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SUMMARY 
 

Recent advances in materials engineering have given rise to a new class of 

materials known as active materials.  These materials when used appropriately can aid in 

development of smart structural systems.  Smart structural systems are adaptive in nature 

and can be utilized in applications that are subject to time varying loads such as aircraft 

wings, structures exposed to earthquakes, electrical interconnections, biomedical 

applications, and many more.  Materials such as piezoelectric crystals, electrorheological 

fluids, and shape memory alloys (SMAs) constitute some of the active materials that have 

the innate ability to response to a load by either changing phase (e.g., liquid to solid), and 

recovering deformation.  Active materials when combined with conventional materials 

(passive materials) such as polymers, stainless steel, and aluminum, can result in the 

development of smart structural systems (SSS).  This Dissertation focuses on 

characterization of SMAs and structures that incorporate SMAs.  This characterization is 

based on a hybrid analytical, computational, and experimental solutions (ACES) 

methodology. 

SMAs have a unique ability to recover extensive amounts of deformation (up to 

8% strain).  NiTiNOL (NOL: Naval Ordinance Lab) is the most commonly used 

commercially available SMA and is used in this Dissertation.  NiTiNOL undergoes a 

solid-solid phase transformation from a low temperature phase (Martensite) to a high 

temperature phase (Austenite).  This phase transformation is complete at a critical 
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temperature known as the transformation temperature (TT).  The low temperature phase 

is softer than the high temperature phase (Martensite is four times softer than Austenite).   

In this Dissertation, use of NiTiNOL in representative engineering applications is 

investigated.  Today, the NiTiNOL is either in ribbon form (rectangular in cross-section) 

or thin sheets.  In this Dissertation, NiTiNOL is embedded in parent materials, and the 

effect of incorporating the SMA on the dynamic behavior of the composite are studied.  

In addition, dynamics of thin sheet SMA is also investigated.  The characterization is 

conducted using state-of-the- art (SOTA) ACES methodology.  The ACES methodology 

facilitates obtaining an optimal solution that may otherwise be difficult, or even 

impossible, to obtain using only either an analytical, or a computational, or an 

experimental solution alone.  For analytical solutions energy based methods are used.  

For computational solutions finite element method (FEM) are used.  For experimental 

solutions time-average optoelectronic holography (OEH) and stroboscopic interferometry 

(SI) are used. 

The major contributions of this Dissertation are: 

1. Temperature dependent material properties (e.g., modulus of elasticity) of 

NiTiNOL based on OEH measurements. 

2. Thermomechanical response of representative composite materials that 

incorporate NiTiNOL “fibers”. 

The Dissertation focuses on thermomechanical characterization of NiTiNOL and 

representative structures based on NiTiNOL; this type of an evaluation is essential in 

gainfully employing these materials in engineering designs. 
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 18

I x yht 3
,b g  irradiance distribution corresponding to the third time-average hologram 

Jo   zero-order Bessel function of the first kind 
K1 and K2 directions of illumination and observation vectors 
Ki  stiffness of the NiTiNOL composites for mode i 
L, Leff  active length, or longitudinal direction in a composite 
M Martensite, or characteristic function that modulates the interference of the 

two fields due to the motion of the object, or bending moment 
( ),tM x y Ω   characteristic function  

Md temperature at which critical stress required to induce Martensite is greater 
than the stress required to move the dislocations 

Mf  Martensite finish temperature 
Ms  Martensite start temperature, or shifted Martensite start temperature 

i
xN , i

yN , i
zN  initial inplane force resultants applied to a plate in a pre-buckled state 

P  pressure 
P2  lattice invariant shear as a result of twinning, slip, or faulting 
Q(σ)  latent heat of phase transformation 
R  lattice rotation 
R-phase type of SME 
RPP   critical stress 
S  entropy 

MS   entropy of the martensitic phase 
PS   entropy of the parent phase (Austenite) 

T transverse direction, or temperature, or kinetic energy of an elastic body 
To  transition temperature 
TdSi  reversible heat loss 
U  internal energy, or strain energy of an elastic body 

mnU   known displacement functions used in the solution of a vibrating plate 
V  volume, or potential energy of an elastic body due to inplane loads 

mnV   known displacement functions used in the solution of a vibrating plate 
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X   shape of the normal mode of vibration 

( )X x   displacement function 

( )Y y   displacement function 
∆L  change in longitudinal deformation 
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Ω   fringe-locus function 
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AMMT active modal modification technique 
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ASETM active strain energy tuning method 
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DSC  differential scanning calorimetry 
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EMOE  effective modulus of elasticity 
EOM  equation of motion 
FCC  face centered cubic 
FDM  finite difference method 
FE  finite element  
FEM  finite element method 
LS  laser 
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MT  martensitic transformation 
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OEH  optoelectronic holography 
OWE  one-way effect 
PP  pseudoplasticity  
PE  pseudoelasticity 
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SEM  scanning electron microscope 
SE1 and SE2 spatial filter beam expander assemblies 
SFBE  spatial filter beam expander 
SI  stroboscopic interferometry, or speckle interferometer 
SIM  stress induced martensite 
SMA  shape memory alloy 
SMABC shape memory alloy based composites 
SME  shape memory effect 
SMSL  shape memory strain limit 
SOTA  state-of-the-art 
SSS  smart structural systems 
OEH  optoelectronic holography 
TEM  transmission electron microscope 
TT  transition temperature 
TWSM  two-way shape memory 
XRD  X-ray diffraction 
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1.  INTRODUCTION 
 

1.1.  General discussion 

The thermomechanical behavior of equiatomic NiTi is investigated in this 

Dissertation.  Also representative composites that include NiTiNOL are studied using the 

ACES methodology (Pryputniewicz, 1997; Mizar et al., 1999; Mizar and Pryputniewicz, 

2000, 2003) through which a hybrid, optimal solution will be sought.  The variation of 

modulus of elasticity as a function of temperature is investigated for NiTiNOL and 

NiTiNOL based representative structures.  The effect of repeated thermomechanical 

cycling on shape memory behavior is evaluated. 

The NiTiNOL samples used in this study are shaped as a ribbon, with cross 

sectional dimensions of 2250 µm by 500 µm.  The modulus of elasticity was determined 

during preliminary phase leading to this Dissertation, from the resonant frequencies for 

the first through fourth resonant bending modes as measured using optoelectronic 

holography (OEH).  Based on experimental results there exists a difference in 

temperatures between the forward (Martensite →Austenite) and the reverse (Austenite 

 → Martensite) transformation.  This can be attributed to hysteresis which is an indication 

of absorption of energy. 

Increase in modulus occurs as a result of a phase transformation and is one of 

several ways to quantify the transition.  This phase transition is the driving force for the 

shape memory effect (SME) that results in recovery of plastic strains of up to 8%.  

During the preliminary measurements, the NiTiNOL samples were heat-treated from 

400°C to 500°C for 2.5 hours in order to remove the residual stresses in the 
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microstructure caused by the forming process (this step was recommended by the 

manufacturer).  After heat treatment the NiTiNOL was subjected to tensile loads on the 

order of 50 Newtons to 70 Newtons (resulting in tensile stress from 44 MPa to 66 MPa) 

in order to have a uniform stress distribution.  The results obtained from different heat 

treatment temperatures as well as from the stressed condition after heat treatment were 

compared.  This comparison is essential as SME can be activated by both temperature 

and stress fields acting independently or in unison.  

 

 

1.2.  Background 
 

The scientific investigation of the SME has been primarily initiated through 

considerable increase in industrial applications.  Computer simulation tools have been 

developed as a result of constitutive material laws that will eventually reduce design 

costs.  Comprehensive thermomechanical models incorporate the following 

considerations for optimal simulation of the SME (Trochu, 1996): 

1) simulation of three-dimensional stress states, 

2) include rubber-like behavior (superelasticity), 

3) modeling of hysteresis and subcycles,   

4)  computational algorithm to simulate response of complex devices that              

incorporate SMAs, 

5)  minimal experimental testing to obtain characteristic parameters for the 

computational models, 
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6)  effect of fatigue on mechanical properties. 

From the above considerations it is obvious that the resulting model will be rather 

complex and sometimes of no practical significance.  Therefore, many researchers have 

formulated material laws taking into account certain aspects and thus simplifying the 

model in general (Trochu, 1996 ).  Constitutive laws can be based on micromechanical 

models or on phenomenological models.  Micromechanical models are based on a 

statistical approach while the phenomenological models are based on experimental 

considerations.  The different material laws are also used in FEM simulations of SMA 

devices.  This Section highlights various modeling schemes that have been used by 

different authors to simulate the phenomenon of SME.  The thermomechanical models 

that follow are based on thermodynamic analysis and are governed by the Clausius-

Clayperon equation. 

Muller (1986) has proposed an approach for SME based on the thermodynamics 

of phase transformation and statistical physics.  His approach does not clearly define as to 

why high stresses are required to induce the martensitic transformation at higher 

temperatures.  Falk (1980) has presented a phenomenological model free energy function 

based on Landau’s theory to explain the SME.  

The stress induced phase transition exhibits hysteresis, provided thermodynamic 

barriers exist that prevent an equilibrium phase transition.   In practice the phase 

transition can occur at lower stress levels, where the Gibb’s free energy of both phases is 

equal. 
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Falk (1980) also attributes characteristic stress-strain response of SMAs to 

entropy and these alloys can be also called entropy elastic or rubber elastic.  He also has 

developed relations for the Gibbs free energy, G, and relations for temperature induced 

phase transition.  SME is explained based on the scaled free energy versus normalized 

strain.  Experimental verification of the material parameters has also been discussed.  

This theory is applied only to single crystals and is, therefore, not widely used.  Also, the 

determination of the scaling parameters for the various SMA systems is rather 

complicated and hence not very practical.  

Hoffmann and Sprekles (1987) have developed a model similar to the one 

developed by Falk (1980), with the difference of using a generalized free energy 

expression in comparison to an explicit relation used by Falk.  A system of differential 

equations was investigated that results in a one-dimensional model for the dynamics of 

martensitic phase transitions in SMAs.  The stability of the system under distributed heat 

sources and loads and heat sources at the boundary has also been investigated.  This 

particular approach used loads and heat sources as control variables in order to model 

both stress and temperature induced phase transition.  This model is mathematical and its 

numerical computations reflect the physics of the martensitic transformation of SMA and 

its material behavior.  Complex mathematical formulations require the use of 

sophisticated algorithms and this model still awaits experimental verification. 

Tanaka (1990) has proposed a theory that consists of a constitutive equation and 

transformation kinetics to describe thermomechanical behavior of SMAs.  The theory 

when applied in particular to uniaxial stress situations for NiTi to simulate the stress-
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strain-temperature relation provides good applicability.  The constitutive law is based on 

the theory of internal variables from continuum mechanics and deals with transformation 

kinetics, pseudoelasticity, SME, and partial pseudoelasticity.  Simulation of recovery 

stress induced in the partially strained specimen during the heating process revealed an 

interaction between thermomechanical behavior and phase transformation. Validity of 

this theory for multiaxial stress situations is still under investigations. 

Brinson et al. (1996) have proposed a macro-scale, phenomenological constitutive 

model for SMAs in conjunction with energy balance equations in order to study evolution 

of temperature and deformation profiles seen in SMA wires under specific thermal and 

mechanical boundary conditions.  A fully coupled thermomechanical problem was 

formulated and analytical solutions were sought for the decoupled case and limit cases 

were investigated.  The SME phenomenon is dependent on stress, strain, and temperature.  

The problem is considered decoupled when either one or two of the three dependent 

states are either not included or held constant in the analysis.   Results for two specific 

cases are presented: 1) resistive heating of an SMA wire – initial detwinned Martensite 

leads to strain recovery (contraction) on heating, and 2) deformation wave in a semi-

infinite, initially Austenite SMA wire cooled at the boundary – deformation zone 

propagates and expands as the wire transforms to Martensite (expansion).  In both cases, 

the region and extent of the transformation was identified, indicating the magnitude of 

actuation obtained.  Implications of the modeling for active control of structures are also 

discussed.  The model developed provides accurate results for space-averaged 

transformation, and hence does not represent nucleation and propagation of the 
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Martensite transformation of the micro-scale level, but rather the mechanical response.  

The results still await comparison with experimental data for completion.  

Ford and White (1995) have presented thermomechanical behavior of 55Ni45Ti 

over full range mechanical testing up to failure and over a wide range of temperatures. 

Thermomechanical properties measured include initial modulus, secondary modulus, 

critical martensitic start and finish stresses, plastic flow stress, recovery strain limit, 

failure stress, and plastic modulus.  Data are correlated with the Brinson constitutive 

model.  Acceptable correlation between experimental data and Brinson model (Brinson et 

al., 1996) was reported.  The NiTiNOL specimen (wire) was loaded in uniaxial tension to 

failure and testing was conducted on an MTS-880 test frame.  According to Ford and 

White (1995), the loading was at the rate of 0.1 mm per second with the period of loading 

being 200 ms.  Emphasis of thermal dependence of the initial modulus and critical stress 

and their effect on SMA sensors and actuator components have also been investigated.  

Investigation of binary NiTi by light optical microscopy is difficult, the only 

successful method is etching using hydrofluoric acid (Lee and Withers, 1978).  

Successful etching is, however, not guaranteed because of the difficulty in etching 

through the oxidation layer that is often present on the surface of NiTiNOL.  Through 

optical examination preceded by proper polishing and then followed by etching, the 

phase transformation, Austenite and Martensite, can be qualitatively analyzed.  The 

preparation of austenitic samples is, however, difficult and etching Martensite using 

existing etching techniques is rather difficult.  Existence of surface relief on the 

specimens is the only indication of the presence of Martensite in NiTiNOL. 
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Escher and Huhner (1990) have provided an etching technique suitable for 

observations of both Martensite and Austenite on optical microscopes.  Use of 

concentrated hydrofluoric acid is avoided and hence is a good advantage of this method, 

thus giving very little chance for accidental spills of dangerous chemicals (hydrofluoric 

acid) during the etching process.  Samples were cut off and ground on silicon carbide 

paper with a grit size of 1000, with water as the lubricant.  Prepolishing was performed 

on 6 microns diamond slurry and followed by electrolytic polishing with Strues 

electrolyte A2 at 20 Volts for 25 seconds.  The etchent consisted of the following: 

distilled water (120 ml), hydrochloric acid (15 ml), sodium disulfite (15g), potassium 

disulfite (10g), and ammonium hydrogen fluoride (2 g).  An optimal etching time of 20 

seconds provided acceptable results.  Etching on mechanically polished surfaces resulted 

in poor or no etching due to several deformed layers. 

Wick et al. (1995) have investigated the bending behavior of superelastic and 

shape memory NiTiNOL wire with circular and rectangular cross sections in three-point, 

four-point, and pure bending configurations.  The results from pure bending were in good 

agreement with results from the four-point bending results.  The stress-strain curves for 

the four-point bending and pure bending were also compared with uniaxial tensile stress 

results.  The tensile data for superelastic beams were analyzed using modified plasticity, 

and good correlation was obtained with the results from pure bending.  The test sample 

used was a standard NiTi alloy (50.8% Ni), both round and rectangular with a diameter of 

1.54 mm for the round cross-section, and 1.33 mm by 1.35 mm for the rectangular cross-

section.  Influence of heat treatment on the stress-strain curves has also been investigated. 
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Differences between the upper plateau stress and spring-back strain in between the tensile 

and bending data in aged conditions were found, with the spring-back strain for all 

bending samples being greater than that for the samples in tension.  This approach is 

practical and is useful in predicting different types of shape memory effects.  Also cross 

verification between experimental and theoretical predictions has also been presented in a 

convincing manner. 

Baz and Ro (1992) have investigated thermodynamic characteristics of SMA 

reinforced composite beams.  The dynamics of the composite was controlled by heating 

sets of SMA (NiTiNOL) fibers embedded along the neutral axis of the beam.  Activation 

of SME in the NiTiNOL fibers increased the elastic energy of the entire structure, thus 

resulting in increased stiffness.  Undesirable vibrations can be avoided by fine tuning the 

vibration modes of the structure and thus preventing the modes from reaching resonance. 

Emphasis was laid upon the effect of intentional electrical heating of the SMA fibers on 

the overall dynamics of the composite.  Finite element formulations have been utilized to 

describe interactions between thermal and dynamic characteristics of the composite 

structure as well as between intentional and unintentional electrical activation of the 

NiTiNOL fibers.  Close agreement was obtained between theoretical and experimental 

results and the results clearly indicate the possibility of design of NiTiNOL reinforced 

composite structures and also means of predicting of the performance of such composite 

structures.  Vibration tuning in particular can be useful in critical structures that operate 

in an autonomous fashion for long duration of time such as satellites, space structures, 

and defense vehicles as they encounter continuously changing operating conditions.  



 29

Baz et al. (1994) have developed a method for controlling the natural frequencies 

of NiTiNOL reinforced composite beams by activating optimal sets of SMA wires 

embedded along the neutral axis of the beam.  Individual contributions of the fiberglass 

resin matrix, NiTiNOL wires, and SME, on the overall performance of the composite at 

different operating conditions were also investigated.  The modes of vibrations of the 

composite with and without the NiTiNOL fibers were measured at various operating 

conditions.  Results indicated that proper NiTiNOL reinforcement resulted in a decreased 

susceptibility to buckling due to increase in stiffness of the composite structure.  Also the 

modes of vibrations of the activated NiTiNOL reinforced beams could be shifted to a 

higher frequency relative to those of the un-reinforced beams.  A finite element model 

analysis indicated interaction between NiTiNOL wires and the fiberglass resin matrix.  

Close agreement was obtained between theoretical and experimental results.  Issues 

concerning behavior of these composite smart structures have been dealt with emphasis 

on vibration control using SMA reinforcements.  

Tobushi et al. (1992) have presented cyclic deformation and fatigue of NiTi wire 

subjected to rotating bending.  Cyclic deformation and fatigue of a NiTi wire was studied 

under rotating-bending tests at various strain amplitudes, temperatures, and rotational 

speeds.  Results obtained were categorized into two groups based on the phase of the 

SMA wire.  For strain amplitudes in the rhombohedral phase transformation region, the 

fatigue life was longer than 107 cycles and deformation properties (e.g., shape recovery: 

SME) remained unchanged under cyclic deformation.  The fatigue life was found to be 

shorter than 105 cycles for strain amplitudes in the martensitic regions, and also the 
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fatigue life decreased with an increase in temperature.  The material used for the tests was 

a Ti-55.3 % by weight Ni SMA wire, with a diameter of 0.75 mm.  The rotational speed 

was found to be of no effect on the fatigue life when the experiments were conducted in a 

water medium.  

Hissaki et al. (1996) have presented experimental results on cyclic deformation 

properties of TiNi shape memory alloys under thermomechanical loading.  Experimental 

investigations were carried out on thermomechanical properties of SME as a result of 

thermomechanical loading.  The transformation stresses, the transformation line, and 

fatigue properties as a result of phase transformation have been investigated.  For high 

cycle deformations, the R-phase transformation was most suitable.  The material used in 

this particular study was a Ti-55.3wt % Ni SMA wire, 0.75 mm in diameter.  Shape 

memory training was achieved for the samples by constraining at the desired shape at  

400°C for 1 hour and followed by cooling in a furnace.  The testing apparatus constituted 

a tensile tester and a heating-cooling device.  The single specimen was heated by hot air 

and cooled by liquefied carbon dioxide.  A rotating-bending machine was used for the 

fatigue testing.  Experimentation tests for SME, superelasticity, and for fatigue life were 

conducted.  From results obtained the following conclusions were drawn: 

1)  the martensitic transformation (MT) reverse transformation temperature increased 

with a corresponding decrease in the MT stress, 

2)  the variation in thermomechanical properties as a result of the R-phase transition 

was minimal, 
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3)  the importance of including behavior of transformation lines under cyclic 

deformations, 

4) the rotating-bending fatigue life of the wire is quite long in the R-phase transition 

region. 

 Tanaka (1986) presented a unified one-dimensional theory for materials that 

undergo thermoelastic MT.  The thermomechanical constitutive equations for the 

transformation kinetics have also been derived.  The theory was then applied to a one-

dimensional tensile situation to describe superelasticity, ferroelasticity, and SME.  The 

author has discussed the kinetics and transformation based on a thermomechanical 

approach.  The material is considered to be a poly-crystal so that nucleation and growth 

of the martensitic plates can be understood as being governed by macroscopic 

transformations.  The theory indicates that the Helmholtz free energy and the dissipation 

potential result in a series of equations: the thermomechanical constitutive equations and 

the equation that governs the transformation phenomenology.  The stress-strain curves in 

tension are estimated by the theory for a simple model in order to explain the 

superelasticity, pseudoelasticity, ferroelasticity, and shape memory effect.  The theory 

presented by Tanaka (1986), based on mathematical formulations, can be used in the 

verification of experimental results. 

 Pruski and Kihl (1992) have investigated the classical hysteretic behavior 

exhibited by NiTiNOL.  In order to make strain control possible, the internal electrical 

resistance variation is used as the feedback variable.  Copper-based shape memory alloys 

were investigated for which strain has the disadvantage of having a large hysteresis.  The 
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paper discusses methods for removing hysteresis and some cases where controlled SMA 

behavior may be used.  In most applications involving SMAs, electrical resistance is 

primarily present, and as a result of which, hysteresis is inevitable.  Also the resistance of 

the two phases (Martensite and Austenite) is different and it is not always possible to 

determine strain from reading stress or temperature.  This particular aspect constitutes the 

framework for this investigation. The study is focused on the materials electrical 

resistance in order to improve the accuracy of an internal feedback-controlled SMA 

actuator.  Cu-Zn-Al SMA was used in this study and the authors state that this particular 

SMA has a lower performance than NiTiNOL pertaining to allowable shape memory 

stress and strain and also has a greater hysteretic behavior.  Based on the results obtained 

the authors conclude that the hysteretic pattern (behavior) of a SMA is required for 

proper sensor/actuator design.  As the hysteresis magnitude is known, it is then possible 

to add or subtract a constant value to the feed back information according to the variation 

of the reference.  The authors suggest that results can be duplicated for the NiTi SMA 

system. 

 Boyd and Lagoudas (1995) have proposed a mathematical microthermodynamic 

analysis of SME in composite materials.  The paper addresses SME and pseudoelasticity 

as a result of the phase transformation in SMA composites.  The simulation is performed 

in two stages or procedures.  First, phenomenological constitutive equations are proposed 

for the monolithic polycrystalline SMA material.  A convex free energy function coupled 

with dissipation potential is used to generate a response of the generalized standard 

material.  Second, a micromechanics analysis of a SMA composite material is performed 
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to derive its free energy, transformation strain rate, and the Clausius-Clayperon equation.  

Results for a NiTiNOL SMA fiber / elastomer matrix composite are presented.  

 Hornbogen and Kobus (1993) have presented a method for the characterization of 

SMAs by hardness indents.  An indenter is harder than the material to be tested and as the 

indenter tip is pressed into the material the material deforms plastically at the indented 

zone and hence work hardens.  For SMA the same is valid, but the only difference being 

that when the indent will partly or completely disappear as the temperature is increased.  

The test began when the SMA was in the martensitic condition (20°C) and with the 

formation of Austenite the hardness value was found to decrease with the lowest value at 

the end of complete austenitization.  On subsequent cooling, Martensite started to form 

with a corresponding increase in the hardness value.  Cooling of the SMA sample was 

achieved through the use of liquid nitrogen.  Experiments were conducted on shape 

memory steel, then for a copper-based SMA, and they both exhibited similar 

transformation characteristics.  One striking difference being in the fact that for the 

copper-based SMA, the Austenite was harder than Martensite.  In addition, the path of 

change in hardness did not correspond with the calorimetrically measured path of the 

transformation.  It was found that for the copper-based SMA the Martensite retained its 

low hardness until, in the stress free transformed condition, the re-transformation into the 

parent phase (Austenite) was complete.  Similar measurements carried out on NiTi 

indicated that Martensite was soft and Austenite hard.  The Martensite however showed 

an increase in hardness with increasing temperature, and a significant increase in 

hardness occurred before the re-transformation took place.  The higher hardness value 
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remained unchanged until Martensite began to form.  Over repeated cycles, the 

Martensite was found to get softer with each cycle and got even softer at temperatures 

lower than the room temperature.  The hardness indentation yielded information 

regarding the phase transformation, transformation temperatures as well as 

pseudoelasticity, stress and strain induced transformation in the martensitic phase, 

pseudo-plasticity of the Martensite and true plasticity.  The characterization of these 

unique behaviors can be obtained from an analysis of the shape and dimension 

indentation.  This is a very useful technique to determine critical parameters like the 

transformation temperatures as well as allowable deformation and stress levels. 
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2.  MARTENSITE AND SHAPE MEMORY EFFECT 
 

2.1.  Introduction 

 Shape memory refers to the ability of certain materials to “remember” a shape, 

even after extensive deformations.  Once deformed in the low temperature phase 

(Martensite), these materials will stay deformed until heated, upon which they 

spontaneously return to their original, pre-deformation shape.  This phenomenon is called 

shape memory effect (SME).  The basis for SME is that materials can easily transform to 

and from Martensite.  Even the elementary engineering aspects of SME cannot be 

understood without first familiarizing oneself with some basic principles of Martensite 

and its formation. 

 

 

2.2.  A microscopic perspective of Martensite 

 Solid state transformations are usually of two types: diffusional and displacive.  

Diffusional transformations are those in which the new phase can only be formed by 

moving atoms randomly over relatively long distances.  This requires long range 

diffusion as the new phase that is formed is of a different chemical composition than the 

matrix from which it is formed.  Since this type of a transformation requires atomic 

migration, the diffusional transformation is dependent upon both time and temperature.  

Displacive transformations, on the other hand, do not require, large atomic migration; in 

this case the atoms are rearranged into a new, more stable atomic structure in a 

cooperative fashion.  This rearranging is done without changing the chemical nature of 
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the matrix.  Since no atomic migration is involved, these displacive transformations 

progress in a time independent fashion, with the motion of the surface between the two 

phases being limited by only the speed of sound.  These transformations are also referred 

to as athermal transformations.  martensitic transformations are of the displacive type, 

and are formed upon cooling from a higher temperature phase called the parent phase, or 

Austenite.  It is important to note that a precise definition for Martensite has never been 

agreed upon.  The terms “Martensite” and “Austenite” were used to refer to phases of 

steel.  However a more generalized definition for Martensite is based on the product of 

the phase transformation rather than a particular material is now more widely accepted. 

 Martensitic transformations are first order transformations.  This means that heat 

is liberated when Martensite is formed.  There is a hysteresis associated with the 

transformation and there is a temperature range over which Martensite and Austenite co-

exist.  Therefore it is possible to state that Martensite is formed upon cooling with the 

volume fraction of Martensite increasing as the temperature is reduced.  It is important to 

note that the volume fraction is independent of time and is dependent solely on 

temperature.   

 In a crystallographic context, the phase transformation from Austenite to 

Martensite is thought of to occur in two parts: the Bain strain and the lattice invariant 

shear.  These mechanisms in a crystallographic sense are quite complex.  However, it is 

possible to explain them adequately in a quite simple fashion using a two-dimensional 

approach.  The Bain strain, also referred to as lattice deformation, consists of all atomic 

movements that are needed to form the new structure (i.e., phase) from the old.  Figure 
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2.1 illustrates the austenitic structure schematically in diagram (a), and the progression of 

the transformation to a fully martensitic structure is schematically illustrated by (b) 

through (d).  It is important to note that the interface progresses through each atomic 

layer, each atom is required to move by only a very small amount (Fig. 2.1c).  The end 

result of all these coordinated movements is the new martensitic structure.  The 

movements that are required to produce the new structure are called Bain strain.  In real 

materials, Bain strain generally consists of several atomic shuffles in addition to the 

movement illustrated in Fig. 2.1. 

