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Abstract

The objective of this project was to extend fundamentally the current k · p theory by applying

the Burt-Foreman formalism, rather than the conventional Luttinger-Kohn formalism, to a

number of novel nanostructure geometries. The theory itself was extended in two ways. First

in the application of the Burt-Foreman theory to computing the momentum matrix elements.

Second in the development of a new formulation of the multiband k · p Hamiltonian describing

cylindrical quantum dots.

A number of new and interesting results have been obtained. The computational imple-

mentation using the finite difference method of the Burt-Foreman theory for two dimensional

nanostructures has confirmed that a non-uniform grid is much more efficient, as had been ob-

tained by others in one dimensional nanostructures. In addition we have demonstrated that

the multiband problem can be very effectively and efficiently solved with commercial software

(FEMLAB).

Two of the most important physical results obtained and discussed in the dissertation are

the following. One is the first ab initio demonstration of possible electron localization in a

nanowire superlattice in a barrier material, using a full numerical solution to the one band k · p
equation. The second is the demonstration of the exactness of the Sercel-Vahala transformation

for cylindrical wurtzite nanostructures. Comparison of the subsequent calculations to experi-

mental data on CdSe nanorods revealed the important role of the linear spin splitting term in

the wurtzite valence band.
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3.4 Energy bands in 10% of the FBZ for electrons and holes in InSb. Calculation

with εo = 0.2352 [eV], 2P 2/mo = 22.49 [eV], ∆ = 0.81 [eV], a = 6.48 [Ȧ],
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Chapter 1

Introduction

The invention of the solid state transistor in 1947 launched the age of semiconductor based

electronics. Over the last decade optical fiber communication has become the choice for the

world wide communication network. Semiconductor based light sources and detectors are crit-

ically important to this emerging technology. Progress in optoelectronics has occurred not so

much by device scaling as by new device physics. For example, the use of quantum wells in the

active region of lasers has reduced threshold current density by an order of magnitude [1].

A semiconductor heterostructure can have a quantum confinement in one dimension (quan-

tum well), two dimensions (quantum wire), or three dimensions (quantum dot) [2]. Laser

operation in a quantum wells was demonstrated in 1974. AlGaAs/GaAs was the first het-

erostructure ever made and enjoyed the most success in many areas. Today the InP based laser

dominates the optical fiber communications. In the past several years the nitride system [3] has

attracted a lot of attentions due to its wide bandgap, which gives blue light sources. Quantum

wires offer lateral confinement beyond the confinement in the growth direction, which will fur-

ther decrease the threshold current and increase the differential gain. Quantum dot structures

have discrete density of electronic states and in this regard they behave more like atoms rather

than solids.

The current state of research in this field is principally one of applying existing theories to

various nanostructures. The most commonly used method, in particular with optoelectronic

device modeling in mind, is based upon the conventional Luttinger-Kohn (LK) model [4]. While

1
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a competing first principles approach was already developed in the 80’s and 90’s by Burt and

Foreman (BF) [5, 6, 7, 8, 9, 10, 11, 12], the application of the latter was until recently limited

to only demonstrating the differences between the two theories for quantum well structures.

Therefore the approach taken for this Ph.D. project was to generalize the application of the

BF theory to higher confinement nanostructures and to calculate physical properties beyond

just band structures, namely optical momentum matrix elements, since the later are relevant

to modeling optoelectronic devices. The other area of focus of this project is related to the

current interest in the influence of size and shape on physical properties [13]. Indeed in the

last few years there has been tremendous activity in the investigation, both theoretical and

experimental, of nanostructures with various shapes, such as nanorods, nanowires of different

cross-sectional shapes, and modulated nanowires. This has led us to apply the theory described

above to a number of different shapes. Details of the actual work now follow.

In Chapter 2 we discuss the role of symmetry in the calculation of matrix elements. The

k · p theory [14] relies heavily on the use of momentum matrix elements. Using symmetry

arguments [15] we can show that many of these matrix elements are zero, and many of them

are equal. This dramatically reduces the number of non-zero matrix elements that show up in

the k · p equations. The reduced number of these matrix elements also allows us to treat them

as fitting parameters, and to get their empirical values [16].

In Chapter 3 we discuss the k · p theory in the formulation of Kane [17, 18, 19, 20, 21, 22].

We give a detailed treatment of the 1-band, 4-band, 6-band, and 8-band Hamiltonians for bulk

ZB semiconductors. The derivation of the spin-orbit interaction and the folding-down of the

Hamiltonian [23] are treated in the greatest detail.

In Chapter 4 we discuss the k · p theory in the formulation of Burt [5, 6, 7, 8, 9, 10]. The

symmetry properties derived in Chapter 2 are now used extensively, and the 8-band Hamiltonian

for ZB heterostructures is obtained. Comparisons between calculations using the symmetrized

and the non-symmetrized Hamiltonians have been made for quantum wells [11, 24, 25, 26],

wires [27], and dots [28]. The differences between the Burt Hamiltonian and the symmetrized

one are pointed out.

In Chapter 5 we discuss the calculation of the momentum matrix elements. This is no easy
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task, since the full eigenfunctions are never found, and only the eigenfunctions of the folded

down Hamiltonian are available [29, 30]. The formula for calculating the MME is derived in

the greatest detail, and the effects of using the Burt Hamiltonian or the symmetrized one are

shown.

In Chapter 6 we discuss the k · p theory under a change of basis. This happens when we

diagonalize the spin-orbit Hamiltonian [17, 31], but also when we rotate the Cartesian axes [18].

The theory developed in this chapter enables us to write very general and efficient computer

programs to deal with any possible crystallographic orientation of the heterostructure.

In Chapter 7 we discuss the calculation of strain in cylindrical heterostructures [32]. Al-

though we ignore strain in all calculations presented in this thesis, more detailed calculations

will have to include the effects of strain. The introduction of strain in a solid changes the lattice

parameters and the symmetry of the material. These in turn change the valence and conduction

bands [33].

In Chapter 8 we analyze a conical quantum dot, using a 1-band k · p method. The effect of

imposing Dirichlet or van Neumann boundary conditions is discussed.

In Chapter 9 we analyze an elliptical quantum dot, using a 1-band k · p method [34]. We

show that the eigenvalue equation is not separable, contrary to what was asserted in Ref. [35].

In Chapter 10 we analyze a nanowire superlattice (NWSL), using a 1-band k · p method

[36]. We derive the Hamiltonian in cylindrical coordinates, and we calculate the band structure.

Free-standing semiconductor NWSL have been grown experimentally [37, 38]. Extremely polar-

ized photoluminescence is one characteristic that makes NWSL likely candidates for practical

applications. In addition, a recent one-dimensional theory predicted the remarkable existence

of an inversion regime when the localization of the electron states can be reversed [39].

The calculation of intervalence subband optical transitions in quantum wells goes back to

a paper by Chang and James (CJ) in 1989 [40]. It established that these transitions can have

both TE and TM polarizations. The calculations were done using the four-band Luttinger-Kohn

(LK) Hamiltonian with infinite-barrier quantum-well states. Szmulowicz [29] generalized the CJ

equation to allow for position-dependent k ·p parameters. In Chapter 11 we present an envelope-

function-representation derivation and calculations of the band structure and the momentum
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matrix elements between valence subbands in [001] quantum wells using the Luttinger-Kohn-

Kane and the Burt-Foreman Hamiltonians. We also discuss the numerical implementation of

the 8-band k · p method.

The III-V nitride semiconductors, with wurtzite (WZ) crystal structure, have received a

great deal of attention in recent years [41]. The detailed band structure of these materials was

studied after the discovery (in 1993) of blue light emission of WZ GaN on sapphire [3]. In

Chapter 12 we analyze a WZ cylindrical quantum dot, using a 6-band k · p method. We derive

the Hamiltonian in cylindrical coordinates, and we calculate the band structure, using a formu-

lation of the multiband envelope function theory first derived and applied by Sercel and Vahala

to spherical quantum dots and cylindrical quantum wires of zincblende (ZB) materials [42, 43].

We show that the formulation is exact for WZ materials, i.e., no axial approximation is needed.

The reduction in dimensionality greatly decreases the needed computational resources.

The above described work has resulted in five published papers:

1. L. C. Lew Yan Voon, C. Galeriu, M. Willatzen, Comment on: ”Confined states in two-

dimensional flat elliptic quantum dots and elliptic quantum wires”, Physica E 18 (2003),

547-549.

2. M. Willatzen, R. V. N. Melnik, C. Galeriu, L. C. Lew Yan Voon, Finite Element Analysis

of Nanowire Superlattice Structures, Proc. ICCSA 2003 (2003), 755-763.

3. C. Galeriu, L. C. Lew Yan Voon, R. Melnik, M. Willatzen, Modeling a nanowire superlat-

tice using the finite difference method in cylindrical polar coordinates, Computer Physics

Communications 157 (2004), 147-159.

4. M. Willatzen, R. V. N. Melnik, C. Galeriu, L. C. Lew Yan Voon, Quantum confinement

phenomena in nanowire superlattice structures, Mathematics and Computers in Simula-

tion 65 (2004), 385-397.

5. L. C. Lew Yan Voon, C. Galeriu, B. Lassen, M. Willatzen, R. Melnik, Electronic structure

of wurtzite quantum dots with cylindrical symmetry, Applied Physics Letters 87 (2005),

041906-1–041906-3.



Chapter 2

Symmetry and the calculation of

matrix elements

2.1 Introduction

An important component of the k · p theory is the application of group theory to reduce the

number of elements in the Hamiltonian. We provide our discussion of results derived in Ref. [15]

and Ref. [14].

2.2 Selection rules for matrix elements

We are concerned with the calculation of matrix elements of the type

〈ψ(α)
i |P (β)

j |ψ(γ)
k 〉, (2.1)

where ψ
(α)
i and ψ

(γ)
k are functions, and P

(β)
j is an operator. Under the symmetry operations of

the symmetry group of the system, the function ψ
(α)
i transforms according to the i-th row of

the Γ(α) irreducible representation (IRR), the function ψ
(γ)
k transforms according to the k-th

row of the Γ(γ) IRR, and the operator P
(β)
j transforms according to the j-th row of the Γ(β)

IRR.

The matrix element (2.1) will be non-zero only if the identity IRR Γ1 appears in the reduc-

tion of the direct product Γ(α) ⊗ Γ(β) ⊗ Γ(γ). Or, equivalently, only if the IRR Γ(α) appears in

5
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the reduction of the direct product Γ(β) ⊗ Γ(γ), since the identity IRR Γ1 appears only in the

direct product of two identical IRR [44].

As a practical example we will analyze the momentum matrix elements at the k = 0 point

(Γ point) of a semiconductor with the zincblende (ZB) structure. The momentum operators

px = −ih̄∂/∂x, py = −ih̄∂/∂y, pz = −ih̄∂/∂z, and the valence-band functions |X〉, |Y 〉,
|Z〉 transform according to the Γ15 IRR. The first conduction-band function |S〉 transforms

according to the Γ1 IRR.

Since [14]

Γ15 ⊗ Γ1 = Γ15, (2.2)

only functions F transforming according to Γ15 will produce non-zero matrix elements 〈F |pi|S〉.
Since [14]

Γ15 ⊗ Γ15 = Γ1 ⊕ Γ12 ⊕ Γ15 ⊕ Γ25, (2.3)

only functions F transforming according to Γ1, Γ12, Γ15, or Γ25 will produce non-zero matrix

elements 〈F |pi|X〉,〈F |pi|Y 〉,〈F |pi|Z〉.

2.3 Wigner-Eckart theorem

The Wigner-Eckart theorem [45] states that

〈ψ(α)
i |P (β)

j |ψ(γ)
k 〉 = CG(i, j, k, α, β, γ)〈ψ(α) ||P (β)||ψ(γ)〉, (2.4)

where CG is a Clebsh-Gordan coefficient. This relation dramatically reduces the number of

independent matrix elements. Many of the matrix elements are eliminated because the Clebsh-

Gordan coefficient is zero.

However, since the Clebsh-Gordan coefficients are hard to find, we use an alternative method

to obtain the non-zero matrix elements. We use the fact that, under a symmetry operation Ĝ

of the symmetry group of the system, the functions and the operator transform according to

Ĝψ
(α)
i =

∑

u

ψ(α)
u G

(α)
ui , (2.5)
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where G
(α)
ui is a matrix element. Since point group operations leave inner products invariant,

the matrix element becomes [15]

〈ψ(α)
i |P (β)

j |ψ(γ)
k 〉 = 〈Ĝψ(α)

i |ĜP (β)
j |Ĝψ(γ)

k 〉 =
∑

u

∑

v

∑

w

G
(α)
ui G

(β)
vj G

(γ)
wk〈ψ(α)

u |P (β)
v |ψ(γ)

w 〉. (2.6)

Although the triple sum (2.6) is intimidating, in practice, due to the G
(α)
ui G

(β)
vj G

(γ)
wk product,

only a few matrix elements remain in the sum. We are left with simple relations like

〈ψ(α)
i |P (β)

j |ψ(γ)
k 〉 = −〈ψ(α)

i |P (β)
j |ψ(γ)

k 〉, (2.7)

which indicate that the respective matrix element is zero, or

〈ψ(α)
i |P (β)

j |ψ(γ)
k 〉 = 〈ψ(α)

u |P (β)
v |ψ(γ)

w 〉, (2.8)

which indicate the equality of the two matrix elements. In rare occasions we obtain relations

between three or more matrix elements. In this case we have to solve the system of linear

equations in order to find the non-zero elements and the proportionality relations.

2.4 Momentum matrix elements at the Γ point in ZB structures

Some IRR, their dimensions, and their basis functions [46], for the symmetry group Td (Γ point

of zincblende (ZB) structure) are listed in Table 2.4. By x, y, z we mean a basis transforming

like a polar vector. By Sx, Sy, Sz we mean a basis transforming like an axial vector. By R we

mean a function going into itself under all proper and improper rotations.

IRR dim. basis for Td

Γ1 1 R or xyz

Γ12 2 2z2 − x2 − y2,
√

3(x2 − y2)

Γ15 3 Sx, Sy, Sz

Γ25 3 x, y, z

Table 2.4. Some IRR, their dimensions, and their basis functions, for the symmetry group

Td.
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Knowing the basis functions, and knowing how x, y, z transform under the symmetry oper-

ations, allows us to find the matrices G(α) for the IRR α of interest and for all the 24 symmetry

operations Ĝ of the Td symmetry group. These matrices are listed in [47]. With these matri-

ces, the calculation of (2.6) is straightforward. For a given choice of i, j, k, α, γ (β = Γ15) the

calculation is performed for all 24 symmetry operations. The results are summarized below.

2.4.1 〈Γ15|Γ15|Γ1〉 momentum matrix elements

The non-zero elements are

〈X|px|S〉 = 〈Y |py|S〉 = 〈Z|pz|S〉. (2.9)

2.4.2 〈Γ15|Γ15|Γ15〉 momentum matrix elements

The non-zero elements are

〈X|py |Z ′〉 = 〈X|pz |Y ′〉 = 〈Y |px|Z ′〉 = 〈Y |pz|X ′〉 = 〈Z|px|Y ′〉 = 〈Z|py|X ′〉. (2.10)

2.4.3 〈Γ15|Γ15|Γ25〉 momentum matrix elements

The non-zero elements are

〈X|py |Z ′〉 = −〈X|pz |Y ′〉 = −〈Y |px|Z ′〉 = 〈Y |pz|X ′〉 = 〈Z|px|Y ′〉 = −〈Z|py|X ′〉. (2.11)

2.4.4 〈Γ15|Γ15|Γ12〉 momentum matrix elements

The non-zero elements are

〈X|px|A12〉 = −〈Y |py|A12〉 = −
√

3〈X|px|B12〉 = −
√

3〈Y |py|B12〉 =
√

3/2〈Z|pz|B12〉, (2.12)

where A12 ≡ 2z2 − x2 − y2 and B12 ≡
√

3(x2 − y2).
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2.5 Momentum matrix elements at the Γ point in DM struc-

tures

Some IRR, their dimensions, and their basis functions [46], for the symmetry group O (Γ point

of diamond (DM) structure) are listed in Table 2.5.

IRR dim. basis for O

Γ1 1 R

Γ12 2 2z2 − x2 − y2,
√

3(x2 − y2)

Γ15 3 Sx, Sy, Sz

Γ25 3 yz, xz, xy

Table 2.5. Some IRR, their dimensions, and their basis functions, for the symmetry group

O.

The momentum matrix elements for DM satisfy the same relations as the momentum matrix

elements for ZB.

2.6 Momentum matrix elements at the Γ point in WZ struc-

tures

Some IRR, their dimensions, and their basis functions [46, 25], for the symmetry group C 4
6v (Γ

point of wurzite (WZ) structure) are listed in Table 2.6.
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IRR dim. basis for C6v l = 0 l = 1 l = 2

Γ1 1 R or z 1 z x2 + y2, z2

Γ2 1 Sz

Γ3 1 x3 − 3xy2

Γ4 1 y3 − 3yx2

Γ5 2 (Sx − iSy),−(Sx + iSy) x2 − y2, 2xy

Γ6 2 Γ3 × Γ5 x, y xz, yz

Table 2.6. Some IRR, their dimensions, and their basis functions, for the symmetry group

C6v. l is the angular momentum.

2.6.1 〈Γ1|Γ1|Γ1〉 momentum matrix elements

The non-zero element is

〈S|pz|Z〉. (2.13)

2.6.2 〈Γ1|Γ6|Γ6〉 momentum matrix elements

The non-zero elements are

〈S|px|X〉 = 〈S|py|Y 〉. (2.14)



Chapter 3

k · p theory - Kane

3.1 Introduction

In this chapter we present a review of the k · p method. The k · p method was originally an

application of the perturbation method to the study of energy bands and wave functions in

the vicinity of some important points in k space. The paper of Dresselhaus, Kip, and Kittel

[16] established the importance of the k · p approach as a rigorous basis for the empirical

determination of band structure. Symmetry arguments are used by the k · p method to show

that the band structure in a small region of k space depends only on a few parameters. Extensive

derivations and calculations using the k · p method, and many review papers by E.O. Kane

[17, 18, 19, 20, 21, 22] have transformed this perturbative approach into one of the main methods

used in Solid State Physics.

3.2 1-band model

The simplest example for an application of the k · p theory is when the electronic state is non-

degenerate and only weakly interacting with all other states. In this situation we have to solve

the one electron Schrödinger equation

Hψn,k(r) = En,kψn,k(r), (3.1)

11
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with the Hamiltonian

H =
p2

2mo
+ V (r) +

h̄

4m2
oc

2
(σ ×∇V ) · p, (3.2)

and the Bloch wave-function

ψn,k(r) = eik·run,k(r). (3.3)

Since

(−ih̄∇)eik·run,k(r) = h̄keik·run,k(r) + eik·r(−ih̄∇)un,k(r), (3.4)

(−ih̄∇)2eik·run,k(r) = h̄2k2eik·run,k(r)+2h̄k · eik·r(−ih̄∇)un,k(r)+ eik·r(−ih̄∇)2un,k(r), (3.5)

substitution of (3.3) into (3.1) gives
(
h̄2k2

2mo
+

2h̄k · p
2mo

+
p2

2mo
+ V (r) +

h̄

4m2
oc

2
(σ ×∇V ) · (h̄k + p)

)
un,k(r) = En,kun,k(r). (3.6)

With the notation

π = p +
h̄

4moc2
(σ ×∇V ), (3.7)

equation (3.6) becomes
(
H +

h̄2k2

2mo
+

h̄

mo
k · π

)
un,k(r) = En,kun,k(r). (3.8)

Equation (3.8) is solved using second order non-degenerate perturbation theory. The pertur-

bation is the k dependent part of the Hamiltonian. The solution, up to second order, is:

En,k = En,0 +
h̄2k2

2mo
+
h̄k

mo
· 〈n, 0|π|n, 0〉 +

h̄2

m2
o

∑

m6=n

|k · 〈n, 0|π|m, 0〉|2
En,0 −Em,0

. (3.9)

Since the energy band has a minimum at k = 0, the term linear in k is zero. We introduce the

Cartesian indices α, β = x, y, z, and assume Einstein’s summation convention for these indices.

We have

En,k = En,0 +
h̄2k2

2mo
+
h̄2

m2
o

kαkβ

∑

m6=n

〈n, 0|πα|m, 0〉〈m, 0|πβ |n, 0〉
En,0 −Em,0

, (3.10)

En,k = En,0 +
h̄2

2
kαkβ

(
1

m∗
n

)

α,β

, (3.11)

where the tensor of the effective mass is

(
1

m∗
n

)

α,β

=

(
1

mo

)
δα,β +

2

m2
o

∑

m6=n

〈n, 0|πα|m, 0〉〈m, 0|πβ |n, 0〉
En,0 −Em,0

. (3.12)
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3.3 2-band model, CB-VB coupling only

In this model the spin is not considered. The conduction band consists of one non-degenerate

band |s〉 and the valence band consists of three degenerate bands |px〉, |py〉, |pz〉. The 2-band

model considers the coupling of the conduction band to one of the valence bands. Perturbation

theory is applied to the two bands independently.

3.3.1 Electron in GaAs

We consider coupling of the s band only with the three valence bands, which are closest in

energy. The calculation of matrix elements gives

〈s|pα|pβ〉 = Pδα,β , (3.13)

〈pγ |pα|pβ〉 = 0. (3.14)

Symmetry requires the three non-zero elements to be equal. Therefore the effective mass is

isotropic. Introducing the energy gap Eg ≡ ECB,0 −EV B,0 we get

1

m∗
CB

=
1

mo
+

2|P |2
m2

oEg
. (3.15)

3.3.2 Light hole in GaAs

Along a given k direction, [kx, 0, 0] as an example, only one of the three valence bands will

couple to the conduction band. This is due to (3.13)-(3.14). Therefore we can treat that band

with non-degenerate perturbation theory. The effective mass is again isotropic, and usually

negative.
1

m∗
V B

=
1

mo
− 2|P |2
m2

oEg
. (3.16)

3.4 4-band model, CB-VB coupling only

This model allows coupling only between the one CB and the three VB, and ignores completely

the influences of the other bands. Spin is not considered. Within this approximation, the
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problem is solved exactly. The equations for the 4 bands at k = 0 are

Hous,0 = ECB,0us,0, (3.17)

Houpx,0 = EV B,0upx,0, (3.18)

Houpy,0 = EV B,0upy,0, (3.19)

Houpz ,0 = EV B,0upz ,0, (3.20)

where

Ho ≡ p2

2mo
+ V (r). (3.21)

When k 6= 0 we need to solve the equation (3.8). We do this by expanding us,k, upx,k, upy ,k, upz,k

as linear combinations of us,0, upx,0, upy,0, upz ,0.

un,k =
∑

m

Cn,mum,0, n ∈ {1, .., 4},m ∈ {s, px, py, pz}. (3.22)

Next we introduce (3.22) into (3.8)
(
Ho +

h̄2k2

2mo
+

h̄

mo
k · p

)∑

m

Cn,mum,0 = En,k

∑

m

Cn,mum,0. (3.23)

Taking the scalar product of (3.23) with the 4 states us,0, upx,0, upy,0, upz ,0 we obtain



ECB,0 + h̄2k2

2mo

h̄
mo
kxP

h̄
mo
kyP

h̄
mo
kzP

h̄
mo
kxP

∗ EV B,0 + h̄2k2

2mo
0 0

h̄
mo
kyP

∗ 0 EV B,0 + h̄2k2

2mo
0

h̄
mo
kzP

∗ 0 0 EV B,0 + h̄2k2

2mo







Cn,s

Cn,px

Cn,py

Cn,pz




= En,k




Cn,s

Cn,px

Cn,py

Cn,pz



.

(3.24)

The determinant of the eigenvalue system (3.24) is

(
En,k − h̄2k2

2mo
−EV B,0

)2

×
[(
En,k − h̄2k2

2mo

)2
−
(
En,k − h̄2k2

2mo

)
(ECB,0 +EV B,0) +ECB,0EV B,0 −

(
h̄

mo
k|P |

)2
]
.(3.25)

Therefore the energy bands are

En,k = EV B,0 + h̄2k2

2mo
,doubly degenerate, (3.26)

En,k =
ECB,0+EV B,0

2 +

√(
ECB,0−EV B,0

2

)2
+
(

h̄
mo
k|P |

)2
+ h̄2k2

2mo
, (3.27)

En,k =
ECB,0+EV B,0

2 −
√(

ECB,0−EV B,0

2

)2
+
(

h̄
mo
k|P |

)2
+ h̄2k2

2mo
. (3.28)
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Figure 3.1: Energy band in the FBZ for the conduction electron. Solid = free electron (lower

curve), dot = effective mass approximation (upper curve), dash = 2-band model. Calculation

for GaAs, with Eg = 1.52 eV, 2|P |2/mo = 25.7 eV, a = 5.65 Ȧ.

