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ABSTRACT

The class IX myosin is a member of the myosin superfamily and found in variety of tissues.  

Myosin IX is quite unique among the myosin superfamily in that the tail region contains a GTPase-

activating protein (GAP) domain for the small GTP-binding protein, Rho. Recently it was reported 

that myosin IX shows processive movement that travels on an actin filament for a long distance.  

This was an intriguing discovery, because myosin IX is a “single-headed” myosin unlike other 

processive myosins which have “double-headed” structure.  It has been thought that “processive” 

motors walk on their track with their two heads, thus traveling for a long distance. Therefore, it 

is reasonable to expect that the processive movement of single headed myosin IX is based on 

the unique feature of myosin IX motor function. In this study, I investigated the mechanism of 

processive movement of single-headed myosins by analyzing the mechanism of ATPase cycle 

of myosin IX that is closely correlated with the cross-bridge cycle (the mechanical cycle of 

actomyosin). 

In the first part, I performed the transient enzyme kinetic analysis of myosin IX using the motor 

domain construct to avoid the complexity raised by the presence of the tail domain. It was revealed 

that the kinetical characteristics of myosin IX ATPase is quite different from other processive 

myosins. It was particularly notable that the affinity of the weak actin binding state of Myosin IX 

was extremely high comparing with known myosins. It is thought that the high affinity for actin 

throughout the ATPase cycle is a major component to explain the processive movement of myosin 

IX.

In the second part of this study, I cloned full-length human myosin IX construct to further investigate 

the regulation of motor activity of myosin IX. It was revealed that the basal ATPase activity but not 

the actin dependent ATPase activity of myosin IX is inhibited by its tail region. Furthermore full-
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length myosin IX is regulated by calcium, presumably due to the calcium binding to the CaM light 

chain. These result suggest that the tail domain serves as a regulatory component of myosin IX.
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CHAPTER ONE:  INTRODUCTION

PART 1. BACKGROUND

I: Myosin overview 

1. Myosin superfamily

1.1 Conventional myosin

Myosin is a molecular motor that moves on actin filament using chemical energy of ATP hydrolysis.  

The mechanism underlying this mechanochemical energy transduction remains unknown.  Myosins 

are typically composed of three functional subdomains: (1) the motor domain that interacts with 

actin and binds ATP, (2) the neck domain which binds light chains or calmodulin, and (3) tail domain 

(Fig. I-1).  Most well characterized myosin is Myosin II, which is referred to as ‘conventional’ 

myosin since this was the only class of myosin known for the decades. Class II myosins mainly 

play a role in muscle contraction. Members of this class have a two-headed structure, due to 

dimerization of the heavy chain in the tail by formation of coiled-coil (Fig. I-2A).  The tails of 

myosin II self-associate to form filament that is characteristic for myosin II. Bipolar filaments are 

found in sarcomeric muscles (Fig. I-2B). These filaments have a central bare zone, which is not 

populated by motor domains and are designed to pull actin filaments toward the center. Smooth 

muscle myosins can form side polar filaments which have no central bare zone (Xu et al., 1996) 

(Fig. I-2C). These filaments may allow for the extreme shortening that is seen in smooth muscle 

tissues. Therefore, myosin IIs are able to generate force and move at high velocity by formation 

of filaments.

1.2. Unconventional myosin

Since the description of the first class of unconventional myosin, myosin I, 16 additional classes, 
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based on phylogenetic comparisons of motor domains and features of the tail, have been identified 

(Hodge and Cope, 2000; Sellers, 2000; Berg et al., 2001) (Fig. I-3).  Thus, myosin superfamily 

is currently composed of 18 classes. These myosins are referred to as ‘Unconventional’ myosin 

compared to filament forming conventional myosin II.  Members of myosin superfamily share 

common domains (Fig. I-3): (1) the motor domains are relatively conserved with exception of 

several surface loops and the amino-terminus. Surface loops are indicated to play an important role 

in diverse motor function that is determined by actin-binding rate and affinity, and rates of product 

release. (2) Light chains bind to a helical sequence termed IQ motif found in the neck region which 

has a consensus sequence of IqxxxRGxxxR (Cheney and Mooseker, 1992).  The number of IQ 

motifs present in the necks of different myosins can vary between zero and seven. Conventional 

myosin-II has specific light chains, whereas most of characterized unconventional myosins use 

CaM as light chain. These light chains play an important role in the regulation of motor function of 

myosin. The smooth muscle myosin is activated by phosphorylation of regulatory light chain. CaM 

which binds to unconventional myosin is Ca binding protein, and some unconventional myosins 

are regulated by Ca. Therefore, the number of the IQ motif is directly related to the regulation for 

diverse motor function of myosin superfamily. (3) The tail domains are the most diverse domains 

among myosin superfamily.  Functional domains, such as SH3 domain, FERM domain, and PH 

domain are found in the tail of some myosins.  Tail of many myosin contains coiled-coil region that 

allows myosin to dimerize and form two-headed structure.  It is likely that the tail domain plays an 

important role in determining functional properties of myosin by specifying where and with what 

myosin interacts within the cell.  Critical issues underling the diverse biological function of the 

myosin superfamily are: 1) function of the class specific unique tail domain, and 2) motor function 

and its regulation.

1.3. Diverse cellular functions of myosin superfamily

The functions of each class of myosin have been shown to be distinct (Fig. I-4). Class I is implicated 
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in endocytic and exocytic membrane traffic (Novak et al., 1995; Geli and Riezman, 1996; Jung 

et al., 1996; Raposo et al., 1999), whereas class II, or conventional myosin, is known to be a 

component of the contractile ring in dividing cells and the sarcomere in muscle cells. Myosin III is 

localized to the photoreceptor cells in the retina and functions in signal transduction (Montell and 

Rubin, 1988). Myosin V and XI have been shown to be organelle motors in animals and plants, 

respectively. Myosin VI has been shown to move toward the minus end of actin filaments (Wells 

et al., 1999); therefore, it is a reverse motor (Wells et al., 1999), and one that is important for 

vesicular membrane traffic, cell migration and mitosis (Buss et al., 2004). Myosin VII is identified 

as deafness gene. The other classes of myosin superfamily all possess specific functional properties, 

although most have not been characterized biochemically.

1.4. Motor function of myosin - Directionality of myosin

It is generally believed that the tail domain of myosin provides the source of functional diversity.  

However, unique and specific properties of motor allow myosin to accomplish a specific 

physiological task.  Members of the myosin superfamily of actin-based motor proteins were 

previously thought to move only towards the barbed end (plus end) of the actin filament.  Myosin 

VI has been shown to move towards the pointed end (minus end) of the actin filament – the opposite 

direction of all other characterized myosins (Wells et al., 1999). The myosin VI motors differ from 

other myosins in that they have a 53-residue insertion in the ‘converter’ at the base of the rod-like 

lever arm (Wells et al., 1999). One predicted that this unique insertion might determine the reverse 

direction of myosin VI. However, Homma et al. showed that chimera having myosin V motor 

domain and myosin VI neck domain (including unique insert) moves plus end of actin filament, 

regardless of the presence of 53-amini acids insertion. Thus, this insertion is not responsible for 

the directionality. Remarkably, the myosin VI lever arm appears to rotate in the opposite direction 

to smooth muscle myosin II, a plus-end motor, when ADP is released from the motor or ‘head’, 

as analyzed by cryoelectron microscopy (Wells et al., 1999). This has been interpreted to mean 
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that movement of myosin VI towards actin minus ends is due to a molecular cog in the converter 

region that reverses the direction of movement of the lever arm. The converter domain could thus 

modulate interactions between the motor and the lever arm to determine motor directionality. 

However, the molecular mechanism of this oppose directionality is unknown.

1.5. Motor function of myosin - Processivity of myosin

Like directionality, processivity is a property that is intrinsic to motor function.  Processivity refers 

to the ability of a motor to bind to a filament and take successive steps before detaching. Processive 

movement by a molecular motor was first demonstrated for a single molecule of conventional 

kinesin (Howard et al., 1989), which steps by 8 nm increments along the microtubule (Svoboda et 

al., 1993), corresponding to the spacing of tubulin dimers in a protofilament, reaching a maximum 

force of 7–8 pN.  Myosin V has recently been shown to move processively (Mehta et al., 1999).  A 

two-heads-bound state has recently been observed in negatively stained electron micrographs of 

dimeric myosin V bound to actin (Walker et al., 2000).  Two-headed binding to actin was increased 

by adding ADP at low concentration, consistent with the idea that myosin V complexed to ADP 

binds tightly to actin. The average distance between the two heads bound to the actin filament was 

36 nm, which corresponds to the helical repeat of the filament. Remarkably, a myosin V molecule 

can walk linearly along an actin filament, stepping over the helical turns by taking ‘strides’ or 

physical steps of 36 nm (Walker et al., 2000). The mechanism of processive movement is not 

understood. However, several models have been proposed. The most widely accepted model is 

hand-over-hand model that heads alternate between leading and trailing position on actin. (Details 

of hand-over-hand model are mentioned below.)

2. Myosin IX 

Class IX myosins have been found in rat (Reinhard et al., 1995; Chieregatti et al., 1998), human 

(Wirth et al., 1996; Bahler et al., 1997), mouse (Grewal et al., 1999) and C. elegans.  In mammals, 
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class IX myosins are expressed in variety of tissues and cell types (Reinhard et al., 1995; Wirth 

et al., 1996; Chieregatti et al., 1998).  Class IX myosins contain a number of unique features in 

comparison to the other classes of myosins characterized thus far.  The most extensively character-

ized class IX myosins include the two myosin IX isoforms in rat (Myr5 and Myr 7 (Reinhard et 

al., 1995; Muller et al., 1997; Chieregatti et al., 1998)) and human (myosin-IXb and myosin-IXa 

(Wirth et al., 1996; Post et al., 1998; Inoue et al., 2002; O'Connell and Mooseker, 2003). Both class 

IX myosins have similar overall domain structure (Fig. I-5), although they exhibit distinct tissue 

expression patterns (Reinhard et al., 1995; Wirth et al., 1996; Chieregatti et al., 1998). 

2.1. Structure of myosin IXb

The motor domain of myosin IX contains distinctive features compared with other myosins (Fig. 

I-3 and Fig. I-5). First, there is an N-terminal extension of about 150 amino acids that is structural-

ly homologous to a Ras binding domain, although expressed fusion protein containing this domain 

from Myr 5 lacks Ras binding activity (Kalhammer et al., 1997). The function of this domain is 

not yet identified.  There is a large insertion (about 140 amino acid) in the head domain at the posi-

tion of loop2. It has been shown that the change in size and charge of loop2 sequence in myosin II 

significantly affects the actin-activated ATPase activity, and mechanochemical coupling and actin 

binding (Uyeda et al., 1994; Rovner et al., 1997).  Since the location of this large insertion is near 

the proposed actin binding interface (Schroder et al., 1993), it is plausible that the large insertion 

of myosin IX has a critical function in dictating the characteristic of myosin IX motor function.  

Between the motor and tail domain is a neck domain consisting of IQ light chain-binding motifs. 

Myosin IXb has four IQs, while myosin IXa has six. At least a subset of human myosin IXb light 

chains is calmodulin (CaM) (Post et al., 1998). 

There are two potential functional domains in the tail domain of myosin IX.  First, there is a zinc-

binding domain that is similar to phospholipid binding domain of protein kinase C, also known 
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as C1 domain.  Recent analysis of various C1 containing proteins revealed that C1 domains are 

classified into two types, “typical” and “atypical” (Hurley et al., 1997), which the former binds 

phorbol ester but the latter does not.  The C1 domain in myosin IX is classified in to “atypical” and 

consistently the expressed domain failed to bind phorbol ester (Reinhard et al., 1995). 

Second, there is a GTPase-activating protein (GAP) domain structurally homologous to GAPs for 

the Rho family of G proteins.  Small G-protein Rho subfamily includes Rho, Rac and cdc42, and 

they are thought to regulate cytoskeletal organization in cells (Bar-Sagi and Hall, 2000).  They 

function as a molecular switches being active in GTP form and inactive in GDP form.  The stability 

of GTP form and GDP form is controlled by several small G-protein modulators such as GAP, GEF 

and GDI.  GAP activates the GTP hydrolysis to produce the GDP bound form thus inactivating 

Rho family G-proteins.  GEF promotes the transition of Rho subfamily proteins from the GDP 

bound form to GTP bound form, thus activating them, while GDI binds to Rho to stabilize the GDP 

bound inactive form.  Biochemical characterizations of both bacterially expressed Myr 5 and Myr 

7 tail domains and tissue-purified human myosin IXb demonstrate that these myosins are active 

GAPs for Rho but not Rac or Cdc42 (Reinhard et al., 1995; Chieregatti et al., 1998; Post et al., 

1998).  Moreover, overexpression of both Myr 5 and Myr 7 in cultured cells results in inactivation 

of Rho in these cells (Muller et al., 1997; Chieregatti et al., 1998). Thus, unlike proposed cargo-

carrying functions for most other myosins, class IX myosins may be their own cargo, with the 

motor domain carrying its Rho-GAP tail to sites that require down-regulation of Rho-dependent 

signaling. 

2.2. Motor function of myosin IXb

Despite the unusual structure of the motor domain, tissue isolated human myosin IXb exhibits 

robust gliding actin filament movements in vitro (Post et al., 1998). Velocities are reduced in 

the presence of Ca2+, as has been observed for a number of CaM-containing myosins. Myosin 
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IXb does exhibit unusual actin-binding properties, in that myosin IXb co-sediments with actin in 

presence of ATP (Post et al., 1998), a property it shares with myosin-Va (Nascimento et al., 1996; 

Tauhata et al., 2001).  Interestingly, high affinity binding to actin at steady state in the presence 

of ATP is thought to contribute to the unique motile properties of myosin-Va where biophysical 

studies have shown that this motor is capable of undergoing numerous interactions with an actin 

filament before diffusing away. Thus, myosin-Va is classified as a highly processive motor (Mehta 

et al., 1999). However, unlike myosin-Va, which is thought to generate processive motion through 

a coordinated interaction of two motor domains (Mehta et al., 1999; Rief et al., 2000; Walker et al., 

2000), the heavy chain of class IX myosins lacks coiled-coil forming  α-helical segments and thus 

is predicted to be single-headed.  Two independent lines of evidence, hydrodynamic determination 

of native molecular weight and chemical cross-linking studies showed that tissue-isolated myosin 

IXb is a single-headed structure.

Although Myosin IXb is single-headed, tissue isolated myosin IXb and truncated myosin IXb 

construct that contains motor domain and IQ motifs show processive movement.  This is consistent 

with the finding that myosin IX co-sediments with actin in the presence and absence of ATP.  The 

key question is how myosin IXb, a single headed myosin, can move processively along actin 

filaments. It has been shown that myosin V, a two-headed myosin with an expanded neck, moves 

processively along actin filaments with large steps. Electron microscopic observations demonstrated 

that myosin V spans the long pitch 36-nm helical repeat of the actin filaments. The two heads of 

myosin V on an actin filament assume a polar conformation, in which one head is curved and the 

other is straighter. This has raised the hypothesis that the processive large steps of myosin V are 

produced by a tilting of the long neck domain of one head, which leads the partner head to the 

neighboring helical pitch of the actin filament. However, it is obviously impossible for myosin 

IXb to move processively by this mechanism, as it only has one head. For microtubule-based 

motors, KIF1A, a single headed kinesin family motor, functions through processive movements 
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along microtubules (Okada and Hirokawa, 1999). It was proposed for KIF1A, that an electrostatic 

interaction between a Lysine-rich loop of KIF1A and the Glu-rich carboxy-terminal end of tubulin 

(E-hook) occurs to prevent the diffusion of KIF1A away from microtubules (Okada and Hirokawa, 

2000; Kikkawa et al., 2001). It is plausible that a similar mechanism is operating for the processive 

movement of myosin IXb on actin filaments.

Another interesting finding is that tissue isolated myosin IX moves plus-end of actin filament, 

while truncated myosin IXb is a minus-end-directed motor (O’Connell and Mooseker, 2003).  The 

mechanism underlying this bi-directional movement of myosin IX is largely unknown.  However, 

it was proposed that tail domain functions as a conformational switch to regulate the polarity of 

movement of the myosin IXb motor domain.  Two candidates for regulating this polarity switch 

include Rho and zinc, as myosin IXb tail domain contains a Rho-GAP and a zinc-binding domain. 

