a probability density

function for Y ⊂ (X, ‖ · ‖) and let x ∈ Y ∼ D denote choosing a random point in

Y based on D. A rapidly expanding random tree is a spatial exploring tree that is

constructed based on the Expand(V, Y ) algorithm defined as

Data: V , Y

Result: (x,φ)

x ∈ Y ∼ D;

v := arg minw∈V ‖x−w‖;

if ∃φ ∈ C such that φ(0) = v, φ(1) = x, and φ(s) ∈ Y , ∀s ∈ R then

return (x,φ);

else

return (∅, ∅);

end

In an alternative implementation of rapidly-exploring random trees, instead of

discarding paths for which φ([0, 1]) ∩ Y c 6= ∅, we pick a new vertex x̂ by finding

t∗ = min{t ∈ [0, 1] : φ(t) 6∈ Y̊ }5 and defining x̂ := φ(t∗), and φ̂(s) := φ( s
t∗

). if

t∗ 6= 0, we return x̂ and φ̂ as the new vertex and path.

5Let v = φ(0) ∈ Y̊ , then ∃ε > 0 such that {x ∈ X : ‖x − v‖ < ε} ⊂ Y̊ . Also, since φ
is continuous, ∃δ > 0 such that ‖φ(δ) − φ(0)‖ = ‖φ(δ) − v‖ < ε =⇒ φ(δ) ∈ Y̊ . Thus, for
every t ∈ Q := {s ∈ (0, 1) : φ(s) ∈ Y̊ }, ∃δt > 0 such that {s ∈ (0, 1) : |t − s| < δt} ∈ Q
that implies Q is open and consequently its complement with respect to the interval [0, 1], that is
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In order to solve a control problem using rapidly-exploring random trees, we need

to employ a strategy to synthesize a path between every two points in the feasible

subset of the state space. Note that, developing such strategy is equivalent to finding

a solution set {Wηd} for the set of control problems {(f , U, Y,ηd, Ŷ , T ) : ∀ηd ∈ Y }

that is clearly a complicated and computationally expensive task, specifically for

systems with convoluted dynamics; However, some possible workarounds discussed

in the literature are:

i) Using an iterative algorithm, such as shooting method, dynamic programming

or a method derived from techniques in optimal control theory, to synthesize

a control function that generates a trajectory connecting two vertices of the

spatial exploring tree. Examples of such techniques are explored in [20] and

[21]. In general, due to their iterative nature, application of such algorithms

are laborious.

ii) Decomposing vertex-to-vertex transition problem into two subproblems of (I)

finding a path between two vertices of the tree based on system kinemat-

ics (by computing ẏ(t) as time derivative of the path y(t), which ignores

ẏ(t) = f(t,y(t),u(t)) as a dynamic constraint); and (II) using a control func-

tion to follow the obtained path using the linear approximation of the dynamics.

Assuming that the initial point of the path coincides with the initial state of the

system, which is a consequence of solving the kinematics based planning, then

e(0) = 0, that implies possibility of using a linear controller. However, if the

problem is conditionally controllable and the source vertex belongs to YN , then

this controller will fail to follow the given path. Accordingly, an implementa-

tion of the method needs to handle possibilities of diverging from the desired

Qc = {s ∈ [0, 1] : φ(s) 6∈ Y̊ }, is a close set. Since Qc is a bounded, close and not empty (based on
the initial assumption that φ([0, 1]) ∩ Y c 6= ∅), it has a minimum. If v ∈ Y \ Y̊ , then v ∈ Y (Y is
a close set) and v = Φ(0) 6∈ Y̊ , thus t∗ = 0.
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path. An example of such implementation of rapidly-exploring random trees is

presented in [22].

As the above discussions suggest, a more natural way of employing trees to

solve a control problem is to include time and dynamic constraints in the growth

of the spatial trees. In this regard, we introduce dynamic-based expanding trees

as a special subset of spatio-temporal exploring trees, as presented in the following

section.

3.2 Spatio-temporal exploring trees

To provide a definition for spatio-temporal exploring trees, we need to include time

in the definition of spatial directed rooted tree as presented in Section 3.1. Thus,

we start with the following Lemma

Lemma 3.2.1 (Trajectory compositions). Let (X, ‖ · ‖) be a normed vector space,

vk = (tk,xk) ∈ R × X for k = 1, . . . , p < ∞ ∈ N such that tk < tk+1 for all k,

and ϕk : R → X be a trajectory connecting vk to vk+1, that is, ϕk ∈ AC(R),

ϕk(tk) = xk and ϕk(tk+1) = xk+1 for every k = 1, . . . , p− 1. Then

ϕ1→p(t) := x1 +

∫ t

t1

( p−1∑
k=1

χIk(τ)ϕ′k(τ)
)
dτ,

where Ik = [tk, tk+1] for 1 ≤ k < p − 1 and Ip−1 = [tk−1,∞), is a trajectory6 that

connects v1 = (t1,x1) to vp = (tp,xp).

Proof. Based on the assumptions of the lemma, ϕk ∈ AC(R), ϕk(tk) = xk and

ϕk(tk+1) = xk+1 for every k = 1, . . . , p− 1. Thus for every k ∈ {1, . . . , p− 1}, there

6Note that, since we are choosing ϕk to be an absolutely continuous function, there is no
contradiction with the given definition of a trajectory as in Definition 2.1.1.
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exists a Lebesgue integrable derivative of ϕk, namely ϕ′k, such that

xk+1 = xk +

∫ tk+1

tk

ϕ′k(τ)dτ.

Moreover, if ϕ′k is integrable, then χIk(τ)ϕ′k(τ) is also integrable. Finally, since

a finite sum of Lebesgue integrable functions is also Lebesgue integrable, we get∑p−1
k=1 χIk(τ)ϕ′k(τ) is integrable that implies ϕ1→p ∈ AC(R).

To check for the boundary values of ϕ1→p at t = t1 and tp we can proceed as

what follows. For t = t1 we have

ϕ1→p(t1) = x1 +

∫ t1

t1

( p−1∑
k=1

χIk(τ)ϕ′k(τ)
)
dτ = x1,

and for t = tp we get

ϕ1→p(tp) = x1 +

∫ tp

t1

( p−1∑
k=1

χIk(τ)ϕ′k(τ)
)
dτ

= x1 +

∫ tp

t1

χI1(τ)ϕ′1(τ)dτ +

∫ tp

t1

χI2(τ)ϕ′2(τ)dτ + · · ·+∫ tp

t1

χIp−1(τ)ϕ′p−1(τ)dτ

= x1 +

∫ t2

t1

ϕ′1(τ)dτ︸ ︷︷ ︸
=x2

+

∫ t3

t2

ϕ′2(τ)dτ

︸ ︷︷ ︸
=x3

+ · · ·+
∫ tp

tp−1

ϕ′p−1(τ)dτ

︸ ︷︷ ︸
=xp

= xp.

The result of Lemma 3.2.1 could be used to give a definition to spatio-temporal

directed rooted trees and spatio-temporal exploring trees as in what follows.

Definition 3.2.1 (Spatio-temporal directed rooted tree). Let (X, ‖·‖) be a normed

36



vector space, T = [t0, tf ] ⊂ R and V ⊂ T ×X be a countable set. Moreover, let

E :=
{
ϕv1→v2 : v1 = (t1,x1) ∈ V and v2 = (t2,x2) ∈ V, t1 < t2

}
,

be a set of trajectories between the points in V . Given r = (tr,xr) ∈ V , the triple

(V,E, r) is spatio-temporal directed rooted tree with root r, if for every v ∈ V , one

can construct a unique trajectory

ϕr→v(t) := xr +

∫ t

tr

(∑
k

χIk(τ)ϕ′k(τ)
)
dτ,

as established in Lemma 3.2.1 such that ϕk ∈ E for every k. If such condition holds,

it is easy to verify7 that |E| < |V |.

Definition 3.2.2 (Spatio-temporal exploring tree). Let T = [t0, tf ] ⊂ R and

(X, ‖ · ‖) be a normed vector space. Moreover, let Y ⊂ X be a given workable

set, r = (tr,xr) ∈ T × Y be an assigned root and N ∈ N be a desired size. Then,

a Spatio-temporal exploring tree of size N , donated by ΥN , is a Spatio-temporal

directed rooted tree (V,E, r) with |V | = N that is incrementally constructed based

on the following algorithm:

V := {r}, E := ∅;

while |V | < N do

(w,ϕv→w) := Expand(V, T × Y );

V := V ∪ {w}, E := E ∪ {ϕv→w};

end

return ΥN := (V,E, r);

where Expand(V, T ×Y ) is a sub-algorithm that returns w ∈ T ×Y as a new vertex

7Similar to the discussion for Definition 3.1.2 we can show that uniqueness of trajectories
between the root and tree vertices implies |E| ≥ |V |.
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and ϕv→w as a trajectory connecting v ∈ V to w.

In the following definition, we present an application of Spatio-temporal explor-

ing trees as a tool to explore the state space of dynamic systems.

Definition 3.2.3 (Dynamics-based expanding tree). Given a control system ẏ =

f(t,y(t),u(t)), as defined in Definition 2.1.1, Y as a connected subset of Rn with

the usual topology, U as the set of feasible control functions, T = [t0, tf ] ⊂ R and

y0 = y(0) ∈ Y . A dynamics-based expanding tree is a spatio-temporal exploring

tree that is constructed based on the following Expand(V, Y ) algorithm

v0 = (t0,y0) := PickVertex(V );

δt := PickTime(R+);

u := PickControl(U);

ϕ(t) := y0 +
∫ t
t0

f(τ,y(τ),u(τ))dτ ;

if ϕ(t) ∈ Y , for all t ∈ [t0, t0 + δt] then

return
(
(t0 + δt,ϕ(t0 + δt)),ϕ

)
;

else

return (∅, ∅);

end

where PickVertex, PickTime and PickControl are sub-algorithms to choose a

vertex v from V , a positive time interval δt and a control function u from U , re-

spectively. Depending on details of these sub-algorithms, we can tailor the procedure

to generate trees suitable for different given problems.

In [23] we have demonstrated that using a set of dynamics-based expanding

trees, {Υj
n = (Vj, Ej, rj) : j ∈ N, j = 1, . . . , N < ∞}, we can solve different control

problems with relatively complicated dynamics.

In what follows, we explore application of dynamics-based expanding tree in

solving conditionally controllable problems.
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3.3 Extension to conditionally controllable prob-

lems

Let (f , U, Y,yd, Ŷ , t0) be a conditionally controllable problem, then for every η0 ∈

Y \ YN , ∃u ∈ UL such that limt→+∞ ‖yd(t) − yu(t)‖ = 0. Let t1 ≥ t0, if the cost

of solving the initial value problem ẏ = f(t,y(t),u(t)); y(t1) = η ∈ Y is small

enough, then we can check if the performance of a control function u ∈ UL is

satisfactory. This possibility of evaluating the control functions allows utilization of

Ariadne’s clew framework [24] where the planning problem is decomposed into two

contemporaneous subtasks of Explore and Search that are:

i) Explore: build and enhance a representation of the accessible set;

ii) Search: check for possibility of reaching the target from accessible set based on

a predefined criteria.

