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ABSTRACT

A new, open-access Global Positioning System (GPS) signal, known as L1C, is

the most recent of several modernized Global Positioning System (GPS) signals. The first

launch of a GPS satellite with this signal is expected to occur within a few years. One

of the interesting features of modern Global Navigation Satellite System (GNSS) signals,

including GPS L1C, is the presence of data and pilot components. The pilot component is a

carrier with a deterministic overlay code but no data symbols; whereas, the data component

carries the navigation data symbols used in the receiver processing. A unique aspect of GPS

L1C is the asymmetrical power split between the two components, 75% of the power is used

for the pilot and the remaining power, or 25%, for the data. In addition, the pilot and the

data components are transmitted in phase with orthogonal spreading codes.

Unassisted acquisition of GNSS spread spectrum signals requires a two-dimensional

search for the spreading code delay and Doppler frequency. For modern two-component

GNSS signals, conventional GNSS acquisition schemes may be used on either component,

correlating the received signal with either the pilot or the data spreading code. One obvious

disadvantage of this approach is the wasting of power; hence, new techniques for combining,

or joint acquisition of the pilot and the data components, have been proposed.

In this dissertation, acquisition of GPS L1C is analyzed and receiver techniques are

proposed for improving acquisition sensitivity. Optimal detectors for GPS L1C acquisition

in additive white Gaussian noise are derived, based on various scenarios for a GPS receiver.

Monte Carlo simulations are used to determine the performance of these optimal detectors,

based on detection and false alarm probabilities. After investigating the optimal detectors

for GPS L1C acquisition, various sub-optimal detectors that are more efficient to implement

are thoroughly investigated and compared. Finally, schemes for joint acquisition of L1C

and the legacy GPS C/A code signal are proposed and analyzed.
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CHAPTER 1

INTRODUCTION

The Officer of the Deck placed a small piece of cardboard over the display of the ship’s

Global Positioning System (GPS) once all 22 sails were set and land was safely behind

us. By order of the ship’s Captain, GPS would not be relied on for navigation for the next

several days. After all, this was the Coast Guard tall-ship Eagle, the two hundred ninety-five

foot sail training vessel for future leaders of the United States Coast Guard. Sextants became

commonplace on deck as we became proficient at “swinging the arc” to measure the altitude,

the angular distance, from the horizon to various celestial bodies such as the sun, moon,

planets, and stars. Earlier in the classroom at the Coast Guard Academy, we learned the

details of the altitude-intercept method of plotting a celestial line of position and the nuances

of sight reduction tables. Developed in 1875, by Marc St. Hilaire, this method of celestial

navigation involves four basic steps [1, 2]:

1. Taking actual measurements,

2. Estimating position at the time of the measurements,

3. Determining the expected measurements for the estimated position, and

4. Updating the estimated position by comparing actual and expected measurements.

I had no idea at the time that the ship’s GPS receiver was essentially following the same

four steps to find our position.1 Instead of angles, GPS depends on ranges, and the celestial

bodies are satellites placed into orbit around the Earth by the United States Air Force. Since

GPS has become ubiquitous, celestial navigation has vanished from use by the navigator.

While sextants are still found aboard the tall-ship Eagle today, nineteen years after I was

a cadet onboard, the theory behind this nautical tradition has sadly been removed from

1This similarity between various types of navigation problems was emphasized by Van Diggelen in his
book A-GPS: Assisted GPS, GNSS, and SBAS [3].
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the education that future Coast Guard leaders receive. In its place, however, GPS satellite

navigation has allowed for accuracy and applications never before imagined.

The more generic term for a system for navigation by satellite, Global Navigation

Satellite System (GNSS), has become widely utilized in the position, navigation, and timing

community as other nations are modernizing or developing their own systems (GLONASS

in Russia, Galileo in Europe, Beidou in China). GNSS research continues to expand as

engineers explore how to use GNSS in challenging radio frequency environments, as they

consider it for new applications, and as they seek to mitigate vulnerabilities while exploiting

modernized signal structures.

The purpose of this study is to analyze the performance of new acquisition techniques for

the most recent of the modernized GPS signals through a cohesive examination of GPS L1C

acquisition. The GNSS receiver needs to find, or acquire, the signal before processing begins.

Various methods are proposed to increase sensitivity to enable use of L1C in challenging

radio frequency environments. This introduction provides a high level overview on how

GNSS works, a brief history of GNSS, and a summary of GPS modernization efforts. An

overview of the GPS L1C signal is provided. The introduction concludes with the motivation

for this research and the contributions of this dissertation.

1.1 How GNSS Works2

Navigation with satellites is based on the principle of trilateration; that is, the determining of

a position based on known distances from known locations. In GNSS, the satellite positions

are predicted by orbit data, and the distance from each is determined by measuring how long

a radio signal takes to travel to the user. Once this travel time is multiplied by the speed of

2A very brief conceptual introduction to how GNSS works is provided here. Chapter 2 presents more
details on GNSS signals and the acquisition process. Three textbooks that have been valuable to many
GNSS researchers and that were also used in this research effort are: Global Positioning System: Theory and
Applications edited by Parkinson and Spilker [4], Global Positioning System: Signals, Measurements, and
Performance by Misra and Enge [5], and Understanding GPS: Principles and Applications edited by Kaplan
and Hegarty [6].
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light, how fast the signal travels, the distance is known.

Thinking geometrically helps in understanding how GNSS works. If the GNSS receiver

can measure its distance from one satellite, then it must be located somewhere on the surface

of a sphere, with that satellite at the center, and the measured distance as the radius. If

three different but simultaneous distance measurements are found, then the GNSS receiver

must be located at the intersection of three spheres. This intersection will give two possible

locations of which only one is a reasonable option for the actual receiver position. Increased

accuracy in the measurements leads to improved positioning; therefore, satellite and receiver

clocks must be synchronized.

GNSS satellites have accurate and expensive atomic clocks onboard. However, the

quality of clocks in GNSS receivers is limited by the desire for users to have inexpensive

and small receivers. Fortunately, the time bias between GNSS time in the satellites and the

receiver clock can be determined by adding a fourth satellite to the observations. This extra

observation will give the GNSS receiver four equations from which it can easily solve for

the four unknowns: the three dimensions of position offset from the assumed location and

the time bias. In reality, more than four measurements are generally utilized when available

to give a more accurate and robust position, navigation, and timing (PNT) solution.

For global navigation capability, a GNSS user must receive at least four signals from the

satellite constellation, anywhere on Earth. Currently, GPS has 31 healthy satellites orbiting

the earth on six different orbital planes at a nominal altitude of 20,000 km, 44 times higher

than the International Space Station.3 On average, a GPS receiver on the Earth, with a clear

view of the sky above ten degrees elevation, will be able to receive eight to eleven GPS

signals.

This large number of signals sharing the same frequency and time is accomplished by

using Code Division Multiple Access (CDMA) where each satellite transmits a unique

3GPS had 31 healthy satellites as of February 2014. GPS World magazine has a webpage called “The
Almanac” that provides up-to-date information on various GNSS constellations: http://gpsworld.com/
the-almanac. The United States Coast Guard Navigation Center website provides GPS constellation status
and notifications: http://www.navcen.uscg.gov/?Do=constellationStatus.
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ranging code on the same carrier frequency. Despite transmitting at the same time, and on

the same frequency, these unique codes, allow the locating and the distinguishing of a signal.

Data is also inserted into each signal. This navigation data contains information needed by

the GNSS receiver to complete the PNT solution such as ephemeris, clock corrections, and

timing information to specify when the unique code was transmitted. After acquiring the

signals, the GNSS receiver then tracks them, reads the navigation data, and computes a PNT

solution for the user.

1.2 History of GNSS4

The concept of a system based on satellites for navigation was born in the United States in

1958, with the Navy Navigation Satellite System, which later became known as “Transit.”

One year earlier, the Soviet Union had launched Sputnik I, the first artificial Earth satellite.

Doppler shift (change in frequency due to motion) measurements from Sputnik signals were

used to determine its orbit; however, the realization that the opposite could work emerged

soon thereafter. Thus, Doppler shift measurements could be used to determine a position

on Earth, if the orbit of a satellite was known. Transit became operational in 1964 and

was utilized by submarines and ships to determine their position. With 10 to 15 minutes of

receiver processing of the Doppler shift measurements, Transit receivers could get a position

fix every 30 to 110 minutes, depending on their latitude [6]. The significant time between

position fixes, however, made Transit impractical for high-dynamic platforms.

A new and improved system that included better clocks and more satellites was soon

on the drawing board. By the end of the 1960s, the U.S. Navy and U.S. Air Force were

developing programs for new navigation systems. These were eventually combined into

NAVSTAR GPS, which became the GPS system in use today. Since advancements in clock

technology allowed time synchronization between different satellites, ranging, as opposed

4A detailed history of GPS can be found in the article “A History of Satellite Navigation” by Parkinson,
Stansell, Beard, and Gromov [7].
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to Doppler shift measurements, was selected as the positioning method. Spread spectrum

technology allowed the simultaneous transmission of signals from different satellites on the

same frequency. A medium earth obit (MEO) for the satellites was selected so that a total

constellation of 24 satellites provided global coverage.

The GPS constellation was initially designed to transmit three different signals. Two

different center carrier frequencies were selected in the L-band (1 GHz to 2 GHz), with civil

and encrypted military signals on L1 (1575.42 MHz), and another encrypted military signal

on L2 (1227.60 MHz). The civil signal on L1, called the Coarse Acquisition (C/A) signal,

was designed so that military receivers could acquire the encrypted military signal known as

P(Y). The United States government also made the commitment to allow the free and open

use of L1 C/A by civilians as part of the Standard Positioning Service (SPS); whereas, L1

P(Y) and L2 P(Y) were designed for U.S. Department of Defense authorized personnel as

part of the Precise Positioning Service (PPS). The basic GPS architecture was approved in

1973; the first satellite was launched in 1978; and the system was declared fully operational

in 1995. There are most likely more than a billion GPS enabled devices around the world

that employ GPS L1 C/A.

While the United Sates was developing GPS, the former Soviet Union was developing

a system known as GLONASS. The system architecture is very similar to GPS, with one

major difference, its reliance on Frequency Division Multiple Access (FDMA), where each

satellite has the same ranging code but transmits at a different carrier frequency. The first

satellite was launched in 1982, and the system reached full capability in 1996. There was a

quick decline in availability, however, as GLONASS had just six working satellites in 2001.

Due to reinvestments by Russia, GLONASS is back up to 24 healthy satellites in orbit and is

undergoing its own modernization effort which includes incorporating new CDMA signals.

New satellite navigation systems are emerging globally as governments see the need for

their institution. Initiated in 1998, by the European Commission and the European Space

Agency (ESA), Galileo, Europe’s program for its own GNSS, is being developed by the
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European GNSS Supervisory Authority (GSA) in Brussels, Belgium. The system is in the

In-Orbit Validation phase with two experimental and four operational satellites in space. The

first was launched in 2005, with the most recent in 2012. A fully operational system with 30

satellites is expected by 2020. China created a regional navigation system known as Beidou

that was completed in 2003 with three geostationary Earth orbit (GEO) satellites. Beidou is

currently expanding into a global system known as Beidou-2 or Compass. In 2011, the new

system was declared ready for use in China and is expected to be available globally with 37

satellites in various orbits (MEO, GEO, and inclined geosynchronous orbit) by 2020.

1.3 GPS Modernization

Even when GPS became fully operational in 1995, the National Research Council and

others were making recommendations for an additional civil signal [8]. The initial GPS

modernization plans were announced in 1998 and called for two new civil signals. In

addition, the U.S. military wanted improved jam resistance as well as the ability to jam

locally in the theater of operations without interfering with their own users. Since 1995,

three new civil signals and two new military signals have been designed with significant

enhancements over legacy GPS.

The United States federal government announced in 1998 that a new civil signal would

be added to L2 (1227.60 MHz). The original plan was to broadcast the same L1 C/A code

until a GPS Joint Program Office (JPO) official questioned replicating a legacy signal on a

modernized satellite [9]. Changing the original plan led to a compressed design period in

which the L2 civil design was completed early in 2001 for inclusion in the first Block-IIR-M

satellite that was scheduled for launch in 2003 but was eventually launched in 2005. This

signal is known as L2C, and its design is delineated in an Interface Specification document

[10].

After several years of studies, the United States federal government announced in 1999
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Table 1.1: Summary of Civil GPS Signals

Signal Center Frequency # of Operational Satellites Availability (first/global)

L1 C/A 1575.42 MHz 30 1978/1995

L2C 1227.60 MHz 10 2005/2016∗

L5 1176.45 MHz 3 2010/2018∗

L1C 1575.42 MHz 0 2015∗/2021∗

* projected [15]

that the center frequency of the second new civil signal would be at 1176.45 MHz, an Inter-

national Telecommunication Union (ITU) band designated for aeronautical radionavigation

service. As the only signal in the GPS L5 radio frequency link, it is now commonly referred

to as L5 and was designed primarily for aviation navigation. The Radio Technical Commis-

sion for Aeronautics (RTCA) Special Committee 159 Working Group One developed the

specifications [11] which were later converted into the Interface Specification [12].

The design for a new civil GPS signal on the same frequency as L1 C/A was initiated in

2003 and completed in 2006 [13]. As the most recent of the modernized GPS signals, known

as L1C, it has acquired and extended many advancements seen in other modern signals

including L5 and L2C. L1C was designed to be interoperable and compatible with other

GNSS L1 signals. The design for L1C is specified in the Interface Specification document

IS-GPS-800A [14]. Since this dissertation focuses on this new signal, a brief overview of the

L1C is provided in the next section with a detailed model presented in the next chapter. The

first GPS satellite with L1C is expected to launch in 2015. The United States government

estimates that there will be a full constellation of 24 satellites transmitting these new signals

in 2016, 2018, and 2021 for L2C, L5, and L1C, respectively [15]. A summary is shown in

Table 1.1.

With the increasing number of signals in each satellite, various multiplexing techniques

are used onboard for transmission. This composite signal needs to have a constant envelope

for efficient transmitter operation. Two signals can be combined with quadrature phase shift

7



keying (QPSK) where two RF carriers with a phase difference of 90 degrees are summed.

QPSK is used in legacy GPS; the inphase component is L1 C/A, and the quadraphase

component is L1 P(Y) military signal.

Now, more advanced techniques to combine three or more signals on the same carrier

frequency are necessary. On the L1 carrier frequency, GPS satellites will soon transmit

five different signals: C/A code, P(Y) code, the new military signal known as M-code,

and the two components of L1C (pilot and data). More complex multiplexing techniques

include interplexing [16], majority vote [17], intervoting [18], and Coherent Adaptive

Subcarrier Modulation (CASM) [19]. A relatively new technique called Phase-Optimized

Constant-Envelope Transmission (POCET) is a likely candidate for future GPS satellites

[20].

1.4 Overview of GPS L1C5

The research in this dissertation focuses on acquisition of the most recently-designed GPS

signal, L1C. Its carrier frequency of 1575.42 MHz is the same as the legacy L1 C/A code

designed thirty years prior; however, many innovative features separate this signal from its

counterpart. L1C is split with 75% power in the pilot, or data-less, component and 25%

power in the data component. This two-component nature, which is not seen in the legacy

GPS, is common to many modern GNSS signals; the unequal power split, however, is a

novel feature. L1C will be multiplexed onto the L1 carrier along with the other L1 signals

(P(Y) code, M code, and C/A code). The two components of L1C will be transmitted

in-phase with each other and in-phase with the P(Y) code [22].

As in all GNSS signals, spreading codes are utilized to produce wider bandwidth and to

uniquely identify each satellite, allowing for simultaneous transmission on the same carrier

frequency. Spreading codes with a length of 10,230 chips and a duration of 10 ms at a

5Details of the L1C signal are published in the Interface Specification IS-GPS-800A [14]. The discussion
here is based on L1C descriptions provided by Betz et al. [13] and Stansell, Hudnut, and Keegan [21].
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chipping rate of 1.023 Mcps, are based on Weil codes [23]. This is the same rate as L1

C/A code, but 10 times longer. Each satellite has unique spreading codes, and different

codes are used for the pilot and the data components. In addition to the spreading code, also

referred to as the primary code, the pilot component has an 18 second 1800-bit deterministic

overlay code, also referred to as the secondary, or synchronization, code. The overlay code

effectively lengthens the short repeating pilot spreading code since it has no data modulation

and also simplifies synchronization to the data symbols on the data component. One bit

of this overlay code and one bit of the navigation data on the data component each has a

duration of 10 ms which corresponds to the duration of the spreading code.

Once the overlay code phase for the pilot component is determined by the receiver, and

hence no unknown phase modulation exists, the minimum Carrier Power-to-Noise Power

Density (C/No in W/Hz) threshold for tracking the pilot component is lowered by 4.75 dB

by employing a phase-locked loop (PLL), instead of the traditional Costas loop [21]. More

power in the pilot component is attractive for receivers that ignore the data component due

to the use of out-of-band data messages such as other radio frequencies or the internet. Low

density parity check (LDPC) codes for forward error correction (FEC) are used to mitigate

the concerns of users who do not receive out-of-band data messages and depend on the data

component, even though it has only 25% of the total transmit power. Despite the reduced

power in the data component, the FEC allows for equivalent or better bit error rate (BER)

for L1C when compared to the legacy C/A code signal.

In order to achieve spectral shaping and fit L1C in an already crowded GNSS frequency

band, the two components of L1C use Binary Offset Carrier (BOC) modulation, originally

proposed for GNSS by Betz [24], for a new military signal known as M-code. BOC

modulation uses a square-wave subcarrier which splits the spectrum about the carrier

frequency. The higher the frequency of this subcarrier, the farther the energy is moved away

from the center, allowing GNSS designers to occupy space in the radio frequency spectrum

that will cause lower multiple access interference with other systems. A thorough design
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process has created a new civil GPS signal with many modern features that provide GPS

receiver manufacturers more design flexibility and greater opportunity to improve receiver

performance. The detailed model for L1C is presented in section 2.3.

1.5 Overview of GNSS Acquisition

Any GNSS receiver must find the satellite signal through the process of acquisition before

it determines position or time. This critical step involves determining whether a desired

satellite signal is present, and if it exists, finding the correct frequency and spreading code

delay. The receiver can then implement algorithms for tracking, as the frequency and code

delay continuously change, while simultaneously decoding the navigation data which is

needed to compute the receiver’s position.

While the GNSS receiver knows the carrier frequency of the transmitted signal (1575.42

MHz for GPS L1C), the received GNSS signal will have a slightly different frequency caused

by Doppler shift due to the motion of the satellite, up to ±800 m/s line-of-sight velocity for

a rising or setting satellite, and the motion of the receiver. An additional frequency offset

will be caused by the unknown receiver oscillator drift. The range of unknown frequency

around the carrier is typically between 10-25 kHz [3].

Even with the correct frequency, the receiver is not able to acquire a particular signal

without having the correct delay or phase of the spreading code. This procedure creates a

two-dimensional search space in which the GNSS receiver examines all possible frequencies

and code delays to find a particular signal. Once the receiver has the frequency and code

delay estimates, it can pass that information along to a process known as tracking, which

allows the receiver to continuously observe the signal and measure ranges. While tracking a

satellite, the receiver will demodulate the data and then compute a position.
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1.6 Motivation and Objectives

GPS modernization and development of new satellite navigation systems such as Galileo

have spawned significant GNSS research over the past fifteen years. Features of modern

GNSS have given receiver manufacturers more flexibility in how they design their receivers

to meet the specific requirements of a variety of applications. Modern GNSS signals also

provide the potential for better accuracy and improved performance in challenging radio

frequency environments such as low signal-to-noise power, multipath, and interference.

Some recent research has focused on acquisition of these modern GNSS signals to exploit

their new features to improve acquisition sensitivity. Very little of this research, however, has

focused on GPS L1C. As the most recently designed GPS signal, L1C will not be available

from a satellite in space until 2015 and is not expected to be fully operational until 2021 (as

previously shown in Table 1.1).

Despite this timeframe for GPS L1C deployment, and the lack of published research

regarding GPS L1C acquisition, GNSS receiver manufacturers are starting to design new

multi-signal and multi-constellation GNSS receivers with L1C compatibility. The objective

of this dissertation is to provide a comprehensive evaluation of L1C acquisition and to

propose techniques to improve acquisition sensitivity. The goal is to provide performance

results for various techniques and to propose enhanced acquisition techniques for various

receiver scenarios. The findings will assist GNSS engineers in evaluating the cost and

benefits of enhanced receiver acquisition schemes for GPS L1C.

1.7 Contributions

The following are the contributions of this dissertation:

• Derivation of the optimal detector for GPS L1C acquisition (Chapter 3).

• Derivation of the optimal detector for GPS L1C acquisition under scenarios when the

pilot overlay code phase and the navigation data are known (Chapter 3).
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• Approximations to optimal detectors based on the signal-to-noise to simplify detector

complexity (Chapter 3).

• Performance analysis of the optimal detectors in term of detection and false alarm

probabilities using Monte Carlo computer simulations (Chapter 3).

• Detailed analysis of coherent combining of L1C pilot and data components over a

single spreading code period based on relative data bit estimation including derivation

of analytical expressions for the detection and false alarm probabilities as well as the

probability density function of the decision variable (Chapter 4).

• Detailed analysis of semi-coherent integration for combining L1C pilot and data

components over multiple spreading code periods including the threshold when the

performance advantage disappears (Chapter 4).

• Proposal and analysis of various acquisition techniques when the L1C pilot over-

lay code phase is known, including differentially-coherent detection and coherent

integration using relative pilot/data sign bit estimation (Chapter 4).

• Derivation of the optimal detector for GPS L1 C/A and L1C joint acquisition and

performance analysis of detection and false alarm probabilities using Monte Carlo

computer simulations (Chapter 5).

• Detailed analysis of coherent combining of GPS L1 C/A code and L1C signals for joint

acquisition including derivation of analytical detection and false alarm probabilities;

analysis extended over multiple spreading code periods with semi-coherent integration

(Chapter 5).

• Proposal and analysis of joint L1C pilot and L1 C/A acquisition techniques while

ignoring the lower power L1C data component (Chapter 5).
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1.7.1 Publications

The research detailed in this dissertation has been published within the GNSS community in

the following conference proceedings:

• Seals, K., Michalson, W., Swaszek, P., and Hartnett, R. (September 2012) Analysis of
Coherent Combining for GPS L1C Acquisition. Paper published in the Proceedings of
the 25th International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS 2012), Nashville, TN.

• Seals, K., Michalson, W., Swaszek, P., and Hartnett, R. (January 2013) Analysis
of L1C Acquisition by Combining Pilot and Data Components over Multiple Code
Periods. Paper published in the Proceedings of the 2013 International Technical
Meeting of The Institute of Navigation (ION ITM Conference), San Diego, CA.

• Seals, K., Michalson, W. (April 2013) Semi-Coherent and Differentially Coherent
Integration for GPS L1C Acquisition. Paper published in the Proceedings of the
Pacific Position, Navigation and Timing Conference of the Institute of Navigation
(ION Pacific PNT Conference), Honolulu, HI.

