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Abstract

In the last decade, multi-threaded systems and resource sharing have brought a
number of technologies that facilitate our daily tasks in a way we never imagined.
Among others, cloud computing has emerged to offer us powerful computational
resources without having to physically acquire and install them, while smartphones
have almost acquired the same importance desktop computers had a decade ago.
This has only been possible thanks to the ever evolving performance optimization
improvements made to modern microarchitectures that efficiently manage concur-
rent usage of hardware resources. One of the aforementioned optimizations is the
usage of shared Last Level Caches (LLCs) to balance different CPU core loads and
to maintain coherency between shared memory blocks utilized by different cores.
The latter for instance has enabled concurrent execution of several processes in low
RAM devices such as smartphones.

Although efficient hardware resource sharing has become the de-facto model for
several modern technologies, it also poses a major concern with respect to security.
Some of the concurrently executed co-resident processes might in fact be malicious
and try to take advantage of hardware proximity. New technologies usually claim to
be secure by implementing sandboxing techniques and executing processes in isolated
software environments, called Virtual Machines (VMs). However, the design of these
isolated environments aims at preventing pure software-based attacks and usually
does not consider hardware leakages. In fact, the malicious utilization of hardware
resources as covert channels might have severe consequences to the privacy of the
customers.

Our work demonstrates that malicious customers of such technologies can utilize
the LLC as the covert channel to obtain sensitive information from a co-resident
victim. We show that the LLC is an attractive resource to be targeted by attackers,
as it offers high resolution and, unlike previous microarchitectural attacks, does not
require core-colocation. Particularly concerning are the cases in which cryptography
is compromised, as it is the main component of every security solution. In this
sense, the presented work does not only introduce three attack variants that can
be applicable in different scenarios, but also demonstrates the ability to recover
cryptographic keys (e.g. AES and RSA) and TLS session messages across VMs,
bypassing sandboxing techniques.

Finally, two countermeasures to prevent microarchitectural attacks in general
and LLC attacks in particular from retrieving fine-grain information are presented.
Unlike previously proposed countermeasures, ours do not add permanent overheads
in the system but can be utilized as preemptive defenses. The first identifies leakages
in cryptographic software that can potentially lead to key extraction, and thus, can
be utilized by cryptographic code designers to ensure the sanity of their libraries
before deployment. The second detects microarchitectural attacks embedded into



innocent-looking binaries, preventing them from being posted in official application
repositories that usually have the full trust of the customer.
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Chapter 1

Introduction

The rapid increase in transistor densities over the past few decades brought numer-
ous computing applications, previously thought impossible, into the realm of every-
day computing. With dense integration and increased clock rates, heat dissipation
in single core architectures has become a major challenge for processor manufactur-
ers. The design of multi-core architectures has been the method of choice to profit
from further advances in integration, a solution that has shown to substantially
improve the performance over single-core architectures. Lately, the design of multi-
CPU sockets (each allocating multi-core systems) has taken even more advantage of
the benefits of having several Central Processing Units executing different tasks in
parallel.

Despite its many advantages, multi-core and multi-CPU architectures are sus-
ceptible to suffering under bandwidth bottlenecks if the architecture is not designed
properly, especially when more cores are packed into a high-performance system.
Parallelism can only be effective if shared resources are correctly managed, ensuring
their fair distribution. Several components have been designed and added to mod-
ern microarchitecture designs to achieve this goal. A good example are inclusive
Last Level Caches (LLCs), which are shared across multiple CPU cores and aid the
maintenance of cache coherency protocols within the same CPU socket by ensuring
that copies in the upper level caches exist in the LLC.

In fact, it is the aforementioned parallelism that has enabled many of the tech-
nologies we use in a daily basis. For instance, in the last decade we have witnessed
the cloud revolution, which allocates several customers (and their corresponding
workloads) in a single physical machine. The concurrent execution of these num-
ber of processes in the same computer would not be possible without the multi-
core/CPU designs that are common nowadays. Similarly, smartphones are now able
to execute several processes at the same time by running some of them in the back-
ground. This has been possible due to the large adoption that embedded devices
have done of multi-core architectures; modern smartphones not only have several
cores in the same device, but also they started allocating more than one CPU socket.

Although parallelism and resource sharing help to improve the performance,
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they also poses a big risk when it comes to execute untrusted processes alongside
trusted processes. For example, a malicious attacker can take advantage of being
co-resident within a potential victim and execute malicious code in commercial
clouds. Similarly, a malicious application can try to steal sensitive information
from a benign security-critical application, e.g., an online banking application. To
cope with these issues both trusted and untrusted processes are usually executed in
a software isolated environment. IaaS clouds for instance rent expensive hardware
resource to multiple customers by offering guest OS instances sandboxed inside
virtualized machines (VMs). PaaS cloud services go one step further and allow
users to share the application space while sandboxed, e.g. using containers, at
the OS level. Similar sandboxing techniques are used to isolate semi-trusted apps
running on mobile devices. Even browsers use sandboxing to execute untrusted code
without the risk of harming the local host. All these mechanisms have a clear goal in
mind: taking advantage of resource sharing among several applications/users while
isolating each of them to prevent malicious exploitation of the said shared resources.

Despite the widespread adoption of the aforementioned technologies, the robust-
ness of the resource sharing scenarios that they provide have, prior to this work,
yet not being tested against malicious users exploiting hardware covert channels.
While the resistance of these technologies to pure software attacks is usually guar-
anteed, their response to hardware leakage based attacks still remains as an open
question. In the following we will refer to these attacks, which utilize hardware
resources like the cache and the Branch Prediction Unit (BPU) to gain information,
as microarchitectural attacks.

By 2014, only [RTSS09, ZJRR12] were able to succeed on recovering information
from co-resident users in realistics cloud environments utilizing microarchitectural
attacks the first recovers keystrokes across VMs in Amazon EC2, the latter recov-
ers an El Gamal decryption key in a lab virtualization environment. The problem
mostly comes from the fact that these and the rest of the works (except for [YF14])
prior to this thesis only consider core-private covert channels like the L1 cache and
the BPU. Therefore these attacks are only applicable when victim and attacker are
core co-resident. With multi-core systems being the de-facto architectures utilized
not only in high-end servers but also in smarpthone devices, the core co-residency
requirement significantly reduces the applicability of previously known microarchi-
tectural attacks. Further, constant optimization and penalty reduction make core-
private resources difficult to utilize with the amount of noise that regular workloads
introduce. For instance, L1 cache misses and L2 cache hits only differ by a few
cycles while misspredicted branches do not add substantial overhead. It is question-
able whether these covert channels would support the typical amount of noise in
sandboxed scenarios.

It is therefore necessary to investigate whether more powerful and applicable
covert channels can be utilized for unauthorized information extraction. For in-
stance, considering covert channels that do not require core co-location increments
the attack probabilities, as only CPU socket co-residency is needed. This becomes a
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Figure 1.1: Malicious VMs can try to bypass the isolation provided by the hypervi-
sors and steal information from co-resident VMs

crucial fact in, e.g., commercial clouds where core co-residence is hardly unlikely. In
fact, several microarchitectural components are connected not only across cores but
also across CPU sockets. These include, among others, the Last Level Cache (LLC),
the memory bus or the DRAM. All these possible covert channels have to be thor-
oughly investigated to understand their capabilities and to develop the appropriate
countermeasures to prevent their utilization for information theft.

Contributions

This thesis focuses in one of the aforementioned potentially powerful covert chan-
nels, i.e., the LLC. We will show its exploitability under different assumptions and
scenarios. We present three attacks that can take advantage of such a resource,
namely Flush and Reload, Invalidate and Transfer and Prime and Probe. The first
is only applicable across cores and under memory deduplication features, the second
is capable of reaching victims across CPU sockets under the same memory dedupli-
cation assumption, and the latter is able to recover information across cores without
any special requirement.

We show how and where these three attacks can be applied, specifically in sce-
narios where previous attacks had proven to behave poorly. For instance, we show
for the first time how to recover information across VMs located in different cores
with the Flush and Reload attack in VMware. Further, we show that these attacks
can be taken to multi CPU socket machines by applying the Invalidate and Transfer
attack in a 4 CPU socket school server. In addition, this thesis presents the LLC
Prime and Probe attack, applicable in any hypervisor without any special require-
ment (even VMware with updated security features). In fact, we utilize it to recover
a RSA key from a co-resident VM in Amazon EC2, demonstrating the big threat
that cache attacks pose in real world scenarios.

Lastly, we develop two tools that can help at preventing these leakages from
being exploited. However, unlike other proposed countermeasures that add perma-
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nent performance overheads in the system that private companies do not want to
afford, our solutions take a preemptive approach. The first, aims at identifying LLC
leakages in cryptographic code to ensure they are caught before the software reaches
the end users. In particular, we use taint analysis, cache trace analysis and Mutual
Information (MI) to derive whether a cryptographic code leaks or not. We found
alarming results, as 50% of the implementations leaked information for AES, RSA
and ECC algorithms. The second tool, MASCAT, performs a different approach.
With official application stores like Google Play or Microsoft Store raising their
popularity, it is important that the binaries offered by these repositories are mal-
ware safe. Unlike regular malware, e.g. shell code, which might be easily detectable
by modern antivirus tools, microarchitectural attacks are different as they do not
look malicious. MASCAT serves as a microarchitectural attack antivirus, detecting
them inside binaries without having to inspect the source code manually.

Our work resulted in the discovery of several vulnerabilities in existing products
that attackers can take advantage from to steal information belonging to co-resident
victims. As part of our responsibility as researchers, we notified the corresponding
software designers about the vulnerabilities of their solutions. These conversations
lead to several security updates; VMware decided to implement a new salt-based
deduplication mechanism (CVE-2014-3566), Intel modified the RSA implementation
of its cryptographic library (CVE-2016-8100), the Bouncy Castle cryptographic li-
brary re-designed the AES implementation (2016-10003323) and WolfSSL closed
leakages in all AES, RSA and ECC implementations (CVEs 2016-7438, 2016-7439
and 2016-7440). Thus, our investigation played a key role on improving and updat-
ing several up-to-date security solutions that, otherwise, could have compromised
the privacy of their customers.

In summary, this work:

• Demonstrates the applicability of the Flush and Reload attack in virtualized
environments by recovering AES keys across cores in less than a minute

• Shows that cache attacks can go beyond cryptographic algorithms by attacking
three TLS implementations and re-implementing the closed Lucky 13 attack.

• Presents Invalidate and Transfer, a new attack targeting the cache coherency
protocol that works across CPU sockets. We demonstrate its viability by
recovering AES and RSA keys.

• Introduces the LLC Prime and Probe attack that does not require memory
deduplication to succeed. In order to successfully apply the Prime and Probe
attack, a thorough investigation on the architecture of LLCs is performed, in
particular on how cache slices are distributed. We also show how the Prime
and Probe attack succeeds in hypervisors where Flush and Reload was not able
to succeed, e.g., the Xen hypervisor.
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• Shows, for the first time, the applicability of microarchitectural attacks in
commercial clouds. More precisely, we demonstrate how to recover a RSA key
across co-resident VMs in Amazon EC2.

• Presents a cache leakage analysis tool to prevent the design of cryptographic
algorithms form leaking information. We found alarming results, as 50% of the
implementations showed cache leakages that could lead to full key extraction.

• Introduces MASCAT, a tool to detect microarchitectural attacks embedded in
apparently innocent looking binaries. MASCAT serves as a verification pro-
cess for official application distributors that want to ensure the sanity of the
binaries being offered in their repositories.

• proposes fixes (that have been adopted) to all the vulnerabilities discovered in
commercial software due to the previously mentioned contributions.

The rest of the thesis is distributed as follows. Chapter 2 describes the necessary
background to understand the attacks and defenses later developed. Related work,
both prior and concurrent to this thesis is presented in Chapter 3. Chapters 4, 5
and 6 describe the deployment of the Flush and Reload, Invalidate and Transfer
and Prime and Probe respectively. Finally Chapter 7 describes the aforementioned
countermeasures.
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Chapter 2

Background

This thesis includes a large description on how cache attacks can be applied across
cores to recover sensitive information belonging to a co-resident victim. In order to
aid the reader understand the attacks that will later be presented, this chapter gives
an introduction on the typical microarchitecture layout found in modern processors
and the attacks that were proposed prior to this thesis. Further, we give a description
of the most widely used cryptographic algorithms, as they will be under the attack
radar of our microarchitectural attacks in subsequent chapters.

2.1 Side Channel Attacks

Side channel Attacks (SCA) are attacks that take advantage of the leakage coming
from a covert channel during a secure communication. Typical attacks on a direct
channel involve brute forcing the key or social phishing. Instead, side channel attacks
observe additional information stemming from side channels that carry information
about the key. These side channel traces are then processed and correlated to either
obtain the full key or to reduce its search space significantly. Figure 2.1 shows the
overall idea, where two parties are trying to establish an encrypted communica-
tion over an insecure channel. Due to the leakage stemming from unintended side
channels, an attacker can at least try to use that information to obtain the key.

This leakage can come in many forms. Power and Electro Magnetic (EM) leak-
ages are common in embedded devices and smartcards and usually imply having
physical access to the device. Timing attacks can deduce information about a se-
cret distinguishing the overall process time, but they suffer from the huge amount
of noise in modern communication channels (e.g., the internet). microarchitectural
attacks, in general, try to obtain information from the usage of some microarchi-
tectural resource. Although they require physical co-residence with the targeted
process, they do not need physical access to the device. In fact, several scenarios
can arise in which malicious code is executed alongside a potential victim in the
same physical machine. Other leakage forms are less common, e.g. sound or ther-

6



Figure 2.1: Side channel attack scenario. Instead of the direct channel, leakage
coming from side channels are exploited to obtain information about the key. Figure
from [Mic].

mal, but are constantly being studied to increase the applicability of side channel
attacks [KJJ99, BECN+04, KJJR11].

2.2 Computer Microarchitecture

Modern computers execute user specified instructions and data in a Central Pro-
cessing Unit (CPU), store the necessary memory to execute software in DRAM and
interact with the outside world trough peripherals. With a constantly evolving mar-
ket and strong competitors fighting for the same marketplace, efficiency has become
one of the main goals of every microarchitecture designer. In fact, several hardware
resources have been added to the basic microarchitectural components, e.g., caches
or Branch Prediction Units (BPU), to provide a better performance. Further, mod-
ern microarchitectures now embed several processing units in the same processor,
some of which are even capable of processing to threads concurrently. Even further,
lately we have observed the rise of multi-CPU socket computers, in which more
than one CPU sockets are embedded into the same piece of hardware. All these
technological advances have the same goal: offer the end-user the best computing
performance.

A typical microarchitecture design commonly found in modern processors can be
observed in Figure 2.2. The example shows a dual socket CPU, each CPU having
two cores. Each CPU core has private L1 and L2 caches, while they share the Last
Level Cache (LLC). Further each core has its own BPU, in charge of predicting the
outcome of the branches being executed. The communication between the cache
hierarchy and the memory is done through the memory bus, which is also in charge
of maintaining coherency between shared blocks across CPU sockets. Finally, the
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Figure 2.2: Typical microarchitecture layout in modern processors

DRAM stores the necessary instructions and data that the program being executed
needs.

Although each component requires a exhaustive and thorough analysis, we put
our focus in caches, as they are the core component being examined in this thesis.
Nevertheless, some of the functionalities of the aforementioned components will
indeed be described later in greater detail in the thesis when needed.

2.2.1 Hardware Caches

Hardware caches are small memories placed between the DRAM and the CPU cores
to store data and instructions that are likely to be reused soon. When the software
needs a particular memory block, the CPU first checks the cache hierarchy looking
for that memory block. If found, the memory block is fetched from the cache and
the access time is significantly faster. If the memory block was not found in the
cache hierarchy, then it is fetched from the DRAM at the cost of a slower access
time. These two scenarios are often called a cache hit and a cache miss respectively.

At this point the main question is probably how much faster cache accesses are
over DRAM accesses. This can be observed in Figure 2.3, for which we performed
consecutive timed accesses to a L1 and L3 cached memory block and an uncached
memory block in an Intel i5-3320M. The access time for the L1 cache is about 3
cycles, for the L3 cache is around 7 cycles, while an access to the memory takes
around 25 cycles. Thus, an access to the DRAM is about 3 times slower than an
access to the lowest cache level, which gives an idea of the performance improvement
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Figure 2.3: Reload timing distribution when a memory block is loaded from the: L1
cache, L3 cache and memory. The experiments were performed in an Intel i5-3320M.

that the cache hierarchy offers to software execution.
In particular, caches base their functionality in two main principles: spatial

locality and temporal locality. While the first principle states that data residing
close to the data being accessed is likely to be accessed soon, the latter assumes
that recently accessed data is also likely to be accessed soon. Caches accomplish
temporal locality by storing recently accessed memory blocks, and spatial locality by
working with cache lines that load both the needed and neighbor data to the cache.
In consequence, the cache is usually divided into several fixed size cache lines.

However, caches can have very different design characteristics. In the following
we describe how their functionality changes for different design choices.

2.2.1.1 Cache Addressing

One of the most important decisions in the design of a cache is how is this distributed
and addressed. In this sense there are three main design policies:

• Direct mapped caches: In this case, each memory block has a fixed location
in the cache, i.e., they can occupy only one specific cache line.

• Fully associative cache: In this case a memory block can occupy any of the
cache lines in the cache.

• N-way set associative cache: This is the most common design in modern
processors. This design splits the cache into equally sized partitions called
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cache sets, each allocating n cache lines. In this case, a memory block is
constrained to occupy one of the n cache lines of a fixed set.

Each of the designs has advantages and disadvantages. For instance, the memory
block search in a direct mapped cache is very efficient as the CPU has to check only
one location. In contrast, in a fully associative cache the CPU will have to search for
a memory block in all the cache lines. However, direct mapped caches suffer from
collisions, as they always trigger cache misses for consecutive accesses to cache line
colliding memory blocks. Fully associative caches do not suffer from this problem,
as any block can occupy any location in the cache. Thus, it is understandable that
the most common choice in modern processors is the n-way set associative cache, as
it balances the advantages and disadvantages of the first two designs.

2.2.1.2 Cache Replacement policy

Another fundamental aspect in the design of n-way set associative caches is the
algorithm that selects the block being evicted within a set. Recall that each set has
n possible memory blocks that can be evicted to make room for a new one. The
most common algorithms designed for this purpose are:

• Least Recently Used: This algorithm evicts the memory block that has
been longer time without being accessed by taking count of the number of
accesses being made to each n ways in the set.

• Round Robin: Also known as First-In First-Out (FIFO), which evicts the
memory block that has reside for longer in the cache.

• Pseudo-random: The selection of the memory block to be evicted is done
with a pseudo-random algorithm.

Note that, in the case of cache attacks, the knowledge of the algorithm might be
crucial for the success of the attack. In fact, some cache attacks like the Prime and
Probe can be challenging to implement with random replacement policies, as the
occupancy of the memory blocks in the cache cannot be predicted. In this thesis,
we focus on x86 64 architectures which implement a LRU eviction policy.

2.2.1.3 Inclusiveness Property

The last but perhaps most important property that cache designers need to take into
account is whether they feature inclusive, non-inclusive or exclusive caches. This
has severe implications, among others, in the cache coherency protocol:

• Inclusive caches: Inclusive caches are those that require that any block that
exists in the upper level caches (i.e., L1 or L2) have to also exists in the
LLC. Note that this has several simplifications when it comes to maintain the
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cache coherency across cores, since the LLC is shared. Thus, the inclusiveness
property itself is in charge of keeping a coherency between shared memory
blocks across CPU cores. The drawback of inclusive caches is the additional
cache lines wasted with several copies of the same memory block.

• Exclusive caches: Exclusive caches require that a memory block only resides
at one cache level at a time. In contrast to inclusive caches, here the cache
coherency protocol has to be implemented with upper level caches as well.
However, they do not waste cache space to maintain several copies of the
same block.

• Non-inclusive caches: This type of caches do not have any requirement,
but a memory block can reside in one or more cache levels at a time.

Whether the cache features the inclusiveness property might also be a key factor
when implementing cache attacks. In fact, as it will be explained in later sections,
attacks like Prime and Probe might only be applicable in inclusive caches, while
other attacks like Invalidate and Transfer are agnostic of the inclusiveness property.

2.3 The Cache as a Covert Channel

This thesis presents, among others, the utilization of the LLC as a new covert
channel to obtain information from a co-resident user. It is thus important to see
how the cache can be utilized as a covert channel to recover information, and in
particular, how previous works have done it. The first thing we should clarify the
reader is that the knowledge of which set a victim has utilized can lead to key
extraction. For instance, key dependent data that always utilizes the same set can
reveal the value of the key being processed if such a utilization of the set is observed.
Based on this, research previous to this thesis that has demonstrated in the past
the application of spy processes in core-private resources like the L1 cache to obtain
fine-grain information have being based in two main attacks:

2.3.1 The Evict and Time attack

The Evict and Time attack was presented by [OST06] as a methodology to recover
a complete AES key. In particular, the work demonstrated that key dependent T-
table accesses in the AES implementation (see Section 2.4) can lead to knowledge
of the key. The methodology utilized can be described as:

1. The attacker performs a full AES encryption with a known fixed plaintext
and an unknown fixed key. After this step, all the data utilized by the AES
encryption resides in the cache.
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Figure 2.4: Evict and Time procedure

2. The attacker evicts a specific set in the cache. Note that, if this specific set
was used by the AES process the data utilized by it will no longer reside in
the cache.

3. The attacker performs the same encryption with the same plaintext and key,
and measures the time to complete the encryption. The time spent to perform
the encryption will highly depend on whether the attacker evicted a set utilized
by AES in step 1. If he did, then the encryption will take longer as the data
has to be fetched from the memory. If he did not, the attacker guesses that
the AES encryption does not use the set he evicted, possibly discarding some
key candidates.

Figure 2.4 graphically represents the states described. The victim first utilized
the yellow memory blocks, while the attacker evicts one of them in the eviction
process. When she times the victims process again, she sees the victim needed a
block from the memory and infers the victim uses the set she evicted. Note that
in this case the attacker has to record two encryptions with the same plaintext and
key, which might not be entirely realistic. Further, as the leakage comes from the
ability to measure the overall encryption time, the attack is not considered overly
practical.
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2.3.2 The Prime and Probe Attack

The Prime and Probe attack was again proposed in [OST06], but later was utilized
by [Acı07, RTSS09, ZJRR12]. In a sense the attack is similar to Evict and Time,
but only the monitorization of own memory blocks is required. This is a clear
advantage as it brings a more realistics scenario. These are the main steps:

1. The attacker fills the L1 cache with her own junk data.

2. The attacker waits until the victim executes his vulnerable code snippet. The
key dependent branch/memory access will utilize some of the sets filled by the
attacker in the L1.

3. The attacker accesses back his own memory blocks, measuring the time it
takes to access them. If the attacker observes high access times for some of
the memory blocks it means that the targeted software utilized the set where
those memory blocks resided. In contrast, if the attacker observes low access
times it means that the set remain untouched during the software execution.
This can be utilized to recover AES, RSA or El Gamal keys.

Once again the Prime and Probe steps can be graphically seen in Figure 2.5.
The attacker first fill the set with her red memory blocks, then waits for the victim
to utilize the cache (yellow block) and finally measures the time to reaccess her
red memory blocks. In this case she will trigger a miss in the probe step, meaning
the victim utilized the corresponding set. Note the the Prime and Probe attack
shows a much more practical scenario than Evict and Time, as no measurement to
the victims process is performed. However, as it was only applied in the L1 cache
(mainly due to some complications that will later be discussed) the community
still did not consider cache attacks practical enough to perform them in real world
scenarios.

2.4 Funcionality of Commonly Used Cryptographic

Algorithms

In this section we review the functionality of the three most widely used crypto-
graphic algorithms in every secure system: AES, RSA and ECC. The goal is to give
the reader enough background to understand the attacks that will later carried out
on these ciphers.

2.4.1 AES

AES is one of the most widely used symmetric cryptographic ciphers, a family of
ciphers that utilize the same key during the encryption and decryption. Symmetric
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Figure 2.5: Prime and Probe procedure

cryptography ciphers can clearly provide confidentiality, as they can encrypt a
message that only someone with access to the secret key is able to decrypt. Further,
symmetric key ciphers can also be utilized in Cipher Block Chaining (CBC) mode for
message integrity check, as symemtric key algoritm based Message Authentication
Codes (MACs) can be built [Dwo04]. These ensure that the message does not get
modified while being transmitted between two parties.

In particular, AES is part of the Rijndael cipher family, and as a block cipher,
it processes packages in blocks of 16 bytes. AES is composed of 4 main operations,
namely SubBytes, ShiftRows, Mixcolumns and AddRoundKey. The key can be of
128 ,192 and 256 bits, and depending on the length of the key, AES implements 10,
12 and 14 rounds of executions of the 4 main operation stages. The description of
these stages is:

• AddRoundKey: In this stage, the round key is XORed with the intermediate
state of the cipher.

• SubBytes: A table look up operation with 256 8 bit entry S-box.

• ShiftRows: In this stage the last three rows of ths state are shifted a given
number of steps.

• MixColumns: A combination of the columns of the state.
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Figure 2.6: AES 128 state diagram with respect to its 4 main operations

Every round implements these 4 operations except the last one, in which a Mix-
Columns operation is not issued. Figure 2.6 represents the state diagram of a 10
round AES with respect to these operations.

However, often cryptographic library designers decide to merge the SubBytes,
ShiftRows and Mixcolumns operation into a Table look up operation and xor addi-
tions. The reason behind it is that, at the cost of a bigger table look up operation,
the AES encryption is computed faster, as more operations are precomputed. Nev-
ertheless the memory cost is usually affordable in smartphones, laptops, desktop
computers and servers. These tables allocate 256 32 bit values, and usually 4 tables
are utilized. We called these the T-tables. Some implementations even utilize a
difference table for the last round. Figure 2.7 shows an example of the output of 4
bytes in the last round utilizing 4 T-tables. Observe that the T-table entry utilized
directly depends on the key and the ciphertext byte, a detail that we will later utilize
to perform an attack on the last round.

In general, for the scope of microarchitectural attacks, we do not consider those
implementations based on the utilization of Intel AES hardware instructions (AES-
NI). These instructions are built in modern processors to perform all the AES op-
erations in pure hardware, i.e., without utilizing the cache hierarchy. Thus, any
microarchitectural attack applied to AES-NI would not succeed on obtaining the
key.
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Figure 2.7: Last round of a T-table implementation of AES

2.4.2 RSA

RSA is the most widely used public key cryptographic algorithm. Public key cryp-
tosystems usually try to solve the symmetric cryptography key distribution problem.
Note that, symemtric key cryptography assumes that both parties share the same
secret, but it does not explain how that secret can indeed be shared. And that is
exactly where public key comes to place.

In public key (or asymmetric) crypto systems, in contrast to symmetric key
cryptography, each agent in the communication is assumed to have two keys; a
public key e and a private key d. The public key is publicly known, while the
private key is kept secret. The two keys are related in the sense that one decodes
what the other encoded, i.e., D(E(M)) = M and E(D(M)) =,. It is assumed that
revealing the public key does not reveal an easy information to compute D, and
therefore, only the user holding the private key can decrypt mesages encrypted with
his public key.

Assume the two agents willing to establish a secure communication are Alice and
Bob. With public key cryptography, if Alice wants to send an encrypted message
to Bob, she will have to encrypt the message with Bobs public key, as the message
is only decryptable by Bobs private key. That is, public key cryptography ensures
confidentiality between two comunicating agents.

The properties of public key cryptosystems also allow a user to digitally sign a
message. This signature proves that the sender is indeed the one who he claims he is,
i.e., public key cryptosystems also provide authenticity. Note that this is a feature
that symmetric key algorithms were not able to claim. For instance assumes that
Alice does not only wish to ensure confidentialy but also authenticity of their sent
messages. Alice in this case would first sign the message with her own private key,
and later encrypt it with Bobs public key C = Eb(Da(M)). Upon the reception of
this ciphertext Bob would decrypt the message with his own private key (which he
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only knows) and verify the signature with Alice’s public key (proving that only Alice
could have signed the message), i.e., M = Ea(Db(C)). Therefore the communication
was not only encrypted but also authenticated.

In practice public key cryptosystems are usually utilized to distribute a shared
symmetric key between two agents, such that these can later ensure confidentiality
in their communication, since symmetric key cryptography is orders of magnitude
faster thatn public key cryptography.

In particular, RSA takes advantage of the practical difficulty of the factorization
of two large prime numbers to build a public key crypto system. Its operation is
based on modular exponentiations. An overview of the key generation algorithm
is presented in Algorithm 1 which starts by picking two distinct prime numbers p
and q, and calculating n = p ∗ q and φ(n) as (p − 1) ∗ (q − 1). The public key e is
chosen such that the greatest common divisor between e and φ(n) is equal to one.
Finally, the private key is chosen as the modular inverse of e with respect to φ(n).
The resistance of RSA comes from the fact that, even if the attacker knows n, it is
computationally infeasible for him to recover the primes p and q that generated it.

Algorithm 1 RSA key generation given prime numbers p and q

Input : Prime numbers p and q

Output: Public key e and private key d
n = p ∗ q;
φ(n) = (p− 1) ∗ (q − 1);
//Choose e s.t:

1. 1 < e < φ(n);
2. gcd(e, φ(n)) = 1;
d = e−1 mod φ(n);
return e, d, n

As we previously explained, messages are encrypted with public keys, performing
the c = me mod n operation, while the decryption involves a modular exponentation
with the private keys, i.e., m = cd mod n. Message signatures, in the other hand,
are performed with the private key s = md mod (n) and verified with the public key
m = se mod n.

The modular exponentiation can indeed be performed in several ways. One
way is to process the key bit by bit, and perform square and multiply operations
accordingly. A description of such an implementation is presented in Algorithm 2, in
which a square is always performed, and a multiplication with the base is performed
only when a set bit is found.

But processing the key bit by bit is not the only possibility to perform modular
exponentiations. Several implementations pre-compute some of the multiplicants in
a table such that less multiplications have to be issued during the key processing. An
example can be observed in Algorithm 3, in which values b, b2, b3, . . . , b2

w−1 are pre-
computed and stored in a table, being w the window size. The key is then processed
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Algorithm 2 Square and Multiply Exponentiation

Input : base b, modulus N , secret E = (ek−1, ..., e1, e0)

Output: bE mod N

R = b;
for i = k − 1 downto 0 do

R = R2 mod N ;
if ei==1 then

R = R ∗ b mod N ;

end
end
return R;

in chunks of w bits, w squares are issued together with a multiplication with the
appropriate table entry. This procedure is called fixed windowed exponentiation.

Algorithm 3 Fixed window exponentiation

function modpow (a, b);
Input : base b, modulus N , secret E = (ek−1, ..., e1, e0)

Output: bE mod N

T [0] = 1;
v = b;
for i = 1 to 2w − 1 do

T [i] = T [i− 1] ∗ v;

end
R = 1, i = k − 1;
while i > 0 do

S = eiei−1. . . ei−w;
R = R2w mod N ;
R = R ∗ T [S] mod N ;
i = i− w;

end
return R;

Typical sizes for RSA are 2048 and 4096 bits, while typical window sizes range
between 4 and 6. Indeed this is one of the main disadvantages of RSA; a good
security level is only achieved with very large keys. The following section describes
Elliptic Curve Cryptography (ECC), another public key crypto system that provides
the same level of security with much lower key sizes.
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Figure 2.8: ECC elliptic curve in which R=P+Q

2.4.3 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) also belongs to the category of public key cryp-
tographic algorithms. As with RSA, each user has a public and a private key pair.
However, while the security of RSA relied mainly in the large prime factorization
problem, ECC relies on the elliptic curve discrete logarithm problem: finding the
discrete logarithm of an element in an elliptic curve with respect to a generator is
computationally infeasible [HMV03, Mil86, LD00]. In fact, ECC achieves the same
level of security as RSA with lower key sizes. Typical sizes for ECC keys are 256 or
512 bits.

The communication peers have first to agree on the ECC curve that they are
going to utilize. A curve is just the set of points defined by an equation, e.g.,
y2 = x3 + ax + b. This equation is called the Weirstrass normal form of elliptic
curves. In elliptic curves we define addition arithmetic as follows:

• if P is a point in the curve, −P is just its reflection over the x axis.
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Figure 2.9: ECDH procedure. ka ∗ kb ∗Q is the shared secret key

• if two points P and Q are distinct, then result of adding P+Q = R is computed
by drawing a line crossing P and Q, which will intersect in a third point −R
in the curve. R is computed by taking the reflection of −R with respect to
the x axis.

• P + P is computed by drawing a tangent line to the curve at P , which again
will intersect in a third point in the curve −2P . 2P is just the reflect-ion over
the x axis.

An example of an addition of two distinct points P and Q is presented in Fig-
ure 2.8, in which the line crossing P and Q intersects in a third point −R, for which
we calculate the negated value by taking its reflection over the x axis.

With the new ECC point arithmetic we can define, as with RSA, cryptosystems
based on the elliptic curve discrete logarithm problem. For all of them we assume
the two communication peers agree on a curve, a base point Q in the curve. Each
of them choose a scalar that will be their private key, while they while compute
the public key as k ∗ Q, being k the scalar and Q the base point. Note that,the
resistance of ECC cryptosystems relies on the fact that, knowing Q and k ∗Q it is
very difficult to obtain k.

With these parameters, the Elliptic Curve Diffie Hellman (ECDH) is easily com-
putable. In fact, both peers can agree on a shared key by performing ka ∗ Pb and
kb ∗ Pa, where ki and Pi are private and public keys of peer i. The entire procedure
for ECDH can be observed in Figure 2.9. With similar usage of the ECC properties
digital signatures can also be performed.
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Chapter 3

Related Work

The following section provides the state-of-the-art of classic as well as microarchi-
tectural side channel attack literature. Publications are grouped and discussed to
establish a comprehensive overview of scenarios and covert channels that have been
exploited to retrieve sensitive information.

3.1 Classical Side Channel Attacks

Classical Side Channel attacks were introduced by Kocher et al. [Koc96, KJJ99]
almost two decades ago and introduced a new era of cryptography research. Before
the discovery of side channel attacks, the security of cryptographic algorithms was
studied by assuming that adversaries only have black box access to cryptographic de-
vices. As it turned out, this model is not sufficient for real world scenarios, because
adversaries have additionally access to a certain amount internal state information
which is leaked by side channels. Typical side channels include the power con-
sumption, electromagnetic emanations and timing of cryptographic devices. In the
following we give an overview on how these have been implemented with respect to
timing and power side channel attacks.

3.1.1 Timing Attacks

Timing side channel attacks take advantage of variations in the execution time of
security related processes to obtain information about the secret being utilized.
These variations can arise due to several factors, e.g., cache line collisions or non-
constant execution flows. For instance, Kocher [Koc96] demonstrated that execution
time variations due to non-constant execution flow in a RSA decryption can be
utilized to get information about the private key. Similar instruction execution
variations were exploited by Brumley and Boher [BB03] in a more realistic scenario,
i.e., an OpenSSL-based web server Later, Bernstein [Ber04] on the contrary exploited
timing variations stemming from cache set access time differences to recover AES
keys. In 2009 Crosby et al. [CWR09] expanded on [Koc96] reducing the jitter effect
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from the measurements and therefore succeeded recovering the key with significantly
less traces. [BB03] was also further expanded in 2011 by Brumley et al. [BT11]
showing the ECC implementations can also suffer from timing variation leakage.
Timing attacks have also shown to recover plaintext messages sent over security
protocols like TLS, as demonstrated by Al Fardan and Paterson [FP13].

3.1.2 Power Attacks

During the last years, several attacks exploiting side channels were introduced. In
the following, the required steps in order to perform a successful attack are described.

Measurement

In the first step, the acquisition of one or more side channel traces is performed,
which results in discrete time series. The resulting traces represent physical proper-
ties of the device during execution such as the power consumption or electromagnetic
field strength on a certain position.

Pre-processing

In the second optional step, the raw time series can be enhanced for further pro-
cessing. In this step several techniques in order to reduce noise, remove redundant
information by compressing the data, transformations into different representations
like the frequency domain, and trace alignment are performed.

Analysis

The actual analysis step extracts information from the acquired traces in order to
support the key recovery. There are many more or less complex methods available,
which can be categorized with two orthogonal criteria. The first one is based upon
the requirement if multiple side channel traces are needed or a single trace is suf-
ficient to perform the attacks. The second criterion is based upon the question,
whether a training device is available to obtain the leakage characteristics or if the
attack is based on assumptions about the leakage characteristics. Table 3.1 shows
the four possible combinations of these criteria.

Table 3.1: Side channel attack classification according to utilized data analysis
method

Single Measurement Multiple Measurements

Non-Profiling
Simple Analysis (SPA,
SEMA)

Differential Analysis (DPA,
DEMA, CPA, MIA, KSA)

Profiling Template Attacks (TA) Stochastic Approach (SA)

22



The most basic analysis is the simple power analysis (SPA) which only requires
one side channel trace and does not require profiling. The common way to perform
this kind of attack is by visual inspection of a plotted trace. The goal is to find
patterns in the trace caused by conditional branching with dependency on the secret
key. This attack works well with computations on large numbers as used by public
key cryptography.

The differential analysis method is very powerful by using statistics on multiple
side channel traces. These method does not need a profiling step and uses leakage
assumptions based on hypothetical internal values dependent on a small part of the
key. This way, an attacker can try out different assumptions about a part of the
key and compare the leakage assumptions with an actual observable leakage. The
statistical methods utilized to quantify the accuracy of the assumption are referred
as distinguishers in the side channel literature. The historically first distiguisher
was the distance of means test [KJJ99] that is used by the differential power at-
tack (DPA) and differential electromagnetic attack (DEMA). Later, more powerful
ones including Pearson correlation (for CPA) [BCO04], mutual information (MIA)
[GBTP08], and the Kolmogorov-Smirnov test (KSA) [WOM11] were introduced.

Attacks with a profiling step are based upon the assumption that the leakage
characteristics of the different devices of the same type are similar. Using a training
device, an attacker can model the leakage characteristics of the device and can
use this model for the actual attack. The historically first profiled attack was the
template attack (TA) [CRR03]. This method is based on multivariate Gaussian
models for all possible sub-keys. Template attacks allow key extractions based on
only one side channel trace after proper characterization of a training device.

The stochastic approach (SA) [SLP05, KSS10] approximates the leakage function
of the device using a linear model. The actual key extraction can be performed by
different methods. For example, in [SLP05] the maximum likelihood principle is
used. The linear model parameters can also be used to identify leakage sources in a
design as described by De Santis et al. [DSKM+13].