However, motility in the presence of RhoA pre-loaded with the non-hydrolysable GTP analogue 

GTP-γS or 0.1 mM zinc chloride was plus-end-directed. These results suggest that myosin IXb 

is bi-directional and that the directionality of movement can be regulated in some way through 

head–tail interactions.

II: Overview of the myosin ATPase cycle

The actomyosin ATPase cycle appears to be conserved for all myosins.  The reaction scheme 

is shown in Fig. I-6.  The ATPase pathway is coupled to a mechanical model.  The key steps 

are: 1) rapid binding of ATP to actin-bound myosin (actomyosin) (K’1k’+2), 2) dissociation of 

myosin from actin (k+8), 3) the hydrolysis of ATP (k+3), 4) rebinding of myosin to actin (k+9), 5) the 

release of phosphate (k+4), 6) the release of ADP (k+5), 7) the rebinding of ATP.  Intermediates are 

defined according to their affinity for actin.  The M•ATP and M•ADP•Pi states are weak-binding 
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intermediates that attach and detach from actin filament with a low affinity (Kd > 1 μM).  The AM 

and AM•ADP states are strong-binding intermediates that attach to actin filaments with higher 

affinity (Kd << 1 μM).  The strong-binding states are force-bearing intermediates.  It is widely 

believed that the force-generating power-stroke coincides with phosphate release at the transition 

from the weakly to strongly bound states.

1. Structural mechanism of ATPase cycle

The myosin cross-bridge is a molecular machine with communicating functional units: the actin-

binding site, the ATP binding site, and the lever arm, which amplifies the small change at the 

active site into the large changes. A series of X-ray crystallography revealed the conformation of 

myosin during ATPase cycle (Rayment et al., 1993b; Fisher et al., 1995; Dominguez et al., 1998; 

Houdusse et al., 1999; Gerner et al., 2000; Houdusse et al., 2000) (Fig. 7). X-ray crystallography 

shows the myosin cross-bridge to exist in two conformations, the beginning and the end of the 

“power stroke.” A long lever-arm undergoes a 60° to 70° rotation between the two states (Fig. 7C). 

This rotation is coupled with changes in the active site (OPEN to CLOSED) and phosphate release. 

Actin binding mediates the transition from CLOSED to OPEN.

ATP hydrolysis is coupled with the mechanical motor activity of myosin, which is thought to be 

universal among all myosin family members. Although the structural changes associated with 

each step of the ATP hydrolysis cycle of myosin are not completely understood, recent three-

dimensional structural analysis of the myosin motor domain/nucleotide complex has provided 

important information for understanding of the molecular mechanism of myosin motor function 

(Rayment et al., 1993b; Fisher et al., 1995; Smith and Rayment, 1996). The myosin head contains 

several clefts, which divide the motor domain into distinct subdomains (Fig. I-7A). The cleft that 

splits the 50-kDa central segment of myosin S1 extends from the nucleotide binding pocket to the 

actin binding interface, and it is proposed that this cleft closes after ATP hydrolysis (Rayment et 
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al., 1993b; Rayment and Holden, 1994). This opening and closing process is thought to be coupled 

with weak and strong binding states, respectively. Furthermore, it is suggested that the closure of 

the nucleotide-binding pocket triggers a conformational change to generate a bent configuration 

(Wakabayashi et al., 1992), which is coupled with cross-bridge movement. ATP is bound in a 

narrow tunnel formed by three regions (P-loop, Switch I, and Switch II) composed of amino acid 

residues, which are highly conserved in the myosin superfamily (Fig. 7B). There are a number of 

interactions between the triphosphate moiety and the amino acid residues of myosin, which are 

thought to be important for tight ATP binding, rapid ATP hydrolysis, and the stabilization of the 

myosin·ADP·Pi metastable ternary complex.

2. Kinetic analysis of myosin superfamily

All characterized myosins share a common ATPase mechanism.  However, detailed kinetic 

analyses suggest that modulation of the rate and equilibrium constants that define the ATPase 

cycle determines specific properties to these myosins.  Understanding the kinetic mechanisms 

allows potential cellular functions of the different myosin classes to be better defined. The 

important parameters that influence the mechanical and motile properties of myosin are lifetime of 

predominant intermediate and the duty ratio.  The duty ratio is defined as the fraction of the ATPase 

cycle that the myosin spends in strong-binding states.  Low duty-ratio myosins spend a large 

proportion of time in the M•ATP and M•ADP•P states.  On the other hand, high duty-ratio myosins 

spend a large proportion of time in the AM and AM•ADP states.  The duty ratio of characterized 

myosins depends on the rates into and out of the strongly bound states, thus depends on the actin 

and nucleotide concentration.

Kinetic analysis of some members of myosin superfamily revealed that difference in biochemical 

rate constants provide myosins tuned for diverse biological functions as follows:
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Myosin I  --- Myosin-I isoforms are the single-headed, membrane-associated members of the 

myosin superfamily found in most eukaryotic cells. They play essential roles in membrane dynamics 

(Novak et al., 1995; Tang and Ostap, 2001), cytoskeletal structure (Dai et al., 1999), mechanical 

signal-transduction (Gillespie et al., 1993) and endosome processing (Novak et al., 1995; Geli 

and Riezman, 1996; Jung et al., 1996; Raposo et al., 1999). Myosin-Is are the most diverse of the 

unconventional myosins and are represented by at least two phylogenetically distinct subclasses 

based on sequence comparison of motor domains (Sokac and Bement, 2000). Subclass-1 myosin-I 

isoforms have long tails that contain lipid binding (TH1), proline-rich (TH2), and Src homology-3 

(TH3) domains. Subclass-2 myosin-I isoforms have short tails that contain only TH1 domains and 

are also widely expressed.

The kinetic mechanisms of all characterized myosin-Is follow the same pathway with the same 

biochemical intermediates (Ostap and Pollard, 1996; Jontes et al., 1997; Coluccio and Geeves, 

1999; Geeves et al., 2000). However, considerable kinetic variability exists within the myosin-I 

family. Key rate constants of subclass-1 isoforms are significantly faster (3–10-fold) than those of 

subclass-2 isoforms. The rates of ADP release from all subclass-1 isoforms are 10-fold faster than 

subclass-2 isoforms (Ostap and Pollard, 1996; Jontes et al., 1997; Coluccio and Geeves, 1999; 

Geeves et al., 2000). The rate of ADP release limits sliding velocity (Siemankowski et al., 1985), 

thus it is proposed that subclass-1 isoforms are better tuned for fast motility, whereas subclass-2 

isoforms are better tuned for maintenance of force. All myosin-I isoforms are a low duty ratio 

motors, so under unloaded conditions it is predominantly weakly bound or detached from actin 

filaments. Therefore, for myosin I to support motility, a high effective duty ratio must be created 

by bringing together locally high concentrations of myosin and actin.

Myosin II  --- Myosin-II isoforms are the major contractile proteins in muscle and also play 

several crucial roles in non-muscle contractility. Myosin-II molecules contain two motor domains 
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and assemble into filaments. The myosin-II family can be divided into non-muscle cytoplasmic, 

cardiac muscle, smooth muscle, and skeletal muscle subclasses, each with multiple isoforms.

All characterized muscle myosin-II isoforms have comparable unitary forces and displacements 

— a single skeletal muscle myosin-II molecule generates the same force and displacement as a 

single smooth muscle myosin-II molecule. However, the kinetic intermediate lifetimes and duty 

ratios of muscle isoforms show a great deal of variation that results in important mechanical 

differences, accounting for their functional diversity. For example, the duty ratio and the lifetime 

of the strong-binding states of smooth muscle myosin are significantly longer than those of skeletal 

muscle isoforms. In muscle tissue, these kinetic differences are likely to be responsible for smooth 

muscle having slower rates of contraction and producing higher forces than skeletal muscle. Recent 

investigations of non-muscle myosin-IIb demonstrate that it is a relatively high-duty-ratio motor 

under physiological actin and nucleotide concentrations (myosin is attached to actin for 20–50% of 

its ATPase cycle time).  In this way it differs significantly from nonmuscle myosin-IIa and muscle 

myosin isoforms, which possess low duty ratios (myosin is attached to actin for 10% of its ATPase 

cycle time). Thus, non-muscle myosin-IIb appears to be adapted for cellular roles requiring tension 

maintenance, whereas non-muscle myosin-IIa is better suited to more rapid sliding.

Myosin V  --- Myosin-V transports vesicles along actin filament tracks over long distances as a 

single, two-headed molecule. Detailed kinetic analysis of single-headed myosin V demonstrate that 

ATP binding, dissociation from actin, hydrolysis off actin and Pi release on actin are rapid (200- 

800 s-1) and essentially irreversible, whereas ADP release is slow (16 s-1) and rate-limiting (De La 

Cruz et al., 1999; Trybus et al., 1999). As a result, the predominant steady-state intermediate in 

the presence of physiological ATP concentrations is the strongly bound AM•ADP state, making 

myosin-V a high-duty-ratio motor.
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Myosin VI  --- Myosin-VI is apparently a two-headed molecule due to the presence of the putative 

coiled-coil sequence, does not associate into filaments, and may play a role in endocytosis and 

membrane trafficking. It was the first myosin discovered to move toward the pointed end of actin 

filaments (Wells et al., 1999). Myosin VI can walk in vitro as a processive motor when it is dimerized 

(Rock et al., 2001; Nishikawa et al., 2002; Rock et al., 2005), while myosin VI does not support 

processive movement when it is monomeric (Lister et al., 2004). Like myosin-V, myosin-VI is a 

high-duty-ratio motor as a result of its slow rate-limiting ADP release. Additionally, ATP binding 

is slow and weak (De La Cruz et al., 2001), resulting in a population of nucleotide-free AM (rigor) 

state intermediates under physiological conditions, which further increases the duty ratio. Thus 

myosin VI can achieve processive movement by formation of double-headed structure.

Duty ratio and processivity --- A high duty ratio is necessary for continuous movement of myosins.  

Myosin I and Myosin II are low-duty-ratio motors and must work in ensembles of many motors to 

sustain continuous sliding.  This requirement has been demonstrated in vitro by examining sliding 

as a function of myosin density.  Locally high concentrations of myosin II are created in cells by 

the assembly of myosin into filaments.  Myosin V and Myosin VI are highly processive motor 

that individual molecule can take multiple steps along an actin filament track before dissociating. 

Each head of a processive two-headed myosin must have a high duty ratio (>0.5) to increase the 

probability that at least one motor domain is always attached to actin. Otherwise, the myosin and 

its transported cargo will diffuse away from actin track.

3. Model for processive movement

Many models have been proposed to account for the processive movement of myosin.  Most widely 

accepted model is ‘hand-over-hand’ model (Forkey et al., 2003; Yildiz et al., 2003; Warshaw et 

al., 2005). This model predicts that myosin dwells predominantly in a state with the trailing head 

strongly bound to actin in the AM•ADP state, and the leading head in equilibrium between a 
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detached and an engaged-ADP•P state. The engaged-head is bound to actin but has not undergone 

its power-stroke. The trailing head impedes the leading head from binding actin strongly and slows 

the rate of Pi release. ADP release from the trailing head results in a conformational change that 

optimally positions the leading head for actin attachment, allowing the leading head to bind actin 

strongly, begin its power stroke, and eventually release Pi. The conformational change can be a 

rotation of the lever arm or, with myosin VI, a more complex, larger-scale rearrangement that has 

yet to be determined. At low ATP concentrations (at which some structural experiments have been 

performed), it has been proposed that the leading head may release its products before the trailing 

head dissociates. ATP binding to the trailing head dissociates it from actin, whereupon the leading-

head power stroke swings the trailing head forward and the previous leading head now becomes 

the trailing head. A defining feature of this model is that the trailing head restricts the lead head 

from progressing through the cycle.

PART 2. MOTOR FUNCTION OF MYOSIN IXB: 

GOALS OF THE THESIS PROJECT

I: Kinetic analysis of truncated myosin IXb.

While the actin tranlocating activities of myosin IXb have been studied, there is no report for the 

ATPase activity of myosin IX. Two independent groups including our group showed that myosin 

IXb is a single-headed myosin and moves processively on actin filaments. Furthermore, myosin 

IXb does not dissociate from actin in the presence of ATP. These data imply that the mechanism of 

motility activity of myosin IX is different from other myosins. Kinetic analysis of myosin ATPase 

cycle allowed us to understand the mechanism of processive movement, when myosin V and 

myosin VI are found as processive motors. These myosins populate significant time at AM•ADP 

state that is strongly bound state with actin, resulting in high duty ratio. Therefore, my goals are 
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first to elucidate the ATPase activity of myosin IXb and its activation by actin, and second to 

understand kinetic mechanism of myosin IX to address the question how a single-headed myosin 

IXb moves processively on actin filaments.

II: Cloning of full-length myosin IXb and initial biochemical characterization of the ATPase 

activity of full-length myosin IXb.

It has been shown that the motor function of unconventional myosins is regulated by various 

regulatory mechanisms, such as phosphorylation, Ca-binding to light chains, and association with 

binding partners. In the case of myosin V and myosin VI, a degree of regulation by calcium is 

different between truncated constructs and full-length myosin. It has been shown that the global 

conformational change of the molecule causes a change in activity. Therefore, it is critical to better 

understand physiological motor function of myosin IX using full-length myosin IXb construct. 

The goal in this stage is to clone full-length myosin IXb, and examine the ATPase activity of full-

length myosin IXb as a first step of biochemical characterization.
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Fig. I-1. Domain organization of myosin. Motor domain contains ATP binding site 
and actin binding site, and shows ATP hydrolysis coupled with actin translocating activity. Neck 
region contains from zero to seven IQ motifs, and plays a role in regulation of motor function of 
myosin. C-terminal tail region is highly variable, and determines the cellular function of myo-
sins.
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Fig. I-2. Myosin II. A, Myosin II forms double-headed structure. Long α-helix of 
tail region of myosin II forms coiled-coil. B, Bipolar filament. Under physiological conditions, 
myosins form aggregates that resemble thick filament. A thick filament of striated muscle typically 
contains several hundred molecules organized staggered array such that the myosin molecules are 
oriented with their globular heads pointing away from the filament’s center. C, Side-polar filament. 
Side-polar filament does not have a central bare zone found in a bipolar filament. The side polar 
arrangement permits more myosin head attachment to actin than would be possible in bipolar 
thick filaments of the same length and a higher force per thick filament for the same amount of 
myosin. It allows also for greater muscle shortening, as actin filaments are less likely to encounter 
oppositely polarized actin molecules coming from the other direction.
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Fig. I-3. Myosin superfamily.  A, Schematic representation of the domain structure 
of myosin superfamily members. The length of the molecules is drawn roughly proportional to the 
number of amino acids. While motor domains are conserved, tail regions are highly divergent. B, 
Model of structure of myosin superfamily. Three-dimensional structures of skeletal myosin motor 
domain (blue) and calmodulin (red) are used to represent the structure of myosin superfamily. 
Myosins that have putative coiled-coil region are considered as double-headed structure. Myosin 
XIII has longest neck because it has seven IQ motifs, while myosin-XIV and –XVII has no IQ 
motif. It should be noted that myosin VI binds two calmodulins, although it has only one IQ 
motif.
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Fig. I-4. Super cell showing function of myosin superfamily.   Potential functions for 
myosins are shown. (1), M1, M6, and M7 exist in the pericuticular necklace (at the base of the 
stereocilia), a structure between the actin-rich cuticular plate and the circumferential actin band 
associated with the junctional complex. (2), M1β is shown as the adaptation motor of stereocilia 
in the hair cells of the inner ear, whereas M6 and M7 anchor and/or stabilize stereocilia. (3), 
Brush border M1 (BBM1) tethers the microvillar core bundle to the plasma membrane of intestinal 
microvilli. (4), M1s may assist endocytosis in yeast, Dictyostelium, and vertebrate cells. (5), M3 
is required for rhabdomere integrity and phototransduction in the Drosophila eye. (6) and (7), 
M1s may play a role in phagocytosis in Dictyostelium and macrophages in addition to pseudopod 
extension in Dictyostelium. (8), In yeast, M5s may support organelle and RNA transport. (9), M6 
plays a role in endocytosis. M5 may transport smooth ER through dendritic spines of Purkinje cells 
(10) as well as transport melanosomes though the dendritic processes of melanocytes (11). (12), 
M10 may assist extension of filopodia of nerve growth cones (12). (13), M9b is a rhoGAP, which 
inactivates rho and possibly modulates actin organization.
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Fig. I-5. Domain structure of myosin IX subfamily.  Both myosin IX isoforms 
contain unique extension (green) with 50 % homology and insertion (yellow) with 40 % homology. 
The number of IQ motifs (red) is different. Myosin IXb has 4 IQs, while myosin IXa has 6 IQs. 
Zn2+ binding motif (Zn, pink) and RhoGAP (GAP, light blue) are shown in C-terminal tail region. 
Homology of tail region of isoforms is 30 %.
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Fig. I-6. Myosin ATPase cycle. A, actin. M, myosin. In the absence of ATP, myosin 
binds tightly to actin (AM). ATP binding (AM•ATP) induces a conformational change in myosin 
that weakens its actin affinity and causes myosin to detach from actin (M•ATP). A second 
conformational change allows hydrolysis of ATP to ADP and inorganic phosphate (M•ADP•P). 
The M•ADP•P state rebinds to the actin filament (AM•ADP•P) and a force-generating power-
stroke accompanies phosphate release (AM•ADP). ADP is released (AM) and the cycle repeats 
upon ATP binding.
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Fig. I-7. Three-dimensional structures of myosin.  A, 3D-strycture of motor 
domain of Dictyostelium myosin II with ADP and vanadate, which is phosphate analogue. Limited 
proteolysis breaks the motor domain into three fragments, named after their apparent molecular 
masses – 25K (N-terminal, green), 50K (middle, red), and 20K (C-terminal, blue). ADP and Mg2+ 
are indicated by yellow. Structure data is obtained from protein data bank (PDB) using PDB ID = 
1VOM. B, Magnified view around ATP binding site. P-loop, Switch I, and Switch II are colored 
as pink, cyan, and white respectively. C, Two structural states of Scallop S1. Pre-hydrolysis state: 
nucleotide free (PDB ID = 1DFK), post-hydrolysis state: ADP•V (PBD ID = 1DFL). Two light 
chains are indicated by yellow and orange. Long lever arm rotates about 60°. 
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CHAPTER TWO:  KINETIC ANALYSIS OF TRUNCATED 
MYOSIN IXB.