In the case of conditionally controllable problems, if the Explore subtask can

identify a region intersecting with Y \ YN , then the Search subtask can utilize a

function in UL to guide the system trajectory toward yd(t).

On a different note, complexities of the computations involved in synthesizing a

planning-based controller demands utilization of a digital computer to evaluate and

apply the control function. Thus, the resultant output will be a discrete signal that

could be represented as a continuous input via zero-order hold8. Accordingly, the

control signal attains a constant value during each sampling time, which needs to

8Let x[n] : N→ Rn represent a discreet signal and ts ∈ R be the sampling time (also known as
the sample interval), then zero-order hold representation of x is xzoh : R→ Rn defined as

xzoh(t) =
∑
n∈N

x[n]χ[tsn, ts(n+1))(t).
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be accounted for in design of the algorithm9. Based on the presented discussions,

we propose the following algorithm to synthesize control functions for a class of

conditionally controllable problems where the set of feasible controls is L∞. The

presented method utilizes spatio-temporal exploring trees to explore the state space

of the associated error dynamics as the Explore subtask of Ariadne’s clew framework.

Method 3.3.1. Given T = [t0, tf ], ts, th ∈ R+, 0 < ts << (tf − t0), 1 ≤ ns <<

(tf−t0)/ts ∈ N, th >> ts and an error regularization problem Re = (fe, V, E,0, Ê, t0)

with V = L∞ that is conditionally controllable when range of control functions in

V is constrained to D :=
∏m

i=1[wimin
, wimax ] ⊂ Rm. Let C be a given finite subset of

∂D. If there exists a control function

u(t) :=
N∑
k=0

χ[tk,tk+δk](t)wk,

for which tk+1 = tk + δk, δk ∈ {ts, nsts} for all k, N ≤ (tf − t0)/ts and

wk ∈


D, if δk = ts,

C, if δk = nsts,

that can regulate the error from a given e(t0) ∈ E to zero. Then, u(t) could be

constructed by determining the values of δk and wk through the following algorithm:

9The effect of zero-order hold must also be considered for the functions in UL, if they are meant
to be implemented via a digital computer. In the following discussions, for the sake of brevity, we
assume that the sampling time is small enough to guarantee the stability of the linearized model
with a linear control signal passing through a zero-order hold filter. We will address this effect in
the discussions presented on Section 3.4
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Data: tk, e(tk), and H

Result: δk, wk and H

τ0 := tk; ξ0 := e(tk);

P := {(τ0,ξ0)}; Q := ∅; i := 0;

while ∃t ∈ [tf , tf + th] such that ‖ϕ(t,pi,v)‖ > ε do

(p̄,w) := PickVertexAndControl(P,C,H);

if p̄ = ∅ ∨ i > N then

return
(
ts, SampleControl(D), ∅

)
;

else if ϕ(t, p̄,w) ∈ E(t) ∧ ϕ̇(t, p̄,w) ∈ Ê(t), ∀t ∈ [tp̄, tp̄ + nsts] then

pi+1 := (tp̄ + nsts, ϕ(tp̄ + nsts, p̄,w));

P := P ∪
{
pi+1

}
; Q := Q ∪ {w};

i := i+ 1

else

Mask(p̄,w);

end

end

if |P | = 1 then

return
(
ts, vξi(t0), ∅

)
;

else

return
(
nsts,wk→1, wk→i

)
;

end

where v := ProjD Ke(t) is projected linear control function that regulates the linear

approximation of the error dynamics at e(t) = 0, H is the results of planning

obtained in the previous step, that is ue(tk−1)→0; H = ∅ indicates unavailability of

previous planning solution. ε > 0 is an acceptable distance from 0 that suggest

convergence of e(t) to zero. N ∈ N is a given maximum size of the tree (|P |). For

41



p = (tp,ξp) ∈ R× Rn and control function u, ϕ(t,p,u) is defined as:

ϕ(t,p,u) := ξp +

∫ t

tp

fe
(
τ, e(τ),u(τ)

)
dτ.

Sub-algorithm PickVertexAndControl returns a vertex p̄ = (tp̄,ξp̄) ∈ P such that

tp̄ ≤ tf − nsts and a control u(t) ≡ w ∈ C based on the current vertices in P

and history H. PickVertexAndControl returns p̄ = ∅ if all the vertex and in-

put combinations are used (to eliminate exploring repeated vertex-control pairs).

SampleControl(D) sub-algorithm returns u(t) ≡ w ∈ D based on a defined proba-

bility density function. The Mask sub-algorithm masks specific vertex and control

tuple so that PickVertexAndControl does not pick the same combination again.

The procedure presented in Method 3.3.1 constructs the control function u(t)

gradually from t0 to tf . At each step, the algorithm attempts to find a control

function uk(t) from the current point (tk, e(tk)) to a point in the goal region {ξ ∈

Rn : ‖ξ‖ < ε} satisfying ‖euk
(t)‖ ≤ ε for all t ∈ [tf , tf + th]. If the algorithm

terminates successfully, it returns wk = uk(tk) and δk ∈ {ts, nsts} along with H ≡ vk

which could be used as a reference for the next step planning. However, if the process

terminates unsuccessfully, which can happen by completely exhausting all the inputs

in C for all the vertices in P satisfying tp ≤ tf − nsts or reaching the maximum

allowable tree size, then it will return a random control input from D to alter the

current state e(tk) and repeat the procedure.

To explore performance of Method 3.3.1 in synthesizing control functions we

proceed with the following case studies of a simple pendulum, a point-mass dou-

ble pendulum and a point-mass cart-pole system. In all the given examples, the

PickVertexAndControl sub-algorithm is set to alternate between history and cur-

rent explored vertices until it exhausts history H.
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3.3.1 Simple pendulum

As our first demonstration, we continue with the simplified point-mass pendulum

example presented in Section 2.2 with

f(t,y(t), u(t)) =

 y2(t)

sin
(
y1(t)

)
+ u(t)

 , (3.1)

and the error regularization problem Re = (fe, L
∞,R2,0,R2, 0) with the error dy-

namics fe = −f(t,−e(t),−v(t)). Let the interval D := [−wmax, wmax], VL = {v ∈

L∞ : v(t) = satD〈K, e(t)〉, K and e(t) ∈ R2}. Based on Theorem 2.2.3, Re is a con-

ditionally controllable if wmax ∈ (0, 1). To evaluate the performance of Method 3.3.1

to synthesize a control function for Re, we set wmax = 0.5 and picked two initial

conditions: (i) e(0) = [−2, 0]T ∈ EN and (ii) e(0) = [−4, 2]T ∈ E \ EN . The

corresponding synthesized control function using Method 3.3.1, denoted by u, and

the corresponding response of the system to u are illustrated in Figure 3.1. In ad-

dition, Figure 3.1 includes graphs of saturated linear function v(t) =: satD〈K, e(t)〉

with10 K = [−10,−3]T , and corresponding response of the system to v. As seen

in the figure, even when e(0) ∈ EN , the control function u can meet the objective

of the regularization problem. However, v saturates at wmax and results in an un-

damped oscillatory response of the system. A more interesting behavior is observed

for e(0) = [−4, 2]T ∈ E \ EN . In this case, although ev(t) eventually reduces to

zero in time, the exploring nature of the proposed method allows finding a shortcut

in that results in a faster convergence of eu(t). Other parameters used in this case

study are: tf = 25, T = 10, ε = π/10, ns = 10 and ts = 0.1.

10The negative sign in K appears by defining the error dynamics with e(t) := yd(t)−y(t) = −y(t)
and v(t) := ud(t)−u(t). This mismatch in the sign of K with the analysis presented in Section 2.2
is due to a sign simplification that is applied in Section 2.2 by replacing v(t) with −u(t).
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Figure 3.1: Response of the pendulum system to the synthesized control func-
tion based on Method 3.3.1, u and the projected linear control function v(t) =:
ProjD〈K, e(t)〉. Solid and dashed lines in the first two rows indicate e1(t) and e2(t),
respectively. In contrast, solid and dashed lines in the third row depict u(t) and
v(t), respectively. The phase portrait of the system is depicted in the last row
where red and yellow lines are used to illustrate system response to u(t) and v(t),
respectively. The contour lines indicate Hamiltonian isoclines on ΣL and ΣR. The ×
and o markers are used to illustrate the singular points. Please refer to discussions
in Section 2.2 and Figure 2.1 for more detailed description of the depicted phase
planes.
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Figure 3.2: The point-mass double pendulum system and the corresponding param-
eters.

3.3.2 Double pendulum

As an example of a more complicated system, we can study performance of Method

3.3.1 in synthesizing control functions for a point-mass double pendulum system de-

picted in Figure 3.2. The detailed derivation of the differential equation of motion

for the system with arbitrary values of m1, m2, l1 and l2 is presented in the Ap-

pendix B. In order to simplify the expressions, we take m1 = m2 = l1 = l2 = g = 1

(with appropriate units). Moreover, by defining y(t) := [q1(t), q2(t), q̇1(t), q̇2(t)]T

as the state vector and u(t) = [u1(t), u2(t)]T as the input vector. we can obtain a

first order representation for the system as

ẏ(t) =


y3(t)

y4(t)

M−1
(
y(t)

)(
u(t)−Φ

(
y(t)

))
 , (3.2)

where

M(y(t)) =

2 cos(y2(t)) + 3 cos(y2(t)) + 1

cos(y2(t)) + 1 1

 , (3.3)

45



and

Φ(y(t)) =

cos(y1(t) + y2(t)) + 2 cos(y1(t))− y4(t)
(
2y3(t) + y4(t)

)
sin(y2(t))

y2
3(t) sin(y2(t)) + cos(y1(t) + y2(t))

 .
(3.4)

Similar to the point-mass pendulum problem, we chose the objective of the con-

trol problem as swinging up and holding the system in the upward configuration.