3.2 Microarchitectural Attacks

Microarchitectural attacks try to exploit specific features of computer microarchitec-
tures without requiring physical access to the device to recover cryptographic keys,
chasing the pattern of other processors and also threading the cloud users. The
focus of this section is put on hardware components that have been exploited in
microarchitectural attacks, which have exhibited a significant tendency change on
multi-core/CPU systems.

A rough description of the basic components in modern microarchitectures was
presented in Figure 2.2. Modern computers usually consist on one or more CPU
sockets, each containing several CPU cores. Processes are executed in one or several
cores at the same time. The Branch Prediction Unit (BPU) is in charge of mak-
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ing predictions on possible outcomes of branches inside the code being executed.
L1/L2 and L3 caches, in order to avoid subsequent DRAM accesses, store data and
instructions that have recently being used, because they are very likely to be uti-
lized again. The memory bus is in charge of the communication between the cache
hierarchy and the DRAM, and further can possibly used to communicate the state
of shared memory across CPU sockets. Finally, the DRAM holds the memory pages
that are necessary for the execution of the program.

Particularly important for microarchitectural attacks is to identify which of these
components can serve as a covert channel to perform single-core, cross-core and
cross-CPU attacks. In fact, from the figure we can identify many of the covert
channels that will later be explained. For instance, it can be observed that an
attacker trying to exploit Branch Prediction Units (BPUs) or L1/L2 caches has to
co-reside in the same core as the victim, as they are core-private resources. A cross-
core attack can be implemented if the L3 cache is utilized as the covert channel,
since it is shared across cores. Finally, attacks across CPU sockets can be achieved
exploiting, among other components, the memory bus and the DRAM. All these
have been exploited in very different manners that will be explained in the following
section.

3.2.1 Hyper-threading

Hyper threading technology was introduced to perform multiple computations in
parallel by Intel in 2002. Each processor core has two virtual threads and they share
the work load of a process. The main purpose of hyper-threading is to increase the
number of independent instruction in the pipeline. In 2005, Percival et al. [Per05]
exploited this technology to establish a cache covert channel in L1-data cache. In
the same core but in different threads spy and crpytographic libraries are executed
and the spy code is able to recover some bits of the secret RSA exponent. In 2007,
Aciicmez et al. [AS07] proposed a new method to exploit the leakage in the hyper-
threading technology of Intel processors. To do this, they take advantage of shared
ALU’s large parallel integer multiplier between two threads in a processor core. Even
if they did not introduce a new vulnerability in OpenSSL library, they showed that
it is possible to use ALU as a covert channel in the secret exponent computation.

3.2.2 Branch Prediction Unit Attacks

Control hazards have an increasing impact on the performance of a CPU as the
pipeline depth increases. Efficient handling of speculative execution of instruc-
tions becomes a critical solution against control hazards. This efficiency is usually
achieved by predicting the most likely execution path, i.e., by predicting the most
likely outcome of a branch. Specifically, Branch Prediction Units (BPU) are in
charge of predicting the most likely path that a branch will take. BPUs are usually
divided into two main pieces: Branch Target Buffers (BTB) and the predictor. The
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BTB is a buffer that stores the addresses of the most recently processed branches,
while the predictor is in charge of making the most likely prediction of the path.

As BPUs are accessible by any user within the same core, the BTB has become a
clear target to perform microarchitectural attacks. Imagine a BPU in which branches
that are not observed in the BTB are always predicted as not taken, and will only
be loaded into the TBT once the branch is taken. If a piece of code has a security
critical branch to be predicted, a malicious user can interact with the BTB (i.e., by
filling it) to ensure that the branch will be predicted as not taken. If the attacker
is able to measure the execution time of the piece of code, he will be able to say
whether the branch was misspredicted (i.e. the branch was taken) or the branch
was correctly predicted (i.e. the branch was not taken).

This is only one possible attack vector that can be implemented against the BPU.
A more realistic scenario is the one in which the attacker fills the TBT with always
taken branches (which evicts any existing branches from the TBT), then waits for
the victim to execute his security critical branch, and finally measure the time to
execute his always taken branches again. If the security critical branch was taken,
then the branch will be loaded into the TBT and one of the attackers branches will
be evicted, causing a missprediction that he will observe in the measured time. In
the other hand, if the security critical branch was not taken, it will not be loaded
into the TBT and the attacker will predict correctly all his branches. The two attack
models discussed have been proposed in [AKKS07, AKS07].

However, BPU microarchitectural attacks have a clear disadvantage when com-
pared to other microarchitectural attacks: BPU units are core-private resources.
Thus, these attacks are only applicable if attacker and victim co-reside in the same
core. Nevertheless, new scenarios arise in which core co-residency is easily achiev-
able, as TEE attacks (discussed in Section 3.2.12). Malicious OSs can control the
scheduling of the CPU affinity of each process. In fact, attacks utilizing BPU have
already been proposed in that scenario [LSG+16].

3.2.3 Out-of-order Execution Attacks

A recent microarchitectural side channel that was discovered and proved to establish
communication between co-resident VMs is the exploitation of out of order executed
instructions [D’A15]. Out of order execution of instructions is an optimization
present in almost all the processors that allows the finalization of a future instruction
while waiting for the result of a previous instruction. A first intuition of out-of-order
instructions finishing earlier than in-order instructions was made in [CVBS09]. As
with other microarchitectural attacks, optimizations can indeed open new covert
channels to be exploited by malicious attackers.

Assume two threads execute interdependent load and store operations into a
shared variable (i.e., one threads stores the value loaded by the other one). If
these threads run in parallel, three cases might arise: both threads are executed in-
order and at the same time, both threads are executed in-order but one is executed
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faster or both threads execute out of order instructions. Note that the result of the
operations will be different for each of the outputs. Thus, a covert channel can be
established by transmitting a 0 when instructions are executed out of order, and
a 1 in any other case. Indeed, an attacker can ensure to transmit a 1 by utilizing
memory barrier instructions, which keep the execution of the instructions in-order.

3.2.4 Performance Monitoring Units

Performance Monitoring Units (PMU) are a set of special-purpose registers to store
the count of hardware and software related activities. In 1997, the first study was
conducted by Ammons et al. [ABL97] where the logical structure of hardware coun-
ters are explained to profile different benchmarks. In 2008, Uhsadel et al. [UGV08]
showed that hardware performance counters can be used to perform cache attacks
by looking at the L1 and L2 D-cache misses. In 2013, Weaver et al. [WTM13] inves-
tigated x86 64 systems to analyze deterministic counter events, concluding that non-
x86 hardware has more deterministic counters. In 2015, Bhattacharya et al. [BM15]
showed how to use the branch prediction events in hardware performance counters
to recover 1024 bit RSA keys in Intel processors.

3.2.5 Special Instructions

The set of instructions that a CPU can understand and execute is refered as instruc-
tion set architectures (ISA). Although usually composed of common instructions
(e.g. mov or add), some ISAs include a set of special instructions that aim at imple-
menting system functionalities that the system cannot implement by itself. One of
these examples are CPUs with a lack of memory coherence protocols. In these cases,
special instructions are needed to handle the situation of conflicted (thus incoherent)
values between the DRAM and the cache hierarchy.

For instance, the Intel x86 64 ISA provides the clflush instruction to solve the
problem. The clflush instruction evicts the desired data from the cache hierarchy,
thus making sure that the next data fetch will come from the DRAM. Since ARM-
V8, ARM processors started including similar instructions in their ISA. Although
these instructions might become crutial for certain processors, they also serve as
helpers to implement microarchitectural attacks. In fact many times an attacker
is willing to evict a shared variable from the cache, either to reload it later [YF14,
LGS+16, IES16], to measure the flushing time [GMWM16] or to access the DRAM
continuously [KDK+14a].

A similar situation can be observed with instructions added to utilize hardware
random number generators. In particular, it has recently been shown that, due to
the low throughput of the special rdseed instruction, a covert channel can be im-
plemented by transmitting different bits when the rdseed is exhaustively used/not
used [EP16].
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3.2.6 Hardware Caches

Modern cache structures, as shown in Figure 2.2, are usually divided into core-
private L1 instruction and data caches, and at least one level of unified core-shared
LLC. The instruction cache (I-cache) is the part of the L1 cache responsible for stor-
ing recently executed instructions by the CPU. In 2007, Aciicmez [Acı07] showed the
applicability of I-cache attacks by exploiting the cipher accesses to recover an 1024-
bit RSA secret key. The monitored I-cache sets are filled with dummy instructions
by a spy process whose access is later timed to recover a RSA decryption key. After
one year, Aciicmez et al. [AS08] demonstrated the power of the I-cache attacks on
OpenSSL RSA decryption processese that use Chinese Remainder Theorem (CRT),
Montgomery’s multiplication algorithm and blinding to modular exponentiation. In
2010, Aciicmez et al. [ABG10] revisited I-cache attacks. In this work, the attack
is automated by using Hidden Markov Models (HMM) and vector quantization to
attack OpenSSL’s DSA implementation. In 2012, Zhang et al. [ZJRR12] published a
paper on cross-VM attacks in the same core using L1-data cache. The attack targets
Libgcrypt’s ElGamal decryption process to recover the secret key. To eliminate the
noise Support Vector Machine algorithm is applied to classify square, multiplication
and modular reduction from the L1-data cache accesses. The output of SVM is
given to HMM to reduce the noise and increase the reliability of the method. This
paper demonstrates the first study in cross-VM setup using L1-data cache. Finally,
in 2016, Zankl et al. [ZHS16] proposed an automated method to find the I-cache
leakage in RSA implementations of various cryptographic libraries. The correlation
technique shows that there are still many libraries which are vulnerable to I-cache
attacks.

The data cache stores recently accessed data, and as with the I-cache, it has
been widely exploited to recover sensitive information. As soon as 2005, Percival et
al. [Per05] demonstrated the usage of the L1-data cache as a covert-channel to exploit
information from core co-resident processes. To demonstrate the efficiency of the
side channel, the OpenSSL RSA implementation is targeted. The main reason of the
leakage is that the different precomputed multipliers are loaded into different L1-data
cache lines. By profiling each corresponding set it is possible to recover more than
half of the bits of the secret exponent. A year later, Osvik et al. [OST06] presented
the Prime and Probe and Evict and Time attacks, which were utilized to recover
AES cryptographic keys. In 2007, Neve et al. [NS07] showed that it is possible
to use L1-data cache as a side channel in single-threaded processors by exploiting
the OS scheduler. This technique was applied to the last round of OpenSSL’s
AES implementation where only one T-table is used. The authors recovered the
last round key with 20 ciphertext/accesses pairs. In 2009, a new type of attack is
presented by Brumley et al. [BH09] where L1-data cache templates are implemented
to recover OpenSSL ECC decryption keys. The goal of this method is to automate
cache attacks by applying HMM and vector quantization in Pentium 4 and Intel
Atom. Finally in 2011, Gullasch et al. [GBK11] presented the Flush and Reload
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attack, although the attack would acquire its name later. The study demonstrated
that it is possible to affect the Linux’ Completely Fair Scheduler (CFS) to interrupt
the AES thread and recover the AES encryption key with very few encryptions.

LLC attacks

In 2014, Yarom et al. [YF14] implemented, for the first time, the Flush and Reload
attack across cores/VMs to recover sensitive information aided by memory dedupli-
cation mechanisms. The attack is applied to the GnuPG implementation of RSA.
With this work the Flush and Reload attack became popular and more scenarios
in which it could be applied arised. For instance, Benger et al. [BvdPSY14] pre-
sented the Flush and Reload attack on the ECDSA implementation of OpenSSL. In
the same year, Irazoqui et al. [IIES14b] applied Flush and Reload to recover AES
encryption keys across VMs. This attack is implemented in VMware platforms to
show the strength of the attack in virtualized environments. Shortly later, Zhang
et al. [ZJRR14] showed the applicability of the Flush and Reload attack to verify
the co-location in PaaS clouds and obtain the number of items of a co-resident users
shopping cart. In 2015, Irazoqui et al. [IIES15] showed that it is possible to recover
sensitive data from incorrectly CBC-padded TLS packets. In the same year, Gruss
et al. [GSM15] presented an automated way to catch LLC cache patterns apply-
ing Flush and Reload method and consequently detect keys strokes pressed by the
victim.

Finally, hypervisor providers disabled the de-duplication feature to prevent Flush
and Reload attacks in their platforms. Therefore, there was a need to find a new way
to target the LLC. Concurrently, Irazoqui et al. [IES15a] and Liu et al. [Fan15] de-
scribed how to apply Prime and Probe attack in LLC on deduplication-free systems.
While Irazoqui et al. [IES15a] applied the method to recover OpenSSL AES last
round key in VMware and Xen hypervisors, Liu et al. [Fan15] demonstrated how to
recover El Gamal decryption key from the recent GnuPG implementation. In 2016,
Inci et al. [IGI+16b] showed that commercial clouds are not immune to these attacks
and applied the same technique in the commercial Amazon EC2 cloud to recover
2048 bit RSA key from Libgcrypt implementation. Moreover, Oren et al. [OKSK15]
presented the feasibility of implementing cache attacks trough javascript executions
to profile incognito browsing.

In the same year, Lipp et al [LGS+16] applied three different methods (Prime
and Probe, Flush and Reload and Evict+Reload) to attack ARM processors typi-
cally used in mobile devices. The success of the work showed that it is possible to
implement cache attacks in mobile platforms.

3.2.7 Cache Internals

With novel an more complex cache designs, which include many undocumented fea-
tures, it become increasingly difficult to obtain the necessary knowledge to use it as
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a covert channel. Aiming at correctly characterizing the usage of the caches as an
attack vector, researchers started investigating their designs. An example of these
features are the LLC slices, selected by an undocumented hash functions in Intel
processors. In 2015, the first LLC slice reverse engineering was applied by Irazoqui
et al. [IES15b] utilizing timing information to recover slice selection algorithms of
a total of 6 different Intel processors. Later, Maurice et al. [MSN+15] presented
a more efficient method using performance counters to recover slice selection algo-
rithm. Later,Inci et al. [IGI+16b] and Yarom et al. [YGL+15] again utilized timing
information to recover non-linear slice selection algorithms. Finally, in 2016, Yarom
et al. [YGH16] exploited the cache-bank conflicts on the Intel Sandy Bridge proces-
sors. The study shows that cache-banks in L1 cache can be used to recover an RSA
key if the hyper-threading is implemented in the core.

3.2.8 Cache Pre-Fetching

Pre-fetching is a commonly used method in computer architecture to provide bet-
ter performance to access instructions or data from local memory. It consists on
predicting the utilization of a cache line and fetching it to the cache prior to its
utilization. In 2014, Liu et al. [LL14] suggested that previous architectural counter-
measures do not provide sufficient prevention against demand-fetch policy of shared
cache. Thus, to prevent the pre-fetching attacks they propose a randomization pol-
icy for the LLC where a cache miss is not sent to the CPU, but instead perform
randomized fetches to neighborhood of the missing memory line. In 2015, Rebeiro
et al. [RM15] presented an analysis of sequential and arbitrary-stride pre-fetching on
cache timing attacks. They conclude that ciphers with smaller tables leak more than
ciphers with large tables due to data pre-fetching. In 2016, Gruss et al. [GMF+16]
utilized the pre-fetching instructions to obtain the address information by defeating
SMAP, SMEP and kernel ASLR.

3.2.9 Other Attacks on Caches

Other attacks have exploited different characteristics of a process rather than exe-
cution time and cache accesses . In 2010, Kong et al. [KJC+10] presented a thermal
attack on I-cache by checking the cache thermal sensors. They showed that dynamic
thermal management (DTM) is not sufficient to prevent the thermal attacks if the
malicious codes target a specific section of I-cache. In 2015, Masti et al. [MRR+15]
expanded the previous work to multi-core platforms. They used core temperature
as a side channel to communicate with other processes. In the same year, Riviere et
al. [RNR+15] targeted I-cache by electromagnetic fault injection (EMFI) on the con-
trol flow. They showed that the applicability of the fault injection is trivial against
cryptographic libraries even if they have countermeasures against fault attacks. In
2016, researchers focused on Spin-Transfer Torque RAM (STTRAM), a promising
feature for cache applications. Rathi et al. [RDNG16] proposed three new tech-
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niques to handle magnetic field and temperature of processor. The new techniques
are stalling, cache bypass and check-pointing to establish the data security and the
performance degradation is measured with SPLASH benchmark suite. In the same
year, Rathi et al. [RNG16] exploited read/write current and latency of STTRAM
architecture to establish a side channel inside LLC.

3.2.10 Memory Bus Locking Attacks

So far it has been shown how an attacker can create contention at different cache
hierarchy levels to retrieve secret information from a co-resident user. Memory bus
locking attacks are different in this sense, since they do not have the ability to
recover fine-grain information. Yet, they can be utilized to perform a different set of
malicious actions or as a pre-step to the performance of more powerful side channel
attacks.

When two different threads located in different cores operate on the same shared
variable, the value of the shared variable retrieved by each thread might be different,
since modifications might only be performed to core-private caches. This is called
a data race. In order to solve this, atomic operations operate in shared variables
in such a way that no other thread can see the modification half-complete. For
that purpose, atomic operations usually utilize lock prefixes to ensure the particular
shared variable in the cache hierarchy is locked until one of the threads has finished
updating the value.

The lock instructions work well when the data to be locked fits into a single
cache line. However, if the data to be locked spans more than one cache line,
modern CPUs cannot issue two lock instructions in separate cache lines at the same
time [IGES16]. Instead, modern CPUs adopt the solution of flushing any memory
operation from the pipeline, incurring in several overheads that can be utilized by
users with malicious purposes.

In fact, there are several examples of malicious usage of memory bus locking
overheads. For instance, Varadarajan et al. [VZRS15], Xu et al. [XWW15] and Inci
et al. [IGES16] utilized this mechanism to detect co-residency in IaaS clouds by
observing the performance degradation in http queries to the victim. Finally, Inci
et al. [IIES16] and Zhang et al. [ZZL17] utilized memory bus locking effects as a
Quality of Service (QoS) degradation mechanism in IaaS clouds.

3.2.11 DRAM and Rowhammer Attacks

The DRAM, often also called the main memory, is the hardware component in
charge of providing memory pages to executed programs. There are two major
attacks targeting the DRAM: the rowhammer attack and DRAMA side channel
attacks. Since both attacks utilize different concepts and have different goals, we
proceed to explain them separately.
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The DRAM is usually divided into several categories, i.e., channels (physi-
cal links between DRAM and memory controller), Dual Inline Memory Modules
(DIMMS, physical memory modules attached to each channel), ranks (back and
front of DIMMS), banks (analogous to cache sets) and rows (analogous to cache
lines). Two addresses are physical adjacent if they share the same channel, DIMM,
rank and bank. Additionally each bank contains a row buffer array that holds the
most recently accessed row. DRAMA side channel attacks take advantage of the
fact that accessing a DRAM row from the row buffer is faster in time that having
a row buffer miss. Thus, similar to the fact observed in cache attacks, an attacker
can create collisions in a banks row buffer to infer information about a co-resident
victim.

The rowhammer attack takes advantage of the influence that accesses to a row
in a particular bank of the DRAM have in adjacent rows of the same bank. In fact,
continuous accesses can increase the charge leak rate of adjacent rows. Typically
processors have a refresh rate (at which they refresh their values) to avoid the
complete charge leak of cells in a DRAM row. However, if the charge leak rate
is faster than the refresh rate, then some cells completely loose their charge before
their value can be refreshed, incurring in bit flips. These bit flips can be particularly
dangerous if adjacent rows contain security critical information.

The rowhammer attack has been more exploited than the DRAMA side channel
attack. In fact, since it was discovered [KDK+14a], rowhammer has been shown to
be executable from a javascript extension [GMM16], in mobile devices [vdVFL+16],
or even from a IaaS VM to break the isolation provided by the hypervisor [XZZT16].
Further, it has been shown that it can be utilized as a mechanism to inject faults
into cryptographic keys that can lead to their full exposure [BM16].

3.2.12 TEE Attacks

Trusted Execution Environmnets (TEE) are designed with the goal of executing
processes securely in isolated environments, including powerful adversaries such as
malicious Operating Systems. In order to achieve this goal, TEEs usually work,
among others, with encrypted DRAM memory pages. However, TEEs still utilize
the same hardware components as untrusted execution environments, and thus most
of the above explained microarchitectural attacks are still applicable to processes
executed inside a TEE. Examples of TEEs are the well known Intel SGX [Sch16]
and the ARM TrustZone [ARM09].

Perhaps the distinguishing fact when discussing the applicability of microarchi-
tectural attacks to TEE is the DRAM memory encryption. While in fact TEE
DRAM memory pages are encrypted, this data is decrypted when placed in the
cache hierarchy for faster access by the CPU. This implies that any of the above
discussed cache hierarchy attacks is still applicable against TEE environments, as
nothing stops an attacker from creating cache contention and obtaining decrypted
TEE information. More than that, a malicious OS can schedule processes in any
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way it wants, interrupt the victim process after every small number of cycles or
prevent it from using side channel free hardware resources (e.g. AES-NI [TNM11]).
Thus, compared to the low resolution that microarchitectural attackers obtain from
a commercial OS, a malicious OS obtains a much higher resolution as it can observe
every single memory access made by the victim.

A similar issue is experienced with BPU microarchitectural attacks. BPU attacks
were largely dismissed due to their core co-residency limitation (BPU are core-
private resources) and their low access distinguishability. However, the whole picture
changes when a malicious OS comes into play. Once again, malicious OS are in
control of the scheduling of the processes being executed in the system. Thus, they
are in control of where and when each process executes, i.e., they can schedule
malicious processes in the same core as the victim process. The situation becomes
even more dangerous when special instructions are available from an OS to better
control the outcome of the branches executed [LSG+16].

Although DRAM row access and memory bus locking attacks have still not been
shown to be applicable in the TEE scenario, the theoretical characteristics of these
attacks suggest that both attacks will be soon demonstrated to be applicable in
TEEs. In fact there is nothing theoretically solid that suggests TEE would prevent
memory bus locking attacks. As for the DRAM access attacks our assumption is
that it will depend on how the DRAM rows are placed in the row buffer array. If
these are placed unencrypted, then the attack would be equally viable. Rowhammer,
on the contrary, is assumed to be defeated by memory authentication and integrity
mechanisms being utilized by TEEs.

3.2.13 Cross-core/-CPU Attacks

Multiple microarchitectural attacks have been reviewed in the previous paragraphs,
but it has not been discussed how their applicability improved over the years. In
fact, microarchitectural attacks have improved their practicality since they were
implemented for the first time in 2005. Not in vain, the first microarchitectural
attacks (i.e. those targeting the L1 and BPU) were largely dismissed almost for
several years, as they were only applicable if victim and attacker shared the same
CPU core. In a multi-core system world, this restriction seemed to be the main
limitation that prevented microarchitectural attacks from being considered as a
threat.

It was in 2013 when the first cross-core cache attack was presented, even though
it required that victim and attacker shared memory pages. Later this requirements
would be eliminated, making cross-core cache attacks applicable in almost every
system. However, there was a requirement that microarchitectural attacks did not
accomplish yet, i.e., to be applicable even when victim and attacker share the un-
derlying hardware but are located in different CPU sockets.

The microarchitectural attack cross-CPU applicability would later be accom-
plished by cache coherency protocol attacks, rowhammer, DRAMA and memory
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bus locking attacks. Indeed all of them target resources that are shared not only
by every core, but farther by every CPU socket in the system. As explained in the
previous paragraphs, the first targets the cache coherence protocol characteristics,
the next two target the DRAM characteristics, while the latter targets the memory
bus characteristics.

In short, microarchitectural attacks have experienced a huge popularity increase
in the last years, specially for their improved characteristics and applicability. While
they were largely dismissed at the beginning for being applicable in private core-
resources, current microarchitectural attacks are applicable even across CPU sockets.
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Chapter 4

The Flush and Reload attack

Until 2013 microarchitectural attacks have been largely disregarded by the commu-
nity, mainly due to their lack of applicability in real world scenarios. In particular,
they have suffered from the following limitations:

• Microarchitectural attacks were only shown to be successful in core-private
resources, like the L1 caches and the BPUs. With the wide utilization of
multi-core systems, the restriction of having to be located in the same core
with the victim seems a huge obstacle when it comes to the applicability of
microarchitectural attacks.

• Core-private resources usually exhibit low resolution to execute microarchi-
tectural attacks. For instance, L1 and L2 accesses only differ in a few cycles.
BPU misspredictions are also hardly distinguishable as their penalties have
been largely optimized. Therefore, core-private resources are less likely to
resist the amount of noise typically observed in real world scenarios.

• Before 2013 microarchitectural attacks lacked of real world scenarios in which
they could be applied, as they usually demanded a highly controlled environ-
ment.

In order to increase the applicability of microarchitectural attacks it is necessary
to investigate and discover new covert channels that can be exploited across cores
and be resistant to the typical amount of noise seen in modern technology usage en-
vironments. The only work prior to ours that investigated cross-core covert channels
is [YF14], in which a RSA key is recovered through the Last Level Cache (LLC).
This sections expands on [YF14], demonstrating that LLC attacks can recover a
wider range of information in a number of scenarios.

The first attack that we discuss is the Flush and Reload attack, first applied
in the L1 in [GBK11], which acquired its name in [YF14]. The Flush and Reload
attack utilizes the LLC as the covert channel to recover information, and prior to
this work, was only shown to be applicable across processes being executed in the
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same OS. In this chapter we demonstrate how such an attack can be utilized to
recover fine-grain information from a co-resident VM placed in a different core. In
particular,

• We demonstrate that Flush and Reload can recover information from co-
resident VMs in hypervisors as popular as VMware.

• We expand on the capabilities of Flush and Reload by recovering an AES key
in less than a minute.

• We show that microarchitectural attacks can be applied against high level
protocols by recovering TLS session messages.

4.1 Flush and Reload Requirements

We cannot start discussing the functionality of the Flush and Reload attack with-
out first mentioning the requirements that are needed to successfully apply it. In
particular the Flush and Reload attack has four very important pre-requisites that
have to be met in the targeted system to succeed:

• Shared memory with the victim: The Flush and Reload attack assumes
that attacker and victim share at least the targeted memory blocks in the
system, i.e., both access the same physical memory address. Although this
requirement might seem difficult to achieve, we discuss in Section 4.2 the
scenarios in which memory sharing approaches are implemented.

• CPU socket co-residency: The Flush and Reload attack is only applica-
ble if attacker and victim co-reside in the same CPU socket, as the LLC is
only shared across cores and not across CPU sockets. Note that, unlike prior
microarchitectural attacks, core co-residency is not necessary.

• Inclusive LLC: The Flush and Reload attack requires the inclusiveness prop-
erty in the LLC. This, as we will see in section 4.4.1, is necessary to be able
to manipulate memory blocks in the upper level caches. The vast majority of
intel processors feature an inclusive LLC. However, as we will see in Section 5,
similar technical procedures can exploit non-inclusive caches through cache
coherence covert channels.

• Access to a flushing instruction: The Flush and Reload attack needs of
a very specific instruction in the Instruction Set Architecture (ISA) capable
of forcing memory blocks to be removed from the entire cache hierarchy. In
x86-64 systems, this is provided trough the clflush instruction.
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Without any of these four requirements the Flush and Reload attack is not
able to successfully recover data from a victim. Two of them can be assumed to be
easily achievable in Intel processors, as they feature inclusive LLCs and the clflush
instruction is accessible from userspace. The CPU socket co-residency should also
be easily accomplished, as modern computers do not usually feature more than
two CPU sockets. However, the shared memory requirement might be harder to
achieve. In the following section we describe mechanisms under which different
processes/users share the same physical memory.

4.2 Memory Deduplication

Although the idea of different processes/users sharing the same physical memory
might seem threatening, the truth is we encounter mechanisms that permit it in pop-
ular OS and hypervisors. In particular, all linux OS implement the so called Kernel
Samepage Merging (KSM) mechanism, which merges duplicate read-only memory
pages belonging to different processes. Consequently KVM, a linux based hyper-
visor, features the same mechanisms across different VMs. Furthermore, VMware
implements Transparent Page Sharing (TPS), a similar mechanism to KSM that
also allows different VMs to share memory.

Even though the deduplication optimization method saves memory and thus
allows more virtual machines to run on the host system, it also opens a door to side
channel attacks. While the data in the cache cannot be modified or corrupted by an
adversary, parallel access rights can be exploited to reveal secret information about
processes executed in the target VM. We will focus on the Linux implementation of
Kernel Samepage Merging (KSM) memory deduplication feature and on the TPS
mechanism implemented by VMware. We describe in detail the functionality of
KSM, but the same procedure is implemented by TPS.

KSM is the Linux memory deduplication feature implementation that first ap-
peared in Linux kernel version 2.6.32 [Jon10, KSM]. In this implementation, KSM
kernel daemon ksmd, scans the user memory for potential pages to be shared among
users [AEW09]. Also, since it would be CPU intensive and time consuming, in-
stead of scanning the whole memory continuously, KSM scans only the potential
candidates and creates signatures for these pages. These signatures are kept in the
deduplication table. When two or more pages with the same signature are found,
they are cross-checked completely to determine if they are identical. To create sig-
natures, KSM scans the memory at 20 msec intervals and at best only scans the
25% of the potential memory pages at a time. This is why any memory disclosure
attack, including ours, has to wait for a certain time before the deduplication takes
effect upon which the attack can be performed. In our case, it usually took around
30 minutes to share up to 32000 pages. During the memory search, KSM analyzes
three types of memory pages [SIYA12];

• Volatile Pages: Where the contents of the memory change frequently and
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Figure 4.1: Memory Deduplication Feature

should not be considered as a candidate for memory sharing.

• Unshared Pages: Candidate pages for deduplication. The madvise system
call advises to the ksmd to be likely candidates for merging.

• Shared Pages: Deduplicated pages that are shared between users or pro-
cesses.

When a duplicate page signature is found among candidates and the contents are
cross-checked, ksmd automatically tags one of the duplicate pages with copy-on-
write (COW) tag and shares it between the processes/users while the other copy is
eliminated. Experimental implementations [KSM] show that using this method, it
is possible to run over 50 Windows XP VMs with 1GB of RAM each on a physical
machine with just 16GB of RAM. As a result of this, the power consumption and
system cost is significantly reduced for systems with multiple users.

4.3 Flush and Reload Functionality

We described the pre-requisites that the system in which the Flush and Reload
attack will be applied needs to fullfill. If they are satisfied, and assuming victim
and attacker share a memory block b, the Flush and Reload attack can be applied
performing the following steps:
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Flushing stage: In this stage, the attacker uses the clflush command to flush b
from the cache hence making sure that it has to be retrieved from the main
memory next time it needs to be accessed. We have to remark here that
the clflush command does not only flush the memory block from the cache
hierarchy of the corresponding working core, but it is flushed from all the
caches of all the cores due to the inclusiveness LLC property. This is an
important point: if it only flushed the corresponding core’s caches, the attack
would only work if the attacker and victim’s processes were co-residing on the
same core. This would have required a much stronger assumption than just
being in the same physical machine.

Target accessing stage: In this stage the attacker waits until the target runs a
fragment of code, which might use the memory block b that has been flushed
in the first stage.

Reloading stage: In this stage the attacker reloads again the previously flushed
memory block b and measures the time it takes to reload. We perform this
with the popular (and userspace accessible) rdtsc instruction, which counts
the hardware cycles spent doing a process. Before reading the cycle counter
we issue memory barrier instructions (mfence and lfence) to make sure all
load and store operations have finished before reading the memory block b.
Depending on the reloading time, the attacker decides whether the victim
accessed the memory block (in which case the memory block would be present
in the cache) or if the victim did not access the corresponding memory block
(in which case the memory block will be fetched from memory).

The timing difference between a cache hit and a cache miss makes the aforemen-
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Figure 4.3: Reload time in hardware cycles when a co-located VM uses the memory
block b (red, LLC accesses) and when it does not use the targeted memory block b
(blue, memory accesses) using KVM on an Intel XEON 2670

tioned access easily detectable by the attacker. In fact this is one of the big advan-
tages of targeting the LLC as a covert channel. Figure 4.3 shows the reload times
of a memory block being retrieved from the LLC and from the memory, represented
as red and blue histograms respectively. We observe that LLC accesses utilizing
the Flush and Reload technique usually take around 70 cycles, while memory ac-
cesses usually take around 200 cycles. Thus, an attacker using the Flush and Reload
technique can easily distinguish when a victim uses a shared memory block.

Flush and Reload memory targets:

As we explained Flush and Reload targets memory blocks that are shared between
victim and attacker, and mechanisms like KSM can help this phenomenon happen.
However, this also means that Flush and Reload can only target very specific memory
blocks, as KSM only shares read-only memory pages. Functions and data declared
globally usually belong to the kind of memory that an attacker can target with
Flush and Reload. However, dynamically allocated data, as it is modifiable, cannot
be targeted by Flush and Reload. Thus, an attacker needs to pick the application
to attack carefully, taking this consideration into account.

4.4 Flush and Reload Attacking AES

AES has been one of the main targets of cache attacks. For instance, Bernstein
demonstrated that table entries in different cache lines can have different L1 access
times, while Osvik et al. applied the evict and time and the Prime and Probe
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attack to the L1 cache. In this section we will describe the principles of our Flush and
Reload attack on the C-implementation of AES in OpenSSL. In [GBK11] Gullasch
et al. described a Flush and Reload attack on AES implementation of the OpenSSL

library. However in this study, we are going to use the Flush and Reload method with
some modifications that from our point of view, have clear advantages over [GBK11].
We consider two scenarios: the attack as a spy process running in the same OS
instance as the victim (as done in [GBK11]), and the attack running as a cross-VM
attack in a virtualized environment.

4.4.1 Description of the Attack

As in prior Flush and Reload attacks, we assume that the adversary can monitor
accesses to a given cache line. However, unlike the attack in [GBK11], this attack

• only requires the monitoring of a single memory block; and

• flushing can be done before encryption, reloading after encryption, i.e. the
adversary does not need to interfere with or interrupt the attacked process.

More concretely, the Linux kernel features a completely fair scheduler which tries
to evenly distribute CPU time to processes. Gullasch et al. [GBK11] exploited
Completely Fair Scheduler (CFS) [CFS], by overloading the CPU while a victim
AES encryption process is running. They managed to gain control over the CPU
and suspend the AES process thereby gaining an opportunity to monitor cache
accesses of the victim process. Our attack is agnostic to CFS and does not require
time consuming overloading steps to gain access to the cache.

We assume the adversary monitors accesses to a single line of one of the T tables
of an AES implementation, preferably a T table that is used in the last round of
AES. Without loss of generality, let’s assume the adversary monitors the memory
block corresponding to the first positions of table T , where T is the lookup table
applied to the targeted state byte si, where si is the i-th byte of the AES state before
the last round. Let’s also assume that a cache line can hold n T table values, e.g,
the first n T table positions for our case. If si is equal to one of the indices of the
monitored T table entries in the memory block (i.e. si ∈ {0, . . . , n} if the memory
block contains the first n T table entries) then the monitored memory block will
with very high probability be present in the cache (since it has been accessed by the
encryption process). However, if si takes different values, the monitored memory
block is not loaded in this step. Nevertheless, since each T table is accessed l times
(for AES-128 in OpenSSL, l = 40 per Tj), there is still a probability that the memory
block was loaded by any of the other accesses. In both cases, all that happens after
the T table lookup is a possible reordering of bytes (due to AES’s Shift Rows),
followed by the last round key addition. Since the last round key is always the same
for si, the n values are mapped to n specific and constant ciphertext byte values.
This means that for n out of 256 ciphertext values, the monitored memory block
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will always have been loaded by the AES operation, while for the remaining 256−n
values the probability of having been reloaded is smaller. In fact, the probability
that the specific T table memory block i has not been accessed by the encryption
process is given as:

Pr [no access to T [i]] =

(
1− t

256

)l

Here, l is the number of accesses to the specific T table. For OpenSSL 1.0.1 AES-
128 we have l = 40. If we assume that each memory block can hold t = 16 entries
per cache line, we have Pr [no access to T [i]] = 7.6%. However, if the T-tables
start at the middle of a cache line, an attacker can be smart enough to target those
memory blocks, for which t = 8 and Pr [no access to T [i]] = 28.6%. Therefore it
is easily distinguishable whether the memory block is accessed or not. Indeed, this
turns out to be the case as confirmed by our experiments.

In order to distinguish the two cases, all that is necessary is to measure the timing
for the reload of the targeted memory block. If the line was accessed by the AES
encryption, the reload is quick; else it takes more time. Based on a threshold that
we will empirically choose from our measurements, we expect to distinguish main
memory accesses from L3 cache accesses. For each possible value of the ciphertext
byte ci we count how often either case occurs. Now, for n ciphertext values (the
ones corresponding to the monitored T table memory block) the memory block has
always been reloaded by AES, i.e. the reload counter is (close to) zero. These n
ciphertext values are related to the state as follows:

ci = ki ⊕ T
[
s[i]
]

(4.1)

where the s[i] can take n consecutive values. Note that Eq. (4.1) describes the last
round of AES. The brackets in the index of the state byte s[i] indicate the reordering
due to the Shift Rows operation. For the other values of ci, the reload counter is
significantly higher. Given the n values of ci with a low reload counter, we can solve
Eq. (4.1) for the key byte ki, since the indices s[i] as well as the table output values
T
[
s[i]
]

are known for the monitored memory block. In fact, we get n possible key
candidates for each ci with a zero reload counter. The correct key is the only one
that all n valid values for ci have in common.

A general description of the key recovery algorithm is given in Algorithm 4,
where key byte number 0 is recovered from the ciphertext values corresponding to
n low reload counter values that were recovered from the measurements. Again,
n is the number of T table positions that a cache line holds. The reload vector
Xi = [x(0), x(1), . . . , x(255)] holds the reload counter values x(j) for each ciphertext
value ci = j. Finally K0 is the vector that, for each key byte candidate k, tracks
the number of appearances in the key recovery step.
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Algorithm 4 Recovery algorithm for key byte k0
Input : X0 //Reload vector for ciphertext byte 0

Output: k0 //Correct key byte 0

forall xj ∈ X0 do
//Threshold for values with low reload counter.

if xj < Low counter threshold then
for s = 0 to n do

//xor with each value of the targeted T table memory

block

K0[j ⊕ T [s]]++;

end
end

end
return argmaxk(K0[k]);

Example

Assume that the cache linee can hold n = 4 T table values and we want to recover key
byte k0. There are four ciphertext values detected with a low reload counter. Assume
further that each c0 has been xored with the T table values of the monitored memory
block (the first 4 if we are working with the first positions), giving k

(i)
0 = ci0⊕T

[
s[0]
]
.

