
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2017-01-18

Tutoring Students with Adaptive Strategies
Hao Wan
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Wan, H. (2017). Tutoring Students with Adaptive Strategies. Retrieved from https://digitalcommons.wpi.edu/etd-dissertations/36

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/36?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

TUTORING STUDENTS WITH ADAPTIVE STRATEGIES

By

Hao Wan

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Computer Science

December 2016

APPROVED:

Professor Joseph E. Beck

Worcester Polytechnic Institute

Advisor

Professor Neil T. Heffernan

Worcester Polytechnic Institute

Committee Member

Professor Craig Wills

Worcester Polytechnic Institute

Head of Department

Professor Ivon Arroyo

Worcester Polytechnic Institute

Committee Member

Dr. Bror Saxberg

Kaplan, Inc.

Committee Member

i

Abstract

Adaptive learning is a crucial part in intelligent tutoring systems. It provides students with

appropriate tutoring interventions, based on students’ characteristics, status, and other related

features, in order to optimize their learning outcomes. It is required to determine students’

knowledge level or learning progress, based on which it then uses proper techniques to choose the

optimal interventions. In this dissertation work, I focus on these aspects related to the process in

adaptive learning: student modeling, k-armed bandits, and contextual bandits.

Student modeling. The main objective of student modeling is to develop cognitive models of

students, including modeling content skills and knowledge about learning. Students usually learn

skills in sequence since preliminary skills need to be learned prior to the complex skills. However,

few research works have utilized this relation in the student models. In this work, I determined the

impact of how student performance on prerequisite skills influences ability to learn post-requisite

skills. I found a strong gradient with respect to knowledge of prerequisites: students in the bottom

20% of prerequisite knowledge exhibited wheel spinning behavior 50% of the time, while those in

the top 20% of pre-required knowledge exhibited wheel spinning behavior only 10% of the time. I

also incorporated the prerequisite performance into the wheel spinning model, and it turned out that

it was a significant reliable predictor in the model.

K-armed bandits. A k-armed bandit algorithm focuses on selecting an action, in order to maximize

total rewards over all time steps. Due to the lack of diverse interventions and small difference of

intervention effectiveness in educational experiments, do k-armed bandit algorithms improve

students’ learning outcomes? In this dissertation work, I proposed a simple selection strategy based

on statistical t-tests, call Strawman, and compared it with several k-armed bandit algorithms. The

results showed that the Strawman’s performance is competitive and it exhibited different

exploration/exploitation patterns.

Contextual bandits. In contextual bandit problem, additional side information, also called context,

can be used to determine which action to select. We first separated a data set into several groups

with a student feature, and then apply a bandit algorithm in each group. The results demonstrated

that being combined with the feature could improve rewards of bandit algorithms. Consequently,

ii

another question arose, how to combine multiple context with bandits? A simple solution is to apply

a k-armed bandit algorithm in every possible combination of context values. However, its

complexity increases exponentially with respect to the number of available features. In this work,

I proposed a decision tree algorithm, which is capable of detecting aptitude treatment effect for

students. By applying a bandit algorithm in each leaf node of the tree, I evaluate effect of the

algorithm in two different types of data sets, simulated data and real experimental data. In the

simulated data, the decision tree algorithm finely captured the pre-defined structure, and thus the

contextual bandits performed reliably better than the bandit without any context. In the 22

ASSISTments experiments, the effect of context differed, the contextual bandits performed

significantly better than the bandits without context in some experiments, while the two strategies

are closed to each other in other experiments.

iii

Acknowledgements

I am most grateful to my dissertation advisor, Professor Joseph Beck, for his guidance and support

throughout of my dissertation research and Ph.D. studying period. He always refined my work with

great patience, and his talent in tacking complex research questions always gave me an insight

when I got stuck. Even sometime his jump mind was hard to follow, it always ignited “sparks” in

my research work.

I sincerely thank Professor Carolina Ruiz, who served as my first academic advisor and reader of

my qualifier examination. She guided me to the right way to do research and helped me to build

fundamental skills of being a Ph.D.

I would like to thank Professor Neil Heffernan and Professor Ivon Arroyo for providing me

valuable feedbacks in my research, and their problems in the comprehensive examination helped

me to obtain broader and deeper knowledge about the research area in my dissertation.

I also want to thank Dr. Bror Saxberg, whose experience in industry brought me fresh air out of the

“ivory tower”.

I would like to thank everyone in EDMRG team, for the insightful discussions and helpful

suggestions. In addition, my thanks go to Chiying Wang, Lei Cao, Kaiyu Zhao, Chuan Lei, and Di

Yang for their help in my Ph.D. study.

I want to thank my parents, Qingyun Wan and Dongxiang Wu, for their patience and confidence

on me in the past years. They were doing their best to support me studying in USA. I also thank

my wife, Meixia Xiong. She quit the job in China and stayed abroad with me to support my

studying. I very much appreciate her sacrifice. Finally, my thanks to my two little daughters, Casey

Wan and Mingshu Wan, you brought brightness and happiness in my Ph.D. life.

iv

Table of Contents

CHAPTER 1 .. 1

1.1. Intelligent Tutoring Systems ... 1

1.2. ASSISTments .. 1

1.3. Over-tutoring and Under-tutoring ... 2

1.4. Adaptive Learning .. 4

1.5. Research Questions ... 5

CHAPTER 2 .. 8

2.1. Introduction ... 8

2.2. Adapting to What? .. 9

2.3. What Can be Adapted? ... 10

2.4. What Method Shall We Use? .. 11

2.5. Example: YouTube Video Selection ... 13

CHAPTER 3 .. 22

3.1. Introduction ... 22

3.2. Prerequisite Effect in Predicting Initial Knowledge ... 27

3.3. Prerequisite Effect in Wheel Spinning Models ... 32

CHAPTER 4 .. 45

4.1. Introduction ... 45

4.2. Related Works ... 46

v

4.3. K-armed Bandit Algorithms.. 47

4.4. Methodology ... 48

4.5. Experiments .. 50

4.6. Discussion ... 56

4.7. Conclusion .. 57

CHAPTER 5 .. 58

5.1. Introduction ... 58

5.2. Context Makes Better Personalization .. 59

5.3. Feature Evaluation .. 61

5.4. Modeling Multiple Features .. 68

5.5. Bandits in Decision Tree ... 80

CHAPTER 6 .. 86

Reference ... 87

vi

List of Figures

Figure 1. Questions in the ASSISTments .. 3

Figure 2. An example of a problem with two versions in the ASSISTments. 11

Figure 3. Wheel spinning ratio comparison ... 18

Figure 4. Illustration of Bayesian Knowledge Tracing. ... 22

Figure 5. BKT transition and emission diagram. ... 23

Figure 6. An example of prerequisite structure. ... 26

Figure 7. An example to explain how to generate the five bins of students for a post skill. . 28

Figure 8. The difference of RMSE per skill ... 31

Figure 9. Distribution of number of started prerequisite skills .. 38

Figure 10. Wheel spinning ratio with respect to two factors ... 39

Figure 11. The changes of coefficient .. 41

Figure 12. A structure to explain indirect prerequisite-post relationship. 44

Figure 13. Process of simulating selection strategy on an offline data set. 50

Figure 14. The mean rewards in the first data set .. 52

Figure 15. The mean rewards in the second data set .. 52

Figure 16. The exploration rate of the four algorithms in the first data set. 53

Figure 17. The exploration rate of the four algorithms in the second data set. 54

Figure 18. Mean rewards of running the UCB1 with different parameters 55

Figure 19. Mean rewards of running the Strawman with different parameters 55

vii

Figure 20. Different effectiveness of interventions in two groups of students 60

Figure 21. A linear regression model to illustrate learning rate. .. 63

Figure 22. The cross effect of prerequisite performance in two data sets. 65

Figure 23. The p-value of prerequisite performance in two data sets. 65

Figure 24. The positive and reliable cross effect of prior %completion in experiments 66

Figure 25. The positive and reliable cross effect of prior %correct in experiments. 66

Figure 26. The positive and reliable cross effect of prior mastery speed in experiments. 67

Figure 27. The positive and reliable cross effect of %correctness in 3 previous days in

experiments. ... 67

Figure 28. The positive and reliable cross effect of learning rate in 3 previous days in

experiments. ... 67

Figure 29. Example of useless decision trees... 70

Figure 30. The cross effect and smoothed cross effect of feature A 73

Figure 31. The process of picking the best cut point for a given feature 74

Figure 32. The process of dividing a data set into two sub sets ... 74

Figure 33. The split process in decision tree induction .. 75

Figure 34. Results of our decision tree algorithm in the simulated data 77

Figure 35. Results of running our decision tree algorithm in real experimental data 77

Figure 36. A decision tree constructed on an ASSISTments experimental data. 79

Figure 37. Apply a bandit algorithm for each leaf node of decision tree. 80

Figure 38. Average reward of running two algorithms on the simualted data 83

viii

Figure 39. Smoothed exploration rate of bandits with decision tree on simulated data......... 83

Figure 40. Proportion of different features used in decision trees over 10 iterations 84

Figure 41. The average reward over 22 experiments at each time step. 85

Figure 42. The average reward in the experiment 263057 at each time step. 85

ix

List of Tables

Table 1. Distribution of student-skill pairs in each bin .. 17

Table 2. Measurement of three different wheel-spinning models .. 20

Table 3. The overall percent of correctness on the first response of five bins 30

Table 4. Result of three approaches. .. 30

Table 5. A small sample of students’ practices .. 35

Table 6. Calculated skills’ hardness and students’ performance ... 35

Table 7. Measurements of different models. .. 40

Table 8. P-values of paired t-test ... 40

Table 9. Example of students’ performances in different conditions. 45

Table 10. Students’ posttest scores in the first data set .. 51

Table 11. Students’ posttest scores in the second data set ... 51

Table 12. Students’ posttest scores in the original data set .. 60

Table 13. Students’ posttest scores in the disaggregated data set .. 60

Table 14. The proportion of data having prerequisite performance in each experiment. 64

Table 15. A sample data set with students’ target values and conditions 72

Table 16. Parameters of the distributions used to generate simulated data set. 76

Table 17. The mean target values of the generated data. ... 77

1

CHAPTER 1

Introduction

1.1. Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITSs) are computer programs that are designed to incorporate

artificial intelligence techniques to tutor students with customized instructions and feedbacks

(Nwana, 1990). The goal of all ITSs is to facilitate students’ learning with AI techniques. To

support a student’s learning, an ITS should know how he/she learns, what to learn, and when to

learn. According to (Polson & Richardson, 2013), ITSs consists of four parts:

 The expert module defines the representation of knowledge of the experts in the specific

domain, and the rules how to convey the knowledge to students. The expert knowledge

serves as the source of knowledge to be provided to students, and also provides an

evaluation standard to assess students’ learning progress (Nwana, 1990).

 The student model module informs systems the dynamic stage of students’ knowledge and

skill. It provides functions that predict, evaluate, and diagnose the students’ knowledge and

tutorial actions (Self, 1988).

 The curriculum instruction module establishes a set of teaching instructions for students. It

supplies a student appropriate with pedagogic interactions according to the student’s

knowledge from student model module and the previously set tutorial goal structure, e.g.

hint, tutorial videos and web pages.

 The user interface module is a component that enables learners to interact with the systems.

1.2. ASSISTments

The ASSISTments is a web-based ITS which assists and assesses students’ learning automatically

(Feng, Heffernan, & Koedinger, 2009). It has been widely used in studying Math, English, and

other subjects by thousands of Middle and High school students. It allows teachers or curriculum

designers to form structure of a problem set with one or more following components:

 Pre-test: this part usually contains a series of problems that are used to warm up students

or detect students’ initial knowledge, in order to provide appropriate tutorial strategies to

students.

 Skill builder: questions in this set are based on a specific skill, and students are required to

answer 3 (as default) questions correct in a row to complete the part.

2

 Complete-all: this problem set, unlike skill builder, requires students to answer all

questions.

 Post-test: students are tested with this set of questions after they have completed the skill

builder or complete-all part, in order to check how well they have learned in this assignment.

The ASSISTments also provides different forms of assistances, and enables teachers to decide

which is conveyed to students in the problems:

 Scaffolding questions: this assistance breaks the original question down into several

fundamental steps. As shown in Figure 1, there are two questions; the bottom one is a

scaffolding question of the top one. After get all scaffolding questions correctly step by

step, the student is then back to answer the original question.

 Hints: a hint provides some clues and suggestions to help students to answer the questions.

For example, in the bottom question of Figure 1, by clicking the “show hint” button, the

system presents a multiplication table to students.

 Videos and web pages: this assistance provides a link to a tutorial video or web page. It

does not focus on helping students to solve a particular question, but tutors students with

domain knowledge of related skills.

Furthermore, the ASSISTments system supports researchers to do controlled experiments. That is

students are assigned into problem sets with different conditions, e.g. different hints or feedbacks,

according to particular rules, and their activities and outcomes are compared to obtain the tutorial

efficacy of conditions in the learning progress. For example, Ostrow and Heffernan assess the

effects of two different feedback forms, bland texts and videos, in a randomized controlled trial.

Their results suggest that students prefer video feedback to bland text, and the video feedback

improves students’ learning outcomes (Ostrow & Heffernan, 2014).

1.3. Over-tutoring and Under-tutoring

Example 1.

A student is learning a skill through a skill builder in ASSISTments, and he is required to answer

3 questions correctly in a row to master the skill. However, he is lack of prepared knowledge that

is necessary, and the questions along with the tutorial feedbacks are hard for him to understand.

Consequently, the student cannot master the skill no matter how many opportunities he has tried.

3

Figure 1. Questions in the ASSISTments. The assistance of the top question is to provide

scaffolding questions, while the assistance of the bottom question is to provide hints.

Example 2.

Another student is also learning a skill through a skill builder in ASSISTments. This student has

some prior knowledge, and he masters the skill in a few trials. But in the later test, he performs

very poorly. It seems that the tutor strategy does not work on him effectively.

When teachers are designing didactic schemas for a class of students, they are targeting the

“average” student, because it is impossible for them to develop different didactic sequences and

meanwhile investigate which sequence is optimal for each student in a very limit budget of time

4

(Lopes, Clement, Roy, & Oudeyer, 2013). This can lead to that some students are trained with

inappropriate strategies, and thus their outcomes are not as expected. For example, in Example 1,

the student is over-tutored with the questions that are far beyond the level of the student’s

knowledge; while in Example 2; the student is under-tutored with too easy questions. In both of

those two examples, the pedagogical processes are failed in tutoring the students.

A variation of didactic schema is to require students to learn a skill by practicing related problems,

based on the assumption that students will achieve mastery with enough practices, in order to reach

the teaching goal of treating different students with different strategies, such that top students will

practice less, while bottom students will practice more. However, Beck and Gong (Beck & Gong,

2013) found that practicing more indeed helps some students to achieve mastery, but the proportion

of students having mastered skills does not change remarkably after 10 practices in the

ASSISTments system and after 15 practices in the Cognitive Algebra system. And eventually there

are approximately 25% of students in the Cognitive Algebra system and 35% of students in the

ASSISTments system still at un-mastered state.

1.4. Adaptive Learning

Which tutorial sequences are proper for students? Several works were conducted recently to locate

the activities where the learner is making high learning progress (Gottlieb, Oudeyer, Lopes, &

Baranes, 2013; Lopes & Oudeyer, 2012; Oudeyer, Kaplan, & Hafner, 2007), based on the concept

of Intrinsically motivating activities (Berlyne, 1960; Csikszentmihalyi & Csikszentmihalyi, 1992).

They argue that students will learn at high efficient level when they are assigned with activities that

are neither too easy nor too hard, but just above students’ current ability, this type of activities is

described as zone of proximal development (Lee, 2005). Based on this character, Lopes et al.

propose an adaptive method, called “Right Activity at the Right Time” (RiARiT), in order to

provide students with optimal learning items at each time (Lopes, Clement, Roy, & Oudeyer, 2013).

Therefore, to assign appropriate sequences to students, we should follow two steps: student

knowledge detection and tutorial adaption.

Student knowledge detection step is to estimate the values of variables that characterize students,

like performance, knowledge level, score or mark. Detecting and predicting student knowledge is

one of the most popular tasks in educational data mining, and numerous of different models and

methods have been applied. Like Bayesian networks in (Baker, Corbett, & Aleven, 2008; Jonsson,

Johns et al., 2005), logistic regression in (Beck & Gong, 2013; Feng & Beck, 2009; Wan & Beck,

5

2015), and sequential pattern mining in (Andrejko, Barla, Bieliková, & Tvarozek, 2007; Antunes,

2008).

The tutorial adaption step is to provide students with the tutorial sequences with respect to their

current knowledge level detected in the previous step. The choices can be made in the sequences

include: problems hardness, types of feedback, links to visit, and so on. Different data mining

techniques have been used for this task. For example, Markellou et al. use association rule mining

to produce recommendations for learning materials in e-learning system(Markellou, Mousourouli,

Spiros, & Tsakalidis, 2005); neural networks and decision trees are used to provide personalized

learning support in (Guo & Zhang, 2009); sequential pattern mining has been developed to

customize learning content based on learning style and web usage habits (Ting, Ouyang, & Zhu,

2008).

In the work (Lopes, Clement, Roy, & Oudeyer, 2013), Lopes et al. use k-armed bandit algorithm

to generate the next problem according to student’s competences which is updated after every

response. However, they estimate the competences without any features that describe students, but

only problem hardness, which overlooks the fact that students are different in gender, prior

knowledge, or other factors, and thus they need different tutorial style. For example, students with

less preparation might need more explanatory learning content in the learning process.

In order to incorporate the students’ characters into k-armed bandits, we could use contextual k-

armed bandit, where the action is selected based on the contextual information about the actions or

users. Want et al. investigate the effect of an observed variable that provides some information on

the rewards to be obtained in the k-armed bandits problems (Wang, Kulkarni, & Poor, 2005). They

find that the additional side information could significantly improve sequential decisions in bandit

problems. Li et al. also utilize contextual bandits to recommend personalized news articles for each

user in the work (Li, Chu, Langford, & Schapire, 2010). Nevertheless, rare work has been done to

apply contextual k-armed bandits in ITSs.

1.5. Research Questions

This dissertation work focused on using contextual k-armed bandits to personalize tutorial strategy

for each student in an ITS, in order to avoid over-tutoring or under-tutoring. Most of my work was

and will be conducted on the ASSISTments. The main research questions investigated in this work

include:

1. What context should be incorporated into the bandits?

6

There are different ways to describe students, are all these useful in contextual bandits? It is

possible that the feature that enhances student models is useless in contextual bandits, because

they are two different issues. For example, prior knowledge is an important feature in student

model, but students with different level of prior knowledge might have the same treatment,

therefore, it is not a good feature in contextual bandits. Thus, we need to carefully select the

features for the bandits. More precisely, we should find a mechanism to evaluate the effect of

a feature in personalizing tutoring strategy, before integrating it with bandits. In this work, I

also need to consider if a context is too specific to make it meaningless. Moreover, I want to

explore whether a bandit algorithm with the same context is effective in different data sets.

Another issue to be considered is the number of features. Too many features could cause

overfitting in the bandit problems. Moreover, it requires large records to cover every

possibility, and thus to make reasonable decisions. To overcome the drawbacks, we should

limit the number of features incorporated into the bandits. Or we would make some

assumptions, like in Naïve Bayes where features are conditional independent.

2. How shall we organize the context?

After answering the first research question, it is very clear whether an individual feature is

useful in the given data set. Another consequent problem to tackle is how to integrate multiple

features with bandits. A simple solution is to separate the data into groups according to every

possible combination of features values, and apply a k-armed bandit algorithm on each group.

However, its complexity increases exponentially with respect to the number of available

features.

Another solution is to use traditional classification model to combine features with bandits, like

LinUCB (Li, Chu, Langford, & Schapire, 2010) used linear regression combine features with

UCB. In this work, I plan to use decision tree to handle multiple features. A challenge here is

that the traditional decision tree algorithm is used in classification, and a trained decision tree

has the least classification error in a given data. While in this problem, we focus on constructing

decision trees that can discriminate students who have different treatments. Another challenge

is how to update decision tree structure in the real sequential choice experiment, since more

and more students’ records are obtained, and we need to maximize the overall students’ reward.

3. How much benefit?

7

Since it is time consuming to apply the contextual bandits on the real experiments to do the

controlled comparison, in this work, we just do the simulation on the data from randomized

control experiments in the ASSISTments. By compared with the original data set, we want to

examine if using contextual bandits improves students’ outcomes, and in what circumstances

the improvements are made.

In the next chapter, I will introduce the background of adaptive systems. And then I will talk about

student models that are used to detect students’ status. In Chapter 4, I will discuss why we need k-

armed bandits in ASSISTments, and answer the three research questions in details in the Chapter

5. Finally, I will point out possible directions of future works in Chapter 6.

8

CHAPTER 2

Background: Adaptive Systems

2.1. Introduction

Adaptive systems are referred to those systems attempt to be different for different students or

groups of students, by considering information accumulated in the individual or group student

models. From the perspective in the work (Brusilovsky, 1998), two key components in an adaptive

system are user model and adaption based on the model. In this chapter, I will discuss the problem

of “adaption”, and user model in the next chapter.

Adaptive techniques can be useful to better support tutoring in ITSs for two reasons. First, the

knowledge of different students can vary greatly. The same feedback can be unclear for a novice

and at the same time trivial for an advanced learner. Second, the knowledge of a particular student

can be different at different time. If a student is provided with problems at the same level, he would

learn quite fast at the beginning, but then would find it uninteresting (Lopes, Clement, Roy, &

Oudeyer, 2013) and show some off-task behaviors (Baker, 2007).

Researchers have been working on applying adaptive techniques in tutoring system for decades.

Adaptive Hypermedia systems build a model of the goals, preferences and knowledge of the

individual user and use this throughout the interaction for adaption to the needs of that user

(Brusilovsky, 1998). In the context of educational hypermedia, the topics suggested to the learner

for subsequent study would be determined by the learner’s existing knowledge (Brusilovsky, 1998).

AH aim at overcoming these problems by providing adaptive navigation support and adaptive

navigation support and adaptive content (Kaplan, Fenwick, & Chen, 1993). The strategy termed as

aptitude-treatment interaction (ATI) proposes different types of instructions or even different media

types for different students (Burgos, Tattersall, & Koper, 2006). Gaze-reactive is used to evaluate

student’s aptitude in order to promote engagement and learning by providing dialog move that

direct the student to reorient his/her attention (D'Mello, Olney, Williams, & Hays, 2012). Muldner

et al. investigated the interactions between the interventions in the tutoring systems and students’

affection (Muldner, Wixon et al., 2015).

Moreover, reusability of the adaptive learning models has been highly valued in many works.

Koper pointed out that a designed learning notation “must make it possible to identify, isolate,

decontextualize and exchange useful parts of a learning design so as to stimulate their reuse in other

9

contexts” (Koper, 2005). Aroyo et al. proposed a method that combined standard adaptive

hypermedia model with semantic interoperability, which enabled the model to be executable with

different approaches.

To analyze the adaption in ITSs, we should consider following questions: adapting to what? What

can be adapted? What methods we should use? I will briefly explore answers to each question, with

respect to the ASSISTments system, and talk about several existing methods in the following parts.

Finally, I will give an example of selecting YouTube videos based on which skills students are

learning.

2.2. Adapting to What?

This question can be expressed in another form: what aspects of students shall we consider in the

adaptive tutoring systems? Which features can be used to differentiate students? As categorized in

the work (Brusilovsky, 1998), five common features are considered in the adaptive hypermedia

systems: user’s goals, knowledge, background, hyperspace experience, and preferences. In this

dissertation work, we just analyze and use three features that are most related to the ASSISTments

system: student’s goals, knowledge, and background.

