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Abstract

The vibration control problem for flexible structures is examined within the context

of overall controller performance and power reduction. First, the issue of optimal

sensor and actuator placement is considered along with its associated control ro-

bustness aspects. Then the option of alternately activating subsets of the available

devices is investigated. Such option is considered in order to better address the

effects of spatiotemporally varying disturbances acting on a flexible structure while

reducing the overall energy consumption.

Towards the solution to the problem of optimal device placement, three different

approaches are proposed. First, a computationally efficient scheme for the simulta-

neous placement of multiple devices is presented. The second approach proposes a

strategy for the optimal placement of sensors and collocated sensor/actuator pairs,

taking into account the influence of the spatial distribution of disturbances. The

third approach provides a solution to the actuator location problem by incorporating

considerations with respect to preferred spatial regions within the flexible structure.

Then the second problem named above is considered. Activating a subset of

the available and optimally placed actuators and sensors in a flexible structure

provides enhanced performance with reduced energy consumption. Such approach

of switching on and off different actuating devices, depending on their local-in-time

authority, results in a hybrid system. Therefore the proposed work draws on existing

results on hybrid systems and includes an additional degree of freedom, whereby

both the actuating devices and the control signals allocated to them are switched

in and out. To enable this switching an activation strategy, which insures also that

stability-under-switching is guaranteed, is required. Three different strategies are



considered for such actuators allocation: first a cost-to-go index is considered, then

a cost function based on the mechanical energy of the flexible structure and finally a

performance index based on the maximum deviation of the transverse displacement.

A flexible aluminum plate was chosen to validate and test the proposed ap-

proaches. The set up utilized four pairs of collocated piezoceramic patches that

serve to provide sensing and actuating capabilities. Extensive numerical simula-

tions were performed for both the placement strategies and the switching policies

proposed, in order to predict the behavior of the flexible plate and provide the opti-

mal actuator and sensor locations that were to be affixed on the flexible structure.

Finally, to complete the validation process a sequence of experimental tests were

performed. The objective of these tests was to compare the performance of the pro-

posed hybrid control system to traditional non switched control schemes. In order

to provide a repeatable perturbation, four of the piezoceramic patches were allo-

cated to simulate a spatiotemporally varying disturbance, while the remaining four

patches were used as sensors and controlling actuators. The experimental results

showed a significant performance improvement for the switched controller over the

traditional controller. Moreover the switched controller exhibited improved robust-

ness towards spatiotemporally varying disturbances while the traditional controller

showed a significant loss of controller performance. The improvement achieved in

vibration control problems could be extended to a wider range of applications. In

particular, although this study was concentrated on a rectangular thin plate, the

proposed strategies can be applied to any structure and more generally to any plant

whose dynamics can be represented by a second order linear system. For example,

by removing the restriction of spatially fixed actuators and sensors, the proposed

theory can be applied to the problem of unmanned vehicles control.
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Chapter 1

Introduction

1.1 Objectives and Literature Review

The objective of this work is to propose new schemes to optimize the overall per-

formance of control systems and in particular flexible structures. Vibration control

problems were chosen to apply these new schemes due to the wide range of existing

applications. It is indeed possible to identify vibration phenomena in almost any

engineering problem. For the majority of cases, vibration is an unwelcome compo-

nent of the designed operating conditions and, if left uncontrolled, it can result in

serious damage or loss of efficiency. A well known example is the Tacoma Narrows

Bridge which collapsed due to wind induced vibration [1].

Active or passive strategies can be used in order to control and reduce structures’

vibration. Reducing the stress induced by vibration results in an extended lifetime,

noise reduction, lighter structural design and weight reduction; this directly trans-

lates in improving system efficiency and performances. Examples can be found in

several fields [2] such as the automotive industry [3, 4, 5, 6], the aeronautical industry

[7, 8] or the aerospace field [9, 10]. Also, vibration control has relevant applications
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Figure 1.1: Solar sail: example of flexible structure in space application (BBC News
5/14/2002)

in other fields, for example building safety [11, 12, 13] against earthquakes.

The objective of this work can be achieved by two separate steps described in

the following paragraphs.

1.1.1 Architecture design for control systems

The first step to improve vibration control of a flexible structure is to optimize

its architecture design. Two main components can be distinguished in this phase:

the structure’s geometry and the network of sensors and actuators linked to the

structure.

One way to increase control system’s efficiency is to optimize the structure’s

shape and geometry. Several geometries have been investigated in the past years

such as the case of the beam [14, 15, 16], the plate [17, 18, 19] or more complex shapes

such as shell [20] or toroidal configurations [21]. Another approach to improve struc-
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tural vibration control is to optimize sensors and actuators capabilities. Different

options are available for such components and interesting contributions have come

from the use of smart materials [22, 23, 24, 25, 26, 27]. Placement of the actuating

devices was found to play a fundamental role over the global control capability and

it has been the object of intense study in the past years, see [28, 29, 19]. The goal

is to determine the device’s location that guarantees optimality for the closed loop

system. This is accomplished by defining a performance index, which accounts for

the vibration control effect over the global structure behavior, and by optimizing

such index. Several choices for the performance index have been proposed. An index

based on modal controllability is used to optimally locate an acting bracing system

in civil structures [30] or to place piezoelectric patches on a cantilever beam [18].

In [31] the performance index is intended to maximize the spatial controllability

of piezoelectric patches. A similar approach is to minimize capital and installation

costs with the constraint of stability for the overall system. This is done in [32] for

chemical reactors.

The optimization strategies referenced above do not account for possible pertur-

bations affecting the structure, which is a common condition in real applications.

A placement strategy that does not account for such influence may not guarantee

optimality for the closed loop. To avoid this problem, the disturbance’s influence

should be included in the performance index. This was done in [33] where the min-

imized index is the H∞ norm of the transfer function between the disturbance and

the state’s variables. The disturbance effect is accounted for, but the optimization

is still dependent on the arbitrary choice made for such disturbance. Unless the

spatial distribution of disturbance is known a priori, an arbitrary choice may again

result in loss of optimality.

A different challenge when selecting the placement of multiple devices is to ac-
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count for their mutual influence. Placement of multiple actuators can be determined

by looking for the optimal placement of each single element. In certain cases, the

locations found may not be optimal when the full set of devices is simultaneously

affixed and utilized. This is due to the influence that the actuators may have over

the structure’s properties and therefore the optimality function. For example the

addition of piezoceramic patches changes the mass and stiffness distributions of the

structure.

Three strategies are presented here to address the problems highlighted above.

The first one is based on maximizing modal controllability for a given number of

modes. The actuators’ placement is computed simultaneously for all the available

devices, accounting for their mutual influences over the plate’s behavior. In the

second approach, a more general procedure is considered where the effect of dis-

turbances is included in the optimization process. A spatial distribution of distur-

bance is calculated as the worst admissible case; this guarantees robustness against

unknown disturbances. The third placement policy guarantees overall vibration re-

duction while enhancing stability over preselected spatial regions of the structure.

This is equivalent to globally ensuring spatial controllability and at the same time

maximizing preselected modal controllability. The common goal is to optimally and

efficiently design the control system’s architecture. Two optimization problems are

encountered, maximizing the performance index and defining the spatial component

for the disturbance distribution. In order to find the locations that maximize the

performance, a brute force optimization is used over a grid of possible candidate

locations. The second optimization problem is solved by using the Matlabr Opti-

mization Toolbox. Numerical studies were performed simulating a square aluminum

plate one meter wide with a set of piezoelectric patches as sensing and actuating

devices.

4



The final result is a closed loop system where the original plant is interfaced

with a network of sensors and actuators. The strategies proposed in this work are

applied to the case of flexible structures, however it is important to highlight how

those approaches can be applied to any structure and more generally to any plant

whose dynamics is represented by a second order linear system.

1.1.2 Switching rules for hybrid control system

In several situations it may not be possible or convenient to simultaneously activate

the entire set of available actuators. For example, one may have a limited power

supply and not be able to use the entire set of these devices.

Moreover, different actuators may own different levels of efficiency, depending,

for example, on external disturbances or different stages of the main plant process.

In such cases, one may want to use only a subset of efficient actuators. Typically

this subset is not composed by the same elements for the entire time domain. It

is therefore required to determine an activation strategy that identifies the efficient

actuators to be turned on during the time domain of interest. The second step of

this work is therefore to provide the hybrid system with a switching strategy to

define in real time the actuators activation sequence.

The most general definition of a hybrid system is a dynamic system that ex-

hibits both continuous and discrete dynamic behavior. This is the case of a system

provided with a network of sensors and actuators that can be alternately activated.

The control system described above exhibits a continuous dynamics behavior when

a subset of sensors and actuators are used. If at a certain discrete time the ele-

ments of such subset are modified, the system dynamics will also exhibit a discrete

behavior.

In several cases, the switching sequence may not be determined by a human
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supervisor. For example, this could be due to high switching frequency or excessive

computations required at each switch. In this situation an automated controller is

required to define the sequence of devices to be activated.

Several options can be considered for the activation policies. For example, one

may look for the sequence that maximizes the results, increases stability or minimizes

cost functions. Example of hybrid systems can be found in almost any field such as

medical care [34], chemistry [35], electronics, marine [36], automotive or aeronautical

[37], etc etc.

Hybrid system switching presents two main challenges. The first one is to identify

the sequence of subsystems to be activated. The second challenge is to define the

time sequence or switching times. Several solutions have been explored in the past

years, such as the ones proposed in [38] and [39]. The goal here is to provide the

controller with a set of decision rules enabling its ability to autonomously determine

the subsystems activation sequence. Switching sequences can be defined for both

sensing and controlling subsystems, but due to the higher impact of the actuators

efficiency on the overall system performance, only the second class of subsystems is

considered. Several switching strategies have been proposed. In [40], the supervisor

strategy for a discrete hybrid system is based on minimizing a tracking error signal.

In [34], the switching logic is focused on optimizing a performance index related to

the H∞ control theory. A different choice for the index to be minimized is made

in [36]. The switching logic for discrete systems is designed using a finite horizon

technique. A model predictive approach is presented in [41] to generate the switched

control law for discrete time hybrid systems. Action dependent heuristic dynamic

programming is instead used in [42] to obtain a solution to the dynamic problem of

generating a switching law.

Another important aspect of switched system’s design is considered in [35, 43].

6



A set of constraints and rules for the switching algorithm are introduced in order

to ensure stability under switching. In [44] feedback gains for the controlling sub-

systems are defined in a way such that the overall switched system is stable. The

stability issue in hybrid systems has been investigated by several authors. In [37],

a common non traditional Lyapunov function is used to guarantee stability for the

switched system. A switching law based on defining a common Lyapunov function

is proposed in [45] to ensure stability for linear systems. Lie algebra is used instead

in [46] to generate a common Lyapunov function and prove stability for the system.

A different solution is proposed in [47]. It consists in identifying the “worst” or least

stable solution for the switched system and verify that it still fulfils the minimum

requirements of stability.

In this work three different approaches to implement an autonomous switching

controller are presented. The first switching policy is based on plant’s global prop-

erties. It defines the activation sequence minimizing a cost function for the system.

The goal with the second policy is to chose the activation sequence that minimizes

the plant’s kinetic energy. Finally the third law is based on local structure behav-

ior. It enables the controlling devices closest to the area of the structure where the

disturbance effect is maximum. Differently from what was found in most of the

works referred above, the proposed algorithms were validated with both numerical

simulations and experimental tests. The structure selected for the tests was a thin

aluminium plate and piezoelectric material patches were used both as sensing and

actuating devices. This material can be used in several industrial applications [48]

and has been intensively used for controlling vibration in flexible structures [49].

7



1.2 Chapter Organization

The dynamics of the flexible thin plate considered in this thesis is presented in the

following chapter. Chapter 2 includes the finite element model used and the model

considered to represent the piezoelectric patches. After a brief introduction, three

placement strategies are described in details in the third chapter. Final section of

Chapter 3 includes the relative numerical test performed for each of the presented

strategies. Chapter 4 is dedicated to hybrid switched systems. After an overview

on hybrid systems three switching policies are described. In this chapter are also

presented the results from the performed numerical simulation and the experimental

tests. Finally conclusions and future developments are presented in last chapter.
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Chapter 2

Thin Plate Model

2.1 Dynamics of the Thin Plate

In this section the dynamics of a thin, flexible plate is described. The plate dimen-

sions are indicated by Lξ = a, Lζ = b. The choice a thin plate was made due to

its simplified mathematical model. The following general assumption are implicitly

Figure 2.1: In and out of plane forces

made by using the thin plate theory [50]:

• The plate is thin in the sense that the thickness is small compared to the other

characteristic lengths.

9



• The plate thickness is uniform so that three-dimensional stress effects are

ignored.

• The plate is composed by homogenous and isotropic material with linear,

elastic properties.