INTRODUCTION

Myosin IXb is a member of the myosin superfamily and found in a variety of tissues including 

lung, testis, spleen, and liver (Reinhard et al., 1995; Wirth et al., 1996; Chieregatti et al., 1998).  

Myosin IXb is quite unique among the myosin superfamily in that the tail region contains a 

GTPase-activating protein (GAP) domain for the small GTP-binding protein, Rho (Reinhard et 

al., 1995; Post et al., 1998). Thus, unlike proposed cargo-carrying functions for other myosins, 

Myosin IXb may be a motor protein carrying its Rho-GAP tail to required sites to down-regulate 

Rho-dependent signaling. Quite recently, it was reported that myosin IXb binds to BIG1, a guanine 

nucleotide exchange factor for ADP-ribosylation factor (Arf1) (Saeki et al., 2005).  BIG1 forms 

a heterodimer with BIG2 (Morinaga et al., 1996; Togawa et al., 1999), and BIG2 harbors protein 

kinase A binding sites (Li et al., 2003). It has been reported BIG1 changes its localization from 

the cytosol to membrane/cytoskeletal components by the stimulation of cAMP signaling (Li et al., 

2003). Therefore, it is expected that myosin IX plays a role in translocation of a protein and/or 

protein complexes.

The studies of myosin IXb revealed that the expressed myosin IX motor domain with four light 

chain binding sites (Inoue et al., 2002), and the naturally isolated myosin IX (Post et al., 1998) 

show processive movement that undergoes multiple ATPase cycles before dissociating from actin 

filament.  Consistent with this finding, myosin IXb does not dissociate from actin in the presence 

of ATP. The mechanism of the unique feature of myosin IX is largely unknown. However, the 

unique region on the motor domain of myosin IXb might be a key component for the processive 

movement of a single-headed myosin IXb.  There is a large insertion (140 amino acid) in the 
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middle of motor domain.  Since this domain is located at the actin-binding site, so called loop-2, 

and rich in highly charged residues, it would effect on the actin binding properties.

The mechanism of processive movement can be explained by the studies of kinetics of the 

ATPase cycle (De La Cruz et al., 1999; De La Cruz et al., 2001). Myosin molecule goes through 

a characteristic ATPase cycle that is closely correlated with the mechanical cycle of myosin. The 

key steps are, 1) rapid ATP binding to actomyosin (K’
1
k’

+2
), 2) the hydrolysis of ATP (k

+3
+k

-3
), 3) 

the release of phosphate (Pi) (k’
+4

), and 4) the release of ADP (k’
+5

) (Scheme II-1). 

Scheme II-1

During the ATPase cycle, myosin populates either the weak-binding state or the strong binding 

state. The rate-limiting step of non-processive motor, such as myosin II, is Pi release (k’
+4

), thus 

non-processive myosins spend in a large fraction of the weak binding during ATPase cycle.  

Therefore those myosins can work together in asynchronous ensemble with high speed.  On the 

other hand, the rate-limiting step for myosin V is ADP release (k’
+5

), thus processive myosins 

spend the strong-binding state in a large fraction during the ATPase cycle.  Because the fraction of 

strong-binding state for a single head of myosin V is greater than 0.5, double-headed myosin can 

move processively through a coordinated interaction of two motor domains with actin filament.  

However, this model cannot account for the processive movement of a single-headed myosin IX.  

Of interest is how a single-headed myosin IX moves processively on actin filament. 
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Several questions have to be answered to explain processive movement of a single-headed myosin 

IX: (1) how much is duty ratio for myosin IX? Duty ratio has to be 1 for a single-headed myosin IX 

to be processive. (2) Which state is rate limiting? For other processive myosins, the rate-limiting 

step is AM•ADP state, which is strongly bound state. Question is whether or not AM•ADP state 

is strongly bound to actin and rate-limiting step is AM•ADP state as myosin V and myosin VI. 

(3) The weak binding state is identical to other myosin? Other characterized myosins dissociate 

from actin at the weakly bound state. However, the presence of weakly bound state during ATPase 

cycle is not consistent with previous observation that myosin IX does not dissociate from actin 

in the presence of ATP. To elucidate the mechanism by which a single-headed myosin IX moves 

processively on actin filament, we studied the kinetic characteristics of myosin IX ATPase.
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METHODS

Reagents and Proteins.

2’-deoxymantATP (dmantATP) was kindly provided by Dr. Howard D. White (Eastern Virginia 

Medical School, VA).  Rabbit skeletal muscle actin was purified according to Spudich and Watt 

(Spudich and Watt, 1971), and the actin concentration was determined by absorbance at 290 nm, 

ε290=26,600 M-1cm-1. ATP and ADP concentration were determined by absorbance at 259 nm, 

ε259=15,400 M-1cm-1. The dmantATP concentration was measured at 255 nm using an ε255=23,300 

M-1cm-1.

Recombinant human Calmodulin (CaM) was cloned from human testis total RNA (clontech). The 

cDNA was synthesized by reverse transcription with random oligonucleotides.  The CaM fragment 

(accession # BC008437) was amplified with a set of primers, 5’-GCTACT AGTATGGCTGAC

CAACTGACTGAAGAG-3’ and 5’-ACACTCGAGTCACTTTGCTGTCATCATTTGTAC-3’, 

containing SpeI and XhoI site, respectively. The CaM fragment was digested with SpeI and XhoI, 

and then ligated into pFastbac vector for expression in insect, Sf9 cells. The CaM fragment was 

introduced to PET30 vector for expression in E. coli. CaM was expressed in E. coli, and purified 

as described (Ikebe et al., 1998).

Preparation of recombinant Myosin IXb.

The myosin IXb construct used (M9bIQ4) was prepared previously (Inoue et al., 2002).  The 

construct contains nucleotides 1-3,889, encoding residues 1-1296 of human myosin IXb (Fig. 

II-1A). To express recombinant myosin IXb, 300 ml of Sf9 cells (approximately 1 x 109) were 

co-infected with two separate viruses expressing the myosin IXb heavy chain and CaM.  The cells 

were cultured at 27 °C in 175-cm2 flasks and harvested after 60 h. Cells were lysed in 10 ml of 

lysis buffer (50 mM HEPES pH 8.0, 0.15 M KCl, 0.5 mM EGTA, 5 mM MgCl2, 5 mM ATP, 5 mM 
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beta-mercaptoethanol, 1 mg/ml Trypsin inhibitor, and 0.01 mg/ml leupeptin).  After centrifugation 

at 100,000 x g for 30 min, the supernatant was mixed with Ni-NTA agarose (Qiagen, Germany) in 

a conical tube on a rotating wheel for 30 min at 4 oC. The resin suspension was then loaded onto 

a column, and washed with a 20-fold column volume of buffer containing 30 mM HEPES pH 

8.0, 30mM Imidazole, 0.6 M KCl, 0.5 mM EGTA, 5 mM beta-mercaptoethanol, and 0.01mg/ml 

leupeptin. M9bIQ4 was eluted with buffer containing 0.2 M Imidazole-HCl pH 7.5, 30 mM KCl, 

1 mM EGTA, 5 mM beta-mercaptoethanol, and 0.01mg/ml leupeptin. Protein concentration was 

determined by densitometry of Coomassie-staining gel. Typically 0.3 mg of protein is obtained 

from 300 ml culture. Protein was used within 6 hours.

Gel Electrophoresis

SDS-polyacrylamide gel electrophoresis was carried out on a 5–20% polyacrylamide gel using 

the discontinuous buffer system of Laemmli (Laemmli, 1970). Molecular mass markers used were 

smooth muscle myosin heavy chain (200 kDa), β-galactosidase

(116 kDa), phosphorylase b (97.4 kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), 

carbonic anhydrase (29 kDa), myosin regulatory light chain (20 kDa), and   lactalbumin (14.2 

kDa). Gels were stained with Coomassie Brilliant Blue R-250. 

Steady-state ATPase assay

The ATPase assays were performed at 25 oC in 30mM HEPES, pH7.5, 30mM KCl, 1mM EGTA, 

2mM MgCl2, 1mM DTT, and 10μM CaM, otherwise described in figure legend. The reaction was 

initiated by the addition of [γ-32P]-ATP. Liberated 32P was measured as described previously (Ikebe 

and Hartshorne, 1985).

Actin binding assay

Various concentrations of actin (1 – 20 μM) were mixed with 0.3 - 0.5μM M9bIQ4 in 30mM 
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HEPES, pH7.5, 30mM KCl, 1mM EGTA, 2mM MgCl2, 1mM DTT, and 10μM CaM and allowed 

to sit for 5 min at room temperature. 2 mM ATP was added, and incubated for 5min at room 

temperature. For the binding assay of M•ADP•P state, 0.1mM ADP and 1mM Vi were incubated 

with M9bIQ4 for 1hr on ice, then various concentrations of actin were incubated with the ternary 

complex of M9bIQ4•ADP•Vi for 5min at room temperature. The samples were centrifuged in 

the Beckman TL-100 at 350,000 x g for 5 min. Equal proportions of supernatant and dissolved 

pellet were run on SDS polyacrylamide gels. The gels were stained with Coomassie Brilliant Blue 

R-250. The band intensities were quantified using the ImageJ software package to determine the 

percentage of M9bIQ4 bound to pelleted actin.  

To confirm that bound M9bIQ4 contains ADP•Vi, the amount of [3H]-ADP trapped in actoM9bIQ4 

was measured.  M9bIQ4 was incubated with [3H]-ADP in the presence and absence of 1 mM Vi 

for 1hr on ice, then 20μM actin and 2mM cold ADP were added to the mixture. If [3H]-ADP•Vi 

is not stably trapped in the active site of M9bIQ4, [3H]-ADP is replaced by non-radioactive ADP. 

After incubation for 5 min at room temperature, the samples were ultra-centrifuged. The pellet was 

washed with the buffer containing 1 mM ADP, and the amount of [3H]-ADP in dissolved pellet 

was counted by scintillation counter.  The concentration of bound M9bIQ4 in dissolved pellet was 

also determined by densitometry of SDSPAGE gel, and the percent of trapped [3H]-ADP in the 

M9bIQ4 was calculated.

Photoaffinity labeling of Myosin IXb with ATP

Photoaffinity labeling was performed as described by Maruta and Korn, with some modification.  

Myosin IXb was mixed with 0.1mM [α-32P]- or [γ-32P]-ATP (9 Tbq/mmol) in 100μl of 30mM 

HEPES, pH7.5, 30mM KCl, 1mM EGTA, 2mM MgCl2, 1mM DTT, and 0.5mg/ml BSA.  The 

mixtures were irradiated at a distance of 3cm for 2min with UV light at 254nm.  The proteins 

were precipitated by the addition of 5% TCA containing 1% sodium pyrophosphate and collected 
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by centrifugation.  The pellets were dissolved in 20μl of SDS-loading buffer, and then run on 

SDSPAGE.   Incorporation of 32P into myosin heavy chain was analyzed by phosphor imager. 

Kinetic experiments

All transient kinetic experiments were done in 30mM HEPES, pH7.5, 30mM KCl, 1mM EGTA, 

2mM MgCl2, 1mM DTT, and 10μM CaM at 25 °C using Kin-Tek SF-2001 stopped flow.  The 

concentration of M9bIQ4 after mixing was 0.2-0.6μM, and actin was added at 1.2 times the 

M9bIQ4 concentration when appropriated. Fluorescence change of dmantATP was measured 

by fluorescence energy transfer (FRET) by exciting nearby tryptophan residues at 280nm, and 

emission was detected with 400nm long-pass filter (Oriel). For 90° light scattering, the excitation 

beam was passed through a 360 nm interference filter.

All of the transients shown are the average of 3 - 6 independent mixings.  Single exponential data 

was fit to the equation I(t) = c + I (exp-kobst), and two exponential data was fit to I(t) = c + I1(exp-

kobs1t) + I2(exp-kobs2t), where I(t) is the fluorescent signal at time t, c is constant and I, I1 and I2 are 

the amplitude coefficients of reactions with rate constant kobs, kobs1, kobs2.  

Quenched flow measurements were performed with Kin-Tek RQF-3 apparatus (KinTek Corp.). 

Samples of M9bIQ4 or actoM9bIQ4 were mixed with an equal volume of [32P]-ATP. After aging in 

the delay line, reactions were stopped by mixing with a solution containing 0.3N perchloric acid. 

Liberated 32P was measured.

Kinetic modeling and simulation were performed based on Scheme II-1 using STELLA software 

version 8.1.1 (isee systems, NH).
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RESULTS

Expression and Purification of M9bIQ4

The purified M9bIQ4 construct was composed of a high molecular mass band and a low molecular 

mass band, and free from 200-kDa Sf9 conventional myosin and 43-kDa of actin (Fig. II-1B). 

The high molecular mass band (150 kDa) is consistent with the calculated molecular mass.  The 

small molecular mass band showed mobility shift with the change in [Ca2+] that is characteristic of 

calmodulin, suggesting that the small subunit is indeed calmodulin.

Steady-state ATPase activity of M9bIQ4.

The actin activated ATPase activity is not significantly activated by actin filament (Table II-1, Fig. 

II-2).  Steady-state ATPase activity at saturating ATP concentration (Vmax) is 0.22 s-1 with KATP of 

7.95 μM in the absence of actin, and 0.29 s-1 with KATP of 6.30 μM in the presence of actin. We 

confirmed the binding of M9bIQ4 to actin by co-sedimentation assay, and M9bIQ4 co-precipitated 

with actin in the absence of ATP with high affinity (< 0.2 μM). Therefore, lack of activation of 

ATPase by actin is not due to failure of the binding of M9bIQ4 to actin.

As demonstrated for other characterized processive myosins, myosin V and myosin VI, ATPase 

activity of processive myosins is inhibited by ADP because of slow dissociation of ADP from the 

strongly actin binding form of myosin (De La Cruz et al., 2000a; Yoshimura et al., 2001).  Thus, 

we examined if ADP inhibits the ATPase activity of M9bIQ4.  In contrast to myosin V and myosin 

VI, the ATPase activity of M9bIQ4 was not changed with time in the absence and presence of ATP 

regeneration system (Fig. II-3), suggesting that the ATPase of M9bIQ4 is not inhibited by ADP. 

To further confirm this notion, the ATPase activity of M9bIQ4 was measured as a function of ADP 

(Fig. II-4). In the presence of 0.5 mM ATP, the ATPase activity of M9bIQ4 is not inhibited by 

1mM ADP, which is consistent with the observation of no inhibition of the ATPase activity in the 
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absence and presence of ATP regeneration system. This would be due to the lower affinity of ADP 

compared with that of ATP. Thus we used lower concentration of ATP to determine the affinity of 

ADP to M9bIQ4. In the presence of 25 μM ATP, the ATPase activity shows inhibitory effect by 

ADP (Fig. II-4), and KADP of 16 μM is obtained.