The main result is that now we have non-parabolicity. Up to second order in k the equations

(3.27) and (3.28) reduce to

En,k = ECB,0 + h̄2k2|P |2
m2

oEg
+ h̄2k2

2mo
, (3.29)

En,k = EV B,0 − h̄2k2|P |2
m2

oEg
+ h̄2k2

2mo
, (3.30)

and we recover the effective masses (3.15) and (3.16).

3.5 3-band model

This model calculates the valence bands in Ge or Si [16]. The three degenerate states at k = 0

belong to the Γ+
25 irreducible representation (IRR), and are labeled ε+1 ∼ yz, ε+2 ∼ zx, ε+3 ∼ xy.

The momentum operators px ∼ x, py ∼ y, pz ∼ z belong to the Γ−
15 IRR.

The first order contributions from degenerate perturbation theory are zero, since the mo-
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mentum operator is odd under inversion, while the ε+ functions are even.

〈ε+r |pα|ε+s 〉 = 0, r, s ∈ {1, 2, 3}, α ∈ {x, y, z}. (3.31)

In other words

Γ+
1 /∈ Γ+

25 ⊗ Γ−
15 ⊗ Γ+

25. (3.32)

The second order contributions from degenerate perturbation theory are due to the matrix

elements

Hrs =
h̄2

m2
o

kαkβ

∑

n6=ε+

〈ε+r |pα|n〉〈n|pβ|ε+s 〉
EV B,0 −En

. (3.33)

Because of the symmetry

〈xy|pz|n〉 = 〈yz|px|n〉 = 〈zx|py|n〉, (3.34)

〈xy|px|n〉 = 〈yz|py|n〉 = 〈zx|pz |n〉 = 〈xy|py|n〉 = 〈yz|pz|n〉 = 〈zx|px|n〉. (3.35)

Consider the case r = s. In the group of DM there are symmetry operators that invert only

one coordinate. The matrix element 〈ε+r |pα|n〉〈n|pβ|ε+r 〉 would cancel unless α = β. The matrix

elements, with the help of (3.35), can be written as

H11 = Lk2
x +M(k2

y + k2
z), (3.36)

H22 = Lk2
y +M(k2

x + k2
z), (3.37)

H33 = Lk2
z +M(k2

x + k2
y), (3.38)

where

L =
h̄2

m2
o

∑

n6=ε+

〈yz|px|n〉〈n|px|yz〉
EV B,0 −En

, (3.39)

M =
h̄2

m2
o

∑

n6=ε+

〈yz|py|n〉〈n|py|yz〉
EV B,0 −En

. (3.40)

Consider the case r 6= s. In the matrix element 〈ε+r |pα|n〉〈n|pβ|ε+s 〉 we need to have all Cartesian

coordinates paired. Since ε+r and ε+s share one Cartesian coordinate, the two remaining Carte-

sian coordinates determine α and β. There will be two contributions to the matrix element,

since α and β are not uniquely determined, but up to a permutation. Nonetheless, the product



CHAPTER 3. K · P THEORY - KANE 17

kαkβ will factor out. The matrix elements, with the help of (3.35), can be written as

H12 = H21 = Nkxky, (3.41)

H13 = H31 = Nkxkz, (3.42)

H23 = H32 = Nkykz, (3.43)

where

N =
h̄2

m2
o

∑

n6=ε+

〈xy|pz|n〉〈n|px|yz〉 + 〈xy|px|n〉〈n|pz|yz〉
EV B,0 −En

. (3.44)

The energy bands are given by

En,k = EV B,0 +
h̄2k2

2mo
+ λ, (3.45)

where λ is an eigenvalue of the DKK Hamiltonian

HDKK =




Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

Nkxky Lk2
y +M(k2

x + k2
z) Nkykz

Nkxkz Nkykz Lk2
z +M(k2

x + k2
y)


 . (3.46)

For k in a general direction there will be three different eigenvalues.

3.5.1 k in the [1,0,0] direction

When kx = k, ky = 0, kz = 0 the DKK Hamiltonian reduces to

HDKK =




Lk2 0 0

0 Mk2 0

0 0 Mk2


 , (3.47)

with eigenvalues

λ1 = Lk2, (3.48)

λ2 = Mk2, (3.49)

λ3 = Mk2. (3.50)
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3.5.2 k in the [1,1,1] direction

When kx = k/
√

3, ky = k/
√

3, kz = k/
√

3 the DKK Hamiltonian reduces to

HDKK =




(L+ 2M)k2/3 Nk2/3 Nk2/3

Nk2/3 (L+ 2M)k2/3 Nk2/3

Nk2/3 Nk2/3 (L+ 2M)k2/3


 , (3.51)

with eigenvalues

λ1 = L+2M+2N
3 k2, (3.52)

λ2 = L+2M−N
3 k2, (3.53)

λ3 = L+2M−N
3 k2. (3.54)

The point here is that we have introduced anisotropy. Only when L = M +N the effective

masses in the [1,0,0] and [1,1,1] directions are equal. If this is the case, the DKK Hamiltonian

becomes

HDKK =




Nk2
x +Mk2 Nkxky Nkxkz

Nkxky Nk2
y +Mk2 Nkykz

Nkxkz Nkykz Nk2
z +Mk2


 , (3.55)

with eigenvalues

λ1 = (M +N)k2, (3.56)

λ2 = Mk2, (3.57)

λ3 = Mk2. (3.58)

Therefore the effective mass is isotropic when L = M +N .

Another limiting case is when we restrict the interaction to only the first conduction band,

of symmetry s ∼ xyz. In this case

L = N = h̄2

m2
o

〈yz|px|xyz〉〈xyz|px|yz〉
EV B,0−ECB,0

= − h̄2|P |2
m2

oEg
, (3.59)

M = 0, (3.60)

and we recover the energy bands (3.26) and (3.30).
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3.6 6-band model

This is a generalization of the 3-band model, when we introduce the spin-orbit interaction.

The spin-orbit interactions is most easily treated as a perturbation acting on the cell periodic

function un,k. From eq. (3.6), this perturbation is

Hso =
h̄

4m2
oc

2
(σ ×∇V ) · (h̄k + p). (3.61)

Since the velocity of the electron in its atomic orbit is very much greater than the velocity of

a wave packet made up of wave vectors in the neighborhood of k, the first term of Hso can be

neglected, leading to [17]:

Hso ≈ h̄

4m2
oc

2
(σ ×∇V ) · p =

h̄

4m2
oc

2
(∇V × p) · σ. (3.62)

∇V × p is an axial vector, which simplifies the matrix elements. We need to calculate the

matrix elements of the first order degenerate perturbation for the spin-orbit interaction. The

basis consists of ε+1 ↑∼ yz, ε+2 ↑∼ zx, ε+3 ↑∼ xy, ε+1 ↓∼ yz, ε+2 ↓∼ zx, ε+3 ↓∼ xy. Consider the

matrix element

〈ε+r |εαβγ
∂V

∂xβ
pγ |ε+s 〉, r, s ∈ {1, 2, 3}, α, β, γ ∈ {x, y, z}. (3.63)

When r = s the two Cartesian components γ and β are not paired, and the matrix element is

zero. When r 6= s, ε+r and ε+s share one Cartesian coordinate, and the two remaining Cartesian

coordinates determine β and γ, up to a permutation. The permutation, however, is already

included in the cross-product. Because of the symmetry, the non-zero elements will be equal:

〈yz|∂V
∂x

py −
∂V

∂y
px|xz〉 = 〈zx|∂V

∂y
pz −

∂V

∂z
py|yx〉 = 〈xy|∂V

∂z
px − ∂V

∂x
pz|zy〉 ≡ ∆

4m2
oc

2

3ih̄
. (3.64)

The transposed elements will have opposite sign, since the matrix elements are purely imaginary

(due to p = ih̄∇), and complex conjugation reduces to a change of sign. Therefore evaluation
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of the spatial part of the matrix elements of Hso gives




yz xz xy yz xz xy

yz 0 σz −σy 0 σz −σy

xz −σz 0 σx −σz 0 σx

xy σy −σx 0 σy −σx 0

yz 0 σz −σy 0 σz −σy

xz −σz 0 σx −σz 0 σx

xy σy −σx 0 σy −σx 0




∆

3i
. (3.65)

Now the evaluation of the spin part of the matrix elements of Hso is trivial, since the Pauli

matrices are [48]

σx =




↑ ↓

↑ 0 1

↓ 1 0


, σy =




↑ ↓

↑ 0 −i
↓ i 0


, σz =




↑ ↓

↑ 1 0

↓ 0 −1


. (3.66)

Therefore the matrix elements of Hso are given by [17]

Hso =




yz ↑ xz ↑ xy ↑ yz ↓ xz ↓ xy ↓

yz ↑ 0 1 0 0 0 i

xz ↑ −1 0 0 0 0 1

xy ↑ 0 0 0 −i −1 0

yz ↓ 0 0 −i 0 −1 0

xz ↓ 0 0 1 1 0 0

xy ↓ i −1 0 0 0 0




∆

3i
. (3.67)
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Figure 3.2: Energy bands along the [100] direction in 10% of the FBZ for holes in Ge. Calcu-

lation with L = −32.0[h̄2/2mo], M = −5.30[h̄2/2mo], N = −32.4[h̄2/2mo], ∆ = 0.28 [eV], a =

5.66 [Ȧ].

The spin-orbit Hamiltonian (3.67) ads to the k · p Hamiltonian (3.46)

Hkp =




yz ↑ xz ↑ xy ↑ yz ↓ xz ↓ xy ↓

yz ↑ 0 0 0

xz ↑ HDKK 0 0 0

xy ↑ 0 0 0

yz ↓ 0 0 0

xz ↓ 0 0 0 HDKK

xy ↓ 0 0 0




. (3.68)

Diagonalization of the total Hamiltonian H = Hkp + Hso + h̄2k2/(2mo)I gives the energy

bands (see Appendix A for degenerate perturbation theory with first and second order mixed

contributions). An exact diagonalization cannot be performed. An approximate diagonalization

can be performed by diagonalization of Hso (in the |J,mJ 〉 basis), followed by neglecting terms

of order k4/∆ in the solutions of the determinantal equation [16]. When ∆ is pretty small, this



CHAPTER 3. K · P THEORY - KANE 22

approach is not justified (but it is necessary if you need to fit the experimental effective mass

in order to get the L,M,N parameters).

In Figure 3.2 we see the results of a numerical diagonalization. All three bands are doubly

degenerate, as expected from Kramer’s theorem. The calculations shown here reproduce the

results of Kane [17].

3.7 8-band model, CB-VB coupling only

This model applies to semiconductors with a direct gap, where both the CB and VB have a

minimum at k = 0. The 8-band model is an extension of the 4-band model, where we introduce

the spin-orbit coupling. The effect of the other bands is not considered. The spin-orbit coupling

is introduced as a perturbation, together with the k · p term. This is done to minimize the

number of parameters in the theory [20]. The spin-orbit coupling, if introduced in the k = 0

basis, will lift some of the degeneracy of the valence band states [49]. Therefore more parameters

will be introduced when we add the k · p interaction, due to the reduction in symmetry.

We use the same eigenfunctions from (3.17)-(3.20). A special phase convention will be

used, with the us,0 function purely imaginary. This is to make the matrix element P ≡
i〈xyz|pz |xy〉 real. We expand un,k, (n=1..8), as linear combinations of us,0↑, upx,0↑, upy ,0↑, upz ,0↑,

us,0↓, upx,0↓, upy,0↓, upz ,0↓.

un,k =
∑

m

Cn,m↑um,0↑ +
∑

m

Cn,m↓um,0↓, n ∈ {1, .., 8},m ∈ {s, px, py, pz}. (3.69)

We write (3.6) as
(
Ho +

h̄2k2

2mo
+
h̄k · p
mo

+
h̄

4m2
oc

2
(σ ×∇V ) · (h̄k + p)

)
un,k(r) = En,kun,k(r), (3.70)

where

Ho =
p2

2mo
+ V (r), (3.71)

is the unperturbed Hamiltonian (3.21). Next we introduce (3.69) into (3.70). Again, we neglect

the spin-orbit term linear in k.

(
Ho + h̄2k2

2mo
+ h̄

mo
k · p + h̄

4m2
oc2

(σ ×∇V ) · p
)

(
∑

m Cn,m↑um,0↑ +
∑

m Cn,m↓um,0↓)

= En,k (
∑

m Cn,m↑um,0↑ +
∑

m Cn,m↓um,0↓) . (3.72)



CHAPTER 3. K · P THEORY - KANE 23

Taking the scalar product of (3.72) with the 8 states us,0↑, upx,0↑, upy,0↑, upz,0↑, us,0↓, upx,0↓,

upy,0↓, upz ,0↓ we obtain

HCB−V B




Cn,s↑

Cn,px↑

Cn,py↑

Cn,pz↑

Cn,s↓

Cn,px↓

Cn,py↓

Cn,pz↓




= En,k




Cn,s↑

Cn,px↑

Cn,py↑

Cn,pz↑

Cn,s↓

Cn,px↓

Cn,py↓

Cn,pz↓




, (3.73)

where the Hamiltonian matrix has two parts

HCB−V B =

(
H4 0

0 H4

)
+




0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 i

0 −1 0 0 0 0 0 1

0 0 0 0 0 −i −1 0

0 0 0 0 0 0 0 0

0 0 0 −i 0 0 −1 0

0 0 0 1 0 1 0 0

0 i −1 0 0 0 0 0




∆

3i
. (3.74)

H4 is the matrix (3.24) calculated for the 4-band model, due to the k · p perturbation

H4 =




ECB,0 + h̄2k2

2mo

h̄
mo
kxP

h̄
mo
kyP

h̄
mo
kzP

h̄
mo
kxP EV B,0 + h̄2k2

2mo
0 0

h̄
mo
kyP 0 EV B,0 + h̄2k2

2mo
0

h̄
mo
kzP 0 0 EV B,0 + h̄2k2

2mo



. (3.75)

The spin-orbit part has been calculated in (3.67). Two more rows and columns (first and fifth)

are added for the conduction band. All these added matrix elements are zero, due to symmetry

(s ∼ xyz).

The determinant of the eigenvalue problem (3.73) is computed using Maple. All the eigenval-

ues are doubly degenerate. The energy bands are isotropic, since only k2 = k2
x +k2

y +k2
z appears
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Figure 3.3: Energy bands in 10% of the FBZ for electrons and holes in InSb. Calculation with

εo = 0.2352 [eV], 2P 2/mo = 22.49 [eV], ∆ = 0.81 [eV], a = 6.48 [Ȧ].

in the determinantal equation. When k = 0 the eigenvalues are ECB,0 (twice), EV B,0 + ∆/3

(four times), EV B,0 − 2∆/3 (twice). We fix the origin of the energy at EV B,0 +∆/3. Therefore

EV B,0 = −∆/3, (3.76)

ECB,0 ≡ εo. (3.77)

With these definitions the determinantal equation reduces to [18]

E′
n,k

(
E′

n,k(E′
n,k − εo)(E

′
n,k + ∆) − h̄2k2

m2
o

P 2(E′
n,k +

2∆

3
)

)
= 0, (3.78)

where

E′
n,k ≡ En,k − h̄2k2

2mo
. (3.79)

In Figure 3.3 we see the results of a numerical solution. All four bands are doubly degenerate.

The calculations shown here reproduce the results of Kane [18]. The parameters for InSb are

taken from Bastard [50]. With the exception of the heavy hole band, which is uncoupled in this

model, the energy bands are determined quite well.
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3.8 8-band model

This model is an extension of the previous model, when we include contributions from the other

energy bands. We include the other bands with the help of Löwdin perturbation theory [23]

(see Appendix B).

The basis function which we will use are un,0↑ and un,0↓, the eigenfunctions of the Hamilto-

nian (3.71), with spin added. The functions with n ∈ {s, px, py, pz} belong to the A class. The

full Hamiltonian

H =
p2

2mo
+ V (r) +

h̄2k2

2mo
+
h̄k · p
mo

+
h̄

4m2
oc

2
(σ ×∇V ) · (h̄k + p), (3.80)

will generate the matrix elements

Hmn ≡ 〈um,0|H|un,0〉. (3.81)

Löwdin perturbation theory requires us to solve self-consistently the system

∑

n∈A

Umncn = Ecm, m ∈ A, (3.82)

where the ’renormalized’ matrix elements are

Umn ≡ Hmn +
∑

β∈B

HmβHβn

E −Hββ
+ ... . (3.83)

Several approximations will now be used:

• The k dependent part of the spin-orbit interaction is ignored.

• The ’renormalized’ part of the spin-orbit interaction is ignored.

• The series of the ’renormalized’ matrix elements (3.83) is cut after the first order correction.

• The energy E in (3.83) is replaced with the approximate value (Hnn +Hmm)/2 [21].
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With these approximations the ’renormalized’ Hamiltonian becomes

U =

(
H4 0

0 H4

)
+




0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 i

0 −1 0 0 0 0 0 1

0 0 0 0 0 −i −1 0

0 0 0 0 0 0 0 0

0 0 0 −i 0 0 −1 0

0 0 0 1 0 1 0 0

0 i −1 0 0 0 0 0




∆

3i
+

(
HR 0

0 HR

)
, (3.84)

where H4 is the direct k · p interaction

H4 =




ECB,0 + h̄2k2

2mo
i h̄
mo
kxP i h̄

mo
kyP i h̄

mo
kzP

−i h̄
mo
kxP EV B,0 + h̄2k2

2mo
0 0

−i h̄
mo
kyP 0 EV B,0 + h̄2k2

2mo
0

−i h̄
mo
kzP 0 0 EV B,0 + h̄2k2

2mo



, (3.85)

and HR is the ’renormalized’ part of the k · p interaction [22]

HR =




Ak2 Bkykz Bkxkz Bkxky

Bkykz Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

Bkxkz Nkxky Lk2
y +M(k2

x + k2
z) Nkykz

Bkxky Nkxkz Nkykz Lk2
z +M(k2

x + k2
y)



. (3.86)

The definition of the parameter P is

P ≡ −i〈s|px|px〉. (3.87)

The parameters L,M,N are closely related to those in the DKK Hamiltonian. The only differ-

ence is that now the sum does not include the first CB, which is now taken into account exactly,

and not within the perturbation. In these parameters the energy E from (3.83) is replaced by

EV B,0.

L ≡ h̄2

m2
o

∑

n6=s,px,py,pz

〈px|px|n〉〈n|px|px〉
EV B,0 −En

, (3.88)

M ≡ h̄2

m2
o

∑

n6=s,px,py,pz

〈px|py|n〉〈n|py|px〉
EV B,0 −En

, (3.89)
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N ≡ h̄2

m2
o

∑

n6=s,px,py,pz

〈pz|pz|n〉〈n|px|px〉 + 〈pz|px|n〉〈n|pz|px〉
EV B,0 −En

. (3.90)

Consider now the matrix element

h̄2

m2
o

kαkβ

∑

n6=s,px,py,pz

〈s|pα|n〉〈n|pβ|s〉
E −En

. (3.91)

In order to have the Cartesian indices paired, we must have α = β. Because of the symmetry

〈s|px|n〉〈n|px|s〉 = 〈s|py|n〉〈n|py|s〉 = 〈s|pz|n〉〈n|pz|s〉. (3.92)

Therefore the parameter A is

A ≡ h̄2

m2
o

∑

n6=s,px,py,pz

〈s|px|n〉〈n|px|s〉
ECB,0 −En

, (3.93)

where the energy E is replaced by ECB,0.

Consider now the matrix element

h̄2

m2
o

kαkβ

∑

n6=s,px,py,pz

〈s|pα|n〉〈n|pβ|pz〉
E −En

. (3.94)

In DM crystals with inversion symmetry this matrix element is zero. In ZB crystals it is non

zero. In order to have the Cartesian indices paired, we must have {α, β} = {x, y}. The two

permutations bring equal contributions.

Because of the symmetry

〈s|px|n〉〈n|py|pz〉 = 〈s|py|n〉〈n|pz|px〉 = 〈s|pz|n〉〈n|px|py〉. (3.95)

Therefore the parameter B is

B ≡ 2h̄2

m2
o

∑

n6=s,px,py,pz

〈s|px|n〉〈n|py|pz〉
(ECB,0 +EV B,0)/2 −En

, (3.96)

where the energy E is replaced by (ECB,0 +EV B,0)/2.

In Figure 3.4 we see the results of a numerical diagonalization. The parameters for InSb are

taken from [51]. The double degeneracy of the bands is lifted by the ’renormalized’ Hamiltonian.

This is due to the B term, which explicitly eliminates the symmetry to inversion in U(k).
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Figure 3.4: Energy bands in 10% of the FBZ for electrons and holes in InSb. Calculation with

εo = 0.2352 [eV], 2P 2/mo = 22.49 [eV], ∆ = 0.81 [eV], a = 6.48 [Ȧ], A = 0[h̄2/2mo], B =

−3.3[h̄2/2mo], L = −2.5[h̄2/2mo],M = −5.6[h̄2/2mo], N = −4.3[h̄2/2mo].
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3.9 Appendix A. Degenerate perturbation theory

Consider an unperturbed system with degenerate eigenstates. Sometimes the perturbation

Hamiltonian consists of two parts: one which contributes in first order, H (1), and one which

contributes in second order, H (2). If these two contributions have the same order of magnitude,

then it is better to write the perturbation expansion as [17]

H(λ) = H(0) + λ2H(1) + λH(2). (3.97)

In this way the first order contribution of H (1) will automatically be paired to the second order

contribution of H (2).We write the wave-function as

|ψ〉 = |ψ(0)〉 + λ|ψ(1)〉 + λ2|ψ(2)〉 + ... , (3.98)

and the energy as

E(λ) = E(0) + λE(1) + λ2E(2) + ... . (3.99)

We equate terms with same power in λ in Schrodinger’s equation

(H(0) + λ2H(1) + λH(2))(|ψ(0)〉 + λ|ψ(1)〉 + λ2|ψ(2)〉 + ...) =

(E(0) + λE(1) + λ2E(2) + ...)(|ψ(0)〉 + λ|ψ(1)〉 + λ2|ψ(2)〉 + ...). (3.100)

It follows that

H(0)|ψ(0)〉 = E(0)|ψ(0)〉, (3.101)

H(0)|ψ(1)〉 +H(2)|ψ(0)〉 = E(0)|ψ(1)〉 +E(1)|ψ(0)〉, (3.102)

H(0)|ψ(2)〉 +H(2)|ψ(1)〉 +H(1)|ψ(0)〉 = E(0)|ψ(2)〉 +E(1)|ψ(1)〉 +E(2)|ψ(0)〉. (3.103)

Consider the non-perturbed eigenvalue problem for the degenerate level n,m, ..., and for the

other levels α, β, ....

H(0)|ψn〉 = En|ψn〉, (3.104)

H(0)|ψα〉 = Eα|ψα〉. (3.105)
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The wave-function components will be written as

|ψ(0)〉 =
∑

n c
(0)
n |ψn〉, (3.106)

|ψ(1)〉 =
∑

n c
(1)
n |ψn〉 +

∑
α c

(1)
α |ψα〉. (3.107)

In writing (3.106) we have used (3.101) and (3.104). In the limit λ → 0 we recover the non-

perturbed states. Also

E(0) = En. (3.108)

We multiply (3.102) with 〈ψ(0)|. Using (3.101) and the fact that 〈ψ(0)|H(2)|ψ(0)〉 = 0, we obtain

E(1) = 0. (3.109)

We multiply (3.102) with 〈ψβ |, and using (3.105) we obtain

Eβc
(1)
β + 〈ψβ|H(2)|ψ(0)〉 = Enc

(1)
β . (3.110)

Therefore the coefficient c
(1)
β is

c
(1)
β =

〈ψβ |H(2)|ψ(0)〉
En −Eβ

. (3.111)

We multiply (3.103) with 〈ψm|, and using (3.104) we obtain

〈ψm|H(2)|ψ(1)〉 + 〈ψm|H(1)|ψ(0)〉 = E(2)c(0)m . (3.112)

Using (3.107) and the fact that 〈ψm|H(2)|ψn〉 = 0, the first term of (3.82) reduces to

〈ψm|H(2)|ψ(1)〉 = 〈ψm|H(2)|
∑

α

c(1)α |ψα〉. (3.113)

Equation (3.112), with the help of (3.113) and (3.111), reduces to

∑

α

〈ψα|H(2)|ψ(0)〉
En −Eα

〈ψm|H(2)|ψα〉 + 〈ψm|H(1)|ψ(0)〉 = E(2)c(0)m . (3.114)

By substitution of (3.106) we finally obtain

∑

n

(∑

α

〈ψm|H(2)|ψα〉〈ψα|H(2)|ψn〉
En −Eα

+ 〈ψm|H(1)|ψn〉
)
c(0)n = E(2)c(0)m . (3.115)

Therefore the coefficients c
(0)
n and the energy E(2) are obtained by solving the eigenvalue problem

(3.115). In the particular case when H (1) = 0 we recover the simpler case of degenerate

perturbation theory with second order contributions [52].
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3.10 Appendix B. Löwdin perturbation theory

Consider a Hamiltonian H and a finite set of orthonormalized functions ψ
(0)
n , which are approx-

imate eigenfunctions of H. Suppose the set of functions ψ
(0)
n is split into to parts, A and B. We

will expand the eigenfunctions of H as

ψ =
∑

n

cnψ
(0)
n . (3.116)

We substitute (3.116) into the eigenvalue equation

Hψ = Eψ. (3.117)

We take the scalar product of (3.117) with ψ
(0)
m and we obtain

∑
nHmncn = Ecm, (3.118)

∑
n6=mHmncn = (E −Hmm)cm, (3.119)

where

Hmn ≡ 〈ψ(0)
m |H|ψ(0)

n 〉. (3.120)

From (3.119) we formally extract cm as

cm =
∑

α∈A,α6=m

Hmα

E −Hmm
cα +

∑

β∈B,β 6=m

Hmβ

E −Hmm
cβ. (3.121)

From (3.121) we obtain cβ as

cβ =
∑

α∈A

Hβα

E −Hββ
cα +

∑

γ∈B,γ 6=β

Hβγ

E −Hββ
cγ . (3.122)

We substitute (3.122) back into (3.121), and we iterate the process, with the ultimate goal of

eliminating all the cδ’s with δ ∈ B.

cm =
∑

α∈A,α6=m

Hmα

E −Hmm
cα +

∑

β∈B,β 6=m

Hmβ

E −Hmm

∑

α∈A

Hβα

E −Hββ
cα + ... . (3.123)

We choose m ∈ A and we write (3.123) as

∑

α∈A

Umαcα = Ecm, (m ∈ A), (3.124)
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with

Umα ≡ Hmα +
∑

β∈B,β 6=m

HmβHβα

E −Hββ
+ ..., (α ∈ A). (3.125)

We have therefore reduced the eigenvalue problem (3.118) on the full A + B space to the

restricted eigenvalue problem (3.124) on the A space. The effect of the B space is taken into

account through the ’renormalized’ matrix elements (3.125). Equations (3.124) and (3.125) are

solved iteratively, until convergence is achieved.

