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ABSTRACT

Traditional methods for Learning from Demonstration require users to train the

robot through the entire process, or to provide feedback throughout a given task.

These previous methods have proved to be successful in a selection of robotic do-

mains; however, many are limited by the ability of the user to effectively demonstrate

the task. In many cases, noisy demonstrations or a failure to understand the under-

lying model prevent these methods from working with a wider range of non-expert

users. My insight is that in many mobile pick-and-place domains, teaching is done

at a too fine grained level. In many such tasks, users are solely concerned with the

end goal. This implies that the complexity and time associated with training and

teaching robots through the entirety of the task is unnecessary. The robotic agent

needs to know (1) a probable search location to retrieve the task’s objects and (2)

how to arrange the items to complete the task. This thesis work develops new tech-

niques for obtaining such data from high-level spatial and temporal observations

and demonstrations which can later be applied in new, unseen environments.

This thesis makes the following contributions: (1) This work is built on a crowd

robotics platform and, as such, we contribute the development of efficient data

streaming techniques to further these capabilities. By doing so, users can more

easily interact with robots on a number of platforms. (2) The presentation of new

algorithms that can learn pick-and-place tasks from a large corpus of goal templates.

My work contributes algorithms that produce a metric which ranks the appropriate

frame of reference for each item based solely on spatial demonstrations. (3) An

algorithm which can enhance the above templates with ordering constraints using
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coarse and noisy temporal information. Such a method eliminates the need for a

user to explicitly specify such constraints and searches for an optimal ordering and

placement of items. (4) A novel algorithm which is able to learn probable search

locations of objects based solely on sparsely made temporal observations. For this,

we introduce persistence models of objects customized to a user’s environment.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Defining or programming complex robotic tasks is a time consuming and challenging

process that is not accessible to untrained users. In order for robotics to move out

of the laboratory setting and into personal, business, and consumer environments,

great strides must be made to overcome such limiting factors. If robots are to be

useful in the workplace and around the home, non-expert users must be able to

intuitively and effectively interact with and teach high-level tasks such as setting a

table or putting items away.

In recent years, significant progress has been made in both the areas of Learning

from Demonstration (LfD) [11, 5] and Programming by Demonstration (PbD) [2, 4]

in enabling users to teach robot behaviors; however, many existing techniques require

users to procedurally demonstrate the sequences of actions that make up a task in

order to learn the policy for behaviors such as table setting [57, 25], single item

placement [2, 4], and item stacking [4]. Unfortunately, this form of teaching is

time consuming, often requires tedious repetition, and can be difficult to perform

correctly [53, 73, 84]. Furthermore, we believe that learning at the task-level may

be done at a too fine-grained level, suggesting that perhaps masking these models

by learning higher-level or semantically grounded information would be beneficial

[77, 78].

An additional limitation of recent work is the reliance on complete task demon-
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Figure 1.1: A mobile robot completing the high-level task “Set the Table.”

strations. By relying on complete demonstrations, users are often faced with per-

forming repetitive and often non-reusable low-level actions in order for the under-

lying learning method to take advantage of the raw data generated. Our insight is

that for many of the tasks being studied in the robotic LfD field today, it is not

the sequence of actions or executed trajectory, but the world state at the end of the

task that matters most (e.g., setting the table, putting away items in a drawer, or

stacking dishes in a cupboard). Such tasks typically fall into a sub-domain of ma-

nipulation tasks we define as wide-area pick-and-place (WAPP) tasks. We define a

WAPP task to be any task which requires the placement of one or more manipulable

objects from one area of the world to another, such that the start and end state of

the placement may be outside of the robot’s workspace (i.e., the robot may move

throughout the world). Such a distinction prevents the naive solution of assuming a

fixed reference frame such as the robot’s base. In such a case, a robotic agent must

know 1) where to look for and retrieve the items for a given task, and 2) how and

where to arrange the items according to the task.

For such tasks, we believe instead of demonstrating how to complete the task,

2



it is more suitable to enable humans to provide the goal state of the task. In the

case of WAPP tasks, such a goal state corresponds directly to the final placement

arrangement. In this context, many challenges emerge such that we are able to

obtain sufficient training data and learn a generalized model that enables the robot

to perform the task in a wide range of unstructured domains. If such challenges

are overcome, the learned task templates can then be executed through the use of

existing autonomous planning and grasping methods.

In addition to developing algorithms which address the above, we also note

an additional challenge faced in intuitive robot interaction. As explored in earlier

work [79, 3] the ability to create web-based interfaces allows for a broader range of

users to interact with robots as well as share data. Since the benefits have been

explored showing the ability to bring robots to non-expert users (either remotely,

crowdsourced, or locally), this work makes use of such techniques for all of its

components. A notable limitation in current systems is the lack of research in

allowing for bandwidth efficient streaming of robot data to a remote client or server.

As we will explore and exemplify later in this work, without improvements in this

area, interaction and learning techniques such as those contributed in this thesis are

not practical in real-world settings. In is essential to not only develop the underlying

learning methods with robotics and LfD, but also exposes them to the masses.

As such, we present improvements and new compression techniques developed to

enhance the widely used Robot Web Tools project [3, 81] used throughout this

work.

1.2 Contributions

Throughout this work we aim to show how a robot can leverage goal state input

from crowdsourced users and sparse observations of its environment to learn and ex-

ecute WAPP tasks with little input required from a local user. As such, in this thesis

work, we introduces a novel framework, called the Spatial and Temporal (SPAT)

3



learning framework, for goal-based LfD which allows a robotic agent to complete

WAPP tasks from start-to-finish based on high-level semantically grounded spatial

and temporal observations and goal state demonstrations. Such a framework is built

using cloud robotics techniques allowing for data collection/processing/visualization,

the sharing of high-level data, and interaction for robotic task execution. Our frame-

work makes the following contributions:

1. Efficient Data Transportation and Messaging for Cloud Robotics

(Chapter 3) As mentioned earlier, since SPAT is built on the foundations of

cloud robotics, one of the contributions of our work are methods for dealing

with high-bandwidth data and sensor streams to remote clients and servers

within robotic domains. Our work builds on the Robot Web Tools1 project,

much of which has been developed during and in complement to this thesis

work [79, 82, 80, 3, 81]. Since its official introduction in 2012, the Robot

Web Tools project has grown tremendously as an open-source community, en-

abling new levels of interoperability and portability across heterogeneous robot

systems, devices, and front-end user interfaces. At the heart of Robot Web

Tools is the rosbridge protocol [18, 63] as a general means for messaging ROS

(Robot Operating System) [68] data topics in a client-server paradigm suitable

for wide area networks and human-robot interaction at a global scale through

modern web browsers. Building from rosbridge, this thesis describes our con-

tributions within Robot Web Tools to advance cloud robotics through more

efficient methods of transporting high-bandwidth topics (e.g., kinematic trans-

forms, image streams, and point clouds). We further discuss the significant

impact of Robot Web Tools through a diverse set of use cases that showcase

the importance of a generic messaging protocol and front-end development

systems for human-robot interaction. This work is invaluable to the develop-

ment and broadness of our implementation of the SPAT learning framework,

1http://robotwebtools.org/
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allowing for a wider range of interfaces and data collection methods which

previously required higher bandwidth restrictions. We note the deviance from

the other core contributions of this thesis work, but choose to present it for a

more complete representation of the foundation, deployment, and application

of such a framework.

2. Unsupervised Learning of Multi-Hypothesis Goal-State Templates

from Spatial Demonstrations (Chapter 5) In order to tackle the problem

of collecting and learning the initial global knowledge base, we contribute a

novel method for goal-based LfD which focuses solely on learning from a cor-

pus of potential end states for WAPP tasks. It is important to note that a

single example of a goal state is not enough to generalize a solution, as noise

from human input or differences in preferences for a given task exist across

user groups. Thus, it is critical to rely on a set of gathered data which is col-

lected prior to execution which can be looked up quickly by the robot. Since

this task is processed offline and pre-computed, crowdsourced users are uti-

lized to gather large amounts of data. Such a system asks users to place a

series of items in a simulated world inside of a web browser according to a

predefined task (e.g., “set the table”). This raw placement data is then used

to generate multi-hypothesis models in an unsupervised manner via Expecta-

tion Maximization (EM) clustering [20] and a novel ranking heuristic based

on data aggregated across users for a given task. Such a method ultimately

creates a foundational, global knowledge base which can be used during robot

execution. This step can be thought of as creating a prior, or initial probabil-

ity distribution, over the set of possible placements and associated reference

frames.

3. Inference of Inter-Template Ordering Constraints from Coarse Tem-

poral Information (Chapter 6) The above step results in multi-hypothesis

models which rank the strength of the placement of a particular item with
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respect to a reference frame. By querying the database for such models, the

robotic agent can then determine a suitable template for completing the task.

In many cases, such information is sufficient for producing the correct result;

however, a requirement which breaks this assumption is the need for ordering

constraints. Therefore, we show how weighting the above heuristic for the

clusters by a ratio of coarsely available temporal data can solve such a prob-

lem in a number of cases. Furthermore, we show how reducing the problem

into a weighted-graph search can provide reasonable execution ordering while

maintaining strong spatial relationships. We present strengths and limita-

tions of this approach in both a block-world domain as well as a crowdsourced

household setting.

4. Active Visual Search via Temporal Persistence Models (Chapter 7)

In addition to knowing where and how to place the objects, the robotic agent

must also know where to find the objects. Therefore, we present a novel solution

to the object search problem for domains in which object permanence cannot

be assumed and other agents may move objects between locations without the

robot’s knowledge. We formalize object search as a failure analysis problem

and contribute temporal persistence modeling (TPM), an algorithm for proba-

bilistic prediction of the time that an object is expected to remain at a given

location given sparse prior observations. We show that probabilistic expo-

nential distributions augmented with a Gaussian component can accurately

represent probable object locations and search suggestions based entirely on

sparsely made visual observations. We evaluate our work in two domains, a

large scale GPS location data set for person tracking, and multi-object track-

ing on a mobile robot operating in a small-scale household environment over

a 2-week period. TPM performance exceeds four baseline methods across all

study conditions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Learning from Demonstration

To begin, we put the scope of this work into context with a traditional look at

Learning from Demonstration. We present LfD in the traditional sense in order to

more clearly note the differences in our approach to the problem. Learning from

Demonstration, or LfD, is a relatively new field of research within robotics which

attempts to gain knowledge from human experts and make use of such knowledge

in order for robots to learn new or improve upon existing tasks. One early appear-

ance of the term appeared in 1997 with the work presented by Atkeson and Schaal

[6] which established the notion of learning a reward function based on a human

demonstration (in their case, for teaching a robotic arm), and computing a pol-

icy to reproduce the demonstrated task. The complexity of some machine learning

methods were masked by allowing input to come from a human in a more natural

manner.

This early work represents only a small fraction of the ideas that have come

forth since. Over time, these ideas were expanded upon within the robotics field.

One canonical paper that gave way to recent advancements came in 2010 [11]. Here,

a more rigorous and formal definition of the methods and terms used in LfD was

presented.

Another notable paper is the work by Argall et. al. [5] which presents a large

survey of the work in the field of LfD. The ideas of policy learning via human
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teachers are deeply explored. In [5], demonstration, or input, methods such as

teleoperation and imitation via observations and/or sensors are discussed. More

importantly, the methods for policy formulation are shown to encompass techniques

such as classification or regression.

In contrast to SPAT learning, traditional LfD focuses on the problem of learn-

ing state-action pairings. Within our work, instead of utilizing policy learning, we

present methods for human LfD which maximize likelihood while maintaining con-

straints. To see this contrast, we present a brief background on policy-based LfD.

2.1.1 States and Actions

As with many machine learning problems, let us consider a world which consists of a

state-space S. Within this world, are a set of actions A, which the agent, a robot in

the case of robot LfD, can take. Actions can be represented as low level primitives,

or higher level actions, depending on the context of the problem.

Given a current state s ∈ S, and a chosen action a ∈ A, the resulting state s′ is

determined by the probabilistic transition function T given by:

T (s′|s, a) : S × A× S → [0, 1] (2.1)

In all real world robotic domains, actions and state observations (via sensors)

are non-deterministic. Therefore, we typically rely on statistical and probabilistic

models. The agent can never truly know S, and therefore we define Z to be the

observable state [15].

2.1.2 Policy Learning

A policy, typically denoted by π, specifies actions that can be taken based on the

current observable state. A more formal definition of π is defined as:

π : Z → A (2.2)
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The goal of traditional LfD is to somehow learn this policy for some task π(t). In

traditional machine learning, a policy is learned via some corpus of data generated,

or mined, in a variety of manners. In LfD specifically, we rely on human input and

demonstrations.

2.1.3 Demonstrations

In order for this policy to be learned, the agent must be able to extract information

from a human teacher based on their demonstrations. While many demonstration

input techniques exist, such as teleoperation or kinesthetic teaching (i.e., direct

movement of the arm [51]), the theoretical, mathematical model remains a con-

stant. Simply put, a single demonstration denoted as d, is part of an entire set of

demonstrations D. Each d ∈ D is in-turn its own set of j pairings between actions

and observable states. This model is defined more formally as:

D = {d1, . . . di}, di = {{zi1, ai1}, . . . , {zij, aij}}, zij ∈ Z, aij ∈ A (2.3)

The overall goal of LfD is, when given a set of human demonstrated state-action

pairings, how can a policy be learned such that the agent can act semi-autonomously

in future situations. In all LfD work, one concept is made clear: in order for robots

to learn more meaningful and robust tasks, information from a human expert must

be utilized.

2.2 Näıve End Users in LfD

Research on robot learning from demonstration has seen significant growth in recent

years, but existing evaluations have focused exclusively on algorithmic performance

and not on usability factors, especially with respect to näıve users. In this the-

sis work, we propose methods to abstract the learning problem into high-level or

semantically grounded input types.

Previous work done in [73, 84] exemplifies this need for better learning algorithms

by conducting an in-depth comparison of three well founded LfD algorithms:
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• Interactive Reinforcement Learning: A system model policy learning

technique in which the reward signal is provided by the human user at runtime.

The teacher interacts with the robot by providing reward and guidance input

through an on-screen interface [76].

• Behavior Networks: A planning-based policy learning technique. The

teacher interacts with the robot through kinesthetic teaching, a type of expe-

rienced demonstration, in which the user physically guides the robot through

the task [61].

• Confidence Based Autonomy: A mapping approximation technique based

on a classification algorithm. The teacher interacts with the robot by selecting

the next action or correcting a past action choice through an on-screen interface

[16].

Using implementations of the above methods, a simple 3-action task was given

to 31 participants who claimed little-to-no robotics experience. Their task was to

teach an Nao robot to pick-up randomly walking robotic bugs moving around a

table. The users were given 3 preprogrammed actions: picking up a bug at a center

pickup location (marked on the table with an ’×’), sweeping a bug inwards towards

the pickup location, and waiting for 1 second (i.e. doing nothing). The wait action

was an important action to include as it was useful in teaching the robot when it was

not appropriate to either sweep or pickup. Upon arrival, each participant was given

a broad overview of the task that was being trained as well as the capabilities of the

Nao. Following the introduction, the participant used each algorithm for 10 minute

intervals in a randomized order to train the robot. After each training session the

participant was asked to fill out a brief questionnaire relating to the method that

they had just used. At the conclusion of their session, a final general questionnaire

was given which asked comparative questions about the three methods.

The results show that users were most proficient in and satisfied with teaching

using the Confidence-Based Autonomy algorithm. Based on our participants’ com-
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ments, this is mainly because näıve teachers like to see which actions are available to

them and give commands directly to the robot. Although a lot of the participants

liked the way they interacted with the robot for Behavior Networks (kinesthetic

teaching), they were not happy with the performance of the result. In case of In-

teractive Reinforcement Learning, participants indicated that they could not see a

satisfactory improvement in the action decision of the agent. This was mostly caused

by the inherently slow learning rate of the algorithm; however, to the participants,

this factor was not obvious. These results tell us that it is important to both keep

the transparency of the robot’s knowledge to its teacher during the process as well

as provide high-level, easy to understand commands as a form of teaching input.

2.3 Semantic Mapping

Recent years have seen in increasing growth in semantic mapping within the field of

robotics. At its core, semantic mapping deals with mapping human spatial concepts

to objects within the world [66]. Many approaches have been made to tackle such

a broad and wide scale problem, particularly within the robotics and perception

communities [55, 56, 66, 67, 89].

Seminal work by Pronobis breaks down objects to be what he refers to as “spatial

concepts” [66]. Spatial concepts can be observational properties (e.g., the item is

green) or relationship properties (e.g., the item is in the kitchen). At is core, then,

semantic mapping or label becomes assigning some kind of semantic (e.g., human-

readable and understandable) label to a spacial entity within the world. Mason goes

on to expand and note that by this means, object recognition algorithms themselves

are thus one example of a kind of semantic mapping algorithm [55].

Semantic map information can also be used to determine item placement. For

example, Mason and Marthi [56] build a semantic world model that enables them to

detect and track objects over time, resulting in the ability to model where objects

are in the world (e.g., where did you see item x), or how objects move around
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(e.g., where do instances of x go throughout the day). This requires an accurate

perception system and ample time for post-processing.

Furthermore, many works in semantic mapping attempt to infer further seman-

tic, or common sense, knowledge about the world using information gained from

semantic labels (e.g., inferring the room you are in based on the items you see in

the room [67]).

In this thesis work, we present a new contribution in the field of semantic map-

ping to provide a solution to the object retrieval problem. In contrast to previous

works, instead of attempting to infer spatial concepts in regards to locations or

rooms, we attempt to make sparse spatial observations of known surfaces in order

to determine a semantically grounded model of temporal persistence. These ideas

are fully presented in Chapter 7.

2.4 EM Clustering of Gaussian Mixture Models

A core component of SPAT learning is based around clustering demonstrations in a

spatial domain. That is, the work presented in this thesis makes use of well founded

clustering techniques. While numerous techniques exist for clustering [86, 71, 42, 12,

20], this work makes use of EM (Expectation-Maximization) clustering of Gaussian

Mixture Models (GMMs) [20, 74, 88]. The decision to use such a method comes

from its ability to probabilistically determine the parameter set (in our case, the

mean µ and covariance matrix Σ of a set of mulitvariate Gaussian distributions)

based on a set of observations. While EM itself is a general algorithm for iteratively

finding the maximum likelihood estimate of unknown model parameters, we discuss

its use in the domain of GMMs.

Let us assume we have some dataset X such that each element {x1, . . . , xN} ∈ X

is a d-dimensional real-valued data point. Formally, this means

∀ xi ∈ X | i = {1, . . . , N} : x ∈ Rd
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Such a set X is called our observation set and each x ∈ X is called an instance.

Let us also assume for now that we know our observations come from K different

Gaussian models which are referred to as the components of the mixture model.

Later we present how we can probabilistically determine a guess for an unknown K.

Each of the K components also has an associated weight wk used to define the priors

of each component (discussed below during probability calculations). Therefore,

the parameter set Θ we wish to estimate via EM are the means µk and covariance

matrices Σk for each of our K Gaussian models. Formally, this gives us

∀ θk ∈ Θ | k = {1, . . . , K} : θk = {µk,Σk, wk}

When dealing with GMMs, Equation 2.4 defines the probability density function

as a weighted sum of the K component multivariate Gaussian distributions.

P (x|Θ) =
K∑
k=1

wkP (x|θk)

=
K∑
k=1

wkN (x;µk,Σk)

=
K∑
k=1

wk
1

(2π)D/2|Σk|1/2
e−

(x−µk)′Σ−1
k

(x−µk)

2

(2.4)

Note that since the weights above are priors and used to normalize, it must be true

that
∑K

k=1wk = 1.

Furthermore, in addition to our observed data, we also now have unobserved,

or latent, variables Z. In the case of GMMs, our set Z is the “labels” indicating

which cluster (i.e., Gaussian distribution) each corresponding instance came from.

Therefore, each element z ∈ Z is a K-ary value such that

∀ zi ∈ Z | i = {1, . . . , N} : z ∈ {1, . . . , K}

In general terms, the goal of EM then is to find the values of Θ which maximize

the likelihood function L given X and Z. Therefore, EM aims to provide a solution

to Equation 2.5 since no closed-form solution exists [20].
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Θ̂ = argmax
Θ

L(Θ;X,Z)

= argmax
Θ

P (X,Z|Θ)
(2.5)

The algorithm works in an iterative manner until convergence occurs. First, the

parameter set Θ is initialized to random values within the domain. The next step

that occurs in the expectation step. This step (discussed in detail below) determines

the likelihood that the observation set X came from the GMM defined by Θ. The

next step, the maximization step (again, discussed in detail below), then uses the

values from the previous step to better estimate new parameter values. These two

steps continue iteratively until the values inside Θ do not change by some pre-defined

epsilon value.

2.4.1 Expectation Step

In the expectation step of the EM algorithm, the goal is to determine the probability

that each instance came from a given component. Therefore, we are attempting to

find the probability that latent variable zi = k given the corresponding instance xi

and the current parameter estimations at iteration t denoted as Θt. We denote this

membership probability as τi,k and is computed for each combination of i and k.

Equation 2.6 gives the definition of this calculation which follows from Bayes rule

[71] and can be further expanded using the logic in Equation 2.4.