• The plate deforms through flexural deformation. The deformations are small

in comparison with the thickness.

Piezoelectric patches, affixed on the plate, are used as sensors and actuators. It

is assumed that the piezoelectric patches thickness is small compared to the plate

thickness.

In Figure 2.1 the forces N, T and moments M acting over a representative plate

element are presented. First it is considered the static problem. With reference to

Figure 2.1 the equilibrium of forces in z direction is given by

∂Tξ

∂ξ
+
∂Tζ

∂ζ
+ q = 0. (2.1)

Additionally, from the equilibrium of moments in ξ and ζ directions,

Tξ =
∂Mξ

∂ξ
+
∂Mζξ

∂ζ
(2.2)

Tζ =
∂Mζ

∂ζ
+
∂Mξζ

∂ξ
(2.3)

We now introduce the relation between the displacement in z direction v and

the moments Mξ,Mζ ,Mξζ

10



Mξ = −DE

(
∂2v

∂ξ2
+ ν

∂2v

∂ζ2

)
(2.4)

Mζ = −DE

(
∂2v

∂ζ2
+ ν

∂2v

∂ξ2

)
(2.5)

Mξ,ζ = −(1 − ν)DE
∂2v

∂ξζ
(2.6)

where DE is the plate flexural rigidity

DE =
Eh3

12(1 − ν2)
(2.7)

with ν the Poisson’s ratio, E the Young’s elastic modulus and h the plate thickness.

Combining together equation (2.1)-(2.6) and introducing the inertial term, the

dynamics of the plate is described by the following equation

ρh
∂2v(ξ, ζ, t)

∂t2
+DE∇

4v(ξ, ζ, t) = q(ξ, ζ, t) (2.8)

with ρ being the density of the material used.

The equation obtained so far does not include any damping effect. To complete

the model air damping and the Kelvin-Voigt [51] damping components are intro-

duced. The term q(ξ, ζ) represents the forces per unit of area acting over the plate.

In our case the term q includes the control forces and the disturbance forces. The

control action is delivered by the piezoelectric patches in term of the moments Mpξ

and Mpζ . The disturbance is represented by the term d(ξ, ζ, t).

11



The plate equation finally becomes

ρh∂2v(ξ,ζ,t)
∂t2

+DE∇
4v(ξ, ζ, t) + cd∇

4 ∂v(ξ,ζ,t)
∂t

=

∂2Mpξ(t)

∂ξ2 +
∂2Mpζ(t)

∂ζ2 + d(ξ, ζ, t)

(2.9)

An approximated solution for this equation is provided in the next sections.

2.2 The Variational Form

First we assume that the approximated solution of equation (2.9) can be expressed

in its separate spatial and temporal components.

v(ξ, ζ, t) =

Nξ∑

m=1

Nζ∑

n=1

φmn(ξ, ζ)xmn(t) (2.10)

Substituting the approximated solution (2.10) in (2.9) we end up with a residual

component due to the approximation introduced. Following the Galerkin method

we then force all the residuals to be orthogonal to the base function φmn. This is

done by taking the inner product between the residuals and the base function and

set the result to be zero.

Equation (2.9) can now be written as a system of Nm × Nn equations, in the

vector second order form

M(ξ, ζ)Ẍmn(t)+D(ξ, ζ)Ẋmn(t)+K(ξ, ζ)Xmn(t) = B(ξ, ζ)U(t)+E(ξ, ζ)W (t) (2.11)

where B(ξ, ζ) and E(ξ, ζ) are the matrix representations of the control and distur-

bance distributions, respectively. Matrices M and K are respectively the mass and
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stiffness matrices.

The expressions for the matrices obtained as a result of the above discretization

are

Ks = DE

Nm∑

m=1

Nn∑

n=1

∫ a

0

∫ b

0

(
∂4φmn(ξ, ζ)

∂ξ4
+ 2

∂4φmn(ξ, ζ)

∂ξ2∂ζ2
+
∂4φmn(ξ, ζ)

∂ζ4

)
φkl(ξ, ζ)dξdζ

Ms = ρh
Nm∑

m=1

Nn∑

n=1

∫ a

0

∫ b

0

φmn(ξ, ζ)φkl(ξ, ζ)dξdζ

Ds = α1M + α2K

E =

∫ a

0

∫ b

0

d(ξ, ζ)φkl(ξ, ζ)dξdζ

B =

∫ a

0

∫ b

0

(
∂2Mpξ

∂ξ2
+
∂2Mpζ

∂ζ2

)
φkl(ξ, ζ)dξdζ

(2.12)

with k,m = 1, . . . , Nm and l, n = 1, . . . , Nn.

The damping matrix [D] is proportional to the mass and stiffness matrices via

the coefficient α1 and α2, and which models both Kelvin-Voigt viscoelastic damping

and air damping.

The base function φ(ξ, ζ), according to [52], can be decomposed into its two

spatial directions ξ and ζ

φ(ξ, ζ) = ϕ(ξ)ψ(ζ) (2.13)

where ϕ and ψ can be chosen as the model shapes or finite elements satisfying the

applied boundary conditions.

13



2.3 Piezoelectric Model

In this section we describe the ability of piezoelectric material to convert mechanical

strains into electrical voltage and viceversa. In particular we present the mathemat-

ical model used to represent such relation between voltage and strain.

The dimension of the piezoelectric patch are defined as Lpξ×Lpζ ×hp as depicted

in Figure 2.2.

Figure 2.2: Plate with piezoelectric patch

The piezoelectric patch converts a supplied voltage in a change of its lengths and

viceversa. In other words when a voltage is supplied to the piezo, it will deform by

applying a moment to the structure. Alternatively if the structure is deformed, a

moment will be applied to the piezo that will return a voltage.

According with [53, 54] the correlation between voltage and moment can be
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expressed with the following equation (2.14)

Mp(t) =
1

2
Epd31wp(h+ hp)νp(ξ, ζ, t) (2.14)

where Ep is the Young’s modulus of the piezoceramic patch, wp is the width of

the electrodes, d31 is the electric charge constant controlling the device extension

and finally h and hp are the plate and the piezoelectric thickness; the piezo patch

considered is shown in Figure 2.3.

Figure 2.3: Piezoelectric patch

As already pointed out above it is assumed that the piezo thickness is much

smaller than the plate thickness hp << h. The term νp(ξ, ζ, t) represent the applied

voltage. This term can be decomposed in the spatial component and the time

component Vp(t). The spatial component is considered constant in the interval of

the piezo length and reaches zero at its boundary according with a step function H

as shown in the following equation.

νp(ξ, ζ, t) = Vp(t) [H (ξ − (ξp − Lpξ/2)) −H (ξ − (ξp + Lpξ/2))]×

[H (ζ − (ζp − Lpζ/2)) −H (ζ − (ζp + Lpζ/2))]
(2.15)

where the center of the piezo has been indicated with (ξp, ζp).
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2.4 The Finite Element Model

In order to complete the discrete model discussed above we need to define the base

functions (2.13). These functions are defined by using the finite elements methods.

This choice was made instead of using modal shape due to the following reasons:

• There is not an analytical expression for the modal shapes of an all-clamped

plate that includes the effects of the attached piezoelectric patches.

• The use of finite elements functions allows a much simpler approach to apply

and change boundary conditions.

• The eigenfunctions describe the global behavior of the structure. This imply

that they are defined over the full domain and often they tend to be compli-

cated and uneasy to approach computationally.

A good choice for the finite element function is the cubic splines function as

underlined in [55]. The following equations describe mathematically the splines

function.

ϕ(ξ) =





0 ξ < ξc − 2hc

(ξ + 2hc − ξc)
3 ξc − 2hc < ξ < ξc − hc

h3
c + 3h2

c(ξ + hc − ξc) + 3hc(ξ + hc − ξc)
2 − 3(ξ + hc − ξc)

3 ξc − hc < ξ < ξc

h3
c + 3h2

c(ξc − ξ + hc) + 3hc(ξc + hc − ξ)2 − 3(ξc + hc − ξ)3 ξc < ξ < ξc + hc

(ξc + 2hc − ξ)3 ξc + hc < ξ < ξc + 2hc

0 ξ > ξc + 2hc

(2.16)

where ξc is the center of a spline and hc is the distance between the nodes.
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2.5 Boundary and Initial Conditions

In order to complete the mathematical model proposed above we need to define

initial and boundary condition for the problem considered.

The plate is assumed to have zero displacements and zero velocity at the initial

time t = 0 as follows

v(ξ, ζ, 0) = 0,
∂v(ξ, ζ, 0)

∂t
= 0. (2.17)

The boundary conditions for an all clamped plate are described by the following

set of equations

v(0, ζ, t) = 0, v(a, ζ, t) = 0, v(ξ, 0, t) = 0, v(ξ, b, t) = 0, (2.18)

∂v(0, ζ, t)

∂ξ
= 0,

∂v(a, ζ, t)

∂ξ
= 0,

∂v(ξ, 0, t)

∂ζ
= 0,

∂v(ξ, b, t)

∂ζ
= 0. (2.19)

In order to apply such boundary conditions the base functions ϕ need to be modified

such that the slope and the displacement are zero at the boundaries. The (n + 3)

original spline functions are changed to (n− 1) transformed spline functions via the

transformation 



Φ1 = −2ϕ−1 + ϕ0 − ϕ1

Φ2 = ϕ2

...

Φn−2 = ϕn−2

Φn−1 = −2ϕn−1 + ϕn − ϕn+1

(2.20)

An example of the original and the transformed spline function and its derivative

for the 1D case are shown in Figures 2.4 and 2.5.
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Using an appropriate transformation matrix T it is possible to impose the bound-

ary condition simply by pre and post multiplying the mass and stiffness matrices

(2.12) by T . In the case of an all-clamped conditions such matrix is given by

T =




−2 1 −2 0 . . . 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −2 1 −2




(2.21)

Figure 2.4: Original spline functions and its transformed form
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Figure 2.5: Derivative of the original spline functions and its transformed form
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Chapter 3

Optimal Placement of Sensors and

Collocated Sensors/Actuators

3.1 Introduction

In this chapter three algorithms to determine the optimal placement for sensing and

actuating devices are presented. The goal is to determine a set of suitable positions

(ξp, ζp) for each device.

In order to present such strategy it is necessary to reformulate the model equation

(2.11) in a first order form as shown in equation (3.1)

ẋ(t) = A(ξ, ζ)x(t) +B1(ξ, ζ)w(t) +B2(ξp, ζp)u(t) (3.1)

where

x =



Xmn

Ẋmn


 , A =




0 I

−M−1K −M−1D


 ,
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B1 =




0

M−1E(ξ, ζ)


 , B2 =




0

M−1B(ξp, ζp)


 . (3.2)

The [A] matrix includes the system’s dynamics and properties. The spatial

components of the disturbance forces are described in [B1] while the control forces

are represented by the matrix [B2]. Dependence on the piezo position (ξp, ζp) is

made explicit to point out how a different placement of the actuating device affects

the system.

The first objective is to find the best location for the piezo placement on the

plate both as a sensing and actuating device. There are infinite possible locations

for the piezo as described by the set

Θ = {(ξ, ζ) ∈ [0, a] × [0, b]}

but the primary requirement is to enhance the system-theoretic properties of the

piezo devices. The piezo position must therefore satisfy the condition of controlla-

bility for the system. This means that the contribution to the differential equation

(2.9) from the term

∂2Mpξ

∂ξ2
+
∂2Mpζ

∂ζ2
(3.3)

must not be zero for a given piezo candidate position (ξk, ζk) ∈ Θ . Considering the

weak form assuming φmn(ξ, ζ) = ϕm(ξ)ψn(ζ), it is possible to write the controllabil-

ity condition as

∫ a

0

∫ b

0

(
∂2Mpξ

∂ξ2
+
∂2Mpζ

∂ζ2

)
Uij(ξ, ζ)dξdζ =

(
ϕ

′

i(ξk + Lξ/2) − ϕ
′

i(ξk − Lξ/2)
)

×

∫ ζk+Lζ/2

ζk−Lζ/2

ψj(ζ)d31Vpdζ +

∫ ξk+Lξ/2

ξk−Lξ/2

ϕi(ξ)d32Vpdξ ×
(
ψ

′

j(ζk + Lζ/2) − ψ
′

j(ζk − Lζ/2)
)
6= 0

(3.4)
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where Lξ and Lζ are the piezo lengths, d31 and d32 denote the mechanical strain in

the ξ and ζ directions experienced by a piezoelectric element per unit of electrical

energy applied Vp. A set of candidate positions, both for sensors and actuators, is

therefore defined with respect to the following condition

Θad =

{
(ξ, ζ) ∈ Θ :

∫ a

0

∫ b

0

(
∂2Mpξ

∂ξ2
+
∂2Mpζ

∂ζ2

)
6= 0

}
. (3.5)

For the symmetry of the problem the previous condition ensures also that sensor

candidate locations do not result in a zero reading from the devices.