We choose m ∈ B and we write (3.123) as

cm =
∑

α∈A

Umα

E −Hmm
cα, (m ∈ B). (3.126)

In this way we have completely determined the coefficients of the eigenfunction expansion

(3.116).



Chapter 4

k · p theory - Burt

4.1 Introduction

The Kane model, developed in the previous chapter, deals with bulk semiconductors. The

periodicity characteristic to an infinite lattice has allowed us to apply the Bloch theorem. This

periodicity makes k a good quantum number.

However, when dealing with heterostructures, we no longer have periodicity. The question

has arisen, how can we still use Kane’s model when dealing with semiconductor quantum wells,

wires, and dots? Two empirical changes are applied to Kane’s Hamiltonian to extend its range

of applicability to heterostructures.

First, recognizing that the kx, ky, kz components have appeared by differentiation of the

exponential in the Bloch function

∇eik·r = ikeik·r, (4.1)

we replace these components by

kx → k̂x = −i ∂
∂x
, (4.2)

ky → k̂y = −i ∂
∂y
, (4.3)

kz → k̂z = −i ∂
∂z
. (4.4)

However, since the Kane parameters in the Hamiltonian now depend on position, being dif-

ferent in different semiconductors, they no longer commute with the differential operators. We

33
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therefore need an ordering of the Kane parameters and of the differentials in the Hamiltonian.

A popular choice is to symmetrize each individual element of the 8 × 8 Hamiltonian matrix.

This choice also guarantees that the resulting Hamiltonian is hermitian. The required changes

to Kane’s Hamiltonian are [53, 54]

Tkx → 1

2
(T k̂x + k̂xT ), ... , (4.5)

Tkxky → 1

2
(k̂xT k̂y + k̂yT k̂x), ... , (4.6)

where T represents any Kane parameter.

Symmetrized Hamiltonians have been successfully applied to the calculation of energy bands

in quantum wells [53, 54, 55], wires [56], and dots[57].

4.2 Burt’s theory

The arbitrariness of the symmetrization procedure has led Burt to believe that this is not

the right theory. Following a different approach, Burt chooses to derive the Hamiltonian for

a semiconductor heterostructure. He succeeded doing it in a series of papers [5, 6, 7, 8, 9],

culminating with a review article [10].

In Burt’s theory we start with a complete set of functions Un(r) that are periodic in the

position variable r. We assume that the different semiconductors of the heterojunction have

the same lattice constant, and the same Γ point Bloch functions. In fact, these zone-centre

eigenfunctions will be the ones used as Un(r). The wave-function is uniquely expanded as

Ψ(r) =
∑

n

Fn(r)Un(r), (4.7)

where the envelope functions Fn(r) have a plane-wave expansion restricted to the first Brillouin

zone (FBZ).

Substitution of (4.7) into Schrödinger’s equation, and equating the coefficients of Un(r),

leads to the exact equation

−h̄2

2m
∇2Fn(r) +

∑

n′

−ih̄
m

pnn′ · ∇Fn′(r) +
∑

n′

∫

UC
Hnn′(r, r′)Fn′(r′)dr′ = EFn(r), (4.8)
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where

pnn′ = 1
Vc

∫
UC U

∗
n(r)pUn′(r)dr, (4.9)

Hnn′(r, r′) = Tnn′∆(r − r′) + Vnn′(r, r′), (4.10)

Tnn′ = 1
Vc

∫
UC U

∗
n(r) p2

2mUn′(r)dr, (4.11)

∆(r − r′) = 1
Ω

∑
k∈FBZ e

ik·(r−r
′), (4.12)

V (r)Ψ(r) =
∑

n (
∑

n′

∫
UC Vnn′(r, r′)Fn′(r′)dr′)Un(r). (4.13)

The volume of a unit cell (UC) in real space is Vc, and in reciprocal space is Ω. The normalization

of the functions Un(r) is
1

Vc

∫

UC
U∗

n(r)Un′(r)dr = δnn′ . (4.14)

We further neglect non-local contributions in Hnn′(r, r′), and contributions from the inter-

face regions. We finally obtain the envelope function equation:

−h̄2

2m
∇2Fn(r) +

∑

n′

−ih̄
m

pnn′ · ∇Fn′(r) +
∑

n′

Hnn′(r)Fn′(r) = EFn(r). (4.15)

Here Hnn′(r) is constant within a given homogeneous semiconductor region, equal to the bulk

value

Hnn′ =
1

Vc

∫

UC
U∗

n(r)H(r)Un′(r)dr, (4.16)

where H(r) is the Hamiltonian of the bulk semiconductor.

4.3 Envelope function equations

We divide the envelope functions into two categories: dominant ones, labeled with an index s,

and small ones, labeled with an index r.

We write the equation (4.15) for n = r

−h̄2

2m
∇2Fr(r) +

∑

n′

−ih̄
m

prn′ · ∇Fn′(r) +
∑

n′

Hrn′(r)Fn′(r) = EFr(r). (4.17)

We now expand the sums as
∑

n′

→
∑

s′

+
∑

r′

. (4.18)
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We neglect in (4.17) the first term (the small envelope function is slowly varying), and in the

sums over n′ we keep only the dominant terms (with s′) and the term containing Fr(r)

∑

s′

−ih̄
m

prs′ · ∇Fs′(r) +
∑

s′

Hrs′(r)Fs′(r) +Hrr(r)Fr(r) = EFr(r). (4.19)

In the end the envelope function Fr(r) is extracted as

Fr(r) =
1

E −Hrr(r)

∑

s′

(−ih̄
m

prs′ · ∇Fs′(r) +Hrs′(r)Fs′(r)

)
. (4.20)

We write the equation (4.15) for n = s

−h̄2

2m
∇2Fs(r) +

∑

n′

−ih̄
m

psn′ · ∇Fn′(r) +
∑

n′

Hsn′(r)Fn′(r) = EFs(r). (4.21)

We now expand the sums as
∑

n′

→
∑

s”

+
∑

r

. (4.22)

The expanded equation is

−h̄2

2m
∇2Fs(r) +

∑

s”

−ih̄
m

pss” · ∇Fs”(r) +
∑

s”

Hss”(r)Fs”(r)

+
∑

r

−ih̄
m

psr · ∇Fr(r) +
∑

r

Hsr(r)Fr(r) = EFs(r). (4.23)

We substitute Fr(r) from (4.20) into (4.23)

−h̄2

2m
∇2Fs(r) +

∑

s”

−ih̄
m

pss” · ∇Fs”(r) +
∑

s”

Hss”(r)Fs”(r)

+
∑

r

−ih̄
m

psr · ∇
[

1

E −Hrr(r)

∑

s′

(−ih̄
m

prs′ · ∇Fs′(r) +Hrs′(r)Fs′(r)

)]

+
∑

r

Hsr(r)
1

E −Hrr(r)

∑

s′

(−ih̄
m

prs′ · ∇Fs′(r) +Hrs′(r)Fs′(r)

)
= EFs(r), (4.24)

−h̄2

2m
∇2Fs(r) +

∑

s”

−ih̄
m

pss” · ∇Fs”(r) +
∑

s”

Hss”(r)Fs”(r)

+
∑

r

∑

s′

−h̄2

m2
psr · ∇

(
prs′ · ∇Fs′(r)

E −Hrr(r)

)

+
∑

r

∑

s′

−ih̄
m

psr · ∇
(

Hrs′(r)

E −Hrr(r)

)
Fs′(r)
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+
∑

r

∑

s′

−ih̄
m

Hrs′(r)

E −Hrr(r)
psr · ∇Fs′(r)

+
∑

r

∑

s′

−ih̄
m

Hsr(r)

E −Hrr(r)
prs′ · ∇Fs′(r)

+
∑

r

∑

s′

Hsr(r)Hrs′(r)

E −Hrr(r)
Fs′(r) = EFs(r). (4.25)

We now neglect the terms from the 3-rd, 4-th, and 5-th lines in (4.25). The term on the 3-rd line

is non-zero only at an interface. The other two terms are also significant only at an interface,

being very small in the bulk of the semiconductors. We write the equation as

−h̄2

2m
∇2Fs(r) +

∑

s”

−ih̄
m

pss” · ∇Fs”(r) +
∑

s”

Hss”(r)Fs”(r)

+
∑

r

∑

s′

∑

α=x,y,z

∑

β=x,y,z

−h̄2

m2
∂α

psrαprs′β

E −Hrr(r)
∂βFs′(r)

+
∑

r

∑

s′

Hsr(r)Hrs′(r)

E −Hrr(r)
Fs′(r) = EFs(r). (4.26)

In (4.26) we have moved the momentum matrix element to the right of the differential, since it

doesn’t depend on position.

4.4 Homogeneous semiconductor

In the simpler case of a homogeneous semiconductor [7] the functions Un(r) are the zone-centre

eigenfunctions. We have only diagonal elements Hss, and the equation (4.26) becomes

−h̄2

2m
∇2Fs(r) +

∑

s”

−ih̄
m

pss” · ∇Fs”(r) +HssFs(r)

+
∑

r

∑

s′

∑

α=x,y,z

∑

β=x,y,z

−h̄2

m2
∂α
psrαprs′β

E −Hrr
∂βFs′(r) = EFs(r). (4.27)

Because (4.27) is a differential equation with constant coefficients we can find solutions of

the form

Fs(r) = As(k)eik·r. (4.28)

The eigenvalue problem (4.27) becomes

h̄2k2

2m
As(k) +

∑

s”

h̄

m
pss” · kAs”(k) +HssAs(k)
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+
∑

r

∑

s′

∑

α=x,y,z

∑

β=x,y,z

h̄2

m2
kα
psrαprs′β

E −Hrr
kβAs′(k) = EAs(k), (4.29)

which is the well known equation of the Kane model.

4.5 Burt’s Hamiltonian

We now apply the most dubious approximation of the Burt model, that the zone centre eigen-

functions are the same in all semiconductors of the quantum microstructure. This will again

generate only diagonal elements Hss(r), and the equation (4.26) becomes

−h̄2

2m
∇2Fs(r) +

∑

s”

−ih̄
m

pss” · ∇Fs”(r) +Hss(r)Fs(r)

+
∑

r

∑

s′

∑

α=x,y,z

∑

β=x,y,z

−h̄2

m2
∂α

psrαprs′β

E −Hrr(r)
∂βFs′(r) = EFs(r). (4.30)

4.6 Burt’s Hamiltonian for ZB structures

We will investigate in great detail the Hamiltonian matrix element H
(int)
ss′ due to the interaction

of the dominant envelope functions with the remote ones.

H
(int)
ss′ =

∑

r

∑

α=x,y,z

∑

β=x,y,z

h̄2

m2
k̂α

psrαprs′β

E −Hrr(r)
k̂β. (4.31)

We introduce Dirac’s notation for the momentum matrix elements. We label the remote bands

by their IRR γ, by an index nγ to distinguish between bands with the same IRR, and by an

index mγ to distinguish between basis functions of the same IRR.

H
(int)
ss′ =

∑

γ

∑

nγ

∑

mγ

∑

α=x,y,z

∑

β=x,y,z

h̄2

m2
k̂α

〈s|pα|γ, nγ ,mγ〉〈γ, nγ ,mγ |pβ |s′〉
E −Hγnγ (r)

k̂β. (4.32)

We will now concentrate our attention on

∑

mγ

〈s|pα|γ, nγ ,mγ〉〈γ, nγ ,mγ |pβ|s′〉, (4.33)

for a given band (γ, nγ).

It is useful to notice that, if s or s′ belongs to Γ1, then γ can be only Γ15 for non-zero

elements. Also, if s and s′ belong to Γ15, then γ can be only Γ1, Γ15, Γ25, or Γ12 for non-zero

elements.
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4.6.1 s = S, γ = Γ15, s
′ = S

Due to (2.9) the sum (4.33) reduces to

〈S|px|X ′〉〈X ′|px|S〉δαxδβx + 〈S|py|Y ′〉〈Y ′|py|S〉δαyδβy + 〈S|pz|Z ′〉〈Z ′|pz|S〉δαzδβz, (4.34)

which is equal to

〈S|px|X ′〉〈X ′|px|S〉(δαxδβx + δαyδβy + δαzδβz). (4.35)

Also

δαxδβx + δαyδβy + δαzδβz = δαβ(δαx + δαy + δαz) = δαβ . (4.36)

Therefore

H
(int)Γ15

SS =
∑

nΓ15

∑

α=x,y,z

h̄2

m2
k̂α

〈S|px|Γ15, nΓ15 , X
′〉〈Γ15, nΓ15 , X

′|px|S〉
E −HΓ15nΓ15

(r)
k̂α

= k̂xA
′k̂x + k̂yA

′k̂y + k̂zA
′k̂z, (4.37)

where

A′ ≡
∑

nΓ15

h̄2

m2

〈S|px|Γ15, nΓ15 , X
′〉〈Γ15, nΓ15 , X

′|px|S〉
E −HΓ15nΓ15

(r)

=
∑

ν∈Γ15

h̄2

m2

〈S|px|ν〉〈ν|px|S〉
E −Hν(r)

. (4.38)

To get the last line we have artificially inserted the zero matrix elements with Y ′ and Z ′. We

thus sum over all basis functions of the IRR. The result is invariant, and does not depend on

the basis functions used. This is the expression given by Kane [22].

In the limit of a homogeneous semiconductor we have

H
(int)Γ15

SS = A′(k2
x + k2

y + k2
z) = A′k2. (4.39)

4.6.2 s = S, γ = Γ15, s
′ = X

Due to (2.9) and (2.10) the sum (4.33) reduces to

〈S|py|Y ′〉〈Y ′|pz|X〉δαyδβz + 〈S|pz|Z ′〉〈Z ′|py|X〉δαzδβy, (4.40)
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which is equal to

〈S|px|X ′〉〈X ′|py|Z〉(δαyδβz + δαzδβy). (4.41)

Therefore

H
(int)Γ15

SX = k̂y
B

2
k̂z + k̂z

B

2
k̂y, (4.42)

where

B ≡
∑

nΓ15

2h̄2

m2

〈S|px|Γ15, nΓ15 , X
′〉〈Γ15, nΓ15 , X

′|py|Z〉
E −HΓ15nΓ15

(r)

=
∑

ν∈Γ15

2h̄2

m2

〈S|px|ν〉〈ν|py|Z〉
E −Hν(r)

. (4.43)

In the limit of a homogeneous semiconductor we have

H
(int)Γ15

SX = Bkykz. (4.44)

4.6.3 s = X, γ = Γ15, s
′ = X

Due to (2.10) the sum (4.33) reduces to

〈X|pz |Y ′〉〈Y ′|pz|X〉δαzδβz + 〈X|py|Z ′〉〈Z ′|py|X〉δαyδβy, (4.45)

which is equal to

〈X|py |Z ′〉〈Z ′|py|X〉(δαzδβz + δαyδβy). (4.46)

Therefore

H
(int)Γ15

XX = k̂zH1k̂z + k̂yH1k̂y, (4.47)

where

H1 ≡
∑

nΓ15

h̄2

m2

〈X|py|Γ15, nΓ15 , Z
′〉〈Γ15, nΓ15 , Z

′|py|X〉
E −HΓ15nΓ15

(r)

=
∑

ν∈Γ15

h̄2

m2

〈X|py|ν〉〈ν|py|X〉
E −Hν(r)

. (4.48)

In the limit of a homogeneous semiconductor we have

H
(int)Γ15

XX = H1(k
2
y + k2

z). (4.49)
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4.6.4 s = X, γ = Γ25, s
′ = X

Due to (2.11) the sum (4.33) reduces to

〈X|pz|Sy〉〈Sy|pz|X〉δαzδβz + 〈X|py |Sz〉〈Sz |py|X〉δαyδβy, (4.50)

which is equal to

〈X|py|Sz〉〈Sz|py|X〉(δαzδβz + δαyδβy). (4.51)

Therefore

H
(int)Γ25

XX = k̂zH2k̂z + k̂yH2k̂y, (4.52)

where

H2 ≡
∑

nΓ25

h̄2

m2

〈X|py|Γ25, nΓ25 , Sz〉〈Γ25, nΓ25 , Sz|py|X〉
E −HΓ25nΓ25

(r)

=
∑

ν∈Γ25

h̄2

m2

〈X|py|ν〉〈ν|py|X〉
E −Hν(r)

. (4.53)

In the limit of a homogeneous semiconductor we have

H
(int)Γ25

XX = H2(k
2
y + k2

z). (4.54)

4.6.5 s = X, γ = Γ1, s
′ = X

Due to (2.9) the sum (4.33) reduces to

〈X|px|S′〉〈S′|px|X〉δαxδβx. (4.55)

Therefore

H
(int)Γ1

XX = k̂xF
′k̂x, (4.56)

where

F ′ ≡
∑

nΓ1

h̄2

m2

〈X|px|Γ1, nΓ1 , S
′〉〈Γ1, nΓ1 , S

′|px|X〉
E −HΓ1nΓ1

(r)

=
∑

ν∈Γ1

h̄2

m2

〈X|px|ν〉〈ν|px|X〉
E −Hν(r)

. (4.57)

In the limit of a homogeneous semiconductor we have

H
(int)Γ1

XX = F ′k2
x. (4.58)
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4.6.6 s = X, γ = Γ12, s
′ = X

Due to (2.12) the sum (4.33) reduces to

〈X|px|A12〉〈A12|px|X〉δαxδβx + 〈X|px|B12〉〈B12|px|X〉δαxδβx. (4.59)

Therefore

H
(int)Γ12

XX = k̂x2Gk̂x, (4.60)

where

2G ≡
∑

ν∈Γ12

h̄2

m2

〈X|px|ν〉〈ν|px|X〉
E −Hν(r)

. (4.61)

In the limit of a homogeneous semiconductor we have

H
(int)Γ12

XX = 2Gk2
x. (4.62)

It is usefull to notice that

〈X|px|B12〉〈B12|px|X〉 =
1

3
〈X|px|A12〉〈A12|px|X〉, (4.63)

and therefore

2G =
4

3

∑

nΓ12

h̄2

m2

〈X|px|Γ12, nΓ12 , A12〉〈Γ12, nΓ12 , A12|px|X〉
E −HΓ12nΓ12

(r)
. (4.64)

4.6.7 s = X, γ = Γ15, s
′ = Y

Due to (2.10) the sum (4.33) reduces to

〈X|py|Z ′〉〈Z ′|px|Y 〉δαyδβx, (4.65)

which is equal to

〈X|py |Z ′〉〈Z ′|py|X〉δαyδβx. (4.66)

Therefore

H
(int)Γ15

XY = k̂yH1k̂x. (4.67)

In the limit of a homogeneous semiconductor we have

H
(int)Γ15

XY = H1kxky. (4.68)
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4.6.8 s = X, γ = Γ25, s
′ = Y

Due to (2.11) the sum (4.33) reduces to

〈X|py |Sz〉〈Sz |px|Y 〉δαyδβx, (4.69)

which is equal to

−〈X|py|Sz〉〈Sz|py|X〉δαyδβx. (4.70)

Therefore

H
(int)Γ25

XY = −k̂yH2k̂x. (4.71)

In the limit of a homogeneous semiconductor we have

H
(int)Γ25

XY = −H2kxky. (4.72)

4.6.9 s = X, γ = Γ1, s
′ = Y

Due to (2.9) the sum (4.33) reduces to

〈X|px|S′〉〈S′|py|Y 〉δαxδβy, (4.73)

which is equal to

〈X|px|S′〉〈S′|px|X〉δαxδβy. (4.74)

Therefore

H
(int)Γ1

XY = k̂xF
′k̂y. (4.75)

In the limit of a homogeneous semiconductor we have

H
(int)Γ1

XY = F ′kxky. (4.76)

4.6.10 s = X, γ = Γ12, s
′ = Y

Due to (2.12) the sum (4.33) reduces to

〈X|px|A12〉〈A12|py|Y 〉δαxδβy + 〈X|px|B12〉〈B12|py|Y 〉δαxδβy, (4.77)
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which is equal to

−〈X|px|A12〉〈A12|px|X〉δαxδβy +
−1√

3

−1√
3
〈X|px|A12〉〈A12|px|X〉δαxδβy

=
−2

3
〈X|px|A12〉〈A12|px|X〉δαxδβy. (4.78)

Therefore, using (4.64)

H
(int)Γ12

XY = −k̂xGk̂y. (4.79)

In the limit of a homogeneous semiconductor we have

H
(int)Γ12

XY = −Gkxky. (4.80)

4.7 Conclusions

By summing up all contributions to the Hamiltonian we obtain

H
(int)
SS = k̂xA

′k̂x + k̂yA
′k̂y + k̂zA

′k̂z, (4.81)

H
(int)
SX = k̂y

B

2
k̂z + k̂z

B

2
k̂y, (4.82)

H
(int)
XX = k̂x(F ′ + 2G)k̂x + k̂y(H1 +H2)k̂y + k̂z(H1 +H2)k̂z, (4.83)

H
(int)
XY = k̂y(H1 −H2)k̂x + k̂x(F ′ −G)k̂y, (4.84)

with the other elements obtained in a similar fashion.

In the case of a homogeneous semiconductor we obtain

H
(int)
SS = A′(k2

x + k2
y + k2

z), (4.85)

H
(int)
SX = Bkykz, (4.86)

H
(int)
XX = (F ′ + 2G)k2

x + (H1 +H2)(k
2
y + k2

z), (4.87)

H
(int)
XY = (H1 −H2 + F ′ −G)kxky, (4.88)

and we recover Kane’s parameters

L′ = F ′ + 2G, (4.89)

M = H1 +H2, (4.90)

N ′ = F ′ −G+H1 −H2. (4.91)
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In all these parameters the summation is over the remote bands, and excludes the valence bands

and the first conduction band.

4.7.1 Foreman’s notation

Foreman [11] uses the following notation

F ≡ − h̄2

mo
3σ, (4.92)

H1 ≡ − h̄2

mo
3π, (4.93)

G ≡ − h̄2

mo
3δ, (4.94)

H2 ≈ 0. (4.95)

In all these parameters the summation is over the remote bands, and excludes the valence

bands.

4.8 Symmetrization versus Burt’s Hamiltonian

We now see clearly the difference between the two procedures. The element (4.84) in the

Burt Hamiltonian corresponds to the element (4.88) in a homogeneous semiconductor. The

symmetrization procedure generates an element

1

2
k̂y(H1 −H2 + F ′ −G)k̂x +

1

2
k̂x(H1 −H2 + F ′ −G)k̂y, (4.96)

quite different from (4.84).

Comparisons between calculations using the symmetrized and the non-symmetrized Hamil-

tonians have been made for quantum wells [11, 24, 25, 26], wires [27], and dots [28].



Chapter 5

Momentum Matrix Elements

5.1 Introduction

Assuming that the eigenvalue problem has been solved, and that we know the wavefunctions,

we can now proceed to the calculation of the momentum matrix elements (MME). The MME

are the main quantities that we need in order to determine optical properties, like absorption

or gain.

