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Abstract

The analysis of sequential data is important in business, science, and engi-

neering, for tasks such as signal processing, user behavior mining, and com-

mercial transactions analysis. In this dissertation, we build upon the Col-

lective Dynamical Modeling and Clustering (CDMC) framework for discrete

time series modeling, by making contributions to clustering initialization, dy-

namical modeling, and scaling.

We first propose a modified Dynamic Time Warping (DTW) approach for

clustering initialization within CDMC. The proposed approach provides DTW

metrics that penalize deviations of the warping path from the path of constant

slope. This reduces over-warping, while retaining the efficiency advantages

of global constraint approaches, and without relying on domain dependent

constraints.

Second, we investigate the use of semi-Markov chains as dynamical mod-

els of temporal sequences in which state changes occur infrequently. Semi-

Markov chains allow explicitly specifying the distribution of state visit dura-

tions. This makes them superior to traditional Markov chains, which implic-

itly assume an exponential state duration distribution.

Third, we consider convergence properties of the CDMC framework. We

establish convergence by viewing CDMC from an Expectation Maximization

(EM) perspective. We investigate the effect on the time to convergence of our



efficient DTW-based initialization technique and selected dynamical models.

We also explore the convergence implications of various stopping criteria.

Fourth, we consider scaling up CDMC to process big data, using Storm, an

open source distributed real-time computation system that supports batch and

distributed data processing.

We performed experimental evaluation on human sleep data and on user web

navigation data. Our results demonstrate the superiority of the strategies in-

troduced in this dissertation over state-of-the-art techniques in terms of mod-

eling quality and efficiency.
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Chapter 1

Introduction

1.1 Background

Time series constitute an essential data representation for images, video, human voice,

and object motion, among others [1]. The analysis of data over time [2] thus has increas-

ingly attracted attentions both from academia and industry. Among different methods

of exploring time series, modeling symbolic representations of time series is particularly

important [3]. The reasons behind it come down to four facets. First, symbolic data se-

quences are inherently well-defined data structures to represent the input to data analysis

techniques such as neural networks [4]. Second, many effective and widely investigated

data mining algorithms are specially designed for discrete time series [5]. Third, numer-

ous techniques for transforming real-valued time series into discrete representations have

been examined over the past decades [6]. Fourth, extensive experimentation with discrete

time series has shown a wealth of successful applications in clustering, classification,

anomaly detection, and other areas [7]. Without doubt, the investigation of discrete time

series is a topic of great importance in the data mining community.

In addition to theoretical work, a wide range of practical applications with respect to

1



1.1 BACKGROUND

discrete temporal data has been proposed. They span signal processing, biological se-

quence analysis, user behavior mining, human speech recognition, weather forecasting,

and commercial transactions analysis for example. Among them, one important applica-

tion is human sleep data analysis. As illustrated in Figure 1.1, the dynamics of human

sleep [8], including sleep stage transition and sleep stage duration, have been essential

indicators for describing the relationship between human sleep and human health [9, 10,

11]. The discrete sleep stages can be modeled as states of a dynamic process, with each

stage as one state. Furthermore, the Markov property and time-homogeneous nature of

the transition probability distribution hold at least approximately, although actual empiri-

cal data shows some non-stationary properties [12, 13, 14]. Based on those observations,

Markov chains have been used to model the dynamics of sleep stage transitions. A simple

time-homogeneous Markov chain was first applied in the sleep domain [14]. However,

Markov chains (and more general, hidden Markov models) do not model sleep stage tran-

sitions accurately, because these models force geometrically distributed stage bout dura-

tions for all sleep stages, contradicting known experimental observations [10, 15]. Other

state-duration based models are provided as alternatives of describing human sleep [16].

Another popular application regarding symbolic data representation is user behavior

pattern mining. Table 1.1 shows a sample of user behavior sequences [20]. The web

server logs for a certain period typically produces a collection of such sequences. In-

creasing web viewing history and online data transmission have resulted in a great effort

on web prediction modeling. The prediction mining process aims at predicting online user

requests ahead of time and creating a robust web information service. These anticipated

requests are addressed by either storing pages at the server side or sending the response to

the client in advance to reduce web latency. To model user viewing history, each viewed

webpage is thought of as a state and each switch from one page to another page is a state

transition. Under such transformations, state-based models (e.g., Markov-based predic-

2



1.1 BACKGROUND
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Figure 1.1: A sample diagram of the distribution and time evolution of sleep stages. It
consists of 1,020 30-second epochs, which amount to 8.5 hours of sleep. Sleep progression
generally starts with the wake stage [17] and then there are cycles in which REM [18] and
NREM (stages 1, 2, and 3) alternate, particularly between REM stage and stage 2. During
the whole night sleep recording, stage 2 exhibits long uninterrupted bouts as the night goes
on. REM episodes tend to get longer in the second half part of the night sleep, while stage
3 occurs earlier in the first half of the night [19]. Finally, there are several times of short
wakefulness throughout the night, after the initial onset of sleep.

tion models) can be built on personal webpage datasets. In particular, the All-Kth-Order

Markov model has been found to be most effective for web user request prediction [21].

Furthermore, due to the complexity of user interests, Markov models are being used to

keep track of user interests in terms of navigational behaviors [22].

Last but not least, speech recognition, the automatic process of translating spoken

words into text is widely explored in computer science [23]. Modern general speech

recognition systems are based on Hidden Markov Models (HMM) [24]. As illustrated in

Figure 1.2, the standard output should be a sequence of symbols or quantities [25]. Human

speech can be extracted as a Markov model for many stochastic purposes: a speech signal

can be approximately thought of as a piecewise stationary signal in a short time scale,

and then a Markov model can be trained automatically and applied easily with good time

performance. In addition to hidden Markov models, linear dynamical systems (LDE) use

a continuous state variable with linear Gaussian dynamics and measure [26]. LDEs have

3



1.2 MOTIVATION

Table 1.1: A sample of user behavior sequences. Each sequence corresponds to a user’s
requests at the level of page category [20]. Web users switch from one category to another
(itself inclusive) after staying on it for a certain period of time.

User Behavior Navigation Sequences
1 frontpage news travel travel
2 business business business sports sports sports sports
3 tech weather weather news
4 news local news weather news
5 sports sports sports sports sports sports sports
6 bbs bbs misc misc misc
7 opinion opinion misc health health health
8 on-air on-air bbs bbs
9 news news news
10 weather sports sports sports

also been used in practice on the same type of applications. For instance, a switching

linear dynamical system is used for jointly modeling the dynamics of both the raw speech

signal and the raw noise [27].

1.2 Motivation

As significant symbolic signal analyses, all of the above three examples share some data

characteristic: scarcity of occurrences of specific dynamical state transitions over the

entire time series. In sleep medicine, a hypnogram is defined to be a sequence of sleep

stages [28], which consists of sleep bout durations and sleep stage transitions. A key

characteristic of these sleep sequences is a few number of dynamical event occurrences

in sleep data. For instance, there may be only a few transitions from stage 2 to rapid eye

movement (REM) stage or from REM stage to wake stage throughout an entire all-night

hypnogram [17]. In web user navigation log data, each sequence corresponds to a user’s

web requests. Switches from one category of webpages to another one rarely happen in

sequences. Imagine that a user may click on webpage links about sport topic and stay on

them looking for interesting news. During the time interval, there is no action of switching

4



1.2 MOTIVATION

 Speech 
Waveform 

Parameterize                           

 Recognize    

 Speech 
Vectors 

A	piece	of	speech	

Mining A Year Of Speech 

Figure 1.2: A sample diagram of speech recognition. Personal voice is stored as speech
waveform in a computer. To apply a hidden Markov model (HMM) for speech recognition, a
sequence of speech vectors representing a word are used as observations in a HMM. A part
of speech waveform corresponding to one word is derived from a sequence of discrete hidden
states [25].

topics until the user changes his or her focus. Lastly, in human speech surveys, there is

a common scenario that persons keep silence for a certain amount of periods to collect

their thoughts before answering questions in questionnaires. The fluctuant speech signal

probably leads to a few number of state transitions from the silent period to the voluble

one. All of these situations are classified as the scarcity of dynamical events coming out

in a sequence of states.

However, the above phenomenon where changes occur infrequently makes it too hard

to build stable dynamical models on temporal data sequences, since there is a big variation

of modeling results over individual sequences. Take an artificial case using a synthetic

dataset as an example. In Figure 1.3, two clusters with different colors are a collection of

mixture data produced by uniformly distributed selection between two generative hidden

Markov models (HMM): HMM1 and HMM2 (see section 2.4), each with two hidden

states. Two-state transition probabilities are fully determined by the main diagonals in

5



1.2 MOTIVATION

transition matrices as follows:

HMM1 : Transition Matrix =

 0.9 0.1

0.1 0.9

 Emission Matrix =

 1.0 0.0

0.0 1.0



HMM2 : Transition Matrix =

 0.7 0.3

0.3 0.7

 Emission Matrix =

 1.0 0.0

0.0 1.0

 .

To simplify the visualization of HMM on two-dimensional plane in Fig. 1.3, values

along the main diagonals in the HMM transition matrices are considered. Here, cluster

center (0.9,0.9) and (0.7,0.7) are representative of two HMMs respectively. Each gener-

ated sequence in a cluster has its own HMM built on itself and is coordinated by the main

diagonal values in the two-state transition matrix. Sparse distributions of data points (de-

picted by coordinates) around cluster centers verify the underlying assumption that there

exists big variations of individual models built on sequences individually, let alone vari-

ations of two generative models (e.g., HMM1 and HMM2 here) with individual models

over individual sequences. In reality, for example, sleep sequences present a challenge

to modeling algorithms, in that key dynamical events such as stage transitions occur very

sparsely within a hypnogram, making it hard to extract reliable dynamical information

from a single night of sleep of a given individual [9].

Therefore, in this dissertation, we are interested in automated algorithms [29] for

the discovery of dynamical patterns in sequences with seldom occurrences of dynamical

events. The following section introduces an original framework of simultaneous modeling

and clustering over time series on which we work. It also describes potential challenges

in the framework and presents approaches to tackling those challenges.

6
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0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

State Transition Probability

S
ta

te
 T

ra
ns

iti
on

 P
ro

ba
bi

lit
y

 

 

sequence in cluster 1
sequence in cluster 2
cluster center 2
cluster center 1

HMM2

HMM1

(0.7, 0.7)

(0.9, 0.9)

Figure 1.3: Variances of HMMs on temporal sequences with infrequent dynamic events in
two clusters. The double-arrow line measures the distance between a cluster center and data
points within the cluster. Cluster centers represent generative HMM models; data points
represent individual models built on individual sequences. The length of a double-arrow line
indicates the variation of models over sequences within the same cluster.

1.3 Research Challenges Addressed in This Dissertation

To discover sequential patterns using dynamical state-based models, researchers have pro-

posed different approaches. Several of them used clustering of models. [30] presented

Markov chains with an agglomerative clustering procedure. [31] grouped web users us-

ing a set of first-order Markov chains under the Expectation-Maximization framework.

[32] generalized the mixture model (e.g., hidden Markov model) approach to clustering

in feature space. However, some of these approaches are highly dependent on modeling

individual instances. For example, [30] needed to build up a Markov chain model over
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1.3 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

each instance, and [33] optimized the parameters of the fitting function for each data in-

stance. All the above methods have shortcomings when dealing with sparsity of dynamic

events in sleep studies, since small amounts of temporal information in each time series

are not sufficient for reliable statistical modeling of sleep [9].

The collective dynamical modeling-clustering (CDMC) algorithm [34] addresses the

problem of scarcity of dynamical events by pooling data across multiple time series, si-

multaneously partitioning the collection of time series by dynamical similarity. CDMC

reduces the model variation by selectively aggregating instances through clustering. This

reduction in variation is accomplished in CDMC without the loss of detail that would

result by simply aggregating data without regard for dynamical similarity. The result of

CDMC is a collection of groups of instances such that instances within a given group

are dynamically similar, while instances in different groups are not. The following is an

outline of the CDMC procedure as shown in pseudocode in Algorithm 1:

• An initial grouping of instances x1, . . . ,xn into k clusters is provided (step 1-2).

• The grouping is iteratively refined by repeating the following steps until the similar-

ity of two successive clusterings (e.g., c and cold) reaches a predetermined similarity

threshold minSim (step 3):

- In LEARNMLPROTOTYPES step, a maximum likelihood dynamical model

Mi is built from each cluster Ci (step 5).

- In LEARNMLCLUSTERLABELS step, each instance x is assigned to the

cluster C(x) for which the generative likelihood P(x|MC(x)) is maximized (step

6).

• A final clustering c of the dataset and a generative model Mi for each of the clusters

are returned (step 7).

8



1.3 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

Algorithm 1 Collective Dynamical Modeling-Clustering (CDMC) [34]

Input: An unlabeled time-series dataset D = {x = (ai(x))|i = 1,2, . . . ,n}; a positive
integer, n, the number of instances in D; a positive integer, k, for the desired number of
clusters; an initial guess c0 : D→{1, . . .k} of the cluster label c0(x) of each instance x∈
D; parameter values, s, specifying the desired configuration of the models (e.g., number
of states); and a real number minSim between 0 and 1 for the minimum clustering
similarity required for stopping.
Output: A set M1, . . .Mk of generative dynamical models (with configuration param-
eters s), together with a cluster labeling c : D→ {1 . . .k} that associates to each data
instance, x, the index c(x) of a model M = Mc(x) for which the generative likelihood
∏x∈D P(x|Mc(x)) is as high as possible.
CDMC(D, k, c0, s, minSim)

1. c(x) = c0(x) for all x in D

2. cold(x) = 0 for all x ∈ D

3. while CLUSTERINGSIMILARITY(c, cold) < minSim

4. cold = c

5. (M1, . . .Mk) = LEARNMLPROTOTYPES(D, k, c, s)

6. c = LEARNMLCLUSTERLABELS(D, M1, . . .Mk)

7. return M1, . . .Mk, c

Note that the details of cluster initialization, dynamical model type, and similarity

metric are left unspecified in the general version of CDMC. [34] includes an illustration

that uses pseudorandom initialization, hidden Markov models, and the Rand index in

these roles.