• Seals, K., Michalson, W., Swaszek, P., and Hartnett, R. (September 2013) Using Both
GPS L1 C/A and L1C: Strategies to Improve Acquisition Sensitivity. Paper published
in the Proceedings of the International Technical Meeting of The Satellite Division of
the Institute of Navigation (ION GNSS+ 2013), Nashville, TN.

1.8 Outline

The signal model for GPS L1C, the origin and history of the GNSS acquisition problem and

state-of-the-art acquisition methods for modern GNSS signals are described in Chapter 2 of

this dissertation.

Classical detection and estimation theory is used in Chapter 3 to derive the optimal

detector for GPS L1C acquisition in various receiver scenarios. Detector performance is

presented based on single trial false alarm and detection probabilities using Monte Carlo

computer simulations.

Novel sub-optimal, but more efficient, acquisition techniques for the GPS L1C signal

are proposed in Chapter 4. Whenever possible, analytical results are derived for the false

alarm and detection probabilities and confirmed with simulation results. Where analytical
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results are not obtained, simulation results are used to compare the performance of these

proposed detectors to others: optimal, traditional, and state-of-the-art.

Chapter 5 focuses on the most probable scenario in the near future of processing GPS

L1C with GPS L1 C/A, when a GPS L1C signal is available, for joint acquisition of

a particular satellite. Joint acquisition schemes are proposed and their performance is

evaluated.

Conclusions and recommendations for future research are presented in Chapter 6.
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CHAPTER 2

THE GPS L1C SIGNAL AND GNSS ACQUISITION

2.1 Introduction

This chapter first presents an overview of a typical GNSS signal, highlighting the important

elements of its structure and characteristics. The legacy GPS L1 C/A code signal is then

presented as an example. Next, a detailed explanation of L1C is provided along with the

signal model used in this dissertation. The development of optimal detectors for acquisition

in the next chapter is based on this mathematical model of the L1C signal. Finally, basic

acquisition theory is explained and state-of-the-art GNSS acquisition techniques from recent

publications are highlighted.

2.2 GNSS Signal Structure and Characteristics

GNSS signals, used primarily for precise ranging instead of communication, generally have

a large-bandwidth and low data-rate. The structure allows the receiver to measure time of

arrival; whereas, the transmitted data facilitates the determination of the satellite’s location.

To illustrate the structure and characteristics of GNSS signals, a generic transmitted GNSS

signal model is presented here based on information from [25, 26].

2.2.1 GNSS Baseband Signal

GNSS employs Direct Sequence Spread Spectrum (DSSS) to produce wider bandwidth

signals. The energy is spread over a much larger frequency band than required by the

low data rate. DSSS spreading modulations with larger bandwidths lead to better tracking

accuracy and improved resistance to narrowband interference.

GNSS involves many signals, some from the same satellite, some from different satellites

in the same system, and some from multiple systems. The majority of GNSSs are classified

as Code Division Multiple Access (CDMA) systems since each satellite transmitting the

signal has a unique spreading code, also called a pseudo-random or PRN code. CDMA
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allows simultaneous transmission of the signal at the same carrier frequency from multiple

satellites; it also identifies the satellite. The spreading code is sometimes called the “ranging”

code since this feature assists in measuring time of arrival, which is then converted to the

range to the satellite.

A typical baseband representation of a DSSS GNSS repeated spreading series is:

h(t) =

L−1∑
k=0

ckg(t − kTc), (2.1)

where ck is the spreading code, which is a binary sequence of bits, also called chips; g(t) is

the spreading symbol, which is non-zero over the interval [0,Tc]; and 1/Tc is known as the

spreading code rate, or chipping rate; and L is the length of the spreading code in number of

bits.

Civil signals use spreading codes that repeat. For efficient operation of the transmitter,

satellite navigation systems need h(t) with a constant envelope. This requirement is achieved

by selecting {ck} ∈ {−1,+1} and choosing a spreading waveform g(t) that is a real-valued

function with constant magnitude. One example of a spreading symbol is the rectangular

pulse, p(t), which has unit width, unit height, and is centered at the origin:

g(t) = p(t) =


1 if |t| ≤ Tc

2 ,

0 otherwise.
(2.2)

Different spreading waveforms are employed in some modern GNSS signals (including

GPS L1C as discussed in section 2.3.1) to provide spectral separation in crowded frequency

bands.

Longer codes generally mean improved performance but also increase the complexity

of receiver processing. Problems from short or medium-length spreading codes include

narrow spectral lines, which interfere with other GNSS signals, and increased susceptibility

to narrowband interference. Data modulation acts to effectively lengthen the spreading code.

Newer signals generally have data bit durations which are the same length as the spreading
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code period to prevent repetition. This technique, however, is not the case in the legacy GPS

C/A code signal in which there are twenty repeats of the spreading code during one data bit.

Not all signals carry data, however, since most modern GNSS signals have two compo-

nents, data and pilot. The former transmits the navigation data; whereas, the latter allows

better tracking performance since there are no unknown phase transitions caused by the

unknown data symbols. Deterministic overlay codes can also mitigate the effects of shorter

spreading codes, especially on the pilot component, by phase-modulating each spreading

code period with a sequence of bits that are known to the receiver. These overlay codes are

also known as secondary codes or synchronization codes since they simplify the synchro-

nization to data symbols. The spreading time series of this general GNSS signal, now with

an overlay code, is:

x(t) =

N−1∑
l=0

blh(t − lTb), (2.3)

where Tb is the duration of the overlay code bit and the repeating sub-segment of the

spreading time series, h(t), as defined in (2.1); and {bl} ∈ {−1,+1} are the bits of the overlay

code which has a length of N bits.

Information needed to calculate satellite positions may be modulated on this spread

spectrum signal at a low rate (i.e., many GNSS signals use 50 bps). Referred to as the

navigation data or the broadcast ephemeris, this information contains the satellite orbit model,

clock offset data, and other information used by the receiver. The baseband representation

of the GNSS signal with data is now:

s(t) =

∞∑
m=−∞

dmx(t − mTd) (2.4)

=

∞∑
m=−∞

dm

N−1∑
l=0

bl

L−1∑
k=0

ckg(t − mTd − kTc), (2.5)

where {dm} ∈ {−1,+1} are the data symbols with bit duration of Td seconds. If the signal is a

pilot component without data modulation, then without loss of generality, {dm} = 1.
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The generic baseband GNSS signal, s(t), from (2.4) consists of a single waveform and

is considered a biphase keyed signal. Some modernized GNSS signals are represented by

multiple waveforms each described by (2.4). GNSS signals with more than one waveform

may be time-multiplexed together as in GPS L2C, combined in phase with orthogonal

spreading codes as in GPS L1C, or combined in phase quadrature with two biphase keyed

signals ninety degrees apart as in GPS L5.

2.2.2 GNSS Bandpass Signal

GNSS signals have carrier frequencies in the portion of radio frequency spectrum known as

L-band. The spectrum between 1559 MHz to 1610 MHz is referred to as the “upper L-band”

and the spectrum between 1164 MHz and 1300 MHz is referred to as the “lower L-band.”

All of these frequencies have been designated for Radionavigation Satellite Service (RNSS)

by the the International Telecommunications Union (ITU). Parts of these frequencies are also

designated for Aeronautical Radionavigation Service (ARNS) by the ITU, which provides

protection for safety-critical uses.

In general, the bandpass signal at the satellite transmitter has the form:

sbp(t) =
√

2PI sI(t) cos(2π fct) −
√

2PQsQ(t) sin(2π fct) (2.6)

=
√

2PT Re
{[

sI(t) + jsQ(t)
]
ej2π fct

}
(2.7)

=
√

2PT Re
[
s(t)ej2π fct

]
. (2.8)

The L-band carrier frequency is fc (Hertz) and without loss of generality, the carrier phase is

defined to be zero at time of transmission. Here the components are in phase quadrature and

sI(t) and sQ(t) are the quadrature components of the lowpass or baseband GNSS signal, s(t),

also known as the complex-envelope of the radio frequency (RF) signal. The “Re” denotes

the real part of the complex-valued quantity in brackets. The signal power of the inphase

and quadraphase components are represented by PI and PQ (Watts), respectively, and PT is

the total transmitted signal power. Power of GNSS signals is a critical factor. Higher power

helps overcome noise, interference, and propagation loss; however, higher power also costs
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more and increases multiple access interference. Power levels are controlled by international

agreements between systems. The general signal model just presented will now be adjusted

to represent the legacy GPS L1 C/A code signal.

2.2.3 The Legacy GPS L1 C/A Code Signal

The original GPS civil signal, L1 C/A, was the first GNSS signal with open access and is

now used by numerous GPS enabled devices worldwide. At baseband, the GPS L1 C/A

signal may be expressed as:

sC/A(t) =

∞∑
m=−∞

dmx (t − mTd) , (2.9)

where dm ∈ {−1,+1} are the data symbols with bit duration of Td = 0.02 seconds; and x(t) is

the spreading series:

x(t) =

N−1∑
l=0

blh (t − lTb) (2.10)

where, since there is no overlay code, bl = 1 and Tb = 0.001 seconds and N =
Td
Tb

= 20

repetitions of the spreading code during one data symbol. The repeating sub-segment of the

spreading time series is:

h(t) =

L−1∑
n=0

cn p
(
t − nTc

Tc

)
, (2.11)

where:

• cn ∈ {−1,+1} is the spreading code sequence from a family known as Gold codes,

with period of L = 1023 chips and chip duration of Tc = 1
1.023×106 seconds, so that the

period of the spreading code is 0.001 seconds; and

• the spreading symbol is the rectangular pulse, p(t), with unit height and adjusted to

have duration of Tc.

The L1 C/A signal has only an in-phase component and the bandpass transmitted signal

is:

sbp,C/A(t) =
√

2PsC/A(t) cos(2π fct), (2.12)
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where the carrier frequency is fc = 1575.42 × 106 Hertz. Thirty years after the design of this

signal, L1C was created to be a significant improvement over L1 C/A.

2.3 The GPS L1C Signal

As the most recent GPS signal, GPS L1C will become the second civil GPS signal in the

upper L-band along with GPS L1 C/A. This section first provides the baseband signal model

for L1C. Next the correlation function is discussed. The power spectrum is presented to

show how the spreading symbol shapes the spectrum so that it can share space with other

GNSS signals. The transmitted and received signal models are then presented. Finally, a

model for the correlator outputs in the GPS L1C receiver is developed so that it can be used

in deriving optimal detectors for acquisition.

2.3.1 Baseband Signal Model for L1C

This section introduces the baseband waveform model used in this dissertation for the L1C

signal. The pilot and the data components are combined in-phase so that the composite

waveform is:

s(t) =

∞∑
m=−∞

[
dP,mhP(t − mTd) + dD,mhD(t − mTd)

]
, (2.13)

where:

• the {dD,m} ∈ {−1,+1} are the data symbols with duration Td = .01 seconds on the data

component;

• the {dP,m} ∈ {−1,+1} are the deterministic bits of the overlay code on the pilot

component and have the same duration as a data symbol on the data component:

Td = .01 seconds; the overlay code has a length of 1800 bits and repeats every 18

seconds; and

• hD(t) and hP(t) are the spreading time series (defined below) for the data and pilot

components, respectively.
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The spreading time series for each component, hD(t) and hP(t), consists of the unique

code with each chip modulating a spreading symbol. GNSS spread spectrum signals have

traditionally employed the rectangular spreading symbol. Binary Offset Carrier (BOC)

modulation, however, has a square-wave symbol and was proposed for GNSS in [24]. This

new technique acts as a square-wave subcarrier that splits the spectrum about the center

frequency. The convention of using BOC(m, n) to describe a BOC-modulated symbol for

GNSS has become standard where the subcarrier frequency is fs = m × 1.023 MHz and the

spreading code rate is fc = n×1.023 MHz. In this work, BOC modulation with a sine-phased

subcarrier is assumed and is specified by “BOC” or “BOCs”; whereas, cosine-phased BOC

is denoted by BOCc.

The spreading symbol for the L1C data component is strictly BOC(1,1): one period of a

square wave for each spreading code chip. The L1C pilot component uses a time-multiplexed

combination of BOC(6,1) and BOC(1,1) known as TMBOC.

The L1C data component spreading series is described by:

hD(t) =

N−1∑
n=0

cD,ngBOC(1,1)(t − nTc), (2.14)

where:

• {cD,n} ∈ {−1,+1} is the sequence of spreading code chips for the data component,

where each chip has a duration of Tc = 1
1.023MHz seconds, or approximately 1 micro-

second;

• N=10,230 is the length of the spreading code with a period of 10 milliseconds; and

• gBOC(1,1)(t) is the BOC(1,1) spreading symbol (one period of a square wave for each

spreading code chip).

The L1C pilot component spreading series uses a time-multiplexed combination of

BOC(1,1) and BOC(6,1) spreading symbols and is described by:

hP(t) =

N−1∑
n=0

n<{0,4,6,29,...}

cP,ngBOC(1,1)(t − nTc) +

N−1∑
n=0

n∈{0,4,6,29,...}

cP,ngBOC(6,1)(t − nTc), (2.15)
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where:

• {0, 4, 6, 29, ...} are the indices where gBOC(6,1)(t) is inserted instead of gBOC(1,1)(t); the

BOC(6,1) spreading symbol is used in 4 out of every 33 chips of the spreading code,

with the locations described in the L1C Interface Specification document [14];

• {cP,n} ∈ {−1,+1} is the sequence of spreading code chips for the pilot component,

where each chip has a duration of Tc = 1
1.023MHZ seconds, or approximately 1 micro-

second;

• N=10,230 is the length of the spreading code with a period of 10 milliseconds;

• gBOC(1,1)(t) and gBOC(6,1)(t) are the spreading symbols with one period and three periods

of a square wave for each spreading chip, respectively.

The spreading symbols, gBOC(m,n)(t), can be described in terms of the rectangular waveform,

p(t), which has unit width, unit height and is centered at the origin:

gBOC(1,1)(t) = p

 t + Ts
2

Ts

 − p

 t − Ts
2

Ts

 (2.16)

gBOC(6,1)(t) =

5∑
m=0

(−1)m p

 t − mTs′ +
5Ts′

2

Ts′

 , (2.17)

where Ts is the duration of the subchip, or the duration of each half-cycle of the square wave

subcarrier with frequency fs, so that Ts = 1
2 fs

. For GPS L1C, the duration of each subchip in

the spreading symbols are:

Ts =
1

(2)(1.023MHz)
= 0.48876 µsec, (2.18)

Ts′ =
1

(2)(6.023MHz)
= 0.081460 µsec. (2.19)

These BOC spreading symbols lead to different auto-correlation functions compared to the

conventional rectangular spreading waveform.
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2.3.2 L1C Auto-Correlation Function

A GNSS receiver is based on correlation processing. Correlation measures the similarity

between two waveforms. The auto-correlation measures the similarity of a waveform and

time-shifted versions of itself; whereas, the cross-correlation measures a waveform against

the time-shifted versions of another waveform. The spreading codes in GNSS signals were

designed to produce good auto-correlation properties, a sharp peak when there is no time

shift, and nearly zero at all other time shifts. The spreading codes are nearly orthogonal as

well, so that the cross-correlation is close to zero at all time shifts. These exact properties

are taken advantage of in acquisition and tracking of GNSS signals.

In general, civil GNSS signals are cyclostationary processes, meaning their auto-

correlation function is periodic. To eliminate this time dependence, the time-average

auto-correlation function over a single period of the spreading code is used and defined as:

Rx(τ) =
1

Tcode

∫ Tcode/2

Tcode/2
x(t)x(t − τ) dt. (2.20)

L1C uses BOC(m,n) spreading modulations on the pilot and the data components as

described in 2.3.1, where Tc = 1/ fc is the spreading code chip period, Ts = 1/(2 fs) is half

the subcarrier (square-wave) period. The number of half-periods of the subcarrier during

one spreading code chip is:

k = 2m/n = 2 fs/ fc = Tc/Ts. (2.21)

This number, k, can also be thought of as the number of sub-chips within each spreading

code chip. If q is defined as an integer between −2k and 2k, then the auto-correlation

functions over infinite bandwidth for the (sine-phased) BOC spreading modulation were

defined in [26] as:

RBOCs (τ = qTs/2) =


(−1)q/2

(
k −

∣∣∣q
2

∣∣∣) /k, if q even,

(−1)(|q|−1)/2 /2k, if q odd.
(2.22)
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Figure 2.1: BOC spreading modulations provide a narrower correlation peak when compared to the
traditional rectangular pulse used in the legacy C/A code signal.

To plot this function at intermediate values of τ, the values at τ = qTs/2 are connected with

a straight line, on account of the BOC spreading modulations containing only rectangular

waveforms.

The primary benefit of using the BOC spreading modulation for GNSS signals is the

spectral shaping ability since this type of modulation splits the waveform about the center

frequency as shown in section 2.3.3. Another benefit is the narrowing of the auto-correlation

peak, which improves tracking performance. Fig. 2.1 shows the auto-correlation function

for the BOC(1,1) spreading modulation and for the traditional rectangular pulse of the GPS

L1C C/A code signal.

One interesting element seen in the BOC auto-correlation function is additional peaks

at some non-zero lags. The number of positive and negative peaks in the auto-correlation

function is given by 2k − 1. The BOC(6,1) auto-correlation is shown in Fig. 2.2 with its 23

peaks. These additional peaks do require receiver strategies to avoid acquiring and tracking

something other than the peak corresponding to zero-lag. One such strategy is sideband

processing as described in 2.5.1.
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Figure 2.2: The BOC(6,1) auto-correlation function is shown for different offsets of the spreading
code chip with duration Tc.

2.3.3 L1C Power Spectral Density

The Fourier Transform of a finite energy signal gives its frequency content. The Fourier

series finds the distribution of power at various discrete frequencies for a periodic signal.

For random processes, the Fourier Transform of their auto-correlation function is the Power

Spectral Density (PSD), which is the Wiener-Khinchine relation:

Φ( f ) = F {R(τ)} =

∫ ∞

∞

R(τ)e− j2π f τ dτ (2.23)

This is the average power spectral density of the cyclostationary random process since R(τ)

is the time-average auto-correlation function as defined in (2.20).

Betz showed in [25] that the PSD of the generalized GNSS waveform defined in (2.4) can

be factored into four components, after using stationarized statistics from the cyclostationary

waveforms:

Φ( f ) = P( f )C( f )Ω( f )D( f ), (2.24)

where

• P( f ) is the factor associated with the spreading symbol;

• C( f ) is the factor associated with the spreading code;
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• Ω( f ) is the factor associated with the overlay code; and

• D( f ) is the factor associated with the data message.

The dependence of the PSD on the spreading code transform is further explored in Ap-

pendix A since that provides the most significant contribution to the GNSS PSD. The

spreading code transform, C( f ), creates a fine structure on top of the PSD [5]; therefore,

it is ignored by making the assumption that the pilot and the data components of the GPS

L1C signal have ideal repeating spreading codes. Ideal codes have the property that the

auto-correlation function is zero, except at lags which correspond to integer multiples of

the spreading code length, where the value is unity. When using ideal repeating spreading

codes, the associated factor in the PSD is simplified to one: C( f ) = 1.

The L1C data component has two other factors in the PSD of (2.24) that simplify to one.

Since the data message is unknown and treated as random, D( f ) = 1. With only one repeat

of the spreading code within the data symbol, and no overlay code on the data component,

the factor associated with the overlay code is one, Ω( f ) = 1. Now, the PSD of the L1C data

component only depends on the factor associated with the spreading symbol, a simplified

result which is commonly used for GNSS signals:

Φ( f ) = P( f ) = |G( f )|2 /Tc, (2.25)

where Tc is the spreading code chip duration. G( f ) is the Fourier Transform of the real-

valued spreading symbol, g(t), which is normalized so that:

1
Tc

∫ ∞

−∞

|g(t)|2 dt = 1. (2.26)

The spreading symbol transform dominates the spectral shape of all GNSS signals.

Determining the Fourier Transform of the BOC(1,1) spreading symbol is the first step in
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Figure 2.3: Power spectral density of the L1C data component. Under the assumption of repeating
ideal spreading codes along with the treading data random, the PSD is the based on the
Fourier Transform of the BOC(1,1) spreading symbol. The PSD is normalized to have
unit area over an infinite bandwidth.

finding the PSD of the L1C data component:

G( f ) =

∫ ∞

−∞

gBOC(1,1)(t)e−j2π f t dt

=

∫ ∞

−∞

p

 t + Ts
2

Ts

 − p

 t − Ts
2

Ts

 e−j2π f t dt

=

∫ 0

−Ts

e−j2π f t dt −
∫ Ts

0
e−j2π f t dt

= e−j2π f Ts
2

∫ Ts/2

−Ts/2
e−j2π f t dt − e+j2π f Ts

2

∫ Ts/2

−Ts/2
e−j2π f t dt

= e−jπ f Ts

[∫ Ts/2

−Ts/2
cos(2π f t) dt −

∫ Ts/2

−Ts/2
j sin(2π f t) dt

]
−e+jπ f Ts

[∫ Ts/2

−Ts/2
cos(2π f t) dt −

∫ Ts/2

−Ts/2
j sin(2π f t) dt

]
= Tssinc(π f Ts)e−jπ f Ts − Tssinc(π f Ts)e+jπ f Ts (2.27)

After taking the magnitude-squared of G( f ) and dividing by Tc, the PSD of the L1 data

component with the distinctive split-spectrum caused by the BOC modulation is shown in

Fig. 2.3.

A general formula for the the PSD of BOCs(m, n) signals has been provided by Betz
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[24, 26]:

ΦBOCs ( f ) =


1
fc

sinc2 (π f / fc) tan2 (π f / fc) , if k even,

1
fc

cos2(π f / fc)
(π f / fc)2 tan2 (π f / fc) , if k odd,

(2.28)

where

k = 2m/n = 2 fs/ fc = Tc/Ts. (2.29)

This number, k, specifies the number of main-lobes plus the number of side-lobes between

the main-lobes in the PSD.

The GPS-Galileo Working Group on Interoperability and Compatibility proposed a

spectrum for the new civil signals on L1 with 10/11 of the power in a BOC(1,1) spreading

modulation and the remaining power in BOC(6,1):

ΦL1C( f ) = 10
11ΦBOC(1,1) + 1

11ΦBOC(6,1). (2.30)

The L1C pilot component has time-multiplexed spreading symbols known as TMBOC. To

achieve the spectrum requirements, 4 out of every 33 BOC(1,1) spreading symbols are

replaced with BOC(6,1). Since the pilot component has 75% of the total L1C signal power,

this combination gives (4/33) · (3/4) = 1/11 of the total power in the BOC(6,1) component.

The result of this combination produces the PSD of the L1C data component as shown in

Fig. 2.4. Combining the data and pilot components with their respective relative power

ratios,

ΦL1C( f ) = 3
4ΦL1CPilot + 1

4ΦL1CData, (2.31)

gives the PSD of the complete L1C signal shown in Fig. 2.5.