Consider two wavefunctions Ψ(N)(r) and Ψ(M)(r), corresponding to eigenstates N and M .

In general:

Ψ(N)(r) =
∑

n

F (N)
n (r)Un(r) =

∑

s

F (N)
s (r)Us(r) +

∑

r

F (N)
r (r)Ur(r), (5.1)

Ψ(M)(r) =
∑

ν

F (M)
ν (r)Uν(r) =

∑

σ

F (M)
σ (r)Uσ(r) +

∑

ρ

F (M)
ρ (r)Uρ(r), (5.2)

where the sum has been broken down into main bands (s, σ) and remote bands (r, ρ) contribu-

tions. We need to calculate

〈Ψ(N)(r)|p̂ε|Ψ(M)(r)〉, (5.3)

where the momentum operator is

p̂ε ≡ −ih̄ ∂
∂ε
, ε ∈ {x, y, z}. (5.4)

The calculation is complicated by the fact that, after solving the eigenvalue problem for the

folded-down Hamiltonian, we only know the eight (for an eight bands model) envelope functions

46
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for the main bands

Ψ̄(N)(r) =
(
F

(N)
1 (r), F

(N)
2 (r), ..., F

(N)
8 (r)

)
, (5.5)

Ψ̄(M)(r) =
(
F

(M)
1 (r), F

(M)
2 (r), ..., F

(M)
8 (r)

)
. (5.6)

The solution to this problem, as we will show, is to ignore contributions second order or higher

in k̂αFs, where the operator k̂α is

k̂α ≡ −i ∂
∂α

, α ∈ {x, y, z}. (5.7)

5.2 Calculation of 〈Ψ(N)(r)|p̂ε|Ψ(M)(r)〉

From Burt’s approximation that the zone center eigenfunctions are the same in all semiconduc-

tors of the quantum microstructure it follows that Hrs′ = 0. Therefore the envelope functions

for the remote bands (4.20) are

Fr(r) =
1

E −Hrr(r)

∑

s′

−ih̄
m

prs′ · ∇Fs′(r). (5.8)

The equations (5.1) and (5.2) now become

Ψ(N)(r) =
∑

s

F (N)
s (r)Us(r) +

∑

r

(
1

E −Hrr(r)

∑

s′

−ih̄
m

prs′ · ∇F (N)
s′ (r)

)
Ur(r), (5.9)

Ψ(M)(r) =
∑

σ

F (M)
σ (r)Uσ(r) +

∑

ρ

(
1

E −Hρρ(r)

∑

σ′

−ih̄
m

pρσ′ · ∇F (M)
σ′ (r)

)
Uρ(r). (5.10)

We now use the approximation of slowly varying envelope functions:

〈Fn(r)Un(r)|p̂ε|Fν(r)Uν(r)〉

=

∫
F ∗

n(r)U∗
n(r)p̂εFν(r)Uν(r)dr

=

∫
F ∗

n(r)U∗
n(r)(p̂εFν(r))Uν(r)dr +

∫
F ∗

n(r)U∗
n(r)Fν(r)(p̂εUν(r))dr

≈
(∫

F ∗
n(r)p̂εFν(r)dr

)(∫

UC
U∗

n(r)Uν(r)dr

)
+

(∫
F ∗

n(r)Fν(r)dr

)(∫

UC
U∗

n(r)p̂εUν(r)dr

)

= 〈Fn(r)|p̂ε|Fν(r)〉δnν + 〈Fn(r)|Fν(r)〉pnν,ε. (5.11)
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With the approximation (5.11), the MME becomes

〈Ψ(N)(r)|p̂ε|Ψ(M)(r)〉

= 〈
∑

s

F (N)
s (r)Us(r) +

∑

r

F (N)
r (r)Ur(r)|p̂ε|

∑

σ

F (M)
σ (r)Uσ(r) +

∑

ρ

F (M)
ρ (r)Uρ(r)〉

≈
∑

s

∑

σ

〈F (N)
s (r)|p̂ε|F (M)

σ (r)〉δsσ +
∑

s

∑

σ

〈F (N)
s (r)|F (M)

σ (r)〉psσ,ε

+
∑

s

∑

ρ

〈F (N)
s (r)|p̂ε|F (M)

ρ (r)〉δsρ +
∑

s

∑

ρ

〈F (N)
s (r)|F (M)

ρ (r)〉psρ,ε

+
∑

r

∑

σ

〈F (N)
r (r)|p̂ε|F (M)

σ (r)〉δrσ +
∑

r

∑

σ

〈F (N)
r (r)|F (M)

σ (r)〉prσ,ε

+
∑

r

∑

ρ

〈F (N)
r (r)|p̂ε|F (M)

ρ (r)〉δrρ +
∑

r

∑

ρ

〈F (N)
r (r)|F (M)

ρ (r)〉prρ,ε

=
∑

s

〈F (N)
s (r)|p̂ε|F (M)

s (r)〉 +
∑

s

∑

σ

〈F (N)
s (r)|F (M)

σ (r)〉psσ,ε +
∑

s

∑

ρ

〈F (N)
s (r)|F (M)

ρ (r)〉psρ,ε

+
∑

r

∑

σ

〈F (N)
r (r)|F (M)

σ (r)〉prσ,ε +
∑

r

〈F (N)
r (r)|p̂ε|F (M)

r (r)〉 +
∑

r

∑

ρ

〈F (N)
r (r)|F (M)

ρ (r)〉prρ,ε,

(5.12)

where we have used the fact that δsρ = δrσ = 0. In (5.12) there are terms with a single

summation over the remote bands. These terms will be reduced to Kane parameters, which

also contain a single summation over remote bands. There are also terms of second order in

Fr ∼ k̂Fs. These terms will be ignored, as second order contributions in k̂. Therefore

〈Ψ(N)(r)|p̂ε|Ψ(M)(r)〉

≈
∑

s

〈F (N)
s (r)|p̂ε|F (M)

s (r)〉 +
∑

s

∑

σ

〈F (N)
s (r)|F (M)

σ (r)〉psσ,ε

+
∑

s

∑

ρ

〈F (N)
s (r)|F (M)

ρ (r)〉psρ,ε +
∑

r

∑

σ

〈F (N)
r (r)|F (M)

σ (r)〉prσ,ε

=
∑

s

〈F (N)
s (r)|p̂ε|F (M)

s (r)〉 +
∑

s

∑

σ

〈F (N)
s (r)|F (M)

σ (r)〉psσ,ε

+
∑

s

∑

ρ

〈F (N)
s (r)| 1

E −Hρρ(r)

∑

σ′

−ih̄
m

pρσ′ · ∇F (M)
σ′ (r)〉psρ,ε

+
∑

r

∑

σ

〈 1

E −Hrr(r)

∑

s′

−ih̄
m

prs′ · ∇F (N)
s′ (r)|F (M)

σ (r)〉prσ,ε. (5.13)

We now work a little bit on the last term of (5.13).

〈 1

E −Hrr(r)

−ih̄
m

prs′ · ∇F (N)
s′ (r)|F (M)

σ (r)〉
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=

∫ (
1

E −Hrr(r)

−ih̄
m

prs′ · ∇F (N)
s′ (r)

)∗
F (M)

σ (r)dr

=

∫
1

E −Hrr(r)

+ih̄

m
ps′r · ∇

(
F

(N)
s′ (r)

)∗
F (M)

σ (r)dr

=

∫ (
F

(N)
s′ (r)

)∗
∇ ·

(
ps′r

1

E −Hrr(r)

−ih̄
m

F (M)
σ (r)

)
dr

= 〈F (N)
s′ (r)|∇ · ps′r

1

E −Hrr(r)

−ih̄
m

|F (M)
σ (r)〉, (5.14)

where we have used the fact that, due to the hermiticity of Ĥ and p̂, we have H∗
rr = Hrr and

p∗
rs′ = ps′r. We have also integrated by parts.

The third term in (5.13) can be written as:

∑

s

∑

σ′

〈F (N)
s (r)|

∑

β

∑

ρ

h̄

m

psρ,εpρσ′,β

E −Hρρ(r)
k̂β |F (M)

σ′ (r)〉 =
∑

s

∑

σ′

〈F (N)
s (r)|

∑

β

Dεβ
sσ′(r)k̂β |F (M)

σ′ (r)〉,

(5.15)

where

Dεβ
sσ′(r) ≡

∑

ρ

h̄

m

psρ,εpρσ′,β

E −Hρρ(r)
. (5.16)

The fourth term in (5.13), using (5.14), can be written as:

∑

s′

∑

σ

〈F (N)
s′ (r)|

∑

α

∑

r

k̂α
h̄

m

ps′r,αprσ,ε

E −Hrr(r)
|F (M)

σ (r)〉 =
∑

s′

∑

σ

〈F (N)
s′ (r)|

∑

α

k̂αD
αε
s′σ(r)|F (M)

σ (r)〉,

(5.17)

where

Dαε
s′σ(r) ≡

∑

r

h̄

m

ps′r,αprσ,ε

E −Hrr(r)
. (5.18)

We now substitute (5.15) and (5.17) into (5.13) and obtain

〈Ψ(N)(r)|p̂ε|Ψ(M)(r)〉

=
∑

s

〈F (N)
s (r)|p̂ε|F (M)

s (r)〉 +
∑

s

∑

σ

〈F (N)
s (r)|F (M)

σ (r)〉psσ,ε

+
∑

s

∑

σ′

〈F (N)
s (r)|

∑

β

Dεβ
sσ′(r)k̂β |F (M)

σ′ (r)〉

+
∑

s′

∑

σ

〈F (N)
s′ (r)|

∑

α

k̂αD
αε
s′σ(r)|F (M)

σ (r)〉

=
∑

s

∑

σ

〈F (N)
s (r)|p̂εδsσ + psσ,ε +

∑

β

Dεβ
sσ(r)k̂β +

∑

α

k̂αD
αε
sσ(r)|F (M)

σ (r)〉. (5.19)
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5.3 Calculation of 〈Ψ̄(N)(r)|∂H̄
∂k̂ε

|Ψ̄(M)(r)〉

In Burt’s theory, the folded-down Hamiltonian, acting in the envelope space, is (4.30)

H̄sσ =
−h̄2

2m
δsσ∇2 +

−ih̄
m

psσ · ∇ +Hsσ(r) +
∑

r

∑

α

∑

β

−h̄2

m2
∂α

psr,αprσ,β

E −Hrr(r)
∂β

=
h̄2

2m
δsσ

∑

α

k̂αk̂α +
h̄

m

∑

α

psσ,αk̂α +Hsσ(r) +
∑

α

∑

β

h̄

m
k̂αD

αβ
sσ (r)k̂β . (5.20)

We now calculate the partial derivative of the Hamiltonian

∂H̄sσ

∂k̂ε

=
h̄2

2m
δsσ

∑

α

(δαεk̂α + k̂αδαε) +
h̄

m

∑

α

psσ,αδαε

+
∑

α

∑

β

h̄

m

(
δαεD

αβ
sσ (r)k̂β + k̂αD

αβ
sσ (r)δβε

)

=
h̄2

m
δsσk̂ε +

h̄

m
psσ,ε +

∑

β

h̄

m
Dεβ

sσ(r)k̂β +
∑

α

h̄

m
k̂αD

αε
sσ(r). (5.21)

The matrix element, computed in the envelope space, is

〈Ψ̄(N)(r)|∂H̄
∂k̂ε

|Ψ̄(M)(r)〉

=
∑

s

∑

σ

〈F (N)
s (r)|∂H̄sσ

∂k̂ε

|F (M)
σ (r)〉

=
∑

s

∑

σ

〈F (N)
s (r)| h̄

2

m
δsσ k̂ε +

h̄

m
psσ,ε +

∑

β

h̄

m
Dεβ

sσ(r)k̂β +
∑

α

h̄

m
k̂αD

αε
sσ(r)|F (M)

σ (r)〉.

(5.22)

Comparison of (5.19) and (5.22) gives directly the formula [29, 30]

〈Ψ(N)(r)|p̂ε|Ψ(M)(r)〉 =
m

h̄
〈Ψ̄(N)(r)|∂H̄

∂k̂ε

|Ψ̄(M)(r)〉, (5.23)

where we have used the fact that p̂ε = h̄k̂ε.

5.4 Normalization of the Wave Function

In the approximation of slowly varying envelope functions:

〈Fn(r)Un(r)|Fν(r)Uν(r)〉
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≈
(∫

F ∗
n(r)Fν(r)dr

)(∫

UC
U∗

n(r)Uν(r)dr

)

= 〈Fn(r)|Fν(r)〉δnν . (5.24)

With the approximation (5.24), the scalar product 〈Ψ(N)(r)|Ψ(M)(r)〉 becomes

〈Ψ(N)(r)|Ψ(M)(r)〉

= 〈
∑

s

F (N)
s (r)Us(r) +

∑

r

F (N)
r (r)Ur(r)|

∑

σ

F (M)
σ (r)Uσ(r) +

∑

ρ

F (M)
ρ (r)Uρ(r)〉

≈
∑

s

∑

σ

〈F (N)
s (r)|F (M)

σ (r)〉δsσ +
∑

s

∑

ρ

〈F (N)
s (r)|F (M)

ρ (r)〉δsρ

+
∑

r

∑

σ

〈F (N)
r (r)|F (M)

σ (r)〉δrσ +
∑

r

∑

ρ

〈F (N)
r (r)|F (M)

ρ (r)〉δrρ

=
∑

s

∑

σ

〈F (N)
s (r)|F (M)

σ (r)〉δsσ +
∑

r

∑

ρ

〈F (N)
r (r)|F (M)

ρ (r)〉δrρ, (5.25)

where we have used the fact that δsρ = δrσ = 0. In (5.25) there are terms with a single

summation over the remote bands. There are also terms of second order in Fr ∼ k̂Fs. These

terms will be ignored, as second order contributions in k̂. Therefore

〈Ψ(N)(r)|Ψ(M)(r)〉 =
∑

s

〈F (N)
s (r)|F (M)

s (r)〉 = 〈Ψ̄(N)(r)|Ψ̄(M)(r)〉. (5.26)

5.5 The Effect of Symmetrization on the MME

Consider the Burt Hamiltonian quadratic in k

H̄sσ =
∑

α

∑

β

h̄

m
k̂αD

αβ
sσ (r)k̂β . (5.27)

The MME is given by [58]

m

h̄

∂H̄sσ

∂k̂ε

=
∑

α

∑

β

δαεD
αβ
sσ (r)k̂β +

∑

α

∑

β

k̂αD
αβ
sσ (r)δβε

=
∑

β

Dεβ
sσ(r)k̂β +

∑

α

k̂αD
αε
sσ(r). (5.28)

Consider the symmetrized Hamiltonian

H̄sσ =
∑

α

∑

β

h̄

m
k̂α
Dαβ

sσ (r) +Dβα
sσ (r)

2
k̂β . (5.29)
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The MME is given by [58]

m

h̄

∂H̄sσ

∂k̂ε

=
∑

α

∑

β

δαε
Dαβ

sσ (r) +Dβα
sσ (r)

2
k̂β +

∑

α

∑

β

k̂α
Dαβ

sσ (r) +Dβα
sσ (r)

2
δβε

=
∑

β

Dεβ
sσ(r) +Dβε

sσ(r)

2
k̂β +

∑

α

k̂α
Dαε

sσ(r) +Dεα
sσ(r)

2
. (5.30)
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5.6 Appendix. The Projection Operator Method

The projection operator method [59] is an alternative way of calculating the optical matrix

elements entering the oscillator strength. The method is remarkable because it does not require

the eigenfunctions of the Hamiltonian.

Consider the general Schrödinger equation

Ĥ(r)|ψνρk(r)〉 = Eνk|ψνρk(r)〉, (5.31)

where ν is an energy band index and ρ is a degeneracy index.

The projection operator is by definition

P̂νk(r, r′) =
∑

ρ

|ψνρk(r)〉〈ψνρk(r′)|. (5.32)

It follows that

P̂νk(r, r′)|ψµσk(r′)〉 =
∑

ρ

|ψνρk(r)〉〈ψνρk(r′)|ψµσk(r′)〉

=
∑

ρ

|ψνρk(r)〉δνµδρσ = δνµ|ψνσk(r)〉 = δνµ|ψµσk(r)〉. (5.33)

The projection Hamiltonian operator is by definition

Ĥ(r, r′) =
∑

µ

P̂µk(r, r′)Ĥ(r′). (5.34)

It follows that

Ĥ(r, r′)|ψνρk(r′)〉 =
∑

µ

P̂µk(r, r′)Ĥ(r′)|ψνρk(r′)〉

=
∑

µ

∑

σ

|ψµσk(r)〉〈ψµσk(r′)|Ĥ(r′)|ψνρk(r′)〉

=
∑

µ

∑

σ

|ψµσk(r)〉〈ψµσk(r′)|ψνρk(r′)〉Eνk

=
∑

µ

∑

σ

|ψµσk(r)〉δµνδσρEνk

= Eνk|ψνρk(r)〉. (5.35)

The optical matrix elements entering the oscillator strength can be expressed as follows:

∑

ρσ

|〈ψµσk(r)|p̂(r)|ψνρk(r)〉|2

=
∑

ρσ

〈ψµσk(r)|p̂(r)|ψνρk(r)〉〈ψνρk(r′)|p̂(r′)|ψµσk(r′)〉. (5.36)
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At the same time:

Trace(P̂µk(r′, r)p̂(r)P̂νk(r, r′)p̂(r′))

=
∑

ωτ

〈ψωτk(r′)|P̂µk(r′, r)p̂(r)P̂νk(r, r′)p̂(r′)|ψωτk(r′)〉

=
∑

ωτ

〈ψωτk(r′)|
∑

ρ

|ψµρk(r′)〉〈ψµρk(r)|p̂(r)|
∑

σ

|ψνσk(r)〉〈ψνσk(r′)|p̂(r′)|ψωτk(r′)〉

=
∑

ωτρσ

〈ψωτk(r′)|ψµρk(r′)〉〈ψµρk(r)|p̂(r)|ψνσk(r)〉〈ψνσk(r′)|p̂(r′)|ψωτk(r′)〉

=
∑

ωτρσ

δωµδτρ〈ψµρk(r)|p̂(r)|ψνσk(r)〉〈ψνσk(r′)|p̂(r′)|ψωτk(r′)〉

=
∑

ρσ

〈ψµρk(r)|p̂(r)|ψνσk(r)〉〈ψνσk(r′)|p̂(r′)|ψµρk(r′)〉. (5.37)

From (5.36) and (5.37) it follows that

∑

ρσ

|〈ψµσk(r)|p̂(r)|ψνρk(r)〉|2 = Trace(P̂µk(r′, r)p̂(r)P̂νk(r, r′)p̂(r′)). (5.38)

The Trace opens alternative calculational options, because it is representation independent.

There is also another formula for the projection operator, which is independent of the eigen-

functions of the Hamiltonian.

P̂νk(r, r′) =
∏

µ6=ν

Ĥ(r, r′) −Eµk × 1̂(r, r′)
Eνk −Eµk

, (5.39)

where 1̂(r, r′) is the unit operator.

We will derive equation (5.39) by applying the operators from both sides to a general

wavefunction.

|ψk(r′)〉 =
∑

αβ

cαβ |ψαβk(r′)〉. (5.40)

Using (5.33) we have

P̂νk(r, r′)|ψk(r′)〉

= P̂νk(r, r′)
∑

αβ

cαβ |ψαβk(r′)

=
∑

αβ

cαβP̂νk(r, r′)|ψαβk(r′)

=
∑

αβ

cαβδνα|ψαβk(r)

=
∑

β

cνβ|ψνβk(r). (5.41)
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Using (5.37) we have

Ĥ(r, r′)|ψk(r′)〉

= Ĥ(r, r′)
∑

αβ

cαβ |ψαβk(r′)〉

=
∑

αβ

cαβĤ(r, r′)|ψαβk(r′)〉

=
∑

αβ

cαβEαk|ψαβk(r)〉. (5.42)

Also

Eµk × 1̂(r, r′)|ψk(r′)〉

= Eµk|ψk(r)〉

= Eµk

∑

αβ

cαβ |ψαβk(r)〉. (5.43)

From (5.42) and (5.43) we have

(
Ĥ(r, r′) −Eµk × 1̂(r, r′)

)
|ψk(r′)〉 =

∑

αβ

(Eαk −Eµk)cαβ |ψαβk(r)〉. (5.44)

For µ 6= ν from (5.44) we get

Ĥ(r, r′) −Eµk × 1̂(r, r′)
Eνk −Eµk

|ψk(r′)〉 =
∑

αβ

Eαk −Eµk

Eνk −Eµk

cαβ |ψαβk(r)〉. (5.45)

We now look at the right side of (5.45), to see what happens with the sum over α.

α = µ → 0, (5.46)

α = ν →
∑

β

cνβ |ψνβk(r)〉, (5.47)

α 6= µ, α 6= ν →
∑

β

Eαk −Eµk

Eνk −Eµk

cαβ |ψαβk(r)〉. (5.48)

The result is that the terms with ψµβk(r) have been eliminated, the terms with ψνβk(r) have

been preserved unchanged, and the other terms have been changed. However, by repeatedly

applying the operator on the right of (5.45) for all possible values of µ (with the exception of
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ν) we succeed in eliminating all the terms in the wavefunction, with the exception of the terms

with ψνβk(r). These last terms are left unchanged. As a result


∏

µ6=ν

Ĥ(r, r′) −Eµk × 1̂(r, r′)
Eνk −Eµk


 |ψk(r′)〉 =

∑

β

cνβ |ψνβk(r). (5.49)

Comparing (5.41) and (5.49), and because of the arbitrariness of the wavefunction |ψk(r′)〉, we

end up with (5.39).



Chapter 6

k · p Theory under a Change of Basis

6.1 Introduction

Although the derivations presented in the previous chapters assume a semiconductor crystal

with the crystallographic axes parallel to the reference frame axes, this is not always the case

in practice. To deal with arbitrary orientations we need to know what happens with the

Hamiltonian matrix when the reference axes are rotated. This question is answered using the

formalism of linear algebra, described in this chapter. The same formalism is also used when

we have a change of basis required to diagonalize the spin-orbit interaction.

6.2 Mathematical Formalism

In the k · p method the wave-function is expanded in terms of zone-center eigenfunctions:

ψ(r) = F1(r)|S ↑〉 + F2(r)|X ↑〉 + F3(r)|Y ↑〉 + F4(r)|Z ↑〉

+F5(r)|S ↓〉 + F6(r)|X ↓〉 + F7(r)|Y ↓〉 + F8(r)|Z ↓〉

+remote bands. (6.1)

These zone-center eigenfunctions form an orthonormal basis. Hamiltonian elements are defined

by, e.g.,

H12 = 〈S ↑ |Ĥ|X ↑〉, (6.2)

57
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where Ĥ is the folded down Hamiltonian, with the contributions from the remote bands in-

cluded. The eigenvalue equation

Ĥψ(r) = Eψ(r), (6.3)

becomes 


H11 H12 ... H1n

H21 H22 ... H2n

... ... ... ...

Hn1 Hn2 ... Hnn







F1

F2

...

Fn




= E




F1

F2

...

Fn



. (6.4)

It is clear that the general theory of linear algebra applies to k · p theory, and that under a

change to a new orthonormal basis (S−1 = S†) given by




U1

U2

U3

U4

U5

U6

U7

U8




= (ST )




|S ↑〉
|X ↑〉
|Y ↑〉
|Z ↑〉
|S ↓〉
|X ↓〉
|Y ↓〉
|Z ↓〉




, (6.5)

the Hamiltonian will become

(Hnew) = (S−1)(H)(S). (6.6)

Since

(Fnew) = (S−1)(F ), (6.7)

equation (5.23) shows us that the MME is left invariant by the change of basis, as long as the

matrix S does not depend on k, result also derived in Ref. [60].

6.3 Diagonalization of the Spin-Orbit Interaction

Imagine a ZB crystal in which we can change the lattice constant. The spin-orbit interaction

Hamiltonian will only change through the multiplicative constant ∆. In the tight-binding limit



CHAPTER 6. K · P THEORY UNDER A CHANGE OF BASIS 59

the |J mj〉 representation will diagonalize the spin-orbit interaction. Because the diagonaliza-

tion does not depend on the value of ∆, the same transformation will diagonalize the spin-orbit

interaction even when tight-binding is not a good approximation [17].