For each of the four possibilities of c0, there are n = 4 possible solutions for k0. If
the results are the following:

k
(0)
0


43
ba
91
17

k
(1)
0


8b
91
f3
66

k
(2)
0


91
45
22
af

k
(3)
0


cd
02
51
91

And since there is only one common solution between all of them, which is 91, we
deduce that the correct key value is k0 = 91. This also means that K0[91] = 4, since
k = 91 appeared four times as possible key candidate in the key recovery step.

Note that this is a generic attack that would apply virtually to any table-based
block cipher implementation. That is, our attack can easily be adapted to other
block ciphers as long as their last round consists of a table look-up with a subsequent
key addition.

4.4.2 Recovering the Full Key

To recover the full key, the attack is expanded to all tables used in the last round,
e.g. the 4 T tables of AES in OpenSSL 1.0.1. For each ciphertext byte it is
known which T table is used in the final round of the encryption. This means that
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Algorithm 5 Flush and reload algorithm extended to 16 ciphertext bytes

Input : T00, T10, T20, T30 //Addresses of each T table

Output: X0, X1, ...X15 //Reload vectors for ciphertexts

//Each Xk holds 256 counter values

while iteration < total number of measurements do
clflush(T00, T10, T20, T30); //Flush data to the main memory

ciphertext=Encryption(plaintext); //No need to store plaintext!

for i← T00 to T30 do
time=Reload(i);
if time > AccessThreshold then

Addcounter(Ti,Xi); //Increase counter of Xi using Ti

end
end

end
return X0, X1, . . . , X15

the above attack can be repeated on each byte, by simply analyzing the collecting
ciphertexts and their timings for each of the ciphertext bytes individually. As before,
the timings are profiled according to the value that each ciphertext byte ci takes
in each of the encryptions, and are stored in a ciphertext byte vector. The attack
process is described in Algorithm 5. In a nutshell, the algorithm monitors the first
T table memory block of all used tables and hence stores four reload values per
observed ciphertext. Note that, this is a known ciphertext attack and therefore all
that is needed is a flush of one memory block before one encryption. There is no
need for the attacker to gain access to plaintexts.

Finally the attacker should apply Algorithm 4 to each of the obtained ciphertext
reload vectors. Recall that each ciphertext reload vector uses a different T table, so
the right corresponding T table should be applied in the key recovery algorithm.

Performing the Attack. In the following we provide the details about the process
followed during the attack.

Step 1: Acquire information about the offset of T tables The attacker has
to know the offset of the T tables with respect to the beginning of the library.
With that information, the attacker can refer and point to any memory block
that holds T table values even when the ASLR is activated. This means that
some reverse engineering work has to be done prior to the attack. This can be
done in a debugging step where the offset of the addresses of the four T tables
are recovered.

Step 2: Collect Measurements In this step, the attacker requests encryptions
and applies Flush and Reload between each encryption. The information

43



gained, i.e. Ti0 was accessed or not, is stored together with the observed
ciphertext. The attacker needs to observe several encryptions to get rid of
the noise and to be able to recover the key. Note that, while the reload step
must be performed and timed by the attacker, the flush might be performed
by other processes running in the victim OS.

Step 3: Key recovery In this final step, the attacker uses the collected measure-
ments and his knowledge about the public T tables to recover the key. From
this information, the attacker applies the steps detailed in Section 7.4.2.1 to
recover the individual bytes of the key.

4.4.3 Attack Scenario 1: Spy Process

In this first scenario we will attack an encryption server running in the same OS as
the spy process. The encryption server just receives encryption requests, encrypts a
plaintext and sends the ciphertext back to the client. The server and the client are
running on different cores. Thus, the attack consists in distinguishing accesses from
the LLC, i.e. L3 cache, which is shared across cores. and the main memory. Clearly,
if the attacker is able to distinguish accesses between LLC and main memory, it will
be able to distinguish between L1 and main memory accesses whenever server and
client co-reside in the same core. In this scenario, both the attacker and victim are
using the same shared library. KSM is responsible for merging those pages into one
unified shared page. Therefore, the victim and attacker processes are linked through
the KSM deduplication feature.

Our attack works as described in the previous section. First the attacker dis-
covers the offset of the addresses of the T tables with respect to the begining of
the library. Next, it issues encryption requests to the server, and receives the cor-
responding ciphertext. After each encryption, the attacker checks with the Flush
and Reload technique whether the chosen T table values have been accessed. Once
enough measurements have been acquired, the key recovery step is performed. As
we will see in our results section, the whole process takes less than half a minute.

Our attack significantly improves on previous cache side channel attacks such as
evict + time or prime and probe [OST06]. Both attacks were based on spy processes
targeting the L1 cache. A clear advantage of our attack is that —since it is targeting
the last shared level cache— it works across cores.

A more realistic attack scenario was proposed earlier by Bernstein [Ber04] where
the attacker targets an encryption server. Our attack similarly works under a re-
alistic scenario. However, unlike Bernstein’s attack [Ber04], our attack does not
require a profiling phase that involves access to an identical implementation with a
known-key. Finally, with respect to the previous Flush and Reload attack in AES,
our attack does not need to interrupt the AES execution of the encryption server.
We will compare different attacks according to the number of encryptions needed in
Section 4.4.6.
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4.4.4 Attack Scenario 2: Cross-VM Attack

In our second scenario the victim process is running in one virtual machine and the
attacker in another one but on the physical server, possibly on different cores. For
the purposes of this study it is assumed that the co-location problem has been solved
using the methods proposed in [RTSS09]. The attack exploits memory overcommit-
ment features that some hypervisors such as VMware provide. In particular, we
focus in memory deduplication. The hypervisor will search periodically for identical
pages across VMs to merge both pages into a single page in the memory. Once this
is done (without the intervention of the attacker) both the victim and the attacker
will access the same portion of the physical memory enabling the attack. The at-
tack process is the same as in Scenario 1. Moreover, we later show that the key is
recovered in less than a minute, which makes the attack practical.

We discussed the improvements of our attack over previous proposals in the
previous scenario except the most important one: We believe that the evict+time,
prime and probe and time collision attacks will be rather difficult to carry out in
real cloud environment. The first two, as we know them so far, are targeting the L1
cache, which is not shared across cores. The attacker would have to be in the same
core as the victim, which is a much stronger assumption than being just in the same
physical machine. Finally, targeting the CFS [GBK11] to evict the victim process,
requires for the attacker’s code to run in the same OS, which will certainly not be
possible in a virtualized environment.

4.4.5 Experiment Setup and Results

We present results for both a spy process within the native machine as well as the
cross-VM scenario. The target process is executed in Ubuntu 12.04 64 bits, kernel
version 3.4, using the C-implementation of AES in OpenSSL 1.0.1f for encryption.
This is used when OpenSSL is configured with no-asm and no-hw option. We want
to remark that this is not the default option in the installation of OpenSSL in most
of the products. All experiments were performed on a machine featuring an Intel i5-
3320M four core clocked at 3.2GHz. The Core i5 has a three-level cache architecture:
The L1 cache is 8-way associative, with 215 bytes of size and a cache line size of 64
bytes. The level-2 cache is 8-way associative as well, with a cache line width of 64
bytes and a total size of 218 bytes. The level-3 cache is 12-way associative with a
total size of 222 bytes and 64 bytes cache line size. It is important to note hypervisor
each core has private L1 and L2 caches, but the L3 cache is shared among all cores.
Together with the deduplication performed by the VMM, the shared L3 cache allows
the adversary to learn about data accesses by the victim process.

The attack scenario is as follows: the victim process is an encryption server
handling encryption requests through a socket connection and sends back the ci-
phertext, similar to Bernstein’s setup in [Ber04]. But unlike Bernstein’s attack,
where packages of at least 400 bytes were sent to deal with the noise, our server
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only receives packages of 16 bytes (the plaintext). The encryption key used by the
the server is unknown to the attacker. The attack process sends encryption queries
to the victim process. All measurements such as timing measurements of the reload
step are done on the attacker side. In our setup, each cache line holds 16 T table
values, which results in a 7.6% probability for not accessing a memory block per
encryption. All given attack results target only the first cache line of each T table,
i.e. the first 16 values of each T table for Flush and Reload. Note that in the attack
any memory block of the T table would work equally well. Both native and cross-
VM attacks establish the threshold for selecting the correct ciphertext candidates
for the working T table line by selecting those values which are below half of the
average of overall timings for each ciphertext value. This is an empirical threshold
that we set up after running some experiments as follows

threshold =
256∑
i=0

ti
2 · 256

.

Spy process attack setup:

The attack process runs in the same OS as the victim process. The communication
between the processes is carried out via localhost connection and measures timing
using Read Time-Stamp Counters (rdtsc). The attack is set up to work across cores;
the encryption server is running in a different core than the attacker. We believe
that distinguishing between L3 and main memory accesses will be more susceptible
to noise than distinguishing between L1 cache accesses and main memory accesses.
Therefore while working with the L3 cache gives us a more realistic setting, it also
makes the attack more challenging.

Cross-VM attack setup:

In this attack, we use VMware ESXI 5.5.0 build number 1623387 running Ubuntu
12.04 64-bits guest OSs. We know that VMware implements TPS with large pages
(2 MB) or small pages (4 KB). We decided to use the latter one, since it seems to
be the default for most systems. Furthermore, as stated in [VMWb], even if the
large page sharing is selected, the VMM will still look for identical small pages to
share. For the attack we used two virtual machines, one for the victim and one
for the attacker. The communication between them is carried out over the local IP
connection.

The results are presented in Figure 4.4 which plots the number of correctly re-
covered key bytes over the number of timed encryptions. The dash-dotted line shows
that the spy-process scenario completely recovers the key after only 217 encryptions.
Prior to moving to the cross-VM scenario, a single VM scenario was performed to
gauge the impact of using VMs. The dotted line shows that due to the noise in-
troduced by virtualization we need to nearly double the number of encryptions to
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Figure 4.4: Number of correct key bytes guessed of the AES-128 bit key vs. number
of encryption requests. Even 50,000 encryptions (i.e. less than 5 seconds of inter-
action) result in significant security degradation in both the native machine as well
as the cross-VM attack scenario.

match the key recovery performance of the native case. The solid line gives the
result for the cross-VM attack: 219 observations are sufficient for stable full key
recovery. The difference might be due to cpuid like instructions which are emulated
by the hypervisor, therefore introducing more noise to the attack. In the worst case,
both the native spy process and the single VM attack took around 25 seconds (for
400.000 encryptions). We believe that this is due to communication via the local-
host connection. However, when we perform a cross-VM attack, it takes roughly
twice as much time as in the previous cases. In this case we are performing the
communication via local IPs that have to reach the router, which is believed to add
the additional delay. This means that all of the described attacks —even in the cross
VM scenario— completely recover the key in less than one minute!

4.4.6 Comparison to Other Attacks

Next we compare the most commonly implemented cache-based side channel attacks
to the proposed attack. Results are shown in Table 4.1. It is difficult to compare
the attacks, since most of them have been run on different platforms. Many of the
prior attacks target OpenSSL 0.9.8 version of AES. Most of these attacks exploit
the fact that AES has a separate T Table for the last round, significantly reducing
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Table 4.1: Comparison of cache side channel attack techniques against AES

Attack Platform Methodology OpenSSL Traces

Spy-Process based Attacks:
Collision timing [BM06] Pentium 4E Time measurement 0.9.8a 300.000
Prime+probe [OST06] Pentium 4E L1 cache prime-probing 0.9.8a 16.000
Evict+time [OST06] Athlon 64 L1 cache evicting 0.9.8a 500.000
Flush+Reload (CFS) [GBK11] Pentium M Flush+reload w/CFS 0.9.8m 100
Flush+Reload [IIES14b] i5-3320M L3 cache Flush+reload 0.9.8a 8.000
Bernstein [AE13] Core2Duo Time measurement 1.0.1c 222

Flush+Reload [IIES14b] i5-3320M L3 cache Flush+reload 1.0.1f 100.000

Cross-VM Attacks:
Bernstein [IIES14a]1 i5-3320M Time measurement 1.0.1f 230

Our attack(VMware) i5-3320M L3 cache Flush and reload 1.0.1f2 400.000

1 Only parts of the key were recovered, not the whole key.
2 The AES implementation was not updated for the recently released OpenSSL 1.0.1g and 1.0.2

beta versions. So the results for those libraries are identical.

the noise introduced by cache miss accesses. Hence, attacks on OpenSSL 0.9.8

AES usually succeed much faster, a trend confirmed by our attack results. Note
that our attack, together with [AE13] and [IIES14a] are the only ones that have
been run on a 64 bit processor. Moreover, we assume that due to undocumented
internal states and advanced features such as hardware prefetchers, implementation
on a 64 bit processor will add more noise than older platforms running the attack.
With respect to the number of encryptions, we observe that the proposed attack
has significant improvements over most of the previous attacks.

Spy process in native OS:

Even though our attack runs in a noisier environment than Bernstein’s attack, Evict
and Time, and cache timing collision attacks, it shows better performance. Only
Prime and Probe and Flush and Reload using CFS show either comparable or better
performance. The proposed attack has better performance than Prime and Probe
even though their measurements were performed with the attack and the encryption
being run as one unique process. The Flush and Reload attack in [GBK11] exploits a
much stronger leakage, which requires that attacker to interrupt the target AES
between rounds (an unrealistic assumption). Furthermore, Flush and Reload with
CFS needs to monitor the entire T tables, while our attack only needs to monitor a
single line of the cache, making the attack much more lightweight and subtle.

Cross-VM attack:

So far there is only one publication that has analyzed cache-based leakage across
VMs for AES [IIES14a]. Our attack shows dramatic improvements over [IIES14a],
which needs 229 encryptions (hours of run time) for a partial recovery of the key.
Our attack only needs 219 encryptions to recover the full key. Thus, while the attack
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presented in [IIES14a] needs to interact with the target for several hours, our attack
succeeds in under a minute and recovers the entire key. Note that the CFS enabled
Flush and Reload attack in [GBK11] will not work in the cross-VM setting, since
the attacker has no control over victim OS’s CFS.

4.5 Flush and Reload Attacking Transport Layer

Security: Re-viving the Lucky 13 Attack

Although cache attacks are usually applied to cryptographic algorithms, virtually
any security critical software that has non-constant execution flow can be targeted
by the Flush and Reload attack. In this section, we show an example of such
an application. In particular, we show for the first time that cache attacks can
be utilized to attack security protocols like the Transport Layer Security (TLS)
protocol, by re-implementing the Lucky 13 attack that was believed to be closed by
the security community.

The Lucky 13 attack targets a vulnerability in the TLS (and DTLS) protocol
design. The vulnerability is due to MAC-then-encrypt mode, in combination with
the padding of the CBC encryption, also referred to as MEE-TLS-CBC. In the fol-
lowing, our description focuses on this popular mode. Vaudenay [Vau02] showed
how the CBC padding can be exploited for a message recovery attack. AlFardan
et al. [FP13] showed—more than 10 years later—that the subsequent MAC verifi-
cation introduces timing behavior that makes the message recovery attack feasible
in practical settings. In fact, their work includes a comprehensive study of the vul-
nerability of several TLS libraries. In this section we give a brief description of the
attack. For a more detailed description, please refer to the original paper [FP13].

4.5.1 The TLS Record Protocol

The TLS record protocol provides encryption and message authentication for bulk
data transmitted in TLS. The basic operation of the protocol is depicted in Fig-
ure 4.5. When a payload is sent, a sequence number and a header are attached to
it and a MAC tag is generated by any of the available HMAC choices. Once the
MAC tag is generated, it is appended to the payload together with a padding. The
payload, tag, and pad are then encrypted using a block cipher in CBC mode. The
final message is formed by the encrypted ciphertext plus the header.

Upon receiving an encrypted packet, the receiver decrypts the ciphertext with
the session key that was negotiated in the handshake process. Next, the padding
and the MAC tag need to be removed. For this, first the receiver checks whether
the size of the ciphertext is a multiple of the block size and makes sure that the
ciphertext can accommodate minimally a zero-length record, a MAC tag, and at
least one byte of padding. After decryption, the receiver checks if the recovered
padding matches one of the allowed patterns. A standard way to implement this
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Figure 4.5: Encryption and authentication in the TLS record protocol when using
HMAC and a block cipher in CBC mode.

decoding step is to check the last byte of the plaintext, and to use it to determine
how many of the trailing bytes belong to the padding. Once the padding is removed,
and the plain payload is recovered, the receiver attaches the header and the sequence
number and performs the HMAC operation. Finally, the computed tag is compared
to the received tag. If they are equal, the contents of the message are concluded to
be securely transmitted.

4.5.2 HMAC

The TLS record protocol uses the HMAC algorithm to compute the tag. The HMAC
algorithm is based on a hash function H that performs the following operations:

HMAC(K,m) = H((K ⊕ opad)||H((K ⊕ ipad)||M)

Common choices in TLS 1.2 for H are SHA-1, SHA-256 and the now defunct MD5.
The message M is padded with a single 1 bit followed by zeros and an 8 byte
length field. The pad aligns the data to a multiple of 64 bytes. K ⊕ opad already
forms a 64 byte field, as well as K ⊕ ipad. Therefore, the minimum number of
compression function calls for a HMAC operation is 4. This means that depending
on the number of bytes of the message, the HMAC operation is going to take more
or less compression functions. To illustrate this, we are repeating the example given
in [FP13] as follows. Assume that the plaintext size is 55 bytes. In this case an 8 byte
length field is appended together with a padding of size 1, so that the total size is 64
bytes. Here in total the HMAC operation is going to take four compression function
calls. However if the plaintext size is 58, an 8 byte length field is attached and 62
bytes of padding are appended to make the total size equal to 128 bytes. In this case,
the total compression function calls are going to be equal to five. Distinguishing the
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number of performed compression function calls is the basic idea that enables the
Lucky 13 attack.

4.5.3 CBC Encryption & Padding

Until the support of the Galois Counter Mode in TLS 1.2, block ciphers were always
used in cipher block chaining (CBC) mode in TLS. The decryption of each block of
a ciphertext Ci is performed as follows:

Pi = Dk(Ci)⊕ Ci−1

Here, Pi is the plaintext block and Dk(·) is the decryption under key k. For the
prevalent AES, the block size is 16 bytes. The size of the message to be encrypted
in CBC mode has to be indeed a multiple of the cipher block size. The TLS pro-
tocol specifies a padding as follows: the last padding byte indicates the length of
the padding; the value of the remaining padding bytes is equal to the number of
padding bytes needed. This means that if 3 bytes of padding is needed, the cor-
rect padding has to be 0x02|0x02|0x02. Possible TLS paddings are: 0x00, 0x01|0x01,
0x02|0x02|0x02, up to 0xff—0xff| . . . |0xff. Note that there are several valid paddings
for each message length.

4.5.4 An Attack On CBC Encryption

We now discuss the basics of the Lucky 13 attack. For the purposes of this study
the target cipher is AES in CBC mode, as described above. Again, we use the same
example that AlFardan et al. gave in [FP13]. Assume that the sender is sending 4
non-IV blocks of 16 bytes each, one IV block, and the header number. Let’s further
assume that we are using SHA-1 to compute the MAC tag, in which case the digest
size is 20 bytes. The header has a fixed length of 5 bytes and the sequence number
would have a total size of 8 bytes. The payload would look like this:

HDR|CIV |C1|C2|C3|C4

Now assume that the attacker masks ∆ in C3. The decryption of C4 is going to be
as follows:

P ∗4 = Dk(C4)⊕ C3 ⊕∆ = P4 ⊕∆

Focusing on the last two bytes P ∗4(14)|P ∗4(15) three possible scenarios emerge:

Invalid padding

This is the most probable case, where the plaintext ends with an invalid padding.
Therefore, according to TLS protocol, this is treated as 0 padding. 20 bytes of MAC
(SHA-1) are removed and the corresponding HMAC operation in the client side is
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performed on 44 bytes +13 bytes of header, in total 57 bytes. Therefore the HMAC
evaluates 5 compression function calls.

Valid 0x00 padding

If P ∗4(15) is 0x00, this is considered as valid padding, and a single byte of padding
is removed. Then the 20 bytes of digest are removed, and the HMAC operation in
client side is done in 43+13 bytes, 56 in total, which takes 5 compression function
calls.

Any other valid padding

For instance, if we consider a valid padding of two bytes, the valid padding would be
0x01|0x01 and 2 bytes of padding are removed. Then 20 bytes of digest are removed,
and the HMAC operation is performed over 42 + 13 = 55 bytes, which means four
compression function calls.

The Lucky 13 attack is based on detecting this difference between 4 and 5 com-
pression function calls. Recall that if an attacker knows that a valid 0x01|0x01
padding was achieved, she can directly recover the last two bytes of P4, since

0x01|0x01 = P4(14)|P4(15) ⊕∆(14)|∆(15)

Note that the successful padding 0x01|0x01 is more likely to be achieved than any
other longer valid padding, and therefore, the attacker can be confident enough that
it is the padding that was forged. Furthermore, she can keep on trying to recover
the remaining bytes once she knows the first 2 bytes. The attacker needs to perform
at most 216 trials for detecting the last two bytes, and then up to 28 messages for
each of the bytes that she wants to recover.

4.5.5 Analysis of Lucky 13 Patches

The Lucky 13 attack triggered a series of patches for all major implementations of
TLS [FP13]. In essence, all libraries were fixed to remove the timing side channel
exploited by Lucky 13, i.e. implementations were updated to handle different CBC-
paddings in constant time. However, different libraries used different approaches to
achieve this:

• Some libraries implement dummy functions or processes,

• Others use dummy data to process the maximum allowed padding length in
each MAC checking.

In the following, we discuss these different approaches for some of the most popular
TLS libraries.
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4.5.6 Patches Immune to Flush and Reload

In this section we will analyze those libraries that are secure against the Flush and
Reload technique.

• OpenSSL: The Lucky 13 vulnerability was fixed in OpenSSL versions 1.0.1,
1.0.0k, and 0.9.8y by February 2013 without the use of a time consuming
dummy function and by using dummy data. Basically, when a packet is
received, the padding variation is considered and the maximum number of
HMAC compression function evaluations needed to equalize the time is calcu-
lated. Then each compression function is computed directly, without calling
any external function. For every message, the maximum number of compres-
sion functions are executed, so that no information is leaked through the time
channel in case of the incorrect padding. Furthermore, the OpenSSL patch
removed any data dependent branches ensuring a fixed data independent ex-
ecution flow. This is a generic solution for microarchitectural leakage related
attacks, i.e. cache timing or even branch prediction attacks.

• Mozilla NSS: This library is patched against the Lucky 13 attack in ver-
sion 3.14.3 by using a constant time HMAC processing implementation. This
implementation follows the approach of OpenSSL, calculating the number of
maximum compression functions needed for a specific message and then com-
puting the compression functions directly. This provides not only a counter-
measure for both timing and cache access attacks, but also for branch predic-
tion attacks.

• MatrixSSL: MatrixSSL is fixed against the Lucky 13 with the release of ver-
sion 3.4.1 by adding timing countermeasures that reduce the effectiveness of
the attack. In the fix, the library authors implemented a decoding scheme that
does a sanity check on the largest possible block size. In this scheme, when
the received message’s padding length is incorrect, Matrix SSL runs a loop as
if there was a full 256 bytes of padding. When there are no padding errors, the
same operations are executed as in the case of an incorrect padding to sustain
a constant time. Since there are no functions that are specifically called in
the successful or unsuccessful padding cases, this library is not vulnerable to
our Flush and Reload attack. In addition, Matrix SSL keeps track of all errors
in the padding decoding and does the MAC checking regardless of valid or
invalid padding rather than interrupting and finalizing the decoding process
at the first error.

4.5.7 Patches Vulnerable to Flush and Reload

There are some patches that ensure constant time execution and therefore are im-
mune to the original Lucky 13 attack [FP13] which are vulnerable to Flush and
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Reload. This implies a dummy function call or a different function call tree for valid
and invalid paddings. Furthermore, if these calls are preceded by branch predic-
tions, these patches might also be exploitable by branch prediction attacks. Some
examples including code snippets are given below.

• GnuTLS: uses a dummy wait function that performs an extra compression
function whenever the padding is incorrect. This function makes the response
time constant to fix the original Lucky 13 vulnerability. Since this function is
only called in the case of incorrect padding, it can be detected by a co-located
VM running a Flush and Reload attack.

i f (memcmp ( tag , &c iphe r t ex t−>data [ length ] ,
t a g s i z e ) != 0 | | p a d f a i l e d != 0)
//HMAC was not the same.
{dummy wait(params, compressed , pad failed ,
pad, length+preamble size );}

• PolarSSL: uses a dummy function called md process to sustain constant
time to fix the original Lucky 13 vulnerability. Basically the number of extra
runs for a specific message is computed and added by md process. Whenever
this dummy function is called, a co-located adversary can learn that the last
padding was incorrect and use this information to realize the Lucky 13 attack.

f o r ( j = 0 ; j < ex t ra run ; j++ )
\\We need an extra run

md process( &ssl−>transform in−>
md ctx dec , ssl−>in msg ) ; ]∗

• CyaSSL: was fixed against the Lucky 13 with the release of 2.5.0 on the same
day the Lucky 13 vulnerability became public. In the fix, CyaSSL implements a
timing resistant pad/verify check function called TimingPadVerify which uses
the Padcheck function with dummy data for all padding length cases whether
or not the padding length is correct. CyaSSL also does all the calculations such
as the HMAC calculation for the incorrect padding cases which not only fixes
the original Lucky 13 vulnerability but also prevents the detection of incorrect
padding cases. This is due to the fact that the Padcheck function is called for
both correctly and incorrectly padded messages which makes it impossible to
detect with our Flush and Reload attack.

However, for the correctly padded messages, CyaSSL calls the CompressRounds
function which is detectable with Flush and Reload .Therefore, we monitor the
correct padding instead of the incorrect padding cases.

Correct padding case:
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PadCheck (dummy, (byte ) padLen ,
MAX PAD SIZE − padLen − 1) ;
ret = s s l−>hmac( s s l , v e r i f y , input ,
pLen − padLen − 1 − t , content , 1) ;
CompressRounds( ssl , GetRounds(pLen,
padLen, t ) , dummy) ;
ConstantCompare ( v e r i f y , input +
( pLen − padLen − 1 − t ) , t ) != 0)

Incorrect padding case:

CYASSL MSG( ”PadCheck f a i l e d ” ) ;
PadCheck (dummy, (byte ) padLen ,
MAX PAD SIZE − padLen − 1) ;
s s l−>hmac( s s l , v e r i f y , input ,
pLen − t , content , 1) ;

// s t i l l compare
ConstantCompare ( v e r i f y , input +
pLen − t , t ) ;

4.5.8 Reviving Lucky 13 on the Cloud

As the cross-network timing side channel has been closed (c.f. Section 4.5.5), the
Lucky 13 attack as originally proposed no longer works on the recent releases of
most cryptographic libraries. In this work, we revive the Lucky 13 attack to target
some of these (fixed) releases by gaining information through co-located VMs (a
leakage channel not considered in the original paper) rather than the network timing
exploited in the original attack.

4.5.8.1 Regaining the Timing Channel

Most cryptographic libraries and implementations have been largely fixed to yield
an almost constant time when the MAC processing time is measured over the net-
work. As discussed in Section 4.5.5, although there are some similarities in these
patches, there are also subtle differences which—as we shall see—have significant
implications on security. Some of the libraries not only closed the timing channel
but also various cache access channels. In contrast, other libraries left an open
door to implement access driven cache attacks on the protocol. In this section we
analyze how an attacker can gain information about the number of compression
functions performed during the HMAC operation by making use of leakages due to
shared memory hierarchy in VMs located on the same machine. This is sufficient to
re-implement the Lucky 13 attack.

More precisely, during MAC processing depending on whether the actual MAC
check terminates early or not, some libraries call a dummy function to equalize the
processing time. Knowing if this dummy function is called or not reveals whether
the received packet was processed as to either having a invalid padding, zero length
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Figure 4.6: Histogram of network time measured for sent packages with valid (4
compression functions) and invalid (5 compression functions) paddings.

padding or any other valid padding. In general, any difference in the execution
flow between handling a well padded message, a zero padded message or an invalid
padded message enables the Lucky 13 attack. This information is gained by the
Flush and Reload technique if the cloud system enables deduplication features.

To validate this idea, we ran two experiments:

• In the first experiment we generated encrypted packets using PolarSSL client
with valid and invalid paddings and measured the network time as shown in
Figure 4.6. Note that, the network time in the two distributions obtained for
valid and invalid paddings are essentially indistinguishable as intended by the
patches.

• In the second experiment we see a completely different picture. Using Po-
larSSL we generated encrypted packets with valid and invalid paddings which
were then sent to a PolarSSL server. Here instead, we measured the time it
takes to load a specifically chosen PolarSSL library function running inside a
co-located VM. Figure 4.7 shows the probability distributions for a function
reloaded from L3 cache vs. a function reloaded from the main memory. The
two distributions are clearly distinguishable and the misidentification rate (the
area under the overlapping tails in the middle of the two distributions) is very
small. Note that, this substitute timing channel provides much more precise
timing that the network time. To see this more clearly, we refer the reader to
Figure 2 in [FP13] where the network time is measured to obtain two overlap-
ping Gaussians by measurements with OpenSSL encrypted traffic. This is not
a surprise, since the network channel is significantly more noisy.

In conclusion, we regain a much more precise timing channel, by exploiting the
discrepancy between L3 cache and memory accesses as measured by a co-located
attacker. In what follows, we more concretely define the attack scenario, and then
precisely define the steps of the new attack.
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Figure 4.7: Histogram of access time measured for function calls from the L3 cache
vs. a function called from the main memory.

4.5.8.2 New Attack Scenario

In our attack scenario, the side channel information will be gained by monitoring
the cache in a co-located VM. In the same way as in [FP13] we assume that the
adversary captures, modifies, and replaces any message sent to the victim. However,
TLS sessions work in such a way that when the protocol fails to decrypt a message,
the session is closed. This is the reason why we focus in multi-session attacks where
the same plaintext in the same place is being sent to the victim e.g. an encrypted
password sent during user authentication.

The fact that we are working with a different method in a different scenario gives
us some advantages and disadvantages over the previous Lucky 13 work:

Advantages:

• Recent patches in cryptographic libraries mitigate the old Lucky 13 attack,
but are still vulnerable in the new scenario.

• In the new scenario, no response from the server is needed. The old Lucky
13 attack needed a response to measure the time, which yielded a noisier
environment in TLS than DTLS.

• The new attack does not suffer from the network channel noise. This source
of noise was painful for the measurements as we can see in the original paper,
where in case of TLS as many as 214 trials were necessary to guess a single
byte value.

Disadvantages:

• Assumption of co-location: To target a specific victim, the attacker has to
be co-located with that target. However the attacker could just reside in a
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physical machine and just wait for some potential random victim running a
TLS operation.

• Other sources of noise: The attacker no longer has to deal with network chan-
nel noise, but still has to deal with other microarchitectural sources of noise,
such as instruction prefetching. This new source of noise is translated in more
traces needed, but as we will see, much less than in the original Lucky 13
attack. In Section 7.5 we explain how to deal with this new noise.

4.5.8.3 Attack Description

In this section we describe how an attacker uses Flush and Reload technique to gain
access to information about the plaintext that is being sent to the victim.

• Step 1 Function identification: Identify different function calls in the TLS
record decryption process to gain knowledge about suitable target functions for
the spy process. The attacker can either calculate the offset of the function she
is trying to monitor in the library, and then add the corresponding offset when
the Address Space Layout Randomization (ASLR ) moves her user address
space. Another option is to disable the ASLR in the attackers VM, and use
directly the virtual address corresponding to the function she is monitoring.

• Step 2 Capture packet, mask and replace: The attacker captures the
packet that is being sent and masks it in those positions that are useful for
the attack. Then she sends the modified packet to the victim.

• Step 3 Flush targeted function from cache: The Flush and Reload pro-
cess starts after the attacker replaces the original version of the packet and
sends it. The co-located VM flushes the function to ensure that no one but the
victim ran the targeted function. Any subsequent execution of the targeted
function will bear a faster reload time during the reload process.

• Step 4 Reload target function & measure: Reload the corresponding
function memory line again and measure the reload time. According to a
threshold that we set based on experimental measurements, we decide whether
the dummy function was loaded from the cache (implying that the victim has
executed the dummy function earlier) or was loaded from the main memory
(implying the opposite).

Since the attacker has to deal with instruction prefetching, she will be constantly
running Flush and Reload for a specified period of time. The attacker therefore
distinguishes between functions preloaded and functions preloaded and executed,
since the latter will stay for a longer period of time in the cache.
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4.5.9 Experiment Setup and Results

In this section we present our test environment together with our detection method
to avoid different cache prefetching techniques that affect our measurements. Finally
we present the results of our experiments for the PolarSSL, GnuTLS and CyaSSL
libraries.

4.5.9.1 Experiment Setup

The experiments were run on an Intel i5-650 dual core at 3.2 GHz. Our physical
server includes 256 KB per core L2 cache, and a 4 MB L3 cache shared between
both cores. We used VMware ESXI 5.5.0 build number 162338 for virtualization.
TPS is enabled with 4 KB pages. In this setting, our Flush and Reload technique
can distinguish between L3 cache and main memory accesses.

For the TLS connection, we use an echo server which reads and re-sends the
message that it receives, and a client communicating with it. Client and echo server
are running in different virtual machines that use Ubuntu 12.04 guest OS. We modify
the echo server functionality so that it adds a jitter in the encrypted reply message,
modeling the Man in the Middle Attack. Once the message is sent, the echo server
uses Flush and Reload to detect different function calls and concludes if the padding
was correct or not.

4.5.9.2 Dealing with Cache Prefetching

Modern CPUs implement cache prefetching in a number of ways. These techniques
affect our experiments, since the monitored function can be prefetched to cache,
even if it was not executed by the victim process. To avoid false positives, it is not
sufficient to detect if the monitored functions were loaded to cache, but also for
how long they have resided in the cache. This is achieved by counting the number
of subsequent detections for the given function in one execution. Therefore, the
attack process effectively distinguishes between prefetched functions and prefetched
and executed functions.

We use experiments to determine a threshold (which differs across the libraries)
to distinguish a prefetch and execute from a mere prefetch. For PolarSSL this
threshold is based on observing three Flush and Reload accesses in a row. Assume
that n is the number of subsequent accesses required to conclude that the function
was executed. In the following, we present the required hits for different libraries,
i.e. the number of n-accesses required to decide whether the targeted function was
executed or not.

4.5.9.3 Attack on PolarSSL1.3.6

Our first attack targets PolarSSL 1.3.6, with TLS 1.1. In the first scenario the
attacker modifies the last two bytes of the encrypted message until she finds the
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Figure 4.8: (PolarSSL 1.3.6) Success probability of recovering P14 and P15 vs. L,
for different number of hits required. L refers to the number of 216 traces needed,
so the total number of messages is 216 ∗ L.

∆ that leads to a 0x01|0x01 padding. Recall that 216 different variations can be
performed in the message. The first plot shows the success probability of guessing
the right ∆ versus L, where L refers to the number of 216 traces needed. For
example L = 4 means that 216 ∗ 4 messages are needed to detect the right ∆. Based
on experimental results, we set the access threshold such that we consider a hit
whenever the targeted function gets two accesses in a row.

The measurements were performed for different number of required hits. Fig-
ure 4.8 shows that requiring a single hit might not suffice since the attacker gets false
positives, or for small number of messages she may miss the access at all. However
when we require two hits, and if the attacker has a sufficient number of messages
(in this case L = 23), the probability of guessing the right ∆ is comfortably close to
one. If the attacker increases the limit further to ensure an even lower number of
false positives, she will need more messages to see the required number of hits. In
the case of 3 hits, L = 24 is required to have a success probability close to one.

Figure 4.9 shows the success probability of correctly recovering P13, once the
attacker has recovered the last two bytes. Now the attacker is looking for the padding
0x02|0x02|0x02. We observed a similar behavior with respect to the previous case
where with L = 8 and with a two hits requirement we will recover the correct byte
with high probability. Again if the attacker increases the requirement to 3 hits, she
will need more measurements; about L = 16 is sufficient in practice.
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Figure 4.9: (PolarSSL 1.3.6) Success probability of recovering P13 assuming P14, P15

known vs L, for different number of hits required. L refers to the number of 28

traces needed, so the total number of messages is 28 ∗ L.

4.5.9.4 CyaSSL 3.0.0

Recall that the attack is much more effective if the attacker knows any of the pre-
ceding bytes of the plaintext, for example the last byte P15 of the plaintext. This
would be the case in a Javascript/web setting where adjusting the length of an ini-
tial HTTP request an attacker can ensure that there is only one unknown byte in
the HTTP plaintext. In this case, the attacker would not need to try 216 possible
variations but only 28 variations for each byte that she wants to recover. This is the
scenario that we analyzed in CyaSSL TLS 1.2, where we assumed that the attacker
knows P15 and she wants to recover P14. Now the attacker is again trying to obtain
a 0x01|0x01 padding, but unlike in the previous case, she knows the ∆ to make the
last byte equal to 0x01. The implementation of CyaSSL behaves very similarly to
the one of PolarSSL, where due to the access threshold, a one hit might lead to false
positives. However, requiring two hits with a sufficient number of measurements is
enough to obtain a success probability very close to one. The threshold is set as
in the previous cases, where a hit is considered whenever we observe two Flush and
Reload accesses in a row.

4.5.9.5 GnuTLS 3.2.0

Finally we present the results confirming that GnuTLS3.2.0 TLS 1.2 is also vul-
nerable to this kind of attack. Again, the measurements were taken assuming that
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Figure 4.10: (CyaSSL3.0.0) Success Probability of recovering P14 assuming P15

known vs L, for different number of hits required. L refers to the number of 28

traces needed, so the total number of messages would be 28 ∗ L.

the attacker knows the last byte P15 and she wants to recover P14, i.e., she wants
to observe the case where she injects a 0x01|0x01 padding. However, GnuTLS’s
behavior shows some differences with respect to the previous cases. For the case
of GnuTLS, we find that if we set an access threshold of three accesses in a row
(which would yield our desired hit), the probability of getting false positives is very
low. Based on experimental measurements we observed that only when the dummy
function is executed we observe such a behavior. However the attacker needs more
messages to be able to detect one of these hits. Observing one hit indicates with
high probability that the function was called, but we also consider the two hit case
in case the attacker wants the probability of having false positives to be even lower.
Based on these measurements, we conclude that the attacker recovers the plaintext
with very high probability, so we did not find it necessary to consider the three hit
case.