Collective dynamical modeling & clustering framework is a general algorithmic strat-

egy: simultaneous clustering and dynamical modeling of sequence data [34] that is shown

in pseudocode in Algorithm 1. However, it leaves open several important choices yet to

be made during its development. This dissertation addresses the following three essential

aspects of the CDMC framework:

1. Clustering Initialization Techniques

The pseudorandom clustering initialization may fail to provide good cluster assign-

ments for data instances, which may lead to a long iterative process of training

9



1.3 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

dynamical models in CDMC. Therefore, it is worthwhile investigating other initial-

ization techniques to produce better cluster guesses, for example, one examining

selected statistical characteristics of time series or clustering time series based on

similarity or distance metrics.

2. Dynamical Model Type

Markov models were used as dynamical models in CDMC by [34]. However, due

to inherent limitations of first-order Markov chains and Hidden Markov models

(i.e., implicit exponential distribution), they are not expected to be a good fit for se-

quences with seldom-dynamical events. Since the degree to which CDMC can im-

prove the capability of characterizing internal data structure depends on the choice

of model, alternative models for analyzing temporal data with scarcity of dynamical

events should be investigated. For example, Markov models with explicit duration

distribution are able to explicitly specify distributions of state durations.

3. Convergence Property

The convergence property in the CDMC framework should be examined both from

a theoretical and an experimental point of view. The standard Rand index is used

in [34] to measure the similarity of clusterings in two consecutive CDMC iterations.

It greatly influences the rate of convergence, the speed at which clustering results

approach its local or global optima. Hence, other metrics of evaluating clusterings

need to be investigated, such as the adjusted Rand index that corrects for cluster-

ing agreements due to chance, information-theoretic measures such as normalized

mutual information, and so on.

In addition to the above outstanding problems, scalability has become an equivalently

significant factor when dealing with big volumes of sequence data. A systematic deploy-

ment plan for distributing the CDMC algorithmic framework across various computation

10



1.4 PROPOSED SOLUTIONS

units will be very valuable for practical applications in future.

In sum, the final objective of this dissertation is to significantly strengthen the collec-

tive dynamical modeling and clustering (CDMC) of time series with goals of effective-

ness, efficiency, robustness, and scalability. Figure 1.4 presents a sketch of targets in this

dissertation. The following section describes the approach taken to address these targets.

No	

Time series Analytical Results 

Efficient & Scalable CDMC Framework 

Ini$al	Cluster	
Assignment	

Converge?	
No  

Modeling	
	
	
	
	
	

Dynamical	
Model	

Distributed	Deployment	
Architecture	

Clustering	

Yes         

Figure 1.4: Efficient & Scalable CDMC Framework. The grey regions include the original
version of the CDMC framework in Algorithm 1; the orange regions indicate the work done
in this dissertation to improve the CDMC algorithm; the green region is an option for dealing
with large-scalable time series in a distributed system introduced in this dissertation.

1.4 Proposed Solutions

Investigations concerning initialization, dynamical model type, and convergence have

been conducted both in theoretical and practical ways. The following is a summary of

the research contributions in this dissertation:

• To cluster discrete time series with scarcity of dynamical events, we first propose

11
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novel Dynamic Time Warping (DTW) variants that penalize deviations of the warp-

ing path from the path of constant slope. This overcomes the over-warping is-

sue, while retaining the efficiency advantages of approaches based on global con-

straints, and without relying on domain dependent user input as in variable penalty

DTW. We propose these modified DTW metrics for clustering initialization within

the combined dynamical modeling-clustering (CDMC) framework [35] on discrete

time series in Chapter 2. Clustering experiments over synthetic data as well as over

human sleep data show that the proposed methods yield significantly improved

accuracy and generative log likelihood as compared with standard dynamic time

warping.

• To model the dynamics of symbolic representations of time series, we examine first-

order Markov chain and hidden Markov model [15]. We also propose the use of

flexible and expressive semi-Markov chains in Chapter 3 when modeling temporal

sequences with sparse occurrences of dynamical events. The superiority of semi-

Markov chains over Markov chains relies on the ability of the former to explicitly

specify various distributions of state bout durations, rather than implicitly assume

an exponential distribution as is the case in traditional Markov models. We show

that semi-Markov chains provide better clustering results in Chapter 3.

• To study convergence in CDMC, we provide a basic theoretical proof of the conver-

gence property of the CDMC framework in Chapter 4. We investigate the effects

of our efficient initialization technique and our selected dynamical models on the

CDMC convergence. The resultant significant differences in paired t-test confirm

the advantages of those improvements. We also explore stopping criteria, as an-

other factor with regards to convergence, to evaluate clustering agreements. Rand

index (RI), adjusted Rand index (ARI), and normal mutual information (NMI) are

12
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included in this investigation.

• To accommodate big data in the CDMC framework, we address the crucial need

to scale up the original CDMC framework in a distributed environment. The core

components of our distributed approach include grouping incoming data instances

and modeling over the dataset. We use Storm [36], an open source distributed real-

time computation system, to support batch and distributed processing of data. A

systematic evaluation of the proposed approach is carried out via experimentation

with real application data on human sleep and web user navigation behavior to

establish the efficiency and scalability of our approach.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents a solution to the

initialization problem mentioned in section 1.3, experimental results and analyses. Chap-

ter 3 proposes a suitable model to capture the dynamics of symbolic time series, and

provides experimental results. Chapter 4 studies the convergence property of the CDMC

framework both from a theoretical and from an experimental point of view. Chapter 5 in-

vestigates a systematic way of deploying CDMC in a distributed environment. Chapter 6

illustrates the applicability of the extended CDMC framework to practical applications.

Chapter 7 provides conclusions of the research in this dissertation, and Chapter 8 de-

scribes some future directions of this work.
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Chapter 2

Clustering of Time Series

Time series mining has become pervasive in practice [37]. Applications of time series

mining span online commerce [38], stock price prediction [39], human health [40], data

summarization [41], and telecommunications [42]. Clustering [43] is an essential tech-

nique in time series analysis, especially when input data are unlabeled [44]. Moreover,

given the widespread use of discretization of time series, such as in text mining, bioin-

formatics, and other applications [7], clustering of symbolic data is a central topic in data

mining.

Figure 2.1 is a state-of-the-art summary of time series clustering techniques based

on distinct manners of manipulating time series [44, 45]: there are totally four types

of clustering approaches over time series: raw-data based (the first data flow on top),

feature-based (the second one), and model-based (third & fourth) methods [44]. If raw

data (time series) serve as input to clustering procedures, classical clustering approaches

could be applied with similarity metric to evaluating time series. Otherwise, a reduced

representation of time series, by way of feature extraction or sequence discretization,

becomes an input to clustering processes. In this dissertation, data source is symbolic

dataset and we focus on modeling sequences of symbols, which is categorized into the
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Figure 2.1: Four Time Series Clustering Approaches [44]. (1) clustering over raw time
series, (2) clustering over extracted features of time series, (3) clustering over modeling raw
time series, (4) clustering over modeling symbolic time series. Note that the area surrounded
by dashed line is the clustering approache we work on in this dissertation.

fourth one.

Regardless of a variety of time series clustering algorithms in Figure 2.1, one of cru-

cial components in them is to define a measure of similarity in time series [46]. For

traditional distance metrics, they are used to evaluate real-valued time series. However,

inherent limitation of Euclidean distance, for example, is sensitivity to distortion in time

axis, especially in time series of different lengths [47]. For symbolic sequences, tradi-

tional distance measures only could be exploited if each symbol is encoded as a value or

if distance metric between symbols is designated well. Even worse, discrete data have

unique data characteristics, such as few dynamical events, long durations of a given state,

and big variances of individual models on sequences in Fig 1.3.

On the other hand, the rise of dynamic time warping (DTW) metric [48] stems from

stretching or shrinking a certain range of data points between time series to align them
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2.1 DYNAMIC TIME WARPING (DTW)

in a non-linear manner. Thus, dynamic time warping overcomes known difficulty of Eu-

clidean distance [49], and leads to massive applications. The definition of cost function in

DTW reduces the trouble of transforming symbols into values. However, it does not em-

phasize the importance of discrete data features. Furthermore, DTW metric has become

an important way of measuring distances between time series [50, 51]. Theoretically,

DTW maps one time series to another in a nonlinear transformation by minimizing the

warping distance between the two. It was first introduced in speech recognition and grad-

ually involved in various analytical tasks concerning medicine [52], bioinformatics [53],

entertainment [54], etc.

In this chapter, we first introduce standard dynamic time warping in section 2.1. Then,

we apply dynamic time warping for clustering initialization in CDMC, as a similarity met-

ric in hierarchical clustering in section 2.2. Next, we propose variants of deviated dynamic

time warpings in section 2.3. Finally, we analyze experimental results in section 2.4.

2.1 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a dynamic programming algorithm that provides an

optimal alignment between two time series by nonlinearly warping their time dimen-

sions [49]. DTW has been extensively used in speech recognition, periodic movement

capture, and other areas [55, 56]. In this dissertation, DTW is used as a measure of simi-

larity for unsupervised clustering of time series.

The following are the essentials of standard dynamic time warping technique, as de-

scribed in [57].

We consider two time series X =(x1,x2, . . . ,xN) of length N ∈N and Y =(y1,y2, . . . ,yM)

of length M ∈ N, with individual values xi,y j in some feature space F. The essential no-

tions are listed as follows:
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2.1 DYNAMIC TIME WARPING (DTW)

• Local Cost Measure.

A local cost measure is a function

c : F×F→ R≥0 (2.1)

The value of c(xi,y j) is small if xi ∈ F (i ∈ [1 : N]) and y j ∈ F ( j ∈ [1 : M]) are

close to each other, and otherwise not. For discrete time series, one can use a cost

matrix to define the values c(x,y) for all pairs of values; the simplest possibility is

to use the identity matrix, that is, to let c(x,y) = 0 if they are the same, otherwise

c(x,y) = 1.

• Cost Matrix.

A cost matrix is a matrix

C ∈ RN×M (2.2)

which consists of local cost measure for each pair of elements between sequence X

and sequence Y . Note that C(n,m) = c(xn,ym). For discrete time series, it is usually

a matrix of 0s and 1s.

• Warping Path.

A warping path between X and Y is a sequence

p = (p1, p2, . . . , pL) (2.3)

where pl = (nl,ml) ∈ [1 : N]× [1 : M] for l ∈ [1 : L] (any path starting at bottom-left

point and ending in the top-right point in Figure 2.2). max{N,M} ≤ L ≤ N +M.

The warping path must satisfies the following three conditions:
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2.1 DYNAMIC TIME WARPING (DTW)

– Boundary condition: p1 = (1,1) and pL = (N,M) at the start and end points

respectively.

– Monotonicity condition: horizontal and vertical components increases mono-

tonically: n1 ≤ n2 ≤ . . .nL and m1 ≤ m2 ≤ . . .mL.

– Step size condition: for each l ≤ L, the difference pl+1− pl is one of (1,0),

(0,1), (1,1).

• Total Cost.

The total cost of a warping path p between X and Y ( Φp(X ,Y )) is

Φp(X ,Y ) =
L

∑
l=1

c(xnl ,yml) (2.4)

where c(xnl ,yml) defines local cost measure in equation 2.1, which maps data point

at nl in sequence X to data point at ml in sequence Y .

• Optimal Warping Path.

An optimal warping path p∗ is one having minimum total cost Φp∗(X ,Y ) among

all warping paths from p1 to pL. In typical dynamic time warping computation,

it takes dynamic programming optimization to compute the optimal warping path

(see details in [57]). In the context of clustering in section 2.2, Φp∗(X ,Y ) is referred

to as the DTW distance between sequences X and Y .

The standard dynamic programming approach to DTW for input sequences of length n

implicitly considers all pairings of time indices in any of two input sequences. This com-

putation leading to O(n2) time complexity. In the past decades, researchers had struggled

for speeding up calculation of warping paths on 2-dimensional search space (cost matrix)

in Figure 2.2, where a pair of time series are laid along x and y axes respectively. The

approaches make DTW computation more efficient and generally fall into two types [58]:
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Figure 2.2: DTW and its variants. (1) DTW [49], (2) DTW with Sakoe-Chiba band [55], (3)
DTW with Itakura Parallelogram [56]. If (2) or (3) is set in the cost matrix, a portion of areas
(top-left and bottom-right ones) are eliminated; only central parts along the diagonal line
are taken to speed up the computation of the minimum cost path (the green one starting from
bottom-left corner and ending in top-right corner). Such operation guards against pathological
warping paths like two paths indicated by red squares with directional arrows in the leftmost
subplot, which results from the decreased areas of searching optimal warping paths. In a
conclusion, under two global constraints of bands, search scopes for dynamic time warping
are reduced significantly (1)→ (3)).

1. Constraints - Imposing global constraints, adjusting step size condition, or adding

local weight vectors in cost measures. It is based on an idea of reducing searching

areas in the rectangle valued by cost matrix at the risk of acquiring suboptimal

(possibly not optimal) warping path.