The L1C spectrum was carefully selected to provide minimal multiple access interference

to other GNSS signals in the upper L-band. As seen in Fig. 2.6, the peaks in the PSD occur

at the nulls in the legacy L1 C/A code signal.

2.3.4 Transmitted Signal Model for L1C

The transmitted L1C signal is:

stmt(t) =

[√
3
2 PtmtdP(t)h̄P(t) +

√
1
2 PtmtdD(t)h̄D(t)

]
cos(2π fL1 + θtmt), (2.32)
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Figure 2.4: Power spectral density of the L1C pilot component, BOC(1,1), and BOC(6,1) spreading
symbols. The L1C pilot uses two time-multiplexed spreading symbols known as TMBOC.
The BOC(1,1) spreading symbol is primarily used; however, the BOC(6,1) spreading
symbol is used in 4 out of every 33 chips of the spreading code, as shown in (2.15). The
PSDs are normalized to have unit area over an infinite bandwidth.

.

−8 −6 −4 −2 0 2 4 6 8
−90

−80

−70

−60

Offset from Center Frequency (MHz)

Po
w

er
Sp

ec
tr

al
D

en
si

ty
(d

B
W

/H
z)

L1C

L1C Data

L1C Pilot

Figure 2.5: Power spectral density of the L1C signal, L1C data component, and L1C pilot component.
The L1C signal has 75% of its power in the pilot component, the time-multiplexed
spreading symbols BOC(1,1) and BOC(6,1). The remaining 25% of the power is in
the data component which uses the single BOC(1,1) spreading symbol. The PSDs are
normalized to have unit area over an infinite bandwidth.
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to split the spectrum about the center frequency. The peaks in the L1C PSD occur at
the nulls of the L1 C/A PSD. A little extra power was provided at higher frequencies
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be interoperable with the Galileo L1 signal. The PSDs are normalized to have unit area
over an infinite bandwidth.

where:

• the unequal amplitudes in each component account for the 75%/25% power split

between the pilot and the data components;

• dD(t) and dP(t) are the series of data bits on the data component and overlay code bits

on the pilot component;

• h̄D(t) and h̄P(t) are the periodic repetition of the spreading time series for the data and

pilot components defined in equations (2.14) and (2.15), for example:

h̄D(t) =

+∞∑
m=−∞

hD (t − mTcode) ,

where the period of the code is Tcode = 10 ms;

• fL1 is the L1 carrier frequency of 1575.42 MHz;

• θtmt is the phase of the transmitted signal.
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The average power transmitted is found by the time average of the signal squared (here the

average is over T seconds with T >> 1/ fL1 and the cross term is not included due to the

orthogonal spreading codes):

1
T

∫ T

0
s2

tmt(t) dt =
1
T

∫ T

0

[
3
2

Ptmtd2
P(t)h̄2

P(t) +
1
2

Ptmtd2
D(t)h̄2

D(t)
]

cos2(2π fL1t + θtmt) dt

=

[
3
2

Ptmt +
1
2

Ptmt

]
1
T

∫ T

0
cos2(2π fL1t + θtmt) dt

= 2Ptmt

(
1
T

) ∫ T

0

(
1
2

+
cos(4π fL1t + 2θtmt)

2

)
dt

= 2Ptmt

(
1
T

) (T
2

)
= Ptmt (2.33)

Equation (2.33) relies on the navigation data, overlay code, and the spreading series being

sequences of +1s and -1s.

2.3.5 L1C Received Signal Model and Output of Correlators

The signal at the input of a GNSS receiver can be modeled as a sum of signals from observed

satellites along with additive Gaussian noise:

s(t) =

K∑
i=1

√
Prcvyi(t) + n(t), (2.34)

where there are K satellites and n(t) is Gaussian noise. The received power, Prcv is much

less than the transmitted power. The two components of L1C are transmitted with the same

phase, but with 75% of the power in the pilot component, and 25% of the power in the data

component so that:

yi(t) =

√
3
2dP,i(t − τi)cP,i(t − τi)gP,i(t − τi) cos(2π( fL1 + fd,i)t + θrcv,i)

+

√
1
2dD,i(t − τi)cD,i(t − τi)gD,i(t − τi) cos(2π( fL1 + fd,i)t + θrcv,i), (2.35)

where:

• dD(t) and dP(t) are the series of data and overlay code bits;
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• cD(t) and cP(t) are the periodic repetition of the spreading code series for the data and

pilot components;

• gD(t) and gP(t) are the periodic repetition of the spreading symbols, also called the

subcarrier, for the data and pilot components;

• τ, fd and θrcv are the unknown delay, Doppler frequency, and received phase of the

signal; and

• fL1 is the L1 carrier frequency of 1575.42 MHz.

Unless specifically needed, the satellite term i is dropped due to orthogonality of the

spreading codes. After signal conditioning in the front end of the GNSS receiver, the L1C

signal from one satellite is

s(t) =

√
3
2CdP(t − τ)cP(t − τ)gP(t − τ) cos(2π( fIF + fd)t + θ)

+

√
1
2CdD(t − τ)cD(t − τ)gD(t − τ) cos(2π( fIF + fd)t + θ) + n(t), (2.36)

where:

• the signal power is now denoted as C (Watts), which includes any antenna gain and

receiver implementation losses;

• the signal is now at an intermediate frequency fIF (Hertz); and,

• θ is the unknown phase term.

Despite being a discrete-time signal at this point in the receiver, continuous-time signals are

used here to provide insight under the assumption that the sample-rate has been selected fast

enough to accurately represent the signal.

After multiplication by two reference signals that are in phase quadrature and subsequent

low-pass filtering, the inphase and quadrature channels are:

I − Channel =

√
3
4CdP(t − τ)cP(t − τ)gP(t − τ) cos(2π∆ fdt + ∆θ)

+

√
1
4CdD(t − τ)cD(t − τ)gD(t − τ) cos(2π∆ fdt + ∆θ) + nI(t) (2.37)
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and

Q − Channel =

√
3
4CdP(t − τ)cP(t − τ)gP(t − τ) sin(2π∆ fdt + ∆θ)

+

√
1
4CdD(t − τ)cD(t − τ)gD(t − τ) sin(2π∆ fdt + ∆θ) + nQ(t), (2.38)

where ∆ fd = fd − f̂d is the error in Doppler estimate, and ∆θ = θ − θ̂ is the carrier phase

offset between the local replica and the received signal.

The inphase and quadrature channels are coherently-integrated after each is multiplied

by the local code and spreading symbol replicas. Each coherent integration gives a scalar

output every integer multiple, k, of the coherent integration time, kTcoh:

IP,k =

√
3
4C dP,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cP(t−τ)cP(t−τ̂)gP(t−τ)gP(t−τ̂) cos(2π∆ fdt+∆θ) dt + ηP,I,k

QP,k =

√
3
4C dP,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cP(t−τ)cP(t−τ̂)gP(t−τ)gP(t−τ̂) sin(2π∆ fdt+∆θ) dt + ηP,Q,k

ID,k =

√
1
4C dD,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cD(t−τ)cD(t−τ̂)gD(t−τ)gD(t−τ̂) cos(2π∆ fdt+∆θ) dt + ηD,I,k

QD,k =

√
1
4C dD,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cD(t−τ)cD(t−τ̂)gD(t−τ)gD(t−τ̂) sin(2π∆ fdt+∆θ) dt + ηD,Q,k, (2.39)

where Tcoh is the coherent integration time, τ̂ is the estimated delay and η are the uncorrelated

noise terms that each have the same variance [5]:

σ2 = N0/2Tcoh. (2.40)

Two assumptions are applied herein: that the coherent integration time is the length of

the spreading code period, which is the same as an overlay or data code bit; and that bit

transitions are avoided. When the signal from the satellite is present, and correct delay
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(τ̂ = τ) and Doppler estimates are used, the output of the correlators are now:

IP,k =

√
3
4C dP,k cos (∆θ) + ηP,I,k

QP,k =

√
3
4C dP,k sin (∆θ) + ηP,Q,k

ID,k =

√
1
4C dD,k cos (∆θ) + ηD,I,k

QD,k =

√
1
4C dD,k sin (∆θ) + ηD,Q,k. (2.41)

Due to the autocorrelation properties of the spreading code, the correlator outputs contain

the noise terms only when incorrect delay estimates (τ̂ , τ) are used. Employing complex

notation to highlight the ambiguity function is shown in Appendix B, along with the resulting

correlator outputs.

2.4 Fundamentals of GNSS Signal Acquisition

Any GNSS receiver must acquire the satellite signal before it may process it to determine

position or time. This critical step of initial synchronization, called acquisition, determines

whether a desired satellite signal is present and then finds rough estimates of frequency and

spreading code delay. Once the signal is acquired, the receiver can implement algorithms

to track it as the frequency and code delay change and can decode the navigation data. In

this section, the frequency/code-delay search performed by the receiver is introduced. Three

different procedures for performing the search are then discussed: serial search, parallel

frequency space search, and parallel code phase search. A common method using detection

and false alarm probabilities to analyze performance of GNSS acquisition schemes is then

presented.

2.4.1 Frequency and Spreading Code Delay Search Space

The two-dimensional search space for GNSS acquisition is shown in Fig. 2.7, where the

receiver is searching for the one cell that has the correct frequency and code delay for the

signal. The initial frequency uncertainty is bounded by Doppler and receiver oscillator drift.

The initial time uncertainty is due to the difference in time between the satellite and receiver
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Figure 2.7: Acquisition search space. Initial synchronization to a GNSS signal involves a two-
dimensional search through various frequencies and code delays that are bounded by the
initial frequency and time uncertainties.

clocks as well as to the unknown distance between them. For L1C and other GNSS signals

that use repeating spreading codes, the initial time uncertainty is bounded by the the length

of the spreading code period. The actual integer multiple of spreading code periods between

the satellite and receiver is determined in later processing using information transmitted in

the data component.

While each satellite will transmit at the same frequency, each signal at the receiver is

observed at a different frequency, due to Doppler shift caused by the satellite and receiver

motion. The receiver, therefore, needs to search all possible frequencies. The greatest

contribution to this frequency shift comes from the satellite motion, the receiver oscillator

center frequency error, and the receiver oscillator drift rate. Satellites have a maximum

line-of-sight velocity of approximately ±900 m/s when rising or setting, a phenomenon

which leads to a received Doppler shift of almost ±5 kHz. An additional 1.5 kHz unknown

frequency offset is caused by each 1 ppm (parts per million) unknown receiver oscillator

drift, which can be anywhere from 2-5 ppm for consumer GPS receivers [3]. Finally, a

small Doppler effect of 1.5 Hz is caused by each 1km/h of receiver speed. Each of these
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contributing factors leads to an overall range of 10-25 kHz of unknown frequencies to

search.

The frequency search is split up into discrete frequency bins in which the frequency

at the center of each bin is searched. The size of the bins is determined by the acceptable

mistuning loss. The sought-after correlation peak varies with frequency as a sinc function:

|sin(π f Tcoh)/(π f Tcoh)| , (2.42)

where f is the frequency error and Tcoh is the coherent integration time. For the legacy GPS

L1 C/A code signal, it is common to search in steps of 500 Hz since a frequency bin width

of ± 250 Hz would cause a maximum loss of 1 dB:

10 log10 |sin(π · 250 · 0.001)/(π · 250 · 0.001)| ≈ 1 dB. (2.43)

To have a similar mistuning loss in L1C acquisition, however, search steps of 25 Hz are

necessary, due to the longer spreading code and 10 ms coherent integration time:

10 log10 |sin(π · 25 · 0.01)/(π · 25 · 0.01)| ≈ 1 dB. (2.44)

The longer spreading code of L1C increases the number of frequency bins in the search by a

factor of ten, compared to L1 C/A.

Even if the correct frequency bin is determined, the correlation peak cannot be found

unless the receiver also has the correct spreading code phase which allows it to de-spread

the signal. The longer length of the L1C spreading code, with 10230 chips, means 10 times

the number of code phases to search when compared to L1 C/A. The narrower central peak

and additional peaks in the auto-correlation function caused by the BOC modulation in L1C

mean the code phase search will need a resolution of 1/5 or 1/10 of a chip, thus increasing

the size of the code phase search. To avoid some of the increased receiver complexity

needed to process the BOC modulated signal, sideband processing has been proposed and is

explained in section 2.5.1.
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Figure 2.8: Block diagram of the serial search algorithm for GNSS acquisition.

A serial search implemented in hardware is generally used to find the correlation peak.

With increased capability to implement more receiver functions in software, two techniques

to make this search parallel, using the Fourier Transform, also exist: parallel frequency

space search and parallel code phase search.

2.4.2 Serial Search

The common serial search acquisition method used in CDMA systems is shown in Fig. 2.8.

Multiplication by a locally generated carrier signal generates the in-phase, or I, channel;

and multiplication by a 90◦ shifted version of the carrier generates the quadrature, or Q,

channel. Multiplication by a locally generated spreading code attempts to de-spread the

spread spectrum signal. The I and Q signals are then coherently integrated, squared, and

added. Further non-coherent integration may be performed by adding subsequent coherent

integration results.

The serial search must process all possible carrier frequencies and code delays until a

predetermined threshold is exceeded. Multiple correlators are used in hardware to parallelize

the search. The search may instead be implemented in parallel with the Fourier Transform

in a software receiver.
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Figure 2.9: Block diagram of the parallel frequency space search algorithm for GNSS acquisition.

2.4.3 Parallel Frequency Space Search

A procedure that parallelizes the search for frequency is shown in Fig. 2.9. After the

incoming signal is multiplied by the local copy of the spreading code, a Fourier Transform

is implemented as a Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT)

to put the signal into the frequency domain. When the correct code phase is selected, the

magnitude of the Fourier Transform will show a distinct peak at the correct frequency.

Accuracy of the frequency at the peak depends on the length of the DFT (N). The

frequency resolution is the sample frequency, fs, divided by the size of the DFT: fs/N. This

procedure still needs to search through all possible code phases.

2.4.4 Parallel Code Phase Search

Since the number of search steps in the code phase is significantly larger than frequency

steps, a procedure to parallelize the search for the code phase is shown in Fig. 2.10. The

parallel code phase search implements circular correlation in the frequency domain by

multiplying the Fourier Transform of the incoming signal by the complex conjugate of

the local code transform. After taking the inverse Fourier Transform, a peak will exist at

the code phase of the incoming signal if the correct frequency estimate was used. This

procedure, therefore, only needs to step through each of the possible frequency bins in the

search space.
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Figure 2.10: Block diagram of the parallel code phase search algorithm for GNSS acquisition.

2.4.5 Acquisition Performance

During acquisition, the GNSS receiver generates a decision statistic for each pair of fre-

quency/code delay values during the two-dimensional search. If this statistic exceeds a

pre-determined threshold, then the the signal is declared present with the corresponding

frequency and code delay values. Since the phase of the carrier is unknown, the conventional

noncoherent detection algorithm squares the output of the correlators and adds them together

to get the initial decision variable. Subsequent noncoherent combining may be implemented

when necessary to bring the correlation peak out of the noise floor:

Z =

K∑
k=1

(
I2
k + Q2

k

)
, (2.45)

where Z is used to denote an acquisition decision statistic, and Ik and Qk are the correlator

outputs after each coherent integration, every Tcoh seconds. The number of noncoherent

combinations are denoted by K, and KTcoh is the total integration time.

Since the output of the correlators (Ik, Qk) are Gaussian random variables, the decision

variable Z is a chi-square random variable with 2K degrees of freedom. When incorrect

delay and Doppler estimates are selected, the correlator outputs are zero mean so that Z has

a central chi-square distribution. However, when correct delay and Doppler values are used,
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Z is a noncentral chi-square random variable with noncentrality parameter:

a2 = KC, (2.46)

where C is the signal power.

When the value of the decision variable Z is above a threshold λ, the signal is declared

present. In the acquisition process, two hypotheses, formally defined as H1 when the

satellite signal is present, and H0 when it is not, describe the two possible situations in which

probability densities of the acquisition statistic are found. Performance of the acquisition

scheme can be determined by the frequency in which a signal is declared present when it is

not, the false alarm probability (P f a); and, by the frequency in which the signal is correctly

declared present, the detection probability (Pd).

Since Z is a chi-square random variable for the conventional acquisition statistic in

(2.45), the false alarm and detection probabilities are well known for the case when K = 1:

P f a(λ) = P(Z > λ | H0)

= 1 − P(Z < λ | H0)

= exp
(
−λ

2σ2

)
, (2.47)

and

Pd(λ) = P(Z > λ | H1)

= 1 − P(Z < λ | H1) = Q1

 a
σ
,

√
λ

σ


= Q1

 √C
σ
,

√
λ

σ

 , (2.48)

where σ2 is the noise power and Q1 is the first-order Marcum’s Q function [27].

The threshold for acquisition is selected by specifying a desired false alarm rate. Solving

for the threshold in (2.47) yields:

λ = −2σ2 ln
(
P f a

)
, (2.49)
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where ln is the natural logarithm.

Throughout this work, performance of various acquisition schemes will be analyzed by

comparing the detection probabilities at a fixed false alarm rate.

2.5 Acquisition of Modern GNSS Signals

Modern GNSS signals have given receiver designers more options for implementing acqui-

sition schemes, depending on desired complexity. With little research published specifically

for GPS L1C, many acquisition techniques have been proposed for other modern GNSS

signals. This section describes the state-of-the art in GNSS acquisition schemes from recent

publications that are applicable to L1C.

2.5.1 Sideband Processing

Some new GNSS signals, including L1C, are implementing BOC modulation to move signal

energy away from the center of the band. As shown in section 2.3.2, this type of modulation

also produces a narrower peak in the auto-correlation function, an advantage which allows

more accurate code tracking. The disadvantages, however, are that the code delay space

needs smaller search steps and that consideration must be given to avoiding acquisition of

the peaks at non-zero lags in the auto-correlation function.

One possibility to avoid these challenges is to process only one sideband of the signal in

a technique known as single sideband processing which was proposed for GNSS in [28].

Processing each sideband individually is similar to processing legacy GNSS signals with

the rectangular spreading symbol and conventional single-peak auto-correlation function.

If desired, the upper and lower sidebands can be processed separately and noncoherently

combined as shown in Fig. 2.11. Each sideband of the GNSS signal contains all of the

information, but at a lower signal-to-noise ratio (SNR). Processing only one sideband loses

3 dB of SNR, while noncoherent combining of the sidebands loses 0.5 dB of SNR [28].
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Figure 2.11: Block diagram of dual-sideband processing for GNSS acquisition.

2.5.2 Acquisition of Two-Component Signals

New acquisition schemes have been proposed with the advent of modern GNSS signals

with pilot and data components. This section introduces the various acquisition techniques

that are applicable to L1C. From acquisition of a single component to various combining

techniques, expressions for detection and false alarm probabilities are presented when

possible for GPS L1C, based on the received signal model developed in section 2.3.5.

Performance of novel techniques developed later in this dissertation are compared to these

state-of-the-art schemes.

2.5.2.1 Single Channel Acquisition

Either the pilot or the data component may be used for acquisition of two-component GNSS

signals [29, 30, 31], with preference given to the component with the highest power, if

applicable, as in GPS L1C. Since the phase of the carrier is unknown, the conventional

noncoherent detection algorithm squares the output of the correlators and adds them together

to get the decision variable, which in the case of acquisition of the pilot component is:

Zscp =

K∑
k=1

(
I2

P,k + Q2
P,k

)
, (2.50)

where the scp in the subscript stands for single channel pilot. Since each output of the

correlators (IP, QP) are Gaussian random variables, the decision variable Z is a chi-square
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random variable with 2K degrees of freedom. The underlying Gaussian random variables

have a variance of σ2. With incorrect delay and Doppler estimates, the correlator outputs are

zero mean so that Z has a central chi-square distribution. However, when correct delay and

Doppler values are used, Z is a noncentral chi-square random variable with noncentrality

parameter:

a2
scp = 3

4 KC. (2.51)

When the value of the decision variable Z is above a threshold λ, the signal is considered

present. Performance of the acquisition scheme can be determined by how often a signal is

declared present when it is not, known as the false alarm probability (P f a), and how often the

signal is declared present correctly, the detection probability (Pd). Since Z is a chi-square

random variable, these two probabilities are:

Pscp
f a (λ) = P(Z > λ | H0)

= 1 − P(Z < λ | H0)

= exp
(
−λ

2σ2

) K−1∑
k=0

1
k!

(
λ

2σ2

)k

(2.52)

and

Pscp
d (λ) = P(Z > λ | H1)

= 1 − P(Z < λ | H1) = QK

ascp

σ
,

√
λ

σ


= QK


√

3
4 KC

σ
,

√
λ

σ

 , (2.53)

where QK is the generalized (Kth-order) Marcum’s Q function [27].

In the case of signals with an equal power split between components, the disadvantage

of single channel acquisition rises because half the power is wasted; therefore, various

techniques have been proposed for combining the pilot and the data components.
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2.5.2.2 Noncoherent Channel Combining

Noncoherent combining is the separate acquisition of each component and the subsequent

combination of the correlator powers; this technique was proposed for GNSS in [32] and

has been analyzed in various papers [33, 31].

In order to avoid wasting power during acquisition, the incoming signal can be correlated

separately with a local replica of the pilot and the data spreading codes. Noncoherent

channel combining is the squaring and summing of correlator outputs to obtain the decision

variable:

Znc =

K∑
k=1

(
I2

P,k + Q2
P,k + I2

D,k + Q2
D,k

)
. (2.54)

where the nc in the subscript stands for noncoherent channel combining.

Similar to the single channel acquisition, Z, is a chi-square random variable, but now

with 4K degrees of freedom. When the signal is not present, or when incorrect delay

and Doppler estimates are used, Z has a central chi-square distribution. When the delay

and Doppler estimates are correct, Z is a non-central chi-square random variable with

noncentrality parameter:

a2
nc = 3

4 KC + 1
4 KC = KC. (2.55)

This decision statistic leads to the following false alarm and detection probabilities:

Pnc
f a(λ) = P(Z > λ | H0)

= exp
(
−λ

2σ2

) 2K−1∑
k=0

1
k!

(
λ

2σ2

)k

(2.56)

and

Pnc
d (λ) = P(Z > λ | H1) = Q2K

anc

σ
,

√
λ

σ


= Q2K

 √KC
σ

,

√
λ

σ

 , (2.57)

where Q2K is the generalized (2Kth-order) Marcum’s Q function [27]. If the relative sign be-

tween the data bit and overlay code bit is known, then the pilot and the data components can

be coherently combined to avoid some of the losses caused by the noncoherent combining.
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2.5.2.3 Coherent Channel Combining

A technique known as coherent channel combining with sign recovery estimates the relative

sign between the data and pilot components by correlating the received signal with two

different composite codes, the pilot spreading code plus the data spreading code, and the

pilot spreading code minus the data spreading code [34, 35, 36, 33, 31]. Borio provided

single trial false alarm and detection probabilities, for a single code period, in [31] for the

specific case of two-component GNSS signals transmitted in phase quadrature with equal

power split.