2.2.1. Goals

Student’s goals or tasks are a feature related with the context of a student’s work in ITSs, rather

than with the student as an individual. In some systems, it is reasonable to distinguish the level of

goals, where low level goals can change quite often and high level goals are more stable. For

example, in the tutoring systems, learning goal is always a high-level goal, while the problem-

solving goal is a low-level goal which changes from one problem to another.

According to which aspects we focus on, student’s goals in ITSs could be different, such as mastery

speed in (Botelho, Wan, & Heffernan, 2015), performance in posttest or retention test (Li, 2013;

Xiong, Wang, & Beck, 2015), and engagement in (Baker, 2007; D'Mello, Olney, Williams, & Hays,

2012). In this dissertation work, I mainly consider student’s performance in the posttest and mastery

speed in the learning process as student’s goals, and analyze how to adapt tutorial strategies with

respect to different goals.

2.2.2. Knowledge

Student’s knowledge appears to be the most important feature of the student in the adaptive tutoring

systems. There are various student models have been developed in past works, which recognize

changes of student’s knowledge and update the model accordingly. The student’s knowledge is

10

represented as different concept in the models, like wheel spinning status, skill mastery level, or

affections. Those concepts can be binary value (known and unknown), a qualitative value (good,

average, and poor), or a quantitative measure (a probability that a student will be wheel spinning

on a skill).

The student’s knowledge can also be expressed as a function of a set of student-related features.

For example, the probability of wheel spinning is a logistic regression function of several features,

9 features in (Beck & Gong, 2013) and 10 features in (Wan & Beck, 2015). A challenge of measure

student’s knowledge in an experiment is to determine which student features are related and proper

to be used. Fewer feature might not be enough to capture the changes of student’s knowledge, such

as adding prerequisite factor or general learning ability into the wheel spinning model improves the

model accuracy (Wan & Beck, 2015); on the other hand, more features requires much more student

records, otherwise, overfitting would occur. In the Chapter 5 I will discuss which kinds of features

will be considered to express student’s knowledge in details.

2.2.3. Background

Student’s background is referred to the information related to the student’s previous experience

outside the subject of the tutoring systems. A common used student’s background in the

ASSISTments is the class feature. Since the students in the same class are taught by the same

teacher and normally get the same instructions, they might share some patterns in the learning

process. Therefore, to predict a student’s outcome, his peers’ performance could give a clue.

Wang and Beck incorporated the parameters at the class level into the Bayesian knowledge tracing

models (Wang & Beck, 2013), by compared with the parameters at student level and skill level,

they found a plausible result that the prior knowledge parameter (𝑘0) derived from class

information makes better models, this means that the students in the same class have similar initial

knowledge. Xiong et al. investigated the class effect in the retention model (Xiong, Beck, & Li,

2013), their result, adding the class features slightly improves the retention model, suggested that

there seemed to be an overall class effect that differs from average performance on other skills.

2.3. What Can be Adapted?

An important issue should be considered in any adaptive systems is: what features of the systems

can differ for different students? What different tutorial sequences can the systems offer? In this

dissertation, we mainly focus on assigning students into which conditional problem sets, and the

problem sets differ in feedback type or problem content.

11

Figure 2. An example of a problem with two versions in the ASSISTments.

Problem content is the way to describe the problem, including problem structure (fill in blank or

multiple choices or other type), the format of numbers in the problem (such as fraction, percent, or

decimal), and other information like videos, figures, or links. A student’s performance may vary

greatly in different versions of problem. For example, considering the two types of problem in the

Figure 2, it is better to provide the student with low spatial sensitivity with the problem with grids,

e.g. the left problem.

As introduced in Chapter 1, there are three main types of feedbacks in ASSISTments: scaffolding

problems, hints, and extra tutorial material. Feedbacks provide extra explanation about the problem

or the corresponding skills, which should be adapted according to student’s current knowledge,

goals, and other characteristics of the student. For example, a qualified student can be provided

with deeper information while a novice needs additional explanation. Ostrow and Heffernan

propose a study of a randomized controlled trial that is used to validate the effect of feedback type

and the effect of student choice within ASSISTments (Ostrow & Heffernan, 2014). Their result

shows that students have significantly higher correctness if provided choices of feedback, and they

prefer to choose video feedback.

2.4. What Method Shall We Use?

Like the student modeling, some other data mining techniques also aim at describing students’

special characteristics or grouping students to customize needs for students, such as clustering,

association rule mining, and sequential pattern mining in tutoring systems (Koutri, Avouris, &

Daskalaki, 2005).

Clustering is an unsupervised classification technique that groups a set of unlabeled objects into

clusters where the objects in the same cluster are more similar to each other than to those in the

12

other clusters. As stated in (Koutri, Avouris, & Daskalaki, 2005), clustering is useful in three

different aspects of adaptions in web-based tutoring systems: personal recommendation, dynamic

adjustment, and static page adjustment. For example, Mobasher et al. propose an effective method,

which focuses on capturing commonalities in the usage models with the ultimate goal to perform

adaptive navigation support (Mobasher, Cooley, & Srivastava, 1999). Tang et al. construct a

clustering method based on the sequence and the content of pages users visited, in order to promote

group-based collaborative learning and to provide incremental learner diagnosis (Tang, Lau et al.,

2000).

Association rule mining refers to the identification of all associations among certain data items,

always expressed as if-then statement, so that the appearance of one subset of items in a transaction

implies the appearance of other corresponding items (Agrawal, Imieliński, & Swami, 1993). A

number of techniques discover association rules from different types of student data. Romero et al.

discover association rules from students’ usage information by using Grammar-Based Genetic

Programming with multi-objective optimization techniques, in order to provide feedbacks to

courseware authors (Romero, Ventura, & De Bra, 2004). Freyberger et al. mine association rules

from a dataset derived from student-tutor interaction logs, in order to guide the search of transfer

models (which map the questions in an ITS and the necessary skills to answer a question correctly)

(Freyberger, Heffernan, & Ruiz, 2004). Lu applies a fuzzy association rule mining technique in a

web-based learning recommendation system, in order to supply suitable materials to best meet each

student need (Lu, 2004).

Sequential pattern mining, can be considered as a more restricted from of association rule mining,

is to find patterns in an ordered list of items, such as presence of a set of items in a particular order

or with time stamp (Agrawal & Srikant, 1995). The extraction of sequential patterns has been used

in tutoring systems for discovering and comparison with expected behavioral patterns specified by

the instructor that describe an ideal learning sequence (Pahl & Donnellan, 2002). Other research

works use sequential pattern mining to: discover group interaction sequences indicative of problem,

in order to assist student teams in early recognition of problems (Kay, Maisonneuve, Yacef, &

Zaïane, 2006); extract frequent learning patterns from sequential learning sequences to group

learners with good learning performance into several meaning clusters (Wang, Weng, Su, & Tseng,

2004).

Another method which is gaining popularity in educational data mining and intelligent tutoring

system is k-armed bandit algorithm. It is first used in a problem of slot machines in which a gambler

13

at a set of slot machines has to decide which machines to play and how to play at each time. When

applying the algorithm in tutoring systems, the different tutorial strategies can be regarded as slot

machines or actions one of which is chosen for a particular student at each time. Based on student’s

current competence, Lopes et al. use a k-armed bandit algorithm to select the components with

appropriate difficulty level to generate a problem for the student, and then the student’s response

to that problem is used to update his/her competence level (Lopes, Clement, Roy, & Oudeyer,

2013). Students tutored by this strategy is proved to have better performance than by random

generated problems in their work. Without any information about the problem, Clement et al.

propose another algorithm, ZPDES, based on the zone of proximal development (Lee, 2005) and

the empirical estimation of learning progress (Oudeyer & Kaplan, 2007), to choose exercise at each

step (Clement, Oudeyer, Roy, & Lopes, 2014).

In this dissertation work, I will use k-armed bandit algorithm in the ASSISTments experiments and

analyze the effect of different student-based features and skill-based features in the bandit. The

bandit algorithm and the features will be discussed in the Chapter 4.

2.5. Example: YouTube Video Selection

2.5.1. Background
After many trials on learning a skill in a tutoring system, a student cannot still reach mastery, then

this student is probably wheel spinning on the skill (Beck & Gong, 2013). Beck and Gong construct

a wheel spinning model to predict whether a student would be wheel spinning on a skill at early

learning stage, and they find a strong connection between “gaming” the system and wheel spinning

(Beck & Gong, 2013). Wan and Beck discover that a student with lower performance on the

prerequisite skills is more likely to be wheel spinning on the post skill (Wan & Beck, 2015).

However, they do not provide any approach to prevent the wheel spinning cases. A plausible

solution to this issue is to provide a student with proper tutorial feedbacks to “cure” the student

when detecting he is likely to be wheel spinning.

Feedback plays an important role in tutoring systems that informs students about how they perform

currently or provides students with helpful hints or tutorial content when they are struggling in

learning. It does not only enhance students’ learning results (Fossati, 2008; Narciss, 2013; Roscoe,

Snow, & McNamara, 2013), but also influences students’ affection in the learning process (Heylen,

Vissers, op den Akker, & Nijholt, 2004; Robison, McQuiggan, & Lester, 2009).

According to the review of feedback in Kulhavy and Stock’s work (Kulhavy & Stock, 1989),

effective feedback contains two types of information: verification tells whether an answer is correct

14

or not; elaboration provides more illustrative information about the question or related topics to

guide student to the correct answer. In the ASSISTments skill builder, of which experiment data

we use in this work, students can know immediately if get a correct answer. Thus, to prevent wheel

spinning, verification feedback is not enough, but feedback with more explanatory content is

necessary for those students who are likely to wheel spinning, to increase their knowledge and

understanding in the skills.

There are different types of elaboration feedback, like scaffolding questions, hints, and worked

examples. Since hypermedia is being more and more popular, many researchers are working on

applying tutorial hypermedia in the tutoring systems. Kelly et al. study a controlled experiment in

which a student is provided with either a YouTube or a motivational message to persist with the

learning session (Kelly, Heffernan, D’Mello, Namais, & Strain, 2013). Their results show that

students with video feedback have higher homework completion rate. By compared with the blank

text, Ostrow and Heffernan find that video feedback provides better understanding and thus

enhances students’ learning outcomes (Ostrow & Heffernan, 2014).

In ASSISTments, students are provided with several links to tutorial YouTube videos when they

are struggling in learning. To analyze the tutorial effect of these YouTube videos, we will use the

wheel-spinning models defined in (Wan & Beck, 2015). In this work, we mainly focus on the

following questions:

1. Are the videos really helpful in curing wheel spinning? To answer this question, we will

compare the students’ performance before and after viewing the videos according to the wheel-

spinning model.

2. What factors make a video with better tutorial effect? We will use text mining and web mining

techniques to generate several features from the videos and related contents, and then

investigate the relation between these features and the students’ outcomes.

2.5.2. Method
The predicted value from wheel-spinning model indicates how likely a student would be wheel

spinning on a skill. If a video really helps a student who had trouble in learning a skill before

watching the video, then a shift downward of the probability would start at the time viewing the

video. Therefore, we will use the trend of the probability estimated at each opportunity in the wheel-

spinning model (Wan & Beck, 2015) to measure the tutorial effect of YouTube videos. To

investigate what factors make a “better” video, the first step is to abstract video features. The

following sections explain how we generate features from YouTube videos.

15

Resources

In this work, we generate three kinds of features: YouTube basic features, students related features,

and text-based features. The first kind of features are collected directly from YouTube and the

second kind of features are generated from students’ activities. These features are:

 View count: how many times a video is viewed by YouTube users.

 Rate count: the number of YouTube video ratings.

 Rate score: the final rate score of the video.

 Video duration: how long the video is.

 Stay time: how long a student stay in the video web page.

 Viewed proportion: this is calculated as (stay time)/ (video duration).

 Student’s opinion: after viewing the video, the ASSISTments provide a survey question

asking students if the video is useful.

The last one is more complicate. We will use text mining techniques to abstract features from four

YouTube web contents: video title, video description, closed captions, and YouTube user

comments. Finding educationally effective webpages is a somewhat different problem. Presumably

learners are interested in finding pages that are engaging, contain good explanations, and will leave

the learner understanding the subject he set out to learn. These webpages should contain the

information related to the topics students are learning. Since the data in this work is collected from

students’ responses in learning the mathematic skills in the ASSISTments, we will capture the

relationship between YouTube webpage contents and a set of mathematic terms as features. These

mathematic terms are taken from ("Mathematics terms,")("Mathematics terms,")("Mathematics

terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics

terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics

terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics

terms,") which are separated into six subjects and cover almost all the topics in our data.

Pre-processing

1. Stemming

An English term can have different inflected words; the stemming is to identify those words

derived from the same terms. For example, “so” and “sooo” probably have no difference. In this

work, we will use the snowball stemmer from the NLTK package (Bird, Klein, & Loper, 2009)

to transform the words in the video-related contents into their root terms. This pre-processing step

would reduce mismatches in the process of counting occurrences of mathematic words and skill

names in the video contents.

16

2. Grouping mathematic terms

This step is to assign each skill in our data set into one of the six subjects in the mathematic terms,

the terms in the assigned subject is called related terms and others unrelated terms for the skill.

The objective of this step is to provide a way to validate if the video is talking about the skill a

student is acquiring or general mathematic topics.

Generated text-based features

Since for each video visiting record, the visited video relates to a skill a student is learning. To

abstract the text-based features as the relationship between skills and videos, we will match the

skill-based text with the video-based text. The skill-based text contains skill name, skill-related

mathematic words, and skill-unrelated mathematic words. The video-based text contains video title,

video description, video closed-captions, and YouTube users’ comments. The matches are used to

generate the following four types of features:

1. #Type: it is number of different mathematic terms or skill names occur in the content. If

more than half of words in a math term or a skill name exist in the content, then we say this

math term or skill name is in the content. For example, the math term “fraction division”

is in the string “one fraction is 1/3”. Obviously, the value of this feature for the skill name

is 1 or 0, because each skill has only one name.

2. #Token: it is number of words in the video content match the skill-based text. In the

previous example, the value of this feature in this example is 1, because there is only one

word in the string, “fraction”, appears in the math term.

3. Proportion of skill-based text: this is calculated as, #type/ (total terms in the skill-based

text). If there are five skill-related math terms and only one is matched in the video

description, then the value of this feature is 0.2.

4. Proportion of covered video-based text: this is calculated as, #token/ (total words in the

video-based text). In the previous example, match the math term “fraction division” to the

string “one fraction is 1/3”. There are four words in the string, and only one word appears

in the math term, so the value of this feature is 0.25.

Since there are three different types of skill-based text, four types of video-based text, and four

types of matching features, there are 36 (3*3*4) features generated in this step.

2.5.3. Results

Data

17

The dataset used in this work in collected from students’ activities in learning math skills in

ASSISTments in 2013. This dataset if from students selecting to see a YouTube video with 2-5

webpages human-selected for each skill in ASSISTments. Since the web-help functionality was

available in ASSISTments for a short term, our data contains only 628 YouTube video related

student-skill pairs.

Before analyzing the video tutoring effect, we should notice that our sample of viewed webpages

is not random sampling of students. In our intuition, the tutorial YouTube videos are viewed by

those students who have trouble in and are also interested in learning the domain knowledge, rather

than getting through the assignments. To validate this, we compare students’ performance on four

different student sets:

 Set 1: all students in ASSISTments in 2013.

 Set 2: those students who are wheel spinning on at least one skill.

 Set 3: those students who have view a YouTube video at least once.

 Set 4: those student-skill pairs such that the student visit a YouTube video in the process

of studying the skill.

The result, shown in Table 1, contains three different student-skill pairs, wheel spinning pair,

master pair, and indeterminate pair. In a wheel spinning student-skill pair, the student is wheel

spinning on the skill. Respectively, the student masters the skill in the master pair. In an

indeterminate student-skill pair, the student does not master the skill and he drops out before the

10th opportunity. This case is considered as wheel spinning in the work (Wan & Beck, 2015).

As shown in the table, the wheel spinning rate in the set 4 is much higher than in the other student

sets, which supports our guessing – the videos are viewed by those students who are struggling.

Another interesting finding that indeterminate rates in the set 3 and set 4, in which students once

visit a video in while learning a skill, are lower than in the other two sets. This indicates that these

students are more willing to learn the knowledge, so they are less likely to drop out learning skills.

Table 1. Distribution of student-skill pairs in each bin. An indeterminate student-skill pair mean the
student does not master the skill and he drops out before the 10th opportunity. For example, in the
first row, 7.5% of student-skill pairs in the whole dataset is wheel spinning case, 69.4% is mastery
case, and 23.1% is indeterminate case.

 Wheel spinning pairs Master pairs Indeterminate pairs

Set 1 7.5% 69.4% 23.1%

Set 2 10.4% 67.5% 22.1%

Set 3 11.0% 75.4% 13.6%

Set 4 30.1% 56.4% 13.5%

18

Experiment 1: tutorial efficacy of videos

As aforementioned, when a student views a video, he is probably struggling, and he is also willing

to learn the knowledge. To check if the video helps the student, we need to estimate the student’s

outcome if he did not view the video. A proper way to do this is to select other students who have

the similar situation before visiting the video but choose to keep practicing without visiting the

videos, and then use their outcomes as the estimated value.

In this step, we first use the wheel spinning model to make prediction for each student’s practice,

and then for each student who visit a video when learning a skill, we select such students whose

predicted wheel-spinning value is similar with the former student’s value at the opportunity he

views the video (difference is no more than 0.01). For example, a student S1 visits a video at the

3rd opportunity, and his predicted wheel-spinning value at that time is 0.3. Then the selected

students’ predicted values at the 3rd opportunity are in the range 0.29-0.31, and they do not visit the

video in the learning process. Finally, we use the wheel spinning ratio among those selected

students as the estimated outcome for the former student if he did not visit the video.

After filtering the similar students, we then compute the wheel spinning ratio for the video-helped

students and the similar students. Here we consider the indeterminate cases as wheel spinning like

the work in (Wan & Beck, 2015). The wheel spinning ratio for the video-helped students is 0.436,

and 0.428 for the similar students, which shows no much difference between them. One possible

explanation for this is some students ask for help too late. If a student realizes he need extra video

for help after many trails in learning a skill, then he has very high probability to wheel spin on the

skill since we regard the students who do not achieve mastery level in 10 opportunities as wheel

spinning.

Figure 3. Wheel spinning ratio comparison between the video-helped students and similar students.

0.00%

20.00%

40.00%

60.00%

80.00%

1 2 3 4 5 6 7 8 9 10

w
h

ee
l s

p
in

n
n

ig
 r

at
io

visit at ith opportunity

wheel spinning ratio comparison
video-helped

19

From the result in Figure 3, the explanation seems to be reasonable, because the wheel spinning

ratio for the video-helped students is higher than the similar students if the video is viewed at 6-9th

opportunity. Therefore, this arises another question: does visiting video at the early stage help

students in learning? When visiting videos at the 1st opportunity, students will get about 10% less

wheel spinning ratio. However, visiting the tutorial videos at the other times does not implies

remarkable improvements on wheel spinning. Thus, there might be other factors influencing videos

tutoring efficacy.

Experiment 2: feature selection

To answer the second question: what factors make a video with better tutorial effect? Here we still

use the predicted value from the wheel spinning model. If a student has learned knowledge from a

video, then his predicted wheel spinning value should decrease after viewing. Therefore, we define

a target class, a video is helpful for a student or not, as if the predicted wheel spinning value at the

last opportunity is less than at the opportunity the student views the video. For example, if a student

views a video at 3rd opportunity, and the predicted value from wheel spinning model at that time is

0.4, and 0.2 at the last opportunity, then we say this video is helpful for the student. To simplify

our problem, we just disregard the cases students visit videos at the last opportunity in this step.

After constructing target class for each student-skill pair, we then apply feature selection algorithms

over the 43 features as introduced in the Method Section. In this work, we use three feature selection

algorithms from WEKA (Hall, Frank et al., 2009): CFS + Best First, CFS + Rank Search, and

Ranker + Information Gain. The first two algorithms will output a set of features that is most related

with target class, while the last one will rank the features according to the evaluation function, and

we will keep the top 10 features in the final feature set for this algorithm. With 10-fold cross

validation, there are 3 features that appear in the selected feature sets of all three algorithms:

 The proportion of skill-unrelated math terms that are covered in the video comments (the

3rd type of feature with matching skill-unrelated math terms with video comments).

 The number of words in the video comments that match the skill-related math terms (the

2nd type of feature with matching skill-related math terms with video comments).

 The number of words in the video description that match the skill-related math terms (the

2nd type of feature with matching skill-unrelated math terms with video description).

Experiment 3: effect in the wheel-spinning model

In the previous experiment, we evaluate the relation between video based features and the wheel

spinning improvement. In this experiment, we will add the related features into the wheel spinning

20

model, to validate the effect of such features in the wheel-spinning model. If a feature plays an

important role in evaluating impact the videos are having on student learning, then it improves the

wheel-spinning model.

Since less than 1% of student-skill pairs in the whole data are related with YouTube video visiting,

the effect of web based features would be tiny over the whole data set and the models measurement

would be almost the same. Thus, we construct models over only the YouTube web visiting related

student-skill pairs. We construct three different wheel-spinning models: model without video-based

features, model with all video-based features (43 features generated by our method), and model

with the selected features (as state in the previous experiment).

The results in Table 2 indicate that adding video-based features improves wheel-spinning model

accuracy, which means these features are related with wheel spinning, and we could use them to

evaluate video tutoring effect. However, from the observation that measurements of the 2nd and the

3rd model are very close, we can get that the most impact attributed to tutoring efficacy is how many

proportions of math terms and how frequently they are covered in the video-based contents.

Moreover, the coefficients of the three features in the model are all negative, which means a better

video should cover more math terms in the video-related texts.

Table 2. Measurement of three different wheel-spinning models.

 Cox and Snell R2

Model without video-based features 0.354

Model with all video-based features 0.364

Model with the three-selected video-based features 0.362

2.5.4. Discussion
Being increasing popular, obtaining tutoring contents from internet through electronic devices such

as personal computers, smartphones, and other portable devices, is an important way for students

to learn knowledge, and these web-based tutoring contents can be necessary complementary of

school tutoring. The work in (He, Swenson, & Lents, 2012) proves that incorporation of video

tutorials as a supplement to learning in undergraduate analytical chemistry course increases

students’ comprehension in difficult concepts. ASSISTments also provides videos as extra tutoring

material in the learning process. In this work, we analyze how students use the videos and the effect

of videos in tutoring students.

21

Our data indicates that students view the videos when they are struggling and they hope to learn

the knowledge through the videos. However, about only half of students eventually master the

skills. A further analysis suggests that students should ask for the videos to help them at the early

stage. However, students might not realize they are unable to master the skills very fast. Thus, it

requires our tutoring systems to detect their wheel-spinning status as sooner as possible and then to

provide appropriate extra assistances.

With using feature selection algorithms, the selected video-based features are all related with the

math terms. By incorporating them into wheel-spinning models, model results imply that a video

with stronger connection with the math term is more likely to heal students’ wheel spinning. In

summary, our work provides a guideline of how to evaluate the video effect in tutoring students,

and can be useful in selecting the proper videos for students in the future.

However, there are still challenges in future works. The first is lack of data. Current webpage

visiting data contains 5638 students’ records, this is very rare comparing to the whole data with

over 2 million records, and 628 student-skill pairs compare to 340 thousand pairs. Thus, models

constructed on this sparse data is unstable in generalization, and is not reliable in evaluating

webpage efficacy in the future. Moreover, the webpage visiting data contains 52 different skills

and 58 skill-webpage pairs, which means most of skills are associated with only one YouTube

page, and it prevents us from analyzing if different webpages have different tutoring efficacies for

a specific skill.