ATP binding to M9bIQ4 and actoM9bIQ4.

The data of steady-state ATPase activity shows that single-headed myosin IX has lower affinity to 

ADP unlike other characterized processive myosins, suggesting that the mechanism of processive 

movement for myosin IXb would be different from these myosins. For known processive myosins, 

ADP release step is slow, and this is the rate-determining step. Of interest is if ADP release is the 

rate-limiting step for myosin IX. Because the each kinetic step of the ATP hydrolysis cycle is 

closely correlated to the cross bridge cycle, it is critical to determine rates and kinetic constants for 

the ATPase cycle of myosin IX to clarify the mechanism of processive movement of single headed 

myosin IX. Therefore, we further performed the transient kinetic analysis of M9bIQ4.  Table II-

2 summarizes the values obtained.  The fluorescent nucleotide 2’-deoxymantATP (dmantATP) is 

used as a probe to measure the rate of nucleotide binding.  The dmantATP binding is modeled as 

two-step binding reaction according to Scheme II-2 and Scheme II-3,

 

Scheme II-2

   

Scheme II-3

, where M(ATP) and AM(ATP) are the collision complex in rapid equilibrium (K1, K1’) and 
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isomerize (k+2. k+2’) to the high fluorescence M•*ATP and AM•*ATP. MantATP was excited by 

energy transfer from adjacent tryptophan residues.  A fluorescence enhancement of dmantATP 

upon binding to M9bIQ4 was best fit to single exponential (Fig. II-5, inset). The rates are linearly 

related to the dmantATP concentration.  The apparent second order rate constants for dmantATP 

binding to M9bIQ4 and actoM9bIQ4, given by the slope of the plot of the rate as a function of 

dmantATP concentration, are K1k+2 = 1.08 μM-1s-1 and K1’k+2’ = 1.07 μM-1s-1, respectively (Fig. II-

5).  The linear fits of the rates do not pass through the origin.  The y-intercept indicates dissociation 

rate of dmantATP (k-2, k-2’). The dissociation rates for M9bIQ4 and actoM9bIQ4 are 2.22 s-1 and 

3.43 s-1, respectively. 

There is a tryptophan residue on M9bIQ4 corresponding to chicken skeletal muscle myosin Trp510.  

This tryptophan is known to enhance the fluorescence upon ATP binding and/or hydrolysis. Thus we 

examined the tryptophan fluorescence enhancement of M9bIQ4.  However, there is no detectable 

change of tryptophan fluorescence of M9bIQ4 with ATP binding.

ATP hydrolysis.

The rate of hydrolysis was measured directory by quench-flow.  This is modeled as two-step 

reaction according to Scheme II-4 and Scheme II-5.  

Scheme II-4

Scheme II-5
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The first step is ATP binding to Myosin (K1k+2 and K1’k+2’). The second step is hydrolysis of ATP 

(k+3 and k+3’). All characterized myosins rapidly hydrolyze ATP to form M•ADP•P complex (Pi 

burst), which is followed by slow product release.  Formation of the myosin•ADP•P complex is 

necessary for normal motor function for myosin II (White et al., 1993; White et al., 1997; Kambara 

et al., 1999). Experiment is done by double mixing method. M9bIQ4 is mixed with [γ-32P]-ATP, 

holds in a delay line for the desired time, and then quenched by a second mix with acids. Formation 

of M•ADP•P can be determined by monitoring initial phosphate burst by denaturation of myosin. 

When excess ATP is incubated with myosin, timecourse would show an initial rapid phase of Pi 

burst followed by a slower linear phase of steady state rate.  Alternatively when ATP concentration 

is less than that of myosin, Myosin hydrolyzes ATP only one cycle. Timecourse for single turnover 

would show two exponential of which the first rapid phase is due to rapid ATP binding and 

hydrolysis of ATP, and the second slow phase is from slow product dissociation. There are two 

advantages on single turnover measurement; (1) the rates obtained by single turnover experiment is 

independent of protein concentration, while second linear phase for multiple turnover is divided by 

protein concentration to obtain steady state rate. (2) Because of < micromolar ATP concentration, 

the data shows less signal-to-noise ratio. Therefore, single turnover of ATP hydrolysis of M9bIQ4 

is measured. Unlike other myosins, time course of hydrolysis is best fit to a single exponential in 

the presence and absence of actin (Fig. II-6), suggesting that M9bIQ4 does not form M•ADP•P 

rapidly and rate of product off is faster than that of hydrolysis. The apparent hydrolysis rates of 

single turnover of ATP hydrolysis are 0.06 s-1 and 0.08 s-1 in the absence and presence of actin, 

respectively.

Upon Scheme II-4 and Scheme II-5, if equilibrium of the first step (ATP binding to Myosin, 

K1k+2 and K1’k+2’) is rapid compared to the second step, which is the formation of M•ADP•P, the 

observed rate constant of the formation of M•ADP•P is described as,
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, where KD= k-2/K1k+2, and [M] and [ATP] are [M] and [ATP] at the equilibrium, respectively.  At 

high concentration of ATP, when [ATP]o >> KD, the observed rate constant is k+3+k-3. However, 

when [ATP]o is not in excess of KD, the observed rate constant is dependent on KD.  Thus, we obtain 

apparent second order kinetics for a first order reaction, which is preceded by a rapid equilibrium of 

ATP binding.  For myosin-I, -II, and -V, there is no ATP dissociation from myosin (k-2). Therefore, 

hydrolysis can be described as k+3+k-3.  On the other hand, ATP dissociates from myosin IX (Fig. 

II-5, Table II-2).  Thus the observed rate constant is slower than steady-state ATPase activity at 

the given ATP condition.  

Figure II-7 shows the simulation to obtain k+3 and k+3’ values from kobs (Fig. II-6) using Scheme 

II-4 and Scheme II-5, respectively. At given M9bIQ4 and ATP concentration, k+3 and k+3’ values 

should be 0.24 s-1 and 0.45 s-1 to obtain kobs = 0.06 s-1 in the absence of actin and 0.08 s-1 in the 

presence of actin, respectively. Table II-3 summarizes the true hydrolysis rate obtained from kobs 

in different M9bIQ4 and ATP concentration.  This simulation suggests that k+3 is 0.21 ~ 0.25 s-1 and 

k+3’ is 0.40 ~ 0.46 s-1. These rates are similar to that of steady-state ATPase, suggesting that ATP 

hydrolysis is the rate limiting for M9bIQ4.

Predominant intermediate during ATPase cycle.

To further confirm that ATP hydrolysis is rate limiting, we performed photoaffinity labeling of 

M9 with 32P-labeled ATP.  UV-irradiation induces photolabeling of myosin by ATP in the active 

site.  Myosin samples were irradiated by UV in the presence of [α-32P]-ATP or [γ-32P]-ATP, and 

the incorporation of 32P into myosin heavy chain was analyzed by phosphor imager.  For smooth 

muscle heavy meromyosin (SmHMM), radioactivity is detected if myosin is irradiated with [α-32P]-
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ATP, but not with [γ-32P]-ATP (Fig. II-8).  SmHMM rapidly hydrolyze ATP.  The non-covalently 

associated Pi dissociated from myosin heavy chain upon acid quenching.  Thus, [γ-32P]-ATP, which 

cross-linked to active site would be expected to lose γ-32P after hydrolysis.  On the other hand, 

similar radioactivity is detected when myosin is irradiated with [γ-32P]-ATP to that with [α-32P]-

ATP for M9 (Fig. II-8). This is consistent with the notion that M9bIQ4 does not have a rapid Pi 

burst, indicating that the predominant steady-state intermediate is M•ATP state for myosin IX. 

We could not detect the radioactivity when myosin IX is mixed with [α-32P]-ATP and [γ-32P]-ATP 

in the presence of actin (not shown), suggesting that the conformation of the ATP binding site is 

different between in the presence and in the absence of actin.

Actin binding properties.

We further examined details of unique actin binding properties of myosin IX.  The rate of actin 

binding was measured by monitoring light scattering.  The association of myosin with actin in the 

absence and presence of ADP is modeled as shown in Scheme II-6 and Scheme II-7.

Scheme II-6

Scheme II-7

The time courses of M9bIQ4 and M9bIQ4•ADP binding to actin follow two exponential rates 

(Fig. II-9, inset). Fast phase is linearly related to actin concentration (Fig. II-9), while the rates of 

slow phase show little actin dependence (not shown). The apparent second order rate constant for 
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M9bIQ4 binding to actin determined by slope is 5.2 μM-1s-1 in the absence of ADP (k+6) and 5.4 

μM-1s-1 in the presence of ADP (k+10).

The rate of actoM9bIQ4 dissociation by ATP was measured by monitoring light scattering.  The 

mechanism of ATP induced dissociation is modeled as Scheme II-8.

   

 

Scheme II-8

The first step is binding of ATP to actoM9S1 (K1k+2).  The second step is dissociation of M9bIQ4 

from actin (k+8). Mixing ATP with actoM9S1 results in a decrease in light scattering (Fig. II-10A).  

The time courses follow two exponentials. Fast phase depends hyperbolically on ATP concentration 

(Fig. II-10B), while the rates of slow phase show no ATP dependence (not shown). The maximum 

rate is k+8+k-8[A] = 13.0 s-1.  This is extremely slow compared to other characterized myosin that 

the rate of dissociation is typically >500 s-1.

Light scattering was monitored to measure ADP dissociation from actoM9bIQ4. The 

actoM9bIQ4•ADP complex was mixed with ATP.  In the presence of excess ATP, the dissociation 

of M9bIQ4 from actin should be limited by the rate of ADP release (k+5’) as described by Scheme 

II-9.
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      Scheme II-9

Premixing actoM9bIQ4 with 0.25mM ADP decreases the maximum rate of ATP-induced 

dissociation of M9bIQ4 from actin to 3.34 s-1 (Fig. II-10B, C). Thus the dissociation rate of 

ADP from actoM9bIQ4 is k+5 = 3.34 s-1, which is 10-fold faster than steady-state ATPase activity.  

Therefore, the result suggests that ADP release is not the rate-determining step for M9bIQ4. Since 

the affinity of ADP to actoM9bIQ4 (KADP) is 16 μM (Fig. II-4), the association rate constant for 

ADP to actoM9bIQ4 is calculated to be 0.21 μM-1s-1.

Unlike other myosins, myosin IX binds to actin in the presence of ATP (Post et al., 1998; Inoue 

et al., 2002).  Thus, we determined the binding affinity of M9bIQ4 to actin by co-sedimentation 

with increased actin concentration in the presence of ATP (Fig. II-11A). The band intensities of 

M9bIQ4 in the supernatant and pellet were quantified by densitometry, and the percent of bound 

M9bIQ4 was plotted as a function of actin concentration (Fig. II-11B). The points in graph are 

fit to hyperbola that assume 100% binding at infinite actin concentration, because M9bIQ4 shows 

complete binding to actin in the absence of ATP.  The affinity of M9bIQ4 to actin in the presence 

of ATP is Kd = 2.33 μM.  Since the predominant intermediate is M•ATP (Fig. II-6, II-7, and II-8), 

Kd value is considered as K8 (= k-8/k+8). Since k+8 + k-8[actin] is equal to 13.08 s-1, where [actin] 

= 0.6 μM (Fig. II-10B), the values of k+8 and k-8 are calculated to be 5.45 μM-1s-1 and 12.7 s-1, 

respectively.

For Other Myosins, M•ATP and M•ADP•P bind to actin weakly. However, M9bIQ4•ATP state 
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has much higher binding affinity than other myosin. Of interest is if M•ADP•P state of myosin IX 

binds weakly to actin. We determined the affinity of M•ADP•P state of myosin IX. It is shown that 

myosin forms stable ternary complex with ADP and phosphate analogue, vanadate (Vi) (Goodno, 

1979; Goodno and Taylor, 1982). Because Vi ion adopts trigonal bipyramidal coordination, it is 

proposed that Vi mimics the conformation of phosphate groups at the transition state expected 

for phosphoryl transfer (Lindquist et al., 1973; Westheimer, 1987). In myosin, it is believed that 

M•ADP•Vi complex mimics M•ADP•P state (Goodno, 1979; Goodno and Taylor, 1982). The half-

life for dissociation of M•ADP•Vi complex of myosin II at 0 oC is ~4days (Goodno, 1979; Goodno, 

1982; Werber et al., 1992). Actin increases the rate of release of vanadate by 105 compared to 

that of M•ADP•Vi alone, although the release of vanadate is still slow. Therefore, we confirmed 

the binding of ADP•Vi to actoM9bIQ4 using [3H]-ADP.  M9bIQ4 with excess [3H]-ADP and Vi 

was incubated with 20μM actin, and then the amount of trapped [3H]-ADP on M9bIQ4 of actin 

bound fraction was counted by scintillation counter.  As shown in Figure II-12A, nearly 100% 

of M9bIQ4 of bound fraction trapped [3H]-ADP in the presence of Vi, whereas little [3H]-ADP is 

trapped without Vi. These results suggest that M•ADP•P state of M9bIQ4 has high affinity to actin. 

Actin co-sedimentation assay was performed in the presence of ADP and Vi. As shown in Figure 

II-12B, M9bIQ4 co-precipitated with actin. When bound M9bIQ4 is plotted as a function of actin 

concentration, the affinity of M9bIQ4•ADP•P is obtained.  The obtained K9 is 1.2 μM (Fig. II-

12C). 
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DISCUSSION

Overview of M9bS1 ATPase.

M9bIQ4 has a low Kactin (2.3μM) and has a little ( ~ 1.3 times) actin-activation of steady-state 

ATPase rate (Table II-1). For other characterized myosins, actin accelerates the product release 

(i.e. Pi release or ADP release). Since M9bIQ4 has a rate-limiting step at hydrolysis step (Fig. II-6, 

II-7, and Table II-3), this is not a case for M9bIQ4.  The rate of hydrolysis is faster in the presence 

of actin (k+3’ = ~ 0.45 s-1) than that in the absence of actin (k+3 = ~ 0.2 s-1). Therefore, the low actin-

activation of M9bIQ4 is the result of the actin-activation of the hydrolysis rate. The predominant 

pathway under physiological condition is: (a) ATP binding to actoM9; (b) M9 dissociates from 

actin upon ATP binding but rapidly re-associates at high actin concentration; (c) hydrolysis is slow, 

and determining the rate of steady-state ATPase; (d) the M•ADP•P complex dissociates from actin 

but rapidly re-associates at high actin concentration; (e) Pi is released from M9 while M9 binds to 

actin; (f) ADP is released from actin-bound M9. Because the hydrolysis is the rate limiting, and 

M9•ATP complex associates with actin at saturated ATP and actin concentration (Fig. II-11), the 

predominant steady-state intermediate is AM•ATP state. This is also confirmed by the photoaffinity 

labeling of Myosin IX with ATP.

ATP binding

The binding of ATP to M9bIQ4 and actoM9bIQ4, determined by dmantATP fluorescence change, 

is fast (Fig. II-5, Table II-2).  The rate of ATP binding to actoM9IQ4 is also determined by the light 

scattering of ATP-induced dissociation of actoM9bIQ4 (Fig. II-10). The association rate constant 

for ATP binding to actoM9IQ4 obtained from the initial slope is 0.43 μM-1s-1, which is similar to 

the rate constant obtained from dmantATP fluorescence. The rate of ATP binding at physiological 

ATP concentration (Roth and Weiner, 1991) is 860 ~ 2000 s-1, which is at least > 3000-fold faster 

than the rate limiting step. Therefore, the nucleotide free state of M9bIQ4 is not significantly 
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populated.

The intrinsic tryptophan fluorescence of myosin is enhanced upon nucleotide binding and is 

further enhanced by the hydrolysis of ATP. This property has been exploited to examine the rates 

of the reaction steps in skeletal and smooth muscle myosin in both the absence and presence of 

actin (Lymn and Taylor, 1971; Bagshaw et al., 1974; Marston and Taylor, 1980; Rosenfeld and 

Taylor, 1984; Cremo and Geeves, 1998). The structural basis of nucleotide-dependent intrinsic 

fluorescence changes in myosin II has been previously investigated in skeletal muscle (Park et 

al., 1997), smooth muscle (Yengo et al., 1998; Yengo et al., 1999; Yengo et al., 2000; Yengo et 

al., 2002a), and the slime-mold Dictyostelium discoideum (Batra and Manstein, 1999; Malnasi-

Csizmadia et al., 2000; Kovacs et al., 2002). In all three isoforms, a tryptophan residue located 

on the rigid relay loop (W501 in D. discoideum non-muscle myosin II, W510 in skeletal muscle 

myosin, and W512 in smooth muscle myosin) has been shown to be the largest contributor to the 

observed intrinsic fluorescence enhancement associated with nucleotide binding and/or hydrolysis. 