The pilot and the data components can be combined coherently over one spreading code

period by using a local composite spreading code that has the correct relative sign between

the data and pilot components:

cP(t)gP(t) + cD(t)gD(t) if dPdD = 1 (2.58a)

or

cP(t)gP(t) − cD(t)gD(t) if dPdD = −1. (2.58b)

Since this relative sign is unknown to the receiver, these codes are used in coherent channel

combining with sign recovery and the estimate of the relative sign given by the correlation

with the highest power:

Zch = max
{
|z+|2, |z−|2

}
, (2.59)

where the ch in the subscript stands for coherent channel combining, and

z+ = IP + jQP + ID + jQD (2.60a)

z− = IP + jQP − ID − jQD, (2.60b)

and

|z+|2 = (IP + ID)2 + (QP + QD)2 (2.61a)

|z−|2 = (IP − ID)2 + (QP − QD)2 . (2.61b)
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As shown in [31], the false alarm and detection probabilities can be found by noting that:

P(Z > λ)=P
(
max

{
|z+|2, |z−|2

}
> λ

)
=1 − P

(
max

{
|z+|2, |z−|2

}
< λ

)
=1 − P

(
|z+|2 < λ, |z−|2 < λ

)
=1 − P

(
|z+|2 < λ

)
P

(
|z−|2 < λ

)
. (2.62)

The squared magnitude terms, |z+|2 and |z−|2, are chi-square random variables with two

degrees of freedom, where the underlying Gaussian random variables now have variance

2σ2. As in previous detection schemes, when no signal is present or incorrect delay and

Doppler estimates are used, |z+|2 and |z−|2 have central chi-square distributions. When correct

estimates are selected, |z+|2 and |z−|2 are non-central chi-square random variables. In this

case, the noncentrality parameter for |z+|2 is:

a2
+,ch =

(√
3
4CdP cos (∆θ) +

√
1
4CdD cos (∆θ)

)2

+

(√
3
4CdP sin (∆θ) +

√
1
4CdD sin (∆θ)

)2

=
(
C+

√
3

2 dPdD

)
cos2 (∆θ) +

(
C+

√
3

2 CdPdD

)
sin2 (∆θ)

=
(
1+

√
3

2 dPdD

)
C

=


(
1+

√
3

2

)
C, correct rel. sign (dPdD=1)(

1 −
√

3
2

)
C, incorrect rel. sign (dPdD=−1) .

(2.63)

The noncentrality parameter for |z−|2 is:

a2
−,ch =

(√
3
4CdP cos (∆θ)−

√
1
4CdD cos (∆θ)

)2

+

(√
3
4CdP sin (∆θ)−

√
1
4CdD sin (∆θ)

)2

=
(
C+

√
3

2 dPdD

)
cos2 (∆θ) +

(
C+

√
3

2 CdPdD

)
sin2 (∆θ)

=
(
1−

√
3

2 dPdD

)
C

=


(
1+

√
3

2

)
C, correct rel. sign (dPdD=−1)(

1 −
√

3
2

)
C, incorrect rel. sign (dPdD=1) .

(2.64)
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This leads to the following false alarm and detection probabilities using (2.62):

Pch
f a(λ) = 1 − P

(
|z+|2 < λ | H0

)
P

(
|z−|2 < λ | H0

)
= 1 −

[
1 − exp

(
−λ

4σ2

)]2

(2.65)

and

Pch
d (λ) = 1 − P

(
|z+|2 < λ | H1

)
P

(
|z−|2 < λ | H1

)
= 1 −

1 − Q1


√(

1 +
√

3/2
)
C

√
2σ

,

√
λ

√
2σ




·

1 − Q1


√(

1 −
√

3/2
)
C

√
2σ

,

√
λ

√
2σ


 . (2.66)

Results were extended for multiple code periods in a technique called semi-coherent

integration in [37, 38].

2.5.2.4 Semi-Coherent Channel Combining

Semi-coherent integration refers to the noncoherent combination of the single spreading code

period coherent combinations of the data and pilot components by using a local composite

spreading code that has the correct relative sign between the data and pilot components as

explained in the previous section. Subsequent noncoherent combining leads to:

Zsch =

K∑
k=1

max
{
|z+

k |
2, |z−k |

2
}
, (2.67)

where the sch in the subscript stands for semi-coherent channel combining, and

z+
k = IP,k + jQP,k + ID,k + jQD,k (2.68a)

z−k = IP,k + jQP,k − ID,k − jQD,k, (2.68b)

and

|z+
k |

2 =
(
IP,k + ID,k

)2
+

(
QP,k + QD,k

)2 (2.69a)

|z−k |
2 =

(
IP,k − ID,k

)2
+

(
QP,k − QD,k

)2 . (2.69b)
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For the K = 1 case, false alarm and detection probabilities were shown in equations

(2.65) and (2.66) but for the generic K case, analytical expressions have not been found.

The characteristic function was found in [37] for the decision variable under H1 using an

equal power split assumption. The characteristic function can then be raised to the power K

to find the characteristic function for the decision statistic for specific value of K.

2.5.2.5 Differentially Coherent Channel Combining

A detector that maintains the differential phase information between successive correlator

outputs uses differentially-coherent integration. This consists of the product of the current

correlator output and the complex conjugate of the previous correlator output. Differentially-

coherent integration was originally proposed for the acquisition of DSSS signals in [39] and

has been considered for GNSS acquisition in [40, 41, 42] with a good summary and more

analysis regarding weak signal GNSS acquisition in [43].

2.5.2.6 Joint Acquisition of GPS L1 C/A and L1C

With two civil signals in the future for GPS L1, using both L1C and C/A is a method to

improve acquisition sensitivity. Separate correlations and noncoherent combining of these

signals serves as a baseline for potential improvement in acquisition performance. Coherent

combining of C/A, L1C Pilot, and L1C Data is possible if the relative signs between the

corresponding navigation or overlay code bits are known. An acquisition technique that

uses a parallel code phase search and checks all four possibilities of the relative signs

between the three components was proposed by Macchi-Gernot [44, 45]. Simulation results

in that research verified the increased acquisition sensitivity and noted potential issues with

secondary peaks at lower C/No caused by the shorter C/A code. Detection and false alarm

probabilities were not evaluated.

2.6 Chapter Summary

This chapter described the general structure and characteristics of GNSS signals. The model

for L1C along with its unique features was presented. Fundamentals of GNSS acquisition,
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along with the state-of-the art acquisition techniques, were also explained. This background

will be used throughout this dissertation to evaluate and propose enhanced acquisition

techniques for GPS L1C.
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CHAPTER 3

OPTIMAL DETECTORS FOR GPS L1C ACQUISITION

3.1 Introduction

In this chapter, optimal detectors for acquisition of GPS L1C in additive white Gaussian

noise are presented, with complete derivations provided in Appendix C. Three scenarios are

considered. First, the common situation for an unassisted GPS receiver, in which it has no a

priori information regarding the pilot overlay code phase or the navigation data, is explored.

Next, the scenario in which a receiver has sufficient time accuracy to know the phase of the

overlay code, but still has no knowledge of the navigation data, is considered. Finally, the

optimal detector for the assisted receiver, which has knowledge of the pilot overlay code

phase and the navigation data, is shown. Performance of these optimal detectors in terms of

their detection probabilities at a fixed false alarm rate of 0.001 are found, using Monte Carlo

simulations. For each value of the Carrier-to-Noise ratio, 106 trials are performed to find the

probability of detection.

3.2 Optimal Detection Framework

Classical detection theory is used to derive the optimal detector for an arbitrary integer

number of primary spreading code periods of the GPS L1C signal, and in general, any

two-component GNSS signal in which the components are in-phase but have an unequal

power split. All the results presented here are new. A similar procedure to find the optimal

detector for GPS L5 acquisition was used in [33].

The outputs of the correlators are sufficient statistics for detecting the signal in an

additive white Gaussian noise channel [27, 46]. These are derived in (2.39) and given in

(2.41) for correct estimation of code delay and Doppler. Due to auto-correlation properties

of the codes, it is assumed here that the correlator outputs contain noise only if an incorrect

delay estimate is used. The observation vectors at the output of the correlators are the
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following two hypotheses, which correspond to when the signal is present and when it is

not:

H1 : r =



IP

QP

ID

QD


+n =



√
αCdP cos (∆θ)
√
αCdP sin (∆θ)
√
βCdD cos (∆θ)
√
βCdD sin (∆θ)


+n

H0 : r = n. (3.1)

This observation is over integer K spreading code periods. Under H1, the observation

is the 4K × 1 vector of correlator outputs from the K × 10 ms observation. The 4K × 1

noise vector, n, is white and Gaussian with covariance σ2I, where I is the identity matrix,

and σ2 = N0/ (2Tcoh) [5], with Tcoh being the coherent integration time. The received

signal power is C, with the parameters α and β describing the power split between the two

components, so that α + β = 1. For the GPS L1C signal, α = 3/4 and β = 1/4. The carrier

phase residual, or phase offset between the local replica and the received signal, is ∆θ. Each

component may have data, dP or dD, which represents any navigation data, overlay code,

or a combination of these two items that may be present. These data vectors, dP or dD, are

each K × 1 vectors which represent the data bit during each code period.

Since the a priori probabilities of a signal’s presence are unknown, the Neyman-Pearson

criterion maximizes the probability of detection, Pd, under a particular probability of false

alarm constraint, P f . The optimum test consists of using the observation r, to find the

likelihood ratio Λ(r), and then comparing this result to a threshold to make a decision [46].

The likelihood ratio is a ratio of conditional joint probabilities, and is, therefore, a scalar:

Λ(r) ,
p (r | H1)
p (r | H0)

. (3.2)

The likelihood ratio test is:

Λ(r)
H1
≷
H0

λ, (3.3)
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where the threshold, λ, is determined by a fixed P f :

P f =

∫ ∞

λ

p(Λ | H0) dΛ. (3.4)

The subseuqent development of optimal detectors for L1C acquisition consists of finding

the likelihood ratio in (3.2) for each scenario.

3.3 Unknown Pilot Overlay Code Phase and Data Bits

Under the condition that the navigation data bits and the pilot overlay code phase are

unknown, the optimal detector as derived in Appendix C is:∑
dP,dD∈{B}

I0

 √C
σ2

√
x2 + y2

 H1
≷
H0

λ′, (3.5)

where the sum is over the set of all possible pilot and data bit combinations {B}, I0 is the

modified Bessel function of zeroth order, and

x =

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k

)
,

y =

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k

)
. (3.6)

This optimal detector in has two primary disadvantages. First, this detector requires

knowledge of the Carrier-to-Noise ratio. Second, it requires multiple computationally

intensive Bessel functions. Approximations to the Bessel function do exist, however, to

simplify this detector.

3.3.1 Low SNR Approximation of Optimal Detector

A low SNR version of the optimal detector is found by using an approximation for the

modified Bessel function [46]:

I0(x) ' 1 +
x2

4
, x � 1. (3.7)

After using 3.7, the likelihood function is now:

Λ′(r) =
∑

dP,dD∈{B}

 K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)2

+

 K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

)2

. (3.8)
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Figure 3.1: Probability of detection for the L1C optimal detector using one spreading code period
at a fixed false alarm rate of 0.001. Simulation results compare the performance of the
optimal detector to noncoherent combining with unequal power compensation and to the
single channel detector that uses the pilot component only.

By modeling the pilot and the data bits as random and equally probable, all of the cross

terms of (3.8) cancel after summing over all possible bit combinations. The low SNR

approximation of the optimal detector (3.8) reduces to a non-coherent combining detector

with scale factors for unequal power compensation:

Λ′(r) =

K∑
k=1

(
αI2

P,k + αQ2
P,k + βI2

D,k + βQ2
D,k

)
. (3.9)

Simulation results showing the detection probabilities at a fixed false alarm rate are

shown in Fig. 3.1 for acquisition over one spreading code period. The results show that the

optimal detector has a 1.5 dB sensitivity improvement over the single channel pilot detector

at a false alarm rate of 0.9. The noncoherent detector also has an advantage over the single

channel detector and is about 0.5 dB less sensitive than the optimal detector. Figs. 3.2 and

3.3 illustrate, however, that the gap between the optimal and noncoherent detectors increases

when the total integration time is extended out to three and five spreading code periods.
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Figure 3.2: Probability of detection for the L1C optimal detector using three spreading code periods
at a fixed false alarm rate of 0.001. Simulation results compare the performance of the
optimal detector to noncoherent combining with unequal power compensation and to the
single channel detector that uses the pilot component only.
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Figure 3.3: Probability of detection for the L1C optimal detector using five spreading code periods
at a fixed false alarm rate of 0.001. Simulation results compare the performance of the
optimal detector to noncoherent combining with unequal power compensation and to the
single channel detector that uses the pilot component only.
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3.4 Known Pilot Overlay Code Phase and Unknown Data Bits

The overlay code on the pilot component is a deterministic 1800 bit sequence. The scenario

in which the receiver has sufficient time accuracy to use these known bits in the acquisition

process is now investigated. As derived in Appendix C, the likelihood ratio for the optimal

detector from (C.17) is:

Λ′(r) =
∑

dD∈{B}

I0

 √C
σ2

√
x2 + y2

 , (3.10)

where:

x =

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k

)
,

y =

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k

)
. (3.11)

Simulation results showing the detection probabilities at a fixed false alarm rate when the

data overlay code phase is known are shown in Fig. 3.4 for acquisition over one spreading

code period. The optimal detector with known pilot code phase has the same performance

in terms of detection probability as the optimal detector with no a priori knowledge. The

optimal detector over one spreading code period depends on the relative sign between the

data and pilot overlay code bits so that knowledge the overlay code bit doesn’t actually help.

Figs. 3.5 and 3.6 illustrate that the optimal detector for the known pilot starts to have an

increasing performance improvement over the optimal detector with no knowledge as the

total integration time is extended out to three and five spreading code periods.

3.4.1 Low SNR Approximation of Optimal Detector with Known Pilot Overlay Code
Phase

Using (3.7), a low SNR approximation for the optimal detector with known pilot overlay

code phase is:

Λ′(r) =
∑

dD∈{B}

 K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)2

+

 K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

)2

. (3.12)

The averaging is only over the data bits, and not over the known pilot bits; hence, not all the

cross terms cancel here after summing over all possible bit combinations when K > 1. Once
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Figure 3.4: Probability of detection for the L1C optimal detector with known pilot overlay code
phase using one spreading code period at a fixed false alarm rate of 0.001. Simulation
results compare the performance to the optimal detector with a priori knowledge and to
the noncoherent combining detector with unequal power compensation.
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Figure 3.5: Probability of detection for the L1C optimal detector with known pilot overlay code
phase using three spreading code periods at a fixed false alarm rate of 0.001. Simulation
results compare the performance to the optimal detector with a priori knowledge and to
the noncoherent combining detector with unequal power compensation.
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Figure 3.6: Probability of detection for the L1C optimal detector with known pilot overlay code
phase using five spreading code periods at a fixed false alarm rate of 0.001. Simulation
results compare the performance to the optimal detector with a priori knowledge and to
the noncoherent combining detector with unequal power compensation.

again, this low SNR approximation will reduce to the non-coherent combining detector

when observing only one code period, K = 1, but will have additional terms:

Λ′(r) =



∑K
k=1

(
αI2

P,k + αQ2
P,k + βI2

D,k + βQ2
D,k

)
K = 1,[ (

αI2
P,1 + αQ2

P,1 + βI2
D,1 + βQ2

D,1

)
+

∑K
k=1

(
αI2

P,k + αQ2
P,k + βI2

D,k + βQ2
D,k + 2αIP,kdP,k

∑K−1
m=1 IP,mdP,m

) ]
K > 1.

(3.13)

Simulation results showing the detection probabilities at a fixed false alarm rate for the

low SNR approximation, when the data overlay code phase is known, are shown in Figs. 3.7,

3.8 and 3.9. These plots show that the low SNR approximation is within 0.5 dB of the

optimal detector for SNR levels that give a detection probability of 0.9.

3.5 Known Pilot Overlay Code Phase and Known Data Bits

In some assisted situations, the overlay code phase and navigation data may be known by

the receiver. As derived in Appendix C, the optimal detector in this situation from (C.21)
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Figure 3.7: Probability of detection for the low SNR approximation to the L1C optimal detector with
known pilot overlay code phase using one spreading code period at a fixed false alarm
rate of 0.001. Simulation results compare the performance to the optimal detector with
knowledge of the pilot overlay code phase.
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Figure 3.8: Probability of detection for the low SNR approximation to the L1C optimal detector with
known pilot overlay code phase using three spreading code periods at a fixed false alarm
rate of 0.001. Simulation results compare the performance to the optimal detector with
knowledge of the pilot overlay code phase.
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Figure 3.9: Probability of detection for the low SNR approximation to the L1C optimal detector with
known pilot overlay code phase using five spreading code periods at a fixed false alarm
rate of 0.001. Simulation results compare the performance to the optimal detector with
knowledge of the pilot overlay code phase.

simplifies to:

Λ′(r) =

 K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)2

+

 K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

)2

. (3.14)

The additional a priori knowledge of this detector improves its performance over each of the

other optimal detectors in different receiver scenarios as seen in Figs. 3.10 and 3.11. These

figures show the best detector performance possible by using knowledge of the data bits and

pilot overlay code phase.

3.6 Chapter Summary

Optimal detectors for GPS L1C acquisition in additive white Gaussian noise were derived

herein based on three different levels of a priori receiver knowledge: no knowledge of

pilot overlay code phase or navigation data, knowledge of pilot overlay code phase, and

knowledge of each. Performance based on detection probabilities at a fixed false alarm rate

was determined using Monte Carlo simulations. These optimal detectors can be used as
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Figure 3.10: Probability of detection for the optimal detector with knowledge of pilot overlay code
phase and navigation data using one spreading code period at a fixed false alarm rate
of 0.001. Simulation results compare the performance to the optimal detector with
knowledge of the pilot overlay code phase and the optimal detector with no a priori
knowledge.
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Figure 3.11: Probability of detection for the optimal detector with knowledge of pilot overlay code
phase and navigation data using three spreading code periods at a fixed false alarm
rate of 0.001. Simulation results compare the performance to the optimal detector with
knowledge of the pilot overlay code phase and the optimal detector with no a priori
knowledge.
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a benchmark to compare various acquisition schemes. Implementation of these optimal

detectors when any of the data or overlay code bits are unknown, however, presents a com-

putational burden and depends on knowledge of the SNR; thus, Chapter 4 proposes various

sub-optimal detectors and compares their performance to that of the optimal detectors.
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CHAPTER 4

SUB-OPTIMAL DETECTORS FOR GPS L1C ACQUISITION

4.1 Introduction

This chapter proposes various sub-optimal detectors for GPS L1C acquisition that are more

efficient to implement than the optimal detectors derived in Chapter 3. The probability of

detection is used to compare performance. Analytical expressions for detection and false

alarm probabilities are derived when possible and verified by simulation results. Once

again, Monte Carlo simulations are performed with 106 trials to determine the probability of

detection at each Carrier-to-Noise ratio for a fixed false alarm probability of 10−3.

Techniques to combine the L1C pilot and data components are first proposed and evalu-

ated. Noncoherent integration for signals with unequal power is presented. Coherent channel

combining and semi-coherent integration schemes, each with unequal power compensation,

are explored. Finally, detectors to use when the the receiver has knowledge of the pilot

overlay code phase, inlcluding differentially coherent integration are shown.

4.2 Noncoherent Integration for Signals With Unequal Power

Either the pilot or the data component may be used for acquisition of two-component GNSS

signals [29, 30, 31] with preference given to the component with the highest power, if

applicable, as in GPS L1C. Since the phase of the carrier is unknown, the conventional

noncoherent detection algorithm squares the output of the correlators and adds them together

to get the decision variable, which in the case of acquisition of the pilot component, is:

Zscp =

K∑
k=1

(
I2

P,k + Q2
P,k

)
, (4.1)

where scp in the subscript stands for single channel pilot. Analytical expressions for the

false alarm and detection probabilities are well known and shown in (2.52) and (2.53).

To avoid wasting power during acquisition, the incoming signal may be separately

correlated with a local replica of the pilot and the data spreading codes [32]. Noncoherent
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channel combining results when these correlator outputs are squared and then summed to

obtain the decision variable, shown in (2.54). However, the low SNR approximation of the

optimal detector in (3.9) highlighted the need to compensate for unequal power split between

the different signal components. Noncoherent channel combining for L1C acquisition should

scale the squared correlator outputs to obtain the decision variable:

Zncw =

K∑
k=1

(
αI2

P,k + αQ2
P,k + βI2

D,k + βQ2
D,k

)
, (4.2)

where α and β represent the power split between the pilot and the data components. For

GPS L1C:

α =
3
4

and β =
1
4
.

Noncoherent channel combining of two-component GNSS signals with equal power

leads to a chi-square random variable with 4K degrees of freedom. Now that we have scaled

each component according to the relative power split, the underlying Gaussian random

variables will have different variances. The decision statistic, Zncw, is therefore a sum of

two chi-square random variables, each with 2K degrees of freedom. When the signal is not

present, or when incorrect delay and Doppler estimates are used these random variables will

have a central chi-square distribution. When the delay and Doppler estimates are correct, Z

is a sum of two non-central chi-square random variables with noncentrality parameters:

a2
P = α2KC and a2

D = β2KC (4.3)

The Gaussian random variables that are squared and summed have the following varainces

due to the unequal power compensation:

σ2
P = ασ2 and σ2

D = βσ2, (4.4)

where σ2 is the noise power in correlator outputs as defined in (2.40).

The false alarm and detection probabilities are found directly from the cumulative

distribution functions (CDF) of the decision statistic under each hypothesis:

Pncw
f a (λ) = P(Z > λ | H0) = 1 − P(Z < λ | H0) (4.5)
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and

Pncw
d (λ) = P(Z > λ | H1) = 1 − P(Z < λ | H1). (4.6)

Using the CDFs of the sum the two independent chi square random variables provided by

Simon in [47], the false alarm and detection probabilities of noncoherent combining for

L1C acquisition using K spreading code periods are:

Pncw
f a (λ) = exp

(
λ

2ασ2

) 1
(K − 1)!

(
α

α − β

)K K−1∑
i=0

i∑
l=0

(2 (K − 1) − i)!
(i − l)! (K − 1 − i)!

·

(
β

β − α

)K−1−i (
λ

2ασ2

)i−l

− exp
(

λ

2βσ2

)
1

(K − 1)!

(
β

β − α

)K K−1∑
i=0

i∑
l=0

(2 (K − 1) − i)!
(i − l)! (K − 1 − i)!

·

(
α

α − β

)K−1−i (
λ

2βσ2

)i−l

(4.7)

and

Pncw
d (λ) =

(
α

β

)2K

exp
(
−
βKC
2σ2

) ∞∑
i=0

∞∑
l=0

Γ (K + i + l)
i!l!Γ (K + l)

(
αβKC

2

)l (β − α
β

)i

·

1 − Q2K+i+l

 √αKC
σ

,

√
λ

√
ασ

 (4.8)

Fig. 4.1 compares the performance of a single channel detector using the pilot component

only with the performance of the noncoherent combining detector using both the analytical

results as well as results from Monte Carlo simulations. As seen in this figure, the simulation

results match the analytical results, and, as expected, the noncoherent combining detector

outperforms acquisition on a single channel.