Accordingly, yd(t) = [π/2, 0, 0, 0]T ≡ yd. Moreover, we assume additional con-

straints on the range of q1(t) and q2(t) and set Y (t) ≡ Y := {η ∈ R4 : −2π ≤ η1 ≤

2π,−π ≤ η2 ≤ π}. Since ẏd = 0, we can set ud to be the input required to make yd

an equilibrium point of (3.2). Thus,

ud −Φ(yd)︸ ︷︷ ︸
=0

= 0 =⇒ ud = 0. (3.5)

Having defined the values of yd and ud, we can proceed with defining the error

dynamics. Following the formulation presented in (2.4), we get

ė(t) =


e3(t)

e4(t)

M−1
e

(
e(t)

)(
v(t) + Φe

(
e(t)

))
 , (3.6)

where e(t) := yd − y(t), v(t) := ud − u(t),

Me(e(t)) = M(yd − e(t)) =

2 cos(e2(t)) + 3 cos(e2(t)) + 1

cos(e2(t)) + 1 1

 , (3.7)
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and

Φe(e(t)) = Φ(yd − e(t))

=

sin(e1(t) + e2(t)) + 2 sin(e1(t)) + e4(t)
(
2e3(t) + e4(t)

)
sin(e2(t))

sin(e1(t) + e2(t))− e2
3(t) sin(e2(t))

 . (3.8)

Based on (2.6), we can obtain a linear approximation of (3.6) around e(t) = 0 and

v(t) = 0 as

ė(t) ≈ Ae(t) + Bv(t), (3.9)

where

A =



0 0 1 0

0 0 0 1

1 −1 0 0

−1 3 0 0


, and B =



0 0

0 0

1 −2

−2 5


. (3.10)

In order to find a gain matrix K for the linear control function Ke(t) that

regulates the linear approximation of the system presented in (3.9), we follow the

pole placement technique discussed in [6], which is known as Ackermann’s formula.

Based on this technique, the eigenvalues of the closed loop linear approximation of

the system, that is ė(t) = Ace(t) with Ac defined as

Ac := A + BK, (3.11)

could be arbitrarily assigned as the roots of a desired characteristic polynomial, if

the controllability matrix C := [B, AB, · · · , An−1B] is of rank n. For the double

pendulum example rank controllability is 4 that allows us to proceed with Acker-
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mann’s formula. Choosing desired polynomial λ(s) = (s+ 1)2(s+ 2)2 leads to

KT = −[0, 0, · · · , 1]C−1λ(A) = −

13 5 15 6

5 3 6 3

 . (3.12)

Finally, to construct the projected linear control function v(t) := ProjD Ke(t), we

pick D = {w ∈ R2 : ‖w‖∞ ≤ 0.5}.

Figure 3.3 shows response of the system from two different initial conditions

to both v and u, which is the control function constructed by Method 3.3.1. As

depicted in the figure, u can successfully reduce norm of error to zero in time. For the

initial condition e(0) = [π, 0, 0, 0]T , the projected linear control function v saturates

and remains at the boundary of D as ‖ev(t)‖ demonstrates a periodic response.

On the other hand, for the same initial condition, u(t) can successfully reduce

‖eu(t)‖ to zero in time. This behavior is in line with the definition of conditionally

controllable problems and suggests that the given regularization problem for the

double pendulum system is conditional controllable and [π, 0, 0, 0]T ∈ EN (the set

EN corresponds to set YN when the regularization problem is written in terms of

the error dynamics as discussed in Theorem 2.1.3). Other parameters used in this

case study are: tf = 20, T = 20, ε = 0.5, ns = 20 and ts = 0.1.

3.3.3 Cart-pole

To further investigate the performance of Method 3.3.1, we continue with a point-

mass cart-pole system11, which is a simple example of an under actuated system12.

11The cart-pole system is also referred to as the inverted pendulum in the literature.
12Based on Newton’s laws of motion, dynamics of mechanical systems are inherently second order

[25]. Consequently, we can assume q̈ = f(t,q, q̇,u) as a generic form of the system accelerations
where q is the vector of generalized coordinates and u is the vector of input forces and moments.
However, in many systems, namely control affine, q̈ is an affine function of u. As a result, we can
write q̈ for control affine systems as q̈ = f1(t,q, q̇) + f2(t,q, q̇)u. An under actuated system is a
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Figure 3.3: Response of the double pendulum system from two different initial
conditions to both the synthesized control function based on Method 3.3.1, u and
the projected linear control function v.
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Figure 3.4: The point-mass cart-pole system and the corresponding parameters.

A point-mass cart-pole system is illustrated in Figure 3.4. The detailed derivation

of the differential equation of motion for the system with arbitrary values of m1,

m2 and l is presented in the Appendix B. In order to simplify the expressions, here

we take m1 = m2 = l1 = g = 1 (with appropriate units). Moreover, by assigning

y(t) := [q1(t), q2(t), q̇1(t), q̇2(t)]T as the state vector and u(t) as the input force, we

can obtain a first order representation for the system as

ẏ(t) =


y3(t)

y4(t)

M−1
(
y(t)

)(
[u(t), 0]T −Φ

(
y(t)

))
 , (3.13)

where

M(y(t)) =

 2 − cos(y2(t))

− cos(y2(t)) 1

 , and Φ(y(t)) =

sin(y2(t))y2
4(t)

− sin(y2(t))

 .
(3.14)

The objective of the cart-pole system is to balance the pole in an upward config-

uration as the cart stands at a specific position. Accordingly, we chose the desired

control affine system for which Rank
(
f2(t,q, q̇)

)
< Dim(q).
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state for the control problem as yd(t) = 0 ≡ yd. Since ẏd = 0, we can set ud to be

the input that makes yd an equilibrium point of (3.13). Thus,

[ud, 0]T −Φ(0)︸ ︷︷ ︸
=0

= 0 =⇒ ud = 0. (3.15)

Having defined values of yd and ud, we can proceed with defining the error

dynamics based on the formulation presented in (2.4) that leads to

ė(t) =


e3(t)

e4(t)

M−1
e

(
e(t)

)(
[v(t), 0]T + Φe

(
e(t)

))
 , (3.16)

where e(t) := yd − y(t) = −y(t), v(t) := ud − u(t) = −u(t),

Me(e(t)) = M(yd − e(t)) =

 −2 cos(e2(t))

cos(e2(t)) −1

 , (3.17)

and

Φe(e(t)) = Φ(yd − e(t)) =

sin(e2(t))e2
4(t)

− sin(e2(t))

 . (3.18)

Based on (2.6), we can obtain a linear approximation of (3.16) around e(t) = 0 and

u(t) = 0 as

ė(t) ≈ Ae(t) + Bv(t), (3.19)
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where

A =



0 0 1 0

0 0 0 1

0 1 0 0

0 2 0 0


, and B =



0

0

1

1


. (3.20)

Although, similar to the double pendulum example, we can use the pole place-

ment techniques to find an appropriate gain matrix K, here we follow LQR deriva-

tion. That is, we seek to find K such that the linear controller a(t) := Ke(t)

minimizes the cost functional

J(e, a) =

∫ ∞
0

e(t)TQe(t) +Ra2(t) dt, (3.21)

subjected to ė(t) = Ae(t) + Ba(t). As explained in Chapter 4, the optimal gain

matrix K∗ could be obtained by as

K∗ = R−1BTP, (3.22)

where P is found by solving the continuous time algebraic Riccati equation

ATP + PA−PBR−1BTP + Q = 0. (3.23)

Substituting Q = I4 and R = 20 in (3.22) and (3.23) we obtain K∗ as

K∗ ≈ [0.22, −5.77, 1.31, −4.66]. (3.24)

Finally, to construct the projected linear control function, we set D = [−0.5, 0.5]
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that leads to

v(t) := Proj
D

K∗e(t) = sat
[−0.5, 0.5]

K∗e(t), (3.25)

Figure 3.5 shows response of the system from four different initial conditions to

both v and u (function u is the control synthesized by Method 3.3.1). As depicted

in the figure, for all cases u can successfully reduce norm of the error to zero while

for

e(0) ∈ H :=
{

[0, 1, 0, 0]T , [0, 0, 1, 0]T , [0, 0, 0, 1]T
}
, (3.26)

the saturated linear control function, v, drives system to instability and causes

norm of the error to increase in time. Similar to the double pendulum example, for

these initial condition, v saturates and remains at the boundary of D while ‖ev(t)‖

increases in time. However, for the same initial condition, the synthesized control

function u can successfully reduce ‖eu(t)‖ to zero in time. This set of conditions

suggest conditional controllability of the problem and shows that H ⊂ EN (the set

EN corresponds to set YN when the regularization problem is written in terms of

the error dynamics as discussed in Theorem 2.1.3). Other parameters used in this

case study are: tf = 20, T = 20, ε = 0.5, ns = 10 and ts = 0.1.

3.4 Remarks and conclusions

In this chapter, we covered some preliminaries on spatial exploring trees and dis-

cussed their limitations in synthesizing control functions as solutions to planning

problems. To address this limitations, we extended the idea of spatial exploring

trees to include time and presented a formal setting for spatio-temporal exploring

trees. Finally, the presented idea is used to as tool for synthesizing control functions.

In particular, we proposed Method 3.3.1 that utilizes spatio-temporal exploring trees
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Figure 3.5: Response of the point-mass cart-pole system from four different initial
conditions to both the synthesized control function based on Method 3.3.1, u, and
the projected linear control function v.
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Figure 3.6: |P | versus ns when evaluating w1 and δ1 for the three case studies. The
missing boxes indicate inability of the method in finding a trajectory from the given
initial condition satisfying ‖ev(t)‖ ≤ ε for all t ∈ [tf , tf + T ].

in an Ariadne’s clew framework to gradually construct a control function to regulate

the error.

Effectiveness of the proposed method is explored by synthesizing control func-

tions for three case studies from different initial conditions. The conducted sim-

ulations revealed effectiveness of the method in constructing control functions for

each problem. However, through numerous experiments with the parameters as-

sociated with Method 3.3.1, we observed the importance of ts, ns and the linear

control function gain, K, in the success of the algorithm. In general, reducing ts
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increases the computation time and increasing ts affects convergence of the error

close to e(t) = 0, where the linear approximation of the system is valid. In the

implementation of the method, special care must be given to the sampling time ts.

If the effect of discretizing the saturated linear control function, v(t), which is a con-

sequence of using digital computers in implementing Method 3.3.1, is not considered

for in the Search subtask of Ariadne’s clew framework, ts should be small enough

to reduce the divergence of ev(t) from ezoh(v)(t). Based on the results presented in

this chapter, if such divergence is small, the algorithm can successfully account for

it by solving the planning problem from the diverged point in some future time step.

Such action also suggest the noise rejection capability of Method 3.3.1. Similarly,

smaller values of ns result in shorter search horizons which increases the number of

vertices required to solve the planning problem. Thus, reducing ns, increases oscil-

lations in the synthesized control function. On the other hand, increasing ns leads

to more scattered tree vertices that may reduce the chance of finding a solution.

Figure 3.6 illustrates the effect of ns on |P | at t = t0 for the three case studies.