 
Fig. 2.1.  Transformation from Austenite to Martensite in two-dimensions 

(a) being completely austenitic and (d) being completely martensitic 
(c) the interface advances, each layer of atoms is displaced only by a small distance. 
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 The second part of a martensitic transformation is referred to as the lattice 

invariant shear.  It is an accommodation step: the martensitic structure produced by the 

Bain strain is of a different shape, and often volume, than the surrounding Austenite (Figs 

2.1a and 2.1d).  Martensite in steel however involves both a volume change and a shape 

change, whereas shape memory alloys like NiTiNOL undergo only a shape change.  

Either the overall shape of the new phase, or the surrounding Austenite must be altered to 

accommodate the new structure.  There are two mechanisms by which this is possible: 

slip (Fig. 2.2a) and twinning (Fig. 2.2b).  In both cases, each individual cell, or 

parallelogram, has the new martensitic structure, but the overall shape is that of the 

original Austenite.  Slip is a permanent process and is a common accommodation 

mechanism in many Martensites.  Twinning is unable to accommodate volume changes, 

but can accommodate shape changes in a reversible way.  For shape memory to occur to 

any significant extent, it is required that the accommodation be fully reversible or, stated 

alternately, that twinning be the dominant accommodation process.  In Fig. 2.2, only two 

directions or variants of shear are required to restore the original, overall shape of the 

matrix; in three-dimensions the situation can be complicated: Cu-Zn-Al Martensites for 

example, require four Martensite variants for full, three-dimensional accommodation, and 

Ni-Ti Martensites require three. 
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Fig. 2.2.  Two mechanisms of accommodating the shape change due to the atomic shear 

of a martensitic transformation. 
 

 

 The twinning process of accommodation plays a key role in the shape memory 

effect and should be reviewed in more detail.  As can be seen in Fig. 2.3, the twin 

boundary is a mirror plane: when positioned on the boundary, the view in one direction is 

a mirror image of the other.  Atoms situated on that boundary see the same number and 

type of bonds in both directions.  Some key properties of twin boundaries are that they 

are of a very low energy and they are quite mobile; thus the relative stability of a 

martensitic phase is not strongly affected by the number or location of these boundaries.  

By comparing edges of the structures shown in Figs 2a and 2b, one can see that slip 

accommodation requires that atomic bonds be broken, while all bonds remain intact in 
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the twinned structure.  If a stress is applied to the structure shown in Fig. 2b, the twin 

boundaries will easily move, producing a shape that better accommodates the applied 

stress.  The result of moving a twin boundary is to convert one orientation or twin variant 

into another.  That variant will be chosen which is most favorably oriented to the applied 

stress.  In the ideal case, a single variant of Martensite can be produced by straining a 

sufficient amount.  This process of condensation of many twin variants into a single 

favored variant is called detwinning.  In the foregoing discussion, only the twins within 

individual martensitic plates have been considered.  However crystallographic analysis 

has shown that the boundaries between martensitic plates also behave as twin boundaries 

– i.e., the individual plates of Martensite themselves are twins with respect to adjoining 

plates.  Therefore the term twin boundaries refers to the boundaries between Martensite 

plates as well as the boundaries within plates. 

 
Fig. 2.3.  Schematic view of a twin boundary. 
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 In Figs 2.1 through 2.4, the atom types have not been identified.  In an alloy, 

however, there exist several species of atoms.  It is therefore important to identify the 

lattice site locations of these atoms.  In steel, for example, these atoms are disordered, 

meaning that different elements are randomly distributed on the lattice sites.  In 

NiTiNOL, however, the atoms are ordered, meaning that the Ni and Ti atoms are found 

on very specific sites (Fig. 2.4).  During the course of a martensitic transformation, the 

Martensite takes on the same ordering as the Austenite.  This is referred to as inherited 

ordering.  Shape memory alloys are generally based on a BCC symmetry, some with the 

BCC structure, more often with the B2 structure, and some with an even more complex 

ordering called DO3, still based on the BCC symmetry. 

 

 
Fig.  2.4.  Ordered and disordered structures commonly found in shape memory 
alloys: (a) disordered BCC structure, where different atom types are randomly 

distributed, (b) B2 structure, found mostly in NiTiNOL, where different 
atom types are found in specific locations, (c) higher order phase than (b) called 

DO3 state found, for example, in Cu-Al-Ni alloys. 
 

 

 Martensite normally appears as plates, resting on complex crystallographic planes 

known as habit planes.  In many shape memory alloys, the Martensite plates are easily 
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viewed through an optical microscope.  NiTiNOL however exhibits fine plates that 

cannot be examined through an optical microscope.  It is therefore important to prepare 

samples for NiTiNOL very carefully, since normal grinding and polishing can sometimes 

disturb the Martensite, or sometimes may even produce Martensite that did not exist to 

begin with. 

 

 

2.3.  A macroscopic perspective of Martensite 

 The physical properties of Austenite and Martensite are different.  Therefore as 

the phase transformation progresses and the transformation point is passed, a variety of 

property changes occur.  Any of these property changes can be used to follow the 

progression of the phase transformation.  There are four significant temperatures that 

characterize the transformation from Martensite to Austenite and vice versa.  Four 

temperatures indicated by Ms, Mf, As, and Af  (Fig. 2.5) refer to temperatures at which the 

transformation to Martensite starts and finishes, and the temperatures at which the 

reversion to Austenite starts and finishes, respectively.  There is a hysteresis associated 

with this phase transformation (martensitic transformation).  Stated alternatively, the 

transformation temperatures differ upon heating and cooling during the martensitic 

transformation.  The magnitude of the hysteresis varies from one alloy system to another, 

and has typical values ranging from 20ºC to 40ºC.  Microscopically, hysteresis can be 

attributed to friction associated with the movement of twin-related Martensite boundaries. 
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Fig. 2.5.  Hypothetical plot of property change versus temperature for a  

martensitic transformation occurring in a SMA. 
 
 
 
 

 One of the many mechanical properties that change during the phase 

transformation is the yield strength.  The martensitic structure deforms by moving twin 

boundaries.  These twin boundaries are quite mobile.  Martensite therefore has low yield 

strength.  Austenite, on the other hand, deforms by dislocation generation and movement.  

Only a certain amount of Martensite can deform based on this twin movement process 

and once this limit is exceeded, the material will again deform elastically and eventually 

yield the second time by an irreversible process (movement of dislocations).  The 

resulting unusual tensile behavior is indicated in Fig. 2.6.  In Fig. 2.6, the plateau refers to 
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the thermal hysteresis, which means that both Martensite and Austenite are controlled by 

the frictional stress of the twin boundaries.  It is the yield strength ratio between the 

Martensite and Austenite that controls the ratio of resistances to reversible and 

irreversible deformations (twin movement to slip).  In shape memory alloys, it is 

important to have this ratio as high as possible in order to recover the most amount of the 

deformation.  Typical values of these ratios are 0.1 to 0.2 (Duerig, 1990). 

 

 
Fig. 2.6.  Typical stress-strain curve for a twinned martensitic material. 

 
 
 
 

2.4.The origin of shape memory effect 

 Martensite is generally of a lower symmetry phase than Austenite.  Therefore 

there are several ways by which Martensite can be formed out of Austenite.  However 

there is only one route by which the Martensite formed will revert back to Austenite.  
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Shape memory effect can be explained in a very simple manner by a 2D geometrical 

concept depicted in Fig. 2.7 (Duerig, 1990).  Upon cooling from Austenite (Fig. 2.7a), the 

self-accommodating variants of Martensite (Fig. 2.7b) are formed.  During the 

application of stress (deformation), the twin boundaries migrate and therefore result in a 

biased distribution of Martensite variants (Fig. 2.7c).  It is however important to note that 

no matter what the distribution of Martensite is, there is only one possible austenitic 

structure that these variants can revert back to.  Therefore the martensitic variants must 

return back to the original undeformed shape after reverting back to Austenite.  Therefore 

the shape accommodation due to a twin boundary movement can only be supported by a 

low symmetrical martensitic structure, and when the more symmetric Austenite structure 

is returned, the twinning deformation must also disappear. 

 The shape memory effect can be described with reference to the cooling and 

heating curves, Fig. 2.8.  There is no change in the shape of the specimen cooled from 

above Af to below Mf.  When the specimen is deformed below Mf it remains so deformed 

until it is heated.  The shape recovery begins at As and is completed at Af.  At the 

inflection point, between As and Af, about 50% of the original shape is recovered. 
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Fig. 2.7.  Shape memory shown microscopically: Austenite (a) is cooled to form twinned 

Martensite (b) without undergoing a shape change, then is deformed by moving twin 
boundaries (c).  Heating either state (b) or (c) will return the originally austenitic 

structure and shape. 
  

 

 Once the shape has recovered at Af there is no change in shape when the specimen 

is cooled to below Mf and the shape memory can be reactivated only by deforming the 

martensitic specimen again.  In other words, the shape memory effect is a one time only 

occurrence and therefore it is frequently referred to as the one-way shape memory effect.  

Typical recoverable strains for most SMAs are about 7%, while some of them can 
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Fig. 2.8.  The shape memory effect as described with reference to a plot of electrical 

resistance versus temperature. 
 

 

recover strains up to 10%.  Among the many alloys that exhibit SME, only the Cu-Zn-Al, 

Cu-Zn-Ni, and Ti-Ni alloys are presently of commercial importance. 
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2.5.  Stress-induced Martensite and Superelasticity 

 So far shape memory effect has been considered to be both thermal and 

mechanical.  The Martensite is initially formed during cooling and is then deformed 

below the Mf temperature, and then heated to above the Af  temperature to cause the shape 

to recover.  This means that shape memory is caused by heating.  There is also another 

type of shape memory that is dependent upon temperature, which is referred to as 

superelasticity.  It is a known fact that the formation of Martensite is a thermoelastic 

process, which means that a decrease in temperature between Ms and Mf results in a slight 

growth of existing martensitic plates and the nucleation of new ones.  However when the 

temperature is incrementally raised the newly nucleated plates disappear and those which 

grew slightly on incremental cooling correspondingly shrink back a little.  Stated 

alternately, there is equivalence between temperature and stress: a decrease in 

temperature is equivalent to an increase in stress, and these both stabilize Martensite.  

The Martensite is also crystallographically reversible, which means that the reversion of a 

given plate upon heating is just the reverse of the formation process, i.e., the plates 

undergo a backward shear as it disappears.  Normally, on cooling, the Martensite forms 

under Ms if a stress is applied and the so-formed Martensite is called as stress-induced 

Martensite (SIM).  The driving force for the transformation is, in this case, mechanical 

rather than thermal.  Above Ms the stress required to produce SIM increases with 

increasing temperature, as shown in Fig. 2.9. 
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Fig. 2.9.  Stress-strain curves for Cu-Zn single crystal loaded in tension above Ms. 

 
 
 
 

 The variation in stress required to produce SIM increases linearly with 

temperature above Ms, Fig. 2.10.  Figure 2.10 shows that the extrapolated stress drops to 

zero at the temperature Ms.  The linear variation of stress to induce Martensite as a 

function of temperature obeys the Clausius-Clayperon equation, and is written as 

    ,
VT

H
dT
dP

∆
∆

=        (2.1) 

where P is the pressure, T is the temperature, and ∆H is the transformation latent heat and 

∆V is the volume change of the phase transformation.  Equation 2.1 has been traditionally 
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used by chemists (Duerig, 1990), but metallurgists, on the other hand, use the Clausius-

Clayperon in the following form: 

    ,
0ε

σ
T

H
dM
d

s

∆
−=       (2.2) 

where ∆H and T have the same interpretation as for Equation 2.1, and σ, Ms, and ε0 are 

the applied stress, the shifted Ms temperature and the transformational strain resolved 

along the direction of the applied stress.  The difficulty to stress induce Martensite 

continues to increase with temperature until Md, above which the critical stress required 

to induce Martensite is greater than the stress required to move the dislocations.  

Therefore the temperature range for SIM is from Ms to Md.  For a number of SMA 

systems, the agreement in the temperature dependence of the stress to form SIM 

according to the Clausius-Clayperon equation is quite striking.  The equation works 

equally well for the non-isothermal case, i.e., the case where temperature was held 

constant while the stress needed to form Martensite was measured. 

 Superelasticity occurs when a material is deformed above As, but still below Md.  

In this range, Martensite can be made stable with the application of stress, but becomes 

unstable upon removal of stress.  Figure 2.11 shows a superelastic stress-strain curve for 

a Cu-39.8%Zn SMA.  The upper plateau corresponds to the formation of Martensite 

under stress whereas the lower plateau represents SIM when the load is released (Duerig, 

1990).  Note that 9% strain is fully recovered during unloading, and can be viewed as a 

mechanical shape memory effect.  When the SIM is formed for a single crystal Cu-Zn 

shape memory alloy only a single variant is formed during the application of stress.  This 
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results in an elongation (or shape change) which is fully recovered upon release of the 

applied stress.  This situation is unlike the case of thermal Martensite, there is no overall 

net shape change accompanying the formation of various variants of Martensite. 

 

 
Fig. 2.10.  Stress plateau as a function of temperature. 
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Fig. 2.11.  Stress-strain curve for a Cu-Zn shape memory alloy, loaded above the 

As temperature and then unloaded, shows superelastic behavior. 
 

 

2.6.  Mathematical background for martensitic transformation 

Experimental evidence from optical, SEM (Scanning Electron Microscope), and 

TEM (Transmission Electron Microscope) observations indicate that during a MT, a line 

and surface is converted to another line and surface.  This conversion can be represented 

mathematically by a matrix operator.  The parent (Austenite) and martensitic phases are 

of different microstructures.  A coordinate transformation must be performed to 

mathematically explain the MT.  Linear algebra is used to perform such a transformation. 

During a coordinate transformation, the mathematical operator will itself undergo a 

transformation. 
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Application of a coordinate transformation to a vector results in the transformation of the 

mathematical operator based on a similarity transformation.  Wayman and Duerig (1990) 

have discussed the mathematics of the similarity transformation.  

 A martensitic crystal is formed from the parent phase through a diffusionless 

transformation.  This type of a transformation is well explained for the FCC to BCT 

(Base Centered Tetragonal) transformation in steels, Fig. 2.12.  Generally a FCC twin has 

a BCT lattice with an axial ratio of 1.414.  Martensite in general has a ratio close to one.  

This is possible when the Z axis is contracted and X and Y axes are elongated, according 

to the mechanism first proposed by Bain.  Even though the mechanism differs for 

different type of SMA systems.  A Martensite can always be created from a parent phase 

by a combination of elongation, contraction and shear along certain directions (Otsuka, 

1998).  Since MT is a diffusionless transformation, there exists a one-to-one relation 

between the parent and the martensitic phase.  
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Fig. 2.12.  Mechanism of FCC-BCT (or BCC) transformation Bain strain. 
 xyz represent the crystal axes in the parent FCC lattice, while XYZ represent the 

axes in the BCT Martensite. 
 

 

2.7.  Phenomenological theory of the martensitic transformation 

 The crystallographic characteristics of the martensitic transformation are well 

understood by the phenomenological crystallographic theory.  The theory requires that 

the MT consists of the following components: 

 1)  a lattice deformation B, as a result of the formation of Martensite 

  from the parent phase, 

 2)  lattice invariant shear P2  (as a result of twinning, slip, or faulting), 

 3)  a lattice rotation R. 
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 Theory requires that the shape memory strain produced by the MT consists of a 

lattice invariant strain and is homogeneous macroscopically.  It consists of a shear strain 

parallel to the habit plane and an expansion or contraction normal to the habit plane.  The 

shape memory strain can also be represented as follows (Wayman and Duerig, 1990): 

 The crystallographic theory has been so far successfully applied to Au-Cd, Fe-Pt, 

Fe-Ni-C and Fe-Al-C alloys with a good correlation between experimental and 

theoretical results.  The theory when applied to other SMA systems, does not provide 

overall agreement between experiment and theory. 

 

 

2.8.  Thermodynamic aspects of the martensitic transformation 

The MT can be explained based on a thermodynamic analysis, as it is driven 

either by stress or temperature.  There is heat interaction between the SMA specimen and 

the surroundings and specific temperatures characterize the phase transition.  Even 

though these temperatures can be determined by the DSC (Differential Scanning 

Calorimetry) methods, a thermodynamic analysis will provide an insight into 

characteristics unique to SME like hysteresis, superelasticity, one-way effect, rubber-

elasticity, and two-way effect. 

A gas can be liquefied by the application of a suitable pressure.  Similarly, a 

phase transition from the parent phase to Martensite can be induced by the application of 

a stress.  A thermodynamic analysis explains thermal and mechanical effects on the SME. 

Thermodynamics is a good tool to perform calculations on the thermal implications of the 
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stress induced phase transition.  It also explains the reversibility of the phase transition in 

certain SMAs and highlights energy contributions that control the hysteresis phenomenon 

(Trochu,1996).  

Gibbs theory of thermodynamic stability is used to describe the phase transition 

under the consideration that the alloy system is in equilibrium.  Based on the above 

consideration it is evident that Gibbs theory is not suitable for systems not in equilibrium, 

for which fluctuations are amplified to generate new structures.  An MT can be 

considered to be a succession of several equilibrium states and Gibbs approach based on 

free energy can be used.  The thermodynamic analysis is based on work and methodology 

presented in the work on SMAs by Trochu (1996). 

The MT is a solid state transformation and a thermodynamic analysis, based on 

internal variables such as the latent heat of the phase transformation, enthalpy, and 

entropy for a single crystal of SMA, is presented in this Section.  Derivation of the 

classical Clausius-Clayperon equation that relates stress and temperature is also 

presented.  The analysis is conducted for a single crystal of SMA, because this facilitates 

the investigation of the SMA specimen as a thermodynamic system with only one 

component. 

 

 

2.8.1.  Thermally induced phase transformation 

In this particular case, the martensitic phase transformation is thermally induced. 

The SMA crystal has energy interactions with its surroundings in the form of heat and 
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work and this can result in an increase, or decrease, in the internal energy.  The change in 

internal energy undergoing a heat transfer with its surroundings, or doing useful work, 

can be written in thermodynamic terms as follows: 

,dE dQ dW= +         (2.3) 

where E  is the internal energy, dQ  is the heat exchange between the SMA crystal and 

its surroundings, and dW is the work accomplished as a result of dQ. 

Assuming the phase transformation as a reversible heat transfer situation and 

using the second law of thermodynamics the following relation is obvious and valid: 

,dQ TdS=          (2.4) 

where T is the temperature and dS is the change in entropy of the SMA crystal. 

According to thermodynamic convention, work done by a system is positive and energy 

transfer into the system is also positive.  Keeping this in consideration and also from the 

assumption that that work done by the crystal is a hydrostatic work, an expression for the 

work done can be written as 

,dW pdV= −         (2.5) 

where p is the pressure and dV is the change in volume. 

From Eqs 2.4 and 2.5, 

.dE TdS pdV= −         (2.6) 

All properties that are used in the thermodynamic analysis are extensive and refer to per 

unit mass basis of the SMA crystal.  As E, S, and V are difficult to control during 

experimentation, additional thermodynamic potentials in the form of enthalpy H and the 
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Gibbs free energy G have to be introduced. They can be defined in terms of E, S, T and V 

as follows (Trochu, 1996): 

,H E pV= +         (2.7) 

and 

.G H TS= −         (2.8) 

Differentiating Eqs 2.7 and 2.8, and rearranging the results for dE and dG we have 

,dH TdS Vdp= +         (2.9) 

.dG Vdp SdT= −         (2.10) 

The entropy S and the pressure p are natural variables that appear in the expression for 

the increment of enthalpy dH.  At constant pressure, dH corresponds to the amount of 

heat transferred between the crystal and the surroundings.  The temperature T and 

pressure p constitute natural variables in the expression for dG.  These natural variables 

are easier to control during experimental procedures and hence are very useful in 

thermodynamic analyses of the phase transformation.  Thermodynamic equilibrium is 

achieved when dG = 0 .  If the temperature T is altered at constant pressure, then a plot of 

the Gibbs free energy as a function of temperature T can be constructed and can be 

represented schematically, Fig. 2.13. 
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Fig. 2.13.  Evolution of free energies for the parent  

and the martensitic phases at constant stress. 
 

 

The slope of G T pP ( , )  represents the entropy of the parent phase and is a 

function of temperature.  For small intervals of the temperature T, G P can be considered 

to be a constant and the following relation between the enthalpy, temperature T, and 

entropy S can be written 

.P P PG H TS= −         (2.11) 

Similarly, an expression for the martensitic phase can also be written and is of the form: 

.M M MG H TS= −         (2.12) 

From Fig. 2.12 it can be noted that at a particular temperature T=To, phase transition from 

the parent phase to Martensite as well as the reverse transformation are possible without 

any hindrance.  Also, at T<To, Martensite is stable and at temperatures T>To Austenite is 

stable.  Hence To is also called as the transition temperature and can be determined from 

the Gibbs free energies of the two phases. The expression for the transition temperature 

can be written as 
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.
P M

o P M

H H HT
S S S

∆ −
= =

∆ −
       (2.13) 

In this particular analysis if the interaction between the two phases is to be taken into 

account, then an additional variable is to be considered.  This variable, f M , is the fraction 

of Martensite that has been transformed into Austenite.  The entropy, S , in such a 

situation is given by the expression (Trochu, 1996) 

(1 ) .P MS f S fS= − +        (2.14) 

On multiplying Eq. 2.14 by Eq. 2.13 and differentiating the result with respect to S, we 

obtain 

( ) ,M P
o oT dS T S S df dQ= − =       (2.15) 

where dQ  is the latent heat of the phase transformation and experimentally can be 

determined by the use of a DSC. 

 

 

2.8.2.  Stress induced phase transformation at constant temperature 

When a stress is applied to a single crystal of SMA in the parent phase, it gives 

rise to a response that can be written mathematically as follows: 

,o ij ijdW V dσ ε=         (2.16) 

where Vo is the volume of the SMA crystal, dW is the mechanical work done as a result 

of the applied stress σ ij , and ε ij is the incremental macroscopic strain.  The change in 

internal energy for such a system can be written as 
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,o ij ijdE TdS V dσ ε= +        (2.17) 

and also an expression for the change in enthalpy dH can be written as 

.o ij ijdH TdS V dσ ε= +        (2.18) 

Equations 2.17 and 2.18 can be simplified for the one-dimensional case and rewritten as 

,odE TdS V dσ ε= +         (2.19) 

,odH TdS V dσ ε= +         (2.20) 

respectively. 

The pressure p is atmospheric and hence a constant and also the volume change is 

negligible for the martensitic transformation.     

Similarly, an expression for dG can be written in the form 

.odG SdT V dσ ε= − +        (2.21) 

Deformation is more difficult to control than stress and, therefore, it is necessary to 

introduce a generalized form of the Gibbs free energy G* into Eq. 2.21, which becomes 

* .oG G V dσ ε= −         (2.22) 

Differentiating Eq. 2.22  with respect to G we obtain 

* .o odG dG V d V dσ ε σε= − −       (2.23) 

Substituting Eq. 2.21 into Eq. 2.23 and rearranging we get 

* .odG SdT V dε σ= − −        (2.24) 

At constant temperature T and stress σ , thermodynamic equilibrium is 

characterized by  
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dG* = 0.  For a single crystal SMA specimen subjected to a uniaxial stress, the 

expressions for the Gibbs free energy for the parent and the martensitic phases can be 

written as 

*( ) ,P P P P
oG H S T V ε σ= − −       (2.25) 

*( ) .M M M M
oG H S T V ε σ= − −       (2.26) 

The stress and temperature imposed on the SMA are assumed to be the same for 

both of the phases, with the thermodynamic potential being different as a result of the 

phase transformation.  An expression for a finite change in the Gibbs free energy can be 

then written as 

* * .oG H T S V σ ε∆ = ∆ − ∆ − ∆       (2.27) 

During phase transformation ∆G* = 0  is reached and the latent heat of phase 

transformation Q( )σ  can be defined as follows: 

( ) .oQ TdS H V dσ σ ε= = ∆ −       (2.28) 

Rearranging terms in Eq. 2.28 the classical relation between stress and temperature as a 

result of the phase transformation can be written as follows: 

.
o

d S
dT V
σ

ε
∆

=
∆

        (2.29) 

Equation 2.29 is also called as the Clausius-Clayperon equation and is of vital 

importance in thermomechanical analysis.  Equation 2.29 relates stress and temperature 

during a phase transformation.  In Eq. 2.29, ∆S  and ∆ε  are characteristic parameters for 

a given SMA.  The Clausius-Clayperon equation shows a linear dependence between 
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stress and temperature when ∆S  is independent of temperature.  Figure 2.14 indicates the 

step wise change of stress induced deformation at constant temperature.  When the stress 

reaches a critical value given by σ o T( ) , a volume change equal to V do ε  occurs.  

An interaction between the parent and the martensitic phases was not taken into 

account in the previous analysis.  That is, the parent and the martensitic phases are not 

independent.  The transformation is discontinuous, is produced in a step by step with each 

individual step taking less time than the total time for the transformation to occur.  

Let f M  be the molar fraction of Martensite crystal during transformation.  The variation 

of the internal energy of the transformed fraction increment df M can be written as 

.M M o MEdf T Sdf V d dfσ ε∆ = ∆ +       (2.30)  

 

σ ( )T

σ

 
Fig. 2.14.  Stepwise change of stress induced 

 crystal deformation at constant temperature. 

 

 

The crystal gains elastic energy and interfacial energy at the interface between the 

two phases during the parent to the MT.  These energies can be restored during the 
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reverse transformation.  The portion of heat loss due to the internal friction cannot be 

recovered and taking into considerations all these different energies, the change in 

internal energy can be written as follows: 

,i el odE TdS TdS dE V dσ ε= − − +       (2.31) 

where dEel is the reversible part of the interfacial and elastic deformation energies, 

TdSi is the irreversible heat loss, V doσ ε  is always positive as it represents dissipated 

energy, and 

* ,o el idG SdT V d dE TdSσ ε= − − − −      (2.32) 

* ,c R idG dG dG dW= + +        (2.33) 

where dGc  is the increment of absorbed or dissipated energy during the chemical 

reaction, dGR  is the reversible energy of non chemical nature associated with the 

transformation, and dWi  is the energy dissipated that represents irreversible energy loss. 

 

 

2.9.   Types of shape memory 

Shape memory effect is broadly categorized into one-way shape memory, 

superelasticity, and two-way effect.  In addition to the above there exists the R-phase 

transition.  All of the above are primarily due to the martensitic phase transformation. 

This section provides an introduction with emphasis on advantages and disadvantages of 

each of the categories of SME. 
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. 

2.9.1.  One-way effect 

In one-way shape memory effect, also known as Pseudoplasticity (PP), the 

material undergoes permanent deformation and then regains its undeformed shape when 

the SMA specimen is heated above the transition temperature (TT).  As explained earlier, 

the TT depends on the stress level of the martensitic phase and hence increases in almost 

all SMAs with corresponding increase in stress.  Typically plastic strains up to 8%, or 

even 11%, can be recovered in one-way SME.  There is however a critical stress, above 

which permanent damage is caused to the SME.  This critical stress (RPP) is lower than 

the true yield stress of the SMA and defines the upper limit to which the SMA can be 

safely loaded without causing damage to the SME (Hornbogen, 1995).  One-way SME is 

a one-time phenomenon and hence proper thermomechanical treatment is needed in order 

to obtain a complete cycle.  Care however has to be taken neither to overload nor 

overheat the SMA specimen, which will lead to degradation in the shape memory effect.    

 

 

2.9.2.   Two-way shape memory effect 

Two-way shape memory (TWSM) can be trained into a SMA by 

thermomechanical cycling.  The process of training will generally result in the alloy 

remembering its low and high temperature shapes.  TWSME depends solely on 

temperature, which means that change in temperature will cause changes in shape.  The 
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SMA will also remember its intermediate shapes in addition to the shapes it assumes at 

the high and low temperatures. 