The rigid relay loop is a region of the myosin II molecule thought to be critically involved in the 

conduction and amplification of structural changes at myosin’s active site to both the lever arm 

and actin binding interface (Houdusse and Sweeney, 2001). The tryptophan residue corresponding 

to chicken skeletal muscle myosin Trp510 is highly conserved among myosin superfamily, and 

the fluorescence enhancement upon ATP binding has been reported with unconventional myosins, 

myosin-I (El Mezgueldi et al., 2002), -V (De La Cruz et al., 1999; Trybus et al., 1999). Among 

the myosin superfamily, only myosin VI does not have the corresponding tryptophan residue. 

When tryptophan residue is introduced to the corresponding site, myosin VI showed fluorescence 

enhancement upon ATP binding (Sato et al., 2004), suggesting that the conformational change of 

this region is conserved among myosin superfamily. However, we could not observed the change 

of fluorescence for M9bIQ4, although Myosin IX has the tryptophan residue at the corresponding 

site (not shown). This would be due to slow hydrolysis of myosin IXb. 
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Hydrolysis

The hydrolysis rate of M9bIQ4 on actin is nearly identical to the maximal steady-state actin 

activated ATPase rate, suggesting that the equilibrium favor is M•ATP state. This is confirmed by 

the photoaffinity labeling of myosin IXb with ATP showing that the predominant intermediate is 

M•ATP state for myosin IX. Taken together, these results suggest that hydrolysis is rate limiting of 

myosin IXb ATPase cycle. This is the first myosin shown that hydrolysis is the rate-limiting step.

It is previously shown that at very low ionic strength conditions (1 mM MOPS and 0.4 mM MgCl2) 

and saturating actin concentration, the hydrolysis step could be rate limiting for actin bound skeletal 

muscle myosin ATPase (White et al., 1997). The forward rate of the hydrolysis step (k+3’) was slower 

when myosin binds to actin than in the absence of actin (k+3). Rate constants for the hydrolysis 

step in the presence of actin were k+3’ = 0.7 s-1 and k-3’ = 7 s-1. At physiological condition, myosin 

dissociates from actin upon binding of ATP. Thus, myosin hydrolyzes ATP while dissociating, then 

rebinds to actin at M•ADP•P state.  Therefore, if the weak binding states (M•ATP and M•ADP•P) 

of myosin had a high actin affinity, ATP hydrolysis would occur while attaching to actin. Indeed 

this is the case for myosin IX, since the affinity of M•ATP and M•ADP•P to actin was significantly 

high for Myosin IX (Fig. II-11 and Fig. II-12).

Mechanism of ATP hydrolysis

ATP hydrolysis of myosin is tightly coupled with the change of its conformation. The transition-

state structures, crystallized when either ATP or ADP•P analogs are bound to myosin (Fisher et 

al., 1995; Smith and Rayment, 1996; Dominguez et al., 1998; Houdusse et al., 2000), show that 

ATP hydrolysis requires interactions among Switch I, Switch II and the γ-phosphate that result 

in the closure of the γ-phosphate pocket, preventing Pi release (Fig II-13). However, there is no 

proton acceptor within 5.5 Å of the vulnerable P-O linkage of bound ATP. It was proposed that 
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two molecules of water bound in the γ-phosphate pocket by hydrogen-bond with Switch I and 

Switch II (Fisher et al., 1995; Smith and Rayment, 1996) play a role in this catalytic event. One 

of the hydrogen atoms of the water, w1, initially bonded to an oxygen atom of the γ-phosphate 

group, then interacts with the oxygen atom of a new, intruding water, w2. The other hydrogen atom 

remains bonded to the main chain carbonyl oxygen of Ser-237 (residue number is based on the 

sequence of Dictyostelium myosin II) on Switch I. A result of making this critical conjecture is that 

w1 ends up partially positioned and oriented to carry out its attack on the γ−phosphorus. Therefore, 

water network plays a critical role in ATP hydrolysis. Comparison of X-ray crystal structures 

revealed that the myosin motor domain bends at Ile-455 and Gly-457 (residue numbers are based 

on the sequence of Dictyostelium myosin II) located at the Switch II pre- and post-hydrolysis. This 

suggests that a flexible hinge region in the myosin motor domain has a critical role in the coupling 

of ATP hydrolysis to mechanical work. Previously we showed the mutation of the conserved 

residues on Switch II, Asp454, severely disrupted the normal ATPase activity of smooth muscle 

myosin (Kambara et al., 1999). Asp454 form the hydrogen bond with water, w3, which also forms 

hydrogen bond with Mg2+ ion coordinated with the tri-phosphate moiety of ATP. The substitution 

of Asp454 with Ala (D454A) disrupts this hydrogen bond. The D454A can form a rigor complex 

with actin, but ATP does not induce dissociation of D454A from actin. Although the structure of the 

actin-binding interface is preserved, the ATP-induced conformational change required to reduce 

actin affinity is disrupted. Although D454A shows significant basal Mg2+-ATPase activity, it has 

neither actin-activated ATPase activity nor an initial Pi burst. These results suggest that w3 also 

play a role in hydrolysis of ATP. Quite interestingly, the enzymatic character of D454A is similar to 

that of M9bIQ4. The mutation abolishes the hydrogen bonding of the side chain of residue 454 to 

the w3. Therefore, it would be expected that the conformation around Switch II of Myosin IX is 

different from other myosins, and maybe the residue of myosin IXb corresponding to Asp454 of 

Dictyostelium myosin II is not able to form the hydrogen bond with the w3.
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Phosphate release

When single-turnover kinetic measurement of ATP hydrolysis was performed using rapid chemical 

quench methods, the observed kinetics of hydrolysis would be two exponentials if product release 

is rate limiting. The rapid initial phase is due to rapid binding and hydrolysis of ATP. The slower 

phase is from slow product dissociation. If the hydrolysis step is rate limiting for myosin ATPase, 

a single exponential may be observed. We showed in Fig. II-6 that the kinetics shows a single 

exponential, suggesting that the product release is faster than hydrolysis. The phosphate release 

can be measured directly using a fluorescent probe for Pi, based on a phosphate binding protein 

(PiBP) (Brune et al., 1994; White et al., 1997). Myosin is mixed with ATP, aged to form M•ATP•P, 

and then mixed with actin in the presence of MDCC-labeled-PiBP. The fluorescence of MDCC-

PiBP increases as it binds released phosphate from myosin. However, we could not use this method 

because M9bIQ4 does not form a significant amount of M•ADP•P state.

The rate of phosphate release from all previously characterized myosins is increased by actin 

binding (White et al., 1997; De La Cruz et al., 2000b; De La Cruz et al., 2001) with exception of 

no actin activation of phosphate release from myo1eIQ (El Mezgueldi et al., 2002). The authors 

proposed that the lack of actin activation is caused by the low affinity of the M•ADP•Pi state for 

actin. Other myosins bind actin in the presence of ATP with equilibrium dissociation constants < 

50 μM at low ionic strength conditions (Furch et al., 1998; Joel et al., 2001), whereas myo1eIQ 

binds with a dissociation constant  > 50 μM. The ionic component of actin binding has been 

shown to be mediated by positive charges in surface loop-2 of myosin (Furch et al., 1998). The 

two conserved lysines at the C-terminal end of loop-2 is shown to be crucial for actin activation 

of phosphate release (Joel et al., 2001). Substitution of two conserved lysines with alanines on 

smooth muscle myosin HMM abolished the actin-induced phosphate release, while the intrinsic 

myosin ATPase activity and the rate of ATP binding and hydrolysis of the mutant are similar to 

wild type. Furthermore, the rate of ADP release from actoHMM and the ability to strongly bind 
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to actin were also native.  The affinity of M•ADP•P to actin is significantly high for myosin IX 

(Fig. II-12), and Myosin IX contains conserved lysine residues at the C-terminal end of loop-2. 

Therefore, it is possible that actin accelerates phosphate release from actoM9 and the rate of Pi 

release is fast.

ADP release

The ADP dissociation rate from myosin IX on actin (3 s-1) is 10-fold faster than the steady-state 

actin-activated ATPase rate (0.3 s-1), implying that ADP release is not the rate-limiting step in 

the ATPase cycle of myosin IX. M9bIQ4 has low affinity to ADP (16 μM). Consistent with this 

observation, 100 μM ADP did not inhibit the ATPase activity of M9bIQ4 (Fig. II-3). Therefore, the 

ATPase rate is not inhibited at physiological ADP (12–50μM) concentrations (Roth and Weiner, 

1991).  ADP release is rate limiting for other processive myosin, resulting in the formation of 

predominant intermediate at M•ADP state, which is strongly bound to actin. These myosins are 

tuned to have high duty ratio (> 0.5 for a head of double-headed myosin) to prevent from diffusing 

away from actin filament. In current criteria, AM and AM•ADP states are defined as strongly 

bound state with actin, and myosin has to populate at the strongly bound state for most of time 

during ATPase cycle to be processive. However, M9•ADP is not significantly populated during 

ATPase cycle, since M9•ATP state is predominant intermediate and ADP release rate is faster than 

that of steady-state ATPase activity. Myosin IXb is tuned to be processive by alternating binding 

state of AM•ATP and AM•ADP•P not to diffuse away from actin filament as shown Fig. II-11 and 

Fig. II-12.

Actin binding properties

One of the unique features of myosin IX compare with other characterized myosin is that a 

single-headed myosin IX has the high affinity to actin during ATPase cycle. A series of actin co-

sedimentation analysis (Fig. II-11, II-12, Table II-2) clearly showed that myosin IX does not 
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dissociate from actin at physiological actin concentration.  

The notable finding is that the Kactin of M•ATP state (K8) is 2.3 μM (Fig. II-11, Table II-2), which 

is much tighter than that of conventional myosin II (> 30 μM) (Konrad and Goody, 1982; Berger 

and Thomas, 1991; Resetar and Chalovich, 1995), and myosin VI (25 μM) (Sato et al., 2004). 

Furthermore, the dissociation rate (k+8) is very slow compared to other myosins (250 – 1500 s-1). 

The M•ATP state of myosin V, shows high affinity to actin  (4 μM) (Yengo et al., 2002b), which 

is similar to myosin IX. However, myosin V dissociates from actin quickly (> 750 s-1) upon ATP 

binding, and the hydrolysis (k+3+k-3) of myosin V is 750 s-1 in the absence of actin. Therefore, 

AM•ATP is not populated during ATPase cycle. Slow hydrolysis of myosin IX in the absence of 

actin allows myosin IX to stably form M9•ATP state. The affinity of M9•ATP to actin (K8) is still 

weaker than that of M9 (K6) and M9•ADP (K10) states, suggesting that the conformation of actin-

myosin interacting interface and the weak binding state is distinct from other myosins. It would be 

necessary to weaken the affinity (but must be high enough to prevent myosin diffusing away from 

actin) to make a movement.

It is possible that the large insertion at loop-2 region play a role in the strong affinity of myosin IX to 

actin, since it has been shown that loop-2 play a role in the binding of myosin with actin. Although 

there is no high-resolution structure of the actomyosin interface with myosin bound strongly to 

actin, elements of the interface have been inferred from docking the high-resolution structures of 

myosin into the electron density maps of strongly bound actomyosin complexes (Milligan, 1996). 

The actin-binding site of myosin is composed of five regions of myosin heavy chain (Fig. II-14). 

In the center of the interface, a helix-turn-helix motif of the lower 50-kDa subdomain of myosin 

is the main strong binding, stereospecific site participating in hydrophobic interactions with actin. 

Around this site, three different flexible loops of the myosin lower and upper 50 kDa subdomains 

(loop 2, loop 3 and the HCM loop) seem also to participate in the interactions. This actin-binding 
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interface is split by the large 50 kDa cleft, the opening and closing of which may be responsible 

for mediating the affinity between actin and myosin (Rayment et al., 1993b). As was predicted by 

Rayment et al. (Rayment et al., 1993b), recent studies of decorated actin suggest that the 50 kDa 

cleft is more closed in the strong binding state (Volkmann et al., 2000). Mutational studies that 

added additional positive charge to loop-2 (Furch et al., 1998), removed large segments of loop-

2 (Rovner, 1998; Knetsch et al., 1999), or replaced loop-2 of one species with that from another 

(Uyeda et al., 1994; Rovner et al., 1995; Murphy and Spudich, 1999), all concluded that loop-2 

affects the affinity for actin in the presence of ATP. Specially, Furch et al. (Furch et al., 1998) made 

a series of systematic changes to the loop-2 of Dictyostelium myosin-truncated S1. They increased 

the net charge from –1 to +12. The results show that the binding of ATP to the actoS1 construct and 

basal ATPase activity were unaffected by any of the changes. In contrast, increases in the number 

of positive charged residues dramatically increased the affinity of actin for the nucleotide free head 

(100-fold) and increased the apparent Km of actin (25-fold) in ATPase. There is a large insertion 

(130 amino acids) at the site of loop-2 of myosin IX. This insert is in rich of arginine and lysine. 

Therefore, the insert of myosin IX would have high affinity to actin.

Steady-state distribution of Biochemical state.

We could simulate steady-state distribution of intermediates during ATPase cycle since we 

determined most of the rate and equilibrium constants. Figure II-15 shows the steady-state 

distribution of intermediates at the physiological nucleotide concentration (Roth and Weiner, 

1991) and the saturated actin concentration. The rates of steady-state ATPase as a function of actin 

concentration were similar to those obtained from the experiments (Fig. II-2). The M9•ATP state 

is the predominant intermediate and populates 82 % in this state. Myosin IX populates at the strong 

binding, AM•ADP state with 11 % during ATPase cycle. Kinetic model of the ATPase reaction 

yields an ATPase rate of 0.37 s-1, which is very similar to the experimentally determined value of 

0.29 s-1.
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How does a single-headed myosin IX move?

The steady state and transient kinetic data shown here strongly support the idea that a single-

headed myosin IX does not dissociate from actin during ATPase cycle, thus moves processively on 

actin filament. Next question would be how and when myosin produces force to translocate actin 

filament. 

It is widely believed that the neck region of myosin, or light chain binding domain, works as a rigid 

lever arm of power stroke (Uyeda et al., 1996; Geeves and Holmes, 1999; Highsmith, 1999). In 

the swinging lever arm hypothesis, force production would result from the amplification of small 

conformational changes in the motor domain (0.5 nm) that would be directly transmitted to a rotation 

of the extended neck region of the myosin head (11nm for myosin II). This concept suggests that 

the swing of the lever arm occurs while myosin is strongly bound to actin, as it would correspond 

to a force generating transition.  Experimental support for the swinging lever arm model comes 

primarily from two types of studies. First, studies that show that the unitary displacement and/or 

velocity of the myosin are related to lever arm length (Uyeda et al., 1996; Warshaw et al., 2000). 

Second, studies of actomyosin complexes by electron microscopy have provided low-resolution 

structures of strong actin-binding states for a number of myosins (Rayment et al., 1993a; Schroder 

et al., 1993; Jontes et al., 1995; Whittaker et al., 1995; Carragher et al., 1998; Wells et al., 1999; 

Volkmann et al., 2000). An atomic model of the actin-myosin complex was then obtained by fitting 

the atomic structures of F-actin and myosin into three-dimensional cryo-electron microscope 

reconstitutions of decorated actin. For most of these, a significant rotation of the neck occurs 

upon ADP dissociation. Although both evidence support a role for the swinging of the lever arm 

in the generation of force and movement, they do not address whether force production is directly 

coupled to lever arm movement. 
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Kinetic studies show that binding of either an ADP-containing or a nucleotide-free head to F-

actin is a two-step process (Taylor, 1991; Walker et al., 1999). The ADP-containing state that 

initially interacts with actin binds weakly before undergoing a transition to a strong binding state. 

This provides further evidence that none of the high-resolution structures, represents a strong 

actin-binding state. There are studies showing that Pi release occurs from a weak actin-binding 

conformation that precedes the strong actin-bound ADP state (force-generating state). A recent 

study of the kinetics of smooth muscle myosin II supports the same mechanism (Rosenfeld et al., 

2000). Pi release would thus immediately follow lever arm movement, consistent with fluorescence 

experiments (Suzuki et al., 1998). The intriguing implication of assigning the near-rigor state 

bound to actin to be equivalent to the kinetic state defined by Sleep and Hutton (Sleep and Hutton, 

1980) is that strong binding to actin does not occur until after the structural changes between the 

transition state and the ADP-containing near-rigor state have been completed. This would imply 

that the major movement of the lever arm is not coupled to force generation directly, as in current 

swinging lever arm hypotheses.