Three different solutions to the actuators and sensors placement problem are

presented in the following sections.

3.2 Simultaneous placement of multiple actuator

devices

In this section it is considered the simultaneous placement of multiple devices on

the flexible plate. It is assumed that ng clusters or groups of actuators are available

on the structure. The total number of actuators na on the plate is given by

na =
∑ng

k=1 qk

where qk is the number of actuators for the kth cluster. Moreover, it is chosen to have

the same number of actuators qk = q in each group. At any time piezoelectric effects,

such as mass and stiffness contributions, are accounted in the structure model. This

implies that the [A] matrix in equation (3.1) is a function of the piezo positions

(ξp, ζp)i=1...na
.

With reference to equation (3.1), it is possible to associate a specific vector B2

to each single actuator (ξp, ζp)i. Corresponding to the na available actuators there
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are na associated control vectors B2.

The input term for the kth group of actuators in state space form is therefore

given by the matrix

B2k(ξp, ζp) =




0 0 . . . 0

M−1B2(ξpk1, ζpk1) M−1B2(ξpk2, ζpk2) . . . M−1B2(ξpkqk
, ζpkqk

).




(3.6)

To each group of actuators correspond a matrix B2k whose columns are the single

actuators vectors B2

Grouping together these matrixes for all the ng clusters it is obtained

B̂2(ξp, ζp) =



B21(ξp1

,ζp1
)︸ ︷︷ ︸
B22(ξp2

,ζp2
)︸ ︷︷ ︸
. . . B2g(ξpng

,ζpng
)︸ ︷︷ ︸

group 1 group 2 group ng


 (3.7)

The algorithm is composed of two steps: first defining the locations for all the

assigned devices na; second grouping together the actuators in ng clusters each

composed of q elements.

Placing simultaneously na actuators can be done by running Ns = na separate

searches. Such strategy simplifies the placement procedure, but neglects the mutual

influence between the na actuators and their combined effect on the structure’s mass

and damping. Combinatory approaches should be used to consider these mutual

influences for the location-optimized measures. Approaching such problem requires

the solution of at most
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nad

q1


 +




nad − q1

q2


 + . . .+




nad −
∑ng−1

i=1 qi

qng


 =




nad

q1


 +

ng∑

i=2




nad −
∑i−1

j=1 qi

qi


 (3.8)

location-optimized measures in order to place the considered na actuators. This
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Figure 3.1: Second modal shape for a clamped-clamped beam

placement approach therefore requires an extremely high computational cost.

A procedure that is computationally feasible and minimizes the design and al-

gorithmic complexity was instead considered. The idea is to assign a “value” for

any candidate placement representing its ability to affect specific modes. This ap-

proach was validated on previous works such as [56]. Addressing a finite number

of modes, many candidate locations might have the same controllability index. For
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example, one may think the second mode for a clamped-clamped beam represented

in the schematic Figure 3.1. In this case both the location at 0.25L and 0.75L of

the length have the same control authority while the controllability is zero for the

location at 0.50L.

It is chosen to consider only the first five modes for the case under analysis. The

modal shapes for the only flexible rectangular all clamped plate are given by [52, 57]

vi,j(ξ, ζ) = sin

(
iπξ

a

)
sin

(
jπζ

b

)
, i, j = 1, 2, . . . ,∞ (3.9)

To initialize the problem, locations are assigned corresponding to the maximum

modal shape deformation given by (4.12). The overall structure’s properties are

now affected by the contribution to the stiffness and mass from the piezo, the wires

and the control action. The originally found optimal locations may be not anymore

optimal and they need to be recalculated. This leads to an iterative process described

in the following algorithm 1

Algorithm 1

1: for a given mode, find the location(s) associated with the maximum absolute
value of the modal function (ξ, ζ) = arg{ max

(ξ,ζ)∈Θad

|vi,j(ξ, ζ)|}

2: repeat step 1 for the remaining modes of interest

3: assign the devices on the found locations separately for each considered mode
and repeat step 1

Any actuator will therefore optimally address at least one of the considered

modal shapes.

Remark 3.2.1: The iteration is set to terminate when two successive iterates

yield the same location or the difference between the values from the iterations is

below a fixed threshold. The devices influence over the global properties strongly

depends from the structure rigidity and the devices mass contributions. Due to this
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dependency, the convergence of the iterative method may not exist if such effect is

excessive. In such cases the methodology does not provide a unique optimal set of

positions but rather a selection of positions with a higher level of controllability for

the selected number of modal shapes.

The second step is to group the na actuators in ng clusters. Such choice requires

that each cluster attains a certain independent level of control authority over all the

selected modal shapes. This requirement is necessary to guarantee, independently

from the activated cluster, stability and controllability for the overall structure. This

is achieved by selecting in any group at least one optimally located actuator for any

modal shape.

Remark 3.2.2: In some cases, different groups shared the same location, as

it happens that there is only one location that provides the maximum for a given

modal shape.

3.3 Optimal Sensor and collocated Sensor/Actuator

placement

A procedure to simultaneously place multiple actuators was described in the previous

section. The proposed solution presents some limits. In particular only a limited

number of modal shapes, chosen a priori, can be considered. An arbitrary choice

of these modal shapes may lead to neglect some of the important phenomena and

consequently to a final loss of optimality.

The loss of control optimality, or in the worse cases stability, is due to the effects

of the neglected dynamics. This phenomena was earlier investigated from Balas

in [58] that termed it as spillover effect. An interesting note exploring the relation

between spillover, control robustness and global stability was presented in [59]. Such
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phenomena was deeply investigated in the past years. For example the effects of

spillover over robustness of sensors systems was analyzed in [60]. When dealing with

actuator placement such problems should be accounted for. In [61], for example,

extra constraints are introduced for the minimum controllability required on high

frequency components for a candidate actuator location. An hybrid controller is

proposed to reduce the effects of spillover in [62]. Here a traditional modal controller

is combined with a negative velocity feedback to address both the low and high

frequency vibration modes. In [63] a distributed controlling system, based on energy

dissipation by internal flowing fluid, is proposed to avoid the spillover limits. An

analytical solution is instead proposed by Moheimani and Halim [64]to compensate

the error induced by the truncation of a discrete model.

A common condition for mechanical system is to be perturbed by some kind of

unwanted disturbance. The spatial distribution and the temporal component of such

disturbance are generally unknown. Different distributions of disturbance may have

different effects over the system. For example exciting different states or different

part of the system. Neglecting those effects may results in loss of optimality for

the piezo placement. The next strategies, including the influence of disturbances,

address the problems of sensor and couple sensor/actuator placement avoiding such

losses.

3.3.1 Optimal sensor placement

The problem of designing a sensor network is now addressed. Sensing devices are

usually a necessary component of mechanical systems. The information acquired

may be used only for monitoring the system or for providing information to a hu-

man interface. In the most advanced cases the sensor readings can be used to define

an autonomous feedback control strategy. In general obtaining a good sensing per-
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formance is a required condition. The placement of sensors can substantially impact

its overall performance. In this section a strategy for optimal sensors placement is

summarized.

In general it is not possible to obtain sensing information for the overall states

of the systems but only a partial set. This is accounted for by assuming only partial

state availability as described by the following expression

y(t) = C(ξp, ζp)x(t) (3.10)

The term y(t) represents the system output or in other words the available

information gathered from the sensors.

In many applications the localized information, provided by the sensors, may not

be sufficient and it could be required to reconstruct the behavior of the global system.

This can be done by considering an observer or state estimator. The state estimator

utilizes the sensors information as input and generates as output the estimated full

state information x̂(t). The state estimator considered is described by the following

set of equations, more details about state estimation can be found in[65, 66].

No control moment (u(t) = 0) is considered in this model.

˙̂x(t) = Ax̂(t) + L(ξp, ζp)(y(t) − ŷ(t)) ŷ(t) = C(ξp, ζp)x̂(t) (3.11)

Equation (3.11) describes a dynamical system mirroring the original plant. The

full estimated states are available from such system. If by hypotheses the initial

conditions were known and there was not any form of disturbance involved, the esti-

mated states x̂(t) would coincide with the actual state x(t). In general however such

conditions are not verified and a correction term L(ξp, ζp)(y(t)− ŷ(t)) is introduced.

This correction term is proportional to the difference between the plant output y(t)
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and the output calculated from the estimated state space variables ŷ(t).

The sensor location (ξp, ζp)− parameterized Kalman filter gain L(ξp, ζp) is given

by

L(ξp, ζp) = X̃(ξp, ζp)C
T (ξp, ζp)N

−1 (3.12)

with X̃(ξp, ζp) being the solution to the following filter Riccati equation

AX̃(ξp, ζp) + X̃(ξp, ζp)A
T − X̃(ξp, ζp)C

TN−1CX̃(ξp, ζp) +Q = 0. (3.13)

The weight Q is related to the disturbance distribution acting over the plate, Q =

B1B
T
1 .

The following expression for the observer error e is found by combining equations

(3.11), (3.10) and (3.1)

˙e(t) = (A− L(ξp, ζp)C(ξp, ζp))e(t) +B1(ξ, ζ)w(t) (3.14)

It can be noticed that the observer error is affected by both the location of the

sensor (ξp, ζp) and the spatial distribution of disturbance B1(ξ, ζ). The optimal

location is chosen to be the one that minimizes the effects of the disturbance on the

observer error. In order to implement such idea it is required to define a measure

of the observer error. The choice made was to consider the H2 norm of the transfer

function Tew(s; ξp, ζp).

The transfer function of a particular system describes the system properties

in frequency domain. For example considering a single input single output system

(SISO) the corresponding transfer function express the system output y(s) respect to

a specific input u(s). Systems with multiple inputs and multiple outputs (MIMO)

are characterized by a matrix of transfer functions associated with the different
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inputs/outputs.

In particular it is considered the transfer function that relates the observer error

respect to a given disturbance distribution.

Tew(s; ξp, ζp) = I

(
sI −

(
A− L (ξp, ζp)C (ξp, ζp)

))−1

B1(ξ, ζ)

Using the H2 norm guarantees an integral measure of the considered function.

In all the strategies proposed in this work the idea is to optimize the system re-

sponse over the complete frequency domain rather than for a specific component

(H∞ norm).

From [65] the norm can be expressed as

‖Tew(s; ξp, ζp)‖
2
2 = BT

1 (ξ, ζ)P̃ (ξp, ζp)B1(ξ, ζ) (3.15)

where the matrix P̃ (ξp, ζp) is the solution of the Grammian

(A−L(ξp, ζp)C(ξp, ζp))
T P̃ (ξp, ζp) + P̃ (ξp, ζp)(A−L(ξp, ζp)C(ξp, ζp)) + I = 0 (3.16)

It is not considered any output error in model (3.10). The optimal position for the

sensor is finally given by

(
ξopt, ζopt

)
= arg{ min

(ξ,ζ)∈Θad

‖Tew‖
2
2|} (3.17)

Solving the previous optimization problem is equivalent to selecting the sensors’

configuration that provides the best global sensing capabilities. In other words the

sensor placement from (3.17) produces the ”optimal input” for the observer (3.11)

improving the accuracy of the final full state estimation x̂.
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Remark 3.3.1: The disturbance distribution B1(ξ, ζ) is assumed to be known.

Usually this assumption is not verified. In such cases one may consider to find

the worst admissible case for such disturbance. This would provide also robustness

against unknown distributions.

3.3.2 Worst distribution of disturbances

In order to find the worst distribution of disturbances one starts again from the

basic equation (3.1) where the control term is zero u(t) = 0

ẋ = Ax+B1(ξ, ζ)w(t) (3.18)

This equation describes the behavior of the system under the effect of active

disturbance with spatial component B1 and temporal component w(t).

The idea is to find the spatial distribution vector B1(ξ, ζ) that, for a given

temporal component of the disturbance w(t) ∈ L2 , maximizes the effect of w(t) on

the entire state x(t). In a similar fashion to what done above this objective can be

achieved by maximizing the H2 norm of the open loop transfer function from the

system (3.18)

Txw(s; ξ, ζ) = (sI − A)−1B1(ξ, ζ) (3.19)

To ensure a certain regularity for the disturbance distribution it is introduced

the constraint d(ξ, ζ) ∈ L2. The expression for the worst admissible disturbance

becomes

Bworst
1 (ξ, ζ) = arg {max

B1∈L2

‖Txw(s, ξ, ζ)‖2
2} (3.20)

The H2 norm is evaluated solving the following Lyapunov equation associated to
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system (3.18)

AXw(ξ, ζ) +Xw(ξ, ζ)AT +B1(ξ, ζ)B1(ξ, ζ)
T (3.21)

with the norm given by the expression

‖Txw(s; ξ, ζ)‖2
2 = trace (Xw(ξ, ζ)) (3.22)

The elements of the vector Bworst
1 are obtained by solving the constrained nonlin-

ear optimization problem described in (3.20). The problem is solved with a sequen-

tial quadratic programming (SQP) method and solving a quadratic programming

(QP) subproblem at each iteration [67, 68]. The code was implemented using the

control toolbox from Matlabr.