4.3 Coherent Channel Combining With Unequal Power Compensa-
tion

The coherent channel combining technique proposed for two-component GNSS signals with

equal power may be altered to compensate for two-component GNSS signals with unequal

power splits. The decision variable now incorporates a weighting of each correlator output:

Zchw = max
{
|z+|2, |z−|2

}
, (4.9)
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Figure 4.1: Performance of single channel detector (using pilot component) compared to noncoherent
combining detector with simulated and analytical results.

where:

z+ =
√
αIP + j

√
αQP +

√
βID + j

√
βQD, (4.10a)

z− =
√
αIP + j

√
αQP −

√
βID − j

√
βQD, (4.10b)

and

|z+|2 =
(√
αIP+

√
βID

)2
+

(√
αQP+

√
βQD

)2
, (4.11a)

|z−|2 =
(√
αIP−

√
βID

)2
+

(√
αQP−

√
βQD

)2
, (4.11b)

with the following weights for GPS L1C:

α =
3
4

and β =
1
4
.

As in the case of coherent channel combining without compensation for unequal power,

|z+|2 and |z−|2 are chi-square random variables with two degrees of freedom. However,

because of the weights applied, the underlying Gaussian random variables have a variance

of σ2, instead of 2σ2.When the signal is present with correct estimates of delay and Doppler,
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the noncentrality parameter for |z+|2 is:

a2
+,chw =

(
3
4

√
CdP cos (∆θ) + 1

4

√
CdD cos (∆θ)

)2
+

(
3
4

√
CdP sin (∆θ) + 1

4

√
CdD sin (∆θ)

)2

=
(

5
8 + 3

8dPdD

)
C cos2 (∆θ) +

(
5
8 + 3

8dPdD

)
C sin2 (∆θ)

=
(

5
8 + 3

8dPdD

)
C

=


C, correct rel. sign (dPdD = 1)

1
4C, incorrect rel. sign (dPdD = −1).

(4.12)

The noncentrality parameter for |z−|2 is:

a2
−,chw =

(
3
4

√
CdP cos (∆θ) − 1

4

√
CdD cos (∆θ)

)2
+

(
3
4

√
CdP sin (∆θ) − 1

4

√
CdD sin (∆θ)

)2

=
(

5
8 −

3
8dPdD

)
C cos2 (∆θ) +

(
5
8 −

3
8dPdD

)
C sin2 (∆θ)

=
(

5
8 −

3
8dPdD

)
C

=


C, correct rel. sign (dPdD = −1)

1
4C, incorrect rel. sign (dPdD = 1).

(4.13)

Using the technique from (2.62) which noted that

P
(
max

{
|z+|2, |z−|2

}
> λ

)
= 1 − P

(
max

{
|z+|2, |z−|2

}
< λ

)
= 1 − P

(
|z+|2 < λ, |z−|2 < λ

)
= 1 − P

(
|z+|2 < λ

)
P

(
|z−|2 < λ

)
, (4.14)

the noncentrality parameters lead to the following false alarm and detection probabilities:

Pchw
f a (λ) = 1 − P

(
|z+|2 < λ | H0

)
P

(
|z−|2 < λ | H0

)
= 1 −

[
1 − exp

(
−λ

2σ2

)]2

, (4.15)

and

Pchw
d (λ) = 1 − P

(
|z+|2 < λ | H1

)
P

(
|z−|2 < λ | H1

)
= 1 −

1 − Q1

 √C
σ
,

√
λ

σ


1 − Q1


√

1
4C

σ
,

√
λ

σ


. (4.16)
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Figure 4.2: Performance of coherent combining detector compared to coherent combining with
weights for unequal power detector.

These GPS L1C detectors were evaluated using Monte-Carlo computer simulations to

confirm the analytical results. Fig. 4.2 compares the two coherent combining detectors, with

and without weights for unequal power compensation. Once again, the simulation results

verify the analytically-derived results. The performance of coherent channel combining is

improved by compensating for the unequal power.

The performance of the optimal detector is compared to the other detectors in Fig. 4.3.

The optimal and coherent combining detectors, with unequal power compensation, have

similar performance and provide about a 1 dB advantage over single channel acquisition.

Coherent channel combining without compensation for the unequal power in the pilot and

the data components leads to performance similar to that of the noncoherent combining

detector.

4.4 Semi-Coherent Integration With Unequal Power Compensation

The semi-coherent channel combining technique proposed for two component GNSS signals

with equal power may be altered to compensate for two-component GNSS signals with
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Figure 4.3: Performance of the optimal detector compared to the other channel combining detectors.

unequal power split. The decision variable now incorporates a weighting of each correlator

output:

Zsemi =

K∑
k=1

max
{
|z+

k |
2, |z−k |

2
}
, (4.17)

where:

z+
k =
√
αIP,k + j

√
αQP,k +

√
βID,k + j

√
βQD,k, (4.18a)

z−k =
√
αIP,k + j

√
αQP,k −

√
βID,k − j

√
βQD,k, (4.18b)

and

|z+
k |

2 =
(√
αIP,k +

√
βID,k

)2
+

(√
αQP,k +

√
βQD,k

)2
, (4.19a)

|z−k |
2 =

(√
αIP,k −

√
βID,k

)2
+

(√
αQP,k −

√
βQD,k

)2
, (4.19b)

with the following weights for GPS L1C:

α =
3
4

and β =
1
4
.

Analytical expressions for the detection and false alarm probabilities are intractable. The

probability density functions of the decision statistic for K = 1, however, are easily found
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by taking the derivative of the CDF. The CDF’s of the decision statistics come directly by

subtracting the false alarm or detection probabilities in (4.15) and (4.16) from one. The

probability density functions of the decision statistic for K = 1 under the noise-only and

signal present cases are:

f K=1
Z (z; H0) =

1
σ2 exp

(
−z
σ2

)
−

1
σ2 exp

(
−z
σ2

)
, (4.20)

f K=1
Z (z; H1) =

1
4σ2 exp

−(1−
√

3/2)C−z
4σ2

 I0


√

(1−
√

3/2)Cz

2σ2


·

1 − Q1


√

(1+
√

3/2)C
√

2σ
,

√
z

√
2σ




+
1

4σ2 exp
−(1+

√
3/2)C−z

4σ2

 I0


√

(1+
√

3/2)Cz

2σ2


·

1 − Q1


√

(1−
√

3/2)C
√

2σ
,

√
z

√
2σ


. (4.21)

Numerical techniques may be used to find the detection and false alarm probabilities for

a particular K > 1 from (4.20) and (4.21). For example, the Fourier transform of the density

functions can be raised to the power of a particular value of K to find the characteristic

functions of the decision statistics. The inverse Fourier transform can then be used to find

the density functions. The detection and false alarm probabilities are found by integrating

the density functions starting at the threshold.

Figs. 4.4 and 4.5 compare the performance of semi-coherent integration with noncoherent

integration, using either the pilot or the two components, for various total integration

times. Semi-coherent integration slightly outperforms the noncoherent integration when

two spreading code periods are used (20 ms total integration time) but provides similar

performance when 25 spreading code periods are used (C/N0 of approximately 22 dB-Hz).

The estimate of the relative sign between the pilot and the data bits is less reliable in lower

SNR. At this point, noncoherent integration outperforms semi-coherent integration.
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Figure 4.4: Simulation results that show the detection probability of the noncoherent combining
detector using the pilot only, the noncoherent combining detector using the pilot and
the data components, and the semi-coherent detector over two (K=2) primary spreading
code periods at a fixed false alarm rate of 0.001.
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Figure 4.5: Simulation results that show the detection probability of the noncoherent combining
detector using the pilot only, the noncoherent combining detector using the pilot and
the data components, and the semi-coherent detector over twenty-five (K=25) primary
spreading code periods at a fixed false alarm rate of 0.001.
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Figure 4.6: Simulation results that show the detection probability of semi-coherent integration with
and without compensating for the data/pilot power split over two (K=2) primary spreading
code periods.

An improvement of about 0.5 dB in detection performance of semi-coherent integration

when compensated for the unequal power split between the data and pilot components is

shown in Fig. 4.6. A unique feature of the L1C signal is this unequal power split between

the data and pilot components. Receivers can easily implement the scale factor to achieve

better performance.

In this section, results from various simulations are presented. In specific, the focus

is on the detection probabilities of the various acquisition schemes discussed at a fixed

false alarm rate of 0.001. As shown in Fig. 4.7, and also discussed in [48], performance of

semi-coherent integration with unequal power compensation is equal to the optimal detector

over one spreading code period, K = 1, where no noncoherent combinations are used.

Once multiple spreading code periods are used (K > 1), semi-coherent integration with

unequal power compensation no longer matches the optimal detector, but it still outperforms

the noncoherent combining detector, shown in Fig. 4.8 and Fig. 4.9.

Figs. 4.10 and 4.11 show the detection probabilities for K=10 and K=20, illustrating
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Figure 4.7: Simulation results that show the detection probability of various GPS L1C acquisition
schemes over one (K=1) primary spreading code period.
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Figure 4.8: Simulation results that show the detection probability of various GPS L1C acquisition
schemes over two (K=2) primary spreading code periods.
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Figure 4.9: Simulation results that show the detection probability of various GPS L1C acquisition
schemes over five (K=5) primary spreading code periods.

that semi-coherent integration with unequal power compensation does not provide the

performance improvement over noncoherent combining at extended total integration times.

This performance advantage disappears when approaching twenty spreading code periods,

or a Carrier-to-Noise ratio of 23 dB-Hz.

The GPS L1C signal, like most modern GNSS signals, has a pilot and a data compo-

nent, but with the unique aspect of an unequal power split between the two components.

The optimal detector for GPS L1C acquisition over multiple spreading code periods, with-

out knowledge of the navigation data and overlay code phase, was derived. In addition,

noncoherently adding the coherent combinations of the pilot and the data components,

or semi-coherent integration, was investigated. Semi-coherent integration was shown to

provide a detection performance improvement, about 0.4 dB, over noncoherent combining

when compensated for the unequal power split between the data and pilot components.

Simulations show the performance of semi-coherent integration compared to the optimal

detector, noncoherent combining, and pilot channel only acquisition.
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Figure 4.10: Simulation results that show the detection probability of semi-coherent integration with
unequal power compensation and noncoherent combining over 10 primary spreading
code periods (K=10).
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Figure 4.11: Simulation results that show the detection probability of semi-coherent integration with
unequal power compensation and noncoherent combining over 20 primary spreading
code periods (K=20).
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4.5 Known Pilot Overlay Code Phase

Various circumstances exist when the code phase of the deterministic overlay code on the

pilot component may be known by the receiver. In this section, various L1C detectors which

exploit knowledge of the pilot overlay code phase are presented, and their performance

is compared. First, when only the pilot component is used for acquisition, differentially-

coherent integration is compared to coherent and noncoherent integration. Next, coherent

integration of the data and pilot components, using relative pilot/data bit estimation is

proposed.

If the pilot overlay code phase is known, then coherent integration can be performed on

the pilot component:

Zkp
chp =

∣∣∣∣∣∣∣
K∑

k=1

dP,k
(
IP,k + jQP,k

)∣∣∣∣∣∣∣
2

, (4.22)

where the kp in the superscript stands for known pilot overlay code phase, and chp in the

subscript stands for coherent integration of the pilot component only. The total coherent

integration time is limited by the phase error caused by the reference frequency error and

unmodeled receiver velocity.

4.5.1 Differentially-Coherent Integration of the Pilot Component

Differentially-coherent integration has previously been proposed [40, 41, 42] to maintain the

differential phase information between successive correlator outputs so that the detector is:

Zkp
diff = Re

{ K∑
k=2

dP,kdP,k−1
(
IP,k + jQP,k

) (
IP,k−1 + jQP,k−1

)∗ }, (4.23)

where ∗ stands for the complex conjugate operation; kp in the superscript stands for known

pilot overlay code phase; and diff in the subscript stands for differentially-coherent integra-

tion. The detector in (4.23) assumes that there is no Doppler uncertainty between successive

correlator outputs.

If there is Doppler uncertainty between successive correlator outputs, then the detector
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Figure 4.12: Simulation results that show the detection probability of the coherent combining de-
tector using the pilot only, the differentially-coherent detector using the real part, the
differentially-coherent detector using the magnitude squared and the noncoherent com-
bining detectors for pilot plus data and pilot-only over eight (K=8) primary spreading
code periods at a fixed false alarm rate of 0.001.

can be modified to capture information in the imaginary component of the product term:

Zkp
diffd =

∣∣∣∣ K∑
k=2

dP,kdP,k−1
(
IP,k + jQP,k

) (
IP,k−1 + jQP,k−1

)∗ ∣∣∣∣2. (4.24)

Figs. 4.12 and 4.13 show the performance of these differentially-coherent combining

detectors is better than the noncoherent combining detectors when using extended total

integration times. When the pilot overlay code phase is known, and coherent integration is

not viable, due to local reference frequency error or user dynamics, differentially-coherent

integration of the pilot component provides a performance advantage over noncoherent

integration.

4.5.2 Coherent Integration using Relative Pilot/Data Sign Estimation

If the pilot overlay code phase is known, and the incoming signal is correlated with the local

composite codes of pilot plus data and pilot minus data as in semi-coherent integration, then

an estimate of the navigation bit can be found by estimating the relative sign between the
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Figure 4.13: Simulation results that show the detection probability of the coherent combining de-
tector using the pilot only, the differentially-coherent detector using the real part, the
differentially-coherent detector using the magnitude squared and the noncoherent com-
bining detectors for pilot plus data and pilot-only over twenty-five (K=25) primary
spreading code periods at a fixed false alarm rate of 0.001.

pilot overlay code bit and the navigation data bit (dPdD):

if max
{
|z+

k |
2, |z−k |

2
}

= |z+
k |

2 then dPdD = +1,

if max
{
|z+

k |
2, |z−k |

2
}

= |z−k |
2 then dPdD = −1.

Using either the pilot plus data or the pilot minus data correlator outputs with the highest

power, as well as the known pilot overlay code phase, allows for coherent integration:

Zkp
chrel =

∣∣∣∣∣∣∣
K∑

k=1

dP,kz±k

∣∣∣∣∣∣∣
2

, (4.25)

where kp in the superscript stands for known pilot overlay code phase, and chrel in the

subscript stands for coherent integration by estimating the relative sign between the pilot/data

bits.

The previous detector is compared to the clairvoyant detector, which has knowledge of

the deterministic pilot overlay code phase and the navigation data bits, and therefore, can
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Figure 4.14: Simulation results that show the detection probability of coherent integration using
relative pilot/data bit estimation and known pilot overlay code phase, semi-coherent
integration, and standard coherent integration over two (K=2) primary spreading code
periods at a fixed false alarm rate of 0.001.

perform coherent integration:

Zkpkd
ch =

∣∣∣∣ K∑
k=1

dP,k
√
α
(
IP,k + jQP,k

)
+ dD,k

√
β
(
ID,k + jQD,k

) ∣∣∣∣2. (4.26)

The total coherent integration time of these detectors is limited by the phase error caused by

the reference frequency error and unmodeled receiver velocity.

Figs. 4.14, 4.15, and 4.16 show the performance of coherent integration using relative

pilot/data bit estimation compared to semi-coherent integration and standard coherent

integration. These results verify that when the pilot overlay code phase is known, coherent

integration using relative pilot/data bit estimation provides better performance than coherent

integration on the pilot alone, until the C/No degrades to approximately 23 dB-Hz. This

technique also provides an estimation of the data bit since the pilot overlay code bit is known,

and the relative sign between the pilot overlay code bit and navigation data bit has been

estimated.
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Figure 4.15: Simulation results that show the detection probability of coherent integration using
relative pilot/data bit estimation and known pilot overlay code phase, semi-coherent
integration and standard coherent integration over three (K=3) primary spreading code
periods at a fixed false alarm rate of 0.001.
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Figure 4.16: Simulation results that show the detection probability of coherent integration using
relative pilot/data bit estimation and known pilot overlay code phase, semi-coherent
integration and standard coherent integration over eight (K=8) primary spreading code
periods at a fixed false alarm rate of 0.001.
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4.6 Chapter Summary

Modernized GNSS signals allow a variety of GNSS receiver implementations. In acqui-

sition of GPS L1C, receivers can use either the pilot component or the pilot and the data

components. Several detectors with various integration schemes were presented herein

and compared to traditional noncoherent integration and coherent integration. This chapter

focused on two scenarios: when the pilot overlay code phase is known and when it is

unknown.

Performance based on probability of detection at a fixed false alarm rate for various GPS

L1C detectors was presented and compared. Differentially coherent integration when the

pilot overlay code phase is known was shown to provide performance improvement over

noncoherent integration when there is the need for extended integration times that prevent

coherent integration. A new technique that uses the known pilot overlay code phase and

relative pilot/data bit estimation provided better performance than coherent integration of

the data component alone at higher SNR. Limits on the performance improvement for this

technique, as well as semi-coherent integration, were presented.
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CHAPTER 5

JOINT ACQUISITION OF GPS C/A AND L1C SIGNALS

5.1 Introduction

The upper L-Band will be the only frequency band with two different GPS civil signals

available to users at the same carrier frequency with the legacy C/A code signal and the new

L1C signal. The null-to-null bandwidth of the C/A code signal is 2.046 MHz. The TMBOC

modulation of the L1C signal creates bandwidth of 4.092 MHz between the outer nulls of

the largest spectral lobes in the split-spectrum signal. Without the need to have two separate

radio-frequency chains in the front-end of a GPS receiver, using the GPS C/A and L1C

signals will improve acquisition sensitivity with limited additional complexity. These two

signals are transmitted in phase quadrature with the C/A signal lagging L1C by 90 degrees

since the L1C signal is transmitted with the same phase as the the L1 P(Y) code military

signal.

This chapter will explore various techniques for joint acquisition of GPS L1C and C/A

signals. First, the nominal received power of these two signals is discussed along with the

power split parameters required for optimal combining of the signals. Next, a model for the

composite C/A code and L1C signal is presented. An optimal detector for joint acquisition

is then derived and simulation results provided. Finally, sub-optimal, but more efficient,

techniques are proposed and evaluated.

5.2 Received Power and Power Split Parameters

For optimal detection of composite signals with unequal power levels, the receiver needs to

scale each signal by its relative power level, as demonstrated in this dissertation. Table 5.1

shows the nominal received power levels for C/A and L1C according to the specification

documents [10, 14].

Since the L1C nominal received signal is 1.5 dBW higher than the C/A code, L1C has a
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Table 5.1: Nominal Received Power Levels

Signal Received Power

C/A Code -158.5 dBW

L1C Pilot -158.25 dBW

L1C Data -163 dBW

L1C Composite -157 dBW

received strength that is 10
1.5
10 = 1.4125 times higher than C/A on a linear scale:

1.4125γ + γ = 1,

γ = 0.4145, (5.1)

so that C/A has a fraction γ of the total power and L1C has a fraction 1 − γ of the total

power in the composite signal. While keeping the convention in this dissertation of α and β

representing the power split for the L1C pilot and data components, γ is added to represent

the power split for the C/A component:

Composite Power = α(L1C Pilot Power) + β(L1C Data Power) + γ(C/A Signal Power)

= (1 − 0.4145)
[

3
4 (L1C Pilot Power) + 1

4 (L1C Data Power)
]

+0.4145(C/A Signal Power)

= 0.4391(L1C Pilot Power) + 0.1464(L1C Data Power)

+0.4145(C/A Signal Power), (5.2)

so that the power split parameters are:

α = 0.4391, β = 0.1464 and γ = 0.4145. (5.3)

These power split parameters are used in both the optimal and sub-optimal detectors for

joint acquisition of C/A and L1C. Before proposing the various detectors, a signal model is

developed.
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5.3 Signal Model for Composite GPS L1C and C/A Signal

The signal from one satellite defined in (2.36) is now adjusted to not only contain the two

components of of L1C, but also the C/A code. After signal conditioning in the front end of

the GNSS receiver, the signal from one satellite is:

s(t) =
√

2αCdP(t − τ)cP(t − τ)gP(t − τ) cos(2π( fIF + fd)t + θ)

+
√

2βCdD(t − τ)cD(t − τ)gD(t − τ) cos(2π( fIF + fd)t + θ)

+
√

2γCdC/A(t − τ)cC/A(t − τ) sin(2π( fIF + fd)t + θ) + n(t), (5.4)

where:

• the signal power is now denoted as C (Watts), which includes any antenna gain and

receiver implementation losses;

• α, β, and γ are the power split parameters defined in (5.3);

• dD(t), dP(t), and dC/A(t) are the series of L1C data, L1C overlay code, and C/A data

bits;

• cD, cP, and cC/A are the periodic repetition of each spreading code series;

• gD(t) and gP(t) are the periodic repetition of the spreading symbols, also called the

subcarrier, for the L1C data and pilot components (the C/A code spreading symbol is

the rectangular pulse which is fully described by the spreding code);

• τ and fd are the unknown delay and Doppler frequency;

• the signal is now at an intermediate frequency fIF (Hertz); and,

• θ is the unknown phase term.
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After multiplication by two reference signals that are in phase quadrature and subsequent

low-pass filtering, the inphase and quadrature receiver channels are:

I − Channel =
√

2αCdP(t − τ)cP(t − τ)gP(t − τ) cos(2π∆ fdt + ∆θ)

+
√

2βCdD(t − τ)cD(t − τ)gD(t − τ) cos(2π∆ fdt + ∆θ)

+
√

2γCdC/A(t − τ)cC/A(t − τ) sin(2π∆ fdt + ∆θ) + nI(t), (5.5)

and

Q − Channel =
√

2αCdP(t − τ)cP(t − τ)gP(t − τ) sin(2π∆ fdt + ∆θ)

+
√

2βCdD(t − τ)cD(t − τ)gD(t − τ) sin(2π∆ fdt + ∆θ)

−
√

2γCdC/A(t − τ)cC/A(t − τ) cos(2π∆ fdt + ∆θ) + nQ(t), (5.6)

where ∆ fd = fd − f̂d is the error in Doppler estimate, and ∆θ = θ − θ̂ is the carrier phase

offset between the local replica and the received signal1.