The corresponding results are obtained by running the algorithm with 100 different

random number seeds for each ns value. The parameters used in the algorithm are

the same as for the case studies with the maximum allowable size of the search tree

is set to 2000. The presented results suggest existence of ns optima for which the

planning problem is solved with fewer iterations, that corresponds to smaller |P | at

t0. Another important observation is the effect of linear controller gain matrix K on

the performance of the algorithm. Accordingly, some experimentation with a given

system is required to find a gain matrix that results in better performance of the

Search subroutine in Ariadne’s clew framework. Finally, the time horizon th should

be long enough to correctly reflect convergence of the projected linear controller.

Choosing small th may deceive the search subroutine and result in an ineffectual
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control function.
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Chapter 4

Optimal control

This chapter focuses on utilizing methods of optimal control in synthesizing control

functions for conditionally controllable problems. We start with a brief overview and

preliminaries of optimal control theory and continue our discussions with the details

of the proposed method to synthesize control functions for conditionally controllable

problems. In particular, we present an algorithm to construct control functions

through composition of a piecewise constant function with a linear controller. The

coefficients of the piecewise function are determined by solving an optimization

problem for which the cost is defined as the norm of state vector at a given finite

time.

4.1 A brief introduction to optimal control theory

As an informal definition, we can state an optimal control problem as the following.

Let ẏ(t) = f(t,y(t),u(t)) be a given control system, U be the set of admissible

control functions, J(y,u) be a given performance measure and T ⊂ R be a time
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interval. An optimal control problem is to find u∗ ∈ U such that

u∗ = arg min
u∈U

J(yu,u), (4.1)

satisfying

Ψ(t,y(t),u(t)) ≥ 0, (4.2)

E(t,y(t),u(t)) = 0, (4.3)

for all t ∈ T . Functions Ψ and E are defined based on the physical requirements of

the system.

In what follows, we present a short introduction to optimal control theory by

discussing common techniques used to solve an optimal control problem analytically

and numerically. An interested reader may refer to [9], [26] and [27] for more detailed

derivations and explanations.

4.1.1 The variational approach to optimal control problems

From historic perspective, contributions to calculus of variations by Edward J. Mc-

Shane lead to major developments of optimal control theories, largely due to the

work of Lev Pontryagin [28] and Richard Bellman in the 1950s. In what follows,

we summarize Pontryagin’s maximum principle, as stated in [9], as the following

theorem. For the sake of brevity, we omit proof of the theorem and refer interested

readers to [9] or [28] for detailed discussions and proofs.

Theorem 4.1.1 (Pontryagin’s maximum principle). Given a control system ẏ(t) =

f(t,y(t),u(t)), a time interval T = [t0, tf ] and a set of feasible control functions U .
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Let

J(u) := h(tf ,y(tf )) +

∫ tf

t0

g(t,y(t),u(t))dt,

be a given performance measure. Then, the control function u∗ that minimizes J

must satisfy the following necessary conditions:

i) y∗(t) =
∂

∂λ
H(t,y∗(t),λ∗(t),u∗(t)), for all t ∈ T ;

ii) λ̇∗(t) = − ∂

∂y
H(t,y∗(t),λ∗(t),u∗(t)), for all t ∈ T ;

iii) H(t,y∗(t),λ∗(t),u∗(t)) ≤ H(t,y∗(t),λ∗(t),u(t)), for all u ∈ U and all t ∈ T ;

iv)
[ ∂
∂y

h(tf ,y
∗(tf ))− λ∗(tf )

]T
δyf +

[ ∂
∂t
h(tf ,y

∗(tf ))

+H(tf ,y
∗(tf ),λ

∗(tf ),u
∗(tf ))

]
δtf = 0;

where

H(t,y(t),λ(t),u(t)) := g(t,y(t),u(t)) + λT (t)f(t,y(t),u(t)),

is the Hamiltonian function. δyf and δtf are variations of the final state and time,

respectively.

Moreover, if there is no constraint on the range of functions in U , that is for all

u ∈ U , u : R→ Rm, then condition (iii) simplifies to

iii)
∂

∂u
H(t,y∗(t),λ∗(t),u∗(t)) = 0 for all t ∈ T .

The results of Theorem 4.1.1 could be used to find an optimal control function

for linear regulator problem as presented in the next subsection.

4.1.2 Linear Quadratic Regulator (LQR)

In this subsection, we apply Theorem 4.1.1 to find a linear control function of the

form v(t) := K(t)e(t) for linearized system ė = A(t)e(t) + B(t)v(t). The result
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presented here follows the discussions in [9] and are primarily due to the work of R.

E. Kalman.

Let the performance measure be defined as

J :=
1

2
〈Ce(tf ), e(tf )〉+

1

2

∫ tf

t0

〈Q(t)e(t), e(t)〉+ 〈R(t)v(t), v(t)〉dt, (4.4)

where tf <∞ is fixed, C,Q(t) ∈ Rn×n are symmetric positive semi-definite matrices

and R ∈ Rm×m is a symmetric positive definite matrix. It is also assumed that

e(t) ∈ Rn and v(t) ∈ Rm are not bounded. Moreover, e(tf ) is not constrained. The

corresponding Hamiltonian for the problem is

H(t, e(t),λ(t),v(t)) =
1

2
〈Q(t)e(t), e(t)〉+

1

2
〈R(t)v(t), v(t)〉

+ 〈λ(t),A(t)e(t) + B(t)v(t)〉, (4.5)

and the necessary conditions are

e∗(t) = A(t)e∗(t) + B(t)v∗(t) (4.6)

λ̇∗(t) = −Q(t)e∗(t)−AT (t)λ∗(t) (4.7)

0 =
∂H

∂v
= R(t)v∗(t) + BT (t)λ∗(t). (4.8)

Solving (4.8) for v∗(t) and substituting in condition (4.6) leads to

ė∗(t) = A(t)e∗(t)−B(t)R−1(t)BT (t)λ∗(t). (4.9)

Note that the existence of R−1(t) is assured due to its positive definiteness. Equa-

tions (4.7) and (4.9) form a set of linear homogeneous differential equations of the
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form ė∗(t)

λ̇∗(t)

 =

 A(t) −B(t)R−1(t)BT (t)

−Q(t) −AT (t)


e∗(t)

λ∗(t)

 , (4.10)

with the solution e∗(tf )

λ∗(tf )

 =

φ11(t, tf ) φ12(t, tf )

φ21(t, tf ) φ22(t, tf )


e∗(t)

λ∗(t)

 . (4.11)

From condition (iv) of Theorem 4.1.1 by setting δtf = 0 (since the final time is

fixed) we can obtain a boundary condition for λ∗(t) as

λ∗(tf ) = Ce∗(tf ). (4.12)

In [9], by borrowing the idea presented in [29], it is shown that the above formulation

simplifies to

v∗(t) = −R−1(t)BT (t)Gtf (t)e(t), (4.13)

where

Gtf (t) =
(
φ22(t, tf )−Cφ12(t, tf )

)−1(
Cφ11(t, tf )−φ21(t, tf )

)
. (4.14)

Generally, in order to implement v∗, we need to resort to numerical procedures to

evaluate φij(t, tf ). Alternatively, by substituting (4.12) in (4.11) and solving the

results for λ∗(t) as function of e∗(t), which leads to λ∗(t) = Gtf (t)e∗ (t), and finally

taking derivative of λ∗(t) = Gtf (t)e ∗ (t) with respect to time we can show that
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Gtf (t) satisfies the Riccati type final value problem


Ġtf (t) = −Gtf (t)A(t)−AT (t)Gtf (t)−Q(t) + Gtf (t)B(t)R−1(t)BT (t)Gtf (t),

Gtf (tf ) = C.

(4.15)

In addition, in [29] it is shown that if (i) tf = ∞, (ii) C = 0 and (iii) A, B, Q

and R are constant matrices, then limt→∞Gtf (t) = G, that is a constant matrix.

Consequently, the linear optimal control strategy is a constant linear map applied

to e(t). In this case, G could be obtained by solving

GA + ATG + Q−GBR−1BTG = 0, (4.16)

which is obtained by setting Ġtf (t) = 0 in (4.15).

Although we have used Pontryagin’s maximum principle to derive the expres-

sion for optimal linear control function v, one can obtain similar results by using the

principles of dynamic programming, in particular Hamilton-Jacobi-Bellman equa-

tion, as discussed in [9]. For more information on dynamic programming, and in

particular its application to control problems, please refer to [30]. As the presented

discussion suggest, deriving an expression for the optimal control function is rather

challenging and depending on nonlinearities of a given problem, it may not be pos-

sible to find an analytic solution. In the following subsections, we look into two

common approaches of solving an optimal control problem numerically.

4.1.3 Numerical approaches

In general, optimal control problems are nonlinear, mostly due to nonlinearities of

system dynamics, and therefore, it is not possible to derive an analytic expression
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for the control function. To address this issue, we can explore numerical approaches

to solve optimal control problems, which are often classified as direct and indirect

methods [26].

Indirect methods

An indirect method attempts to solve the optimal control problem by finding a

solution that satisfies the necessary optimality conditions, such as the ones stated

in Theorem 4.1.1 that leads to a nonlinear two-point boundary value problem. The

beauty of using indirect methods is that we can solve for both state (y) and adjoint

(λ) equations and the obtained result is readily verified to be an extremal trajectory.

The main disadvantage of indirect methods is that the obtained boundary-value

problem is often extremely difficult to solve, specifically when Range(u) 6= Rm, that

is when the output of admissible control functions is constrained to a proper subset

of Rm. Moreover, control engineer or specialist needs to derive the expressions

for the Hamiltonian, H, and adjoint, λ, and corresponding partial derivatives that

can be complicated for specific systems. An introductory discussion on some basic

indirect methods is available in [9].

Direct methods

The core idea behind direct methods is to convert state and control functions from

infinite dimensional objects to finite dimensions through quantization of the func-

tions in time. That is, state and control functions are approximated on a finite

number of subintervals in time using functions such as piecewise constant, piece-

wise linear or polynomials. Accordingly, the cost functional is approximated as a

cost function. Finally, the coefficients of the approximated functions for states and

controls are treated as optimization variables and the problem is transcribed to a
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nonlinear optimization problem. As stated in [26], such transcription is commonly

achieved in three steps of

i) Converting control function and/or the dynamic system into a problem with a

finite set of variables;

ii) Solving the obtained finite dimensional problem via a parameter optimization

algorithm;

iii) Estimating the accuracy of the finite dimensional solution and repeating the

process if necessary.

4.2 Application to solve conditionally controllable

problems

The approach that has risen to prominence in numerical optimal control over the

past two decades (i.e., from the 1980s to the present) is that of so-called direct

methods.

In this section we explore the possibility of utilizing methods of optimal control

in synthesizing control functions for conditionally controllable problems. It must

be noted that our main objective is not to find an optimal control and trajectory

functions but to find a relatively fast and computationally inexpensive algorithm

that can solve conditionally controllable problems.