τi,k = P (zi = k|xi,Θt)

=
P (xi|zi = k,Θt)P (zi = k,Θt)

P (xi|Θt)

=
N (xi;µ

t
k,Σ

t
k)w

t
k∑K

m=1w
t
mN (xi;µtm,Σ

t
m)

(2.6)
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2.4.2 Maximization Step

The maximization step utilizes the probabilities found above to increase the likeli-

hood of the observation set by changing the values within Θt at iteration t+ 1. We

note that the algebraic proof of this derivation is beyond the scope of this thesis

and is available via [20]. Instead, we list the update equations below. At an intu-

itive level, new weights are calculated in Equation 2.7 by computing the fraction of

instances from the observation set which belong to component k. The new mean is

calculated in Equation 2.8 by computing a weighted average of the points for each

component weighted by their membership probabilities from the expectation step.

Similarly, Equation 2.9 computes the covariance matrix vary based on how a nor-

mal covariance matrix is computed for a multivariate Gaussian (again with similar

weighting).

wt+1
k =

1

N

N∑
i=1

P (zi = k|xi,Θt)

=
1

N

N∑
i=1

τi,k

(2.7)

µt+1
k =

∑N
i=1 P (zi = k|xi,Θt)xi∑N
i=1 P (zi = k|xi,Θt)

=

∑N
i=1 τi,kxi∑N
i=1 τi,k

(2.8)

Σt+1
k =

∑N
i=1 P (zi = k|xi,Θt)(xi − µt+1

k )(xi − µt+1
k )′∑N

i=1 P (zi = k|xi,Θt)

=

∑N
i=1 τi,k(xi − µ

t+1
k )(xi − µt+1

k )′∑N
i=1 τi,k

(2.9)

2.4.3 Estimation of K

One missing component for this method involves knowing the number of Gaussian

components the instances originally came from. Since in many cases it cannot be
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assumes that the value of K is known ahead of time, methods must be used to

provide an estimation of K. This work makes use of the techniques presented in

[88].

The main idea is to utilize k-fold cross-validation to incrementally build GMMs

via EM from some training set and compute the likelihood of the data. At each

step of the iteration, the number of clusters is increased. Once the likelihood fails

to increase (by some pre-defined threshold δ), the number of clusters is determined

and EM is run on the entire data set.

The reduce the chance of confusing our k terms in this discussion (k-fold cross-

validation versus k clusters), we refer to the validation term as n-fold cross valida-

tion. n-fold cross-validation works by randomly splitting the input instances into

n equally sized partitions. Of these partitions, n − 1 are grouped together as the

training set, while the remaining partition is kept aside as the validation set. The

training set is then used to compute the GMMs models via the techniques described

above. Once finished, the validation set is then used to compute the likelihood

(Equation 2.6) of each instance. This process is repeated n times. A full algorithm

of this process is given in Algorithm 1. Note that this process may not seem com-

putationally efficient for many problems; however, as presented in Chapter 5, this

process is done offline which allows us to utilize such a technique.

2.5 Cloud Robotics

Many robotics researchers have utilized Internet and Web technologies for remote

teleoperation, time sharing of robot experimentation, data collection through crowd-

sourcing, and the study of new modes of human-robot interaction. As early as 1995,

researchers enabled remote users to control a robotic arm to manipulate a set of

colored blocks over the Web [75]. Goldberg enabled web users to maintain and

monitor a garden, in which they could control a robot to perform tasks such as

plant seeds and water plants [36]. Crick et al. presented remote users with a maze
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Algorithm 1 Cross-Validation for K Cluster Estimation

Input: Set of instances X

Number of folds n

Output: Optimal number of clusters k

1: k ← 1

2: L← 0

3: increased← true

4: while increased do

5: L′ ← 0

6: for i← [1, . . . , n] do

7: X̂v ← |X|
n

random instances from X

8: X̂t ← the remaining |X|(n−1)
n

random instances from X

9: Θi ← EM(X̂t, k)

10: L′ ← L′+ likelihood(X̂v,Θi)

11: end for

12: if L′ > L then

13: L← L′

14: increased← true

15: k ← k + 1

16: else

17: increased← false

18: end if

19: end while

20: return k − 1
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through which they were able to navigate using a robot, enabling the researchers to

study how different levels of visual information affected successful navigation [18].

Building on these earlier efforts, a growing number of projects have recently emerged

to allow researchers and end-users access to complex mobile manipulation systems

via the web for remote experimentation [64, 65], human-robot interaction studies

[82, 79], and imitation learning [17].

More broadly, the field of cloud robotics research focuses on systems that rely

on any form of data or computation from a network to support their operation [47].

Using this definition, a number of cloud robotics architectures have been proposed

[38, 46, 87] aimed to offload as much computation as possible onto a “remote brain”

unbounded by normal resource limits. One example is the RoboEarth project [87]

which utilizes the Rapyuta cloud engine [40]. Rapyuta was developed as a way of

running remote ROS processes in the cloud, using a rosbridge-inspired protocol of

JSON-contained ROS topics.

While the above definition creates a convenient vision of “cloud-enabled robots”,

it casts cloud robotics purely as a collection of proprietary back-end services with-

out regard to broader interoperability and human accessibility. In contrast, we

consider a more inclusive definition for “robot-enabled clouds” that also considers

human-accessible endpoints and interfaces in a network, such as web browsers. With

continued advances in robotics-oriented protocols, cloud robotics has the potential

to further both human-robot interaction and expanded off-board computation in

concert.

As a primary component in our work for both backend and frontend services,

this thesis work contributes great improvements to these technologies in the form

of efficient messaging. Such a research area has been neglected by many researchers

and developers alike preventing benefits of cloud-based solutions. In particular, if

such challenges are not overcome, then the benefits of brining HRI and robot LfD

to non-expert users is moot.
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CHAPTER 3

EFFICIENT MESSAGING FOR ENABLING

CLOUD ROBOTICS

In this chapter, we present our contributions for efficient data transportation of

robotic data in order to further enable cloud robotics. As much of the reminder of

this thesis work is built on this framework, we present both an overview of the system

as a whole as well as novel contributions within. Furthermore, we present a brief

survey of external use cases of this work within the robotics, and more particularly

human-robot interaction, research communities.

3.1 Introduction

The recent rise of robot middleware and systems software has dramatically advanced

the science and practice of robotics. Similar to a computing operating system, robot

middleware manages the interface between robot hardware and software modules

and provides common device drivers, data structures, visualization tools, peer-to-

peer message-passing, and other resources. Advances in robot middleware have

greatly improved the speed at which researchers and engineers can create new sys-

tems applications for robots by bringing a “plug-and-play” level of interoperability

and code reuse. Projects in this space have supported a variety of cross-language

and cross-platform tools that promote common functionality and best practices of

component-based software design.
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Among these efforts, the Robot Operating System (ROS) [68] has become the de

facto standard middleware for enabling local area network control of robot systems.

Developed initially for use with the Willow Garage PR2 robot, ROS is an open-

source effort to provide the network protocols, build environment, and distribution

release pipelines for researchers and developers to build robot systems and applica-

tions without re-writing standard functionality for every application or robot. Since

its introduction, the number of individuals, laboratories, companies, and projects

using ROS has grown tremendously [29]. This ROS community has also developed

important general-use libraries for collision-free motion planning, task execution,

2D navigation, and visualization that have proved invaluable standards in robotics

research.

Despite its many advantages, ROS and robot middleware in general has many

shortcomings with regards to usability and accessibility, security, portability, and

platform dependencies. For ROS, the only officially supported operating system

is the popular Linux distribution Ubuntu. Since Ubuntu is used by less than 2%

of worldwide computer users1, ROS remains largely aimed for prototyping lower-

level software systems. While there are projects that provide experimental support

for operating systems other than Ubuntu, such as OS X and Arch Linux2, those

platforms are not fully stable and require specific support for the intricacies of each

OS. As such, ROS in its current form is neither a standard nor sufficient for the

development of end-user robot applications for human-robot interaction research

[82].

In terms of cloud robotics, ROS largely assumes distributed computing over

a local area network (LAN). Though distributed in theory3, the ROS middleware

uses a centralized system for keeping track of peer-to-peer handshaking and glob-

1http://marketshare.hitslink.com/operating-system-market-share.aspx
2http://wiki.ros.org/indigo/Installation
3From the ROS documentation (http://wiki.ros.org/ROS/NetworkSetup): “there must be

complete, bi-directional connectivity between all pairs of machines, on all ports.”
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ally relevant information, such as kinematic transforms, parameters, robot state,

etc. Consequently, typical ROS operation proved problematic for cases that require

remote communications over wide area and bandwidth limited networks. Further-

more, recent work such as rosbridge [18], remote robotics labs [82, 64], and robotic

cloud computing frameworks such as Rapyuta [40] have focused on laying the frame-

work and addressing security concerns [83] and less on efficiency of the underlying

compression, filtering, and protocol strategies.

Addressing these shortcomings and others, this thesis contributes analysis of the

Robot Web Tools (RWT) project [81, 3] in terms of its ongoing uses and applications

across robotics, a presentation of our contributions in advancements for communica-

tion of robotics-oriented big data, and discuss future directions addressing improved

network efficiency. Initially proposed in [3], RWT is an ongoing effort to realize seam-

less, general, and implementation-independent applications layer network communi-

cations for robotics through the design of open-source network protocols and client

libraries. A principal goal of RWT is to converge robot middleware (i.e. ROS) with

modern web and network technologies to enable a broadly accessible environment

for robot front-end development, cloud robotics, and human-interaction research

suitable for use over public wide area networks. Instead of relying on the complex

network configuration required by ROS and other cloud robotics paradigms, we have

extended the generic rosbridge protocol [18] of RWT (described more formally in

Section 3.2) that can operate over a variety of network transports, including the

web-accessible WebSockets and considerably improved the interoperability of robot

systems (see Figure 3.1).

In regards to the contribution of this thesis work, this chapter presents: 1) the

design of the RWT client-server architecture and use for developing web-accessible

user interfaces for robots, 2) technical challenges and improved methods for network

transport of high-bandwidth ROS topics, such as for articulated kinematics trans-

forms, point clouds, and image streams, and 3) a survey of broader adoption and

use of RWT in applications across robotics research and development.
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Figure 3.1: A standard Robot Web Tools 3D user interface on multiple operating

systems with multiple robots and cloud simulation instances. Clockwise from top

right, PR2 on Windows, NASA Robonaut 2 on Mac OS X, Clearpath Jackal on

Android, NASA Valkyrie on iOS iPad, and Rethink Baxter on Ubuntu.

3.2 Design and Architecture

In contrast to the distributed publish-subscribe architecture of ROS, RWT is de-

signed to be a client-server architecture. The RWT client-server architecture emu-

lates the design of the earlier Player/Stage robot middleware [85, 33] as well as the

dominant paradigm for web development. Client-server systems separate a compu-

tational workload and resources into services. These services have providers (servers)

and consumers (clients), where client processes request services from a server process.

A wide variety of services can be provided such as to interface with a device, query

for certain information, compute special routines or functions, and more, forming

a cascade of services that ultimately lead to the user interface. Similar to the re-
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mote procedure call, client-server processes are commonly request-reply interactions

communicated by message passing over networks. Broadcast and stream-oriented

services, common to publish-subscribe in ROS, can also be supported in the client-

server design.

The core element of client-server architectures is an established communications

protocol that allows the implementation specifics of services to be abstracted. Such

protocols enable clients and services to effectively speak the same language purely

through messages. It is this message-based interoperability that has been the engine

of growth for the Internet (via the IP protocol) and the World Wide Web (via the

HTTP protocol). In contrast, ROS uses an informal protocol (TCPROS) with typed

data messages (ROS topics) but no established definition. As such, ROS is more

suited to being a build and distribution system for software instead of a general

message passing architecture.

The established protocol for RWT is rosbridge [18, 64]. rosbridge communi-

cates ROS data messages contained in the JavaScript Object Notation (JSON) for

straightforward marshalling and demarshalling. Below is a JSON encoded example

rosbridge message for a 6-DOF velocity command used to move a robot forward:

{

"op": "publish",

"topic": "/cmd_vel",

"msg": {"linear":{"x":1.0,"y":0,"z":0},

"angular":{"x":0,"y":0,"z":0}

}

Through its use of WebSockets (a protocol built on top of HTTP), rosbridge can

be readily used with modern web browsers without the need for installation. This

fact, combined with its portability and pervasive use, makes the web browser an

ideal platform for human-robot interaction. Working leading up to RWT included

a simple lightweight client library known as ros.js [63] and a user interface and
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visualization package known as WViz (web-visualizer) [65, 64]. ros.js provided

basic ROS functionality to browser-based programs via the early version of the

rosbridge protocol, known now as rosbridge v1.

At RWT’s official release, the rosbridge v2 protocol4 added the ability to com-

municate more efficiently (e.g., specification of compression types) and provide near-

complete access to ROS functionality. Previous to this work, RWT allowed for more

elaborate, responsive, and reliable interfaces to be built [3] and stricter security

measures regarding access by unauthorized remote clients [83].

In this work, to address a wide range of use cases and applications development

for HRI, three JavaScript libraries were developed to facilitate web-based human-

robot interaction: the roslibjs client library and ros2djs and ros3djs visualization

libraries. The design of these libraries enables easy and flexible development of

robot user interfaces that are fast and responsive. These libraries avoid both a large

monolithic structure (which can be bandwidth intensive like WViz) and a large

package system (which breaks out functionality into too many separate libraries like

ROS). These cases were avoided principally due to the design of roslibjs to be used

entirely without any visualization dependencies. Standalone widgets and tools, such

as for navigation and mobile manipulation, can be built on top of these libraries and

distributed as such, as described below:

roslibjs is the client library for communication of ROS topics, services, and ac-

tions. roslibjs includes utilities for common ROS and robotics tasks such as trans-

form (TF) clients, URDF (Unified Robot Description Format) parsers, and common

matrix/vector operations, as well as fully compatibility with server-side JavaScript

environments (such as node.js).

ros2djs and ros3djs are the visualization libraries for ROS-related 2D and 3D

data types, such as robot models, maps, laser scans, and point clouds, and interac-

tion modes, such as interactive markers [37]. Both libraries build on existing libraries

for 2D (EaselJS ) and 3D (three.js) rendering on the HTML5 <canvas> element.

4github.com/RobotWebTools/rosbridge_suite/blob/master/ROSBRIDGE_PROTOCOL.md
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To make releases of the libraries easy and efficient to use, pre-built and com-

pressed JavaScript files are uploaded to a public CDN (content delivery network).

Such a system makes use of multiple cache servers around the globe to serve clients

the libraries as efficiently as possible. These servers manage thousands of hits a

week without putting a load on a single failure point. Figure 3.2 showcases typical

worldwide hits for the hosted RWT libraries for 2015.

Figure 3.2: The number of HTTP requests to the CDN Libraries for the year 2015.

3.3 Efficient Messaging of High-Bandwidth Topics

Although RWT is designed for ease of comprehension and use, the creation of ro-

bust and reliable systems has many challenges. Most prominent is the challenge of

real-time control. While new emergent technologies, such as WebRTC (real-time

communication), are helping to improve efficient communication to and from stan-

dard web browsers [10], these technologies are still experimental, in constant flux,

and widely unsupported at the time of this writing (these ideas are further discussed

in Section 3.5).

The main challenge to real-time communication stems from the amount of data

typically associated with streaming robot sensors and visualization information in

order to minimize latency and permitting usable supervisory control. Support for

“real-time” communication (e.g., for live streaming) in modern web browsers trades-

off latency due to buffering for smoother streams. Such buffers add an extra delay

(typically in the magnitude of seconds) which cause the robot interface to seem

non-responsive and confusing to operators.
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Further, due to security and other design constraints, it is not possible to create

raw TCP or UDP sockets from JavaScript in a browser. As such, the most com-

mon communication approach for bi-directional client-server communication is with

a WebSocket connection. WebSockets are built on-top of HTTP and leave an open

communication channel to a WebSocket server. As a consequence to this, commu-

nication is limited to the efficiency and robustness of HTTP and, thus, unable to

send raw or binary data.

Given these constraints, efficient communication of robot data is critical. We

discuss advances made by RWT to overcome these limitations for several high-

bandwidth message types for transform subscriptions, image streaming, and point

cloud streaming, as well as message compression.

3.3.1 Transform Subscriptions

In ROS, information about the multitude of reference frames in robot environments

is communicated via a stream of transform data, specifying how to translate one

frame into another, creating a large, constantly updated tree of geometric relations.

This behavior is regulated by a library known as tf and tf2 [28]. Since many of

the transforms are likely to be constantly changing and operating on stale data

could lead to problematic behaviors, the tf library requires that all relevant trans-

forms be constantly published. Any component of the system can publish additional

transforms, making the system neatly decentralized.

While the constant stream of data creates a robust environment for many ap-

plications, it is not a low-bandwidth-friendly solution. The sheer amount of data

published can be overwhelming. As Foote notes, the transforms for the PR2 robot

can take up to 3Mbps of bandwidth [28]. Furthermore, much of this data is redun-

dant. For example, if two components of a robot are fixed in relation to one another,

the transform between them still needs to be published at the same rate as the rest

of the TF tree in order to keep the entire tree up to date.

To reduce the amount of bandwidth devoted to tf, we contribute the package
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tf2 web republisher. This is a ROS node that uses ROS’ action interface to pre-

compute requested transforms on demand, which can then be published via rosbridge

with a smaller bandwidth usage. Transforms are published in reference to some

specified global frame at a reduced rate, and only when a link is changed within

some delta. The inclusion of this node moves computations that usually happen

within a specific node to happen within a central authority. The result is the same

effective information being provided to remote clients, without the same bandwidth

usage.

To illustrate this point, we captured bandwidth usage of TF data over a one

minute period using both the traditional ROS TF subscription and the web-based

subscription. While the PR2 robot mentioned earlier has been shown to utilize

3Mbps of bandwidth, it can be argued this is due to the complexity of number of

DOFs the PR2 contains. Here, a more simplified mobile robot was used with a 6-

DOF arm which contained 52 frames. During the capture, the robot’s base and arm

were teleoperated to trigger TF republishes. For this capture, the web republisher

was set to a default rate of 10.0Hz with change delta values of 0.01 meters and 0.01

radians. Figure 3.3 visualizes the results from the capture. Note that the ROS TF

rate had an average of 208.5 KB/s (σ = 1.5) while the web based TF rate was had

an average of 96.0 KB/s (σ = 40.6), resulting in a 54% reduction in bandwidth on

average. A t-test on this data reports p� 0.001.

3.3.2 Image Streams

Another bandwidth-heavy data stream is any sort of video. In ROS, three main

image streaming techniques are used as part of the image stream pipeline: raw

images which utilize a ROS image message, compressed images which utilize JPEG

or PNG image compression, and Theora streams which utilize the Theora video

codec. As mentioned earlier, transport types to the browser are limited. While it

would be possible in theory to send raw ROS images over rosbridge, the overhead

and bandwidth of transporting images in their text JSON representation would be
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Figure 3.3: The average TF bandwidth from a ROS and web based client.

impracticable.

To overcome this limitation, we introduce two transport options from ROS to the

web which are available to all, or a large subset of browsers via the web video server

ROS package. The first option utilizes MJPEG streams which can be embedded in

any HTML <img> tag. ROS images are transformed into series of JPEG images and

streamed directly to the browser. While more efficient options exist, this transport

type is available to all modern web browsers. The second streaming option utilizes

the newer HTML5 <video> tag. This tag allows for more efficient video codecs to be

streamed to a browser. In particular, the VP8 codec standard is used within WebM

streams. The main limitation here is its limited support on modern browsers (typ-

ically well supported on Chrome and Firefox). Furthermore, intentional buffering

within the video codecs results in an unavoidable delay or lag in transmission.

To illustrate bandwidth requirements from ROS to a browser, we provide an

average bandwidth for multiple transport types across a 2 minute capture using a

640x480 pixel image at 30Hz from a USB camera. MJPEG compression is set to

the default value of 90% while VP8 was set to a default bitrate of 100,000 kilo-
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bits/second. Results are presented in Table 3.1 which shows an increased per-

formance rate over standard ROS images as well as comparable performance as

compared to ROS’ natively provided compression streams.

Table 3.1: Bandwidth Usage of Image Streams via Various Transport Types in KB/s

Web ROS Internal

MJPEG VP8 RAW Compressed Theora

µ 1317.0 342.2 12052.5 1309.3 19.4

σ 11.1 18.3 1.7 11.6 8.9

3.3.3 Point Cloud Streams

One of the most bandwidth intensive data types in ROS, robotics, and computer

vision are 3D point clouds. This depth information, typically overlayed with cor-

responding RGB data to form RGB-D data, contains much more information than

a video or image stream, making it extremely useful for both computational algo-

rithms as well as visualization. Standard compression types for point clouds are

limited and certainly not available to web browsers. As such, new techniques are

needed to allow point clouds to be streamed to the browser efficiently for visualiza-

tion purposes.

As with image streams, while it would be possible to stream raw point cloud

data across rosbridge in a JSON encoded message, the overhead and bandwidth

requirements would be too costly to use effectively, even with message compression.

In order to make full use of the built in compression and streaming features available

in modern web browsers, we present a method for encoding RGB-D depth maps as

a single image stream which can be sent across the wire using HTML5 video codecs

and extracted in the browser for visualization.