3.3.3 Spatially robust optimal sensor placement

The next step is to combine the results obtained above for sensor placement pro-

cedure. Using the worst case disturbance it is possible to improve the strategy

including robustness against unknown disturbance distributions. Using the previ-

ous result one may now look for the optimal sensor placement against the worst

admissible spatial disturbance distribution.

Following the steps described in Section 3.3, a general approach for the optimal

location is given by

(
ξopt, ζopt

)
= arg{ min

(ξ,ζ)∈Θad

‖Tworst
ew ‖2

2|} (3.23)

with

‖Tworst
ew (s, ξp, ζp)‖

2
2 = trace

(
Bworst

1 (ξ, ζ)T P̃ (ξp, ζp)B
worst
1 (ξ, ζ)

)
(3.24)
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with P̃ (ξp, ζp) being the solution to equation (3.16). The locations found are now

optimal with respect to the worst case disturbance.

3.3.4 Optimal sensor/actuator pair placement

When active control is considered along with sensors it is required to provide a net-

work of actuators. In this section it is addressed both the actuator and sensor place-

ment. The idea is to find the optimal position for the subsystem sensor-actuator such

that the global disturbance’s effect on a controlled structure is minimized. In order

to find the optimal placement for both sensor and actuator, the associated combina-

toric optimization problem should be solved. In other words this requires to find the

coordinates (ξopt
piezo, ζ

opt
piezo) and (ξopt

sens, ζ
opt
sens) maximizing the coupled sensor-actuator

performances/actions. To quantify this computational load one may assume a finite

number of candidate positions Nsens = 400, Nact = 400 and for such choice the re-

quired combinatorial function to be evaluated are NFunct = Nsens · Nact = 160000.

Solving this composite problem may lead to unfeasible or excessive computational

effort. To avoid such problem the assumption of collocated actuator and sensor is

made. This constraint is expressed by the equation (3.25)

C(ξ, ζ) = BT
2 (ξ, ζ) (3.25)

and implies that NFunct = Nsens = Nact eliminating the possible permutations be-

tween different sensor and actuator locations.

The closed loop form of the system presented in Figure 3.2 is now considered.

The system output y(t) is processed by the observer described above that returns an

estimate of the complete state space variable set x̂(t). This information is provided

to the controller that return a control law signal u(t) for the actuator.
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Figure 3.2: Scheme of a closed loop system

To define a control law for system (3.1,3.10) a dynamic compensator with an

observed based feedback is therefore required. This global structure obtained by

coupling an observer and a controller together is called compensator. The control law

u(t) = −B2Kx̂(t), provided from the compensator and based on the estimated state

variables, is finally sent to the actuators. The compensator behavior is described by

the following first order differential equation

˙̄x(t) = Āx̄(t) + ¯B1(ξ, ζ)W (t) (3.26)

where x̄ represents the augmented state vector error and the augmented matrixes

Ā and B̄1 are shown below.

Ā =



A−B2K B2K

0 A− LC


 B̄1(ξ, ζ) =



B1(ξ, ζ)

B1(ξ, ζ)


 . (3.27)
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K represents the LQR feedback gain associated with the state equation (3.1). The

system’s dynamics is influenced by the actual location of actuators and sensors. A

specific compensator with its own dynamics is associated to any candidate actuator-

sensor location. Moreover the devices locally affect stiffness and mass properties of

the structure. System (3.26) must therefore be recalculated for each candidate

position considered.

The observer gain L is obtained as before (3.12) while the controller gain is given

by K = R−1BT
2 Xc with Xc the solution of the Riccati equation

ATXc +XcA−XcB2R
−1BT

2 Xc +Q = 0 (3.28)

In [66] to achieve an optimal placement the effect of the disturbance w over the

output y = C(ξp, ζp)x(t) was minimized. In a similar fashion to find the optimal

position it is searched for the candidate position that minimizes the augmented state

x̄ against the disturbance w. This not only provides robustness for the controller

against disturbances but also minimizes the observer error represented by the second

half of the state variable x̄.

It is considered again the H2 norm of the transfer function

T
ξp,ζp

x̄w (s) = I(sI − Ā)−1B1(ξ, ζ) (3.29)

as optimality index for the actuator/sensor placement.

The best placement for the collocated pair is therefore the one that minimizes the

following norm

‖Tx̄w‖
2
2 = trace

(
BT

1 (ξ, ζ)X̄(ξp, ζp)B1(ξ, ζ)
)

(3.30)

where the matrix X̄(ξp, ζp) is the solution of the related Grammian observability
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equation

ĀT X̄ + X̄Ā+ I = 0 (3.31)

The placement strategy can be summarized by

(
ξopt, ζopt

)
= arg{ min

(ξ,ζ)∈Θad

‖Tx̄w‖
2
2|} (3.32)

The disturbance distribution B1(ξ, ζ) is calculated as the worst case possible for

the open loop system. Analogous to section 4.2, the worst distribution is chosen to

maximize the effect of the disturbance both on the plant’s states and on the observer

error. The worst distribution is given as

Bworst
1 (ξ, ζ) = arg

(
max ‖Tx̄w(s, ξ, ζ)‖2

2

)
(3.33)

Tx̄w(s, ξ, ζ) = (sI − Ā)−1B1(ξ, ζ) (3.34)

The system’s properties are related to actuator and sensor position. Once a

placement is found the worst disturbance calculated may not be anymore the ”worst”

for the new closed loop. Updated worst case disturbance needs to be recalculated

along with a new optimal placement. This leads to an iterative process described

by the following algorithm

Remark 3.3.2: Similar to the previous case, convergence is again dependent on

structure properties and discretization choices. However the considered algorithm

still provides a way to identify a set of optimal positions ensuring controllability and

robustness. Numerical results presented later evidence and clarify such concept.

Remark 3.3.3: The proposed algorithms involves an optimization process.
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Algorithm 2

1: Calculate the worst distribution disturbance using (3.33) for the open loop sys-
tem, i.e.
B2(ξp, ζp) = 0

2: Solve (3.32) for the optimal collocated pair actuator/sensor location (ξopt, ζopt)

3: Compute the new worst disturbance distribution using (3.33)

4: Solve (3.32) for the new optimal placement with the new worst disturbance
distribution

5: If | (ξopt, ζopt)new − (ξopt, ζopt)old | ≤ Tolerance then exit, else go to step 3

The basic approach considered here, is to define a grid of candidate locations and

run a brute optimization process. This is equivalent to searching for the grid location

that provides the minimum cost function value. The accuracy is strongly dependent

on the fitting level of the grid used. In particular defining the distance Dpiezo =
√

(ξi
p − ξi−1

p )2 + (ζ i
p − ζ i−1

p )2, if for any grid node i it is verified that Dpiezo ≤ Lpiezo,

with Lpiezo being the length of the active device part, then the optimization search is

sufficiently accurate. However, for large scale problems, as a 3D or larger dimension

structure, this optimization approach does not guarantee sufficient accuracy or may

result in excessive computational cost. In such cases one can define a coarse grid and

use the locations set as initial condition to run a more accurate research method.

A choice for such optimization method could be the conjugate gradient method or

the gradient projection technique. Interesting results for large scale optimizations

problems can be found from Jorge More[69] or Gaohang Yu [70]. A third possibility

is offered by the use of genetic algorithm approach[71]. In this case a family of

possible candidate locations over the all structure could be used as initial condition.

This could prevent the optimization search to result only into a local minima.
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Figure 3.3: Enhanced stability over assigned spatial regions

3.4 Optimal actuator placement over assigned spa-

tial regions

In certain cases it is required to enhance stability over designed regions of a structure.

To accomplish such goal one may locally increase the control action on those designed

regions. This choice may result in overall loss of controllability for the system as

shown in the following example. Consider for example the case illustrated in Figure

3.3; the desired region is the middle of a square plate, subject to a random disturbing

force. In such situation one could choose as optimal location the center itself. In

this case the controller would not have any authority on important modes such

as the second and third ones and consequently there would be an overall loss of

performance.

The proposed strategy guarantees both local stability enhancement and overall
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control performances. First it is considered the index ‖Txw‖2 given by

T ξp,ζp

xw (s) = I
(
sI − Ã(ξp, ζp)

)−1

B1(ξ, ζ) (3.35)

where the spatial disturbance distribution was considered constant over the plate

and Ã is the closed loop matrix for the system

Ã(ξp, ζp) = A(ξp, ζp) −B2(ξp, ζp)K(ξp, ζp) (3.36)

the overall performance is ensured by selecting the candidate position (ξp, ζp) that

minimizes the full state transfer function Txw. We look for the placement that

minimizes the effect of a given disturbance over the plant’s states.

To introduce a significant measure for the transfer function, we consider again the

H2 norm as in (3.30). The optimal placement is obtained solving the optimization

problem
(
ξopt, ζopt

)
= arg { min

(ξp,ζp)∈Θad

‖Txw‖2} (3.37)

The closed loop gain K̃ is obtained from the LQR approach minimizing the cost to

go function

J =

∫
∞

t0

[xT (t)Qx(t) + uT (t)Ru(t)]dt. (3.38)

The previous index is minimized by the following expression

Jmin = xT (t0)P (ξp, ζp)x(t0) (3.39)
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where the matrix P (ξp, ζp) is found solving the algebraic Riccati equation

AT (ξp, ζp)P (ξp, ζp) + P (ξp, ζp)A(ξp, ζp) +Q

−P (ξp, ζp)BT
2 (ξp, ζp)R−1B2(ξ

p, ζp)P (ξp, ζp) = 0.
(3.40)

The standard choice for the weight matrix Q is given by

Q =



Ms 0

0 Ks


 (3.41)

where Ms affects the first n states of x(t) (the velocity) and Ks the remaining n

(the transversal deformation). In order to enhance the stability in selected spatial

regions, the Q matrix can be modified as described below

Q̃ =



M̃s 0

0 K̃s


 (3.42)

By opportune definition of K̃s, M̃s it is possible to select some elements of the

state vector x(t) to have higher cost for the index (3.38). This is equivalent to

penalize deformation and velocity for specific spatial regions on the cost index (3.38).

The terms K̃,M̃ are obtained, similarly to (2.12), from

K̃s = DE

Nm∑

m=1

Nn∑

n=1

∫ a

0

∫ b

0

(
∂4Vmn(ξ, ζ)

∂ξ4
+ 2

∂4Vmn(ξ, ζ)

∂ξ2∂ζ2
+
∂4Vmn(ξ, ζ)

∂ζ4

)

Vkl(ξ, ζ)f̃K(ξ, ζ)dξdζ

(3.43)

M̃s = ρh
Nm∑

m=1

Nn∑

n=1

∫ a

0

∫ b

0

Vmn(ξ, ζ)Vkl(ξ, ζ)f̃M(ξ, ζ)dξdζ (3.44)

The 2D weight functions f̃K(ξ, ζ), f̃M(ξ, ζ), defined for ξ ∈ (0, a), ζ ∈ (0, b),
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describe geometric surfaces. The functions assume maximum values for ξ, ζ cor-

responding to selected regions over the plate where the control effect should be

maximized. For simplicity the two functions are assumed to identical f̃(ξ, ζ) =

f̃K(ξ, ζ) = f̃M(ξ, ζ).

The weight functions affect, through the closed loop gainK, the global optimality

index Jopt defined above. The procedure to select the actuator location can be

schematized from Algorithm 3

Algorithm 3

1: Define a grid of possible locations over the structure under consideration

2: Design a controller based on the LQR approach (3.38)-(3.44) for each candidate
location

3: Compute the performance index map (3.37) for the introduced grid in order to
find the optimal placement

This optimization problem has the same limits described for the previous case

and a similar approach can be used for large scale problems.

3.5 Numerical Results

Numerical simulations were performed to validate the strategies described above.

The case considered is a square, all clamped, aluminum plate of length a = b = 1m.

This choice was made for its symmetry properties. This allows an easier a posteriori

analysis for the obtained results. The approach presented above was used to create

a discrete model. Up to n = 25 elements for each direction (ξ, ζ) were considered

for the truncated expression (2.10).