2. Data Abstraction - Calculating DTW on a coarsened version of time series rather

than on a complete resolution of time series. It is based on the strategy of di-

mensionality reduction and still likely to have a suboptimal path due to the loss of

information in original resolution.

Generally speaking, suboptimal constrained versions of Dynamic time warping aim to

reduce the time complexity by restricting the portion of the index space considered in the

warping search. As variants of DTW, consider Itakura parallelogram and Sakoe-Chiba

band in Figure 2.2. Itakura slope-constrained DTW [56] imposes slope constraints on the
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2.2 DYNAMIC TIME WARPING CLUSTERING (DTWC)

warping path, thereby constraining the search for a warping path to a parallelogram in the

index space. The Sakoe-Chiba approach [55] constrains the warping search to a band in

the index space. An alternative hierarchical multi-resolution approach has the potential to

reduce the time complexity of dynamic programming computation to O(n) [58].

2.2 Dynamic Time Warping Clustering (DTWC)

Dynamic time warping has been applied to initialization of a different clustering technique

based on Hidden Markov Models [51]. To give a basic cluster guesses of time series,

DTW-initialized clustering [59] is proposed as preprocessor of input data to CDMC.

The core clustering initialization approach is described in pseudocode in Algorithm 2.

This approach performs agglomerative metric clustering using the distance function com-

puted by DTW. The main steps of the proposed DTWC initialization are:

• Place each instance x1, ...,xn in its own cluster C1, ...,Cn (step 1-2)

• Repeat until there are only k clusters left (step 3)

– Merge the closest clusters, Ci and C j; the distance measure between two in-

stances (i.e., xs and xt) is defined by DTW; the distance measure between two

clusters is the average distance of instances in these clusters (step 4-5)

• Return the final partition of the dataset D into k clusters (step 7)

Constrained DTWC (cDTWC). A fast variant of DTWC, constrained DTWC (cDTWC),

is obtained by using Itakura slope-constrained DTW instead of standard DTW when com-

puting the distance metric in Algorithm 2. The reduced search area over warping space

saves the computation time and finds an optimal warping path. The two initialization

techniques for CDMC will be compared with pseudorandom initialization in section 2.4.
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Algorithm 2 DTW-Driven Clustering (DTWC)

Input: An unlabeled time series dataset D = {x1,x2, . . . ,xn}; a positive integer, k, for a
preassigned number of clusters; a predefined local distance measure d : X×X→ R≥0
where X denotes the feature space in which the xi take their values.
Output: A partition C of D into k clusters
DTWC(D, k, d)

1. Ci = {xi} for each xi in D

2. m = n

3. while m > k

4. (i∗, j∗) = arg min
i, j∈{1,...,m}

d̄(Ci,C j)

= arg min
i, j∈{1,...,m}

{
∑l(xs)=Ci,l(xt )=Cj

DTW(xs,xt ,d)

|Ci|·|C j| |xs,xt ∈ D
}

5. Merge Ci∗ and C j∗ so that C = {1, . . . ,m−1}
6. m = m−1

7. return {C1, . . . ,Ck}

2.3 Deviated Dynamic Time Warping

Despite promising results in section 2.4, standard DTW as a similarity measure for unsu-

pervised clustering of time series suffers from certain problems. One of these is is time

complexity. Variants of DTW (See Figure 2.2) have been proposed that focus on improv-

ing efficiency by globally constraining the warping path to a predefined geometric region

such as Sakoe-Chiba band [55] and Itakura Parallelogram [56]. They imposed constraints

on searching path space in a global sense, which limited how far the warping path may

be away from the diagonal path between two time series. However, they both neglected

progressively varied segments of warping path areas around the line, which potentially

gave a more precise description of difference in time series. Furthermore, they failed to

distinguish different time series, for which the overall distribution of sequences seems

similar to each other to some degree but actually not. Even worse was that the duration

of each discrete value and the transitions between them in time series were permitted to
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2.3 DEVIATED DYNAMIC TIME WARPING

vary.

An additional concern with DTW as a measure for unsupervised clustering is the

over-warping problem shown in Figure 2.8. Over-warping refers to unnatural alignment

of dissimilar segments in two time series. In Figure 2.8, a subsequence of length over

300 in one patient is matched by dynamic time warping to a subsequence of length less

than 10 in another. The result is unacceptable, yet the standard dynamic time warping

distance between the two segments is zero. The reason causing such bad scenario is

that a typical segment has long duration of a state and infrequent state transition, which

makes it easy for original dynamic time warping to excessively extend or shrink a segment

of one sequence to align another sequence, known as over-warping problem. Explicitly

penalized DTW has been developed to address over-warping. For example, [60] proposes

variable penalty DTW, which reduces non-diagonal moves during alignment. However,

this approach is heavily dependent on a user-defined penalty function and thus difficult to

apply in practice.
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Figure 2.3: Optimal time warping paths (dashed lines) between 20× 20 pairs of human
sleep recordings. The best warping paths are usually close to the path of constant slope (solid
diagonal line) from bottom-left to top-right in the warping space. The varying boundary of the
distribution suggests the desirability of adaptively identifying warping areas locally instead
of using a predefined global constraint.
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2.3 DEVIATED DYNAMIC TIME WARPING

Regardless of the above issues, many puzzles still surround standard dynamic time

warping, which wasted much research effort [61]. One confusion is that a wider band

in DTW searching space produces a better classification accuracy. Some researchers [1]

have argued that the effect of warping band width on the quality of the results is greatly

domain dependent and that a narrow band might be valuable. The distribution of optimal

warping paths between pairs of sleep time series in Figure 2.3 likewise suggests that the

use of local search constraints would be desirable.

In a word, it is necessary to provide a novel way of calculating optimal warping path,

not only emphasizing locally concentrated searching area but also automatically penaliz-

ing non-diagonal alignments (not strongly associated with domain knowledge). In other

words, it must make senses that a large amount of areas in warping space does not need

to be examined during the process of finding the optimal warping path between time se-

ries. Moreover, the benchmark of evaluating the degree of deviation of warping path in

diagonal direction should be as much as possible to be independent of users’ experience.

To face the above challenges, we propose two versions of a modified dynamic time

warping approach for comparing discrete time series. This approach is motivated by the

observation that the distribution of dynamic time warping paths between pairs of human

sleep time series in Figure 2.3 is concentrated around the path of constant slope. Both

versions use a penalty term for the deviation between the warping path and the path of

constant slope for a given pair of time series. In the first version, global weighted dynamic

time warping, the penalty term is added as a post-processing step after a standard dynamic

time warping computation, yielding a modified similarity metric that can be used for

time series clustering. The second version, stepwise deviated dynamic time warping,

incorporates the penalty term into the dynamic programming optimization itself, yielding

modified optimal warping paths, together with a similarity metric.

Experiments over synthetic data in section 2.4, as well as over human sleep data in
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section 6.1.2, show that the proposed methods yield significantly improved accuracy and

generative log likelihood as compared with standard dynamic time warping.

2.3.1 Deviation Measure

As stated above, we address the standard dynamic time warping concerns of over-warping

and time complexity, by penalizing non-diagonal moves in the search for an optimal warp-

ing path. Based on empirical observations discussed below, we find out that a deviation

plays an important role in achieving the goal.

Intuitively, deviation originates from an observation that the boundary of warping

space inclines to be close to the diagonal line in the space (see Figure 2.3). Another

observation is that for two sequences with a small dynamic time warping value, they

may be unexpectedly different from their overall distributions along time axis. Therefore,

the deviation aims at adjusting optimal warping path according to progressive variations

of the current path with respect to its distance to the diagonal one. Given two optimal

warping paths with the same total cost value, one with smaller deviation is preferable to

the other one.

Formally, deviation refers to the area ∆p (see shaded areas in Figure 2.4) surrounded

by

• The warping path p for two time series;

• The diagonal path of constant slope.

Deviation is computed by the procedure described in Algorithm 3. The following are

the main steps:

• Initialize the deviation ∆p to be 0. (step 1)

• Calculate the slope k and the intercept b of the diagonal path defined as y= k∗x+b.

(step 2-3)
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Figure 2.4: Deviation (e.g., gray shaded area) of warping path (squares with directional
arrows) from path of constant slope (solid red line). Given two warping paths (1 and 2), the
path with smaller deviation (the green one) is better. For stepwise deviated DTW, path 1 is
generated by stepwise deviated dynamic time warping, where the next move to Ψ(Xnl ,Yml ) is
determined by adjacent cells: Ψ(Xnl−1 ,Yml−1)(diagonal move), Ψ(Xnl−1 ,Yml )(right move), and
Ψ(Xnl ,Yml−1)(up move).

• Repeat until the end point pL is reached. (step 5)

- Add the absolute vertical distance between Y axis between the current point pi

and the previous point pi−1 to the deviation ∆p, if they differ horizontally.

(step 6-7)

- update the counter i. (step 8)

• Return the deviation ∆p (step 9)

Algorithm 3 computes the corresponding deviation after an optimal warping path is

found. This algorithm works as a post-processing step for global weighted dynamic time

warping in section 2.3.2. When computing areas in deviation, we count differences of y

value in both the optimal warping path and the diagonal path under the same x value.
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2.3 DEVIATED DYNAMIC TIME WARPING

Algorithm 3 Deviation Calculation

Input: An optimal warping path P = {p1, p2,. . . , pL}; L : the total number of points in
the path, P.
Output: The deviation ∆p of p from the straight line through p1 and pn in warping
space.
ComputeDeviation(P)

1. ∆p = 0

2. k = (M−1)/(N−1)

3. b = M− k ∗N

4. i = 2

5. While(pi 6= pL)

6. if(ni 6= ni−1)

7. ∆p = ∆p + |mi− (k ·ni +b)|
8. i = i+1

9. return ∆p

2.3.2 Deviation-Based Dynamic Time Warpings

We propose two versions of deviation-based dynamic time warpings: global weighted

dynamic time warping (gwDTW) and stepwise deviated dynamic time warping (sdDTW).

gwDTW penalizes standard DTW distance (total cost of optimal warping path) in terms

of the deviation area relative to the optimal warping path as described in section 2.3.1.

On the other hand, sdDTW calculates the deviation by each step when constructing the

warping path and integrates the deviation into the process of determining which direction

the current step should be moved to. In addition, due to the linearity of DTW distance,

the square root of deviation should be more compatible with it, in contrast to the surface

of non-sqrt deviation. The experiments in section 2.4 validate this claim.

Global Weighted Dynamic Time Warping: The global weighted dynamic time warping
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Figure 2.5: Optimal warping paths derived from standard DTW and stepwise deviated DTW
(sdDTW) for two time series. Standard DTW allows large deviations in searching for a warp-
ing path of minimum total cost. Over-warping occurs at the beginning and end of the path
shown. sdDTW aligns time series closer to the diagonal line. Background shading indicates
local cost in sdDTW, which increases with distance to the diagonal line.

(gwDTW ) distance between sequences X and Y is defined as

gwDTW = λgw ·Φp∗(X ,Y )

+(1−λgw) ·
√

∆p∗(X ,Y )
(2.5)

where a penalty term ∆p∗ is added as a post-processing step following standard dy-

namic time warping computation, between two sequences X of length N and Y of length

M. λgw controls the balance between traditional dynamic time warping cost and the de-

viation ∆p∗(X ,Y ) described in section 2.3.1. λgw ranges from 0 to 1. The best value of

λgw is determined empirically by accuracy of correctly grouping similar sequences to one

cluster in experiments (see section 2.4). Higher the accuracy of clustering sequences is,

better λgw is. The square root of the deviation ∆p∗(X ,Y ) is used because it scales linearly

with Euclidean distance.
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2.3 DEVIATED DYNAMIC TIME WARPING

Stepwise Deviated Dynamic Time Warping: The stepwise deviated dynamic time

warping (sdDTW ) distance between sequences X and Y is defined as

sdDTW = Ψp∗(X ,Y ) (2.6)

where Ψp∗(X ,Y ) is the minimum total cost of a warping path p∗ (see Figure 2.5)

obtained by replacing the local cost measure in Equation 2.1 by the modified measure in

Equation 2.7.

Technically, stepwise deviated dynamic time warping incorporates a penalty term

(with respect to the deviation of current position (x,y) in the warping path from the di-

agonal path for two sequences X and Y ) into dynamic programming optimization itself,

yielding modified optimal warping paths. The followings are modified versions of basic

concepts in standard dynamic time warping (see section 2.1):

• Local Cost Measure.

A modified local cost measure is defined as:

ϕ(x,y) = λsd · c(x,y)+(1−λsd) ·
√

∆(x,y) (2.7)

where c(x,y) denotes the original local cost measure in equation 2.1. ∆(x,y) is

the deviation of a position (x,y) relative to the diagonal path of constant slope for

sequences X and Y . See section 2.3.1. λsd is a parameter that determines the relative

weights of the standard local cost measure in equation 2.1 and the deviation in this

position.

• Total Cost.
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2.3 DEVIATED DYNAMIC TIME WARPING

The modified total cost of a warping path p between X and Y is

Ψp(X ,Y ) =
L

∑
l=1

ϕ(xnl ,yml) (2.8)

where ϕ(xnl ,yml) is the modified local cost measure in equation 2.7 mapping data

point at nl in sequence X of length N to data point at ml in sequence Y of length M.

• Optimal Warping Path.

A modified optimal warping path p∗ is one having minimum total cost Ψp∗(X ,Y )

among all warping paths.