To adapt the lever arm mechanism, myosin needs to be a double-headed structure or scaffold to a 

cellular structure, such as cytoskeleton, membrane, and vesicles. If myosin is a single-headed, and 

does not associate with cellular structure on its tail domain, the lever arm cannot produce force 

to translocate actin. Myosin IX is a single-headed structure. It is largely unknown if myosin IX 

associates with some cellular structure. However, judging from its domain structure, myosin IX 

does not have such a domain. Recently it is shown that myosin IX play a role in signal transduction 

of RhoA cascade (Reinhard et al., 1995; Chieregatti et al., 1998; Post et al., 1998) and transport a 

signaling molecule (Saeki et al., 2005), suggesting that myosin IX would move without associating 

a cellular structure. Therefore, there must be another mechanism for a single-headed myosin IX to 

achieve movement.
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Yanagida et al. proposed another mechanism for myosin movement, Brownian ratchet mechanism 

(Fig. II-16). That is to say that thermal motion causes the actin to move with respect to the myosin 

in concert with a weakly attached myosin flipping back and forth between the transition state and 

near-rigor state. If the actin moves far enough in the direction that allows the myosin to bind to actin 

in the near-rigor state, release Pi and attach strongly, then the actin will be physically constrained 

by the strongly bound myosin, thus biasing the Brownian motion (Yanagida et al., 2000). In the 

biased Brownian motion model, the lever arm merely functions as the ratchet, trapping Brownian 

motion of the actin filament and providing directionality. Yanagida et al. (Yanagida et al., 2000) 

further propose that the myosin can undergo multiple actin interactions per ATPase cycle. Although 

this view is not widely held, it could be possible if the myosin is attaching and detaching without 

reaching a strongly bound ADP state (i.e. detaching in the weakly bound near-rigor state). The 

asymmetry of the actin filament could bias the Brownian motion of the attachment/detachment in 

the same direction as the lever arm swing. Furthermore, if the lever arm stiffness is asymmetrical 

relative to directionality along an actin filament, this could also bias the Brownian motion. Once 

a strongly bound ADP state is reached, ADP dissociation and ATP binding would have to occur 

before the head could detach. As shown here, myosin IX predominantly populates AM•ATP state 

(82 %) and AM•ADP•P state (11 %) during ATPase cycle. These complexes do not dissociate from 

actin, but has weaker affinity to actin than M and M•ADP state, suggesting that the ‘weak binding’ 

state of myosin IX is distinct from previously characterized myosin. Taken together, it is possible 

that myosin IX adapts the Brownian ratchet mechanism. Further study is required to elucidate the 

mechanism of the movement of myosin IX.
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Table II-1. Steady-state ATPase activity of M9bIQ4.

  Vmax (s-1) KATP (�M) KActin (�M)

-  Actin 0.22 (0.012) 7.95 (0.77) -----------

+ Actin 0.29 (0.015) 6.30 (0.62) 2.3 (2.1)
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Table II-2. Kinetic and equilibrium constants for M9bIQ4 actin-activated ATPase.

ATP binding

K1k+2 (�M-1s-1) 1.08 (0.21)  ... mant
k+2 (s-1)  2.22 (0.71)   ...mant
1/K1 (�M)  2.06    ...calculation

K1’k+2’ (�M-1s-1) 1.07 (0.10)   ...mant
k-2’ (s-1)  3.43 (0.33)   ...mant
1/K1’ (�M)  3.21    ...calculation

Hydrolysis

k+3 (s-1)  0.21 ~ 0.25   ...simulation
k+3’ (s-1)  0.4 ~ 0.45   ...simulation

ADP release

k+5’ (s-1)  3.34 (0.28)   ...light scattering
k-5’ (�M-1s-1)  0.21    ...calculation
K5’   16.0 (1.3)   ...steady-state

Actin binding

k-6 (�M-1s-1)  5.16 (0.09)   ...light scattering
K6 (�M)  < 0.2    ...co-sedimentation with actin

k+8 (�M-1s-1)  5.45    ...calculation
k-8 (s-1)  12.7 (1.07)   ...light scattering
K8 (�M)  2.33 (0.29)   ...co-sedimentation with actin

K9 (�M)  0.99 (0.14)   ...co-sedimentation with actin

k-10 (�M-1s-1)  5.37 (0.22)   ...light scattering
K10 (�M)  < 0.2    ...co-sedimentation with actin
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Table II-3. Simulation for hydrolysis rate.
Different concentrations of M9bIQ4 and ATP are used to obtain apparent hydrolysis rate 
(kobs). Rates of hydrolysis (k+3) to fulfill experimentally determined kinetic constants (kobs) 
in each condition are determined by simulation using STELLA software. Parameters used 
were K1k+2 = 1.08 �M-1s-1, k-2 = 2.22 s-1, K1’k+2’ = 1.07 �M-1s-1, k-2’ = 3.43 s-1.

-Actin

M9bIQ4 (�M)  ATP (�M) kobs (s-1) simulated k+3 to obtain kobs

0.5   0.1  0.038   0.21

0.5   0.3  0.040   0.23

0.43   0.2  0.039   0.25

0.85   0.2  0.062   0.25

+Actin

M9bIQ4 (�M)  ATP (�M) kobs (s-1) simulated k+3 to obtain kobs

0.43   0.2  0.041   0.40

0.85   0.2  0.079   0.46
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Fig. II-1. Myosin IX construct. A, schematic diagram of expressed truncated human 
myosin IXb (M9bIQ4). The molecule is monomeric. B, purification of M9bIQ4 from Sf9 cell 
extracts. Lane 1, total cell lysate; lane 2, pellet of cell homogenate after centrifugation; lane 
3, supernatant of cell homogenate after centrifugation;lane 4, flow through fraction from Ni-
NTA agarose column; lane 5 and 6, elution from Ni2+-NTA agarose column. CaM undergoes its 
characteristic Ca2+-dependent shift in mobility (lane 5, EGTA; lane 6, Ca2+).
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Fig. II-2. The steady-state ATPase activity as a function of actin 
concentration. The ATPase activity of M9bIQ4 was measured as a function of actin 
concentration in the presence of 0.3 mM ATP. Solid lines, calculated based on the 
equation v = Vmax[actin]/(Kactin + [actin]) + v0. According to the analysis, the basal 
ATPase activity, vo is obtained for 0.22 s-1. The maximum activation by actin (Vmax) 
is 0.07 s-1. The maximum ATPase activity at saturating actin concentration (Vmax + 
v0) is 0.29 s-1 with Kactin of 2.3 μM. The error bars indicate S.D. for n = 3 from three 
independent preparations.
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Fig. II-3. The course of the steady-state ATPase activity of M9bIQ4 in the presence of 
actin with or without the ATP-regenerating system. ATPase activity was measured in the 
presence (closed circles) and absence (open circles) of 20 units/ml pyruvate kinase and 2 mM 
phosphoenol pyruvate. 20 μM actin and 0.6 mM ATP were used in the assay.
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Fig. II-4. Inhibition of the steady-state ATPase activity of M9bIQ4 in the 
presence of actin by Mg2+-ADP. The ATPase activity was measured in the presence 
of 25 μM ATP, 10 μM actin, and various concentration (0 – 1 mM) of ADP. The data was 
fit to the equation v = Vmax[ATP]/(KATP(1 + [ADP]/KADP) + [ATP]), where [ATP] is 25 μM 
and KATP is 6.3 μM.  According to the analysis, KADP was obtained for 16 μM. The error 
bars indicate S.D. for n = 3 from three independent preparations.
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Fig. II-5. Kinetics of dmantATP binding to M9bIQ4 and actoM9bIQ4.   Rates of dmantATP 
binding to M9bIQ4 (open circles) and actoM9bIQ4 (closed circles) as a function of nucleotide 
concentration are shown. The observed rates (kobs) were obtained by fitting the fluorescence data at 
each nucleotide concentration to a single exponential. The apparent second order rate constant for 
dmantATP binding to M9bIQ4 and actoM9bIQ4 are 1.08 μM-1s-1 and 1.07 μM-1s-1, respectively. 
ATP-dissociation rates determined by y-intercept are 2.22 s-1 in the absence of actin and 3.43 s-1 in 
the presence of actin. The error bars indicate S.D. for n = 4 from three independent preparations. 
The inset shows dmantATP fluorescence transients obtained by mixing 0.25 μM M9bIQ4 or 
actoM9bIQ4 with 3 μM dmantATP. The fluorescence data are fit to a single exponential. The 
values of kobs at these M9bIQ4 and dmantATP concentrations are 6.0 s-1 in the absence of actin and 
6.78 s-1 in the presence of actin.
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Fig. II-6. Kinetics of ATP hydrolysis of M9bIQ4 and actoM9bIQ4. 
Single turnover quench-flow measurements of hydrolysis is done upon mixing 0.85 
μM M9bIQ4 (open circles) or actoM9bIQ4 (closed circles) with 0.2 μM [γ-32P]-ATP. 
The solid lines are the best fits to a single exponential. The apparent rate constants 
are 0.06 s-1 in the absence of actin and 0.08 s-1 in the presence actin. The error bars 
indicate S.D. for n = 3 from two independent preparations.
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Fig. II-7. Simulation for hydrolysis rate determined by the apparent rate of 
hydrolysis. Rates of hydrolysis (k+3) to fulfill experimentally determined kinetic 
constants (kapp+3 = 0.06 s-1 and kapp+3’ = 0.08 s-1) are simulated using STELLA software. 
The experimentally determined kinetic constants (Table II-2) were fed into a kinetic 
model according to Scheme II-3 and Scheme II-4. Parameters used were K1k+2 = 1.08 
μM-1s-1, k-2 = 2.22 s-1, K1’k+2’ = 1.07 μM-1s-1, k-2’ = 3.43 s-1, [M9bIQ4 or actoM9bIQ4] 
= 0.85 μM, and [ATP] = 0.2 μM. Open circles, in the absence of actin. Closed circles, 
in the presence of actin. To obtain kapp+3 = 0.06 s-1 and kapp+3’ = 0.08 s-1, k+3 and k+3’ 
should be 0.24 s-1 and 0.45 s-1, respectively.



63

Fig. II-8. Photoaffinity labeling of myosin IXb with ATP.       Predominant 
intermediate during ATPase is determined by photoaffinity labeling of myosin IXb 
using [α-32P]-ATP or [γ-32P]-ATP.  Before (-UV) and after (+UV) irradiation, samples 
were subjected to SDSPAGE. Then, the incorporation of 32P into myosin heavy chain 
was analyzed by autoradiography.  Smooth muscle myosin heavymeromyosin (Sm 
HMM) was used for control. Top panels, Coomassie Brilliant Blue staining of the 
myosin heavy chain; lower panels, phosphor imager of the myosin heavy chain. α and 
γ represent labeling with [α-32P]-ATP or [γ-32P]-ATP.



64

Fig. II-9. Kinetics of M9bIQ4 association with actin filament in the presence and 
absence of ADP. Rates of actin binding to M9bIQ4 in the absence of ADP (open circles 
with gray error bar) and in the presence of 0.1 mM ADP (closed circles with black error bar) as a 
function of actin concentration are shown. The observed rates (kobs) were obtained by fitting the 
fluorescence data at each actin concentration to two exponentials. Solid lines are linear fits to 
the data, and starting from the origin. The apparent second order rate constants for actin binding 
to M9bIQ4 and actoM9bIQ4, determined by the slope, are 5.16 μM-1s-1 in the absence of ADP 
and 5.37 μM-1s-1 in the presence of ADP, respectively. The error bars indicate S.D. for n = 3 (in 
the absence of ADP) or n = 4 (in the presence of ADP) from three independent preparations. The 
inset shows timecourse of light scatter obtained by mixing 0.25 μM M9bIQ4 with 3 μM actin. 
The fluorescence data are fit to two exponential (solid line). The fast phase was kobs = 15.43 s-1, 
and the slow phase was 0.48 s-1. The slow phase was not dependent on the actin concentration. 
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Fig. II-10. ATP induced dissociation of M9bIQ4 from actin in the presence and 
absence of ADP.  A, Time course of dissociation of M9bIQ4 from actin by ATP.  
0.5 μM actoM9bIQ4 was mixed with 25 μM ATP, and the decrease in light scattering as a 
function of time is fit to two exponentials (solid line). The fast phase was kobs = 8.66 s-1, and 
the slow phase was 0.87 s-1. B, Time course of dissociation of M9bIQ4 from actin by ATP 
in the presence of ADP. 0.5 μM actoM9bIQ4 was mixed with 0.5 mM ATP in the presence 
of 0.25 mM ADP. The decrease in light scattering as a function of time is fitted to two 
exponentials (solid line). The fast phase was kobs = 2.71 s-1, and the slow phase was kobs =  
0.19 s-1. C, Dissociation rates as a function of ATP concentration. All stopped-flow transients 
are fit to two exponentials, and the fast phases are plotted as a function of ATP concentration. 
The data are fit to rectangular hyperbolas. The maximum vales are 13.08 s-1 in the absence 
of ADP (open circles) and 3.34 s-1 in the presence of 0.2 mM ADP (closed circles). The slow 
phase was not dependent on ATP concentration. The error bars indicate S.D. for n = 4 from 
three independent preparations. 
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Fig. II-11. Actin binding activity of M9bIQ4 in the presence of ATP.      Actin co-
sedimentation assay of M9bIQ4 with actin was performed in the presence of 0.4 μM M9bIQ4, 
1mM ATP, and various concentration (0 – 20 μM) of actin. Pellet and supernatant were analyzed 
by SDSPAGE. A, Coomassie staining of SDS gel. B, Fraction of bound M9IQ4 with actin was 
plotted as a function of actin concentration. The data was fit to hyperbola (v = Bmax[actin]/(Kactin + 
[actin]), where Bmax = 1. Kactin of 2.33 μM is obtained. The error bars indicate S.D. for n = 3 from 
three independent preparations.
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Fig. II-12. Actin binding activity of M9bIQ4 in the presence of ADP and Vi. Actin co-
sedimentation assay of M9bIQ4 with actin was performed in the presence of 0.4 μM M9bIQ4, 
0.1mM ADP, 1 mM Vi and various concentration (0 – 8 μM) of actin. Pellet and supernatant 
were analyzed by SDSPAGE. A, Trapped [3H]-ADP in the absence and presence of vanadate. B, 
Coomassie staining of SDS gel. C, Fraction of bound M9IQ4 with actin was plotted as a function 
of actin concentration. The data was fit to hyperbola (v = Bmax[actin]/(Kactin + [actin]), where Bmax 
= 1. Kactin of 0.99 μM is obtained. The error bars indicate S.D. for n = 3 from three independent 
preparations. C, The amount of trapped [3H]-ADP in the actin-bound fraction of M9bIQ4. 



69

Figure II-13. Three-dimensional structure of the switch II region of the myosin•ADP•Vi 
complex.  Structure data is obtained from protein data bank (PDB) using PDB ID 
of 1VOM. P-loop, Switch I, and Switch II are colored by pink, cyan, and white respectively. W1 
forms hydrogen bond with S237 and w2. W2 forms hydrogen bond with w1, G457, and E459. 
W3 forms hydrogen bond with D454 and Mg. The sequences shown are based on the sequence of 
Dictyostelium myosin II.
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Figure II-14. Three-dimensional structure of actin binding interface on myosin A, Ribbon 
diagram of the 3D structure of Dictyostelium myosin II. B, Actin binding region is shown by 
spheres. Shown is the same orientation with panel A. C, Different orientation of (B). The molecule 
is observed from the arrow on panel B. Actin binding interface is composed of five regions, loop-2 
(magenta), loop-3 (white), loop-4 (pink), HCM loop (yellow), helix-loop-helix (orange). Loop-2 
shown is 11 residues. Myosin IXb has insertion of 130 residues at this region.
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Figure II-15. Models for steady-state distribution Simulations were performed using 
experimentally determined kinetic constants (Table II-2) according to Scheme II-1. Parameters 
used were K1’k+2’ = 100 s-1, k-2’ = 3.43 s-1, k+8 = 5.45 μM-1s-1, k-8 = 12.7 s–1, k+3’ = 0.43 s-1, k+3 = 
0.23 s-1, k+9 = 5 μM-1s-1, k-9 = 5 s–1, k+4’ = 100 s-1, k+5 = 3.32 s-1, actin = 30 μM, and M9bIQ4 = 1 
μM. Predominant intermediate is AM•ATP state (82 %). Other intermediates are AM•ADP (11 %), 
M•ATP (4 %), and AM (3 %).
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Figure II-16. The biased Brownian ratchet model. A, The mechanism is illustrated in 
terms of its possible energetics. In the absence of ATP, myosin is strongly bound to actin in its 
lowest energy state, unable to translocate (1). The binding of ATP switches myosin to a different 
conformational with a weaker affinity for actin (2), and allows it to diffuse along the actin filament. 
From the binding free energy point of view, this diffusion event depends on a downward slope 
in the energy profile (3). When myosin moves far enough, myosin binds to actin, concomitantly 
release products (4).  B, the model of the processive movement for myosin IX. Myosin IX strongly 
binds to actin in the absence of ATP (1). Upon binding of ATP to myosin IX, the affinity of myosin 
IXb to actin is reduced allowing to move on actin filament (2). Possibly due to large insert at loop-
2, myosin IXb does not diffuse away from actin filament. When myosin IXb reaches at the position 
of lowest energy state, it releases phosphate following by strong binding to actin.
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CHAPTER THREE: CLONING OF FULL-LENGTH MYOSIN IXB AND 

INITIAL CHARACTERIZATION OF THE ATPASE ACTIVITY OF FULL-

LENGTH MYOSIN IXB.