4.6 Flush and Reload Outcomes

In short, we demonstrated that if the memory deduplication requirement is satisfied,
Flush and Reload can have severe consequences to processers/users co-residing in
the same CPU socket, even if they are located in different CPU cores. We have
demonstrated that such an attack can be utilized to recover cryptographic keys and
TLS messages from CPU co-resident users. More than that, we demonstrated that
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Flush and Reload can bypass the isolation techniques implemented by commonly
used hypervisors to avoid cross-VM leakage.

Despite all these advantages, we observed two major hurdles that Flush and
Reload cannot overcome:

• Flush and Reload cannot attack victims located in a different CPU, but it is
restricted to target victims located in the same CPU socket.

• Flush and Reload cannot be applied in systems in which memory deduplication
does not exist, as the attacker does not get access to the victim’s data. This
fact also restricts Flush and Reload to attack only statically allocated data.

In the following chapters we explain how to overcome the two obstacles that
Flush and Reload is not able to bypass.
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Chapter 5

The First Cross-CPU Attack:
Invalidate and Transfer

In previous sections we have presented Flush and Reload as a cross-core side channel
attack introduced to target Intel processors. However, the utilized covert channels
makes use of specific characteristics that Intel processors feature. For example, the
proposed LLC attack takes advantage of their inclusive cache design. Furthermore,
it also relies on the fact that the LLC is shared across cores. Therefore the Flush
and Reload attack succeeds only when the victim and the attacker are co-located
on the same CPU.

These characteristics are not observed in other CPUs, e.g. AMD or ARM. Aim-
ing at solving these issues, this chapter presents Invalidate and Transfer, an attack
that expands deduplication enabled LLC attacks to victims residing in different
CPU sockets with any LLC characteristics. We utilize AMD as an example, but the
same technique should also succeed in ARM processors. In this sense, AMD servers
present two main complications that prevents application of existing side channel
attacks:

• AMD tends to have more CPU sockets in high end servers compared to Intel.
This reduces the chance of being co-located in the same CPU, and therefore,
to apply the aforementioned Flush and Reload attack.

• LLCs in AMD are usually exclusive or non-inclusive. The former does not
allocate a memory block in different level caches at the same time. That is,
data is present in only one level of the cache hierarchy. Non-inclusive caches
show neither inclusive or exclusive behavior. This means that any memory
access will fetch the memory block to the upper level caches first. However,
the data can be evicted in the outer or inner caches independently. Hence,
accesses to L1 cache cannot be detected by monitoring the LLC, as it is possible
on Intel machines.

Hence, to perform a side channel attack on AMD processors, both of these challenges
need to be overcome. Here we present a covert channel that is immune to both
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complications. The proposed Invalidate and Transfer attack is the first side channel
attack that works across CPUs that feature non-inclusive or exclusive caches.

Invalidate and Transfer presents a new covert channel based on cache coherency
technologies implemented in modern processors. In particular, we focus on AMD
processors, which have exclusive caches that in principle are invulnerable to cache
side channel attacks although the results can be readily applied to multi-CPU Intel
processors as well. In summary,

• We present the first cross-CPU side channel attack, showing that CPU co-
location is not needed in multi-CPU servers to obtain fine grain information.

• We present a new deduplication-based covert channel that utilizes directory-
based cache coherency protocols to extract sensitive information.

• We show that the new covert channel succeeds in those processors where cache
attacks have not been shown to be possible before, e.g. AMD exclusive caches.

• We demonstrate the feasibility of our new side channel technique by mounting
an attack on a T-table based AES and a square and multiply implementation
of El Gamal schemes.

5.1 Cache Coherence Protocols

In order to ensure coherence between different copies of the same data, systems
implement cache coherence protocols. In the multiprocessor setting, the coherency
between shared blocks that are cached in different processors (and therefore in dif-
ferent caches) also needs to be maintained. The system has to ensure that each
processor accesses the most recent value of a shared block, regardless of where that
memory block is cached. The two main categories of cache coherence protocols
are snooping based protocols and directory based protocols. While snooping based
protocols follow a decentralized approach, they usually require a centralized data
bus that connects all caches. This results in excessive bandwidth need for systems
with an increasing number of cores. Directory-based protocols, however, enable
point-to-point connections between cores and directories, hence follow an approach
that scales much better with an increasing number of cores in the system. We put
our focus in the latter one, since it is the prevailing choice in current multiproces-
sor systems. The directory keeps track of the state of each of the cached memory
blocks. Thus, upon a memory block access request, the directory will decide the
state that the memory block has to be turned into, both in the requesting node
and the sharing nodes that have a cached copy of the requested memory block. We
analyze the simplest cache coherence protocol, with only 3 states, since the attack
that is implemented in this study relies on read-only data. Thus, the additional
states applied in more complicated coherency protocols do not affect the flow of our
attack.
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We introduce the terms home node for the node where the memory block resides,
local node for the node requesting access to the memory block, and owner node

referring a node that has a valid copy of the memory block cached. This leads to
various communication messages that are summarized as follows:

• The memory block cached in one or more nodes can be in either uncached

state, exclusive/modified or shared.

• Upon a read hit, the local node’s cache services the data. In this case, the
memory block maintains its state.

• Upon a read miss, the local node contacts the home node to retrieve the
memory block. The directory knows the state of the memory block in other
nodes, so its state will be changed accordingly. If the block is in exclusive

state, it goes to shared. If the block is in shared state, it maintains it. In
both cases the local node then becomes an owner and holds a copy of the
shared memory block.

• Upon a write hit, the local node sets the memory block to exclusive. The
local node communicates the nodes that have a cached copy of the memory
block to invalidate or to update it.

• Upon a write miss, again the home node will service the memory block. The
directory knows the nodes that have a cached copy of the memory block, and
therefore sends them either an update or an invalidate message. The local

node then becomes an owner of the exclusive memory block.

In practice, most cache coherency protocols have additional states that the mem-
ory block can acquire. The most studied one is the MESI protocol, where the
exclusive state is divided into the exclusive and modified states. Indeed, a
memory block is exclusive when a single node has a clean state of the memory
block cached. However, when a cached memory block is modified, it acquires the
modified state since it is not consistent with the value stored in the memory. A
write back operation would set the memory block back to the exclusive state.

The protocols implemented in modern processors are variants of the MESI pro-
tocol, mainly adding additional states. For instance, the Intel i7 processor uses
a MESIF protocol, which adds the additional forward state. This state will des-
ignate the sharing processor that should reply to a request of a shared memory
block, without involving a memory access operation. The AMD Opteron utilizes
the MOESI protocol with the additional owned state. This state indicates that
the memory block is owned by the corresponding cache and is out-of-date with the
memory value. However, contrary to the MESI protocol where a transition from
modified to shared involves a write back operation, the node holding the owned

state memory block can service it to the sharing nodes without writing it back to
memory. Note that both the MESIF and MOESI protocol involve a cache memory
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block forwarding operation. Both the owned and the forward state suggest that a
cache rather than a DRAM will satisfy the reading request. If the access time from
cache differs from regular DRAM access times, this behavior becomes an exploitable
covert channel.

5.1.1 AMD HyperTransport Technology

Cache coherency plays a key role in multi-core servers where a memory block might
reside in many core-private caches in the same state or in a modified state. In mul-
tiple socket servers, this coherency does not only have to be maintained within a
processor, but also across CPUs. Thus, complex technologies are implemented to
ensure the coherency in the system. These technologies center around the cache
directory protocols explained in section 5.1. The HyperTransport technology imple-
mented by AMD processors serves as a good example. We only focus on the features
relevant to the new proposed covert channel. A detailed explanation can be found
in [CKD+10, AMD].

The HyperTransport technology reserves a portion of the LLC to act as directory
cache in the directory based protocol. This directory cache keeps track of the cached
memory blocks present in the system. Once the directory is full, one of the previous
entries will be replaced to make room for a new cached memory block. The directory
always knows the state of any cached memory block, i.e., if a cache line exists in
any of the caches, it must also have an entry in the directory. Any memory request
will go first through the home node’s directory. The directory knows the processors
that have the requested memory block cached, if any. The home node initiates
in parallel both a DRAM access and a probe filter. The probe filter is the action
of checking in the directory which processor has a copy of the requested memory
block. If any node holds a cached copy of the memory block, a directed probe
against it is initiated, i.e., the memory block will directly be fast forwarded from
the cached data to the requesting processor. A directed probe message does not
trigger a DRAM access. Instead, communications between nodes are facilitated via
HyperTransport links, which can run as fast as 3 GHz. Figure 5.1 shows a diagram
of how the HyperTransport links directly connect the different CPUs to each other
avoiding memory node accesses. Although many execution patterns can arise from
this protocol, we will only explain those relevant to the attack, i.e. events triggered
over read-only blocks which we will elaborate on later. We assume that we have
processors A and B, refereed to as Pa and Pb, that share a memory block:

• If Pa and Pb have the same memory block cached, upon a modification made
by Pa, HyperTransport will notify Pb that Pa has the latest version of the
memory block. Thus, Pa will have to update its version of the block to con-
vert the shared block into a owned block. Upon a new request made by Pb,
HyperTransport will transfer the updated memory block cached in Pa.
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Figure 5.1: DRAM accesses vs Directed probes thanks to the HyperTransport Links

• Similarly, upon a cache miss in Pa, the home node will send a probe message
to the processors that have a copy of the same shared memory block, if any.
If, for instance, Pb has it, a directed probe message is initiated so that the
node can service the cached data through the hypertransport links. Therefore,
HyperTransport reduces the latency of retrieving a memory block from the
DRAM by also checking whether someone else maintains a cached copy of
the same memory block. Note that this process does not involve a write-back
operation.

• When a new entry has to be placed in the directory of Pa, and the directory
is full, one of the previously allocated entries has to be evicted to make room
for the new entry. This is referred as a downgrade probe. In this case, if the
cache line is dirty a writeback is forced, and an invalidate message is sent to
all the processors (Pb) that maintain a cached copy of the same memory block.

In short, HyperTransport reduces latencies that were observed in previously im-
plemented cache coherency protocols by issuing directed probes to the nodes that
have a copy of the requested memory block cached. The HyperTransport links ensure
a fast transfer to the requesting node. In fact, the introduction of HyperTransport
links greatly improved the performance and thus viability of multi-CPU systems.
Earlier multi-CPU systems relied on broadcast or directory protocols, where a re-
quest of a exclusive cached memory block in an adjacent processor would imply a
writeback operation to retrieve the up-to-date memory block from the DRAM.

5.1.2 Intel QuickPath Interconnect Technology

In order to maintain cache coherency across multiple CPUs Intel implements a
similar technique to AMD’s HyperTransport called Intel QuickPath Interconnect
(QPI) [Intd, IQP]. Indeed, the later one was designed five years latter than the
first one to compete with the existing technology in AMD processors. Similar to
HyperTransport, QPI connects one or more processors through high speed point-to-
point links as fast as 3.2GHz. Each processor has a memory controller on the same
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Figure 5.2: Comparison of a directed probe access across processors: probe satisfied
from CPU 1’s cache directly via HTLink (a) vs. probe satisfied by CPU 1 via a slow
DRAM access (b).

die to make to improve the performance. As we have already seen with AMD, among
other advantages, this interface efficiently manages the cache coherence in the system
in multiple processor servers by transferring shared memory blocks through the QPI
high speed links. In consequence, the proposed mechanisms that we later explain in
this paper are also applicable in servers featuring multi-CPU Intel processors.

5.2 Invalidate and Transfer Attack Procedure

We propose a new spy process that takes advantage of leakages observed in the cache
coherency protocol with memory blocks shared between many processors/cores. The
spy process does not rely on specific characteristics of the cache hierarchy, like
inclusiveness. In fact, the spy process works even across co-resident CPUs that do
not share the same cache hierarchy. From now on, we assume that the victim and
attacker share the same memory block and that they are located in different CPUs
or in different cache hierarchies in the same server.

The spy process is executed in three main steps, which are:

• Invalidate step: In this step, the attacker invalidates a memory block that is
in his own cache hierarchy. If the invalidation is performed in a shared memory
block cached in another cache processors cache hierarchy, the HyperTransport
will send an invalidate message to them. Therefore, after the invalidation
step, the memory block will be invalidated in all the caches that have the
same memory block, and this will be uncached from them. This invalidation
can be achieved by specialized instructions like clflush if they are supported
by the targeted processors, or by priming the set where the memory block
resides in the cache directory.

• Wait step: In this step, the attacker waits for a certain period of time to
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Figure 5.3: Timing distribution of a memory block request to the DRAM (red)
vs a block request to a co-resident processor(blue) in a AMD opteron 6168. The
measurements are taken from different CPUs. Outliers above 400 cycles have been
removed

let the victim do some computation. The victim might or might not use the
invalidated memory block in this step.

• Transfer step: In the last step, the attacker requests access to the shared
memory block that was invalidated. If any processor in the system has cached
this memory block, the entry in the directory would have been updated and
therefore a direct probe request will be sent to the processor. If the memory
block was not been used, the home directory will request a DRAM access to
the memory block.

The system experiences a lower latency when a direct probe is issued, mainly
because the memory block is issued from another processors cache hierarchy. This
is graphically observed in Figure 5.2. Figure 5.2(a) shows a request serviced by
the HyperTransport link from a CPU that has the same memory block cached.
In contrast, Figure 5.2(b) represents a request serviced by a DRAM access. This
introduces a new leakage if the attacker is able to measure and distinguish the time
that both actions take. This is the covert channel that will be exploited in this work.
We use the RDTSC function which accesses the time stamp counter to measure the
request time. In case the RDTSC function is not available from user mode, one can also
create a parallel thread incrementing a shared variable that acts as a counter. We
also utilize the mfence instruction to ensure that all memory load/store operations
have finished before reading the time stamp counter.

The timing distributions of both the DRAM access and the directed transfer
access are shown in Figure 5.3, where 10,000 points of each distribution were taken
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Figure 5.4: Timing distribution of a memory block request to the DRAM (red)
vs a block request to a co-resident core(blue) in a dual core Intel E5-2609. The
measurements are taken from the same CPU. Outliers above 700 cycles have been
removed

across CPUs in a 48-core 4 CPU AMD Opteron 6168. The x-axis represents the
hardware cycles, while the y-axis represents the density function. The measure-
ments are taken across processors. The blue distribution represents a directed

probe access, i.e., a co-resident CPU has the memory block cached, whereas the
red distribution represents a DRAM access, i.e., the memory block is not cached
anywhere. It can be observed that the distributions differ in about 50 cycles, fine
grain enough to be able to distinguish them. However, the variance in both distri-
butions is very similar, in contrast to LLC covert channels. Nevertheless, we obtain
a covert channel that works across CPUs and that does not rely on the inclusiveness
property of the cache.

We also tested the viability of the covert channel in a dual socket Intel Xeon
E5-2609. Intel utilizes a similar technique to the HyperTransport technology called
Intel Quick Path Interconnect. The results for the Intel processor are shown in
Figure 5.4, again with processes running in different CPUs. It can be observed that
the distributions are even more distinguishable in this case.

5.3 Exploiting the New Covert Channel

In the previous section, we presented the viability of the covert channel. Here
we demonstrate how one might exploit the covert channel to extract fine grain
information. More concretely, we present two attacks:
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• a symmetric cryptography algorithm, i.e. table based OpenSSL implementation
of AES, and

• a public key algorithm, i.e. a square-and-multiply based libgcrypt imple-
mentation of the El Gamal scheme.

5.3.1 Attacking Table Based AES

We test the granularity of the new covert channel by mounting an attack in a
software implementation of AES, as in 4.4.We again use the C OpenSSL reference
implementation, which uses 4 different T-tables along 10 rounds for AES-128.

To recap, we monitor a memory block belonging to each one of the T-tables. Each
memory block contains 16 T-Table positions and it has a certain probability, 8% in
our particular case, of not being used in any of the 10 rounds of an encryption. Thus,
applying our Invalidate and Transfer attack and recording the ciphertext output, we
can know when the monitored memory block has not been used. For this purpose
we invalidate the memory block before the encryption and try to probe it after the
encryption. In a noise free scenario, the monitored memory block will not be used for
240 ciphertext outputs with 8% probability, and it will not be used for the remaining
16 ciphertext with 0% probability (because they directly map through the key to
the monitored T-table memory block). Although microarchitectural attacks suffer
from different microarchitectural sources of noise, we expect that the Invalidate and
Transfer can still distinguish both distributions.

Once we know the ciphertext values belonging to both distributions, we can
apply the equation:

Ki = T [Sj]⊕ Ci

to recover the key. Since the last round of AES involves only a Table look up and
a XOR operation, knowing the ciphertext and the T-table block position used is
enough to obtain the key byte candidate that was used during the last AES round.
Since a cache line holds 16 T-table values, we XOR each of the obtained ciphertext
values with all the 16 possible T-table values that they could map to. Clearly, the
key candidate will be a common factor in the computations with the exception of
the observed noise which is eliminated via averaging. As the AES key schedule is
revertible, knowing one of the round keys is equivalent to knowing the full encryption
key.

5.3.2 Attacking Square and Multiply El Gamal Decryption

We test the viability of the new side channel technique with an attack on a square
and multiply libgcrypt implementation of the public key ElGamal algorithm, as
in [ZJRR12]. An ElGamal encryption involves a cyclic group of order p and a
generator g of that cyclic group. Then Alice chooses a number a ∈ Z∗p and computes
her public key as the 3-tuple (p, g, ga) and keeps a as her secret key.
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To encrypt a message m, Bob first chooses a number b ∈ Z∗p and calculates
y1 = gb and y2 = ((ga)b) ∗ m and sends both to Alice. In order to decrypt the
message, Alice utilizes her secret key a to compute ((y1)

−a) ∗ y2. Note that, if a
malicious user recovers the secret key a he can decrypt any message sent to Alice.

Our target will be the y−a1 that uses the square and multiply technique as the
modular exponentiation method. It bases its procedure in two operations: a square
operation followed by a modulo reduction and a multiplication operation followed by
a modulo reduction. The algorithm starts with the intermediate state R = b being b
the base that is going to be powered, and then examines the secret exponent a from
the most significant to the least significant bit. If the bit is a 0, the intermediate
state is squared and reduced with the modulus. If in the contrary the exponent bit
is a 1, the intermediate state is first squared, then it is multiplied with the base
b and then reduced with the modulus. Algorithm 2, presented in the background
section and shown below, shows the entire procedure.

Algorithm 6 Square and Multiply Exponentiation

Input : base b, modulus N , secret E = (ek−1, ..., e1, e0)

Output: bE mod N

R = b;
for i = k − 1 downto 0 do

R = R2 mod N ;
if ei==1 then

R = R ∗ b mod N ;

end
end
return R;

As it can be observed the algorithm does not implement a constant execution
flow, i.e., the functions that will be used directly depend on the bit exponent. If
the square and multiply pattern is known, the complete key can be easily computed
by converting them into ones and zeros. Indeed, our Invalidate and Transfer spy
process can recover this information, since functions are stored as shared memory
blocks in cryptographic libraries. Thus, we mount an attack with the Invalidate and
Transfer to monitor when the square and multiplication functions are utilized.

5.4 Experiment Setup and Results

In this section we present the test setup in which we implemented and executed the
Invalidate and Transfer spy process together with the results obtained for the AES
and ElGamal attacks.
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5.4.1 Experiment Setup

In order to prove the viability of our attack, we performed our experiments on a 48-
core machine featuring four 12-core AMD Opteron 6168 CPUs. This is an university
server which has not been isolated for our experiments, i.e., other users are utilizing
it at the same time. Thus, the environment is a realistic scenario in which non
desired applications are running concurrently with our attack.

The machine runs at 1.9GHz, featuring 3.2GHz HyperTransport links. The
server has 4 AMD Opteron 6168 CPUs, with 12 cores each. Each core features
a private 64KB 2-way L1 data cache, a private 64KB L1 instruction cache and a
16-way 512KB L2 cache. Two 6MB 96-way associative L3 caches—each one shared
across 6 cores—complete the cache hierarchy. The L1 and L2 caches are core-private
resources, whereas the L3 cache is shared between 6 cores. Both the L2 and L3 caches
are non-inclusive, i.e., data can be allocated in any cache level at a time. This is
different to the inclusive LLC where most of the cache spy processes in literature
have been executed.

The attacks were implemented in a RedHat enterprise server running the linux
2.6.23 kernel. The attacks do not require root access to succeed, in fact, we did not
have sudo rights on this server. Since ASLR was enabled, the targeted functions
addresses were retrieved by calculating the offset with respect to the starting point
of the library. All the experiments were performed across CPUs, i.e., attacker and
victim do not reside in the same CPU and do not share any LLC. To ensure this,
we utilized the taskset command to assign the CPU affinity to our processes.

Our targets were the AES C reference implementation of OpenSSL and the El-
Gamal square and multiply implementation of libgcrypt 1.5.2. The libraries are
compiled as shared, i.e., all users in the OS will use the same shared symbols
(through KSM mechanism). In the case of AES we assume we are synchronized
with the AES server, i.e., the attacker sends plaintext and receives the correspond-
ing ciphertexts. As for the ElGamal case, we assume we are not synchronized with
the server. Instead, the attacker process simply monitors the function until valid
patterns are observed, which are then used for key extraction.

5.4.2 AES Results

As explained in Section 5.3, in order to recover the full key we need to target a
single memory block from the four T-tables. However, in the case that a T-table
memory block starts in the middle of a cache line, monitoring only 2 memory blocks
is enough to recover the full key. In fact, there exists a memory block that contains
both the last 8 values of T0 and the first 8 values of T1. Similarly there exists a
memory block that contains the last 8 values of T2 and the first 8 values of T3.
Unlike in section 4.4, we make use of this fact and only monitor those two memory
blocks to recover the entire AES key.

We store both the transfer timing and the ciphertext obtained by our encryption
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Figure 5.5: Miss counter values for each ciphertext value, normalized to the average

server. In order to analyze the results, we implement a miss counter approach: we
count the number of times that each ciphertext value sees a miss, i.e. that the
monitored cache line was not loaded for that ciphertext value. An example of one
of the runs for ciphertext number 0 is shown in Figure 5.5. The 8 ciphertext values
that obtain the lowest scores are the ones corresponding to the cache line, thereby
revealing the key value.

In order to obtain the key, we iterate over all possible key byte values and
compute the last round of AES only for the monitored T-table values, and then
group the miss counter values of the resulting ciphertexts in one set. We group in
another set the miss counter of the remaining 248 ciphertext values. Clearly, for
the correct key, the distance between the two sets will be maximum. An example
of the output of this step is shown in Figure 5.6, where the y-axis represents the
miss counter ratio (i.e., ratio of the miss counter value in both sets) and the x-axis
represents the key byte guess value. It can be observed that the ratio of the correct
key byte (180) is much higher than the ratio of the other guesses.

Finally, we calculate the number of encryptions needed to recover the full AES
key. This is shown in Figure 5.7, where the y-axis again represents the ratios and
the x-axis represents the number of encryptions. As it can be observed, the correct
key is not distinguishable before 10,000 traces, but from 20,000 observations, the
correct key is clearly distinguishable from the rest. We conclude that the new
method succeeds in recovering the correct key from 20,000 encryptions.
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5.4.3 El Gamal Results

Next we present the results obtained when the attack aims at recovering an ElGamal
decryption key. We target a 2048 bit ElGamal key. Remember that, unlike in the
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Figure 5.8: Trace observed by the Invalidate and Transfer, where 4 decryption
operations are monitored. The decryption stages are clearly visible when the square
function usage gets the 0 value

case of AES, this attack does not need synchronization with the server, i.e., the server
runs continuous decryptions while the attacker continuously monitors the vulnerable
function. Since the modular exponentiation creates a very specific pattern with
respect to both the square and multiply functions, we can easily know when the
exponentiation occurred in the time. We only monitor a single function, i.e., the
square function. In order to avoid speculative execution, we do not monitor the
main function address but the following one. This is sufficient to correctly recover
a very high percentage of the ElGamal decryption key bits. For our experiments,
we take the time that the invalidate operation takes into account, and a minimum
waiting period of 500 cycles between the invalidate and the transfer operation is
sufficient to recover the key patterns. Figure 5.8 presents a trace where 4 different
decryptions are caught. A 0 in the y-axis means that the square function is being
utilized, while a 1 the square function is not utilized, while the x-axis represents
the time slot number. The decryption stages are clearly observable when the square
function gets a 0 value.

Recall that the execution flow caused by a 0 bit in the exponent is square+reduct
ion, while the pattern caused by a 1 bit in the exponent is square+reduction+multi
ply+reduction. Since we only monitor the square operation, we reconstruct the
patterns by checking the distance between two square operations. Clearly, the dis-
tance between the two square operations in a 00 trace will be smaller than the
distance between the two square operations in a 10 trace, since the latter one takes
an additional multiplication function. With our waiting period threshold, we ob-
serve that the distance between two square operations without the multiplication
function varies from 2 to 4 Invalidate and Transfer steps, while the distance be-
tween two square operations varies from 6 to 8 Invalidate and Transfer steps. If
the distance between two square operations is lower than 2, we consider it part of
the same square operation. An example of such a trace is shown in Figure 5.9. In
the figure, S refers to a square operation, R refers to a modulo reduction operation
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a 1 when the square function is not used

Table 5.1: Summary of error results in the RSA key recovery attack

Traces analysed 20
Maximum error observed 3.47%
Minimum error observed 1.9%
Average error 2.58%
Traces needed to recover full key 5

and M refers to a multiply operation. The x-axis represents the time slot, while
the y axis represents whether the square function was utilized. The 0 value means
that the square function was utilized, whereas the 1 value means that the square
function was not utilized. The pattern obtained is SRMRSRSRMRSR, which can
be translated into the key bit string 1010.

However, due to microarchitectural sources of noise (context switches, interrupts,
etc.) the recovered key has still some errors. In order to evaluate the error percentage
obtained, we compare the obtained bit string with the real key. Any insertion,
removal or wrong guessed bit is considered a single error. Table 5.1 summarizes
the results. We evaluate 20 different key traces obtained with the Invalidate and
Transfer spy process. On average, they key patterns have an error percentage of
2.58%. The minimum observed error percentage was 1.9% and the maximum was
3.47%. Thus, since the errors are very likely to occur at different points in order to
decide the correct pattern we analyse more than one trace. On average, 5 traces are
needed to recover the key correctly.
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5.5 Invalidate and Transfer Outcomes

We presented the Invalidate and Transfer attack, capable of recovering, for the first
time, information across CPU sockets in systems that provide memory deduplica-
tion. The new attack utilizes the cache coherency protocol as a covert channel and
its effectiveness was proved by recovering both AES and RSA keys. Further, the
attack is inclusiveness property agnostic. On the downsides, the attack still requires
attacker and victim to share memory, and thus, is only applicable in VMMs with
memory deduplication or smartphones. In response, the next chapter introduces
an attack that is not reliant upon the memory deduplication feature, and thus is
applicable in virtually every system in which attacker and victim processes can
co-reside.
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Chapter 6

The Prime and Probe Attack

In previous chapters, we presented two side channel attacks that used hardware
cache properties to retrieve information across cores/CPUs. However, both attacks
worked under the assumption of shared memory between attacker and victim, which
was achievable through mechanisms like KSM. Although we demonstrated to recover
fine grain information with them, due to the shared memory requirement, we observe
the following challenges associated to them:

• Some real world scenarios might not implement memory deduplication fea-
tures. For instance, some commercial clouds have cross-VM memory dedu-
plication disabled, as it is the case for Amazon EC2. Furthermore, memory
page sharing is not allowed between trusted and untrusted worlds in Trusted
Execution Environments (TEEs).

• Flush and Reload and Invalidate and Transfer, since they rely on memory
sharing, cannot get information dynamically allocated memory, as every user
gets its own copy of it. This limits the applicability of both attacks.

These two inconveniences restrict the applicability of Flush and Reload and In-
validate and Transfer. Thus, it is necessary to know whether an attacker can bypass
these obstacles and still gain information about a victim’s activity across cores. This
chapter explains a new approach to utilize the Last Level Cache (LLC) as a covert
channel without relying on memory deduplication features. In particular, we take
the already known Prime and Probe attack and make it successful on the LLC. This
is not a straightforward process, as it still requires to solve some technical issues
when targeting the LLC.

6.1 Virtual Address Translation and Cache Ad-

dressing

In this chapter we present an attack that takes advantage of some known information
in the virtual to physical address mapping process. Thus, we give a brief overview
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about the procedure followed by modern processors to access and address data in
the cache [HP11].

In modern computing, processes use virtual memory to access the different re-
quested memory locations. Indeed processes do not have direct access to the physical
memory, but use virtual addresses that are then mapped to physical addresses by the
Memory Management Unit (MMU). This virtual address space is managed bv the
Operating System. The main benefits of virtual memory are security (processes are
isolated from real memory) and the usage of more memory than physically available
due to paging techniques.

The memory is divided into fixed length continuous blocks called memory pages.
The virtual memory allows the usage of these memory pages even when they are not
allocated in the main memory. When a specific process needs a page not present
in the main memory, a page fault occurs and the page has to be loaded from the
auxiliary disk storage. Therefore, a translation stage is needed to map virtual ad-
dresses to physical addresses prior to the memory access. In fact, cloud systems
have two translation processes, i.e, guest OS to VMM virtual address and VMM
virtual address to physical address. The first translation is handled by shadow page
tables while the second one is handled by the MMU. This adds an abstraction layer
with the physical memory that is handled by the VMM.

During translation, the virtual address is split into two fields: the offset field
and the page field. The length of both fields depends directly on the page size.
Indeed, if the page size is p bytes, the lower log2(p) bits of the virtual address will
be considered as the page offset, while the rest will be considered as the page frame
number (PFN). Only the PFN is processed by the MMU and needs to be translated
from virtual to physical page number. The page offset remains untouched and will
have the same value for both the physical and virtual address. Thus, the user still
knows some bits of the physical address. Modern processors usually work with 4 KB
pages and 48 bit virtual addresses, yielding a 12 bit offset and the remaining bits as
virtual page number.

In order to avoid the latency of virtual to physical address translation, modern
architectures include a Translation Lookaside Buffer (TLB) that holds the most re-
cently translated addresses. The TLB acts like a small cache that is first checked
prior to the MMU. One way to avoid TLB misses for large data processes is to in-
crease the page size so that the memory is divided in less pages [CJ06, Inte, WW09].
Since the possible virtual to physical translation tags have been significantly reduced,
the CPU will observe less TLB misses than with 4 KB pages. This is the reason
why most modern processors include the possibility to use huge size pages, which
typically have a size of at least 1 MB. This feature is particularly effective in vir-
tualized settings, where virtual machines are typically rented to avoid the intensive
hardware resource consumption in the customers private computers. In fact, most
well known VMMs support the usage of huge size pages by guest OSs to improve
the performance of those heavy load processes [VMwc, KVM, Xenb].
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Cache Addressing: Caches are physically tagged, i.e, the physical address is used
to decide the position that the data is going to occupy in the cache. With b bytes
size cache lines and m-way set associative caches (with n number of sets), the lower
log2(b) bits of the physical address are used to index the byte in a cache line, while
the following log2(n) bits select the set that the memory line is mapped to in the
cache. A graphical example of the procedure carried out to address the data in the
cache can be seen in Figure 6.2. Recall that if a page size of 4 KB is used, the offset
field is 12 bits long. If log2(n) + log2(b) is not bigger than 12, the set that a cache
line is going to occupy can be addressed by the offset. In this case we say that
the cache is virtually addressed, since the position occupied by a cache line can be
determined by the virtual address. In contrast, if more than 12 bits are needed to
address the corresponding set, we say that the cache is physically addressed, since
only the physical address can determine the location of a cache line. Note that
when huge size pages are used, the offset field is longer, and therefore bigger caches
can be virtually addressed. As we will see, this information can be used to mount
a cross-VM attack in the L3 cache in deduplication free systems. Note that, this
information was not necessary with Flush and Reload and Invalidate and Transfer
as we assumed that we shared ownership of the attacked memory blocks with the
victim.

6.2 Last Level Cache Slices

Recent SMP microarchitecures divide the LLC into slices with the purpose of re-
ducing the bandwidth bottlenecks when more than one core attempts to retrieve
data from the LLC at the same time. The number of slices that the LLC is divided
into usually matches the number of physical cores. For instance, a processor with
s cores divides the LLC into s slices, decreasing the probability of resource conflict
while accessing it. However, each core is still able to access the whole LLC, i.e., each
core can access every slice. Since the data will be spread into s “smaller caches” it
is less likely that two cores will try to access the same slice at the same time. In
fact, if each slice can support one access per cycle, the LLC does not introduce a
bottleneck on the data throughput with respect to the processors as long as each
processor issues no more than one access per cycle. The slice that a memory block
is going to occupy directly depends on its own physical address and a non-public
hash function, as in Figure 6.1.

Performance optimization of sliced caches has received a lot of attention in the
past few years. In 2006, Cho et al. [CJ06] analyzed a distributed management ap-
proach for sliced L2 caches through OS page allocation. In 2007, Zhao et al. [ZIUN08]
described a design for LLC where part of the slice allocates core-private data. Cho
et al [JC07] describe a two-dimensional page coloring method to improve access
latencies and miss rates in sliced caches. Similarly, Tam et al. [TASS07] also pro-
posed an OS based method for partitioning the cache to avoid cache contention.
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Figure 6.1: A hash function based on the physical address decides whether the
memory block belongs to slice 0 or 1.

In 2010 Hardavellas et al. [HFFA10] proposed an optimized cache block placement
for caches divided into slices. Srikantaiah et al. [SKZ+11] presented a new adaptive
multilevel cache hierarchy utilizing cache slices for L2 and L3 caches. In 2013 Chen
et al. [CCC+13] detail on the approach that Intel is planning to take for their next
generation processors. The paper shows that the slices will be workload dependent
and that some of them might be dynamically switched off for power saving. In
2014 Kurian et al. [KDK14b] proposed a data replication protocol in the LLC slices.
Ye et al. [YWCL14] studied a cache partitioning system treating each slice as an
independent smaller cache.

However, only very little effort has been put into analyzing the slice selection
hash function used for selecting the LLC slice. A detailed analysis of the cache per-
formance in Nehalem processors is described in [MHSM09] without an explanation
of cache slices. The LLC slices and interconnections in a Sandy Bridge microar-
chitecture are discussed in [Bri], but the slice selection algorithm is not provided.
In [hen], a cache analysis of the Intel Ivy Bridge architecture is presented and cache
slices are mentioned. However, the hash function describing the slice selection algo-
rithm is again not described, although it is mentioned that many bits of the physical
address are involved. Hund et al. [HWH13] were the only ones describing the slice
selection algorithm for a specific processor, i.e, the i7-2600 processor. They recover
the slice selection algorithm by comparing Hamming distances of different physical
addresses. This information was again not needed with the Flush and Reload and
Invalidate and Transfer as we could evict a memory block from the cache with the
clflush instruction in systems where deduplication is enabled.

6.3 The Original Prime and Probe Technique

The new attack proposed in this work is based on the methodology of the known
Prime and Probe technique. Prime and Probe is a cache-based side channel attack
technique used in [OST06, ZJOR11, ZJRR12] that can be classified as an access
driven cache attack. The spy process ascertains which of the sets have been accessed
in the cache by a victim. The attack is carried out in 3 stages:
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Figure 6.2: Last level cache addressing methodology for Intel processors. Slices are
selected by the tag, which is given as the MSBs for the physical address.

• Priming stage: In this stage, the attacker fills the monitored cache with own
cache lines. This is done by reading own data.

• Victim accessing stage: In this stage the attacker waits for the victim to
access some positions in the cache, causing the eviction of some of the cache
lines that were primed in the first stage.

• Probing stage: In this stage the attacker accesses the priming data again.
When the attacker reloads data from a set that has been used by the victim,
some of the primed cache lines have been evicted, causing a higher probe time.
However if the victim did not use any of the cache lines in a monitored set, all
the primed cache lines will still reside in the cache causing a low probe time.

6.4 Limitations of the Original Prime and Probe

Technique

The original Prime and Probe technique was successfully applied to L1 caches to
recover cryptographic keys. It is therefore an open question why, with multi-core
systems and shared LLCs, no work prior to this has applied it into the LLC to
recover information across cores. Here we summarize the three main problems of
taking the Prime and Probe attack to the LLC:

• The L1 Prime and Probe attack fills the whole L1 cache with attackers data.
As the LLC is usually at least two orders of magnitude bigger than the L1,
filling the entire LLC does not seem a realistic approach.
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• As memory pages are usually 4KB pages and the page offset remains untouched
in the virtual address translation, the attacker gains enough bits of information
to fully know the location of a memory block in the L1. However, as the
LLC has more sets, the attacker is unable to predict the set that his memory
addresses will occupy.

• The LLC in Intel, as previously described, is divided into slices after the release
of the Sandy Bridge architecture. The slice that a memory block occupies is
decided by an undocumented hash algorithm. Thus, an attacker that might
be willing to fill one of the sets in the LLC might observe how his addresses
get distributed across several slices and do not fill the set.

In the following sections we solve the aforementioned challenges to successfully
apply the Prime and Probe attack in the LLC.

6.5 Targeting Small Pieces of the LLC

The first obstacle when executing thew original Prime and Probe attack in the LLC
is the vast number of memory addresses needed to fill it. Instead, we will only target
smaller pieces of it that will give us enough information of the secret process being
executed by a victim.

Recall algorithm 2 from Section 2.4.2. The modular exponentiation leaked infor-
mation due to the usage of the multiplication function when a ”1”’ bit was found.
Instead of filling the entire cache, we can just perform the Prime and Probe attack
in the LLC set where the multiplication resides. This gives us enough information
about when the multiplication function is used, and therefore, when the victim is
processing a ”1”’ or a ”‘0”’ bit. We will cover in future sections how to know where
this multiplication function resides.