We use dynamic programming as in standard DTW to compute the modified optimal

warping path, based on the modified accumulated cost matrix

D̄(n,m) = Ψ(X(1 : n),Y (1 : m)) (2.9)

where X(1 : n) = (x1, . . . ,xn) and Y (1 : m) = (y1, . . . ,ym). n∈ [1 : N] and m∈ [1 : M]. That

is X(1 : n) and Y (1 : m) are subsequences of X and Y . The procedure is as follows:

• Initially, D̄(n,1) = ∑
n
k=1 ϕ(xk,y1) and D̄(1,m) = ∑

m
k=1 ϕ(x1,yk).

• Iteratively, take the minimum of accumulated cost matrix from three immediately

adjacent directions: D̄(n−1,m), D̄(n,m−1), D̄(n−1,m−1).

• Until the final position (N,M) is reached, D̄(N,M) is the optimal dynamic time

warping distance with respect to stepwise deviated dynamic time warping.

Note that both global weighted dynamic time warping and stepwise deviated dynamic

time warping could be degenerated into standard version of dynamic time warping if

weight values (λgw and λsd) were set to be 1. In practice, they could probably find the
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2.3 DEVIATED DYNAMIC TIME WARPING

same warping path even if weight values (non-zero) take effects between local cost mea-

sure and deviation computation.

Algorithm 4 Deviation-Based DTW Clustering (dDTWC)

Input: An unlabeled time series dataset D = {X |X is a time series}; a positive integer,
k, the desired number of clusters; a predefined local distance measure d : F×F→R≥0
where F denotes the feature space in which the time series in D take their values.
Output: A partition of D into k clusters
dDTWC(D, k, d)

1. for each i, let Ci = a cluster that contains only the i-th time series in D

2. m = the number of time series in D

3. while m > k

4. (i∗, j∗) = arg min
i, j∈{1,...,m}

d̄(Ci,C j) (where d̄ is mean distance between instance

pairs in the two clusters)

= arg min
i, j∈{1,...,m}

{
∑X=Ci,Y=Cj dDTW(X ,Y,d)

|Ci|·|C j| |X ,Y ∈ D
}

5. Merge Ci∗ and C j∗ to reduce the number of clusters to m−1

6. m = m−1

7. return {C1, . . . ,Ck}

Deviation-based dynamic time warping clustering (dDTWC) performs unsupervised

agglomerative hierarchical clustering of time series using the deviation-based DTW ap-

proaches to calculate distances. The proposed approach is shown in pseudocode in Algo-

rithm 4 by utilizing gwDTW and sdDTW as distance metric. The main steps are:

• Initially each time series instance X is in its own cluster (steps 1-2).

• Repeat until only k clusters remain (steps 3-6):

- Merge the closest clusters, Ci and C j; the distance between two instances (X

and Y ) is defined by gwDTW or sdDTW; the distance between two clusters

is the average distance between pairs of instances.

• Return clustering of dataset in k clusters (step 7).
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D̄(n,m) = min{D̄(n−1,m), D̄(n,m−1), D̄(n−1,m−1)}+ϕ(xn,ym) (2.10)

Algorithm 5 Generation of Synthetic Data
Input: Positive integers N and L, semi-Markov chains S1, . . . ,Sk.
Output: A collection of N sequences, each of length L, generated by a mixture of the
semi-Markov chains S1, . . . ,Sk.
genData(N, L, (S1, . . . ,Sk))

1. C = {}
2. for i = 1, . . . ,N

3. j = random choice among {1, . . . ,k}
4. xi = sequence of length L generated by S j

5. C = C
⋃
{xi}

6. return C

2.4 Experimental Evaluation

The goal of this experimental study is to investigate performances of DTW-driven and

Deviation-based clustering on discrete time series. We will show that: (1) Dynamic time

warping clustering significantly improve grouping discrete time series. (2) Deviation-

based clustering methods lead to significantly better clustering results than DTW in un-

supervised clustering of discrete time series.

2.4.1 Experimental Setup & Methodology

Each experiment involved 100 trials. Wilcoxon-Mann-Whitney statistical hypothesis test-

ing was used for comparison of medians. All experiments were performed in MATLAB R©

(The MathWorks, 2012). Unless stated otherwise, all variants of dynamic time warping

were tested through simulation that used synthetic datasets. Before going through exper-

imental details, it is necessary to describe synthetic datasets, evaluation and experimental

protocols.
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• Synthetic Mixture Dataset.

In order to generate a sequence of a given length, L, from the mixture model, a

random choice is first made between the two given models. A state sequence of

the desired length is then generated by the randomly selected model. The random

chain selection and state sequence generation process continues until a desired total

number of sequences, N, has been generated. See Algorithm 5. In the experiments,

N = 100 sequences, each of length L = 100, were used in all trials involving syn-

thetic (semi-Markov or hidden Markov) data.

• Semi-Markov Mixture Data.

A semi-Markov mixture dataset is generated from two distinct semi-Markov chains,

each with two states, but with different transition probability matrices and state du-

ration statistics. The use of synthetic data provides precise control over the gener-

ative statistical parameters. The following transition matrices and Weibull (shape,

scale) parameter values (in that order) were used for the two semi-Markov chains.

There were two Weibull distributions per chain, one for each state.

Semi-Markov chain 1:
(

0.90 0.10
0.10 0.90

)
, (3,5), (2.5, 4,5)

Semi-Markov chain 2:
(

0.15 0.85
0.85 0.15

)
, (3,4), (2.5, 3,5)

• Hidden Markov Mixture Data.

A hidden Markov mixture data is generated as in [34], from two distinct hidden

Markov models, each with two states that emit two symbols with given emission

probabilities. The two models differ in their transition probability matrices. Self-

transition probabilities of 0.6 and 0.8 were selected. The probabilities of transition-

ing from one state to the other were 0.4 and 0.2 respectively as follows:
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Hidden Markov Model 1:
(

0.50
0.50

)
,
(

0.60 0.40
0.40 0.60

)
,
(

1.00 0.00
0.00 1.00

)

Hidden Markov Model 2:
(

0.50
0.50

)
,
(

0.80 0.20
0.20 0.80

)
,
(

1.00 0.00
0.00 1.00

)

• Cluster Validity.

Clustering quality is evaluated by comparing the clustering results to known class

labels for the synthetic data described above. The class label of an instance is

the model that generates that instance. The classification accuracy (fraction of in-

stances that are classified correctly, relative to the set of all instances) is used as the

evaluation metric. Higher classification accuracy of a clustering indicates a more

meaningful data partition.

• Statistical Significance.

Pairwise comparisons of median classification accuracy values of DTW-driven as

well as deviation-based DTW clusterings against the accuracy of standard DTW

clustering (in the case of synthetic data) and of negative log likelihood values of

gwDTW and sdDTW clustering against that of standard DTW clustering (in the

case of unsupervised clustering of human sleep data in section 6.1) were carried out

by a non-parametric two-sided Wilcoxon rank sum test, since a Lilliefors normality

test rejected normality at the p < 0.05 significance level in each case. A Bonferroni

correction was performed jointly on the accuracy and log likelihood Wilcoxon p-

values to ensure a familywise error rate less than 0.05.

• Synthetic Data Classification Procedure.

Supervised classification was performed with the generating model label as the

classification target. The goal of clustering [43] was therefore to partition the set of
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data instances into two groups that closely match the subsets of instances associated

with the two generating models. The evaluation metric was classification accuracy.

Statistical hypothesis testing was performed using a Wilcoxon rank sum test. An

example of experimental procedure for deviation dynamic time warpings was as in

the following pseudocode:

Experimental procedure, synthetic data classification:

begin

for i := 1 to TrialNum

SD = generateSyntheticDataset(N, L);

Accuracy(1, i) = evaluateByDTW(SD);

Accuracy(2, i) = evaluateBygwDTW(λgw, SD);

Accuracy(3, i) = evaluateBysdDTW(λsd , SD);

end

Perform Wilcoxon rank sum test over Accuracy.

end

Note that

– generateSyntheticDataset followed the description in Hidden Markov Mix-

ture Data.

– evaluateByDTW refers to the clustering procedure in Algorithm 2 and clus-

tering evaluation by classification accuracy. evaluateBygwDTW and

evaluateBysdDTW likewise do.

– The total number of sequences, N, was set to be 100.

– The length of a sequence, L, was set to be 300.
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– A predetermined number of trials, TrialNum, was set to 100.

2.4.2 DTW-Driven Clustering Evaluation

We compare DTW-based clustering and constrained DTW clustering with pseudorandom

initialization as input to CDMC in experiments. The synthetic semi-Markov mixture

dataset was used in the evaluation of initialization techniques. This allows the use of

classification accuracy to evaluate performance of cluster validity. For the initialization

experiments using DTW, the local cost measure was defined as that if a pair of elements

in two sequences are same, the cost is 0, otherwise, 1.

Pseudo-random initialization for CDMC was compared with DTW-distance clustering

and Itakura constrained DTW (cDTW) clustering initialization techniques for CDMC in

section 2.2, as well as with the DTW and cDTW clustering results directly. Table 2.1 lists

t-test results with statistical significance (p < 0.05) of accuracies between CDMC-rnd

and DTWC. Figure 2.6 shows the resulting accuracy values. Pseudorandomly initialized

CDMC (median accuracy 0.82) is not significantly more accurate than the two DTW-only

clustering techniques without CDMC (medians 0.76 and 0.75, for full and constrained

DTW, respectively). However, the DTW-initialized CDMC (median accuracy 0.94) sig-

nificantly outperforms all other techniques.

Table 2.1: T-test of accuracies between CDMC-rnd and DTWC

H value P value CI
1 1.4034e-10 [0.1089, 0.1985]

2.4.3 Deviation-Based DTW Clustering Evaluation

Deviation-based DTW clustering as described in section 2.3.2 was compared with clus-

tering using the standard DTW distance metric. For all dynamic time warping computa-
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Figure 2.6: Accuracies for randomly initialized CDMC, DTW-only clustering (DTWC), con-
strained DTW-only clustering (cDTWC), DTW-initialized CDMC, and constrained DTW-
initialized CDMC. Non-overlapping notches indicate significant difference in medians (p <
0.05). DTW-initialized and CDTW-initialized CDMC yield significantly better accuracies
than the other clustering techniques.

tions, the local cost measure in equation 2.1 was defined as c(x,y) = 1 if the elements x

and y are different, otherwise c(x,y) = 0. The weight values λgw and λsd in equations 2.6

and 2.5, respectively, were determined empirically in order to maximize mean accuracy

over a sample of synthetic data (but separate from the synthetic data sample used for

performance evaluation in Figure 2.7). λsd was set to 0.67. λgw was set to 0.83.

• DTW-driven vs. Global Weighted DTW-based Clusterings: We evaluate perfor-

mance of clustering over synthetic data using globally weighted DTW (gwDTW)

(Equation 2.5) as the similarity measure, as compared with standard DTW similar-

ity.

To determine the best weight value (e.g., λgw), an exhaustive search from 0 to 1
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was conducted in the procedure of clustering over various synthetic dataset. The

weight value with highest average accuracy was to be selected as λgw. 100 tri-

als were performed to compare clustering performances of using DTW alone and

global weighted DTW. They are compared to examine the effect of deviation ar-

eas on finding optimal path in the context of clustering. Clustering accuracies over

the synthetic dataset are shown in Figure 2.7. gwDTW performs significantly bet-

ter than standard DTW, proving the advantage of incorporating deviation into the

dynamic time warping computation for clustering of synthetic time series data. Me-

dian accuracies appear in Table 2.2.

• DTW-driven vs. Stepwise Deviated DTW-based Clustering: We aim at comparing

the use of standard dynamic time warping methods as similarity measure in clus-

tering task with stepwise deviated versions of dynamic time warping.

Similar to experiments using global weighted dynamic time warping, synthetic

dataset was generated by two hidden Markov models as described before. The

weight value λsd was empirically set to 0.67. Standard dynamic time warping and

one adding deviation into DTW computation (sdDTW) were subjects. During clus-

tering over synthetic dataset, accuracies for the three clusterings are shown in Fig-

ure 2.7. sdDTW significantly performs better than standard dynamic time warping

alone in the Wilcoxon rank sum test. The medians of accuracies for the three clus-

terings in Table 2.2 strengthen the fact: deviation plays an impact on evaluating time

series with long-duration state. The integration of DTW and deviation produces the

best clusters according to accuracy.
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Figure 2.7: Clustering accuracies using standard DTW, gwDTW, and sdDTW as similarity
measure over hidden Markov mixture data. Non-overlapping notches indicate significant
difference in medians (p < 0.05). gwDTW and sdDTW are significantly more accurate than
standard DTW.

Table 2.2: Median accuracies of clusterings based on DTW, gwDTW, and sdDTW. Aster-
isks denote Bonferroni-corrected statistical significance of differences with standard DTW in
Wilcoxon rank sum test (p < 0.05).

DTW gwDTW sdDTW
0.65 0.92* 0.91*
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Figure 2.8: Over-warping of sleep stage sequences using dynamic time warping. (Left) Use
of standard dynamic time warping inappropriately matches dissimilar segments (a long one
versus a short one) in two sequences. (Right) The same over-warping problem described in
terms of warping search area. The area circled by the dashed line indicates a large deviation
of the standard warping path from the diagonal path of constant slope. The bar graph on
the right indicates local cost measure and the background in the right figure shows the local
cost matrix of two discrete time series (patient 56 and patient 235) in dynamic time warping
computation (see section 2.1).
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Chapter 3

Dynamical Modeling over Time Series

Discrete time series is a typical type of time series, in which each datum is chosen from

some predetermined non-empty finite set, taken at uniformly spaced time instants [62].