The second is how to construct a model to directly evaluate videos tutoring effect. From the results,

we can see that some web based features have high coefficients, which means they are important

in WS models. However, there is no clear evidence that these features are also useful in evaluating

webpage tutoring efficacy. In additional, if we want to compare different webpages’ effect, other

questions arise: If we use the web based features to construct webpage evaluation model, what does

the model look like? Is the feature with higher coefficient in WS model more important in the

evaluation model?

22

CHAPTER 3

Student Modeling

3.1. Introduction

Student models generally represent inferences about users, relevant characteristics of users, and

users’ records, particularly past interactions with system. The main objective of student modeling

is to develop cognitive models of human users or students, including a modeling of content skills,

knowledge about learning, and affective characteristics. Various algorithms have been applied to

consider different students’ characteristics (like learning styles, affections, and motivations) and

other factors, to automatically model their knowledge. In this section, I will discuss several student

models and the factors used in the models.

3.1.1. Bayesian Knowledge Tracing
Bayesian Knowledge Tracing (BKT) is an approach that relies on Bayesian theory. BKT uses two

states to in the model: learned state and unlearned state, which indicates whether a student has

mastered a skill or not. And the student’s performance is made based on which state he is currently

in, as illustrated in Figure 4. BKT assumes that students can transit from unlearned state to learned

state through practicing, but cannot in the opposite way. Their transition and emission diagram is

shown in Figure 5. The four parameters in Figure 5 are:

 𝑃 (𝐿0): Probability of the skill is already mastered before the first practice of the skill;

 𝑃 (𝑇): Probability of the skill will be learned at each practice;

 𝑃 (𝑔): Probability of the student will guess correctly if the skill is not mastered;

 𝑃 (𝑠): Probability of the student will fail even if the skill is mastered, called slip.

Figure 4. Illustration of Bayesian Knowledge Tracing.

23

Figure 5. BKT transition and emission diagram.

The key factor in this model is the student’s performance – right or wrong in each question. The

main benefit of the BKT model is to monitor changes in student knowledge state during practices.

However, since the BKY model is always trained on a set of students’ practices on one skill, it

lacks the ability to handle multi-skills simultaneously and the ability to regulate students’

personalities. Therefore, some variants of BKT use different factors, such as student-specific

parameters (Lee & Brunskill, 2012; Pardos & Heffernan, 2010; Yudelson, Koedinger, & Gordon,

2013), class feature (Wang & Beck, 2013), and partial credit (Wang & Heffernan, 2013).

Advantages and Disadvantages

The main benefit of the BKT model is that it monitors changes in student knowledge state during

practice. Each time a student answers a question, the model updates its estimate of whether the

student knows the skill based on the student’s answer. Other works with BKT introduce a number

of advances, for example, estimates of guessing and slipping in contextual models (Baker, Corbet,

& Aleven, 2008), estimates of probability of transition from use of help features (Beck, Chang,

Mostow, & Corbett, 2008), and estimates of the initial probability that the student knows the skill

(Pardos & Heffernan, 2010).

BKT suffers two major problems with parameter estimates (Beck & Chang, 2007): local maxima

and multiple global maxima. The first one could be solved by multiple restart. The second one

refers to different sets of parameters that could fit the same data equally well. The other major

problem of BKT is its lack of ability to handle multi-skills simultaneously, because BKT works by

looking at historical observations on a skill.

3.1.2. LFA & PFA
Learning Factor Analysis model is used to modeling students’ knowledge in multiple skills with a

Q-matrix (representation of the KC, knowledge component, to item assignment) (Cen, Koedinger,

& Junker, 2006). This model captures three important factors influencing the learning and

24

performance of KCs, as depicted in the following form, 𝛼𝑖 – each student’s preparation, 𝛽𝑗 –

hardness of each KC, and 𝑛𝑖,𝑗 – each student’s learning rate on each KC. The form is:

𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑛) = 𝛼𝑖 + ∑ (𝛽𝑗 + 𝛾𝑗𝑛𝑖,𝑗)

𝑗∈𝐾𝐶𝑠

𝑝(𝑚) =
1

1 + 𝑒−𝑚

PFA is considered as an extension of LFA, which was presented by Pavlik et al. (Pavlik, Cen, &

Koedinger, 2009). Different from LFA, the parameter representing student’s ability is removed in

PFA. The other difference is that instead of using only one parameter to capture student’s prior

practice, the author uses two parameters to track student’s prior successes and prior failures.

Because correct responses may lead to more learning than incorrect responses. The PFA form is:

𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑠, 𝑓) = ∑ (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)

𝑗∈𝐾𝐶𝑠

𝑝(𝑚) =
1

1 + 𝑒−𝑚

In the equation, 𝑚 is a logit value representing the accumulated learning for student 𝑖 using one or

more knowledge components (KCs) 𝑗. The easiness of these KCs is captured by the 𝛽 parameters

for each KC, 𝑠 tracks the prior successes for each KC, and 𝑓 tracks the prior failures, and 𝛾 and 𝜌

scale the effect of these observation counts.

Advantages and Disadvantages

As discussed in previous section, BKT suffers the problem of multi-skill performances. PFA and

LFA) can be used to tackle this problem. As we can see in the PFA formula, the skill effects of and

student’s performances on all related skills are combined to predict student’s outcome for current

item. Another benefit of PFA is that it produces a real valued estimate of strength for each skill.

One drawback of LFA (or PFA) is it would produce negative learning rate due to overfitting. The

solution of this is to set 0 as lower bound. This model counts the numbers of prior successful and

failed practices; however, it doesn’t consider the order in which these practices occurred. Suppose

we have two students working on the same question set. The outcome of first student is: incorrect,

incorrect, correct, correct, and correct. While the outcome of second student is: correct, incorrect,

correct, incorrect, and correct. In our intuition, the first student should have higher mastery level

than the second student. But in PFA, they are counted as the same.

3.1.3. Wheel Spinning Model

25

In ITSs, wheel spinning refers to that a student cannot master a skill no matter how many practices

he tries. In the real experiments, it is inappropriate and impossible to force students to keep

practicing until they achieve mastery. Therefore, we need to quantify the practices that if a student

cannot achieve mastery in the number of practices, then he is wheel spinning on that skill.

Beck and Gong found that if a student cannot master a skill in 10 questions, then he has very low

probability to get mastery later (Beck & Gong, 2013). So they used 10 questions as the threshold.

They also found that about 25% of students in the Cognitive Algebra system and 35% of students

in the ASSISTments system are wheel spinning on the corresponding skills. And they constructed

a wheel spinning model, a logistic regression model, to predict the wheel spinning cases based on

following factors:

a) The number of prior correct responses by the student on this skill. This feature is proved useful

in the Performance Factors Analysis model (Pavlik, Cen, & Koedinger, 2009).

b) The number of problems in a row correctly responded by the on the skill prior to the current

problem. In the ASSISTments, mastery is defined as 3 correct responses in a row. Thus, the

number of consecutive correct responses is an important factor. The value of this feature is

from 0 to 2.

c) The exponential mean Z-score of response times on this skill. The response time for each item

is transferred into a Z-score, and then exponential mean is calculated for each student by: γ ∗

prior_average + (1 − γ) ∗ new_observation, with γ = 0.7.

d) The exponential mean count of rapid guessing. This measures how often the student was

rapidly guessing.

e) The exponential mean count of rapid response. This measures how often the student took a

rapid response. This feature as well as the feature (d) reflects how serious the student is

learning the skill through the tutoring system. Similar features related with “gaming” the

system were used in gaming detectors as in (Arroyo & Woolf, 2005; Baker, Corbett, Roll, &

Koedinger, 2008; Gong, Beck, Heffernan, & Forbes-Summers, 2010)

f) Count of bottom-out hint. The number of times the student reached a bottom-out hint on this

skill prior to the current problem.

g) The exponential mean count of 3 consecutive bottom-out-hints. This measures how often the

student reached bottom out hints on 3 consecutive problems.

h) Skill identification.

i) Prior response count.

26

In additional to wheel spinning prediction, they found a positive correlation between wheel

spinning and gaming – students with higher gaming score are more likely to exhibit wheel spinning.

This relationship is also hold for a particular student that a student is gaming more in the skills he

would wheel spin than in the skills he would master.

BKT, LFA and PFA are used to model students’ knowledge level in skills, but they failed to

determine if a student needs help when he/she is struggling in learning a skill. The main benefit of

wheel spinning model is to detect if a student needs help in the early learning stage, therefore,

proper interventions can be provided to the students.

3.1.4. Big Drawbacks
The models talked in the previous section are all based on the factors in the learning progress of

current skills. These models can be used to predict how well or how bad a student is learning skills.

They can also be used in estimating how likely a student could guess and slip (Baker, Corbett, &

Aleven, 2008) and how student’s actions (successes or failures) affect the mastery of skills (Pavlik,

Cen, & Koedinger, 2009). However, these models have two main drawbacks. First, they overlook

the effect of skill relationships. Second, they don’t know what else to do if students are sick.

1) Overlook the effect of skill relationships

In pedagogical design, students usually learn skills in sequence since preliminary skills need

to be learned prior to the complex skills. For example, students should know how to do

squaring and square root before learning Pythagorean Theorem, as in Figure 6. The

prerequisite-post relations underlie the design of learning sequences and adaption strategies in

ITSs, and give an insight to estimate the knowledge in current skills from the prerequisite

skills.

Figure 6. An example of prerequisite structure.

27

Many educational data mining techniques have been applied to discover and refine the

prerequisite structures. The Partial Order Knowledge Structures (POKS) learning algorithm is

used to learn the prerequisite structure at the item level in the work (Desmarais, Meshkinfam,

& Gagnon, 2006); dynamic Bayesian networks are used to describe the hierarchy and

relationships between different skills in (Käser, Klingler, Schwing, & Gross, 2014); Chen et

al. build prerequisite relations between skills from the probabilistic knowledge states of

students with association rule mining (Chen, Wuillemin, & Labat).

2) Don’t know what else to do if students are sick

These models provide information about students’ knowledge status at each step, but nothing

about what to do if students are struggling in learning skills. To improve this, Rollinson and

Brunskill propose a policy that suggests to stop tutoring students in ITSs when the estimations

of students’ knowledge from the models do not changes any more (Rollinson & Brunskill,

2015).

To overcome the first drawback, the skill-relation structure can be combined into the models. In

previous works, I have used prerequisite performance to predict students’ initial knowledge in the

post skills, and I will talk two models in the next sections.

In this dissertation work, I will focus on providing students with the appropriate tutorial strategies

according to their current knowledge status, especially when they are in trouble, and I will talk in

detail in Chapter 4 and Chapter 5. To be clear, I do not generate or create the strategies (like hints,

feedbacks, and problems) in this dissertation work, but select the optimal one for each student from

the options.

3.2. Prerequisite Effect in Predicting Initial Knowledge

3.2.1. Introduction
Since in the KT model, initial knowledge is represented by a parameter 𝑃 (𝐿0), the probability of

mastering the skill (Corbett & Anderson, 1994). As such, KT is often used to estimate each

student’s initial knowledge (Pardos & Heffernan, 2010). In the standard KT model, the parameter

𝑃 (𝐿0) is trained on all students’ records in a training set, and assumes that all students have the

same initial state of knowledge. However, this assumption is too strong to use the model to predict

each individual student’s first response. To overcome this drawback, Pardos and Heffernan use

three heuristic functions to model individualization in KT (Pardos & Heffernan, 2010), and find

that the method, setting initial individualized knowledge based on individual students’ performance

over all skills, yields superior results. This approach, however, overestimates the relationships

28

between skills. If learning a skill does not promote, or even hinder (Cree & Macaulay, 2002),

learning another skill, then it is not appropriate to use knowledge in one skill to estimate another.

In the work (Botelho, Wan, & Heffernan, 2015), we utilize prerequisite structure, defined by

domain experts, to predict student initial knowledge on subsequent skills, and we compare our

method with the Knowledge Tracing (KT) model. Due to human effect, some skill relationships

might be overestimated, or they may not exist in other applications. As such, we are seeking to

answer the following two questions in this paper: 1. Does prerequisite information really help to

improve the estimation of initial knowledge on subsequent skills? 2. Are all prerequisite

relationships reliable?

3.2.2. Methodology
The method of prediction here utilizes a categorization of students based on the number of attempts

taken to master each prerequisite skill. This type of methodology, often referred to as binning, as it

places students into a set of finite bins or categories for which a prediction or inference could be

made. Using information drawn from prerequisite skills, a prediction table can be constructed to

model the initial knowledge of different types of students defined by separate bins.

As a measure of performance, we chose to use the number of attempts, or responses, made before

mastering a prerequisite skill to categorize the students in our dataset; this number of attempts is

often also referred to as mastery speed. This concept of a mastery status is common in intelligent

tutor systems and is, in the case of ASSISTments, gained through three consecutive correct

answers. Using the number of attempts to gain mastery status, our method calculates the overall

performance history for each student observed, consisting of the average of mastery speed,

measured in attempts, across all prerequisite skills.

Figure 7. An example to explain how to generate the five bins of students for a post skill.

29

Our method creates a table of probabilities for each of five bins, or categories of students, each bin

contains the students whose average mastery speeds across all prerequisite skills are in

corresponding range, as exemplified in Figure 7. The prediction of each bin is calculated using a

training set and represents the number of students of each category that answered the first problem

of a subsequent skill correctly. The first bin includes those students that averaged 3 to 4 attempts,

inclusively, to master each prerequisite skill; the second bin are students that averaged 4 to 8

attempts exclusively; the third bin, averaged 8 or more attempts; the other two bins contain the

students who did not reach mastery status on any prerequisite skills, and are marked as “Did Not

Finish (DNF)” category. Since there is a large amount of students following in these categories, so

we separate them into two bins according to their percent of correctness across all prerequisite

skills: the fourth bin, “DNF High”, contains students who have high percent of correctness (greater

than or equal to 66.67%); the fifth bin, “DNF Low”, with low percent of correctness (less than

66.67%). Thus, bin four represents students that failed to complete the prerequisite skills for reasons

other than lack of knowledge, while students in bin five were struggling and perhaps experiencing

wheel spinning (Beck & Gong, 2013);

In the example presented in Figure 7, Joe averages 3 attempts to master each prerequisite skill and

answers the first problem of the subsequent skill correctly. As such, he is categorized under the

first bin, and contributes to the probability of 1.0 due to all students in that bin answer the first

question correctly (even there is only one student here). Respectively, since the Tom falls the

second bin and answers first question correctly while Bill also in the second bin but has incorrect

first response, the prediction of the second bin is 0.5; Sue falls in the fifth bin, according to her

response, the prediction of the fifth bin is 0;

3.2.3. Results
Our dataset was comprised of real-world student data from the 2009-2010 academic year taken

from the ASSISTments tutoring system. Our method focuses entirely on predicting the first

response of each student attempting a new skill. As our dataset was built in a real classroom

environment, teachers were responsible for determining which skills to assign, as well as the order

to do so. Many such factors could influence the accuracy of our results, so only those skills that fit

strict criteria are considered. A skill is only considered if it has one or more existing prerequisite

skills; if no data exists for a particular skill, it cannot be viewed as a prerequisite for any skill.

Furthermore, only students that exist in all prerequisite skills as well as the subsequent skill are

used for our trials.

30

Table 3. The overall percent of correctness on the first response of five bins..

Bin #students
%correct on

First Response

1 806 61.79%

2 1170 60.00%

3 172 54.65%

4 732 52.59%

5 586 50.51%

Table 4. Result of three approaches.

 RMSE AUC

Majority Class 0.467 0.673

KT 0.467 0.687

Prerequisite Binning 0.407 0.763

Table 3 shows the distribution of knowledge within each bin across all skills in the observed dataset.

The values show a distribution of higher knowledge students in the lower bins and lower knowledge

students in the higher bins. This result supports the claim that our method is properly representing

the intended level of knowledge.

Comparison of Overall Performance

The results of our method, entitled “Prerequisite Binning” in Table 4, was compared to knowledge

tracing as well as a majority class prediction to act as a control in our experiment. The majority

class is a prediction made for all students using the average correctness of the dataset. Knowledge

tracing was run using Kevin Murphy’s Bayes Net Toolbox for MATLAB (Murphy) with initial

parameters of 0.30, 0.14, 0.20, and 0.08 for prior, learn, guess, and slip respectively. For our

experiment, we ran a five-fold cross validation on our dataset, using 80% of the data from each

skill as a training set to predict the remaining 20%.

Each of the three prediction methods are compared using RMSE and AUC two common

measurements of error. The results in Table 3 represent the averages of all folds for each method.

From this result, the prerequisite binning method outperforms the majority class in both metrics

indicating that it is a successful prediction method. When compared to knowledge tracing, however,

the results show nearly the same RMSE value, but a superior AUC value. While the binning method

may not outperform knowledge tracing in all metrics, the predictive accuracy is comparable.

31

The purpose of this work is not to provide a method that outperforms KT, but rather to construct a

modeling method that can provide teachers with more meaningful information regarding student

knowledge. Unlike KT, where the learned parameters such as prior/initial knowledge are unusable

metrics in describing true student knowledge due to the identifiability problem, our binning method

provides an initial knowledge estimate based on previously observed performance; this initial

knowledge estimate, represented as the probabilistic prediction calculated for each bin, is shown to

be just as reliable as KT in predictive accuracy, while also providing a more definitive metric to

describe a bin-wide initial knowledge that avoids problems of identifiability.

Comparison over Individual Skill

We also compare our method with KT on each individual skill. Figure 8 shows the difference of

RMSE for these two models, that is: RMSE (KT) - RMSE (Bin); each positive difference value,

therefore, indicates that our binning method outperforms KT in that skill, while negative difference

values indicate KT outperforms binning in that particular skill. Each bar in the figure has an

accompanying p-value above. This p-value is computed by applying a statistical T-test on the five-

fold cross validation results. From this figure, we observe that our method has remarkable

improvement on 14 out of 28 total skills. Looking at the T-test results, our method outperforms KT

at a statistically significant level (p-value < 0.05) on 3 skills.

Figure 8. The difference of RMSE per skill when comparing prerequisite binning to standard

knowledge tracing. The value above each bar indicates the p-value of the difference.

32

This result answers the second question in introduction, asking “are all prerequisite relationships

reliable?” In accordance with our initial thoughts, the stronger the relationship between a

prerequisite and subsequent skill, the better we can predict the performance of the subsequent skill

from the knowledge of the prerequisite skill. Therefore, at least on skills 97 and 40, the skills with

statistically significant better results, we have strong confidence that the prerequisite relationships

are reliable. For those skills with significantly lower results, skills 54, 298, and 46, the causal

relation of the prerequisite skills may not be strong as expected by domain experts. All other skills,

however, do not illustrate results significant enough to make a claim.

These particular inconclusive results may be explained by inspecting our dataset. Many students,

as indicated by our dataset, attempt less than three problems, preventing mastery and also making

it more difficult to properly estimate knowledge. There may be two reasons for this occurrence.

First, the prerequisite skills may too hard for the students to master. This may result from the

teacher’s decision not to assign particular prerequisite skills, or the skill relationship graph is

incomplete. A second possibility may allude to a case where a teacher does not assign enough

questions for students to master the prerequisite skills. As a teacher has control over the

administering of skill problems, a number of such scenarios could lead to such results. In summary,

these findings potentially indicate a need to further inspect the causal relationships defined by

domain experts as they appear in the observed systems.

3.3. Prerequisite Effect in Wheel Spinning Models

3.3.1. Background
Many Intelligence Tutoring Systems (ITS) make use of a mastery learning framework where

students continue practicing a skill until they master it. However, some students are unable to

achieve mastery despite having numerous opportunities to practice the skill. As a result, these

students are stuck in the mastery learning cycle of the ITS and are given additional problems on a

topic they are unable to master. These students are referred as “wheel spinning” on the skill (Beck

& Gong, 2013). As defined in (Beck & Gong, 2013), a student who takes 10 practice opportunities

without mastering a skill is considered to be wheel spinning on this skill.

Beck and Gong (Beck & Gong, 2013) developed a model, consisting of 8 features, to predict which

students will wheel spin on a skill. They found that there is a relationship between wheel spinning

and gaming the system (Baker, Corbett, Roll, & Koedinger, 2008). Beck and Rodrigo (Beck &

Rodrigo, 2014) constructed a causal model (using non-Western students) that situated wheel

spinning in the face of affective factors. They found that wheel spinning and gaming were strongly

33

related. This work also presented a path model that found gaming was not causal of wheel spinning,

but rather, wheel spinning was related to a lack of prior knowledge, which in turn led to gaming.

A more concrete wheel spinning model is developed in (Gong & Beck, 2015), in which three

aspects of features are considered: student in-tutor performance, the seriousness of the learner, and

general factors. However, these models do not provide actionable results for how to make a student

less likely to wheel spin on a skill, or how to get an already wheel spinning student unstuck.

A natural question is why are some students able to learn a skill and achieve mastery, while other

students fail to do so? One plausible hypothesis of what makes wheel-spinning students different

from their peers is a difference in ability to learn the skill. Students certainly differ in cognitive

abilities, but addressing such would be beyond the scope of most interventions ITS developers can

develop. Another plausible difference in ability to learn the skill is due to differences in student

preparation. For example, if students do not understand the concept of equivalent fractions, they

will have great difficulty mastering the later skill of addition of fractions, which requires them to

solve problems such as 1/3 + 1/4.

We define a skill S’s prerequisite skills as those skills necessary to be mastered before studying

skill S., in We incorporate the prerequisite structure into wheel spinning model, in order to check

if prerequisite performance has impact in wheel spinning of post-skills. Although prior research

has proposed automatic algorithms of adapting prerequisite structures (Brunskill, 2011; Philip Jr.,

Cen, Wu, & Koedinger, 2008; Vuong, Nixon, & Towle, 2011), we instead use a prerequisite

structure developed by a domain expert.

As an overview, we abstract students’ prerequisite performance as a feature, and then add this

feature into the wheel-spinning model (Beck & Gong, 2013). Our main points include: 1) determine

if there is connection between the prerequisite performance and the wheel spinning of post-skill;

2) explore how prerequisite factor would affect wheel spinning model; 3) compare the prerequisite

factor with another possible effect that could cause wheel spinning – students’ general learning

ability.

3.3.2. Method
The model in our experiments is different from the Beck and Gong’s model (Beck & Gong, 2013)

in two places: one is that we use one more feature in the model, the prerequisite feature, I will

introduce how to compute it in the next few parts; the other is that in some experiments, we treat

the feature – prior response count – as a covariate, not a factor like in their model. We found this

parameter’s affect was approximately linear, and thus treating it as a covariate made more sense.

34

We call the model based on these 9 features the baseline model, and compare it with a model that

includes the prerequisite performance.

Compute Students’ Performance on Skills

In this work, our goal is to find the influence of students’ prerequisite performance on wheel

spinning. So the first step is to choose which measure to represent students’ performance on each

skill. In this work, we regard a student’s percentage of correct responses to questions involving a

skill to be his performance on that skill.

However, a student could answer correctly, by chance, even though this student does not understand

the skill at all. Similarly, a student could give the wrong answer through a careless mistake, as in

the guess and slip parameters in the Knowledge Tracing model (Corbett & Anderson, 1994). These

two cases will deviate the student’s performance from his/her “true understanding” on the skill,

especially if the student has very few practices. To deal with these cases, we balance the “accidental

performance” with student’s overall performance on all skill. The formula for calculating a

student’s performance on a skill 𝑖 is:

Pi =
1

2x
∗ R̅ ∗ Si + (1 −

1

2x
) ∗ Ci

 x: The number of practices on this skill;

 Si : The percent correctness of skill i , Si =
#correct practices

#overall practices
 (over all students). This also

reflects the hardness of skill Si.

 Ci: The student’s percent correctness on skill i, Ci =
#correct practices

#overall practices
 (over the student st1).

 Ri =
Ci

Si
: This represents how well the student st1 does on skill i comparing with the other

students.

 R̅ =
∑ Ri

m
i=1

m
: m is the number of the student’s started skills.