The key to this idea is that point clouds are not just used for computation,
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but also visualization by people. As such, lossy compression types can be used

to dramatically reduce bandwidth while still maintaining a visually useful display.

This compression is done by streaming a single image composed of three separate

“images” (shown in Figure 3.4a): encoded depth information from 0 to 3 meters,

encoded depth information from 3 to 6 meters, a binary mask indicating valid sample

points, and the RBG image itself. Encoded depth information is split into two frames

(0-3m and 3-6m) in order increase the range of depth information that can be stored

in an image (i.e., a finer discretization). To increase compression rates, compression

artifacts are reduced by filling areas of unknown depth (typically represented by

NaN) with interpolated sample data. On the client side, we then use the embedded

binary mask to omit these samples during decoding. This single image is streamed to

the web browser over a VP8 codec (via the web video server mentioned previously)

and is assigned to a WebGL texture object with a vertex shader which allows for

fast rendering of the point cloud via the clients GPU. An example of the resulting

compressed point cloud image is shown in Figure 3.4b.

(a) The Encoded Point Cloud Image (b) The Resulting Rendering

Figure 3.4: An example of point cloud streaming.

To illustrate bandwidth requirements, we provide an average bandwidth for mul-
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tiple transport types across a 2 minute capture using an ASUS Xtion Pro RGB-D

camera. We again use the default compression values stated earlier. Results are

presented in Table 3.2 which show a 90% decrease in bandwidth requirements for

web-based point cloud visualization (again with a t-test reporting p� 0.001.

Table 3.2: Bandwidth Usage of Point Cloud Streaming in KB/s

ROS Internal Web Streaming

µ 5591.6 568.4

σ 70.5 133.5

3.3.4 Generic Message Compression

Besides transform, image, and point cloud data, there exists many other formats of

high bandwidth data in ROS. High resolution map data used for robot navigation

is often larger than 2MB per message. 3D visualization and interactive markers

[37] often contain large sets of points needed to render 3D models in a visualizer.

Furthermore, since user-defined data structures are supported in ROS, a potentially

unbounded amount of data could be sent through a ROS message.

To support large data streams in the general manner, we developed RWT to allow

for compression options to be set. In particular, we utilize the web browsers built

in PNG de-compression to efficiently package and send large messages in a lossless

manner. If a client specifies that a data stream be sent using PNG compression,

the rosbridge server starts by taking the raw bytes of the JSON data (in its ASCII

representation) and treat them as the bytes of an RGB image. Padding is added

with null values to create a square image. This image data is then compressed

using standard PNG compression libraries and sent across the wire using base 64

encoding. This data can then be read internally by the browser and used to extract

the original RBG values which, in tern, represent the ASCII JSON encoding of the

31



message itself.

To illustrate the effect this has on message compression, we transmit a series of

typical large format ROS messages using PNG compression. Results are presented

in Table 3.3 which show the original size in KBs, the compressed size in KBs, and

the time to compress and transmit in milliseconds. As a result, it reduces data less

than 30% of its original size with negligible time loss.

Table 3.3: Performance of PNG compression for ROS Messages

Original (KB) Compressed (KB) Time (ms)

Map (732x413) 2725 39 40.0

3D Point Array Marker 42.1 5.1 0.8

3D Line Strip Marker 42.1 4.8 0.9

3D Line List Marker 78.1 7.7 1.0

3.4 Survey of Use Cases

To illustrate the importance of these improvements in progressing robotics, and

in particular HRI, research, we contribute a recent survey of recent external use

cases outside the scope of this thesis work. With these improvements, RWT has

been successfully deployed across multiple robot platforms and a wide range of

applications. We posit such significant use demonstrates the need for and impact

of open-source network protocols for robotics, human-robot interaction, and cloud

robotics. The following is a small sampling of projects the RWT open-source releases

in compelling research and development projects.

One of the first widely known applications was for the Robots for Humanity

project, which seeks to develop robotic technologies to help people overcome physi-

cal disabilities [14]. For such applications, users often require custom interfaces that
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work on a wide variety of platforms and several design iterations to work around

physical constraints, which can more readily be done through RWT than other al-

ternatives. In this project, a person with a mute quadriplegic disability collaborated

with a team of researchers to develop interfaces that utilized both the native ROS

visualizer and RWT to enable accessible control of a PR2 and a quad rotor to people

with disabilities (Figure 3.5a). Through these tools, this user was able operate a

robot over the web to shave himself, fetch a towel, open a refrigerator to retrieve

yogurt, and inspect his yard. Another independent group of researchers has also

applied RWT to the problem of developing a web-based robot control interface for

quadriplegics [45]. Utilizing the Baxter robot, this project explores the design of

single-switch scanning interfaces for controlling the robot end effector.

RWT has also been applied to general purpose mobile manipulation tasks, with

both simulated and real-world robots. Ratner et al. have developed a web-based

interface that is capable of quickly recording large numbers of high-dimensional

demonstrations of mobile manipulation tasks from non-experts [69]. Coupled with

a light weight simulated environment, the tool is capable of supporting 10 concur-

rent demonstrators on a single server, leveraging existing crowdsourcing platforms

to perform large scale data collection. Knowledge obtained in simulation is then

transferred onto the physical robot, such as from a simulated to a real-world PR2.

We argue that as explored in [82], without the improvements made to cloud and

web robotics, acquiring crowdsourced data from non-expert users would be imprac-

ticable.

Similarly, the OpenEASE project [9] also makes use of simulation and web-based

interface to provide a remote knowledge representation and processing service that

aims at facilitating the use of Artificial Intelligence technology for equipping robots

with knowledge and reasoning capabilities. Unlike [69], which seeks to advance the

mobile manipulation capabilities of a single robotic system from demonstration data,

OpenEASE analyzes experiences of manipulation episodes and reasons about what

the robot saw, what it did, how it did that, why, and what effects it caused. This
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information is then stored in a platform-independent way, and can then be retrieved

by queries formulated in PROLOG, a general-purpose logic programming language.

The system can be used both by humans via a web-based graphical interface, or by

robots that use OpenEASE as a cloud-based knowledge base via a WebService API

(Figure 3.5c).

(a) Browser-based control of a quad rotor. (b) A simulation of the NASA Robonaut 2.

(c) The openEASE project is an example

of robot operation and semantic mapping

through RWT.

Figure 3.5: Examples of external uses of the RWT methods and technologies.

Additional use cases have been found in commercial applications. Savioke5, a

startup creating a robot hotel butler, uses RWT to bridge between ROS, used to

5http://www.savioke.com/
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control/monitor the robot, and a web layer, which implements the application logic

(e.g. the delivery application) as well as the user interfaces. Rethink Robotics6 runs

rosbridge automatically, which enables users to interface with the robot without

needing a ROS installed platform.

Furthermore, while JavaScript and the web browser are the chief clients used in

conjunction with rosbridge, the protocol rosbridge provides also creates opportuni-

ties for communicating with other platforms that do not have robust ROS imple-

mentations of their own. For example, the jrosbridge7 standalone library provides

communication with the ROS platform in native Java allowing for ROS communi-

cation on a number of different operating systems and architectures. There are also

separate projects for using the rosbridge protocol to communicate with MATLAB

and LabView code. It also provides a low-footprint communication platform for

Arudino projects.

3.5 Future Technologies

With the continued development of new web standards, the capabilities of web

applications continue to grow. New standards allow for web applications to interact

more with the hardware of the device that it is running on, create more complex

interfaces, and communicate using new robust and efficient protocols. Utilizing these

standards can allow for building ROS web applications with advanced features, while

still offering the platform independence and ease of use that comes from the web.

Additionally, the continued development of these standards reduces the need for

plug-ins that users would previously have needed to install (such as Adobe Flash or

Microsoft Silverlight) in order to obtain more access to the underlying computer or

perform more complex computational and network operations.

APIs that allow for access to the sensors and input devices on a device allows

6http://www.rethinkrobotics.com/
7https://github.com/WPI-RAIL/jrosbridge
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for interfaces to be built that feel more like a native application. Through the use of

new sensor APIs a web application can now have access to the device acceleration

and orientation. These sensors are becoming available as the number of portable

electronics (smart phones, tablets, etc.) increases. This can allow for interfaces

where the user can move their device around to interact, instead of only clicking or

touching on the screen. Other APIs also exist to get the state of a device such as

battery status, geolocation, and improved touch screen support. These new APIs

also open up access to audio and video devices from the web browser. A web

application can now stream audio and video from the user’s computer’s webcam

and microphone in addition to streaming video to the browser.

In addition to allowing for more information to be accessed from the browser, new

APIs also allow for an application to do things more efficiently and concisely. Some of

the APIs that is already used by the RWT client libraries are the canvas and WebGL

APIs which allow for high performance 2D and 3D graphics in the browser. Web

Workers is another API that allows for running tasks in the background. JavaScript

usually runs in a single thread which means that performing a complex operation

in JavaScript can cause the UI to lag. Currently if roslibjs receives a large number

of messages or very large messages it must serialize/deserialize them in the main

JavaScript thread, which can block the UI. If Web Workers were used then these

operation could be performed in the background and potentially even in parallel

allowing for a more responsive UI. Additionally, because web applications can do

things in the background it means that they do not have to be a thin client any

more and can do processor intensive work.

Furthermore, new web technologies are not just allowing a better web appli-

cation, but they also allow for better communication with a robot. Initial web

technologies were not built for the high bandwidth low latency applications that are

being developed today. In order to build an immersive interface for the user, a lot of

information (real-time video, point clouds, etc) must be streamed to the user with

a minimal delay. As discussed earlier, current solutions for streaming this kind of
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data in RWT involve streaming the information as a compressed video (MJPEG or

VP8) to the client over HTTP. However, because TCP (which HTTP is built on) is

a reliable transport protocol, all of the information must be successfully transferred

to the client which is not always necessary for responsive visualization purposes.

New web standards, such as WebRTC [10], are looking to enable developers to build

more media intensive applications. WebRTC allows for the transport of video over

UDP and provides automatic adjustment of the video bitrate in response to chang-

ing available bandwidth. WebRTC not only allows for the transmission of real time

video, but also supports audio, which opens up the possibilities for more feedback

to the robot operator. In order to create more interactive applications WebRTC can

also support streaming video and audio from the web browser, which could allow

for the creation of a telepresence robot controlled purely from the browser.

A critical advance in WebRTC is that it can use direct peer to peer communica-

tion even if one of the peers is behind a router. This means that the robot could be

hidden behind a NAT device with a server hosting the web application; that is, the

robot’s computer does not have to be directly exposed to the Internet. The stan-

dard not only supports the delivery of media, but also introduces a high-performance

data channel API which is specifically designed for low-latency real-time communi-

cation. These channels can be either reliable or unreliable and implement congestion

and flow control as well as encryption. The WebRTC standard has already been

mostly implemented in Chrome, Firefox and Opera and support is planned for more

browsers. It is also not just limited to desktop browsers, but is also supported by

the mobile versions as well, which allows for the same technologies to be used on any

form factor device. Current efforts are under-way to bring such standards into the

core RWT libraries and tools allowing for responsive, immersive, and power portable

robot web applications.
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3.6 Conclusion

This chapter presents an analysis, efficient cloud messaging contributions, and dis-

cussion on how the Robot Web Tools project has enabled advances in cloud robotics

and human-robot interaction research through the use of efficient and easy to use

protocols. By overcoming challenges of high-bandwidth data flow for robot applica-

tions to the web, researchers are able to better develop and deploy applications and

interaction modes to a wider audience on a wider range of platforms and devices as

shown in a brief survey of known use cases.

One of the greatest benefits of open source software is the freedom to extend the

code to do things that it was never originally planned to do. The work in this chapter

has enabled an unprecedented level of freedom for visualizing and interacting with

ROS-based systems on a wide variety of new platforms. Running Robot Web Tools

through the browser enables easy and quick interfaces on new platforms without

the steep learning curve required for writing native ROS clients for each individual

operating system.

It should not be understated how valuable having the interface design tool be a

language that is as pervasive as JavaScript. With interactive websites growing in

prevalence over the past decade, the number of interface developers using JavaScript,

HTML5 and the related tools has grown as well. Coupled with the growing capa-

bilities of the modern web browser, web interfaces have become a new standard.

RWT is a continuing and ongoing effort, like ROS and many open-source projects

in robotics. We have discussed a number of applications for RWT, many of which

were not initially imagined when designing the rosbridge protocol or the RWT client

libraries. Possible future directions and web technologies were also described that

can help RWT improve both cloud robotics and HRI. We encourage further exten-

sion and contributions to RWT to help broaden the accessibility and improve the

interoperability of robotics for new web and network-based applications.
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CHAPTER 4

SYSTEM OVERVIEW

Before diving into our contributions of the learning components of SPAT, we provide

a brief overview of our overall system. Although we provide certain implementation-

level details in this overview, in particular how we frame it in a cloud robotics envi-

ronment, it is important to note that the algorithms and methodologies developed

within SPAT are not constrained to cloud systems.

4.1 Architecture

Our system as a whole can be broken into several different components. For this

discussion, we refer to the high-level system overview depicted in Figure 4.1. At the

bottom sit the physical user, the robot, and the environment. Via a browser based

interface, the user can visualize the state of the robot and the world (e.g., as seen

in Figure 4.2a) and send commands to the robot. Within our system we utilize the

tools developed in the Robot Web Tools project for communication [81]. The robot

therefore runs rosbridge [18] which enables the streaming and receiving of data via

a JSON based protocol. We note that, while not done in our experiments, the robot

control need not be in a co-present domain. That is, it has been shown that users

can alternatively interact with a robot remotely in order to complete certain tasks

[82].

Next, we discuss the SPAT computational and storage components which operate

in the cloud. By performing these steps in the cloud, we allow both for less processing
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Figure 4.1: A high-level system diagram of the SPAT learning framework in the

cloud.

power on the client (e.g., robot) side, as well as the ability to share and re-use learned

data across domains and robotic platforms.

To start, we discuss the goal-state learning portion (shown in the top left of

Figure 4.1). For this component, we define a general method which starts with the

set of loosely-defined tasks (e.g., set the table, put the dishes away, etc.). These

tasks are then presented to a large group of crowdsourced users and data is col-

lected on where these users place certain items based on the task description. An

example interface, again built on top of the Robot Web Tools platform, is shown in

Figure 4.2b. Once a large set of data has been collected, pruning, noise reduction,

data transformation, and model training occurs in an unsupervised manner via EM

clustering and ranking. The resulting templates are then refined to incorporate or-

dering constraint information before being saved in a JSON encoded format in a

remote semantic database. Examples of this format are discussed in Section 4.2.

41



(a) An example web-based robot control in-

terface.

(b) An example crowd-based demonstration

interface.

Figure 4.2: Examples of Robot Web Tools based remote interfaces.

Such template information can then be accessed publicly and remotely via a REST

API[26].

The final piece of the system is shown on the bottom right portion of the remote

cloud component in Figure 4.1. In order to provide a system which can perform

task WAPP task execution from start to finish, the robotic agent must be able to

infer probable search locations. To do so, we allow the robotic agent to make peri-

odic spatial observations of its environment. Such observations can occur coarsely

throughout the day as it complete its daily duties. We assume that the robot is

able to take a “snapshot” of the environment which can then be sent off to some

observation processor in an efficient manner. This processor, the main perception

component of our system, is able to segment out detected objects in the scene and

the relevant surface they are located on [48]. This spatial information, as well as

associated timestamp information, is then fed into a set of temporal persistence

models in order to create new or update existing priors of where items are located.

As presented later in this thesis, we define temporal persistence models to be a

model capable of probabilistically determining how long an item remains on a given

surface since its last known observation.

With the above information collected and processed, a user can then command

the robot to execute one of the pre-defined tasks. The robot can then query the
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cloud databases for information on how to complete a task for execution. The

details of the goal-state learning and a greedy-based execution strategy is presented

in Chapter 5, the ordering constraint refinement an an informed execution strategy

in Chapter 6, and the object search and permanence modeling in Chapter 7.

4.2 Domain

In this section, we present and rigorously define our domain. This representation is

used throughout the remainder of this thesis. This also servers as a useful reference

point throughout the document.

4.2.1 The World

In this work, we are concerned with indoor wide-area-pick-and-place (WAPP) tasks.

In this context, let a world be denoted as W , which is composed of and defined as a

set of pre-defined areas (i.e., rooms) A and items I defined in a hierarchical manner

below. Not that W is not consistent across domains. That is, we do not assume (or

rather, we take advantage of) that all real or virtual worlds are defined the same

way. We later discuss the representation of a single world instance configuration,

but for now, we define W in the general sense.

Specifically, W is defined to contain a set of areas A where each ai ∈ A repre-

sents some logical area (e.g., a bedroom). It then follows that each area is further

decomposed into static sets of surfaces or placement locations Sa where each s ∈ Sa
represents some placement location (e.g., a counter-top). Finally, for each s ∈ Sa,

there may be a set of points-of-interest (POIs) Ps where each p ∈ Ps represents a

point of interest for the given surface. Examples of POIs are closely related sub-parts

of a surface, such as chairs around a table, burners on a stove, or compartments in

a shipping crate. By being static in a particular instance of the world (defined in

the subsequent sub-section), it follows that these entities cannot be moved around.

The immutability assumption prevents SPAT from providing solutions that require
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a surface to be moved. Furthermore, this approach further assumes that A, S, and

P are indeed sets. That is, if there are duplicates, such as multiple end-tables in a

bedroom setting, they must be treated independently (e.g., with unique IDs).

Within W are also a set of dynamic items I where each i ∈ I represents a physical

item in the world (e.g., a plate). These dynamic items represent the movable objects

within W . Finally, we define the set of all objects in the world to be O = S ∪ I.

4.2.2 Instance Configurations

For a given W , we need to know the current configuration of the world. For our

domain, we are concerned with the three-space Cartesian coordinates in terms of x,

y, and z in meters, and the rotation about each axis θx, θy, θz in radians for each

element of A, S, and P . In order for these positions to make sense, a global, fixed

coordinate frame must be imposed. We consider the origin of the coordinate frame

ΘW to be located at the center (x, y) point in the world located on the ground plane

(i.e., z = 0). For the given world configuration W , each area a ∈ A is thus expressed

in reference to the coordinate frame ΘW , each s ∈ S in terms of Θa, and each p ∈ P

in terms of Θs. Each pose T of any source entity within source ∈ W in reference to

a target entity target ∈ W can therefore be expressed in a 4× 4 matrix denoted as

T targetsource and defined in Equation 4.1 with rotations in the form of [roll, pitch, yaw] =

[γ, β, α].

T target
source =


cosα cosβ cosα sinβ cos γ − sinα cos γ cosα sinβ cos γ + sinα sin γ x

sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ y

− sinβ cosβ sin γ cosβ cos γ z

0 0 0 1

 (4.1)

In the case of a 2D domain (i.e., γ = 0, β = 0, and z = 0 with a single

rotation defined as θ), a simplified 3× 3 matrix can be used as defined in Equation

4.2. In any case, references to entities within W can then be made via product

combinations of the resulting transformation matrices. This idea is more formally
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known in the domains of computer graphics as a scene graph [39] and within robotics

as a transform tree [28].

T targetsource =


cos θ sin θ x

− sin θ cos θ y

0 0 1

 (4.2)

We note that in a simulated domain (e.g., one used for data collection), this

instance configuration information is readily available. In a real-world scenario, this

information is obtained from either a pre-defined static or dynamic semantic map

of the space in which the location of the various rooms and surfaces is know. Our

approach assumes this information is available statically, as obtaining this data is

not the focus of this research. Chapter 7, however, tackles the problem of searching

for items in I across W at a semantic level.

For compatibility with the rosbridge protocol, we represent this data in JSON

format. For reference, an example, simple 2D world instance configuration of a

single room with a bed in it is defined below.

{

"rooms": [{

"name": "Bedroom",

"position": {"x": -2.925, "y": 2.475, "theta": 0},

"surface": [{

"name": "Bed",

"position": {"x": -1.55, "y": -0.875, "theta": -3.14},

"poi": [{

"name": "pillow",

"position": {"x": 0.35, "y": 0.76, "theta": 0}

}

}]

}]

}
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4.2.3 Placements

As with above, each demonstrated placement must be recorded in terms of either

its [x, y, z, γ, β, α] or [x, y, θ] values. For each item i ∈ I that is placed on

a surface s ∈ S by a user, its transformation matrix T si is stored. That is, the

position is stored only with respect to the surface it was placed on. We denote the

coordinate frame of the surface to be denoted as Θs. Furthermore, we denote this

single placement demonstration matrix pose P s
i as a single data point d. It then

follows that the set of all placement demonstrations for a given task is denoted as

a set D.

We note that the origin of each coordinate frame is arbitrary. That is, the

origin could refer to the corner of the object or the center, to name some common

examples. The important fact is that these coordinate frames are defined before

task execution and can be used across the simulated and real world environments.

For our work, we define the origin to be the center of the bounding box about the

X and Y dimensions, and on the top surface for the Z value. Positive Y is pointing

toward the front of the object and positive Z is pointing up.

Again, for reference, a simplified example of a placement d (in this case a cup

placed on a table) in JSON format is provided below.