It is also called discrete symbolic data, for example, sleep stage sequences in human

sleep [15] and a paragraph of words in text [63].

Discrete time series can be described as alternations process among states. That is,

discrete time series refers to a progression, starting with a given state, then cycling in

which states alternate, and finally ending in a certain state. During a sequential recording,

every state exhibits short or long uninterrupted bouts as time passes by in it. Regardless

of typical patterns in the sequence, the alternation details vary across individuals, which

may be affected by underlying factors.

Different from static information in time series [64], for example, total length of the

time series and percentage of a given state in sequential data, there are two vital indicators

capturing dynamical information in discrete time series. One is state transition, trans-

forming from one state to another one (itself inclusive). A transition matrix of all state

transitions gives the probabilities associated with state change. The other one is state bout

duration, counting the number of a given state in a maximal uninterrupted segment of the
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3.1 MARKOV MODELS

state within a given sequence. The distribution of a state bout duration includes frequen-

cies of state durations of different length for the specified state. In addition, state bout

duration distribution is commonly depicted by some distribution functions (e.g., proba-

bility mass function [65]). As stated in chapter 6, the internal dynamics [8] are widely

used in applications to sleep-wake architecture [66], where exponential and power-law

functions are proposed as parametric models for the distributions of wake and sleep bout

durations [10]. In a word, both state transition and state bout durations form the basis of

the data representation for dynamics in time series in this dissertation.

In this chapter, we first introduce Markov models in section 3.1, then depict the semi-

Markov dynamical model version of CDMC in section 3.2, and finally present the appli-

cation of semi-Markov dynamical models in real dataset in section 3.3.

3.1 Markov Models

Markov model has been a powerful technique applied extensively for sequential data in

real applications [24]. The reasons behind the use of Markov model in discrete time series

analysis are ascribed to three aspects. Firstly, Markov model is defined for modeling time

series, especially natural for discrete time series [67]. In other words, each element in

a sequence is considered as a state and a switch event from one element to another as

a state transition. Secondly, Markov model gives full support of mathematical basis, in

particular, statistics, thus providing probabilistic explanations in reality [68]. Last but

not least, Markov models are able to provide practical methods of training parameters

by themselves efficiently [69]. To sum up, it is a good candidate for training models to

characterize dynamics (i.e., state transitions) in discrete time series.

Different from Markov models, linear dynamical system (LDE) uses a continuous

state variable with linear Gaussian dynamics and measurement [26]. LDE could be used
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in sleep research, speech recognition, and user behavior pattern since under the same as-

sumption that there are hidden variables with Markovian dynamics like HMM. A switch-

ing linear dynamical system is applied for jointly modeling the dynamics of both the

raw speech signal and the raw signal noise [27]. For human sleep research, it consists

of five discrete sleep stages. The stage transitions are natural state transition of Markov

model with the reasonable Markov assumption. Therefore, Markov models (e.g., Markov

chain and Hidden Markov model) are more popularly used in human sleep than other

non-Markov state transition models.

3.1.1 Markov Chains

Among Markov models, first-order Markov chain model provides a dynamical model of

transitions between states [70]. It is a particular kind of Markov model, in which all well-

defined states are observable (that is, there are no hidden states). Take a 3-state Markov

chain model in Figure 3.1 as an example. The Markov chain consists of three states (e.g.,

state 1, 2, and 3) together with a state transition matrix that provides the probability of

transition between each pair of states (e.g., P1→1 or P1→2). State transitions in the Markov

model occur with a fixed probability in every cycle of a standard clock that is shared by all

of the states. The Markov assumption establishes that state transition probability depends

only on the current state, independent of previous states in sequential data. As a result,

the duration of visits to a given state in a Markov chain model has a geometric (discrete

exponential) probability distribution. For instance, the probability of transitions from state

1 to itself before leaving for a different one amounts to Pt
1→1(1−P1→1) in Figure 3.1.

In practice, Markov chains [24] have been used to model dynamics of time event

like speech recognition. A simple time-homogeneous Markov chain was first applied in

the sleep domain [14]. However, due to geometrically distributed state bout durations as

shown in Figure 3.1, Markov chains (and more generally, hidden Markov models) may not
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Figure 3.1: A 3-State Markov Chain with Exponential Decay. There is a probability Pi→ j of
transition from one state (e.g., Si) to another (e.g., S j) where i, j = 1,2,3. The probability of
transitions from state 1 to itself before leaving for a different one amounts to Pt

1→1(1−P1→1).

characterize distributions of state transitions more flexibly and accurately, contradicting

known experimental observations [10, 15]. To overcome this limitation, we investigate

semi-Markov chain models in section 3.2.

3.2 Semi-Markov Models

Experimental results [10, 16] demonstrate that geometric distributions are a poor fit for

actual stage bout duration (see section 3.2.1) distributions of human sleep. For example,

the wake stage has a distribution of bout durations with a slowly decaying tail that is more

similar to a power-law function than to a discrete exponential. Motivated by this fact, our

work employs a semi-Markov chain model for the sequence of sleep stages, instead of a

Markov model.

Semi-Markov chains, as a variant of Markov chain models [24], are proposed to be

more suitable for describing sequences with infrequent dynamical events, since they do

not implicitly assume exponential distributions of state durations [16, 71]. The use of
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semi-Markov dynamical models in Collective Dynamical Modeling Clustering (CDMC)

framework better describes the dynamic characteristics of human sleep as compared with

first-order Markov chain models in section 6.

3.2.1 State Bout Duration Distribution

State bout durations form the basis of the data representation in time series. A state

bout is defined as a maximal uninterrupted segment of the given state within a given

sequence. The duration of a state bout is defined as the number of units which the bout

spans. The frequency of a state bout duration is the number of state bouts of this same

duration present in the sequence. The distribution of a state bout durations (that is, the

frequencies of different bout durations for that state) can be depicted by the distribution

function (probability mass function). As stated in section 3.1, [10, 11] have shown that

good approximation to stage bout duration distributions can be obtained by using single

exponential function and power law functions. To avoid implicit exponential distribution

of state bout durations in Markov chains, exponential, power law, and Weibull density

functions are fit to stage bout duration data:

• Exponential Distribution.

The general form of a single exponential distribution [72] in Figure 3.2 is given in

equation 3.1, where µ is the expected value.

f (x;µ) =
1
µ

exp
−x
µ

(x≥ 0) (3.1)

The expected value of the exponential distribution for a given state in Maximum

Likelihood Estimation (MLE) corresponds to the expected value of durations over

the sequence data.
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f (x; µ) = 1
µ exp

−x
µ (x ≥ 0)

µ = 1

f (x; λ, k) = k
λ

(

x
λ

)k−1
exp

(

−
(

x
λ

)k
)

(x ≥ 0)

λ = 1, k = 0.5

f (x; α, xmin) =
α−1
xmin

(

x
xmin

)−α

(x ≥ xmin)

α = 1.813, xmin≥ 2.180

Figure 3.2: Example of state bout distributions. Exponential, power law, and Weibull ones are
depicted in the range from 1 to 20. The exponential has the steepest change , the Weibull is the
most smoothed one, and power law interpolates between them. Due to their different tailing
characteristics in data, the three are fit to various state bout durations in input sequences. See
experimental evaluation of sleep stages in section 3.3.3, for example.

• Power Law Distribution.

The general form of a power law distribution [73] in Figure 3.2 is given in equa-

tion 3.2.

f (x;α,xmin) =
α−1
xmin

(
x

xmin

)−α

(x≥ xmin) (3.2)

The estimation of α in the power law distribution using maximum likelihood esti-

mation is shown in equation 3.3.

α = 1+n

[
n

∑
i=1

ln
xi

xmin

]
(xi ≥ xmin α > 1) (3.3)

According to the estimation in equation 3.3, and based on the sequential data, xmin
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should be 1, and a large enough range for initial values for α is the range from 1 to

10 times the MLE estimate of α. A delta increment value of 0.01 is used to select

sufficient α values in this range. Note that n is the number of observed empirical

data.

• Weibull Distribution.

The general form of the Weibull distribution [74] is given in equation 3.4.

f (x;λ,k) =
k
λ

( x
λ

)k−1
exp
(
−
( x

λ

)k
)
(x≥ 0) (3.4)

where λ is scale parameter and k is shape parameter in the Weibull distribution.

When k= 1, the Weibull distribution coincides with an exponential distribution (See

Figure 3.3). The expected value of the Weibull distribution is given by equation 3.5.

E(x) = λΓ

(
1+

k
λ

)
(3.5)

where Γ is the gamma function, which extends the factorial function. When k = 1,

E(x) = λ. To be consistent with the kernel estimated data distribution, k is limited

to a range between 0 and 2. λ can range from 1 to the maximum duration of any

state.

To compensate for the scarcity of bout durations in the dataset, kernel density estima-

tion [75] is applied. Kernel density estimation (KDE) is used for nonparametric probabil-

ity density estimation. It is a useful statistical smoothing technique used when inferences

about the population are to be made based on a finite data sample. The stage duration

distributions calculated over discrete time series often contains many missing values for

specific bout durations in states. KDE is used to smooth these data distributions, thus

providing meaningful values for durations of different states as shown in Figure 3.4. A
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Figure 3.3: Weibull distribution family. If x is interpreted as a “time-to-failure” in statistical
reliability theory, the Weibull distribution indicates a distribution where the failure rate is
proportional to a power of time. The shape parameter k determines one of several cases: if
k < 1, then failure rate decreases over time; if k = 1, then it does not change over time; if
k > 1, then failure rate increases with time.

normal distribution with a kernel-smoothing window width of 1 was determined to pro-

duce the best results.

Once the state duration distributions have been smoothed using non-parametric ker-

nel density estimation, parametric functions that closely approximate the shape of these

duration distributions can be found. A new metric for evaluating the goodness of fit is in-

troduced and used to select the best fit, which is similar to the Mean Square Error (MSE)

metric applied to the logarithmically transformed frequency data [76], except that the pa-

rameter x appears in the denominator of the new metric. This new metric proved superior

to other metrics (including MSE) in capturing the quality of the approximation as gauged

by visual inspection during systematic experimentation.

GOF(x) =
n

∑
k=1

(
(logs(xk)− log f (xk))

2

xk

)
(3.6)
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Figure 3.4: Kernel density estimation for sleep dataset. There are 244 patients: 122 males
and 122 females all suffering from sleep problems. The frequency of stage bout durations for
REM stage is shown in the left subplot. The kernel density estimation is used to smooth the
frequency data and provides estimated values given stage durations in the right subplot.

In equation 3.6, s(xk) refers to the nonparametric probability density estimation at

duration xk, and f (xk) refers to the fitting data on s(xk). Logarithms are taken on the

estimated data s(xk) and fit data f (xk) to match the visual aspect of these values in a log-

log scale plot.

The following approach is employed to search for the best possible curve fits for each

state duration distribution.

1. Calculate the state duration distribution from sequences.

2. Smooth the calculated state duration distribution using KDE.

3. Fit exponential, power law, and Weibull functions to the smoothed state duration

distribution using each of the following two approaches to estimate parameters:

ML: Use Maximum Likelihood (ML) [77] to estimate the parameters of each of

the fitting function families. As an illustration, the plots in Figure 3.6(c) depict
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3.2 SEMI-MARKOV MODELS

the best ML approximation obtained for the REM stage duration distribution

for each of the three fitting function families.

LS: Use Least Squares (LS) to estimate the parameters. In this case, the initial

parameter values for the estimation were taken from the ranges described for

each function family (exponential, power law, and Weibull). Repeat this for

each possible initial point in the given range. Then use the GOF metric to

select the best estimation obtained for each function family among all those

obtained from the set of initial parameter values. The plots in Figure 3.6(c)

depict the best LS fits obtained (together with the best ML fits).

4. Use the GOF metric to select the best estimation obtained by the ML and LS ap-

proaches above across all function families. Output this estimation as the best ap-

proximation for the state duration distribution.

3.2.2 Semi-Markov Chains With Explicit Bout Duration

In a semi-Markov model, the mechanism that determines the durations of state visits

is independent of any model-wide clock. Each state i in a semi-Markov model of the

type considered here has a specified visit duration distribution Pi(τ) in section 3.2.1; upon

arriving in the given state, a random sample τ is taken from this visit duration distribution;

the model then remains in state i for the duration τ, at the end of which time the next state

is selected from among all states other than i, according to some Markov-type transition

probability matrix with zeros along the diagonal. Other varieties of semi-Markov models

also exist [78].

Different from first-order Markov chain in Figure 3.1, semi-Markov chains used as

dynamical models in CDMC have two basic components: state transition matrix and state

duration distributions for states. The state transition matrix is similar to that in the Markov
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Figure 3.5: A 3-state semi-Markov chain model (SMM). Similar to a Markov chain model
(MM), a SMM consists of a state diagram (which in this case includes three states: 1, 2,
and 3) together with a transition probability matrix that provides the probability of transition
between each pair of states. The difference between a SMM and a MM is that the probability
of a self-transition is made equal to 0 in the SMM’s transition matrix, and the duration of
“staying” in that state is explicitly represented instead by the probability density function that
approximates that state duration distribution.

chain, except that the probability of a transition from any state to itself is 0. The best fitting

function selected by section 3.2.1 should be used as the description of the stage duration

distribution of each stage. The mechanism of a semi-Markov chain model operates as

follows in Figure 3.5:

1. Pick up a specific state, state 1, for instance;

2. Stay in the current state for a duration, randomly sampled from the duration dis-

tribution for that state (given by the approach of searching for best fitting func-

tion [15], expressed as P1(d1));

3. Transiting from the current stage to the selected state according to the vector of

state transition probabilities, {P1→2, P1→3}.