Notice in the formula, the more practices on a skill, the more weight is assigned to the performance

on this skill. Take the data in Table 5 as an example. There are in total 4 trials for skill s1, of which

3 are answered correctly, so its correctness is 0.75. The correctness of the other two skills is: s2,

1.0; s3, 0.5. The student, st1, answered two problems of s1, getting one correct and the other

incorrect. So this student’s correctness of s1 is 0.5, and R1(st1) =
0.5

0.75
= 0.67. We can also get

that R2(st1) = 1.0, R3(st1) = 0 , then R̅(st1) = 0.56 . Hence, the student st1’s estimated

35

understanding on the skill s1 is:
1

22 ∗ 0.56 ∗ 0.75 + (1 −
1

22) ∗ 0.5 = 0.48. All the performance

results are shown in Table 6. Sometimes, a student’s adjusted performance is larger than 1, as the

student st2’s performances on skill s1 and s2. This effect can occur by a student doing very well on

a very difficult skill. In this paper, we normalize the values to bring them in the range from 0 to 1.

Table 5. A small sample of students’ practices.

Student Skill Problem Correct?

st1 s1 p1 1

st1 s1 p2 0

st1 s2 p3 1

st1 s3 p4 0

st2 s1 p1 1

st2 s1 p2 1

st2 s3 p5 1

Table 6. Calculated skills’ hardness and students’ performance according to the data in Table 5.

Skill Correctness

Student

performance

Normalized

performance

st1 st2 st1 st2

s1 0.75 0.48 1.06 0.45 1

s2 1.0 0.78 1.67 0.47 1

s3 0.5 0.28 0.92 0.3 1

Compute Prerequisite Performance

Once the normalized students’ performances have been computed, the next step is to think about

how to represent prerequisite performances, and then incorporate it into the wheel-spinning model.

If a skill has only one pre-required skill, such a representation is straightforward: the student’s

adjusted performance on that pre-required skill. But what if a skill has multiple prerequisites? In

our data set, 39 out of 128 skills have multiple prerequisites. There are a variety of approaches for

handling multiple prerequisites. We chose two different methods to compute the prerequisite

performance: weakest link and weighted by hardness.

1) Weakest link

This method regards the prerequisite skill with the worst performance, called weakest link, to have

strongest connection with post-skill’s wheel spinning. Thus, it uses the lowest performance value

in all prerequisite skills as the wheel-spinning model’s input for prerequisite performance. For

example, in Table 5, if skill s1’s prerequisite skills are s2 and s3, then the prerequisite performance

for student st1 on skill s1 is estimated as 0.3 (normalized).

36

2) Weighted by hardness

In this method, we sum up a student’s prerequisite performances by assigning a corresponding

weight to each prerequisite skill, according to the skill hardness. We assume that the harder a

prerequisite skill is, the more importance it has. Here we define a skill’s hardness to be

1/𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠. Thus, for a skill, the representation for its prerequisites is calculated as:

Pri =
∑ wjPj

n
j=1

∑ wj
n
j=1

 n: Number of prerequisites.

 Pj: A student’s performance on the jth prerequisite.

 wj =
1

Sj
: The weight assigned into the j th prerequisite. Sj is the correctness of this

prerequisite.

We also suppose that the skill s1’s prerequisites are s2 and s3, then using the data from Table 6,

the student st1’s prerequisite performance on skill s1 is 0.36; respectively, the student st2’s

prerequisite representation value for s1 is 1.

Define General Learning Ability

Our approach is to construct a variable, which we refer to as General Learning Ability (GLA) that

encapsulates some of the constructs like diligence, home support, raw ability, and so on. GLA

refers to a student’s latent ability that affects his ability to learn new skill, similar in spirit to the

one dimensional trait in Item Response Theory (IRT) (Embretson & Reise, 2013). In IRT, a

student’s trait is assumed measurable; it is measured through a series of adaptive questions given

by a tutoring system.

To simplify our work, we measure student’s general learning ability as following steps:

a) For each student-skill pair, randomly select the other two started skills. Here a started skill

means the student has practiced at least one problem on it;

b) Compute the performance values for the two skills, as described in the Method part;

c) Take the average of those two performance values as the general learning ability for this

student-skill pair.

Our intuition in defining GLA in this manner is that if the reason for WH’s strong gradient with

wheel spinning is due to the knowledge of the prerequisite being important, we would expect GLA

37

to perform poorly. However, if the power of WH comes not from estimating a particular aspect of

student knowledge, but rather than providing a proxy measurement for a student’s general ability

and willingness to learn, we would expect estimating the student’s knowledge of two random skills

would work as well. We chose to use two random skills since that was the average number of

prerequisites, and we wanted to avoid issues with one measure having lower variability (and hence

higher reliability) simply by being an aggregate of more skills. One potential drawback of our

approach is that two skills is a small number, and in some cases will certainly provide an over- or

under-estimate of knowledge for a particular student. However, since our sample size is large

enough, 48256 student-skill pairs in total, this approach is unlikely to produce skewed results.

3.3.3. Results

Data Set

The data in this work is from ASSISTments. We tracked all ASSISTments students when they used

the system to practice Math problems for almost a full year from September 2010 to July 2011.

This data set contains 7591 different students, and we randomly select 4976 of the students (about

2/3 of students) to form our training data set, while the other students comprise the testing data.

There are 31301 student-skill pairs in the training set and 16955 in the testing set. In this work, we

consider students who fail to achieve mastery within 10 practice opportunities for a skill (including

indeterminate cases (Beck & Gong, 2013) as wheel spinning, which results in 20.6% instances in

the training set as wheel spinning and 19.2% in the testing set.

In the training data, there are 177713 problems solved by the students, while 97768 problems in

testing data. These problems cover 128 different skills. In the training and testing set, students learn

different skills. The maximum number of learned skills by a student is 61, and the average is 6.4.

As aforementioned, the prerequisite-to-post skill structure is defined by domain expert as a

recommended sequence of topics for instructors. Among the skills in our data set, 66 skills have at

least one prerequisite. Some skills have multiple prerequisites, the max number of prerequisites is

8, and the average is 2.4.

However, it is the teacher’s choice which skills and in which order to assign to students.

Consequently, the majority of student-skill pairs do not have any started prerequisite skills in our

data set, as shown in Figure 9. Apparently (and understandably), teachers are less likely to assign

review material than to focus on new topics. The maximum number of started prerequisites is 4,

and the average is only 0.37. Thus, our experiments will run over three different data sets:

38

Figure 9. Distribution of number of started prerequisite skills in training set and testing set.

a) D1: the whole data set, as depicted in Figure 9, which is split into training and testing set.

b) D2: the prerequisite data set. This data set excludes the skills that have no prerequisite skills,

as identified by the domain expert, from D1. Thus, it is comprised of the points on the x-axis

in Figure 9 corresponding to 0, 1, 2, 3 and 4. It is also split into training and testing set, and

its training set is constructed from the training set in D1 by removing the non-prerequisite

skills, while its testing set from testing set in D1 respectively.

c) D3: the started prerequisite data set, and includes only student-skill pairs where the student

has at least begun one of the prerequisites. This data set excludes the skills that have no started

prerequisite skills from D2. Thus, it is comprised of the points on the x-axis in Figure 9

corresponding to 1, 2, 3 and 4. Similarly, its training (testing) set is generated from training

(testing) set in D2 by removing non-started-prerequisite skills.

The reason for these three datasets is that they answer different research questions. D1 enables us

to investigate the impact of prerequisite performance on wheel spinning in an already-existing

system in a real-world deployment. That is, how much benefit would we see in the current usage

context of the tutor. Unfortunately, that real-world deployment involves teachers assigning no work

on most prerequisites, and thus no information about student prerequisite knowledge is available

to the model. D2 enables us to examine where there is at least potential benefit. D3 enables us to

answer questions about whether a system that had fuller information about prerequisite would

perform better at detecting wheel spinning. D3 lets us consider possible changes to policy where

teachers are more willing to assign review work, or a system is better able to access past student

performance to assess prior knowledge.

0

4000

8000

12000

16000

20000

No prereq 0 1 2 3 4

ST
U

D
EN

T-
SK

IL
L

P
A

IR
S

Number of started prerequisite skills

training testing

39

Figure 10. Wheel spinning ratio with respect to prerequisite knowledge and general

learning ability on the data set D3.

The Gradient of Wheel Spinning Ratio

In order to determine how likely a student will be to wheel spin on a skill based on his

corresponding prerequisite performance value, we focus on the training set of D3. We separate D3

into 5 bins according to the prerequisite performance value, calculated by the method weighted by

hardness. The wheel spinning ratio in each bin is shown in Figure 10, named WS Ratio - WH.

As observed in the figure, there is a strong gradient with respect to the prerequisite performance:

students in the bottom 20% of pre-required knowledge exhibited wheel spinning behavior 50% of

the time, while those in the top 20% of pre-required knowledge exhibited wheel spinning behavior

only 10% of the time. This expresses strong evidence supporting our hypothesis that student’s

wheel spinning on post-skill results from poor preparation for future learning in terms of

prerequisite knowledge.

Changes in Models

To test the impact of prerequisite features, we integrated them into the wheel-spinning model

described previously. We compare the effects of different factors in the wheel spinning model,

Weakest Link (WL), Weighted by Hardness (WH), and General Learning Ability (GLA). Table 7

shows the results of training each model on the training test, and evaluating it on the test set.

In this experiment, we use the Cox and Snell R square (Hosmer Jr & Lemeshow, 2004) and AUC

(area under curve) to measure model fit. As we can see, the model does not appreciably change in

the data set D1, because the part of the data containing started prerequisite skills is such a small

component of the data. In D2 and D3, the model is improved slightly by integrating the prerequisite

feature, WH or WL. This result supports that prerequisite performance is useful in determining

students’ wheel spinning status in post-skills. We can also notice that the model with GLA has the

similar results with the ones with WH and WL.

0

0.1

0.2

0.3

0.4

0.5

0.6

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

W
h

e
e

l S
p

in
n

in
g

R
at

io

Prerequisite knowledge

WS Ratio - WH

WS Ratio - GLA

40

Table 7. Measurements of different models.

Model
R Square AUC

D1 D2 D3 D1 D2 D3

Baseline 0.285 0.301 0.264 0.879 0.888 0.884

Baseline

+WL
0.285 0.302 0.268 0.879 0.889 0.887

Baseline

+WH
0.285 0.302 0.268 0.879 0.889 0.888

Baseline

+GLA
0.291 0.306 0.268 0.883 0.891 0.887

Table 8. P-values of paired t-test. For each pair of models, the t-test is applied on the test

results of each data set (D1, D2, D3).

 Baseline Baseline + WL Baseline + WH

Baseline + WL <0.01,<0.01, <0.01

Baseline + WH <0.01,<0.01, <0.01 0.42, 0.40, 0.74

Baseline + GLA <0.01,<0.01, <0.01 <0.01,<0.01, 0.52 <0.01,<0.01, 0.49

Furthermore, to compare the difference between models, a paired t-test is applied on the results of

each pair of models, as shown in Table 8. The result shows that adding a factor - WH, WL, or GLA

– into the baseline model makes it performing significantly differently in all data sets, D1, D2, and

D3. On the other hand, the model “Baseline+WH” and “Baseline+WL” have the similar results in

those three data sets, which also implies these two prerequisite features have similar effect in the

wheel spinning model. More interesting, the p-values indicate that the model with GLA and the

model with WH (or WL respectively) are significantly different in D1 and D2, but not in D3. Since

the GLA factor is defined as the average performance of two randomly selected skills. In the data

set D3, every student-skill pair is linked with at least one prerequisite skill. Thus, it is very likely

some GLA values are constructed from prerequisite skills, which makes the two models similar in

D3.

Impact of Prerequisite Effect on Predictive Models

We now move to determining the impact of the prerequisite feature on the predictive model. In our

intuition, the prerequisite factor might have strong effect in predicting wheel spinning when a

student just starts learning a post-skill, and the effect weakens with time as the student solves

problems on the post skill.

41

In the logistic regression algorithm, researchers typically use the odds ratio, exponential the

coefficient, to represent effect of the corresponding feature (Hosmer Jr & Lemeshow, 2004). Then

the coefficient could be also used to represent the effect on the model. Therefore, in this work, we

use the coefficient of prerequisite feature to reflect its effect in predicting students’ wheel spinning

on post-skill.

In this experiment, we group the D3 of training set by amount of practice on the skill, and construct

a wheel spinning model for each group. The coefficients of prerequisite feature (for the WH model)

in the corresponding models are shown in Figure 11. As we can see, the coefficient representing

the impact of prerequisite knowledge has the highest value at the beginning, and it decreases in

influence as students obtain more practice on the skill. This result support our intuition that the

prerequisite factor is a good predictor for wheel spinning only at the beginning stage of learning

post-skill. Thus, prerequisite knowledge is useful for overcoming the cold start problem in student

modeling. When a student first starts working on a skill, his performance on that skill provides

little basis with whether to classify him as likely to wheel spin or not. In this situation, knowing

how he performed on the prerequisite skills provides some information in his ability to master the

current material. As the system observes more and more performances on the skill, those

performance provide a much more pertinent source of information about the student’s likely

trajectory, and the relative importance of prerequisite skills diminishes.

The decrease in in predictive performance for the WH coefficient is monotonic and roughly linear.

From a standpoint of statistical significance, the WH coefficient is reliably different than 0 for

practice opportunities 1 through 7 (p=0.026 at the 7th opportunity). At the 8th opportunity, the

impact of the WH coefficient has p=0.51.

Figure 11. The changes of coefficient with respect to number of practice opportunities on

the data set D3.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

co
e

ff
ic

ie
n

t

#practice opportunities

WH_coefficient

GLA_coefficient

42

Understanding What Prerequisite Performance Really Represents

The performance of the WH feature raises an interesting question: to what does it owe its predictive

power. Although we refer to this feature as representing student’s prerequisite knowledge, it

captures much more than just knowledge. For example, if one student demonstrates strong

performance on prerequisite skills and the other does not, those students probably differ in many

dimensions beyond knowledge of the skill: diligence in doing math homework, support at home,

raw ability at learning new concepts, and perseverance when stuck. Wrapping this bundle of

constructs together and calling it “prerequisite knowledge” certainly simplifies discussion, but does

a disservice to accuracy. Therefore, we perform a baseline experiment to investigate what

prerequisite knowledge represents.

Since the effects of two prerequisite features, WL and WH, are pretty much the same in the wheel

spinning model. Therefore, we will compare only the WH with the GLA. These two features are

compared though three different experiments.

The first experiment is to construct wheel spinning ratio gradient for GLA. As we can see in Figure

10, there is the same broad trend for both GLA and WH. For both measures, students with lower

general learning ability are more likely to be wheel spinning, which is in accord with our common

sense. By comparing the two wheel spinning ratio gradients, we notice that the ratio is the same

when the WH and GLA values are high; that is, if a student’s performance is relative high (> 0.6)

for WH and GLA, then there is a similar chance the student will wheel spin. However, in the lower

range of 0 to 0.6, students are more likely to be wheel spinning according to WH value than the

students having the same GLA value. This result suggests that prerequisite factor has stronger

correlation with wheel spinning than general learning ability, although general learning ability has

strong overlap.

The second experiment is to add the GLA into wheel spinning model and compare the model

measurements. According to the results in Table 7, adding the GLA into the baseline model makes

more improvement than adding the WH on the data set D1 and D2. This is because the student-

skill pairs with pre-required knowledge are very rare in those data sets, while every student-skill

pair is assigned with a computed GLA value based on that student’s performance on a pair of

random skills. The model with GLA and the model with WH on the data set D3 have nearly

identical performance.

The third experiment is to compare the effect in the learning procedure. As seen in , the GLA

coefficient also decreases with respect to the number of practice. But in the first 5 practices, the

43

slope of GLA coefficient is more moderate than the slope of WH coefficient, which defends the

statement that the prerequisite factor is useful in predicting wheel spinning at early learning stage.

By examine the GLA coefficient Wald statistic p-value, it is also statistically reliable (p<0.05)

before the 7th practice.

3.3.4. Discussion

Prerequisite Structure

As aforementioned, the prerequisite structure used in this work is defined by domain experts.

Through this structure, the experts suggest a general curriculum over all grades, not specified in a

single year or a single class. It is certainly possible that our structure is in error either by missing

some links and incorrectly creating others. Such errors would impact the results.

Moreover, in the method of computing prerequisite performance for a post-skill, we assume that

the prerequisite skill with the worst performance (or the hardest prerequisite skill) has the strongest

influence in learning post-skill. However, this assumption might be inappropriate here. Botelho et

al. also illustrate in their experiments that the prerequisite relation in some post-skills are not as

stable as expected by domain experts (Botelho, Wan, & Heffernan, 2015).

Therefore, there are two possible ways of improving our experiments. The first one is to construct

a prerequisite structure specifically for the data. Previous works have been focused on this area.

For example, Vuong et al. introduce a method for finding prerequisite structure within a curriculum

(Vuong, Nixon, & Towle, 2011). Their method calculates the overall graduation rate for each unit,

and regards Unit A as prerequisite knowledge for Unit B if the experience in Unit A promotes

graduation rate in Unit B.

The other possible way is to measure the correlation between each prerequisite skill and a post-

skill, and then we can obtain which prerequisite skill is most effective in affecting learning post-

skill. Vuong et al. also distinguish the prerequisite relationship between significant and non-

significant in their work (Vuong, Nixon, & Towle, 2011).

Prerequisite-post Relation

Obviously, students’ general learning ability influences their performance in both prerequisites and

post-skills. Therefore, one might argue that there is no direct causal prerequisite-post relationship.

The student who is wheel spun on learning post-skill as well as lack of pre-required knowledge is

mainly because he/she has weak learning ability, as shown in Figure 12. In this view, GLA is the

primary driver of both prerequisite and post-performance.

44

According to this argument, a consequent case would be: a student who is wheel spun on a skill,

he/she will be wheel spun on every skill, due to the weak learning ability. However, in our data set,

the wheel spinning ratio of the students who have at least one wheel spinning case is about 23%.

Thus, the GLA is an effective factor in wheel spinning, but not a unique or crucial one. Another

drawback of this model is that, for low levels of performance, prerequisite knowledge is more

strongly related to wheel spinning than GLA. Therefore, even if GLA is the primary driver, there

is apparently some impact of prerequisite knowledge on post-performance, represented by the

dotted line in Figure 12.

In order to validate the structure in Figure 12, a subtler model should be constructed, in which

students’ GLA is finely measured. A proper way is to utilize the IRT model to estimate a student’s

trait; this trait is regarded as the GLA value. And then it is used in predicting if the student will be

wheel spinning or not. Meanwhile this trait is updated for each item practiced or for each skill

learned. The similar work is in (Huang, González-Brenes, & Brusilovsky, 2014), the authors

integrate temporal IRT into Knowledge Tracing model, in order to track students’ knowledge stage

and predict next problem correctness.

Figure 12. A structure to explain indirect prerequisite-post relationship.

GLA

Prerequisite

Post

45

CHAPTER 4

K-armed Bandits

4.1. Introduction

In the k-armed bandit problem (Robbins, 1985), an agent has to select an action from n possible

options, at each time step. After performing the selected action, the agent receives a reward derived

from an unknown and action-specific distribution. Its objective is to maximize the sum of (possibly

discounted) rewards over time. Since the reward distributions are initially unknown, the agent

should explore different actions to learn each action’s distribution. However, an agent cannot

explore and gather information indefinitely, as it is also trying to maximize its total performance

as indicated by the reward function. This tradeoff of exploration vs. exploitation is well known in

machine learning (Audibert, Munos, & Szepesvári, 2009).

As aforementioned, this dissertation work is aiming at using k-armed bandit strategies to provide

students with optimal tutoring interventions in ASSISTments. In more details, the problem is

defined as: each student is assigned, one by one, with an appropriate intervention, based on previous

students’ choices and corresponding received rewards. The objective is to maximized the total

rewards over all students. But why do we need k-armed bandits in ASSISTments?

Table 9. Example of students’ performances in different conditions.

Condition Mean (correct)

1 0.70

2 0.75

Take a real experiment in ASSISTments as an example. In this randomized controlled experiment,

students are randomly assigned into two different conditional problem sets to learn mathematic

skills, one in which the problem presentation and hints suggest a spatial approach and one in which

the problem with an analytic approach. After learning in the problem sets, students face the same

posttest. Students’ performances in the posttest are shown in Table 9. As we can see in this table,

with random assignments, the average correctness in the posttest over all students is about

(0.70+0.75)/2 = 0.725. However, if we use k-armed bandits in this experiment, since students in

the analytic problem set perform better than in the spatial problem set, students are more likely to

be assigned into the analytic problem set. Then the average percent of correctness is approaching

0.75, because we have to explore to collect performance in spatial condition. Therefore, applying

the k-armed bandits in the ASSISTments could bring better students performances.

46

In this chapter, I will talk several related works and their weakness, and then discuss whether it is

worthwhile to apply fancy or complicate algorithms in the system, by comparing them with a single

selection strategy based on statistical t-test. Finally, I will analyze the results of data sets from two

ASSISTments experiments.

4.2. Related Works

K-armed bandit algorithms have been widely applied in various areas, such as web search (Feng,

Heffernan, & Koedinger, 2009; Radlinski, Kleinberg, & Joachims, 2008), internet advertising

(Babaioff, Sharma, & Slivkins, 2009; Li, Chu, Langford, & Schapire, 2010), queuing and

scheduling (Liu & Zhao, 2010), and education (Clement, Oudeyer, Roy, & Lopes, 2014; Clement,

Roy, Oudeyer, & Lopes, 2015; Liu, Mandel, Brunskill, & Popovic, 2014; Silva, Direne et al., 2015).

A crucial issue in the applications is to demonstrate usefulness of algorithms. A common approach

is to compare the k-armed bandit algorithms with a random selection strategy or predefined

sequences of actions (Silva, Direne et al., 2015; Wang, Wang, Hsu, & Wang, 2014). Typically, the

bandits give stronger performance than the baseline algorithms, which is expected as the bandit

algorithms are using more information. The baseline approaches are just designed to show how

much better the bandit is doing than a simple approach. Other works use some simple k-armed

bandit algorithms as a baseline, such as ε-greedy (Pavlidis, Tasoulis, & Hand, 2008; Vermorel &

Mohri, 2005; Wang, Wang, Hsu, & Wang, 2014).

In this work, we propose another selection strategy that is based on statistical t-test called Strawman

and we deploy it in educational experiments. As our work involves deciding which experimental

condition to assign a student, when a particular experimental condition is less effective, we chose

t-tests as our mechanism for excluding actions. We named this technique “Strawman” as t-tests

were developed in 1908, and are hardly cutting-edge methodology. Our intention was to create a

plausible lower-bound on performance. The Strawman strategy randomly chooses one of the

possible actions at each time step. After it observes a reward, it then compares each action against

all of the other actions; any action that is statistically reliably worse (p < 0.05) than any other action

is dropped from future consideration. Once a single action remains, it considers that action as the

unique option. Therefore, there are two phases in this strategy. In the first phase, it employs random

selection and in the second phase it uses a greedy selection. Langford and Zhang propose a similar

method, epoch-greedy, in which a random selection step is followed by absolute exploitation steps

in each epoch (Langford & Zhang, 2008). The difference is that the Strawman would never do

47

exploration again once it detects the reliably “best” action, but the epoch-greedy method would

select an action randomly in other epochs.

Another issue in evaluation of the k-armed bandit algorithms is about cost. Since deploying the

evaluations in real environments is time consuming and sometimes money consuming. To resolve

this issue, Li et al. deploy the evaluation on the collected offline records (Li, Chu, Langford, &

Schapire, 2010), in other works, like in (Clement, Oudeyer, Roy, & Lopes, 2014; Pavlidis, Tasoulis,

& Hand, 2008), the algorithms are evaluated on the simulated instances. In this work, we will

evaluate the Strawman algorithm and other k-armed bandit algorithms on the data sets that contain

students’ responses in two ASSISTments experiments, through simulating applying them in real

environment based on random sampling with replacement.