{

"surface": {"name": "Dining Table"},

"item":

{

"name": "Cup",

"position": {"x": 0.883, "y": 0.142, "theta": 0.157},

}

}
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CHAPTER 5

UNSUPERVISED LEARNING OF WIDE-AREA

PICK-AND-PLACE GOAL STATES AND

REFERENCE FRAMES

In this chapter we present our first contribution in SPAT learning. Based solely

on spatial demonstrations of the final goal-state for a pre-defined task, we are able

to output a set of multi-hypothesized templates for the task in an unsupervised

manner. More importantly, we show how from these spatial demonstrations, the

important frame of reference for each item in the demonstration can be inferred

without the need of manual annotation from a human teacher.

5.1 Introduction

Programming complex robotic tasks is a time-consuming and challenging process

that is not accessible to untrained users. Thus users must be able to intuitively and

effectively teach higher-level tasks, such as clearing a table or putting items away, in

order to effectively customize robot behavior. Existing LfD techniques require users

to procedurally demonstrate the sequences of actions that make up a task in order to

learn the policy for behaviors such as table setting [57, 25], single item placement [2],

and item stacking [4]. Unfortunately, this form of teaching is time consuming, often

requires tedious repetition, and can be difficult to perform correctly [53, 84, 73].

Our insight is that for many of the tasks being studied in the LfD field today,
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it is not the sequence of actions, but the end state of the task itself that matters

most (e.g., setting the table, putting away items in a drawer, or stacking dishes

in a cupboard). Such tasks typically fall into a sub-domain of manipulation tasks

we refer to as wide-area pick-and-place (WAPP). We define a WAPP task to be

any task which requires the placement of one or more objects from one area of

the world to another, such that the start and end state of the placement may be

outside of the robot’s workspace (i.e., the robot may move throughout the world).

For such tasks, instead of demonstrating how to complete the task, we instead rely

on the human to provide the goal state of the task, that is, the final placement

arrangement. We therefore are attempting to learn solely from spatial data. In

this context, the challenge becomes to obtain sufficient training data and learn a

generalized model that enables the robot to perform the task in a wide range of

unstructured domains. The learned task templates can then be executed through

the use of existing autonomous planning methods.

Figure 5.1: A view of the virtual simulated household environment.

We emphasize several sub-problems which are addressed in this work. The first

deals with uncertainty within the hypotheses we are trying to learn. Consider,

for example, the task of putting away a stack of magazines in a house. Given
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such a description, where should a robot, or even a human, place the magazines?

Depending on the habits and lifestyle of an individual, this could be on the coffee

table, the nightstand, or the kitchen counter. A subset or all of the above are

valid hypotheses. Therefore, we do not wish to represent just one hypothesis, but

to instead provide a multi-hypothesis solution for a task. Selecting only a single

hypothesis and disregarding others in such a domain may leave the robot unable to

complete the task to the user’s satisfaction. For example, a single-hypothesis model

that selects the coffee table in the living room would be unable to complete a task

such as “put the magazines away in my bedroom” since its only known hypothesis

is invalid.

The second sub-problem is a direct result of a solution to the first. In order to

collect enough diverse data to learn from, we must rely on input from a large set of

users. This ensures that data encompasses many different preferences and config-

urations. The resulting data, of course, is full of noise (both malicious and bogus

input, as well as human errors made in placements). Therefore, the computational

method for learning templates must be able to deal with and ignore such noise in

the data.

A final sub-problem we wish to address is that of frames of reference, or coor-

dinate frames. During data collection, it is unknown which frame of reference the

human is placing the object in respect to (e.g., is the fork being placed next to the

cup, or the plate, or the chair?). Therefore, we develop a method for automatically

inferring these frames of reference given raw input from the user corpus.

In this chapter, we contribute a novel method for LfD where we focus solely on

learning from a corpus of potential end states in WAPP tasks. To allow for multiple

placement hypotheses and to overcome uncertainty and error in the human input,

we rely on large sets of data obtained from crowdsourced users using a simulated

household environment built in the cloud using the RWT framework (Figure 5.1).

We ask users to place a series of items in the simulated world according to a pre-

defined task (e.g., set the table). We provide a method in which multi-hypothesis

49



models are generated in an unsupervised manner based on data aggregated across

users for a given task. The end result is a system that can take a task description,

collect a raw set of placement locations, and provide a set of plausible goal states

with appropriate frames of reference for the task. These templates can then be

applied to arbitrary domains (e.g., a physical household setting) that need not be

identical to the simulated world. A high level outline of this method is shown in

Figure 5.2.

Figure 5.2: A high-level outline of the desired problem solution.

We demonstrate our system on three tasks in a household setting. For each task

we collected hundreds of example item placements, and 94% of crowdsourced survey

responses agreed with the item placements generated by our algorithm. Addition-

ally, by learning semantically grounded reference frames in a non-domain specific

we, demonstrate that task templates learned through crowdsourcing in simulation

can be applied directly to a real-world setting.

5.2 Background

In general, this work is related to a growing area of research in robotics related to

object affordances. Originally coined by James Gibson [35], affordances of an object

relate to the physical manipulative properties of objects (e.g., turning a doorknob).

In our case, we are interested in how items can be manipulated in order to finally

be placed in an configuration to form a goal state template for a given task.

The idea of learning where to place items within the world has received far less

work than that of grasping or picking objects up in a scene. In [41], the authors

note the lack of work directly tackling the placement location problem and focus

on a method to determine stable placements, in which objects do not collapse or
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tumble. Furthermore, their work introduces the notion of arranging items that

follow human usage preferences. The authors collect data from 3D scenes and model

object placement using Dirichlet process mixture models. In order to learn usage

preferences, human poses were “hallucinated”, or envisioned within the scene to

estimate how objects in scenes might be related to human poses. Unlike our work,

the referenced work focuses on the idea of stable placements, for example how to

arrange items on a shelf such that they remain stationary. Our work instead deals

with generalizable arrangement templates.

Semantic map information can also be used to determine item placement. For

example, Mason and Marthi[56] build a semantic world model that enables the

tracking and detection of objects over time, resulting in the ability to model where

objects are located in the world (e.g., where did you see coffee cups), or how they

move around (e.g., where do coffee cups go throughout the day). This requires

an accurate perception system and ample time for post-processing. Such a system

learns location properties, while our approach is designed to learn goal states for

particular tasks which can later be executed.

Human demonstrations have also been used to teach robots where to place ob-

jects in an interactive manner [2, 4]. In these works, human teachers guide a robot

manipulator through the execution of a manipulation task. The user requests the

recording of either key-frames during the sequence or full continuous joint trajecto-

ries. These sequences can then be replayed at a later time to execute the learned

task. Many other approaches have tackled manipulation problems in a similar man-

ner and have proven to be both intuitive and useful [5]. Unlike our approach, such

methods require the human demonstrator to guide the robot through an entire task.

In contrast, our insight is that in the case of pick-and-place, a subset of the problems

that the above work can handle, many motion planners can automatically gener-

ate the trajectories required to execute the task, eliminating the need for repeated

demonstrations of lengthy trajectories.

Work done by Joho et. al. [43] attempts to reconstruct scene information based
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on 3D observation data. The authors develop a method for creating a probabilistic

generative model of the scene which can be used to compare against partially con-

structed scenes. That is, given information obtained via several observations of a

given scene, the system is able to infer given an incomplete scene which objects are

missing and where. Unlike our work, we are further interested in not only under-

standing what might be missing from a scene, but multiple definitions of the scene

itself.

The work which most closely resembles our own is that of Chung et. al. [17].

While not explicitly dealing with WAPP tasks, the authors enable a robot to re-

construct 2D block patterns from a corpus of crowdsourced end-state configura-

tions. The goal of their work is to develop an online learning technique that gathers

crowdsoured data during task execution which is used to assist the robot when

learning from a single co-present user. An example scenario discussed in the pa-

per includes having a human label the classes of the model (i.e., what each color

of block represents), building an initial model, collecting and learning from a large

set of crowdsourced configurations, and presenting the user with three possible final

configurations of the pattern which the user can select from. Our work seeks to both

learn from unlabeled data in an offline manner, as well as target the much broader

problem of WAPP tasks in human domains.

5.3 Methodology

We now present our approach which is composed of three main tasks (a high-level

flowchart depicting these steps is shown in Figure 5.3):

• Data Collection: The processes of collecting the possible hypotheses for a

task description.

• Data Transformation: The processes of extracting important information

and autonomously eliminating irrelevant data from the collected data.
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Figure 5.3: Methodology Flow Chart: Any empty world (a) is first populated with

placements via crowdsourced users (b). The noisy set of all placements (c) is then

transformed to form candidate models against multiple possible frames of reference

(d). Using unsupervised learning, we then extract a multi-hypothesis model for the

task (e).

• Model Training: The processes of training from the set of transformed data

to form a set of possible goal states for a task.

5.3.1 Data Collection

For each task, our goal is to collect a set of item placement examples that is diverse

enough to capture the preferences of a wide variety of potential users. To achieve

this goal, we crowdsource our data through the CrowdFlower micro-task market and

use the Robot Management System (RMS) [79, 80, 82] for managing the users and

data collection. We presented each user with a set of items and a brief textual task

description, such as setting the table (actual task descriptions are given in Section

5.4). We did not provide any example item arrangements to avoid biasing the users.

Using a web browser, each user could select an item in set I associated with

the given task. Hovering over a possible placement surface S caused the surface to

appear green to indicate that a placement could be made (Figure 5.3b). Clicking on

a location on the highlighted surface resulted in a recorded item placement demon-
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stration d in a cloud database. Each user was required to place a given number of

each item somewhere in the world. Once all data has been collected, the data is

loaded, transformed, and trained, as described below.

5.3.2 Data Transformation

At the end of the data collection step, we now have a set of demonstration datasets

which we denote D where each dataset represents a user’s placement points for an

item on a surface. We can further break up subsets of D and refer to them as Ds
i

where each d ∈ Ds
i is the transformation matrix representing the placement of an

item i ∈ I on a surface s ∈ S. At this point, we note that there exists a dataset

Ds
i ∀ (i, s) ∈ I × S (with the possibility that a given Ds

i = ∅). That is, we know

each placement in reference to the surface it was placed on; however, it is possible

that the coordinate frame of the surface is not the frame of interest. Consider, for

example, a table setting task. Here, it is likely that the fork placement would be

relative to the plate instead of the table. If we only model data based on i with

respect to Θs, this information would never present itself. Therefore, we enumerate

over the possible combinations of reference frames to expand and form multiple

datasets of placements.

More formally, we want to create a new set of datasets D̂ | Do
i ∈ D̂ ∀ (i, o) ∈

I×O. Each data set consists of the position of all instances of a given item (e.g., all

spoons) with respect to a single object (e.g, the table) aggregated across all users.

We thus have |S|+|P |+|I| possible reference frames and therefore |S|+|P |+|I|!
(|S|+|P |+|I|−2)!

−
|S|+|P |

(|S|+|P |−2)!
permutations to generate and evaluate, each of dimensionality 6 (x, y, z,

γ, α, and β). Note that the |S|+|P |
(|S|+|P |−2)!

term comes from the fact that we do not

need to generate datasets of surfaces and POIs in reference to each other since these

objects are considered static. To avoid extracting too much unnecessary data, we

make a set of constraint assumptions:

1. References cannot be across areas. It is unlikely that the placement of an item
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in one area is relative to the location of another object in a different area. For

example, if a user places a spoon in the kitchen sink, it is unlikely this was in

relation to the stack of magazines on the living room coffee table.

2. References cannot be across surfaces. Building upon the logic from the above

assumption, we also eliminate inter-surface relationships. While it is possible

to think of a relationship that would be across a surface in the world (e.g.,

placing a remote on the coffee table since the table itself is in-front of the TV),

we argue that the relationship here is actually between the two surfaces. That

is, typically the coffee table is between the couch and the TV, which is why

the remote (which is placed on the coffee table) appears to have a relationship

with the TV. Since surfaces are immutable in our domain, we thus only look

at the relationships on a given surface.

3. References are only with respect to the nearest POI type. Each surface s con-

tains a set of POIs Ps (with the possibility that Ps = ∅). While each POI

p ∈ Ps is unique, it is possible there are multiple similar-typed POIs (e.g.,

Pkitchen-table = {chair1, chair1, . . . , chairn}). Instead of looking at the rela-

tionship of each placement to each p ∈ Ps, we instead look at the nearest POI

of a given type (e.g., the nearest chair).

4. Rotations can only be made about the Z axis. For many problems, rotations

about other axes are irrelevant. Therefore, we ignore rotations about any other

axis thus reducing our dimensionality to 4 (x, y, z, and single rotation θ).

Note that our user interface also made use of this assumption and disallowed

rotations about the remaining two axes.

5. Objects are placed on level surfaces. If we assume each placement surface

is level, then the z coordinate becomes irrelevant. We note that this may

violate certain ordering constraints for execution (e.g., a napkin under a fork);

however, we explore this problem more deeply in Chapter 6.
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The above assumptions thus reduces our dimensionality to 3 (x, y, and θ). Fur-

thermore, our permutation reduces to
1+|Ps|unique+|I|!

(|Ps|unique+|I|−1)!
− 1+|Ps|unique

(|Ps|unique−1)!
possibilities. We

note the important fact that the above assumptions are made merely to reduce the

cardinality on the number of datasets to generate and evaluate in further steps as

well as the dimensionality. In some domains, these assumptions may be invalid.

Thus, this pruning step can be ignored without affecting any of the prior or sub-

sequent steps in our methodology. That is, they can be removed without loss of

generality on the described methods and instead the complexity of the models is

increased potentially requiring more data and processing time for reasonable con-

vergence.

We present an algorithm for our expanded dataset generation in Algorithm 2

which takes the set of raw placements stored in D and transforms them into a set D̂

where each d̂ ∈ D̂ is a 3-dimensional dataset (e.g., representing all spoon placements

with respect to the plate). Note that each placement d ∈ D contains the surface it

was placed on, sd ∈ S, the item that was placed, id, and the transformation matrix

recording the pose of the placement in the Θsd coordinate frame. Furthermore, we

use the notation D̂o
i to denote the data set that represents all placements of item

i ∈ I with respect to object o ∈ O (i.e., in the Θo coordinate frame).

The algorithm starts by taking each d ∈ D, that is each raw placement demon-

stration of an item for all placements across all users, and extracts the item id and

surface sd from d. In the first for loop (lines 6-10), we iterate through each additional

type of item i ∈ I such that an instance of i exists on sd. For example, consider id

to be a spoon and sd be the table. If our set of raw placements D contains instances

of forks and plates on the table, but not cups, this for loop would only consider ifork

and iplate. Within this loop, we store the x, y, and θ of d (e.g., our spoon placement)

with respect to the closest instance of i (e.g., the spoon with respect to the closest

fork and the closest plate). This location is added to the data set D̂i
id

. That is, the

data set representing all spoons with respect to plates. Figure 5.4 shows examples

of what such data sets look like in the x− y plane.
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Algorithm 2 Data Generation and Pruning

Input: Set of demonstration datasets D | d ∈ D

Output: Dataset of transformed placement datasets D̂

1: D̂ ← ∅

2: for d ∈ D do

3: sd ← surface d is placed on

4: id ← item placed in d

5: T sdid ← transformation matrix of id with respect to sd

6: for i ∈ I|i 6= id and i has been placed on sd at least once do

7: T sdi ← closest placement of i to id on sd

8: T iid ← (T sdi )−1 T sdid

9: D̂i
id
← {D̂i

id
∪ T iid}

10: end for

11: for p ∈ Psd do

12: T sdp ← closest instance p to id with respect to sd

13: T pid ← (T sdp )−1 T sdid

14: D̂p
id
← {D̂p

id
∪ T pid}

15: end for

16: D̂sd
id
← {D̂sd

id
∪ T sdid }

17: end for

18: return {d̂ ∈ D̂|(|d̂| ≥ δ ∗ |D|)}
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In the second for loop (lines 11-15), we repeat the above technique in reference

to the points of interest related to the current surface sd. For example, we consider

the spoon placement d with respect to the closest chair pchair from the table. On

line 16, we copy and store the actual placement location of id with respect to sd

(i.e., the spoon with respect to the table). Our final step on line 18 provides further

pruning by discarding any sets in which the number of points is not within some

δ percentage of the total number of placements. For our implementation, we set

δ = 0.05 = 5%. This enables us to eliminate outliers, such as a spoon placed on the

bed.

In summary, these processing steps have expanded our set of placements by

considering additional frames of reference, and pruned any under-represented data

sets. The final set D̂ represents the set of potentially valid item placements with

respect to candidate references Θo. Again, figure 5.4 shows examples of these models

transposed into their (x, y) values.

(a) iFork in ΘPlate Space (b) iFork in ΘChair Space

Figure 5.4: Data sets from D̂ for a table setting task.
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5.3.3 Model Training

Given the data in D̂, our goal now is to determine the possible hypotheses for

placements and their frame of reference for the task at hand. To achieve this goal,

we introduce a new method which makes use of a combination of clustering and

ranking to produce a priority of possible hypotheses. The hypotheses are trained

using unsupervised learning and ranked using a ranking function π, where smaller

values denote a tighter fitting model.

We start by training a model λd̂ based on each corresponding data set in D̂. In

our evaluation, we use Gaussian mixture models trained via EM where the number

of clusters is determined via k-fold cross validation with k = 10 [20, 88]; however,

others could be used as well. This transforms each data set d̂ ∈ D̂ into a probabilistic

GMM λd̂. We let λΘo
d̂

and λi
d̂

denote the frame of reference and the item placed in

this model, respectively. Using a GMM makes the assumption that placements are

placed with noise being representing by some hidden Gaussian model. As such, we

can use the mean of our resulting Gaussian models to be the most-likely placement

location of λi
d̂

with respect to λΘo
d̂

.

Now, given the set of all trained models Λ, we then can make the following

query: given the current state of objects of the world Ō ⊆ O and an item we wish to

place i ∈ I, where should the item be placed? The solution is calculated by finding

the corresponding GMM in Equation 5.1 where λ′ is the model with the smallest

rank value for all models which represent the target item i with respect to potential

target object o already present in the world. This step can be thought of as a form

of an entropy calculation within the models themselves [88].

λ′ = argmin
λ∈Λ

π(λ) | λΘO ∈ Ō, λi = i (5.1)

For this work, our ranking function π (Equation 5.2) is a heuristic devised to

favor dense, populated clusters where ∆c is the distance between all points to each

other in cluster c within the GMM. Again, by making the Gaussian assumption, to
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determine the placement location within each model, we choose µx, µy, µθ inside the

cluster c which minimized Equation 5.2.

∆c =
∑
i,j|i 6=j

|cicj| i, j = 1, . . . , |c|

π(λx̂) = argmin
cluster c∈λx̂

∆c

|c| ∗ (|c| − 1)
∗ |λx̂|
|c|

(5.2)

The above technique produces a single hypothesis. That is, the most likely

placement location for the most likely frame of reference. If instead we want to

allow for multiple hypotheses, instead of returning λ′, we return an ordered list of

λ ∈ Λ where π(λ) ≤ δ for some pre-defined threshold δ.

5.3.4 Lack of Symmetry

A common question asked is if there is redundant information in the modeling

technique. More specifically, one might wonder if the model for item i1 in reference

to i2 is the same as the reference for item i2 in reference to i1. While in a noise free

environment this is likely to be true (results from Section 6.3.1 actually show this),

in a noisy environment this is not the case. The main reason behind this is due to

the assumption on line 7 of Algorithm 2.

To illustrate this, consider the simple placement example in Figure 5.5 in a 1D

domain. According to Algorithm 2, for each item, we add a data point for the

location of that item in relation to the closest unique item. For our data set Di2
i1

, we

would have two data points: one with a value of 2 units, and one with a value of 1

unit. A Gaussian model would likely converge around the midpoint of 1.5. For our

data set Di2
i1

, we would have the single point of 1 unit length which is different than

its inverse relationship model. Given larger and larger data sets and demonstrations,

this effect is likely to occur more drastically.

We note that while techniques could be conceived to attempt to address this di-

rectly, we show how our methodology can overcome noise within the system resulting

in appropriate final results.
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Figure 5.5: An example of a non-symmetrical placement model.

5.4 Evaluation

To verify our methodology, we present a set of three experiments meant to encompass

a set of possible task types:

1. Single Item Placement In the first, simplistic case, we define a task in which

a single item is placed somewhere in the world. In this experiment, we asked

users to place a stack of magazines in an appropriate location.

2. Multi-Item Uncoupled Placements The second case consists of a set of

items that should be placed, but their inter-item relationships are unimportant

(as opposed to a templated solution). For this, we asked users to place a set

of dirty dishes away.

3. Multi-Item Template Placements The third case concerns multiple items

that should form some kind of template. Not only is their placement in the

world important, but relationships between items are also important. For this,

we asked users to set the table.

For each user, the state of the world W (i.e., area and surface locations) was

randomly assigned to one of 16 possible configurations. Our world consisted of 4

areas, 13 surfaces, and 18 POIs (Figure 5.1). At the start of the session, remote

users logged into the simulated environment and were presented with a general task
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description. Users could then navigate around the world and place items onto a

surface by using their mouse. Each experiment is now presented in detail.

Furthermore, with these results, we exemplify our ability to filter out erroneous

demonstrations. For example, Figure 5.6 shows the entire demonstration set D for

the Multi-Item Template Placements (i.e., table setting) task. Solely from this data,

and in an unsupervised manner, the methods discussed above is able to provide

a reasonable grounding for a typical table setting in a completely unsupervised

manner.