In one-way shape memory effect after the completion of individual cycles of 

deformation and heating, the alloy must be re-deformed to repeat the SME.  In TWSM 

only temperature must be varied to affect the change in shape.  The amount of strain 

recovery is however lower in TWSM than in one-way SME.  SMAs that have been 

trained are also referred to in general literature as educated.  Thermomechanical fatigue is 

quite necessary for the completion of the education of the SMA.  It can, however, have 

undesirable effects like elevation of the transformation temperatures, widening of the 

hysteresis loop, and an increase in the levels of residual strains.   

Figure 2.14 shows a comparison between the one-way and two-way SME 

(Duerig, 1990).  As illustrated in Fig. 2.15, a collapsed SMA spring (contracted) is 

recovered following heating to above Af .  The contracted spring remains when the 

specimen is again cooled to below Mf.  This is the one-way shape memory behavior, 

which is a one time only deployment.  In contrast, the TWSM is depicted in the lower 

half of Fig. 2.15, in which case a contracted spring extends when heated to above Af , but 

now spontaneously contracts when cooled again below Mf and this can be repeated 

indefinitely. 

It is important to note that special thermomechanical treatment is required to train 

a SMA in TWSME mode.  The following TWSME training methods are most commonly 

used and are explained in Sections 2.9.2.1 through 2.9.2.5. 
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Fig. 2.15.  Three-dimensional stress-strain-temperature diagram showing the 

deformation and shape memory behavior of a Ni-Ti alloy. 
 

 

2.9.2.1.  TWSM training by overdeformation while in the martensitic condition 

The alloy is cooled below Mf and while in the martensitic state is severely bent 

(deformed), to well beyond the normal (usual) strain limit for completely recoverable 

shape memory.  When reheated to the parent phase (Austenite), the SMA will not 

completely recover its deformed shape due to the excessive deformation of the 

Martensite.  By exceeding the shape memory strain limit (SMSL), a partial loss of shape 

memory occurs.  If the SMA is cooled again to the martensitic state, the alloy will, in a 

spontaneous manner, revert back toward the overdeformed shape. 
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2.9.2.2.  Training by shape memory cycling 

This procedure consists of repeatedly carrying out shape memory cycles until the 

two-way behavior begins.  A typical first shape memory cycle consists of the component 

being cooled to below Mf , deformed to a level below the SMSL, and then heated to 

recover the original high temperature undeformed shape.  After a number of such cycles 

(10-15 in number) have been carried out, the component will begin to spontaneously 

change shape upon cooling, moving in the direction in which the component was 

consistently deformed during the training cycles.  The amount of spontaneous shape 

change during cooling will be significantly less than that which was being induced in the 

shape memory deformation.  The spontaneous shape change will usually be 1/ 5 to1/4  of 

the training strain.  For example, if the training strain was 6%, the spontaneous TWSM 

strain is likely to be no more than 1 or 2%. 

 

 

2.9.2.3.  Training by Pseudoelastic cycling 

This method consists of repeatedly stress-inducing Martensite by loading and 

unloading the parent phase (Austenite) above the Af  temperature, but below the Md where 

pseudoelastic (or superelastic) behavior is expected. 
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2.9.2.4.  TWSM training by combined SME/PE training 

The component is first deformed in the parent phase condition (Austenite) to 

stress induce a certain amount of stress biased Martensite, then cooled to below Mf  while 

holding the induced strain in the component, then heating up to recover the original 

undeformed shape.  When this routine is repeated a number of times, TWSM behavior 

will be obtained on subsequent heating and cooling.  This particular method for training a 

SMA to perform in the TWSM mode is more involved than the ones described in the 

preceding sections. 

 

  

2.9.2.5.  TWSM training by constrained temperature cycling of  
deformed Martensite 

 

This is probably the most commonly used training method at present.  In this 

method the sample is deformed below Mf , thus producing a stress-biased martensitic 

microstructure.  The sample is then constrained in the deformed condition and heated to 

above Af.  The sample is typically cycled from below Mf  to above Af a number of times, 

with the sample constrained in the original deformed shape, to complete the training 

routine.  This training method proves to be particularly effective and is relatively 

straightforward to carry out. 
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2.9.2.6.  Limitations on the use of two-way shape memory 

The four foremost limitations on the application of TWSME are: 

1.  The strain limit: There is a limit to the amount of reversible strain which can 

be recovered.  Typically this is in the neighborhood of 2%. 

2.  Hysteresis: The inherent temperature hysteresis between the heating and 

cooling transformations is present. 

3.  Low transformation forces on cooling: This means that one can push much 

better with the SMA on heating than on cooling. 

4.  Upper temperature limit: If too high a temperature is used during training 

then the memory may be most due to annealing. 

 

 

2.9.3.  All-Round Shape Memory Effect 

The all-round shape memory effect (ARSME) behavior was discovered and 

named by Honma et al. (1981) in Japan.  It is essentially TWSM with the high and low 

temperature shapes being exact inverses of each other.  Stated alternately, the SMA 

sample deflects one way when heated and the other way when cooled.  The metallurgical 

criteria driving ARSME are different than for TWSM and are presently under further 

research (Perkins, 1975).  Also the training method for ARSME is quite different than for 

TWSM and can be attained only in certain Ni-Ti alloy systems (those with greater than 

50.5 atomic % of Ni).  Aging of the alloy at 400°C for about 50 hours has to be 

conducted and during the aging process, a precipitation reaction occurs (Nishida and 
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Honma, 1984). The precipitation reaction results in particles that create a back stress and 

this stress causes a deflection away from the constrained shape when the applied stress is 

released and cooled.  Figure 2.16 shows a schematic representation of the all-round SME 

 
Fig. 2.16.  Schematic representation of all-round SME. 

 

 

2.9.4.  Rubber-like behavior (PseudoElasticity, PE) 

In conventional alloys elasticity is reversible and results from applied stress. 

Elastic strain may be either independent of, or dependent on, time and also may be linear 

or non-linear.  On removal of the stress, the atoms return to a position of minimum free 

energy.  Numerous elastic anomalies are known to exist.  In monophase alloys these 
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anomalies are related to the movement of zero to three-dimensional defects (Hornbogen, 

1995).  Diffusional hops of atoms into new positions under tension result in additional 

strains and are seen in interstitial alloys.  

 Shape memory alloys also show elastic anomalies caused by reversible stress-

induced phase transformations and have been described in iron, nickel, and copper based 

alloys.  Pseudoelasticity, also known as rubber-like behavior, is accompanied with large 

deformations with no considerable increase in stress.  It is, therefore, very non-linear in 

comparison with the one-way and TWSM effects.  Another distinguishing nature of PE is 

that it is entirely isothermal.  Stated alternately, any non-linearity occurring in the stress 

strain curve during unloading, can be termed pseudoelasticity.  

 

 

2.10.  Applications of shape memory alloys 

SMAs present unique properties in comparison with other structural materials that 

make them good candidates in various engineering and biomedical applications. 

Superelasticity, or SME, is usually utilized in the design of SMA components.  SMA 

components are capable of large deformation recovery up to 15%.  However, there is a 

critical strain level when a higher reliability is required and no residual strain is to be 

present.  The critical strain is a function of various processing parameters and also the 

service environment.  The critical strain depends on factors such as the geometric 

attributes of the component, nature of loading and the number of loading cycles (Gandhi 

and Thompson, 1995).  Determination of the critical strain is not straightforward and 
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recommended values for the most commonly used SMAs is 6% for NiTiNOL and 2% for 

CuZnAl.  

At present, ten basic SMA systems are in use for industrial and engineering 

applications.  With addition of alloying elements and by various permutations of the basic 

systems, the number of useable SMA systems can be increased drastically.  Reliability is 

an important issue in engineering design.  For components incorporating SMAs, that 

require great amount of reliability, NiTiNOL is usually used.  The other most commonly 

used SMA is CuZnAl, usually for less reliable component systems.  Typical applications 

of SMAs are diverse and encompass both engineering and biomedical systems.  Typical 

examples are electrical switches, actuators and sensors, safety devices, temperature 

switches, fire alarms, artificial limbs, catheters, and many others.  

 

 

2.10.1.  Continuum applications: structures and machine systems 
 

Shape memory alloy based smart structures are fabricated with reinforced 

composite materials, with SMA fibers being embedded either into the matrix material or 

as in a laminated fiber reinforced composite structure as shown in Fig. 2.17.  By changing 

the temperature beyond the point of phase transition, the shape and material 

characteristics of the SMA, and hence the shape and global mechanical characteristics of 

the smart structure are changed too. 
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Fig. 2.17.  Shape-memory-alloy based smart structure 

 

 

In a typical beam, shell and plate-like smart structures, the SMA fibers, or films, 

are embedded in symmetric pairs of neutral axis/surface in order to control the geometry 

of the structure.  Prior to the fabrication of the smart structure, the SMA fibers are 

plastically deformed and are constrained in a configuration that is different than their 

memory configuration at the end of the curing cycle.  The fibers are electrically heated 

and once the phase transition temperature is reached, the SMA fibers tend to regain their 

memory configuration.  This process results in a shear force along the length of the 

fibers. 

Steady-state vibration control can also be accomplished with SMA reinforced 

composites by employing active modal modification.  The modal response of a structure 

can be tuned by heating the SMA fibers to change the stiffness of all, or portions, of the 

structure.  The SMA fibers are placed in, or on, the structure in such a way that that when 

activated, there will be no resulting deflections, but instead the structure will be placed in 
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a state of residual state of strain.  The resulting stored strain energy changes the energy 

balance of the structure and modifies the elastodynamic response.  This is referred to as  

‘Active Strain Energy Tuning’. 

 

 

2.10.2.  Discrete applications 

SMA devices have applications discrete in nature with typical applications in 

switching and actuation.  A typical application of this kind involving a temperature fuse 

is shown in Fig. 2.18.  Shape memory actuators can be moved or rotated either by heating 

or through other means of control.  Electrical energy is typically used for heating 

purposes.  SMA actuators are not affected by enviornmental factors like humidity and 

therefore have a distinct advantage over other traditional actuators and/or switches.  SMA 

actuators can therefore be employed as positioning devices for scanning electron 

microscopes, in reaction vessels, nuclear reactors, and in chemical plants. 

 

 
Fig. 2.18.  Temperature fuse employing a SMA. 
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SMA actuators for robots have been developed,  and based on operating 

principles, they are called biased or differential.  Biasing uses a coil spring to generate the 

bias force that opposes the unidirectional force of the SMA.  In a differential type, the 

spring is replaced with another SMA and the opposing forces control the actuation.  The 

assembly of a micro-robot actuated by SMAs is schematically shown in Fig. 2.19 

(Gandhi and Thompson, 1995).  This micro-robot features five degrees of freedom 

corresponding to the capabilities of the human fingers, wrist, elbow, and shoulder.  The 

robotic maneuvers and operations are coordinated by activating the SMA (NiTiNOL) 

wires in the wrist and shoulders.   

NiTiNOL sheets and rods twisted into cones and volute springs have been 

investigated for use in satellite antenna applications.  Once the satellite is launched and a 

stable orbit is reached, the antenna can be deployed from the coiled up state by 

employing electrical heating or alternatively using diffuse sunlight to provide the 

required thermal energy. 

Several applications of SMAs have been explored in the field of medicine.  In 

medical applications, in addition to mechanical characteristics, highly reliable biological 

and chemical characteristics are also important.  Furthermore, the material must be 

biocompatible and not result in cytotoxicities, such as abnormalities, for example. 

NiTiNOL materials, therefore, are the only SMAs suitable for medical applications. 

NiTiNOL SMAs have been employed in the development of artificial joints including 

femoral heads and sockets.  A typical application of SMAs in prototype filters for 
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trapping blood clots from moving through the vena cava is shown in Fig. 2.20 (Gandhi 

and Thompson, 1995). 

 
Fig. 2.19.  Micro-robot actuated by SMAs. 

 

 

The SMA wire is inserted into the vena cava through a catheter.  Once inside the 

vena cava, the NiTiNOL wire is heated to the temperature of the blood in the biological 
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tubular vessel.  The change in temperature triggers the reversion of the wire to a 

complicated memorized shape for a blood filter. 

In addition, NiTiNOL SMAs have also been employed for bone plates, and 

marrow pins for healing fractures in the femur, tibia, and superelastic NiTiNOL wires 

have been used for connecting broken bones.  It is therefore evident that SMAs have 

potential applications in various fields and it is important that SME be better understood 

and modeled for maximum usage of this unique phenomenon in engineering and other 

applications.  

 

 
Fig. 2.20. Shape-memory-alloy blood clot filter. 
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3.  NiTi BASED SHAPE MEMORY ALLOYS 

Shape memory alloys based on Nickel and Titanium have to date provided the 

best combination of material properties for most commercial applications.  Rapid growth 

for shape memory alloys was initiated with the discovery of shape memory properties in 

NiTi system in the 1960’s (Duerig, 1990).  The discovery took place at NOL, the Naval 

Ordinance Laboratory and hence the acronym NiTi-NOL. 

 

 

3.1. Metallurgy of Ni-Ti alloys 

NiTi SMAs are ordered intermetallic compounds based on the equiatomic 

composition.  Based on the phase diagram for Ni-Ti (Wasilewski et al., 1974) this 

compound exists as the stable phase down to room temperature.  In contrast to copper 

based alloys, there is no necessity for betatising and quenching to prevent the 

decomposition of NiTi into other phases at intermediate temperatures.  At low 

temperatures the stoichiometric range of NiTi is very narrow and therefore the alloys 

often contain precipitates of a second intermetallic phase.  The microstructure is thus 

primarily single phase, with small amounts of other phases mixed in the matrix.  In the 

molten state, Titanium is very reactive and this results in some oxygen being present in 

the matrix.  This fact is often overlooked.  From the Ni-Ti-O phase diagram 

(Chattopadhyay et al., 1983), oxygen decreases the stoichiometric range of the NiTi 

compound and can unexpectedly result in compositions within a three phase field.  This 

Ni3Ti can be present for example in a Titanium rich alloy.  Furthermore, the oxide 
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Ti4Ni2O is isostructural with the intermetallic Ti2Ni, which can make unique phase 

identification difficult.  If the composition of the alloy deviates from stoichiometry, then 

larger precipitates are present, as seen for Ti-rich alloy.  These larger second phase 

particles can have a marked effect on the hot workability of NiTi, particularly on the 

Titanium rich side where they are brittle and often result in cracking. 

 

 

3.2. Mechanical properties 

Like most SMAs, NiTi alloys show marked differences in mechanical behavior 

depending upon whether they are tested in the martensitic or austenitic state.  The 

martensitic stress-strain curve can be divided into three well defined regions, Fig. 3.1.  

An initial low plateau results from the stress induced growth of one martensitic 

orientation at the expense of the adjacent.  At higher stresses there is a second region that 

is linear, although not purely elastic.  The deformation mechanism in this state is a 

mixture of elastic deformation on the detwinned Martensite, together with the formation 

of new orientations of Martensite, which intersect those already present and which 

provide additional heat recoverable strain. 

The transition to the third region is a result of the onset of irreversible plastic 

deformation, as in the case of yielding of all conventional metals.  Therefore the 

maximum amount of heat recoverable, or memory strain, is obtained by initially 

deforming the sample to the end of the second stage.  If larger deformation strains are 
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used, then the reversible martensitic deformation processes and the dislocations resulting 

from plastic flow interact and the memory strain will decrease. 

 
Fig. 3.1.  Stress-strain curve for a Ni-Ti-10% Cu alloy 

in the austenitic and martensitic conditions. 
 

 

The length of the martensitic plateau in the stress-strain curve extends typically to 

around 5%-6%.  However, depending on the details of the alloy and its prior 

thermomechanical history, the plateau can vary from a continuous curve with an 

inflection point to a clear horizontal plateau with a sharp yield point (Wayman and 

Duerig, 1990). 

 

 

3.3. Effects of thermomechanical processing 

In 1965, four years after the memory effect in NiTi was discovered, a process 

claiming cold working in the Martensite as a way of increasing the yield strength of the 
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alloy was formulated (Duerig, 1990).  Since that time, the combination of cold working 

in the Martensite followed by a subsequent anneal has been extensively explored as a 

way of improving the SMA characteristics (Duerig, 1990).  Cold working alone without 

the annealing step, destroys the martensitic plateau on the stress-strain curve.  Thus a 

material cold worked 20% in the Martensite has a very high yield strength, but poor 

shape memory properties.  Annealing will restore the memory effect, but decrease the 

yield strength.   

 
The choice of amount of cold work and the annealing temperature dictate the 

trade off in these two properties.  Cold work introduces a high density of random 

dislocations that impede the mobility of the twin boundaries.  Annealing rearranges these 

dislocations into cells of relatively dislocation free areas within which the Martensite 

twins can be mobile.  Figure 3.2 indicates the affect of cold working followed by 

annealing on the austenitic yield strength of a 50.6at.%Ni. 

 

 

3.4.  Corrosion behavior of NiTi 

In the galvanic series of metals, NiTi based alloys as a family are slightly nobler 

than stainless steel, and therefore show comparable corrosion behavior.  This better 

resistance is provided by a naturally formed thin oxide coating known as a passive film.  

The film is very stable and therefore the NiTi alloys are resistant to many forms of 

corrosive attacks.  However in some aggressive conditions, such as highly acidified 

chloride solutions, breakdown of this passive film can occur.  Such corrosive 
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environments are very severe for most engineering materials; nevertheless if NiTi is to be 

used in these conditions, some form of protective coating is advisable. 

 

 

 
Fig. 3.2.  Austenitic yield strength of a 50.6at.%Ni  
alloy cold worked followed for 30 minutes of annealing. 
 
 
 
 

Electrochemical measurements show that NiTi based alloys have a good 

resistance to pitting in a chloride environment (Vicentini et al., 1986; Rondelli et al., 

1988).  However data obtained from a scratch test indicated that the healing of the 

passive film may be a difficult and relatively slow process (Schwenk and Huber, 1974; 

Eckelmeyer, 1976).  Comparing with other commercially available SMAs, NiTi is by far 

the most corrosion resistant.  For applications such as actuators, electrical connectors and 
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fasteners, NiTi has a superior corrosion behavior than the other components of the 

assembly, and therefore is a better candidate in such applications.  In the case of coupling 

applications, corrosion resistance is more than adequate except in very severe operating 

conditions, where protection is advisable.  As a general rule, if no corrosion protection is 

deemed necessary for the pipes and tubes, then none is required for the NiTi used to join 

them. 

 

 

3.4. Effect of alloying elements 

The addition of a third or fourth element to NiTi can be a powerful tool for 

controlling its properties, and can be used to: 

1)  control transformation temperatures, 

2)  increase the stability of Ms with respect to thermal history, 

3)  control the hysteresis width, 

4)  increase austenitic strength, 

5)  reduce or increase the martensitic strength, 

6)  improve corrosion resistance, 

7)  suppress the R-phase. 

Some of the additions giving particularly useful combinations of properties are copper, 

niobium, and precious metals. 
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4.  METHODOLOGY 
 

4.1.  ACES methodology 
 

Methodology that is used relates to the engineering tools that are employed in an 

investigation and has a direct impact on the end results.  The ACES methodology 

(Pryputniewicz, 1997), an acronym for Analytical Computational and Experimental 

Solutions, is used in this Dissertation.  Using this methodology a hybrid optimal solution 

is sought that may not be possible using other methodologies.  Also later in this chapter 

uncertanity analysis are discussed as pertaining to critical variables affecting SME for 

NiTiNOL (Pryputniewicz, 1993; Mizar, 1999). This analysis is very useful in setting 

tolerances for design parameters.  As such, it facilitates proper operation and may prevent 

premature failure. 

In this Dissertation an approach, based on the ACES methodology is used to 

arrive at an optimal solution.  The NiTi sample after appropriate heat treatment at 400°C 

for two hours (recommended by the manufacturer), are subjected to experimentation and 

the modulus of elasticity as a function of temperature is determined from measured 

resonant frequencies of the specific samples.  

Figure 4.1 indicates a typical flow chart for the ACES methodology as used in 

engineering practice (Pryputniewicz, 1997).  Design of very complex engineering 

systems is very difficult to arrive at through a trial and error based approach (Macek and 

Pitarresi, 1993; Pryputniewicz, 1994b).  Complexity in design can arise as a result of an 

increased number of design variables, and also restrictions on geometry of the 

components.  In the analysis of such complex components, both experimental and 
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theoretical models are of equal importance, and equally indispensable for the design of a 

viable, reliable, and low cost products (Suhir, 1989).  Each of these methodologies can 

complement each other thus minimizing the effects of errors in design. 

 

ANALYTICAL COMPUTATIONAL EXPERIMENTAL
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Results

Finite element
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Results
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Fig. 4.1.  A flow-chart representation of ACES methodology. 
 

 

 

4.1.1.  Analytical modeling 

Analytical solutions pertain to the use of equations from mechanics to investigate 

the problem at hand in order to obtain some preliminary results.  This analytical 

investigation provides information that can be utilized to design experimental or 

computational procedures for that particular problem.  The equations that are used in 

ANALYTICAL COMPUTATIONAL EXPERIMENTAL 
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modeling a system do not sometimes model the actual component, but rather approximate 

it.  An analytical approach provides information on any computational and experimental 

works that have to be conducted (Pryputniewicz, 1997). 

Analytical modeling can predict experimental results in less time, providing 

proper analytical models are being used.  Also, initial analytical modeling can ensure 

proper experimental planning and may help in devising proper computational models.  

Analytical modeling is indeed a very valuable tool for preliminary investigation of a 

problem.  Analytical modeling for non-linear models can be approached from a practical 

approach that is by the use of linear theory.  Any uncertainties will be evident in 

computation and experimentation.  Therefore analytical modeling of complex systems is 

not always sufficient and, therefore, computational and experimental methodologies 

should be used in conjunction with analytical modeling. 

 

 
4.1.1.1.  Uncertainty analysis 

Experimental data may have inherent errors.  Specific analysis must be, therefore, 

performed on the data to take into account the errors in measurements. 

In general, experimental results are validated through analysis of data to 

determine errors and precision.  In this Dissertation a method of estimating the effect of 

errors and tolerances (uncertainty) in interpretation of results, originally proposed by 

Kline and McClintock (Mizar, 1999), is used.  This method is based on specifications of 

the uncertainties in the variables (Pryputniewicz, 1993).  The uncertainty of the 

calculated result is determined based on the uncertainties in the measurements.  Suppose 
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the result R is a known function of the independent variables x x x xn1 2 3, , .  

Mathematically a fundamental equation representing this can be written as 

R R x x x xn= ( , , , , )1 2 3   .       (4.1) 

Let δ R be the uncertainty in the result and δ δ δ δ1 2 3, , , , n  be the uncertainties 

in the independent variables.  Provided the uncertainties in all of the independent 

variables are predetermined and, therefore, known, the uncertainty in the result, that is, 

δ R , can be determined by the following equation (Pryputniewicz, 1993): 
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where ∂
∂

R
b g represents partial derivatives of R with respect to the independent variables, 

one at a time. 

It is important to take into account the fact that the uncertainty propagation in the 

result δ R  based on Eq. 4.2 depends on the square of the sum of the squares of the  

products of the partial derivatives of R with respect to the independent variables with the 

corresponding uncertainties in these variables.  As such, the uncertainty represented by 

Eq. 4.2 is also known as root-sum-square-uncertainty (or RSS-uncertainty) 

(Pryputniewicz, 1993).  So if the uncertainty of one variable is significantly greater than 

the other variables it is the larger uncertainty that predominates and the others have a less 

significant contribution. 

In this Dissertation, the modulus of elasticity was determined from the resonant 

frequency.  The modulus of elasticity for NiTi is non-linear with temperature as a result 
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of the phase transformation from Martensite to Austenite.  This thermomechanical 

dependence makes it essential for determination of tolerances for values for the modului 

of elasticity for Martensite and Austenite.  Based on analytical considerations, the 

modulus of elasticity can be expressed as  

( , , , ) ,R effE E f h L ρ=        (4.3) 

where E is  the modulus of elasticity, f R is the resonance frequency, h is the thickness of 

the SMA (NiTi) ribbon, Leff is the effective length of the SMA (NiTi) ribbon when 

mounted as a cantilever beam, and ρ  is the density of the SMA (NiTi) ribbon.  

It is important to note that if non-linear theory is used, then the modulus of 

elasticity would be a function of temperature in addition to the above mentioned 

variables.  The uncertainties in the independent variables namely, , , , andR efff h L ρ are 

predetermined and, therefore, the uncertainty in the modulus of elasticity can be written 

in the following form: 

1
22 222

.R eff
R eff

E E E EE f h L
f h L

δ δ δ δ δρ
ρ

     ∂ ∂ ∂ ∂  = + + +       ∂ ∂ ∂ ∂        
 (4.4) 

Based on the uncertainty in the modulus of elasticity determined from Eq. 4.4, the 

tolerance levels for the modulus of elasticity can be written as 

.actE E Eδ= ±         (4.5) 

Equation 4.5 gives the range over which the modulus of elasticity can vary as a 

result of uncertainties in its independent variables.  The uncertainty in the modulus of 
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elasticity can be controlled (reduced or increased) by controlling the uncertainties of the 

independent variables.  Manufacturing limitations are one classical factor that is utilized 

in controlling the variables relating to the dimensions of the NiTi samples.  

 Similarly, a dynamic response of composite materials that incorporated NiTi 

fibers was also investigated in this Dissertation.  Stiffness of a composite that includes 

NiTi as reinforcements, based on analytical considerations, is

 11 11( , , , ) ,L T LTD D E E h µ=         (4.6) 

where D11 is the dynamic stiffness, EL is the modulus of elasticity in the longitudinal 

direction of the composite, ET is the modulus of elasticity in the transverse direction of 

the composite, h is the thickness, and LTµ  is the Poisson’s ratio for the composite. 

Therefore, based on Eq. 4.6 the RSS-uncertainty in the stiffness can be written as 

 

1
2 2 22 2

11 11 11 11
11 .L T LT

L T LT

D D D DD E E h
E E h

δ δ δ δ δµ
µ

      ∂ ∂ ∂ ∂  = + + +      ∂ ∂ ∂ ∂        
  (4.7) 

The tolerance in the stiffness based on the uncertainty given by Eq. 4.6 can be written as 

 11 11 11 .
act

D D Dδ= +          (4.8) 

 

 

4.1.2.  Computational modeling 

Computational modeling has become popular in solving problems in conjunction 

with analytical and experimental methodologies.  With proper understanding of material 

properties, computational modeling can be used to predict material behaviors under 
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simple as well as complex loading situations and display results in a timely manner. 

Various computational techniques have been developed, with the most popular being the 

Finite Difference Method (FDM), the Finite Element Method (FEM) and the Boundary 

Element Method (BEM). 

FEM is mostly used in the regimes of engineering design and analysis.  As with 

any computational technique, FEM provides accurate results when utilized appropriately, 

and can predict responses very accurately.  Common difficulties in computational 

techniques are, but are not limited to, geometry definition, application of boundary 

conditions, and sufficient knowledge of material properties. 

 

 

4.1.3.  Experimental modeling 

Barishpolsky (1980) has stated that experimentation relies on the perfection of 

measurement methods and increasing the accuracy of these measurements. 

Experimentation is carried out on a point by point basis on a component and 

results are obtained.  Values at points other than those measured can be determined 

through interpolation from known values.  The results from experimental investigations 

usually indicate combined effects of various factors affecting the component.  Therefore 

in design optimization, the affect of various factors must be taken into consideration. 

Testing often shows the “negative bad” points and not the “negative good” points.  

By this we mean that testing can show us an insufficient/weak joint or other parameter, 

“negative bad”.  On the other hand testing does not indicate areas of "over design" in the 
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form of excessive volumes or elevated safety margins (Suhir, 1989).  Over designing a 

component adds additional costs and increases production times.  It is therefore essential 

to optimize designs so that production and costs are minimal. 

It is therefore necessary for analytical, computational, and experimental 

methodologies to be used in unison to arrive at an optimal solution of a component, that 

will keep production costs down and also satisfactorily perform its intended function.  