6.6 LLC Set Location Information Enabled by Huge

Pages

The second obstacle that the original Prime and Probe attack encounters when tar-
geting the LLC is that the set occupied by the attackers memory blocks is unknown
in the LLC, due to the lack of control on the physical address bits. The LLC Prime
and Probe attack proposed in this work, is enabled by making use of Huge pages and
thereby eliminating a major obstacle that normally restricts the Prime and Probe
attack to target the L1 cache. As explained in Section 6.1, a user does not use
the physical memory directly, but he is assigned a virtual memory so that a trans-
lation stage is performed from virtual to physical memory at the hardware level.
The address translation step creates an additional challenge to the attacker since
real addresses of the variables of the target process are unknown to him. However
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Figure 6.3: Regular Page (4 KB, top) and Huge Page (256 KB, bottom) virtual to
physical address mapping for an Intel x86 processor. For Huge pages the entire L3
cache sets become transparently accessible even with virtual addressing.

this translation is only performed in some of the higher order bits of the virtual
address, while a lower portion, named the offset, remains untouched. Since caches
are addressed by the physical address, if we have cache line size of b bytes, the lower
log2(b) bits of the address will be used to resolve the corresponding byte in the
cache line. Furthermore if the cache is set-associative and for instance divided into
n sets, then the next log2(n) bits of the address will select the set that each memory
data is going to occupy in the cache. The log2(b)-bits that form the byte address
within a cache line, are contained within the offset field. However, depending on the
cache size the following field which contains the set address may exceed the offset
boundary. The offsets allow addressing within a memory page. The OS’s Memory
Management Unit (MMU) keeps track of which page belongs to which process. The
page size can be adjusted to better match the needs of the application. Smaller
pages require more time for the MMU to resolve.

Here we focus on the default 4 KB page size and the larger page sizes provided
under the common name of Huge pages. As we shall see, the choice of page size will
make a significant difference in the attackers ability to carry out a successful attack
on a particular cache level:

• 4 KB pages: For 4 KB pages, the lower 12-bit offset of the virtual address
is not translated while the remaining bits are forwarded to the Memory Man-
agement Unit. In modern processors the memory line size is usually set as 64
bytes. This leaves 6 bits untouched by the Memory Management Unit while
translating regular pages. As shown in the top of Figure 6.3 the page offset is
known to the attacker. Therefore, the attacker knows the 6-bit byte address
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plus 6 additional bits that can only resolve accesses to small size caches (64
sets at most). This is the main reason why techniques such as Prime and
Probe have only targeted the L1 cache, since it is the only one permitting the
attacker to have full control of the bits resolving the set. Therefore, the small
page size indirectly prevents attacks targeting big size caches like the L2 and
L3 caches.

• Huge pages: The scenario is different if we work with huge size pages. Typ-
ical huge page sizes are at 1 MB or even greater. This means that the offset
field in the page translation process is bigger, with 21 bits or more remaining
untouched during page translation. Observe the example presented in Fig-
ure 6.3. For instance, assume that our computer has 3 levels of cache, with
the last one shared, and that 64, 512 and 2048 are the number of sets the
L1, L2 and L3 caches are divided into, respectively. The first lowest 6-bits of
the offset are used for addressing the 64 byte long cache lines. The following
6 bits are used to resolve the set addresses in the L1 cache. For the L2 and
L3 caches this field is 9 and 11-bits wide, respectively. In this case, a huge
page size of 2 MB (21 bit offset) will give the attacker full control of the set
occupied by his data in all three levels of cache, i.e. L1, L2 and L3 caches. The
significance of targeting last level cache becomes apparent when one considers
the access time gap between the last level cache and the memory, which is
much more pronounced compared to the access time difference between the
L1 and L2 caches. Therefore, using huge pages makes it possible to reach a
higher resolution Prime and Probe style attack.

6.7 Reverse Engineering the Slice Selection Algo-

rithm

The last inconvenience that we observe when executing Prime and Probe in the LLC
is the fact that the LLC is divided into slices, whose assignment is decided by an
undocumented hash function. This means that the attacker cannot control which
slice is targeted. Although knowing the slice selection algorithm implemented is not
crucial to run a Prime and Probe attack (since we could calculate the eviction set for
every set s that we want to monitor), the knowledge of the non-linear slice selection
algorithm can save significant time, specially when we have to profile a big number
of sets. Indeed, in the attack step, we can select a range of sets/slices s1, s2, ...sn for
which, thanks to the knowledge of the non-linear slice selection algorithm, we know
that the memory blocks in the eviction set will not change. This section describes
the methodology applied to reverse engineer the slice selection algorithm for specific
Intel processors. Note that the method can be used to reverse engineer slice selection
algorithms for other Intel processors that have not been analyzed in this work. To
the best of our knowledge, this slice selection hash function is not public. We solves
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the issue by:

• Generating data blocks at slice-colliding addresses to fill a specific set. Access
timings are used to determine which data is stored in the same slice.

• Using the addresses of data blocks identified to be co-residing in slices to
generate a system of equations. The resulting equation systems can then be
solved to identify the slice selection algorithm implemented by the processor.

• Building a scalable tool, i.e, proving its applicability for a wide range of dif-
ferent architectures.

6.7.1 Probing the Last Level Cache

As stated in Section 6.2, the shared last level caches in SMP multicore architectures
are usually divided into slices, with an unknown hash function that determines the
slice. In order to be able to reverse engineer this hash function, we need to recover
addresses of data blocks co-residing in a set of a specific slice. The set where a
data block is placed can be controlled, even in the presence of virtual addressing, if
huge size pages are used. Recall that by using 2MB huge size pages we gain control
over the least significant 21 bits of the physical address, thereby controlling the set
in which our blocks of data will reside. Once we have control over the set a data
block is placed in, we can try to detect data blocks co-residing in the same slice.
Co-residency can be inferred by distinguishing LLC accesses from memory accesses.

6.7.2 Identifying m Data Blocks Co-Residing in a Slice

We need to identify the m memory blocks that fill each one of the slices for a specific
set. Note that we still do not know the memory blocks that collide in a specific set.
In order to achieve this goal we perform the following steps:

• Step 1: Access one memory block b0 in a set in the LLC

• Step 2: Access several additional memory blocks b1, b2, . . . , bn that reside in
the same set, but may reside in a different slice, in order to fill the slice where
b0 resides.

• Step 3: Reload the memory block b0 to check whether it still resides in the last
level cache or in the memory. A high reload time indicates that the memory
block b0 has been evicted from the slice, since intel utilizes a Pseudo Last
Recently Used (PLRU) cache eviction algorithm. Therefore we know that the
required m memory blocks to evict b0 from the slice are part of the accessed
additional memory blocks b1, b2, . . . , bn.
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Figure 6.4: Generating additional memory blocks until a high reload value is ob-
served, i.e., the monitored block is evicted from the LLC. The experiments were
performed in an Intel i5-3320M.

• Step 4: Subtract one of the accessed additional memory blocks bi and repeat
the protocol. If b0 still resides in memory, bi does not reside in the same slice.
If b0 resides in the cache, it can be concluded that bi resides in the same cache
slice as b0.

Steps 2 and 3 can be graphically seen in Figure 6.4, where additional mem-
ory blocks are generated until a high reload time is observed, indicating that the
monitored block b0 was evicted from the LLC cache after memory block b26 was
accessed. Step 4 is also graphically presented in Figure 6.5 where each additional
block is checked to see whether it affects the reload time observed in Figure 6.4. If
the reload time remains high when one of the blocks bi is no longer accessed, bi does
not reside in the same slice as the monitored block b0. In our particular case, we
observe that the slice colliding blocks are b3, b4, b7, b9, b10, b13, b14, b17, b18, b21, b22 and
b24

6.7.3 Generating Equations Mapping the Slices

Once m memory blocks that fill one of the cache slices have been identified, we
generate additional blocks that reside in the same slice to be able to generate more
equations. The approach is similar to the previous one:

• Access the m memory blocks b0, b1, . . . , bm that fill one slice in a set in the
LLC
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Figure 6.5: Subtracting memory blocks to identify the m blocks mapping to one
slice in an Intel i5 3320-M. Low reload values indicate that the line occupies the
same slice as the monitored data.

• Access, one at a time, additional memory blocks that reside in the same set,
but may reside in a different slice

• Reload the memory block b0 to check whether it still resides in the LLC or
in memory. Again, due to the PLRU algorithm, a high reload time indicates
that b0 has been evicted from the slice. Hence, the additional memory block
also resides in the same cache slice.

• Once a sufficiently large group of memory blocks that occupy the same LLC
slice has been identified, we get their physical addresses to construct a matrix
Pi of equations, where each row is one of the physical addresses mapping to
the monitored slice.

The equation generation stage can be observed in Figure 6.6, where 4000 ad-
ditional memory blocks occupying the same set were generated. Knowing the m
blocks that fill one slice, accessing an additional memory block will output a higher
reload value if it resides in the same slice as b0 (since it evicts b0 from the cache).

Handling Noise: We choose a detection threshold in such a way that we most
likely only deal with false negatives, which do not affect correctness of the solutions
of the equation system. As it can be observed in Figure 6.6, there are still a few
values that are not clearly identified (i.e, those with reload values of 10-11 cycles). By
simply not considering these, false positives are avoided and the resulting equation
system remains correct.
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Figure 6.6: Generating equations mapping one slice for 4000 memory blocks in an
Intel i5 3320-M. High reload values indicate that the line occupies the same slice as
the monitored data.

6.7.4 Recovering Linear Hash Functions

The mapping of a memory block to a specific slice in LLC cache is based on its
physical address. A hash function H(p) takes the physical address p as an input
and returns the slice the address is mapped to. We know that H maps all possible
p to s outputs, where s is the number of slices for the processor.

H : {0, 1}dlog2 pe h−→ {0, 1}dlog2 se

The labeling of these outputs is arbitrary. However, each output should occur with
a roughly equal likelihood, so that accesses are balanced over the slices. We model
H as a function on the address bits. In fact, as we will see, the observed hash
functions are linear in the address bits pi. In such a case we can model H as a
concatenation of linear Boolean functions H(p) = H0(p)|| . . . ||Hdlog2 se−1(p), where
|| is concatenation. Then, Hi is given as

Hi(p) = hi,0p0 + hi,1p1 + . . . hi,lpl =
l∑
0

hi,jpj.

Here, hi,j ∈ {0, 1} is a coefficient and pj is a physical address bit. The steps in
the previous subsections provide addresses p mapped to a specific slice, which are
combined in a matrix Pi, where each row is a physical address p. The goal is to
recover the functions Hi, given as the coefficients hi,j. In general, for linear systems,
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the Hi can be determined by solving the equations

Pi · Ĥi = 0̂, (6.1)

Pi · Ĥi = 1̂ (6.2)

where Ĥi = (hi,0, hi,1, . . . , hi,l)
T is a vector containing all coefficients of Hi. The

right hand side is the ith bit of the representation of the respective slice, where
0̂ and 1̂ are the all zeros and all ones vectors, respectively. Note that finding a
solution to Equation (6.1) is equivalent to finding the kernel (null space) of the
matrix Pi. Also note that any linear combination of the vectors in the kernel is
also a solution to Equation (6.1), whereas any linear combination of a particular
solution to Equation (6.2) and any vector in the kernel is also a particular solution
to Equation (6.2). In general:

ĥ ∈ kerPi ⇐⇒ Pi · ĥ = 0̂

∀ĥ1, ĥ2 ∈ kerPi ĥ1 + ĥ2 ∈ kerPi

∀ĥ1, ĥ2 | Pi · ĥ1 = 1̂, ĥ2 ∈ kerPi : Pi · (ĥ1 + ĥ2) = 1̂

Recall that each equation system should map to x = dlog2(s)e bit selection
functions Hi. Also note that we cannot infer the labeling of the slices, although the
equation system mapping to slice 0 will never output a solution to Equation (6.2).
This means that there is more than one possible solution, all of them valid, if
the number of slices is greater than 2. In this case,

(
2x−1
x

)
solutions will satisfy

Equation (6.1). However, any combination of x solutions is valid, differing only in
the label referring to each slice.

We have only considered linear systems in our explanation. In the case of having
a nonlinear system (i.e., the number of slices is not a power of two), the system
becomes non-linear and needs to be re-linearized. This can be done by expanding the
above matrix Pi with the non-linear terms Pilinear

|Pinonlinear
and solve Equations (6.1)

and (6.2). Note that the higher the degree of the non-linear terms, the bigger
number of equations that are required to solve the system. For that reason, later
in Section 6.7.7 we present an example on an alternative (more intuitive) approach
that can be taken to recover non-linear slcie selection algorithms.

This tool can also be useful in cases where the user cannot determine the slice
selection algorithm, e.g., due to a too low number of derived equations. Indeed, the
first step that this tool implements is generating the memory blocks that co-reside
in each of the slices. This information can already be used to mount a side channel
attack.

6.7.5 Experiment Setup for Linear Hash Functions

In this section we describe our experiment setup. In order to test the applicability
of our tool, we implemented our slice selection algorithm recovery method in a wide
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Table 6.1: Comparison of the profiled architectures

Processor Architecture LLC size Associativity Slices Sets/slice
Intel i5-650 [i65] Nehalem 4MB 16 2 2048
Intel i5-3320M [inta] Ivy Bridge 3MB 12 2 2048
Intel i5-4200M [iM] Haswell 3MB 12 2 2048
Intel i7-4702M [i74] Haswell 6MB 12 4 2048
Intel Xeon E5-2609v2 [intb] Ivy bridge 10MB 20 4 2048
Intel Xeon E5-2640v3 [intc] Haswell 20MB 20 8 2048

range of different computer architectures. The different architectures on which our
tool was tested are listed in Table 6.1, together with the relevant parameters. Our
experiments cover a wide range of linear (power of two) slice sizes as well as different
architectures.

All architectures except the Intel Xeon e5-2640 v3, were running Ubuntu 12.04
LTS as the operating system, whereas the last one used Ubuntu 14.04. Ubuntu,
in root mode, allows the usage of huge size pages. The huge page size in all the
processors is 2MB [Lin]. We also use a tool to obtain the physical addresses of the
variables used in our code by looking at the /proc/PID/pagemap file. In order to
obtain the slice selection algorithm, we profiled a single set, i.e, set 0. However, in
all the architectures profiled in this paper, we verified that the set did not affect the
slice selection algorithm. This might not be true for all Intel processors.

The experiments cover wide selection of architectures, ranging from Nehalem
(released in 2008) to Haswell (released in 2013) architectures. The processors include
laptop CPUs (i5-3320, i5-4200M and i7-4200M), desktop CPUs (i5-650) and server
CPUs (Xeon E5-2609v2, Xeon E5-2640v3), demonstrating the viability of our tool
in a wide range of scenarios.

As it can be seen, in the entire set of processors that we analyzed, each slice
gets 2048 sets in the L3 cache. Apparently, Intel designs all of its processors in such
a way that every slice gets all 2048 sets of the LLC. Indeed, this is not surprising,
since it allows to use cache addressing mechanisms independent from the size or the
number of cores present in the cache. This also means that 17 bits are required from
the physical address to select the set in the last level cache. This is far from the 21
bit freedom that we obtain with the huge size pages.

6.7.6 Results for Linear Hash Functions

Table 6.2 summarizes the slice selection algorithm for all the processors analyzed in
this work.

The Intel i650 processor is the oldest one that was analyzed. Indeed, the slice
selection algorithm that it implements is much simpler than the rest of them, in-
volving only one single bit to decide between the two slices. This bit is the 17th
bit, i.e., the bit consecutive to the last one selecting the set. This means that an
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Table 6.2: Slice selection hash function for the profiled architectures

Processor Architecture Solutions Slice selection algorithm
Intel i7-2600 [HWH13] Sandy Bridge p18 ⊕ p19 ⊕ p21 ⊕ p23 ⊕ p25 ⊕ p27 ⊕ p29 ⊕ p30 ⊕ p31

p17 ⊕ p19 ⊕ p20 ⊕ p21 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p28 ⊕ p29 ⊕ p31
Intel i650 Nehalem 1 p17

Intel i5-3320M Ivy Bridge 1 p17 ⊕ p18 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p28 ⊕ p30 ⊕ p32
Intel i5-4200M Haswell 1 p17 ⊕ p18 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p28 ⊕ p30 ⊕ p32
Intel i7-4702M Haswell 3 p17 ⊕ p18 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p28 ⊕ p30 ⊕ p32

p18 ⊕ p19 ⊕ p21 ⊕ p23 ⊕ p25 ⊕ p27 ⊕ p29 ⊕ p30 ⊕ p31 ⊕ p32
Intel Xeon Ivy Bridge 3 p17 ⊕ p18 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p28 ⊕ p30 ⊕ p32
E5-2609 v2 p18 ⊕ p19 ⊕ p21 ⊕ p23 ⊕ p25 ⊕ p27 ⊕ p29 ⊕ p30 ⊕ p31 ⊕ p32
Intel Xeon Haswell 35 p17 ⊕ p18 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p28 ⊕ p30 ⊕ p32
E5-2640 v2 p19 ⊕ p22 ⊕ p23 ⊕ p26 ⊕ p27 ⊕ p30 ⊕ p31

p17 ⊕ p20 ⊕ p21 ⊕ p24 ⊕ p27 ⊕ p28 ⊕ p29 ⊕ p30

attacker using Prime and Probe techniques can fully control both slices, since all
the bits are under his control.

It can be seen that the Intel i5-3320M and Intel i5-4200M processors implement
a much more complicated slice selection algorithm than the previous one. Since
both processors have 2 slices, our method outputs one single solution, i.e, a single
vector in the kernel of the system of equations mapping to the zero slice. Note the
substantial change between these processors and the previous one, which evaluate
many bits in the hash function. Note that, even though both processors have differ-
ent microarchitectures and are from different generations, they implement the same
slice selection algorithm.

We next focus on the 4 slice processors analyzed, i.e., the Intel i7-4702MQ and
the Intel Xeon E5-2609. Again, many upper bits are used by the hash function to
select the slice. We obtain 3 kernel vectors for the system of equations mapping
to the zero slice (two vectors and the linear combination of them). From the three
solutions, any combination of two solutions (one for h0 and one for h1) is a valid
solution, i.e, the 4 different slices are represented. However, the labeling of the slices
is not known. Therefore, choosing a different solution combination will only affect
the labeling of the non-zero slices, which is not important for the scope of the tool.
It can also be observed that, even when we compare high end servers (Xeon-2609)
and laptops (i7-4702MQ) with different architectures, the slice selection algorithm
implemented by both of them is the same. Further note that one of the functions is
equal to the one discussed for the two core architectures. We can therefore say that
the hash function that selects the slice for the newest architectures only depends on
the number of slices.

Finally, we focus on the Intel Xeon E5-2640v3, which divides the last level cache
in 8 slices. Note that this is a new high end server, which might be commonly
found in public cloud services. In this case, since 8 slices have to be addressed, we
need 3 hash functions to map them. The procedure is the same as for the previous

94



processor: we first identify the set of equations that maps to slice 0 (remember, this
will not output any possible solution to 1) by finding its kernel. The kernel gives
us 3 possible vectors plus all their linear combinations. As before, any solution that
takes a set of 3 vectors will be a valid solution for the equation system, differing
only in the labeling of the slices. Note also that some of the solutions have only up
to 6 bits of the physical address, making them suitable for side channel attacks.

In summary, we were able to obtain all the slice selection hash functions for all
cases. Our results show that the slice selection algorithm was simpler in Nehalem
architectures, while newer architectures like Ivy Bridge or Haswell use several bits
of the physical address to select the slice. We also observed that the slice selection
algorithm mostly depends on the number of slices present, regardless of the type of
the analyzed CPU (laptop or high end servers).

6.7.7 Obtaining Non-linear Slice Selection Algorithms

It is important to note that Prime and Probe attacks become much simpler when
architectures with linear slice selection algorithms are targeted, because the memory
blocks to create an eviction set for different set values do not change. This means
that we can calculate the eviction set for, e.g, set 0 and the memory blocks will be
the same if we profile a different set s. As we will see in this section, this is not true
for non-linear slice selection algorithms (where the profiled set also affects the slice
selected).

We utilize the Intel Xeon E5-2670 v2 as an example, the most widely used EC2
instance type, which has a 25MB LLC distributed over 10 LLC slices. By just per-
forming some small tests we can clearly observe that the set field affects the slice
selection algorithm implemented by the processor. Indeed, it is also clearly observ-
able that the implemented hash function is a non-linear function of the address bits,
since the 16 memory blocks mapped to the same set in a huge memory page cannot
be evenly distributed over 10 slices. Thus we describe the slice selection algorithm
as

H(p) = h3(p)‖h2(p)‖h1(p)‖h0(p) (6.3)

where each H(p) is a concatenation of 4 different functions corresponding to the
4 necessary bits to represent 10 slices. Note that H(p) will output results from
0000 to 1001 if we label the slices from 0-9. Thus, a non-linear function is needed
that excludes outputs 10-15. Further note that p is the physical address and will
be represented as a bit string: p = p0p1 . . . p35. In order to recover the non-linear
hash function implemented by the Intel Xeon E5-2670 v2, we perform experiments
in a fully controlled machine featuring the Intel Xeon E5-2670 v2. We first generate
ten equation systems based on addresses colliding in the same slice by applying the
same methodology explained in Section 6.7.4 and generating up to 100,000 additional
memory blocks. We repeat the same process 10 times, changing the primed memory
block b0 in each of them to target a different slice. This outputs 10 different systems
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Figure 6.7: Number of addresses that each slice takes out of 100,000. The non-linear
slices take less addresses than the linear ones.

of addresses, each one referring to a different slice.
The first important observation we made on the 10 different systems is that 8 of

them behave differently from the remaining 2. In 8 of the address systems recovered,
if 2 memory blocks in the same huge memory page collide in the same slice, they
only differ in the 17th bit. This is not true for the remaining two address systems.
We suspect, at this point, that the 2 systems behaving differently are the 8th and
9th slice. We will refer to these two slices as the non-linear slices.

Up to this point, one can solve the non-linear function after a re-linearization
step given sufficiently many equations. However, one may not be able to recover
enough addresses. Recall that the higher the degree of the non-linear term the more
equations are needed. In order to keep our analysis simpler, we decided to take a
different approach. The second important observation we made is on the distribution
of the addresses over the 10 slices. It turns out that the last two slices are mapped to
with a lower number of addresses than the remaining 8 slices. Figure 6.7 shows the
distribution of the 100,000 addresses over the 10 slices. The different distributions
seen for the last two slices give us evidence that a non-linear slice selection function
is implemented in the processor. Even further, it can be observed that the linear
slices are mapped to by 81.25% of the addresses, while the non-linear slices get only
about 18.75%. The proportion is equal to 3/16. We will make use of this uneven
distribution later.

We proceed to first solve the first 8 slices and the last 2 slices separately using
linear functions. For each we try to find solutions to the equations 6.1 and 6.2. This
outputs two sets of a linear solutions both for the first 8 linear slices and the last 2
slices separately.

Given that we can model the slice selection functions separately using linear
functions, and given that the distribution is non-uniform, we suspect that the hash
function is implemented in two levels. In the first level a non-linear function chooses
between either of the 3 linear functions describing the 8 linear slices or the linear
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Table 6.3: Hash selection algorithm implemented by the Intel Xeon E5-2670 v2

Vector Hash function H(p) = h0(p)‖¬(nl(p)) · h′1(p)‖¬(nl(p)) · h′2(p)‖nl(p)
h0 p18 ⊕ p19 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p30 ⊕ p32 ⊕ p33 ⊕ p34
h′1 p18 ⊕ p21 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p30 ⊕ p31 ⊕ p32
h′2 p19 ⊕ p22 ⊕ p23 ⊕ p26 ⊕ p28 ⊕ p30
v0 p9 ⊕ p14 ⊕ p15 ⊕ p19 ⊕ p21 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p29 ⊕ p32 ⊕ p34
v1 p7 ⊕ p12 ⊕ p13 ⊕ p17 ⊕ p19 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p27 ⊕ p31 ⊕ p32 ⊕ p33
v2 p9 ⊕ p11 ⊕ p14 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p28 ⊕ p31 ⊕ p33 ⊕ p34
v3 p7 ⊕ p10 ⊕ p12 ⊕ p13 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p20 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p28 ⊕ p30 ⊕ p31 ⊕ p32 ⊕ p33 ⊕ p34
nl v0 · v1 · ¬(v2 · v3)

functions describing the 2 non-linear slices. Therefore, we speculate that the 4 bits
selecting the slice look like:

H(p) =


h0(p) = h0(p)

h1(p) = ¬(nl(p)) · h′1(p)
h2(p) = ¬(nl(p)) · h′2(p)
h3(p) = nl(p)

where h0,h1 and h2 are the hash functions selecting bits 0,1 and 2 respectively, h3
is the function selecting the 3rd bit and nl is a nonlinear function of an unknown
degree. We recall that the proportion of the occurrence of the last two slices is 3/16.
To obtain this distribution we need a degree 4 nonlinear function where two inputs
are negated, i.e.:

nl = v0 · v1 · ¬(v2 · v3) (6.4)

Where nl is 0 for the 8 linear slices and 1 for the 2 non-linear slices. Observe that nl
will be 1 with probability 3/16 while it will be zero with probability 13/16, matching
the distributions seen in our experiments. Consequently, to find v0 and v1 we only
have to solve Equation (6.2) for slices 8 and 9 together to obtain a 1 output. To find
v2 and v3, we first separate those addresses where v0 and v1 output 1 for the linear
slices 0− 7. For those cases, we solve Equation (6.2) for slices 0 − 7. The result is
summarized in Table 6.3. We show both the non-linear function vectors v0, v1, v2, v3
and the linear functions h0, h1, h2. These results describe the behavior of the slice
selection algorithm implemented in the Intel Xeon E5-2670 v2. It can be observed
that the bits involved in the set selection (bits 6 to 16 for the LLC) are also involved
in the slice selection process, unlike with linear selection algorithms. This means
that for different sets, different memory blocks will map to the same slice.

Note that the method applied here can be used to reverse engineer other machines
that use different non-linear slice selection algorithms. By looking at the distribution
of the memory blocks over all the slices, we can always get the shape of the non-
linear part of the slice selection algorithm. The rest of the steps are generic, and
can be even applied for linear slices selection algorithms.
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Figure 6.8: Histograms of 10,000 access times in the probe stage when all the lines
are in the L3 cache and when all except one are in the cache (and the other one in
the memory).

6.8 The LLC Prime and Probe Attack Procedure

With the previously discussed challenges solved, we can proceed to apply our LLC
Prime and Probe attack. Our LLC Prime and Probe technique takes advantage of
the control of the lower k bits in the virtual address that we gain with the huge size
pages and the knowledge of the slice selection algorithm. These are the main steps
that our spy process will follow to detect accesses to the last level cache:

• Step 1 Allocation of huge size pages if available: The spy process is
based on the control that the attacker gains on the virtual address when using
huge size pages. Therefore the spy process has to have access to the available
huge pages, which requires administrator rights. Recall that this is not a
problem in the cloud scenario where the attacker has administrator privileges
to his guest OS. If huge size pages are not available, an attacker can start from
step 2 at the cost of a more time-consuming eviction set discovery.

• Step 2 Find eviction-sets: Due to the slice selection algorithm, an attacker
has first to deduce which of his memory blocks collide in the same set-slice. To
do this, he can be aided by the slice selection algorithm knowledge acquired
previously in Section 6.7.4, speeding up the attack process. If the slice selection
algorithm is not know, an attacker can also create eviction sets ”on the fly”,
again at the cost of a more challenging and complicated process.

• Step 3 Prime the desired set-slice in the last level cache: In this step
the attacker creates data that will occupy one of the sets-slices in the last level
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cache. By controlling the virtual address (and, if known, the slice selection
algorithm), the attacker knows the set-slice that the created data will occupy
in the last level cache. Once sufficiently many blocks are created to occupy the
set and slice, the attacker primes the set-slice and ensures it is filled. Typically
the last level caches are inclusive. Thus we will not only fill the shared last
level cache set but also the corresponding sets in the upper level caches.

• Step 4: Victim process runs: After the priming stage, the victim runs the
target process. Since one of the sets-slices in the last level cache is already
filled, if the targeted process uses the monitored it, one of the primed blocks is
going to be evicted. Remember we are priming the last level cache, so evictions
will cause memory blocks to reside in the memory. If the monitored set-slice is
not used, all the primed blocks are still going to reside in the cache hierarchy
after the victim’s process execution.

• Step 5: Probe and measure: Once the victim’s process has finished, the
spy process probes the primed memory blocks and measures the time to probe
them all. If one or more blocks have been evicted by the targeted process,
they will be loaded from the memory and we will see a higher probe time.
However if all the blocks still reside in the cache, then we will see a shorter
probe time.

The last step can be made more concrete with the experiment results summarized
in Figure 6.8. The experiment was performed in native execution (no VM) on an
Intel i5-650 that has a 16-way associative last level cache. It can be seen that when
all the blocks reside in the last level cache we obtain very precise probe timings with
average around 250 cycles and with very little variance. However when one of the
blocks is evicted from last level cache and resides in memory, both the access time
and the variance are higher. We conclude that both types of accesses are clearly
distinguishable.

6.8.1 Prime and Probe Applied to AES

In this section we proceed to explain how the Prime and Probe spy process can be ap-
plied to attack AES. Again, we use the C reference implementation of OpenSSL1.0.1f
library which uses 4 different T-tables during the AES execution. Recovering one
round key is sufficient for AES-128, as the key scheduling is invertible.

We use the last round as our targeted round for convenience. Since the 10th round
does not implement the MixColumns operation, the ciphertext directly depends on
the T-table position accessed and the last round key. Assume Si to be the value of
the ith byte prior to the last round T-table look up operation. Then the ciphertext
byte Ci will be:

Ci = Tj[Si]⊕K10
i (6.5)
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where Tj is the corresponding T-table applied to the ith byte and K10
i . It can be

observed that if the ciphertext and the T-table positions are known, we can guess
the key by a simple XOR operation. We assume the ciphertext to be always known
by the attacker. Therefore the attacker will use the Prime and Probe spy process to
guess the T-table position that has been used in the encryption and consequently,
obtain the key. Thus, if the attacker knows which set each of the T-table memory
lines occupies, Prime and Probe will detect that the set is not accessed 8% of the
time, and once he has gotten enough measurements, the key can be obtained from
Equation 6.5.

Locating the Set of the T-Tables: The previous description implicitly assumes
that the attacker knows the location, i.e. the sets, that each T-table occupies in
the shared cache. A simple approach to gain this knowledge is to prime and probe
every set in the cache, and analyze the timing behavior for a few random AES
encryptions. The T-table based AES implementation leaves a distinctive fingerprint
on the cache, as T-table size as well as the access frequency (92% per line per
execution) are known. Once the T-tables are detected, the attack can be performed
on a single line per table. Nevertheless, this locating process can take a significant
amount of time when the number of sets is sufficiently high in the outermost shared
cache.

An alternative, more efficient approach is to take advantage of the shared library
page alignment that some OSs like Linux implement. Assuming that the victim is
not using huge size pages for the encryption process, the shared library is aligned at
a 4 KB page boundary. This gives us some information to narrow down the search
space, since the lower 12 bits of the virtual address will not be translated. Thus, we
know the offset fi modulo 64 of each T-table memory line and the T-table location
process has been reduced by a factor of 64. Furthermore, we only have to locate
one T-table memory line per memory page, since the remaining table occupies the
consecutive sets in the last level cache.

Attack stages: Putting all together, these are the main stages that the we follow
to attack AES with Prime and Probe

• Step 1: Last level cache profile stage: The first stage to perform the
attack is to gain knowledge about the structure of the last level cache, the
number of slices, and the lines that fill one of the sets in the last level cache.

• Step 2: T-table set location stage: The attacker has to know which set
in the last level cache each T-table occupies, since these are the sets that need
to be primed to obtain the key.

• Step 3: Measurement stage: The attacker primes the desired sets-slices,
requests encryptions and probes again to check whether the monitored sets
have been used or not.
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• Step 4: Key recovery stage: Finally, the attacker utilizes the measurements
taken in Step 3 to derive the last round key used by the AES server.

6.8.2 Experiment Setup and Results for the AES Attack

In this section we analyze our experiment setup and the results obtained in native
machine, single VM and in the cross-VM scenarios, specifically with deduplication-
free hypervisors where Flush and Reload and Invalidate and Transfer could not
succeed.

6.8.2.1 Testbed Setup

The machine used for all our experiments is a dual core Nehalem Intel i5-650 [inta]
clocked at 3.2 GHz. This machine works with 64 byte cache lines and has private 8-
way associative L1 and L2 caches of size 215 and 218 bytes, respectively. In contrast,
the 16-way associative L3 cache is shared among all the cores and has a size of 222

bytes, divided into two slices. Consequently, the L3 cache will have 212 sets in total.
Therefore 6 bits are needed to address the byte address in a cache line and 12 more
bits to specify the set in the L3 cache. The huge page size is set to 2 MB, which
ensures a set field length of 21 bits that are untouched in the virtual to physical
address translation stage. All the guest OSs use Ubuntu 12.04, while the VMMs
used in our cloud experiments are Xen 4.1 fully virtualized and VMware ESXI 5.5.
Both allow the usage of huge size pages by guest OSs [BDF+03, Xenb, xena]. None
of them implements memory deduplication mechanisms; Xen because it lacks of
such a feature, VMware because we disabled it manually. Recall that, under this
settings, Flush and Reload and Invalidate and Transfer would not be able to recover
any meaningful information. We will observe how this is not the case for Prime and
Probe.

The target process uses the C reference implementation of OpenSSL1.0.1f,
which is the default if the library is configured with no-asm and no-hw options.
We would like to remark that these are not the default OpenSSL installation op-
tions in most of the products.

The attack scenario is going to be the same one as in Section 4.4, where one
process/VM is handling encryption requests with an secret key. The attacker’s pro-
cess/VM is co-located with the encryption server, but on different cores. We assume
synchronization with the server, i.e, the attacker starts the Prime and Probe spy
process and then sends random plaintexts to the encryption server. The communi-
cation between encryption server and attacker is carried out via socket connections.
Upon the reception of the ciphertext, the attacker measures the L3 cache usage by
the Prime and Probe spy process. All measurements are taken by the attackers pro-
cess/VM with the rdtscp function, which not only reads the time stamp counters
but also ensures that all previous processes have finished before its execution [rdt].
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Figure 6.9: Histograms of 500 access times monitored in the probe stage for a) a
set used by a T-table memory line and b) a set not used by a T-able memory line.
Measurements are taken in the Xen 4.1 cross-VM scenario.

6.8.2.2 The Cross-Core Cross-VM Attack

We perform the attack in three different scenarios: native machine, single VM and
cross-VM. In the native and single VM scenarios, we assume that the huge size
pages are set to be used by any non-root process running in the OS. Recall that in
the cross-VM scenario, the attacker has administrator rights in his own OS.

The first step is to recognize the access pattern of the L3 cache in our Intel i5-
650. Making use of the knowledge of the slice selection algorithm in Section 6.7.4,
we observe that odd blocks (17th bit of the physical address equal to 1) and even
blocks (17th bit of the physical address equal to 0) are allocate in different slices.
Thus we need 16 odd blocks to fill a set in the odd slice, whereas we need 16 even
blocks to fill a specific set in the even slice.

The second step is to recognize the set that each T-table cache line occupies in
the L3 cache. For that purpose we monitor each of the possible sets according to
the offset obtained from the linux shared library alignment feature. Recall that if
the offset modulo 64 f0 of one of the T-tables is known, we only need check the sets
that are 64 positions apart, starting from f0. By sending random plaintexts the set
holding a T-table cache line is used around 90% of the times, while around 10% of
the times the set will remain unused. The difference between a set allocating a T-
table cache line and a set not allocating a T-table cache line can be graphically seen
in Figure 6.9, where 500 random encryptions were monitored with Prime and Probe
for both cases in a cross-VM scenario in Xen 4.1. It can be observed that monitoring
an unused set results in more stable timings in the range of 200-300 cycles. However
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Figure 6.10: Miss counter values for ciphertext 0 normalized to the maximum value.
The key is e1 and we are monitoring the last 8 values of the T-table (since the table
starts in the middle of a memory line).

monitoring a set used by the T-tables outputs higher time values around 90% of
the time, whereas we still see some lower time values below 300 around 10% of the
times. Note that the key used by the AES server is irrelevant in this step, since the
set used by the T-table cache lines is going to be independent of the key.

The last step is to run Prime and Probe to recover the AES key used by the
AES server. We consider as valid ciphertexts for the key recovery step those that
are at least below half the average of the overall timings. This threshold is based
on empirical results that can be seen in Figure 6.10, and is calculated as the overall
counter average divided by 2. The figure presents the miss counter value for all the
possible ciphertext values of C0, when the last line in the corresponding T-table
is monitored. The key in this case is 0xe1 and the measurements are taken in a
cross-VM scenario in Xen 4.1. In this case only 8 values take low miss counter
values because the T-table finishes in the middle of a cache line. These values are
clearly distinguishable from the rest and appear in opposite sides of the empirical
threshold.

Results for the three scenarios are presented in Figure 6.11, where it can be
observed that the noisier the scenario is, e.g. in the cross-VM scenario, the more
monitored encryptions are needed to recover the key. The plot shows the number of
correctly guessed key bytes vs. the number of encryptions needed. Recall that the
maximum number of correctly guessed key bytes is 16 for AES-128. The attack only
needs 150.000 encryptions to succeed on recovering the full AES key in the native
OS scenario. Due to the higher noise in the cloud setting, the single VM recovers
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Figure 6.11: Number of key bytes correctly recovered vs number of encryptions
needed for native OS, single VM and cross-VM scenarios.

the full key with 250.000 encryptions. The cross-VM scenario was analyzed in two
popular hypervisors, Xen and VMware, requiring 650.000 and 500.000 encryptions to
recover the 16 key bytes respectively. We believe that Xen requires a higher number
of encryptions due to the higher noise caused by the usage of a fully virtualized
hypervisor. It is important to remark that the attack is completed in only 9 and
35 seconds, respectively, for the native and single VM scenarios. In the cross VM
scenario, the attack succeeds in recovering the full key in 90 and 150 seconds in
VMware and Xen, respectively. Recall that in the cross-VM scenario the external
IP communication adds significant latency.