4.3. K-armed Bandit Algorithms

We will compare three k-armed bandit algorithms 𝜀 -greedy, simulated annealing, and UCB1,

against Strawman, based on statistical t-tests. the probability of selection each action at each step

based on an action-value function, called Q function; while UCB1 selects an action with the largest

estimated upper confidence bound.

Given the action set: 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, the Q function, 𝑄(𝑎), which denotes the expected reward

by choosing the action 𝑎 at current step. A commonly used method to compute the Q function is

exponential average. At the beginning, the value 𝑄0(𝑎) is set as a default value. After each time

choosing an action 𝑎 and receiving a corresponding reward 𝑟𝑎,𝑡, the value is updated as:

𝑄𝑡(𝑎) = 𝑄𝑡−1(𝑎) + 𝛼(𝑟𝑎,𝑡 − 𝑄𝑡−1(𝑎))

The constant 𝛼 is called the stepsize parameter, and represents how quickly the Q-values are

updated. This parameter is bounded 0 < 𝛼 < 1, where values close to 1 indicate rapid updating,

but possible instability and non-convergence. Values near 0 converge slowly, but are much more

predictable in their behavior. A value of 𝛼 = 0.1 is reasonably common.

1. The 𝜀 -greedy algorithm selects a random action from the action set 𝐴 with a fixed

probability,0 ≤ 𝜀 ≤ 1, and selects the best action, according to the Q function, with the

probability 1 − 𝜀.

𝜋 = {
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛; 𝑖𝑓 𝜉 < 𝜀

𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 𝑄𝑡(𝑎); 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

48

2. In the simulated annealing algorithm, also called decreasing softmax (Cesa-Bianchi &

Fischer, 1998), the probability of selecting an action is ranked and weighted according to

the estimated value with Gibbs distribution:

𝜋(𝑎) =
𝑒

𝑄𝑡(𝑎)
𝜏𝑡

∑ 𝑒
𝑄𝑡(𝑏)

𝜏𝑡𝑏∈𝐴

; 𝜏𝑡 =
1

𝑡

Where 𝜏𝑡 is a positive parameter, called temperature, and decreases step by step. This

algorithm tends to choose explorative actions at early stage, and since the temperature is

decreasing, it becomes more and more exploitative as keep playing actions.

3. UCB1, as a member of UCB family proposed by Auer et. al (Auer, Cesa-Bianchi, & Fischer,

2002), plays each action once initially. Afterward, at time 𝑡, it selects an action with the

largest value as follows:

arg max
𝑖=1…𝑛

(𝑟�̅� + √
2 ln 𝑡

𝑠𝑖
)

Where 𝑟�̅� is average of past rewards by playing action 𝑎𝑖, and 𝑠𝑖 is number of times playing

𝑎𝑖.

4.4. Methodology

4.4.1. Strawman
In this work, we construct a simple selection algorithm based on the statistical t-test, called

Strawman. This algorithm can be considered as a baseline for other k-armed bandit algorithms. We

also compare it with the three aforementioned k-armed bandit algorithms by simulating them on

two ASSISTments experiments. The Strawman algorithm works as followings:

1. Initially, the action set 𝐴 contains all possible actions.

2. At the time 𝑡 , all remaining actions in the action set have the same chance, and the

Strawman just randomly selects one from them.

3. When obtaining a reward by playing an action 𝑎, record the reward in the 𝑎’s reward

history, e.g. (𝑟𝑎,1, 𝑟𝑎,2, … , 𝑟𝑎,𝑘𝑎
).

4. Compare the action 𝑎 with every other remaining action in the set by conducting a t-test

on their past rewards, e.g. on (𝑟𝑎,1, 𝑟𝑎,2, … , 𝑟𝑎,𝑘𝑎
) and (𝑟𝑏,1, 𝑟𝑏,2, … , 𝑟𝑏,𝑘𝑏

) (for every 𝑏 ∈

𝐴 𝑎𝑛𝑑 𝑏 ≠ 𝑎).

49

5. If there is an action 𝑑 is significantly worse than any other action according to the t-test –

that is, p-value from the t-test is less than a threshold, then remove 𝑑 from A. Loop to step

2. In this work, the significant level is set to be 𝑝 < 0.05.

For example, in the data set as shown in Table 9, the initial action set is {Condition 1, Condition

2}, if we detect that the action “Condition 1” is significantly worse than “Condition 2” at time 𝑡𝑖,

then we drop the former action, and the remaining set is {Condition 2}, and students will be always

assigned into Condition 2 afterwards.

4.4.2. Simulation
Evaluating k-armed bandit or other action selection algorithms in real time is costly, it might take

a few days, or weeks, or even months to obtain the results. In the meantime, students are being

assigned to experimental conditions inefficiently. Consequently, student learning is lower than it

could be if a more efficient experimental strategy were used. This issue of inefficient allocation of

students raises ethical issues, and we should strive for more benign ways to evaluate competing

approaches. An alternative approach is to run the algorithms on a faked data set in which the

received rewards are generated from certain distributions, such as normal distributions (Vermorel

& Mohri, 2005). However, through this evaluation approach, which algorithm does better depends

on specific distributions of the various bandit levers. Besides, this approach does not reveal how

selection algorithms perform in the real environment.

Instead of conducting the evaluation on simulated reward distributions, Li et al. (Li, Chu, Langford,

& Schapire, 2010) construct a policy evaluator that utilizes the available offline data that was

collected at a previous time. But in evaluation process, the historical records with action different

from the one selected by a policy are abandoned, which makes the approach improper when the

offline data is not large.

In this work, we also evaluate the action selection algorithms on the collected offline data based on

random sampling method. Our goal is to measure the performance of a selection strategy, 𝜋, at each

step of choosing action based on previous activities. The reward corresponds to the selected action

at each step is simulated by randomly picking a record from the whole data set that has the same

action. The evaluation process is described in Figure 13. Essentially, this simulation process uses

bootstrapping (sampling with replacement). Whenever an action is tried, the approach randomly

selects a prior student who was given that action, and that student’s performance is used as an

estimate.

50

Simulation of a strategy π on a set of students D
 do
 randomly pick a student s1 from D
 obtain the action 𝑎 according to π: π(s1)->c
 randomly pick another student s2 from D with the same action 𝑎
 treat s2's reward, r2, as s1's
 update π with r2
 until meet end condition

Figure 13. Process of simulating selection strategy on an offline data set.

4.4.3. Metrics
The first metric used in measuring the performance of selection algorithms in this work is the

average reward. This metric is commonly used in the k-armed bandit problems, and it represents

how a selection algorithm perform at each time. At the time 𝑡, the average reward is calculated as:

1

𝑡
∑ 𝑟𝑖

𝑡
𝑖=1 , where 𝑟𝑖 is the reward received in the time 𝑖.

The second metric indicates whether or not a selection policy is making an explorative choice at

each step in the simulation process. To be consistent in the three algorithms in this work, 𝜀-greedy,

simulated annealing, and UCB1, we define a policy is making an explorative choice if it selects an

action that does not have the best Q value at current step. While the Strawman algorithm is

exploring when there are more than one possible actions at each step, since it just randomly selects

one from all the remaining actions.

4.5. Experiments

4.5.1. Data
ASSISTments supports researchers to design randomized controlled experiments to validate the

effect of one or more factors in tutoring students. The first data set in this work is collected from

the experiment in which students are randomly assigned into one of two skill builders to learn a

skill. These two skill builders are different in the condition of problem description, marked as

condition 1 and condition 2. With completing the skill builder, students are faced with the same

posttest.

In the second data set, the experiments conditions are not Skill Builders but instead students are

given a set number of items to answer. What distinguishes the three conditions is the type of

feedback provided when the student makes an error. In the first condition called “Correctness

Only” the students would see a hint button labeled with “Show Answer” that if clicked would tell

the student the answer with no explanation at all. The two other conditions were implemented with

what ASSISTments called “scaffolding questions.” Scaffolding questions are invoked as soon as

the student makes a wrong attempt or if they click on the help button (instead of being labeled as

51

“Show Answer” as in the first condition, is labeled “Break this problem into Steps”) that indicates

to the student that if they ask for help they will be given a series of (at least one) questions to help

them through the problems. The two conditions labeled “with image” and “no image” both present

the student with the scaffolding question that is meant to help them complete the problem. The two

conditions differ from each other only by the fact that one condition has an image that was designed

to help the student understand. These two conditions differed from the “Correctness Only” in that

the correctness only was “help on demand” as opposed to “help given on first error.” The details

of this study are not actually relevant to this paper, and this paper’s method can be applied to any

experiment, but if you want you can see details this study was published in (McGuire, Logue et al.,

2016).

Table 10. Students’ posttest scores in each conditional problem set in the first data set .

Students with the bolded condition have higher mean posttest.
 #Students Mean Std.

Condition 1 232 0.695 0.332

Condition 2 237 0.746 0.320

Table 11. Students’ posttest scores in each conditional problem set in the second data set.

Students with the bolded condition have the highest mean posttest
 #Students Mean Std.

Correctness only 74 0.518 0.214

With image 63 0.544 0.229

No image 69 0.542 0.201

When applying action selection strategies over the data sets, conditions connect to the problem sets

can be considered as actions. Therefore, action set is {Condition 1, Condition 2} in the first data

set, and {Correctness only, No image, With image} in the second data set. In this work, we regard

students’ posttest score as the rewards. According to the students’ posttest scores shown in Table

10, the better condition in the first data set is “Condition 2”, from Table 11, the best condition is

“With image” in the second data set. The purpose in our experiments is to determine how many

simulated students each bandit algorithm would have to see to draw those conclusions. In this way,

we can experiment and see how differentiable the conditions are after (for example) 500 students’

performances have been observed.

4.5.2. Comparison of Mean Rewards
A perfect selection strategy chooses the best action at each time step, so the upper bound of reward

is the reward corresponding to the best actions. For example, the upper bound of average reward is

0.746 (Condition 2) in the first data set, and 0.544 (condition “No image”) in the second data set.

52

Respectively, the lower bound is the reward with choosing the worst action. However, if a selection

strategy is effective, it should perform better than, at least as well as, the random selection strategy.

Therefore, in this work, we consider the reward output from random selection strategy as the lower

bound. Regardless of number of students in each conditional problem set, the lower bound of

reward in the first data set is: (0.746 + 0.695)/2 = 0.721, and 0.535 in the second data set.

In this work, the parameters set for the algorithms are: 𝜀 = 0.1 for 𝜀-greedy; the significant level

is set to be 0.05 in Strawman; the initial estimation: 𝑄0(𝑎) = 1, and 𝛼 = 0.1 for each condition.

As we can observe from the figures, the rewards of those algorithms are close to each other after

200 students, and the UCB1 algorithm performs a little bit worse than others. These results are all

better than the lower bound, but do not reach the upper bound. This might be contributed to two

reasons: some bandit algorithms continue to explore and so select suboptimal actions, and some

algorithms incorrectly converge on the wrong best action.

Figure 14. The mean rewards from simulating running the four algorithms on the 1st data set.

The dotted lines represent the upper bound (0.746) and lower bound (0.721) in this experiment.

Figure 15. The mean rewards from simulating running the four algorithms on the 2nd data set.

The dotted lines represent the upper bound (0.544) and lower bound (0.535) in this experiment.

upper bound

lower bound

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0 100 200 300 400

p
o

st
te

st
 s

co
re

#students

Mean reward - 1st data set

Strawman ε-greedy SA UCB1

upper bound

lower bound

0.52

0.525

0.53

0.535

0.54

0.545

0.55

0 100 200 300 400

p
o

st
te

st
 s

co
re

#students

Mean reward - 2nd data set

Strawman ε-greedy SA UCB1

53

4.5.3. Comparison of Exploration Rate
With the definition of explorative choice described in Section 4.4.3, the exploration rate at time 𝑡

is the proportion of 100 runs that is considered as explorative choice. The results of exploration

rate are shown in Figure 16 and Figure 17. The first observation from these figures is that every

algorithm has higher exploration rate in the second data set, that is because there are more actions

in the second data set, which requires the algorithms to explore more to gain information about

actions.

Second, the exploration rate differs in the four algorithms. The exploration rate in the 𝜀-greedy

algorithm does not change much but stays at very low level, since its probability to explore is 0.1 −

0.1

|𝐴|
. While in the Strawman and simulated annealing algorithms, the exploration rate decreases as

seeing more and more students, but it drops much faster in the simulated annealing algorithm,

which indicates the latter algorithm is more willing to select what it thinks the best. However,

according to the fact that they have the closed mean rewards in the two data sets, the simulated

algorithm falls into selecting suboptimal action. In the last algorithm, UCB1, the exploration rate

stays very high, about 0.3 in the first data set and 0.5 in the second, and it even increases at

beginning. It reveals that the UCB1 algorithm still has high probability to explore even it knows

the actions well in the long term.

The results for UCB1 surprised us, as the algorithm has optimal asymptotic performance. Two

reasons come to mind: first UCB1 is optima--within a constant factor. For proving theorems about

computational learning, constant factors can be ignored. For real-world science challenges, they

cannot. If UCB1 is within a very large constant factor of the optimal loss for this task, that may be

less effective than a technique that does not have a provable loss but does better in real-world

experimentation.

Figure 16. The exploration rate of the four algorithms from the simulation in the first data set.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

ex
p

lo
ra

ti
o

n
 r

at
e

#students

Exploration rate - 1st data set

Strawman SA
ε-greedy UCB1

54

Figure 17. The exploration rate of the four algorithms from the simulation in the second data set.

The second reason is related: UCB1 has a free parameter that can be set by the

experimenter. Namely, the base of the logarithm used to weight the number of times this action

has been selected. Larger bases in the logarithm give more certainty in the distribution of the

rewards across actions and the certainty in the estimate of an action’s reward on the basis of its

observed reward. We started with a default value of a natural logarithm as other paper reported the

formula in using ln rather than log (Auer, Cesa-Bianchi, & Fischer, 2002). However, as the

following sections will make clear, the exact value chosen for the logarithm greatly impacts the

results.

4.5.4. Algorithms with Different Parameters

UCB1

As discussed in the previous section, UCB1 with natural logarithm is not confident in its

estimations based on past observed rewards, and its exploration rate keeps in a high level in the

experiments, which causes that it performs worse than other three algorithms in the first data set.

To investigate the effect of logarithm base in UCB1, we experiment the algorithm with three

different logarithm bases in the first data set, e, 10, and 100, and the exploration rate after seeing

200 students stays around 0.3, 0.2, and 0.1 respectively. This result is consistent with what we

expected, larger logarithm bases bring the UCB1 algorithm more certainty in the estimation of

rewards. Moreover, as observed in Figure 18, the UCB1 algorithms with logarithm base 10 and 100

perform slightly better than the algorithm with natural logarithm after seeing 250 students.

Strawman

There is also a parameter that controls the exploration/exploitation tradeoff in Strawman, the

significant level in the t-test. Higher significant level results in the algorithm to be more likely to

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

ex
p

lo
ra

ti
o

n
 r

at
e

#students

Exploration rate - 2nd data set

Strawman SA

55

drop actions, and thus to be more exploitive; while the Strawman with lower significant level is

more cautious, and explores more to make drop decisions.

Figure 18. Mean rewards of running the UCB1 algorithm with different logarithm base in the

formula, e, 10, and 100, in the 1st data set. The algorithm with lower logarithm base would

be more explorative.

Figure 19. Mean rewards of running the Strawman algorithm with different parameters,

0.01, 0.05, and 0.1, in the 1st data set. The parameter is the significant level in the t-test of

comparing pairs of actions. Lower value makes the algorithm to be more explorative.

In this experiment, we run the Strawman with three different significant level, 0.01, 0.05, and 0.1,

in the first data set, and the exploration rate is 0.63, 0.3, and 0.2 respectively. As observed in Figure

19, the Strawman with significant level 0.05 outperforms the Strawman with 0.1 after seeing 300

students, because the latter one is more likely to make Type I error – to drop the optimal actions.

Moreover, the Strawman with 0.01 has the lowest performance after seeing a couple of students,

the reason is that it is still struggling to determine which action is significantly better. But we could

image it would have the highest performance in the longer runs.

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0 100 200 300 400

p
o

st
te

st
 s

co
re

#students

UCB1 with different parameter

UCB1_e

UCB1_10

UCB1_100

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0 100 200 300 400

p
o

st
te

st
 s

co
re

#students

Strawman with different parameter

Strawman_0.01

Strawman_0.05

Strawman_0.1

56

4.6. Discussion

4.6.1. Performance of Strawman
To put it mildly, we were not expecting Strawman’s naïve approach of using t-tests to do very well

at this task; therefore, we were surprised at its strong performance. Looking at the data, several

possible explanations emerged. First, relative to other bandit problems, educational interventions

tend to not very much in their impact. For example, in many board games there are positions where

one action will lead to a certain win (maximum possible reward), while another action will lead to

a certain defeat (minimum possible reward). Educational interventions, at least those actually

tested, tend to have far more moderate impacts. While many interventions we could propose are

likely to be harmful, those are unlikely to be proposed by experimenters, let alone survive the IRB

process. Second, classic bandit problems are posed in terms of having many levers to select from,

and the advantages of clever selection algorithms increases with more potential options. Most

human-designed studies have a relatively small number of conditions, thus blunting the benefit of

advanced bandit algorithms.

This combination of not having large differences in intervention effectiveness and a relatively small

number of interventions affects the performance of bandit algorithms differently. Algorithms such

as UCB1 will probably stay high exploration rate, due to the chance of selecting an action being

reduced by the times the action has been selected. Relatively smaller variation compared to other

bandit tasks means less difference from random actions. In contrast, the approach using t-tests is

sensitive to both differences in effectiveness and the confidence in the estimate. Similarly,

techniques such as SRT that decreases the temperature as additional data accumulate will do

relatively better for this task.

4.6.2. Exploration and Exploitation
A key difference between selection strategies is how they balance the exploration and exploitation

in the process of playing actions, and this is measured in this work by exploration rate. A strategy

with high exploration rate tends to select actions with equal chance, and thus it has general

knowledge about the payoff associated with each action. In the opposite way, the strategy with low

exploration rate prefers to stick with selecting the “best” action according to what the strategy has

learned currently. However, once it recognizes a suboptimal action as the “best”, it is hard to correct

the mistake.

A selection strategy exhibits different exploration rate in different environment, and there are two

factors might affect the result. The first is the size of action space. With more possible actions, the

strategy should explore more to learn the reward distribution for each action. For example, all the

57

algorithms, introduced in this work, except the 𝜀-greedy, have higher exploration rates at the same

time step in the second data set than in the first data set. The second factor is the differences between

rewards correspond to the actions. A strategy should explore more to gain enough certainty in

estimation of rewards when actions produce similar rewards.

4.7. Conclusion

In this chapter, we analyzed the benefit from replacing random assignment with k-armed bandit

algorithms in ASSISTments – students’ overall performance could be improved significantly. We

also introduce a new selection strategy, Strawman, that is based on statistical t-test, and we compare

it with other k-armed bandit algorithms in real ASSISTments experiments. This strategy is more

reasonable to be a baseline for the k-armed bandit algorithms than the random selection strategy.

To be honest, we were surprised that we have not seen other bandit comparisons using what seems

to be the obvious method -- essentially the method taught to all psychology undergraduate students

on how to evaluate experiments (with a small caveat that they are not taught to keep testing for

effects all the time, the way this method does).

We also introduce a metric, exploration rate, to measure how likely a selection strategy would make

an explorative choice at each step. The results reveals that the algorithms exhibit different tradeoff

between exploration and exploitation in the process of choosing actions. General speaking, an agent

would explore more when it knows little about the whole environment, and thus has high

exploration rate. Therefore, the metric reveals, in some aspects, how confident an agent estimates

the rewards from choosing possible actions.

Can we do better? Can we make more personalized choice for each student? In the next chapter, I

will discuss the effect of contextual bandits in ASSISTments, and I will also investigate different

aspect of related features in the educational experiments, such as if a feature has aptitude treatment

effect in an experiment, or if a feature has the same effect in multiple experiments.

58

CHAPTER 5

Contextual Bandits

5.1. Introduction

In normal k-armed bandit problems, we determine which arm to pick based on the history of

previous choices and observed rewards. While in contextual bandit problems, we have access to a

side information, 𝑋, called context. Both bandits share the same goal of picking actions that gives

largest total rewards. There are two important issues in contextual bandit problems, how to use the

context to estimate rewards, and how to use the estimation to make decisions.

Previous works used various ways to tackle those two issues. For example, Li et al. applied LinUCB

(Li, Chu, Langford, & Schapire, 2010), which combined linear regression model with upper

confidence bound (UCB), to personalize news articles for each user, with the goal of maximizing

the probability of clicking the recommended articles. Lu et al. proposed an algorithm that clustered

the context into similar regions and then ran a k-armed bandit algorithm in each region (Lu, Pál, &

Pál, 2010). Wang et al. discussed a two-armed bandit problem with different connection between

context and reward (Wang, Kulkarni, & Poor, 2005): direct information, the best arm is a function

of context, the best arm is not a function of context, and mixed case. Langford and Zhang introduced

an ensemble-learning-like contextual bandit algorithm, based on epoch-greedy algorithm, which

combined different hypotheses to make decision (Langford & Zhang, 2008). In each epoch, it made

one step exploration that selected an arm uniformly at random, and then used the best hypothesis

based on the context and historical records to pick the arms in the next exploitation steps (pre-

defined in the algorithm).

Recently, bandit problems have attracted much attention in educational area, such as applying k-

armed bandits for online optimization of teaching sequences in (Clement, Oudeyer, Roy, & Lopes,

2014), and using contextual bandits framework for personalized learning action selection that aims

to maximize students’ success on the follow-up assessment in (Lan & Baraniuk, 2016). However,

very few works use contextual bandits in the educational area. In this dissertation work, I focus on

investigating the effect of contextual bandits in real ASSISTments experiments.

 In the rest of this chapter, I will illustrate why we need contextual bandits in ASSISTments, and

then I will answer the three research questions related to this problem: 1). What context should be

incorporated into the bandits? 2). How to organize the context? 3). How much benefit?

59

5.2. Context Makes Better Personalization

Bandit algorithms are able to make use of context in order to make better decisions. For example,

perhaps a certain intervention works well for highly-motivated students, but is ineffective for

unmotivated students. It would be useful if we were able to provide our bandit algorithm with

some context about the learner to improve its decision making. Therefore, we set out to capture

that bit of context to potentially aid decision making. Take the second data set in Section 4.5.1 as

an example. Students’ performance in each condition is shown in Table 12, according to this table,

the best performance we can achieve is 0.544 by assigning all students into “With image”.

To illustrate the effect of contextual bandits, we disaggregate the original data sets with a student

feature, called “performance in previous 3 days”. This feature represents the percent of correctness

of all items a student practiced in ASSISTments in the three days just before the experiment. For

example, suppose a student starts the ASSISTments experiment at time 𝑡𝑠, then we search all items

from the student’s records in the system with the corresponding time, 𝑡, having: 0 𝑑𝑎𝑦 < 𝑡𝑠 − 𝑡 ≤

3 𝑑𝑎𝑦𝑠.

We separate the data set into three groups according to the feature 𝑥, proportion of correctness over

previous 3 days: high (0.85 ≤ 𝑥 ≤ 1), moderate (0.7 ≤ 𝑥 < 0.85), and low (0 ≤ 𝑥 < 0.7). We

chose those cutpoints to split the students into roughly 3 equal-sized groups. Students’ performance

in each group of the first data set is in Table 13. By picking the optimal condition for each group,

“No image” for students in low and high level, and “With image” for students in moderate level,

the upper bound is: (0.562 ∗ 75 + 0.54 ∗ 66 + 0.586 ∗ 65)/206 = 0.563, which is higher than

the one without being disaggregated by this feature. However, this could be resulted from

overfitting or cherry-picking, the feature that is useful here might not be effective in the other data

sets. Therefore, a feature should be evaluated across different experiments.