The values obtained from the three methodologies have to be compared and 

corrected if necessary, so that results converge to an optimal solution for the NiTiNOL 

sample being investigated.  Detailed analytical, computational, and experimental 

considerations are discussed in Chapters 5, 6, and 7, respectively. 
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5.  ANALYTICAL INVESTIGATIONS 

 
This chapter addresses analytical solutions used in the Dissertation.   

Microstructural changes as a result of the phase transformation are neglected in the 

determination of material properties.  Also the SMA is characterized by itself and the 

approach is extended to composite structures that incorporate the SMAs.  Beam theory 

and energy methods are used to formulate dynamic behavior of the SMA and SMA based 

composites.  Section 5.1 discusses mechanics of vibration of anisotropic plates, and 

Section 5.2 discusses mechanics of vibration of cantilever beams.  

 

 

5.1.  Free vibration of rectangular anisotropic plates 

The Ritz method provides a convenient method for obtaining approximate 

solutions to boundary value problems (Whitney and Ashton, 1987).  This approach is 

equally applicable to bending, buckling, and free vibration problems.  Each of these 

problems is governed by an energy condition and can be written in the following form: 

( ) ,valuestationary,, 00 =Π wvu       (5.1) 

where  

 U WΠ = +  (transverse bending) ,     (5.2) 

 U W TΠ = + +  (buckling) ,     (5.3) 

 U W V TΠ = + + −  (free vibration)     .     (5.4) 
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where Π  represents the energy condition of an elastic body, U is the strain energy, W is 

the potential energy of external loads, V is the potential energy due to inplane loads, and 

T is the kinetic energy. 

For a free vibration time can be removed from Eq. 5.4 by considering 

displacement fields of the form 

 ( )0 0 i tt e ,u u ω=         (5.5) 

 ( )0 0 i tt e ,v v ω=         (5.6) 

 ( ) i tt e ,w w ω=         (5.7) 

where u, v, and w are displacement fields of a plate, ω is the angular frequency of 

vibration, and t represents time. 

Under the assumed displacements given by Eqs 5.5 to 5.7, the potential energy T 

can be written as 

 ( ) , 00
2
1 2

22
2∫ ∫ 








+





+





= dydxwvuT ρω     (5.8) 

where ρ represents the density of the plate.  Equation 5.8 allows the free vibration 

problem to be solved as a static problem by considering the kinetic energy to be simply 

additional energy. 

In Ritz method a solution is sought of the form 
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where  , , and mn mn mnA B C  are undetermined coefficients.  The functions mnU , mnV , and 

mnW  are known and usually chosen in the variables separate form ( )mX x  and ( )nY y .  

The geometric boundary conditions must be satisfied by these conditions.  In addition 

they should be continuous through at least the same order derivative as required in the 

corresponding differential equations.  Substitution of Eqs 5.9 into the energy condition 

given by Eq. 5.1 leads to a minimization problem relative to the undetermined 

coefficients.  In particular, Π  is a function of , , and mn mn mnA B C only and the conditions 

given by Eq. 5.1 reduce to the equations 
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      (5.10) 

For the formulation presented by Eq. 5.10, Π is always in the undetermined 

coefficients.  Thus, the conditions given by Eq. 5.10 lead to a ∑ =
×

3

1i ii NM set of linear 

simultaneous equations.  For buckling and free vibration problems, Eq. 5.10 leads to a 

classic eigenvalue problem, that is, buckling loads and free vibration frequencies are 

chosen such that the determinant of the coefficients of , , and mn mn mnA B C vanish. 

 Strain energy of an elastic body in terms of x, y, and z coordinate system is given 

by the relationship (Whitney and Ashton, 1987). 

 ( )∫ ∫ ∫ +++++= ,
2
1 dzdydxU xyxyyzyzxzxzzzyyxx εσεσεσεσεσεσ  (5.11) 
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where the triple integration is performed over the volume of the body.  Taking into 

account the basic assumptions of laminated plate theory, i.e., ,0=== yzxzz εεε  along 

with the stress-strain relations, we can rewrite Eq. 5.11 as 

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2
11 12 16 26 22 66

1 2 2 2 .
2

k k k k k k
x x y x xy y xy y xyU Q Q Q Q Q Q dx dy dzε ε ε ε ε ε ε ε ε= + + + + +∫ ∫ ∫  

(5.12) 

Equation 5.12 can be expressed in terms of the laminate displacements by 

substituting the strain-displacement relations given by 
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      (5.13) 

On substituting Eq. 5.13 into Eq. 5.12 and integrating with respect to z, the following is 

obtained: 
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where ijDijBijA  and,, are defined as 
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and 
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c c
Q c

c
= −         (5.16) 

where the coefficient ijc represents the general plate stiffness based on the Hooke’s law.  

The strain energy expression, given by Eq. 5.14, contains coupling between the inplane 

displacements 00 , vu and the transverse displacement w , due to the presence of products 

of these terms.  The bending-stretching coupling is because of the Bij stiffness terms.  For 
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symmetric laminates the ijB terms are identically zero, and Eq. 5.14 uncouples and 

reduces to the following: 
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In Eq. 5.17 the first term on the right hand side contains only the inplane 

displacements 00 and vu , while the second term contains only the transverse 

displacement w.  Thus, for pure bending problems the first expression can be considered 

an arbitrary constant and the strain energy for transverse bending of a laminated plate can 

be written as 
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∫ ∫  (5.18) 
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where C is an arbitrary constant.  Equation 5.18 is identical to the expression found for 

the bending strain energy of a homogeneous anisotropic plate (Whitney and Ashton, 

1987). 

The kinetic energy T of an elastic body in terms of x, y, and z coordinate system 

can be written in the form 
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1 222
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where 0ρ is the density of the material and the triple integration is performed over the 

volume of the body.  The displacement fields can be written as 
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where w is independent of z.  Substituting Eq. 5.20 in Eq. 5.19 the kinetic energy of the 

laminated plate becomes 
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∫ ∫ ∫  (5.21) 

where ( )k
0ρ denotes the density of the kth layer.  Integrating Eq. 5.21 with respect to z and 

neglecting time derivatives of plate slopes we have 
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∫ ∫     (5.22) 

where ρ is the integral of the density through the thickness of the plate. 
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Also, it is important to consider the potential energy due to transverse loads and 

inplane loads.  For transverse bending, loads generated by applying normal tractions to 

the top and bottom surfaces of the plate lead to the potential energy equation given by 

.
2 2z z
h hW w dx dyσ σ    = − − −        

∫ ∫      (5.23) 

Equation 5.23 can be rewritten as 

 .W qw dx dy= −∫ ∫        (5.24) 

The potential energy V of inplane loads due to deflection w is  

 ( )' ' ' ,i i i
x x y y xy xyV N N N dx dyε ε ε= + +∫ ∫      (5.25) 

where i
xN , i

yN , i
xyN are initial inplane force resultants applied to the plate in a pre-

buckled state and '
xε , '

yε , '
xyε are the midplane strains due to the deflection w.  These 

strains are usually associated with the large deflection analysis.  In the context of linear 

elasticity theory these strains are applied for the purpose of determining critical buckling 

loads.  These strains are of the following form: 
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respectively. 

Equation 2.25 therefore takes the form 
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The dynamic analysis was conducted based on the assumption that the composite 

was a symmetric orthotropic plate.  The equation of motion (EOM) for such a plate can 

be written in the form (Rogers, 1988) 
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where Dij is a function of the effective moduli in the transverse and longitudinal 

directions of the composite.  The frequency of vibration of the plate, based on Eq. 5.28 

was solved by Mizar and Pryputniewicz (2004). 

In the case where one edge is clamped and the other free (cantilever 

configuration) it is possible to express the deflection by the beam function given by Eqs 

5.29 and 5.30. 

For the edge x=0 clamped and the edge x=a free 
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For the edge y=0 clamped and the edge y=b free 
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where nmnm γγλλ and,,, have nontrivial solutions given by 

 cos cosh 1 .i iλ λ = −         (5.31) 
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It is important to note that if the beam functions defined by Eqs 5.28 through 5.31 

satisfy the boundary conditions exactly at the free ends of a beam then they satisfy the 

boundary conditions only approximately in the case of a plate (Whitney and Ashton, 

1987).  The frequency of resonance using the Ritz’s method as discussed earlier in this 

Section can be approximated to be equal to (Whitney and Ashton, 1987) 
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      (5.33) 

where h is the thickness of the composite, the subscripts L and T represent the 

longitudinal and transverse directions, respectively, while 

  ( ) ,1 fmffLT VV −−−= µµµ       (5.34) 

where V represents the volume, and the subscripts f and m represent the fiber and matrix, 

respectively, LTµ  represents the Poisson’s ratio for the NiTiNOL based composite as 

defined.  The values of Ki equal 5.429 for the first mode, and 15.108 for the second mode 

(Mizar and Pryputniewicz, 2004).  The modulus of elasticity for the polycarbonate matrix 

material was determined based on the resonant frequencies of a cantilever configuration 

of the material of the matrix. 
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5.2.  Free lateral vibration of a prismatic cantilever beam 

 Consider a prismatic beam undergoing free lateral vibrations.  The vibration 

occurs in one of the principle planes of flexure; the cross-sectional dimensions are small 

in comparison to the effective length of the beam.  The term effective length refers to the 

active length of the beam undergoing free vibrations.  The forces included are the 

external loading, the internal bending moment, which is the resultant moment of the 

normal stress distribution, and the internal shear force, which is the resultant of the shear 

stress distribution.  From beam theory, the differential equation for the deflection can be 

written as 

YI d u
d y

M
2

2 = −  ,        (5.35) 

where YI  represents the flexural rigidity of the prismatic beam, I is the area moment of 

inertia, u is the displacement in the x -direction, and M is the moment. 

The normal modes of vibrations are of primary interest and for a prismatic beam 

the deflection at any location can be represented by the following harmonic equation 

(Mizar, 1999): 

y X A pt B pt= +[ cos( ) sin( )]  ,      (5.36) 

where X = X(y) determines the shape of the normal mode of vibration under 

consideration and is called a normal function.  Substituting Eq. 5.36 in Eq. 5.35 the 

partial differential equation can be rewritten as the following ODE: 

4 2

4 2 ,d Y p X
dy a

=         (5.37) 
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where  

2 2
4

2 ,p p A k
a YIg

ρ
= =         (5.38) 

and sin( )ky , cos( )ky , sinh( )ky and cosh( )ky represent particular solutions to Eq. 5.35 

such that the general solution can be written as (Mizar, 1999) 

1 2 3 4sin( ) cos( ) sinh( ) cosh( ) .X C ky C ky C ky C ky= + + +    (5.39) 

In Eq. 5.39, the constants 1 2 3 4, , ,C C C C can be determined based on the conditions at the 

ends of the prismatic beam.  Superimposing all possible normal modes, the general 

expression for the free lateral vibration can be written as (Mizar, 1999) 

1
[ cos( ) sin( )] .

i

i i i i i
i

y X A p t B p t
=∞

=

= +∑       (5.40) 

Applying appropriate boundary conditions for a cantilever beam, the non-trivial solution 

for Eq. 5.40 can be shown to be (Mizar et al., 1999) 

 cos( ) cosh( )k L k Li i = −1    for  1, 2, .i = ∞    (5.41) 

The first four roots of Eq. 5.41, listed in Table 5.1, represent the first four bending modes 

of a prismatic beam, even though the number of roots to Eq. 5.41 are not limited to four 

(Mizar, 1999). 

Table 5.1. Roots of the equation 
for the resonance frequencies. 

i k Li i= β  

1

2

3

4

1875.

4 694.

7 855.

10 996.
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The frequencies of vibration of the modes of equation k Li i= β  are given by  

(Mizar, 1999) 

2
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and  
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= =         (5.43) 

The period of vibration is given by 

           1 .i
if

τ =         (5.44) 

Combining Equations 5.42 and 5.43 the resonant frequency for the first bending 

mode can be written as 
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hf =         (5.45) 

where f is the resonant frequency of the NiTiNOL sample, h is the thickness, L is the 

active length, E is the modulus of elasticity, and ρ is the density.  From Eq. 5.45 it is 

possible to obtain the modulus of elasticity, based on measured values of resonance 

frequency, as  

.
35

132
2

422

h
LfE ρπ

=         (5.46) 

A similar approach can be applied to a NiTiNOL based composite, in which 

NiTiNOL is used as the reinforcement in a metal or polymer matrix.  However the 

mechanics is quite different and different analysis procedure has to be used. 



 106

SMA based composites refer to composites in which NiTiNOL fibers are 

embedded in a matrix material.  The NiTiNOL fibers are placed in such a fashion that the 

stiffness of the composite material can be altered by addition of heat.  One of the possible 

combinations is when the NiTiNOL fibers are placed on either side of the neutral axis of 

the matrix material.  If the active strain energy tuning method (ASETM) is used to 

modify the dynamic characteristics of the structure, then the NiTiNOL fibers must be 

plastically elongated and placed in such a manner that they will be constrained from 

regaining their unstretched position upon application of heat.  The fibers are heated by 

passing a current through them; as the fibers try to contract to their “normal” length, a 

uniformly distributed shear force is generated along the length of the fibers.  This shear 

load affects bending of the composite structure in a predetermined fashion.  However for 

the active modal modification technique (AMMT), the NiTiNOL need not be 

prestretched as a change in temperature will result in a change in stiffness of the 

composite.  Transient and steady-state vibration control as well as active-buckling control 

are some of the many applications for SMA based composite materials.  In this study, the 

NiTiNOL based composite manufactured at WPI, Fig. 5.1, was investigated for changes 

in its dynamic properties due to SME resulting from thermal activation of the NiTiNOL 

composite (Mizar and Pryputniewicz, 2003; 2004). 
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Fig. 5.1.  Cross section of the NiTiNOL composite. 

 

 

As shown in Fig. 5.1, NiTiNOL ribbons were embedded in a polymer matrix.  To 

make this composite, slots were machined in the matrix material and the NiTiNOL 

ribbons with cross sectional dimensions of 0.84 mm by 0.17 mm were placed into them.  

The composite was clamped with boundary conditions of a cantilever plate.  Using state-

of-the-art OEH method, resonant frequency of the composite structure was determined.  

Using the analytical model temperature dependence of modulus of elasticity was 

determined in the tangential and longitudinal directions of the composite.  The modulus 

of elasticity for the matrix material was also determined using the OEH method.  The 

experimental measurements were used to monitor how the resonant frequency of the 

composite material changed as the NiTiNOL ribbons underwent phase transformation as 

the temperature increased.  Analytical modeling focused on prediction of temperature 

dependence of the modulus of elasticity of the composite. 
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6.  COMPUTATIONAL INVESTIGATIONS 

6.1.  Finite element method  
 

The finite element method (FEM) is a computational method to solve engineering 

problems of various levels of complexity and diversity.  In the FEM the volume of the 

component to be analyzed is discritized into a finite number of elements.  The elements 

provide an approximation to the actual geometry of the component.  The FEM constitutes 

standard steps for any engineering problem that can be listed as follows (Mizar, 1999): 

1)  finite element discretization: the domain (geometry) is represented as a 

collection of a finite number of subdomains, namely elements.  The collection 

of these finite elements is called the finite element mesh.  The connectivity of 

the elements is achieved through nodes.  When all the elements are of equal 

size, the mesh is of uniform size, otherwise the mesh is called a non-uniform 

mesh.  

2)  element equations: a typical element is isolated and its required (essential) 

properties are computed by some suitable predetermined means.  Over each 

finite element, the physical process is approximated by functions of desired 

type, and algebraic equations relating physical quantities at specific nodes of 

the element are developed. 

3)  assembly of element equations and solution: assembly of element equations in 

an appropriate manner results in an accurate determination of the approximate 

solution sought.  The degree of accuracy depends on the type of element(s) 
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used, the mesh density, and also on accurate input of essential properties of 

the elements constituting the mesh. 

4)  convergence and error estimate: an error associated with approximation of the 

domain is estimated by proving that the FEM solution converges to the actual 

solution (if known) in the limit n → ∞ , where n are the number of elements 

used in the finite element (FE) mesh.  As the number of elements is increased, 

the approximation improves, i.e., the error in the approximation decreases.  

Increasing the number of elements results in an increase of the computational 

time and is very critical in solving complex, in particular non-linear 

engineering problems.  

 

 

6.2.  Finite element modeling of NiTi for modal analysis 

The NiTiNOL ribbon investigated in this Dissertation has a rectangular cross 

section.  Modeling for dynamic modal analysis consists of the following steps: 

1)  defining geometry of the specimen, 

2)  defining element groups, material properties, and boundary conditions, 

3)  meshing of the geometry of the specimen, 

4)  performing a check to determine any errors in input, before modal analysis, 

5)  modal analysis, 

6) interpretation of results of the analysis. 
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Computational time for different mesh densities was determined to obtain optimal 

mesh density.  Material properties determined from OEH were used as input, in 

particular, the modulus of elasticity.  A 3D quadratic Langrange element was used for 

meshing the NiTiNOL specimen.  This particular element was chosen based on 

convergence criteria.  Modeling was conducted using FEMLAB® 3.2. (FEMLAB®, 2005)   

A mesh size of 360 elements was found appropriate by the convergence analysis, Fig. 

6.1.  The FEMLAB® code, developed in this Dissertation is listed in Appendix A.  

Resonance frequencies generated from the FEM analysis were compared to those from 

the OEH.  The FEM analysis was conducted for three different lengths of the NiTi 

samples, and also at different temperatures ranging from -20ºC to 200ºC.  Agreement 

between the FEM determined frequencies and those measured using OEH is good with 

differences well within the uncertainty limits.  Figure 6.2 shows the meshed NiTiNOL 

sample of effective length of 29 mm for Eigenfrequency analysis in FEMLAB® 3.2. 

 

 

6.3.  Convergence of the FEM results 

FEM is a computational technique and accuracy of the results obtained depends 

primarily on the input variables (geometry, material constants, type of mesh used, etc.).  

It is always possible to discretize a component by using more elements than needed.  The 

results obtained in such a case will indeed be accurate, but will involve considerable 

computational times.  It is, therefore, necessary for a convergence test to be performed to 

obtain the optimal mesh size for discretization of the component.  In this Dissertation two 
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types of elements were used to test for convergence.  Thin 4-noded shell elements and 8-

20 noded, 3-dimensional solid elements.  Results are presented for both types of elements 

for the first to fourth bending modes as a function of the number of elements used.  

Figure 6.1 gives the convergence plot using the 4-noded thin shell element for the first 

bending mode.  A modulus of elasticity of 46.4 GPa and an effective length of 28.85 mm 

were used in the computational analysis.  Results from all the four bending modes as a 

function of number of elements for shell and solid elements are summarized in Tables 6.1 

and 6.2, respectively. 

Similarly, FEM modeling was conducted for the NiTiNOL sample with an 

effective length of 28.82 mm and for a modulus of elasticity of 46.4 GPa using a solid 

element.  The results obtained are indicated in Fig. 6.1. 

From the convergence considerations, a mesh size of 360 elements was chosen for 

the computational analysis.  As the sample was of uniform thickness, the mesh was 

constructed using thin shell 4-noded elements.  Figure 6.2 shows the meshed object with 

appropriate boundary conditions, with the mesh comprising of 360 elements. 

 

Table. 6.1.  Summary of convergence test results for NiTiNOL  
using 4-noded shell elements. 

ELEMENTS 10 40 90 160 250 360 490 640 810 1000
B1 (FEM) 290.8 291.3 291.3 291.2 291.2 291.2 291.2 291.2 291.2 291.2
B2 (FEM) 1818.9 1821.2 1821.2 1821 1821 1821 1820.5 1820.4 1820.3 1820.3
B3 (FEM) 5127.2 5094.7 5088.2 5085.2 5083.5 5082.5 5082 5081.3 5081 5081
B4 (FEM) 10220.1 9984.2 9946.6 9931.8 9924.5 9920.2 9917.4 9915.6 9914.2 9913.3  
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Table.  6.2.  Summary of convergence test results for NiTiNOL  
using 8-noded solid elements. 

ELEMENTS 10 40 90 160 250 360 490 640 810 1000
B1 (FEM) 290.8 291.3 291.3 291.2 291.2 291.2 291.2 291.2 291.2 291.2
B2 (FEM) 1818.9 1821.2 1821.2 1821 1821 1821 1820.5 1820.4 1820.3 1820.3
B3 (FEM) 5127.2 5094.7 5088.2 5085.2 5083.5 5082.5 5082 5081.3 5081 5081
B4 (FEM) 10220.1 9984.2 9946.6 9931.8 9924.5 9920.2 9917.4 9915.6 9914.2 9913.3  
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Fig. 6.1. Convergence test for NiTiNOL for the first bending 

using shell and solid elements. 
 

 
Fig. 6.2.  Meshed NiTiNOL component with mesh size of 360 solid elements.  
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7.  EXPERIMENTAL INVESTIGATIONS 

 
7.1.  Experimental considerations 

 
 The goal of this Dissertation was to experimentally detect phase transformation in 

the NiTiNOL sample by monitoring resonance frequency as a function of temperature for 

the first four bending modes.  The NiTiNOL samples were heat treated to the temperature 

of 400°C for two hours (per recommendation by the manufacturer) in order to remove 

stresses, which were produced as a result of cold working of the material.  Dynamic 

experiments were then conducted on the heat treated samples to obtain variation of the 

resonance frequencies of the first four bending modes as a function of temperature.  The 

modulus of elasticity was determined from the measured frequencies. 

 

 

7.2.  Annealing techniques for NiTiNOL 

 A series of experiments were conducted to anneal the NiTiNOL samples at 

around 400ºC in steps of 3ºC to 4ºC.  The purpose of the experiments was to determine 

the annealing temperature at which the NiTiNOL SMA was able to undergo the 

maximum SME and also to ensure that the TT was around 60ºC. 

 The apparatus for these measurements consisted of NiTiNOL samples in the form 

of strips 2.25 mm wide, 0.5 mm thick, and 25.4 mm long, a thermometer capable of 

accurately measuring temperatures above 150ºC, furnace to heat the NiTiNOL samples 

from 300ºC to 500ºC, a stainless steel slab with a groove to hold the deformed NiTiNOL 

samples while in the furnace, digital voltmeter, and a J type thermocouple to monitor 
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temperature. 

 The alloy was placed into a groove in the stainless steel slab.  The sample as 

obtained from the manufacturer assumed a straight shape upon heating.  The furnace 

temperature was set at 400ºC.  The reading of the furnace was calibrated using a J type 

thermocouple.  Then, the stainless steel slab was inserted into the furnace and was 

annealed for about 25 minutes.  This time was necessary for steady-state conditions to be 

reached in the furnace.  The NiTiNOL alloy would glow a dull red color once steady-

state conditions have been reached within the furnace.  The furnace was turned off after 

25 minutes and allowed to cool with the door open.  Also, the stainless steel slab was 

allowed to cool, and this process of cooling took about 2.5 hours.   

 After the NiTiNOL sample was cooled enough it was removed from the groove in 

the stainless steel slab.  Pressure was put on the tip of the sample using pliers in order to 

bend it into the shape of an arc.  Next, the NiTiNOL sample was heated using a heat gun 

to approximately 60ºC to make sure that the SMA had come back to its undeformed 

(straight) shape.  In this particular case, the sample recovered only about 80% of the 

deformation imposed. 

 

 

7.3.  Measurement system 

7.3.1.  Fundamentals of holography 
 

 Holography is a technique which allows recording of the entire wavefront on a 

suitable recording medium.  Recording the amplitude of the waves poses no problem 
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because the photosensitive media record amplitude by converting it to the corresponding 

variations in opacity of the 'sensing films'.  The phase information is recorded by using 

the principle of interferometry (Vest, 1979; Pryputniewicz, 1996). 

 

 

7.3.2.  Techniques of hologram interferometry 

 Interferometry is a process in which two waves emitted from the same source, at 

the same time, interact with each other because of differences in their path lengths.  As a 

result of this interaction, a pattern of alternating bright and dark fringes (bands) can be 

observed.  These fringes relate directly to changes in the optical path lengths of either, or 

both, of the beams.  Unfortunately, the coherence and monochromaticity of the light 

sources used in standard interferometers, prior to 1960, were poor.  As a result of this, 

classical interferometry was limited to measurements of small path length differences of 

optically polished and specularly reflecting flat surfaces. 

 In the early 1960's, with the advent of a laser, holography has permitted to 

circumvent this shortcoming, in a very elegant manner, without any alterations, of course, 

of the fundamental principles.  The method, based on the ability of a hologram to record 

the phase and amplitude of any wave at different states and to produce, during 

reconstruction, interference fringes relating to changes in these states, is known as 

hologram interferometry (Pryputniewicz, 1996).  Hologram interferometry has allowed 

the extension of (classical) interferometry to three-dimensional diffusely reflecting 

objects with nonplaner surfaces.   
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 There are three basic variations of hologram interferometry, each possessing 

certain advantages over the others in particular test situations: 

  1)  double-exposure hologram interferometry, 

  2)  real-time hologram interferometry, and 

  3)  time-average hologram interferometry. 

The time-average method can be further subdivided into 

  1)  stroboscopic time-average hologram interferometry, and 

  2)  continuous time-average hologram interferometry. 

 In double-exposure technique, two exposures of the object are made with the state 

of the object's stress changed between the two exposures.  As a result of this, the object is 

slightly different during the second exposure when compared with its configuration 

during the first exposure.  During reconstruction of the double-exposure hologram, the 

two object beams are faithfully reconstructed in phase and amplitude.  Therefore, two 

three-dimensional images of the object are formed, corresponding to its initial and final 

positions, respectively. 

 Since both of these images are reconstructed in coherent light they are capable of 

interference with each other.  Thus, in any region of space where the two reconstructed 

beams overlap, an image of the object is seen covered by a set of alternating bright and 

dark interference fringes - these are "frozen" fringes in that the fringe pattern is fixed and 

cannot be altered once it has been recorded.  These fringes are called cosinusoidal 

because their brightness varies cosinusoidally across the image.  The fringes seen during 

reconstruction of a hologram are a direct measure of the changes in the object's position 
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and/or shape, which has occurred between the two exposures.  Obviously, a unique 

deformation of the object, for a given illumination and observation, does produce a 

unique three-dimensional interferogram within the hologram reconstruction. The only 

problem that now remains is to "decode" the information contained in the fringe pattern.  

 The real-time method consists of taking a single-exposure of an object in an 

unstressed state, processing the medium in place using the so-called liquid gate plate 

holder (or a photothermoplastic camera), and reconstructing a hologram using the 

identical coherent reference beam to the one used in the construction process.  The 

reconstructed image is now superimposed onto the original object, which is also 

illuminated with the same light as when the hologram was recorded.  Interference fringes 

can now be seen if the object is even slightly displaced.  The interferometric comparison 

between the original state of the object, i.e., holographically reconstructed image, and the 

new state of the object is made at the instant it occurs.  This comparison is manifested by 

a fringe pattern which is "live" in that it changes as the object's state of stress is changed.  

The particular advantage of the real-time method is that different types of motions, static 

as well as dynamic, can be studied with a single holographic exposure rather than having 

to make a hologram for each new position of the object. 

 The stroboscopic time-average method is really an extension of the double-

exposure method, where the continuous wave (CW) laser beam is "chopped" into short 

pulses synchronized with the object vibration frequency.  To effectively use this method, 

object vibration must be monitored continuously to assure proper characteristics of the 

illumination beam.  This synchronization must be maintained over many vibration cycles, 
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to provide for sufficient exposure of the medium.  Although interference fringes 

produced during reconstruction of stroboscopic holograms are cosinusoidal and are 

straightforward to analyze, the electronic apparatus, needed to produce good quality 

images may be complex and expensive, depending on the specific application. 

 In the continuous time-average method a single holographic recording of an 

object undergoing a cyclic vibration is made.  With the (continuous) exposure time long 

in comparison to one period of the vibration cycle the hologram effectively records an 

ensemble of images corresponding to the time-average of all positions of the object 

during its vibration.  While reconstructing such a hologram, the interference occurring 

between the entire ensemble of images, with the images recorded near zero velocity (i.e., 

maximum displacement) contributing most strongly to the reconstruction process, 

produces an interference pattern corresponding to the vibratory motion of the object.  