The inphase and quadrature channels are coherently-integrated after each is multiplied

by the local code, and for L1C, the spreading symbol replicas. Each coherent integration

gives a scalar output every integer multiple, k, of the coherent integration time, Tcoh:

IP,k =

√
αC dP,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cP(t−τ)cP(t−τ̂)gP(t−τ)gP(t−τ̂) cos(2π∆ fdt+∆θ) dt + ηP,I,k,

QP,k =

√
αC dP,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cP(t−τ)cP(t−τ̂)gP(t−τ)gP(t−τ̂) sin(2π∆ fdt+∆θ) dt + ηP,Q,k,

ID,k =

√
βC dD,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cD(t−τ)cD(t−τ̂)gD(t−τ)gD(t−τ̂) cos(2π∆ fdt+∆θ) dt + ηD,I,k,

QD,k =

√
βC dD,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cD(t−τ)cD(t−τ̂)gD(t−τ)gD(t−τ̂) sin(2π∆ fdt+∆θ) dt + ηD,Q,k,

IC/A,k =

√
γC dC/A,k

Tcosh

∫ kTcoh+Tcoh

kTcoh

cC/A(t−τ)cC/A(t−τ̂) sin(2π∆ fdt+∆θ) dt + ηC/A,I,k,

QC/A,k =
−
√
γC dC/A,k

Tcoh

∫ kTcoh+Tcoh

kTcoh

cC/A(t−τ)cC/A(t−τ̂) cos(2π∆ fdt+∆θ) dt + ηC/A,Q,k, (5.7)

1Note that the C/A component in the I-Channel contains the sine term since the C/A code signal lags L1C
by 90 degrees, likewise, the C/A component in the Q-Channel contains a negative cosine term.
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where τ̂ is the estimated delay; and η’s are the uncorrelated noise terms, each with the same

variance [5]:

σ2 = N0/2Tcoh. (5.8)

Two assumptions are applied herein: that the coherent integration time is the length of

the L1C spreading code period (10 ms), which is the same as the L1C overlay and data code

bit duration; and that bit transitions are avoided. When the signal from the satellite is present,

and correct delay (τ̂ = τ) and Doppler estimates are used, the output of the correlators are

now:

IP,k =
√
αC dP,k cos (∆θ) + ηP,I,k,

QP,k =
√
αC dP,k sin (∆θ) + ηP,Q,k,

ID,k =
√
βC dD,k cos (∆θ) + ηD,I,k,

QD,k =
√
βC dD,k sin (∆θ) + ηD,Q,k,

IC/A,k =
√
γC dC/A,k sin (∆θ) + ηC/A,I,k,

QC/A,k = −
√
γC dC/A,k cos (∆θ) + ηC/A,Q,k. (5.9)

Due to the autocorrelation properties of the spreading code, the correlator outputs

are modeled as noise only when incorrect delay estimates (τ̂ , τ) are used. In this joint

acquisition scenario however, there are actually incorrect L1C spreading code delay estimates

that correspond with correct C/A code phase estimates and will lead to energy in the C/A

code correlator outputs, IC/A,k and QC/A,k. The C/A spreading codes repeat every 1ms, while

the L1C codes repeat every 10 ms. Noise only for incorrect code phase estimates is still

assumed, but these secondary peaks in the correlation due to the repetition of the C/A code

within one L1C spreading code period are discussed further in section 5.7. With a model

to represent the composite C/A and L1C signal, an optimal detector for acquisition is now

investigated.
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5.4 Optimal Detector for Acquisition With GPS C/A and L1C

The optimal detector for joint acquisition of L1 C/A and L1C is derived in Appendix D. This

detector provides an upper bound on the performance that can be achieved by combining

these two L1 civil signals for GPS acquisition. The likelihood ratio for this optimal detector

from (D.12) is:

Λ(r) =
∑

dP,dD,dC/A∈{B}

p(dP,dD,dC/A)I0

 √C
σ2

√
x2 + y2

, (5.10)

where the vectors d contain the data during each 10 ms integration for each component, {B}

is the set of all possible bit combinations, I0 is the modified Bessel function of zeroth order,

and x and y are defined as:

x =

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k−

√
γQC/A,kdC/A,k

)
,

y =

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k+

√
γIC/A,kdC/A,k

)
. (5.11)

Unlike the optimal detector for L1C only, presented in Chapter 3, the set of all possible

bit combinations {B} is reduced in this joint case by some impossible combinations of L1C

pilot overlay code bits, L1C navigation data bits, and C/A navigation data bits. The bit

period for L1C is 10 ms, whereas the bit period for C/A is 20 ms. Since dC/A represents the

navigation bit on C/A every 10 ms, all combinations in which three consecutive C/A data

bits are different are not possible and therefore, not included in {B}.

The detection probabilities of the optimal detector for joint acquisition referenced to the

C/No of the L1C signal are shown in Figs. 5.1 and 5.2, while using one and three spreading

code periods. As expected, the increased signal power used in the joint detector increases

acquisition sensitivity by about 2 dB. The first use of L1C will most likely be in C/A code

receivers while the L1C signals is deployed one or two satellites at a time; therefore, the

detection probability for this optimal detector and all other detectors presented in this chapter

are also shown in Appendix E with the C/No referenced to C/A code signal power.
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Figure 5.1: Detection probability of optimal joint L1C and C/A detector compared to optimal L1C
detector for acquisition over one L1C spreading code period referenced to L1C signal
power.
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Figure 5.2: Detection probability of optimal joint L1C and C/A detector compared to optimal L1C
detector for acquisition over three L1C spreading code periods referenced to L1C signal
power.
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Figure 5.3: Block diagram of noncoherent combining detector for joint acquisition of GPS L1C and
C/A.

5.5 Sub-Optimal Detectors for Joint C/A and L1C Acquisition

With the optimal joint detector as a benchmark for the best possible performance of joint

acquisition of the legacy C/A code and L1C signals, this section proposes various sub-

optimal, but more computationally efficient, detectors.

5.5.1 Noncoherent Combining Detector

Noncoherent combining is the separate acquisition of each component, including C/A code,

and the subsequent combination of the correlator powers. The incoming signal can be

correlated separately with a local replica of the L1C pilot, the L1C data, and the C/A

spreading codes as shown in Fig. 5.3. Noncoherent channel combining is the squaring,
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Figure 5.4: Detection probability of noncoherent combining joint L1C and C/A detector for acquisi-
tion over one L1C spreading code period referenced to L1C signal power.

scaling and summing of correlator outputs to obtain the decision variable:

Zjoint
ncw =

K∑
k=1

(
αI2

P,k + αQ2
P,k + βI2

D,k + βQ2
D,k + γI2

C/A,k + γQ2
C/A,k

)
, (5.12)

where α, β, and γ, are the power split parameters from (5.3).

Since the underlying Gaussian random variables have three different variances based

on the power split factors, the decision statistic, Zjoint
ncw , is a sum of three chi-square random

variables, each with 2K degrees of freedom. When the signal is not present, or when

incorrect delay and Doppler estimates are used, the random variables have a central chi-

square distribution. When the delay and Doppler estimates are correct, the random variables

have a non-central chi-square distribution. Performance of this noncoherent combining

detector is shown in Figs. 5.4 and 5.5. The figures illustrate that the noncoherent detector

performance is within 0.5 dB of the optimal joint detector over one spreading code period

but as the total integration time increases, the performance gap between the optimal and

noncoherent combining detectors also increases. Other combining techniques to improve

performance for joint acquisition are now considered.
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Figure 5.5: Detection probability of noncoherent combining joint L1C and C/A detector for acquisi-
tion over three L1C spreading code periods referenced to L1C signal power.

5.5.2 Coherent Combining

If the relative sign between the overlay/data bits on L1C pilot, L1C data, and C/A were

known, the three components could be coherently combined. The receiver can estimate this

relative sign by testing four combinations using the combination with the maximum power

as the decision statistic:

Zjoint
chw = max

{
|z1|

2, |z2|
2, |z3|

2, |z4|
2
}
, (5.13)

where:

z1 =
√
αIP + j

√
αQP +

√
βID + j

√
βQD −

√
γQC/A + j

√
γIC/A, (5.14a)

z2 =
√
αIP + j

√
αQP +

√
βID + j

√
βQD +

√
γQC/A − j

√
γIC/A, (5.14b)

z3 =
√
αIP + j

√
αQP −

√
βID − j

√
βQD +

√
γQC/A − j

√
γIC/A, (5.14c)

z4 =
√
αIP + j

√
αQP −

√
βID − j

√
βQD −

√
γQC/A + j

√
γIC/A, (5.14d)
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and

|z1|
2 =

(√
αIP+

√
βID−

√
γQC/A

)2
+

(√
αQP+

√
βQD+

√
γIC/A

)2
, (5.15a)

|z2|
2 =

(√
αIP+

√
βID+

√
γQC/A

)2
+

(√
αQP+

√
βQD−

√
γIC/A

)2
, (5.15b)

|z3|
2 =

(√
αIP−

√
βID+

√
γQC/A

)2
+

(√
αQP−

√
βQD−

√
γIC/A

)2
, (5.15c)

|z4|
2 =

(√
αIP−

√
βID−

√
γQC/A

)2
+

(√
αQP−

√
βQD+

√
γIC/A

)2
, (5.15d)

with:

α = 0.4391, β = 0.1464 and γ = 0.4145.

The powers of the various combinations, |zx|
2, are chi-square random variables with two

degrees of freedom. With the weights applied for the unequal power compensation, the

underlying Gaussian random variables have a variance of σ2. Without the unequal power

compensation, the variance of the underlying Gaussian random variables in the chi-square

random variable would be 3σ2. When the desired signal is not present or with incorrect code

delay and Doppler estimates, the |zx|
2 terms are central chi-square random variables.

When the signal is present with correct estimates of delay and Doppler, there are four

possibilities for the noncentrality parameter, depending on the relative sign between the
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overlay/data bits on the three components. For |z1|
2, the noncentrality parameter is:

a2
1 =

(
α
√

CdP cos (∆θ) + β
√

CdD cos (∆θ) + γ
√

CdC/A cos (∆θ)
)2

+
(
α
√

CdP sin (∆θ) + β
√

CdD sin (∆θ) + γ
√

CdC/A sin (∆θ)
)2

=
(
α2 + β2 + γ2 + 2αβdPdD + 2αγdPdC/A + 2βγdDdC/A

)
C cos2 (∆θ)

+
(
α2 + β2 + γ2 + 2αβdPdD + 2αγdPdC/A + 2βγdDdC/A

)
C sin2 (∆θ)

=
(
α2 + β2 + γ2 + 2αβdPdD + 2αγdPdC/A + 2βγdDdC/A

)
C

=



(α+β+γ)2 C = C, correct rel. signs
(
dPdC/A = dPdC/A = +1

)
(
α2+β2+γ2+2αβ−2αβ−2βγ

)
C = 0.0292C,

(
dPdC/A = dPdC/A = −1

)
(
α2+β2+γ2−2αβ−2αβ+2βγ

)
C = 0.0148C,

(
dPdC/A = −1, dPdC/A = +1

)
(
α2+β2+γ2−2αβ+2αβ−2βγ

)
C = 0.5001C,

(
dPdC/A = +1, dPdC/A = −1

)
.

(5.16)

Likewise, the noncentrality parameters for the other three combinations are:

a2
2 =



0.0292C, incorrect rel. signs
(
dPdC/A = dPdC/A = +1

)
C, correct rel. signs

(
dPdC/A = dPdC/A = −1

)
0.5001C, incorrect rel. signs

(
dPdC/A = −1, dPdC/A = +1

)
0.0148C, incorrect rel. signs

(
dPdC/A = +1, dPdC/A = −1

)
,

(5.17)

and

a2
3 =



0.0148C, incorrect rel. signs
(
dPdC/A = dPdC/A = +1

)
0.5001C, incorrect rel. signs

(
dPdC/A = dPdC/A = −1

)
C, correct rel. signs

(
dPdC/A = −1, dPdC/A = +1

)
0.0292C, incorrect rel. signs

(
dPdC/A = +1, dPdC/A = −1

)
,

(5.18)
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and

a2
4 =



0.5001C, incorrect rel. signs
(
dPdC/A = dPdC/A = +1

)
0.0148C, incorrect rel. signs

(
dPdC/A = dPdC/A = −1

)
0.0292C, incorrect rel. signs

(
dPdC/A = −1, dPdC/A = +1

)
C, correct rel. signs

(
dPdC/A = +1, dPdC/A = −1

)
.

(5.19)

Using the fact that

P(Z > λ)=P
(
max

{
|z1|

2, |z2|
2, |z3|

2, |z4|
2
}
> λ

)
=1 − P

(
max

{
|z1|

2, |z2|
2, |z3|

2, |z4|
2
}
< λ

)
=1 − P

(
|z1|

2 < λ, |z2|
2 < λ, |z3|

2 < λ, |z4|
2 < λ

)
=1 − P

(
|z1|

2 < λ
)

P
(
|z2|

2 < λ
)

P
(
|z3|

2 < λ
)

P
(
|z4|

2 < λ
)
, (5.20)

the noncentrality parameters lead to the following false alarm and detection probabilities for

joint acquisition using coherent combining:

P joint,chw
f a (λ) = 1 − P

(
|z1|

2 < λ | H0

)
P

(
|z2|

2 < λ | H0

)
P

(
|z3|

2 < λ | H0

)
P

(
|z4|

2 < λ | H0

)
= 1 −

[
1 − exp

(
−λ

2σ2

)]4

, (5.21)

and

P joint,chw
d (λ) = 1 − P

(
|z1|

2 < λ | H1

)
P

(
|z2|

2 < λ | H1

)
P

(
|z3|

2 < λ | H1

)
P

(
|z4|

2 < λ | H1

)
= 1 −

1 − Q1

 √C
σ
,

√
λ

σ

 1 − Q1

 √0.0292C
σ

,

√
λ

σ


·

1 − Q1

 √0.0148C
σ

,

√
λ

σ

 1 − Q1

 √0.5001C
σ

,

√
λ

σ

, (5.22)

where Q1 is the Marcum’s Q function. Fig. 5.6 shows that this coherent combining technique

for joint acquisition of all GPS L1 civil signals has the same performance as the optimal

detector. This technique can be extended over multiple L1C spreading code periods by using

semi-coherent integration.
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Figure 5.6: Detection probability of coherent combining joint L1C and C/A detector for acquisition
over one L1C spreading code period referenced to L1C signal power.

5.5.3 Semi-Coherent Integration

The coherent combinations of GPS L1C pilot, L1C data, and C/A code every 10 ms coherent

integration period can be noncoherently combined using an integer number K sequential

coherent combinations in a technique known as semi-coherent integration:

Zjoint
semi =

K∑
k=1

max
{
|z1,k|

2, |z2,k|
2, |z3,k|

2, |z4,k|
2
}
, (5.23)

where:

z1,k =
√
αIP,k + j

√
αQP,k +

√
βID,k + j

√
βQD,k −

√
γQC/A,k + j

√
γIC/A,k, (5.24a)

z2,k =
√
αIP,k + j

√
αQP,k +

√
βID,k + j

√
βQD,k +

√
γQC/A,k − j

√
γIC/A,k, (5.24b)

z3,k =
√
αIP,k + j

√
αQP,k −

√
βID,k − j

√
βQD,k +

√
γQC/A,k − j

√
γIC/A,k, (5.24c)

z4,k =
√
αIP,k + j

√
αQP,k −

√
βID,k − j

√
βQD,k −

√
γQC/A,k + j

√
γIC/A,k, (5.24d)
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Figure 5.7: Detection probability of semi-coherent joint L1C and C/A detector for acquisition over
three L1C spreading code periods referenced to L1C signal power.

and

|z1,k|
2 =

(√
αIP,k+

√
βID,k−

√
γQC/A,k

)2
+

(√
αQP,k+

√
βQD,k+

√
γIC/A,k

)2
, (5.25a)

|z2,k|
2 =

(√
αIP,k+

√
βID,k+

√
γQC/A,k

)2
+

(√
αQP,k+

√
βQD,k−

√
γIC/A,k

)2
, (5.25b)

|z3,k|
2 =

(√
αIP,k−

√
βID,k+

√
γQC/A,k

)2
+

(√
αQP,k−

√
βQD,k−

√
γIC/A,k

)2
, (5.25c)

|z4,k|
2 =

(√
αIP,k−

√
βID,k−

√
γQC/A,k

)2
+

(√
αQP,k−

√
βQD,k+

√
γIC/A,k

)2
, (5.25d)

with the following weights for GPS L1C and C/A joint acquisition:

α = 0.4391, β = 0.1464, and γ = 0.4145.

Simulation results are used to show how this semi-coherent integration technique out-

performs the noncoherent detector in Fig. 5.7 for acquisition over three L1C spreading

code periods (30 ms). Since the coherent combinations depend on relative sign estimates

between the overlay/data bits, the performance advantage of semi-coherent integration over

noncoherent combining is expected to disappear eventually as C/No decreases. Fig. 5.8

shows this point with an extended integration time of twenty-five spreading code periods.
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Figure 5.8: Detection probability of semi-coherent joint L1C and C/A detector for acquisition with
an extended integration time over twenty-five spreading code periods referenced to L1C
signal power.

5.6 Joint L1C Pilot and C/A Acquisition

Joint acquisition of the GPS L1C and C/A code signals is an attractive solution to improving

acquisition sensitivity. The cost, however, is increased receiver complexity and additional

correlator requirements. In the composite L1C and C/A code signal, the L1C data component

contributes less than 15 percent of the total signal power. One possible tradeoff is to ignore

the L1C data component and perform joint L1C pilot and C/A code acquisition. In this

section, detectors that use only the pilot component of L1C along with the C/A code signal

for acquisition are proposed and their performance is analyzed.

5.6.1 Optimal

Since the L1C pilot nominal received signal is 0.25 dBW higher than the C/A code, L1C

pilot has a received strength that is 10
0.25
10 = 1.0593 times higher than C/A on a linear scale:

1.0593γ′ + γ′ = 1,

γ′ = 0.4856, (5.26)
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so that the power split parameters are:

α′ = 0.5144, and γ′ = 0.4856. (5.27)

The likelihood ratio in the optimal detector for joint acquisition of L1C pilot and L1 C/A

comes directly from making adjustments to the optimal joint detector in (5.11) which results

in:

Λ(r) =
∑

dP,dC/A∈{B}

p(dP,dC/A)I0

 √C′

σ2

√
x2 + y2

, (5.28)

where C′ represents the total received signal power from the two components, the vectors d

contain the overlay/data bits during each 10 ms integration for each component, {B} is the

set of all possible bit combinations, I0 is the modified Bessel function of zeroth order, and x

and y are defined as:

x =

K∑
k=1

(√
α′IP,kdP,k−

√
γ′QC/A,kdC/A,k

)
,

y =

K∑
k=1

(√
α′QP,kdP,k+

√
γ′IC/A,kdC/A,k

)
. (5.29)

As noted previously for the joint L1C and C/A optimal detector, the set of all possible bit

combinations {B} is reduced in this joint case by removal of some impossible combinations

of L1C pilot overlay code bits and C/A navigation data bits. The bit period for L1C is 10

ms; whereas, the bit period for C/A is 20 ms. Since dC/A represents the navigation bit on

C/A every 10 ms, all combinations in which three consecutive C/A data bits are different are

not possible and therefore, not included in {B}.

The detection probabilities of this optimal detector for joint L1C pilot and L1 C/A

acquisition referenced to the C/No of the L1C signal are shown in Figs. 5.9 and 5.10, while

using one and three spreading code periods. The C/No is still referenced to the L1C signals

so that the performance of the joint L1C pilot and C/A code detectors can easily be compared

to previous acquisition schemes. It is interesting to note that the optimal joint detector using

the L1C pilot and L1 C/A signals outperforms the noncoherent combining detector of both

L1C data and pilot components with the L1 C/A signal.
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Figure 5.9: Detection probability of optimal joint L1C pilot and C/A detector for acquisition over
one L1C spreading code period referenced to L1C signal power.

24 25 26 27 28
0.6

0.7

0.8

0.9

1

C/No (dB-Hz) of L1C

Pr
ob

ab
ili

ty
of

D
et

ec
tio

n
(w

ith
Pf

a=
0.

00
1)

Optimal Joint L1C & C/A Detector

Semi-Coherent Combining Joint L1C & C/A Detector

Noncoherent Joint L1C & C/A Combining Detector

Optimal Joint L1C Pilot & C/A Detector

Optimal L1C Detector

Figure 5.10: Detection probability of optimal joint L1C pilot and C/A detector for acquisition over
three L1C spreading code periods referenced to L1C signal power.
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Figure 5.11: Block diagram of noncoherent combining detector for joint acquisition of GPS L1C
Pilot and L1 C/A.

5.6.2 Noncoherent Combining

Noncoherent combining is a separate acquisition of the L1C pilot component and the C/A

code and the subsequent combination of their correlator powers. The incoming signal can

be correlated separately with a local replica of the L1C pilot and the C/A spreading codes as

shown in Fig. 5.11. Noncoherent channel combining is the squaring, scaling, and summing

of correlator outputs to obtain the decision variable:

Zjointpc
ncw =

K∑
k=1

(
α′I2

P,k + α′Q2
P,k + γ′I2

C/A,k + γ′Q2
C/A,k

)
, (5.30)

where α′, and γ′, are the power split parameters from (5.27).

Since the underlying Gaussian random variables have two different variances based on

the power split factors, the decision statistic, Zjointpc
ncw , is a sum of two chi-square random

variables, each with 2K degrees of freedom. When the signal is not present, or when

incorrect delay and Doppler estimates are used, the random variables have a central chi-

square distribution. When the delay and Doppler estimates are correct, the random variables
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Figure 5.12: Detection probability of noncoherent combining joint L1C pilot and C/A detector for
acquisition over one L1C spreading code period referenced to L1C signal power.

have a non-central chi-square distribution. Performance of this noncoherent combining

detector is shown in Figs. 5.12 and 5.13. These figures illustrate that as the total integration

time increases, the performance gap between the optimal and noncoherent combining

detectors also increases. Other combining techniques to improve performance for joint

acquisition of the L1C pilot and C/A code are now considered.

5.6.3 Coherent Combining

The coherent channel combining technique presented for the the two L1C components is

adjusted so that the L1C data component is replaced by the C/A code:

Zjointpc
chw = max

{
|z+|2, |z−|2

}
, (5.31)

where:

z+ =
√
α′IP + j

√
α′QP −

√
γ′QC/A + j

√
γ′IC/A, (5.32a)

z− =
√
α′IP + j

√
α′QP +

√
γ′QC/A − j

√
γ′IC/A, (5.32b)

100



24 25 26 27 28
0.6

0.7

0.8

0.9

1

C/No (dB-Hz) of L1C

Pr
ob

ab
ili

ty
of

D
et

ec
tio

n
(w

ith
Pf

a=
0.

00
1)

Optimal Joint L1C & C/A Detector

Semi-Coherent Combining Joint L1C & C/A Detector

Noncoherent Joint L1C & C/A Combining Detector

Optimal Joint L1C Pilot & C/A Detector

Noncoherent Joint L1C Pilot & C/A Combining Detector

Optimal L1C Detector

Figure 5.13: Detection probability of noncoherent combining joint L1C pilot and C/A detector for
acquisition over three L1C spreading code periods referenced to L1C signal power.

and

|z+|2 =
(√
α′IP−

√
γ′QC/A

)2
+

(√
α′QP+

√
γ′IC/A

)2
, (5.33a)

|z−|2 =
(√
α′IP+

√
γ′QC/A

)2
+

(√
α′QP−

√
γ′IC/A

)2
, (5.33b)

with:

α′ = 0.5144 and γ′ = 0.4856.