6.3.1 ZB semiconductors

The 6-band spin-orbit Hamiltonian for bulk ZB semiconductors is [17]

(Hso ) =




|X ↑〉 |Y ↑〉 |Z ↑〉 |X ↓〉 |Y ↓〉 |Z ↓〉

|X ↑〉 0 1 0 0 0 i

|Y ↑〉 −1 0 0 0 0 1

|Z ↑〉 0 0 0 −i −1 0

|X ↓〉 0 0 −i 0 −1 0

|Y ↓〉 0 0 1 1 0 0

|Z ↓〉 i −1 0 0 0 0




∆

3i
. (6.8)

A change of basis given by [11]




|32 , 3
2〉

|32 , 1
2〉

|32 , −1
2 〉

|32 , −3
2 〉

|12 , 1
2〉

|12 , −1
2 〉




=




1√
2

i√
2

0 0 0 0

0 0 −
√

2√
3

1√
6

i√
6

0

−1√
6

i√
6

0 0 0 −
√

2√
3

0 0 0 1√
2

−i√
2

0

0 0 1√
3

1√
3

i√
3

0

−1√
3

i√
3

0 0 0 1√
3







|X ↑〉
|Y ↑〉
|Z ↑〉
|X ↓〉
|Y ↓〉
|Z ↓〉




, (6.9)

transforms the spin-orbit Hamiltonian into

(H
(new)
so ) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −2 0

0 0 0 0 0 −2




∆

3
. (6.10)
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6.3.2 WZ semiconductors

The 6-band spin-orbit Hamiltonian for bulk WZ semiconductors is [31]

(Hso ) =




|X ↑〉 |Y ↑〉 |Z ↑〉 |X ↓〉 |Y ↓〉 |Z ↓〉

|X ↑〉 ∆1 −i∆2 0 0 0 ∆3

|Y ↑〉 i∆2 ∆1 0 0 0 −i∆3

|Z ↑〉 0 0 0 −∆3 i∆3 0

|X ↓〉 0 0 −∆3 ∆1 i∆2 0

|Y ↓〉 0 0 −i∆3 −i∆2 ∆1 0

|Z ↓〉 ∆3 i∆3 0 0 0 0




. (6.11)

A change of basis given by [31]




|u1〉
|u2〉
|u3〉
|u4〉
|u5〉
|u6〉




=




−1√
2

−i√
2

0 0 0 0

1√
2

−i√
2

0 0 0 0

0 0 1 0 0 0

0 0 0 1√
2

−i√
2

0

0 0 0 −1√
2

−i√
2

0

0 0 0 0 0 1







|X ↑〉
|Y ↑〉
|Z ↑〉
|X ↓〉
|Y ↓〉
|Z ↓〉




, (6.12)

transforms the spin-orbit Hamiltonian into

(H
(new)
so ) =




∆1 + ∆2 0 0 0 0 0

0 ∆1 − ∆2 0 0 0
√

2∆3

0 0 0 0
√

2∆3 0

0 0 0 ∆1 + ∆2 0 0

0 0
√

2∆3 0 ∆1 − ∆2 0

0
√

2∆3 0 0 0 0




. (6.13)

6.4 Rotation of the Cartesian Axes

Whenever the semiconductor structure is periodic in the x, y, or z directions the wave-function

is given by the Bloch theorem, and the operators k̂x, k̂y, or k̂z are replaced by real numbers.

This greatly simplifies the calculation. When the structure is periodic in a different direction
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z

y

x

z′

θ

φ

Figure 6.1: The polar angles θ and φ.

we need to use a rotated reference frame, in which the z ′ axis goes in the direction of the

periodicity [18]. The direction of the z ′ axis is given by the polar angles θ and φ, as shown in

Figure 6.1.

In the rotated reference frame the new spin basis vectors are [18]

( | ↑′〉
| ↓′〉

)
=

(
exp(−iφ/2) cos(θ/2) exp(iφ/2) sin(θ/2)

− exp(−iφ/2) sin(θ/2) exp(iφ/2) cos(θ/2)

)( | ↑〉
| ↓〉

)
, (6.14)

and the new zone-center basis vectors are



|X ′〉
|Y ′〉
|Z ′〉


 =




cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)

− sin(φ) cos(φ) 0

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)







|X〉
|Y 〉
|Z〉


 . (6.15)

If (
S11 S12

S21 S22

)
=

(
exp(−iφ/2) cos(θ/2) exp(iφ/2) sin(θ/2)

− exp(−iφ/2) sin(θ/2) exp(iφ/2) cos(θ/2)

)
, (6.16)




R11 R12 R13

R21 R22 R23

R31 R32 R33


 =




cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)

− sin(φ) cos(φ) 0

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)


 , (6.17)
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then




|X ′ ↑〉
|Y ′ ↑〉
|Z ′ ↑〉
|X ′ ↓〉
|Y ′ ↓〉
|Z ′ ↓〉




=




R11S11 R12S11 R13S11 R11S12 R12S12 R13S12

R21S11 R22S11 R23S11 R21S12 R22S12 R23S12

R31S11 R32S11 R33S11 R31S12 R32S12 R33S12

R11S21 R12S21 R13S21 R11S22 R12S22 R13S22

R21S21 R22S21 R23S21 R21S22 R22S22 R23S22

R31S21 R32S21 R33S21 R31S22 R32S22 R33S22







|X ↑〉
|Y ↑〉
|Z ↑〉
|X ↓〉
|Y ↓〉
|Z ↓〉




. (6.18)

Under this change of basis the spin-orbit interaction Hamiltonian matrix for ZB remains

unchanged. The spin-orbit interaction Hamiltonian matrix for WZ is however modified [26].

The matrix (R) has the property that (R)T = (R)−1. Under the rotation of the axes the

components of a vector will change as




k′x

k′y

k′z


 = (R)




kx

ky

kz


 . (6.19)

6.4.1 Hamiltonian with no spin

Under the rotation of the axes the matrix of a three-band Hamiltonian will change as

(H ′) = (R)(H)(RT ), (6.20)

H ′
α′β′ = Rα′αHαβRβ′β. (6.21)

When the Hamiltonian is given by

Hαβ = kiD
ij
αβkj , (6.22)

because

(k) = (RT )(k′), (6.23)

ki = Ri′ik
′
i′ , (6.24)

the rotated Hamiltonian becomes [27]

H ′
α′β′ = Rα′αRi′ik

′
i′D

ij
αβRj′jk

′
j′Rβ′.β (6.25)



CHAPTER 6. K · P THEORY UNDER A CHANGE OF BASIS 63

6.4.2 Hamiltonian with spin

Consider

(U) ≡




R11S11 R12S11 R13S11 R11S12 R12S12 R13S12

R21S11 R22S11 R23S11 R21S12 R22S12 R23S12

R31S11 R32S11 R33S11 R31S12 R32S12 R33S12

R11S21 R12S21 R13S21 R11S22 R12S22 R13S22

R21S21 R22S21 R23S21 R21S22 R22S22 R23S22

R31S21 R32S21 R33S21 R31S22 R32S22 R33S22




. (6.26)

Under the rotation of the axes the matrix of the Hamiltonian will change as

(H ′) = (U∗)(H)(UT ), (6.27)

H ′
α′β′ = U∗

α′αHαβUβ′β. (6.28)

When the Hamiltonian is given by

Hαβ = kiD
ij
αβkj , (6.29)

because

(k) = (RT )(k′), (6.30)

ki = Ri′ik
′
i′ , (6.31)

the rotated Hamiltonian becomes

H ′
α′β′ = U∗

α′αRi′ik
′
i′D

ij
αβRj′jk

′
j′Uβ′β. (6.32)



Chapter 7

Strain in Cylindrical

Heterostructures

7.1 Elasticity Theory in Cartesian Coordinates

The basic quantity in elasticity theory is the deformation vector field u = x ′ − x relating the

position x of a point before the deformation to the position x′ of the point after the deformation.

For a pair of two close points du = dx′ − dx, and the distance between the two points after the

deformation can be written as [61]

(dx′)2 = (dx)2 + 2εijdxidxj , (7.1)

where the symmetric strain tensor is defined as

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi
+
∂uk

∂xi

∂uk

∂xj

)
. (7.2)

When the deformations are small the derivatives ∂ui/∂xj are small, and we keep only linear

terms in these derivatives. This is how we end up with the expression for the linear strain:

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (7.3)

The strain-displacement equations (7.3) can be integrated, to obtain the deformation from the

strain tensor. Since the six stress tensor components are more than the three displacement

64



CHAPTER 7. STRAIN IN CYLINDRICAL HETEROSTRUCTURES 65

components, extra conditions need to be imposed to make sure that the solution is consistent.

The displacement field at a given point does not depend on the integration path. Stokes theorem

is applied to the integrand, and the following compatibility conditions are obtained [62] :

∂

∂xl

[
εik − xj

(
∂εik
∂xj

− ∂εjk
∂xi

)]
=

∂

∂xk

[
εil − xj

(
∂εil
∂xj

− ∂εjl
∂xi

)]
. (7.4)

Consider a small volume element inside a solid body. There are two kind of forces acting on

this volume element: the body forces (e.g. gravity) and the surface tractions. The surface

tractions are the forces due to the remaining of the solid, acting on the small volume element at

its surface. Since the surface tractions act only at the surface, they must be given by a surface

integral, which is then converted to a volume integral:

Fi =

∮
σikdfk =

∫
∂σik

∂xk
dV, (7.5)

where σik is the stress tensor. σikdfk is the Fi component of the force acting on a surface

element dfk perpendicular to the xk axis. For a body in rotational equilibrium the stress tensor

must be symmetric [61]. When the body is in translational motion the net force acting on the

volume element gives its acceleration:

∂σik

∂xk
+ fi = ρai, (7.6)

where f is the body force density (e.g. ρg), ρ is the mass density, and a is the acceleration.

In general there is a proportionality relation between force and elongation (between stress and

strain), called Hooke’s Law. In the most general case this relation takes the form:

σij = Cijmnεmn, (7.7)

where Cijmn is the stiffness matrix. Although the 4 indices suggest 81 stiffness elements, due to

symmetry Cijmn = Cjimn and Cijmn = Cijnm. The existence of a strain energy density function,

when the system is adiabatic or isothermal, leads to Cijmn = Cmnij . As a result there are only

21 independent stiffness elements. For an isotropic material, due to symmetry considerations,

only 2 independent stiffness elements ( µ and λ ) are left. The stress-strain relations take the

form:

σij = 2µεij + λεnnδij . (7.8)



CHAPTER 7. STRAIN IN CYLINDRICAL HETEROSTRUCTURES 66

7.2 Elasticity Theory in Cylindrical Coordinates

In cylindrical coordinates the strain-displacement equations (7.3) take the form:

εrr =
∂ur

∂r
, (7.9)

εθθ =
1

r

∂uθ

∂θ
+
ur

r
, (7.10)

εzz =
∂uz

∂z
, (7.11)

εrθ =
1

2

(
1

r

∂ur

θ
+
∂uθ

∂r
− uθ

r

)
, (7.12)

εrz =
1

2

(
∂ur

∂z
+
∂uz

∂r

)
, (7.13)

εθz =
1

2

(
∂uθ

∂z
+

1

r

∂uz

∂θ

)
. (7.14)

The compatibility relations (7.4) take the form:

∂2εθθ

∂r2
+

1

r2
∂2εrr

∂θ2
+

2

r

∂εθθ

∂r
− 1

r

∂εrr

∂r
= 2

(
1

r

∂2εrθ

∂r∂θ
+

1

r2
∂εrθ

∂θ

)
, (7.15)

∂2εθθ

∂z2
+

1

r2
∂2εzz

∂θ2
+

1

r

∂εzz

∂r
= 2

(
1

r

∂2εθz

∂z∂θ
+

1

r

∂εzr

∂z

)
, (7.16)

∂2εzz

∂r2
+
∂2εrr

∂z2
= 2

∂2εrz

∂z∂r
, (7.17)

1

r

∂2εzz

∂r∂θ
− 1

r2
∂εzz

∂θ
=

∂

∂z

(
1

r

∂εzr

∂θ
+
∂εθz

∂r
− ∂εrθ

∂z

)
− ∂

∂z

(
εθz

r

)
, (7.18)

1

r

∂2εrr

∂θ∂z
=

∂

∂r

(
1

r

∂εzr

∂θ
− ∂εθz

∂r
+
∂εrθ

∂z

)
− ∂

∂r

(
εθz

r

)
+

2

r

∂εrθ

∂z
, (7.19)

∂2εθθ

∂r∂z
− 1

r

∂εrr

∂z
+

1

r

∂εθθ

∂z
=

1

r

∂

∂θ

(
−1

r

∂εzr

∂θ
+
∂εθz

∂r
+
∂εrθ

∂z

)
+

1

r

∂

∂θ

(
εθz

r

)
. (7.20)

The equilibrium relations (7.6) take the form:

∂σrr

∂r
+

1

r

∂σθr

∂θ
+
∂σzr

∂z
+

1

r
(σrr − σθθ) + fr = ρar, (7.21)

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+
∂σzθ

∂z
+

2

r
σrθ + fθ = ρaθ, (7.22)

∂σrz

∂r
+

1

r

∂σθz

∂θ
+
∂σzz

∂z
+

1

r
σrz + fz = ρaz. (7.23)

The stress-strain relations (7.8) take the form:

σrr = 2µεrr + λ(εrr + εθθ + εzz), (7.24)
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σθθ = 2µεθθ + λ(εrr + εθθ + εzz), (7.25)

σzz = 2µεzz + λ(εrr + εθθ + εzz), (7.26)

σrθ = 2µεrθ, (7.27)

σrz = 2µεrz, (7.28)

σθz = 2µεθz. (7.29)

7.3 Plane Deformation with Cylindrical Symmetry

A state of plane deformation is defined by ur = ur(r, θ), uθ = uθ(r, θ), uz = uz(z). If the

problem has cylindrical symmetry (no dependence on θ), and if there is no torsion (uθ = 0), the

deformation is given by ur = ur(r), uθ = 0, uz = uz(z). In this situation the strain-displacement

equations take the form:

εrr =
∂ur

∂r
, (7.30)

εθθ =
ur

r
, (7.31)

εzz =
∂uz

∂z
, (7.32)

εrθ = 0, (7.33)

εrz = 0, (7.34)

εθz = 0. (7.35)

The compatibility relations are reduced to:

∂2εθθ

∂r2
+

2

r

∂εθθ

∂r
− 1

r

∂εrr

∂r
= 0. (7.36)

The stress-strain relations take the form:

σrr = 2µεrr + λ(εrr + εθθ + εzz), (7.37)

σθθ = 2µεθθ + λ(εrr + εθθ + εzz), (7.38)

σzz = 2µεzz + λ(εrr + εθθ + εzz), (7.39)

σrθ = 0, (7.40)
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σrz = 0, (7.41)

σθz = 0. (7.42)

Suppose that the body is in translational equilibrium, and that there are no body forces. The

equilibrium relations take the form:

∂σrr

∂r
+

1

r
(σrr − σθθ) = 0, (7.43)

∂σzz

∂z
= 0. (7.44)

Since
∂σzz

∂z
= (2µ+ λ)

∂εzz

∂z
= 0, (7.45)

we conclude that εzz ≡ εo is constant, and that uz = εoz.

7.4 Infinite Embedded Cylindrical Wire with Cubic Structure

We are now ready to analyze the strain distribution in an infinitely long cylindrical wire em-

bedded in an infinite substrate. In the following the label ”in” refers to the wire, and the

label ”out” refers to the substrate. Let’s start with the wire and the substrate separated and

unstrained, as shown in Figure 7.1. The radius of the unstrained wire is greater than the radius

of the hole in the unstrained substrate. This difference is called δ. Because ε
(out)
zz at infinity is

zero, and because it is constant, we conclude that ε
(out)
zz = 0. The wire is first compressed, in

such a way as to preserve the cubic structure, until the lattice constant of the wire matches the

lattice constant of the substrate. Therefore

δ

ro
=
uz

z
= εo =

a(out) − a(in)

a(out)
. (7.46)

The compressed wire is then inserted into the cavity, and the radial strain in allowed to relax.

This procedure is known as ”shrink fit” [63]. As a result the wire will end up with a deformation

u
(in)
r (r) and the substrate will end up with a deformation u

(out)
r (r). It is clear from the figure

that

u(in)
r (ro) − u(out)

r (ro) = δ. (7.47)
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δ

Figure 7.1: The wire and the substrate before embedding.

u
(out)
r (ro)

u
(in)
r (ro)

ro

Figure 7.2: The wire and the substrate after the ”shrink fit” embedding. The shaded regions

are the compressed wire before insertion (right) and the relaxed wire after insertion (left).
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The equation (7.47) is used to determine the pressure P at the wire-substrate interface, the key

to solving the strain distribution.

In a first step we substitute the stress components from (7.37) and (7.38) into (7.43).

2µ
∂εrr

∂r
+ λ

∂εrr

∂r
+ λ

∂εθθ

∂r
+

2µ

r
(εrr − εθθ). (7.48)

In a second step we substitute the strain components from (7.30) and (7.31) into (7.48).

∂2ur

∂r2
+

1

r

∂ur

∂r
− ur

r2
= 0. (7.49)

The general solution of the equation (7.49) is

ur(r) = C1r +
C2

r
. (7.50)

7.4.1 The Wire

In the wire C2 = 0, to prevent the divergence when the radius is zero. Therefore:

ur = C1r, (7.51)

εrr = C1, (7.52)

εθθ = C1, (7.53)

σrr = 2(µ+ λ)C1 + λεo. (7.54)

At the wire-substrate interface the radial stress is the negative pressure. This is the boundary

condition.

−P = 2(µ+ λ)C1 + λεo. (7.55)

As a consequence:

C1 = − P + λεo
2(µ+ λ)

, (7.56)

u(in)
r (r) = − P + λεo

2(µ+ λ)
r. (7.57)
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7.4.2 The Substrate

In the substrate C1 = 0, to prevent the divergence when the radius goes to infinity. Therefore:

ur =
C2

r
, (7.58)

εrr = −C2

r2
, (7.59)

εθθ =
C2

r2
, (7.60)

σrr = −2µC2

r2
. (7.61)

At the wire-substrate interface the radial stress is the negative pressure. This is the boundary

condition.

−P = −2µC2

r2o
. (7.62)

As a consequence:

C2 =
Pr2o
2µ

, (7.63)

u(out)
r (r) =

Pr2o
2µr

. (7.64)

7.4.3 The Shrink Fit

We now substitute (7.57) and (7.64) into (7.47). For simplicity we assume that µ and λ are the

same in both materials [32].

− P + λεo
2(µ+ λ)

ro −
Pr2o
2µro

= εoro. (7.65)

From (7.65) we find the pressure P , needed in (7.57) and (7.64) to give the strain distribution.

P = −εo
(2µ+ 3λ)µ

2µ+ λ
. (7.66)



Chapter 8

One-Band k · p Calculations -

Quantum Ice Cream Dot

8.1 Introduction

Modeling the electron states in semiconductor nanostructures remains a difficult computational

task. Various computational methods such as the transfer matrix method [64], the finite el-

ement method [65], the finite difference method [66, 67, 68], and the fast Fourier transform

technique [69] have been used. Other methods, the effective index method and numerical relax-

ation, have also been used to calculate the ground state of a cylindrical quantum dot (QD) [70].

The finite difference method (FDM) has been, by far, the most commonly used method. Never-

theless, implementation details are rarely given. One exception is in the study of GaN quantum

wells by Chuang and Chang [71].

The shape and size of a quantum dot determine the number of eigenstates and their degen-

eracy [72]. We investigated whether we can have a bound state in a very narrow quantum dot

with the shape of an ice cream cone (QIC dot). In this calculation the QIC dot is embedded

into a cube, with a potential barrier of 0.5 eV, as shown in Figure 8.1.

72
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Figure 8.1: The 10o QIC dot embedded into a cubical substrate.

8.2 Effect of Dirichlet and van Neumann boundary conditions

On the faces of the cube Dirichlet or van Neumann boundary conditions are imposed. When

the state is truly bound, then of course both the wave function and its derivative are zero on

the outer boundary of the substrate. If van Neumann boundary conditions are used then the

magnitude of the wave function on the outer boundary of the substrate can be used as a check:

only when it is zero we truly have a bound state [66].

In order to see the effect of applying Dirichlet or van Neumann boundary conditions on the

boundary, we have solved the 10o QIC, with a radius of 100 Ȧ, enclosed in a cubical barrier of

side 300 Ȧ. The grid is 31×31×31, with the tip of the QIC at the center of the grid. The grid

step is 10 Ȧ. Inside the dot the effective mass is 0.067 mo, and the potential is 0 eV. In the

barrier the effective mass is 0.0919 mo, and the potential is 0.5 eV. Our calculation with van

Neumann boundary conditions resulted in only one bounded state, with energy 0.461 eV, about

3% higher than the one obtained with Dirichlet boundary conditions. This value is pretty close

to 0.5 eV, the potential of the barrier, therefore it is of legitimate interest to see whether the

wave function is zero on the boundary of the cubical grid, as required for a bound state. The

wave function for the only bound state is plotted in Figures 8.2 and 8.3.

It can be seen that the wave-function is not concentrated closer to the tip of the QIC. It can
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Figure 8.2: The 10o QIC wave-function in a YZ cross-section, at half X.

also be seen that the wave-function is not zero on the grid boundary closer to the cap of the

QIC. This can be most easily seen from Figure 8.4. Therefore a better calculation should be

done, with the QIC better centered within the cubical grid. By imposing Dirichlet boundary

conditions we have affected the wave-function in a rather dramatic way, forcing it towards the

center of the grid. The bound state found is not bound by the barrier’s potential outside the

QIC dot, but by the infinite potential applied by the Dirichlet boundary conditions on the faces

of the cube.
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Figure 8.3: The 10o QIC wave-function in a YZ cross-section, at half X. Contour plot lines at

0.01, 0.02, etc.
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Figure 8.4: The 10o QIC wave-function along the Z axis. The three vertical domains are the

barrier, the quantum dot, and the barrier.



Chapter 9

One-Band k · p Calculations -

Elliptical Dot

9.1 Introduction

There are 11 coordinate systems with orthogonal coordinate lines [73]. Depending on the

symmetry of the domain, and also on the boundary conditions, the Schrödinger equation can or

cannot be simplified and solved exactly in the coordinate system compatible with the symmetry

of the quantum dot. The separability of the Schrödinger equation is very important when

studying shape effects, for it allows us to better understand why we get degeneracies in the

eigenfunctions [72].

In a recent paper [35], it is stated that the two-dimensional elliptic quantum dot (QD)

problem with finite barrier can be exactly solved. The purpose of our work [34] is to point out

that the above assertion is incorrect and to correct the energy spectra presented in Ref. [35].

9.2 The Eigenstates of an Elliptical Quantum Dot

The separation of the Schrödinger equation for an elliptic QD in elliptical coordinates leads to

the Mathieu and modified Mathieu differential equations (Eqs. (3a) and (3b) of Ref. [35]). For

the infinite barrier problem, it is correctly stated that the energy eigenvalues E are determined
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by the boundary condition imposed upon the even or odd radial Mathieu functions

Mc
(1)
l (c, q1, U) = 0, (9.1)

Ms
(1)
l (c, q1, U) = 0, (9.2)

where c is a separation constant, q1 = f2k2/4 with f =
√
a2 − b2 the focal length and k2 =

2m∗E/h̄2, and U = arctanh(b/a) is the dot boundary. Periodicity of the angular Mathieu

function determines the separation constant c, while the zeroes of the radial Mathieu function

at u = U determine the energy eigenvalues [73].

For the finite barrier problem the even and odd wave functions (Eqs. (11) and (12) of

Ref. [35]) are assumed to have the form

Ψe
n,l(u, v)

=




N e

n,lMc
(1)
l (u, q1n,l

)cel(v, q1n,l
), u ≤ U,

N e
n,lMc

(3)
l (u,−q2n,l

)cel(v,−q2n,l
), u > U,

(9.3)

and

Ψo
n,l(u, v)

=




No

n,lMs
(1)
l (u, q1n,l

)sel(v, q1n,l
), u ≤ U,

No
n,lMs

(3)
l (u,−q2n,l

)sel(v,−q2n,l
), u > U.

(9.4)

These functions lead to a simple boundary condition (Eq. (5) of Ref. [35]), which is solved

similarly to the infinite barrier case.

That the wave functions (3) and (4) cannot be right can be seen by rewriting the continuity

of the wave function on the ellipse boundary. For example, Eq. (3) gives

cel(v, q1n,l
) =

Mc(3)
l (U,−q2n,l

)

Mc(1)
l (U,q1n,l

)
cel(v,−q2n,l

)

≡ constant × cel(v,−q2n,l
). (9.5)

The latter equation cannot be satisfied for an arbitrary v. If the angular Mathieu functions

were the same for all v (apart from a proportionality constant) then, in particular, the following
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set of equations would be fulfilled:

cl,q1 − 2q1 cos(2v) =
1

cel(v, q1)

d2cel(v, q1)

dv2

=
1

cel(v,−q2)
d2cel(v,−q2)

dv2
= cl,−q2 − 2q2 cos(2v). (9.6)

From Eq. (9.6) it follows that:

2(q1 − q2) cos(2v) = cl,q1 − cl,−q2 . (9.7)

The latter equation cannot be fulfilled for all v since q1 − q2 = f2m∗Vo/(2h̄
2) 6= 0. The origin

of the problem is, obviously, that the problem is not separable, contrary to what is stated in

Ref. [35].