Figure 5.6: The noisy demonstration set of all placements for the table setting task.

5.4.1 Single Item Placement

Remote users were presented with the following task description: Your job is to

place the given object in an appropriate location in the house. The item provided

was the magazines (I = {IMagazines}). We collected 516 placements for this task,

and, after transforming and pruning the data with Algorithm 2, obtained 4 data

sets in D̂. We then ran the training process defined in Section 5.3.3 and used a
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threshold of δ = 1.1 for our ranking function (found via iterative tuning).

Table 5.1: Models Obtained from the Magazine Task

λi λΘo π(λ)

IMagazines SNightStand 0.2373

IMagazines SCoffeeTable 0.6669

IMagazines SDiningTable 1.3198

IMagazines PChair 2.7769

Table 5.1 presents the hypotheses obtained for this task. Two valid hypotheses

were found (bold) relative to the nightstand and the coffee table. Extracting the

placement locations for these models obtains the visualization shown in Figure 5.7.

Figure 5.7: Hypotheses extracted from the magazine task.

5.4.2 Multi-Item Uncoupled Placements

For this task, users were presented with the following task description: Your job

is to place the dirty dishes in an appropriate location in the house. The following

items were provided for placement: I = {IDirtyMug, IDirtyPlate, IDirtySpoon, IDirtyFork}.

We recorded 1744 item placements, which resulted in 22 models after transformation

and training. Table 5.2 lists all valid hypotheses found.
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Table 5.2: Valid Hypotheses from the Dishes Task

λi λΘo π(λ)

IDirtyMug PSinkTub 0.3934

IDirtyMug SSinkUnit 0.3934

IDirtySpoon SSinkUnit 0.4468

IDirtySpoon PSinkTub 0.4468

IDirtyFork IDirtySpoon 0.7651

IDirtySpoon IDirtyFork 0.8975

IDirtyPlate IDirtyMug 1.0096

IDirtyMug IDirtyFork 1.0329

Note here that there could be multiple starting points for this placement pattern.

That is, for any of the models whose π(λ) value is less than our threshold δ, we could

choose to place that item first and continue from there. This introduces a notion

of planning that could be used with these models during task execution (i.e., item

placement). We further explore this idea in Section 5.6 and for now consider the

model with the smallest π(λ) value to be our starting point. This results in the

model depicted in Figure 5.8.

We note an important benefit of our approach at this point. As can be seen in

Figure 5.8, many of the items overlap in the final result. As once might expect with

multi-item uncoupled placements, this is a likely occurrence. Of course, when given

to a robot for execution, it is likely the robot would fail to plan such placements as

collisions would be unavoidable. However, since each resulting placement is modeled

by a cluster within a GMM, instead of feed a single point to the robot during

placement execution, we can instead provide the entire Gaussian distribution to

the robot. This would allow the robot to sample around this distribution for a
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Figure 5.8: A Hypothesis for the Dishes Task

collision-free placement.

5.4.3 Multi-Item Template Placements

For this task, remote users were presented with the following task description: Your

job is to set the table with the given objects. The objects provided were as follows:

I = {ICup, IPlate, ISpoon, IFork}. We recorded 678 placements, which resulted in 20

models after transformation and training. Valid hypotheses are listed in Table 5.3.

Using the same method discussed during the dishes task for a starting point, an

interesting result emerges: no objects in S or P are selected for reference frames.

That is, the resulting placements for all items are solely related to the other items

in I. As expected from the problem formulation of this task, this is the template

of items we were hoping for. The template, shown in the left of Figure 5.9a, clearly

depicts a typical table setting.

The results here relate to the idea that a table setting itself is really independent

of a surface. Perhaps you eat at your counter, or even on a TV-dinner tray in your

living room. No matter where the set of objects is placed, it still can be identified

as a table setting arrangement.

To build upon this idea, suppose we enforce the above selection method to select
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Table 5.3: Valid Hypotheses from the Table Setting Task

λi λΘo π(λ) λi λΘo π(λ)

ISpoon IPlate 0.2077 ICup IPlate 0.7585

IFork IPlate 0.2470 IPlate ISpoon 0.7745

ISpoon IFork 0.4045 ICup ISpoon 0.7769

ISpoon ICup 0.4183 IPlate ICup 0.7777

IFork ISpoon 0.4548 ICup IFork 0.9169

IPlate IFork 0.4992 IFork PChair 0.9736

IFork ICup 0.5530 IPlate PChair 1.0084

some object o ∈ O|o ∈ {S ∪ P}. If we re-run the selection with the restriction, we

see that typically table settings, in particular the plate, are in reference to a chair

around the table. Once the plate has been placed with respect to the chair, the

template then follows as normal. The result is shown in the right Figure 5.9b. The

template could also be further reproduced around other objects in the world (e.g.,

all chairs), to further complete a more complex task.

(a) The standalone table setting tem-

plate.

(b) The table setting template positioned about

the chair reference.

Figure 5.9: The resulting table setting template.
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5.4.4 Validation Results

To further verify our results, we ran a small user study in which we presented 20

anonymous users with three separate questions: one for each task. In each question,

the user was given a set of images, some of which were the results shown above,

and some of which were incorrect (e.g., placing the magazines on a stove burner).

Given the original task descriptions presented to the crowdsourced users during data

collection, we asked users to select which, if any, of the images accurately depicted

the completed task. Note that users were not required to select any models as valid

if they did not find them to be so.

For the magazine task, users were given an image of the two valid hypotheses

(night stand and coffee table), and two invalid answers (stove burner and sink).

For the dishes task, users were presented with the first possible hypothesis (Figure

5.8), as well as two incorrect possibilities (random arrangements of the dishes on the

dresser and on the couch). Finally, for the table setting task, users were given the

stand-alone template (Figure 5.9a), the template in reference to the chair (Figure

5.9b), and a random arrangement of the dishes on the TV unit. The results from the

questionnaire are presented in Table 5.4 (choices representing algorithm-generated

hypotheses are shown in bold, italic font).

As we can see from the results above, the resulting hypotheses from the proposed

methodology match the human expectation of the task description 94% of the time.

What is interesting to look at as well is the magazines task. Here, we see that the

users typically selected both of the hypotheses derived from this work, supporting

our use of multi-hypothesis methods.

5.5 Failed Clustering Heuristic

For the sake of completeness of this document, we also present a brief description of

a failed alternative to our ranking function π in Equation 5.2. Notable in clustering

research is the use of scatter separability criterion [31]. The idea is to define two
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Table 5.4: Validation Questionnaire Results

Task Choice # Resp.

Magazine

Coffee Table 19

Sink 0

Nightstand 15

Stove 2

Dishes

Dresser 3

Couch 1

Sink 20

Table Setting

Template & Chair 20

Template 17

TV Unit 0

matrices, Sw defined in Equation 5.3 which measures the within-cluster scatter, and

Sb defined in Equation 5.4 which measures the between-cluster scatter. Here, we

define νj to be the prior probability of an instance belonging to cluster ωj, and Σj

is the sample covariance matrix for cluster ωj [22].

Sw =
k∑
i=1

νjE[(X− µj)(X− µj)T )|ωj] =
k∑
i=1

νjΣj (5.3)

Sb =
k∑
i=1

νj(µj −Mo)(µj −Mo)
T (5.4)

Mo = E[X] =
k∑
i=1

νjµj (5.5)

The general idea is to reward low inter-cluster scatter (i.e., to favor tight clus-

ters) and high between-cluster scatter (i.e., to favor clusters which are far apart).

Typically, the trace function, shown in Equation 5.6 for an n-by-n matrix A, is used

to measure this desire. In particular, the value returned by the evaluation function
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is defined as tr(S−1
w Sb). This evaluation function therefore was the return value for

our ranking function π.

tr(A) = a11 + a22 + . . .+ ann =
n∑
i=1

aii (5.6)

We note that even though such a ranking is probabilistically sound and shown

to work in many domains, our methodology failed to converge on consistently rea-

sonable results. While the idea of within-cluster scatter is analogous to our ranking

method, the addition of between-cluster scatter into the ranking deters from a so-

lution in our domain. That is, for our ranking, we need not weight against models

where two clusters are located near each other (e.g, different arrangements of the

cup around the plate reference frame).

5.5.1 Robot Execution

We note that in order to complete the task execution, the robotic agent must be able

to formulate not only where the items should be placed, but in what order. As shown

in the following Chapter, a more informed search problem can be formulated to solve

this problem, but without any type of ordering constraint, a greedy algorithm is able

to provide this ordering. A general greedy execution algorithm is given in 3.

The algorithm starts at line 1 by getting the set of all items needed in the task

definition followed by the current state of the world in line 2. Note that the state of

the world initially consists of all surface locations within the world as no items have

been placed yet. Line 4 then searches for the model with the smallest ranking value

such that the models item are in the item set I and the models reference frame are

in the world W . In other words, we have yet to place λi and we are able to place it

in reference to λΘo . We then search for and retrieve λi before placing it. We then

remove λi from the set of items to be placed (line 7) and add the item to the world

state as a potential reference frame in the future (line 8). This process continues

until all of the items have been placed.
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Algorithm 3 Greedy Template Execution

Input: Set of placement models Λt | λ ∈ Λt

1: I ← set of items for the task

2: W ← state of the world

3: while I 6= ∅ do

4: λ← argminλ∈Λt π(λ) | λΘo ∈ W ∧ λi ∈ I

5: retrieve(λi)

6: place(λi, λΘo)

7: I ← I \ {λi}

8: W ← {W ∪ {λi}}

9: end while

In our final form of evaluation we executed the resulting table setting task tem-

plate on a physical robot. For our robot, we utilized the CARL (Crowdsourced

Autonomy and Robot Learning) robot seen in Figure 5.10. CARL consists of

a Segway RMP base with a 6 degree-of-freedom JACO arm. 3D object recogni-

tion and manipulation for the task’s objects were previously trained on the robot

such that it knew how to detect and manipulate the objects required for the task.

Since information from the above methods is expressed in a high-level, semantic,

and spatial way, new environments can make use of such information to com-

plete task execution. During execution, CARL successfully queries the system

for what a table setting template is, finds the necessary objects on the kitchen

counter, and sets the table appropriately. A video of this task is available at

https://www.youtube.com/watch?v=Pqjgd33ZVAk.

5.6 Conclusion

In this chapter, we have presented a new methodology and algorithm for learning

item placements, templates, and reference frames from a corpus of noisy human
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Figure 5.10: The result of the robotic table setting task.

demonstrations based solely on spatial data. Furthermore, no prior knowledge about

the important frames of reference were given to the models, adding to the complexity

of possibilities that must be considered during unsupervised learning.

Using our proposed methodology to transform and learn on the data generated

from crowdsourced users, we were able to validate our framework for three different

pick-and-place tasks: single item placement, multi-item placement with no inter-

object relationships, and multi-item placement with a possible templated solution.

This work paves the way for a new form of robot PbD or LfD in which end

states can be leveraged as spatial descriptions with learned reference frames instead

of explicit demonstrations of task execution. The learning method is intuitive and

easy to use since all data was collected from non-expert, anonymous crowdsourced

users using intuitive, web-based interfaces. We note that extensive background

research in robot learning has lead to little similar work. As discussed in Section

5.2, recent work has begun to notice and address this obvious gap.

We now move on to expand this work to deal with the notably missing ordering

constraints.
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CHAPTER 6

UNSUPERVISED ORDERING INFERENCE

VIA TEMPORAL WEIGHTING

In this chapter we expand our SPAT framework to incorporate its first form of

temporal data in order to strengthen the goal state templates. In particular, we use

coarsely represented temporal data from the demonstration set itself to infer ordering

constraints within a template. Furthermore, we present a method for producing

an informed execution order of the template for the agent during runtime. These

methods are explored in both a series of block-world domains as well as a noisy

household domain.

While the effectiveness of the spatial learning method above has been explored

in Chapter 5, this chapter explores how the model Λ can be further weighted to

incorporate temporal ordering constraints (e.g., the napkin must be placed before

the fork is placed on-top of it).

Ordering constraints, or more broadly, constraint satisfaction, is a widely ex-

plored field within Computer Science and Artificial Intelligence research [60, 71, 27,

34]. In its most general form, constraint satisfaction is a method in which one can

find a solution to problem given a set of conditions that must be met. In many

cases, these constraints are known or inferred ahead of time.

In the context of the spatially defined template models developed in Chapter

5, a constraint would need to be defined if some target item must be placed either

before or after a particular reference item. Intuitively, it might then follow that,
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given a particular final template, the agent should execute the template in the same

order that the user placed the items. However, such a claim then must come from

the assumption that the user, or in the case of large datasets, any given user, placed

the items both correctly, and in the correct order. That is, given the unsupervised

nature of the collection process, combined with the lack of raw-demonstration data

lost during the aggregation and transformation process in Algorithm 2, we do not

know the template and thus the potential order of placements until the end of the

process.

To give a concrete example, consider the table setting task from earlier, however,

now we assume there is a napkin that must be placed under the fork. Given the

level of noise seen in 5.6, once a reasonable template has been found with the

appropriate spatial reference frames, which user’s demonstration order should we

use during execution? What if that user’s demonstration does not perfectly match

the resulting template? What if there is no particular order that must be followed

(e.g., fork or spoon first).

Similar to previous work in programming by demonstration, one could manually

annotate a template or demonstration with constraints such as a reference frame or

ordering of placements [2, 15]. This, however, both complicates the demonstration

process and removes our ability to provide solutions to WAPP problems in an unsu-

pervised manner. Therefore, in this chapter, we contribute a method for weighting

models from earlier with a coarse temporal weight. Such a weight is derived en-

tirely from the unlabeled data collected from users. We then show both the cases

in which this method can properly define temporal and spatial constraints as well

as its known failure cases.
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6.1 Background

6.1.1 Classical Planning

In many senses the problem of ordering constraints can be translated into a classical

planning problem. One of the most well known planning styles is STRIPS (Stanford

Research Institute Problem Solver) [27, 71, 60]. STRIPS was the foundation of many

later works, including PDDL (Planning Domain Definition Language) [34].

In the original STRIPS literature, the term world model is introduced. The

world model is a representation of the world based on a set of facts, or truths. This

world model is considered to be the initial state. In contrast to this, STRIPS also

specifies a goal state. These are the states of the world that we wish to achieve. For

example, if we want to have the boxes B and C moved from room y to room x, we

could use the following world model goal state:

At(B, x) ∧ At(C, x)

In addition to world models, STRIPS instances also consist of a set of operators.

Operators consist of three sets. The first is a set of pre-conditions (in the form of

propositional variables). These conditions must be true in order for the operator

to be executed. The second and third sets are sets of effects, one for which values

become true (or added to the world model) by the execution of the operator, and

the second being which values become false (or removed from the world model).

Note that operators are analogous to actions. The goal of STRIPS, therefore,

is to find a plan, or path, from the starting state to the goal state by following the

necessary pre and post conditions through the execution of a sequence of actions.

Many variants of programming languages have been defined around STRIPS to

allow for powerful and efficient planning. In 1998, the Planning Domain Definition

Language (PDDL) was introduced as a standard for the Artificial Intelligence Plan-

ning Systems 1998 (AIPS-98) competition [34]. While not the first formal language

definition for STRIPS-style problems, it has become one of the most prominent lan-
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guages for planning and has been revised into several different versions: PDDL1.2

[34], PDDL2.1 [30], PDDL2.2 [23], PDDL3.0 [32], and PDDL3.1 [52]. Each variant

of PDDL introduced extensions such as allowing for non-binary, numeric values to

represent a distance in a constraint.

We note that while a direct analogy can be made between WAPP goal state

templates and classical planning, the lack of known pre-conditions makes the trans-

lation inadequate. Furthermore, STRIPS makes use of the closed world assumption

(CWA) which tells us that if something is not stated in the world model, then it

is assumed to be false. During WAPP execution, this assumption cannot hold. In

fact, CWA, in its entirety, does not hold in the real world and is the most funda-

mental limitation of STRIPS in terms of converting WAPP goal state execution into

a planning environment. As shown later in Chapter 7, we knowingly violate this

assumption and allow users to modify the world state during task execution.

6.1.2 Robotic Pick-and-Place Ordering

Ordering constraints have also been explored explicitly within the domain of robotic

pick-and-place. Early work in programming by demonstration [2, 15] allowed users

to define tasks as a series of actions. These actions, in the form of keyframe based

locations or low-level joint trajectory playback, could then be arranged in sequences

manually according to the user’s preference.

Work done by Mohseni-Kabir et. al [57, 58] introduced an interactive based

approach. In this work, the user could guide the robot through a task (in their work,

a tire rotation domain) using a series of available action primitives. This one-shot

learning approach framed the problem as a hierarchical task network (HTN) in which

partial ordering constraints were inferred. The agent would then make suggestions

to the user asking if they wanted to group common actions (e.g., unscrewing a series

of nuts) as a high-level sub-task (e.g., unscrewing the entire hub).

Finally, as a canonical example within pick-and-place, Ekvall and Kragic [25, 24]

infer ordering constraints for tasks such as table setting from multiple human demon-
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strations. Unlike our approach, task demonstrations were done in a continuous man-

ner and segmented based on distance thresholds as task items moved throughout

the demonstration. As tasks were executed, ordering constraints were inferred by

initially assuming the task must be executed in the exact order of the first demonstra-

tion. As further demonstrations were added, any constraint that was violated were

immediately removed from the set of possible constraints. Work done by Niekum

et. al. [62, 1] furthered this approach by utilizing Bayesian Nonparametric Time

Series Analysis and motion primitives to significantly improve the segmentation of

tasks into actions. It is noted however that a certain level of expertise is needed by

the human teacher in order to reach reasonable results.

6.2 Methodolgy

In this section, we define and present a method for weighting plausible template

models based on the coarsely defined temporal placement information available from

the high-level goal-state demonstration database. We say that the temporal, or in

this case, ordering information is coarsely defined since we only know for a particular

user if the demonstration was placed either before or after a given instance of a

reference. This concept can be thought of as a binary informational component and

is more formally defined throughout this section.

6.2.1 Temporal and Spatial Weighting

Remember that a spatial template is defined as a set of models λ ∈ Λ for a given

task. Each model has an item λi for an item i ∈ I and a reference frame λθo for an

object o ∈ O within the world. Furthermore, λ also contains an associated Gaussian

distribution N (µk,Σk) obtained via EM clustering where the mean represents the

spatial location of placing i with respect to o. The model λ also has a weight defined

by a ranking function π denoting the strength of the associated cluster and thus the

model (again, where smaller values represent a better fitting model).
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Prior to this chapter, π (defined in Equation 5.2) is expressed solely in terms

of spatial data. With the introduction of ordering constraints, we want to define a

new function, Φ, which combines both the spatial component in π and a temporal

component ψ. These two components are then weighted via some weighting term

α in the range [0, 1]. Intuitively, the weighting parameter α decides how heavily

to weight temporal data ψ over spatial data π and can be tuned based on domain

knowledge prior to execution. A general form of this method given in Equation 6.1.

Φ = απ + (1− α)ψ (6.1)

In order to provide a reasonable bounds and value for Φ, we normalize each

component in the function to be in the range [0, 1] (and thus Φ is also in the range

[0, 1]). For π, remembering from earlier the threshold value δ used to determine

which models and templates were acceptable, we know an upper bound of the values.

Therefore, we can normalize π by this terms giving us π
δ
.

6.2.2 The Temporal Ratio Term

In this subsection we define the temporal term ψ. Given the data collection method

described in Chapter 5, we are able to determine a coarse binary temporal value

in the form of before or after; that is, was the item in the demonstration placed

before or after the current reference frame.

More formally, consider the data set D̂o
i being generated in Algorithm 2 (Sec-

tion 5.3.2) which represents all aggregated placement demonstrations of item i with

respect to object o. For a particular demonstration instance d from a user, during

this generation step we know both when the user placed i and when (if ever, i.e.,

surfaces are always present) the user placed o. We denote this as a binary term

d̂ψ ∈ {0, 1} where 0 indicates the item was placed after the current reference frame,

and 1 indicates that it was placed prior to the reference frame.

Given this information, we can then compute a ratio indicating the number of
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placement points inside of a given cluster that were placed after the associated

reference frame. Equation 6.2 gives us this ratio in terms of each data point d̂ in a

given cluster c inside of a model λ.

ψ(cluster c ∈ λ) =

∑|c|
i=1 d̂iψ
|c|

(6.2)

We note that the above equation may be susceptible to noise in the demonstra-

tion. To address this, we weight the binary term d̂ψ by the probability that that

demonstration comes from the given cluster. That is, if a demonstration point is far

away from the mean of the given cluster, we assume that the demonstration point

is less reliable. Therefore, each point is weighted by the probability density function

associated with the Gaussian distribution for that cluster (Equation 6.3 where n is

the dimensionality of the distribution or 3 in our case).

ψ(cluster c ∈ λ) =

∑|c|
i=1 d̂iψ

1√
(2π)n|Σc|

− 1
2

(d̂i−µc)ᵀΣ−1
c (d̂i−µc)

|c|
(6.3)

6.2.3 Graph Reduction for Execution Order

With the above definitions, we now assume our new ranking function Φ. Note that

this term is a real-valued number in the range [0, 1] and contains a metric on how

well a placing item i fits against reference frame o both spatially and temporally.