This fringe pattern is characterized by fringes of unequal brightness.  In fact, they vary 

according to the square of the zero order Bessel function of the first kind (Pryputniewicz, 

1987a).  Therefore, fringes observed during reconstruction of the continuous time-

average holograms are known as Bessel fringes. 

 

 

7.3.3.  Opto-electronic Holography (OEH) 

Recent advances in the phase step hologram interferometry, speckle metrology, 

and computer technology allowed development of a system for direct electronic 

recording of holograms and transmission of holographic interferograms by television 
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systems for real-time display of interference fringes (Pryputniewicz, 1986, 1992).  This 

opto-electronic holography (OEH) system, in addition to other electronic and optical 

components, consists of a modified speckle interferometer, which produces speckles 

large enough to be resolved by a TV camera.  The output of the TV camera is fed to a 

system that computes and stores the magnitude and phase, relative to the reference beam, 

of each picture element in the image of the illuminated object (Pryputniewicz, 1990). 

Any of the usual phenomena that generate characteristic fringes in hologram 

interferometry will do so in this process also, and the characteristic fringe functions will 

be impressed on the magnitudes of the values stored. 

 

 

7.3.4.  Fundamentals of OEH 

Measurements of displacements of objects undergoing static and dynamic loads 

have been solved in a number of ways (Pryputniewicz, 1980, 1996).  Recently, this 

problem has been addressed using advances in phase step hologram interferometry, 

speckle metrology, and computer technology.  One of these ways is based on the method 

of OEH (Pryputniewicz, 1991). 

Today, the displacement/deformation analysis of objects undergoing their static or 

dynamic loads are, to a great extent, satisfied by application of the finite element method 

(FEM) (Pryputniewicz, 1985).  In these applications, the FEM is used to solve problems 

for which exact solutions do not exist, or are very difficult to obtain.  Also, the FEM 

provides the only means to analyze complex three-dimensional structures, for which 
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response to the applied loads cannot be predicted by any other computational method.  

However, results obtained by the FEM depend on boundary conditions, rely greatly on 

accurate knowledge of material properties, depend on accurate representation of the 

structure’s geometry, and are sensitive to the shape and the size of elements employed in 

modeling of the structure.  All of the information necessary to run the finite element 

models can be obtained, directly or indirectly, from experimental studies (Kardestuncer 

and Pryputniewicz, 1987).  

Currently, there are a number of experimental methods used to study 

displacement/deformation of objects.  These methods are primarily based on the use of 

mechanical probes, strain gauges, and accelerometers and, in general, are invasive 

because they may affect the object’s response to the load.  In 1965, however, the method 

of hologram interferometry was invented (Powell and Stetson, 1965) and provided means 

by which holograms of objects could be readily recorded.  However, quantitative 

interpretation of interference fringes has traditionally been tedious and prone to 

considerable inaccuracy.  This has led to the use of heterodyne and phase step methods to 

read out the interferometric fringes produced during reconstruction of holograms of 

vibrating objects. Although these methods (Ineichen and Mastner, 1980; Stetson, 1970, 

1982; Hariharan and Oreb, 1986; Pryputniewicz, 1988) allowed high accuracy, 1/1000 to 

1/100 of one fringe, in measurements of local phase differences, they still required 

physical recording of a permanent hologram in some type of a photosensitive medium, 

which required lengthy processing.  Therefore, these methods, which require lengthy 

processing, do not qualify for fully automated hologram analysis (Pryputniewicz, 1987b).  
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Recently, an automated method for processing of vibration fringes has been developed 

(Stetson and Brohinsky, 1988).  In this method, measurements of irradiances produced by 

mutual interference of the object and reference fields are made electronically by a 

detector array.  Processing of this interferometric information and display of the 

computational results are carried out concomitantly with measurements of irradiation. 

Because this method does not depend on recording of holograms in a conventional media, 

but rather relies on electronic acquisition, processing and display of optical interference 

information, it is called OEH, also referred to as electronic holography, or TV holography  

(Pryputniewicz, 1990).  In the following sections, application of OEH to dynamic 

measurements is described. 

The OEH method allows automated processing of fringes of statically and 

dynamically loaded objects (Stetson and Brohinsky,1987; Pryputniewicz and Stetson, 

1989; Pryputniewicz, 1991).  In this method, measurements of irradiances produced by 

mutual interference of the object and the reference fields are made electronically by a 

CCD camera, Fig. 7.1.  Processing of this interferometric information and display of the 

computational results are carried out concomitantly with measurements of irradiation.  

The OEH method does not depend on recording of holograms in conventional media, but 

rather relies on electronic acquisition, processing, and display of optical interference 

information.  
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Fig. 7.1.  The OEH system:  BS is the beamsplitter, M1 and M2 are the mirrors, PS1 and 
PS2 are the phase steppers, SE1 and SE2 are the spatial filter beam expander assemblies 

BR is the object beam rotator, SI is the speckle interferometer, and K1 and K2 are the 
directions of illumination and observation vectors, respectively. 

 
 
 
 

7.3.5.  Electronic processing of holograms 

The OEH system is capable of performing either static or dynamic measurements 

(Pryputniewicz, 1991, 1996). In the discussion that follows, static measurements are 

implemented using the double-exposure interferometry method, while dynamic 

measurements are implemented by the time-average method (Pryputniewicz, 1992, 

1994b, 1996). 

 

 

7.3.5.1.  Static measurements 

Static measurements are characterized by recording “single-exposure” holograms 

of an object at different states of stress.  As a result of interference between a set of two 
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“single-exposure ” holograms, fringes form, if there are any optical path differences 

between the corresponding points on the object as recorded in the two holograms. 

In OEH, this process is carried out by recording sequential frames of images of 

the object corresponding to the two states of stress.  Typically, four sequential frames are 

recorded, with a finite phase step-imposed on the reference beam - between each frame, 

for every single-exposure image of the object.  In the following discussion, in order to 

simplify derivation of equations describing the OEH process for static measurements, the 

object will be initially unstressed; results would be the same if the object was stressed 

initially, but mathematics would be much more complicated (Pryputniewicz, 1994b). 

The image of an unstressed (i.e., unloaded) object can be described by the 

irradiance distribution for the n-th sequential frame, I x yn ( , ) , at the detector array of a 

CCD camera in the OEH system setup, as 

[ ]( , ) ( , ) ( , ) 2 ( , ) ( , ) cos ( , ) ,n o r o r nI x y I x y I x y A x y A x y x yφ θ= + + ∆ + ∆  (7.1) 

while the corresponding image of the stressed (i.e., loaded) object can be described by the 

irradiance distribution, I x yn ( , ) , as 

I x y I x y I x yn o r
' ' '( , ) ( , ) ( , )= + +        

  ' '2 ( , ) ( , ) cos[ ( , ) ( , ) ] .o r nA x y A x y x y x yφ θ+ ∆ + Ω + ∆    (7.2) 

In Eqs 7.1 and 7.2, x and y identify coordinates of the detectors in the array, 

Io and Ir  are the object and reference illumination fields, respectively, ∆θ n is the finite 

phase step imposed on the reference beam between the sequential frames recording 
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individual images, and Ω is the fringe-locus function, constant values of which define 

fringe loci on the surface of the object. 

Since I and I ' are measured at known coordinates x and y, Eqs 7.1 and 7.2 

contain four unknowns, that is, irradiances (which are squares of the amplitudes) of the 

two fields, the phase difference between these fields, and the fringe-locus function.  The 

goal of the analysis is to determine Ω  because it is related directly to displacements and 

deformations of the object. 

In OEH, ∆φ is eliminated by recording sequentially four TV frames with an 

introduction of a 900  phase step between each frame.  That is, ∆θ n  appearing in Eqs 7.1 

and 7.2 takes on the values of 0 0 00 , 90 ,180 , and 2700 .  This process can be represented 

by two sets of four simultaneous equations corresponding to Eqs 7.1 and 7.2, 

respectively, that is, 

0
1 2 cos( 0 ) ,o r o rI I I A A φ= + + ∆ +       (7.3) 

0
2 2 cos( 90 ) ,o r o rI I I A A φ= + + ∆ +       (7.4) 

0
3 2 cos( 180 ) ,o r o rI I I A A φ= + + ∆ +      (7.5) 

0
4 2 cos( 270 ) ,o r o rI I I A A φ= + + ∆ +      (7.6) 

and 

' ' ' 0
1 2 cos( 0 ) ,o r o rI I I A A φ= + + ∆ + Ω +      (7.7)  

' ' ' 0
2 2 cos( 90 ) ,o r o rI I I A A φ= + + ∆ + Ω +      (7.8) 

' ' ' 0
3 2 cos( 180 ) ,o r o rI I I A A φ= + + ∆ + Ω +      (7.9) 
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' ' ' 0
4 2 cos( 270 ) ,o r o rI I I A A φ= + + ∆ + Ω +      (7.10) 

where the arguments ( , )x y were omitted for simplification.  Evaluation of Eqs 7.3 to 7.10 

yields 

1 2 cos ,o r o rI I I A A φ= + + ∆        (7.11) 

2 2 sin ,o r o rI I I A A φ= + + ∆        (7.12) 

3 2 cos ,o r o rI I I A A φ= + − ∆        (7.13) 

4 2 sin ,o r o rI I I A A φ= + − ∆        (7.14) 

and 

' ' '
1 2 cos( ) ,o r o rI I I A A φ= + + ∆ + Ω       (7.15) 

' ' '
2 2 sin( ) ,o r o rI I I A A φ= + + ∆ + Ω       (7.16) 

' ' '
3 2 cos( ) ,o r o rI I I A A φ= + − ∆ + Ω       (7.17) 

' ' '
4 2 sin( ) .o r o rI I I A A φ= + − ∆ + Ω       (7.18) 

It should be noted that systems of equations similar to Eqs 7.11 to 7.14 and Eqs 

7.15 to 7.18 could be obtained using any value of the phase step, however, use of 

the 900 phase step results in the simplest computations. 

Subtracting Eqs 7.11 and 7.13 as well as Eqs 7.12 and 7.14 we obtain, for the 

unstressed object, the following set of two equations: 

( )1 3 4 cos ,o rI I A A φ− = ∆        (7.19) 

and 

( )2 4 4 sin .o rI I A A φ− = ∆        (7.20) 
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Following the above procedure and subtracting Eqs 7.15 and 7.17 and Eqs 7.16 

and 7.18, a set of two equations is obtained for the stressed object, that is, 

( )' ' '
1 3 4 cos( ) ,o rI I A A φ− = ∆ + Ω       (7.21) 

and 

( )' ' '
2 4 4 sin( ) .o rI I A A φ− = ∆ + Ω       (7.22) 

Addition of Eqs 7.19 and 7.21 yields 

( ) ( )' ' '
1 3 1 3 4 cos 4 cos( ) .o r o rI I I I A A A Aφ φ− + − = ∆ + ∆ + Ω    (7.23) 

Because object displacements and deformations are small, it can be assumed that 

' .o oA A≈  Therefore, Eq. 7.23 becomes 

( ) ( ) [ ]' '
1 3 1 3 4 cos cos( ) .o rI I I I A A φ φ− + − = ∆ + ∆ + Ω    (7.24) 

Recognizing that cos( ) cos cos sin sin∆ Ω ∆ Ω ∆ Ωφ φ φ+ = − , Eq. 7.24 can be 

written as  

( ) ( )' '
1 1 3 1 3D I I I I= − + − =        (7.25) 

                 ( )4 1 cos cos sin sin .o rA A φ φ = + Ω ∆ − ∆ Ω        

In a similar way, addition of Eqs 7.20 and 7.22 simplifies to 

( ) ( )' '
2 2 4 2 4D I I I I= − + − =  

      ( )4 1 cos sin cos sin .o rA A φ φ = + Ω ∆ + ∆ Ω      (7.26) 

Finally, addition of the squares of Eqs 7.25 and 7.26 yields 

( ){ }22 2
1 2 4 1 cos cos sin sino rD D A A φ φ φ + = + Ω ∆ − ∆ ∆ +   
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   ( ){ }2
4 1 cos sin cos sin ,o rA A φ φ + + Ω ∆ + ∆ Ω     (7.27) 

which reduces to  

( )22 2 2 2 2
1 2 16 1 cos sin .o rD D A A  + = + Ω + Ω       (7.28) 

From Eq. 7.28 we obtain 

( )2 2 2 2
1 2 32 1 cos .o rD D A A+ = + Ω       (7.29) 

Furthermore, recognizing that ( ) 21 cos 2cos ,
2
Ω + Ω =  

 
 Eq. 7.29 can be reduced to  

( )2 2
1 2 8 cos ,

2o rD D A A Ω + =  
 

      (7.30) 

which represents the static viewing image displayed by the OEH.  In Eq. 7.30, Ω  is the 

fringe-locus function corresponding to the static displacements and/or deformations of 

the object.  The fringe-locus function can be determined by processing the sequential 

OEH images as described below. 

 In order to obtain data from the OEH images, we will again employ Eqs 7.19 to 

7.22 and follow the procedure used to derive Eq. 7.29.  The result of this procedure is 

( ) ( )' '
3 1 3 1 3D I I I I= − − − =  

      ( )4 1 cos cos sin sin ,o rA A φ φ = − Ω ∆ + ∆ Ω      (7.31) 

( ) ( )' '
4 2 4 2 4D I I I I= − − − =  

      ( )4 1 cos sin cos sin ,o rA A φ φ = − Ω ∆ − ∆ Ω      (7.32) 

and 
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( )2 2 2 2
3 4 32 1 cos .o rD D A A+ = − Ω       (7.33) 

Subtracting Eq. 7.33 from Eq. 7.29 we obtain 

( ) ( )2 2 2 2
1 2 3 4D D D D D= + − + =    

                ( ) ( )2 2 2 232 1 cos 32 1 cos .o r o rA A A A= + Ω − − Ω     (7.34) 

or 

2 264 cos .o rD A A= Ω         (7.35)  

Starting with Eqs 7.19 to 7.22, we can also determine  

( ) ( )' '
1 1 3 2 4N I I I I= − + − =          

      ( )4 1 sin cos sin cos ,o rA A φ φ = + Ω ∆ + ∆ Ω      (7.36) 

( ) ( )' '
2 2 4 1 3N I I I I= − + − =  

       ( )4 1 sin sin cos cos ,o rA A φ φ = + Ω ∆ − ∆ Ω      (7.37) 

( ) ( )' '
3 1 3 2 4N I I I I= − + − =  

                 ( )4 1 sin cos sin cos ,o rA A φ φ = − Ω ∆ − ∆ Ω      (7.38) 

( ) ( )' '
4 2 4 1 3 ,N I I I I= − + −  

     ( )4 1 sin sin cos cos ,o rA A φ φ = − Ω ∆ + ∆ Ω      (7.39) 

( )2 2 2 2
1 2 32 1 sin ,o rN N A A+ = + Ω       (7.40) 

( )2 2 2 2
3 4 32 1 sin ,o rN N A A+ = − Ω       (7.41) 

and 
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( ) ( )2 2 2 2 2 2
1 2 3 4 64 sin .o rN N N N N A A= + − + = Ω     (7.42) 

Finally, dividing Eq. 7.42 by Eq. 7.35, we obtain 

2 2

2 2

64 sin
64 cos

o r

o r

A AN
D A A

Ω
=

Ω
        (7.43) 

from which it follows that 

1tan .N
D

−  Ω =  
 

        (7.44) 

It should be noted that Ω , computed from Eq. 7.44, is a spatial function that 

depends on coordinates x and y.  Therefore, its values are determined for every coordinate 

pair (x,y) in the object space.  Once the values of Ω are determined, they can be used to 

compute object displacements (Pryputniewicz, 1994b). 

 

 

7.3.5.2.  Dynamic measurements 

In this section, application of OEH to dynamic measurements is made based on 

time-average hologram interferometry.  To facilitate this presentation, time-average 

recording of a sinusoidally vibrating object will be considered (Pryputniewicz and 

Stetson, 1989).  For this case, the irradiance distribution for the n-th sequential frame, Itn , 

can be represented by a relationship similar to those shown in Eqs 7.1 and 7.2 

(Pryputniewicz, 1996), that is, 

( ) ( )2 cos .
n o ot t r t r t n tI I I A A Mφ θ= + + ∆ + ∆ Ω     (7.45) 



 130

In Eq. 7.45, the arguments (x,y) were omitted for simplification, subscript t indicates time 

varying parameters, M is the characteristic function that modulates the interference of the 

two fields due to the motion of the object, Ωt is the fringe-locus function defining fringe 

loci on the surface of a vibrating object, and other parameters are as defined for Eqs 7.1 

and 7.2. 

Equation 7.45, like Eqs 7.1 and 7.2, has four unknowns: Ito
and Ir , which are 

squares of Ato
and Ar, respectively, ∆φ t , and Ωt .  The goal of the analysis is to determine 

Ωt  because it relates directly to the displacements of the vibrating object (Pryputniewicz, 

1994b). 

In order to determine Ωt  from the electronic holograms of a vibrating object, four 

sequential frames are recorded with the phase steps equal to multiples of 900 imposed on 

the reference beam between each frame.  This process can be represented by the 

following set of four simultaneous equations: 

( ) ( )
1

02 cos 0 ,
o ot t r t r tI I I A A Mφ= + + ∆ + Ω      (7.46) 

( ) ( )
2

02 cos 90 ,
o ot t r t r tI I I A A Mφ= + + ∆ + Ω     (7.47) 

( ) ( )
3

02 cos 180 ,
o ot t r t r tI I I A A Mφ= + + ∆ + Ω     (7.48) 

( ) ( )
4

02 cos 270 .
o ot t r t r tI I I A A Mφ= + + ∆ + Ω     (7.49) 

Following the procedure used to derive Eqs 7.19 and 7.20 and operating on Eqs 7.46 to 

7.49, we obtain 

( ) ( )
1

2 cos ,
o ot t r t r t tI I I A A Mφ= + + ∆ Ω      (7.50) 
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( ) ( )
2

2 sin ,
o ot t r t r t tI I I A A Mφ= + + ∆ Ω      (7.51) 

( ) ( )
3

2 cos ,
o ot t r t r t tI I I A A Mφ= + − ∆ Ω      (7.52) 

( ) ( )
4

2 sin .
o ot t r t r t tI I I A A Mφ= + − ∆ Ω      (7.53)  

Then, from Eqs 7.50 to 7.53, it follows that 

( ) ( )
1 3

4 cos ,
ot t t r t tI I A A Mφ− = ∆ Ω       (7.54) 

and 

( ) ( )
2 4

4 sin .
ot t t r t tI I A A Mφ− = ∆ Ω       (7.55) 

If the viewing mode is selected, then, based on the input described by Eqs 7.54 

and 7.55, the OEH system produces an image that can be represented by 

( ) ( ) ( )
1 3 2 4

2 2
4 .t t t t o r tI I I I A A M− + − = Ω      (7.56) 

The image represented by Eq. 7.56 is displayed live on a TV monitor and can be stored in 

the processor memory (Pryputniewicz, 1994b). 

This storage can be of two types.  If the image is to be recalled in the future for 

visual observation, then an 8-bit image is stored and occupies approximately one-quarter 

megabyte of memory - this is the image storage.  If the image is to be processed 

quantitatively, then the lookup table for the data mode is loaded into the operating system 

and produces a data image which can be represented by 

( ) ( ) ( )
1 3 2 4

2 2 216 .t t t t o r tI I I I I I M− + − = Ω      (7.57) 
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The result shown in Eq. 7.57 is stored as a 16-bit data image and occupies one-

half megabyte of memory – this is the data storage.  Either type of image may then be 

downloaded to the host computer’s memory for further processing. 

Equations 7.56 and 7.57 indicate that the viewing and the data images are 

proportional to the characteristic function and to the square of the characteristic function, 

respectively.  The characteristic function is determined by the temporal motion of the 

object, and for sinusoidal vibrations, assuming that the vibration period is much shorter 

than the TV framing time, 

( ) ( ), , ,t o tM x y J x y  Ω = Ω          (7.58) 

where Jo is the zero-order Bessel function of the first kind.  Therefore, Eqs 7.56 and 7.57 

become 

( ) ( ) ( )
1 3 2 4

2 2
4 , ,t t t t o r o tI I I I A A J x y − + − = Ω      (7.59) 

and 

( ) ( ) ( )
1 3 2 4

2 2 216 , ,t t t t o r o tI I I I A A J x y − + − = Ω      (7.60) 

respectively.  Equation 7.59 results in a viewed image that is modulated by a system of 

fringes described by the zero-order Bessel function of the first kind, while Eq. 7.60 shows 

that the data image is modulated by the square of this function (Pryputniewicz, 1994b).  

Thus, centers of the dark fringes are located at those points on the surface of the object 

where Jo tΩ equals zero, as shown in Fig. 7.2.  This figure indicates that the zero-order 

fringe is much brighter than the other Jo fringes.  Since the zero-order fringes represent 
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the stationary points on the vibrating object they allow easy identification of nodes 

(Pryputniewicz, 1987a).  The brightness of other fringes decreases with increasing fringe 

orders and can be directly related to the mode shapes (Pryputniewicz, 1996).  It should be 

noted that higher order zeros are nearly equally spaced giving the Jo function an almost 

periodic nature that is utilized in quantitative interpretation of images recorded by the 

OEH system. 
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Fig. 7.2. The zero order Bessel function and its square, defining locations of centers of 
dark fringes seen during reconstruction of the time-average holograms of vibrating 

objects. 

 

 

In the OEH system, the data provided by the CCD camera are processed to 

produce results represented by Eq. 7.59, for every pixel in the image frame, at the rate of 

30 frames per second (fps).  Each frame contains 512*480 8-bit numbers so that each 
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image consists of 245,760 points.  For visual examination of the vibration modes, time-

average hologram images corresponding to Eq. 7.59 are displayed on a TV monitor.  

These images are generated concomitantly by the pipeline processor of the OEH system.  

To produce data suitable for quantitative analysis of time-average holograms, 16-bit 

images represented by Eq. 7.60 are stored.  These data are stored in two 8-bit bytes per 

pixel and produce a frozen image that can be displayed on the TV monitor one byte at a 

time, that is, either as a high-byte image or a low-byte image. 

 

 

7.3.5.3.  Determination of the fringe-locus function for a vibrating object 

To interpret electronically recorded time-average holograms quantitatively, the 

argument of the Jo
2  function, appearing in Eqs 7.59 and 7.60, must be determined.  One 

method to determine this argument, suitable for the time-average holograms recorded by 

OEH, was developed by Stetson and Brohinsky (1988).  This method uses the fact that it 

is possible to shift Jo fringes in a manner similar to that in which phase modulation shifts 

cosinusoidal fringes in conventional double-exposure hologram interferometry.  In time-

average holography, this is done by modulating the phase of either the object or the 

reference beams sinusoidally at the same frequency and phase as the object vibration.  

Such a process is represented mathematically by addition of a phasor bias B, to the 

argument of the Bessel function, resulting in the characteristic function 

( ) ( ), , , .t o tM x y B J x y B  Ω = Ω −         (7.61) 
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For purposes of analysis, the object must be made to vibrate in only one vibration 

mode at a time so that the motions of its various parts are either in or out of phase with 

one another.  If the phase of the sinusoidal beam modulation is adjusted to coincide with 

that of the object vibration, the phasor bias becomes a simple additive term within the 

argument of the Bessel function, that is, 

( ) ( ), , , .t o tM x y B J x y B  Ω = Ω −         (7.62) 

Therefore, Eq. 7.60 becomes 

( ) ( ) ( ) ( )2 2
1 3 2 4, , , ,I x y I x y I x y I x y   − + − =     

 ( ) ( ) ( )216 , , , .o r o tI x y I x y J x y B = Ω −      (7.63) 

For comparison, general equation representing the irradiance, Iht
, of an image 

reconstructed from a time-average hologram is 

( ) ( ) ( ) ( )2, , , , ,
t t th a m o tI x y I x y I x y J x y B = + Ω −     (7.64) 

where Iat
represents local average background irradiance from scattered light and Imt

is 

the local maximum irradiance.  Therefore, Eq. 7.63 is the special case of Eq. 7.64 with 

( ) ( ) ( ) ( ) ( )2 2
1 3 2 4, , , , , ,

thI x y I x y I x y I x y I x y   = − + −       (7.65) 

( ), 0 ,
taI x y =         (7.66) 

and 

( ) ( ) ( ), 16 , , .
tm o rI x y I x y I x y=       (7.67) 
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Output of the processor in the data mode, Iht
, is stored in the host computer for 

different values of B, while I Ia mt t
, , and Ωt constitute three unknowns, and the goal of the 

analysis is to determine Ωt .  Unfortunately, the Bessel function is not separable in terms 

of Ωt and B, so a straightforward solution is not possible.  However, the nearly periodic 

nature of the Jo function allows an approximate solution for the fringe locus function.  

This approximate solution recognizes that Eq. 7.64 is similar to the general equation for 

the irradiance distribution Ih for an image constructed from a conventional double-

exposure hologram with cosinusoidal fringes, that is, 

( ) ( ) ( ) ( )2, , , cos , ,h a mI x y I x y I x y x y B = + Ω −      (7.68) 

where Jo
2  in Eq. 7.64 has been replaced by cos2, and Ωt

2 has been replaced by Ω . 

Examination of Eq. 7.68 shows that it, just like Eq. 7.65, also has three unknowns: 

, ,a mI I  and Ω .  However, the cos ,2 Ω x y Bb g− term, appearing in Eq. 7.68, unlike the 

J x y Bo t
2 Ω ,b g− term of Eq. 7.65, is separable in its component arguments.  To facilitate 

solution for Ω , Eq. 7.64 in rewritten as 

( ) ( ) ( ) ( ), , , cos 2 , 2 ,h a mI x y I x y I x y x y B = + Ω −     (7.69) 

where 

( ) ( ) ( ),
, , ,

2
m

a a

I x y
I x y I x y= +       (7.70) 

and 

( ) ( ),
, .

2
m

m

I x y
I x y =        (7.71) 
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 With three values of B, three simultaneous equations of the type of Eq. 7.69 can 

be solved uniquely for Ω .  The three simultaneous equations are 

( ) ( ) ( ) ( )
1

, , , cos 2 , ,h a mI x y I x y I x y x y = + Ω      (7.72) 

( ) ( ) ( ) ( )
2

, , , cos 2 , 2 ,h a mI x y I x y I x y x y B = + Ω −     (7.73) 

and 

( ) ( ) ( ) ( )
3

, , , cos 2 , 2 ,h a mI x y I x y I x y x y B = + Ω +     (7.74) 

corresponding to the zero, positive, and negative shifts, respectively.  Solution of Eqs 

7.72 to 7.74 yields (Pryputniewicz, 1996)  

( ) ( )
( )

( ) ( )
( ) ( ) ( )

3 2

1 2 3

1 , ,1 cos 21, tan .
2 sin 2 2 , , ,

h h

h h h

I x y I x yB
x y

B I x y I x y I x y
−

   −− Ω =   − −    
 (7.75) 

If the three irradiance distributions ( ) ( )
1 2

, , , ,
t th hI x y I x y  and I x yht 3

,b g , 

corresponding to the three time-average holograms, are substituted into Eq. 7.75 the 

result is Ωtapprox
x y,b g .  This value of Ωtapprox

x y,b gdiffers from the correct argument, Ωt , of 

the Jo function, because of inequality between the Jo
2 and cos2 functions, and should be 

expressed as  

( ) ( ) ( ), , , .
approxt tx y x y x yεΩ = Ω +       (7.76) 

Equation 7.76 yields values of Ωtapprox
modulo 180º.  By adding or subtracting 

180º, depending on the sign of the numerator in Eq. 7.75, whenever the denominator is 

negative Ωtapprox
can be obtained modulo 3600 .  The image can be searched by the 

computer to locate discontinuities to define areas where the missing multiples of the 
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3600 should be added to unwrap function .
approxtΩ   By further identifying pixels within the 

zero-order fringe, an overall level shift can be applied to make those pixels have values 

between ±1800 (Pryputniewicz, 1996). 