The correct wave function for the finite barrier problem can be written in the form (for the

even states as example)

Ψe
n(u, v)

=





∑
lA

e
n,lMc

(1)
l (u, q1n)cel(v, q1n), u ≤ U,

∑
lB

e
n,lMc

(3)
l (u,−q2n)cel(v,−q2n), u > U.

(9.8)

In addition to the summation, we note that the q’s should not be functions of l.

In the absence of a simple exact solution, we present a numerical solution. We have used

the finite-difference method on a 400 × 400 uniform rectangular grid. Different eccentricities

have been achieved by changing the mesh sizes in the two directions. The algebraic eigenvalue

problem for the resulting large sparse matrix has been solved with the help of the ARPACK

library [74]. For the infinite-barrier problem, we have obtained a spectrum identical to Fig. 5

of Ref. [35]. However, for a finite barrier, our results are different. For example, we have

reproduced in our Fig. 9.1, results of our calculations corresponding to Fig. 3 of Ref. [35].

While we get the same limiting eigenvalues for the circular dot (due to the separability of

the problem), our results differ for increasing eccentricity. In particular, we get a more rapid

increase in the energies with increasing eccentricity. This is the same trend seen for the infinite

barrier QD.
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Figure 9.1: Energy of the bound states for an elliptic quantum dot as a function of the ec-

centricity a/b. The effective electron mass is m∗=0.041 mo, the product of the two semi-axes

is (ab)1/2 = 10 nm, the potential in the barrier is Vo = 0.7527 eV. The strength of the well,

deffined by γ =
√

(2m∗/h̄2)abVo, is γ = 9.



Chapter 10

One-Band k · p Calculations -

Nanowire Superlattice

10.1 Introduction

In this chapter we apply the finite difference method in cylindrical polar coordinates to solve

the Schrödinger equation for a nanowire superlattice. Our work [36] is motivated by two recent

sets of papers. In the first one, most of which were published in Comp. Phys. Comm., various

authors have applied the FDM in cylindrical polar coordinates (CPC) to study quantum dots

using the one-band effective mass equation [75, 76, 77], but details of the FDM were not given.

In particular, complications of the formulation near the cylinder axis were not mentioned. In

the second one, there has been a flurry of experimental activity on the growth of free-standing

semiconductor nanowire superlattices (NWSL’s) [37, 38, 78, 79, 80]. These NWSL are charac-

terized by a cylindrical cross-section, a periodicity along the cylinder axis, and an effectively

infinite potential barrier for the electrons outside the wire. Extremely polarized photolumines-

cence is one characteristic that makes NWSL likely candidates for practical applications. In

addition, a recent one-dimensional theory predicted the remarkable existence of an inversion

regime when the localization of the electron states can be reversed [39].

Our central goal is to demonstrate the applicability of the FDM in CPC for the novel study

of NWSL’s. FDM in CPC is needed since using the admitted more flexible Cartesian system will
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lead to a three-dimensional problem rather than two-dimensional for a cylindrical cross-section.

Also, we show how to solve a periodic problem and formulate the FDM in the presence of Bloch

periodicity; this leads to a nonsymmetric, complex matrix eigenvalue problem. In the process,

we report the correct formalism for treating the boundary condition near the cylinder axis. One

application is to answer the question of how many periods are required before the finite-length

structure is a good approximation to the infinitely periodic structure (superlattice). We also

compare the FDM to an implementation of the finite element method (FEM) using FEMLAB

as a further check on the correctness of the implementation. Finally, the technique is used to

confirm the existence of an inversion regime and to obtain the energy spectrum of an embedded

system for which there are no analytical solutions.

10.2 Theory

The theory of the electron state used here is the one-band envelope function theory [68, 50]. In

our calculations, the effective mass of the electron is position dependent, but does not depend

on energy. Non-parabolicity is not important for the systems studied, GaAs/AlGaAs nanos-

tructures, due to the large band gap present but it can be introduced as proposed by Li et

al. [75, 76, 77]. Similarly, strain can be introduced by renormalizing the effective mass and po-

tential energy. However, we ignore both effects here in order to focus on our novel computational

implementation. The task is to solve the one-electron BenDaniel-Duke equation [50],

−h̄2

2
∇ ·

[
1

m(r)
∇ψn(r)

]
+ V (r)ψn(r) = Enψn(r), (10.1)

when the effective mass m(r) and the potential V (r) have cylindrical symmetry. The NWSL is

modeled as a cylinder of infinite length, with alternating layers of GaAs (the well) and AlGaAs

(the barrier) (see Fig. 10.1). The NWSL’s currently being grown are free standing. An accurate

modeling of such a structure is achieved by using an infinite potential barrier outside, where

the wavefunction is therefore zero. In this paper, we use the term wavefunction in a loose sense

to refer to the envelope function [50].
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R
z

V 0 V

Lw Lb

Figure 10.1: A model nanowire superlattice. The parameters are: radius R, well width Lw,

barrier width Lb, effective mass in the well mw, effective mass in the barrier mb, and the band

offset V.

10.3 Computational Models

Three methods are used: the finite difference method (FDM) applied to a unit cell (well +

barrier) with periodic boundary conditions (PBC) (see Fig. 10.2a), the FDM applied to a finite

number of unit cells (see Fig. 10.2b), and the exact solution of the equivalent Kronig-Penney

model. The FDM was implemented using a non-uniform grid and is two-dimensional (in the

radial and z directions). When studying a finite sequence of wells and barriers, with infinite

potential barriers at the ends, three patterns are possible: the ends are both wells, at one end

there is a well and at the other there is a barrier, and the ends are both barriers. In the first

and third case, the structure is symmetric with respect to a center plane, and the wavefunctions

are symmetric or antisymmetric. In the second case, the structure is asymmetric with respect

to a center plane. In the first (or second) case, the infinite potential adjacent to the wells will

produce extra quantum confinement, increasing the energy of two (or one) states localized at

the well–vacuum interface. The remaining eigenvalues will converge to the infinite superlattice

values. The finite structures studied in this article have either two barriers at the ends, or one

barrier and one well.

The FDM described in this paper can be applied to other problems, e.g., cylindrical QDs,

conical QDs, and spherical QDs. The method is also suitable for analyzing electronic states

in a semiconductor nanostructure embedded in a semiconductor substrate, a region of finite

potential, where the wavefunction has an exponential decay. This is the situation when our

FDM method is most useful, since analytical methods based on separation of variables in the
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Figure 10.2: The domain for (a) a unit cell with periodic boundary conditions and (b) a finite

number of unit cells, with barrier layers at both ends.

BenDaniel-Duke equation do not apply.

For a planar superlattice of finite length, Kolbas and Holonyak have developed a transfer

matrix method (TMM) [81]. The TMM can also be applied for a cylindrical superlattice of

finite length, provided it is surrounded by vacuum. In the TMM method, the first and last

barrier regions are extended to infinity, which gives a slightly different structure from the one

studied here. We also note that they used an incorrect boundary condition, though this is not

expected to impact the numerical convergence.

10.4 FDM applied to a unit cell with PBC

This method has the advantage of a smaller grid and, therefore, significantly reduced memory

and computing time requirements. The disadvantage is the presence of complex numbers in the

Hamiltonian matrix, due to the use of Bloch’s theorem.

We write the gradient and the divergence operators in cylindrical coordinates. The BenDaniel-

Duke equation, Eq. (10.1), becomes

−h̄2

2

[
1

ρ

1

m

∂ψ

∂ρ
+

∂

∂ρ

(
1

m

∂ψ

∂ρ

)
+

1

ρ

∂

∂φ

(
1

m

1

ρ

∂ψ

∂φ

)
+

∂

∂z

(
1

m

∂ψ

∂z

)]
(10.2)

+V ψ = Eψ.

Due to the cylindrical symmetry, V = V (ρ, z), m = m(ρ, z), and ψ = F (ρ, z)eiLφ. The
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Figure 10.3: Indexing of points on the non-uniform grid. • at grid points. × at midway points.

BenDaniel-Duke equation becomes

−h̄2

2

[
1

ρ

1

m

∂F

∂ρ
+

∂

∂ρ

(
1

m

∂F

∂ρ

)
+

−L2

mρ2
F +

∂

∂z

(
1

m

∂F

∂z

)]
+ V F = EF. (10.3)

Away from the z axis, the equation is discretized the usual way. Let i label grid points along

the z direction, and let j label grid points along the radial direction (see Fig. 10.3). With the

notation Fi,j ≡ F (zi, ρj), etc., the derivatives are calculated with a central difference scheme

on the non-uniform grid as

∂Fi,j

∂z
= Fi−1,jAi + Fi,jBi + Fi+1,jCi, (10.4)

where

Ai ≡
−∆zi

∆zi−1(∆zi−1 + ∆zi)
,

Bi ≡
∆zi − ∆zi−1

∆zi−1∆zi
, (10.5)

Ci ≡
∆zi−1

∆zi(∆zi−1 + ∆zi)
,

and as
∂Fi,j

∂ρ
= Fi,j−1Dj + Fi,jEj + Fi,j+1Gj , (10.6)
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where

Dj ≡
−∆ρj

∆ρj−1(∆ρj−1 + ∆ρj)
,

Ej ≡
∆ρj − ∆ρj−1

∆ρj−1∆ρj
, (10.7)

Gj ≡ ∆ρj−1

∆ρj(∆ρj−1 + ∆ρj)
.

To avoid problems due to the discontinuous jumps of the effective mass, we expand the

derivatives using midway points [2]. In this way the differential operator is applied only to the

continuous functions F , 1
m

∂F
∂ρ , and 1

m
∂F
∂z . The discretized terms are

∂

∂z

(
1

mi,j

∂Fi,j

∂z

)

=
1

mi−1/2,j

∂Fi−1/2,j

∂z
2Ai +

1

mi,j

∂Fi,j

∂z
2Bi +

1

mi+1/2,j

∂Fi+1/2,j

∂z
2Ci

=
1

mi−1/2,j

Fi,j − Fi−1,j

∆zi−1
2Ai +

1

mi,j

Fi+1,j − Fi−1,j

∆zi−1 + ∆zi
2Bi (10.8)

+
1

mi+1/2,j

Fi+1,j − Fi,j

∆zi
2Ci,

and

∂

∂ρ

(
1

mi,j

∂Fi,j

∂ρ

)

=
1

mi,j−1/2

∂Fi,j−1/2

∂ρ
2Dj +

1

mi,j

∂Fi,j

∂ρ
2Ej +

1

mi,j+1/2

∂Fi,j+1/2

∂ρ
2Gj

=
1

mi,j−1/2

Fi,j − Fi,j−1

∆ρj−1
2Dj +

1

mi,j

Fi,j+1 − Fi,j−1

∆ρj−1 + ∆ρj
2Ej (10.9)

+
1

mi,j+1/2

Fi,j+1 − Fi,j

∆ρj
2Gj .

The discretized BenDaniel-Duke equation is obtained as

Fi−1,j
h̄2

2

(
2Ai

mi−1/2,j∆zi−1
+

2Bi

mi,j(∆zi−1 + ∆zi)

)

+Fi+1,j
h̄2

2

(
− 2Bi

mi,j(∆zi−1 + ∆zi)
− 2Ci

mi+1/2,j∆zi

)

+Fi,j−1
h̄2

2

(
− Dj

ρjmi,j
+

2Dj

mi,j−1/2∆ρj−1
+

2Ej

mi,j(∆ρj−1 + ∆ρj)

)
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+Fi,j+1
h̄2

2

(
− Gj

ρjmi,j
− 2Ej

mi,j(∆ρj−1 + ∆ρj)
− 2Gj

mi,j+1/2∆ρj

)
(10.10)

+Fi,j
h̄2

2

(
− Ej

ρjmi,j
− 2Ai

mi−1/2,j∆zi−1
+

2Ci

mi+1/2,j∆zi

− 2Dj

mi,j−1/2∆ρj−1
+

2Gj

mi,j+1/2∆ρj
+

L2

mi,jρ2
j

)

+Vi,jFi,j = EFi,j .

Equation (10.10) applies for points in the bulk of the structure. At midway points on the

interfaces, the mass is calculated as an arithmetic average of the masses on the neighboring grid

points. The points on the boundary of the domain require a special treatment, since Eq. (10.10)

does not apply for points with ρj = 0, as ρj appears in the denominator. A different approach

is needed to determine the function F (ρ = 0, z). Equation (10.3) is multiplied by ρ2, then the

terms are evaluated in the limit ρ→ 0. We are left with L2F (ρ = 0, z) = 0. Therefore, if L 6= 0

then F (ρ = 0, z) = 0. For the case L = 0, Eq. (10.3) is multiplied by ρ, then the terms are

evaluated in the limit ρ → 0. We are left with ∂F
∂ρ |ρ=0 = 0. The derivative calculated with a

forward difference scheme on the non-uniform grid is

∂Fi,j−1

∂ρ
= Fi,j−1

−(2∆ρj−1 + ∆ρj)

∆ρj−1(∆ρj−1 + ∆ρj)

+Fi,j
∆ρj−1 + ∆ρj

∆ρj−1∆ρj
+ Fi,j+1

−∆ρj−1

∆ρj(∆ρj−1 + ∆ρj)
= 0. (10.11)

In summary, for points with ρj−1 = 0, if L 6= 0 the discretized equation is obtained from

Eq. (10.10) with Fi,j−1 = 0. If L = 0 the discretized equation is obtained from Eq. (10.10) with

Fi,j−1 = Fi,j
(∆ρj−1 + ∆ρj)

2

∆ρj(2∆ρj−1 + ∆ρj)
− Fi,j+1

(∆ρj−1)
2

∆ρj(2∆ρj−1 + ∆ρj)
. (10.12)

The above treatment of Schrödinger’s equation in CPC does not appear to have been previously

reported. For completeness, we note, however, that the Navier-Stokes equation in cylindrical

coordinates is not as easy, and one needs to use a staggered grid in order to deal with the ρ = 0

axis [82].

For points with ρj = ρmax (see Fig. 10.2), we apply Neumann boundary conditions: ∂F
∂ρ = 0.

The discretized equation is obtained from Eq. (10.10) with Mi,j+1/2 = Mi,j−1/2 and with

Fi,j+1 = Fi,j−1.



CHAPTER 10. ONE-BAND K · P CALCULATIONS - NANOWIRE SUPERLATTICE 88

Since for bound states both the wave function and its derivative vanish at the radial edge

of the computational domain, Dirichlet and Neumann boundary conditions are equivalent. It

is more useful to use Neumann conditions since in this way we can check the value of the wave

function on the boundary [66]. Spurious states, with energy just below the barrier but which

do not vanish on the boundary, are in this way identified and discarded.

Assume that inside the domain the index i takes values from 1 to Nz. For points with

zi = z1, in order to substitute for z0 in Eq. (10.10), we use Bloch’s theorem:

F (ρ, z0) = e−iKZF (ρ, zNz ), (10.13)

where K is the wave number associated with the periodicity in the z direction, and the period

is Z. Therefore we replace Mi−1,j with Mi−1+Nz ,j and Fi−1,j with Fi−1+Nz ,je
−iKZ . For points

with zi = zNz , in order to substitute for zNz+1 in Eq. (10.10), we use Bloch’s theorem again:

F (ρ, zNz+1) = eiKZF (ρ, z1). (10.14)

Therefore we replace Mi+1,j with Mi+1−Nz ,j and Fi+1,j with Fi+1−Nz ,je
iKZ .

10.5 FDM applied to a finite number of unit cells

This method applies well to semiconductor nanostructures of finite length, e.g. quantum dots.

It has the advantage that only real numbers appear in the Hamiltonian matrix. However, for

large structures, memory requirements can be a problem. The periodic structure of the NWSL

is generated by a finite sequence of unit cells (well + barrier). The discretized equation and

boundary conditions are as discussed previously, with the exception of the points with z = 0

or z = zmax. These points are in the vacuum layer; in order to be able to use the same

program for structures embedded in a semiconductor substrate (i.e., finite barrier), we do not

use Dirichlet boundary conditions. Bound states are then easily authenticated, by inspection

of the magnitude of the wavefunction on the boundary [66].

For points with z = 0 (see Fig. 10.2) we apply Neumann boundary conditions: ∂F
∂z = 0.

The discretized equation is obtained from Eq. (10.10) with Mi−1/2,j = Mi+1/2,j and with

Fi−1,j = Fi+1,j . For points with z = zmax we apply Neumann boundary conditions: ∂F
∂z = 0.
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The discretized equation is obtained from Eq. (10.10) with Mi+1/2,j = Mi−1/2,j and with

Fi+1,j = Fi−1,j .

10.6 Equivalent Kronig-Penney model

In order to validate our computational models, we now obtain the exact solutions, only possible

when the outside layer is vacuum. We solve Eq. (10.3) by separation of variables, with F (ρ, z) =

J(ρ)Z(z). We also use the fact that, for the NWSL under investigation, m = m(z) and V =

V(z). Solution of the decoupled radial equation gives J(ρ) = JL(ρq), where q is the separation

constant and JL is the cylindrical Bessel function of order L. The separation constant q is

determined by the condition that Rq be a zero of the Bessel function. The decoupled equation

for z is [39]

−h̄2

2

∂

∂z

(
1

m

∂Z

∂z

)
+

(
V +

h̄2q2

2m

)
Z = EZ. (10.15)

This equation describes a Kronig-Penney model with a potential Veq:KP = V + h̄2q2/2m. We

increase the origin of the energy by h̄2q2/2mw, such that the potential in the well is zero

and in the barrier is V ′ = V + h̄2q2/2mb − h̄2q2/2mw. Equation (10.15) is solved by writing

the wavefunctions in the well and in the barrier, and then imposing the matching boundary

conditions for the functions and their derivatives [83]. When writing the boundary conditions,

we use Bloch’s theorem and introduce the quantum number K. We are left with a system of

four linear homogeneous equations. A zero determinant is obtained only when

cos[K(Lw + Lb)] = cos(kwLw)cos(kbLb)

+
k2

bmw/mb − k2
wmb/mw

2kwkb
sin(kwLw)cos(kbLb), (10.16)

where kw ≡
√

2mwE′/h̄ and kb ≡
√

2mb(V ′ −E′)/h̄. The energy of the NWSL is given by

E = E′ + h̄2q2/2mw. The transcendental equation [Eq. (10.16)] is solved numerically. In

summary, four indices label the energy eigenvalues: the angular momentum number L, an index

N to label the roots qL,N of the Bessel function, the quantum numberK due to the translational

periodicity in the z direction, and an index M to label the roots of the transcendental equation

[Eq. (10.16)].



CHAPTER 10. ONE-BAND K · P CALCULATIONS - NANOWIRE SUPERLATTICE 90

1 A

Figure 10.4: Detailed structure of the non-uniform grid at the well-barrier interface. Grid steps

of 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, and 0.025 Ȧ are used.

10.7 Results and Discussions

A representative set of parameters used for the calculations were as follows: radius R = 100 Ȧ,

well (LW ) and barrier (LB) widths of 50 Ȧ, well (mW ) and barrier (mB) effective masses of

0.067m0 and 0.0919m0, and a barrier height of 0.23 eV. These parameters correspond to a

GaAs/Al0.3Ga0.7As structure [69]. In the radial direction the infinite barrier extended for 10

Ȧ. When modeling a finite lattice, two 10 Ȧ wide regions of infinite potential were used to pack

the structure in the z direction. In practice the infinite potential is approximated by 106 eV,

and a region of finite dimension is needed to allow the exponentially decaying wave function to

vanish. Free standing NWSL have been grown [37], and the complete localization of electrons

inside these NWSL justifies our approximation of infinite surrounding potential.

We used a non-uniform grid with a grid step varying from 1 Ȧ to 0.025 Ȧ (see Fig. 10.4).

The non-uniform grid is used at the interfaces, and also near the z axis. No grid point lies on

the well-barrier interface, where the effective mass is discontinuous. The total number of grid

points is 140 × (40 + 70N) for the non-uniform grid, and 110 × (20 + 50N) for the uniform

grid, where N is the number of semiconductor layers. A simple uniform grid (of 1 Ȧ) could

not reproduce the discontinuous jump of the derivative of the wavefunction at the well-barrier

interface. This discontinuity, due to the abrupt change in the effective mass, has dramatic

effects; in particular, it validates the Heisenberg uncertainty principle [84].

A calculation using the finite element method (FEM) has also been performed, using FEM-

LAB. The FEM is a variational reformulation of the problem, so we do not need to treat the

interfaces in any special way. The FEM solves partial differential equations (PDE) in weak form

by integrating the PDEs. Thus slope discontinuities are captured, as calculations reveal, and
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Figure 10.5: Ground state for the NWSL calculated with the FEM (dotted black curve), the

FDM with uniform grid (solid gray curve), the FDM with non-uniform grid (dotted gray curve),

and the equivalent Kronig-Penney model (solid black curve).

one can get the correct result even with a fairly sparse grid. In Figure 10.5 we have plotted a

cross section, at ρ = 0.5 Ȧ, of the ground-state wavefunction of the simplest barrier-well-barrier

structure. The FEM calculation overlaps perfectly over the exact solution, the FDM calcula-

tion with non-uniform grid is also very accurate, while the FDM calculation with uniform grid

but with about the same number of total grid points is not very good, due to the poor grid

around the interfaces. As a practical calculational detail, the wavefunctions have been normal-

ized to unit cell:
∫
Ω |ψ|2ρdρdθdz = 1. In contrast, the eigenvector resulted from the numerical

procedure is normalized as
∑

i,j |ψi,j |2 = 1.

The eigenvalue problem for the large sparse matrix was solved using ARPACK [74]. The

LU decomposition, external to the ARPACK library, has been performed with UMFPACK. On

a computer with 2 GB RAM running at 2 GHz, the computation took from a few seconds to a

few minutes. Results for the electron energies obtained using the above methods are given in

Figs. 10.5–10.9. The FDM provided the energy eigenvalues with an error < 0.5%. In Figs. 10.6

and 10.7 we study finite NWSL structures, with barrier layers at both ends and, respectively,

with one barrier and one well layer at the ends. We find that the finite-length NWSL structure
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Figure 10.6: Miniband formation in a symmetric NWSL structure. Energy levels as a function

of the number of wells. The segments on the right side are the energy bands for the infinite

NWSL, calculated with the FDM with non-uniform grid (left segments) and with the equivalent

Kronig-Penney model (right segments). L = 0, L = 1, and L = 2, in increasing order of the

energy.

with barrier layers at both ends approaches the superlattice energy bands when the number of

unit cells is of the order of 6. Note, however, that the infinite NWSL (with PBC) reproduces

the exact solution (given on the right-hand side) a lot faster.

The miniband formation in Fig. 10.6 can be understood from a perturbative point of view.

Indeed, consider the case of barriers of length much larger than the wells. In this situation

the wells are practically decoupled, and in each one we have the eigenstates of the single well.

As the length of the barriers is decreased, the states interact more strongly with each other,

and their energies shift, forming the miniband. It is clear that the number of states in one

miniband is equal to the number of wells in the superlattice structure. Each energy level of the

single well will correspond to a miniband in the infinite superlattice structure. The miniband

formation in Fig. 10.7 can be understood in the same way. Here, however, the state localized

at the well-vacuum interface is higher in energy, due to the increased quantum confinement,

and does not mix with the other states in the miniband. A similar state sandwiched between
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Figure 10.7: Miniband formation in an asymmetric NWSL structure. Energy levels as a function

of the number of wells. The segments on the right side are the energy bands for the infinite

NWSL, calculated with the FDM with non-uniform grid (left segment) and with the equivalent

Kronig-Penney model (right segment). L = 0.
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Figure 10.8: An energy band in the full Brillouin zone, calculated using the FDM with uniform

grid (squares), the FDM with non-uniform grid (circles), and the equivalent Kronig-Penney

model (diamonds). The quantum numbers are L = 0, N = 1, M = 1.
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Figure 10.9: Ground state for the NWSL calculated with the FDM with uniform grid (lower

dotted curve), the FDM with non-uniform grid (upper dotted curve), and the equivalent Kronig-

Penney model (solid curve).

AlGaAs and vacuum does not exist in the symmetrical structure (Fig. 10.2b).

The lowest set of points on the left-hand side of Fig. 10.6, lying between 0.10 eV and 0.11

eV, corresponds to the solutions with quantum numbers L = 0, N = 1, M = 1. In fact, they

are the discretized version of the miniband present in the superlattice calculation, shown in

Fig. 10.8. The clustering of the levels towards the top and bottom of a miniband can be readily

explained in terms of the density of states of the miniband. As shown in Fig. 10.8, at the top

and bottom of a miniband the derivative ∂E/∂K is at a minimum, and therefore the number

of states N in an energy interval ∂N /∂E = (∂N /∂K)/(∂E/∂K) is at a maximum.

In Fig. 10.9, we show a cross section, at ρ = 0.5 Ȧ, of the NWSL ground-state wavefunction.