4. Repeat step 2 and 3 indefinitely.

Since each state has its own bout duration distribution, semi-Markov models become
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a more flexible model than first-order Markov chain model. If distributions for all states

in the semi-Markov chain were exponential, semi-Markov chain is degenerated into a

Markov chain.

3.3 Experimental Evaluation

The goal of this experimental study is to present the superiority of semi-Markov chains

over Markov chains and hidden Markov models for the purpose. We will show that (1)

first-order Markov chains simply characterize features in discrete time series and (2) semi-

Markov chains flexibly capture dynamical features of data and perform much better than

Markov chains in modeling time series.

3.3.1 Experimental Setup & Methodology

We investigate the effect of the use of semi-Markov chains as dynamical models in

CDMC, compared with first-order Markov chain in the following experiments. The rele-

vant experimental setup includes:

• Human Sleep Sequences.

A real dataset of human sleep is manipulated in the experiment, in order to eliminate

variances of synthetic dataset generated by three variants of Markov models, such

as Markov chains (MM), hidden Markov model (HMM), and semi-Markov chains

(SMM). The human sleep dataset consists of a total of 244 fully anonymized hu-

man polysomnographic recordings. They were extracted from polysomnographic

overnight sleep studies performed in the Sleep Clinic at Day Kimball Hospital in

Putnam, Connecticut, USA in section 6.1.1. Each polysomnographic recording is

split into 30-second epochs and staged by lab technicians at the Sleep Clinic. Stag-

ing of each 30-second epoch into one of the sleep stages (wake, stage 1, stage 2,
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(b) NREM Stage
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(c) REM Stage

Figure 3.6: Curve fitting of sleep stage duration distribution in WNR dataset. The three
grouped plots depict the fits obtained by using exponential functions (left), power law func-
tions (center), and Weibull functions (right). In each plot, the results of the ML and LS
approaches to find best fits are presented. For the REM stage, among all these candidate fits,
the Weibull function achieves the best goodness of fit. The same are for the wake and NREM
stages.
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(b) Deep Stage
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(c) Light Stage

Figure 3.7: Curve fitting of sleep stage duration distribution in WDL dataset. The three
groups of plots depict the fits obtained by using exponential functions (left), power law func-
tions (center), and Weibull functions (right) in wake, deep sleep, and light sleep stages respec-
tively. In each plot, the results of the ML and LS approaches to find best fits are presented.
Among all these candidate fits, the Weibull function achieves the best goodness of fit for all
three stages.
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(a) Wake Stage
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(b) Stage 1
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(c) Stage 2

Figure 3.8: Curve fitting of sleep stage duration distribution in W5 dataset. The three groups
of plots depict the fits obtained by using exponential functions (left), power law functions
(center), and Weibull functions (right) in wake, stage 1, and stage 2 respectively. In each plot,
the results of the ML and LS approaches to find best fits are presented. The Weibull function
achieves the best goodness of fit in wake stage and stage 2. Power law performs best in Stage
1.

54



3.3 EXPERIMENTAL EVALUATION

stage 3, and REM [18]) is done by analyzing EEG, EOG and EMG recordings

during the epoch [79]. Stages 1, 2, and 3 are grouped into a non-REM stage, ab-

breviated as NREM. This condenses the representation of the sleep stages to three:

Wake, NREM, and REM, collectively denoted WNR. Stage 1, 2, and REM could

be combined into light stage and stage 3 as deep stage [19]. In the experiment, three

different versions of the human sleep dataset are considered:

– (W5) uses the five standard stage labels Wake, 1, 2, 3, REM.

– (WNR) uses the three stage labels Wake, NREM (stages 1, 2, and 3), REM.

– (WDL) uses the three stage labels Wake, Deep (stage 3), Light (stages 1, 2,

and REM).

• Equilibrium Distribution.

We use equilibrium distribution to represent the large-time asymptotic probability

of occupation of the various states in a Markov chain [80]. Therefore, the equilib-

rium distribution characterizes the long-term dynamics of discrete time series in a

Markov chain model. The equilibrium distribution of a Markov chain (but not of

a general semi-Markov chain) may be computed as the normalized eigenvector of

the transition matrix with eigenvalue 1.

To approximate the equilibrium distribution in a semi-Markov chain model, one

can use simulation of the semi-Markov chain. Sufficiently long stage sequences are

generated so that asymptotic probabilities of states can be estimated. These limiting

values represent the equilibrium distribution of the semi-Markov chain model.

• Fitting Function Difference.

In addition to the equilibrium distribution in the semi-Markov chain model, fitting

functions that represent distributions of stage durations can be compared through
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the parameter values if they are from the same family of functions, for example

the Weibull density function family. Interpreting a state bout duration as a “time-

to-failure” as in statistical reliability theory, the Weibull distribution indicates a

distribution where the failure rate is proportional to a power of time. As shown

in Figure 3.3, the shape parameter k determines one of several cases: if k < 1,

then failure rate decreases over time; if k = 1, then it does not change over time;

otherwise failure rate increases with time.

3.3.2 Markov Chain Evaluation

A Markov chain provides a simple dynamical model of the transitions between sleep

stages in Table 3.1. Noticeably, the self-transition probabilities are much higher than the

inter-state transition probabilities.

Table 3.1: Stage transition matrix for Markov chain model.

Sleep Stage Wake NREM REM
Wake 0.9207 0.0764 0.0029

NREM 0.0239 0.9705 0.0056
REM 0.0216 0.0108 0.9676

As in section 3.3.1, the equilibrium distribution of the Markov chain model is obtained

by normalizing the eigenvalue 1 in the eigenvector of the Markov transition matrix. The

equilibrium distribution is given in Table 3.2. It characterizes the long-term dynamics of

human sleep as captured by this Markov chain model.

Table 3.2: Equilibrium distribution for Markov chain model

Equilibrium Wake NREM REM
Value 0.23 0.64 0.13
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3.3.3 Semi-Markov Chain Evaluation

Semi-Markov models have similar inter-stage transition behavior to Markov models. But

in contrast with the Markov chain model, the semi-Markov chain model allows an explicit

representation of the stage duration distributions. Training a Markov chain model requires

only the calculation of the probability transition matrix. Building hidden Markov model

needs extra computation of the emission matrix. Semi-Markov chains are required to

estimate state bout duration distributions.

The stage transition matrix obtained for the semi-Markov chain model is given in

Table 3.3. Note that the self-transition probabilities are 0. This matrix can be calculated

from the Markov chain model transition probability matrix by normalizing the inter-state

probabilities in each row. This very simple operation produces values that more directly

reveal the relative likelihoods of various inter-stage transitions.

Table 3.3: Stage transition matrix for semi-Markov chain model.

Sleep Stage Wake NREM REM
Wake 0 0.9632 0.0368

NREM 0.8093 0 0.1907
REM 0.6655 0.3345 0

For stage bout durations, power law, and Weibull distribution functions [15] are con-

sidered as candidates for sleep stages. The specifications in distribution functions are

listed as follows:

1. For exponential function, the expected value of the exponential distribution for a

given sleep stage in MLE corresponds to the expected value of durations over the

sleep stage data. The maximum length of stage bout duration for all sleep stages

is 230 epochs. Therefore, the initial values for µ can be taken to be between 1 and

230.
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2. For power law function, xmin should be 1, and a large enough range for initial values

for α is the range from 1 to 10 times the MLE estimate of α. A delta increment value

of 0.01 is used to select sufficient α values in this range. n is 244 patients.

3. For Weibull function, to be consistent with the kernel estimated data distribution,

k is limited to a range between 0 and 2. λ can range from 1 to 230 (the maximum

duration of any sleep stage).

We apply the search procedure and decide the best fitting parameters as described in

section 3.2.1. The experimental results on three versions of datasets are shown as follows:

• WNR Results.

The Weibull family of distributions was selected to model the REM stage durations

in the semi-Markov model illustrated in Figure 3.6 , for example. The results are

summarized in Table 3.4. It can be seen that for wake stage, the best fitting func-

tion is determined by least squares error estimation. For NREM and REM, the best

fitting functions are determined by maximum likelihood estimation. Table 3.5 pro-

vides the parameter values for the best Weibull function fits found. The fact that the

Weibull shape parameters for wake, NREM, REM are, respectively, smaller than,

approximately equal to, and larger than 1, show that stage bout durations for these

three stages have characteristic and distinct behaviors. Specifically, the “failure

rate” for wake, NREM, and REM decreases, does not change, and increases over

time, respectively. These very different behaviors, which are modeled precisely in

the semi-Markov model, cannot be captured at all by the Markov chain model in

section 3.3.2, for which all stage bout durations are exponentially distributed (con-

stant failure rate, in the reliability metaphor). The results are in contrast with reports

by other researchers [11] that the durations of wake stage, NREM sleep stage, and

REM sleep stage follow power laws or single exponential distributions.
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Table 3.4: Goodness of fit (GOF) values, as defined in section 3.2.1. The lower this value,
the better the fit. The best fit(s) for each stage is(are) underlined. EDF, PDF, and WDF denote
exponential, power law, and Weibull density functions, respectively. ML and LS denote the
search approaches described in section 3.2.1.

ML Wake NREM REM
EDF 6.2963 0.5543 1.7284
PDF 2.0704 7.6185 6.0023
WDF 1.0418 0.5684 0.3046

LS Wake NREM REM
EDF 5.0303 0.6352 2.0428
PDF 2.0704 5.8969 11.8552
WDF 0.7788 0.8949 0.3198

Table 3.5: Parameter values for the Weibull function fits.

Parameters Wake NREM REM
λ (scale) 4.024 33.74 33.35
k (shape) 0.4378 1.000 1.286

• WDL Results.

In Figure 3.7, stage bout durations at deep and light stages do not follow linear

distribution under logarithmic scale in x and y axes. Thus power law does not fit

well stage bout data visually in these two stages. Furthermore, we find that for

wake stage, the best fitting function is determined by least squares error estimation.

For deep and light sleep stages, the best fitting functions are also derived from

least squares error estimation. The fact that the Weibull approximates better than

exponential at the starting section between 0 and 2 of log stage duration leads to

superiority of Weibull curve fitting results. In sum, scale and shape parameters

allows Weibull to be a smoothing slope, which fits stage bout durations well.

• W5 Results.

Similar to data distribution in Figure 3.8, stage bout duration at stage 1 is consistent

with linear one under logarithmic axes and power law perform best than other two

fitting results. For stage 1, the fitting function is selected by least squares error es-
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timation. For stage 2, the best fitting function is derived from maximum likelihood

estimation. Exponential fit competes well with the Weibull one in stage 2 since

bout duration shape accounts for exponential estimation. In addition, simulation

of exponential properties make Weibull distribution perform as well as exponential

one.

Figure 3.9 depicts for each sleep stage a comparison between the exponential fit of

the sleep stage duration distribution used by the Markov chain model, and the Weibull

fit used in the semi-Markov chain model. It can be seen that the Weibull functions used

in the semi-Markov chain model provide a much better fit for the wake and REM stages

than the exponential functions used by the Markov chain model do. As examples, the

exponential Markov fit underestimates the probability of longer wake bouts, and overes-

timates the probability of shorter REM bouts. The Weibull semi-Markov fit captures both

of these behaviors well, by adjusting the shape parameter appropriately. The Markov and

semi-Markov fits coincide in the case of NREM, as NREM durations are relatively well

modeled by an exponential distribution.

The semi-Markov chain model’s empirically observed equilibrium distribution is given

in Table 3.6. It provides the asymptotic probabilities of stages over a collection of sim-

ulation runs where the length of simulations ranged from 1,000 to 1,000,000. The semi-

Markov chain equilibrium distribution in Table 3.6 is observed to be very close to that of

the Markov chain model shown in Table 3.2.

Table 3.6: Equilibrium distribution for semi-Markov chain model

Equilibrium Wake NREM REM
Limit 0.25 0.61 0.14
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Figure 3.9: Comparison of fits for the stage duration distribution function used by the Markov
chain model (MM), exponential, and by the semi-Markov chain model (SMM), Weibull.
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Chapter 4

Convergence of the CDMC Framework

CDMC is a general algorithmic strategy for simultaneous clustering and dynamical mod-

eling of sequence data [34]. CDMC’s pseudocode is shown in Algorithm 1. Similar to

generalizing the method in [33], it is model-based clustering using dynamical state-based

models like Markov models, including Markov chain, semi-Markov chain, and hidden

Markov models. However, [33] utilized clustering data to estimate specific parameters

for every instance, which is subject to high variance in small gene expression data. [31]

provided abundant temporal information for each web navigation sequences in practice.

Furthermore, [81] proposed a similar unifying probabilistic framework, clustering indi-

viduals into groups in terms of observed relevant objects. From a different perspective

of model-based clustering, [82] presented a bipartite graph, in which it considered in-

stances with generative models as generalized cluster centroids, by the way of taking the

generative likelihood information as a proximity measure.