The |z+|2 and |z−|2 terms are chi-square random variables with two degrees of freedom.

With the scale factors, the underlying Gaussian random variables have a variance of σ2,

instead of 2σ2.When the signal is present with correct estimates of delay and Doppler, the

noncentrality parameter for |z+|2 is:

a2
+ =

(
α′
√

C′dP cos (∆θ) + γ′
√

C′dC/A cos (∆θ)
)2

+
(
α′
√

C′dP sin (∆θ) + γ′
√

C′dC/A sin (∆θ)
)2

=
(
α′2 + γ′2 + 2α′γ′dPdC/A

)
C cos2 (∆θ) +

(
α′2 + γ′2 + 2α′γ′dPdC/A

)
C sin2 (∆θ)

=
(
α′2 + γ′2 + 2α′γ′dPdC/A

)
C

=


C, correct rel. sign

(
dPdC/A = +1

)
(0.0008)C, incorrect rel. sign

(
dPdC/A = −1

)
.

(5.34)
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The noncentrality parameter for |z−|2 is:

a2
− =

(
α′2 + γ′2 − 2α′γ′dPdC/A

)
C

=


C, correct rel. sign

(
dPdC/A = −1

)
(0.0008)C, incorrect rel. sign

(
dPdC/A = +1

)
.

(5.35)

These noncentrality parameters lead to the following false alarm and detection probabilities:

Pchw
f a (λ) = 1 − P

(
|z+|2 < λ | H0

)
P

(
|z−|2 < λ | H0

)
= 1 −

[
1 − exp

(
−λ

2σ2

)]2

, (5.36)

and

Pchw
d (λ) = 1 − P

(
|z+|2 < λ | H1

)
P

(
|z−|2 < λ | H1

)
= 1 −

1 − Q1

 √C
σ
,

√
λ

σ

 1 − Q1

 √(0.0008)C
σ

,

√
λ

σ

, (5.37)

where Q1 is the Marcum’s Q function. Fig. 5.14 shows that this coherent combining

technique for joint acquisition of the L1C pilot and L1 C/A has better performance than

noncoherently combining all the GPS L1 civil signals. This technique can be extended over

multiple L1C spreading code periods by using semi-coherent integration.

5.6.4 Semi-Coherent Integration

The coherent channel combining technique presented for the the two L1C components is

adjusted so that the L1C data component is replaced by the C/A code:

Zjointpc
chw =

K∑
k=1

max
{
|z+

k |
2, |z−k |

2
}
, (5.38)

where:

z+
k =
√
α′IP,k + j

√
α′QP,k −

√
γ′QC/A,k + j

√
γ′IC/A,k, (5.39a)

z−k =
√
α′IP,k + j

√
α′QP,k +

√
γ′QC/A,k − j

√
γ′IC/A,k, (5.39b)

102



27 28 29 30 31 32
0.6

0.7

0.8

0.9

1

C/No (dB-Hz) of L1C

Pr
ob

ab
ili

ty
of

D
et

ec
tio

n
(w

ith
Pf

a=
0.

00
1)

Optimal Joint L1C & C/A Detector

Coherent Combining Joint L1C & C/A Detector

Noncoherent Joint L1C & C/A Combining Detector

Optimal Joint L1C Pilot & C/A Detector

Coherent Combining Joint L1C Pilot & C/A Detector

Noncoherent Joint L1C Pilot & C/A Combining Detector

Optimal L1C Detector

Figure 5.14: Detection probability of coherent combining joint L1C pilot and C/A detector for
acquisition over one L1C spreading code period referenced to L1C signal power.

and

|z+
k |

2 =
(√
α′IP,k−

√
γ′QC/A,k

)2
+

(√
α′QP,k+

√
γ′IC/A,k

)2
, (5.40a)

|z−k |
2 =

(√
α′IP,k+

√
γ′QC/A,k

)2
+

(√
α′QP,k−

√
γ′IC/A,k

)2
, (5.40b)

with:

α′ = 0.5144 and γ′ = 0.4856.

Simulation results are used in Fig. 5.15 to show how this semi-coherent integration technique

outperforms the the noncoherent detectors (using all L1C signals or just L1C pilot plus L1

C/A) for acquisition over three L1C spreading code periods (30 ms). Since the coherent

combinations depend on relative sign estimates between the overlay/data bits, the perfor-

mance advantage of semi-coherent integration over noncoherent combining is expected to

disappear eventually as the C/No decreases. Fig. 5.16 shows this point with an extended

integration time of twenty-five spreading code periods.
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Figure 5.15: Detection probability of semi-coherent combining joint L1C pilot and C/A detector for
acquisition over three L1C spreading code periods referenced to L1C signal power.
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Figure 5.16: Detection probability of semi-coherent combining joint L1C pilot and C/A detector
for acquisition over extended integration time of twenty-five spreading code period
referenced to L1C signal power.
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5.7 Correct C/A Code Phase and Incorrect L1C Code Phase

The previous work in this chapter is based on the assumption that when incorrect estimates

for code delay and Doppler are used, the outputs of the correlators contain the noise terms

only. The scenario when this assumption is invalid is discussed in this section. The coherent

integration time in the acquisition schemes presented here is the length of the L1C spreading

code, or 10 ms. Since the L1 C/A code period is only 1ms, it repeats ten times during

one L1C spreading code period. This leads to the situation that nine different code delay

estimates will be incorrect for L1C but correct for L1 C/A. If correlator spacing of one chip

is used, then nine out of 10,230 possible code phase estimates will have noise only on the

L1C correlator outputs while having signal energy in the C/A code correlator outputs:

IP,k = ηP,I,k,

QP,k = ηP,Q,k,

ID,k = ηD,I,k,

QD,k = ηD,Q,k,

IC/A,k =
√
γC dC/A,k sin (∆θ) + ηC/A,I,k,

QC/A,k = −
√
γC dC/A,k cos (∆θ) + ηC/A,Q,k. (5.41)

A strategy to deal with this possibility may be implemented in the GPS receiver. For

example, if the decision statistic of a particular detector crosses the detection threshold,

power in the L1C correlator outputs can be checked. If it determined that the correct C/A

code phase but incorrect L1C code phase has been found, acquisition can proceed with just

the C/A code signal.

To determine the probability that an incorrect L1C code delay estimate but correct C/A

code delay estimate would cross the detection threshold, simulations with this scenario were

performed for various joint detection schemes presented in this chapter. Figs. 5.17-5.22

show the detection probability of the detectors along with the detection probability for a

correct C/A code phase but incorrect L1C code phase for each detector. (represented by the
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Figure 5.17: Detection probability of joint L1C and C/A detectors with incorrect L1C code phase
estimate but correct C/A code phase estimate for acquisition over one L1C spreading
code period referenced to L1C signal power.

solid lines) The latter can almost be considered a C/A code detector, however, the detector

does contain extra noise terms from the L1C correlators. These figures show that in the

infrequent cases that the detector has the correct C/A code phase but incorrect L1C code

phase, the detector will declare signal present about 20 percent of the time in the SNR range

that joint detectors are beneficial. As the SNR increases, the problem becomes worse, and

the receiver will need to implement an algorithm to check if it is acquiring the C/A signal at

the correct code phase but the L1C signal at an incorrect code phase.

5.8 Chapter Summary

The trend for future GNSS receivers is multi-signal and multi-constellation capability.

Receiver manufacturers are seeking to design devices that use multiple signals from a

system while also using multiple satellite navigation systems to get a position, navigation,

and timing solution. This chapter aids this trend by focusing on joint detection schemes for

acquisition of the composite L1C and L1 C/A in order to improve acquisition sensitivity.

The optimal detector for joint GPS L1C and L1 C/A was derived and its performance
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Figure 5.18: Detection probability of joint L1C and C/A detectors with incorrect L1C code phase
estimate but correct C/A code phase estimate for acquisition over three L1C spreading
code periods referenced to L1C signal power.
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Figure 5.19: Detection probability of joint L1C and C/A detectors with incorrect L1C code phase
estimate but correct C/A code phase estimate for acquisition over extended integration
time of twenty-five L1C spreading code periods referenced to L1C signal power.
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Figure 5.20: Detection probability of joint L1C pilot and C/A detectors with incorrect L1C code
phase estimate but correct C/A code phase estimate for acquisition over one L1C
spreading code period referenced to L1C signal power.
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Figure 5.21: Detection probability of joint L1C pilot and C/A detectors with incorrect L1C code
phase estimate but correct C/A code phase estimate for acquisition over three L1C
spreading code periods referenced to L1C signal power.
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Figure 5.22: Detection probability of joint L1C pilot and C/A detectors with incorrect L1C code
phase estimate but correct C/A code phase estimate for acquisition over extended
integration time of twenty-five L1C spreading code periods referenced to L1C signal
power.

used as a benchmark for other joint acquisition schemes. Coherent combining over one L1C

spreading code period by trying all four possible coherent combinations was shown to have

optimal performance. Analytical expressions for the detection and false alarm probabilities

were derived. Semi-coherent integration used these coherent combinations over multiple

spreading code periods. Similar techniques for acquisition were also considered for only

using the L1C pilot component along with the C/A code signal. This latter technique may

be most attractive to GNSS receiver designers due to the low power contribution from the

L1C data component.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Modern GPS signals and new satellite navigation systems have created the opportunity for

employing new processing techniques for acquisition and tracking in GNSS receivers. As

the most recently designed GPS signal, L1C has some novel features that can be exploited to

improved receiver performance. The first satellites transmitting the L1C signal are expected

to be in orbit by 2015. GNSS receiver designers are starting to incorporate modern GNSS

signals, including L1C, into their equipment.

As described in Chapter 1, the objective of this dissertation is to provide a comprehensive

evaluation of L1C acquisition and to propose techniques to improve acquisition sensitivity.

The unique features of this signal, such as the unequal power in the data and pilot components,

are exploited when applicable to achieve better performance. The optimal detectors are

derived to provide a benchmark.

6.1 Optimal Detectors

The deployment of new satellite navigation systems such as Galileo and Beidou along with

the modernization of GPS and GLONASS, has led to increased research efforts in the field

of GNSS, including more sophisticated acquisition techniques. The derivation of the optimal

detector for GPS L1C acquisition in this dissertation provides the GNSS community a a

benchmark for the best acquisition performance possible in terms of single trial detection

and false alarm probabilities.

While this optimal detector may be used in a GNSS receiver, the implementation depends

on knowledge of the carrier-to-noise density ratio and the computationally complex modified

Bessel function. The noncoherent combining detector was shown to be an approximation to

the GPS L1C optimal detector based on a Bessel function approximation. As the coherent

integration time is extended, the performance gap between the optimal and noncoherent
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detectors was shown to increase. Since the GNSS receiver may have a priori knowledge of

the pilot overlay code phase and possibly the navigation data, optimal detectors were also

derived for these two scenarios.

6.2 Sub-Optimal Detectors

A novel feature of the L1C signal is the unequal power split between the data and pilot

components. It was shown that for improved acquisition performance, signal combining

techniques need to use unequal power compensation which is a scaling of each signal

by their relative power levels. The performance of noncoherent combining with unequal

power compensation was shown along with the derivation of analytical detection and false

alarm probabilities. Using one spreading code period for acquisition, the noncoherent

combining technique reaches within 0.75 dB of the optimal detector acquisition sensitivity,

however, this gap increases as the total integration time increases. Techniques to improve on

the performance of noncoherent combining for L1C acquisition were proposed and their

performance compared to that of the optimal detectors.

Since the relative sign between the pilot and data components is unknown by the receiver,

coherent combining of the two components can be achieved by using each combination

and selecting the one with the highest power. Analytical expressions for the detection and

false alarm probabilities for GPS L1C acquisition using coherent combining were derived.

This coherent combining technique was shown to have the same performance as the optimal

detector for acquisition using one spreading code period, or 10 ms.

For challenging signal environments where extended integration times are needed for

successful acquisition, the coherent combinations from each coherent integration can be

noncoherently combined in a technique known as semi-coherent integration. This technique

was shown to also outperform noncoherent combining down to a C/No of about 22 dB-Hz.

After this point the estimation of the relative sign between components is no longer reliable.

Two acquisition techniques, when the phase of the deterministic L1C pilot overlay
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code is known a priori by the receiver, were proposed. The first, differentially-coherent

integration of the pilot component only was shown to provide up to 2 dB better detection

performance over the noncoherent combining of both components. The second technique

used the knowledge of the pilot overlay code phase to estimate the navigation data bits

allowing for extended coherent integration over multiple code periods.

6.3 Joint Acquisition of L1C and L1 C/A

The GPS L1C and L1 C/A codes share the same carrier frequency, making the joint acquisi-

tion of both signals an attractive solution for increased acquisition sensitivity. The optimal

detector for joint acquisition was derived, and performance in terms of detection and false

alarm probabilities found using Monte Carlo computer simulations. Results showed the

expected 2.5 dB increase in acquisition performance at a 0.9 detection probability due to

higher received signal power.

The sub-optimal detectors proposed for L1C acquisition were adapted for joint acquisi-

tion of three components: L1C pilot, L1C data, and C/A code. The noncoherent combining

detector with unequal power compensation had about 0.75 dB in decreased acquisition

sensitivity as compared to the optimal joint detector using one spreading code period. This

performance gap increases as the number of spreading code periods for acquisition increases

in lower SNR environments.

In the composite L1C and L1 C/A signal, the L1C data component contributes to less

than 15 percent of the total signal power. A potential tradeoff between receiver complexity

and performance is to perform joint acquisition of the L1C pilot component and L1 C/A

while ignoring the L1C data component. Various detectors using this technique were

proposed. The optimal and coherent combing detectors ignoring the L1C data component

were shown to have better detection performance than the noncoherent combining detector

using all three components.
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6.4 Recommendations for Future Work

In addition to acquisition sensitivity, another important factor is the time it takes to acquire

the GNSS signal. For all of the techniques proposed here, the mean acquisition time could

be investigated to assist in the engineering tradeoffs between performance and complexity.

The L1C spreading code, with a period of 10 ms, is ten times longer than the legacy

L1C C/A code. GNSS chipset designers for cell phones prefer the shorter code to decrease

acquisition time. Strategies that use C/A code for initial acquisition and aiding to acquire

the L1C signal to facilitate a shift over to L1C for improved tracking performance may be

of interest. This returns to the origin of the C/A code, a Coarse Acquisition code originally

designed to acquire the military P(Y) signal.

Once GNSS receivers acquire the signal from a satellite, most will shift into tracking the

signal as the spreading code delay and Doppler change over time. Joint tracking of multiple

GNSS signals is an area of active research and directly applies here to L1C. Whether it

is joint tracking of the pilot and data components, or also adding the L1 C/A code signal,

performance improvements in joint tracking and position solutions can be investigated.

While it seems as if GPS is already ubiquitous, with improved acquisition techniques

along with other tracking enhancements, integration with other sensors, and external out of

band assistance, the possible applications for GNSS will expand beyond current imagination.

The sextant, however, may not go away entirely. Coast Guard ships are required to

compare GPS positions to an unrelated positioning source at various prescribed intervals

depending on distance from land. For open ocean navigation, a celestial observation meets

this requirement, and therefore, ships are required to maintain proficiency in the art of

celestial navigation. Future Coast Guard cadets onboard the tall-ship Eagle should have the

opportunity to steady their legs on the rolling and pitching deck, while attempting to swing

the arc with a sextant, even as the GPS watch on their wrist is ready to precisely calculate

the distance they run for exercise around the deck.
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APPENDIX A

ADDITIONAL INFORMATION ON THE POWER SPECTRA OF
GPS L1C

The amplitude spectrum of L1C can be found by taking the Fourier Transform of one period

of the baseband L1C signal and ignoring the data modulation and overlay code. One period

of the data component was described earlier in (2.14):

hD(t) =

N−1∑
n=0

cD,ngBOC(1,1)(t − nTc). (A.1)

Each spreading code chip, cD,n modulates a BOC(1,1) spreading symbol. Equation (A.1)

can be written as a convolution by using impulse functions:

hD(t) = gBOC(1,1)(t) ∗
N−1∑
n=0

cD,nδ(t − nTc), (A.2)

where ∗ indicates convolution and δ(t) is the unit impulse function. Using the Fourier

Transform results in HD( f ):

F
{
hD(t)

}
= F

{
gBOC(1,1)(t) ∗

N−1∑
n=0

cD,nδ(t − nTc)
}

= F

{
gBOC(1,1)(t)

}
F

{ N−1∑
n=0

cD,nδ(t − nTc)
}

= G( f )
∫ ∞

∞

N−1∑
n=0

cD,nδ(t − nTc)e−j2π f t dt

= G( f )
N−1∑
n=0

cD,ne−j2π f nTc

=
√

NG( f )C( f ). (A.3)

Thus, the Fourier Transform of the data component is the product of the spreading symbol

Transform, G( f ), and the code Transform, C( f ), the latter of which only depends on the

spreading code.
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APPENDIX B

AMBIGUITY FUNCTION AND CORRELATOR OUTPUTS

To simplify notation for the correlator outputs and to highlight the ambiguity function,

complex notation is now used to follow the receiver inphase and quadrature processing. The

complex reference signal is:

exp
(
−j

(
2π

(
fIF + f̂d

)
t + θ̂

))
. (B.1)

After multiplying the received GPS L1C signal by the reference signal and low-pass filtering,

the inphase and quadrature channels are:

I + Q =

√
3
2CdP(t − τ)cP(t − τ)gP(t − τ) exp

(
j (2π∆ fdt + ∆θ)

)
+

√
1
2CdD(t − τ)cD(t − τ)gD(t − τ) exp

(
j (2π∆ fdt + ∆θ)

)
+ ñ(t), (B.2)

where ˜ is used to denote a complex quantity. The output of the complex correlator is:

S̃ = IP + jQP + ID + jQD

=

√
3
2C dP exp ( j∆θ) R̃P (∆τ,∆ fd) +

√
1
2C dD exp ( j∆θ) R̃D (∆τ,∆ fd) + η̃, (B.3)

where:

R̃P (∆τ,∆ fd) =
1
Tc

∫ Tc

o
cP(t − τ)cP(t − τ̂)gP(t − τ)gP(t − τ̂) exp

(
j2π∆ fdt

)
dt, (B.4)

R̃D (∆τ,∆ fd) =
1
Tc

∫ Tc

o
cD(t − τ)cD(t − τ̂)gD(t − τ)gD(t − τ̂) exp

(
j2π∆ fdt

)
dt. (B.5)

R̃ is the ambiguity function and depends on both the Doppler error and the code phase error.

The magnitude of S̃ can be found to eliminate the two nuisance parameters, the data/overlay

code bit and the carrier offset, ∆θ.

Making the assumption that the spreading codes are random allows for a compact

expression for the ambiguity function:

E{R̃} = R̄ (∆τ) exp
(
jπ∆ fdTc

)
sinc (π∆ fdTc), (B.6)
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where R̄ (∆τ) is the average auto-correlation function derived using random codes. Now the

expected value of the complex correlator output is:

E
{
S̃
}
=

√
3
2C dP exp

(
j∆θ

)
E {RP} +

√
1
2C dD exp

(
j∆θ

)
E {RD} + η̃

=

√
3
2C dP exp

(
j∆θ

)
R̄P (∆τ) exp

(
jπ∆ fdTc

)
sinc (π∆ fdTc)

+

√
1
2C dD exp

(
j∆θ

)
R̄D (∆τ) exp

(
jπ∆ fdTc

)
sinc (π∆ fdTc) + η̃. (B.7)

Substituting ∆θ′ = ∆θ + π∆ fdTc, the output of the complex correlator is:

E
{
S̃
}
=

√
3
2C dP exp

(
j∆θ′

)
R̄P (∆τ) sinc (π∆ fdTc)

+

√
1
2C dD exp

(
j∆θ′

)
R̄D (∆τ) sinc (π∆ fdTc) + η̃. (B.8)

Separating complex correlator outputs into the separate inphase and quadrature channels

for both the pilot and data components gives the simplified notation for the expected value

of the correlator outputs under the assumption of random codes:

ĪP (∆τ,∆ fd,∆θ) =

√
3
2C dP cos

(
∆θ′

)
R̄P (∆τ) sinc (π∆ fdTc) + ηP,I , (B.9)

Q̄P (∆τ,∆ fd,∆θ) =

√
3
2C dP sin

(
∆θ′

)
R̄P (∆τ) sinc (π∆ fdTc) + ηP,Q, (B.10)

ĪD (∆τ,∆ fD,∆θ) =

√
1
2C dD cos

(
∆θ′

)
R̄D (∆τ) sinc (π∆ fdTc) + ηD,I , (B.11)

Q̄D (∆τ,∆ fD,∆θ) =

√
1
2C dD sin

(
∆θ′

)
R̄D (∆τ) sinc (π∆ fdTc) + ηD,Q. (B.12)
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APPENDIX C

DERIVATION OF OPTIMAL DETECTORS FOR L1C
ACQUISITION

The optimal detectors for GPS L1C acquistion presented in Chapter 3 are derived here by

finding the ratio of joint probabilities of the observation r under the hypotheses that the

signal is present and that is not present:

Λ(r) ,
p (r | H1)
p (r | H0)

, (C.1)

where the observation r is defined as:

H1 : r =



IP

QP

ID

QD


+n =



√
αCdP cos (∆θ)
√
αCdP sin (∆θ)
√
βCdD cos (∆θ)
√
βCdD sin (∆θ)


+n

H0 : r = n. (C.2)

This observation is over integer K spreading code periods. Under H1, the observation

is the 4K × 1 vector of correlator outputs from the K × 10 ms observation. The 4K × 1

noise vector, n, is white and Gaussian with covariance σ2I, where I is the identity matrix,

and σ2 = N0/ (2Tcoh) [5], with Tcoh being the coherent integration time. The received

signal power is C, with the parameters α and β describing the power split between the two

components, so that α + β = 1. For the GPS L1C signal, α = 3/4 and β = 1/4. The carrier

phase residual, or phase offset between the local replica and the received signal, is ∆θ. Each

component may have data, dP or dD, which represents any navigation data, overlay code,

or a combination of these two items that may be present. These data vectors, dP or dD, are

each K × 1 vectors which represent the data bit during each code period.
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C.1 Unknown Pilot Overlay Code Phase and Data Bits

The joint probability density function of r is expressed as a product of the marginal probabil-

ity density functions, since all of the noise terms are mutually-uncorrelated, and therefore,

statistically-independent zero-mean Gaussian random variables. The joint probability den-

sity function under hypothesis H0 (no satellite signal present) is:

p(r | H0) =

(
1

(2π)2σ4

)K

exp
(
−|r|2

2σ2

)
. (C.3)

The joint probability density function under hypothesis H1 (satellite signal is present) is:

p(r | H1) =

[
1

(2π)2 σ4

]K

exp

 1
2σ2

∣∣∣∣∣∣∣∣∣r − e j∆θ


√
αCdp

√
βCdD


∣∣∣∣∣∣∣∣∣
2

=

[
1

(2π)2 σ4

]K

exp
(
−p2

2σ2

)
, (C.4)

where:

p2 = |r|2 + KC − 2
√

C cos(∆θ)
K∑

k=1

(√
αIP,kdP,k +

√
βID,kdD,k

)
− 2
√

C sin(∆θ)
K∑

k=1

(√
αQP,kdP,k +

√
βQD,kdD,k

)
. (C.5)

By substituting (C.5) into (C.4) for p2, the joint probability density function is now:

p(r | H1) =

[
1

(2π)2 σ4

]K

exp
(
−|r|2

2σ2

)
exp

(
−KC
2σ2

)
· exp

 √C
σ2 cos(∆θ)

K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)
· exp

 √C
σ2 sin(∆θ)

K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

) . (C.6)

Since the carrier phase residual (∆θ), overlay code bit (dP), and data bit (dD), are

unknown, each is considered a random variable with a known a priori density. The con-

ditional probability density functions in the likelihood ratio can be found by averaging
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p (r | H0, θ, dP, dD) and p (r | H1, θ, dP, dD) over the probability density function of the ran-

dom carrier phase residual and the probability mass function of the random bits:

p (r | H1) =
∑

dP,dD∈{B}

p(dP,dD)
∫ 2π

0
p (r | H1,∆θ, dP, dD) p (∆θ | H1) d∆θ,

p (r | H0) =
∑

dP,dD∈{B}

p(dP,dD)
∫ 2π

0
p (r | H0,∆θ, dP, dD) p (∆θ | H0) d∆θ, (C.7)

where B represents all 22K combinations of the data and pilot bits over the observation

interval.