In summary, proper context brings aptitude treatment effect in students’ learning process, and thus

results in better upper bound for the bandit algorithms. But which context could bring such effect?

Moreover, we disaggregated the data set with only one feature in this experiment, how to make the

disaggregation with multiple features, in order to obtain the best aptitude treatment effect? Finally,

we just computed the estimated upper bound of applying k-armed bandits on the data set, what are

the real results of running the bandits without context and the contextual bandits on the data set?

Could context still bring better results? These questions will be answered in the next sections one

by one.

60

Table 12. Students’ posttest scores in each conditional problem set in the original data set.

Students with the bolded condition have higher mean posttest.

Condition #Students Mean Std.

Correctness only 74 0.518 0.214

With image 63 0.544 0.229

No image 69 0.542 0.201

Table 13. Students’ posttest scores in the data set with disaggregated by students’

performance in previous 3 days.

Performance Condition #Students Mean Std.

Low

Correctness only 29 0.473 0.221

With image 25 0.544 0.227

No image 21 0.562 0.203

Moderate

Correctness only 22 0.513 0.209

With image 18 0.54 0.263

No image 26 0.489 0.218

High

Correctness only 23 0.58 0.206

With image 20 0.547 0.21

No image 22 0.586 0.172

Figure 20. Different effectiveness of interventions in two groups of students. In the cases (a) and (b),

the interventions have no effect because the optimal intervention is intervention 1 for both groups. In

the cases (c) and (d), the interventions have treatment effect in the groups, intervention 1 is optimal

for the group A, while intervention 2 for group B. According to the difference between interventions in

each group, the interventions have small effect in the case (c), and large effect in the case (d).

61

5.3. Feature Evaluation

5.3.1. Mechanism

1. Cross effect

According to work in (Pashler, McDaniel, Rohrer, & Bjork, 2008), a learning-style hypothesis

is accepted if the optimal learning method of one kind of learner is different from the optimal

learning method of the other kind of learner, and two crossed lines are shown in the plot of

learning outcomes with respect to learning methods and learner styles, as illustrated in Figure

20. In this work, we also regard a feature is useful if and only if the feature has such “cross

effect”: the optimal option differs in the groups which are disaggregated by the feature.

We define the cross effect as the improvement of target value from picking the overall best

action to picking the best action for each group. If there is no cross effect, then there is no

difference with disaggregated by the feature, and thus the improvement is 0. For example, in

Figure 20, there is no cross effect in the cases (a) and (b), and positive cross effect in (c) and

(d). The metric to evaluate a feature, 𝑥, in a data set, 𝐷, is defined as:

𝐺𝑎𝑖𝑛(𝑥, 𝐷) = ∑

𝑚𝑒𝑎𝑛 (𝐷
𝑔𝑖,𝑎=�̂�(𝐷𝑔𝑖

)
) ∗ |𝐷𝑔𝑖

|

|𝐷|
𝑔𝑖∈𝐺

− 𝑚𝑒𝑎𝑛(𝐷𝑎=�̂�(𝐷))

�̂�(𝐷) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑗∈𝐴 (𝑚𝑒𝑎𝑛 (𝐷𝑎=𝑎𝑗
))

Where 𝐺 is the set of all groups disaggregated by the feature, 𝐷𝑔𝑖
 is the data in the group 𝑔𝑖,

𝐴 is the set of all possible actions, 𝐷𝑎=𝑎𝑗
 is the instances in 𝐷 of which action is 𝑎𝑗, 𝑚𝑒𝑎𝑛(𝐷)

is the mean reward of all instances in 𝐷, and �̂�(𝐷) represents the best action in the data set 𝐷.

Taking the data set in 5.2 as an example, the feature “student’s performance in previous 3

days” separates the original data set into three groups, as shown in Table 12 and Table 13, and

the corresponding cross effect is: (0.562 ∗ 75 + 0.54 ∗ 66 + 0.586 ∗ 65)/206 − 0.544 =

0.019.

In the rest of this dissertation work, we only consider binary disaggregation. If a feature 𝑥 is

continuous, given a split value 𝑥𝑖, it separates the data into two groups, one with the feature

value 𝑥 ≤ 𝑥𝑖, and the other with 𝑥 > 𝑥𝑖; if 𝑥 is discrete, given one of its possible value 𝑥𝑖, it

separates the data into two groups, one with 𝑥 = 𝑥𝑖 and the other with 𝑥 ≠ 𝑥𝑖.

2. Factorial Analysis of Variance (ANOVA)

62

Factorial ANOVA measures whether a combination of independent variables predict the value

of a dependent variable (Devore, Farnum, & Doi, 2013). In this work, we consider the feature

to be evaluated as one independent variable, the tutorial condition in ASSISTments as the

other independent variable, and the reward as dependent variable. P-value outputted from

factorial ANOVA is used to measure significance of the combination.

To evaluate a feature in an experiment, we will use its every possible value as a cut point, and

compute the corresponding cross effect and p-value, output from factorial ANOVA. If there are

positive cross effect in at least one splits, then we consider the feature is useful in that experiment.

With a pre-defined p-value threshold, we can screen out the features that cannot bring a significant

cross effect.

5.3.2. Experiments

Data

This data set is collected from 22 ASSISTments experiments (Heffernan & Heffernan, 2014). In

each experiment, a student is randomly assign into one of two groups, and the two groups are

associated with different tutoring conditions, such as video feedback and text feedback. And each

experiment has a unique pair of conditions. After removing the missing values, the experiment with

minimum size has 121 students, 1640 for the maximum, and there are 10690 students in total. In

the rest of this dissertation work, the experiments of contextual bandits are executed on this data

set.

Features and Reward Function

In each experiment, students are learning a specific skill by practicing related problems, and they

are required to obtain 3 correct in a row to complete the experiment. In this dissertation work, we

will investigate which condition is optimal for each student, we defined the reward function as:

𝑟𝑒𝑤𝑎𝑟𝑑 = {𝑖𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒: (3/#𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠)0.7

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒: 0

Where “#practices”, also called mastery speed, is the number of problems a student takes to

complete the experiment. The range of reward value is from 0 to 1, and the larger the better. Thus,

there are exactly two different conditions in each experiment. In this work, we will evaluate 8

features in the experiments:

1. Prior completion rate: student’s completion rate in all prior participated experiments;

2. Prior percent of correctness: student’s percent of correctness in all prior practiced problems;

63

3. Prior mastery speed: student’s average mastery speed in all prior participated experiments,

and computed as z-score over all students;

4. Imputed gender: student’s gender that is imputed according to the student’s name. This

feature has three values, female, male, and unknown;

5. Location: this is where student live, categorized as urban, suburban and rural;

6. Prerequisite performance: student’s percent of correctness in the problems of which related

skills are prerequisite to the skill he/she is learning;

7. Percent of correctness in previous 3 days: student’s percent of correctness in the problems

that were practiced within 3 days;

8. Learning rate in previous 3 days: the average learning rate in the experiments a student

participated within 3 days. Learning rate represents how fast a student learns a skill. It first

computes the percent of correctness in each item, and then construct a linear regression

model on those values with respect to number of practices items. The slope in the linear

regression model is considered as student’s learning rate in this skill. For example, if a

student’s responses in a skill are: wrong, wrong, wrong, right, and right, then the series of

percent of correctness is: 0, 0, 0, 25%, and 40%. And the corresponding linear regression

model is shown in Figure 21, thus, his learning rate is 0.105.

Figure 21. A linear regression model constructed on a student’s %correctness with respect
to number of practiced items. In this sample, the student’s responses is wrong, wrong, wrong,
right, and right, so the series of %correctness is 0, 0, 0, 25%, and 40%. The slope in the model,
0.105, is this student’s learning rate.

Results

1. Location

In the data set, 10% of students live in Urban settings, 13% in rural, and 77% in suburban. In each

experiment, the location values are almost the same, since most of students who participated in the

experiment are from the same school. Therefore, personalizing based on this feature could not help

y = 0.105x - 0.185

-0.10

0.10

0.30

0.50

0 1 2 3 4 5 6

s3

64

many students, and the corresponding cross effect would be very small. For those reasons, I will

disregard this feature.

2. Imputed gender

To compute the cross effect of imputed gender for a data set, first, we use each value to separate

the data set into two groups, for example, “female” and “not female”. Then we compute the cross

effect on the separated groups. Finally, we pick the best one as the cross effect of imputed gender

in the data set, and the corresponding p-value for the best cross effect is computed.

In the 15 out of 22 ASSISTments experimental data sets, imputed gender results in a positive cross

effect, which means the feature is useful in personalization in those experiments. Of those positive

cross effects, only 1 with 𝑝 ≤ 0.05, 2 with 𝑝 ≤ 0.1, 5 with 𝑝 ≤ 0.2, and 9 with 𝑝 ≤ 0.3. So most

of the effects are not statistically reliable.

3. Prerequisite performance

Because students did not learn the prerequisite skills, or teachers thought those skills were not

important, or other reasons, we obtained a very sparse prerequisite performance in the data sets. As

shown in Table 14, there are only 5 experimental data sets containing at least one student who

started learning the related prerequisite skills. In the other 17 experiments, no one started learning

the pre-required skills. Therefore, we will consider using this feature in the first two experiments,

so as not to lose too much data.

To evaluate prerequisite performance in a data set, we will consider every value in {𝑥1, 𝑥2, … 𝑥100}

as a cut point, where 𝑥1 is the lowest value in the data set, 𝑥𝑖+1 = 𝑥𝑖 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒, and 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 =

(ℎ𝑣 − 𝑙𝑣)/100 (ℎ𝑣 – highest value in the data set, 𝑙𝑣 – lowest value in the data set). For a given

value, say 𝑥𝑖, which separates the data set into two groups, 𝑥 ≤ 𝑥𝑖 and 𝑥 > 𝑥𝑖, and then compute

the cross effect and p-value on the separated groups. The computed cross effect and p-value with

respect to cut point are shown in Figure 22 and Figure 23 respectively. In both data sets, prerequisite

performance results in positive cross effect, and the result is more reliable when cut point is less

than 0.3 in the data set 293151, while the result is more reliable when cut point is more than 0.5 in

the data set 226210.

Table 14. The proportion of data having prerequisite performance in each experiment.

Experiment Has prerequisite performance available

293151 88%

226210 80%

243393 50%

263109 40%

303899 2%

65

Figure 22. The cross effect of prerequisite performance in two data sets.

Figure 23. The p-value of prerequisite performance in two data sets.

4. Other five features

For each other feature, since they are all continuous features, similar to as prerequisite performance,

they are also evaluated with 100 possible cut point in each experiment. The results show that those

features are useful at least one of in the 22 experiments, because each of them can produce positive

cross effect in the experiments. To investigate the generalizability of a feature, for each cut point,

we count in what proportion of the 22 experiments, this feature produces the cross effect, and the

corresponding p-value with 𝑝 ≤ 0.05, 𝑝 ≤ 0.1, 𝑝 ≤ 0.2, and 𝑝 ≤ 0.3. To reduce the effect of noise,

we smooth the result by replacing the cross effect of each value with the average of its 5 neighbors,

including itself. The results of those features are shown in Figure 24 to Figure 28 respectively.

As shown in the figures, the effectiveness of prior percent of completion and percent of correctness

in 3 previous days does not vary too much with respect to their cut points; while the feature, prior

mastery speed, is more effective in the experiments between -1.0 and 1.0, and the feature, learning

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1 1.2

cut point

cross effect

PS_226210 PS_293151

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

cut point

p-value

PS_226210 PS_293151

66

rate in 3 previous days are more effective between -0.1 and 0.1; in general, the effectiveness of

prior percent of correctness increases with cut point, but it drops afterwards, and the largest

proportion is approximately 83% when the cut point is 0.72.

5.3.3. Conclusion
In summary, we analyzed the effect of 7 features in making better personalized treatment in the 22

ASSISTments experiments. The results show that those features, except prerequisite performance,

are useful in all 22 experiments. There are only two experiments that have enough students with

prerequisite performance, but this feature can significantly improve students’ learning outcomes in

the two experiments. Therefore, in the next step, modeling multiple features together, I will use

prerequisite performance in the experiments, 293151 and 226210, and the other 6 features in all 22

experiments.

Figure 24. The percentage of positive cross effect of prior %completion and statistically

reliable effect in the 22 experiments.

Figure 25. The percentage of positive cross effect of prior %correct and statistically reliable

effect in the 22 experiments.

0%

20%

40%

60%

80%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
er

ce
n

ta
ge

 o
f

2
2

 e
xp

er
im

en
ts

cut point

prior %completion

pos_cross_effect p<=0.05 p<=0.1 p<=0.2 p<=0.3

0%

20%

40%

60%

80%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9p
er

ce
n

ta
ge

 o
f

2
2

 e
xp

er
im

en
ts

cut point

prior %correct

pos_cross_effect p<=0.05 p<=0.1 p<=0.2 p<=0.3

67

Figure 26. The percentage of positive cross effect of prior mastery speed and statistically

reliable effect in the 22 experiments.

Figure 27. The percentage of positive cross effect of %correctness in 3 previous days and

statistically reliable effect in the 22 experiments.

Figure 28. The percentage of positive cross effect of learning rate in 3 previous days and the

statistically reliable effect in the 22 experiments.

0%

20%

40%

60%

80%

100%

-5.17 -4.36 -3.54 -2.73 -1.91 -1.10 -0.29 0.53 1.34 2.16
p

er
ce

n
ta

ge
 o

f
2

2
 e

xp
er

im
en

ts

cut point

prior mastery speed

pos_cross_effect p<=0.05 p<=0.1 p<=0.2 p<=0.3

0%

20%

40%

60%

80%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9p
er

ce
n

ta
ge

 o
f

2
2

 e
xp

er
im

en
ts

cut point

pre-day %correct

pos_cross_effect p<=0.05 p<=0.1 p<=0.2 p<=0.3

0%

20%

40%

60%

80%

100%

-0.5 -0.4 -0.3 -0.2 -0.1 0.00 0.1 0.2 0.3 0.4

p
er

ce
n

ta
ge

 o
f

2
2

 e
xp

er
im

en
ts

cut point

pre-day learning rate

pos_cross_effect p<=0.05 p<=0.1 p<=0.2 p<=0.3

68

5.4. Modeling Multiple Features

5.4.1. Introduction
The ability to customize instruction to individuals is a great potential for adaptive educational

software. Unfortunately, beyond mastery learning and learner control, there has not been much

work with adapting instruction to individuals. In this work, we focused on constructing a decision

tree that produced treatment effect for different groups of students, and thus to make customization

for each student.

There are many research works that utilize student’s feature to personalize. Even since Bloom’s

paper showing a 2 standard deviation effect size of individual tutoring (Bloom, 1984), the

computer’s ability to adapt instruction has been pitched as a solution. However, most educational

software does little adaption to the individual beyond mastery learning and learner control. Each

student (largely) sees the same help messages and the same instruction. Mastery learning enables

students to keep practicing a skill until they have mastered it. Learners maintain a degree of control,

such as selecting which story to read next or which type of help to receive (e.g., (Mostow & Beck,

2006)). In another example, Dagger et al. introduces a e-learning system which composes adaptive

courses according to the concept space, the pedagogical strategy, the learning activities, and the

adaptive mechanisms, as well as user’s status and preferences (Dagger, Wade, & Conlan, 2005).

We define “option” as the choices a tutoring system has for teaching at a particular moment. For

example, the system could have the options of showing a video on Pythagorean theorem, or going

back on working on a prerequisite skill. The reason to implement customization service is that

students’ learning outcomes might differ in tutoring options, because they have different learning

styles (Cha, Kim et al., 2006; Pashler, McDaniel, Rohrer, & Bjork, 2008), prior knowledge

(Botelho, Wan, & Heffernan, 2015; Wan & Beck, 2015), or other factors that affect which type of

instruction is most effective for this learner. Therefore, estimating the student’s potential outcomes

for each option is the key for customization.

In this dissertation work, we explore identifying the groups of students such that the interventions

have treatments effect in these groups. We use decision trees to estimate students’ learning

outcomes, and thus to make customization. There are four reasons to use the decision tree

technique. First, it implicitly performs feature selection as at each step it selects the feature that

provides maximum information. Second, it is easy to either manually or automatically perform a

rule extraction from a tree. Third, as a consequent of the first two points, a decision tree’s structure

is easy to understand and explain to human practitioners. If teachers have a say in what software is

69

used in their classrooms, using a technique that is (relatively) easy to explain is essential. Fourth,

it is easy to combine decision tree structure with k-armed bandit algorithms. As discussed in

previous sections, it is very hard and time consuming to apply a k-armed bandit algorithm for each

combination values of multiple features. In this dissertation work, we will apply a bandit algorithm

for each leaf node in the decision tree, while we can control the complexity of the decision tree by

setting with appropriate parameters.

Unlike traditional classification problem, such as in (Cha, Kim et al., 2006), where every student

is marked with which option is optimal for him/her, we focus the problem where we do not know

a priori how each student best learns. Even worse, we only know how a student would perform

with one of the possible options. Therefore, we must find commonalities in what types of students

learn better from one intervention vs. another. Consequently, we need to employ the decision tree

to determine difference of outcome between options for each student, based on the corresponding

features, and then output the best option for this student.

One possible approach to solve the problem is to build a model to estimate the effect of each

possible option, and then select the one with the best estimated outcome for this student (Cha, Kim

et al., 2006; Kim, Lee, Shaw, Chang, & Nelson, 2001). However, it has three disadvantages.

1. The mechanism would be very complicated if the size of possible options is large, like in

course recommendation systems (Weber, Kuhl, & Weibelzahl, 2001; Williams, Li et al.,

2014), each course could be considered as an option, and there might be tens of different

options.

2. It would be hard to extract rules from the decision trees if they are constructed on different

set of features or nodes are split with different values.

3. The constructed models might be meaningless, and learn about what is termed “unacceptable

evidence” (Pashler, McDaniel, Rohrer, & Bjork, 2008) of a meaningful interaction. For

example, Figure 29 shows that students, no matter with high or low knowledge level, would

always perform better with option 1. This conclusion does not need a decision tree. The reason

for the overly complex model is that traditional decision tree algorithms use criteria such as

information gain, Gini index, impurity, and so on, to construct a tree with the least error in

prediction (Blockeel & De Raedt, 1998; Breiman, Friedman, Stone, & Olshen, 1984; Quinlan,

2014). However, in this problem, we should focus on building decision trees to find splits

that would alter which option works best. As a result, the decision tree is “acceptable

evidence”, i.e., the best option differs for different types of students.

70

Figure 29. Example of decision trees based on Pashler et al.’s framework of “unacceptable

evidence” (Pashler, McDaniel, Rohrer, & Bjork, 2008). These two decision trees are useless,

because students would always have a better outcome with option 1.

To overcome those disadvantages, we will introduce a new decision tree algorithm in this work that

constructs only one decision tree for all possible tutoring options. In this manner, we address our

research question: which option is optimal for a particular type of student? Moreover, many studies

focus on investigating the effect of an intervention. However, this work explores a set of 22

experiments to find a mechanism for customizing instruction to an individual student.

5.4.2. Background
Decision trees are a machine learning method for constructing prediction models. Starting at the

whole data space, it selects an appropriate feature, according to a certain criterion, to split the data

space into several sub-groups, and each sub-group is recursively deployed the split process. The

tree keeps growing until stopping criteria are met, such as the maximum tree depth have reached,

or all instances in the data space belong to a single value of target variable, or some rules else

(Blockeel & De Raedt, 1998). As a result, each internal node represents a feature that splits the tree,

and each leaf node is marked with a target value or a probability distribution over the target values.

Common criteria that are used in split when the target variable is discrete include information gain

(Quinlan, 1987), gain ratio (Quinlan, 2014), Gini index (Breiman, Friedman, Stone, & Olshen,

1984), distance measure (De Mántaras, 1991), and twoing criteria (Breiman, Friedman, Stone, &

Olshen, 1984). Taking Gini index as an example to illustrate the split process.

Gini index is defined as: 𝐺𝑖𝑛𝑖(𝐷) = ∑
|𝐷𝑦=𝑦𝑖

|

|𝐷|𝑦𝑖∈𝑌 , where 𝐷 is current data space to be split, 𝑌 is

the set of possible target values, and 𝐷𝑦=𝑦𝑖
 is the data set where every instance has the target value

𝑦𝑖. The Gini gain, which is used to evaluate the features at each split step, is defined as:

𝐺𝑖𝑛𝑖 𝐺𝑎𝑖𝑛(𝑥, 𝐷) = 𝐺𝑖𝑛𝑖(𝐷) − ∑
|𝐷𝑥=𝑥𝑖

|

|𝐷|
𝑥𝑖∈𝑋

∗ 𝐺𝑖𝑛𝑖(𝐷𝑥=𝑥𝑖
)

71

Where 𝑥 is the feature to be evaluated, and 𝑋 is the set of its possible values. The algorithm tends

to pick the feature with the largest Gini gain in the split process.

If the target variable is continuous, the tree is referred as regression tree, and each leaf node

represents the mean target value of all training instances that follow into this node. A common used

criterion in the split process is sum of squared error (SSE):

𝑆𝑆𝐸(𝐷) = ∑(𝑦𝑑 − �̅�)2

𝑑∈𝐷

Where �̅� is the mean of target variable in the data space 𝐷. And the criterion in selecting feature to

split is:

𝑔𝑎𝑖𝑛(𝑥, 𝐷) = 𝑆𝑆𝐸(𝐷) − ∑ 𝑆𝑆𝐸(𝐷𝑥=𝑥𝑖
)

𝑥𝑖∈𝑋

Another important step in decision tree induction is discretization, this is deployed on the

continuous features. A simple discretization technique is bin method, which uses a continuous

feature to separate the data into groups with equal-width or equal frequency. Other sophisticated

methods, as summarized in (Liu, Hussain, Tan, & Dash, 2002), are categorized as entropy -based

methods, dependency-based methods, accuracy-based methods, and merging methods.

In this work, our discretization method makes a binary split, like in ID3 (Quinlan, 1986) and C4.5

(Quinlan, 2014), and it tends to find a cut point that outputs two groups with the most

“discriminability” on the options. More details are discussed in the next section.

5.4.3. Methodology

Split Criterion

Here we also use cross effect, as defined in Section 5.3, as split criterion to evaluate features in

decision tree construction. The metric is defined as:

𝐺𝑎𝑖𝑛(𝑥, 𝐷) = ∑

𝑚𝑒𝑎𝑛 (𝐷
𝑔𝑖,𝑎=�̂�(𝐷𝑔𝑖

)
) ∗ |𝐷𝑔𝑖

|

|𝐷|
𝑔𝑖∈𝐺

− 𝑚𝑒𝑎𝑛(𝐷𝑎=�̂�(𝐷))

�̂�(𝐷) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑗∈𝐴 (𝑚𝑒𝑎𝑛 (𝐷𝑎=𝑎𝑗
))

Where 𝐺 is the set of all groups disaggregated by the feature, 𝐷𝑔𝑖
 is the data in the group 𝑔𝑖, 𝐴 is

the set of all possible actions, 𝐷𝑎=𝑎𝑗
 is the instances in 𝐷 of which action is 𝑎𝑗, 𝑚𝑒𝑎𝑛(𝐷) is the

mean reward of all instances in 𝐷, and �̂�(𝐷) represents the best action in the data set 𝐷.