Having in mind that for every e0 ∈ E \ EN , there exists v ∈ VL that can

regulate the problem, our objective is to find a feasible function that can take system

trajectory to E \EN . In this regard, we can follow a procedure similar to Method ,

presented in Chapter 3, but rather than using a planner to find the function, we can

utilize direct methods to construct the control function.
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Prior to presenting the algorithm, we introduce the following objects. Let N ∈ N,

t0, tf ∈ R such that t0 < tf and 0 < δ ∈ R, then

δN :=
tf − t0
N + 1

, (4.17)

τNk := t0 + δN · k, k ∈ {0} ∪ N, (4.18)

tNj := t0 +
δN

d tf−t0
N+1
e
· j, j ∈ {0} ∪ N, (4.19)

ZN :=
{

z : R→ D : z(t) :=
N−1∑
k=0

χ[τNk , τNk+1)(t) · ck, ck ∈ D ∀k ∈ {0} ∪ N
}
, (4.20)

where for x ∈ R, dxe := minn ∈ Z : n ≥ x.

We propose the following algorithm to construct u ∈ U that can satisfy (i) and

(ii).

Method 4.2.1. Given T = [t0, tf ], δ ∈ R+, N0, ∆N ∈ N, and an error reg-

ularization problem Re = (fe, V,Rn,0,Rn, t0) with V = L∞ that is condition-

ally controllable when range of control functions in V is constrained to D :=∏m
i=1[wimin

, wimax ] ⊂ Rm. The following algorithm can be employed to construct

control function u by composing a piecewise constant function in ZN with a pro-

jected linear controller in VL.
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N := N0;

z∗(t) := 0;

while ∃ t ∈ [tf , tf + th] such that ‖e(z∗⊕v,e0)(t)‖ > ε do

N ←− N + ∆N ;

if δN < δ then

return u := ∅;

end

z∗ := arg minz∈ZN
‖e(z⊕v,e0)(tf )‖;

end

return u := z∗ ⊕ v;

where N0 indicates the initial number of intervals in time, ∆N defines the incre-

ment in number of intervals at each iteration. v ∈ VL is a projected linear control

function that regulates the linearized system model around e(t) = 0, and for z ∈ ZN ,

z⊕ v is defined as

(z⊕ v)(t) := z(t) + χ[τNN ,∞)(t) · v(t). (4.21)

In words, the procedure presented in Method 4.2.1 first checks if the error tra-

jectory resulted by employing the projected linear controller from the given initial

error value can satisfy the convergence criteria

‖e(v,e0)‖ < ε, ∀t ∈ [tf , tf + th]. (4.22)

If so, the algorithm terminates by returning u := v. Otherwise, it divides the time

interval [t0, tf ] into N = N0 +∆N+1 intervals and proceeds with finding a function

in ZN that minimizes norm of the error at tf , that is ‖e(z⊕v,e0)(tf )‖. Note, based

on the composition rule, the piecewise function will have support on all but the last

subdivided interval of [t0, tf ] and the projected linear controller will only have a
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nonzero value on the very last subdivided interval. An example of the composed

function u = (z⊕v)(t) and the corresponding subdivided intervals for a given N are

illustrated in Figure 4.1. Note that if the algorithm can not find a suitable function

in ZN for the given δ, then the process will terminate by returning u := ∅.

In what follows, we explore the effectiveness of Method 4.2.1 in synthesizing

functions for the same case studies as used in Chapter 3.

4.2.1 Case studies

To evaluate the effectiveness of Method 4.2.1 in synthesizing control functions for

conditionally controllable problems, we proceed with the three case studies that

are presented in Chapter 3 that are: (i) a simple point-mass pendulum, (ii) point-

mass double pendulum and (iii) a simple cart-pole system. For the sake of brevity,

we do not discuss derivations of projected linear controllers for the case studies
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and will refer to the related discussions in Chapter 3 for detailed derivations of the

related subjects. The associated parameters of Method 4.2.1 used in all the following

examples are: N0 = 0, ∆N = 1 and δ = 0.1.

4.2.2 Simple pendulum

As our first system, we proceed with the simple point mass pendulum of Chapters 2.

Considering the upward configuration of the pendulum, yd ≡ 0, as the desired point,

we get e(t) = −y(t). As discussed in Section 3.3.1, setting yd as an equilibrium

point leads to ud ≡ 0 and consequently v(t) = −u(t). Thus, the corresponding error

dynamic of the system simplifies to

ė1(t)

ė2(t)

 =

 e2(t)

sin(e1(t)) + v(t)

 =: fe
(
t, e(t), v(t)

)
. (4.23)

Similar to the example in Section3.3.1, we set D := [−wmax, wmax] that leads to

VL = {v ∈ L∞ : v(t) = ProjD Ke(t), K and e(t) ∈ R2}. We pick wmax = 0.5 and

two initial conditions: (i) e(0) = [−2, 0]T ∈ EN and (ii) e(0) = [−4, 2]T ∈ E \ EN ,

which are the exact values used for the example in Section 3.3.11. The results of

utilizing Method 4.2.1 in synthesizing control functions for the pendulum example

are illustrated on Figure 4.2. In this figure, u(t) represents the function constructed

by Method 4.2.1 and v(t) := ProjD Ke(t), K = [−10,−3], is the projected linear

controller on set D. The response of the system from both initial conditions to both

u and v are depicted in the figure.

Similar to the results obtained by using Method 3.3.1, even when e(0) ∈ EN ,

the control function u can meet the objective of the regularization problem, while

1Recall that, based on Theorem 2.2.3, the regularization problem Re = (fe, L
∞,R2,0,R2, 0) is

a conditionally controllable if wmax ∈ (0, 1).
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v saturates at wmax and results in an undamped oscillatory response of the system.

And similarly, u leads to a faster convergence of e to zero for e(0) = [−4, 2]T ∈

E \EN . The final values of N for which the while loop is terminated are Nf = and

Nf = for e(0) = [−2, 0]T ∈ EN and e(0) = [−4, 2]T ∈ E \ EN , respectively.

4.2.3 Double pendulum

In continuation of our case studies, we proceed with the double pendulum system as

discussed in Section 3.3.2. We set the objective of the corresponding regularization

problem as to move and keep the system in the upward configuration where q1(t) =

π/2 and q2(t) = 0 (for definition of the generalized coordinates q1 and q2 please refer

to Figure 3.2) and use the same system parameters, constraint set D and projected

linear controller v as defined in Section 3.3.2. The results of employing Method 4.2.1

are depicted in Figure 3.2. In this figure u denotes the control function constructed

by Method 4.2.1. As depicted in the figure, u can successfully reduce norm of error

to zero in time. As previously observed in Figure 3.3, for e(0) = [π, 0, 0, 0]T , the

projected linear control function v saturates and remains at the boundary of D as

‖e(v,e0)(t)‖ shows a periodic response. However, for the same initial condition, u(t)

can successfully reduce ‖eu(t)‖ to zero in time. As also noted in Section 3.3.2, this

behavior is in line with the definition of conditionally controllable problems and

suggests that the given regularization problem for the double pendulum system is

conditional controllable and [π, 0, 0, 0]T ∈ EN . In this case study, the final values

of N for which the while loop is terminated are Nf = 5 for e(0) = π[1, 0, 0, 0]T

and Nf = 1 for e(0) = π[0.5, −0.5, 0, 0]T .
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Figure 4.2: Response of the pendulum system to the synthesized control func-
tion based on Method 4.2.1, u and the projected linear control function v(t) =:
ProjD〈K, e(t)〉. Solid and dashed lines in the first two rows indicate e1(t) and e2(t),
respectively. In contrast, solid and dashed lines in the third row depict u(t) and
v(t), respectively. The phase portrait of the system is depicted in the last row
where red and yellow lines are used to illustrate system response to u(t) and v(t),
respectively. The contour lines indicate Hamiltonian isoclines on ΣL and ΣR. The ×
and o markers are used to illustrate the singular points. Please refer to discussions
in Section 2.2 and Figure 2.1 for more detailed description of the depicted phase
planes.
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Figure 4.3: Response of the double pendulum system from two different initial
conditions to both the synthesized control function based on Method 4.2.1, u and
the projected linear control function v.
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4.2.4 Cart-pole

As our last example, we use Method 4.2.1 to construct control functions for the cart-

pole system illustrated in Figure 3.4. Similar to the previous examples, we will refer

to the discussion in Chapter 3 for problem setup and design of linear controllers.

Here, we use the same system parameters, constraint set D and projected linear

controller v as defined in Section 3.3.3.

The result of employing Method 4.2.1 to construct control functions for the

cart-pole system for four different initial conditions are depicted in Figure 4.4. As

shown in the figure, Method 4.2.1 can successfully synthesize control functions that

regulates e(u,e0) for all considered initial condition. However, similar to the results

presented in Figure 3.5, for e0 ∈ H where

H :=
{

[0, 1, 0, 0]T , [0, 0, 1, 0]T , [0, 0, 0, 1]T
}
, (4.24)

the saturated linear control function, v, drives system to instability and causes

norm of the error to increase in time. Noting that v(t) saturates at ∂D for e0 ∈ H

while ‖e(v, e0 ∈ H)(t)‖ increases in time, and since ‖e(u, e0 ∈ H)(t)‖ → 0 in

time, suggest that H ⊂ EN for the corresponding regularization problem. For the

cart-pole example, the final values of N for which the while loop is terminated are

Nf = 0 for e(0) = [1, 0, 0, 0]T (which indicates that v can regulate the problem from

this initial state), Nf = 3 for e(0) = [0, 1, 0, 0]T , Nf = 10 for e(0) = [0, 0, 1, 0]T

and Nf = 3 for e(0) = [0, 0, 0, 1]T .
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Figure 4.4: Response of the point-mass cart-pole system from four different initial
conditions to both the synthesized control function based on Method 4.2.1, u, and
the projected linear control function v.
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4.3 Remarks and conclusions

In this chapter we studied possibility of synthesizing control functions for condition-

ally controllable problems by cascading a projected linear controller with a piecewise

constant function. The parameters of the piecewise function are obtained by min-

imizing norm of the error vector at a specified finite time. The discretization used

to define the piecewise function is incrementally refined until the solution satisfies

a convergence criterion. In particular we set the convergence criterion as keeping

the norm of the error vector below a specified threshold for a predefined time in-

terval. The preliminary results obtained for the examined case studies shows the

effectiveness of our proposed method in synthesizing control functions for systems

with relatively complex dynamics. It must be noted that, utilizing projected linear

controllers and model predictive nature of the algorithm can lead to more robust

solutions in comparison to classical open-loop controllers derived in generic model-

driven approaches. From the extermination with different time horizons it is also

observed that the choice of final time, tf , can affect the maximum number of in-

tervals at the while loop termination, Nf . In all the case studies presented, we

have used N0 = 0 and ∆N = 1. However, these values could be assigned based

on the characteristics of a given system to reduce the number of iterations of the

algorithm. Clearly, based on the definition of the objective function, the answer

to the optimization problem that is solved at each iteration is not unique. Thus,

utilizing a different objective function and convergence criterion may lead to more

effective solutions, which could serve as a possible extension of this study.
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Chapter 5