The wavefunction |ψ| plotted clearly shows the discontinuity of its derivative, due to the change

in the effective mass at the well-barrier interface. The success of the FDM calculation with

non-uniform grid is now clear from the excellent agreement of both the eigenvalue and the

eigenfunction. The deficiencies of the FDM calculation with uniform grid (of 1 Ȧ) are also

apparent. The uniform grid has failed to provide an accurate solution even in the simpler one

dimensional calculation of Tan et al. [66].
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Figure 10.10: Ground state for the NWSL calculated with the FDM with non-uniform grid for

a radius of 18 Ȧ (solid curve) compared to a radius of 100 Ȧ (dashed curve). The left layer is

AlGaAs, the right layer is GaAs.

10.7.1 Physical Applications: Inversion

In Ref. [39], the authors predicted the existence of a critical radius for NWSL’s, below which

the role of well and barrier layers are reversed. This result followed directly from the exact

one-dimensional Kronig-Penney equation of motion. However, the latter approach does not

allow for an ab initio verification from the localization of the wave function. The latter would

require a full two-dimensional solution without assuming the existence of the critical radius.

We have carried this out using our FDM algorithm. Thus, the eigenvalue problem was solved

for a small radius. From the Kronig-Penney model, the critical radius is expected to be around

20 Ȧ. We, therefore, did a calculation for a radius of 18 Ȧ, though we expect some correction

of the quantitative data to be necessary at this small radius due to the approximations of the

physical model of a parabolic band [75, 76, 77].

The resulting ground state wavefunction is given in Fig. 10.10 (a cross-section at ρ = 0.5

Ȧ). The localization of the wavefunction in the Al0.3Ga0.7As layer (to the left) is clear (solid

curve). This is compared to the localization of the wavefunction in the GaAs layer for the much
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Figure 10.11: Lowest energy band in the first Brillouin zone for a finite outside barrier V =

1.878 eV (squares, lower curve) compared to an infinite barrier one (circles, upper curve). The

structure is the same in both cases (radius of 100 Ȧ).

larger radius (dashed curve). Thus, the numerical method is able to reproduce the correct

wave function localization, a much more sensitive test than just getting the right energies. The

difference in the vertical scale of the two functions is due to the much larger localization of the

electron along the wire axis for the small radius. This is also a result not obtained within the

one-dimensional exact model.

10.7.2 Physical Applications: Embedded nanowire

As a final example of a possible application of the new technique, we now consider a nanowire

embedded in another semiconductor material. We can simulate this with AlAs outside the wire.

Note that embedded NWSL have not yet been grown. However, embedded quantum wires had

been actively grown in the past [85]. This problem is of interest because, for this physical

system, there are no analytical solutions. Hence, the use of a numerical technique such as the

FDM is necessary.

In the current calculation, we set the outside barrier height to be 1.878 eV and the effective
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mass to be 0.1 mo (pure AlAs). The grid in the z direction is the same as before for the infinite

barrier problem. In the radial direction, we now have a dimension of 100 Ȧ for the NWSL

(i.e. same radius of 100 Ȧ as before), and a width of 310 Ȧ for the AlAs layer. The grid in

the radial direction is 10 Ȧ at 1 Ȧ grid step, 100 Ȧ at 2 Ȧ, and 200 Ȧ at 4 Ȧ. Note that it

is not necessary to have too many points in the outside barrier since the wavefunction decays

exponentially there. In Fig. 10.11, we give the resulting energy band (lower curve) compared to

the infinite barrier result obtained earlier (upper curve). As expected, it is lower than with an

infinite barrier outside due to the reduced quantum confinement. For this particular structure,

the band is more or less uniformly lower by about 4 %. We are, therefore, in a position to

calculate the energies and wavefunctions of any NWSL, free standing or embedded, within the

one-band model.

10.8 Conclusions

The theory of the finite difference method in cylindrical polar coordinates and with periodic

boundary conditions (together with a non-uniform grid and a position-dependent mass) is

given in detail. In particular, the implementation of the boundary condition on the cylinder

axis is clarified. Applications to finite-length and infinite-length structures show that, for

a finite NWSL with barrier layers at both ends, only about six unit cells are necessary in

approximating the energy bands of a periodic system. However, the use of the Bloch theorem

speeds up the solution of the latter problem and reduces the memory requirements. Verification

of our two-dimensional computational model was achieved by comparing with one-dimensional

exact results. We then used the model to obtain a numerical proof of the possible existence of

inverted states without any a priori assumptions. New results were also obtained for the case

of an embedded nanowire for which there are no exact solutions.



Chapter 11

Eight-Band k · p Calculations - ZB

Quantum Well

11.1 Introduction

The simplest heterostructure to which we can apply the 8-band Hamiltonian is the quantum

well (QW). The calculation of intervalence subband optical transitions in quantum wells goes

back to a paper by Chang and James (CJ) in 1989 [40]. It established that these transitions

can have both TE and TM polarizations. The calculations were done using the four-band

Luttinger-Kohn (LK) Hamiltonian with infinite-barrier quantum-well states. Szmulowicz [29]

generalized the CJ equation to allow for position-dependent k · p parameters.

In this chapter we present an envelope-function-representation derivation and calculations of

the band structure and the momentum matrix elements between valence subbands in [001] quan-

tum wells using the Luttinger-Kohn-Kane and the Burt-Foreman Hamiltonians. We show how

to apply the finite difference method to solve the multi-band k · p equation for GaAs/Al0.3Ga0.7As

and GaAs/AlAs quantum wells. Then we use the eigenfunctions to calculate momentum ma-

trix elements, as described in Chapter 5. Both the Burt-Foreman and the Luttinger-Kohn

Hamiltonians are used, and differences between the two methods are pointed out.

98
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11.2 The Hamiltonian

The Hamiltonian H of the Burt theory, with no spin-orbit interaction, is shown in Table 11.2.

The momentum matrix element P , although supposed constant in Burt’s derivation, in

general depends on the semiconductor. Foreman [12], following an analysis of the spurious

states, concluded that the right ordering of terms with P (z) is the one shown in Table 11.2.
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ih̄P
mo

k̂z

+k̂x
B
2 k̂y

+k̂y
B
2 k̂x

− ih̄P
mo

k̂x

+k̂y
B
2 k̂z

+k̂z
B
2 k̂y

EV B

+ h̄2(k̂x
2
+k̂y

2
+k̂z

2
)

2mo

+k̂x(F ′ + 2G)k̂x

+k̂y(H1 +H2)k̂y

+k̂z(H1 +H2)k̂z

k̂x(F ′ −G)k̂y

+k̂y(H1 −H2)k̂x

k̂x(F ′ −G)k̂z

+k̂z(H1 −H2)k̂x

− ih̄P
mo

k̂y

+k̂z
B
2 k̂x

+k̂x
B
2 k̂z

k̂y(F
′ −G)k̂x

+k̂x(H1 −H2)k̂y

EV B

+
h̄2(k̂x

2
+k̂y

2
+k̂z

2
)

2mo

+k̂y(F
′ + 2G)k̂y

+k̂x(H1 +H2)k̂x

+k̂z(H1 +H2)k̂z

k̂y(F
′ −G)k̂z

+k̂z(H1 −H2)k̂y

− ih̄P
mo

k̂z

+k̂x
B
2 k̂y

+k̂y
B
2 k̂x

k̂z(F
′ −G)k̂x

+k̂x(H1 −H2)k̂z

k̂z(F
′ −G)k̂y

+k̂y(H1 −H2)k̂z

EV B

+ h̄2(k̂x
2
+k̂y

2
+k̂z

2
)

2mo

+k̂z(F
′ + 2G)k̂z

+k̂x(H1 +H2)k̂x

+k̂y(H1 +H2)k̂y

Table 11.2 Burt Hamiltonian, 4 bands and no spin.
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When spin is included the total Hamiltonian H has the form




H1,1 H1,2 H1,3 H1,4 0 0 0 0

H2,1 H2,2 H2,3 − i∆3 H2,4 0 0 0 ∆
3

H3,1 H3,2 + i∆3 H3,3 H3,4 0 0 0 −i∆3
H4,1 H4,2 H4,3 H4,4 0 −∆

3 i∆3 0

0 0 0 0 H1,1 H1,2 H1,3 H1,4

0 0 0 −∆
3 H2,1 H2,2 H2,3 + i∆3 H2,4

0 0 0 −i∆3 H3,1 H3,2 − i∆3 H3,3 H3,4

0 ∆
3 i∆3 0 H4,1 H4,2 H4,3 H4,4




. (11.1)

At each point z the eigenvalue problem is written as

(H )




F1(z)

F2(z)

F3(z)

F4(z)

F5(z)

F6(z)

F7(z)

F8(z)




= E




F1(z)

F2(z)

F3(z)

F4(z)

F5(z)

F6(z)

F7(z)

F8(z)




. (11.2)

This will result in 8 equations for every grid point.

The simplest quantum well is grown in the [001] direction, that is the interface planes are

orthogonal to the z axis. In two directions, x and y, the periodicity of the lattice is preserved.

Therefore k̂x → kx and k̂y → ky. The operator k̂z ≡ −i∂/∂z will generate four kinds of terms:

(a) terms with no derivative operators H
(a)
i,j , (b) terms with the derivative operator on the right

H
(b)
i,j , (c) terms with the derivative operator on the left H

(c)
i,j , and (d) terms sandwiched between

derivative operators H
(d)
i,j .

We now introduce the notation

H
(a)
i,j ≡ h

(a)
i,j , (11.3)

H
(b)
i,j ≡ h

(b)
i,j

∂

∂z
, (11.4)
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H
(c)
i,j ≡ ∂

∂z
h

(c)
i,j , (11.5)

H
(d)
i,j ≡ ∂

∂z
h

(d)
i,j

∂

∂z
. (11.6)

The Hamiltonian elements of type (a) are

h
(a)
1,1 = ECB +

h̄2(k2
x + k2

y)

2mo
+A′(k2

x + k2
y), (11.7)

h
(a)
1,2 =

ih̄P

mo
kx, (11.8)

h
(a)
1,3 =

ih̄P

mo
ky, (11.9)

h
(a)
1,4 = Bkxky, (11.10)

h
(a)
2,1 = − ih̄P

mo
kx, (11.11)

h
(a)
2,2 = EV B +

h̄2(k2
x + k2

y)

2mo
+ (F ′ + 2G)k2

x + (H1 +H2)k
2
y , (11.12)

h
(a)
2,3 = (F ′ −G)kxky + (H1 −H2)kxky, (11.13)

h
(a)
3,1 = − ih̄P

mo
ky, (11.14)

h
(a)
3,2 = (F ′ −G)kxky + (H1 −H2)kxky, (11.15)

h
(a)
3,3 = EV B +

h̄2(k2
x + k2

y)

2mo
+ (F ′ + 2G)k2

y + (H1 +H2)k
2
x, (11.16)

h
(a)
4,1 = Bkxky, (11.17)

h
(a)
4,4 = EV B +

h̄2(k2
x + k2

y)

2mo
+ (H1 +H2)k

2
x + (H1 +H2)k

2
y . (11.18)

The Hamiltonian elements of type (b) are

h
(b)
1,2 = −iky

B

2
, (11.19)

h
(b)
1,3 = −ikx

B

2
, (11.20)

h
(b)
1,4 =

h̄P

mo
, (11.21)

h
(b)
2,1 = −iky

B

2
, (11.22)

h
(b)
2,4 = −ikx(F ′ −G), (11.23)

h
(b)
3,1 = −ikx

B

2
, (11.24)

h
(b)
3,4 = −iky(F

′ −G), (11.25)
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h
(b)
4,1 = − h̄P

mo
, (11.26)

h
(b)
4,2 = −ikx(H1 −H2), (11.27)

h
(b)
4,3 = −iky(H1 −H2). (11.28)

The Hamiltonian elements of type (c) are

h
(c)
1,2 = −iB

2
ky, (11.29)

h
(c)
1,3 = −iB

2
kx, (11.30)

h
(c)
2,1 = −iB

2
ky, (11.31)

h
(c)
2,4 = −i(H1 −H2)kx, (11.32)

h
(c)
3,1 = −iB

2
kx, (11.33)

h
(c)
3,4 = −i(H1 −H2)ky, (11.34)

h
(c)
4,2 = −i(F ′ −G)kx, (11.35)

h
(c)
4,3 = −i(F ′ −G)ky . (11.36)

The Hamiltonian elements of type (d) are

h
(d)
1,1 = −(

h̄2

2mo
+A′), (11.37)

h
(d)
2,2 = −(

h̄2

2mo
+H1 +H2), (11.38)

h
(d)
3,3 = −(

h̄2

2mo
+H1 +H2), (11.39)

h
(d)
4,4 = −(

h̄2

2mo
+ F ′ + 2G). (11.40)

11.3 The Finite Difference Method

Let n label grid points along the z direction. With the notation Fj,n ≡ Fj(zn), hi,j,n ≡ hi,j(zn),

the derivatives are calculated with a central difference scheme on the non-uniform grid as

∂Fj,n

∂z
= Fj,n−1An + Fj,nBn + Fj,n+1Cn, (11.41)
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where

An ≡ −∆zn
∆zn−1(∆zn−1 + ∆zn)

, (11.42)

Bn ≡ ∆zn − ∆zn−1

∆zn−1∆zn
, (11.43)

Cn ≡ ∆zn−1

∆zn(∆zn−1 + ∆zn)
, (11.44)

and ∆zn ≡ zn+1 − zn.

The terms sandwiched between derivatives are expanded as

∂

∂z

(
h

(d)
i,j,n

∂Fj,n

∂z

)

= h
(d)
i,j,n−1/2

∂Fj,n−1/2

∂z
2An + h

(d)
i,j,n

∂Fj,n

∂z
2Bn + h

(d)
i,j,n+1/2

∂Fj,n+1/2

∂z
2Cn

=
h

(d)
i,j,n−1 + h

(d)
i,j,n

2

Fj,n − Fj,n−1

∆zn−1
2An + h

(d)
i,j,n

Fj,n+1 − Fj,n−1

∆zn−1 + ∆zn
2Bn (11.45)

+
h

(d)
i,j,n+1 + h

(d)
i,j,n

2

Fj,n+1 − Fj,n

∆zn
2Cn.

In conclusion, four contributions appear in the eigenvalue problem:

h
(a)
i,j,nFj,n = h

(a)
i,j,nFj,n, (11.46)

h
(b)
i,j,n

∂

∂z
Fj,n = Fj,n−1Anh

(b)
i,j,n + Fj,nBnh

(b)
i,j,n + Fj,n+1Cnh

(b)
i,j,n, (11.47)

∂

∂z
h

(c)
i,j,nFj,n = Fj,n−1h

(c)
i,j,n−1An + Fj,nh

(c)
i,j,nBn + Fj,n+1h

(c)
i,j,n+1Cn, (11.48)

∂

∂z
h

(d)
i,j,n

∂

∂z
Fj,n = Fj,n−1


−

h
(d)
i,j,n−1 + h

(d)
i,j,n

∆zn−1
An −

h
(d)
i,j,n

∆zn−1 + ∆zn
2Bn




+Fj,n


h

(d)
i,j,n−1 + h

(d)
i,j,n

∆zn−1
An −

h
(d)
i,j,n+1 + h

(d)
i,j,n

∆zn
Cn




+Fj,n+1


 h

(d)
i,j,n

∆zn−1 + ∆zn
2Bn +

h
(d)
i,j,n+1 + h

(d)
i,j,n

∆zn
Cn


 . (11.49)

When spin is included we have additional terms hi+4,j+4,n = hi,j,n. The spin-orbit Hamil-

tonian will give an extra contribution of type (a).
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11.4 The Structure of Non-Zero Elements

The discretization of the 8 equations (11.2) obtained for every grid point will produce a matrix

of dimension 8Nz, where Nz is the number of grid points. The indexes of the matrix elements

are obtained as I = i+8(n−1), J = j+8(n−1) where n is the index of the grid point, and i and

j are indexes for the 8 bands. The first step in writing the sparse matrix is the identification

of the non-zero elements. The structure of the non-zero 8 × 8 blocks is

1 2 0 0 0 ... 0 0

3 4 5 0 0 ... 0 0

0 6 7 8 0 ... 0 0

0 0 9 10 11 ... 0 0

0 0 0 12 13 ... 0 0

... ... ... ... ... ... ... ...

0 0 0 0 0 ... K-3 K-2

0 0 0 0 0 ... K-1 K

, (11.50)

and the number of non-zero blocks is K = 4 + 3(Nz − 2). The non-zero elements in the

non-diagonal blocks are

1 2 3 4 0 0 0 0

5 6 7 8 0 0 0 0

9 10 11 12 0 0 0 0

13 14 15 16 0 0 0 0

0 0 0 0 17 18 19 20

0 0 0 0 21 22 23 24

0 0 0 0 25 26 27 28

0 0 0 0 29 30 31 32

. (11.51)
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The non-zero elements in the diagonal blocks are

1 2 3 4 0 0 0 0

5 6 7 8 0 0 0 33

9 10 11 12 0 0 0 34

13 14 15 16 0 35 36 0

0 0 0 0 17 18 19 20

0 0 0 37 21 22 23 24

0 0 0 38 25 26 27 28

0 39 40 0 29 30 31 32

. (11.52)

Eight extra non-zero elements appear due to the spin-orbit interaction.

Once the non-zero elements have been identified, they have to be numbered, for the easy

handling of the sparse matrix. The elements are numbered by running the sequence of non-zero

blocks, in the order shown. In each block the non-zero elements are numbered in the order

shown. The total number of non-zero elements is 144 + 104(Nz − 2).

11.5 Generation of the Sparse Matrix

The sparse matrix is generated by writing down the 8 equations (11.2) that correspond to every

grid point. The non-zero blocks are filled in with the coefficients from (11.46)-(11.49). Then

the contribution of the spin-orbit interaction is added to the diagonal block.

At the boundaries of the domain, for grid points with index n = 1 and n = Nz, Neumann

boundary conditions are applied: ∂Fj(z)/∂z = 0. This means that Fj,0 = Fj,2 and Fj,Nz+1 =

Fj,Nz−1.

11.6 Electronic Structure and MME for a Quantum Well

A GaAs/Al0.3Ga0.7As and a GaAs/AlAs quantum well have been investigated. The quan-

tum wells are 70 Ȧ wide. The Kane parameters used are listed in Table 11.6 and Table 11.6.

These Kane parameters result from the Luttinger parameters listed in [30]. The multiband
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quantum-well Schrödinger equation was solved using a non-uniform grid finite-difference tech-

nique. Diagonalization was performed using the Lanczos algorithm of the ARPACK library

[74]. Both 8-band and 6-band calculations have been performed, with both the Burt-Foreman

Hamiltonian (red lines) and the Luttinger-Kohn (symmetrized) Hamiltonian (blue lines). The

differences between the two models are very small, both in terms of energy bands (shown in

Figures 11.1, 11.2, 11.3) and of momentum matrix elements (shown in Figures 11.4, 11.5, 11.6,

11.7, 11.8, 11.9). The difference between the two models is smaller for 8-band calculations than

for 6-band calculations, in agreement with Ref. [24].

parameters GaAs (well) Al0.3Ga0.7As (barrier) AlAs (barrier)

ECB [eV] 1.519 1.74346 2.2672

EV B [eV] -0.114333333 -0.257773333 -0.592466667

∆ [eV] 0.343 0.3244 0.281

A′ [eV Ȧ2] -10.5081159 -13.5189727 -13.0507385

B [eV Ȧ2] 0.0 0.0 0.0

F ′ [eV Ȧ2] 21.7239273 14.3009371 11.9969319

G [eV Ȧ2] -4.2443222 -4.3692897 -4.66088055

H1 [eV Ȧ2] -15.0189573 -13.1764490 -8.87726296

H2 [eV Ȧ2] 0.0 0.0 0.0

h̄P
mo

[eV Ȧ] 10.4750915 10.4750915 10.4750915

Table 11.6 8-band Kane parameters for GaAs, Al0.3Ga0.7As, and AlAs.
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Figure 11.1: AlGaAs QW band structure. (eight-band calculation)

parameters GaAs (well) Al0.3Ga0.7As (barrier) AlAs (barrier)

EV B [eV] -0.114333333 -0.257773333 -0.592466667

∆ [eV] 0.343 0.3244 0.281

F [eV Ȧ2] -50.5127693 -43.6608938 -27.6731845

G [eV Ȧ2] -4.2443222 -4.3692897 -4.66088055

H1 [eV Ȧ2] -15.0189573 -13.1764490 -8.87726296

H2 [eV Ȧ2] 0.0 0.0 0.0

Table 11.6 6-band Kane parameters for GaAs, Al0.3Ga0.7As, and AlAs.
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Figure 11.2: AlGaAs QW band structure. (six-band calculation)
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Figure 11.3: AlAs QW band structure. (six-band calculation)
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Figure 11.4: AlGaAs momentum matrix elements: x polarization. (eight-band calculation)
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Figure 11.5: AlGaAs momentum matrix elements: x polarization. (six-band calculation)
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Figure 11.6: AlAs momentum matrix elements: x polarization. (six-band calculation)
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Figure 11.7: AlGaAs momentum matrix elements: z polarization. (eight-band calculation)
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Figure 11.8: AlGaAs momentum matrix elements: z polarization. (six-band calculation)
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Figure 11.9: AlAs momentum matrix elements: z polarization. (six-band calculation)



Chapter 12

Six-Band k · p Calculations - WZ

Cylindrical Dot

12.1 Introduction

The III-V nitride semiconductors, with wurtzite (WZ) crystal structure, have received a great

deal of attention in recent years. In the 1950’s there were numerous optical studies of bulk

WZ semiconductors (see Ref. [41] for a recent review). However, the detailed band structure of

these materials was not studied until the discovery (in 1993) of blue light emission of WZ GaN

on sapphire [3]. Currently the interest in WZ materials has shifted to nanostructures such as

CdSe quantum rods [86, 87, 88], ZnS nanowires [89], ZnO nanorods [90] and nanowires [91],

AlN nanorods [92], and GaN nanowires [93]. On the theory side, the k · p theory of WZ bulk

materials was developed by Rashba and Pikus [94, 33] and later applied to heterostructures by

a number of authors [95, 31]. Mireles and Ulloa [25] have applied the theory to heterostructures

using the envelope function formalism of Burt [10] and Foreman [12]. As far as we are aware,

the model has only been applied to quantum wells [71] and pyramidal quantum dots [96]. In

1990, Sercel and Vahala (SV) presented a new formulation of the multiband envelope function

theory and applied it to spherical quantum dots and cylindrical quantum wires of zincblende

(ZB) materials [42, 43]. For ZB, the SV formulation was only possible provided the axial

approximation (γ2 = γ3) was made in the Hamiltonian. The theory, within the Luttinger-

116
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Kohn (LK) framework, has subsequently been applied to model quantum rods [88], quantum

rings [97], and quantum dots [98].

The current interest in WZ nanowires [99] motivates the need for a model similar to the one

introduced by Sercel and Vahala for ZB, for increasing the physical understanding of the k · p
theory and for improving the efficiency of numerical computations for device applications. We

propose a new formulation of the Rashba-Sheka-Pikus Hamiltonian with cylindrical symmetry.

We have reformulated the k · p Hamiltonian in terms of the Sercel-Vahala (SV) representation

for problems with axial symmetry. The SV representation is useful because it reduces the 3D

problem to a 2D one when cylindrical polar coordinates are used. Contrary to the work of

Sercel and Vahala, where the axial approximation had to be introduced for ZB materials, we

show that the formulation is exact for WZ materials, i.e., no axial approximation was needed.

In addition to the fundamental interest in the SV representation of the WZ Hamiltonian, the

latter also helps make for more efficient computation for problems with axial symmetry. This

includes free-standing and embedded cylindrical nanowires, modulated nanowires, quantum

rods, spheroidal and spherical quantum dots.

12.2 Hamiltonian

The six-band Hamiltonian for a WZ semiconductor heterostructure, in the |X ↑〉, |Y ↑〉, |Z ↑
〉, |X ↓〉, |Y ↓〉, |Z ↓〉 basis states of the Kane model is [31, 33, 25, 100]

Ĥ =
h̄2

2m0

(
Hk 0

0 Hk

)
+H∆, (12.1)

where

Hk =




k̂xL1k̂x + k̂yM1k̂y + k̂zM2k̂z k̂xN1k̂y + k̂yN
′
1k̂x k̂xN2k̂z + k̂zN

′
2k̂x

k̂yN1k̂x + k̂xN
′
1k̂y k̂xM1k̂x + k̂yL1k̂y + k̂zM2k̂z k̂yN2k̂z + k̂zN

′
2k̂y

k̂zN2k̂x + k̂xN
′
2k̂z k̂zN2k̂y + k̂yN

′
2k̂z k̂xM3k̂x + k̂yM3k̂y + k̂zL2k̂z


 ,

(12.2)
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H∆ =




|X ↑〉 |Y ↑〉 |Z ↑〉 |X ↓〉 |Y ↓〉 |Z ↓〉

∆1 −i∆2 0 0 0 ∆3

i∆2 ∆1 0 0 0 −i∆3

0 0 0 −∆3 i∆3 0

0 0 −∆3 ∆1 i∆2 0

0 0 −i∆3 −i∆2 ∆1 0

∆3 i∆3 0 0 0 0




. (12.3)

Next, one can use the |u1〉, |u2〉, |u3〉, |u4〉, |u5〉, |u6〉 basis states defined in Table 12.1. The

advantage of using this basis is that now the zone-center Bloch functions are described by an

angular momentum J . The envelope part of the total wave function behaves like the spherical

harmonics, with an angular momentum L. The periodic Bloch space and the slowly varying

envelope space are coupled by the k · p interaction. For problems with cylindrical symmetry,

the projection of the total angular momentum Fz = Lz + Jz is a good quantum number.