The likelihood ratio is now:

Λ(r) =
p (r | H1)
p (r | H0)

=
∑

dP,dD∈{B}

p(dP,dD)
1

2π

∫ 2π

0

[ [
1

(2π)2 σ4

]K

exp
(
−|r|2

2σ2

)
exp

(
−KC
2σ2

)
· exp

 √C
σ2 cos(∆θ)

K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)
· exp

 √C
σ2 sin(∆θ)

K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

) ((2π)2σ4
)K

exp
(
+|r|2

2σ2

) ]
d∆θ

= exp
(
−KC
2σ2

) ∑
dP,dD∈{B}

p(dP,dD)
1

2π

∫ 2π

0
exp

 √C
σ2 cos(∆θ) (x)

 exp
 √C
σ2 sin(∆θ) (y)

 d∆θ, (C.8)

where:

x =

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k

)
,

y =

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k

)
. (C.9)

The first exponential function in (C.8) is neither a function of the observation, of the

carrier phase offset, nor of the overlay/data bits; thus, this function is incorporated with the

threshold so that the likelihood ratio for the optimal GPS L1C detector becomes:

Λ′(r) =
∑

dP,dD∈{B}

p(dP,dD)
1

2π

∫ 2π

0

[
exp

 √C
σ2 cos(∆θ) (x)

 exp
 √C
σ2 sin(∆θ) (y)

 ] d∆θ

=
∑

dP,dD∈{B}

p(dP,dD)I0

 √C
σ2

√
x2 + y2

, (C.10)
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where I0 is the modified Bessel function of zeroth order, and x and y are defined in (C.9).

This result is similar to the optimal detector for acquisition of the GPS L5 signal derived in

[33]; however, the optimal GPS L1C detector presented here includes scale factors based

on the power split between the data and pilot components. In addition, there is a different

ordering of terms since the L1C components are in-phase as opposed to in-phase quadrature

for the L5 signal.

Under the assumption that all combinations of pilot and data bits are possible and equally

probable, and therefore incorporating these probabilities into the threshold, the likelihood

ratio is now:

Λ′(r) =
∑

dP,dD∈{B}

I0

 √C
σ2

√
x2 + y2

. (C.11)

Comparing this new likelihood ratio to a threshold gives the optimal detector:

∑
dP,dD∈{B}

I0

 √C
σ2

√
x2 + y2

 H1
≷
H0

λ′. (C.12)

C.2 Known Pilot Overlay Code Phase and Unknown Data Bits

The likelihood ratio is again derived, starting with the same joint probability densities of the

observation vector under the two hypotheses as defined in equations (C.3) and (C.6).

Since the carrier phase residual (∆θ) and data bit (dD) are unknown, each is considered a

random variable with a known a priori density; however, this time, the pilot overlay code

bits are known. The conditional probability density functions in the likelihood ratio can be

found by averaging p (r | H0, θ, dD) and p (r | H1, θ, dD) over the probability density function

of the random carrier phase residual and the probability mass function of the random data

bits:

p (r | H1) =
∑

dD∈{B}

p(dD)
∫ 2π

0
p (r | H1,∆θ, dD) p (∆θ | H1) d∆θ,

p (r | H0) =
∑

dD∈{B}

p(dD)
∫ 2π

0
p (r | H0,∆θ, dD) p (∆θ | H0) d∆θ, (C.13)
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where B now represents the 2K possible combinations of the data bits over the observation

interval which has been reduced from 22K possible combinations when the pilot bits were

unknown.

The likelihood ratio is now:

Λ(r) =
p (r | H1)
p (r | H0)

=
∑

dD∈{B}

p(dD)
1

2π

∫ 2π

0

[ [
1

(2π)2 σ4

]K

exp
(
−|r|2

2σ2

)
exp

(
−KC
2σ2

)
· exp

 √C
σ2 cos(∆θ)

K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)
· exp

 √C
σ2 sin(∆θ)

K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

) ((2π)2σ4
)K

exp
(
+|r|2

2σ2

) ]
d∆θ

= exp
(
−KC
2σ2

) ∑
dD∈{B}

p(dD)
1

2π

∫ 2π

0
exp

 √C
σ2 cos(∆θ) (x)

 exp
 √C
σ2 sin(∆θ) (y)

 d∆θ, (C.14)

where:

x =

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k

)
,

y =

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k

)
. (C.15)

Once again, the first exponential function in (C.14) is not a function of the observable,

the carrier phase offset, or data bits; thus, this function is incorporated with the threshold

so that the likelihood ratio for the optimal GPS L1C detector in this particular scenario

becomes:

Λ′(r) =
∑

dD∈{B}

p(dD)
1

2π

∫ 2π

0

[
exp

 √C
σ2 cos(∆θ) (x)

 exp
 √C
σ2 sin(∆θ) (y)

 ] d∆θ

=
∑

dD∈{B}

p(dD)I0

 √C
σ2

√
x2 + y2

 , (C.16)

or, since the data bits are assumed to be equally likely:

Λ′(r) =
∑

dD∈{B}

I0

 √C
σ2

√
x2 + y2

 , (C.17)

where I0 is the modified Bessel function of zeroth order, and x and y are defined in (C.15),

with each dP,k known.
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C.3 Known Pilot Overlay Code Phase and Known Data Bits

In the scenario in which the receiver has knowlege of both the pilot overlay code phase

and navigation data bits, the carrier phase residual (∆θ) is still unknown and considered a

random variable with a uniform probability density. The conditional probability density

functions in the likelihood ratio are now:

p (r | H1) =

∫ 2π

0
p (r | H1,∆θ) p (∆θ | H1) d∆θ,

p (r | H0) =

∫ 2π

0
p (r | H0,∆θ) p (∆θ | H0) d∆θ. (C.18)

The optimal detector is now:

Λ(r) =
1

2π

∫ 2π

0

[
exp

 √C
σ2 cos(∆θ) (x)

 exp
 √C
σ2 sin(∆θ) (y)

 ] d∆θ

= I0

 √C
σ2

√
x2 + y2

, (C.19)

where I0 is the modified Bessel function of zeroth order, and x and y are:

x =

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k

)
,

y =

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k

)
, (C.20)

where each dP,k and dD,k are known. The modified Bessel function is monotone and is

removed by adjusting the threshold. A simplified, yet equivalent, optimal detector when the

data bits and the pilot overlay code phase are known is:

Λ′(r) =

 K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k

)2

+

 K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k

)2

. (C.21)
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APPENDIX D

DERIVATION OF OPTIMAL DETECTOR FOR JOINT L1C AND
C/A ACQUISITION

In this appendix, classical detection theory is used, following the same procedure as in

Appendix C, to derive the optimal detector for joint L1C and C/A acquisition. Processing

is performed over an arbitrary integer number of primary spreading code periods of the

GPS L1C signal. The signal specification requires that the spreading code chips for the two

signals be synchronized [14]; therefore, each period of the L1C code is assumed to contain

10 complete periods of the C/A code. Despite having a shorter spreading code period, C/A

code has a data bit duration that is twice as long as L1C: Td,C/A = 20 ms. Possible data

transitions on the C/A signal occur at the same time as every other possible data transition

on each L1C component.

The outputs of the correlators are used here as the observation since they are sufficient

statistics for detecting the signal in an additive white Gaussian noise channel [46, 27]. Due

to autocorrelation properties of the codes, it is assumed that the correlator outputs contain

noise only if an incorrect delay estimate is used. If the correlation outputs are observed

every 10 ms a total of K times, then observation at the output of the complex correlators are

the following two hypotheses:

H1 : r =


√
αCdPej∆θ

√
βCdDej∆θ

√
γCdC/A

(
−jej∆θ

)
 +n

H0 : r = n, (D.1)

where the data, dP, dD and dC/A, are each K × 1 vectors which contain the data bit during 10

ms correlation. Under H1, the observation is the 3K × 1 vector of correlator outputs from the

K × 10 ms observation. The 3K × 1 noise vector, n, is white and Gaussian with covariance
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σ2I, where I is the identity matrix and σ2 = N0/ (2Tc) [5]. The received signal power is

C, with the parameters α, β, and γ describing the power split among the three components

(L1C Pilot, L1C Data, C/A Code), so that α + β + γ = 1. For the joint GPS L1C and C/A

acquisition, α = 20/48, β = 7/48 and γ = 20/48 as noted in (5.3). The carrier phase residual

is ∆θ. Each component contains data which represent any navigation bits, overlay code, or a

combination of these two items which may be present.

Since the a priori probabilities of a signal’s presence are unknown, the Neyman-Pearson

criterion is used to maximize the probability of detection (Pd) under a particular probability

of false alarm constraint (P f ). The optimum test consists of using the observation r to find

the likelihood ratio Λ(r) and comparing this result to a threshold to make a decision [46].

The likelihood ratio consists of conditional joint probabilities:

Λ(r) ,
p (r | H1)
p (r | H0)

. (D.2)

The likelihood ratio test is:

Λ(r)
H1
≷
H0

T H, (D.3)

where the threshold, T H, is determined as follows for a fixed P f :

P f =

∫ ∞

T H
p(Λ | H0) dΛ. (D.4)

The joint probability density function of r is expressed as a product of the marginal

probability density functions since all of the noise terms are mutually-uncorrelated, and there-

fore, statistically-independent zero-mean Gaussian random variables. The joint probability

density function under hypothesis H0 (no satellite signal present) is:

p(r | H0) =

(
1

(2π)3σ6

)K

exp
(
−|r|2

2σ2

)
. (D.5)
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The joint probability density function under hypothesis H1 (satellite signal is present) is:

p(r | H1) =

[
1

(2π)3 σ6

]K

exp


−1
2σ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r −


√
αCdPej∆θ

√
βCdDej∆θ

√
γCdC/A

(
−jej∆θ

)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2
=

[
1

(2π)3 σ6

]K

exp
(
−p2

2σ2

)
, (D.6)

where:

p2 = |r|2 + KC − 2
√

C cos(∆θ)
K∑

k=1

(√
αIP,kdP,k +

√
βID,kdD,k −

√
γQC/A,kdC/A,k

)
− 2
√

C sin(∆θ)
K∑

k=1

(√
αQP,kdP,k +

√
βQD,kdD,k +

√
γIC/A,kdC/A,k

)
. (D.7)

By substituting (C.5) into (C.4) for p2, the joint probability density function is now:

p(r | H1) =

[
1

(2π)3 σ6

]K

exp
(
−|r|2

2σ2

)
exp

(
−KC
2σ2

)
· exp

 √C
σ2 cos(∆θ)

K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k−

√
γQC/A,kdC/A,k

)
· exp

 √C
σ2 sin(∆θ)

K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k+

√
γIC/A,kdC/A,k

). (D.8)

Since the carrier phase residual (∆θ), the overlay code bit (dP), and the data bits (dD,

dC/A), are unknown, each is considered a random variable with a known a priori density. The

conditional probability density functions in the likelihood ratio can be found by averaging

p (r | H0, θ, dP, dD, dC) and p (r | H1, θ, dP, dD, dC) over the probability density function of

the random carrier phase residual and the probability mass function of the random bits:

p (r | H1) =
∑

dP,dD,dC/A∈{B}

p(dP,dD,dC/A)
∫ 2π

0
p
(
r | H1,∆θ, dP, dD, dC/A

)
p (∆θ | H1) d∆θ,

p (r | H0) =
∑

dP,dD,dC/A∈{B}

p(dP,dD,dC/A)
∫ 2π

0
p
(
r | H0,∆θ, dP, dD, dC/A

)
p (∆θ | H0) d∆θ, (D.9)

where B represents all possible combinations of the L1C data, the L1C pilot, and the C/A

navigation symbols over the observation interval.

125



The likelihood ratio is now:

Λ(r) =
p (r | H1)
p (r | H0)

=
∑

dP,dD,dC/A∈{B}

p(dP,dD,dC/A)
1

2π

∫ 2π

0

[ [
1

(2π)6 σ6

]K

exp
(
−|r|2

2σ2

)
exp

(
−KC
2σ2

)
· exp

 √C
σ2 cos(∆θ)

K∑
k=1

(√
αIP,kdP,k+

√
βID,kdD,k−

√
γQC/A,kdC/A,k

)
· exp

 √C
σ2 sin(∆θ)

K∑
k=1

(√
αQP,kdP,k+

√
βQD,kdD,k+

√
γIC/A,kdC/A,k

) ((2π)3σ6
)K

exp
(
+|r|2

2σ2

) ]
d∆θ

= exp
(
−KC
2σ2

) ∑
dP,dD,dC/A∈{B}

p(dP,dD,dC/A)

·
1

2π

∫ 2π

0
exp

 √C
σ2 cos(∆θ) (x)

 exp
 √C
σ2 sin(∆θ) (y)

 d∆θ, (D.10)

where:

x =

K∑
k=1

(√
αIP,kdP,k +

√
βID,kdD,k−

√
γQC/A,kdC/A,k

)
,

y =

K∑
k=1

(√
αQP,kdP,k +

√
βQD,kdD,k+

√
γIC/A,kdC/A,k

)
. (D.11)

The first exponential function in (D.10) is not a function of the observable, the carrier phase

offset, or overlay/data bits; thus, the offset is incorporated into the threshold so that the

likelihood ratio for the optimal GPS C/A and L1C joint detector becomes:

Λ(r) =
∑

dP,dD,dC/A∈{B}

p(dP,dD,dC/A)
1

2π

∫ 2π

0

[
exp

 √C
σ2 cos(∆θ) (x)

 exp
 √C
σ2 sin(∆θ) (y)

 ] d∆θ

=
∑

dP,dD,dC/A∈{B}

p(dP,dD,dC/A)I0

 √C
σ2

√
x2 + y2

, (D.12)

where I0 is the modified Bessel function of zeroth order and where x and y are defined in

(D.11).
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APPENDIX E

JOINT ACQUISITION DETECTION PROBABILITIES
REFERENCED TO C/NO OF L1 C/A CODE SIGNAL

This appendix contains figures to show the detection probabilities for the joint acquisition

schemes presented in Chapter 5. The only difference in these results to those already

presented and described in Chapter 5 is a carrier-to-noise density (C/No) that is referenced

to the L1 C/A code signal instead of the L1C signal. These results may be more useful to

GNSS receiver designers comparing the performance of these new joint detectors to that of

legacy GPS C/A code only receivers.
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Figure E.1: Detection probability of optimal joint L1C and C/A detector compared to optimal L1C
detector for acquisition over one L1C spreading code period referenced to L1 C/A signal
power.
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Figure E.2: Detection probability of optimal joint L1C and C/A detector compared to optimal L1C
detector for acquisition over three L1C spreading code periods referenced to L1 C/A
signal power.
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Figure E.3: Detection probability of noncoherent combining joint L1C and C/A detector for acquisi-
tion over one L1C spreading code period referenced to L1 C/A signal power.
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Figure E.4: Detection probability of noncoherent combining joint L1C and C/A detector for acquisi-
tion over three L1C spreading code periods referenced to L1 C/A signal power.
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Figure E.5: Detection probability of coherent combining joint L1C and C/A detector for acquisition
over one L1C spreading code period referenced to L1 C/A signal power.
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Figure E.6: Detection probability of semi-coherent joint L1C and C/A detector for acquisition over
three L1C spreading code periods referenced to L1 C/A signal power.
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Figure E.7: Detection probability of optimal joint L1C pilot and C/A detector for acquisition over
one L1C spreading code period referenced to L1 C/A signal power.
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Figure E.8: Detection probability of optimal joint L1C pilot and C/A detector for acquisition over
three L1C spreading code periods referenced to L1 C/A signal power.
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Figure E.9: Detection probability of noncoherent combining joint L1C pilot and C/A detector for
acquisition over one L1C spreading code period referenced to L1 C/A signal power.
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Figure E.10: Detection probability of noncoherent combining joint L1C pilot and C/A detector for
acquisition over three L1C spreading code periods referenced to L1 C/A signal power.
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Figure E.11: Detection probability of coherent combining joint L1C pilot and C/A detector for
acquisition over one L1C spreading code period referenced to L1 C/A signal power.
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Figure E.12: Detection probability of semi-coherent combining joint L1C pilot and C/A detector for
acquisition over three L1C spreading code periods referenced to L1 C/A signal power.

25 26 27 28 29 30 31
0

0.2

0.4

0.6

0.8

1

C/No (dB-Hz) of C/A

Pr
ob

ab
ili

ty
of

D
et

ec
tio

n
(w

ith
Pf

a=
0.

00
1)

Optimal Joint L1C & C/A Detector

Coherent Combining Joint L1C & C/A Detector

Noncoherent Joint L1C & C/A Combining Detector

Correct C/A Code Phase Only: Optimal

Correct C/A Code Phase Only: Coherent

Correct C/A Code Phase Only: Noncoherent

Figure E.13: Detection probability of joint L1C and C/A detectors with incorrect L1C code phase
estimate but correct C/A code phase estimate for acquisition over one L1C spreading
code period referenced to L1 C/A signal power.
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Figure E.14: Detection probability of joint L1C and C/A detectors with incorrect L1C code phase
estimate but correct C/A code phase estimate for acquisition over three L1C spreading
code periods referenced to L1 C/A signal power.
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Figure E.15: Detection probability of joint L1C pilot and C/A detectors with incorrect L1C code
phase estimate but correct C/A code phase estimate for acquisition over one L1C
spreading code period referenced to L1 C/A signal power.
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Figure E.16: Detection probability of joint L1C pilot and C/A detectors with incorrect L1C code
phase estimate but correct C/A code phase estimate for acquisition over three L1C
spreading code periods referenced to L1 C/A signal power.
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APPENDIX F

JOINT ACQUISITION DETECTION PROBABILITIES
REFERENCED TO C/NO OF COMPOSITE SIGNAL

This appendix contains figures to show the detection probabilities for the joint acquisition

schemes presented in Chapter 5. The only difference in these results to those already

presented and described in Chapter 5 is a carrier-to-noise density (C/No) that is referenced

to the composite L1C and C/A code signal instead of the L1C signal.
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Figure F.1: Detection probability of optimal joint L1C and C/A detector compared to optimal L1C
detector for acquisition over one L1C spreading code period referenced to the L1C and
C/A composite signal power.
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Figure F.2: Detection probability of optimal joint L1C and C/A detector compared to optimal L1C
detector for acquisition over three L1C spreading code periods referenced to the L1C
and C/A composite signal power.
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Figure F.3: Detection probability of noncoherent combining joint L1C and C/A detector for acqui-
sition over one L1C spreading code period referenced to the L1C and C/A composite
signal power.
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Figure F.4: Detection probability of noncoherent combining joint L1C and C/A detector for acquisi-
tion over three L1C spreading code periods referenced to the L1C and C/A composite
signal power.
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Figure F.5: Detection probability of coherent combining joint L1C and C/A detector for acquisition
over one L1C spreading code period referenced to the L1C and C/A composite signal
power.
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Figure F.6: Detection probability of semi-coherent joint L1C and C/A detector for acquisition over
three L1C spreading code periods referenced to the L1C and C/A composite signal power.
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Figure F.7: Detection probability of optimal joint L1C pilot and C/A detector for acquisition over
one L1C spreading code period referenced to the L1C and C/A composite signal power.
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Figure F.8: Detection probability of optimal joint L1C pilot and C/A detector for acquisition over
three L1C spreading code periods referenced to the L1C and C/A composite signal power.
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Figure F.9: Detection probability of noncoherent combining joint L1C pilot and C/A detector for
acquisition over one L1C spreading code period referenced to the L1C and C/A composite
signal power.
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Figure F.10: Detection probability of noncoherent combining joint L1C pilot and C/A detector for
acquisition over three L1C spreading code periods referenced to the L1C and C/A
composite signal power.
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Figure F.11: Detection probability of coherent combining joint L1C pilot and C/A detector for acqui-
sition over one L1C spreading code period referenced to the L1C and C/A composite
signal power.
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Figure F.12: Detection probability of semi-coherent combining joint L1C pilot and C/A detector
for acquisition over three L1C spreading code periods referenced to the L1C and C/A
composite signal power.
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Figure F.13: Detection probability of joint L1C and C/A detectors with incorrect L1C code phase
estimate but correct C/A code phase estimate for acquisition over one L1C spreading
code period referenced to the L1C and C/A composite signal power.

142



26 27 28 29 30 31
0

0.2

0.4

0.6

0.8

1

C/No (dB-Hz) of L1C + C/A

Pr
ob

ab
ili

ty
of

D
et

ec
tio

n
(w

ith
Pf

a=
0.

00
1)

Optimal Joint L1C & C/A Detector

Semi-Coherent Combining Joint L1C & C/A Detector

Noncoherent Joint L1C & C/A Combining Detector

Correct C/A Code Phase Only: Optimal

Correct C/A Code Phase Only: Semi-Coherent

Correct C/A Code Phase Only: Noncoherent

Figure F.14: Detection probability of joint L1C and C/A detectors with incorrect L1C code phase
estimate but correct C/A code phase estimate for acquisition over three L1C spreading
code periods referenced to the L1C and C/A composite signal power.
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Figure F.15: Detection probability of joint L1C pilot and C/A detectors with incorrect L1C code
phase estimate but correct C/A code phase estimate for acquisition over one L1C
spreading code period referenced to the L1C and C/A composite signal power.
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Figure F.16: Detection probability of joint L1C pilot and C/A detectors with incorrect L1C code
phase estimate but correct C/A code phase estimate for acquisition over three L1C
spreading code periods referenced to the L1C and C/A composite signal power.
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