Conclusions

In this research we have explored two methods based on planning-based and opti-

mal control theories to construct algorithms that can synthesize control functions for

conditionally controllable problems. However, details in the proof of Theorem 2.2.3

suggests a strong relation between conditional controllability of a problem and ex-

istence of local extrema in the energy function. In particular, for the pendulum

cases study presented in Section 2.2, the regions for which the projected linear

controller fails to satisfy the regularization problem objective coincides with the

domains around local minima of the system’s Hamiltonian. In this regard, prior

to finalizing the discussions of this manuscript, we present a brief introduction to

energy-based control, where the objective of the control function is to regulate the

energy of the system rather than the states. Moreover, we present an application

of the energy based control in finding a control function for the pendulum example

of Section 2.2. The concluding remarks of this research are presented in the last

section of this chapter.
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5.1 Energy-based control

Owing to their direct relation with physical systems, energy-based control approaches

are relatively popular in synthesis of nonlinear or hybrid controllers for systems

with reach dynamics such as control of cart-pole [31, 32] and multi-link pendulums

[33, 34]. An extension of the method is used to synthesize control functions for

aircraft automatic landing problem [35]. In what follows we present a brief intro-

duction to energy-based control formulation and proceed with applying the method

to solve the pendulum example of Section 2.2. Noting that the general approach in

energy-based control is to regulate the energy of the system rather than directly con-

trolling the state vector. Thus, to be more specific in the derivations, we will focus

our discussion only on energy-based control application in rigid-body dynamics.

5.1.1 Energy dynamics in Lagrangian systems

Consider a generic form of equations of motion for an unconstrained Lagrangian

system [8] with d ∈ N degrees of freedom

M
(
q(t), q̇(t)

)
q̈(t) + C

(
q(t), q̇(t)

)
q̇(t) +

∂Ep
(
q(t)

)
∂q(t)

= T
(
q(t)

)
u(t), (5.1)

where q : R → Rd is the trajectory of generalized coordinates in time and re-

spectively, q̇(t) := d
dt

q(t) and q̈(t) := d
dt

q̇(t) denote the trajectories of generalized

velocities and accelerations. Ep : Rd → R maps every q(t) to the potential energy

of the system. M
(
q(t), q̇(t)

)
∈ Rd×d is a symmetric positive definite matrix, which

is commonly referred to as the mass matrix. C
(
q(t), q̇(t)

)
∈ Rd×d encloses Coriolis

and centrifugal terms1. T
(
q(t)

)
∈ Rd×m maps input vector u(t) ∈ Rm to generalized

1Since C
(
q(t), q̇(t)

)
is derived from the Lagrangian of the system, it does not include frictional

terms. The effect of friction could be captured by the terms in T
(
q(t)

)
and as some added terms

to the input function u(t).
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forces applied to the system. In order to convert (5.1) to a set of first-order differ-

ential equations, we can define y(t) = [y1(t), y2(t)]T := [q(t), q̇(t)]T that allows us

to write (5.1) as ẏ1(t)

ẏ2(t)

 =

 y2(t)

Φ1

(
y(t)

)
+ Φ2

(
y(t)

)
u(t)

 , (5.2)

where

Φ1

(
y(t)

)
:= −M−1

(
y1(t),y2(t)

)(
C
(
y1(t),y2(t)

)
y2(t) +

∂Ep
(
y1(t)

)
∂y1(t)

)
, (5.3)

Φ2

(
y(t),u(t)

)
:= M−1

(
y1(t),y2(t)

)
T
(
y1(t)

)
. (5.4)

The total energy of a system, that is the sum of kinetic and potential energies, is

E
(
y(t)

)
= Ek

(
y(t)

)
+ Ep

(
y1(t)

)
=

1

2

〈
M
(
y1(t),y2(t)

)
y2(t),y2(t)

〉
+ Ep(y1(t)).

(5.5)

In the above equation, Ek : R2d → R and Ep : R2d → R denote the total kinetic

and potential energies of the system, respectively. Taking derivative of E(y(t)) with

respect to time leads to

Ė(y(t)) =
〈
M
(
y1(t),y2(t)

)
ẏ2(t),y2(t)

〉
+

1

2

〈
Ṁ
(
y1(t),y2(t)

)
y2(t), y2(t)

〉
+
〈∂Ep(y1(t)

)
∂y1(t)

, y2(t)
〉

=
〈
T
(
y1(t)

)
u(t)−C

(
y1(t),y2(t)

)
y2(t)−

∂Ep
(
y1(t)

)
∂y1(t)

, y2(t)
〉

+
1

2

〈
Ṁ
(
y1(t),y2(t)

)
y2(t), y2(t)

〉
+
〈∂Ep(y1(t)

)
∂y1(t)

, y2(t)
〉

=
〈
T
(
y1(t)

)
u(t),y2(t)

〉
+

1

2

〈(
Ṁ
(
y1(t),y2(t)

)
− 2C

(
y1(t),y2(t)

))
y2(t), y2(t)

〉
.

(5.6)
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In [36], it is shown that Ṁ
(
y1(t),y2(t)

)
− 2C

(
y1(t),y2(t)

)
is a skew-symmetric

matrix. Moreover, since all the right hand terms of (5.6) are in R, we have

〈(
Ṁ
(
y1(t),y2(t)

)
− 2C

(
y1(t),y2(t)

))
y2(t), y2(t)

〉
= 0 (5.7)

Consequently, the time derivative of the total energy of the system simplifies to

Ė(y(t)) = 〈T
(
y1(t)

)
u(t),y2(t)〉. (5.8)

5.1.2 Derivation of an energy-based controller

The results obtained in previous subsection indicates Ė
(
y(t)

)
is a linear function

of T(y1(t))u(t) with a time varying gain y2(t). Accordingly, a control strategy for

E
(
y(t)

)
could be obtained using Lyapunov method [37] with a Lyapunov function

candidate

V
(
y(t)

)
:=

1

2

(
E
(
y(t)

)
− Ed

)2

, (5.9)

for some desired energy Ed ∈ R. Based on the definition, V
(
y(t)

)
is positive for

every E
(
y(t)

)
∈ R and is zero when E

(
y(t)

)
= Ed. Taking the derivative of V

(
y(t)

)
with respect to t yields

V̇
(
y(t)

)
=
(
E
(
y(t)

)
− Ed

)
Ė
(
y(t)

)
=
(
E
(
y(t)

)
− Ed

)〈
T
(
y1(t)

)
u(t),y2(t)

〉
.

(5.10)

If we can chose u such that it satisfies:

i) V
(
y(t)

)
≥ 0, for all y(t) ∈ Rn,

ii) V
(
y(t)

)
= 0 =⇒ y(t) = 0,
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iii) V̇
(
y(t)

)
< 0, for all y(t) ∈ Rn,

then, based on Lyapunov’s second method for stability [38], limt→∞ V (y(t)) = 0.

Moreover, based on the definition of V , V (y(t))→ 0 implies |E(y(t))− Ed| → 0.

We must also point out that, as seen in (5.2), at every equilibrium point of

the system y2(t) must be zero. Consequently, regardless of choice of u, we loose

controllability of Ė at an equilibrium point. Such limitation of energy-based control

demands a special attention when it is used as an state regulator. For further

discussions on energy-based control and related derivations please see [31] and [39].

5.1.3 Application to the pendulum example

To implement an energy-based controller on the pendulum example of Section 2.2,

we first need to define the mechanical energy of the pendulum as a summation of

its kinetic and potential energies. Since the upward configuration of the pendulum

corresponds to y1(t) = 0, to simplify the equations, we can define the potential

energy of the system as Ep(t) = cos(y1(t)) − 1, which is zero when y1(t) = 0.

Consequently, the energy function E(t) and its time derivative Ė(t) are

E(t) =
1

2
y2

2(t) + cos(y1(t))− 1, (5.11)

Ė(t) = u(t)y2(t). (5.12)

Since yd = 0, then e(t) = −y(t). Substituting y1(t) = −e1(t) and y2(t) = −e2(t) in

(5.11) leads to

E(t) =
1

2
e2

2(t) + cos(e1(t))− 1, (5.13)

Ė(t) = −u(t)e2(t). (5.14)
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Noting that E(t) = 0 if e = 0, we let the desired energy value Ed := 0. Based

on the discussion presented on Section 5.1.2, we proceed as the following

V (t) :=
1

2

(
E(t)− Ed

)2
=⇒ V̇ (t) = −

(
E(t)− Ed

)
e2(t)u(t). (5.15)

To satisfy the necessary conditions for Lyapunov’s second method for stability, we

define

u(t) := k
(
E(t)− Ed

)
sign

(
e2(t)

)
, (5.16)

for some k > 0. Consequently V̇ (t) simplifies to

V̇ (t) = −k
(
E(t)− Ed

)2
e2(t) sign

(
e2(t)

)
≤ 0, ∀t ∈ R. (5.17)

It is clear that the range of u as defined in (5.16) is R. Thus, to limit the range of

u to D = [−wmax, wmax] ⊂ R, we define z(t) as

z(t) := sign
(
e2(t)

)
sat
D
k
(
E(t)− Ed

)
. (5.18)

Since for any x ∈ R, sign(satD(x)) = sign(x), then by using the control function

z(t) we can still satisfy the sign requirement of V̇ (t). Consequently, the energy of

the pendulum system endowed with z(t) must converge to zero in time. However,

since the mapping from e(t) to E(t) is not injective, there exists a subset in R2

such that E(t) = 0. As a result, simply regulating E(t) will not be sufficient to

regulate the error. To address this issue, we can combine z(t) with projected linear

controller v(t) := ProjD Ke(t), with K ∈ Ω as defined in (2.19) to obtain a new
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control function ẑ(t) defined as

ẑ(t) :=


v(t), if ‖e(t)‖ < ε,

z(t), otherwise,

(5.19)

where ε > 0 is defined based on a desired performance and it depends on wmax. The

simulation results of the pendulum system endowed with control function ẑ with

k = 1 and K = [5, 2]T is illustrated in Figure 5.1. As depicted in the figure, even

with the imposed constraint on the range of the control function, ẑ is capable of

achieving the control objective from both initial conditions e0 = [−2, 0]T ∈ EN and

e0 = [−4, 2]T ∈ E \ EN .

5.2 Concluding remarks

In pursuit of finding an automatic approach to construct control functions capable

of satisfying control objectives through utilization of inherent system nonlinearities,

we explored performance of linear functions when used to solve nonlinear control

problems with limited input range. In this regard, we started with developing a

formal setting to identify a sub class of control problems that are solvable via fusing

linear and nonlinear controllers.