INTRODUCTION

Motor function of myosins is regulated by diverse mechanisms, such as phosphorylation of light 

chain or heavy chain, Ca2+-binding to CaM light chain, conformational change by association 

with binding partner, and single headed-to-double headed transition. Since all characterized 

unconventional myosins have at least one CaM as light chain, those myosins seem to be regulated 

by calcium. The regulatory mechanism by calcium is well characterized for myosin V among the 

unconventional myosins.  EGTA decreases the actin-activated ATPase activity of tissue-purified 

myosin V as well as its affinity for actin (Cheney et al., 1993; Nascimento et al., 1996; Tauhata et 

al., 2001). On the other hand, the actin-activated ATPase activity of any of the shorter baculovirus-

expressed constructs is not altered by the presence of Ca (Trybus et al., 1999; Wang et al., 2000). 

There are common features between tissue-purified myosin V and truncated recombinant myosin 

V; Calcium causes dissociation of some CaM, and calcium inhibits actin movement in the in vitro 

motility assay regardless of whether the construct is an expressed monomer (Trybus et al., 1999), 

an expressed short-tailed dimer (Homma et al., 2000), or the tissue-purified full-length molecule 

(Cheney et al., 1993). These results suggest that full-length myosin V can adopt an inhibited 

structural state that is not possible with any shorter constructs. Consistent with this hypothesis, 

hydrodynamic data and EM suggest that the inhibited state is a compact conformation of the 

molecule that can be unfolded to an active state by calcium (Krementsov et al., 2004; Li et al., 

2004; Wang et al., 2004). Quite recently it is shown that the binding of melanophilin at the tail of 

myosin Va activates actomyosin Va ATPase activity (Li et al., 2005). Taken together, the motor 

function of myosin V is regulated by conformational change of myosin itself by Ca and associating 
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with binding partner on the tail domain. Similar scenario would be applied for myosin IXb. We 

hypothesized that (1) the tail domain is required for the reguration of the motor activity by calcium, 

(2) cargo molecules may serve as regulator, and (3) Myosin IX tail containing GAP domain, rise 

an idea that Rho may regulate the motor activity.

It is previously shown that the actin translocating activity of tissue isolated myosin IXb is regulated 

by calcium mediated through CaM light chains (Post et al., 1998). In the presence of EGTA, 

myosin IX translocates actin filaments at 15 nm/sec, while the velocity is slowed to 10 nm/sec in 

the presence of 10 μM Ca. Therefore, calcium does not act as an on/off switch, rather may regulate 

a degree of processive movement. For further understanding of the function of myosin IXb, it 

is critical to express a full-length myosin IXb construct. The goals of this chapter are to express 

large, full-length myosin IXb construct, and perform the initial biochemical characterization of 

full-length myosin IXb.
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METHODS

cDNA Cloning and sequencing

The construct of motor domain with four IQ motifs (M9bIQ4) was prepared previously. Therefore, 

we cloned tail potion of myosin IXb to make full-length myosin IXb construct. Total RNA was 

prepared from packed cells of the human leukaemic cell line HL60 using an RNeasy minikit 

(Qiagen), and cDNA was synthesized by reverse transcription with random oligonucleotides.  The 

myosin IXb cDNA fragment, SP clone (encoding nucleotide 3741-4885, accession #NM004145) 

was amplified with a set of primers, 5’-GTTGGAGCGGCC GACTAGTCTGGCCCTGGACAGC-

3’ and 5’-TGGCGAACACGTGACTAGTGTGCTCCTGGACAGC-3’, containing SpeI site. 

The amplified cDNA was random labeled with 32P using the Megaprime labeling kit (Amersham 

Biosciences) and used as a probe to screen human promyelocytic leukemia lambda cDNA library 

(Stratagene). Plaque hybridization was carried out at 65 °C in Church buffer.  The myosin IXb 

cDNA insert, SC clone (encoding nucleotide 4765-6894, accession #AF020267) were subcloned 

into pBluescript SK(+/-) from Uni-ZAP XR vector by in vivo excision according to manufacturer’s 

protocol.  The nucleotide sequence was analyzed with the PerkinElmer terminator ready reaction 

mix using a model 377 DNA sequencer (Applied Biosystems, Foster City, CA).  

Production of Myosin IXb2 construct

The SP clone, the SC clone, and M9bIQ4 in pFastbac vector (Inoue et al., 2002) were used to 

construct full-length myosin IXb expression vector (Fig. III-1 and Fig. III-2).  The MluI site was 

introduced at nucleotide position 4798 by site-directed mutagenesis without changing the amino 

acid. The SP clone was amplified with a set of primers, 5’- G TTG GAG CGG CCG ACT AGT 

CTG GCC CTG GAC AGC -3’ and 5’- CTT GGT GTA GCC ACG CGT GAA CTC ATC TAG -3’, 

containing SpeI site and MluI site, respectively. The SC clone was amplified with a set of primers, 

5’-CTA GAT GAG TTC ACG CGT GGC TAC ACC AAG -3’ and 5’-CTT TGT CAG CTG TGG 
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ACT AGT GCC ATT GGT CTG GCC -3’, containing MluI site and SpeI site, respectively. These 

PCR fragments were subcloned into pCR2.1 vectors. The SC fragment in pCR2.1 vector was 

digested with MluI and EcoRV, and the excised fragment was ligated into corresponding site on the 

SP clone in pCR2.1 vector.  The SP/SC fragment in pCR2.1 vector was digested with SpeI, and the 

excised fragment was ligated into corresponding site on M9bIQ4 in pFastbac vector.  Flag epitope 

(DYKDDDDK) was introduced at the N-terminus of the construct to facilitate purification.

Preparation of Full-length Myosin IXb Proteins

To express full-length myosin IXb, 250 ml of Sf9 cells (approximately 1 x 109) were co-infected 

with two separate viruses expressing the Myosin IXb heavy chain and CaM. Cells were cultured at 

28 °C in 175-cm2 flasks and harvested after 60 h. Cells were lysed in 10 ml of lysis buffer (30 mM 

Tris-HCl, pH 7.5, 0.15 M KCl, 1mM EGTA, 5 mM MgCl2, 5 mM ATP, 1 mg/ml trypsin inhibitor, 

and 0.01 mg/ml leupeptin). After centrifugation at 100,000 x g for 30 min, the supernatant was 

loaded onto anti-flag affinity column, and washed with a 10-fold volume of buffer containing 30 

mM Tris-HCl, pH 7.5, 0.3 M KCl, and 1 mM EGTA. Myosin IXb was eluted with buffer containing 

30 mM Tris-HCl, pH 7.5, 30 mM KCl, 1 mM EGTA, 0.01 mg/ml leupeptin, and 0.01 ml/ml 

flag peptide. Protein concentration was determined by densitometry of Coomassie-staining gel. 

Typically 0.3 mg of protein is obtained from 300 ml culture. Protein was used within 6 hours.

Steady-state ATPase assay

The actin-activated ATPase assays were performed at 25oC in 30mM Tris-HCl, pH7.5, 30mM 

KCl, 1mM EGTA, 2mM MgCl2, 1mM DTT. Otherwise described in figure legend. Liberated 32P 

was determined. 

Actin binding

The binding of calmodulin to Myosin IXb was determined by actin co-sedimentation assay. 
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Myosin IX was incubated with in buffer containing 30 mM Tris-HCl pH7.5, 30mM KCl, 2 mM 

MgCl2, 1 mM CaCl2, 30 μM Actin, and various concentrations of EGTA at 25°C for 15 min. The 

samples were ultracentrifuged at 100,000 X g for 10min. The pellets were analyzed by SDSPAGE. 

The amount of the co-sedimented Myosin IXb heavy chain and calmodulin were determined by 

densitometry.
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RESULTS

Cloning and sequencing of cDNAs encoding human myosin IXb.

The construct of motor domain with four IQ motifs (M9bIQ4) was prepared previously. Therefore, 

we cloned the tail potion of myosin IXb to make a full-length myosin IXb construct. The fragment 

of a middle portion of the construct (SP clone) could be amplified by PCR. However, we failed to 

obtain a fragment containing 3’ end of myosin IXb by PCR. Therefore we performed screening 

human promyelocytic leukemia lambda cDNA library. From ~1 x 107 recombinant phage plaques, 

8 positive clones were obtained. Among them, five clones covered the entire 3’ region of open 

reading frame of human myosin IXb as shown in Fig. III-1 and Fig. III-2. The sequencing analysis 

revealed that 3’ end region from 5746-base of obtained sequence was different from the reported 

sequence (accession # NM004145. The sequence is already corrected by the authors.).

Two alternative splicing at C-terminus of myosin IXb are reported in orthologues of human myosin 

IXb, myr5 (rat) and Myo9b (mouse) (Fig. III-3A). We could get large fragment including 3’ UTR 

region (SC clone) for human myosin IXb. By comparison the sequence of the obtained fragment 

with the genomic sequence and the sequence of orthologues, the large splicing variant found in rat 

and mouse would be exist in human by utilize an upstream alternative splice acceptor, inserting an 

additional 138 amino acids (Fig. III-2 and Fig. III-3).

We isolated shorter isoform of full-length human myosin IXb cDNA of 6018 bp encoding a protein 

of 2006 amino acids with a molecular mass of 227 kDa. Sequencing analysis shows this clone 

does not contain the alternatively spliced exon of 48bp after residue Alanine 1915, and residue 

Glutamine 1612 is missing.
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Preparation of full-length myosin IXb

The shorter isoform of myosin IXb construct was produced and expressed in Sf9 insect cells.  Cells 

were co-infected with Myosin IXb expressing virus and calmodulin expressing virus. Myosin 

IXb is purified using FLAG-tag affinity chromatography (Fig. III-4). The purified Myosin IXb 

construct has bound calmodulin, which shows its characteristic calcium-dependent shift in mobility 

in SDSPAGE.

Steady-state ATPase activity of Myosin IXb.

To analyze myosin activities of purified full-length myosin IXb, steady-state ATPase activities were 

determined. Basal Mg2+-ATPase activity was measured as a function of ATP concentration (Fig. 

III-5A). Steady-state ATPase activity at saturating ATP concentration is 0.031 s-1 in the absence 

of actin with KATP of 12 μM. Actin activated the ATPase of myosin IXb. In the presence of 20 μM 

actin, ATPase is activated to 0.15 s-1. Actin does not effect on the affinity of myosin IXb to ATP. 

KATP of myosin IXb in the presence of actin is 13 μM (Fig. III-5B). Next we examined the effect 

of actin concentration on the Mg2+-ATPase activity of full-length myosin IXb. The ATPase activity 

was activated ~ 10 fold by actin filament with Kactin of 10.5 μM (Figure III-6). As shown in 

Chapter 2, the ATPase activity of M9bIQ4 has high basal ATPase activity and is not significantly 

activated by saturating actin filament. Since the maximum ATPase activity in the presence of actin 

is similar between M9bIQ4 and full-length myosin IXb, it is plausible that tail domain of myosin 

IXb negatively regulates the basal ATPase activity of myosin IXb.

As demonstrated in Chapter2, ADP does not inhibit the ATPase activity of M9bIQ4 even though 

myosin IXb is a processive myosin. We confirmed if the ATPase activity of full-length myosin IXb 

is not inhibited by ADP. The ATPase activity of full-length myosin IXb did not change with time 

in the absence and presence of ATP regeneration system (Fig. III-7), suggesting that the ATPase of 

myosin IXb is not inhibited by ADP.
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Regulation by Calcium

Tissue isolated myosin IXb shows the inhibition of actin-translocating activity by increasing [Ca2+] 

(Post et al., 1998). Thus, we examined if calcium inhibits the ATPase activity of myosin IXb (Fig. 

III-8). A detail analysis of the free Ca2+ concentration revealed inhibition for both the basal and 

actin-activated ATPase activity above pCa6. This concentration range coincides with the affinity 

of CaM for Ca2+, supporting the notion that the observed inhibition is due to the binding of Ca2+ 

to the Myosin IXb light chain calmodulin. This Ca2+- dependent inhibition of the ATPase activity 

of myosin IXb could be explained either by conformational change of CaM or by dissociation of 

CaM from the myosin IXb heavy chain. Calcium inhibits actin-translocating activity of myosin V 

by dissociation of some CaMs for an expressed monomer (Trybus et al., 1999), an expressed short-

tailed dimer (Homma et al., 2000), or the tissue-purified full-length molecule (Cheney et al., 1993). 

Two of these papers (Cheney et al., 1993; Trybus et al., 1999) showed restoration of motility in the 

presence of excess Ca2+-CaM. This observation suggests that calcium-dependent CaM dissociation 

causes the molecule to be ineffective as a motor. On the other hand, Calcium inhibits the ATPase 

activity of Myr3, a rat myosin I, but CaM remains bound to the Myr3 heavy chain. Addition of 

exogenous calmodulin had no effect on the ATPase activity of Myr3, suggesting that the inhibition 

of the ATPase activity of Myr3 is due to the conformational change of CaM by binding Ca2+. To 

discriminate between these two possibilities, we performed an actin cosedimentation assay in the 

absence and presence of free Ca2+ (Fig. III-9A, B). This experiment allows for the separation of 

free calmodulins from calmodulins bound to the myosin IXb heavy chain. Comparable amounts of 

calmodulin were found to cosediment with myosin IXb and F-actin, suggesting that calmodulin light 

chain did not dissociate from myosin IX at high calcium concentration. Consistently, exogenous 

calmodulin did not rescue the inhibition of the ATPase activity of myosin IX by high Ca2+ (Fig. 

III-9C). These results indicate that the dissociation of calmodulin is not involved in the inhibition 

of the ATPase activity. 
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DISCUSSION

We could obtain a large, full-length myosin IXb cDNA. Sequence analysis revealed that myosin 

IXb could have two alternative splicing variants at C-terminal end found in rat and mouse. The 

additional sequence is rich in proline residue. Proline rich domain is known as target sequence of 

proteins that have SH3 domain. Therefore, it is likely that the physiological role of two isoforms 

would be different.

Regulation by the tail domain and the calcium binding to CaM light chains.

We could successfully express the full-length myosin IXb of 227 kDa. Our ability to express 

myosin IXb constructs in any size, the truncated myosin IXb (150kDa) and a larger molecular 

mass of the full-length myosin IXb (227kDa), allows us to show that full-length myosin IXb has 

some kind of regulation not observed with the truncated tail-less construct. The basal ATPase 

activity of full-length myosin IXb (0.03 s-1) was activated ~10 fold by actin, while the basal ATPase 

activity of M9bIQ4 was raised to values that were comparable to the actin activated ATPase, 

suggesting that the tail domain of myosin IXb inhibits the basal ATPase activity of the myosin IXb 

head domain. Furthermore, Ca2+ inhibits the ATPase activity of the full-length myosin IXb in the 

presence and absence of actin. However, CaMs do not dissociate from myosin IX at high calcium 

concentration.