In short, compared to the Flush and Reload attack earlier presented, the Prime
and Probe attack needs more encryptions to succeed in recovering the key. This is
an expected behavior, as the Prime and Probe attack suffers more from noise. In-
deed, Flush and Reload needs w accesses from an unrelated process to create a noisy
measurement, being w the associativity of the cache. However, as the Prime and
Probe attack fills the whole set, a simple access from an unrelated process to the set
being primed create a noisy measurement. Nevertheless, Prime and Probe succeeds
to recover the key in hypervisors where Flush and Reload and Invalidate and Trans-
fer cannot, including commercial clouds, which do not have memory deduplication
enabled. We present a full real world scenario attack using Prime and Probe in the
next section.
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6.9 Recovering RSA Keys in Amazon EC2

As we said, the Prime and Probe attack does not assume any special requirements
but that attacker and victim are co-resident in the same CPU socket. Thus, there is
no reason why it cannot succeed in commercial clouds, like Amazon EC2. Amazon
EC2 mostly uses Intel-based servers, for wich we know that the LLC is inclusive.
More than that, the market share that Intel has on desktop and server processors
was more than 80% at the beginning of 2016 [Alp09], and since Intel does not seem
to offer non-inclusive caches in these devices (at least we have not observed any),
our attack would work in big amount of current computers. In the cloud scenario, of
course, co-residency has first to be achieved with the target. We assume co-residency
is achieved (in fact, with the methodologies described in [VZRS15, IGES16]), and
that the attacker utilizes the same hardware resources as a RSA decryption server.

To prove the viability of the Prime and Probe attack in Amazon EC2 across
co-located VMs, we introduce how it can be utilized to steal RSA cryptographic
keys. It is important to remark that the attack is not processor specific, and can
be implemented in any processor with inclusive last level caches.

The attack targets a sliding window implementation of RSA-2048. Note that
attacking such an implementation is far more difficult than the one described in
Section 5.4, since the multiplication function by itself does not give us enough in-
formation about the key. In this case, contrary to the case of AES and as explained
in Section 2.4.2, we put our focus in the multiplicants, which are dynamically al-
located. Thus Flush and Reload, even in deduplication enabled systems would be
able to recover such information.

We will use Libgcrypt 1.6.2 as our target library, which not only uses a slid-
ing window implementation but also uses CRT and message blinding techniques 7.
The message blinding process is performed as a side channel countermeasure for
chosen-ciphertext attacks, in response to studies such as [GST14, GPPT15].
However, note that this does not prevent our attack, as we only focuses on the
key management without requiring any particular ciphertext shape. Further, the
CRT implementations makes us have to recover dp and dq separately, but once the
knowledge of both is acquired, the full key can be retrieved [HDWH12, Ham13].

The modular exponentiation in Libgcrypt uses the sliding window approach ex-
plained in Algorithm 8. In particular, libgcrypt pre-computes the values c3, c5, c7, . . . ,
c2

W−1 in a table. Then, the key is processed in windows that are required to start
and finish with a set bit, and have a maximum length of W , being W the window
size. Until the set bits are found, squares are issued normally. When the set bits and
the window of length l (l <= W ) is found, l squares are issued and a multiplication
with the appropriate table entry is performed. Clearly, the accesses to the precom-
puted table leak information about the window being processed, and therefore, the
key bit values of the windows.

Our attack uses the Prime and Probe side channel technique to recover the
positions of the table T that holds the values c3, c5, c7, . . . , c2

W−1 where W is the
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Algorithm 7 RSA with CRT and Message Blinding

Input : Ciphertext c ∈ ZN , Exponents d, e, Modulus N = pq

Output: m

r
$← ZN with gcd(r,N) =

1//Message Blinding

c∗ = c · re mod N dp = d mod (p− 1)
//CRT conversion

dq = d mod (q − 1) m1 = (c∗)dp

mod p//Modular Exponentiation

m2 = (c∗)dq mod q h = q−1 · (m1 −m2)
mod p//Undo CRT

m∗ = m2 + h · q m = m∗ · r−1 mod N
//Undo Blinding

return m

window size. For CRT-RSA with 2048 bit keys, W = 5 for both exponentiations
dp, dq. Observe that, if all the positions are recovered correctly, reconstructing the
key is a straightforward step. In order to perform the attack:

• We make use of the fact that the offset of the address of each table position
entry does not change when a new decryption process is executed. Therefore,
we only need to monitor a subsection of all possible sets, yielding a lower
number of traces.

• Instead of the monitoring both the multiplication and the table entry set (as
in [Fan15] for El Gamal), we only monitor a table entry set in one slice. This
avoids the step where the attacker has to locate the multiplication set and
avoids an additional source of noise.

Recall that we do not control the victim’s user address space. This means that
we do not know the location of each of the table entries, which indeed changes from
execution to execution, as it is dynamically allocated. Therefore we will monitor a
set hoping that it will be accessed by the algorithm. However, our analysis shows a
special behavior: each time a new decryption process is started, even if the location
changes, the offset field does not change from decryption to decryption. Thus, we
can directly relate a monitored set offset with a specific entry in the multiplication
table.

The knowledge of the processor in which the attack is going to be carried out
gives an estimation of the probability that the set/slice we monitor collides with the
set/slice the victim is using. For each table entry, we fix a specific set/slice where not
much noise is observed. In the Intel Xeon E5-2670 v2 processors utilized by Amazon
EC2, the LLC is divided in 2048 sets and 10 slices. Therefore, knowing the lowest
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Algorithm 8 RSA Sliding-Window Exponentiation

Input : Ciphertext c ∈ ZN%, Exponent d, Window Size w

Output: cd mod N

//Table Precomputation step

T [0] = c3 mod N v = c2 mod N for i from 1 to 2w−1 − 1 do
T [i] = T [i− 1] · v mod N

end
//Exponentiation step:

b = 1, j = len(d) while j > 0 do
if ej == 0 then

b = b2 mod N j = j − 1

else
Find ejej−1 . . . el | j − l + 1 ≤ w with el = 1 for k from 1 to l do

b = b2
j−l+1

mod N
end
if ej == 1 then

b = b · c mod N
else

b = b · T [(ei − 3)/2] mod N

end
j = j − l − 1

end
end
return b

12 bits of the table locations, we will need to monitor one set/slice that solves s
mod 64 = o, where s is the set number and o is the offset for a table location. This
increases the probability of probing the correct set from 1/(2048 · 10) = 1/20480 to
1/((2048 · 10)/64) = 1/320, reducing the number of traces to recover the key by a
factor of 64. Thus our spy process will monitor accesses to one of the 320 set/slices
related to a table entry, hoping that the RSA encryption accesses it when we run
repeated decryptions.

Recall that we reverse engineered the slice selection algorithm for Intel Xeon E5-
2670 v2 processors in Section 6.7.7. Thanks to the knowledge of the non linear slice
selection algorithm, we can easily change our monitored set/slice if we see a high
amount of noise in one particular set/slice. Since we also have to monitor a different
set per table entry, it also helps us to change our eviction set accordingly. Thanks
to the knowledge of the non linear slice selection algorithm, we will select a range
of sets/slices s1, s2, . . . , sn for which the memory blocks that create the eviction
sets do not change, and that allow us to profile all the precomputed table entries.
The threshold is different for each of the sets, since the time to access different
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slices usually varies. Thus, the threshold for each of the sets has to be calculated
before the monitoring phase. In order to improve the applicability of the attack,
the LLC can be monitored to detect whether there are RSA decryptions or not in
the co-located VMs as proposed in [IGES16]. After it is proven that there are RSA
decryptions the attack can be performed.

In order to obtain high quality timing leakage, we synchronize the spy process
and the RSA decryption by initiating a communication between the victim and
attacker, e.g. by sending a TLS request. Note that we are looking for a particular
pattern observed for the RSA table entry multiplications, and therefore processes
scheduled before the RSA decryption will not be counted as valid traces. In short,
the attacker will communicate with the victim before the decryption. After this
initial communication, the victim will start the decryption while the attacker starts
monitoring the cache usage. In this way, we monitor 4,000 RSA decryptions with
the same key and same ciphertext for each of the 16 different sets related to the 16
table entries.

We investigate a hypothetical case where a system with dual CPU sockets is used.
In such a system, depending on the hypervisor CPU management, two scenarios can
play out; processes moving between sockets and processes assigned to specific CPUs.
In the former scenario, we can observe the necessary number of decryption samples
simply by waiting over a longer period of time. In this scenario, the attacker would
collect traces and only use the information obtained during the times the attacker
and the victim share sockets and discard the rest as missed traces. In the latter
scenario, once the attacker achieves co-location, as we have in Amazon EC2, the
attacker will always run on the same CPU as the target hence the attack will succeed
in a shorter span of time.

Among the 4,000 observations for each monitored set, only a small portion con-
tains information about the multiplication operations with the corresponding table
entry. These are recognized because their exponentiation trace pattern differs from
that of unrelated sets. In order to identify where each exponentiation occurs, we
inspected 100 traces and created the timeline shown in Figure 6.12(b). It can be ob-
served that the first exponentiation starts after 37% of the overall decryption time.
Note that among all the traces recovered, only those that have more than 20 and
less than 100 peaks are considered. The remaining ones are discarded as noise. Fig-
ure 6.12 shows measurements where no correct pattern was detected (Fig. 6.12(a)),
and where a correct pattern was measured (Fig. 6.12(b)).

In general, after the elimination step, there are 8−12 correct traces left per set.
We observe that data obtained from each of these sets corresponds to 2 consecutive
table positions. This is a direct result of CPU cache prefetching. When a cache line
that holds a table position is loaded into the cache, the neighboring table position
is also loaded due to cache locality principle.

For each graph to be processed, we first need to align the creation of the look-up
table with the traces. Identifying the table creation step is trivial since each table
position is used twice, taking two or more time slots. Figure 6.13(a) shows the table
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Figure 6.12: Different sets of data where we find a) trace that does not contain
information b) trace that contains information about the key

access position indexes aligned with the table creation. In the figure, the top graph
shows the true table accesses while the rest of the graphs show the measured data.
It can be observed that the measured traces suffer from misalignment due to noise
from various sources e.g. RSA or co-located neighbors.

In consequence, we apply alignment and noise reduction techniques, typically
utilized in DPA attacks [KJJ99] to obtain a clean cache trace. The result after such
an alignment process can be observed in Figure 6.14, which shows the real indices
of a particular table entry with those retrieved from our analysis.

Despite the good results after these noise reduction techniques, we still do not
end up with a perfect trace. The overall results are presented in Table 6.4, where
a 0.65% of the peaks are missdetected. Thus, the key recovery algorithm described
in [Ham13] is applied to establish relationships between noisy dp and dq to recover
a full clean RSA key. In order to apply such an algorithm we need information
about the public key. We distinguish two different scenarios in which the attacker
is able to utilize public keys for the error correction algorithm. In both, we assume
the attacker has already retrieved the leakage from the RSA decryption key of a
(potentially known) server:

• Targeted Co-location: The Public Key is Known In this case we assume
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Figure 6.13: 10 traces from the same set where a) they are divided into blocks for
a correlation alignment process b) they have been aligned and the peaks can be
extracted

that the attacker implemented a targeted co-location against a known server,
and that she has enough information about the public key parameters of the
target.

• Bulk Key Recovery: The Public Key is Unknown In this scenario, the
attacker can build up a database of public keys by mapping the entire IP range
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Table 6.4: Successfully recovered peaks on average in an exponentiation

Average Number of traces/set 4000
Average number of correct graphs/set 10
Wrong detected peaks 7.19%
Missdetected peaks 0.65%
Correctly detected peaks 92.15%

of the targeted Amazon EC2 region and retrieve all the public keys of hosts
that have the TLS port open. The attacker then runs the above described
algorithm for each of the recovered private keys and the entire public key
database. Having the list of ’neighboring’ IPs with an open TLS port also
allows the attacker to initiate TLS handshakes to make the servers use their
private keys with high frequency.

In the first scenario, the attacker has information about the public key and
thus he can apply the error correction algorithm that we will describe directly.
In the second scenario, the attacker has a database of public keys, and he does
not know which public key the private key leakage belongs to. In this case, the
attacker implements the error correction algorithm with each of the public keys in
the database until he finds a successful correlation. We proceed next to explain the
algorithm to recover the noise-free decryption key.

The leakage analysis described recovers information on the CRT version of the
secret exponent d, namely dp = d mod (p−1) and dq = d mod (q−1). A noise-free
version of either one can be used to trivially recover the factorization of N = pq,
since gcd(m−medp , N) = p for virtually any m [CS04]. Thus, our goal is to retrieve
noise-free dp or dq from noisy d∗p and d∗q. Note that this is not our case, as even
with alignment and noise filtering techniques we still had miss-detected and wrongly
detected peaks. In such cases, we can exploit their relation to the known public key
can if the used public exponent e is small [Ham13]. Note that this will be our case,
as almost all RSA implementations currently use e = 216 + 1 due to the heavy
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performance boost over a random and full size e. For CRT exponents we calculated
dp and dq as dp = d mod (p− 1) and dq = d mod (q − 1). Multiplying both sides
by e we obtain

edp = 1 mod (p− 1) (6.6)

edq = 1 mod (q − 1) (6.7)

As d ∗ e mod ((p − 1) ∗ (q − 1)) = 1. This means that exist integers kp and kq
such that edp = kp(p− 1) + 1 for some 1 ≤ kp < e and edq = kq(q − 1) + 1 for some
1 ≤ kq < e. This yields kpp = edp + kp − 1 and kqp = edq + kq − 1. If we multiply
this equations together we obtain the main equation we will utilize for our noise
correction error algorithm:

kpkqN = (edp + kp − 1)(edq + kq − 1). (6.8)

Note that there are nice tricks that help solving this equation. First, we can take
the equation modulo e such that the terms e ∗ dp and e ∗ dq disappear, giving us the
equation kpkqN = (kp − 1)(kq − 1) (mod e). As e is usually 216 + 1 and 1 ≤ kp < e
we can obtain kp and kq with this equation considering all possible 216 set of kp (and
their corresponding values kq).

Next, assume we are given the first t bits of dp and dq, e.g. a = dp mod 2t and
b = dq mod 2t. For each kp we check whether δ(a, b, t) = 0 where

δ(a, b, t) = kpkqN − (ea+ kp − 1)(eb+ kq − 1) (mod 2t) (6.9)

which indeed will indicate us whether for a choice of kp, the least-significant t
bits of dp, dq are correct. We can

• Check parts of dp and dq by verifying if the test δ(dp(t), dq(t), t) = 0 holds
for t ∈ [1, dlog(p)e].

• Fix alignment and minor errors by shifting and varying dp(t) and dq(t),
and then sieving working cases by checking if δ(dp(t), dq(t), t) = 0,

• Recover parts of dq given dp (and vice versa) by solving the error equation
δ(dp(t), dq(t), t) = 0 in case the data is missing or too noisy to correct.

Note that the algorithm may need to try all 216 values of kp in a loop. Further,
in the last case where we recover a missing data part using the checking equation we
need to speculatively continue the iteration for a few more steps to see whether this
leads to many mistakes in the information we recovered of dp and dq. If we observe
too many discrepancies between the solution given by the Equation 6.9 and the
recovered key information for a given value t we may early terminate the execution
thread without having to iterate over the entire size end of dp and dq.
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Algorithm 9 Windowed RSA Key Recovery with Noise

Input : Cache noisy window information wp[0], . . . , wp[n] and
wq[0], . . . , wq[n], public key e modulus N

Output: Noise free dp and dq

for kp from 1 to e− 1 do
Compute kq = (1− kp)(kpN − kp + 1)−1 (mod e);
while i < |wp| do

Process windows wp[i], wp[i+ 1];
Introduce shifts; vary ip[i]] up maxzeros;
for each dp variation do

Compute X =
∑i+1

j=0wp[j]2
ip[j];

Identify wq that overlap with wp[i], wp[i+ 1];
Compute Y =

∑i+1
j=0wq[j]2

iq[j];
if δ(X, Y, t)=0 then

Update wp, ip, wq, iq;
Create thread for i+ 1;

end
if if no check succeeded then

Too many failures: abandon thread;

end
if maxzeros achieved then

i = i− 1;

end
Update ip, wq, iq;
Create thread for i;

end
end

end
return correct dp and dq;
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To see how this approach can be adapted into our setting, we need to consider the
error distribution observed in dp and dq as recovered by cache timing. Furthermore,
since the sliding window algorithm was used in the RSA exponentiation operation,
we are dealing with variable size (1-5 bit) windows with contents wp, wq, and window
positions ip, iq for dp and dq, respectively.

The windows are separated by 0 strings. We observed:

• The window wp contents for dp had no errors and were in the correct order.
There were slight misalignments in the window positions ip with extra or
missing zeros in between.

• In contrast, dq had not only alignment problems but also few windows with
incorrect content, extra windows, and missing windows (overwritten by zeros).
The missing windows were detectable since we do not expect unusually long
zero strings in a random dq.

• Since the iterations proceed from the most significant windows to the least we
observed more errors towards the least significant words, especially in dq.

Algorithm 9 shows how one can progressively error correct dp and dq by pro-
cessing groups of consecutive ` windows of dp. For each guess of kp, the algorithm
creates new execution threads and compares the windows with those recovered from
the cache measurements. The algorithm kills a thread when too many checks fail to
produce any matching on different windows. However, then the kill threshold has to
be increased and the depth of the computation threads and more importantly the
number of variations that need to be tested increases significantly. In this case, the
algorithm finds the correct private key in the order of microseconds for a noise-free
dp and needs 4 seconds for our recovered dp.

In the South America Amazon EC2 region, we have found 36000+ IP addresses
with the TLS port open using nmap. We used such a region to improve our co-
location chances, as the number of servers is lower compared to the US region.
With a public key database of that size, our algorithm takes between less than a
second (for noise-free dps) and 30 CPU hours (noisy dps) to check each private key
with the public key database. This approach recovers the public/private key pair,
and consequently, the identity of the key owner.

6.10 Prime and Probe Outcomes

This chapter introduced Prime and Probe, an attack that is memory deduplica-
tion agnostic and that is applicable in those systems where Flush and Reload and
Invalidate and Transfer failed, e.g., commercial clouds like Amazon EC2. Prime
and Probe works by creating set collisions in the LLC, overcoming several difficul-
ties inherited to LLC like slices or the lack of knowledge of sufficient physical bits.
We utilized reverse engineering tools and huge pages to overcome this issues, and
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demonstrated its applicability by recovering AES and RSA keys. In systems where
both Flush and Reload and Prime and Probe can be applied, the first will give a
cleaner channel, as it is more resistant to LLC noise.
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Chapter 7

Countermeasures

In the previous chapters we covered the effectiveness of three cache based side chan-
nel attacks, Flush and Reload, Invalidate and Transfer and Prime and Probe to
recover sensitive information from co-resident users in a number of scenarios. All
have distinct requirements that make them applicable in very different scenarios.
For instance, we observed how Flush and Reload and Invalidate and Transfer suc-
ceed in systems with memory deduplication features, as it is the case of most PaaS
clouds, some IaaS clouds and smartphones. Prime and Probe does not require any
special assumption but CPU co-residency, and thus, it is not only applicable in
those scenarios in which Flush and Reload is, but also can be executed in every
IaaS cloud, as Javascript extensions [OKSK15] or in TEEs (e.g. SGX or ARM
Trustzone) [SWG+17, BMD+17]. Observe how some of these scenarios belong to
the category of ”‘everyday use technology”. Therefore, the aforementioned cache
attacks are applicable in realistic scenarios and in response, appropriate counter-
measures have to be taken to defend against them.

Indeed, despite the big popularity that cross-core microarchitectural attacks ac-
quired, countermeasures are not being deployed in commercial software. To the
best of our knowledge, neither commercial clouds, OS designers, software develop-
ers nor hardware manufacturers are developing countermeasures against them. In
this chapter, we propose two novel countermeasures that can aid all these agents
prevent cache attacks in particular (and microarchitectural attacks in general) from
succeeding. We first revisit countermeasures that have been proposed by other
works to avoid the leakage exploitation through the LLC, categorizing them as
hardware, software and application layer countermeasures. Next, we present a LLC
leakage finder tool for cryptographic libraries, that evaluates whether cryptographic
algorithms are designed properly and that substantially improves on previous ap-
proaches, demonstrated by the 5 CVE numbers (and at least 4 more being studied)
that we obtained. Finally, we develop a static microarchitectural malware analyzer
that can be utilized by online repository distributors verify the sanity of the bina-
ries being offered (which remain undetected to the best antivirus software) before a
end-user gets to execute them.
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7.1 Existing Countermeasures

Alongside ever improving cache and microarchitectural attacks, countermeasures
have been proposed in literature as well. We divide them in three basic categories:
hardware, software and application layer countermeasures.

Page [Pag05] proposed a hardware countermeasure that partitions the cache such
that cache conflicts between different users do not occur. Wang et al. [WL07] pro-
posed the design of new caches with different characteristics, which involve the abil-
ity of locking security-related ways in the cache or enabling cache interference ran-
domization. These implementations were later improved by Kong et al. [KASZ09].
Although previous approaches might give solution to Prime and Probe based at-
tacks, it is still an open question as to how these solutions would prevent Flush
and Reload and Invalidate and Transfer attacks. Recently, Intel added the Cache
Allocation Technology (CAT) feature to their CPUs, which was investigated by Liu
et al. [LGY+16] as a countermeasure to Prime and Probe attacks, while considering
deduplication-free systems to defeat Flush and Reload and Invalidate and Transfer.

Further mechanisms have been proposed at the software level. For instance,
Page Coloring was proposed by Kim et al. [KPMR12] as a solution in which each
user gets pages that do no collide with others in cache. Later Zhang et al. [ZZL16]
expanded the work by Chiapetta et al. [CSY15] and proposed a cache attack de-
tector mechanism, cloud radar, which monitors the performance counters looking
for patterns observed in cache attacks. Recently, Zhang et al. [ZRZ16] developed a
smart access-based memory page management to defeat both Prime and Probe and
Flush and Reload.

Another approach is the design of code that does not exhibit cache leakage at the
application level. Almeida et al. [ABB+16] developed a compiler based methodology
to verify constant-time code, which for instance prevents attacks on the execution
flow via the instruction cache. Zankl et al. [ZHS16] proposed a tool based on dy-
namic binary instrumentation that automatically detects instruction cache leaks in
modular exponentiation software.

In the following we provide a more detailed explanation of two of such coun-
termeasures, mainly page coloring and cloud radar. The goal is to help the reader
understand some of the existing countermeasure functionalities.

7.1.1 Page Coloring

As explained in Section 6.1, the location that a memory block will occupy in the
cache directly depends on some of its physical address bits. The main idea behind
page coloring is that the OS controls the assignment of those bits such that memory
blocks belonging to different users/processes/VMs do not collide in the cache. Page
Coloring was implemented in [KPMR12] as a mechanisms to avoid cache leakages.

The OS/hypervisor colors DRAM pages by assigning a different color to each
different bit combination for the bits that select the position of a memory block in
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Figure 7.1: Page Coloring implementation, where DRAM is divided into different
colors that are assigned to different users that will not collide in the cache

the cache. Figure 7.1 shows the main idea in which the cache is partitioned in 4
different colors, and where 2 bits of the physical address decide the color. Upon
DRAM allocation requests made by processes/users, the OS assigns each user only
pages of one color, and different to any other user in the system. As bits 12 and 13
of the physical address are also involved in the selection of the set that a memory
block occupies, the coloring ensures that pages belonging to different users do not
collide in the cache. Figure 7.1 shows the complete process and how users do not
collide in the cache utilization. If memory pages do not collide, Prime and Probe like
attacks are not possible, as the attacker cannot evict the victims data. Further, page
coloring and memory deduplication are antagonic concepts, and therefore neither
Flush and Reload nor Invalidate and Transfer would be applicable if the first is
implemented. However, page coloring might be difficult to implement in systems
with inconsistent loads, as the number of colors would have to be re-calculated for
different loads.

7.1.2 Performance Event Monitorization to Detect Cache
Attacks

The LLC attacks that we (and other concurrent works) exploited take advantage
of very specific characteristics in the cache, and implement very specific memory
accesses. Thus, a mechanisms that constantly monitors the LLC trying to detect
malicious utilization would most likely succeed on detecting LLC attacks. Zhang et
al. [ZZL16] proposed such a mechanism, in which performance counters are utilized
to monitor the hardware usage.

This mechanisms is implemented at the OS or hypervisor level, depending on
the system to defend. In particular, very specific hardware events are monitored
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Figure 7.2: HPCs as a methodology to find whether cache attacks are being executed
by the processes in the system

looking for cache attack patterns. Obviously, the most affected hardware events
are cache misses and hits, but additional perhaps less obvious hardware events are
also monitored. In particular, this mechanisms usually do not constantly monitor
every process in the system, but monitor random processes for a specific period of
time. The detection system can also be aided by machine learning algorithms that
are beforehand trained. When a cache attack evidence is observed, the process can
be either isolated or prevented from being executed again. Figure 7.2 represents
graphically the process. The main downside of this kind of mechanisms is the big
overhead they impose to the defending system.

7.2 Problems with Previously Existing Counter-

measures

Even though the aforementioned studies have investigated solutions to stop the
exploitation of hardware caches as a covert channel, we observe some concerns that
might explain why these have not been adopted by commercial products.

• Application level countermeasures: One of the main problems that we
observe in previously proposed application level countermeasures is the high
number of false positives that they usually exhibit. In fact, cryptographic al-
gorithms usually make secret dependent memory accesses, but this does not
mean they leak information about the key, as they might happen outside the
main loop or within the same cache line. Furthermore, some of the proposed
countermeasures do not take into account the entire memory leakage spec-
trum but only a subset of it. For instance, Zankl et al. [ZHS16] utilize the
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PIN instrumentation tool to find distinct instruction execution flow (static
memory) for different keys, and correlate it with the key. Extracting the same
information for dynamically allocated data is not an option, as their memory
addresses change from execution to execution.

• OS level countermeasures: Although some of the proposed OS level coun-
termeasures would indeed prevent any leakage stemming from cache covert
channels, we have not observed any of them being implemented in commercial
products. We believe there are several reasons preventing their adoption, the
main one being the performance overhead associated with these countermea-
sures. Further, the balanced design of such countermeasures is not an easy
task. For instance, page coloring might lead to a miss-utilization of the cache
when sufficient workloads are not being executed, while it might lead to leak-
age exploitation when the number of workloads is higher than the number of
colors. We hardly believe these facts take a key role on the decision of the
implementation of OS level countermeasures.

• Hardware level countermeasures: Among our three countermeasure cat-
egories, we believe the most difficult one to be adopted are the hardware level
countermeasures. These involve re-designing the hardware, testing it against
microarchitectural attack vectors and producing a full new processor family.
This entire process usually takes several years, therefore making them unlikely
to be utilizable in the short run.

The problems inherited to OS/hardware countermeasures and their non-adoption
leaves any end user or application designer alone in the response to microarchitec-
tural attacks in general and cache attacks in particular. In such a situation, the only
solution is to create effective and easily implementable application level countermea-
sures. In the following sections, we aim at giving response to such concerns; first, by
proposing a leakage sanity verification tool for cryptographic libraries that can help
at achieving leakage free code design, second, by proposing a static analysis tool to
be utilized by online binary distributors to ensure they deliver microarchitectural
attack free applications. Note that even though our countermeasures are intended
to be mainly used by specific agents (i.e. cryptographic code designers and online
repository distributors), they can also be utilized by any end user willing to improve
the security of his system.

7.3 Detecting Cache Leakages at the Source Code

We demonstrated how LLC attacks can recover a wide range of information, in-
cluding AES and RSA cryptographic keys. Furthermore, we demonstrated that
LLC attacks can be successfully applied in a commercial IaaS clouds like Ama-
zon EC2. In addition, these can also be a applied as Javascript execution in web
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browsers [OKSK15] or even as malicious smartphone apps [LGS+16]. In short,
cache attacks have demonstrated to pose a severe threat applicable in a wide range
of scenarios. Particularly dangerous are attacks on cryptographic software, as cryp-
tography is the core component that every security solution in built upon.

We have discussed how these attacks can be stopped at three different lay-
ers; at the hardware [WL07], the OS/hypervisor [LGY+16] or at the application
layer [ZHS16]. While the first two involve overheads that hardware/OS designers
might not be willing to pay, little study has been made at catching and fixing cache
leakages before deployment. Not in vain, preventing leakage in security critical ap-
plications (and more specifically in cryptographic software) can be achieved by aware
code designers through proper implementation techniques. The few exceptions that
aimed at fixing this leakages in the source code either did not consider the entire
broad of memory types that can leak information [ZHS16] or lead to a high number
of false positives [ABB+16]. Thus, we observe a need for a tool that can catch the
vast majority of the subtle cache leakages that can arise before the cryptographic
software leaves the lab. We observe three main challenges in the prevention of cache
leakage exploitation:

• Stealthy: Leakage attacks are extremely hard to detect. The effects of an
attack may only be felt through performance degradation for a short duration
while leakage traces are being collected. After the attack is performed no
digital footprint is left. Hence standard detection techniques such as traffic,
access and privilege monitoring are completely blind to leakage attacks. For
instance, any application submitted to the app store is checked for access
violations to devices. However, any attack code exploiting hardware leakage
would only monitor legitimate memory access time variations.

• Hard to Prevent: It is difficult to design leakage proof code, especially if
good performance is also an objective. Leakages are quite subtle and may
not be detected after deployment for a long time. Even if the code is not
leaky on one platform, with gradual optimizations implemented at the mi-
croarchitectural level, new leakage channels may emerge with newer releases
of a platform.

• Difficult to Test: Verification of leakage resistant code is painfully slow and
typically requires inspection by experts well versed in cache attacks.

In this section, we introduce a tool that helps cryptographic code designers to
analyze and expose any leakages in cryptographic implementations. We demonstrate
the viability of the technique by analyzing cache leakages in a number of popular
cryptographic libraries with respect to three main cryptographic primitives we rely
on every day to securely communicate over the internet: AES, RSA and ECC. In
order to achieve this goal, we first find secret dependent instructions/data with
dynamic taint analysis, introduce cache evictions inside code routines, record cache
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traces and then verify the existing dependence with respect to the secret. Our results
show that, despite the efforts of cryptography library designers in reaction to the
multitude of recently published LLC cache attacks several popular libraries are still
vulnerable. In particular in this section:

• We present a proactive tool to analyze leakage behavior of security critical
code. Unlike other approaches, our tool can be used to find real exploitable
leakage in the design of cryptographic implementations.

• The tool identifies secret dependent data, obtains cache traces obtained from
the code execution on the microarchitecture and uses the generic Mutual In-
formation Analysis (MIA) as a metric to determine the existence of cache
leakage.

• The detection technique is agnostic to the implementation, i.e. the testing
code can be run across all target platforms without having to redesign it, yet
pinpoints parts of code that cause found leakages.

• We perform the first big scale analysis of popular cryptographic libraries on
three of the most commonly used primitives: AES, RSA and ECC.

• We demonstrate that several cache leakages are still present in up-to-date
cryptographic libraries (i.e. 50% still leak information) and need to be fixed.

7.3.1 Preliminaries

The proposed tool employs techniques from modern cache attacks to monitor cache
activity and measures information leakage using Mutual Information. We take into
account only Flush and Reload and Prime and Probe, as Invalidate and Transfer
exploits the same data types ans Flush and Reload.

7.3.1.1 LLC Attacks

The Flush and Reload was presented in Section 4 as a LLC side channel attack. In
particular attack assumes the following;

• The attacker and the victim are executing processes in the same CPU but in
different cores.

• Attacker and victim share read-only memory pages.

The Flush and Reload attack can only succeed when attacking memory blocks
shared with the potential victim. These usually imply static code and global vari-
ables, but never dynamically allocated variables.

Prime and Probe Attack The Prime and Probe attack was introduced as an ap-
proach to overcome those situations in which the Flush and Reload was unsuccessful
Both attacks differ in the following way:

122



• Prime and Probe does not require any memory sharing between victim and
attacker.

• Prime and Probe can increase the attack vector to dynamically allocated vari-
ables.

• Prime and Probe implies some reverse engineering to know which sets in the
cache the attacker is using, while Flush and Reload does not.

• Prime and Probe is noisier than Flush and Reload. In particular, a noisy access
in the first one can be caused by a single unrelated access to the monitored
set, while in the second a minimum of w unrelated accesses are needed, being
w the associativity of the cache.

Taking these two attacks into account, we explore the cryptographic libraries
looking for leakages exploitable by either attack. Thus, we examine both statically
and dynamically allocated memory in our analysis. Note that, although these at-
tacks have been mainly used to attack the shared LLC, these leakages also appear
and can be exploited at any level of the cache hierarchy. Thus, our analysis will
detect leakages that can be exploited by either of these attacks (or variations of
them) in the entire cache hierarchy.

7.3.1.2 Mutual Information Analysis

This section gives a brief overview on Mutual Information Analysis and its use to
derive correlation, which will later be used to detect leakages. Assume we are given
a discrete variable X with probability distribution PX . Then the entropy of PX is
defined as

H(X) = −
∑
x∈X

Pr[X = x] log2(Pr[X = x]) . (7.1)

H(X) expresses the entropy or uncertainty of a variable in bits. The entropy is
0 when the variable always takes the same value; Pr[X = Xi] = 1 and Pr[X =
Xk] = 0 , ∀k 6= i. The maximum entropy is achieved when the variable X is
uniformly distributed. We are now ready to define a metric that captures how much
the entropy of X is reduced given Y . Or in other words, how much information is
leaked on X by Y . This metric is called Mutual Information I(X, Y ) and is defined
as

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y )

Where H(X) is the entropy of random variable X and H(X|Y ) is the entropy of
the random variable X given the knowledge of the random variable Y . In a way
I(X;Y ) gives us how related variables X and Y are. Note that if X and Y are
independent, I(X;Y ) = 0 since H(X|Y ) = H(X). In contrast, if X and Y are fully
dependent we obtain maximum MI, i.e., I(X;Y ) = H(X), since H(X|Y ) = 0 (Y
fully determines X).
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MI has been used in prior work for side channel attacks and leakage quantifica-
tion. Gierlichs et al. [GBTP08] utilize MI as a side channel distinguisher to mount
differential side channel attacks. Standaert et al. [SMY09] utilized MI as a leak-
age quantifier to evaluate side channel attack security. Prouff et al. [PR09] further
expanded on the limitations and strengths of MI as a side channel attack metric.
Recently Zhang and Lee [ZL14] used MI to measure the security level of several
cache architectures which they modeled as finite state machines.

7.3.2 Methodology

Our approach involves the monitorization of the cache usage for all the memory
addresses considered susceptible of carrying information of the secret to hide. In
order to achieve this goal we utilize common known techniques from cache attacks,
like the usage of cache flushing or cycle counter instructions.

We illustrate our approach on a toy example shown in Figure 7.3. The Hello

code snippet simply returns different messages depending on whether the caller is
a female or a male. We assume that the designer of this simple code does not
want a potential attacker to know the gender of the caller. Assume that the code
designers would like to know whether they did a good job, i.e., whether the cache
traces do not reveal the gender of the user. Here, it is easy to observe that there is
a gender dependent branch that could reveal whether the user is a male or female.
We call B1 and B2 the two possible outputs of the branch. To test the sanity of

1 void Hel lo (char ∗ gender ){
2 i f ( gender==”Male” ){
3 male=1;
4 }
5 else i f ( gender==”Female” ){
6 female =1;
7 }
8 }

Figure 7.3: Vulnerable code snippet example

the code, we insert forced evictions at the beginning of the code routine for those
memory references susceptible of leaking information about the gender, and time the
re-access after its execution, as shown in Figure 7.4. Then we re-execute the code
routine for several input values, retrieving the cache traces for all those potentially
leaky references.

The cache traces for this simple example are shown in Figure 7.5. The x-axis
shows the actual gender while the y-axis represents accesses either to the cache as
a 1 or to memory as 0. The branch outputs are represented with different colors.
Observe that the cache traces match perfectly the gender that the code designer
is trying to hide. Thus, this code snippet would be classified as vulnerable. This
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1 evict (B1, B2) ;
2 He l lo (&gender ) ;
3 time(access (B1, B2)) ;

Figure 7.4: Code snippet wrapped in cache tracer

is because B1 and B2 were located in different cache lines. However, due to their
proximity, it could have happened that both fall in the same cache line, in which
case the code would be classified as non-leaky.
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Figure 7.5: Results for cache traces obtained from invocations of Hello for varying
inputs. The x-axis shows the actual gender whereas the y-axis represents cache
hits/misses (1 indicates hit, 0 indicates miss). The cache trace has full correlation
with B1 and B2 traces

.

Although identifying leakages in the toy example did not seem overly challeng-
ing, as the code starts getting more and more complicated, it becomes increasingly
difficult and time consuming both to find secret dependent memory and to detect
the leakages using manual code inspection. Particularly difficult to detect are cases
in which the code does not seem to leak, but subtle architectural optimizations at
the hardware level make the leakage appear [IIES15]. In order to cope with this
issues we introduce a tool that automatically finds secret dependent memory thanks
to the properties of dynamic taint analysis and that automates the analysis of cache
leakages through the usage of statistical properties like Mutual Information for num-
ber of different inputs. We proceed to explain the metric and the methodology to
identify secret dependent memory locations and to uncover hidden cache leakages.
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7.3.2.1 Our Approach: MI Based Leakage Detection

Informally we can summarize our technique as follows: We first identify, thanks
to dynamic taint analysis, potentially leaky pieces in the target code that may
compromise the secret. For instance, variables and branch instructions that can
reveal information to the attacker. Then we insert forced cache hierarchy evictions
on those secret related memory addresses prior to the execution of the targeted piece
of code, and accesses after it. These accesses determine a clear cache fingerprint of
the potentially leaky memory addresses. Finally, we correlate the observed cache
trace with the secret to be extracted by the attacker using Mutual Information. We
summarize the proposed approach in four steps:

1. Identify, through a dynamic taint analysis, suspect instructions and variables
that might reveal information related to a secret in the targeted code.

2. Insert forced cache hierarchy evictions just before the vulnerable targeted code,
and accesses after it, for all the variables/instructions susceptible of leaking
secret information.

3. Execute the targeted code under different secret values, and record the cache
traces for every possible vulnerable variable.

4. Correlate, with MI, the observed cache traces to the secret value to determine
leakage existence.

7.3.2.2 The Detection Algorithm

We formalize the detection process as shown in Algorithm 10. The input is the
fragment of code that we want to analyze. First, the first step involves a dynamic
taint analysis to retrieve the potential variables/instructions that are dependent on
the secret the code routine is hiding. For each of them we generate access traces
obtained through the execution of the code for a large number of secret values.
We then compute the mutual information between the secret value used and ac-
cess trace obtained through during an execution of the code. We characterize the
code as to leak information if the average mutual information is above a predefined
baseline threshold. We should note that two critical steps require code inspection:
identification of the suspect variables/instructions and how the secret will be pro-
cessed during MIA. Splitting the key requires understanding of the cryptographic
algorithm. To improve detection rates we split the key in a way that mimics key is
processing in a particular library (more details in Section 7.3.3).