Next, we express the k · p Hamiltonian in terms of cylindrical polar coordinates ρ, φ, z. The

total wave function is then written as

ψ(r) =
∑

i

fi(r)|ui〉 =
∑

i

gi(ρ, z)e
iLziφ|ui〉

=
∑

i

gi(ρ, z)e
i(Fz−Jzi)φ|ui〉 =

∑

i

gi(ρ, z)|u′i〉. (12.4)

There is a double degeneracy with respect to the sign of Fz due to inversion and time-reversal

symmetry. The new matrix elements are given by

〈fi(r)|Ĥ |fj(r)〉

= 〈gi(ρ, z)|e−i(Fz−Jzi)φĤei(F
′

z−Jzj)φ|gj(ρ, z)〉

= 〈gi(ρ, z)|Ĥ ′|gj(ρ, z)〉. (12.5)

These matrix elements are zero unless Fz = F ′
z.

For the sake of clarity we will explicitly derive one Hamiltonian matrix element in the

cylindrical formulation. In the |X ↑〉, |Y ↑〉, |Z ↑〉, |X ↓〉, |Y ↓〉, |Z ↓〉 basis we have:

H11 =
h̄2

2m0

{
k̂xL1k̂x + k̂yM1k̂y + k̂zM2k̂z

}
+ ∆1. (12.6)
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n |un〉 Jzn

1 |u1〉 = − 1√
2
|(X + iY ) ↑〉 3

2

2 |u2〉 = 1√
2
|(X − iY ) ↑〉 − 1

2

3 |u3〉 = |Z ↑〉 1
2

4 |u4〉 = 1√
2
|(X − iY ) ↓〉 − 3

2

5 |u5〉 = − 1√
2
|(X + iY ) ↓〉 1

2

6 |u6〉 = |Z ↓〉 − 1
2

Table 12.1: Basis states for the valence bands of wurtzite [31].

In the |u1〉, |u2〉, |u3〉, |u4〉, |u5〉, |u6〉 basis we have:

H̃11 =
h̄2

2m0

1

2

{
k̂x(L1 +M1)k̂x + k̂y(L1 +M1)k̂y + 2k̂zM2k̂z

+ i[k̂x(N1 −N ′
1)k̂y − k̂y(N1 −N ′

1)k̂x]
}

+ ∆1 + ∆2. (12.7)

In cylindrical coordinates we have:

H ′
11 = e−i(Fz−J1)φH̃11e

i(Fz−J1)φ. (12.8)

Since

k̂x = −i ∂
∂x

= −i
[
cos(φ)

∂

∂ρ
− sin(φ)

ρ

∂

∂φ

]
, (12.9)

k̂y = −i ∂
∂y

= −i
[
sin(φ)

∂

∂ρ
+

cos(φ)

ρ

∂

∂φ

]
, (12.10)

and using the cylindrical symmetry of the Kane parameters, L1 = L1(ρ, z) and M1 = M1(ρ, z),

we have

k̂x(L1 +M1)k̂x = − cos2(φ)
∂

∂ρ

[
(L1 +M1)

∂

∂ρ

]
− sin(φ)

ρ2
(L1 +M1)

∂

∂φ

[
sin(φ)

∂

∂φ

]

+ sin(φ) cos(φ)
∂

∂ρ

[
L1 +M1

ρ

∂

∂φ

]
+

sin(φ)

ρ
(L1 +M1)

∂

∂φ

[
cos(φ)

∂

∂ρ

]
,

(12.11)

k̂y(L1 +M1)k̂y = − sin2(φ)
∂

∂ρ

[
(L1 +M1)

∂

∂ρ

]
− cos(φ)

ρ2
(L1 +M1)

∂

∂φ

[
cos(φ)

∂

∂φ

]

− sin(φ) cos(φ)
∂

∂ρ

[
L1 +M1

ρ

∂

∂φ

]
− cos(φ)

ρ
(L1 +M1)

∂

∂φ

[
sin(φ)

∂

∂ρ

]
.

(12.12)
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As a result

k̂x(L1 +M1)k̂x + k̂y(L1 +M1)k̂y

= − ∂

∂ρ

[
(L1 +M1)

∂

∂ρ

]
− L1 +M1

ρ2

∂2

∂φ2
− L1 +M1

ρ

∂

∂ρ
. (12.13)

Finally

e−i(Fz−J1)φ h̄2

2m0

1

2

{
k̂x(L1 +M1)k̂x + k̂y(L1 +M1)k̂y

}
ei(Fz−J1)φ

= − h̄2

2m0

1

2

{ ∂
∂ρ

[
(L1 +M1)

∂

∂ρ

]
− L1 +M1

ρ2
(Fz − J1)

2 +
L1 +M1

ρ

∂

∂ρ

}
. (12.14)

The remaining terms in H ′
11 are found in the same way.

It is found that all φ dependence goes away following the SV transformation, without making

an axial approximation as for ZB. The validity of this result is due to the axial symmetry

already found to be true for the bulk dispersion relation [31]. This can also be seen from a

group theoretic point of view by noting that the group of the wave vector is the same for all wave

vectors in the plane perpendicular to the c axis. Finally, the WZ Hamiltonian in cylindrical

coordinates is

Ĥ ′ =




|u′1〉 |u′2〉 |u′3〉 |u′4〉 |u′5〉 |u′6〉
S11

+∆1+∆2
S12 S13 0 0 0

S21
S22

+∆1−∆2
S23 0 0

√
2∆3

S31 S32 S33 0
√

2∆3 0

0 0 0 S44

+∆1+∆2
S45 S46

0 0
√

2∆3 S54
S55

+∆1−∆2
S56

0
√

2∆3 0 S64 S65 S66




, (12.15)

where

S11 = − h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 +M1)

∂

∂ρ

)
+

(L1 +M1)

ρ

∂

∂ρ
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+ 2
∂

∂z
M2

∂

∂z
− (Fz − J1)

ρ

∂(N1 −N ′
1)

∂ρ

− (Fz − J1)
2

ρ2
(L1 +M1)

}
, (12.16)

S22 = − h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 +M1)

∂

∂ρ

)
+

(L1 +M1)

ρ

∂

∂ρ

+ 2
∂

∂z
M2

∂

∂z
+

(Fz − J2)

ρ

∂(N1 −N ′
1)

∂ρ

− (Fz − J2)
2

ρ2
(L1 +M1)

}
, (12.17)

S33 = − h̄2

2m0

{
∂

∂ρ

(
M3

∂

∂ρ

)
+
M3

ρ

∂

∂ρ

+
∂

∂z
L2

∂

∂z
− (Fz − J3)

2

ρ2
M3

}
, (12.18)

S12 =
h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 −M1)

∂

∂ρ

)

+ (Fz − J2)
∂

∂ρ

(
(L1 −M1)

ρ
·
)

+ (Fz − J2 − 1)
(L1 −M1)

ρ

∂

∂ρ

+
(Fz − J2)(Fz − J2 − 1)

ρ2
(L1 −M1)

}
, (12.19)

S21 =
h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 −M1)

∂

∂ρ

)

− (Fz − J1)
∂

∂ρ

(
(L1 −M1)

ρ
·
)

− (Fz − J1 + 1)
(L1 −M1)

ρ

∂

∂ρ

+
(Fz − J1)(Fz − J1 + 1)

ρ2
(L1 −M1)

}
, (12.20)

S13 =
h̄2

2m0

1√
2

{
∂

∂ρ

(
N2

∂

∂z

)
+

∂

∂z

(
N ′

2

∂

∂ρ

)

+ (Fz − J3)

[
∂

∂z

(
N ′

2

ρ
·
)

+
N2

ρ

∂

∂z

]}
, (12.21)

S31 =
h̄2

2m0

1√
2

{
∂

∂ρ

(
N ′

2

∂

∂z

)
+

∂

∂z

(
N2

∂

∂ρ

)
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− (Fz − J1)

[
∂

∂z

(
N2

ρ
·
)

+
N ′

2

ρ

∂

∂z

]}
, (12.22)

S23 = − h̄2

2m0

1√
2

{
∂

∂ρ

(
N2

∂

∂z

)
+

∂

∂z

(
N ′

2

∂

∂ρ

)

− (Fz − J3)

[
∂

∂z

(
N ′

2

ρ
·
)

+
N2

ρ

∂

∂z

]}
, (12.23)

S32 = − h̄2

2m0

1√
2

{
∂

∂ρ

(
N ′

2

∂

∂z

)
+

∂

∂z

(
N2

∂

∂ρ

)

+ (Fz − J2)

[
∂

∂z

(
N2

ρ
·
)

+
N ′

2

ρ

∂

∂z

]}
, (12.24)

S44 = − h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 +M1)

∂

∂ρ

)
+

(L1 +M1)

ρ

∂

∂ρ

+ 2
∂

∂z
M2

∂

∂z
+

(Fz − J4)

ρ

∂(N1 −N ′
1)

∂ρ

− (Fz − J4)
2

ρ2
(L1 +M1)

}
, (12.25)

S55 = − h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 +M1)

∂

∂ρ

)
+

(L1 +M1)

ρ

∂

∂ρ

+ 2
∂

∂z
M2

∂

∂z
− (Fz − J5)

ρ

∂(N1 −N ′
1)

∂ρ

− (Fz − J5)
2

ρ2
(L1 +M1)

}
, (12.26)

S66 = − h̄2

2m0

{
∂

∂ρ

(
M3

∂

∂ρ

)
+
M3

ρ

∂

∂ρ

+
∂

∂z
L2

∂

∂z
− (Fz − J6)

2

ρ2
M3

}
, (12.27)

S45 =
h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 −M1)

∂

∂ρ

)

− (Fz − J5)
∂

∂ρ

(
(L1 −M1)

ρ
·
)

− (Fz − J5 + 1)
(L1 −M1)

ρ

∂

∂ρ

+
(Fz − J5)(Fz − J5 + 1)

ρ2
(L1 −M1)

}
, (12.28)

S54 =
h̄2

2m0

1

2

{
∂

∂ρ

(
(L1 −M1)

∂

∂ρ

)
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+ (Fz − J4)
∂

∂ρ

(
(L1 −M1)

ρ
·
)

+ (Fz − J4 − 1)
(L1 −M1)

ρ

∂

∂ρ

+
(Fz − J4)(Fz − J4 − 1)

ρ2
(L1 −M1)

}
, (12.29)

S46 = − h̄2

2m0

1√
2

{
∂

∂ρ

(
N2

∂

∂z

)
+

∂

∂z

(
N ′

2
∂

∂ρ

)

− (Fz − J6)

[
∂

∂z

(
N ′

2·
ρ

)
+
N2

ρ

∂

∂z

]}
, (12.30)

S56 =
h̄2

2m0

1√
2

{
∂

∂ρ

(
N2

∂

∂z

)
+

∂

∂z

(
N ′

2

∂

∂ρ

)

+ (Fz − J6)

[
∂

∂z

(
N ′

2·
ρ

)
+
N2

ρ

∂

∂z

]}
, (12.31)

S64 = − h̄2

2m0

1√
2

{
∂

∂ρ

(
N ′

2

∂

∂z

)
+

∂

∂z

(
N2

∂

∂ρ

)

+ (Fz − J4)

[
∂

∂z

(
N2·
ρ

)
+
N ′

2

ρ

∂

∂z

]}
, (12.32)

S65 =
h̄2

2m0

1√
2

{
∂

∂ρ

(
N ′

2

∂

∂z

)
+

∂

∂z

(
N2

∂

∂ρ

)

− (Fz − J5)

[
∂

∂z

(
N2·
ρ

)
+
N ′

2

ρ

∂

∂z

]}
, (12.33)

where Jn ≡ Jzn. Note that in general Sij 6= S†
ji.

Xia et al. [101, 102, 103] have added to the Hamiltonian (12.2) a term linear in k.

H
(linear)
k =

h̄2

2m0




0 0 Ak̂x

0 0 Ak̂y

Ak̂x Ak̂y 0


 . (12.34)

In cylindrical coordinates this linear contribution is

S
(linear)
31 =

h̄2

2m0

{
− A√

2

∂

∂ρ
+

A√
2

Fz − J1

ρ

}
, (12.35)

S
(linear)
13 =

h̄2

2m0

{
− A√

2

∂

∂ρ
− A√

2

Fz − J3

ρ

}
, (12.36)

S
(linear)
23 =

h̄2

2m0

{ A√
2

∂

∂ρ
− A√

2

Fz − J3

ρ

}
, (12.37)



CHAPTER 12. SIX-BAND K ·P CALCULATIONS - WZ CYLINDRICAL DOT 124

–0.028

–0.026

–0.024

–0.022

–0.02

E
[e

V
]

0 1000 2000 3000 4000 5000
number of elements

Figure 12.1: The energies of the top three valence sublevels of a WZ GaN cylindrical quantum

dot, calculated with the 3D program (circles). The solid lines are the converged values obtained

with the 2D program.

S
(linear)
32 =

h̄2

2m0

{ A√
2

∂

∂ρ
+

A√
2

Fz − J2

ρ

}
, (12.38)

S
(linear)
64 =

h̄2

2m0

{ A√
2

∂

∂ρ
+

A√
2

Fz − J4

ρ

}
, (12.39)

S
(linear)
46 =

h̄2

2m0

{ A√
2

∂

∂ρ
− A√

2

Fz − J6

ρ

}
, (12.40)

S
(linear)
56 =

h̄2

2m0

{
− A√

2

∂

∂ρ
− A√

2

Fz − J6

ρ

}
, (12.41)

S
(linear)
65 =

h̄2

2m0

{
− A√

2

∂

∂ρ
+

A√
2

Fz − J5

ρ

}
. (12.42)

12.3 Numerical Results and Discussion

A free standing WZ GaN cylindrical quantum dot, with a radius of 50 Ȧ and a height of 100

Ȧ, with the axis along the crystallographic c-axis, has been studied using both the 3D and

2D methods. The parameters for GaN have been taken from the literature [100]. The 3D

Hamiltonian (12.1) and the 2D Hamiltonian (12.15) have been implemented using FEMLAB;

this is a software using the finite element method. Different meshes have been generated, and

the convergence of the eigenvalues has been studied. Due to the reduced dimensionality, the
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Figure 12.2: The energies of the lowest states as a function of the CdSe quantum dot aspect

ratio. The linear term is not included in the Hamiltonian. Shown are the first four states with

Fz = 1/2 (solid black lines) and with Fz = 3/2 (dotted red lines).
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Figure 12.3: The energies of the lowest states as a function of the CdSe quantum dot aspect

ratio. The linear term is included in the Hamiltonian. Shown are the first four states with

Fz = 1/2 (solid black lines) and with Fz = 3/2 (dotted red lines).
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eigenvalue problem in 2D can be solved much faster, in minutes instead of hours, and with

less memory requirements than the eigenvalue problem in 3D. After only one mesh refinement

(2040 elements) the 2D eigenvalues have converged. However, even after three mesh refinements

(3967 elements) the 3D eigenvalues are not fully converged, as seen from Fig. 12.1.

A free standing WZ CdSe cylindrical quantum dot, with a radius of 50 Ȧ and a height of 40–

150 Ȧ, has also been investigated. The parameters for CdSe have been taken from the literature

[95, 103]. By varying the height we can study shape effects on semiconductor nanocrystals. From

Figures 12.2-12.3 we notice that there are crossings between states with Fz = 1/2 (solid lines)

and Fz = 3/2 (dotted lines). The inclusion of the linear term in the Hamiltonian dramatically

changes the energy band structure, and results in anticrossings between energy bands [101].

parameters GaN CdSe

A1 -6.56 -5.06

A2 -0.91 -0.43

A3 5.65 4.5

A4 -2.83 -1.29

A5 -3.13 1.29

A6 -4.86 0.46669

∆1 [eV] 0.019 0.039

∆2 [eV] 0.004666 0.138666

∆3 [eV] 0.004666 0.138666

h̄2

2mo
A [eV Ȧ] 0 -0.555 i

Table 12.3 6-band parameters for WZ GaN and CdSe.

The parameters used in these calculations are listed in Table 12.3. The Kane parameters

are given by [100]

L1 = A2 +A4 +A5, (12.43)

L2 = A1, (12.44)
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M1 = A2 +A4 −A5, (12.45)

M2 = A1 +A3, (12.46)

M3 = A2, (12.47)

N1 = 1 + 3A5 −A2 −A4, (12.48)

N ′
1 = −1 +A2 +A4 −A5, (12.49)

N2 = 1 −A1 −A3 +
√

2A6, (12.50)

N ′
2 = −1 +A1 +A3. (12.51)

In CdSe nanocrystals with a radius of 15 Ȧ and a gelcap shape a crossing between the

lowest two valence sublevels appears at an aspect ratio of 1.25 [86]. There are also some

experimental studies of the transition from 3D to 2D confinement in CdSe quantum rods [86,

104]. Theoretical work on the electronic properties of the transition reported so far include

empirical pseudopotential calculations on a rather artificial shape [86], and k ·p calculations for

cylindrical ZB structures [88, 105] and for spheroidal WZ structures [103]. We hope that our

new formulation for studying the electronic structure of wurzite quantum dots with cylindrical

symmetry will be a very useful tool in this important research area.

12.4 Conclusions

We have extended the Sercel-Vahala technique to WZ heterostructures with cylindrical sym-

metry and shown this to be an exact result. This is crucial for applications in enabling greatly

decreased computational resources. We have studied GaN and CdSe cylindrical quantum dots,

calculating the effect of the aspect ratio on energy levels and wavefunctions.



Chapter 13

Summary

A multiband Burt-Foreman formulation of the k · p theory was successfully carried out for

arbitrary nanostructures. This went beyond previous work in the computation of optical matrix

elements for ZB quantum wells, in the investigation of shape effects in quantum dots, and in a

new formulation for WZ cylindrical nanostructures along the [0001] direction. We have shown

that the one-band k · p equation for an elliptical quantum dot embedded in a finite barrier

material is not separable. We have demonstrated a possible electron localization in a nanowire

superlattice in a barrier material, using a full numerical solution to the one band k · p equation.

The difference between bandstructures and momentum matrix elements calculated with both

the Burt-Foreman and the Luttinger-Kohn Hamiltonians has been shown to be small, especially

when using an 8-band model. We have found that the axial approximation was not required

when the 6-band Burt-Foreman theory was extended to cylindrical coordinates using the Sercel-

Vahala transformation for WZ semiconductors. This is different from the results of others on

corresponding ZB nanostructures.

Future work may include the effect of strain on bandstructures and optical properties. From

a computational point of view we need newer and improved algorithms to solve the secular

equation for a very large and sparse matrix.

128



Bibliography

[1] P. S. Zory jr. Quantum Well Lasers. Academic, Boston, 1993.

[2] P. Harrison. Quantum Wells, Wires and Dots. Wiley, New York, 1999.

[3] S. Nakamura, S. Pearton, and G. Fasol. The Blue Laser Diode. Springer, New York, 2000.

[4] J. M. Luttinger and W. Kohn. Motion of electrons and holes in perturbed periodic fields.

Phys. Rev., 97(4):869–883, Feb 1955.

[5] M. G. Burt. An exact formulation of the envelope function method for the determination

of electronic states in semiconductor microstructures. Semicond. Science and Technology,

2:460–462, 1987.

[6] M. G. Burt. An exact formulation of the envelope function method for the determination

of electronic states in semiconductor microstructures (erratum). Semicond. Science and

Technology, 2:701, 1987.

[7] M. G. Burt. An exact formulation of the envelope function method for the determination

of electronic states in semiconductor microstructures. Semicond. Science and Technology,

3:739–753, 1988.

[8] M. G. Burt. A new effective-mass equation for microstructures. Semicond. Science and

Technology, 3:1224–1226, 1988.

[9] M. G. Burt. Exact envelope function equations for microstructures and the particle in a

box model. In A. Abram and M. Jaros, editors, Bandstructure Engineering in Semicon-

129



BIBLIOGRAPHY 130

ductor Microstructures, NATO ASI Series B, vol. 189, pages 99–109. Plenum, New York,

1989.

[10] M. G. Burt. The justification for applying the effective-mass approximation to microstruc-

tures. J. Phys.: Condens. Matter, 4:6651–6690, 1992.

[11] B. A. Foreman. Effective-mass hamiltonian and boundary conditions for the valence bands

of semiconductor microstructures. Phys. Rev. B, 48(7):4964–4967, Aug 1993.

[12] B. A. Foreman. Elimination of spurious solutions from eight-band k · p theory. Phys.

Rev. B, 56(20):R12748–R12751, Nov 1997.

[13] W. E. Buhro and V. L. Colvin. Shape matters. Nature Mat., 2:138–139, 2003.

[14] P.Y. Yu and M. Cardona. Fundamentals of Semiconductors. Springer, 1999.

[15] P.T. Landsberg. Solid State Theory. Wiley, 1969, p. 252.

[16] G. Dresselhaus, A. F. Kip, and C. Kittel. Cyclotron resonance of electrons and holes in

silicon and germanium crystals. Phys. Rev., 98(2):368–384, Apr 1955.

[17] E. O. Kane. Energy band structure in p-type germanium and silicon. J. Phys. Chem.

Sol., 1:82–99, 1956.

[18] E. O. Kane. Band structure of indium antimonide. J. Phys. Chem. Sol., 1:249–261, 1957.

[19] E. O. Kane. The semi-empirical approach to band structure. In H. Brooks, editor,

Advances in Semiconductor Science, pages 38–44. Pergamon, New York, 1959.

[20] E. O. Kane. The k · p method. In R. K. Willardson and A. C. Beer, editors, Physics of

III-V Compounds, volume 1 of Semiconductors and Semimetals, chapter 3, pages 75–100.

Academic, New York, 1966.

[21] E. O. Kane. Band structure of narrow gap semiconductors. In W. Zawadzki, editor,

Narrow Gap Semiconductors, pages 13–31. Springer-Verlag, Berlin, 1980.



BIBLIOGRAPHY 131

[22] E. O. Kane. Energy band theory. In T. S. Moss, editor, Handbook on Semiconductors,

pages 193–217. North-Holland, Amsterdam, 1982.
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[52] L. Landau and E. Lifchitz. Mécanique Quantique. Mir, Moscow, 1966, p. 162.

[53] R. Eppenga, M.F.H. Schuurmans, and S. Colak. New k · p theory for GaAs/Ga1−xAlxAs

- type quantum wells. Phys. Rev. B, 36(3):1554–1564, Jul 1987.

[54] D. Gershoni, C. H. Henry, and G.A. Baraff. Calculating the optical properties of multi-

dimensional heterostructures: Application to the modeling of quaternary quantum well

lasers. IEEE J. Quantum Elec., 29(9):2433–2450, Sep 1993.



BIBLIOGRAPHY 134

[55] S. A. Stoklitsky, Q. X. Zhao, P. O. Holtz, B. Monemar, and T. Lundström. Optical

intervalence-subband transitions in strained p-type In1−xGaxAs/InP quantum wells. J.

App. Phys., 77(10):5256–5262, 1995.

[56] O. Stier and D. Bimberg. Modeling of strained quantum wires using eight-band k · p
theory. Phys. Rev. B, 55(12):7726–7732, Mar 1997.

[57] O. Stier, M. Grundmann, and D. Bimberg. Electronic and optical properties of strained

quantum dots modeled by 8-band k · p theory. Phys. Rev. B, 59(8):5688–5701, Feb 1999.

[58] G. Shechter and L. D. Shvartsman. Theory of bound-to-continuum infrared absorption

in p-type quantum wells based on a mapping of the continuum spectrum. Phys. Rev. B,

58(7):3941–3953, 1998.

[59] P. Enders, A. Brwolff, M. Woerner, and D. Suisky. k · p theory of energy bands, wave

functions, and optical selection rules in strained tetrahedral semiconductors. Phys. Rev.

B, 51(23):16695–16704, Jun 1995.

[60] K.I. Kolokolov, S.D. Beneslavski, N.Y. Minina, and A.M. Savin. Far-infrared intersubband

absorption in p-type GaAs/AlxGa1−xAs single heterojunctions under uniaxial compres-

sion. Phys. Rev. B, 63(19):195308–1–195308–6, May 2001.
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