However, unlike earlier when we only used spatial criteria π, temporal data informs

the model of a sense of execution-level ordering that must take place. In Chapter

5, when executing the template in a real-world domain, we used a best-first greedy

approach (as discussed in Section 5.5.1 with Algorithm 3). While appropriate when

dealing with unconstrained spatial data, this approach cannot be maintained with

temporal data.

As an example, let us consider a simple two-item domain in which item A should

be placed prior to B. Let us also define some additional fixed reference frame in

the world F . Assume that the spatial metric for iB with respect to oF is extremely
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well fitting (i.e., π is small). Furthermore, assume that A is always placed before

B. Depending on α, our greedy approach from earlier would likely choose this small

π value for iB with respect to oF first since it seems like a great starting point.

However, now that the B has been placed, the value of ψ for iB with respect to

iA is 1 thus introducing a notion of “error” into the execution (since A should be

placed before B). This means that execution cannot simply be defined in a greedy

approach.

Therefore, given our new ranking metric Φ, we compose our template execution

strategy as a minimization problem. That is, we want to find the sequence of

placements across all possible models Λ, such that the sum of Φ across all chosen

placements is smallest.

In doing so, we translate the problem into a graph problem. Formally, we define

each node in the graph to represent the current set of remaining items that must be

placed according to the task description. Each edge in the graph therefore represents

placing an available item from the target node according to some reference frame.

The new node connected to this edge thus represents the set of available items from

the target node minus the placed item. The weight of the edge is defined as Φ. A

form algorithm for this problem reduction is given in Algorithm 4.

We start by constructing the vertex set which represents all possible item set

combinations (i.e., the power-set of I) in lines 4-6. This is analogous to creating a

vertex for any possible state of items left to place throughout task execution. Next,

for each of these states, we consider all possible edges. Line 8 looks at each item

within each vertex and looks at creating a edge from that vertex v to a destination

vertex u associated with placing item i (line 10). Note that i can be placed according

to many different reference frames. Therefore, we search through the set of models

Λ in line 11 in which i is the item being placed. Of these resulting models, we

obtain the coordinate frame for which i is placed in reference to (line 12). Lines

13-17 then check if this reference frame is both an item and if the reference frame

is an item from the source node v. This an important check because if o ∈ îv,
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Algorithm 4 Reducing Λ into a Weighted Graph

Input: Set of plausible placement models Λ for the current task

Set of task items I

Output: A weight graph G = (V,E), a set of vertices and edges

1: V ← ∅

2: E ← ∅

3: Î ← P (I) (i.e., the power-set of I)

4: for each item set î in Î (i.e., ∀ î ∈ Î) do

5: V ← {V ∪ Vertex(̂i)}

6: end for

7: for each vertex v in V (i.e., ∀ v ∈ V ) do

8: for each item i in v do

9: îv ← item set associated with v

10: u← vertex in V with associated item set îv − i

11: for each model λ in Λ such that λi = i do

12: o← λΘo

13: if o ∈ I ∧ o ∈ îv then

14: w ←∞

15: else

16: w ← Φ(λ)

17: end if

18: e← Edge(v, u, w)

19: E ← {E ∪ e}

20: end for

21: end for

22: end for

23: return G = (V,E)
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then the reference item has yet to be placed. Therefore, it is impossible to use this

transition and we thus set its weight to ∞. Finally, the resulting weighted edge is

added to the edge list on line 19 before returning the completed graph on line 23.

An example illustration of a graph is shown in Figure 6.1 with a simplified domain

of I = {fork, plate and S = {table} where “w.r.t.” denotes “with respect to.”

Figure 6.1: An example of a placement graph.

Given the resulting graph, an ordering of λ placement models can then be made

via a lowest-cost path search from the start state of I to the goal state of ∅. That

is, from the full set of items that need to be placed until the goal state of no-more-

items-to-place. Such a path can therefore be computed via Dijkstra’s algorithm[71].

This path therefore minimizes the cost of placing all items with respect to both

spatial and temporal strength.

82



6.3 Results

This section describes two forms of evaluation for the above methods. In the first

section, we deal with a constrained block domain which allows us to formalize dif-

ferent conditions for templated ordering constraints. In the second section, we look

at real-world results from the same household domain presented in Chapter 5.

6.3.1 Variable Size Block Domain

To begin, we consider a simplistic case of ordering constraints. Let us consider a

small block-world domain consisting of a set of 5 different sized blocks. The goal

is to demonstrate to the system how to properly stack the blocks in order starting

with the largest block (block1) on the bottom and ending with the smallest block

(block5) on the top (Figure 6.2). We also assume a single “surface” frame in the

world which we call the world-frame (Sworld).

Figure 6.2: The simple tower stacking domain.

For the purposes of exploring the strengths and weaknesses of the developed

methods, this section utilizes non-crowdsourced demonstrations. That is, we man-

ually provide the system with 25 temporally noise-free demonstrations in order to

see if an reasonable ordering emerges. We consider demonstrations to be tempo-

rally noise-free if each demonstration is placed in the correct order but allow for

perturbations in the x, y, θ values.

As a baseline, we process the results using the existing methods developed in

Chapter 5. The resulting models are presented in Table 6.1 and the resulting tem-
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Table 6.1: π-Based Models Obtained from the Simple Tower Task

λi λΘo π(λ) λi λΘo π(λ) λi λΘo π(λ)

block1 block2 0.0273 block2 block1 0.0273 block3 block1 0.0502

block1 block3 0.0502 block2 block3 0.0230 block3 block2 0.0230

block1 block4 0.0749 block2 block4 0.0479 block3 block4 0.0258

block1 block5 0.0995 block2 block5 0.0725 block3 block5 0.0501

block1 Sworld 0.0478 block2 Sworld 0.0444 block3 Sworld 0.0492

block4 block1 0.0749 block5 block1 0.0995 block4 block2 0.0479

block5 block2 0.0725 block4 block3 0.0258 block5 block3 0.0501

block4 block5 0.0262 block5 block4 0.0262 block4 Sworld 0.0607

block5 Sworld 0.0860

plate is depicted in Figure 6.2. As can be seen, while the blocks are indeed arranged

in a correct spatial arrangement, utilizing the greedy execution strategy in Algo-

rithm 3 results in the following ordering of the placements:

block2-w.r.t.-Sworld →

block3-w.r.t.-block2 →

block4-w.r.t.-block3 →

block5-w.r.t.-block4 →

block1-w.r.t.-block2

Not only is this not the desired ordering, but given physical constraints in the

real world, it would be impossible to place a block in mid-air without having the

supporting block underneath it.

Next, we run the same data through Equation 6.3 to compute our ranking metric

Φ for each model using an value of α = 0.5. The results of these values are pre-

sented in Table 6.2. Utilizing the graph reduction technique outlined in Algorithm
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4 provides the following execution solution with negligible affects on the spatial

layout:

block1-w.r.t.-Sworld →

block2-w.r.t.-block1 →

block3-w.r.t.-block2 →

block4-w.r.t.-block3 →

block5-w.r.t.-block4

Table 6.2: Φ-Based Models Obtained from the Simple Tower Task

λi λΘo Φ(λ) λi λΘo Φ(λ) λi λΘo Φ(λ)

block1 block2 0.5124 block2 block1 0.0124 block3 block1 0.0228

block1 block3 0.5228 block2 block3 0.5104 block3 block2 0.0104

block1 block4 0.5340 block2 block4 0.5217 block3 block4 0.5117

block1 block5 0.5452 block2 block5 0.5329 block3 block5 0.5228

block1 Sworld 0.0217 block2 Sworld 0.0202 block3 Sworld 0.0223

block4 block1 0.0340 block5 block1 0.0452 block4 block2 0.0217

block5 block2 0.0329 block4 block3 0.0117 block5 block3 0.0228

block4 block5 0.5119 block5 block4 0.0228 block4 Sworld 0.0276

block5 Sworld 0.0391

As we can see from these results, adding the temporal component ψ into the

weighting metric significantly improves our ability to represent a template in both

a spatial and temporal manner. Block placements which violate our ordering con-

straint have noticeably higher Φ values than those which adhere to the desired

ordering constraint. Furthermore, an important result of this case is that by adding

these new values into our models, we still are able to maintain the spatial structure
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of the template itself. This result is further strengthened in the remainder of this

chapter.

6.3.2 Uniform Size Colored Block Domain

The above results represent the effectiveness of combining both spatial and temporal

information within the ranking heuristic as well as execution via the graph-reduction

technique. While the presented case is the most simplistic of cases, we now present 4

classes of problems where we run our algorithm. For these 4 classes of problems, we

also change our domain from a 5-block different size domain into a 6-block domain

depicted in Figure 6.3. The 4 classes are as follows:

(a) (b) (c) (d)

Figure 6.3: Example placement demonstrations for the 4 block-world conditions.

1. Consistent Ordering, Consistent Placement – This case is analogous to

the variable size block domain. In this case we place the blocks in the same

order starting from the bottom left and build the bottom row, then the middle

row, then the top row. Blocks were placed with starting with the lightest shade

of each color per row from left to right. The exact ordering and placement

locations are shown in Figure 6.3a.

2. Random Ordering, Consistent Placement In this case we randomly place

the blocks in a different order one row at a time. (e.g., if the first row has

blocks 1, 2, 3, we would do demonstrations in the order 1, 2, 3, – 1, 3, 2 –

etc...). In this case the ordering is randomized, but the locations are still fixed
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(i.e., lightest to darkest). An example ordering with the exact locations of the

placements is shown in Figure 6.3b.

3. Consistent Ordering, Random Placement This case is the opposite of

the Random Ordering, Consistent Placement case. Here we randomize the

order on each row but keep the ordering temporally consistent. The ordering

of each block with an example placement location is shown in Figure 6.3c.

4. Random Ordering, Random Placement Here, we randomly place blocks

in any order at any location within the row. An example is shown in Figure

6.3d.

Once again, we provide 25 demonstrations for each case. Instead of listing and

enumerating results for all possible reference frame combinations in this domain (64

possible values for each condition), we present the ordering and Φ values returned

by the graph search for each case. For a listing of these values, see the Appendix at

the end of this thesis. For each case, we refer to each color block as the following:

• blocklb - The light-blue block (number 1 in Figure 6.3a).

• blockmb - The medium-blue block (number 2 in Figure 6.3a).

• blockdb - The dark-blue block (number 3 in Figure 6.3a).

• blocklg - The light-green block (number 4 in Figure 6.3a).

• blockdg - The dark-green block (number 5 in Figure 6.3a).

• blockr - The red block (number 6 in Figure 6.3a).

Consistent Ordering, Consistent Placement

Since this condition is analogous to the 5-block domain presented in Section 6.3.1, it

is unsurprising to once again find a reasonable placement and ordering of the blocks.
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(a) (b) (c) (d)

Figure 6.4: Resulting templates for the 4 block-world conditions.

After running the training data through the process, the algorithm returns to us the

following (shown visually in Figure 6.4a).

blocklb-w.r.t.-Sworld (Φ = 0.3481) →

blockmb-w.r.t.-blocklb (Φ = 0.0063) →

blockdb-w.r.t.-blockmb (Φ = 0.0099) →

blocklg-w.r.t.-blockdb (Φ = 0.0125) →

blockdg-w.r.t.-blocklb (Φ = 0.0172) →

blockr-w.r.t.-blocklg (Φ = 0.0226)

Unsurprisingly, we do obtain a spatially and temporally consistent template as

we found earlier.

Random Ordering, Consistent Placement

This case is an important case in verifying that the temporal component ψ does not

overpower the spatial component π. Furthermore, we also hope to see that strong

spatial relationships do not overpower the temporal relationships. By keeping the

placement locations consistent, we hope to still achieve the same template spatially

as shown in the previous case. Here, for each demonstration we randomly place the

blocks within each row. After running the training data through the process, the

algorithm returns to us the following (shown visually in Figure 6.4b).
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blockdb-w.r.t.-Sworld (Φ = 0.3330) →

blockmb-w.r.t.-blockdb (Φ = 0.2519) →

blocklb-w.r.t.-blockmb (Φ = 0.2553) →

blockdg-w.r.t.-blocklb (Φ = 0.0060) →

blocklg-w.r.t.-blocklb (Φ = 0.0072) →

blockr-w.r.t.-blocklg (Φ = 0.0069)

This case exemplifies the effectiveness of our methodology. Within each row,

ordering does not matter. In fact, in the Appendix we can see similar values across

the the various components within each row. However, we do not overpower the

spatial relationship and still achieve the desired template. Furthermore, while the

ordering was random within each row, since the ordering of each row was held

consistent, we can see that we do not place blocks from any of the rows above until

each row is complete.

Consistent Ordering, Random Placement

This case is similar to the dishes example in Section 5.4.2 (Multi-Item Uncoupled

Placements). Since the block placement locations are randomized in each row, we do

not expect our core algorithm to produce a template in the form of a tower. This is

not unreasonable since we are never truly providing a unique spatial template of the

unique blocks. After running the training data through the process, the algorithm

returns to us the following (shown visually in Figure 6.4c).
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blocklb-w.r.t.-Sworld (Φ = 0.4998) →

blockmb-w.r.t.-blocklb (Φ = 0.0892) →

blockdb-w.r.t.-blockmb (Φ = 0.0294) →

blockdg-w.r.t.-blockdb (Φ = 0.0495) →

blockr-w.r.t.-blockdg (Φ = 0.0285) →

blocklg-w.r.t.-blockdb (Φ = 0.0470)

As with the dishes tasks, we wind up with overlapping elements in the result

which again can be overcome at execution time by utilizing the resulting Gaussian

distributions within each model. We note that given the randomness within the

spatial template, even the ordering of placements is lost after the first row. While

it is possible to tune α to more heavily weigh ψ over π, we present this result as is

in order to showcase both strengths and weaknesses of the approach. We note as

well that we still obtain the correct ordering and placement of each row from top

to bottom. This is due to the fact that each row is still placed under the conditions

of the Consistent Ordering, Consistent Placement condition. That is, each row can

be though of as a sub-template of the problem.

Random Ordering, Random Placement

For the sake of completeness, we present results from a completely random set of

demonstrations both spatially and temporally. As with the previous conditions, we

keep randomness to within each respective row. While it would be possible to run

experiments where ordering and location were randomized across all 6 blocks, we

note that such an example is in no form a template – that is, little information

would be obtained from the data set as there is no ground truth to be learned.

After running the training data through the process, the algorithm returns to us the

following (shown visually in Figure 6.4c).
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blockmb-w.r.t.-Sworld (Φ = 0.4137) →

blocklb-w.r.t.-blockmb (Φ = 0.3205) →

blockdg-w.r.t.-blocklb (Φ = 0.0516) →

blockr-w.r.t.-blockdg (Φ = 0.0321) →

blocklg-w.r.t.-blockmb (Φ = 0.0383) →

blockdb-w.r.t.-blocklb (Φ = 0.2404)

As with the previous condition, we still maintain our “sub-templates” on a per-

row basis, but all temporal and spatial information is lost within each row.

6.3.3 Household Domain

Up until now, the presented results show both the effectiveness and limitations of our

methodology across different types of temporally and spatially constructed problems.

In this section we report results from a real-world dataset from the crowdsourced

household domain. In particular, we re-frame our table setting task to incorporate

the placement of a napkin within the template. The goal would be a template in

which the napkin was placed under the fork and spoon.

In order to not bias users to placing items in any particular ordering of the items,

we randomize the order in which items are presented to users. As before, we present

the full list of items in the task description, and users are then allowed to scroll

through the list when placing the items.

Perhaps the most important result from this experiment is that, as with the

experiments from Chapter 5, the developed methodology is able to handle an abun-

dance of noise. Figure 6.5 once again depicts this noise by showing the entire

placement set within an instance of the world.

For this task, remote users were presented with the following task description:

Your job is to set the table with the given objects. The objects provided were as
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Figure 6.5: The noisy demonstration set of all placements for the napkin task.

follows: I = {ICup, IPlate, ISpoon, IFork, INapkin}. We recorded 900 placements, which

resulted in 37 valid models (i.e., where π(λ) ≤ δ) after transformation and training.

We refer readers to the Appendix for a full table of values. Here we present the final

template ordering returned from the graph reduction step:

IPlate-w.r.t.-Pchair (Φ = 0.2533) →

INapkin-w.r.t.-IPlate (Φ = 0.3001) →

IFork-w.r.t.-INapkin (Φ = 0.0942) →

ISpoon-w.r.t.-INapkin (Φ = 0.1223) →

ICup-w.r.t.-IPlate (Φ = 0.2852)

Shown visually in Figure 6.6, these results verify that even in a noisy domain

from untrained users, we are able to provide a valid final grounding for a real-world

task template with ordering constraints.
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Figure 6.6: The resulting napkin template.

6.4 Conclusion

In this chapter, we expanded our general templating algorithm from Chapter 5 to

adhere to potential unknown ordering constraints. In particular, we developed a

method which kept to our goal of remaining an unsupervised approach and required

no additional input methods or data from the human user. By looking at the coarse

ordering information from each item-object pairing in the data set, we were able

to compute and utilize a ratio weighted by the likelihood of each data point. This

temporal component was then combined with our spatial weighting function from

Chapter 5 to form our new weighting function Φ. Finally, by using our reduction

algorithm, we were able to reduce the problem of searching for an execution order

by framing the problem as a lowest-cost path graph problem.

We presented results in two forms. In the first form, we looked at different types

of constrained problem types within a simplified block-world domain. In particular,

we showed how we were able to reconstruct a tower adhering to both spatial and

temporal constraints in both the Consistent Ordering, Consistent Placement and

Random Ordering, Consistent Placement conditions. We also showed in the Con-

sistent Ordering, Random Placement how a rough ordering could be maintained
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even with randomness from the spatial placements. More interesting though from

both the Consistent Ordering, Random Placement and Random Ordering, Random

Placement conditions is the persistence of the “sub-templates” (i.e., each row as a

component). In the second form, we were able to return to the household crowd-

sourced domain and show the ability to overcome noisy environments from untrained

users in order to set a table in the appropriate order.

By combining both spatial and temporal information from the users, we consider

this to be the first complete form of SPAT learning for our framework. Since we

are concerned with full task completion from start-to-end, we show how deriving a

second form of SPAT learning from observations can provide a solution to actively

searching for items at the start of task execution.
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CHAPTER 7

TEMPORAL PERSISTENCE MODELING

FROM SPARSE OBSERVATIONS

At this point in this thesis work, we have enabled a mobile manipulator with the

ability utilize crowd-sourced spatial goal templates and reference frames to complete

tasks and allowed for refinement of these templates using coarse temporal ordering

information. These steps, however, are only half of the problem in WAPP tasks. In

order for robotic agents to complete a wide range of tasks in mobile environments,

they must, at some level, be able to search effectively for objects. That is, the

robotic agent must be able to know where to search for and retrieve each required

object for the task in order to place it according to the goal template.

7.1 Introduction

The ability to effectively locate objects is critical for robotic tasks across a wide

range of assistive, household and service applications. Commonplace tasks, such as

pick and place or manipulation, require the robot to navigate to different locations

to retrieve objects, often given only uncertain information about the object’s current

location. Within this context, the problem of active visual search (AVS) is that of

effectively predicting object locations in a large-scale environment using primarily

visual sensing [7, 8].

Recent work in semantic mapping has explored a wide range of AVS solutions,
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considering search for both known [56, 54] and previously unknown [8, 72] objects.

Many of the presented techniques leverage semantic information, such as object co-

occurrence probabilities [49] or typical object locations [7]. One limitation of existing

methods is that they typically operate under the assumption of object permanence;

in other words, once found, objects are assumed to remain in their relative position.

That is, existing methodologies lack a robust representation of temporal memory.

In this chapter, we address the problem of AVS within a domain where other

agents (e.g., people) may move objects around without the robot’s knowledge. For

example, in a household setting, a person getting a snack is likely to carry a plate

from the kitchen to the coffee table, and then back half an hour later. Similarly, in

an office setting, shared objects such as staplers or computer accessories are often

moved between work areas. We are interested in the problem of effectively predicting

the permanence of an object at a given location in order to enable improved visual

search.

We present a novel solution to the object search problem based on temporal

persistence modeling, a probabilistic prediction of the time that an object is expected

to remain at a given location given sparse prior observations of the object locations

in the environment. Leveraging concepts from reliability theory [70], we show that

probabilistic exponential distributions augmented with a Gaussian component can

accurately represent probable object locations and search suggestions based entirely

on sparsely made visual observations. We evaluate our work in two domains, a

large scale GPS location data set for person tracking, and multi-object tracking

on a mobile robot operating in a small-scale household environment over a 2-week

period. Our results show that the performance of our algorithm exceeds four baseline

methods across all study conditions.
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7.2 Background

At its core, semantic mapping deals with mapping human spatial concepts to objects

within the world [66]. Many approaches have been developed for tackling this broad

research problem within the robotics and perception communities [55, 56, 66, 67, 89].

Seminal work by Pronobis breaks down objects to be what he refers to as “spatial

concepts” [66], which can be observational properties (e.g., the object is green)

or relationship properties (e.g., the object is in the kitchen). Thus, at its core,

the problem of semantic mapping is that of assigning some type of semantic (e.g.,

human-readable and understandable) label to a spacial entity within the world.