The simultaneous modeling and clustering strategy is closely related to the more gen-

eral Expectation-Maximization (EM) framework [83]. The EM training process alter-

nates between expectation step and maximization step, which possesses functional simi-

larity as what the CDMC algorithm does. Furthermore, an iterative procedure of training
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4.1 EXPECTATION-MAXIMIZATION ALGORITHM

models on a given dataset has been applied in data mining and machine learning tech-

niques. It covers classifications (e.g., neural network and Markov models) and clustering

(K-means clustering) methods. A key point is concerned with convergence property, es-

pecially for training models in a non-closed functional form. Mathematical proof gives its

support of iteratively training over data to calculate a solution gradually. For example, it

has been proved that the convergence of EM framework to local extremes (See Figure 4.1)

is subject to variance of actual data distribution, during the iterative process of expectation

step and maximization step [83, 84]. In other words, EM algorithm is heavily dependent

on domain knowledge [85], in particular on time series, such as human sleep and web

user navigation datasets. Likewise, the convergent problem in the CDMC framework is

proved to be inherited from EM framework.

In this chapter, we review EM algorithm in section 4.1, present basic proof of conver-

gence property on iterative computation of maximum-likelihood in CDMC in section 4.2,

the convergence speed brought up by stopping criteria in section 4.3, as well as experi-

mental results and analysis on convergence using synthetic dataset in section 4.4.

4.1 Expectation-Maximization Algorithm

We review the general definitions of the Expectation (E) and Maximization (M) steps in

the EM algorithm [83]. To provide clear descriptions of the EM algorithm, unambiguous

mathematical notations are defined as follows:

• Let X = {x1, . . . ,xn} denote the observable part of the full data Y , which consists

of n independently data obtained from an underlying probability distribution [86].

The underlying probability distribution is described by a set of parameters θ yet to

be determined.

• Let Z = {z1, . . . ,zn} represent the unobservable part of Y . Y consists of X and Z,
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4.1 EXPECTATION-MAXIMIZATION ALGORITHM

i.e. Y = X∪Z. Note that the unobserved Z is a latent variable whose probability dis-

tribution depends on the unknown parameters θ and the observed data X . Likewise,

Y is considered as a random variable due to the existence of Z in Y .

• θ(t) refers to as the estimated values of θ in the current (e.g. tth) iteration and θ(t+1)

as the re-estimated values of θ on the next (e.g. (t +1)th) iteration of the EM algo-

rithm in terms of θ(t) [87].

The EM algorithm aims at finding the maximum likelihood estimation of θ so as to

maximize E[logP(Y |θ)] [86]. The expectation of the log-likelihood of P(Y |θ), E[logP(Y |θ)],

is taken over the probability distribution with respect to the full data Y given the unknown

parameters θ. Since the latent variable Z ⊂ Y is unknown, the EM algorithm actually

repeatedly re-estimates the expected value of Z (i.e., E(Z)) given its current hypothesis

θ(t) and re-calculates the maximum likelihood hypothesis θ(t+1) using E(Z) instead of Z.

Consider E[logP(Y |θ)] as a function of θ denoted by Q(θ(t+1)|θ(t)), which indicates

the iterative process of evaluating the maximum likelihood hypothesis θ. In general,

the EM algorithm repeats two steps of Estimation (E) and Maximization (M) steps until

convergence [86]:

• Estimation (E) step: Calculate Q(θ(t+1)|θ(t)) using the current hypothesis θ(t) and

the observable data X to estimate the hidden probability distribution over Y .

Q(θ(t+1)|θ(t))← E[logP(Y |θ(t+1))|θ(t),X ]

• Maximization (M) step: Substitute the hypothesis θ(t+1) that maximizes this Q(θ(t+1)|θ(t))

function for the hypothesis θ(t).
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θ(t+1)← arg max
θ(t+1)

Q(θ(t+1)|θ(t))

Note that in the estimation step, actually Z is replaced by the expectation of Z (i.e.,

E(Z)). In the context of considering P(Y |θ) as mixture models (see section 4.2), one can

determine the probability of each possible value (class label) of Z for each data xi (i =

1 . . .n) and then it is called soft EM algorithm. Otherwise, it is called hard EM algorithm

when making hard choice of Z, each zi with 0 or 1. The hard EM algorithm is a procedure

listed as follows:

1. Initialize θ(t) (it is often application specific).

2. Repeat the following two steps until convergence:

(a) {z1, . . . ,zn}← arg max
{z1,...,zn}

{M{z1,...,zn}|θ
(t),X}

(b) θ(t+1)← arg max
θ(t+1)
{E[logM(Y |θ(t+1))|θ(t),X ,z1, . . . ,zn]}

In sum, the hard EM algorithm can be interpreted as that when θ is known, one can

find the value of latent variable Z by maximizing the log-likelihood over all possible

values of Z. On the other hand, if Z is predetermined, one could find an estimate of

the parameters θ by clustering the observed data X according to previously known Z by

maximum-likelihood estimation.

4.2 Convergence Properties of CDMC Framework

Collective dynamical modeling & clustering framework in Algorithm 1 simultaneous

groups and dynamically builds models over sequence data. We prove that CDMC fol-

lows E-M-M approach, that is EM algorithm with an additional M step of hard cluster

assignment.
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4.2 CONVERGENCE PROPERTIES OF CDMC FRAMEWORK

Before the proof of convergence in CDMC, it is necessary to provide clear descrip-

tions of the CDMC algorithm, and unambiguous mathematical notations are defined as

follows:

• Let Y represents the full data, including the known time series distribution (D) and

the unknown cluster membership labels (C).

• Let D = {x1, . . . ,xn} denote the observable part of the full data Y , which consists

of n independently data obtained from an underlying probability distribution. The

underlying probability distribution is described by a set of parameters θ yet to be

determined.

• Let C = {c(x1), . . . ,c(xn)} represent the unobservable part of Y . Y consists of D

and C, i.e. Y = D∪C. Note that the unobserved C is a latent variable whose prob-

ability distribution depends on the unknown parameters θ and the observed data D.

Likewise, Y depends on the parameters θ due to the presence of C in Y .

• Assuming that there are k different clusters, denote the corresponding distributions

of the full data in these clusters by M(Y |θ) = {M1(Y |θ1), . . . ,Mk(Y |θk)}, where

θ = {θ1, . . . ,θk} is a set of unknown parameters.

• θ(t) refers to as the estimated values of θ in the current tth iteration of the model

estimation step in Algorithm 1 and θ(t+1) as the re-estimated values of θ on the next

(t +1)th iteration of the CDMC algorithm in terms of θ(t).

The CDMC algorithm aims at finding the maximum likelihood estimation of θ so as

to maximize E[logM(Y |θ)] while stabilizing clustering C. The expectation of the log-

likelihood of M(Y |θ), E[logM(Y |θ)], is taken over the probability distribution with re-

spect to the full data Y given the unknown parameters θ. Consider E[logM(Y |θ)] as a
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function of θ where all pairs (θ(t+1),θ(t)) exist and let

Q(θ(t+1)|θ(t)) = E[logMc(x)(t+1)(Y |θ(t+1))|θ(t),x] (4.1)

that indicates the iterative process of evaluating the maximum likelihood hypothesis θ.

Since the latent variable C ⊂ Y is unknown, the CDMC algorithm actually repeatedly

re-estimates C and calculate Q(θ(t+1)|θ(t)) given its current hypothesis θ(t) and the ob-

servable part x in D, and re-calculates the maximum likelihood hypothesis θ(t+1) using

the current estimates of C.

In general, the CDMC algorithm repeats two steps of Cluster Assignment (CA) and

Model Estimation (ME) steps until convergence of clusters in Algorithm 1:

• Cluster Assignment (CA) step: Assign each instance x in D to the cluster c(x)(t+1)

having the model Mc(x)(t+1)
(Y |θ) most likely to generate x and compute Q(θ(t+1)|θ(t))

given its current hypothesis θ(t), the observable data D, and updated clustering as-

signment c(x)(t+1) to estimate the hidden probability distribution over Y .

c(x)(t+1)← arg max
c(x)(t+1)

{Mc(x)(t+1)(Y |θ(t))|θ(t)}

Q(θ(t+1)|θ(t))← E[logMc(x)(t+1)(Y |θ(t+1))|θ(t),x]
(4.2)

• Model Estimation (ME) step: Train each dynamical model Mi with maximum data

likelihood for each cluster ci {i = 1, . . . ,k} by calculating Q(θ(t+1)|θ(t)) using the

current hypothesis θ(t), and then substituting the hypothesis θ(t+1) that maximizes

this Q function for the hypothesis θ(t).

θ
(t+1)← arg max

θ(t+1)
{Q(θ(t+1)|θ(t))} (4.3)

Note that the cluster assignment step involves not only the E step in the EM algo-
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rithm, which calculates the expectation of the log-likelihood of M(Y |θ), E[logM(Y |θ)],

but also the additional M step of hard assignment to the most likely cluster C. The model

estimation step just includes M step in the EM algorithm. In sum, the above model

estimation and clustering assignment steps correspond to E and M steps in the EM algo-

rithm (see section 4.2) with the additional M step of hard assignment, except convergence

conditions: convergence of clusters in CDMC algorithm and convergence of maximum

likelihood in EM algorithm.

Consider a mixture of dynamical models using the above procedure in CDMC as an

example. A dataset D = {x1, . . . ,xn} is generated by a mixture of k distinct distributions

where data points are mapped along the x axis. The goal is to simultaneously output

θ = {θ1, . . . ,θk} that describes the mixed probability distributions M(θ) and clustering

results C = {c(x1), . . . ,c(xn)}. Among M(θ) = {M1(θ1), . . . ,Mk(θk)}, the probability of

Mi {i = 1, . . . ,k} generating a single datum yi = 〈xi,c(xi)〉 in the full data Y can be written

as

M(yi|θ(t+1)) = M(xi,c(xi)|θ(t+1)) =
k

∑
j=1

I(c(xi) = j)Mc(xi)(θ
(t+1)
c(xi)

) (4.4)

where I(c(xi) = j) is an indicator function that it is 1 only if xi belongs to the jth proba-

bility distribution and 0 otherwise, in accordance with constraints in hard EM algorithm.

From another perspective, the indicator function gives the prior distribution of xi gener-

ated by the jth hidden probabilistic distribution.

Furthermore, the expression for M(Y |θ(t+1)) is

M(Y |θ(t+1)) =
n

∏
i=1

M(yi)|θ(t+1)) (4.5)

Given the probability M(yi|θ(t+1)) for a single instance yi, the logarithmic function of the
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probability logM(Y |θ(t+1)) for all n instances in the dataset D is

logM(Y |θ(t+1)) = log
n

∏
i=1

M(yi|θ(t+1)) =
n

∑
i=1

log M(yi|θ(t+1))

=
n

∑
i=1

[
log

k

∑
j=1

I(c(xi) = j)Mc(xi)(θ
(t+1)
c(xi)

)

] (4.6)

Calculate the expected value of this logM(Y |θ(t+1)) over the distribution of unob-

served part C of Y . That is,

E
[
logM(Y |θ(t+1))

]
= E

[
n

∑
i=1

k

∑
j=1

I(c(xi) = j)
(

logMc(xi)+ logθ
(t+1)
c(xi)

)]

=
n

∑
i=1

k

∑
j=1

E [I(c(xi) = j)]
[(

logMc(xi)+ logθ
(t+1)
c(xi)

)] (4.7)

Note that since logM(Y |θ(t+1)) is a linear function of those c(xi) ∈ C (i = 1, . . . ,n)

and the linearity of the expectation (e.g.E[ f (c)] = f (E[c])), the above equations hold.

The expected value E[I(c(xi) = j)] of each latent variable c(xi) is 1 if xi belongs to the jth

distribution, assuming the current hypothesis θ(t) = {θ(t)1 , . . . ,θ
(t)
k } holds, and 0 otherwise.

Consider X as “incomplete data” and Y as “complete data”. It implies the existence of

two sample spaces (e.g., Y and X ) and a many-one mapping from Y to X represented

as [83]:

g(x | θ) =
∫

Y (x)
f (y | θ)dy

Q(θ(t+1) | θ(t)) = E(log f (y | θ(t+1)) | x,θ(t))
(4.8)

For CDMC, logM(Y |θ(t+1)) here refers to log f (y | θ(t+1)) under the general EM

algorithm, for which [83] proved that the likelihood sequence of the general EM algorithm

is non-decreasing and convergent. Additionally, [84] corrected the use of the triangle
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inequality and pointed out two useful special cases:

• If Y is denoted as a curved exponential family with compact parameter space, then

the limit points of any EM sequences are stationary points of the log-likelihood

function logM(Y |θ(t+1)).

• If the log-likelihood function logM(Y |θ(t+1)) is unimodal with several satisfied dif-

ferentiability condition, then any EM sequences converges to the unique maximum

likelihood estimate θ(t+1).

In collective dynamical modeling & clustering framework, state-based dynamical

models such as Markov models are taken and state duration distributions are of expo-

nential, power law, and Weibull density functions that follow curved exponential for-

mulations. In addition, all of those probability density functions are differential among

ranges of all values. Therefore, the limit points of an Q(θ(t+1) | θt) sequences in CDMC

are stationary points of the log-likelihood function logM(Y |θ(t+1)) and the Q(θ(t+1) | θt)

sequences in CDMC converge to maximum likelihood estimate as hard clustering agree-

ment sequences converge in the same trend as EM sequences do.

Finally, [88] show that under general, simple, and verifiable conditions, any EM se-

quence is convergent. In a conclusion, under the assumption of continuity of the func-

tion Q(θ(t+1) | θt) where all pairs (θ(t+1),θt) exist, CDMC framework converges to limit

points over the entire parameter space if clustering agreement sequences in CDMC be-

haves similar convergent trend as EM sequences.

4.3 Stopping Criteria

Stopping criteria are used as a measure of agreement between clusterings in Algorithm 1.