 Errors ε can be computed for any value of Ωt for specific values of B to generate 

a lookup table.  This lookup table is used to correct the values computed from Eq. 7.75 

that have been unwrapped and level shifted.  In this way, vibratory deformations can be 

obtained from time-average hologram reconstructions with little more mathematical 

computation than is required for static deformations.  Once the correct values of Ωt are 

determined, they can be used in any one of the equations for quantitative interpretation of 

time-average holograms. 

 

 

7.3.5.4.  Generation of a lookup table 

A lookup table is computed from Eqs 7.75 and 7.76.  First, three values of Iht
are 

computed by using Eq. 7.64 for three values of B, for example, 0 and ±
π
3

, that is, 

( ) ( ) ( ) ( )
1

2, , , , ,
t t th a m o tI x y I x y I x y J x y = + Ω      (7.77) 

( ) ( ) ( ) ( )
2

2, , , , ,
t t th a m o tI x y I x y I x y J x y = + Ω      (7.78) 

( ) ( ) ( ) ( )
3

2, , , , .
t t th a m o tI x y I x y I x y J x y = + Ω      (7.79) 

Substitution of the values of Eqs 7.77, 7.78, and 7.79 into Eq. 7.75 yields 
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( ) ( )
( )

( ) ( )
( ) ( ) ( )

2 2
0 01

2 2 2
0 0 0

1 cos 21, tan .
2 sin 2 2approx

t t
t

t t t

B J B J B
x y

B J J B J B
−

  − Ω + − Ω − Ω =   Ω − Ω − − Ω +    
 

           (7.80) 

To construct the lookup table corresponding to a specific value of B, Eq. 7.80 is 

used to compute Ωtapprox
for a designed range of values of Ωt .  Tabulating Ωt versus 

Ωtapprox
produces the lookup table for the given value of the bias vibration.  If the 

magnitude of phase modulation of the bias vibration changes new lookup table must be 

constructed. 

 

 

7.3.6.  OEH system and procedure 

7.3.6.1.  Description of the system 

The electronic and optical configurations of the OEH system are shown in Figs 

7.1 and 7.3, respectively. 

 In the OEH system, the laser output is divided into two beams by means of a 

continuously variable beamsplitter, Fig. 7.1.  One of these beams is directed via a 

piezoelectrically driven mirror and is shaped by the spatial filter beam expander assembly 

to illuminate the object uniformly; this mirror can be driven at the same frequency as the 

object excitation to provide bias vibration.  The other beam, also spatially filtered and 

expended, is directed toward the reference input of the speckle interferometer by another 

piezoelectrically driven mirror that introduces 900 phase steps between consecutive 
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frames.  The speckle interferometer combines the object beam with the reference beam 

and directs them collinearly toward the detector array of the CCD camera. 

 

SPECKLE
INTERFEROMETER

PROCESSOR

TV MONITOR

COMPUTER MONITOR

HOST
COMPUTER

OBJECT LOADING
CONTROLS

PHASE STEPPER
CONTROLS

 
Fig. 7.3.  Electronic configuration of the OEH system. 

 
 
 
 

In the OEH system, the CCD camera detects the interference pattern and sends it 

to the pipeline processor, Fig 7.3.  All computations are done in a pipeline processor, 

which operates under control of a host computer.  The host computer also controls 

excitation of the object, coordinates it with the bias vibration imposed on the object, and 

keeps track of the 900 phase stepping between the frames. 

 By operating on each input image and its three predecessors, the pipeline 

processor produces a hologram, and this hologram is viewed concomitantly on the TV 

monitor.  Such holograms are produced for the zero, as well as the positive and negative 

bias vibration, for each resonance frequency of the object. The three resulting electronic 

holograms are then processed by the host computer to determine spatial distribution of 

the displacement vectors that can be viewed directly on the computer monitor. 



 141

 

7.3.7.  Configuration of the system 

Configuration of the OEH system used in this Dissertation is shown in Fig. 7.4. 

In the OEH system, the laser output is divided into two beams by means of a 

continuously variable beamsplitter, Fig. 7.4.  One of these beams is directed via a 

piezoelectrically (PZT) driven mirror and is shaped by the spatial filter beam expander 

(SFBE) assembly to illuminate the object uniformly.  The other beam, also spatially 

filtered and expended, is directed toward the reference input of the speckle interferometer 

by another piezoelectrically driven mirror that introduces 900 phase steps between 

consecutive frames.  The speckle interferometer combines the object beam with the 

reference beam and directs them collinearly toward the detector array of the CCD 

camera.  

 
Fig. 7.4.  Configuration of the OEH system used in this Dissertation. 
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In the OEH system, the CCD camera which is a part of the speckle interferometer 

assembly, detects the interference pattern and sends it to a processor.  In the processor, 

the sequential frames are processed. All computations are done in the processor, which 

operates under control of a host computer.  The host computer also controls excitation of 

the object, coordinates it with the bias vibration imposed on the object, and keeps track of 

the 900 phase stepping between the frames. 

 The phase shifted images recorded by the camera are stored in the computer. The 

computer performs the mathematical operations and the wrapped image that contains the 

phase and deformation information is displayed.  After applying appropriate unwrapping 

algorithms, the resultant unwrapped image can be obtained.  After appropriate scaling, it 

is possible to obtain deformation of the object under either static or dynamic loading 

conditions (Pryputniewicz and Stetson, 1989; Pryputniewicz, 1991). 

 

 

7.3.8.  OEH investigations 

OEH was used for the determination of the modulus of elasticity of NiTiNOL from 

the resonance frequencies measured.  Using this method, the mode shapes corresponding 

to the first four bendings were visualized and the corresponding frequencies recorded.  

The NiTi samples mounted in a cantilever configurations, were excited using a PZT 

shaker.  Care was taken to use a base that consisted of flat surfaces, to ensure “fixed“ 

boundary conditions.  Three different lengths were used in the experiments, and for each 
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sample the resonance frequencies were determined when temperature ranged from –20ºC 

to 200ºC.  

The experimental setup used is shown in Fig. 7.5.  The environmental chamber 

(EC) was used to cycle the NiTiNOL sample from –20ºC to 200ºC.  The interferograms 

were obtained through the OEH system, Fig. 7.5. A frequency doubled YAG laser (LS) 

with a wavelength of 514 nm (1nm = 10 9− m) was used for illuminating the samples.  The 

dynamic stiffness of the NiTiNOL based composites was also determined in a similar 

manner using the OEH.  The composites had boundary conditions of a cantilever plate.  

Resonant frequencies were measured and the dynamic stiffness was calculated from the 

resonant frequencies.  The dynamic stiffness was obtained for temperatures ranging from 

20°C to 150°C.  A narrower temperature range was used for the composite in order to 

prevent softening of the polymide matrix (NiTiNOL-polymide composite), and the same 

range was used for uniformity in measurement range for the NiTiNOL-Al composite. 

EC

EOH

LS

 
Fig. 7.5.  OEH setup for the measurement 

of resonant frequencies. 
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7.4.  Manufacturing the NiTiNOL based composite 

The NiTiNOL composites were manufactured using the state-of-the-art 

CAD/CAM facilities at WPI.  Figure 7.6 shows the composite being machined using the 

HAAS® CNC machining center (Hass®, 2001).  Appendix B lists the G-code that was 

used to manufacture the NiTiNOL based composites.  Appendix C provides a screenshot 

capture from GIBBSCAM®.  This software is used to simulate and validate the G-code in 

order to efficiently, and accurately machine the component. 

 

 
Fig. 7.6.  HAAS setup for NiTiNOL composite. 
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8.  RESULTS AND DISCUSSION 
 

 Frequency response of NiTiNOL samples and composites that incorporate 

NiTiNOL was studied.  The NiTiNOL samples and the composites were subjected to free 

undamped vibrations and the resonance modes were obtained using OEH methodology.  

Based on measured resonance frequencies the modulus of elasticity was determined.  The 

modulus of elasticity was calculated based on the theory presented in Chapter 4 and the 

results are presented in Section 8.2.  

 

 

8.1.  Chemical analysis of NiTiNOL using the SEM 

 It is a known fact that material properties are directly related to the stoichiometry 

of a material.  It was, therefore, important to determine the percentage composition by 

weight for the NiTiNOL sample by utilizing X-ray analysis on the SEM that houses the 

Kevex system.  Quantitative analysis on the NiTi sample provided data pertaining to the 

amounts of Nickel and Titanium and also traces of other elements.  Table 8.1 summarizes 

composition of the alloy used in this Dissertation, as obtained from the SEM.  Details of 

the information based on which Table 8.1 was generated are included in Appendix D, 

while Appendix E lists the powder diffraction files used to identify the phases of the 

NiTiNOL sample using XRD. 

 From Table 8.1 it is clear that the composition is close to equiatomic.  Even very 

small variations in the stoichiometry are known to affect the material properties.  It is also 
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evident from Table 8.1 that traces of aluminum and silicon were detected in the analysis.   

The presence of these elements can be attributed to metallographic polishing (Al) and the 

detector on the SEM (Si). 

Table 8.1.  Summary of chemical analysis on NiTiNOL. 
Element Line Weight 

(%) 

K-ratio Counts/sec Atomic 

(%) 

Al Ka 0.13 0.0007 3.97 0.26 

Si Ka 0.32 0.0021 11.82 0.62 

Ni Ka 56.66 0.5537 382.15 47.70 

Ti Ka 42.88 0.4260 934.71 51.42 

 
 
 
 

8.2.  Determination of modulus of elasticity from OEH 
 

 Using the analytical model presented in Chapter 4, modulus of elasticity of the 

samples was determined using the resonance frequencies measured by OEH.  For a 

frequency f of a cantilever beam undergoing free undamped vibartions, the modulus of 

elasticity can be calculated as 

 
2 2 4

4

4 ,
n

f L AE
I

π ρ
β

=        (8.1) 

where E is the modulus of elasticity, f is the frequency as measured from OEH, L is the 

active length of the NiTi sample, ρ is the density of the NiTi sample, A is the cross 

sectional area of the sample, I is the moment of inertia of the sample, and βn is the 
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constant that has specific values for mode shape n.  Similarly, the dynamic stiffness of 

NiTiNOL composites was determined from  

  ,
121

3

2
11

h

E
E

ED

L

T
LT

L

µ−
=       (8.2) 

where subscripts L and T represent the longitudinal and transverse directions, 

respectively, LTµ  represents the Poisson’s ratio for the NiTiNOL based composite, E 

represents the modulus of elasticity, D11 represents the dynamic stiffness of the 

composite, and h is the thickness of the composite. 

 

 

8.3.  Determination of temperature 
during measurements of the modulus of elasticity  

 
 Modulus of elasticity of NiTiNOL and NiTiNOL based structures is a non-linear 

function of temperature.  Therefore, accurate determination of parameters, used in Eqs 

8.1 and 8.2, to properly evaluate the equations, depends on accurate knowledge of the 

temperature of the sample at the instant measurements are made. 

 In this Dissertation, time constant necessary to assure uniform temperature field 

throughout the samples was determined experimentally.  This determination was based 

on temperature-time history similar to those shown in Figs 8.1 to 8.4.  For example, Fig. 

8.1 shows temperature as a function of time measured by a type T thermocouple attached 

to a control sample during measurements, when the EC was set to change temperature 

from 79.5ºC to 68.5ºC.  Clearly, initial fluctuations stabilize within about 9 min, then 
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temperature monotonically approaches equilibrium temperature at about 35 min after the 

instant the change was imposed on the EC. 

 Similar trend is observed in Fig.  8.2, which shows temperature as a function of 

time of a control sample exposed to the change in temperature within the EC from 59ºC 

to 53ºC.  This figure indicates that the sample reaches thermal equilibrium at about 30 

min after the instant the change in temperature within the EC is imposed.  

 Figure 8.3 shows temperature as a function of time, measured by a type T 

thermocouple attached to a control sample during measurements, when the EC was set to 

change temperature from 40ºC to 50ºC.  Initial fluctuations stabilize within about 10 min, 

then temperature monotonically approaches equilibrium temperature at about 40 min 

after the instant the change was imposed on the EC.  Figure 8.4 also shows a similar trend 

when the EC was set to a temperature change from 50ºC to 60ºC.   

 Based on the results shown in Figs 8.1 to 8.4 and similar data for other 

temperature ranges, the time constant used in this Dissertation was set to 60 min.  The 

time constant was determined by temperature measurements on a 30 mm long, 2.25 mm 

wide, and 0.5 mm thick NiTiNOL sample.  The value of 60 minutes was required to 

achive thermal equilibrium.  Based on this time constant measurements of parameters 

used in Eq. 8.1 were made 60 min after the temperature change was imposed on the 

samples within the EC, for all measurements in this Dissertation.  
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Fig.  8.1.  Temperature as a function of time of a control  
sample exposed to the change in temperature (cooling)  

from 79.5ºC to 68.5ºC within the EC. 
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Fig.  8.2.  Temperature as a function of time of a control  
sample exposed to the change in temperature (cooling)  

from 59ºC to 53ºC within the EC. 
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Fig. 8.3.  Temperature as a function of time of a control  
sample exposed to the change in temperature (heating) 

from 40ºC to 50ºC within the EC. 

50

52

54

56

58

60

62

64

0 10 20 30 40 50 60
TIME, min

TE
M

P
E

R
A

TU
R

E
,ºC

Fig. 8.4. Temperature as a function of time of a control 
sample exposed to the change in temperature (heating) 

from 50º to 60ºC within the EC. 
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8.4.  Results from the OEH measurements 

 In this Section, experimentally determined values of modulus of elasticity are 

presented as a function of temperature.  This determination was made as a function of 

temperature using the OEH and facilities developed at WPI’s CHSLT.  The data were 

obtained for the temperature range from –20ºC to 200ºC.  During these experiments all 

samples were placed in a specially designed EC.  Figure 8.5 shows a representative 

dependence of the modulus of elasticity of NiTiNOL, used in this study, on temperature.  

Appendix F shows additional results obtained for the temperature dependent modulus of 

elasticity using OEH.  
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Fig. 8.5.  Temperature dependence of modulus of elasticity of NiTiNOL 

on temperature. 
 

 

 The results shown in Fig. 8.5 clearly indicate a hysteritic behavior due to heating 

and cooling parts of a cycle, which is typical of SMAs.  The slope initially is 
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found to decrease during the heating part of the NiTi sample.  Stated alternately, 

the modulus of elasticity initially decreases as temperature increases at the beginning of 

the heating cycle, when temperature increases from -20ºC to 50ºC.  According to the 

results shown in Fig. 8.5 the phase transformation from Martensite to Austenite starts at 

around 50ºC.  Martensitic transformations are never complete in nature and there will 

always be residual Martensite or Austenite that is retained.  The results shown in Fig. 8.5 

were obtained for the NiTiNOL sample of effective length of L = 39.85 mm, and the 

modulus of elasticity was calculated from the first bending mode.  Similar dependence of 

modulus of elasticity on temperature was observed for the second, third, and the fourth 

bending modes. 

 Figure 8.6 shows the combined results from the first four bending modes for the 

NiTi sample with L = 39.85 mm.  There is good agreement between the moduli of 

elasticity shown. 
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Fig. 8.6.  Modulus of elasticity of NiTiNOL as a function of temperature, based on 

          the first four bending modes of a 39.85 mm long sample. 

 

 

OEH was also used to determine the modulus of elasticity of the matrix material. 

Based on the OEH measurements, the modulus of elasticity was determined to be 14 

GPa.  The composite was mounted as a cantilever plate and the effective length and width 

were 4 inches and 2.5 inches, respectively; the thickness was 0.25 inches.  Dimensions of 

the NiTiNOL ribbon were 0.84 mm by 0.17 mm.  At the TT of 60ºC there is a change in 

the resonant frequency of the composite due to activation of the NiTiNOL fibers.  The 

introduction of NiTiNOL fibers in the matrix material can, therefore, be used to shift the 

resonant frequency of the composite as a whole.  The composite was subjected to 
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vibrations using a PZT shaker.  Change in the TT between the heating and cooling cycles 

is normally attributed to hysteresis or absorption of energy.  Figures 8.7 and 8.8 represent 

the first two mode shapes for the NiTiNOL composite with cantilever boundary 

conditions.  

 
Fig. 8.7.  Composite plate: 1st mode of vibration at 191 Hz. 
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Fig. 8.8.  Composite plate: 2nd mode of vibration at 993 Hz. 

 

 

Figure 8.9 represents dependence of resonant frequency of the NiTiNOL 

composite on temperature.  As seen from Fig. 8.10 it is evident that repeated activation of 

the NiTiNOL fibers results in an upward shift (i.e., an increase) in the frequency 

response.  In the absence of the NiTiNOL fibers the frequency response would have had a 

decreasing slope.  This would mean that the modulus of elasticity would decrease as 

temperature is increased.  Appendix G presents additional results for the 

thermomechanical response of NiTiNOL based composites that were investigated in this 

Dissertation.  Appendix H presents the temperature dependence of the NiTiNOL based 

composites as determined from Eq. 8.2. 
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Fig. 8.9.  Thermomechanical response of the 30 mm by 30 mm NiTiNOL-

polymide composite as measured by OEH: Run 01 (additional results are included in 
Appendix F). 

 

 

 Results presented in this Dissertation show that the thermomechanical response of 

NiTiNOL and NiTiNOL based structures can be determined using OEH methodology.  

This Dissertation used ACES methodology to determine dependence of the modulus of 

elasticity of NiTiNOL and NiTiNOL based structures on temperature.  It also addressed 

issues relating to hysteresis from thermomechanical cycling.  Hysteresis involves a 

change (usually an increase) in the TT resulting in thermomechanical cycling.  Figure 

8.10 shows hysteresis observed in NiTiNOL while it is undergoing an activation during 

the first 40 cycles.  A cycle represents one heat-cool loop that results in a phase 

transformation from Martensite to Austenite and back to Martensite.  The Dissertation 
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also includes uncertainty analysis of metal matrix (e.g., aluminum) based NiTiNOL 

composites. 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 8.10.  Hysteresis as indicated by change in TT for NiTiNOL  
during the first 40 cycles. 

 

 

8.5. Uncertainty analysis on the modulus of elasticity for NiTiNOL  
and NiTiNOL based composites 

 

As discussed in Chapter 4, uncertainty analyses were conducted for obtaining 

tolerances on design parameters that best facilitate improved design.  In this Dissertation 

uncertainty analysis was performed based on the RSS method to determine tolerances for 

the modulus of elasticity (Mizar, 1999).  Figure 8.11 shows uncertainty in the average 
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modulus of elasticity (in the units of MPa) as a function of temperature of a NiTiNOL 

sample of length 39.95 mm.  Appendix I presents additional results from uncertainty 

analysis for NiTiNOL and NiTiNOL based composites. 
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Fig. 8.11.  Uncertainty of the average modulus of elasticity as a function of temperature 
for NiTiNOL of length 39.85mm. 

 

 
 
 

8.6.  Development of material model for NiTiNOL 

As discussed in this Dissertation, NiTiNOL exhibits complex thermomechanical 

behavior.  Based on the properties of MT, that NiTiNOL undergoes, it is evident that the 

phase transformation depends on stress, strain, and temperature.  Also, from different 

types of shape memory phenomena exhibited by NiTiNOL such as OWE, TWE, and 

pseudoelasticity (Chapter 3), it is possible to execute successful designs incorporating 

NiTiNOL in which only one of the three states (i.e., stress, strain, or temperature) can be 
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the controlling parameter.  This simplifies calculations involved during development of 

NiTiNOL related designs. 

The objective of this Dissertation was to develop a method that could characterize 

NiTiNOL and to obtain material properties as a result of this characterization.  NiTiNOL 

was successfully characterized using the OEH technique that aided in obtaining 

temperature dependence of the modulus of elasticity.  In literature that normally deals 

with material property values for NiTiNOL or any other SMA, only values at the 

martensitic plateau, or the parent phase are listed.  This means that the actual temperature 

dependence of the modulus of elasticity is ignored in the design process because of 

unavailability of these characteristics (Duerig, 1990). 

Using temperature dependent nature of the modulus of elasticity as obtained from 

OEH, an interpolation function has been developed that facilitates simulation of the 

thermomechanical behavior of NiTiNOL using computational techniques such as FEM.  

Equation 8.3 represents a preliminary interpolation function that has been developed in 

this Dissertation.  As more advancement is done in the characterization process, the 

interpolation function will also be improved accordingly.  Table 8.2 represents a 

summary of coefficients for the interpolation function given by Eq. 8.3. 

 ( ) ( )
( )

2

2
ln ,

1

a c T e T
E

b T d T

+ ⋅ + ⋅
=

+ ⋅ + ⋅
      (8.3) 

where a, b, c, d, and e represent interpolation coefficients, E is the modulus of elasticity, 

and T is the temperature. 
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Table 8.2.  A summary of the interpolation function. 
Parameters Values Std Error T Value 95% Conf Limit 95% Conf Limit 

A 24.5803 0.03211 765.588 24.51089396 24.64978827 
B -0.0244 0.00431 -5.6723 -0.033759477 -0.015120117 
C -0.6054 0.10785 -5.6129 -0.838658079 -0.372076903 
D 0.00029 0.00012 2.46499 3.55575E-05 0.000544968 
E 0.00724 0.00295 2.45655 0.000864565 0.013606736 

 

 

Figure 8.12 represents a plot of the interpolation function as given by Eq. 8.3  

This interpolation function was used as input for FEM computations using FEMLAB® 

version 3.2 (Appendix A).  It is also to utilize the interpolation function in designs where 

modulus of elasticity is a parameter.  This type of approach for developing an 

interpolation function for the temperature dependence of the modulus of elasticity can 

facilitate complete considerations of the dependency of material properties on 

temperature.  

Figure 8.13 shows the difference between the OEH measured values and the 

interpolated values that were obtained using Eq. 8.3.  It is evident from Fig. 8.13 that the 

maximum difference between the measured and the interpolated values occurs around the 

phase transition temperature.  This is expected as lot of activity takes place as the 

martensitic phase gets transformed into the austenitic phase.  As better versions of the 

interpolation function are developed and/or additional experimental data are obtained, in 

the future, it may be possible to have smaller differences between measured and 

interpolated values. 
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8.7.  Shape memory alloy based composites (SMABC) 
 
 

8.7.1.  Introduction 
 

 The SMABC constitute materials that are reinforced with shape memory alloy 

(SMA) fibers.  Sometimes the SMA fibers can be replaced with thin-film SMA.  A thin-

film is a sheet of the SMA usually about 50 microns in thickness.  One of many 

configurations of SMABC is when SMA fibers (e.g., ribbons, wires) are embedded on 

either side of the neutral axis of the matrix material.  When the SMA fibers, or a 

composite, are heated, there will be a change in the resultant stiffness of the structure.  

This is because the SMA fibers will undergo a phase transformation from the low 

temperature phase (Martensite) to the high temperature phase (Austenite).  This phase 

transformation is complete at the Transformation Temperature (TT).  In this Dissertation, 

annealed NiTiNOL SMA (the most commonly used SMA) was used in SMABC 

considered herein.  The composites were subjected to free undamped vibrations, in which 

resonant frequencies were monitored as functions of temperature.  From the 

experimentally determined resonant frequencies, dynamic stiffness of the composites was 

determined as a function of temperature. 

 

 

8.7.2.  Determination of effective modulus of elasticity (EMOE) 

 A unidirectional composite consists of parallel fibers arranged in a matrix.  This 

type of an arrangement forms a basic configuration of composite materials.  An 

elementary cell of such a composite can be considered to be made of a fiber embedded in 
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a matrix with either a circular or a rectangular base.  Figure IB1.1 shows such a unit cell 

of a composite material.  The direction parallel to the fibers in the composite is referred 

to as the longitudinal direction.  Any direction that is perpendicular to this direction is 

referred to as the transverse direction.  Simplified and practical expressions for material 

properties (e.g., modulus of elasticity) can be determined by considering mechanical 

behavior of a unit cell of a composite material.  Derivations of modulus of elasticity for 

the longitudinal and transverse directions are discussed in Sections IB1.3, and IB1.4, 

respectively. 

 
Fig. 8.12.  Simplified representation of a composite cell under uniform state of tension. 

 

 

8.7.3.  Derivation of modulus of elasticity in the longitudinal direction 

 The longitudinal modulus of elasticity (LMOE) is determined normally from a 

longitudinal tensile tests.  It is assumed that the fiber and the matrix undergo uniform and 

L ∆L 

∆LT 
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identical elongation under the applied longitudinal stress.  A schematic diagram used in 

the analysis is shown in Fig. 8.12. 

If ∆L represents the elongation experienced by both the fiber and the matrix, the 

longitudinal strain εL can be written in as 

 ,ε ∆
=L

L
L

         (8.4) 

where L is the length of the cell under consideration.  Strain in the fiber as well as in the 

matrix, in relation to the longitudinal strain as defined by Eq. 8.4, can be written as 

,ε ε ε= =f m L         (8.5) 

where ε f  and εm  represent the strains in the fiber and the matrix respectively. 

The fiber and the matrix are supposed to behave elastically (within allowable elastic 

limits), the stresses in the fiber and the matrix can be written as 

 ,σ ε ε= =f f f f LE E         (8.6) 

and 

 .σ ε ε= =m m m m LE E         (8.7) 

Resultant load (force) carried by the composite material is the sum of all loads carried 

individually by the fibers and the matrix and can be written as 

,σ σ= +R f S m mF A A         (8.8) 

where FR is the resultant force, fσ is the stress induced in the fiber, mσ is the stress 

induced in the matrix of the composite, while mf AA ,  are the cross-sectional areas of the 
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fibers and matrix, respectively.  If A is the cross-sectional area of a unit cell of a 

composite material, then we can write the average stress as follows: 

.σ = R
Avg

F
A

         (8.9) 

Equation 8.9 can be rewritten as  

 ,σ σ σ= +Avg f f m mV V        (8.10) 

where Vf and Vm are the volume fractions for the fibers and the matrix, respectively. 

The average stress for the cell of the composite material can be written in terms of 

the longitudinal modulus of elasticity LE  as 

 .σ ε=Avg L LE         (8.11) 

Combining Eqs 8.5 and 8.6 we have from Eq. 8.11 

( )1 .= + −L f f m fE E V E V        (8.12) 

Equation 8.12 can be referred to as the law of mixtures (LOM) for the modulus of 

elasticity in the longitudinal direction.  Variations of the moduli Ef and Em are linear, and 

the volume fractions Vf and Vm take values that vary from 0 to 1. 

 

 

8.7.4.  Determination of the longitudinal Poisson’s ratio (LPR) 

In order to determine the LPR, the unidirectional composite is considered to be 

described by successive layers.  A schematic representing a unidirectional composite is 

shown in Fig. 8.13.  The LPR represented by (LPR means Poisson’s ratio for the 

longitudinal direction of the composite) µLT  can be determined based on a longitudinal 
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tensile test.  As a result of this tensile test, the fibers and the matrix of the composite 

material will be subjected to uniform amounts of strains (i.e., identical strains).   

 

 
Fig. 8.13.  Layer description of longitudinal tension in a composite cell. 

 

 

Therefore the transverse strains induced in the matrix as well as the fibers can be 

written as follows: 

 ,τε µ ε= −m m L        (8.13) 

and 

 .τε µ ε= −f f L        (8.14) 

Under the applied stress, the corresponding elongation of the elemental cell of the 

composite can be written as 

 .µ ε µ ε∆ = − −T m L m f L fL t t       (8.15) 

where tm is the thickness of the matrix and tf is the thickness of the fibers, respectively. 

∆LT 

L ∆L 



 166

The corresponding transverse strain can be written in the form 

( )1 .ε µ µ ε∆  = = − − + +
T

T m f f f L
f m

L V V
t t

    (8.16) 

The equation for the LPR can, therefore, be written as 

( )1 .µ µ µ= − − −LT f f m fV V       (8.17) 

Equation 8.17 represents the law of mixtures for the LPR. 