Between the most important parameters, required to characterize the structure

behavior, are the first natural frequencies. It was then a given choice to use those

values to verify the accuracy achieved by the used discretization level. The values
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Table 3.1: Analytical and numerical frequency
Analytical solution Numerical solution

8.7626 Hz 8.7615 Hz
17.8734 Hz 17.8704 Hz
26.3682 Hz 26.3500 Hz
32.0411 Hz 32.0430 Hz

Table 3.2: Plate properties
Aluminium plate properties

Length 1m
Width 1m

Thickness 0.002m
Density 2700Kg/m3

Young’s modulus 70GPa
Poisson ratio 0.35

found for the discrete model were compared with the values available from literature

[57] for the case of a all clamped thin plate. No devices were included for this test

and only the open loop matrices were computed. The natural frequencies ωn were

calculated solving the well knows equation

ωn = 1
2π

√
eig[K][M ]−1

with [Ms], [Ks] being the mass and stiffness matrices from the numerical model.

Results are shown on Table 3.1 The aluminium plate’s properties and geometry

chosen for the numerical model are shown in Table 3.2 while Table 3.3 provides

the piezo’s properties. The spatial distribution of disturbance B1(ξ, ζ) was similarly

discretized as described in Section 2.1 using 50 piecewise constant functions for each

direction. Matlab optimization and control predefined function were used for the

numerical studies.
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Table 3.3: Piezo properties
Piezo properties and coordinates

Length 0.0508m
Width 0.016078m

Thickness 0.000845m
Density 8140Kg/m3

Young’s modulus 55GPa
Poisson ratio 0.25

Table 3.4: Coordinates for group of piezoelectric patches
group 1 (0.7143a,0.4286b) (0.7143a,0.2857b) (0.2143a,0.7857b)
group 2 (0.4643a,0.7500b) (0.5357a,0.2857b) (0.2857a,0.5714b)
group 3 (0.2857a,0.5714b) (0.2857a,0.2857b) (0.7143a,0.4286b)
group 4 (0.5a,0.5b) * *

3.5.1 Numerical Results for Algorithm 1

In this simulation, nine (na = 9) actuators were considered. Four different groups

share the available actuators , each group having at most 3 devices. The assumption

that any actuator could be shared by any group was made. Table 4 shows the actu-

ator placements found for each group. Figure 3.4 shows part of the iterative process

described above. The pictures depict the plate’s 2nd modal shape corresponding to

different actuator placements. The change in shape is due to the effect on the plate

properties of changing actuators placements. Such effect is even amplified when the

devices are wired to some centralized controller or a wireless device is associated

with each actuator/sensor. This is due to the wires’ additional influence over the

plate’s properties.

The optimal location for the first and the second two modal shapes can be easily

identified. Some complexity may arise when looking for higher modes to which

correspond several optimal locations or equivalently maximum deformation points.

Once all the positions for the nine actuators were found, the patches were grouped
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Figure 3.4: Actuator placement for the second modal shape.

together, as described on the previous table. Each group was designed to optimally

address all the selected first modal shapes.

3.5.2 Numerical Results for Algorithms 2

A grid of 900 candidate locations over the plate was considered in these simulations.

To each possible placement corresponds a specific model for the plant, as described

above.

The first step was to generate the worst disturbance distribution by using the

expression (3.20), shown on Figure 3.7. The distribution was used to find the opti-

mal sensor’s location shown in Figure 3.8. According to equation (3.23), the optimal

location is given by the candidate position that minimizes the effect of the distur-

bance over the observer error (Z axis). The H2 norm of the observer error shown on
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this and the following pictures was normalized and the Z axis values were inverted

for easier visualization.

Figure 3.5: Random disturbance distribution

A second placement simulation was performed considering a disturbance distri-

bution randomly generated, results are shown in Figures 3.5 and 3.6.

The following step was to look for the optimal placement of the collocated couple

sensor/actuator. As described above an iterative process is required to identify the

optimal placements. The results for optimal couple actuator/sensor placement are

shown below. Figures 3.9,3.10,3.11 depict the iterative process described on section

4.4.

Four areas were identified as optimal location for placement of couple actua-

tor/sensor. It can be noticed how the locations close to the plate’s quarters result

to be optimal for the considered case. This result can be justified for the case of a
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Figure 3.6: Optimal sensor placement for a random disturbance distribution

square plate by a simple modal analysis. These four locations owns good controlla-

bility level over the first few important modes of the plate. Typically the higher the

modal shape considered the higher is its frequency and therefore higher is the effect

of the natural passive damping. The better the actuators can affect low damping

frequency/modal shape the better the overall controller performance will be. The

proposed algorithm implicitly identifies such threshold of important modal shape.

The result obtained for the sensor and the coupled sensor/actuator suggests

similar optimal locations. This is justified by the symmetry for the problem of

sensor and actuator placement for this specific case (3.5.)
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Figure 3.7: Worst spatial disturbance distribution

3.5.3 Numerical Results for Algorithm 3

The results obtained for the placement of actuators over preassigned regions of a

plate are presented below. Several test were performed selecting spatial regions by

using different weight functions f̃(ξ, ζ). In general those functions can be manually

determined depending on the different design requirements.

Results are presented in Figures 3.12,3.13,3.14 as a set of two pictures for each

simulated test. The left side shows the 2D function f̃(ξ, ζ) while the right one

shows the associated map index Jopt. The use of different functions f̃(ξ, ζ) results in

different solutions for the placement problem. The weight function used should be

therefore opportunely designed for each single case. Results can be compared with

the previous test. It can be noticed how by using the weight matrix Q̃ it is possible

to select preferred spatial regions for actuator placement without compromising
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Figure 3.8: Optimal sensor placement for the worst spatial disturbance distribution

global performances. The results suggest again that the area around the quarters

of the plate length represent the optimal placement. This result is congruent with

the previous analysis being the geometry considered the same. It is interesting to

observe in Figure 3.13 how although the central area of the plate is preassigned the

optimal placements do not behave to that area, according with the results obtained

from the previous sections.

The power of these strategies presented above becomes more evident when they

are applied to more complex geometry. The choice of a symmetric plate was made

in order to validate the proposed algorithms over a simply and well understood test

case.
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Figure 3.9: First step disturbance distribution and optimal actuator/sensor place-
ment
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Figure 3.10: Second step disturbance distribution and optimal actuator/sensor
placement
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Figure 3.11: Third step disturbance distribution and optimal actuator/sensor place-
ment
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Figure 3.12: Constant weight function and corresponding Joptindex
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Figure 3.13: Exponential centered weight function and corresponding Jopt index
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Figure 3.14: Exponential weight function and corresponding Jopt index
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Chapter 4

Switching Strategies for Hybrid

Systems

4.1 Hybrid System Overview

In the previous chapter we proposed strategies to optimally design a control system.

In such control system generally it is possible to have several available actuators.

Depending on the internal states and the external disturbances the use of the full set

of actuators may not result in the most efficient solution. An extreme case could be

encountered when the system properties are time dependent. In such cases, as for

example chemical reactors, the system properties evolves in time through a sequence

of stages. An actuation strategy optimal for certain stages may result in unstable

behavior for different stages. In such cases it is therefore required to alternatively

switch between the available control subsystems characterized by different actuation

strategies.

In order to better address the problem of defining switching strategies for hybrid

systems we now reformulate the model (3.1) to be
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ẋ(t) = Aσ(t)x(t) + Ew(t) +Bσ(t)Uσ(t)(t)

y(t) = Cσ(t)x(t)

σ(t) ∈ I = {1, 2, . . . , Np}

(4.1)

where x(t) ∈ R
n is the state vector while Uσ(t)(t) represents the control signal.

This term is expressed as a vector of Np sub-signals

Uσ(t)(t) = [u1
σ(t)(t) u2

σ(t)(t) . . . u
Np

σ(t)(t)]
T ∈ R

Np . The index σ : [0,∞) → I is

the switching signal which is assumed to be piecewise continuous. It represents a

discrete state which indexes the (switched) state matrix A, input distribution vector

B and control input U . The integer Np denotes the number of (switch) available

modes of the switched system (4.1). In this case Np corresponds to the total number

of actuating devices available on the structure. We adopt the notation used in [43]

for the times a subsystem is switched in and switched out, respectively. We denote

by tkin
r

and tkout
r

the time at which for the rth time, the kth subsystem is switched in

and out or σ(t+
kin

r
) = σ(t−kout

r
) = k. We can therefore rewrite system (4.1) as

ẋ(t) = Akx(t) + Ew(t) +BkUk(t)

y(t) = Ckx(t)

tkin
r
≤ t < tkout

r

(4.2)

Similarly with the notation used above E denotes the spatial distribution of dis-

turbances while w(t) is the associated temporal component, assumed to be square

integrable. In general the spatial distribution of disturbances E is unknown and it

may change during the time interval of interest. In other words the spatial distri-

bution of disturbances E is time dependent. Such dependence is neglected in the

notation for simplicity.
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The ensuing stability analysis of the proposed switched scheme relies on already

established results with the difference that we impose a specific structure on the

control signals Uk(t). In the proposed scheme only one actuating device is kept

active over a time interval while the remaining (Np − 1) are kept dormant.

The matrix B is defined as

B =

[
B1 B2 . . . Bj . . . BNp

]
,

where B1 . . . BNp are column vectors. Each column Bj corresponds to a different

actuating device. To model the switching scheme it is possible to design the control

signal vector Uσ(t)(t) such that only one vector component of B receives a nonzero

signal while the remaining (Np − 1) ones receive the zero signal; thus

BkUk(t) =

[
B1 B2 . . . Bj . . . BNp

]
Uk(t)

=

[
B1 B2 . . . Bj . . . BNp

]




0

0

...

uj
k(t)

...

0




= Bjuj
k(t).

We assume the system’s properties are being constant for each single switched sub-

system. In other words, we have that the matrix Ak is constant over all interval

tkin
r
≤ t < tkout

r
and that Aσ(t) ≡ A.

Alternatively the switching strategy can be represented considering the control
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contribution in (2.1) as a linear combination of the columns of the B matrix

Bσ(t)Uσ(t)(t) =
∑Np

i=1 αi(t)B
iui(t)

= B




α1(t) 0 . . . 0

...
...

. . . 0

0 0 . . . αNp
(t)







u1
k(t)

u2
k(t)

...

u
Np

k (t)




(4.3)

this is the choice made for this work.

The term α is an array of coefficients whose elements can be either one or zero,

αi(t) ∈ {0, 1}. We assume that only one controlling device at a time can be switched

on while all the remaining ones are kept in a sleep mode. This choice implies that

the vector α can have only one nonzero element while the others are all zero, i.e.
∑Np

i αi(t) = 1. In fact, in the proposed switching scheme, we only switch the

coefficients αi(t). To each subsystems σ(t) = 1, . . . , Np is associated a specific

control signal uσ(t). In view of the above, the switching now takes the form

Bσ(t)Uσ(t)(t) = B diag {αi(t)}Uσ(t)(t).

Remark 4.1: Differently from most of the works referenced above, we do not in-

vestigate only switching of control signals U(t). For example, the considered switch-

ing model can be used to describe the behavior of systems with mobile actuators.

In those cases the full control term BU(t) and not only the signal component U(t)

may change during the activation interval.

An extension of this approach is required when several devices are grouped to-

gether. In this case we removed the constraint
∑Np

i αi(t) = 1 with more than one

element be different from zero or equivalently more devices, belonging to the same

58



group, activated at the same time.

For the output y(t) we assume a common vector Cσ = C for all the subsystems

and we limit the switching only to the actuating part. The goal now is to define the

optimal switching path for the subsystems, or in other words, to define the optimal

time sequence of coefficients αi. Switching strategies are presented in the following

sections.

Two main parameters characterize hybrid switched systems: the subsystems’

switching sequence and the switching time segments for the total time interval. In

our work we assume the switching time segments to be of a constant and a priori

decided duration. Such choice may be done arbitrarily or related to hardware design

limits.

The goal is therefore to define the optimal path σ, or trajectory, to drive the

given system to the equilibrium point. Without loss of generality we assume the

equilibrium point to be the origin.

4.2 Cost-to-go switching policy

The goal with the first switching policy is to increase optimality for the overall

switched system. To achieve this optimality we define a “cost to go” function and

we look for the path σ that minimizes this cost function. The “cost to go” index is

Ji(σ) =

∫ tf

t0

[xT (t)Qx(t) + uT (t)Ru(t)]dt. (4.4)

where [t0, tf ] is the total time interval considered. Due to its hybrid nature the

optimization process associated with the infinite horizon problem involves complex

and time-expensive computations. One may choose to divide the finite horizon in-

terval [t0, tf ] into a number m of time subintervals of fixed duration. To solve the
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problem one should then solve backwards in time Np differential Riccati equations,

each associated with one different actuator, for the last time segment m. The pre-

ceding time segment m− 1 would require therefore the solution to Np ×Np DREs.

Continuing, one then solves (Np)
3 DREs for the next interval m − 2 and so forth.