Similar regulation is found in a rat myosin I, myr3 (Stoffler and Bahler, 1998). The limited 

digestion of myr3 with mercuripapain produced a myr3 fragment truncated at its C-terminus by 

approximately 10 kDa.  The C-terminally truncated myr3 shows increased basal ATPase activity 

as compared to the intact myr3. Moreover, when an antibody that recognizes the tail domain of 

myr3 is used as a substitute for a physiological binding partner, the basal ATPase activity of myr3 

is increased in concentration dependent manner of antibody. These results indicate that myr3 is 
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subject to negative regulation by its own tail domain and passively positive regulation by a tail-

domain binding partner. In addition, the ATPase activity of Myr3 was found to be negatively 

regulated by micromolar free Ca2+ concentration. CaM light chains remain association with myr3 

heavy chain. Therefore, similar regulatory mechanism might be involved in the regulation of 

myosin IXb.

The studies of the effect of Ca2+ on other members of myosin superfamily also give us a clue for 

the inhibitory mechanism. The effect of Ca2+ on the ATPase activity of Myosin V was extensively 

studied. Ca2+ activates the ATPase activities of myosin V, and causes a partial dissociation of 

CaM light chains. On the other hand, any shorter, tail-less constructs have calcium-insensitive 

actin-activated ATPase activity. These results suggest that in solution, full-length myosin V can 

adopt an inhibited structural state that is not possible with any shorter construct. Hydrodynamic 

data and EM suggest that the inhibited state is a compact conformation of the molecule that can 

be unfolded to an active state by calcium. In addition, melanophilin, which binds to globular tail 

domain of myosin V, activates the actin-activated ATPase activity of myosin Va. It is proposed 

that a folded-to-extended conformational change, which is regulated by calcium and by cargo 

binding, is responsible for regulating myosin V’s motor activity. Myosin IXb would be regulated 

by a folded-to-extended conformational change, which is dependent on Ca concentration and/or a 

binding partner.

The inhibition of the basal ATPase activity of myosin IXb is critical to avoid the waste of ATP 

consumption in cell. Presumably, myosin IXb is inactive state and does not consume ATP when it 

does not interact with actin, and upon actin binding the motor function of myosin IXb is activated. 

Of interest is how the tail region inhibits the basal ATPase activity of myosin IX. There are several 

possibilities for this inhibitory mechanism: (1) Myosin IX forms a folded conformation that the 

tail domain directly inhibits the binding of ATP to myosin IX. Inhibition is released by the binding 
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Figure III-1. Construction of full-length human myosin IXb cDNA. 

of actin to myosin IX. (2) Rate of hydrolysis is decreased for full-length myosin IX in the absence 

of actin. (3) Product release is decreased for full-length myosin IX in the absence of actin. Kinetic 

analysis of the ATPase of myosin IX would clarify this question.
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Figure III-2. Schematic drawing of the tail region of human myosin IXb cDNA. 
  Alternative splicing exon identified in this study is shown with the number of amino acids 
encoded. The alternative use of final exon results in two different length of cDNA. Longer 
isoform has additional 138 residues in which proline rich domain is found. Solid bars show 
the position of nucleotide sequence of each of the cloned cDNAs.
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Figure III-3. Sequence of cloned human cDNA.  Zinc-binding domain is 
indicated by red. GAP domain is highlighted by yellow box. Exon36 (16 amino acids) is 
spliced out in our construct. Alternative splicing exon at C-terminal region is shown by 
blue box. Shorter isoform is terminated at tyrosine 2006, while longer isoform terminated 
at Glysine 2181.
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Figure III-4. Purification of human myosin IXb construct. Lane 1, molecular mass marker; 
lane 2; total cell lysate; lane 3, pellet of cell homogenate after centrifugation; lane 4, supernatant 
of cell homogenate after centrifugation; lane 5, flow though fraction from FLAG-tag affinity 
column; lane 6 and lane 7, elution from the column. CaM undergoes its characteristic Ca2+-
dependent shift in mobility (lane 6, EGTA; lane 7, Ca2+).
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Figure III-5.  ATP dependence of steady-state ATPase activity of myosin IXb. 
The ATPase activity of Myosin IXb was measured as a function of ATP concentration 
in the absence (open circles) or presence (closed circles) of 20 μM actin. Solid lines, 
calculated based on the equation v = Vmax[ATP]/(KATP + [ATP]). According to the 
analysis, the basal ATPase activity is obtained for 0.03 s-1 with KATP of 12.2 μM. The 
maximum ATPase activity in the given actin concentration is 0.16 s-1 with KATP of 13.2 
μM. The error bars indicate S.D. for n = 3 from three independent preparations.
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Figure III-6. Actin dependence of steady-state ATPase activity of myosin IXb. 
The ATPase activity of Myosin IXb was measured as a function of actin concentration 
in the presence of 0.3 mM ATP. Solid lines, calculated based on the equation v = 
Vmax[actin]/(Kactin + [actin]) + v0. According to the analysis, the basal ATPase activity, 
vo is obtained for 0.03 s-1. The maximum activation by actin (Vmax) is 0.32 s-1. The 
maximum ATPase activity at saturating actin concentration (Vmax + v0) is 0.35 s-1 
with Kactin of 10.5 μM. The error bars indicate S.D. for n = 3 from three independent 
preparations.
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Figure III-7. The course of the steady-state ATPase activity of Myosin IXb in the 
presence of actin with or without the ATP-regenerating system. ATPase activity 
was measured in the presence (closed circles) and absence (open circles) of 20 units/
ml pyruvate kinase and 2 mM phosphoenol pyruvate. 20 μM actin and 0.6 mM ATP 
were used in the assay. Actin does not show ATPase activity (triangles).
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Figure III-8. The effect of calcium on the ATPase activity of myosin IXb.   
Myosin IXb was incubated with various Ca concentrations using Ca/EGTA buffer 
system. The ATPase activity was measured in the absence (open circles) and presence 
(closed circles) of 10 μM actin.
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Figure III-9. The effect of calcium on dissociation of calmodulin from myosin IXb heavy 
chain. A, SDSPAGE shows the pellets of myosin IXb cosedimented with actin. B, fraction of 
bound CaM on the myosin IXb heavy chain. The concentration of heavy chain and CaM light 
chains are determined by densitometry of SDSPAGE gel from panel A. The experiment was done 
three times, and the bars represent SD. C, Effect of exogenous CaM on the ATPase activity of 
myosin IXb at various Ca2+ concentration. The ATPase activity was measured in the presence of 
10 μM CaM. Open circles, without exogenous CaM. Closed circles, with exogenous CaM.
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CHAPTER FOUR: CONCLUSION AND PERSPECTIVE

Studies for processive movement of myosin IX.

We determined the rates of key steps of ATPase cycle of myosin IXb. The most notable features 

of ATPase are; (1) the rate-limiting hydrolysis, (2) AM and AM•ADP strongly bind to actin, and 

the affinities are comparable to other myosins, and (3) M9•ATP and M9•ADP•P states are lower 

affinity to actin compared to that of AM and AM•ADP, but still high enough to prevent myosin 

IX from diffusing away from actin filaments. These results strongly support the finding that 

single-headed Myosin IXb moves processively on actin filaments. As discussed in the Chapter 

2, proposed swinging lever arm model for force generation (power stroke) and hand-over-hand 

model for processive movement of double-headed myosin are not able to describe that of single-

headed myosin IXb, but does a biased Brownian ratchet model. Therefore, characterization of 

the mechanism of processive movement for single-headed myosin IXb will be central to further 

research in this area. A critical experiment to answer the question is to measure the displacement 

of myosin IXb using total internal reflection fluorescence microscope (TIRFM) and a scanning 

probe (Kitamura et al., 1999). In this technique, single myosin molecules captured on the tip of the 

scanning probe were visualized by TIRFM, which produces clear images of single fluorophores 

at a high fluorescence-to-background ratio. If myosin IXb moves with a biased Brownian ratchet 

model, myosin IX would step 36 nm that coincides actin helical pitch.

Judging from very limited information, it is anticipated that processive myosin IX transports 

proteins such as BIG1 without dissociating from actin, but not vesicles like myosin V. Actin 

translocating activity (Inoue et al., 2002; Post et al., 2002) and kinetic data suggested that myosin 

IX is processive, then next question related to physiological function would be how far myosin IX 

can travel on actin filament without dissociating from actin track. This question will be answered 

by measuring run length of myosin IXb using TIRFM where the actin bundles are attached to the 
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glass surface and myosin molecule in solution is observed to move as single fluorescent spot along 

actin filament. Another question regarding processivity in cell is that if step size is dependent on 

loading. For myosin V and myosin VI, step size is not dependent on load. Because myosin IX 

is single headed structure, it is possible that myosin IX cannot travel for long distance without 

dissociation from actin under loaded condition. This question would be addressed by using dual 

bead optical trapping.

Does the processivity of myosin is regulated by association with binding partner protein? Even 

though myosin IX has high affinity to actin, the probability of processive movement might be less 

compare to double-headed processive myosins. If myosin IX is such a weak processive motor, 

binding of other molecules to myosin IX could attenuate diffusion of myosin IX from an actin 

track, thus could travel for long distance. Therefore, measuring run length in the absence and 

presence of binding partner is of interest in terms of regulation of processivity of myosin IX.

Of interest is how single-headed myosin IXb is tuned to move processively. To ensure that a 

myosin IXb molecule does not diffuse away from actin track, this myosin may use a mechanism 

similar to that originally proposed for the processive movement of the single-headed kinesin, 

KIF1A (Okada and Hirokawa, 2000; Kikkawa et al., 2001). This motor contains a highly charged 

surface loop in the motor domain that weakly tethers the motor to the microtubule preventing 

diffusion away from the microtubule surface. The electrostatic tether allows the motor to undergo 

one-dimensional diffusion along its track in search of its next strong binding site. The large, highly 

basic insertion at the actin contact site of Myosin IXb is an obvious candidate to participate in 

a similar mode of processive movement along the actin filament. Further characterization of 

the effect of the insertion of myosin IXb on processivity can be accomplished by using mutants 

expressed in baculovirus expression system. I would express only insertion region, and examine 

if this construct binds to actin filaments. Then processivity of myosin IXb mutant lacking the 
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insertion would be examined.

Studies for conformational change of myosin IX.

The second extension of this research is the characterization of conformational change of myosin 

IXb. As shown in Chapter 3, the ATPase activity of myosin IXb is regulated by its tail region and 

Ca2+, maybe by folded-extended conformational change. This could be elucidated by studying 

rotary shadow electron microscopy and analytical centrifugation. Cryo-electron microscopy is 

another technique to see the structure of myosin IXb. Using this method, we can see the protein 

structure in aqueous environment in physiological conditions. Decorated actin filament with 

myosin IXb can be analyzed by cryo-EM and image reconstitution to gain structural insight. This 

technique will enable us to determine the identity of the subdomains in the reconstituted structure 

and the movement of the subdomains among various nucleotide bound forms of myosin IX. The 

decoration of myosin IX on actin filaments can be done in the presence and absence of ATP, in the 

presence of ADP, and in the presence of ADP and phosphate analogs such as vanadate. As shown 

in Chapter 2, all of intermediates do not dissociate from actin filaments during ATPase cycle. 

Therefore, we will detect the changes in the conformation of myosin IX while it associates with 

actin during the ATPase cycle.

Physiological function of myosin IXb.

What is a physiological role of myosin IX? How processive motor behavior could contribute to 

the biological function of myosin IX? The cellular function of the class IX myosins is currently 

unknown. However, it has been shown that myosin IX has GAP activity, which inactivates small 

G-protein RhoA. Thus it is likely that the class IX myosins are involved in rho-mediated signaling 

pathways.

RhoA was shown to regulate formation of stress fibers and focal adhesions in fibroblasts and to 
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regulate Ca2+ sensitivity of smooth muscle contraction (Hirata et al., 1992). Thus RhoA is involved 

in remodeling of the actin cytoskeleton. Reorganization of the actin cytoskeleton plays crucial roles 

in many cellular functions such as cell shape change, cell motility, cell adhesion, and cytokinesis. 

Filamentous actin is generally organized into a number of discrete structures: (1) actin stress 

fibers: bundles of actin filaments that traverse the cell and are linked to the extracellular matrix 

through focal adhesions; (2) lamellipodia: thin protrusive actin sheets that dominate the edges of 

cultured fibroblasts and many migrating cells; and (3) filopodia: fingerlike protrusions that contain 

a tight bundle of long actin filaments in the direction of the protrusion. They are found primarily 

in motile cells and neuronal growth cones. It is important, therefore, that the polymerization and 

depolymerization of cortical actin are tightly regulated. Rho proteins regulate stress fiber formation 

(Ridley and Hall, 1992; Miura et al., 1993), while other members of Rho superfamily, Rac and 

Cdc42 regulate lamellipodia formation (Ridley et al., 1992), and filopodium formation (Kozma 

et al., 1995; Nobes and Hall, 1995), respectively. Evidence has also accumulated that they may 

play additional roles in gene expression (Hill et al., 1995), cell growth (Yamamoto et al., 1993; 

Khosravi-Far et al., 1995; Qiu et al., 1995; Obaishi et al., 1998), and membrane trafficking (Adam 

et al., 1996; Komuro et al., 1996; Lamaze et al., 1996). In these cellular events, it is not known 

whether Rho proteins directly or indirectly regulate them through cytoskeletal reorganization and 

gene expression. It is possible that class IX myosins act to modulate one or more of above functions 

for rho. The Myosin IXb motor domain may serve to localize it to the site of rho functions, i.e. on 

actin. 

It has been shown that rho is a negative regulator of human monocyte cell spreading (Aepfelbacher 

et al., 1996). Studies in a leukocyte cell line suggest a model that Myosin IXb inactivates rho to allow 

monocyte spreading. TPA treatment of these cells induces their differentiation into macrophage-

like cells. Myosin IXb is colocalized with F-actin in the cortex of rounded, undifferentiated cells, 

where activated GTP-bound rho would exist (Wirth et al., 1996). This pattern changes to a more 
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diffuse, cytoplasmic localization in spread, macrophage differentiated cells where inactivated 

GDP-bound rho would exist and is no longer colocalized with F-actin (Wirth et al., 1996). Myosin 

IXb may inactivate rho (causing depolymerization of actin) in order to allow actin remodeling 

and macrophage spreading to occur. Furthermore, differentiated cells show concentrated staining 

in a perinuclear spot, which is reminiscent of Golgi staining. Of particular interest is the potential 

association of myosin-IXb with the Golgi in differentiating cells, because Golgi membrane associate 

with the actin network and actin structure is important for the organization of the Golgi. Quite 

recently it has been shown that myosin IXb interacts with BIG1, a guanine nucleotide exchange 

factor for ADP-ribosylation factor (Arf1) (Saeki et al., 2005). The RhoGAP activity of myosin 

IXb is inhibited by BIG1 by competition between BIG1 and Rho in binding to myosin IXb. The 

Arf proteins play a role in the vesicle transport, and the Arf activity is activated by BIG1. Thus it 

is possible that myosin IX is involved in this event. Saeki et al. further hypothesized that myosin 

IXb moves BIG1 away from the Golgi.

Since it is likely that the Myosin IXb plays a role in down-regulating rho-mediated events, it will 

be critical to determine whether myosin IX is a substrate for kinases implicated in rho cascades. 

The rho family interacts with several kinases that phosphorylate other myosins. Rho interacts 

with protein kinase N (Amano et al., 1996b; Watanabe et al., 1996) and rho kinase (Kimura et 

al., 1996) that affects the phosphorylation state of myosin II regulatory light chain and induces 

fibroblast stress fiber formation, focal adhesion formation and smooth muscle contraction (Amano 

et al., 1996a; Amano et al., 1997; Kureishi et al., 1997). Rac and cdc42 bind to p65 PAK, which 

phosphorylates Acanthamoeba myosin I and activates enzymatic activity (Brzeska et al., 1997). 

Phosphorylation of myosin IX is possibly involved in regulation of physiological function, such as 

direction of movement, processivity, and localization in cell. Therefore it is critical to determine if 

myosin IX is phosphorylated by some kinases, and if there are, identifying the responsible kinases. 
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As a preliminary study, we examined if myosin IX is phosphorylated by any kinases. Purified 

full-length myosin IX was phosphorylated various kinases, and then samples are subjected to 

SDSPAGE followed by autoradiography. The radioactivity was detected at the band of myosin IX 

when myosin IX is incubated with ATP without addition of any kinases. Thus we could not evaluate 

if certain kinases phosphorylate myosin IX. This is because some kinase is co-purified with myosin 

IX, and the contaminated kinase in the purified myosin IX sample phosphorylates myosin IX. This 

implies that myosin IX could be phosphorylated by certain kinase. Further experiments will clarify 

the physiological function of myosin IX.
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