 

 

8.7.5.  Determination of the longitudinal shear modulus (LSM) 

 Figure 8.14 displays a schematic representation of the cross-section of a 

composite that is subjected to a shear stress τ.  Figure 8.14 is used in the derivation of the 

LSM of the composite material. 
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Fig. 8.14.  Longitudinal shear modulus for a composite cell. 
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The LSM denoted by LTG  is determined using a longitudinal shear test.  

Determination of the LSM is done using a unidirectional composite comprised of layers.  

As a result of the shear stress, the corresponding shear strains induced in the unit cell of 

the composite can be written as follows: 

 

 , .τ τγ γ= =f m
f mG G

      (8.18) 

The shear deformations induced in the fibers and matrix can be written as 

 and .δ γ δ γ= =f f f m m mt t       (8.19) 

Total shear deformation of a unit cell of the composite material can be written as 

 .δ δ δ γ γ= + = +f m f f m mt t       (8.20) 

The corresponding shear strain for the unit cell of the composite material can be 

shown to be 

.δγ =
+m ft t

        (8.21) 

Equation IB1.18 can be rewritten as 

 ( )1 .γ γ γ= + −f f m fV V       (8.22) 

The shear strain is related to the shear stress by means of the shear modulus, given by 

LTG , i.e., 

.τγ =
LTG

        (8.23) 

Combining Eqs 8.19 to 8.23 we obtain 
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11 .
−

= +f f

LT f m

V V
G G G

       (8.24) 

Using Eq. 8.24 the LSM can be determined.  Equations 8.4 through 8.24 provide the 

mathematical background that will be used in Section 8.7.6 to determine the behavior of a 

NiTiNOL composite based on measured material properties. 

 

8.7.6.  Determination of thermomechanical response of a NiTiNOL composite 
based on measured material properties 

 
In this Dissertation, from analytical considerations, the frequency of resonance for 

NiTiNOL based composites was obtained using the Ritz’s method and is given by  

,
70.0

1
2
1 11

ρπ
D

ab
Kf ii =       (8.25) 

where 11D can be obtained to be 

 
3

11
2

.
121 µ

=
−

L

T
LT

L

E tD E
E

      (8.26) 

In Eq. 8.26, t is the thickness of the composite, the subscripts L and T represent the 

longitudinal and transverse directions, respectively, while 

 ( ) ,1 fmffLT VV −−−= µµµ       (8.27) 

where V represents the volume, and the subscripts f and m represent the fiber and matrix, 

respectively, LTµ  represents the Poisson’s ratio for the NiTiNOL based composite as 

defined by Eq. 8.17.   
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The values of Ki (appearing in Eq. 8.25) equal 5.429 for the first mode and 15.108 

for the second mode (Mizar and Pryputniewicz, 2004).  The modulus of elasticity for the 

polycarbonate matrix material was determined (in this Dissertation) based on the resonant 

frequencies of a cantilever configuration of the material of the matrix. 

In this Dissertation, modulus of elasticity for the matrix materials (polymide) as 

well as the modulus of elasticity for NiTiNOL were determined experimentally using the 

OEH technique.  It is therefore possible to use the experimentally determined material 

property values along with the model developed as given by Eq. 8.26, to estimate the 

thermomechanical response of the NiTiNOL composite.  Sample calculations indicating 

the procedure for obtaining the response for the NiTiNOL-polymide composite based on 

experimentally measured material properties are presented in this section.  The volume 

fraction for the matrix was 0.88 (i.e., polymide) and for the NiTiNOL fibers was 0.12, 

respectively.  Based on the volume fractions, the longitudinal modulus of elasticity can 

be determined by Eq. 8.27 to be 

( )1 .= + −L f f m fE E V E V       (8.28) 

Similarly, Eq. 8.29 is used to determine the modulus of elasticity in the transverse 

direction 

 
( )11 .

−
= + ff

T f m

VV
E E E

      (8.29) 

where LE  represents the modulus of elasticity in the longitudinal direction, TE  represents 

the modulus of elasticity in the transverse direction, fE represents the modulus of 
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elasticity for the NiTiNOL fibers, mE  represents the modulus of elasticity for the 

polymide matrix, and fV  represents the volume fraction for the NiTiNOL fibers.  Based 

on the OEH measurements, the modulus of elasticity for the polymide matrix was 

determined as 10 GPa, and was determined to be 37 GPa for the NiTiNOL fibers for the 

composite at 20ºC.  Equation 8.27 represents the Poisson’s ratio for the NiTiNOL-

polymide composite.  The Poisson’s ratio for the polymide matrix material was taken as 

0.33 and for the NiTiNOL fibers to be 0.32 based on “book values” (Whitney and 

Ashton, 1987).  Based on these values for Poisson’s ratio and volume fractions, using Eq. 

8.27, the overall Poisson’s ratio, µLT  was determined to be -0.33.  Similarly, based on 

Eq. 8.28, LE was calculated to be equal to 33.7 GPa, and TE  (based on Eq. 8.29) was 

calculated to be equal to 10.9 GPa.  Using Eq. 8.26 we have an estimated value of 11D  

equal to 14 N/m.  Similar calculations were performed for temperatures ranging from 

20ºC to 100ºC, for both the heating and cooling cycles.  The estimated response is shown 

in Fig. 8.16.  It is important to note that the prediction using analytical models, takes into 

account the boundary conditions set forth during the development of the analytical 

model.  It is therefore for the sake of completeness to compare the response obtained 

from experimentation (i.e., OEH measurements) to the estimated response.  Figure 8.16 

shows the thermomechanical response in terms of dynamic stiffness change as a function 

of temperature based on experimental considerations.   

The next step is to obtain a difference between experimentally determined 

response and the estimated (i.e., analytical) response.  Such a comparison is shown in 
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Fig. 8.29.  Based on calculations for a temperature of 20ºC, the difference between the 

measured and the analytically estimated value of the dynamic stiffness was found to be 

equal to 1.2 N/m.  As seen from Fig. 8.29, the maximum difference between experimental 

and estimated values of the dynamic stiffness occurs in the vicinity of the TT, for both 

heat and cool parts of the loading cycle.  This is expected, as most of the forward and 

reverse phase transformation is prominent at the TT.  Also, the difference between 

experimental and predicted values of the dynamic stiffness is a result of the difference in 

boundary conditions between the actual composite, and the assumptions in the boundary 

conditions made during the analytical modeling.  Analytical models consider perfect 

boundary conditions, and also complete contact between the matrix and the fibers.  

However, experimentally the contact condition between the matrix and the fibers is such 

that there is no stress in the NiTiNOL fibers; which is a condition that does not properly 

represent the “actual loading”.  This is to ensure that during testing, any stress in the 

NiTiNOL fibers could result in strain energy, and therefore change in the type of modal 

modification technique (i.e., active modal modification) that was proposed in the 

Dissertation.  It is therefore possible to estimate response of NiTiNOL based composites 

using proper analytical models, and boundary conditions when experimentally 

determined material properties for the matrix and NiTiNOL fibers are known.  The 

important and the most critical thing, however, are the proper application and 

interpretation of boundary conditions.  The analytical model used in the estimation of the 

NiTiNOL-polymide composite also ignores the strain energy in the fibers, and therefore 

will not contribute additional errors.   
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Fig. 8.15.  Temperature dependence of the dynamic stiffness for a NiTiNOL-

polymide composite as estimated by the analytical model. 
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Fig. 8.16.  Temperature dependence of the dynamic stiffness for a NiTiNOL-

polymide composite as measured by OEH. 
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Fig. 8.17.  Difference between experimental and analytical values for dynamic 

stiffness for a NiTiNOL-polymide. 
 
 

In the Dissertation, the uncertainty in the experimentally determined dynamic 

stiffness for a NiTiNOL-polymide composite was 1.21 N/m at 20ºC.  The difference plot 

(between experimental and analytical values of the dynamic stiffness D11) indicated by 

Fig. 8.17 shows a value of 1.2 N/m.  Therefore, the estimated response of the NiTiNOL-

polymide composite can be considered to be within the uncertainty bounds based on the 

RSS technique (Pryputniewicz, 1993; Mizar, 1999). 

 
 



 174

 

 

8.8.  Comparison of results from OEH and FEM for NiTiNOL 

Results obtained from OEH and FEM are compared and discussed in this Section.  

Holograms were measured based on the theory presented in Chapter 7.  Representative 

mode shapes predicted by FEM analysis (for the samples used in this Dissertation) are 

presented in Figs 8.14 and 8.15.  The results of Figs 8.14 and 8.15 were obtained at 

temperatures of 25ºC and 20ºC, respectively.  Additional results showing comparison of 

FEM and OEH data, for the temperature range from 20ºC to 200ºC, are included in 

Appendix J.  The resonance frequencies as obtained from FEM are compared with 

frequencies from OEH, Figs 8.18 to 8.19. 

 From Figs 8.18 and 8.19 the resonance frequencies based on FEM and OEH 

correlate well.  In this Dissertation the ACES approach has been implemented and all of 

the three methodologies agree within the limits based on the uncertainty analysis.  The 

uncertainty analysis indicated a variation of 10% - 12% respectively.  Appendix J 

presents additional results for comparison between OEH and FEM.  Recommendations 

and conclusions are discussed in Chapter 9.  
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Fig. 8.12.  Interpolation function for the temperature dependence of modulus of 

elasticity for NiTiNOL. 
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Fig. 8.13.  Difference between measured and interpolated values of the modulus of 

elasticity for NiTiNOL. 
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       B1 = 1610 Hz    B1 = 1623 Hz 

Fig. 8.14.  Comparison of results from FEM 
and OEH for NiTiNOL – Al composite (30 mm by 30mm), measured at T = 25ºC. 

 
 
 

    (a)     
 First bending mode      Second bending mode 

FEM = 291.3 Hz      FEM = 1819.0 Hz 
OEH = 288.0 Hz      OEH = 1790.0 Hz 

Fig. 8.15a.  Comparison of results from FEM (shell) 
and OEH for NiTiNOL of length 28.82 mm; the first and the  

second bending modes, measured at  T= 20ºC. 
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 Third bending mode      Fourth bending mode 

FEM =  5127.2 Hz      FEM = 9985 Hz 
OEH = 5080.0 Hz      OEH = 9950 Hz 

 
Fig. 8.15b.  Comparison of results from FEM (solid) 

and OEH for NiTiNOL of length 28.82 mm; the third and the  
fourth bending modes, measured at T = 20ºC. 
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9.  CONCLUSIONS AND RECOMMENDATIONS 
 

 Results presented in this Dissertation show validity of using a hybrid approach in 

characterizing NiTiNOL, a SMA.  The Dissertation presents, discusses, and shows 

validity of a hybrid approach, based on the ACES methodology, which provides the user 

with results and insight.  By doing so, the user can be certain and comfortable with 

modeling and with results obtained.  This Dissertation applied analytical and 

experimental methodologies to determine dependence of the modulus of elasticity on 

temperature, and computational techniques (FEM) were used to simulate/model 

experimental results.  A fundamental background on SME, ACES methodology, 

analytical, computational, and experimental methodologies have been provided to 

familiarize the reader with these topics. 

 In this Dissertation a variety of methods have been used.  OEH was used to 

characterize the modulus of elasticity, XRD was used for identification of phases present 

after heat treatment, SEM was used to conduct chemical analyses that provided 

information on elements present by %weight.  Computational techniques, in particular 

the FEM, were used to computationally simulate behavior of samples used.   

 Material property value determination was achieved by OEH, a noninvasive 

holographic methodology. 

 Many times analyses are performed based on “book”, or published, values of 

material properties.  This usually results in inaccuracy in evaluation/analysis of the 

design.  The errors resulting from poorly defined material property values are even more 
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critical for SMAs, which exhibit a strong dependence of these material property values on 

stress, strain, and temperature.  The material dependence (e.g., modulus of elasticity) on 

temperature was measured by OEH and the values obtained reflect reality and actual 

behavior of the material used rather than the approximate (sometimes, very approximate) 

“book” values (or ranges) provided by the manufacturer. 

 Linear computational methods used in this study correlate to within 0.3% with the 

analytical and experimental results. In spite of the close correlation of 0.3% (Chapter 8 

and Appendix J), it is not sufficient to account for phenomena taking place during phase 

transformations.  Therefore, a non-linear FEM approach based on a thermomechanical 

foundation (taking into account the phase transformations) would possibly provide results 

that have a closer agreement with experimental results and should be used in subsequent 

research.  The same holds for comparisons between analytical and experimental results.  

The “book” values provide ranges for the moduli of elasticity for Martensite and 

Austenite.  Correlation between analytical and computational results would agree better if 

non-linear approaches were used.  In this Dissertation, a comparison between analytical 

and experimental methods yielded differences ranging from –0.8% to –18%, and 

comparisons between experimental and computational results have provided differences 

in the order of –0.8%. 

 Overall, this Dissertation shows that there exists good correlation between the 

analytical, computational, and experimental methodologies in terms of material property 

determination and prediction of resonance frequencies based on experimental values for 

NiTiNOL.  Furthermore, following convergence analysis, the FEM can be used as a 
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primary source of analysis in place of expensive and often time consuming experimental 

work.  Finally, a hybrid approach, such as ACES methodology, proves to be an important 

step in the characterization of material behavior. 

 

Development of cost effective and durable high performance engineering 

structural materials and systems is important for the economic well being of a country.  

This is because the cost of civil infrastructure constitutes a major portion of the national 

wealth.  To address issues relating to deteriorating civil infrastructure, research is 

essential on smart and/or adaptive materials.  This discussion relates to use of smart 

materials for optimal performance and design of buildings and other civil infrastructures 

particularly those under the threat of earthquakes and other natural hazards.  The unique 

properties of the SMAs for smart structures render a promising area of research. 

 The term shape memory refers to the ability of certain alloys (e.g., Ni-Ti, Cu-Zn-

Al) to recover large strains, while remembering their initial configurations at the end of 

the phase transformation process.  The deformation recovery is triggered by a change in 

temperature, with the recovery being complete at a critical transformation temperature 

known as TT.  The particular properties of SMAs are strictly associated with solid to 

solid phase transformations, which can be either thermal or stress induced.  Currently, 

SMAs are mainly applied in biomedical engineering applications, electronics and 

communications engineering, aerospace applications, and structural applications.  

However, a potential for use of these alloys can be extended to new applications in civil 
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engineering specifically in seismic protection of buildings.  Properties of SMAs that 

render them to be ideal candidates for use in seismic applications are: 

 

1) repeated absorption of large amounts of strain energy under loading without 

permanent deformation, 

2) recoverable strain from 8% to 11%, 

3) fatigue resistance even under large strain cycles, 

4) possibility to obtain a wide range of cyclic behavior - from supplemental and 

fully recentering to highly dissipating - by simply varying a number and/or 

characteristics of SMA components. 

A concept of adaptive behavior has been an underlying theme of active control of 

structures, which are subjected to earthquake and other environmental, or uncontrolled, 

type of loads. The structure adapts its dynamic characteristics to meet the performance 

objectives at any instant when the “load” the structure is designed to withstand takes 

place.  For a futuristic smart bridge system, a thermomechanical approach to develop a 

constitutive relation for bending of a composite beam with continuous SMA fibers 

embedded eccentric to neutral axis can be implemented.  Based on the study presented in 

this Dissertation, it can be concluded that SMAs can be successfully used for active 

vibration control of complex structures.  Since, a bridge structure is a composite in nature 

SMA reinforcement along with passive components (e.g., concrete, stainless steel) can 
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facilitate the structure to respond more effectively to undesirable vibrations due to 

activation of the SME . 

Two families of passive seismic control devices exploiting the unique properties 

of SMA kernel components are being investigated within the Memory Alloys for New 

Seismic Isolation and Energy Dissipation Devices (MANSIDE) (Bernardini et al., 1999) 

project.  They are Special braces for framed structures and isolation devices for buildings 

and bridges. 

Another area for using SMAs in composite materials is by incorporating them as 

smart material tags.  These tags can be used to monitor from the exterior of the structure 

the internal condition of the structure.  Monitoring is conducted for stress levels, moisture 

content, and presence of voids, development of cracks as well as their propagation and 

discontinuities. 

SMAs can also be used as self-stressing fibers and, therefore, be applied for 

retrofitting.  Self-stressing fibers are the ones in which the SMA reinforcements are 

placed into the composite in a non-stressed state.  A pre-stressing force is applied to the 

SMAs.  Thermomechanical treatment can be applied at any time after hardening of the 

matrix instead of during its curing and hardening.  Long or short term pre-stressing is 

introduced by triggering the change in SMAs shape using temperature or electricity. 

In this Dissertation NiTiNOL in the form of ribbons (characterized by rectangular 

cross-sections) was used in the investigations.  However, the approach can be extended to 
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any NiTiNOL based structures.  In aerospace engineering, the concept of the “smart 

wing” is becoming popular.  A design that uses sputter deposited NiTiNOL on an airfoil 

can be envisioned as a candidate for the “smart wing”.  NiTiNOL is sputter deposited in a 

controlled vacuum environment on an airfoil.  The structure is then subjected to a heat 

treatment process in order to eliminate residual strains, if any, due to the manufacturing 

process.  Also, this step facilitates proper setting of the TT.  Dynamic testing based on the 

OEH method can be conducted on the airfoil to obtain its frequency response.  The 

material properties can be extracted from the “composite” airfoil based on a similar 

approach that was used for generic NiTiNOL based composites as discussed in this 

Dissertation.  Figure 9.1 shows a schematic representation for testing of an airfoil using 

the OEH methodology.  The airfoil could be mounted with specific boundary conditions.  

However, for this discussion, cantilever boundary conditions have been applied.   

Airfoil with sputter coated NiTiNOL

Measure dynamic response using 
OEH

cantilever boundary 
conditions

Airfoil with sputter coated NiTiNOL

Measure dynamic response using 
OEH

cantilever boundary 
conditions

 

Fig. 9.1.  OEH testing of an airfoil sputter coated with NiTiNOL. 



 184

 

 

During the testing process, temperature dependent resonant frequencies can be 

obtained.  Using a similar material law to that used in characterization of NiTiNOL based 

composites, as discussed earlier in the Dissertation, the material properties can be 

extracted.  This method is useful in developing a technique in which the response can be 

determined based on the measured material properties.  This determination is achieved 

using either a material law (i.e., an interpolation function) developed using experimental 

results, or using the analytical model developed that is based on material properties as, 

e.g., determined by OEH.  Both of these simulation techniques are advantageous as actual 

testing is not required for the composite airfoil.  Figure 9.2 displays a flow chart 

representation of the process for testing and evaluation of a hybrid airfoil that uses 

NiTiNOL as the active component.  Using NiTiNOL on airfoil can result in active 

vibration response modification of the structure.   

 

Fig. 9.2.  Flow chart representing a process for testing of NiTiNOL coated airfoil. 

repeated 
loops lead to 
optimization 
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Shape memory alloys have the unique ability to recover up to 11% plastic strain 

as a result of a phase transformation from Martensite to Austenite.  Impact damage is 

common in automobile accidents.  Repair of damage to the frame as well as other parts of 

the structure costs drivers as well as insurance companies billions of dollars every year.  

A situation where, using automobile frames made of SMAs, it would be possible to 

reverse the damage to the structure by changing temperature alone may be feasible.  Also, 

if superelastic SMAs are used, then the structure could rebound to the undamaged state 

once the loading has ceased.  However, the important factor that has to be taken into 

consideration is the cost of using SMAs in automobile chassis designs.  It is, however, 

possible to use SMAs along with other conventional materials such as Aluminum to 

develop a suitable composite.  After proper thermomechanical treatment the NiTiNOL 

composite can be trained to absorb deformations within allowable limits (not greater than 

11% strain).  Also, using SMAs like NiTiNOL could affect corrosion behavior of frames 

for automobiles especially in areas where salt is a problem during winter months.  When 

properly engineered from a structural and metallurgical point of view, it is possible to 

employ SMAs (particularly NiTiNOL) in automotive chassis designs. 

Also, utilizing unique properties of SMAs, new energy storage devices can be 

developed.  These devices would have potentially high energy to volume ratios which 

would make them favorable for any application that is space/size-conscious. 
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The discussion presented in this Section, particularly the potential use of SMAs in 

automotive chassis design in order to absorb impact energy and also to utilize the shape 

recovery aspect of this unique engineering alloy, are just some of possible applications 

that have not, in my opinion, been adequately explored and implemented heretofore. 
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APPENDIX A.  FEM analysis 

The following file represents a typical output generated by FEMLAB®.  This file 

was generated for a NiTiNOL sample undergoing a thermomechanical phase 

transformation.  Based on this analysis, the temperature dependent resonant frequencies 

were compared to measured values from OEH. 

 

% FEMLAB Model M-file 
% Generated by FEMLAB 3.1i (FEMLAB 3.1.0.163, $Date: 2005/04/07 13:19:21 
$) 
  
flclear fem 
  
% Femlab version 
clear vrsn 
vrsn.name = 'FEMLAB 3.1'; 
vrsn.ext = 'i'; 
vrsn.major = 0; 
vrsn.build = 163; 
vrsn.rcs = '$Name:  $'; 
vrsn.date = '$Date: 2005/04/07 13:19:21 $'; 
fem.version = vrsn; 
  
% Geometry 
g1=block3('2.25e-3','25.4e-3','0.5e-
3','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
clear s 
s.objs={g1}; 
s.name={'BLK1'}; 
s.tags={'g1'}; 
  
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
  
% (Default values are not included) 
  
% Application mode 1 
clear appl 
appl.mode.class = 'SmeSolid3'; 
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appl.module = 'SME'; 
appl.gporder = 4; 
appl.cporder = 2; 
appl.assignsuffix = '_solid3'; 
clear prop 
prop.analysis='eigen'; 
appl.prop = prop; 
clear bnd 
bnd.Hx = {0,1}; 
bnd.Hy = {0,1}; 
bnd.Hz = {0,1}; 
bnd.ind = [1,2,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.E = 35e9; 
equ.rho = 6500; 
equ.ind = [1]; 
appl.equ = equ; 
fem.appl{1} = appl; 
fem.border = 1; 
  
% Multiphysics 
fem=multiphysics(fem); 
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The following file represents a typical output file generated by FEMLAB®.  This 

file was generated for a NiTiNOL based composite.  Based on this analysis the 

temperature dependent resonant frequencies were compared to measured values from 

OEH. 

 

% COMSOL Multiphysics Model M-file 
% Generated by COMSOL 3.2 (COMSOL 3.2.0.222, $Date: 2005/09/01 18:02:30 
$) 
  
% (Default values are not included) 
  
% Application mode 1 
clear appl 
appl.mode.class = 'SmeSolid3'; 
appl.module = 'SME'; 
appl.shape = {}; 
appl.gporder = {}; 
appl.cporder = {}; 
appl.sshape = 2; 
appl.assignsuffix = '_smsld'; 
clear prop 
prop.analysis='eigen'; 
appl.prop = prop; 
clear pnt 
pnt.Hy = {}; 
pnt.R = {}; 
pnt.FyAmp = {}; 
pnt.Fx = {}; 
pnt.Hx = {}; 
pnt.FzPh = {}; 
pnt.H = {}; 
pnt.Hz = {}; 
pnt.constrcoord = {}; 
pnt.Rz = {}; 
pnt.FxAmp = {}; 
pnt.Fz = {}; 
pnt.Rx = {}; 
pnt.loadcoord = {}; 
pnt.Ry = {}; 
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pnt.FxPh = {}; 
pnt.Fy = {}; 
pnt.FzAmp = {}; 
pnt.constrtype = {}; 
pnt.name = {}; 
pnt.FyPh = {}; 
pnt.ind = []; 
appl.pnt = pnt; 
clear edg 
edg.Hy = {}; 
edg.R = {}; 
edg.FyAmp = {}; 
edg.Fx = {}; 
edg.Hx = {}; 
edg.FzPh = {}; 
edg.H = {}; 
edg.Hz = {}; 
edg.constrcoord = {}; 
edg.Rz = {}; 
edg.FxAmp = {}; 
edg.Fz = {}; 
edg.Rx = {}; 
edg.loadcoord = {}; 
edg.Ry = {}; 
edg.FxPh = {}; 
edg.Fy = {}; 
edg.FzAmp = {}; 
edg.constrtype = {}; 
edg.name = {}; 
edg.FyPh = {}; 
edg.ind = []; 
appl.edg = edg; 
clear bnd 
bnd.Hy = {}; 
bnd.R = {}; 
bnd.FyAmp = {}; 
bnd.Fx = {}; 
bnd.Hx = {}; 
bnd.FzPh = {}; 
bnd.H = {}; 
bnd.Hz = {}; 
bnd.constrcoord = {}; 
bnd.Rz = {}; 
bnd.FxAmp = {}; 
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bnd.Fz = {}; 
bnd.Rx = {}; 
bnd.loadcoord = {}; 
bnd.Ry = {}; 
bnd.FxPh = {}; 
bnd.Fy = {}; 
bnd.FzAmp = {}; 
bnd.constrtype = {}; 
bnd.name = {}; 
bnd.FyPh = {}; 
bnd.ind = []; 
appl.bnd = bnd; 
clear equ 
equ.C10 = {}; 
equ.betadK = {}; 
equ.FyAmp = {}; 
equ.FzPh = {}; 
equ.Sys = {}; 
equ.Hz = {}; 
equ.Tflag = {}; 
equ.ETiso = {}; 
equ.syzi = {}; 
equ.alphavector = {}; 
equ.FxAmp = {}; 
equ.sxzi = {}; 
equ.Ey = {}; 
equ.syi = {}; 
equ.Rx = {}; 
equ.ezi = {}; 
equ.szi = {}; 
equ.nuxy = {}; 
equ.ini_strain = {}; 
equ.ETkin = {}; 
equ.FyPh = {}; 
equ.alpha = {}; 
equ.D = {}; 
equ.mu = {}; 
equ.alphadM = {}; 
equ.R = {}; 
equ.Tempref = {}; 
equ.Hx = {}; 
equ.rho = {}; 
equ.Gxy = {}; 
equ.Ez = {}; 
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equ.Shard = {}; 
equ.exzi = {}; 
equ.nuyz = {}; 
equ.Syfunc_kin = {}; 
equ.mixedform = {}; 
equ.FxPh = {}; 
equ.ini_stress = {}; 
equ.Ex = {}; 
equ.yieldtype = {}; 
equ.dinit = {}; 
equ.exi = {}; 
equ.init = {}; 
equ.Fx = {}; 
equ.sxyi = {}; 
equ.hardeningmodel = {}; 
equ.H = {}; 
equ.cporder = {}; 
equ.Rz = {}; 
equ.materialcoord = {}; 
equ.eyzi = {}; 
equ.alphax = {}; 
equ.materialmodel = {}; 
equ.loadcoord = {}; 
equ.Ry = {}; 
equ.nuxz = {}; 
equ.usage = {}; 
equ.FzAmp = {}; 
equ.nu = {}; 
equ.kappa = {}; 
equ.constrtype = {}; 
equ.name = {}; 
equ.sxi = {}; 
equ.hypertype = {}; 
equ.Hy = {}; 
equ.Temp = {}; 
equ.Gyz = {}; 
equ.Syfunc = {}; 
equ.constrcoord = {}; 
equ.isodata = {}; 
equ.Fz = {}; 
equ.gporder = {}; 
equ.Gxz = {}; 
equ.alphay = {}; 
equ.C01 = {}; 
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equ.exyi = {}; 
equ.Fy = {}; 
equ.alphaz = {}; 
equ.eyi = {}; 
equ.E = {}; 
equ.ind = []; 
appl.equ = equ; 
fem.appl{1} = appl; 
fem.sdim = {'x','y','z'}; 
fem.border = 1; 
fem.units = 'SI'; 
  
% Multiphysics 
fem=multiphysics(fem); 
% COMSOL Multiphysics Model M-file 
% Generated by COMSOL 3.2 (COMSOL 3.2.0.222, $Date: 2005/09/01 18:02:30 
$) 
  