Semantic map information can also be used to determine object placement. For

example, Mason and Marthi [56] build a semantic world model that enables the

detection and tracking of objects over time, resulting in the ability to model where

objects are in the world (e.g., where did you see object x), or how objects move

around (e.g., where do instances of x go throughout the day). The major limitation

of the proposed system is that it requires extensive time for post-processing.

In some senses, this problem is related to that of simultaneous localization and

mapping (SLAM). In particular, fastSLAM [59] presents an approach of mapping

and localizing within that environment dealing entirely with features instead of

complete sensor data (e.g., occupancy grids from a laser scan). In our environment,

the items themselves can be though of as features. Therefore, given information

about how long they persist on a surface throughout the day, the item features can

provide additional information on the likelihood or weighting a feature should take

when helping to localize the robot.

In an alternate approach to object search, Kollar and Roy [49] predict the loca-

tion of previously unseen objects given the probability of their co-occurrence with

other known objects in the environment. This approach assumes a map and the

locations of known objects in the environment are given to the robot. Then, given a

novel object that has not been previously observed in the environment, the system
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leverages an online object co-occurrence database derived from Flickr to model the

co-occurrence probabilities used to determine the likely new object location based

on what it already knows about the environment. The work presented in this chap-

ter is complimentary to Kollar and Roy’s approach in that it seeks to generate and

maintain the model of known object locations, which may then be used to predict

the location of novel objects through their co-occurrence method.

In [72, 50], the authors present an approach that enables the robot to search

the web in order to identify an object’s most likely location. The approach, called

ObjectEval, searches the Web to infer the probability that an object, such as “coffee”,

can be found in a location, such as a “kitchen”. The algorithm is able to dynamically

instantiate a utility function for different locations using this probability, with the

benefit that the robot is able to effectively search for arbitrary objects is may never

have previously encountered. Again, we view this work as complimentary to the

contributions of this thesis; the technique presented in our work utilizes memory

and online learning to track the locations of known objects, as opposed to focusing

on the ability to find novel objects. Once objects are known, recognized and seen

multiple times, it is more effective for a robot to track their likely location in a

particular environment than to rely on a general notion of likely locations mined

from the web, since the web-based suggestions perform well only in domains that

fit common stereotypes.

Another popular approach to solving the object search problem involves aug-

menting the environment with additional sensors. Most popular is the use of radio-

frequency identification (RFID) tags attached to key objects and reference points.

For example, in [21], Deyle et al. enable a PR2 robot to locate objects in a highly-

cluttered household environment by placing ultra-high frequency radio-frequency

identification (UHF RFID) tags on objects. In their work, the problem of inferring

object poses and the variability in signal strength is addressed in order to robustly

search for a wide site of objects. However, even with the use of RFID tags, an object

search model is still required to enable the robot to determine which area to scan
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for objects.

Lorbach et al. [54] present an approach in which the robot navigates around

the environment and constructs a scene graph from its observations both at a se-

mantic and spatial level. The robot then uses this information to develop a series

of knowledge bases: the Scene Structure which contains the observed scene graph,

the Domain Knowledge containing co-occurrence information (similar to the work

in [49]), Physical Constraints which encode information such as large objects not

being inside of smaller objects, Logical Consistency which ensures an object can only

be in one place at a time, and Search History which serves as short term memory

for spatial relationships. While this approach begins to explore the idea of history

in guiding its search, we argue that simply remembering the past observations ig-

nores the inherent temporal information about the object (i.e., how long it remains

there). This idea is explored explicitly in our analysis. Furthermore, the need for

hand-coded domain knowledge (which the authors say is to remove noise) makes

such an approach less general.

Of course, the problem of persistence estimation extends beyond the field of

robotics. One such example which remains relevant is the work of Brandt et. al.

[13]. The referenced work presented as a method for event count predictions in the

research field of Political Science. Researchers use statistical methods to attempt to

predict events relating to US Supreme Court cases and international relations. In

[13], a Kalman filter is used to estimate a moving average of a Poisson distribution.

Unlike the work presented in this thesis, work in these fields typically deal with event

counts, that is, directly with the number of events which occurred over a certain

time (typically in the past). In our work, we incrementally build up a model from

scratch using a coarse set of observations of the world state.
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7.3 Methodology

In this chapter, we contribute temporal persistence modeling (TPM), an algorithm

for probabilistically modeling object locations based on sparse temporal observa-

tions. We define temporal persistence as the time an object is expected to be in a

particular location before moving to another location (i.e., “disappearing”). More

formally, let us consider the case of searching for an item i ∈ I. Given the current

time tc, and the last time item i was seen at each surface s ∈ S, denoted ti,s, our

goal is to calculate the probability that i is currently located on s.

To address this problem, we leverage concepts from the fields of reliability theory

[70] and failure analysis [44]. Widely applied in biomedical studies, industrial life

testing, psychology, economics and engineering disciplines, reliability theory is a

branch of statistics used for modeling the expected duration of time until a particular

event occurs, such as death in biological organisms and failure in mechanical systems.

Within the context of our work, the event time distribution we are interested in

modeling is the time at which an object is removed from one location and placed

at another. We formalize the object search problem using reliability theory as a

maximization of the probabilistic temporal persistence (Ptp) given in Equation 7.1.

argmax
s∈S

Ptp(i located-on s|tc, ti,s) (7.1)

We now present how Ptp is derived. The first step in defining our temporal

persistence model utilizes the exponential distribution [19]. In general, exponential

distributions model the time between events and contain a single rate parameter,

λ.1 In order to accurately define λ, we utilize the fact that the mean µ, or expected

value of the distribution, is defined as µ = 1
λ
. In TPM, µi,s represents the average

or expected time that elapses between the last known observation of item i on s,

1We note the use of λ here should not be confused with the WAPP template models λ from

previous sections. We choose to reuse λ in this chapter as to match the majority of work utilizing

exponential distributions.
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and the time at which i is removed from s. We note that a problem which must be

addressed is that observations at the actual time of removal are unlikely. That is, as

the robot goes around the environment making observations, it most likely does not

observe the actual time an object moves locations (unless, of course, the robot moves

the object itself). Such an assumption would require a global visual sensing system,

a case which we assume is not available. We later address how to probabilistically

sample and calculate µi,s, but for now we assume the value is known.

Given our exponential model for a given object-location pairing exp(λ)i,s with

associated expected value µi,s, we can calculate the probability that i has been

removed from s on or before the current time tc from the cumulative distribution

function (CDF) given in Equation 7.2.

cdfexp(t, λ) =

1− e−λt t ≥ 0

0 t < 0

(7.2)

Therefore, to answer our initial question, the probability that i is still located

on s at time tc is analogous to 1 minus the probability i has be removed from s

at or before tc. Our equation for this persistence model is given in Equation 7.3; a

visualization is also provided in Figure 7.1.

Ptp(i located-on s|tc, ti,s) = 1− cdfexp((tc − ti,s),
1

µi,s
)

= e
− 1
µi,s

(tc−ti,s)
(7.3)

The final missing component of the equation is determining µi,s for each model.

As stated earlier, if we could assume a large-scale continuous perception system in

the environment, we could assume we know exactly when i was removed from s;

however, if this assumption were true, our system would have perfect information

about item locations, eliminating the need for this entire approach. Since such a

system is unlikely to be widely available, is currently infeasible, and is costly to

deploy, we assume that no such data is available.
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Figure 7.1: An example persistence model for item i on surface s. Probabilities

represent the probability i is still located on s at the given time.

Instead, we assume that the robot periodically records observations at random

time steps throughout the day as it goes about its daily tasks and duties. It is also

possible to program the robot to perform regularly scheduled sweeps of the environ-

ment to observe item locations. However, such behavior could be distracting and

intrusive to other occupants of the space, and so we do not rely on such functionality

in our system. Instead, we perform TPM updates each time items are recognized by

the robot in its field of view during the course of normal operation. In this scenario,

one of three possibilities can occur:

1. Item i was observed on surface s and it was not there before.

2. Item i was previously observed on surface s and it is still there.

3. Item i was previously observed on surface s and it is no longer there.

In order to create samples for each µi,s, consider the example presented in Figure

7.2 which represents observations of i on s. Here, we assume the item was first

observed at time t1, re-observed each time at times t2, t3, and t4, and then observed
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missing at time t5. For this work, we assume, with high probability, that the item

was present in between times t1 and t4.

The question then becomes, when did the item actually disappear? Theoretically,

the actual time could be anywhere in the range [t4, t5]; however, we assume that it is

more likely that the disappearance happened somewhere in between the two and not

at the extremities. Therefore, we fit a Gaussian distribution over ∆t and randomly

choose a value from inside that distribution as a sample for updating µi,s.

Figure 7.2: An example observation timeline of an item on a given surface.

In order to generate our estimated time of removal, we fit a Gaussian distri-

bution over the time frame of ∆t such that there is a 99.7% chance that a value

chosen at random is between t4 and t5. We therefore want t4 and t5 to each be 3σ

away from the mean, which gives our Gaussian distribution the value of N (∆t

2
, ∆t

3
).

As illustrated in Figure 7.3, we then add the random value from the Gaussian to

the difference between t4 and t5. This value is then sampled for updating µi,s.

Furthermore, as shown in the upcoming algorithm, current observations are more

heavily weighted over past observations allowing for the models to change overtime

as location preferences change.

The complete algorithm for updating µi,s in TPM is shown in Algorithm 5. The

algorithm is called each time a robot makes a new observation of a surface s which

is denoted as Ω. This set Ω contains a list of all item from I which are observed on

surface s. At the end of the algorithm, the new value of µi,s for each item-surface

pairing allows us to create our temporal persistence models and therefore we now

have enough information to maximize Equation 7.1 during item search.

103



Algorithm 5 Temporal Persistence Modeling µ Update

s← surface being observed

tc ← current time

Ω← makeObservation(s)

for each item i observed in Ω (i.e., ∀ i ∈ Ω) do

if i was not previously observed on s then

mark i as observed on s at time tc

else

mark i as still observed on s at time tc

end if

end for

for each item i not observed in Ω (i.e., ∀ i ∈ {O \ Ω}) do

ts ← first observation of i on s

tl ← latest observation of i on s

tf ← tl − ts+ rand(N ( tc−tl
2
, tc−tl

3
))

µ̄← {µ1, . . . , µn} previous estimates of µi,s

µi,s ←
(
∑n
j=1(j/n)µ̄j)+tf

(
∑n
j=1(j/n))+1

mark i as not observed on s

end for
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Figure 7.3: The method for probabilistically determining the sample removal time

of an object on a location given its observation timeline.

7.4 Analysis

In this section, we present analysis of our temporal persistence modeling approach

in two applications, 1) large-scale tracking of a single target based on real-world

GPS cell phone data, and 2) multi-object tracking using a mobile robot over a 2-

week period in a small-scale household setting. In both applications we compare

the performance of TPM in predicting the location for a given item i against four

baseline methods:

1. TP Random: We select a random value for µi,s and then apply the remainder

of the TPM algorithm as described above. The µi,s value is chosen in the range

from the minimum to the maximum time difference between two observations

in the training set. This experimental condition aims to show that the µ value

within TPM is intelligently chosen, as well as the impact of a poor value.

2. Last Seen: We predict the surface for i based on the last surface where i was

observed.

3. Most Frequent: We predict the surface for i based on that object’s most

frequently observed surface.

4. Random: We randomly select a surface for i from among the known locations.
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7.4.1 Single Item Tracking from GPS Data

In our first experiment, we utilize GPS tracking data from the Microsoft Research

GeoLife [90] dataset2 to verify the ability of our temporal persistence models for

learning probable object locations based on sparse temporal observational data. A

GPS trajectory of this dataset is represented by a sequence of time-stamped points,

each of which contains the latitude, longitude and altitude of a single cell phone user.

The recordings span the full range of activities of everyday life, including regular

work commutes, as well as entertainment and sports activities, such as shopping,

sightseeing, dining, hiking, and cycling, making it an compelling dataset for tempo-

ral tracking.

For the purposes of our work, we are interested in modeling the temporal per-

sistence of each individual cell phone user. Specifically, given a sparse set of obser-

vations of prior user locations, we seek to predict the user’s current location. It is

important to note that, when dealing with people, context aware methods are likely

more suitable for location tracking than temporal persistence modeling. Information

such as a person’s place of work, members of their social circle, favorite places to eat,

or even the current direction of motion are helpful in aiding in the analysis and pre-

diction of a person’s activities. In our work, however, we are primarily interested in

tracking inanimate objects using sparely observed spatial and temporal observations,

and thus we utilize the location information in this dataset as a useful benchmark

due to its size and diversity of users. As we show in the results section, temporal

persistence modeling performs extremely well on this dataset, even without the use

of context information.

Experimental Setup

For our analysis we discretize the user trajectory data by superimposing a uniform

10× 10 grid over the range of latitude and longitude values for a given user. There-

2http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
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fore, each cell in the grid becomes a “location” and the user becomes the “object”

for which we want to predict the location. Trajectories within the GeoLife dataset

are logged in a dense representation, every 1-5 seconds. We subsample this data

in order to create a relatively sparse training and test set that more closely resem-

ble the frequency of object location observations a robot is likely to obtain during

typical operation. The test set is generated by sampling 10% of a given user’s data

uniformly and without replacement. We then sort the resulting data points accord-

ing to their timestamps and train either TPM or one of the baseline methods (in

the case of TPM, we iteratively train the model using Algorithm 5). We generate

the test set by sampling 10% of the remaining data from that user, again uniformly

and without replacement. Each data point in the test set is used to query the

trained model (in the case of TPM, by applying Equation 7.1). We then compare

the returned value to the ground-truth of the actual discretized location to obtain

an accuracy measure for the approach.

Note that throughout the verification process, we update the last seen time for

the temporal persistence models ti,s and last seen location for the last-seen method

as verification observations are made. Further note that this is not the same as

updating the TPM parameter µi,s.

Results

We run the described analysis on 10 randomly selected users’ datasets. Note that

throughout the verification process, we update the last seen time for the TP models

ti,s and last seen surface for the last-seen method as verification observations are

made. Further note that this is not the same as updating the TP model parameter

µi,s.

Each user is run 50 times. The average success rate for each method across the

50 trials (µ), standard deviation across the trials (σ), and number of samples chosen

to create the models (N) for each user are presented in Table 7.1. Note again that

N is analogous to 10% of the entire dataset size per user.
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Table 7.1: Results of searching for the user in the discretized grid.

µ σ p µ σ p

Experiment 1 (N=17,387) Experiment 2 (N=8,748)

TP Modeling 99.358% 0.048% – 89.192% 0.357% –

Random TP 29.811% 2.040% � 0.001 5.698% 2.618% � 0.001

Last Seen 96.819% 1.140% � 0.001 64.600% 6.217% � 0.001

Most Frequent 88.903% 1.140% � 0.001 39.465% 0.494% � 0.001

Random 32.348% 2.906% � 0.001 3.784% 0.130% � 0.001

Experiment 3 (N=29,118) Experiment 4 (N=2,477)

TP Modeling 98.660% 0.058% – 82.944% 4.107% –

Random TP 42.1178% 7.250% � 0.001 46.235% 11.014% � 0.001

Last Seen 97.051% 0.997% � 0.001 78.922% 4.754% � 0.001

Most Frequent 97.051% 0.250% � 0.001 50.477% 0.935% � 0.001

Random 10.838% 0.529% � 0.001 2.940% 0.265% � 0.001

Experiment 5 (N=883) Experiment 6 (N=4,556)

TP Modeling 99.404% 1.906% – 93.210% 0.864% –

Random TP 55.962% 17.434% � 0.001 11.841% 3.993% � 0.001

Last Seen 99.395% 2.195% � 0.001 89.050% 2.753% � 0.001

Most Frequent 98.779% 8.093% � 0.001 70.208% 2.753% � 0.001

Random 40.896% 10.206% � 0.001 5.263% 0.290% � 0.001

Experiment 7 (N=17,570) Experiment 8 (N=1,551)

TP Modeling 96.200% 0.440% – 80.955% 2.576% –

Random TP 43.516% 2.058% � 0.001 58.763% 8.490% � 0.001

Last Seen 86.399% 5.417% � 0.001 70.243% 6.022% � 0.001

Most Frequent 52.478% 0.333% � 0.001 42.457% 1.149% � 0.001

Random 2.857% 0.075% � 0.001 8.558% 0.455% � 0.001

Experiment 9 (N=79) Experiment 10 (N=958)

TP Modeling 95.088% 0.411% – 97.124% 0.387% –

Continued on next page
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Table 7.1 – Continued from previous page

µ σ p µ σ p

Random TP 40.481% 17.005% � 0.001 62.014% 4.249% � 0.001

Last Seen 82.835% 7.629% � 0.001 88.574% 6.217% � 0.001

Most Frequent 16.785% 4.629% � 0.001 59.367% 1.831% � 0.001

Random 4.964% 2.238% � 0.001 40.133% 5.498% � 0.001

We report evaluation results for 10 users randomly selected from the GeoLife

dataset. Figure 7.4 presents the average prediction success rate for all 10 users

across all five algorithms. Due to the nature of the GeoLife dataset, the number of

datapoints available for each user varies greatly; the N value next to each user label

in the figure indicates the number of training/testing samples available per user (i.e.,

10% of the entire dataset for that user). All performance values are averaged over

50 trials per user, with training and testing samples randomly drawn for each trial.

Points along the outside of the graph indicate performance close to 100%, whereas

points near the center of the graph indicate predictive performance close to 0%.

As can be seen in the graph, the performance of all baseline methods varies

greatly across users, while the performance of TPM (dashed blue line) consistently

outperforms all other methods for all 10 users. Based on the data findings, we can

observe certain patterns among the user data. Users 1, 3 and 5 appear to be seden-

tary, remaining in the same place for long periods of time. This can be observed

from the fact that both the Last Seen and Most Frequent baselines perform very

well for these users. The remaining users change location to varying degrees, with

User 9 exhibiting the least repetitive behavior3. The Last Seen metric performs

3Given that this user has significantly less data than all other users, it is likely that we do

not get the chance to observe the person’s behavior long enough to see repeated patterns. One

of the strengths of TPM is that its model can be constructed from relatively little data, which is

discussed further during the second experiment.
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Figure 7.4: Performance of TPM and four baseline methods in predicting the loca-

tion of 10 independent users in the GeoLife datase.

well across the full range of users. This is to be expected since multiple consec-

utive readings typically fall within the same discrete grid cell of our discretized

state space. However, TPM dominates the performance of Last Seen (and all other

baselines) with statistical significance of p ≤ 0.001 as calculated by a t-test per-

formed against each method independently. Additionally, we note that TP Random

performs significantly more poorly than the complete TPM algorithm, indicating

that customizing µi,s with the respect to an individual user’s behavior significantly

improves the performance of the algorithm.

From these experiments we have shown that using Algorithm 5 to generate
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TP models based on sparse temporal observations provides a reasonable predic-

tion method for object tracking. Results from the t-tests show that our method

out-performs other reasonable guessing strategies used in previous literature (mainly

last-seen and most-frequent). Furthermore, we also out-perform a random µi,s show-

ing that our method for determining such a value is reasonable.

7.4.2 Multi-Item Tracking in a Robotic Apartment Environment

The GPS data evaluation above showed that TPM can effectively be used to track

a single item (in that case, a person) over time. In this evaluation we evaluate our

approach in tracking multiple physical objects in the context of a real-time, real-

world robotics domain. We utilize a mobile manipulation robotic platform operating

in a small-scale household environment consisting of a kitchen area, dining area and

a seating area. Figure 7.5 presents an abstract map of the physical space, and

Figure 7.6 shows the robot located in the kitchen area. Within the context of this

experiment the robot does not manipulate any objects, but it is able to navigate the

space and perform object recognition [48] to identify the objects of interest. The

robot is provided with a map of the space that contains semantic labels associated

with different locations in that space (e.g., kitchen table, coffee table, couch). Beyond

that, we assume the robot has no additional information about any prior object

locations when it begins.

Now that we have shown the effectiveness of utilizing sparse temporal based ob-

servations for tracking items in a discrete search space, we now show its effectiveness

inside a real-time, real-world robotic domain. Here, we utilize a mobile manipulator

which is able to do autonomous navigation in a apartment scenario as well as 3D

based tabletop object recognition via the methods described by Kent et. al. [48].

For this experiment, we assume a robot has been placed into a new environment

and has made no initial observations.
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Figure 7.5: Map of the search space.

Experimental Setup

The dataset for this experiment was collected over a 2-week period, during which

the robot was operated 6 days per week, 5 hours a day. The time restriction is

due in part to the robot’s battery limitations, but it also represents a reasonable

estimate of the time a mobile robot may actively operate inside a typical household

setting. During its operation time, the robot adhered to the following procedure:

1. Select a target surface s ∈ S uniformly at random.

2. Navigate to the selected surface and make an observation of all items located

on that surface.

3. Update TPM as defined in Algorithm 5.

4. Select a random wait time from a uniform distribution in the range of [1, 20]

minutes; return to Step 1.

This behavior pattern was selected because it mimics an observation pattern the

robot might obtain while going about daily tasks in a household environment. For
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Figure 7.6: The robot, located near the kitchen counter.

example, the robot may go to tidy up the coffee table and in the process observe the

objects that are currently placed there. Then it may go to the kitchen to clean up the

dishes and in the process observe the objects placed there. Thus our work specifically

seeks to target the scenario in which the robot makes incidental observations over

the course of its normal operation, as opposed to a targeted sweeping search that

records the location of every object in the environment. In this study the robot does

not move any objects between locations itself, modeling object movement in that

scenario would require a straightforward update to a world model or semantic map.