As was argued in [72, 73], the presented problem requires to solve about (Np)
m

DREs with m denoting the number of time intervals. To avoid this heavy compu-

tational burden, one considers the following suboptimal control measure, reducing

the computation to only Np Algebraic Riccati Equations (AREs). In order to sim-

plify the optimization problem the cost to go function is computed separately for

each switching interval t̄k to t̄k+1, as was argued in [74]. However this problem still

requires to solve DREs. In order to avoid the solution of such differential equation,

the following assumption is made for the index J

Jopt
t̄k

(σ) = xT (t̄k)Pσx(t̄k) (4.5)

where Pσ denotes the solution for the algebraic Riccati equation

A′Pσ + PσA+Q− PσB
′
σR

−1BσPσ = 0. (4.6)

Equation (4.5) does not provide the solution for the finite horizon problem.

However it holds that

lim
T→∞

P̃ (t, T ) = P (4.7)

where P̃ (t, T ) is the solution for the corresponding differential Riccati equation.

Solution of (4.4) can then be approximated by the expression (4.5), i.e. P̃ (t, T ) ⋍ P ,

provided that the interval ∆t = t̄k+1− t̄k is long enough to guarantee the attainment

of a steady state. To verify such condition one may define a threshold τ , representing
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a measure of the maximum acceptable approximation error and ensure that

∆t >
ln τ

λmax

where λmax < 0 is the largest eigenvalue of the closed loop system and 0 < τ < 1.

This lower bound on ∆t is required to ensure, at any switching/evaluation time tk, a

sufficient converge of P̃ → P . Several works can be found addressing such issue, for

example on [75] is presented an explicit expression for the error ∆P (t) = P̃ (t)− P .

The switching path can now be computed as

σt̄k = arg{ min
(σ=1,...,Np)

Jopt
t̄k

(σ)} (4.8)

for any switching time t̄k. The two LQR parameters R and Q can be chosen to

penalize the power requirements versus enhancing the stability requirements for the

plant.

A Lyapunov approach is considered to study stability properties for the proposed

switching scheme. Starting from the results in [43] and [37] a general stability

condition for nonlinear hybrid systems is given by the following theorem.

Theorem 4.1: Given a switched nonlinear system

ẋ(t) = fσ(t)(x(t)),

suppose each vector field fi has an associated Lyapunov-like function Vi in the region

Ωi, each with equilibrium point x = 0. Let σ(t) be a given switching sequence such

that σ(t) can take the value i only if x(t) ∈ Ωi and in addition

Vi(x(ti,k)) ≤ Vi(x(ti,k−1))

where ti,k denotes the kth time that the vector field fi is switched in, then the

previous nonlinear system is Lyapunov stable.
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We apply this result to the hybrid linear system under consideration in the

following lemma

Lemma 4.1: Given the switched linear system (4.1) where any closed loop

subsystem σ has an associated Lyapunov-like function Vσ, such that the function

Vσ is positive definite, the first derivative V̇σ is negative definite and in addition

Vσ(t̄k) ≤ Vσ(t̄k−1), (4.9)

then the system (4.1) is Lyapunov stable.

Using the previous theorem and lemma we prove stability for the switched hybrid

system under analysis in theorem 3.2

Theorem 4.2: Given the switched linear system (4.1) and applying the switch-

ing law (4.8), the resulting switching hybrid system is Lyapunov stable.

Proof: The system (4.1) is stabilizable if, with the obtained switched path σ,

it is possible to define a function V that satisfies the conditions of Lemma 3.1. We

choose the quadratic Lyapunov functions to be equal to the optimal value of the

performance indices

V (σ) = xTPσx = Jopt
t̄k

(σ), (4.10)

and therefore they are definite positive functions, by virtue of the positivity of the

solution to the AREs. We apply the control law by means of the feedback gain

K(σ) = −R−1BσPσ, (4.11)

where Pσ is the solution of the corresponding algebraic Riccati equation (4.6). We

can then rewrite the original system (4.1), without the disturbance term, which is
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generally unknown,

ẋ = ACL(σ)x,

where

ACL(σ) = A−BσK(σ). (4.12)

The time derivative of the Lyapunov functions for such systems can be expressed as

V̇ (σ) = xT
(
A′

CL(σ)P (σ) + P (σ)ACL(σ)
)
x (4.13)

rearranging equation (4.6) as

(A−BσK(σ))′Pσ + Pσ(A−BσK(σ)) = −Q− PσB
′
σR

−1BσPσ (4.14)

we arrive to

A′
CLPσ + PσACL = −Q− PσB

′
σR−1BσPσ (4.15)

Since the matrix Q is positive definite and the term PσB
′
σR

−1BσPσ is positive semi-

definite, we have that the derivative of the Lyapunov function (4.13) is negative

definite. Finally the above choice, equation (4.8), for the switching path implies

also that for any switching k

Vσ(x(tk)) ≤ Vσ(x(tk−1)). (4.16)

the conditions of Lemma 3.1 are satisfied and the switched system is proved to be

stable.⋄

The disturbance Ew(t) was completely neglected in the previous analysis. The

next step is to include the effect of disturbance in the stability investigation. We first

introduce a well known result for linear system under the effect of perturbations.
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Lemma 4.2: Given the system

ẋ(t) = Āx(t) + f(t)

where the matrix Ā is Hurwitz and the perturbation f(t) is such that

f(t) : R+ → R
n

with

Nmax = sup
(∀t)

|f(t)|

if the perturbation is bounded, i.e. Nmax < ∞, the system state is bounded and

it exists a bounded Lyapunov function V (t) associated with the system. If the

perturbation is bounded and convergent, i.e. lim
t→∞

f(t) = 0, then the system state

and the associated Lyapunov function are bounded and convergent.

Proof: The proof is a straightforward consequence of Theorem 3.23 in [76].⋄

We can now extend this result to the more general case of switched linear systems.

Theorem 4.3: Given the switched linear system (4.1) with the unknown dis-

turbance Ew(t) and applying the switching law (4.8), if the Np subsystems, in their

closed loop form, are all stable and bounded under the disturbance Ew(t), than the

resulting switching hybrid system is Lyapunov stable.

Proof: The proof of this theorem is based on the idea of considering σ Lyapunov

functions each one belonging to a bounded region. This assumption is equivalent to

considering the following for all Lyapunov functions

Vσ(x, t) ∈ L2 for all x, t and σ. (4.17)

Since the decision rule from equation (4.8) ensures that the switching between the
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different subsystems cannot result in any increase in term of the Lyapunov function

and since each switched Lyapunov function is bounded by assumption, it results

that the overall switched linear system is stable and bounded.⋄

Remark 4.1: Results from the previous theorem guarantee stability for the

hybrid disturbed system, provided that the condition of Theorem 4.3 are verified.

However when the disturbance distribution is unknown and spatiotemporally vary-

ing, it is not possible to guarantee optimality for the full switching interval. A

subsystem chosen to be optimal at the switching time tk may not be optimal for the

entire length of the switching interval[tk, tk+1) due to the unknown changes of the

disturbance distribution.

The implicit assumption of full state availability was made for the arguments

presented above. However usually only partial information of the state is available.

The sensor output y(t) is described as

y(t) = Cx(t) (4.18)

where C is a matrix whose elements depend on the sensors properties and posi-

tions. To extend the previous results to this more general case we need to recall the

equations of the state estimator (3.11). The observer (Kalman filter) provides an

estimation for the full state variables set x̂(t).

The algorithm proposed above can now be extended to this case. The switching

rule becomes 



Ĵopt(σ(ti)) = x̂T (ti)Pσx̂(ti)

σ(ti) = arg{ min
(σ=1,...,Np)

Ĵopt(σ(ti))}
(4.19)

where x̂ is the estimated state. Stability of the augmented switched system is

investigated below based on the following assumptions:
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Assumption 4.1: The entire set of subsystems, in their closed loop form, are

Lyapunov stable over the entire set of switching intervals [tk, tk+1) for all k.

Assumption 4.2: For each subsystem, it is possible to define an observer

based on (3.11), in a way such that any complete subsystem, plant and observer, is

Lyapunov stable for any switching intervals [tk, tk+1) for all k.

Remark 4.2: At any switching time the indexes i and j are not required to

be distinguished, i.e. it may happen that i = j. This implies that at the switching

instant the optimal subsystem to be used for the next interval is the one already

active.

Lemma 4.3: The augmented switched system is stable if the switching rule

verifies at any time that

Vi(x, t
+
1 ) ≤ Vj(x, t

−

1 ) (4.20)

Proof: We first consider the first interval for k = 0. Assumptions 4.1 and 4.2

guarantee stability for the entire time interval [t0, t1). Let us now assume that the

switching law satisfies equation (4.20) where respectively Vj(x, t
−

1 ), Vi(x, t
+
1 ) are the

Lyapunov functions for the subsystem j, i active within the interval [t0, t1) and the

interval [t1, t2). Again from Assumptions 4.1 and 4.2 and Theorems 4.1-4.3, the

switched system is proved to be stable through the discontinued temporal domain

[t0, tkmax+1] ⋄.

Discussion: The stability problem reduces therefore to verify that condition

(4.20) is satisfied. However if the switching algorithm is based on the reconstructed

state from the observer then the above switching policy can guarantee only that

Vi(x̂, t
+
k+1) ≤ Vj(x̂, t

−

k+1), (4.21)
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where the Lyapunov function for the ith subsystem can be written as

Vi(x̂, t) = x̂TPix̂ (4.22)

with Pi the solution of the algebraic Riccati equation associated with the ith sub-

system.

In order to provide some stability arguments we define as a measure for the

observer error, the expression e = x̂−x. According with this definition it is possible

to rewrite equation (4.22) as

Vi(x̂, t) = (x+ e)TPi(x+ e) (4.23)

or

Vi(x̂, t) = xTPix+ ∆Vi(e, x) (4.24)

where ∆Vi(e, x) = xTPie+ eTPix+ eTPie, and equation (4.21) can be rewritten as

Vi(x, t
+
k+1) + ∆Vi(e, x) ≤ Vj(x, t

−

k+1) + ∆Vj(e, x). (4.25)

Two cases that guarantee stability for the switched system can be individuated.

The first possible case is verified when the terms ∆V (i, e, x) and ∆V (j, e, x) are

identical. This is equivalent to stating that Pi = Pj and it may occur in accordance

with Remark 4.2. Moreover, provided that |∆Vj − ∆Vi| ≪ |Vj − Vi|, than verifying

equation (4.21) may be equivalent to verifying equation (4.20).

Stability can be ensured also in this second case. Defining a percentage threshold

τ% proportional to the absolute value of the difference |Vj − Vi| and such that τ% =

50%|Vj − Vi| then equation (4.21) implies also equation (4.20) if it is verified that

max(|∆Vi|, |∆Vj|) < τ%.
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Remark 4.3: A priori knowledge of the observer error, usually unavailable, is

required to ensure the condition described above. However to ensure stability for

the system a sufficiently long switching interval should be defined. A determinant

factor defining such length is the convergence speed for the combined observer and

plant.

Remark 4.4: Achievement of stability, by ensuring conditions (4.21) and (4.20),

for the case of an input-output feedback, does not imply any optimality. This is

due to the impossibility of detecting the actual smallest Lyapunov function (or per-

formance index J) for the switched system as described for the switching algorithm

above

The switching procedure is reassumed in the algorithm below

Algorithm 4 Cost-to-go switching rule

1: divide the interval [t0, tf ] into m subintervals, each with duration ∆t =
tf−t0

m
.

2: for each Bi, corresponding to each of the Np actuating devices, solve the Np

AREs
ATPi + PiA− PiB

iR−1(Bi)TPi +Q = 0

3: at each tk consider the cost-to-go

Jk =

∫
∞

tk

xT (τ)Qx(τ) +Ru2(τ) dτ

4: at the beginning of each interval [tk, tk + ∆t) find the minimum of the optimal
values of the quadratic indices corresponding to each actuating device

Bopt = arg min
(B1,...,BNp )

xT (tkPkx(tk)

5: deactivate all devices and only activate the Bopt device; supply it with the control
signal

uopt(t) = −R−1(Bopt)TPoptx(t) t ∈ [tk, tk + ∆t).
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4.3 Minimum system energy switching policy

This switching algorithm is based on mechanical energy properties of the system.

The objective is again to find the optimal way, between a set of possible choices,

to stabilize and drive the system to the equilibrium state. In a similar way to the

strategy presented above we defined a performance index to be minimized; now we

chose the system’s energy E(x, t) to be that index. In other words we chose to

minimize the index

J(x, t) = E(x, t) =
1

2
xT (t)Gx(t) (4.26)

where the matrix G characterizes the components of the mechanical energy for the

system.

The expression E(x, t) refers to the open loop energy for the system and does not

include the contribution from the actuators. In other words, the index represents

the conservative mechanical energy associated with system (4.1). Minimizing the

mechanical energy implies stabilizing the plant itself and driving the states to the

origin. The methodology here presented can be used also if it is required to drive

the state to a different final value (xdesired(t) 6= 0). A simple variable transformation

allows to opportunely redefine the energy index for different final values.