% Geometry 
g1=block3('30e-3','30e-3','0.6e-
3','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g2=block3('2.25e-3','29.5e-3','0.5e-3','base','corner','pos',{'2.25e-3','0.1e-
3','0'},'axis',{'0','0','1'},'rot','0'); 
clear g2 
g3=block3('2.25e-3','29e-3','0.5e-3','base','corner','pos',{'2.25e-3','0.5e-
3','0'},'axis',{'0','0','1'},'rot','0'); 
garr=geomarrayr(g3,2.25e-3,0,0,1,1,1); 
[g4]=deal(garr{:}); 
garr=geomarrayr(g3,2.25e-3,0,0,4,1,1); 
[g5,g6,g7,g8]=deal(garr{:}); 
clear g6 g7 g8 
garr=geomarrayr(g3,4.5e-3,0,0,4,1,1); 
[g9,g10,g11,g12]=deal(garr{:}); 
garr=geomarrayr(g10,4.5e-3,0,0,3,1,1); 
[g13,g14,g15]=deal(garr{:}); 
garr=geomarrayr(g11,4.5e-3,0,0,3,1,1); 
[g16,g17,g18]=deal(garr{:}); 
garr=geomarrayr(g12,4.5e-3,0,0,3,1,1); 
[g19,g20,g21]=deal(garr{:}); 
g22=block3('30e-3','30e-3','0.25e-
3','base','corner','pos',{'0','0','0.5'},'axis',{'0','0','1'},'rot','0'); 
clear g22 
g23=block3('30e-3','30e-3','0.25e-3','base','corner','pos',{'0','0','0.5e-
3'},'axis',{'0','0','1'},'rot','0'); 
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g24=geomcomp({g1,g3,g10,g11,g12,g14,g15,g17,g18,g20,g21,g23},'ns',{'BLK1','
BLK2','BLK3','BLK4','BLK5','BLK6','BLK7','BLK8','BLK9','BLK10','BLK11','BLK12'},
'sf','BLK1+BLK2+BLK3+BLK4+BLK5+BLK6+BLK7+BLK8+BLK9+BLK10+BLK11
+BLK12','face','none','edge','all'); 
clear s 
s.objs={g24}; 
s.name={'CO1'}; 
s.tags={'g24'}; 
  
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
  
% Initialize mesh 
fem.mesh=meshinit(fem); 
  
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hmaxfact',5, ... 
                  'hcurve',1, ... 
                  'hgrad',2, ... 
                  'hcutoff',0.07, ... 
                  'hnarrow',0.1); 
  
% (Default values are not included) 
  
% Application mode 1 
clear appl 
appl.mode.class = 'SmeSolid3'; 
appl.module = 'SME'; 
appl.gporder = 4; 
appl.cporder = 2; 
appl.border = 'on'; 
appl.assignsuffix = '_smsld'; 
clear prop 
prop.analysis='eigen'; 
appl.prop = prop; 
clear bnd 
bnd.Hy = {0,1}; 
bnd.Hx = {0,1}; 
bnd.Hz = {0,1}; 
bnd.ind = [1,2,1,1,2,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1, ... 
  1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
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equ.alpha = {'mat2_alpha',1.2e-5}; 
equ.rho = {'mat2_rho',6100}; 
equ.E = {'mat2_E',35e9}; 
equ.ind = [1,1,1,2,2,2,2,2,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
fem.border = 1; 
fem.units = 'SI'; 
  
% Library materials 
clear lib 
lib.mat{1}.name='POLYMERS'; 
lib.mat{1}.varname='mat1'; 
lib.mat{2}.name='Polythene'; 
lib.mat{2}.varname='mat2'; 
lib.mat{2}.variables.k='0.38'; 
lib.mat{2}.variables.epsilonr='2.3'; 
lib.mat{2}.variables.rho='2200'; 
lib.mat{2}.variables.C='1900'; 
lib.mat{2}.variables.alpha='150e-6'; 
lib.mat{2}.variables.E='1e9'; 
  
  
fem.lib = lib; 
  
% Multiphysics 
fem=multiphysics(fem); 
  
% Extend mesh 
fem.xmesh=meshextend(fem); 
  
% Solve problem 
fem.sol=femeig(fem, ... 
               'symmetric','on', ... 
               'solcomp',{'w','u','v'}, ... 
               'outcomp',{'w','u','v'}, ... 
               'linsolver','spooles'); 
  
% Save current fem structure for restart purposes 
fem0=fem; 
  
% Plot solution 
postplot(fem, ... 
         'slicedata',{'mises_smsld','cont','internal'}, ... 
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         'slicexspacing',5, ... 
         'sliceyspacing',0, ... 
         'slicezspacing',0, ... 
         'slicemap','jet(1024)', ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=199.794712    Slice: von Mises stress [N/m^2]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[1.49999996647239,1.49999996647239,21.2540172660291], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetmap','jet(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=199.794712    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[1.49999996647239,1.49999996647239,21.2540172660291], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle',[1.0,0.0,0.0], ... 
         'tetfacestyle',[1.0,0.0,0.0], ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=199.794712    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[1.49999996647239,1.49999996647239,21.2540172660291], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
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% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle',[1.0,0.0,0.0], ... 
         'tetfacestyle',[1.0,0.0,0.0], ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=199.794712    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[1.49999996647239,1.49999996647239,21.2540172660291], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=199.794712    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[15.6744133791513,4.31113380483847,15.5721109009936], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=199.794712    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
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         'refine',3, ... 
         'grid','on', ... 
         'campos',[15.6744133791513,4.31113380483847,15.5721109009936], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% (Default values are not included) 
  
% Application mode 1 
clear appl 
appl.mode.class = 'SmeSolid3'; 
appl.module = 'SME'; 
appl.gporder = 4; 
appl.cporder = 2; 
appl.border = 'on'; 
appl.assignsuffix = '_smsld'; 
clear prop 
prop.analysis='eigen'; 
appl.prop = prop; 
clear bnd 
bnd.Hy = {0,1}; 
bnd.Hx = {0,1}; 
bnd.Hz = {0,1}; 
bnd.ind = [1,2,1,1,2,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1, ... 
  1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.alpha = {'mat2_alpha',1.2e-5}; 
equ.rho = {'mat2_rho',6100}; 
equ.E = {'mat2_E',83e9}; 
equ.ind = [1,1,1,2,2,2,2,2,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
fem.border = 1; 
fem.units = 'SI'; 
  
% Library materials 
clear lib 
lib.mat{1}.name='POLYMERS'; 
lib.mat{1}.varname='mat1'; 
lib.mat{2}.name='Polythene'; 
lib.mat{2}.varname='mat2'; 
lib.mat{2}.variables.k='0.38'; 
lib.mat{2}.variables.epsilonr='2.3'; 
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lib.mat{2}.variables.rho='2200'; 
lib.mat{2}.variables.C='1900'; 
lib.mat{2}.variables.alpha='150e-6'; 
lib.mat{2}.variables.E='1e9'; 
  
  
fem.lib = lib; 
  
% Multiphysics 
fem=multiphysics(fem); 
  
% Extend mesh 
fem.xmesh=meshextend(fem); 
  
% Solve problem 
fem.sol=femeig(fem, ... 
               'init',fem0.sol, ... 
               'symmetric','on', ... 
               'solcomp',{'w','u','v'}, ... 
               'outcomp',{'w','u','v'}, ... 
               'linsolver','spooles'); 
  
% Save current fem structure for restart purposes 
fem0=fem; 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=288.99397    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[20.6683403622737,0.288884983596204,9.05129675057639], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
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         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=288.99397    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[-7.38612811726988,20.5400010266473,-2.90455577646462], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',2, ... 
         'title','eigfreq_smsld(2)=663.607032    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[-9.71420853748234,-13.1133135887016,10.7742546339652], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',3, ... 
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         'title','eigfreq_smsld(3)=1433.38055    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[-9.71420853748234,-13.1133135887016,10.7742546339652], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',4, ... 
         'title','eigfreq_smsld(4)=1985.632885    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[-9.71420853748234,-13.1133135887016,10.7742546339652], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',5, ... 
         'title','eigfreq_smsld(5)=2561.548168    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[-9.71420853748234,-13.1133135887016,10.7742546339652], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
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% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum','end', ... 
         'title','eigfreq_smsld(6)=2883.11276    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[-9.71420853748234,-13.1133135887016,10.7742546339652], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=288.99397    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',3, ... 
         'grid','on', ... 
         'campos',[1.50137806558632,1.50190852582455,21.4797746155987], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hmaxfact',1.5, ... 
                  'hcurve',0.7, ... 
                  'hgrad',1.6, ... 
                  'hcutoff',0.04, ... 
                  'hnarrow',0.4); 
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% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hmaxfact',3, ... 
                  'hcurve',0.9, ... 
                  'hgrad',1.85, ... 
                  'hcutoff',0.06, ... 
                  'hnarrow',0.2); 
  
% (Default values are not included) 
  
% Application mode 1 
clear appl 
appl.mode.class = 'SmeSolid3'; 
appl.module = 'SME'; 
appl.gporder = 4; 
appl.cporder = 2; 
appl.border = 'on'; 
appl.assignsuffix = '_smsld'; 
clear prop 
prop.analysis='eigen'; 
appl.prop = prop; 
clear bnd 
bnd.Hy = {0,1}; 
bnd.Hx = {0,1}; 
bnd.Hz = {0,1}; 
bnd.ind = [1,2,1,1,2,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1, ... 
  1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.alpha = {'mat2_alpha',1.2e-5}; 
equ.rho = {'mat2_rho',6100}; 
equ.E = {'mat2_E',83e9}; 
equ.ind = [1,1,1,2,2,2,2,2,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
fem.border = 1; 
fem.units = 'SI'; 
  
% Library materials 
clear lib 
lib.mat{1}.name='POLYMERS'; 
lib.mat{1}.varname='mat1'; 
lib.mat{2}.name='Polythene'; 
lib.mat{2}.varname='mat2'; 
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lib.mat{2}.variables.k='0.38'; 
lib.mat{2}.variables.epsilonr='2.3'; 
lib.mat{2}.variables.rho='2200'; 
lib.mat{2}.variables.C='1900'; 
lib.mat{2}.variables.alpha='150e-6'; 
lib.mat{2}.variables.E='1e9'; 
  
  
fem.lib = lib; 
  
% Multiphysics 
fem=multiphysics(fem); 
  
% Extend mesh 
fem.xmesh=meshextend(fem); 
  
% Solve problem 
fem.sol=femeig(fem, ... 
               'symmetric','on', ... 
               'solcomp',{'w','u','v'}, ... 
               'outcomp',{'w','u','v'}, ... 
               'linsolver','spooles'); 
  
% Save current fem structure for restart purposes 
fem0=fem; 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',1, ... 
         'title','eigfreq_smsld(1)=276.64623    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',2, ... 
         'grid','on', ... 
         'campos',[1.50137806558632,1.50190852582455,21.4797746155987], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
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% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',2, ... 
         'title','eigfreq_smsld(2)=636.891527    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',2, ... 
         'grid','on', ... 
         'campos',[-19.6042568756794,-2.32970986843558,-0.173707513872505], 
... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
  
% Plot solution 
postplot(fem, ... 
         'tetdata',{'disp_smsld','cont','internal'}, ... 
         'tetedgestyle','none', ... 
         'tetfacestyle','flat', ... 
         'tetmap','hot(1024)', ... 
         'tetkeep',1, ... 
         'tetkeeptype','random', ... 
         'deformsub',{'u','v','w'}, ... 
         'solnum',3, ... 
         'title','eigfreq_smsld(3)=1327.102865    Subdomain: Total displacement [m]   
Deformation: Displacement [m]', ... 
         'refine',2, ... 
         'grid','on', ... 
         'campos',[-0.39730332349301,-16.1328969016632,12.0937969680868], ... 
         'transparency',0.10000000000000014, ... 
         'renderer','opengl'); 
% COMSOL Multiphysics Model M-file 
% Generated by COMSOL 3.2 (COMSOL 3.2.0.222, $Date: 2005/09/01 18:02:30 
$) 
  
% Geometry 
g24=rotate(g24,4.71238898038469,[0,0,1],[0,0,0]); 
clear s 
s.objs={g24}; 
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s.name={'CO1'}; 
s.tags={'g24'}; 
  
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
  
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hmaxfact',3, ... 
                  'hcurve',0.9, ... 
                  'hgrad',1.85, ... 
                  'hcutoff',0.06, ... 
                  'hnarrow',0.2); 
  
% (Default values are not included) 
  
% Application mode 1 
clear appl 
appl.mode.class = 'SmeSolid3'; 
appl.module = 'SME'; 
appl.gporder = 4; 
appl.cporder = 2; 
appl.border = 'on'; 
appl.assignsuffix = '_smsld'; 
clear prop 
prop.analysis='eigen'; 
appl.prop = prop; 
clear bnd 
bnd.Hy = {0,1}; 
bnd.Hx = {0,1}; 
bnd.Hz = {0,1}; 
bnd.ind = [2,1,1,2,1,1,2,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1, ... 
  1,1,1,2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.alpha = {'mat2_alpha',1.2e-5}; 
equ.rho = {'mat2_rho',6100}; 
equ.E = {'mat2_E',83e9}; 
equ.ind = [1,1,1,2,2,2,2,2,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
fem.border = 1; 
fem.units = 'SI'; 
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% Library materials 
clear lib 
lib.mat{1}.name='POLYMERS'; 
lib.mat{1}.varname='mat1'; 
lib.mat{2}.name='Polythene'; 
lib.mat{2}.varname='mat2'; 
lib.mat{2}.variables.k='0.38'; 
lib.mat{2}.variables.epsilonr='2.3'; 
lib.mat{2}.variables.rho='2200'; 
lib.mat{2}.variables.C='1900'; 
lib.mat{2}.variables.alpha='150e-6'; 
lib.mat{2}.variables.E='1e9'; 
  
  
fem.lib = lib; 
  
% Multiphysics 
fem=multiphysics(fem); 
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APPENDIX B.  G-code for manufacturing NiTiNOL based composites using HASS® 
V5 series CNC machining center 

 

This Appendix lists the G-code that was used to machine the NiTiNOL-polymide, 

and NiTiNOL-Al composites using the HASS® V5 CNC machining center.  The G-code 

is the standard CNC programming protocol (Hass®, 2001). 

 

 
O55( PROGRAM, MIZARSAMPLE.NCF) 
 
( FORMAT, HAAS WPI MILL.PST ) 
 
( 04/31/04 AT  3:59 PM ) 
 
( OUTPUT IN ABSOLUTE INCHES ) 
 
( PARTS PROGRAMMED, 1 ) 
 
( FIRST TOOL NOT IN SPINDLE ) 
 
N1G0G17G40G80G90G54 
 
G49G53Z0 
 
T1M6 
 
( OPERATION 1, CONTOUR ) 
 
( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G54G90G0X0.Y.8548S3000M3 
 
G43Z2.H1M8 
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Z.1 
 
G1Z-.02F10. 
 
G42X8.05F20.D51 
 
G40X8.175 
 
G0Z.1 
 
( OPERATION 2, CONTOUR ) 
 
( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G90G0X0.Y.8173 
 
G1Z-.02F10. 
 
G41X8.05F20.D51 
 
G40X8.175 
 
G0Z.1 
 
( OPERATION 3, CONTOUR ) 
 
( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G90G0X0.Y.6458 
 
G1Z-.02F10. 
 
G42X8.05F20.D51 
 
G40X8.175 
 
G0Z.1 
 
( OPERATION 4, CONTOUR ) 
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( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G90G0X0.Y.6083 
 
G1Z-.02F10. 
 
G41X8.05F20.D51 
 
G40X8.175 
 
G0Z.1 
 
( OPERATION 5, CONTOUR ) 
 
( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G90G0X0.Y.4368 
 
G1Z-.02F10. 
 
G42X8.05F20.D51 
 
G40X8.175 
 
G0Z.1 
 
( OPERATION 6, CONTOUR ) 
 
( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G90G0X0.Y.3993 
 
G1Z-.02F10. 
 
G41X8.05F20.D51 
 
G40X8.175 
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G0Z.1 
 
( OPERATION 7, CONTOUR ) 
 
( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G90G0X0.Y.2278 
 
G1Z-.02F10. 
 
G42X8.05F20.D51 
 
G40X8.175 
 
G0Z.1 
 
( OPERATION 8, CONTOUR ) 
 
( WORKGROUP ) 
 
( TOOL 1, .0625 FINISH ENDMILL ) 
 
G90G0X0.Y.1902 
 
G1Z-.02F10. 
 
G41X8.05F20.D51 
 
G40X8.175 
 
G0Z.1 
 
M9 
 
G91G28Z0.M19 
 
G49G53Z0 
 
M30 
 
% 
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( FILE LENGTH, 1391 CHARACTERS ) 
 
( FILE LENGTH, 11.88 FEET ) 
 
( FILE LENGTH, 3.69 METERS ) 
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APPENDIX C.  Simulation of G-code using GIBBSCAM® 

A screen shot from GIBBSCAM® software that is used to simulate the G-code 

(presented in Appendix B) is presented in this Appendix, Fig. C.1.  This simulation aides 

in testing accuracy of the parameters included in the G-code. 

 
Fig. C.1.  Screenshot of G-code simulation from GIBBSCAM®. 
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APPENDIX D.  Analysis report for X-ray analysis (EDS) on NiTiNOL from SEM 
 

This Appendix provides the analysis report obtained from the SEM.  EDS was 

used to determine the stoichiometry of NiTiNOL. 

 

[A N A L Y S I S  R E P O R T]

GENERAL CONDITIONS
------------------
  Result File       : NITI21500X
  File Version      : 1
  Background Method : Fit
  Decon Method      : Gaussian
  Decon ChiSquared  : 1.40
  Analysis Date     : 19-FEB-99
  Microscope        : SEM
  Comments          :

ANALYSIS CONDITIONS
-------------------
  Quant. Method       : XPP/ASAP
  Acquire Time        : 100 secs
  Normalization Factor: 100.0

SAMPLE CONDITIONS
-----------------
  kV                     : 15.0
  Beam Current           : 0.0 picoAmps
  Working Distance       : 0.0 mm
  Tilt Angle             : 0.0 Degrees
  TakeOff Angle          : 35.0 Degrees
  Solid Angle*BeamCurrent: 0.0

Element Line Weight% K-Ratio Cnts/s Atomic%
---------------------------------------------------------
O Ka   0.00 0.0000   0.00   0.00
Al Ka   0.13 0.0007   3.97   0.26
Si Ka   0.32 0.0021  11.82   0.62
Ti Ka  42.88 0.4260 934.71  47.70
Ni Ka  56.66 0.5537 382.15  51.42

Total  99.99  
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APPENDIX E.  Powder diffraction files for phase identification of XRD spectrum 
for NiTiNOL 

 
 

This Appendix provides standard powder diffraction cards that were used to 

identify the phases from the X-ray spectrum obtained for the NiTiNOL sample.  Table 

F.1 shows the card that was used to identify Austenite peaks in the NiTiNOL sample, and 

Table F.2 shows the card used to identify the Martensite peaks in the NiTiNOL sample. 

 
 

 Table.F.1.  18-899 NiTiNOL 2 C Austenite. 
d. 2.11 1.22 1.50 2.11 NiTiNOL 2 C

…
 Nickel 

Titanium 
I/I1 100 60 40 100  

Rad. CuKα 1  λ  1.54050 Filter Ni   Dia  114.6 
mm 

d. A I/I1 Hkl 

Sys. Cubic  Ref: Dwight, Trans. A.I.M.E 215 
283 (1959) 

ao = 2.998 , CsCl type 

2.111 
1.496 
1.222 
1.059 
0.948 
0.865 
0.801

2 

100 
40 
60 
10 
30 
20 
70 

110 
200 
211 
220 
310 
222 
321 
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Table F.2.  35 – 1281 NiTiNOL (Nickel Titanium) Martensite. 
Rad. CuKα 1  λ  1.54178  d. A Int Hkl 

Sys. Monoclinic  Ref: Dwight, Trans. A.I.M.E 
215 283 (1959) 

a = 2.998 ,  b = 4.622, c = 4.120  Obt’d from 
50 ± 0.01 
atomic % Ni, balance Ti. Hot rolled and 
annealed at 
973ºK for 4 hours. C.D cell a = 4.622, b = 
4.120, c = 2.885, β  = 96.80, a/b = 1.1218, c/b 
= 0.7002 
F21 = 114.9 (0.009, 21) 

4.59 
3.066 
2.865 
2.570 
2.352 
2.311 
2.295 
2.181 
2.060 
2.016 
2.005 
1.904 
1.879 
1.728 
1.696 
1.673 
1.607 
1.568 
1.538 
1.533 
1.530 

6 
1 

<1 
13 
11 
2 
54 
100 
54 
94 
26 
1 

<1 
8 

<1 
<1 
5 

<1 
1 
26 
1 

010 
011 
100 
1 1 0 
101 
110 
020 
1 1 1 
002 
111 
021 
1 2 0 
012 
1 2 1 
120 
102 
1 1 2 
121 
112 
022 
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APPENDIX F.  Additional results from OEH 
 

Additional results from OEH pertaining to determination of the modulus of 

elasticity are presented in this Appendix.  The experiments were repeated to check for 

repeatability of measurements and the experiments were repeated for active lengths of L 

= 39.85 mm, L = 28.82 mm, and for L = 25.0 mm.  Results in addition to those presented 

in Chapter 8 are presented for each of these active lengths indicating the temperature 

dependence of the modulus of elasticity.  The temperature dependence of the average 

modulus for each of the active lengths is also presented.  Figure F.1 represents the 

temperature dependence of NiTiNOL for an active length L = 39.85 mm. 
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Fig. F.1.  Modulus of elasticity of NiTiNOL as a function of temperature, based on 

the first four bending modes of 39.85 mm long sample. 
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Figures F.2 and F.3 indicate temperature dependence of the modulus of elasticity 

for active lengths of L = 28.82 mm, and L = 25.0 mm, respectively.  Figure F.4 indicates 

the temperature dependence of the average modulus of elasticity for all three active 

lengths. 

 

30

35

40

45

50

55

60

65

70

75

80

-20 0 20 40 60 80 100 120 140 160 180 200
TEMPERATURE, ºC

EB4, GPa
EB1, GPa
EB2, GPa
EB3, GPa
EB4, GPa

M
O

D
U

LU
S

 O
F 

E
LA

S
TI

C
IT

Y
, G

Pa

Heating

Cooling

Fig. F.2.  Modulus of elasticity of NiTiNOL as a function of temperature, based on 
the first four bending modes of 28.82 mm long sample. 
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 Fig. F.3.  Modulus of elasticity of NiTiNOL as a function of temperature, based 
on the first four bending modes of 25.0 mm long sample. 
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Fig. F.4.  Average modulus of elasticity of NiTiNOL  

as a function of temperature for all three lengths. 
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APPENDIX G.  Thermomechanical response of NiTiNOL-polymide composite 
 

As discussed in Chapters 7 and 8, OEH was used to obtain frequency response of 

the composite made of a polymide matrix with embedded NiTiNOL fibers.  Additional 

runs were performed to determine repeatability of the measurements.  It was observed 

that the results were consistent with each other and cycling did not have a noticeable 

effect.  The runs were conducted to only 100ºC in order to prevent sofenting of the 

polymide matrix.  The composite was measured (cycled) five times and the results 

obtained are presented in this Section.  Figure G.1 represents frequency response of the 

NiTiNOL as a function of temperature. 
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Fig. G.1.  Thermomechanical response of a 30 mm by 30 mm NiTiNOL-polymide 

composite as measured by OEH: Run 02 (Run 01 is included in Chapter 8). 
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The TT is at around 60ºC.  The loop that is encompassed between the heat and 

cool fibers cycles is attributed to hysteresis on the NiTiNOL.  Hysteresis is related to 

energy absorbed during the course of phase transformation.  Figures G.2 and G.3 

represent the frequency response of the NiTiNOL-polymide composite after the third and 

the fourth run cycle (i.e., repetition), respectively.  It is interesting to observe that there is 

not much evidence of a shift in the TT for the NiTiNOL.  This could be because of the 

fact that the NiTiNOL fibers are not cycled long enough (on the basis of temperature) for 

the phase transformation to be complete. 
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Fig. G.2.  Thermomechanical response of a 30 mm by 30 mm NiTiNOL-polymide 

composite as measured by OEH: Run 03 (Run 01 is included in Chapter 8). 
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Fig. G.3.  Thermomechanical response of a 30 mm by 30 mm NiTiNOL-polymide 

composite as measured by OEH: Run 04 (Run 01 is included in Chapter 8). 
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APPENDIX H.  Dynamic stiffness determination of NiTiNOL-polymide composite 

As discussed in Chapters 7 and 8, the dynamic stiffness D11 can be calculated 

from measured resonant frequencies from OEH.  This Appendix provides results obtained 

for a NiTiNOL-polymide composite with dimensions of 30 mm by 30 mm.  Figures H.1 

and H.2 represent temperature variations of the dynamic stiffness D11 of the composite. 
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Fig. H.1.  Dynamic stiffness of a 30 mm by 30 mm NiTiNOL-polymide 

composite as measured by OEH (Run 01). 
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Fig. H.2.  Dynamic stiffness of a 30 mm by 30 mm NiTiNOL-polymide 
composite as measured by OEH (Run 02). 
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APPENDIX I.  Uncertainty analysis (additional results) 

 

Uncertainty analysis is discussed in Chapter 4.  Also temperature dependence of 

the uncertainty in the modulus of elasticity is presented for the active length L = 39.85 

mm.  Additional results on the temperature dependency of the modulus of elasticity were 

presented in Appendix F.  The uncertainty analysis was performed on the average 

modulus of elasticity.  The average modulus for each active length can be written 

mathematically as 

1 2 3 4

4
B B B B

AVG
E E E EE + + +

=  ,      (G.1) 

where AVGE is the average modulus of elasticity, 1 2 3 4, , ,and  EB B B BE E E  represent the 

moduli of elasticity determined from the first, second, third, and the fourth bending 

modes, respectively.   

 Figures I.1 and I.2 represent temperature dependence of the uncertainty in the 

modulus of elasticity for the active lengths of L = 28.82 mm and L = 25.0 mm, 

respectively.  The average modulus of elasticity was calculated based on Eq. I.1.  Based 

on the results obtained, the uncertainty in the modulus of elasticity was  determined to be 

± 500 MPa, and the total change of the modulus of elasticity was 1 GPa.  The maximum 

contribution to the uncertainty in the modulus of elasticity came from the length of the 

samples. 

In addition, the uncertainty in modulus of elasticity was also determined based on 

the RSS principle for the NiTiNOL-Al composite.  Results obtained are shown in  
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Fig. I.2. 
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Fig. I.1.  Temperature dependence of the uncertainty in the modulus of elasticity 
  for an active length of L = 28.82 mm. 
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Fig. I.2.  Temperature dependence of the uncertainty in the dynamic stiffness for a 
NiTiNOL-Al composite of 30 mm by 30mm. 
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APPENDIX J.  Comparison of results from FEM and OEH 

 

Results from OEH and FEM were presented in Chapter 8.  This Appendix 

presents a comparison between results obtained for an active length of L = 30.76 mm 

using a 4-noded thin shell element for the FEM analysis with a mesh density of 360 

elements.  The OEH experiment was conducted from -20ºC to 200ºC at temperature 

intervals of 20ºC.  Figures J.1 through J.4 represent a comparison between experimental 

(OEH) and computational (FEM) results for the first four bending modes for a active 

length of L = 30.76 mm. 
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Fig.  J.1.  Comparison between FEM and OEH for a active length of 

L = 30.76 mm for the first bending mode. 
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Fig.  J.3.  Comparison between FEM and OEH for a NiTiNOL-polymide 

composite 30 mm by 30 mm. 
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Fig.  J.4.  Comparison between FEM and OEH for a NiTiNOL-Al  

composite 30 mm by 30 mm. 
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