We dedicated the discussions in Chapter 2 to this matter and proposed our defi-

nition of conditionally controllable problem as a subclass of regularization problems

where the objective of control is to ensure convergence of state vector to a given

trajectory. Furthermore, we explored the effect of system nonlinearities and limited

range of control functions on convergence of the error for a simple point-mass pen-

dulum system. In addition, we formally proved that for a specific allowable torque

range the problem is conditionally controllable.
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Figure 5.1: The pendulum system endowed with control function ẑ as defined in
(5.19). Solid and dashed lines in the first two rows indicate e1(t) and e2(t), respec-
tively. In contrast, solid and dashed lines in the third row depict ẑ(t) and v(t),
respectively. The phase portrait of the system is depicted in the last row where
red and yellow lines are used to illustrate system response to ẑ(t) and v(t), respec-
tively. The contour lines indicate Hamiltonian isoclines on ΣL and ΣR. The × and
o markers are used to illustrate the singular points. Please refer to discussions in
Section 2.2 and Figure 2.1 for more detailed description of the depicted phase planes.
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Given the proposed definition and the corresponding sub class of control prob-

lems, we followed our discussions with two possible algorithms to synthesize control

functions for conditionally controllable problems. The first algorithm, presented in

Chapter 3, utilizes spatio-temporal exploring trees, as an extension of spatial explor-

ing trees, to synthesize a control function for a given problem from a defined initial

state. We explored the effectiveness of our proposed method in synthesizing control

functions for three case study systems: pendulum, double pendulum and cart-pole.

These systems are particularly used as case studies in control literature due to their

relatively simple yet rich dynamics that resemble the behavior of many practical

systems. Moreover, in order to build a foundation for our proposed algorithm and

possible future developments, Chapter 3 includes a formal setting for exploring trees

in normed vector spaces, their extension to include time, and their application in

solving control problems.

In Chapter 4 we focused our discussion on the theory of optimal control, and

following a short introduction on the subject, we proposed an algorithms to con-

struct control function for conditionally controllable problems as an application of

direct methods. It must be noted that our objective is to find a solution to condi-

tionally controllable problems and not an optimal trajectory for the given problem.

Accordingly, we have used a discretization in time to combine a piecewise function

with a projected linear controller to synthesize a solution. The proposed time grid is

refined at each iteration until the obtained control function satisfies a given conver-

gence criterion. We have tested the effectiveness of the method with the same case

studies that are used in Chapter 3. As a short comparison between the planning-

based method presented in Chapter 3 and optimization based method of Chapter 4

we can state that the extra parameters associated with Method 3.3.1 increases the

complexities of controller design and the problem needs to be examined to find pa-
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rameter values that increases the efficiency of the solver. In contrast, Method 4.2.1

has fewer free parameters to be assigned. On a different note, the optimization pro-

cedure of Method 4.2.1 must be adjusted based on the topology of the set of feasible

control inputs, namely the set D. However, Method 3.3.1 could be directly used for

various systems with different structures of the D. It must be noted that, by using a

different convergence criterion and objective function, one can adjust Method 4.2.1

to also solve for an optimal solution (that depends on the refinement used on the

time grid) in parallel to solving the original problem. Such characteristic could be

favorable in specific application.

Future work and research directions

As details of the proof for conditional controllability of the pendulum problem sug-

gests, there appears to be a strong relation between existence of local minima in

the Hamiltonian function and conditional controllability of a mechanical system.

Exploring such dependence and deriving analytical expressions for necessary con-

ditions of conditional controllability via energy functions could serve as a possible

future work of this research. Such analysis can significantly simplify the process

of synthesizing control functions for the problems and allow design of more elegant

controllers. Accordingly, to explore more with the utilizing energy in control of

conditionally controllable problem, we took a minor detour in Chapter 5 to discuss

energy-based control and its application to the pendulum example before conclud-

ing the manuscript. However, we must note that the energy function is a mapping

from the space of generalized coordinates and velocities to the set of real numbers

and, consequently, it is not a injective map. Thus, implementation of energy based

controller, in the form presented here, for systems with multiple degrees of freedom

may not necessarily lead to an appropriate solution for conditionally controllable
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problems. This is due to the fact that there may exist multiple regions in the set

of feasible state vectors with the same energy level. If one of such regions lays

within the set of states for which the projected linear controller fails to regulate the

system, it may not be possible to direct trajectories toward the goal. Thus, the pos-

sibilities of using energy-based control in synthesizing controllers for conditionally

controllable problems remains as an open question to be explored.
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Appendix A

Intermediate lemmas used to

prove conditional controllability of

the pendulum example

Lemma A.0.1. Let k ∈ Ω. If ek ∈ Γ for all t ≥ t0, then limt→∞ ‖ek(t)‖ = 0.

Proof. Since for every k ∈ Ω1, k1 > 1, then EΓ(e(t)) is convex and its minimum is

located at e(t) = 0. Thus, EΓ(e(t)) satisfies the conditions required for a Lyapunov

function candidate. Accordingly let Lyapunov function V (t) = EΓ(e(t)), then

V̇ (t) = ĖΓ(e(t)) = −k2e
2
2(t).

Since V̇ (t) < 0 for all e1(t) and e2(t) 6= 0 and V̇ (t) = 0 when e2(t) = 0, then V (t)

will decrease for all e(t) such that e2(t) 6= 0. In addition, since e(t) = 0 is the only

equilibrium point of the system in Γ, then for e2(t) = 0, e1(t) 6= 0 =⇒ ė2(t) 6= 0.

Thus, limt→∞ V (t) = limt→∞E(e(t)) = 0 that implies limt→∞ ‖e(t)‖ = 0.

Lemma A.0.2. Let k ∈ Ω, wmax > 0 and ek(t0) ∈ ΣL ∩ Γ. If ∃t1 > t0, such that
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ek(t) ∈ Γ for t ∈ [t0, t1] and ek(t1) ∈ Γ ∩ ΣR, then HΣL
(ek(t0)) > HΣR

(ek(t1)).

Proof. Let a := ek(t0) and b := ek(t1). First we show that if ∃t1 > t0, such that

b ∈ Γ ∩ ΣR, then b2 ≥ 0 and |a1| > |b1|. Our first claim is that if a ∈ ΣL ∩ Γ and

ek(t) ∈ Γ for t ∈ [t0, t1], then a2 ≥ 0. Since a2 < 0 =⇒ ȧ1 < 0 =⇒ a1(t+0 ) < a1(t0)

and consequently a1(t+0 ) ∈ ΣL \ Γ, which is a contradiction. To show that b2 ≥ 0,

by contradiction, assume that b2 < 0. For wmax > 0, ΣL ∩ ΣR = ∅ and for every

a = [a1, 0]T ∈ Γ ∩ ΣL with k ∈ Ω, ȧ2 > 0. Thus for every a2 ≥ 0, there must be a

time tc ∈ (t0, t1) at which (e2)k(tc) = 0 and (e2)k(t) < 0 for t ∈ (tc, t1]. Accordingly,

there are three possible cases for (e1)k(tc); that are:

(i) (e1)k(tc) >
wmax

k1
: that implies ek(tc) 6∈ Γ, which is a contradiction with ek(t) ∈

Γ for t ∈ [t0, t1].

(ii) −wmax

k1
< (e1)k(tc) <

wmax

k1
: then for every t ∈ (tc, t1], (e2)k(t) = (ė1)k(t) < 0,

that implies (e1)k(t) < (e1)k(tc) for all t ∈ (tc, t1]. Since for every b ∈ Γ ∩ ΣR

with b2 < 0, b1 >
wmax

k1
; thus, ek(t1) 6∈ Γ ∩ ΣR, which is contradiction with the

main assumption.

(iii) (e1)k(tc) = wmax

k1
: then (e1)k(tc) ∈ Γ ∩ ΣR and t1 = tc which is a contradiction

with tc ∈ (t0, t1).

Consequently, b2 ≥ 0. To show that |a1| > |b1| we will proceed as the following.

Since (e2)k(t) = (ė1)k(t) ≥ 0 for t ∈ [t0, t1], then b1 ≥ a1. In addition, a2 ≥ 0 =⇒

a1 ≤ −wmax

k1
< 0 and b2 ≥ 0 =⇒ b1 ≤ wmax

k1
. Since ĖΓ(ek(t)) < 0 for all t ∈ (t0, t1),

then a = [−wmax

k1
, 0]T =⇒ b 6= [wmax

k1
, 0]T (otherwise for a 6= b, EΓ(a) = EΓ(b)

which is a contradiction with ĖΓ(ek(t)) < 0 for all t ∈ (t0, t1)). Thus, b1 <
wmax

k1
.

Based on the above conditions, b1 ∈ (a1,
wmax

k1
) and since a1 ∈ (−∞,−wmax

k1
], then

|a1| > |b1|.
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Now we can use the obtained conditions on a and b to prove the claim of the

lemma. Note that to show HΣL
(a) > HΣL

(b), it suffices to show that the difference

HΣL
(a)−HΣL

(b) =
1

2
a2

2 + cos(a1)− 1

2
b2

2 − cos(b1)− wmax(a1 + b1),

is positive. Let HΣL
(a)−HΣL

(b) = h1(a,b) + h2(a,b), where

h1(a,b) :=
1

2
a2

2 + cos(a1)− 1

2
b2

2 − cos(b1),

h2(a,b) := −wmax(a1 + b1).

Since the trajectory ek(t) ∈ Γ for t ∈ [t0, t1], then for every t ∈ [t0, t1], we have

ĖΓ(t) ≤ 0 that implies EΓ(t) ≥ EΓ(t0). Thus

EΓ(a) ≥ EΓ(b) =⇒ cos(b1)− cos(a1) ≤ 1

2

(
a2

2 + k1a
2
1 − b2

2 − k1b
2
1

)
. (∗)

To show that h1(a,b) > 0, we need to have

h1(a,b) > 0 =⇒ a2
2

2
+ cos(a1) >

b2
2

2
+ cos(b1) =⇒ cos(b1)− cos(a1) <

a2
2 − b2

2

2
.

Based on inequality (∗), h1(a,b) > 0 if a2
2 − b2

2 < a2
2 + k1a

2
1 − b2

2 − k1b
2
1, that implies

0 < k1(a2
1 − b2

1).