Taking the data in Table 15 as an example to illustrate how to compute the cross effect. Overall

speaking, the option 0 is better than the option 1, since the mean target value of all students with

72

option 0 is 0.74, larger than the mean target value of option 1, 0.72. Suppose the cut point for the

feature A is 0.5, then the data is split into two groups: group 1 – “𝐴 ≤ 0.5” and group 2 – “𝐴 >

0.5”. In the group 1, there are two students with option 0, the 6th and 9th student, and their mean

target value is (0.9+0.9)/2=0.9. Consequently, the mean target value for the students in group 1

with option 1 is 0.63, group 2 with option 0 is 0.63, and group 2 with option 1 is 0.85. By picking

the optimal option for each group, which is option 0 for group 1 and option 1 for group 2, the cross

effect is:
0.9∗|𝐷𝑔𝑟𝑜𝑢𝑝 1|+0.85∗|𝐷𝑔𝑟𝑜𝑢𝑝 2|

|𝐷|
− 0.74 =

0.9∗5+0.85∗5

10
− 0.74 = 0.135.

Discretization

In this work, we deploy binary split in decision tree induction. To evaluate a discrete feature 𝑥, for

each possible value 𝑥𝑖, we consider the data space is divided into two groups, the one with “𝑥 =

𝑥𝑖” and the other with “𝑥 ≠ 𝑥𝑖”, and then we compute cross effect according to this division.

Finally, the best one is marked as the cross effect of 𝑥.

To use a continuous feature to split the decision tree, we need to set a cut point. To discretize a

continuous feature 𝑓 , as its values are denoted in order as {𝑥1, 𝑥2, … , 𝑥𝑚}, each value will be

considered as a cut point, so that a value, 𝑥𝑖, will divide the data into two groups, one containing

the instances with 𝑥 ≤ 𝑥𝑖, and the other with 𝑥 > 𝑥𝑖. The cross effect according to this division

will be computed. Therefore, we need to examine 𝑚 − 1 possible values. Figure 30.a shows all

computed cross effect of the feature A in Table 15.

Table 15. A sample data set, which contains a continuous feature, A, a discrete feature, B, an

option variable with possible value 0 and 1, and a continuous target variable.

student A B Option Target

1 0.4 0 1 0.7

2 0.8 0 0 0.6

3 0.7 1 0 0.8

4 0.1 0 1 0.6

5 0.2 1 1 0.6

6 0.4 0 0 0.9

7 0.6 0 0 0.5

8 0.9 1 1 0.8

9 0.2 1 0 0.9

10 0.8 1 1 0.9

73

Figure 30. (a) the cross effect with respect to each value of feature A in Table 15; (b) the

smoothed effect calculated by taking the average cross effect of 5 neighbors for each cut point.

After computing the cross effect for all possible values of a continuous feature, we are not going to

pick the value with the best cross effect as the cut point for this feature. The reason is that there

might be noise in the data, which is very possible in real experimental data. And the noise would

cause high-frequency oscillations, so the best cross effect might be obtained by chance. To reduce

the effect of noise, we smooth the result by replacing the cross effect of each value with the average

of its 5 neighbors, including itself. That is, for each feature value, 𝑓𝑖, with the corresponding cross

effect 𝑐𝑒𝑖 , we will compute a smoothed effect, 𝑠𝑒𝑖 = (𝑐𝑒𝑖−2 + 𝑐𝑒𝑖−1 + 𝑐𝑒𝑖 + 𝑐𝑒𝑖+1 + 𝑐𝑒𝑖+2)/5.

Figure 30.b is the smoothed effect of feature A in Table 15.

Finally, we pick the value with the best smoothed effect as the cut point for a continuous feature.

We also use factorial ANOVA(Devore, Farnum, & Doi, 2013) on the resulted disaggregation to

compute p-value for both continuous feature and discrete feature. This p-value will be used in

decision tree induction.

Decision Tree Induction

Our method is a top-down induction method, starting with the whole data set, it keeps splitting the

data set into two sub data sets, until every possible split meet stop criterion 1 or 2:

Stop criterion 1: in one of the two sub data sets, there is an option, such that the number of

instances with the option is less than 𝑛, a parameter of minimum size used in the induction.

Stop criterion 2: the resulted p-value > 𝑙, where 𝑙 is another parameter in the induction, which

indicates the significant level of splitting.

The split procedure is shown in Figure 33, line 1-3 is initialization; line 4-12 is used to pick the

feature alone with its corresponding cut point that produces the most significant split. A significant

split means the p-value, computed from apply factorial ANOVA on the split groups, is less than or

74

equal to a pre-defined significant level 𝑙; line 13-18 constructs an internal node with the feature and

cut point, and then recursively runs the split procedure on the two split sub data sets; if such feature

does not exist, which means the stop criterion 2 has been reached, then the tree stop growing, so

line 20 creates a leaf node. Finally, this procedure outputs either an internal node or leaf node.

Another two important procedures of our method, the procedure of picking the cut point with the

best valid partition and the procedure of dividing a data set into two sub sets, are shown in Figure

31 and Figure 32 respectively. The former procedure takes a data set, a feature and minimum size

as input, and it examines all valid partitions that do not meet the stop criterion 1. Thus, it outputs

the best smoothed effect and the associated cut point. Input of the later procedure includes a data

set, a feature, and a value of that feature. The procedure divides the input data set into two sub data

sets, according to whether the feature is discrete or not, and it outputs the two sub data sets.

PROCEDURE pickBestCutpoint(𝐷, 𝑓, 𝑛):
1: best_cut ← −∞
2: best_effect ← −∞
3: FOR each possible value 𝑓𝑖 of 𝑓:
4: (𝐷1 , 𝐷2) ← divide(𝐷, 𝑓, 𝑓𝑖)
5: IF meet stop criterion 1:
6: CONTINUE
7: END IF
8: se ← computeSmoothedEffect(𝐷, 𝑓, 𝑓𝑖)
9: IF se > best_effect:
10: best_effect ← se
11: best_cut ← 𝑓𝑖
12: END IF
13: RETURN (best_cut, best_effect)

Figure 31. The process of picking the cut point for a given feature, 𝒇, in a data set, 𝑫, that

produces the best smoothed effect, with a parameter, 𝒏, that is used in the stop criterion 1,

according to the method described in Section “Discretization”.

PROCEDURE divide(𝐷, 𝑓, 𝑓𝑖):
1: IF 𝑓 is discrete:
2: 𝐷1 ← 𝐷𝑓=𝑓𝑖

3: 𝐷2 ← 𝐷𝑓≠𝑓𝑖

4: ELSE
5: 𝐷1 ← 𝐷𝑓≤𝑓𝑖

6: 𝐷2 ← 𝐷𝑓>𝑓𝑖

7: END IF
8: RETURN (𝐷1 , 𝐷2)

Figure 32. The process of dividing a data set into two sub sets, given a feature and a value.

75

PROCEDURE split(𝐷, 𝑅, 𝑛, 𝑙):
1: best_feature ← ‘’
2: cut ← −∞
3: best_effect ← −∞
4: FOR each feature 𝑓 in 𝑅:
5: (𝑓𝑖 , 𝑒) ← pickBestCutpoint(𝐷, 𝑓, 𝑛)
6: 𝑝 ← computePValue(𝐷, 𝑓, 𝑓𝑖)
7: IF 𝑝 ≤ 𝑙 AND 𝑒 > best_effect:
8: best_effect ← 𝑒
9: best_feature ← 𝑓
10: cut ← 𝑓𝑖
11: END IF
12: END FOR
13: IF best_feature ≠ ‘’:
14: root ← createInternalNode(𝐷,best_feature,cut)
15: 𝑅 ← 𝑅 − 𝑓
16: (𝐷1 , 𝐷2) ← divide(𝐷,best_feature,cut)
17: root.left = split(𝐷1 , 𝑅, 𝑛, 𝑙)
18: root.right = split(𝐷2 , 𝑅, 𝑛, 𝑙)
19: ELSE
20: root ← createLeafNode(𝐷)
21: END IF
22: RETURN root

Figure 33. The split process in decision tree induction. It takes current data set, a set of

features, and other two parameters that are used in the stop criteria as input, and it outputs

the root node of the tree constructed based on the input data set.

5.4.4. Experiments and Results

Experiment Setup

We use 5-fold cross validation to evaluate our method on two types of data sets, one is the simulated

data set that is generated with pre-defined distributions, and the other is collected from 22

ASSISTments experiments.

The process of evaluating trained model in this work is different from in the traditional

classification problems, since we going to evaluate how well students would have done by given

the customized options, not how well the model predicts. After a model is trained by the training

set, each separated group, according to the model, is marked with an option which brings the best

mean target values. For example, in the decision tree constructed by our method, each leaf node

can be considered as a group.

To evaluate the trained model in the testing set, first, the testing set is also assigned into

corresponding groups based on the model structure. And then for each group, the mean target value

of the instances in the testing group with the marked option is the estimated value. Finally, how

well a model is making customization is computed by taking the average target value of all groups.

76

Simulated Data

1. Data Generation

This simulated data set contains 6 features, 1 option feature with 2 possible values (0 and 1), and 1

continuous target variable. The 6 features are generated with uniform distribution, and the target

variable with normal distribution. Parameters of the distributions for first two features, f1 and f2,

and the target variable are defined in the Table 16. For example, in the group 1, f1 is generated with

a uniform distribution 𝑈(0,0.5) , and f2 with 𝑈(0,0.8); the target value with the option 0 is

generated with a normal distribution 𝑁(0.5,0.2), the target value with option 1 is generated with

𝑁(0.4,0.2). The other four parameters are generated with 𝑈(0,1) for all groups. We generated 200

instances for each group, 100 with option 0 and 100 with option 1. Therefore, according to these

distributions, the optimal option for group 1 and group 4 is option 0, while option 1 for group 2 and

group 3.

2. Results

The mean target value of the generated data in each group is shown in Table 17. The best

customization method is to assign each user with the right option, so the upper bound of this data

set that the best method can achieve is: (0.482 + 0.799 + 0.633 + 0.918)/4 = 0.708.

We use the method described in previous section to construct decision trees on this simulated data

with different significant levels, 0.05, 0.1, 0.2, 0.3, 0.5, and 0.9, the other parameter, minimum size,

is set to be 20 in all trees. We also compared the constructed decision trees with two methods,

random selection and always pick the option that has the best overall mean target value in the

training set. As shown in Figure 34, the results of decision trees are very closed to the upper bound,

and they are much better than random selection and method of picking the best. Moreover, the

decision tree with parameter 0.05 is better than the other models, and it is significantly (𝛼 < 0.001)

better than the method of picking the overall best, the reason could be that it is less overfitting to

the training set.

Table 16. Parameters of the distributions used to generate simulated data set.

 option 0 option 1

 f1 f2 𝜇 𝜎 𝜇 𝜎

group 1
≤0.5

≤0.8 0.5 0.2 0.4 0.2

group 2 >0.8 0.3 0.2 0.8 0.2

group 3
>0.5

≤0.8 0.4 0.2 0.6 0.2

group 4 >0.8 0.9 0.2 0.2 0.2

77

Table 17. The mean target values of the generated data.

 option 0 option 1

group 1 0.482 0.371

group 2 0.278 0.799

group 3 0.443 0.633

group 4 0.918 0.208

Figure 34. Results of running our decision tree algorithm with different significant levels on
the simulated data, compared with random selection method and the method of picking the
overall best option.

Figure 35. Results of running our decision tree algorithm on 7 features with different
significant levels on real ASSISTments experimental data sets, compared with the decision
tree constructed with only one feature, prior master speed, and another two methods,
random selection and picking the overall best option.

Another issue we want to focus on is the structure of the decision trees. In all constructed trees, the

maximum depth is 5 and the minimum depth is 2. These trees have the same structure on the top 2

levels: the feature f1 is used in the root node, and f2 is used in both of nodes in the 2nd level. The

mean of all cut points of f1 is 0.491, the mean of cut points of f2 in the left node is 0.665, and 0.685

in the right node. The trees have the structure that is similar with the pre-defined one, except that

0.52

0.54

0.56

0.58

0.6

re
w

ar
d

Result of real data

train test

0.4

0.5

0.6

0.7

0.8

re
w

ar
d

Results of simulated data

train test

Upper bound

78

they have more levels since we impute the data with some noise – the other four features generated

with uniform distribution.

Real Data

1. Results

The second experiment is deployed on the data set collected from 22 real ASSISTments

experiments, as described in Section 5.3. In this work, we used 7 features, prior completion rate,

prior percent of correctness, prior master speed, imputed gender, learning rate in previous 3 days,

percent of correctness in previous 3 days, and prerequisite performance. As illustrated in Section

5.3, we used these 7 features in only 2 experimental data sets, experiment 293151 and 226210, and

the first 6 features in other 20 data sets, because too many missing values of prerequisite

performance in the other 20 data sets.

In this experiment, we run our decision tree algorithm with different significant levels, 0.05, 0.1,

0.2, 0.3, 0.5, and 0.9. We also use only one feature, prior mastery speed, to build decision trees

with significant level 0.9 on this data. The parameter of minimum size is also set to 20 in the

decision tree induction. These methods are also compared with random selection and picking the

overall best option.

Each method is evaluated with 5-fold cross validation in each experimental data set, and the average

of the 22 results is shown in Figure 35. In the training set, the decision tree with larger significant

level performs better, but this also could result in more likely to be overfitting. Such as in the testing

set, the decision tree with parameter of significant level 0.05 is better than the other decision trees

that are constructed on the same set of features. More interesting, the decision tree based on only

one feature, prior master speed, is even better than the ones built with more features, but it is not

statistical-significantly (𝛼 = 0.9) better than picking the overall best. Finally, we can conclude that

even though some decision trees might be overfitting, if we use appropriate features and

parameters, we could get a better result, at least as well as, than just picking the overall best option

for all students.

2. Extracted Rules

As aforementioned, it is easy to extract rules from a decision tree that are used to make

personalization for students. Here we will show a decision tree built on one of the ASSISTments

experimental data sets.

79

Figure 36. A decision tree constructed on an ASSISTments experimental data.

In this ASSISTments experiment, students were randomly assigned into control group or

experiment group. The control group received problems where students had the option to click on

a hint button which gave the answer. While the experiment group received problems that did not

have the option to click on a hint button, but received help in the form of video buggy messages

(Selent & Heffernan, 2015). Students received a short 20-30 second video when they entered a

predicted incorrect answer. This video explained what process the student used to arrive at their

incorrect answer and how to start on the correct solution path. If a student entered an incorrect

answer that was not predicted, a generic message stating that the student’s answer was incorrect

was shown.

A constructed decision tree on this data set in shown in Figure 36. It is easy to estimate a student’s

learning outcome, from this tree, in the control group or experiment group by given student’s

features. To make customization, we can extract following 4 rules from this tree:

1. If a student’s percent of correctness in previous 3 days is no larger than 0.5, then assign the

student into experiment group;

2. If a student’s percent of correctness in previous 3 days is larger than 0.5 and z-score of prior

mastery speed is no larger than 0.39, then assign the student into control group;

3. If a student’s percent of correctness in previous 3 days is larger than 0.5, z-score of prior

mastery speed is larger than 0.39, and unknown guessed gender, then assign the student into

experiment group;

80

4. If a student’s percent of correctness in previous 3 days is larger than 0.5, z-score of prior

mastery speed is larger than 0.39, and guessed gender is female or male, then assign the

student into control group.

5.4.5. Conclusion
We make several contributions in this work. First, with respect to algorithms, we introduce a new

discretization algorithm that produces a split value for a continuous feature with the best “cross

effect.” Furthermore, we implemented a decision tree induction algorithm that can estimate a

student’s learning outcomes with different choices, and thus make a customization for the student.

Second, with respect to evaluating our algorithm, we tested the decision tree algorithm with both

simulated and real data, and generate several useful rules. We applied our approach in the context

of actual experiments with data generated by real students in a diverse set of middle-school

classrooms. While such data are noisy and messy, they provide a much better estimate of the effect

of personalization and the impact of algorithm choices than synthetic students generating fake data.

In this section, we have demonstrated the usefulness of our decision tree algorithm in making

personalization, and ability of capturing the pre-defined customization structure in a simulated data

set. In the next section, I will explain how to combine this decision tree algorithm with bandit

algorithms to make decision in the bandit problems.

5.5. Bandits in Decision Tree

To utilize multiple features in bandit problems, we will combine the decision tree algorithm,

described in previous section, with bandit algorithms. At each time 𝑡𝑖, we first construct a decision

tree on the previous context, {𝑥1, 𝑥2, … , 𝑥𝑖−1}, and observed rewards, {𝑟1, 𝑟2, … , 𝑟𝑖−1}. Then we

apply a bandit algorithm for each leaf node in the tree, as illustrated in Figure 37. For current student

with context, 𝑥𝑖, we first determine which leaf node it belongs to, and then use the corresponding

bandit algorithm to make selection. For example, a student with prior mastery speed 0.3 will be

assigned with the Bandit 2 in the Figure 37 to make selection for him/her.

Figure 37. Apply a bandit algorithm for each leaf node of decision tree.

81

In additional, there are two crucial problems we need resolve in this approach. The first problem

is: how to maintain the decision tree structure? The decision tree constructed at current time might

produce positive cross effect in the next few time steps, but probably be useless after seeing several

new students whose optimal treatments are different from the ones outputted from the decision tree.

Therefore, we need to reconstruct the decision tree every few time steps. However, another problem

arises here. If we make the reconstruction too frequently, like every round, then it would slow down

the process of deciding a selection for a student. In the opposite way, if reconstruct decision tree

too infrequently, then the tree might not be reliable. To deal with this dilemma, our approach is to

reconstruct the tree frequently at the early time, and increase the frequency when seeing more and

more students. The frequency is set to be: reconstruct the tree every student when #students<50;

every 10 students when #students<100; every 50 students when #students<500; otherwise, every

100 students.

The second problem is: how to evaluate the contextual bandits? That is, how to estimate the reward

for student with a specific condition, especially when the student’s real condition is different with

the one outputted by the bandit algorithm? In this work, we will use an evaluation process like the

one described in Figure 13. For a student 𝑠𝑖 at current time with condition 𝑐𝑖 assigned by the bandits

with decision tree, we first determine which leaf node the student belongs to, and then filter out the

set of students, say 𝑆𝑖, in the data falling in the same leaf node. Finally, we pick a random student,

𝑟𝑠𝑖, with the same condition 𝑐𝑖 from 𝑆𝑖, and consider the reward of 𝑟𝑠𝑖 in the data as the estimated

reward of 𝑠𝑖. For example, if a student with prior mastery speed 0.3 is assigned with condition C2

by the bandit with decision tree in Figure 37, then we first locate all students in the data set with

prior mastery speed > 0.1, and condition C2, and then pick a random one from those students. The

picked student’s real reward is assigned to the first student.

5.5.1. Experiments Setup

Bandits to Use

To investigate the effect of context in bandits, we compare the contextual bandits, based on our

decision tree algorithm, with UCB1 (Auer, Cesa-Bianchi, Freund, & Schapire, 2002). To be

consistent, we will also use UCB1 in the leaf nodes of decision tree. The parameters in the process

of decision tree construction are set to be: significant level – 0.3, and minimum size – 20.

Simulation

For each data set, we will simulate running 10 iterations with the two algorithms, UCB1 and

DTBandit (bandits with decision tree). At each iteration, the whole data set is defined as an epoch;

82

while at each epoch, each student in the data set will be inputted into the algorithms one by one,

until a certain number of students are tested.

There are two metrics are used in this experiment, average reward and exploration rate. The average

reward at each iteration at the time 𝑡𝑖 is computed by summing up all previous rewards and then

divided by number of students,
∑ 𝑟𝑗

𝑖
𝑗=0

𝑡𝑖
. The overall average reward is taking the average of values

in the 10 iterations at each time step. To compute the exploration rate, we define if a bandit

algorithm picks the condition that is not one with the best average reward at current step, then this

bandit makes an explorative selection. Then the exploration rate at each time is the proportion of

an explorative selection in the 10 iterations.

5.5.2. Simulated Data
As described in Section 5.4.4, this data set contains 800 instances, 2 different options, option 0 and

option 1, and 6 features, 2 of which are used to define distributions that generate the data. The

overall better option is option 0, with mean reward 0.53, so the upper bound of bandits without

context is 0.53. As shown in Figure 34, the test result of decision tree model with significant level

0.3 is 0.682, since we also set the significant level to be 0.3 in this experiment, so the upper bound

of bandits with decision tree is 0.682.

The results of running two algorithms on this data set are shown in Figure 38. We can observe that

the performance of UCB1 is approaching its upper bound, and the bandits with decision tree

performs better than the UCB1 after about 400 students. However, there is a large gap between the

performance of bandits with decision tree and its upper bound. This might be resulted from two

reasons: the algorithm still has high exploration rate after seeing many students; the constructed

decision tree does not capture the true structure, which results in the optimal treatment outputted

from the decision tree is suboptimal in the real data.

Figure 39 shows the smoothed exploration rate of bandits with decision tree on this data. It is

computed by taking average of values in 20 neighbor for each data point. From this figure, we can

get that the exploration rate after 1000 students is about 0.2 in average, which mean this algorithm

has about 20% probability to make explorative selection. This value is not as high as we expected,

thus it is not the major reason.

As defined in Table 16, we can regard the structure that defines how to generate the data as a

decision tree, in which the root node is feature f1, and its left child and right child at the next level

are both f2. Figure 40 shows the proportion of different features, over 10 iterations, used in the

83

constructed decision tree at each time step. As observed, the decision tree has high probability to

use the same feature in the root node after seeing enough students. However, at the next level, it is

more likely to use other features than the one, f2, used in the pre-defined structure. This might

because the noisy features are effective in some cases. Moreover, as the bandit algorithms would

generate options for students that are different with the real options in the original data, and thus

results in bias in the reward estimation, which deviates the constructed decision tree from the true

structure. Therefore, given that the constructed decision tree cannot capture the true pattern in this

experiment, it might be the major reason that causes the performance of bandits with decision tree

is much lower than upper bound.

Figure 38. Average reward at each time step of running two algorithms, UCB1 and Bandit

with Decision Tree, on the simulated data. Upper bound 1 is the upper bound of bandit

without context, and upper bound 2 is the upper bound of bandit with decision tree.

Figure 39. Smoothed exploration rate of bandits with decision tree on simulated data.

0.45

0.5

0.55

0.6

0 200 400 600 800 1000 1200 1400 1600 1800

av
er

ag
e

re
w

ar
d

#students

Reward comparison on simulated data

UCB1 DTBandit

84

Figure 40. Over the 10 iterations in simulated data, the proportion of different features used

in the constructed decision tree at each time step. (a) feature usage in the root node of

decision trees; (b) feature usage in the left node at the 2nd level of decision trees; (c) feature

usage in the right node at the 2nd level of decision trees.

85

Figure 41. The average reward over 22 experiments at each time step.

Figure 42. The average reward in the experiment 263057 at each time step.

5.5.1. Real Experimental Data
As described in Section 5.3, this data is collected from 22 real ASSISTments experiments. The

experiment with minimum size has 121 students, 1640 of maximum, and there are 10690 students

in total. We ran DTBandit with 7 features on the data sets, and then compared it with UCB1 in all

experiments. Since the results of decision tree in these data sets, as discussed in Section 5.4.4, did

not get significantly better performance than the method of always picking the best, we did not

expect the DTBandit would outperform than UCB1 over all experiments.

After running the bandit algorithms on the 22 experiments, we took the average of reward value

over all the experiment at each time step for each algorithm. As shown in Figure 41, the

performances of DTBandit and UCB1 were very closed to each other, as expected. However, in

some individual experiments, DTBandit could obtain better results, like in the experiment 263057,

as shown in Figure 42. This might because in some experiments, students’ aptitude treatment effect

could not be captured by the features, or the decision trees were too overfitted.

0.525

0.535

0.545

0 200 400 600 800 1000 1200 1400

av
er

ag
e

re
w

ar
d

#students

Average reward over 22 experiments

DTBandit UCB1

0.35

0.37

0.39

0.41

0 200 400 600 800 1000 1200 1400

av
er

ag
e

re
w

ar
d

#students

Average reward in the experiment 263057

DTBandit UCB1

86

CHAPTER 6

Future Works

Future works may focus on different aspects of adaptive learning, like refining student models with

skill connections, providing students with diverse types of interventions, and applying k-armed

bandit algorithms at problem level.