The index J(t) or equivalently the system’s mechanical energy, calculated at the

switching time ti, assumes the same value for each of the available Np subsystems.

Mechanical energy is indeed calculated for the open loop system and does not ac-

count for the external contributions provided from the actuators. However the next

switching time predicted energy J(ti+1) , depends on the control force applied dur-

ing the interval ∆t = ti+1 − ti. Therefore, at any switching time ti,to each separate

subsystems σ corresponds a different expected performance index Jσ(ti+1).

The strategy is therefore to turn on at each switching time ti the subsystem that
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minimizes the estimated energy index J(ti+1). The switching policy described is

synthesized in the following expression

σ(ti) = arg{ min
(σ=1..Np)

Jσ(ti+1)} (4.27)

In order to solve the optimization problem (4.27) it is required to calculate the

estimation of J(ti+1) at the switching time ti. Using a first order expansion we have

J(ti+1) = J(ti) +
δJσ

δt

∣∣
ti
∆t+ 0(∆t2) (4.28)

where δJσ

δt

∣∣
ti

= δE(x,t)
δt

∣∣
ti
.

Applying this idea to the linear system (4.1) we obtain the following expressions

for the derivative of J

δJσ

δt

∣∣
ti

= 1
2
xT (t̄i)(A

TG+GA)x(t̄i) + xT (t̄i)GBσU(t̄i) (4.29)

The switching path σ(t) is therefore defined by combining together equations (4.27),(4.28)

and (4.29).

Remark 4.5: Since the terms xT (t̄i)(A
TG+GA)x(t̄i) and xT (t̄i)Gx(t̄i) are the

same for any subsystem, the choice of the optimal path σ is based only on the term

xT (t̄i)GBσU(t̄i).

The strategy described presents evident similarity with the model predictive

control technique MPC [77, 78]. In particular the switching logic is based on energy

state prediction along a set of receding finite horizon segments. MPC is widely used

and although this approach is not optimal, in practice it has given very good results.

The switching interval was chosen to be of a constant length, fixed a priori.

Such choice, also known as dwell time, allows to practically ensure stability for the

70



switched system in despite of the global efficiency. When all the subsystems are

exponentially stable this result is achieved by allowing a sufficiently long interval

between switches. On the other hand the lack of flexibility in switching times may

result in excessive long use of a subsystem that is not anymore the most efficient

[39, 79]. However on this specific case limits for the switching interval length arise

due to system’s properties as shown in the following lemma

Lemma 4.4: An upper bound for the admissible ∆t can be obtained by ex-

panding equations (4.26),(4.28) and (4.29) as shown below

J(ti+1) = 1
2
xT (ti)Gx(ti)+

∆t
[

1
2
xT (ti)(A

TG+GA)x(ti) + xT (ti)GBσU(ti)
]

(4.30)

if the control signal is defined as

U(ti) = −Kσx(ti) (4.31)

where Kσ is the control gain associated with the σ subsystem then equation (4.30)

can be rewritten as

J(ti+1) =
1

2
xT (ti)

[
G+ ∆t(ATG+GA− 2GBσKσ)

]
x(ti). (4.32)

We assume that the open loop system is stable. This implies that the following

equality is verified

ATG+GA = −Q. (4.33)

By substituting this in the previous equation we obtain

J(ti+1) =
1

2
xT (ti) [G− ∆t(Q+ 2GBσKσ)]x(ti). (4.34)
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The maximum admissible ∆tmust be such that the matrix [G− ∆t(Q+ 2GBσKσ)]

is positive definite. It can be noticed that the condition found does not depend on

the state variables x(t) and therefore holds also when only the estimated state in-

formation x̂(t) is available.

Remark 4.6: To ensure a good approximation for (4.28), the switching interval

∆t should be small. However such length cannot be arbitrarily small. Mechanical

limitations and computational time may introduce a lower bound for the choice of

∆t. When such case arise to achieve a better accuracy an higher order approxima-

tions should be used on computing the value of J(ti+1) . This case is considered

below with the second order.

J(ti+1) = J(ti) + δJσ

δt
|ti ∆t+ 1

2
δ2Jσ

δt2
|ti ∆t2 + 0(∆t3). (4.35)

with the assumption that, within each time interval ∆t, the state’s variable x(t) are

continuous functions in Rn.

The stability arguments for this switching rule are presented below.

Theorem 4.4: The following switched system

ẋ(t) = Ax(t) +Bσ(t)U(t) (4.36)

with the switching law (4.27) is Lyapunov stable if the open loop matrix A is stable.

Proof: Defining the common Lyapunov function

V (x, t) = E(x, t) = J(x, t) (4.37)
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we have for the time derivative of the Lyapunov function

(
δV (x, t)

δt

)

σ

=

(
δJ(x, t)

δt

)

σ

(4.38)

and substituting (4.31) and (4.33) in (4.29) we show that

(
δV (x, t)

δt

)

σ

≤ 0, ∀σ (4.39)

moreover the switching rule (4.27) ensures that at any switching time ti it has

activated the subsystem σ(ti) that results in the most negative value for δV (x,t)
δt

⋄.

Lemma 4.5: For the more general case of (4.1) the switching rule (4.27) guar-

antees stability if:

• All the possible subsystems Np are bounded

• The prediction for the energy index J(t) is sufficiently accurate at any switch-

ing time

Similarly to what done above the switching algorithm is reassumed below

Algorithm 5 Minimum system energy switching policy

1: divide the interval [t0, tf ] into m subintervals, each with duration ∆t =
tf−t0

m
.

2: at the beginning of each interval [tk, tk + ∆t) find the predicted value of J at
the next switching time (tk+1)

3: find the optimal device to be used by solving

Bopt = arg min
(B1,...,BNp )

J(tk+1))

4: deactivate all devices and only activate the Bopt device.

We can now add some more details for the specific structural case considered

here. It is possible to explicit the energy index J for the investigated example. First
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we consider for each closed loop subsystems the feedback control law uσ(t) = Kσx(t),

with the gain K optimally computed for each subsystems. The energy matrix G in

this mechanical system is defined as

G =



K 0

0 M
.


 (4.40)

By computing the index J as described above we obtain for this particular ap-

plication the following expression

J(ti) =
1

2
ẊT

mn(ti)MẊmn(ti) +
1

2
XT

mn(ti)KXmn(ti)

where theXmn, Ẋmn are the state variables displacement and velocity and the deriva-

tive of J is
δJσ

δt

∣∣
ti

= 1
2
(ẌT

mn(ti)MẊmn(ti) + ẊT
mn(ti)MẌmn(ti))

+1
2
(ẊT

mn(ti)KXmn +XT
mnKẊmn(ti))

4.4 Local maximum deviation switching policy

In this section we introduce a third switching strategy. The idea is to identify the

area of the structure where the effects from the disturbance are more relevant. In

other words to identify the most perturbed spatial region of the structure. The

supervisor select then the closest available actuator to such area in order to locally

address the vibration state. The algorithm is summarized below.

The proposed algorithm requires a substantial knowledge of the vibration state

for the structure. This requirement can be satisfied by introducing an observer as

done above or either providing a network of sensors collocated over the structure.

Since the switching path is determined by comparing the vibration levels only close
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Algorithm 6 Local maximum deviation switching policy

1: At the time tk−
∆t
20

start sampling the absolute values from the sensors’ readings

2: At the switching time tk:

1. process the samples from the sensor network and define the average for
any sensor’s sampling

2. find the absolute maximum value between the available sampling sets and
its corresponding sensor’s position (ξs, ζs)

max

3. clear the sampling sets and maintain only the information (ξs, ζs)
max

3: Identify the closest actuator to this area solving the optimization problem

σ(ti) = arg{min
σ∈Θ

Fdist(ti, pk)} (4.41)

where Fdist(ti, pk) is the distance function

Fdist(ti, pk) = |(ξs, ζs)
max − (ξpk

, ζpk
)| (4.42)

4: Switch on the actuator found for the full length tk−1 − tk

to the available actuators, placing the sensors in proximity to the actuators allows

us to avoid the use of a dedicated observer in order to reconstruct the required

information.

The most important aspect of this approach is the simplicity in terms of imple-

mentation and the reduced computational power required, important factors over

the final design feasibility.

The absence of constraints for the switching law makes impossible to guarantee a

priori stability for the global system. However it is possible to prevent unstable be-

havior by ensuring that all the subsystems are exponentially stable and the switching

interval length is longer than the average decay time for the slowest subsystem.

Remark 4.7: It is possible to guarantee stability for the switched system by
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Table 4.1: Numerical simulation: piezo coordinates over the plate
PZT 1 0.1242m, 0.2301m
PZT 2 0.8054m, 0.2301m
PZT 3 0.1242m, 0.7899m
PZT 4 0.8054m, 0.7899m

introducing the following additional constraint. Define a set of Lyapunov functions

Vσ(t) associated with the Np subsystems and ensure that the choice obtained from

(4.41) verify also that

Vσ(t̄k) ≤ Vσ(t̄k−1), (4.43)

it is then possible to use the stability arguments presented in the previous section.

4.5 Numerical results

The strategies described above were first validated through a set of numerical simu-

lations presented in this section. The test case considered is again the flexible plate

introduced in chapter three.

Four piezo are considered available on the simulated plate. Table 4.1 provides

the piezo’s coordinates.

Only three of these piezoelectric patches are used to control the plate while

the forth one is used as a sensor. In the first two switching strategies the sensor

information is required to build an estimation for the state variables. This estimation

is then used to define both the switching path and the control law.

An exception is made for the third switching strategy. In particular for this

approach it is required a network of sensors that provides information from the

overall plate or at least from the areas in proximity of the available actuators. In

order to satisfy such requirement all four piezo were used for active control. Moreover
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each of the simulated piezo/actuator were also assumed to be working as a sensor.

In other words once the piezo positions are assigned and the B2 matrix is defined

the sensors component is obtained simply by imposing C2 = BT
2 .

The numerical code was implemented using Matlabr on a standard PC machine

(2GHz, 1Gb).

The mass and stiffness matrix for the plate are obtained again with the discrete

approach described in chapter two. The dynamics of the plate is described by the

first order system (4.1). In addition it is necessary to simulate also the dynamics of

the observer, described by equation (3.11).

The solution for this coupled system of differential equations (4.1),(3.11) was

obtained by using the ordinary differential equation toolbox available inMatlabr. In

particular an external cycle of switching intervals was defined and for each switching

interval the system of differential equations was solved by using the available toolbox.

The plate is subjected to an external, time varying disturbance. In particular

we vary the spatial distribution of such disturbance. This is done by considering

different spatial distribution for the disturbance E1 and switching between these

on a random or a predesignated base. Figures 4.1,4.2,4.3 show some of the spatial

disturbance distributions used in these simulations. Those distributions are however

unknown to the controller.

Results are shown in the next figures. The plots represent the kinetic energy for

the open loop system, the closed loop system without switching and the switched

closed loop system. The switching intervals were chosen of a fixed length both for

the actuators and the disturbance components. In particular the control switching

law was computed every two simulated seconds while the disturbance was switched

any simulated second.

The results from the numerical simulations are shown in the next set of figures.
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Figure 4.1: First spatial disturbance distribution

Figure 4.2: Second spatial disturbance distribution
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Figure 4.3: Third spatial disturbance distribution

Two simulations for each switching strategy are presented. The difference between

the two simulations is related to the effects of different sequences of disturbance dis-

tributions. The preassigned spatial disturbance distribution were randomly switched

during the simulations. This was done to better simulate the uncertainty associated

with the disturbance effects. The open loop, closed loop and closed loop case with

switching were however simulated with the same sequence of disturbances for each

test.

The first two figures show the results obtained using the ”Cost to go” switching

rule. By comparing the three curves it results evident the beneficial effect of the

switching. The second pictures depicts the results obtained with the minimum

energy switching policy. Similarly to the previous switching law also for this second

case the improvements due to the switchings are tangible. The different levels of
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high frequency fluctuations in the pictures are related to the different averaging

interval used. Finally the third pictures set shows the results obtained using the

max deviation rule. In this last case the optimality for the actuation strategy cannot

be guarantee. However the results still indicate additional benefits from the use of

a switched controller.
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Figure 4.4: Kinetic energy:cost to go switching rule

4.6 Experimental results

The switching strategies described above were also validated on an experimental

test case. The test case chosen is a cantilever aluminum plate. The choice of a

cantilever boundary condition was made in order to limit the system rigidity and

enhance the effects of disturbance/control moments. This was a necessary choice
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Figure 4.5: Kinetic energy:cost to go switching rule, test 2

due to the limited strength of the available actuators.

The experimental set up is shown in Figure 4.10

The control and disturbing moments were delivered by piezoelectric patches.