Since k1 > 1 and |a1| > |b1|, then the above inequality is satisfied and consequently,

h1(a,b) > 0. To show that h2(a,b) > 0, we know that a1 < 0 and |a1| > |b1| that

implies a1 + b1 < 0. Thus, h2(a,b) = −wmax(a1 + b1) > 0. Since both h1(a,b) and

h2(a,b) are positive, then HΣL
(a)−HΣL

(b) = h1(a,b) + h2(a,b) > 0.
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Lemma A.0.3. Let k ∈ Ω, wmax > 0 and ek(t0) ∈ ΣR ∩ Γ. If ∃t1 > t0, such that

ek(t) ∈ Γ for t ∈ [t0, t1] and ek(t1) ∈ Γ ∩ ΣL, then HΣR
(ek(t0)) > HΣL

(ek(t1)).

Proof. Let a := ek(t0) and b := ek(t1). Similar to the proof presented for Lemma A.0.2,

it is possible to show that if ∃t1 > t0, such that b ∈ Γ ∩ ΣL, then a2 and b2 are

both negative, 0 < wmax

k1
≤ a1 and |a1| > |b1|. Consequently HΣL

(a) − HΣL
(b) =

1

2
a2

2 + cos(a1)− 1

2
b2

2 − cos(b1) + wmax(a1 + b1) > 0.

Lemma A.0.4. Let k ∈ Ω, wmax ∈ (0, 1) and j ∈ N ∪ {0}. If ek(t0) ∈ Qj
L, then

ek(t) ∈ Qj
L for all t ≥ t0.

Proof. In order to prove the claim of the lemma, it suffices to show that ∂Qj
L forms a

closed path in R2. This is trivial since HΣL
only increases in e2 direction. Moreover,

HΣL
(e(t)) has a minimum at e∗(t) = [−(2j + 1)π + sin−1(wmax), 0]T . Also since

−2(j + 1)π − sin−1(wmax) < e∗1(t) < −2jπ − sin−1(wmax), (A.1)

and

HΣL

([
−2(j+1)π−sin−1(wmax), 0

]T)−HΣL

([
−2jπ−sin−1(wmax), 0

]T)
= 2πwmax > 0

(A.2)

we get that the value of HΣL
increases up to HΣL

([
−2jπ−sin−1(wmax), 0

]T)
which

is located on the boundary of Qj
L. Finally, based on the definition of Qj

L, we have

that ∂Qj
L forms a closed path, since it coincides with a level set of HΣL

.

Noting that every trajectory in ΣL coincides with a level set of HΣL
, we get that

for ek(t0) ∈ Qj
L, then ek(t) ∈ Qj

L for all t ≥ t0.

Lemma A.0.5. Let k ∈ Ω, wmax ∈ (0, 1) and j ∈ N ∪ {0}. If ek(t0) ∈ Qj
R, then

ek(t) ∈ Qj
R for all t ≥ t0.
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Proof. This lemma could be proved with similar steps as presented in the proof of

Lemma A.0.5.

Lemma A.0.6. Let k ∈ Ω and wmax ∈ (0, 1). If ek(t0) ∈ ΣL \
⋃∞
j=0 Q

j
L, then

∃t1 ≥ t0 such that ek(t1) ∈ Γ.

Proof. Throughout this proof, we will use the short notation e(t) = ek(t). By

recalling the error dynamics in ΣL, that is

ė1(t)

ė2(t)

 =

 e2(t)

sin(e1(t)) + wmax

 ,
we can construct two sets a and b defined as

a := {ξ = [ξ1, 0]T ∈ R2 : ξ̇2 = sin(ξ1) + wmax > 0},

b := {ξ = [ξ1, 0]T ∈ R2 : ξ̇2 = sin(ξ1) + wmax < 0}.

Note that a ∪ b ∪ SL = R− and, as stated in (2.37), the set SL contains all the

stationary points of HΣL
and sin(e1(t)) + wmax = 0 if e(t) ∈ SL. Moreover, based

on the definition of Qj
L, we have b ⊂

⋃∞
j=0Q

j
L. Pick e(0) ∈ {ξ ∈ ΣL \

⋃∞
j=0Q

j
L :

ξ2 > 0}, we can show that e2(t0) > 0 for t ≤ t1. Assume by contradiction that

∃t0 < t′ < t1 such that e2(t′) = 0. Based on the sign of ė2(t), this point can

only belong to b ⊂
⋃∞
j=0Q

j
L. However, since for every j, ∂Qj

L forms a closed orbit,

then there must be t′′ ∈ (t0, t
′) such that e(t′′) ∈ ∂Qj

L, which is a contradiction

with the fact that in ΣL, e(t) coincides with a level set of HΣL
. Consequently, for

e(0) ∈ {ξ ∈ ΣL \
⋃∞
j=0 Q

j
L : ξ2 > 0} we have ė1(t) = e2(t) > 0 and since for such

e(0), e1(0) < 0, the value of e1(t) increases until it reaches to ∂Γ. Similarly, we can

show that for every e(0) ∈ {ξ ∈ ΣL \
⋃∞
j=0 Q

j
L : ξ2 < 0}, there must exist t′ > t0

such that e2(t′) ∈ a \
⋃∞
j=0Q

j
L ⊂ ΣL \

⋃∞
j=0Q

j
L. Since ė2(t) > 0 for e(t) ∈ a, the

91



above argument applies.

Lemma A.0.7. Let k ∈ Ω and wmax ∈ (0, 1). If ek(t0) ∈ ΣR \
⋃∞
j=0Q

j
R, then

∃t1 ≥ t0 such that ek(t1) ∈ Γ.

Proof. The proof of the lemma exactly follows the proof of Lemma A.0.6 by changing

the sign of wmax in the error dynamics and redefining the sets a and b.
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Appendix B

Detailed derivations of the

differential equations of motion for

the case study systems

B.1 Double pendulum system

The point-mass double pendulum system and the associated parameters are depicted

in Figure 3.2. In this section, we follow Lagrange’s approach to derive the differential

equations of motion for the point-mass double pendulum system.

Let q(t) = [q1(t), q2(t)]T . For the sake of brevity, we drop the dependence of time

from q(t) and u(t) vectors and simply denote them by q and u. Correspondingly,

q1(t) ≡ q1, q2(t) ≡ q2, u1(t) ≡ u1 and u2(t) ≡ u2. The kinetic and potential energies

of the system are

Ek(q) =
1

2
m1〈ṙ1, ṙ1〉+

1

2
m2〈ṙ2, ṙ2〉, (B.1)

Ep(q) = m1 g 〈r1, ĵ〉+m2 g 〈r2, ĵ〉, (B.2)
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where î and ĵ are the unit vectors along the horizontal and vertical (parallel to the

gravitational acceleration) directions. Moreover, r1 and r2 represent positions of m1

and m2 on the plane and are equal to

r1 = l1
(

cos(q1)̂i+ sin(q1)ĵ
)
, (B.3)

r2 = r1 + l2
(

cos(q1 + q2)̂i+ sin(q1 + q2)ĵ
)
. (B.4)

Thus, the Lagrangian of the system is

L(q) = Ek(q)− Ep(q) (B.5)

= m1l1

( l1q̇1

2
− g sin(q1)

)
+
m2

2

(
l1q̇

2
1 + l2(q̇1 + q̇2)2

)
(B.6)

+m2l1l2 cos(q2)(q̇2
1 + q̇1q̇2)−m2g

(
l1 sin(q1) + l2 sin(q1 + q2)

)
. (B.7)

Noting that the generalized forces associated with generalized coordinates q1 and q2

are u1 and u2, respectively, the set of differential equations of motion for the system

could be obtained as the following.

d

dt

(∂L(q)

∂q̇1

)
− ∂L(q)

∂q1

= u1, (B.8)

d

dt

(∂L(q)

∂q̇2

)
− ∂L(q)

∂q2

= u2. (B.9)

Substituting L(q) from (B.5) in (B.8) and (B.9) and factoring q̈ and u vectors leads

to the differential equations of motion of the point-mass double pendulum system,

that is

M(q)q̈ + Φ(q, q̇) = u, (B.10)
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where

M(q) =

(m1 +m2)l21 +m2l
2
2 + 2l1l2m2 cos(q2) m2l2(l1 cos(q2) + l2)

m2l2(l1 cos(q2) + l2) m2l
2
2

 , (B.11)

and Φ(q, q̇) = [Φ1(q, q̇), Φ2(q, q̇)]T with Φ1 and Φ2 equal to

Φ1(q, q̇) = (m1+m2)gl1 cos(q1)+m2l2

(
g cos(q1+q2)−l1q̇2(2q̇1+q̇2) sin(q2)

)
, (B.12)

Φ2(q, q̇) = m2l2

(
l1q̇

2
1 sin(q2) + g cos(q1 + q2)

)
. (B.13)

B.2 Cart-pole system

The point-mass cart-pole system and the associated parameters are depicted in

Figure 3.4. In this section we derive the differential equations of motion of the

point-mass cart-pole system using Lagrange’s approach.

Let q(t) = [q1(t), q2(t)]T . For the sake of brevity, we drop the dependence of time

from q(t) and u(t) vectors and simply denote them by q and u. Correspondingly,

q1(t) ≡ q1, q2(t) ≡ q2, u(t) ≡ u. The kinetic and potential energies of the system

are

Ek(q) =
1

2
m1〈ṙ1, ṙ1〉+

1

2
m2〈ṙ2, ṙ2〉, (B.14)

Ep(q) = m2 g 〈r2, ĵ〉, (B.15)

where î and ĵ are the unit vectors along the horizontal and vertical (parallel to the

gravitational acceleration) directions. Moreover, r1 and r2 represent positions of m1
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and m2 on the plane and are equal to

r1 = q1î, (B.16)

r2 = r1 + l
(

cos(q2)ĵ − sin(q2)̂i
)
. (B.17)

Thus, the Lagrangian of the system is

L(q) = Ek(q)− Ep(q) (B.18)

=
1

2
(m1 +m2)q̇2

1 +m2lq̇2

( l
2
q̇2 − q̇1 cos(q2)

)
−m2gl cos(q2). (B.19)

Noting that u is the generalized force associated with generalized coordinates q1,

the set of differential equations of motion for the system could be obtained as the

following.

d

dt

(∂L(q)

∂q̇1

)
− ∂L(q)

∂q1

= u, (B.20)

d

dt

(∂L(q)

∂q̇2

)
− ∂L(q)

∂q2

= 0. (B.21)

Substituting L(q) from (B.18) in (B.20) and (B.21) and factoring q̈ and u terms

leads to the differential equations of motion of the point-mass cart-pole system as

M(q)q̈ + Φ(q, q̇) = u, (B.22)

where

M(q) =

 m1 +m2 −m2l cos(q2)

−m2l cos(q2) m2l
2

 , and Φ(q, q̇) =

m2lq̇
2
2 sin(q2)

−m2gl sin(q2)

 . (B.23)

96



Bibliography

[1] Franco Blanchini and Stefano Miani. Any domain of attraction for a linear

constrained system is a tracking domain of attraction. SIAM Journal on Control

and Optimization, 38(3):971–994, 2000.
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