However, TPM does support this scenario; if the robot were to move an object, the

sample value to add to µi,s would be explicitly known (since the robot knows the

exact time it moved the item), and therefore it would not need to be sampled from

the Gaussian distribution.

In this chapter, we are instead interested in the more challenging case in which

objects are moved by other agents (in our case, people) in the environment. We
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used the following set of surfaces in the experiment S={TV stand, arm chair, shelf,

couch, coffee table, kitchen counter, kitchen table}. The items tracked in the study

included I={book, cup, plate, fork, candle, potted plant}. Each of the objects was

used to evaluate a different temporal persistence behavior:

1. Regular Alternating 1 (RA1, plate) The location of the plate alternated

between the kitchen table and counter. The plate was on the kitchen counter

for the first 3 hours of the day, then one hour at the kitchen table before being

returned to the counter for the remainder of the day.

2. Regular Alternating 2 (RA2, fork) The location of the fork alternated

between two hours on the kitchen counter and 30 minutes on the coffee table.

3. Regular Alternating 3 (RA3, candle) The location of the candle alter-

nated between one hour on the coffee table and one hour on the kitchen table.

4. Pattern Change (PC, book) During the first week, the book was located on

the kitchen table for the first hour of the day and then moved to the bookshelf

for the remainder of the day. During the second week, the book remained

on the TV unit stand for the first 3 hours of the day before moving to the

bookshelf for the remainder of the day.

5. Stationary (S, plant) The plant remained on the bookshelf throughout the

two-week study.

6. Random (R, cup) The location of the cup was changed at random over the

course of the study by selecting s ∈ S uniformly at random, and selecting a

time period uniformly from the range [1, 20] minutes, then repeatedly moving

the cup to the selected surface after the designated period of time elapsed.

Each of the above objects can be viewed as a different study condition, ranging

from random movement to stationary objects. RA 1-3 represent the most interesting

temporal persistence variant for our target use case, one in which objects are moved
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based on some implicit customs or patterns that are unknown to the robot but

that it is able to indirectly observe. The PC condition was selected to evaluate

the scenario in which the use pattern of an object changed significantly during the

period of observation.

In total, our 72 hours of robot operation included 412 observation snapshots

taken across the seven surfaces in the domain, resulting in 506 object observations.

Below, we use the resulting dataset of timestamped observations to evaluate the

robot’s ability to effectively predict the location of an item.

Results

In order to evaluate the performance of TPM, we train a temporal permanence

model for each object based on the observations obtained during the two-week data

collection period. We then generate a test set by sampling an equal number of data

points over a future two week period, following the same object placement schedule

as previously described. The ground truth of each data point in the test set is

determined based on the originally defined schedule.

Table 7.2 presents the evaluation results for each of the study conditions; N ,

the number of observations of each object, is also provided. As can be seen in

the table, the performance of TMP dominates or matches the performance of the

baseline methods for all six study conditions. RA1 and RA2 behave similarly in that

both have a single location where the object of interest remains for the majority of

the time; thus, both Last Seen and Most Frequent baselines perform well in these

conditions. What enables TMP to improve over Last Seen and Most Frequent is

its ability to predict that the object has most likely been moved from its last seen

location after some period of time elapses.

RA3 helps to demonstrate the benefit a temporal model has over the heuristic

baselines. In this study condition, the object alternates between two positions,

spending equal time at both. As a result, both Last Seen and Most Frequent are

able to guess the correct location of the object with only 50% accuracy, while TPM
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Table 7.2: Results from the real-world robotic experiment.

RA1 (N = 89) RA2 (N = 87) RA3 (N = 79)

TPM 96.360% 83.021% 57.362%

TP Random 93.187%* 75.932%* 52.861%*

Last Seen 96.044% 80.114% 50.460%

Most Frequent 96.097% 80.166% 49.539%

Random 18.4599% 19.678% 18.762%

PC (N = 86) S (N = 78) R (N = 87)

TPM 92.743% 100.000% 24.071%

TP Random 28.021%* 17.970%* 20.433%*

Last Seen 91.250% 100.000% 21.652%

Most Frequent 91.250% 100.000% 17.804%

Random 20.895% 21.014% 19.445%

*Indicates an average of 10 runs each with a different random value for µi,s

is again able to predict the object’s movement to a greater degree. By adding a

temporal decay to the prediction strategy, the robot is able to gain an improvement

in its success rate. However, this condition exemplifies a difficult case even for TPM.

Consider the following:

Note that each TPM is independent of the others. Assume that both the loca-

tions s1 and s2 in the alternating case example have perfect µi,s values each of 1

hour. Now assume we have observed i on s1 2 hours ago and i on s2 1 hour and

59 minutes ago. Without any higher-level reasoning or knowledge of the other loca-

tions, the robot picks s2 as the location regardless of the fact that it has most likely

switched. This is a direct result of µi,s being the same for each location. Note that,

however, by increasing the observation frequency at each location we could improve

the success rate of such a case.
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The PC condition is similar to RA1 in that the object alternates between two

locations, spending more time at one than the other. However, the difference is that

one of the locations changes part way through the study. As a result, the predictive

performance of all methods in this condition is slightly lower than in RA1. The

Stationary condition has perfect predictive performance, as expected, across TPM,

Last Seen and Most Frequent. Finally, all methods perform relatively poorly in the

Random condition, with the only highlight in that, again, TPM is able to explicitly

model and predict that this object moves frequently, and as a result this method

has a higher-than-chance record in guessing the correct location of the object.

In summary, the above evaluation demonstrates that temporal persistence mod-

eling enables the robot to predict object locations with greater accuracy than any

of the baseline heuristic methods for a wide range of object displacement patterns.

In our second evaluation, we examine how much data is required to obtain a reliable

temporal persistence model.

In this study condition, we incremented the amount of training data available

to TPM, beginning with 1 observation, then 2, 3, and so on. At each step we

evaluated the performance of the resulting model using the same evaluation metric

as previously described. Figure 7.7 presents the results from this analysis. As can be

seen, all six TPM models converge, but following a different number of observations.

As expected, the Stationary condition converges the fastest, requiring only a handful

of observations. The remaining models require 35-85 data samples before a sudden

jump in performance. Note that each observation indicates a “snapshot” the robot

took at any location, and not necessarily an observation of that object which helps

to explain the discrepancy for the number of observations.

This observed trend indicates that the performance of TPM is relatively low

early on, but that µi,s converges quickly once it has enough data to come close to

its optimal value. Given that µi,s is calculated based on a weighted average, more

data only serves to strengthen (i.e., stabilize) µi,s, not necessarily provide a better

estimate. For example, with the plate (RA1), early observations gave reasonable
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Figure 7.7: Evaluation results of TPM on increasing number of training samples.

estimates of the kitchen counter leading to the initial boost in performance, but

once it was able to reason that µplate,kitchen-table was larger than µplate,counter, the

large jump was made. Additional observations only strengthen these values by

pulling them farther apart.

What this analysis indicates is that a heuristic method, particularly Last Seen,

performs better than TPM until the robot has obtained sufficient training data.

Thus, from a practical deployment standpoint, it may be beneficial for the robot

to utilize Last Seen at initial deployment, and then switch to TPM following con-

vergence. In fact, this approach is highly analogous to human behavior in a new

environment, where we initially rely on our raw observations and only over time

develop a reliable predictive model of object temporal persistence (e.g., how long

before coffee runs out in the common room, or where people usually put the shared

stapler).
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7.5 Conclusion

In summary, this chapter contributes a novel temporal persistence modeling al-

gorithm that enables a robot to mode effectively model and predict likely object

locations in its environment. Unlike past approaches in the areas of both active vi-

sual search and semantic mapping, we focus solely on temporally based relationships

between objects and search locations. Our approach builds probabilistic exponential

models in order to model when an object is no longer located on a given location

given the last known time the object was observed on that location. In doing so,

we compute a weighted average guess on what the rate parameter µi,s of the models

are by sampling from a Gaussian distribution over the last known observation time

and the current time at which the item was no longer seen on the surface.

We evaluated our approach using two data sets, evaluating both single-item

tracking in a large-scale GPS location data set, and multi-item tracking in a real-

world robotics deployment lasting two weeks. The performance of our algorithm

dominates that of four baseline methods in both domains, and shows the importance

of correctly estimating the µi,s parameter.
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CHAPTER 8

CONCLUSION

8.1 Discussion

This thesis work presents a series of algorithms and methods for creating a goal-based

learning framework based on high-level spatial and temporal (SPAT) observations

and demonstrations. The SPAT framework is motivated by the lack of performance

many LfD algorithms have when presented to non-expert end users. In particular,

early work presented in [84, 73] exemplified this by asking non-expert users to train

a set of traditional policy-based LfD methods with little success. This thesis also

makes note of the benefits stated in [82, 79, 80, 81] in developing cloud and web-

based solutions in order to facilitate brining robot interaction, control, and training

to end users. As such, SPAT was developed in a cloud-oriented manner.

After an introduction into the background and related methods used in this work,

we began with a presentation of novel efficient messaging techniques for streaming

and receiving robotic data to and from the cloud. In particular, after examining

the improved protocol and framework for Robot Web Tools, we looked at efficient

techniques for streaming the high-bandwidth sensor streams related to kinematic

transforms, video streams, 3D RGB-D point cloud streams, and generic message

compression. We showed how a change-based transformation library, server-side

web-based video compression, discretization and video encoding of 3D point clouds,

and PNG compression of JSON ASCII based message formats added significant

improvements in messaging across real-world data streams as compared to standard
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ROS techniques. Furthermore, these techniques were developed in a way which is

optimized for web-based streaming. In addition, we showcased a number of external

examples of how this work has been utilized across the robotics research field to both

allow for human-robot interaction techniques as well as data collection for robotic

domains.

To begin tackling the problem of constructing goal states, we presented an al-

gorithm for learning in an unsupervised manner from a set of data collected from

non-expert users. Using Expectation Maximization, we were able to estimate Gaus-

sian Mixture Models for each item and an associated potential reference frame.

Each of the resulting models was then ranked using a heuristic designed to favor

dense, populated clusters. Using non-expert crowdsourced users, we were able to

show results across three different types of tasks: single-item, multi-item uncoupled,

and multi-item templates. Given that the resulting models were both semantically

grounded as well as spatially defined, the templates could then be used for execution

by a mobile manipulated in a different environment.

After the above initial work in the spatial domain, we then expanded these

templates to incorporate coarse temporal constraints. Adding this temporal com-

ponent gave us our first complete component in the SPAT learning framework. As

with the previous spatial method, the training was done in a completely unsuper-

vised manner. The benefits of keeping the method as such enabled us to keep the

teaching method the same requiring little expertise. For this task, we returned to

the resulting clusters from before and added a new ranking heuristic which took a

ratio of before/after binary values weighted by their likelihood within the cluster

itself. The problem was then reduced into a weighted graph problem for which

the minimal path was used as the execution order for the template. From this,

we were able to explore its effectiveness across four block-world conditions: con-

sistent order/consistent placement, random order/consistent placement, consistent

order/random placement, and random order/random placement. Results indicated

that the first two conditions were successfully captured by the methodology while
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the third condition showed partial success with the emergence of sub-templates. A

further experiment returned back to the cloud-based household environment where

we could verify the methodology using non-expert users in a noisy environment.

Next, to add the final component into the SPAT framework, we tackled the

problem of searching for items for retrieval during task execution. By using only

observations of semantically grounded spatial locations and temporal information,

this final component would enable SPAT to complete a task from start to finish. For

this, we presented persistence models which modeled each item/surface pairing as a

exponential distribution. To overcome the problem of unobservable “failure cases”

(i.e., not knowing when an item was removed from a surface), we augmented the

models with a Gaussian component used to create estimates for the rate parameter.

Initial testing in a real-world cell phone tracking environment showed its ability to

reliably track a person within the world using only a sparse set of observations.

When compared to other tracking and guessing strategies, we were consistently able

to outperform each metric. Further experiments from a robotic apartment domain

also showed similar results.

8.2 End Result

With the above contributions, we end with a final showcase of the process through

its entirety. Again using the CARL robot, we show how using the SPAT framework

with a cloud based database can enable CARL to set the table from start to finish

without explicate training. For this demo, we require that CARL have:

1. A working perception system capable of detecting known objects [48].

2. A semantic map of the known surface locations within the world.

3. The ability to grasp and place items within the world1.

1We thank and acknowledge David Kent for his assistance in training the robot for grasping.
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First, we allowed CARL to make observations periodically throughout the day

prior to task execution. This data was then used to create persistence models of

where items are within the world. Next, using the crowd-interface, training data and

models were generated for the table setting task with the single ordering constraint

of the napkin. This information was processed and left for public access in a remote

database. Using a browser based interface, we were then able to instruct CARL to

begin setting the table. CARL then pulled down the existing template information

from the online database and began searching for items within the world and placing

them on the kitchen table. A video demonstration of this process is available at

https://www.youtube.com/watch?v=SY78VpU5l7c. We note within the video how

CARL was able to recover from a failed retrieval due to humans moving items within

the world by updating its persistence models throughout execution.

This demonstration shows how using SPAT enables robots to learn from high-

level, spatial and temporal information collected from both observations and non-

expert users. The ability to train robots at a higher level enables users to easily

provide training data for which many other approaches of LfD have failed to do.

8.3 Future Work

This work makes way for a number of potential extensions. In particular, we believe

that extensions to the system could be made to build a much larger knowledge

base. By constructing a large-scale database of task data, one potential extension

could be to begin exploring the common relationships across tasks. For example, in

many kitchen related tasks, there would likely always be some kind of relationship

between forks and knives. If such relationships do exist consistently across different

task domains, it may be possible to use these relationships as priors for weighting

the reference frame. If this is true, it may be possible to learn more quickly, with

few demonstrations, or overcome stronger noise.

Secondly, while our main contribution focused mainly on enabling a robot to act
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autonomously for task execution, one possible area of future work would be to ex-

plore ways in which human robot interaction can further the system. In particular,

an interesting extension would be to allow the user to choose from different hypothe-

ses from the database which could be stored as a local preference. Furthermore, the

idea of template refinement, or re-declaration in its entirety, is left unexplored at this

point. Methods in which a user could modify a template based on their own needs

and propagate this information back to the global knowledge-base would further

SPAT techniques to be more adaptive and general across environments.

Finally, in addition to expanding the work in the template generation component,

future extensions are also possible in the persistence models as well. For example,

an interesting area to explore is the ability to expand the models to not only predict

how long an item remains on a surface and when it leaves, but also where it may

have gone too. This extension would need to track movements of items across time

but would allow for better failure recovery during execution. As with the above

cases, the ability to feed this information back to a global database is also left as a

potential area for further exploration.
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APPENDIX A

Table 1: Models for the “Consistent Order, Consistent Placement” Condition

λi λΘo Φ(λ) λi λΘo Φ(λ)

blocklb Pchair 0.3482 blocklb blockmb 0.5063

blocklb blockdb 0.4542 blocklb blocklg 0.5796

blocklb blockdg 0.5209 blocklb blockr 0.6390

blockmb Pchair 0.3480 blockmb blocklb 0.0063

blockmb blockdb 0.5100 blockmb blocklg 0.5516

blockmb blockdg 0.5173 blockmb blockr 0.6551

blockdb Pchair 0.3499 blockdb blocklb 0.0992

blockdb blockmb 0.0636 blockdb blocklg 0.5125

blockdb blockdg 0.5533 blockdb blockr 0.6256

blocklg Pchair 0.9019 blocklg blocklb 0.0795

blocklg blockmb 0.1112 blocklg blockdb 1.0000

blocklg blockdg 0.5338 blocklg blockr 0.5733

blockdg Pchair 0.8976 blockdg blocklb 0.0838

blockdg blockmb 0.0689 blockdg blockdb 0.1144

blockdg blocklg 0.0989 blockdg blockr 0.5503

blockr Pchair 0.8971 blockr blocklb 0.1750

blockr blockmb 0.5000 blockr blockdb 0.1724

blockr blocklg 0.0741 blockr blockdg 0.1133

137



Table 2: Models for the “Random Order, Consistent Placement” Condition

λi λΘo Φ(λ) λi λΘo Φ(λ)

blocklb Pchair 0.4414 blocklb blockmb 0.2553

blocklb blockdb 0.2558 blocklb blocklg 0.5072

blocklb blockdg 0.5061 blocklb blockr 0.6127

blockmb Pchair 0.4419 blockmb blocklb 0.2553

blockmb blockdb 0.2520 blockmb blocklg 0.5079

blockmb blockdg 0.5069 blockmb blockr 0.6124

blockdb Pchair 0.3330 blockdb blocklb 0.2558

blockdb blockmb 0.2520 blockdb blocklg 0.5076

blockdb blockdg 0.5064 blockdb blockr 0.5940

blocklg Pchair 0.6946 blocklg blocklb 0.0072

blocklg blockmb 0.0079 blocklg blockdb 0.0076

blocklg blockdg 0.2554 blocklg blockr 0.5070

blockdg Pchair 0.8346 blockdg blocklb 0.0061

blockdg blockmb 0.0069 blockdg blockdb 0.0064

blockdg blocklg 0.2554 blockdg blockr 0.5045

blockr Pchair 0.8862 blockr blocklb 0.1139

blockr blockmb 0.1136 blockr blockdb 0.0586

blockr blocklg 0.0070 blockr blockdg 0.0090

138



Table 3: Models for the “Consistent Order, Random Placement” Condition

λi λΘo Φ(λ) λi λΘo Φ(λ)

blocklb Pchair 0.4998 blocklb blockmb 0.5893

blocklb blockdb 0.5859 blocklb blocklg 0.5701

blocklb blockdg 0.5687 blocklb blockr 0.6189

blockmb Pchair 0.8284 blockmb blocklb 0.0893

blockmb blockdb 0.5294 blockmb blocklg 0.5481

blockmb blockdg 0.5532 blockmb blockr 0.6058

blockdb Pchair 0.8268 blockdb blocklb 0.0859

blockdb blockmb 0.0294 blockdb blocklg 0.5471

blockdb blockdg 0.5495 blockdb blockr 0.5414

blocklg Pchair 0.8728 blocklg blocklb 0.0701

blocklg blockmb 0.0481 blocklg blockdb 0.0471

blocklg blockdg 0.5647 blocklg blockr 0.5415

blockdg Pchair 0.8766 blockdg blocklb 0.0687

blockdg blockmb 0.0532 blockdg blockdb 0.0495

blockdg blocklg 0.0647 blockdg blockr 0.5285

blockr Pchair 0.6869 blockr blocklb 0.0578

blockr blockmb 0.0425 blockr blockdb 0.0414

blockr blocklg 0.0415 blockr blockdg 0.0285
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Table 4: Models for the “Random Order, Random Placement” Condition

λi λΘo Φ(λ) λi λΘo Φ(λ)

blocklb Pchair 0.4137 blocklb blockmb 0.3206

blocklb blockdb 0.4071 blocklb blocklg 0.5509

blocklb blockdg 0.5516 blocklb blockr 0.6434

blockmb Pchair 0.8392 blockmb blocklb 0.3206

blockmb blockdb 0.3323 blockmb blocklg 0.5383

blockmb blockdg 0.5712 blockmb blockr 0.6423

blockdb Pchair 0.7024 blockdb blocklb 0.2404

blockdb blockmb 0.3323 blockdb blocklg 0.5758

blockdb blockdg 0.5533 blockdb blockr 0.6521

blocklg Pchair 0.8779 blocklg blocklb 0.0509

blocklg blockmb 0.0383 blocklg blockdb 0.0758

blocklg blockdg 0.3096 blocklg blockr 0.5372

blockdg Pchair 0.8788 blockdg blocklb 0.0516

blockdg blockmb 0.0712 blockdg blockdb 0.0533

blockdg blocklg 0.3096 blockdg blockr 0.5321

blockr Pchair 0.8234 blockr blocklb 0.1314

blockr blockmb 0.0931 blockr blockdb 0.1317

blockr blocklg 0.0372 blockr blockdg 0.0321
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Table 5: Models for the Napkin Table Setting Task*

λi λΘo Φ(λ) λi λΘo Φ(λ)

INapkin SDiningTable 0.8530 INapkin Pchair 0.7309

INapkin IPlate 0.5713 INapkin ICup 6.0543

INapkin ISpoon 0.7523 INapkin IFork 0.6529

IPlate Pchair 0.2533 IPlate SDiningTable 0.6967

IPlate INapkin 0.4612 IPlate ICup 0.4966

IPlate ISpoon 0.4588 IPlate IFork 4.4767

ICup SDiningTable 0.8186 ICup Pchair 0.7122

ICup INapkin 0.4066 ICup IPlate 0.2852

ICup ISpoon 4.4341 ICup IFork 2.7027

ISpoon SDiningTable 0.8657 ISpoon Pchair 0.7288

ISpoon INapkin 7.9870 ISpoon IPlate 0.2067

ISpoon ICup 5.9390 ISpoon IFork 0.7693

IFork SDiningTable 0.7776 IFork Pchair 0.7264

IFork INapkin 7.1259 IFork IPlate 0.2744

IFork ICup 0.2980 IFork ISpoon 0.3721

*Φ(λ) > 1 indicates a value of π > δ = 1.1
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