7.3.2.3 Secret Dependent Memory Detection Using Dynamic Taint Anal-
ysis

In this work, we use dynamic taint analysis to effectively identify suspect instructions
and variables. In the past decade, dynamic taint analysis has been widely explored
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Algorithm 10 MI based leakage test

function DoesItLeak (C);
Input : Code C

Output: True: the code leaks;
False: the code does not leak

L = ListSecretTaintedMemory(C);
for each vi in L do

trace = [ ], M = [ ];
for each key = 〈k0, k1, . . . , k`〉 value do

evict(vi);
execute(C, key);
trace.append(time(vi));
M.append(MI(trace, 〈k0, k1, . . . , k`〉);

end
if M .average> threshold then

return True;

end
end
return False;

in many research areas, including malware analysis, vulnerability detection, program
debugging and data leak protection [ZJS+11, MWX+15]. Dynamic taint analysis is
a powerful approach to track the propagation of sensitive program data such as user
inputs.

To detect key dependent memory for crypto libraries, our dynamic taint anal-
ysis retrieves two kinds of information. First, we collect all branch instructions
affected by the taint inputs. Second, we collect all memory object information that
is accessed with a taint value as index.

We illustrate our approach on a toy example shown in Figure 7.6. The encrypt

function takes user input and encryption keys, and returns out including encrypted
data. The encrypt function checks key and decides which variable is used for en-
cryption and invokes compute function to compute output. In the encrypt function,
variable key is marked as taint inputs. Then we execute the program using our taint
analysis engine. The engine can easily identify that Line 8, variable index (Line 13)
and variable A (Line 14) are our desired information. This does not mean that
all three memory addresses will leak information; in fact, the variable index will
not leak information as it is used in both cases. Our taint analysis outputs secret
dependent data that might not leak information, and thus has to be verified with
cache trace analysis.

We employ a symbolic execution engine KLEE [CDE08] as our taint analysis
engine. The target program is compiled into a LLVM intermediate representation,
and then executed by the taint analysis engine to collect suspect instructions and
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1 stat ic int A [ ] = {0x1 , 0x2 , 0x3 , 0x4 } ;
2 stat ic int B = 0x5 ;
3
4 void encrypt ( int ∗ in , int ∗out , int ∗k )
5 {
6 int index
7 for ( int i = 0 ; i < 64 ; ++i ) {
8 i f ( k [ i ]>=32) {
9 index = 0 ;

10 compute ( in , out , B) ;
11 }
12 else {
13 index = k [ i ] % 4 ;
14 compute ( in , out , A[ index ] ) ;
15 }
16 }
17 }
18
19 void main ( )
20 {
21 int key [ 6 4 ] , ∗ in , ∗out ;
22 ge t i nput (&key , in , out ) ;
23 s e t t a i n t (&key , 64 , ”key” ) ;
24
25 encrypt ( in , out , key ) ;
26 }

Figure 7.6: Taint analysis example
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variables.

7.3.2.4 Collecting the Cache Traces

We collect the cache usage for those memory locations that our dyncamic taint
analysis outputs during different executions for varying secret inputs of the tar-
geted code. In order to mimic the attacker ability to insert evictions, and due to
its high resolution, we utilize the common cache flushing and timing approach typ-
ically utilized in LLC attacks. In short, we insert forced flushes (with the clflush

instruction) for those variables that have a dependency with the key before the
targeted code, and timed accesses after it. These timing measurements are later
converted to 0s and 1s, compared to a pre-defined memory access threshold, indi-
cating whether these memory addresses were retrieved from the cache or from the
memory. These cache traces are later correlated using MI statistical properties to
derive dependencies with the secret to hide.

7.3.2.5 Dealing With Noise

Although our methodology works best in an environment with minimal unintended
noise coming from co-resident processes, our measurements will still suffer from the
omni-present microarchitectural/ OS noise. In that sense, the threshold (see Al-
gorithm 10) for which an implementation will be considered to be leaky has to be
established taking into account these unintended noise sources. Aiming at correctly
categorizing the leakage, we perform a set of identical measurements to those carried
out for the cryptographic primitives to an always used variable under microarchitec-
tural noise. Note that the variable is always cached and thus it should not present
any leakage. Our goal is to see how minimum microarchitectural noise affects to the
measurements that will later be taken for the cryptographic primitives. The results
of 100 MI calculations under minimal microarchitectural/OS noise on datasets con-
taining 105 cache access times can be observed in Figure 7.7. Our noise threshold
will follow the famous three-sigma rule of thumb [Puk94], although one can use any
statistical method that fits best to the approach taken. In our case, if the leakage
observed for the cryptographic primitives is above µnoise + 3σ, then the implemen-
tation is considered to leak information. On the other hand, if the leakage tests fall
bellow µnoise + 3σ, then cryptographic algorithm is classified as to not exhibit any
visible leakage. Finally we note the threshold we set via experimentation is rather
conservative. This stems from the fact that cache access timing measurements are
susceptible to have false negatives, while memory accesses timing measurements do
not show false negatives. Therefore, microarchitectural noise tends to affect timing
measurements by increasing the measured time, but rarely reducing it.
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Figure 7.7: 100 MI measurements each composed of 105 time accesses to a cached
variable. Our noise threshold is set to µnoise + 3σ

7.3.2.6 Threat Model

The threat model under consideration for our leakage tests is a key factor to be
taken into account before implementing the analysis. We restrict our threat model
to a software adversary capable of exploiting set collisions in any cache in the cache
hierarchy and use it as a covert channel. Furthermore, we assume that the attacker
is a regular user without root privileges. This means that we do not evaluate the
possible leakages coming from L1 bank contentions or more powerful attackers such
as malicious code with root level privileges. Although we restrict our leakage model
to the most common attack scenario, our methodology can be expanded to cover
more restrictive threat models. For instance, for an adversary capable of finer grain
timing of crypto libraries, e.g. by timing AES rounds by manipulating the com-
pletely fair scheduler [SCNS16], then we would also have to adapt the detection
algorithm to profile the rounds of AES individually instead of the AES entire exe-
cution. In any case, although time consuming, a finer grain analysis over the code
space will improve the detection rate.

7.3.3 Evaluated Crypto Primitives

We restrict our evaluation to three of the most widely used crypto primitives: AES,
RSA and ECC. Note that this methodology can be extended to any cryptographic
software code. However, for brevity we only focus on these three primitives. Note
that each cryptographic primitive has its own leakage behavior. Different implemen-
tations of the same cryptographic primitive may also result in very different leakage
behavior. Our analysis excludes the quantization of the number of measurements
needed by an attacker to exploit the leakage. Indeed, we believe code designers
should aim at designing leakage free code without taking into account the attacker
exploitation effort. Our analysis was performed on both Intel Core i7-6700K Sky-
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Figure 7.8: First and Last round of an AES encryption. In both cases, the entry to
the T-table/S-box is influenced by the key and the plaintext/ciphertext

lake and Intel Core i5-650 Nehalem processors. However, the leakage we found does
not seem to be architecture dependent, except those for which the cache line size
affected the leakage. Since the cache line size is 64 bytes in the three most widely
used processors, i.e., Intel, ARM and AMD, our analysis should detect the same
leakages in other processors.

7.3.3.1 AES

Across the cryptographic libraries evaluated, we found three different AES imple-
mentations. The AES-NI implementation will be excluded from the analysis, since
it is a pure hardware based implementation. We are left with two techniques to
implement AES:

• T-table implementation: In this case, the entire AES algorithm (SubBytes,
ShiftRows, MixColumns, AddRoundKey) implements only XOR and Table
lookup operations. This implementation involves a maximum of 40 accesses
to each table per encryption. In previous Sections (e.g. Section 4.4) we showed
that leakages come from the fact that some of the table entries might not be
used by the algorithm.

• S-box implementation: In this case, the algorithm implements all four
steps of the algorithm (SubBytes, ShiftRows, MixColumns, AddRoundKey)
for every byte processed [DR99]. Thus the implementation is slower (160 S-
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box reads per encryption) and the leakage comes from an unbalanced usage of
the S-box during the encryption.

Some implementations also might use a combination of both approaches, e.g.,
T-tables in the first rounds and S-box in the last. We will evaluate each of these
implementations separately. Our goal is to observe whether all key dependent ac-
cesses (mostly table look ups) are in the cache or not after an AES encryption.
In particular, we calculate the MI with respect to the ciphertext values, which will
present different cache-memory probability distributions if the implementation leaks
information. This is similar to the method outlined in [GBTP08]. We choose this
methodology to simplify our measurement collection and avoid calculations of the
last round key internally. Note that these represent only the implementations we
encountered across the libraries we evaluated, but are not the only implementation
options of AES. For instance, AES routines may utilize S-box/ T-table free imple-
mentations, which compute the inverse in Galois field mode without pre-computed
tables.

Customizing for AES Leakage Detection: For AES, the algorithm presented
in Algorithm 10 is customized to include several encryptions in a MI cache trace
vector. However, the main concept remains the same:

• the plaintext is fixed;

• for different key byte values we record different cache traces of our potentially
leaky variables; and

• the traces and the key bytes are correlated

However, note that we can also fix the key and randomize the plaintext input byte,
since in the first round the T-table entry access is influenced by both the plaintext
and the key bytes (see Figure 7.8). Similarly, we can apply the same concept in the
last round and compute the MI of our cache traces with the last round key bytes or
with the ciphertext bytes, since again the last round T-table access is influenced by
both the ciphertext and last round key bytes (Figure 7.8). This might be convenient
in cases where the last round is handled differently than the first 9 rounds and leaks
more information than the first. In this work, we compute the MI test in both the
first and last rounds, and select the one that leaks more information.

We restrict our analysis to 105 and 107 encryptions. This restriction allows us
to test AES leakages in at most a few hours. Furthermore, most cache side channel
attacks performed against AES have succeeded with fewer number of traces than
those we require in our analysis, as it can be observed in Table 4.1 in Section 4.4.6.
Therefore, we expect a leakage to be already visible with 107 traces. However, the
analysis could be expanded to further encryptions, resulting in a much higher and
time consuming analysis.
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7.3.3.2 RSA

The second cryptographic primitive that we evaluate is RSA, the most widely used
public key algorithm. RSA can be implemented in several ways, including by using
the Chinese Remainder Theorem, with and without ciphertext blinding or exponent
blinding. The only implementation that would completely stop cache and other side
channel attacks from recovering meaningful information is exponent blinding, since
a different exponent is used for every decryption. However, we have not seen any
cryptographic library using exponent blinding. RSA leakages can come from any
key dependent execution or memory usage during the modular exponentiation.

Customizing for RSA Leakage Detection: Across all the libraries evaluated in
this work, we found that there are two main (and distinct) ways in which crypto
libraries implement modular exponentiation in practice:

• Bitwise modular exponentiation: The algorithm processes the key and
executes all the squaring and multiplication operations bit by bit. This means,
in our detection algorithm we can split the key into bits and then correlate
with MIA with traces collected over the entire RSA encryption. Details on the
square and multiply implementations can be found in [Paa15], while details
on montgomery ladder implementations were further studied in [JY03].

• Fixed window algorithm: The algorithm first precomputes the set of val-
ues b0, b1,. . . , b2

w−1 in a table, w being the value of the window. Then, the
algorithm processes the key in chunks of w bits. For each chunk of w bits,
w squares are executed and a multiplication with the appropriate value of
the window in the precomputed table. Our detection algorithm therefore, is
customized to split the key into fixed windows which are then correlated via
MIA with access traces collected over the entire windowed RSA encryption.
Further details on this implementations can be found in [Koc94, Paa15].

• Sliding window algorithm: The algorithm usually starts a window with a
MSB one bit. Similar to fixed windowed exponentiation, the algorithm first
precomputes the set of values b2

w−1
, b2

w−1 − 1,. . . , b2
w−1 in a table, w being

the width of the largest window. Then, the algorithm processes the key in
chunks of w bits only when the 1 is found in the key bit string. Until then,
squares are computed for each of the zeros processed. Once the starting 1
of the window is found, w squares are executed and a multiplication with
the appropriate value of the window in the precomputed table. Note that in
this case we assumed the condition that the window starts with a 1. Other
implementations establish that the window start and finish with a 1.Further
details on this implementations can be found in [Koc94, Paa15].

Our analysis consists of observing leakage at the decryption process for 100 different
2048 bit decryption keys. Note that, unlike AES, RSA leakages are visible with much
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fewer encryptions since the algorithm leaks serially bit by bit. AES on the contrary
needs aggregated measurements to derive the table entries utilized.

7.3.3.3 ECC

The last cryptographic primitive we analyzed is Elliptic Curve Cryptography (ECC).
We utilize Elliptic Curve Diffie Hellman (ECDH) as opposed to Elliptic Curve Dig-
ital Signature Algorithm (ECDSA) because in the latter the secret operation is
performed on an ephemeral key, which limits our analysis capabilities. Note that
this does not imply that the leakage observed for ECDH will not be present in
ECDSA, since both algorithms use the same implementation techniques in all the
libraries analyzed. As before, we utilize 100 different 256-bit private keys.

Customizing for ECC Leakage Detection: The scalar point multiplication
implementations we found are very similar to those observed for modular exponen-
tiation:

• Double and Add with Montgomery ladder: The algorithm processes the
secret scalar bit by bit, executing a double and an add regardless of the bit
value being processed. In the detection algorithm, the key is split into bits and
then correlated with access traces obtained over a scalar point multiplication
computation using MIA. More on bit by bit scalar multiplications can be found
in [Riv11].

• Fixed window algorithm: In this case, the algorithm first precomputes the
set of values P, 2P, ... . . , (2w− 1)P in a table, being w the window size. Then,
the algorithm processes the secret scalar in chunks of w bits. For each chunk,
w doublings are executed and an addition with the appropriate value of the
window in the precomputed table. In the detection algorithm the key is split
into fixed sized windows and then correlated with access traces obtained over
a scalar point multiplication computation using MIA. More details windowed
algorithms can be found in [YS06].

• Sliding window algorithm: In this case, the algorithm will set a condition
for the window. For instance, a condition might be that the window has to
start with a 1. Assuming this condition we have that the algorithm again first
precomputes the set of values (2w−1)P, (2w−1 + 1)P,. . . , (2w − 1)P in a table,
w being the window size. Then, the algorithm processes the secret scalar in
chunks of w bits only when a 1 is found in the key. Until then, doublings are
issued for each of the zeros processed. Once the starting 1 of the window is
found, w doublings are executed plus an addition with the appropriate value
of the window in the precomputed table. In the detection algorithm similar to
the fixed window case the key is split into bits and then correlated with access
traces obtained over a scalar point multiplication computation using MIA.

134



Table 7.1: Cryptographic libraries evaluated

Cryptographic Library Version
OpenSSL 1.0.1-t
WolfSSL 3.9.0
Intel Integrated Performance Primitives (IPP) 9.0.3
Bouncy Castle 1.8.1
LibreSSL 2.4.2
Mozilla Network Security Services (NSS) 4.13.0
Libgcrypt (NSS) 1.7.3
MbedTLS 2.3.0

• wNAF: Aiming at reducing the number of non-zero elements in a key, this
algorithm works with both signed and unsigned digits, making sure there are
at least w−1 zeroes between two non-zero digits, w being the window size. The
algorithm precomputes the set of values (P, 3P,. . . , (2w−1 − 1)P and performs
a double operation for every digit, plus an addition or subtraction whenever
for the non-zero digits. In the detection algorithm the key is split into recoded
into wNAF windows, and then correlated with access traces obtained over a
scalar point multiplication computation using MIA. More details of this kind
of implementation are provided in [ML09].

7.3.4 Cryptographic Libraries Evaluated

Our evaluation is restricted to 8 popular up-to-date (at the time of the leakage
evaluation) cryptographic libraries, represented in Table 7.1. The analysis can be
extended to other cryptographic libraries with mild effort.

7.3.5 Results for AES

In this section we present the results obtained for AES implementations for differ-
ent libraries. For the sake of brevity, we do not include all the results analyzed,
but rather examples of every kind of implementation. The complete results are
summarized in Section 7.3.8.

7.3.5.1 T-table Based AES (WolfSSL, MbedTLS, NSS & Bouncy Castle)

WolfSSL, MbedTLS, NSS and Bouncy Castle utilize T-table based implementations
to perform AES encryptions. We only include examples for WolfSSL and NSS. Note
that the results obtained for the other libraries are similar to the ones obtained for
WolfSSL and NSS shown in Figure 7.9(a) and Figure 7.9(b), respectively. For both
cases, the T-tables were classified as key dependent accesses and leaked information.
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Figure 7.9: AES MI leakage in a) WolfSSL and b) NSS. The leakage is observable
at 105 encryptions in both cases.
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Figure 7.10: AES S-box implementation MI leakage in a) OpenSSL and b)
Libgcrypt. None of them leak information.

Observe that in both cases the leakage is already observable at 105 encryptions, and
that WolfSSL seems to leak more information than NSS. This is because WolfSSL
uses a different T-table for the last round, while NSS re-uses the first 4 T-tables in
the last round. Consequently, the probabilities are more distinguishable in the case
of WolfSSL. In both cases the leakage is above our noise threshold thus leading to
key recovery attacks after a small number of encryptions.

7.3.5.2 S-Box Based AES (OpenSSL, LibreSSL and libgcrypt)

In this case we analyze those implementations that utilize a single 256 entry S-
Box in the AES encryption. As before, we only show the results obtained for two
of them, since the results obtained for the rest are very similar. In this case, the
results for OpenSSL and Libgcrypt are included in Figure 7.10(a) and Figure 7.10(b),
respectively. In both cases, the S-boxes accesses were flagged as key dependent,
but the leakage results were not higher than our noise threshold, and as such are
categorized as non-leaky implementations. In the case of OpenSSL, we observe that
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Figure 7.11: Montgomery ladder RSA MI leakage for WolfSSL (a) Instruction leak-
age is shown in magenta, data leakage shown in blue. Register accesses leak for
some keys due to cache alignment issues. b) Explanation for the varying leakage.
When R0 is not stored at a cache line boundary, its cache line is always used and
we cannot find leakage.

the S-Box entries are prefetched to the cache prior to the encryption. Libgcrypt
utilizes the approach described in [Ham09], i.e., they use vector permute instructions
not only to speed up the AES encryption but further to protect against cache attacks.

7.3.6 Results for RSA
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Figure 7.12: Sliding window RSA leakage for a) WolfSSL and b) MbedTLS. Ma-
genta indicates instruction leakage, blue indicates instruction+data leakage. Wolf-
SSL leaks from both possible sources (instructions reveal zeroes between windows,
data accesses reveal window values) and MbedTLS only leaks from the precomputed
table accesses.

Similar to the measurements taken for AES, we proceed to test the robustness of
the RSA implementations observed across our evaluated libraries. The three main
approaches found were:
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Figure 7.13: Leakage for fixed window RSA in a) OpenSSL and b) IPP. Magenta
indicates instruction leakage, blue indicates instruction+data leakage. OpenSSL
does not leak information (scatter and gather approaches correctly used), while IPP
leaks varying amount of leakage for different decryption keys (although scatter and
gather is used)

7.3.6.1 Montgomery Ladder RSA (WolfSSL)

WolfSSL is the only library that utilizes Montgomery ladder to perform modular
exponentiations. This implementation attempts to prevent the leakages coming
from simple square and multiply approaches. Our results show that, among others,
squaring or multiplying instructions and key storing registers are key dependent.
The results for these are shown in Figure 7.11, where instruction leakage is presented
in magenta and data leakage coming from the registers in blue. We observe 0 MI
for these (or any) instructions involved in the modular exponentiation process leak
information. However, in the case of the registers, we see that the MI is 0 for
most of the keys, except for some for which it increases to almost 1, the maximum
entropy. These measurements cannot be outliers, since even if a noisy measurement
is observed, it should not output an almost maximum MI. Thus, after inspecting
this particular behavior, we realized that the MI was high only when the variable
R0 started at a cache line boundary. If it does not, then there is data allocated
in the same cache line that is used regardless of the key bit (fetching the R0 cache
line always to the cache). This behavior is represented in Figure 7.11(b). Note that
the alignment of the register R0 is controlled by the OS, and usually changes from
execution to execution. In consequence, a potential attacker only needs to keep
iterating until observing a trace for which R0 is aligned with a cache line boundary.
Our methodology was able to find this particular cache alignment dependent leakage,
which would not be observable without empirical cache traces.
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Figure 7.14: Cache structure difference for aligned and misaligned precomputed
table when using scatter and gather approaches. Observe that when misaligned, an
attacker monitoring set 0 can retrieve when c3 is being used.

7.3.6.2 Sliding Window (WolfSSL, MbedTLS, Libgcrypt & Bouncy Cas-
tle)

WolfSSL and MbedTLS utilize sliding window approaches, which require the win-
dow to start with a 1 bit. Sliding window approaches are quite common in RSA
cryptographic implementations. Indeed, they are faster because less multiplications
are used than when processing the key bit by bit. This comes at the cost of storing a
table of several precomputed powers of the ciphertext. For these implementations,
squaring and multiplications and the pre-computed table were flagged as key de-
pendent. Results for these are shown in Figure 7.12(a) and Figure 7.12(b), where
instruction leakage is shown in magenta and the instruction + data leakage is shown
in blue. We found instruction leakage in WolfSSL due to the usage of the multipli-
cation function (different from the square function), revealing the zeroes between
windows. Accesses to the precomputed table also leak information, revealing the
window values being used. In the case of MbedTLS we only found table entry ac-
cesses to be non-protected, which reveal the window values. In both cases (easier
in the case of WolfSSL), an attacker monitoring the cache would be able to retrieve
the key [IGI+16b, Fan15].

7.3.6.3 Fixed Window (OpenSSL and IPP)

OpenSSL and IPP utilize fixed window approaches to perform modular exponen-
tiations, wich execute a constant number of squares and multiplications for every
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key value. In contrast to sliding window approaches, fixed window exponentiations
do not have requirements for processing windows. The results are presented in Fig-
ure 7.13(a) and 7.13(b). In OpenSSL, we observe that neither the key dependent
instructions nor the data leakage is above our noise threshold, i.e., our test cate-
gorizes it as non-leaky implementation. One of the reason, among others, is that
OpenSSL uses a scatter and gather approach [HGLS07], i.e., ciphertext powers are
stored vertically in the cache and not horizontally. Thus, each cache line contains
a little bit of information of each of the ciphertext powers (the multiplicants), as
seen in Figure 7.14(a). This technique ensures that all the ciphertext powers are
loaded whenever one is needed, and thus, an attacker is not able to distinguish
which (among all) was accessed. However, other covert channels might exploit this
approach [YGH16].

We found no instruction leakage in IPP. In contrast, varying data leakage coming
from the pre-computed table was observed for different keys. To better understand
this counter-intuitive behavior, we investigated the code. We realized that IPP uses
a similar approach to OpenSSL, but the scatter-gather precomputed table is not
always starting in a cache line boundary, i.e., there is no alignment check when the
table was initialized. In consequence, the OS chooses where the table starts with
respect to a cache line, i.e., it is not deterministic. Figure 7.14(b), in which the
table starts at a 1/4 of a cache line, helps to illustrate the problem. An attacker
monitoring set 0 obtains cache misses whenever c0, c1 and c2 are utilized, but cache
hits whenever c3 is used. Thus, she can detect when window 3 has been utilized
by the exponentiation algorithm. If the table is created at the middle of a cache
line, she can recover when window 2 is being used (since she already knows when
3 is used). Thus, a divide and conquer approach leads to a full key recovery. In
contrast, OpenSSL performs an alignment check in the precomputed table.

7.3.7 Results for ECC

The last cryptographic primitive that we analyze is ECC. we perform 100 ECDH
private key operations for which we measure leakage. The following are the four
main implementation styles that we encountered for ECC implementation

7.3.7.1 Montgomery Ladder ECC (WolfSSL & Libgcrypt)

Only WolfSSL and Libgcrypt implemented this approach. Results are presented in
Figure 7.15(b). In the case of WolfSSL, we only found data leakage coming from the
key dependent register accesses. Unlike the behavior observed in RSA (in which the
cache lines could make the implementation not to leak), the ECC implementation
presents leakage for every key. Thus, an attacker can recover the key with just a few
traces if he primes the set that these key dependent register occupy in the cache. The
results for Libgcrypt indicate no presence of leakage because it utilizes a temporary
variable on which the computations are performed, and then the contents of it are
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Figure 7.15: Montgomery Ladder ECC leakage for a) WolfSSL and b) Libgcrypt.
Magenta indicates instruction leakage while blue indicates instruction+data leakage.
Instructions do not give us any information in neither case. Register accesses give
us the full key in WolfSSL

placed in the corresponding registers in constant execution flow. This fully prevents
any leakage coming from the state registers, as both registers are read when one
needs to be used.

7.3.7.2 Sliding Window ECC (WolfSSL)

The default implementation in WolfSSL uses a sliding window approach, very similar
to the RSA implementation. The results are shown in Figure 7.16, displaying in
magenta the instruction leakage and the instruction plus data leakage in blue. We
observed that the implementation leaks from both the add instruction, which reveals
the zeroes between windows (for being distinct to the double function), and from
the accesses to the precomputed table, which reveal the window values. Once again,
the ECC implementation of WolfSSL leaks enough information to reveal the secret
key.

7.3.7.3 Fixed Window ECC (MbedTLS, Bouncy Castle, NSS)

As with RSA, fixed window implementations process the key in fixed w sized win-
dows. We present two examples, MbedTLS and Bouncy Castle, for which the results
are shown in Figures 7.17(a) and 7.17(b). Surprisingly, we do not observe any in-
struction or data leakage in the case of MbedTLS, while we did observe for RSA.
One of the differences with respect to the RSA implementation is that MbedTLS
accesses all the precomputed table values in a loop before using one, and they choose
it in constant execution flow. Thus, all table values are loaded into the cache while
only one needs to be used. The fact that their ECC algorithm is well designed
but their RSA algorithm is not is surprising. In the case of Bouncy Castle, we do
not observe leakage from key dependent instructions, but we observe leakage in the
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Figure 7.16: Sliding window ECC leakage in WolfSSL. Magenta indicates instruction
leakage, blue indicates instruction+data leakage. Both sources leak information.
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Figure 7.17: ECC leakage in MbedTLS and Bouncy Castle. Magenta represents
instruction leakage and blue represents instruction+data leakage. MbedTLS does
not leak while Bouncy Castle leaks information from the precomputed table

accesses to the key dependent precomputed table that allows an attacker to recover
the key.

7.3.7.4 wNAF ECC (OpenSSL & LibreSSL)

OpenSSL and LibreSSL utilize the wNAF scalar multiplication method. To reduce
the number of non-zero digits, wNAF works with signed digits, ensuring there are
at least w + 1 zeroes between two non-zero digits. Then the key is processed in a
loop, doubling always and performing additions/subtractions whenever a non-zero
digit is found. Note that, as the number of multiplications needed is reduced, the
algorithm show better performance behavior compared to those analyzed in previous
sections. The results for OpenSSL’s implementation are shown in Figure 7.18, where
the key dependent addition function instruction leakage is shown in blue, addition
instruction + key dependent precomputed table entry leakage is shown in green
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and the additional key dependent sign change instruction leakage effect is shown in
magenta. As we can see, the addition instruction already gives us the zero values
(again, as we can distinguish it from the double function), the leakage from the
precomputed table accesses give us the window value and the sign change function
gives us the sign of the window value. Thus, OpenSSL a big door for ECC key
recovery attacks.
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Figure 7.18: wNAF ECC OpenSSL results. Blue shows addition instruction leakage,
magenta adds precomputed table entry leakage and green adds sign change leakage.
All possible sources leak information

7.3.8 Leakage Summary

This section summarizes the leakages found in the cryptographic libraries analyzed.
The results for all the default (marked in bold) and some non-default implementa-
tions are presented in Table 7.2. The third column indicates whether the implemen-
tation leaks the secret or not. We found that 50% of the default implementations
were susceptible to key recovery attacks (i.e. 12 out of 24). We believe these num-
bers are alarming especially given the popularity cache attacks have gained over
the last few years. These numbers underline the need for a methodology, like the
one proposed in this work, that cryptographic code designers can utilize to detect
leakages before the libraries are released to the public.

7.3.9 Comparison with Related Work

Our work is not the first attempt to detect cache leakage in software binaries. For
instance, Zankl et al. [ZHS16] use the PIN instrumentation tool to detect instruction

1Due to Intellectual Property conflicts, we are not allowed to disclose the approach taken by
the library

2We verified with OpenSSL that while the 1.0.1 branch leaks, the 1.1.0 branch does not leak
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Table 7.2: Leakage summary for the cryptographic libraries. Default implementa-
tions are presented in bold

Cryptographic Primitive Library Outcome

AES

OpenSSL (T-table) Leaks
OpenSSL (S-box) No leak

WolfSSL Leaks
IPP (v1)1 No leak
IPP (v2)1 No leak

LibreSSL (S-box) No leak
NSS Leaks

Libgcrypt No leak
Bouncy Castle Leaks

MbedTLS Leaks

RSA

OpenSSL (Sliding W) Leaks
OpenSSL (Fixed W) No leak

WolfSSL (Montgomery L) Leaks
WolfSSL (Sliding W) Leaks

IPP Leaks
LibreSSL No leak

NSS No leak
Libgcrypt No leak

Bouncy Castle (Sliding W) Leaks
MbedTLS (Sliding W) Leaks

ECC

OpenSSL (WNAF)2 Leaks
WolfSSL (Montgomery L) Leaks
WolfSSL (Sliding W) Leaks

IPP1 No leak
LibreSSL Leaks

NSS No leak
Libgcrypt No leak

Bouncy Castle (Fixed W) Leaks
MbedTLS (Fixed W) No leak

leakage in RSA implementations. Demme et al. [DMWS12] use simulated cache
traces to define a correlation-based side channel vulnerability factor of different
hardware characteristics. Almeida et al. [ABB+16] defined a generic constant time
security definition and verifies constant time implementations. Our work differs
from them in the following:

• We proposed a sophisticated tool that combines taint analysis with automatic
code insertion to track cache leakages of analyzed code while being executed
in a realistic environment. We make use of several modern techniques such as
the flush and reload technique, taint analysis and mutual information to
make the tool efficient and easy to use.
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• The SVF proposed in [DMWS12] uses correlation between an ideal memory-
access trace and an cache-observable trace, every time for the entire analyzed
code. This means that constant execution flow code will still feature high
correlation on leaky architectures, even though the code is not vulnerable.
Hence, SVF is a metric for comparing hardware architectures, but cannot be
used to find leaking code.

• Like [ZHS16], our tool looks for dependencies between secret variables and
observed leakages to find vulnerabilities. We chose mutual information over
correlation, as mutual information is more generic as it does not only look for
linear relations and is as easy to implement. Furthermore our work evaluates
both instruction and data leakage, while [ZHS16] only analyzes instruction
leakage, mainly due to the limitation of the proposed PIN based approach to
find dynamic memory leakage. Extending their approach to cover leakage of
dynamically allocated data is difficult with using PIN, since memory references
vary for each execution.

• Unlike [ZHS16, ABB+16] our methodology takes into account microarchitec-
tural features such as cache line sizes that can affect the code’s resistance
to cache attacks. This is particularly important to expose leakages caused
by OS data cache line missalignments, as those described in Section 7.3.6.3
and 7.3.6.1, which are not observable without empirical cache traces.

• Compared to [ZHS16, ABB+16], our methodology detects exploitable leakage,
as demonstrated by our discovered 12 vulnerabilities that are being fixed. In
contrast, [ABB+16] does not expose new vulnerabilities (it would simply mark
all analyzed libraries as non-constant execution flow, i.e., generates lots of false
positives) while [ZHS16] only exposed one.

7.3.10 Recommendations to Avoid Leakages in Cryptographic
Software

Our work demonstrates that up to date cryptographic libraries are still vulnerable
to cache side channel attacks. The leakages were primarily due to key dependent
memory accesses which are divided into two classes:

1. Secret dependent non-constant execution flow.

2. Secret dependent data memory accesses.

The leakages found in this work can be avoided by designing cryptographic code with
those two considerations in mind. Based on the observations made in this study,
we provide the following recommendations More specifically, we provide the follow-
ing recommendations and observations made in this study for the cryptographic
primitives analyzed:
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• S-Box and T-table based AES: Cryptographic code designers should at
least protect against passive attackers by prefetching the T-table or the S-box
into the cache before the encryption. To be protected against an attacker
with higher resolution, the whole table has to be fetched for each table ac-
cess. Alternatively designers can use vector permutation instruction based
implementations [Ham09].

• S-Box free AES implementation: These implementations are protected
since no key dependent look-up tables are used. AES-NI and implementations
where the Affine Transformation is computed on the fly are examples of safe
implementations.

• Square and Multiply RSA: Designers should avoid this implementation,
since cache protection introduces large overheads.

• Montgomery Ladder RSA: Designers should use temporary registers and
constant execution flow.

• Sliding/Fixed window RSA: Both sliding and fixed window approaches
should protect accesses to the precomputed table, e.g., accessing all table
entries in a loop. Additionally, if sliding window is used, designers should use
the same instruction to perform squaring and multiplying operations.

• Double and Add ECC: Do not use this implementation. Protecting instruc-
tions in ECC is difficult, since double and add perform different operations.

• Montgomery Ladder ECC: Designers should use temporary registers with
constant execution flow.

• Sliding/Fixed Window ECC: In both cases, the table has to be protected
e.g. by accessing all entries in a loop. However, we recommend using fixed win-
dow over sliding window for ECC, since protecting double and add instruction
is difficult and can reveal partial key values.

• WNAF: Although the fastest implementation, we found that its leakage its
quite high. Indeed, prior attacks have shown to recover the key even just from
the instruction leakage (e.g., [BvdPSY14]).

If implementers choose to go all the way and write code with a truly secret-
independent execution flow, a tool like [ABB+16] can be very helpful. However, if
designers depend on microarchitectural properties to hide secret-dependent indexing
(see Section 7.3.6.3), we strongly recommend the methodology proposed in this work
to verify that all assumptions are actually met.
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7.3.11 Outcomes

We introduced a proactive tool to detect leakage in security critical code before
deployment. The tool uses cache traces for secret dependent memory obtained from
execution of the code on the actual microarchitecture and uses the generic Mutual
Information Analysis (MIA) as a metric to determine cache leakage. The detection
technique can be run across all target platforms without having to redesign it, yet
pinpoints parts of code that cause found leakages. We used the detection technique
to perform the first big scale analysis of popular cryptographic libraries on the
three most popular crypto-primitives, namely AES, RSA and ECC. Our results
show that about half of the implementations leak information through the LLC.
Worse still, a tool like ours can also be used by malicious parties to find exploitable
vulnerabilities with ease. This proves the need for cryptographic libraries to resist
cache attacks, which can be aided by using the proposed tool in real-life security
software development.

7.4 MASCAT: Preventing Microarchitectural At-

tacks from Being Executed

In the previous section, we presented a tool to help code designers avoid cache
leakages from being exploited. However, we understand that the acquisition and
execution of tools like the one we proposed might not be immediate, and that even
if they do, cache attacks can still try to recover non-security critical data from benign
applications, e.g. the number of items in a shopping cart [ZJRR14] or key strokes
on a touch screen [GSM15]. Further, malicious attackers can try to utilize different
covert channels than the proposed LLC. For instance, memory bus locking attacks
are capable of acting as covert-channels and may be used for detecting hardware co-
residency or for Quality of Service (QoS) degradation [VZRS15, IIES16]. In addition,
rowhammer attacks pushed the envelope further by introducing cryptographic faults
or by breaking memory isolation techniques [BM16, XZZT16].

Besides, one of the reasons why microarchitectural attacks are so dangerous is the
wide range of situations they apply. We have proved in previous sections how they
can be applied in commercial clouds (e.g. Amazon EC2), but they can also be ap-
plied in very common scenarios as in browsers (as Javascript extensions [OKSK15])
or even on mobile devices, e.g. as smartphone applications [LGS+16].

Due to the severity of the threat, it is important not only to design leakage-free
code but also to roll out protection against microarchitectural attacks before they
find widespread adoption. Solutions proposed so far, can be divided into preven-
tive and reactive (online detection) categories. The implementation of preventive
methodologies, e.g., page coloring or Intel Cache Allocation Technology [LGY+16],
requires changes to current infrastructure (hardware or OS/hypervisor), and usually
incurs noticeable performance overheads, making infrastructure providers unlikely
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to deploy them (in fact we have not seen any of those applied in commercial use).
Similarly, reactive approaches, such as monitoring of performance counter events by
the OS [ZZL16] also incur overheads and thus make widespread adoption unlikely.

In some of the aforementioned cache applicable scenarios, e.g. smartphones or
even play Operating Systems (like Windows) software is now commonly distributed
through official digital app stores, e.g., Microsoft store or Android Google Play.
Users can profit from a certain level of trust for the downloaded applications, as
store operators review app binaries before posting them. However, unlike other
kind of malware, microarchitectural attacks look harmless, as they access resources
in a natural way like other harmless code and are thus harder to detect. A common
solution is to utilize anti-virus software to detect malicious code inside binaries.
Nevertheless, as it will be presented later in this document, these mis-detect the
majority of microarchitectural attacks. In consequence, microarchitectural attacks
can take advantage of the lack of proper detection mechanisms in official app stores
and utilize them as a channel to obtain widespread distribution.

We present MASCAT (microarchitectural side channel attack trapper), a tool
to detect microarchitectural attacks through static analysis of binaries. In short
MASCAT is similar to an antivirus tool to catch microarchitectural attacks embedded
in innocent looking software. MASCAT works by statically analyzing binary elf
files, detecting implicit characteristics commonly exhibited by microarchitectural
attacks. We have identified several characteristics that give strong evidence of the
presence of certain attack classes. The importance factor of each characteristic is
configurable to either detect all or a specific subset of microarchitectural attacks.
Further, our approach is designed to easily add more characteristics to the range
of attacks that MASCAT covers. The execution of our approach is fully automated
and in comparison to other solutions, the outcome is easily understandable as it not
only colors the location where the threat was found in the binary but also adds an
explanation on the characteristics that triggered the alarm.

Due to its similarity to antivirus tools, MASCAT can be adopted by digital
application distributors (like Androids GooglePlay, Microsoft Store or Apple app
store) to ensure the applications being offered do not contain microarchitectural
attacks. In fact, they can use MASCAT to detect the presence of microarchitectural
attack characteristics, and decide whether the application needs to be removed.
More than that, if such an attack is found, the submitter can be banned from the
app store. Further, MASCAT can be easily adopted by antivirus software users who
would otherwise find it technically challenging to adopt any of the other existing
countermeasures.
In summary, this section

• Shows for the first time that app stores can stop microarchitectural attacks
prior to their execution without the collaboration of OS/software designers;

• Introduces a novel static binary analysis approach looking for attributes im-
plicit to microarchitectural attacks in apparently innocent binaries and APKs;
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• Performs a full analysis of 32 attack codes designed by different research groups
and identifies characteristics that are common to the various classes of attacks.