Eight piezoelectric patches were affixed in collocated position (four each side of the

plate) as showed in picture 4.10. Three of the four patches of the front side were used

to deliver the control action while the fourth one was used as sensing device. The

information from such sensor was used to generate the estimated state variables x̂(t)

for the system and subsequently the feedback-based control law u(t). The estimated

state variables are also used from the control strategies to define the switching path.

This is the case for the Cost to go rule and the Minimum energy system rule.

For the Maximum deviation switching rule additional sensing information is re-

quired. In particular sensors should be available in correspondence of each actuator.

81



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

K
in

et
ic

 E
ne

rg
y

 

 

Open Loop System

Closed Loop System switching

Closed Loop System No switching

Figure 4.6: Kinetic energy:minimum energy switching rule

In order to satisfy this condition three additional accelerometers were affixed on the

plate in proximity of the actuators. The fourth piezo on the front side is still used as

a sensor. The information is used to generate the feedback law u(t). With reference

to the notation introduced above three controlling subsystems are available on the

described configuration Np = 3.

The length for each interval between two successive switching was chosen to be

∆t = 1s. This choice, in our case arbitrary made, may in general be related to

several factors such as mechanical switching limitation, avoiding chattering, fast

change in time for the disturbance etc etc.

The four collocated actuators on the rear side of the plate are all dedicated to

simulate a disturbing moment acting over the plate. Disturbance characteristics are

assumed not to be available for the switching controller. The moving disturbance
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Figure 4.7: Kinetic energy:minimum energy switching rule, test 2

is simulated using only one actuator at time and switching between the remaining

according with a predetermined activation sequence. The interval length chosen for

the disturbance switching is ∆tdist = 3s. The temporal disturbance component w(t)

was chosen to be a sinusoidal signal with a frequency of 244Hz. This frequency

was found to be the one that maximizes the effect of the disturbance over the plate.

Mechanical properties of the plate and the piezoelectric patches are listed in the table

4.2 A discrete model for the plate is required in order to implement the switching

controller and the control law. In particular mass, stiffness and damping matrixes

must be calculated for the considered case, according with the approach presented

in chapter two. The damping matrix is obtained trying to match the experimental

frequency response with the model frequency response.

Figure 4.11 shows the input/output response from the discrete model compared
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Figure 4.8: Kinetic energy:max deviation switching rule

with the experimental values.

Few discrepancies from the numerical and experimental model can be noticed;

those are due to the limits associated with the choice made for the damping matrix

D.

Simulinkr package was used to create the virtual model for the switched con-

troller while dSPACEr ACE1103 Kit was used to interface the hardware (plate and

actuators/sensors) and computer.The computer used for implementing real-time

control was a 2GHz Pc with 1G of memory while the sampling rate for the discrete

model on real time models was 1
1500

s.

Theoretically higher sampling rates would guarantee a better efficiency over

higher natural frequencies. However due to hardware limitations the effect of delays

between the sensor readings and the control law signal are not anymore negligible
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Figure 4.9: Kinetic energy:max deviation switching rule

for higher sampling times. According with such limitation it is necessary to filter

the high frequency content that cannot be processed by the available hardware. In

particular the frequency content higher than 1KHz is discarded both for the sensor

readings input and the control law output. This is done by using a Butterworth

Low-Pass anti-aliasing filter. In addition a signal conditioner is used to amplify the

control signal before it is sent to the actuators. The complete experimental set up,

shown in picture 4.12, includes the Pc, the DSpacer board, two filters and two

signal conditioner.

The complete experimental apparatus is schematized in figure 4.20
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Figure 4.10: The experimental set up

4.6.1 “Cost to go” policy

In this section we present the experimental results obtained by defining the switching

strategy according with the ”Cost to go” rule. The control moment is applied to

the structure by only one of the actuators at time according with the activation

sequence defined on real time. Two different cases were considered for this strategy.

First only two actuators were alternatively used to perturb the system. This is

equivalent to use two different spatial distribution disturbance to destabilize the

structure. The second part of this test was done, similarly to the previous case, by

using all the four back side actuators to alternatively generate four different spatial

distributions disturbance.
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Table 4.2: Plate and PZT properties
Plate length 1.052m
Plate height 1.108m

Plate thickness 0.001635m
Plate density 2.69 × 103Kg/m3

PZT length 0.0508m
PZT height 0.016078m

PZT thickness 0.00075m
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Figure 4.11: Input/output response for numerical and experimental model

Figure 4.14 shows part of the Simulink model implemented for this switching

strategy. The top window contains the main part of the model. This includes the

switching time component, the feedback laws for the available actuators and the

dedicated observer for the switching controller. The bottom window contains the

first layer of the switching controller model.

Results for both cases are shown in Figures 4.15,4.16. It can be noticed the im-
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Figure 4.12: Experimental set up

proved control efficiency for the switched controller. The switched solution provides

up to 50% additional vibration reduction compared with the traditional controller

performance. We observe that the traditional controller becomes unstable under the

effect of the moving disturbance. Moreover it can be seen as its efficiency drops to

zero and the vibration level for the closed loop without switching reaches the same

level as the open loop system.

In order to test the robustness of this switching policy we performed an extreme

initial conditions test. The plant was driven to an unstable behavior by implement-

ing a closed loop cycle with a positive gain feedback. The plate itself is a stable

plant due to the its intrinsic damping properties. The energy provided by the used

actuator can be completely dissipated or in other words that the actuator is not

strong enough to break the plate. Because of this conditions the plate vibration for
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Figure 4.13: Scheme of the experimental apparatus

the unstable closed loop results higher than the open loop but still a bounded value.

Once the plate vibration had reached its maximum level for this unstable condition

the switched control system was turned on. Figure 4.17 shows the vibration levels

for such case.

The blue curve represent the system with no active control while the red line

depicts the vibration level for the closed loop. The mechanical energy for the red

curve is higher than the open loop case for the first part of the test. This is due

to the induced unstable behavior. Once the switching controller is turned on the

system gains stability and the vibration is reduced below the open loop levels.

A different analysis for the performance of such strategy can be done by looking

at the frequency domain. The following pictures depict the power spectra of the

sensor output signal. In other words we now look at the energy content of different
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Figure 4.14: Simulink model: Cost to go policy

frequencies. Again the open loop, closed loop without switching and switched case

are compared.

The comparison is shown in Figure 4.18. The energy peak located at 224Hz

is a direct consequence of the choice made for the disturbance. As specified above

the disturbance time component is a sinusoidal signal at 224Hz. It is possible to

identify the benefit associate with the use of a switched controller for such dominant

frequency, as highlighted on the picture.
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Figure 4.15: Cost to go policy with two disturbance distributions

An interesting case is shown in Figure 4.19. The power spectra are relative to

the test case where four possible spatial disturbance distributions were alternated.

Recalling the time domain results showed above in this case the traditional closed

loop could become instable under the effect of the switching. Observing picture 4.19

it is possible to note the instability effects on the extra energy peeks for the non

switched case.

4.6.2 “Minimum energy” policy

The third switching strategy was experimentally validated with a similar set of tests.

Only one actuator at time is switched on to provide the control moment. A single

PZT device is used as sensor. The information obtained from the sensor is processed

to define the switching law σ(t) and the control signal u(t). Differently from the
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Figure 4.16: Cost to go policy with four disturbance distributions

previous case the switching sequence is now obtained by minimizing the energy state

for the system, as described on section 4.3. The Simulink architecture for this case

is analogous to the Cost to go policy because of the similarity of input requirements

for the switching controller.

In Figures 4.20,4.21 similarly to the above pictures, the output signal for the

open loop, closed loop no switching and closed loop with switching is depicted. The

two ”closed loop no switching” curves (green lines) in the left and right figures are

obtained choosing a different patch as fixed actuator. It can be notices how in

the left case the device chosen results to be less optimal than the one used for the

second test (right picture). However in both cases the switched controlling system

(red lines) performs more efficiently than the traditional closed loop. A substantial

improvement in vibration reduction is achieved with the introduced switching.
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Figure 4.17: Cost to go policy: unstable initial condition

Similarly to what done above for the first switching strategy we now analyze the

frequency domain. Power spectra for the open loop, closed loop and closed loop

with switching are shown in picture 4.22.

Again the improvement achieved by introducing the switched controller is evi-

dent.

4.6.3 Local maximum deviation switching policy

The last experimental test was done using the local maximum deviation rule to define

the switching path σ(t). In order to implement this algorithm it is required a network

of sensors located in proximity to the controlling actuators. Three accelerometers

were used to build such network; according to the switching strategy, these sensing

devices were located in proximity to the three actuating devices (PZT actuators).
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Figure 4.18: Power spectra for sensor output

Figure 4.24 shows the Simulink model for this switching rule. Similarly to what

done above the first window contains the main part of the model while the switching

controller is modelled in the second window. The main difference is that in this case

the switching controller does not require a dedicated observer but only the direct

readings from the three designed sensors.

In analogy with the previous section the three cases, open loop, closed loop

without switching and closed loop with switching are compared. Figure 4.23 depicts

the norm of the output signal (PZT sensor information) from the plant for these three

cases. Experimental results are in full agreement with results from the numerical

investigation previously described. The vibration level are substantially reduced

when the switching controller is kept active respect to the case without switching.

It is also interesting to observe how the unsteady character of the disturbance affects
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Figure 4.19: Power spectra for sensor output, case with instability

the open loop behavior. The switching results to decrease the intrinsic systems’s

stability.
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Figure 4.20: Minimum energy switching policy
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Figure 4.21: Minimum energy switching policy, alternative fixed piezo
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Figure 4.22: Power spectra for sensor output with minimum energy policy active
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Figure 4.23: Local maximum deviation switching policy
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Figure 4.24: Simulink model: Maximum deviation rule
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Chapter 5

Conclusion and Future

Developments

In this comprehensive study the problem of vibration control for flexible structure

was investigated. First, the issue of designing a network of actuators and sensors was

considered. In order to accomplish such task the desired positions for sensors and

actuators had been identified. Three different approaches to determine the optimal

placement for controlling devices have been proposed. The three proposed strate-

gies address different typology of situations that can occur in structural vibration

problems. The first case considered was the simultaneous placement of several ac-

tuating devices. The proposed solution for this case guarantees controllability over

a fixed number of modal shapes, providing an easy way to simultaneously locate the

devices. With the second strategy, the influence of disturbances over the optimal

actuator and sensor placement process was introduced. The algorithm described

provides robustness against a known spatial distribution of disturbance. The next

step was to introduce the worst admissible scenario for the disturbance. The place-

ment algorithm simultaneously guarantees robustness and optimality. Finally, in the
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third case, a strategy was proposed to address the problem of actuator placement

over preassigned spatial regions.

The described algorithm provides both improvement in spatially localized con-

trol action and global performance. These approaches were validated by numerical

simulations.

In the second part of this work the problem of activation strategies for hybrid

systems was discussed. In particular, three different control strategies to define ac-

tivation sequences for the available actuators were considered. The algorithms pro-

posed were validated both numerically and experimentally. Similar to the previous

part of this work, a vibration control problem was chosen as a test case to validate

these strategies. A flexible plate with affixed actuating and sensing devices was

selected to be the switched system. The idea was to reduce the power requirements

by efficiently using only a subset of the controlling devices. The goal was therefore

to identify the most optimal sequence of controllers to be used along the operational

interval. Traditional and switched controller performances were compared and the

improvement obtained by introducing the switching controller was evident. Simi-

lar results were obtained both from numerical simulations and experimental tests.

Experimental tests showed that by using the cost to go switching policy, vibration

level was reduced up to 50% with respect to the traditional controller levels.

In this work, vibration control schemes were investigated in detail for flexible 2D

structures, however the proposed approaches can be extended to any plant whose

dynamics can be described by a second order linear system. In particular a pos-

sible extension for the proposed switching strategies could include the control of

unmanned autonomously vehicles (UAV). The same principle used here could be

applied to generate optimal trajectories for the UAV by removing the restriction

of spatially fixed actuators and sensors. The vehicle could be seen as a moving
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actuator or sensor who’s position is the output variable in the optimization process.

Consider for example the case of marine oil (or other pollutant) spilling. In such

case a set of autonomous vehicle, able to detect the spilling perimeter and provided

with a reactant foam or floating barriers, could be use to contain the spilling. In

this case the strategies proposed in this work could be used to obtain a sequence

of positions (or in other words a trajectory) for each vehicle such that its sensing

ability is maximized. The proposed approaches would also minimize the required

energy to power the vehicles by optimizing their trajectories.

Another future development is the extension of the switching laws to non linear

systems. This step would remove the limit associated with linearized models ex-

panding significantly the range of applicability. Switched strategies could be used,

for example, in active flow control, allowing a significant reduction for power con-

sumption and an overall improvement of system efficiency.
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