In this dissertation work, I investigated the effect of prerequisite performance in student models.

However, the performance in other skills, not just the pre-required skills, could be reliable factors

in student models, especially the skills have strong connections. For example, the skill square root

and squaring are related with each other. Therefore, one future work would be to form a mechanism

to compute the connection between skills and incorporate such connections into student models.

Moreover, we can use such mechanism to evaluate a pre-defined skill structure or the one from

other works (Chen, Wuillemin, & Labat; Scheines, Silver, & Goldin, 2014).

To provide students with diverse types of interventions, a possible future work is to build

expandable resources with crowdsourcing techniques. For example, implement a function in the

intelligent tutoring system that enables teachers or domain experts, or even students, to write

illustrative text, add tutoring videos or web pages for learning specific skills. Another possible

future work is to enable students to assess or score the interventions. The assessment results are

useful to evaluate educational efficacy of interventions. Therefore, we could use text mining and

sentiment mining technology to generate important features from the interventions, and thus use

the features to pick the appropriate interventions for students to improve their learning progress.

In this work, we applied bandit algorithms at the problem set level – at each time step, pick the

optimal conditional problem set for a student, in order to maximize the overall learning outcomes

of a group of students. An alternative approach is to apply the bandit algorithms at the problem

level, that is, at each time step, pick the proper related problem, or pick the optimal interventions

along with the problem for a student, to speed up learning process, or reduce wheel spinning

probability, or enhance score in retention test. Furthermore, it is interesting to use the method to

explore other tutoring systems, such as Reading Tutor (Mostow & Beck, 2006). The challenge is

to obtain a good data set that are large with a lot of interventions. Are we able to find interesting

patterns, and what are the potential gains for customization?

87

Reference

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in

large databases. Paper presented at the ACM SIGMOD Record.

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Paper presented at the Data

Engineering, 1995. Proceedings of the Eleventh International Conference on.

Andrejko, A., Barla, M., Bieliková, M., & Tvarozek, M. (2007). User Characteristics Acquisition

from Logs with Semantics. ISIM, 7, 103-110.

Antunes, C. (2008). Acquiring background knowledge for intelligent tutoring systems. Paper

presented at the Educational Data Mining 2008.

Arroyo, I., & Woolf, B. P. (2005). Inferring learning and attitudes from a Bayesian Network of log

file data. Paper presented at the AIED.

Audibert, J.-Y., Munos, R., & Szepesvári, C. (2009). Exploration–exploitation tradeoff using

variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19), 1876-

1902.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit

problem. Machine learning, 47(2-3), 235-256.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002). The nonstochastic multiarmed

bandit problem. SIAM Journal on Computing, 32(1), 48-77.

Babaioff, M., Sharma, Y., & Slivkins, A. (2009). Characterizing truthful multi-armed bandit

mechanisms. Paper presented at the Proceedings of the 10th ACM conference on Electronic

commerce.

Baker, R. S. (2007). Modeling and understanding students' off-task behavior in intelligent tutoring

systems. Paper presented at the Proceedings of the SIGCHI conference on Human factors

in computing systems.

Baker, R. S., Corbett, A. T., & Aleven, V. (2008). Improving contextual models of guessing and

slipping with a truncated training set. Human-Computer Interaction Institute, 17.

Baker, R. S., Corbett, A. T., Roll, I., & Koedinger, K. R. (2008). Developing a generalizable

detector of when students game the system. User Modeling and User-Adapted Interaction,

18(3), 287-314.

Baker, R. S. J. d., Corbet, A. T., & Aleven, V. (2008). Improving Contextual Models of Guessing

and Slipping with a Truncated Training Set. Paper presented at the In Proceedings of 1st

International Conference on Educational Data Mining.

Beck, J. E., & Chang, K.-m. (2007). Identifiability: A Fundamental Problem of Student Modeling.

Paper presented at the In Proceedings of the 11th International Conference on User

Modeling, Greece.

88

Beck, J. E., Chang, K.-m., Mostow, J., & Corbett, A. (2008). Does Help Help? Introducing the

Bayesian Evaluation and Assessment Methodology. Paper presented at the Intelligent

Tutoring Systems, Montreal, Canada.

Beck, J. E., & Gong, Y. (2013). Wheel-spinning: Students who fail to master a skill. Paper presented

at the Artificial Intelligence in Education.

Beck, J. E., & Rodrigo, M. M. T. (2014). Understanding Wheel Spinning in the Context of Affective

Factors. Paper presented at the Proceedings of 12th International Conference, ITS 2014,

Honolulu, HI, USA.

Berlyne, D. E. (1960). Conflict, arousal, and curiosity.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: " O'Reilly Media,

Inc.".

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees.

Artificial intelligence, 101(1), 285-297.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective

as one-to-one tutoring. Educational researcher, 13(6), 4-16.

Botelho, A., Wan, H., & Heffernan, N. (2015). The prediction of student first response using

prerequisite skills. Paper presented at the Proceedings of the Second (2015) ACM

Conference on Learning@ Scale.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees:

CRC press.

Brunskill, E. (2011). Estimating Prerequisite Structure From Noisy Data. Paper presented at the

EDM.

Brusilovsky, P. (1998). Adaptive educational systems on the world-wide-web: A review of available

technologies. Paper presented at the Proceedings of Workshop" WWW-Based Tutoring"

at 4th International Conference on Intelligent Tutoring Systems (ITS'98), San Antonio, TX.

Brusilovsky, P. (1998). Methods and techniques of adaptive hypermedia Adaptive hypertext and

hypermedia (pp. 1-43): Springer.

Burgos, D., Tattersall, C., & Koper, R. (2006). Representing adaptive eLearning strategies in IMS

Learning Design.

Cen, H., Koedinger, K., & Junker, B. (2006). Learning factors analysis–a general method for

cognitive model evaluation and improvement. Paper presented at the Intelligent tutoring

systems.

Cesa-Bianchi, N., & Fischer, P. (1998). Finite-Time Regret Bounds for the Multiarmed Bandit

Problem. Paper presented at the ICML.

Cha, H. J., Kim, Y. S., Park, S. H., Yoon, T. B., Jung, Y. M., & Lee, J.-H. (2006). Learning styles

diagnosis based on user interface behaviors for the customization of learning interfaces in

89

an intelligent tutoring system. Paper presented at the International Conference on

Intelligent Tutoring Systems.

Chen, Y., Wuillemin, P.-H., & Labat, J.-M. Discovering Prerequisite Structure of Skills through

Probabilistic Association Rules Mining.

Clement, B., Oudeyer, P.-Y., Roy, D., & Lopes, M. (2014). Online optimization of teaching

sequences with multi-armed bandits. Paper presented at the Educational Data Mining 2014.

Clement, B., Roy, D., Oudeyer, P.-Y., & Lopes, M. (2015). Multi-Armed Bandits for Intelligent

Tutoring Systems. Journal of Educational Data Mining, 7(2), 20-48.

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of

procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253-278.

Cree, V. E., & Macaulay, C. (2002). Transfer of learning in professional and vocational education:

Handbook for social work trainers: Routledge.

Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (1992). Optimal experience: Psychological studies

of flow in consciousness: Cambridge university press.

D'Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive intelligent

tutoring system. International Journal of human-computer studies, 70(5), 377-398.

Dagger, D., Wade, V., & Conlan, O. (2005). Personalisation for all: Making adaptive course

composition easy. Educational Technology & Society, 8(3), 9-25.

De Mántaras, R. L. (1991). A distance-based attribute selection measure for decision tree induction.

Machine learning, 6(1), 81-92.

Desmarais, M. C., Meshkinfam, P., & Gagnon, M. (2006). Learned student models with item to

item knowledge structures. User Modeling and User-Adapted Interaction, 16(5), 403-434.

Devore, J. L., Farnum, N. R., & Doi, J. A. (2013). Applied statistics for engineers and scientists:

Nelson Education.

Embretson, S. E., & Reise, S. P. (2013). Item response theory: Psychology Press.

Feng, M., & Beck, J. (2009). Back to the future: a non-automated method of constructing transfer

models. Paper presented at the Educational Data Mining 2009.

Feng, M., Heffernan, N., & Koedinger, K. (2009). Addressing the assessment challenge with an

online system that tutors as it assesses. User Modeling and User-Adapted Interaction,

19(3), 243-266.

Fossati, D. (2008). The role of positive feedback in intelligent tutoring systems. Paper presented at

the Proceedings of the 46th Annual Meeting of the Association for Computational

Linguistics on Human Language Technologies: Student Research Workshop.

90

Freyberger, J., Heffernan, N., & Ruiz, C. (2004). Using association rules to guide a search for best

fitting transfer models of student learning. Paper presented at the Workshop on analyzing

student-tutor interactions logs to improve educational outcomes at ITS conference.

Gong, Y., & Beck, J. (2015). Towards Detecting Wheel-Spinning: Future Failure in Mastery

Learning. Paper presented at the Learning at Scale 2015.

Gong, Y., Beck, J., Heffernan, N. T., & Forbes-Summers, E. (2010). The impact of gaming (?) on

learning at the fine-grained level. Paper presented at the Proceedings of the 10th

International Conference on Intelligent Tutoring Systems (ITS2010) Part.

Gottlieb, J., Oudeyer, P.-Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity, and

attention: computational and neural mechanisms. Trends in cognitive sciences, 17(11),

585-593.

Guo, Q., & Zhang, M. (2009). Implement web learning environment based on data mining.

Knowledge-Based Systems, 22(6), 439-442.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA

data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.

He, Y., Swenson, S., & Lents, N. (2012). Online video tutorials increase learning of difficult

concepts in an undergraduate analytical chemistry course. Journal of Chemical Education,

89(9), 1128-1132.

Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: building a platform

that brings scientists and teachers together for minimally invasive research on human

learning and teaching. International Journal of Artificial Intelligence in Education, 24(4),

470-497.

Heylen, D., Vissers, M., op den Akker, R., & Nijholt, A. (2004). Affective feedback in a tutoring

system for procedural tasks Affective dialogue systems (pp. 244-253): Springer.

Hosmer Jr, D. W., & Lemeshow, S. (2004). Applied logistic regression: John Wiley & Sons.

Huang, Y., González-Brenes, J., & Brusilovsky, P. (2014). General features in knowledge tracing

to model multiple subskills, temporal item response theory, and expert knowledge. Paper

presented at the Educational Data Mining 2014.

Jonsson, A., Johns, J., Mehranian, H., Arroyo, I., Woolf, B., Barto, A., . . . Mahadevan, S. (2005).

Evaluating the feasibility of learning student models from data. Paper presented at the

Educational Data Mining: Papers from the AAAI Workshop.

Kaplan, C., Fenwick, J., & Chen, J. (1993). Adaptive hypertext navigation based on user goals and

context. User Modeling and User-Adapted Interaction, 3(3), 193-220.

Käser, T., Klingler, S., Schwing, A. G., & Gross, M. (2014). Beyond knowledge tracing: Modeling

skill topologies with bayesian networks. Paper presented at the Intelligent Tutoring

Systems.

91

Kay, J., Maisonneuve, N., Yacef, K., & Zaïane, O. (2006). Mining patterns of events in students’

teamwork data. Paper presented at the Proceedings of the Workshop on Educational Data

Mining at the 8th International Conference on Intelligent Tutoring Systems (ITS 2006).

Kelly, K., Heffernan, N., D’Mello, S., Namais, J., & Strain, A. (2013). Adding teacher-created

motivational video to an ITS. Paper presented at the Proceedings of 26th Florida Artificial

Intelligence Research Society Conference.

Kim, J. W., Lee, B. H., Shaw, M. J., Chang, H.-L., & Nelson, M. (2001). Application of decision-

tree induction techniques to personalized advertisements on internet storefronts.

International Journal of Electronic Commerce, 5(3), 45-62.

Koper, R. (2005). An introduction to learning design Learning design (pp. 3-20): Springer.

Koutri, M., Avouris, N., & Daskalaki, S. (2005). A survey on web usage mining techniques for

web-based adaptive hypermedia systems. Adaptable and adaptive hypermedia systems,

125-149.

Kulhavy, R. W., & Stock, W. A. (1989). Feedback in written instruction: The place of response

certitude. Educational Psychology Review, 1(4), 279-308.

Lan, A. S., & Baraniuk, R. G. (2016). A Contextual Bandits Framework for Personalized Learning

Action Selection.

Langford, J., & Zhang, T. (2008). The epoch-greedy algorithm for multi-armed bandits with side

information. Paper presented at the Advances in neural information processing systems.

Lee, C. D. (2005). ll Signifying in the zone of proximal development. An introduction to Vygotsky,

253.

Lee, C. D. (2005). Signifying in the zone of proximal development. An introduction to Vygotsky,

253.

Lee, J. I., & Brunskill, E. (2012). The Impact on Individualizing Student Models on Necessary

Practice Opportunities. International Educational Data Mining Society.

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to

personalized news article recommendation. Paper presented at the Proceedings of the 19th

international conference on World wide web.

Li, S. (2013). Modeling student retention in an environment with delayed testing. Worcester

Polytechnic Institute.

Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data

mining and knowledge discovery, 6(4), 393-423.

Liu, K., & Zhao, Q. (2010). Indexability of restless bandit problems and optimality of Whittle index

for dynamic multichannel access. Information Theory, IEEE Transactions on, 56(11),

5547-5567.

92

Liu, Y.-E., Mandel, T., Brunskill, E., & Popovic, Z. (2014). Trading Off Scientific Knowledge and

User Learning with Multi-Armed Bandits. Paper presented at the Educational Data Mining

2014.

Lopes, M., Clement, B., Roy, D., & Oudeyer, P.-Y. (2013). Multi-armed bandits for intelligent

tutoring systems. arXiv preprint arXiv:1310.3174.

Lopes, M., & Oudeyer, P.-Y. (2012). The strategic student approach for life-long exploration and

learning. Paper presented at the Development and Learning and Epigenetic Robotics

(ICDL), 2012 IEEE International Conference on.

Lu, J. (2004). Personalized e-learning material recommender system. Paper presented at the

International conference on information technology for application.

Lu, T., Pál, D., & Pál, M. (2010). Contextual Multi-Armed Bandits. Paper presented at the

AISTATS.

Markellou, P., Mousourouli, I., Spiros, S., & Tsakalidis, A. (2005). Using semantic web mining

technologies for personalized e-learning experiences. Proceedings of the web-based

education, 461-826.

Mathematics terms. Retrieved from

http://www.doe.virginia.gov/instruction/mathematics/resources/vocab_cards/math_vocab

_cards_6-8.pdf

McGuire, P., Logue, M. E., Mason, C., Tu, S., Heffernan, C., Heffernan, N., . . . Li, Y. (2016). To

See or Not To See: Putting Image-Based Feedback in Question. Paper presented at the

International Society for Technology in Education(ISTE 2016).

Mobasher, B., Cooley, R., & Srivastava, J. (1999). Creating adaptive web sites through usage-

based clustering of URLs. Paper presented at the Knowledge and Data Engineering

Exchange, 1999.(KDEX'99) Proceedings. 1999 Workshop on.

Mostow, J., & Beck, J. (2006). When the rubber meets the road: Lessons from the in-school

adventures of an automated Reading Tutor that listens. Scale-Up in Education, 2, 183-200.

Muldner, K., Wixon, M., Rai, D., Burleson, W., Woolf, B., & Arroyo, I. (2015). Exploring the

Impact of a Learning Dashboard on Student Affect. Paper presented at the Artificial

Intelligence in Education.

Murphy, K. Bayes net toolbox for matlab. Retrieved from https://github.com/bayesnet/bnt/

Narciss, S. (2013). Designing and Evaluating Tutoring Feedback Strategies for digital learning

environments on the basis of the Interactive Tutoring Feedback Model. Digital Education

Review(23), 7-26.

Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelligence Review, 4(4),

251-277.

http://www.doe.virginia.gov/instruction/mathematics/resources/vocab_cards/math_vocab_cards_6-8.pdf
http://www.doe.virginia.gov/instruction/mathematics/resources/vocab_cards/math_vocab_cards_6-8.pdf
https://github.com/bayesnet/bnt/

93

Ostrow, K., & Heffernan, N. (2014). Testing the multimedia principle in the real world: a

comparison of video vs. Text feedback in authentic middle school math assignments. Paper

presented at the Educational Data Mining 2014.

Oudeyer, P.-Y., & Kaplan, F. (2007). What is intrinsic motivation? a typology of computational

approaches. Frontiers in neurorobotics, 1.

Oudeyer, P.-Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous

mental development. Evolutionary Computation, IEEE Transactions on, 11(2), 265-286.

Pahl, C., & Donnellan, D. (2002). Data mining technology for the evaluation of web-based teaching

and learning systems.

Pardos, Z., & Heffernan, N. (2010). Navigating the parameter space of Bayesian Knowledge

Tracing models: Visualizations of the convergence of the Expectation Maximization

algorithm. Paper presented at the Educational Data Mining 2010.

Pardos, Z. A., & Heffernan, N. T. (2010). Modeling individualization in a bayesian networks

implementation of knowledge tracing User Modeling, Adaptation, and Personalization

(pp. 255-266): Springer.

Pardos, Z. A., & Heffernan, N. T. (2010). Navigating the parameter space of Bayesian Knowledge

Tracing models: Visualizations of the convergence of the Expectation Maximization

algorithm. Paper presented at the In Proceedings of 3rd Educational Data Mining

Conference 2010, Pittsburgh, PA, USA.

Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles concepts and evidence.

Psychological science in the public interest, 9(3), 105-119.

Pavlidis, N. G., Tasoulis, D. K., & Hand, D. J. (2008). Simulation studies of multi-armed bandits

with covariates. Paper presented at the Computer Modeling and Simulation, 2008. UKSIM

2008. Tenth International Conference on.

Pavlik, P. I., Cen, H., & Koedinger, K. R. (2009). Performance Factors Analysis - A New

Alternative to Knowledge. Paper presented at the Proceedings of the 14th International

Conference on Artificial Intelligence in Education, Brighton, UK.

Philip Jr., I. P., Cen, H., Wu, L., & Koedinger, K. R. (2008). Using Item-Type Performance

Covariance to Improve the Skill Model of an Existing Tutor. Paper presented at the

Proceedings of the 1st International Conference on Educational Data Mining, Montreal,

Canada.

Polson, M. C., & Richardson, J. J. (2013). Foundations of intelligent tutoring systems: Psychology

Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

Quinlan, J. R. (1987). Simplifying decision trees. International journal of man-machine studies,

27(3), 221-234.

Quinlan, J. R. (2014). C4. 5: programs for machine learning: Elsevier.

94

Radlinski, F., Kleinberg, R., & Joachims, T. (2008). Learning diverse rankings with multi-armed

bandits. Paper presented at the Proceedings of the 25th international conference on

Machine learning.

Robbins, H. (1985). Some aspects of the sequential design of experiments Herbert Robbins

Selected Papers (pp. 169-177): Springer.

Robison, J., McQuiggan, S., & Lester, J. (2009). Evaluating the consequences of affective feedback

in intelligent tutoring systems. Paper presented at the Affective Computing and Intelligent

Interaction and Workshops, 2009. ACII 2009. 3rd International Conference on.

Rollinson, J., & Brunskill, E. (2015). From Predictive Models to Instructional Policies.

Romero, C., Ventura, S., & De Bra, P. (2004). Knowledge discovery with genetic programming

for providing feedback to courseware authors. User Modeling and User-Adapted

Interaction, 14(5), 425-464.

Roscoe, R. D., Snow, E. L., & McNamara, D. S. (2013). Feedback and revising in an intelligent

tutoring system for writing strategies. Paper presented at the Artificial intelligence in

education.

Scheines, R., Silver, E., & Goldin, I. (2014). Discovering prerequisite relationships among

knowledge components. Paper presented at the Educational Data Mining 2014.

Selent, D., & Heffernan, N. (2015). When More Intelligent Tutoring in the Form of Buggy Messages

Does not Help. Paper presented at the International Conference on Artificial Intelligence

in Education.

Self, J. (1988). Artificial intelligence and human learning: Chapman and Hall.

Silva, R. C., Direne, A. I., Marczal, D., Guimaraes, P. R., Cabral, Â. S., & Camargo, B. F. (2015).

Adapting Collaboratively by Ranking Solution Difficulty: an Appraisal of the Teacher-

Learner Dynamics in an Exploratory Environment. Intelligent Support in Exploratory and

Open-ended Learning Environments Learning Analytics for Project Based and

Experiential Learning Scenarios, 41.

Tang, C., Lau, R. W., Li, Q., Yin, H., Li, T., & Kilis, D. (2000). Personalized courseware

construction based on web data mining. Paper presented at the Web Information Systems

Engineering, 2000. Proceedings of the First International Conference on.

Ting, I.-H., Ouyang, Y., & Zhu, M. (2008). eLORM: learning object relationship mining-based

repository. Online Information Review, 32(2), 254-265.

Vermorel, J., & Mohri, M. (2005). Multi-armed bandit algorithms and empirical evaluation

Machine Learning: ECML 2005 (pp. 437-448): Springer.

Vuong, A., Nixon, T., & Towle, B. (2011). A Method for Finding Prerequisites Within a

Curriculum. Paper presented at the EDM.

Wan, H., & Beck, J. B. (2015). Considering the Influence of Prerequisite Performance on Wheel

Spinning. International Educational Data Mining Society.

95

Wan, H., & Beck, J. B. (2015). Considering the influence of prerequisite performance on wheel

spinning. Paper presented at the Educational Data Mining 2015.

Wang, C.-C., Kulkarni, S. R., & Poor, H. V. (2005). Bandit problems with side observations.

Automatic Control, IEEE Transactions on, 50(3), 338-355.

Wang, W., Weng, J.-F., Su, J.-M., & Tseng, S.-S. (2004). Learning portfolio analysis and mining

in SCORM compliant environment. Paper presented at the Frontiers in Education, 2004.

FIE 2004. 34th Annual.

Wang, X., Wang, Y., Hsu, D., & Wang, Y. (2014). Exploration in interactive personalized music

recommendation: A reinforcement learning approach. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM), 11(1), 7.

Wang, Y., & Beck, J. (2013). Class vs. Student in a Bayesian Network Student Model. Paper

presented at the Artificial Intelligence in Education.

Wang, Y., & Heffernan, N. (2013). Extending knowledge tracing to allow partial credit: Using

continuous versus binary nodes. Paper presented at the Artificial Intelligence in Education.

Weber, G., Kuhl, H.-C., & Weibelzahl, S. (2001). Developing adaptive internet based courses with

the authoring system NetCoach. Paper presented at the Workshop on Adaptive

Hypermedia.

Williams, J. J., Li, N., Kim, J., Whitehill, J., Maldonado, S., Pechenizkiy, M., . . . Heffernan, N.

(2014). The MOOClet framework: Improving online education through experimentation

and personalization of modules. Available at SSRN 2523265.

Xiong, X., Beck, J. E., & Li, S. (2013). Class distinctions: Leveraging class-level features to predict

student retention performance. Paper presented at the Artificial Intelligence in Education.

Xiong, X., Wang, Y., & Beck, J. B. (2015). Improving students' long-term retention performance:

a study on personalized retention schedules. Paper presented at the Proceedings of the Fifth

International Conference on Learning Analytics And Knowledge.

Yudelson, M. V., Koedinger, K. R., & Gordon, G. J. (2013). Individualized bayesian knowledge

tracing models. Paper presented at the Artificial Intelligence in Education.

	Worcester Polytechnic Institute
	Digital WPI
	2017-01-18

	Tutoring Students with Adaptive Strategies
	Hao Wan
	Repository Citation

	tmp.1530275769.pdf.isQgX