• Implements a configurable threat score based approach, that is not only easily
changeable but also expandable. This approach yields a detection rate of
96.67%.

• Presents a false positive analysis on x86-64 binaries and Android APKs to
estimate an average of 0.75% false positive rates.

7.4.1 Microarchitectural Attacks

Microarchitectural attacks take advantage of shared hardware contention to infer
information from a co-resident victim. The choice of the hardware piece to target
usually becomes a trade-off between feasibility and threat exposure. In the last years
several practical microarchitectural attacks with severe privacy/availability violation
implications have been proposed, most of which we include in our static analysis
approach. Although our thesis has mainly described cache attacks, MASCAT will
consider an broader range of attacks. This section gives a brief description on the
functionality of each of them.

7.4.1.1 Cache Attacks

Cache attacks take advantage of cache collisions occurring in some shared cache in
the cache hierarchy. These collisions are detected by measuring access times, i.e., by
distinguishing accesses between two levels in the same cache hierarchy or between
accesses to the cache hierarchy and accesses to the DRAM. Although several attack
designs have been proposed, two (and their derivations) stand out over the rest and
have already been discussed in our work: the Flush and Reload and the Prime and
Probe attacks. Once again, as the Invalidate and Transfer is consider a derivation
of Flush and Reload for its similar characteristics:

Flush and Reload : The Flush and Reload attack assumes memory sharing be-
tween victim and attacker and is performed in three major steps. In the first step,
the attacker removes a shared memory block from the cache hierarchy (e.g., with the
clflush instruction). In the second step, the attacker lets the victim interact with
the shared memory block by waiting a specified number of cycles. In the last step,
the attacker re-accesses the removed memory block. If the memory block comes
from the cache (i.e. a fast access time observed) she derives that the victim utilized
the memory block during the waiting period. On the contrary, if the memory block
comes from the DRAM (i.e. a slow access observed) the attacker assumes the vic-
tim did not access the memory block during the waiting period. Flush and Reload
attacks have been exploited in Section 4 and in [YF14, GSM15].
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Figure 7.19: Flush and Reload code snippet from [YF14]

Prime and Probe: The Prime and Probe attack does not make any special as-
sumption between victim and attacker (rather than sharing the underlying hard-
ware) and is also performed in three major steps. In the first step, the attacker fills
a portion of the cache (usually a set) with his own data. Then the attacker waits
again hoping to observe activity from the victim. In the third step, he re-accesses
the data he used to fill part of the cache. If all his data comes from the cache (i.e.
low access times) the attacker assumes the victim did not use the portion of the
cache she filled (otherwise one of her data lines would have been evicted). On the
contrary, if she observes that at least one of her data lines (i.e. high access times)
comes from the DRAM, the she assumes the victims utilized that portion of the
cache. Prime and Probe attacks were exploited in Sections 6 and in [Fan15].

Combinations of both techniques have also shown to be successful at executing
attacks. For instance, a Evict and Reload approach would be successful in those
systems in which users do not have access to a clflush like instruction.

7.4.1.2 DRAM Access Attacks

The DRAM is usually divided in channels (physical links between DRAM and mem-
ory controller), Dual Inline Memory Modules (DIMMS, physical memory modules
attached to each channel), ranks (bank and front of DIMMS), banks ( analogous
to cache sets) and rows (analogous to cache lines). If two addresses are physically
adjacent they share the same channel, DIMM, rank and bank. Additionally each
bank contains a row buffer array that holds the most recently accessed row.

In fact DRAM access side channel attacks take advantage of collisions produced
between addresses physically adjacent, i.e., in the same bank, rank, DIMM and
channel. More precisely, retrieving a memory location from the row buffer yields
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loop :
mov (X) , %eax
mov (Y) , %ebx
c l f l u s h (X)
c l f l u s h (Y)
mfence
jmp loop

Figure 7.20: Rowhammer code snippet from [KDK+14a]

faster accesses than retrieving it from the bank. In fact, the row buffer acts like
a direct mapped cache holding the most recently accessed rows. In order to build
a successful attack, an attacker would first have to prime the row buffer. Then
he would have to evict the cache portion that the target memory location occupies,
making sure that the next victim access will hit the DRAM. After the victim access,
the attacker probes the row buffer to check whether the victim accessed memory
locations within the same bank. If he did, he will observe row buffer misses, and
thus an increase in the access time. On the contrary, if the victim did not access
bank congruent locations, the attacker will obtain fast accesses for his primed data.
The attack was proposed and exploited in [PGM+16].

7.4.1.3 Rowhammer Attacks

Rowhammer attacks take advantage of disturbance errors that occur in adjacent
DRAM rows within the same DRAM bank. It has been demonstrated that con-
tinuous accesses to a DRAM row can indeed influence the charge of adjacent row
cells, making them leak at a higher rate. If these cells loose charge faster than
the charge refreshing interval, accesses to a DRAM row induce bit flips in adjacent
rows in the same bank. Note that bit flips can have catastrophic consequences, e.g.,
cryptographic fault injections.

In order to execute a rowhammer attack, an attacker performs three essential
steps. The attacker first opens a row that resides in the same bank as the row
in which bit flips want to be induced. Then the attacker performs accesses to the
DRAM row, trying to influence the charge leak rate of adjacent rows. In the third
step, the attacker removes the accessed DRAM row from the cache hierarchy to
ensure the next subsequent accesses will access the DRAM (e.g. with the clflush
instruction). Note that steps 2 and three are continuously executed in a loop to try
to induce bit flips in the victims DRAM row. Examples of studies in rowhammer
attacks are [KDK+14a, GMM16, BM16].
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7.4.1.4 Memory Bus Locking Covert Channels

Memory Bus Locking attacks take advantage of pipeline flushes that occur when
atomic operations are performed on data that occupies more than one cache line.
However, if the atomic operation is performed on data that fits within a single
cache line the system locks the cache line for the atomic operation to happen. The
pipeline flushing operations cause pipeline flushes that incur in performance over-
heads. Memory bus locking mechanisms have been used as a method to establish
covert channels and derive co-residency in IaaS clouds and as a mechanism to per-
form Quality of Service degradation (QoS) [VZRS15, IIES16].

7.4.2 Implicit Characteristics of Microarchitectural Attacks

In this section we review those characteristics that well known microarchitectural
attacks exhibit in their design. More in particular, we put our focus in three of
the most dangerous microarchitectural threats presented in the last years: Cache/-
DRAM attacks, memory bus locking and rowhammer attacks.

7.4.2.1 Cache Attacks

As already explained in the background section, cache attacks are implemented by
creating cache contentions in any of the caches in the cache hierarchy. This effect,
depending on the attack structure, can be accomplished in several ways. However,
the majority of cache attacks have three main characteristics in common:

• High resolution timers Cache attacks rely on the ability of distinguishing
different access patterns (e.g. L1 accesses from LLC accesses or even memory
accesses). As these accesses differ at most by a few hundred cycles, the at-
tacker needs to have access to a timer accurate enough to carry out an attack.
These timers can be accessed in many different ways (e.g., the common rdtsc

function or an incremental thread).

• Memory Barriers Another common factor of cache attacks is the utilization
of memory barriers to ensure serialization before the targeted reads are exe-
cuted (i.e. making sure any load and stores have finished before the target
access). These memory barriers can sometimes be embedded in timer instruc-
tions (like the popular rdtscp instruction) or can come in the form of different
instructions.

• Cache evictions The last factor that all cache attacks have in common is
the implementation of an eviction routine that removes a target cache line
from the cache hierarchy. This can be implemented with the popular flush
instruction (in the case of shared memory) or with the creation of eviction
sets.
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7.4.2.2 DRAM Access Attacks

Similar to cache attacks, DRAM access attacks base their functionality on the ca-
pacity of colliding with an attacker in the same row buffer of the same bank, rank,
Dual Inline Memory Module (DIMM) and channel. In order to achieve that purpose,
DRAM attacks share common characteristics with cache attacks.

• Cache evictions DRAM access attacks exploit collisions in the DRAM row
buffer, and as such, attackers need the victim to access the DRAM (instead of
caches) for memory fetches. Since every time the victim makes an access the
memory location would be brought to the cache, the attacker continuously
needs to evict memory locations from the cache hierarchy. As with cache
attacks, this can be achieved by utilizing specific instructions (i.e. the flush
instruction) or with carefully designed eviction set mechanisms.

• Fine grain timers In order to retrieve meaningful information, attackers
need to distinguish between DRAM row buffer hits and misses. This implicitly
requires accesses to fine grain timers.

• Memory barriers To prevent out of order execution and obtain precise tim-
ing behavior.

7.4.2.3 Rowhammer Attacks

Rowhammer attacks are perhaps the microarchitectural attack with the most dan-
gerous implications that has been discovered in the last decade, due to the ability of
flipping bits from memory locations belonging to a victim. In contrast to cache or
memory bus locking attacks, rowhammer attacks only have one clearly distinguish-
able characteristic:

• Cache bypassing In fact, rowhammer attacks rely on continuous access to
a DRAM location that shares the DRAM bank with the victims memory
location. Thus, attacker need to continuously bypass the cache, otherwise the
CPU will bring the accessed DRAM portion to the cache for faster access.
There are several methodologies to avoid the cache accesses, some of which
are similar to those utilized in cache attacks (e.g. flush instructions or eviction
sets).

7.4.2.4 Memory Bus Locking Covert Channels

Another popular microarchitectural attack is the ability to stall the memory bus to
establish a covert channel between two co-resident processes. As with cache attacks,
memory bus locking covert channels also have their own characteristics that need
to be accomplished in their design:
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• High resolution timers As with cache attacks, memory bus locking mech-
anisms require a fine grain timer to measures the transmission of a 1 or 0
bit depending on the time to execute atomic operations. Further, fine grain
timers might also be utilized by attackers willing to ensure the effects of the
memory bus lockdown prior to its execution.

• Lock Instructions In addition to the fine grain timer, these attacks also re-
quire of specific atomic instructions capable of locking the memory bus. In
x86-64 systems these instructions include, among others, the ADC, ADD,
AND, BTC, BTR, BTS, CMPXCHG, DEC, FADDL, INC, NEG, NOT, OR,
SBB, SUB, XADD, XOR instructions with the lock prefix. Further, the XCHG
instruction executes atomically when operating on a memory location, regard-
less of the LOCK use.

7.4.3 Our Approach: MASCAT a Static Analysis Tool for
Microarchitectural Attacks

After identifying the main characteristics of the attacks we aim to detect, we pro-
pose a novel technique to detect microarchitectural attacks by statically analyzing
binaries. All countermeasures proposed to detect microarchitectural attacks so far
are based on dynamically detecting specific microarchitectural patterns when the
binary is executed. We observe three clear problems with this approach:

• The knowledge on how to install and use such a dynamic analysis tool might
not be trivial for every end-user. Thus, although such an approach might well
be adoptable by large scale systems (like IaaS clouds), a regular user might
not have the technical capabilities to use it.

• The adoption of some of those mechanisms might not be in control of on-
line app distributors, who might be blamed if an application offered in their
repository succeeds attacking an end device.

• Cache attacks can be embedded into a binary to be executed only after some
specific time/date or event. Thus, the system should be monitoring the mi-
croarchitectural patterns of the binary every time it is executed and not only
once. Thus such tools can create significant overhead in the system.

Our approach solves these issues. Upon the reception of a potentially malicious
binary, the most common approach to validate its sanity before it is executed is to
utilize an antivirus software. Although antivirus tools might work well with certain
kind of malware [SKH11], their success when detecting microarchitectural attacks is
still an open question. Table 7.3 shows the outcome of such an analysis using well
known antivirus software (the best in 2016, as stated in [Lib]). Indeed, we utilized
all our examples of cache, DRAM, rowhammer and memory bus locking attacks.
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Table 7.3: As of 12.28.2016, none of the major antivirus tools detects the majority
of the attacks we analyzed (7 means non-detected and X means detected). The
only exception is Drammer, which is detected by 7 out of 9 antiviruses

Antivirus Output cache/ Output Output bus Output Drammer
software /DRAM attack rowhammer locking [vdVFL+16]
Avast 7 7 7 X
BitDefender 7 7 7 X
Emsisoft 7 7 7 7

ESET-NOD32 7 7 7 X
KasperSky 7 7 7 X
F-secure 7 7 7 X
McAfee 7 7 7 X
Symantec 7 7 7 X
TrendMicro 7 7 7 7

None of the antivirus softwares were able to detect that the binaries were malicious,
except for the drammer APK [vdVFL+16], which was detected by 7 of 9 antivirus
tools.

In order to cope with this problem, we propose MASCAT, a tool that detects
intrinsic characteristics of microarchitectural attack code in potentially malicious
binaries. MASCAT consists of several fully automated scripts that are executed by
the well known IDA Pro static binary disassembler. Thus, MASCAT can be directly
adopted by any person using IDA Pro or can be directly translated to any other
static binary disassembler. Furthermore, it can be offered as an online scanner for
microarchitectural attack code. The following section details on the methodology
that our static analysis approach uses to detect malicious microarchitectural attacks.

7.4.3.1 Attributes Analyzed by MASCAT

This section summarizes the attributes that MASCAT detects within the binary code.
Note that the goal of our design is not to detect all possible microarchitectural attack
designs but rather to give a good framework on the detection of existing attacks.
More attributes can be added to cover more sophisticated and intelligent designs of
microarchitectural attacks. All the attributes below are critical only when used in
a loop, with the exception of the affinity assignment. Thus, we mark them only if
we observe them inside loops.

• Cache flushing instructions: Cache flushing instructions are included in the
ISA to perform cache coherency operations often needed in parallel processing.
These instructions are commonly used for both cache attacks as well as DRAM
access and rowhammer attacks, as they allow the user to evict a memory block
from the cache. Intel utilizes the clflush instruction for this purpose, while
ARM utilizes the DC CIVAC instructions (only available from ARMv8 on).
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Since these attacks require several accesses to succeed, our tool identifies both
instructions when being used inside a loop.

• Non-temporal instructions: Non-temporal instructions permit the access
to a memory location bypassing the cache hierarchy, i.e., making a direct
DRAM access. Obviously, these instructions can be utilized as part of a
rowhammer attack, which requires several accesses to the same DRAM bank.
Examples of these instructions are the monvnti and movntdq for Intel or STNP
for ARM. Again, the tool marks these instructions if they are utilized in a
loop.

• Monotonic timers, thread counters, performance counters, special-
ized fine-grain timer instructions: Fine grain timers are utilized by cache
and DRAM attacks and by bus locking covert channels. Such timers can be
built utilizing specialized instructions like the rdtscp and rdtsc instructions
on Intel or the c9 register on ARM. In contrast to rdtsc, rdtscp further im-
plements memory barrier instructions before reading the clock cycle counter.
Similarly, performance counters can be queried to get the number of elapsed
clock cycles or the number of evictions. If none of these natural counters are
accessible, a timer can be created by using a thread continuously incrementing
a counter. Lastly, and by far the noisiest method, one can utilize access to
monotonic timers offered by the OS. Our tool identifies any of these timers if
they are repeatedly accessed in loops.

• Memory barrier instructions: These instructions are necessary to prevent
out of order execution and to obtain accurate timings from the fine grain
timers. Instructions that execute memory barrier operations in x86-64 are
lfence (to ensure all loads have finished) and mfence and cpuid loads (to
ensure all loads and stores have finished). In ARM, this can be achieved by
the DSB, ISB and DMB instructions.

• Lock instructions: Atomic instructions that can be issued to implement
memory bus locking attacks. Our tool monitors for all the instruction with
the lock prefix plus the XCHG instruction in x86-64 binaries, as well as for
LDREX and STREX instructions in ARM binaries.

• Jump opcodes: L1 instruction cache attacks are commonly designed utilizing
jump opcodes to jump to set concurrent addresses. Our tool again analyzes
whether any of the functions inside a binary assigns jump opcodes in a loop.

• Pointer chasing & Page size jump approaches: One of the approaches
that can be taken to create cache eviction sets (which can be utilized for cache,
DRAM access and rowhammer attacks) is the pointer chasing approach, in
which the address of the next address is stored in contents of the previous
address. Another approach is to introduce jumps of ` bytes within a vector,
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Figure 7.21: Attribute analysis and threat score update implemented by MASCAT.

where ` is the necessary number of bytes to find set-concurrent addresses. Our
tool identifies both approaches when utilized in binary code.

• Selfmap translation & slice mappings Although non-available from user
mode since linux kernel 4.0.0, prior kernels are still vulnerable to having an
attacker looking at the physical address of his memory to facilitate eviction set
creations. Aiming at avoiding these attacks, our tool also identifies accesses to
this particular mapping. Further, in the case of x86-64 binaries, our tool also
finds whether the known slice selection algorithms are utilized in the binary
code to guess the slice location of the memory addresses.

• Affinity assignment Some of the above mentioned attacks (like the L1 cache
attacks or LLC attacks) only succeed when core co-residency or CPU clus-
ter co-residency are achieved. Further, the timers (and especially the thread
counter) exhibit better performance when scheduled on a single core. Thus,
our tool also tries to identify whether there is any affinity assignment inside
the inspected binary code.

7.4.3.2 Measuring the Threat Score

One of the most important challenges of the design of our tool is to determine,
based on the attributes observed, whether a threat exists or not. Although we could
use machine learning algorithms to design such a methodology, we believe there
are several facts that have to be smartly taken into account (e.g. location of the
attributes, location of the nested functions calling the functions where the attributes
were found, etc.) that can make machine learning algorithms to perform poorly. In
contrast, we design MASCAT to be intelligent enough to retrieve those facts, such
that we do not have a necessity for utilizing an automated data analysis tool. In
particular we design our tool to retrieve:

• Location of an attribute and functions interacting with it: Particularly
useful is the knowledge of the location in which these attributes are observed.
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MASCAT is designed to retrieve all locations from which the code can reach
the location where an attribute is observed, i.e., all possible functions that can
reach the location in which the attribute was found.

• Interaction between attributes: As stated before, a key factor of microar-
chitectural attacks is not only the attributes they exhibit, but also the relation
between them. In that sense, MASCAT takes into account where and how at-
tributes interact with each other to decide whether a microarchitectural attack
exists.

In order to achieve the goals described above, we decide to implement a score sys-
tem based on the combination of attributes observed. The main idea is represented
in Figure 7.21. MASCAT analyzes, one by one, and ordered by threat magnitude
(from maximum to minimum) all the characteristics we described in Section 7.4.3.1.
For each of them, if the attribute is found in the binary, MASCAT first checks
whether a related characteristic exists. If they do exist, the threat score is updated
for that binary location. For instance, we know memory barrier instructions are not
a threat if they are not issued together with timers, lock or eviction instructions.
If no related attributes are found, our tool continues to detect whether any other
attributes exist. Indeed, if no attributes exist at all, the threat score has to be
updated (since this is the first attribute found in that location). However, if other
attributes are found, then the thread score is not changed as a higher threat level
has already been assigned. In any of the above cases, the characteristics are marked
to be present (if found) in the appropriate locations. The relations between char-
acteristics are defined according to the description given in Section 7.4.2. In order
to detect the entire range of microarchitectural attacks discussed, we designed the
following score based threat classification:

Maximum Threat Attributes:

Attributes from this category are immediately considered a threat when found by
our algorithm. Specific flushing instructions, non-temporal stores and selfmap trans-
lation attributes fall into this category. The first two because they can directly imply
a rowhammer attack, the latter one because having access to the physical address
space can become a threat for both cache and DRAM access rowhammer attacks.
The location where these attributes (and the functions calling them) are found will
be marked in red.

Medium Threat Attributes:

Attributes from this category are not immediately considered threats but rather
warnings. The locations in which these attributes are found will only be considered
a threat if the rest of the necessary attributes (as described in Section 7.4.2) are
found within the same location of the code. Examples of these attributes are rdtscp
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and lock instructions, as well as pointer chasing, set-concurrent jumps and jump
opcode assignments. A combination of two related medium threat attributes will
immediately be considered a threat, while a combination of two non-related medium
threat attributes will not change the score. For instance, rdtscp and lock instruc-
tions together would be considered a threat, while lock instructions with pointer
chasing functions are not (see Section 7.4.2).

Low Threat Attributes:

Attributes from this category are not immediately considered threats but rather
small warnings. Only if these attributes are observed within the same location of
necessary medium or low threat attributes the code portion is considered a threat.
Examples of these kind of attributes are memory barriers, timers (excluding rdtscp)
and affinity assignments. Only if two low threat attributes are observed with a
medium threat attribute the code location is classified as a threat.

7.4.3.3 Tool Framework

In order to implement the specified design we utilize the popular IDA PRO static
binary analyzer. We chose IDA because it offers a high level programming language
and several built-in functions that facilitate our attribute finding design. Note that
developing our tool with another open source static binary analyzer (e.g. hooper)
should also be feasible with additional work.

In summary, MASCAT works by analyzing elf files without the need for the source
code. The tool detects the attributes described above, coloring those locations where
microarchitectural attack related features are found. Our tool colors threats in red,
warnings in orange and small warnings in magenta. Note that, as MASCAT finds new
attributes in already colored locations, the colors of those locations might change.
Once the analysis is finished, MASCAT outputs a summary of the locations in which
threats and warnings were found (by scanning the color of those locations) and their
root of cause (e.g., rdtsc instruction, lock instructions, etc.). Figure 7.22 shows a
visual example of an analysis made to one of our microarchitectural attacks. The
binary is considered a threat for utilizing both flush and fine grain timer instructions.

While our analysis on x86-64 binaries is performed in a single step, our analysis
on Android APKs needs to be performed in a dual step. First, the attributes that
we look for are scanned within the existing native code in the APK, as with x86-64

binaries. However, we find this non-sufficient, as although the necessary attributes
might be found, they might only interact together in the Dalvik Executable (DEX)
code. For that reason, the DEX file is analyzed in a second step to check its inter-
action with the native code, trying to find whether the attributes interact with each
other. This approach prevents an attacker from creating different microarchitectural
attack functions that interact and are called in the DEX file.
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Figure 7.22: Visual example output of MASCAT, in which a flush and reload attack
is detected

7.4.4 Experiment Setup

Our analysis includes the Mastik tool (which performs all range of L1 and LLC
attacks) designed by Yarom et al. [Yar16], LLC attacks and memory bus locking at-
tacks designed by Inci et al. [IGES16] and Irazoqui et al. [IIES14b, IES15a, IGI+16b],
LLC, cache prefetching, DRAM access and rowhammer attacks designed by Gruss
et al. [GSM15, PGM+16, GMF+16, GMM16], rowhammer attacks by Van der Veen
et al. [vdVFL+16], rowhammer attacks designer Google Project Zero (which were
modified to cover [QS16]), L1 cache attacks from Tampere university [ABG10], all
versions of cache attacks for ARM designed by Lipp et al. [LGS+16] and DRAM ac-
cess attacks designed by Abraham Fernandez, former Intel employee. Some of these
codes were modified to cover several corner cases (e.g., thread created timers, evic-
tion set creations, non-temporal accesses, doble-sided rowhammer, etc.). In total,
we cover a total of 32 different microarchitectural attacks.

Our false positive analysis covers both x86-64 binaries compiled under Linux
OSs and ARM targeted Android APKs. As the x86-64 benign binary set that was
included for our test framework, we chose around 750 binaries from the Ubuntu
Software Center plus the Phoronix test-suite [pho]. The Phoronix test-suite choice
was not random, but was intended to maximize the number of false positives that
our tool can output, as it contains performance benchmarks that might use some
of the attributes that our tool looks for. In the case of android APKs we analyzed
all the applications offered by www.androiddrawer.com, which contain applications
with a huge variety of functionalities, e.g., media streaming or communication. In
total we have analyzed 1268 Android applications.
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Table 7.4: Percentage of attacks correctly flagged by MASCAT (true positives).

Attack Type Number of % of attacks
attacks correctly flagged

Cache attacks 25 100%
Rowhammer 5 80%
Bus Locking 2 100%
Total 32 96.87%

7.5 Results

This section presents the results obtained both from analyzing (a priori) benign and
malicious applications. The idea behind this analysis is to obtain a notion for the
false negative/positive rate that MASCAT presents in real world applications. We
first present an analysis on the detection rate of all the microarchitectural attack
codes that we were able to obtain. Next, in order to obtain a good estimation
on the false positive rate that MASCAT presents with regular-purpose binaries, we
analyze over 700 and a thousand Ubuntu Software Center and Android applications
respectively.

7.5.1 Analysis of Microarchitectural Attacks

We evaluate the full range of microarchitectural attacks that we described in Sec-
tion 7.4.4, i.e., a list of 32 different microarchitectural attacks. Note that these
attacks include both x86-64 binaries and Android APKs, compiled with Android
NDK. The results, are presented in Table 7.4, which expresses the number of attacks
that were correctly flagged detected by MASCAT.

We observe that the overall success rate of MASCAT was of 96.87% for the
32 malicious codes analyzed. In particular, MASCAT was able to correctly iden-
tify all cache attacks and bus locking covert channels, and all but one rowhammer
attack codes. The only code that MASCAT was not able to identify was Dram-
mer [vdVFL+16]. The reason behind it is that the authors utilize special DMA
memory allocation that does not get loaded in the cache, and therefore no flushing,
non-temporal loads nor eviction sets are necessary to apply it. However, as we stated
in Section 7.4.3, Drammer is the only attack that is identified by regular commercial
antivirus tools. Thus, we believe that MASCAT can be used in conjunction with
regular malware antivirus tools to catch the entire attack spectrum.

7.5.2 Results for Benign Binaries

As for the x86-64 benign binaries, the results are presented in Table 7.5, in which
binaries are divided into groups as we downloaded them from the Ubuntu Software
Center. We observed that even though binaries with at least one attribute of those
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Table 7.5: Results for different groups of binaries from Ubuntu Software Center.

Group Number of % of binaries with % of binaries
functionality binaries at least one attribute considered threat

accessories 122 18 0
education 73 19.17 0

developer tools 96 23.9 0
games 116 42.2 0

graphics 84 36.9 1.2
internet 76 25.0 2.63

office 75 12 0
phoronix 100 56 6

total 742 30.05 1.2

we were looking for are rather common (30%), we only had 9 binaries in total that
were categorized as threats. Particularly interesting is the case of including the
Phoronix-test suite in our analysis, as 6 of the 9 binaries categorized as threats were
part of it. This is not that surprising considering that Phoronix test-suite binaries
are usually benchmarking applications. The overall false positive rate was 1.2%, but
could have been lowered without considering the benchmarking applications.

Table 7.7 shows the reason why those 9 binaries flagged as threats. Nqueens,
multichase, mencoder and fs mark benchmarks flagged due to the usage of non-
temporal instructions. Aseprite, Claws mail, Fldigi, Fio and ffmpeg binaries flagged
because of the usage of timers, memory barriers and pointer chasing/set congru-
ent jump instructions within the same location. Lastly fs mark and again ffmpeg
flagged because of the usage of timers and atomic instructions, indicating a potential
memory bus locking covert channel exploitation.

In the case of Android applications, a total of 1268 APKs were analyzed, for
which table 7.6 presents per group threat detection statistics, including the percent-
age of APKs within the group that presented at least one of the attributes we look
for, and the percentage of APKs that were considered a threat. Our overall results
indicate that the number of APKs that might have at least one of the attributes
that we look for is rather high, almost 1/3 of the APKs. However, our results also
indicate that the number of APKs that we found to be flagged as threat is very low,
i.e., only 4 of the total of 1268 APKs were considered threats. These applications are
google allo, azar, eve period tracker and spendless. As before, Table 7.7 shows that
the 4 APKs flagged because of the same reason: a combination of timers, fences and
pointer chasing loop eviction mechanisms that can be an indicator of both cache/-
DRAM attacks. Thus, we observe that the combination of attributes necessary to
develop an attack is rather difficult to observe in benign applications, giving a very
low number of false positives.

In summary covering the 4 microarchitectural attack range only lead us to 97%
true positive rate in benign benchmarking code and an average of 0.75% when we
analyzed a total of around two thousand regular purpose applications.
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Table 7.6: Results for different groups of APKs.

Group Number % of APKs with % of APKs
functionality of APKs at least one attribute considered threat

books 28 42 0
cars 3 0 0

comic 10 30 0
communication 130 32.3 1.53

education 49 16.3 0
entertainment 48 31.25 0

finance 35 22.8 2.86
food 1 100 0

games 130 32.3 0
health 65 24.61 1.53

libraries-demo 2 0 0
life style 30 26.6 0

media video 25 64 0
music audio 39 48.7 0
magazines 52 19.2 0

personalization 59 20.33 0
photography 64 50 0
productivity 144 22.2 0

shopping 24 29.1 0
social 59 32.2 0
sports 16 20 0
tools 175 23.4 0

transport 20 20 0
travel 38 34.2 0

video transport 1 100 0
weather 21 19 0

total 1268 28.3 0.31

Table 7.7: Explanation for benign binaries classified as threats.

binary flagged Reason
Ubuntu Software Center:
aseprite timers, memory barriers and pointer chasing
claws mail timers, memory barriers and pointer chasing
ffmpeg timers, memory barriers pointer chasing and lock
fio timers, memory barriers and pointer chasing
fldigi timers, memory barriers and pointer chasing
fs mark timers, lock and non-temporal load/store
mencoder non-temporal load/store
multichase non-temporal load/store
nqueens non-temporal load/store functions
Android APKs:
google allo timers, memory barriers, pointer chasing
azar timers, memory barriers, pointer chasing
eve period timers, memory barriers, pointer chasing
spendless timers, memory barriers, pointer chasing
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7.5.3 Limitations

As with any other static analysis approach, we need to take into account the possible
obfuscation techniques that an attacker can implement to bypass MASCAT:

• CISC instruction offset obfuscation: An attacker can take advantage of
the variable instruction length in CISC ISAs by inserting arbitrary amount
of junk bytes that would later be unreachable during run time. In this way,
static disassemblers mistakenly interpret a large part of the binary. As our
approach largely depends on a good interpretation of the instructions utilized,
this approach would indeed bypass our current version of MASCAT. However,
multiple de-obfuscation techniques have been proposed to cope with this issue,
both for other disassemblers and for IDA Pro [KRVV04, Rol16]. Thus, our
tool can be utilized in conjunction with one of these approaches to avoid the
successful usage of such obfuscation techniques.

• RISC instruction offset obfuscation: An attacker can also introduce junk
padding bytes on RISC arichtectures, aiming at distracting our static disas-
sembler. However, since the ARM architecture features a fixed length ISA,
our defense mechanism would only have to be run with four different offsets
(0, 1, 2 and 3 byte offset) to be able to cover all possibilities, thereby detecting
the obfuscation.

• Encrypted executable code: Another popular approach to bypass static
analysis is to have a binary that contains, in an encrypted form, the code
containing a microarchitectural attack. When the binary is executed, the
microarchitectural attack code is decrypted and saved into another binary file,
which is subsequently executed. Such an approach would bypass our system,
but fortunately, it is very unlikely that it bypasses other commercial antivirus
software. In order to cope with this issue we suggest utilizing MASCAT together
with other existing antivirus tools: not only to detect this particular malicious
case, but to detect whether the binary contains further non-microarchitectural
malware.

• Alternative mechanisms/covert channels to execute microarchitec-
tural attacks: An attacker, knowing the parameters we are looking for,
can try to bypass our approach by discovering and implementing alternative
methodologies to execute an attack. One of the ways to defend against this
is to hide the approach that MASCAT performs, so that the attacker does not
have a motivation to change his attack patterns. An alternative approach is to
keep adding features to MASCAT as new attack methodologies arise. Indeed
,we encourage the research community to vary their mechanisms so that we
can incorporate them to MASCAT and target a broader set of characteristics.
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7.5.4 Outcomes

We presented the first static code analysis tool, MASCAT capable of scanning for
common microarchitectural attacks. Microarchitectural attacks are particularly
damaging as they are hard to detect since they use standard resources, e.g. memory
accesses, made available to applications at the lowest privilege level. Given the rise
of malicious code in app stores and online repositories it becomes essential to scan
applications for such stealthy attacks. The proposed tool, MASCAT, is ideally suited
to fill this need. MASCAT can be used by app store service providers to perform
large scale fully automated analysis of applications, and prevent a malicious user
from posting a microarchitectural attack in the guise of an innocent looking appli-
cation to an official app store. The initial MASCAT suite includes attack vectors
to cover popular cache/DRAM access attacks, rowhammer and memory bus covert
channels. Nevertheless, our tool is easily extensible to include newer attack vectors
as they arise.
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Chapter 8

Conclusion

In the last years we witnessed the large adoption of hardware co-resident multi-
tenant/application solutions. The confidence that customers place on these solu-
tions is mainly based on the fact that their applications are executed in sandboxed
environments that should, en theory, ensure proper customer isolation. Examples
of these techniques are implemented, among others, in commercial IaaS clouds or
smartphones. However, such mechanisms mostly focus on achieving good software
isolation, while they disregard the potential threats due to concurrent hardware us-
age. Our work responds to such a concern; first by showing that microarchitectural
attacks bypass sandboxing techniques and are able to recover fine grain information,
second, by proposing mechanisms to avoid such exploitation from succeeding.

Our work demonstrates that exploiting hardware leakages in realistic widely
adopted scenarios like cloud computing infrastructures can become a major threat
for hardware co-resident users. In particular, we utilized the shared last level cache
to infer information, which offers both high resolution and applicability at least
across cores. We introduced three main attack designs, Flush and Reload, Invali-
date and Transfer and Prime and Probe, each of which has different characteristics
and can be applied in different scenarios. The first two are low noise attacks that
can be implemented in systems where memory deduplication mechanisms are imple-
mented, e.g., default configurations of VMware or the KVM hypervisor. The latter
does not require special assumptions to succeed, and thus, is applicable in all major
commercial clouds, as demonstrated by our successful attack in Amazon EC2. Fur-
ther, the proposed attack demonstrated to recover fine grain information like AES
and RSA keys and TLS session messages across VMs. Any of these key retrievals
happening in non-academic environments would have severe security implications
for the victim, as the attacker would be able to, e.g., read encrypted communications
or impersonate him.

Despite the severity of the threat that microarchitectural attacks posed in ex-
isting commercial software and the popularity they acquired in the last years in
academic environments, we have not observed existing countermeasures being de-
ployed in the systems that we tried to exploit. Examples of potential countermea-
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sures include page coloring, performance hardware event monitorization or cache
line locking. However, all of them introduce big performance overheads that seems
that commercial system designers are not willing to pay. In response to this con-
cern, we propose two countermeasures that can help cache attacks from being widely
adopted while not suffer from continuous performance costs. The first verifies the
correctness of cryptographic software to ensure no cache leakage is present. We
believe that one of the safest mechanisms to avoid sensitive information from being
stolen is ensure the proper design of the security solution. For that purpose, our tool
finds key dependent data that is verified for leakage. Although we found alarming
numbers (50% of the implementations leaked information), we worked closely with
the designers to address them. The second countermeasure we propose is MASCAT,
a tool that detects microarchitectural attacks embedded in binaries to prevent their
distribution in official app repositories, emulating a ”microarchitectural attack an-
tivirus”’. Currently online application distributors lack of proper mechanisms to
verify that the binaries being offered are microarchitectural attack free. MASCAT is
the perfect tool to be adopted for such a purpose.

In short, our work demonstrated that microarchitectural attacks have to be con-
sidered one of many threats that systems relying on sandboxing techniques have to
take into account. In this sense, our final goal was to help building stronger security
solutions that ensure the privacy of those using them, specially, as the number of
scenarios in which hardware co-resident applications are concurrently executed in-
creases. We believe that the adoption of the proposed (and other) countermeasures
is highly necessary to defeat the threat, and thus, encourage security solution de-
signers to make it happen. Their goal and ours is indeed the same: guarantee the
protection of our data.

Outcomes of Our Work

The microarchitectural attacks that we exploited are based on both specific char-
acteristics of the systems in which they were carried out and exploitation of vul-
nerabilities on widely used open source cryptographic libraries. Thus, our work re-
quired several vulnerability analysis skills. We believe it is important to verify and
strengthen the design security solutions against all possible attack vectors, including
the microarchitectural attacks we exploited. We understand we have a responsibil-
ity to work with the designers of those products that we exploited. Therefore, we
notified all of them about our findings, including but not limited to Amazon EC2,
VMware, Intel, AMD and several cryptographic library designers. To help them
fix the vulnerabilities, we offered our help to reproduce the attack and proposed
possible solutions. In fact, many of our results resulted in a security update of the
exploited product.

In Section 4, we developed our attack mainly utilizing VMware as our default
hypervisor. Thus, we decided to alert them about the threat that such memory
sharing mechanisms could add to virtualized environments. We also aid them re-
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producing the attack described in Section 4.4 in their systems. After successfully
reproducing our results, VMware decided to disable Transparent Page Sharing by
default (CVE-2014-3566), and leave it as a add-on that end-users can activate un-
derstanding the risk that it poses. A better description explaining the reasons to
change the feature settings can be found in [VMwa].

In Section 4.5 we further exploited vulnerabilities in the design of the TLS code,
mainly involving secret dependent non-constant execution flow. All the leakage cases
observed in the section were notified accordingly to the appropriate cryptographic
library designers. However, only PolarSSL (now MbedTLS) decided to notify us
about the changes made to avoid the leakage, and asked us to verify the correctness
of the new implementation, although without issuing a CVE number.

In Section 7.3 we performed an analysis of the correctness of the design of AES,
RSA and ECC cryptographic algorithms in 8 main cryptographic libraries. We
found that 50% of them leaked information that could lead to secret key retrieval.
We disclosed all our findings to the appropriate cryptographic library designers.
Although some of the vulnerabilities are still being studied and fixed, our work
already resulted in many of these vulnerabilities fixes. WolfSSL updated the AES,
RSA and ECC design in response to our leakage analysis, as described in CVE
numbers 2016-7438, 2016-7439 and 2016-7440 respectively. Bouncy Castle updated
the AES design to avoid the leakage exploited in this work, as described in CVE
number 2016-10003323. Lastly, the RSA implementation of Intel’s closed source
cryptographic library was updated after we found that a vulnerability could lead to
the full secret key extraction, and received the CVE-2016-8100 number.
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