We apply Rand index, adjusted Rand index, and normalized mutual information to have

a measure for the similarity for a pair of clusterings [89].

70



4.3 STOPPING CRITERIA

Let n be the number of sequences in time series dataset D. C = {C1, . . . ,Ck} and

C̄= {C̄1, . . . ,C̄l} are two clustering results of D. n11 is the number of pairs of sequences

that are in the same cluster under C and C̄. n00 is the number of pairs of sequences that

are in different clusters under C and C̄. n10 is the number of pairs of sequences that are in

the same cluster under C but not in C̄. n01 is the number of pairs of sequences that are in

different clusters under C but the same in C̄. A confusion matrix CM of the pair C and C̄

consists of k× l entries in the matrix. For example, an entry in the i-th row and the j-the

column is mi j = |Ci∩C̄ j|,1≤ i≤ k,1≤ j ≤ l, which denotes the number of sequences in

both clusters Ci and C̄ j.

4.3.1 Rand Index

Rand index (RI) [90] interprets clustering as a set of decisions for totally n(n−1)/2 pairs

of sequences in D. The Rand index assigns two similar sequences to the same clusters

(true positive), and penalizes false positive and false negative during clustering. It is

defined as:

R(C, C̄) =
2(n11 +n00)

n(n−1)
(4.9)

R ranges from 0 to 1. It is proved that Rand index is highly dependent on the number

of clusters [91]. Furthermore, it produces a nonzero value for the comparison of two

randomly constructed partitions.

4.3.2 Adjusted Rand Index

Adjusted Rand index (ARI) [92] is based on the Rand index but corrects for clustering

agreements due to chance. The adjusted indices takes a generalized hypergeometric dis-

tribution as null hypothesis, in which the two clusterings C and C̄ are drawn randomly

with a predefined number of clusters and a fixed number of elements in each cluster. It is
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defined as the difference of R(C, C̄) and its expected value:

Rad j(C, C̄) =

∑
i=1
k ∑

j=1
l

 mi j

2

− t3

1
2(t1 + t2)− t3

(4.10)

where t1 = ∑
k
i=1

 |Ci|

2

, t2 = ∑
l
j=1

 |C̄ j|

2

, and t3 = 2t1t2
n(n−1) . Note that due to the

uncertainty of number of elements in clusters under the null hypothesis, Rad j(C, C̄) pro-

duces negative index values [93].

4.3.3 Normalized Mutual Information

Normalized mutual information (NMI) [94] is a distinct way of evaluating clusters by the

tradeoff between the number of clusters and qualities. It satisfies three properties [95]:

(1) Consistency with the set of clusterings; (2) Robustness to small variations in the set of

clusterings; (3) Goodness of fit with the ground truth information. The normalized mutual

information between clusterings C and C̄ is defined as:

NMI(C, C̄) =
2I(C, C̄)

H(C)+H(C̄)
(4.11)

where the mutual information between C and C̄ is I(C, C̄)=∑
k
i=1 ∑

l
j=1 P(i, j) log2

P(i, j)
P(i)P( j) .

H(C) =−∑
k
i=1 P(i) log2 P(i) is the entropy [96] associated with clustering C. P(i) = |Ci|

n

and P(i, j) = |Ci∩C̄ j|
n . The range of NMI(C, C̄) is between 0 and 1.
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Figure 4.1: Local and global extremes across parametric space. A mixture Markov data
comes from two hidden Markov models (HMMs), each with two states. Values along the
main diagonals (named “diagonal” here) in the transition matrix of a given HMM are the
same. Given each setup of the two HMM over the entire parameter space, the negative log-
likelihoods are calculated. There are two global maxima and four local maxima extremes
symmetrically distributed in the space. Under different initializations of state transitions in
HMM, CDMC could make training the two HMMs converge to global maxima and local
maxima.

4.4 Experimental Evaluation

The goal of this experimental study is to investigate the effect of stopping criteria in

convergence for CDMC framework. We will show that Rand index is the best choice for

stopping criterion in CDMC framework in terms of (i) number of iterations to converge

and (ii) accuracy of classification in CDMC.
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4.4.1 Experimental Setup & Methodology

In experimental study, we compare three index metrics in section 4.3 as the basis for

the stopping criterion in CDMC (Algorithm 1), using the resulting CDMC convergence

time (number of modeling-clustering iterations) and classification accuracy over labeled

synthetic data for evaluation. The prerequisite setups include:

• Stopping Criteria.

Standard Rand index (RI), adjusted (chance-corrected) Rand index (ARI), and Nor-

malized Mutual Information (NMI), were used respectively in CDMC, and the re-

sults were compared in terms of the resulting classification accuracy and number of

iterations to convergence.

• Synthetic semi-Markov Mixture Dataset.

A synthetic semi-Markov mixture dataset was used in the evaluation of stopping

metrics. It is generated from two distinct semi-Markov chains, each with two states,

but with different transition probability matrices and state duration statistics. In the

experiments, N = 100 sequences, each of length L = 100, were used in all trials.

The following transition matrices and Weibull (shape, scale) parameter values (in

that order) were used for the two semi-Markov chains. There were two Weibull

distributions per chain, one for each state.

Semi-Markov chain 1:
(

0.90 0.10
0.10 0.90

)
, (3,5), (2.5, 4,5)

Semi-Markov chain 2:
(

0.15 0.85
0.85 0.15

)
, (3,4), (2.5, 3,5)

This allows the use of classification accuracy to evaluate performance of cluster-

ings.
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4.4.2 Convergence For Stopping Criteria
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Figure 4.2: Iterations to convergence for different stopping criteria. Random and DTW-
initialized CDMC. Semi-Markov mixture data. Stopping metrics: RI (two left), ARI (two
center), NMI (two right). Non-overlapping notches indicate significant difference in medians
(p < 0.05) using a Wilcoxon rank sum test (Mann-Whitney test). RI stopping is significantly
faster than others. DTW initialization significantly speeds up convergence for RI stopping.

The criterion for stopping the iterative process in CDMC depends on the clustering

similarity metric. Three similarity metrics were compared (see section 4.3): the standard

Rand index (RI), the adjusted Rand index (ARI) intended to correct for chance clustering

agreements, and Normalized Mutual Information (NMI). The resulting numbers of itera-

tions required for convergence are shown in Figure 4.2. RI is seen to lead to a significantly

lower median number of iterations to convergence (4 and 3, for pseudorandom initializa-

tion and DTW initialization, respectively) as compared with ARI (7 and 6 iterations) and

NMI (8 iterations for both random and DTW initialization). DTW initialization provides

significantly faster convergence than pseudorandom initialization in the case of the Rand

index as the similarity metric (left two boxes in Fig. 4.2).
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The faster convergence observed for RI as compared with ARI is in itself not surpris-

ing, as the numerical threshold minSim used for stopping in Algorithm 1 is the same for

the three similarity metrics, while ARI has lower values than RI due to the intended cor-

rection of clustering agreement due to chance. One would therefore also expect that the

more stringent ARI criterion would lead to better differentiated clusters. However, as Fig-

ure 4.3 shows, the resulting median accuracy values from testing over labeled synthetic

semi-Markov mixture data are not significantly different at the level p < 0.05 (Wilcoxon-

Mann-Whitney test). The combination of faster convergence and comparable accuracy

points to RI as the superior choice of stopping criterion for CDMC.
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Figure 4.3: Accuracies for different stopping criteria of DTW-initialized and constrained
DTW-initialized CDMC over semi-Markov mixture data. Stopping metrics: RI (two left),
ARI (two center), NMI (two right). Non-overlapping notches indicate significant difference
in medians (p < 0.05). Median accuracy values do not differ significantly.

In section 4.3, adjusted Rand index defines the CDMC stopping criterion in order

to correct for clustering agreements due to chance. Nevertheless, ARI as the clustering

similarity metric does not lead to significantly more accurate clusterings, while it does
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4.4 EXPERIMENTAL EVALUATION

significantly increase the number of iterations required for convergence as compared with

the standard Rand index. Similar statements hold for the Normalized Mutual Information

metric as compared with the standard Rand index. Therefore, the standard Rand index is

the best choice of similarity metric in this context among these candidates.
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Chapter 5

Distributed Deployment Architecture

Terabytes and even petabytes of data are becoming the norm in organizations today. How-

ever, traditional data mining techniques do not accommodate such large-volume, com-

plex data in memory, nor do they have the ability to train models fast on this large scale

data [97]. In order to address the challenges of big data analytics in science and engineer-

ing domains [98], novel ways of processing large scale data [99] and new architectures

and infrastructures [100] need to be proposed. It is time to construct new frameworks

supporting more powerful computations and more comprehensive analysis in the face of

the exponential data growth.

For collective dynamical clustering modeling framework, it is originally designed to

hold all useful data in memory do clustering and modeling steps iteratively [34], since

processors get access to data faster than in external disks. However, in the context of big

data, it is often impossible to achieve this goal and thus disk I/O becomes a bottleneck

in system performance. Even worse is when a fast response time is with the highest

priority [101]. Additionally, each input instance is represented as a collection of features

in the framework. These features produced during modeling step take up extra memory.

If features grows dramatically in memory, the process of extracting features runs out of
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memory and stores additional results in disks. This exacerbates disk I/O performance.

Lastly, in this framework, it is an iterative process of running clustering and modeling

steps until it reaches some stable status. Each iteration repeats extracting features given

the same input data, which takes up a big portion of CPU time and slows down modeling

data in a sequential mode. The iteration even increase the number of disk I/O and thus

potentially increase the response time of the system. In sum, it is urgent to make this

framework capable of dealing with large-scale datasets.

One way of processing large-scale datasets of discrete time series is to apply dimen-

sionality reduction for compressing original data so as to load more data instances into

memory. As an important part of data pre-processing for machine learning, dimensional-

ity reduction is to identify a reduced collection of data features that represents the original

dataset with minimal information loss. Depending on the data type of sequential data,

there are mainly two kinds of dimensionality reduction techniques. One is for sequences

of nominal (or symbolic) values. The other one is for sequences of numeric values. For

symbolic sequences, dimensionality reduction could be further partitioned into two pri-

mary features: global feature [102] and local feature (i.e., sequence element feature [103],

k-grams feature [104], k-gapped feature [105], and pattern-based feature [106, 107, 108]).

For numeric sequences, a discretization process may be utilized to change numeric se-

quences into symbolic sequences. Then, those traditional ways of dimensionality reduc-

tion such as feature selection and extraction techniques could be applied. However, it may

lead to the problem of information loss. Researcher developed specific techniques that

could be directly applied on numeric sequences, including Wavelet transform [109, 110],

Fourier transform [111], and time series shapelets [112].

We proposed a compressed representation of instances based on the quartiles of the

duration distributions in [113]. This data representation is used as a basis for the discovery

of duration-related patterns in symbolic time series. It reduces the input size of the dataset
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before going to the learning procedure, but at the cost of losing some information in the

original dataset.

An alternative way is to design distributed versions of existing algorithms or frame-

work. Unlike dimensionality reduction techniques, distributed solutions keep the integrity

of data instances and take advantage of available computation resources to accelerate the

computation process [114]. In principle, distributed infrastructures make it possible to

import all data in memory, parallelize existing sequential algorithms, and independently

process individual components. One distributed system named Storm [36], that is dis-

tributed and fault-tolerant real-time computation, is widely used for the purpose currently.

We propose a systematic way of distributing collective dynamical modeling clustering al-

gorithm using Storm to extend the capability of processing large-scale dataset of time

series in chapter 5.

In this chapter, we introduce Apache Storm (a distributed and fault-tolerant real-time

computation platform), its basic concepts (spout, bolt, streaming groupings), operating

mechanism (topology and configuration) in section 5.1, discuss the deployment plan of

the CDMC framework using Storm in section 5.2, and prove the efficiency of distributed

CDMC framework in section 5.3.

5.1 Apache Storm

Storm is an open source of distributed real-time computation system. Storm can be used

to analyze streams coming from a data source [36]. Compared with Hadoop [115], which

uses for batch processing, Storm can process streaming data in real-time. In Storm, there

are five primitives:

• Streams.

Stream is data abstraction in Storm. It is defined as an unbounded sequence of
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tuples that could be processed in parallel. Every stream is identified by a id.

• Spout.

A spout is a source of stream that reads data source and emits a tuple (a named list

of values) as input to the next bolt. Spouts can emit more than one stream.

• Bolt.

A bolt is a processor in the topology, receiving a tuple from a spout, handling and

emitting it to the next bolt. Bolts can emit more than one stream.

• Groupings.

A grouping defines the partition mode of tuples in bolts. There are eight groupings,

including shuffle grouping, fields grouping, partial key grouping, all grouping, none

grouping, direct grouping, local or shuffle grouping. As illustrated in Figure 5.1,

direct, shuffle, and all groupings are specified in our distributed plan.

• Topology.

A topology consists of spouts and bolts. Each one is similar to a Map-Reduce job

but runs forever, unlike that Map-Reduce job eventually finishes.

The many-to-many relationship between spouts and bolts leads to its flexibility of dis-

tribution across clusters in a network. It is easy to define a customized topology in terms

of criteria users predefine (tuple groupings) in bolts. Among advantages are that each bolt

in a topology will distribute the workload based on the desired parallelism parameter set

up in Storm’s configuration. It also forces a predetermined number of threads working

together for the same task. If a bolt fails to finish a job, Storm will automatically reassign

the failed job to other bolts or machines. Therefore, Storm guarantees that there will be

no data loss, even if machines go down and messages are dropped out. Figure 5.1 is an

example of a topology consisting of a spout and three bolts.
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Figure 5.1: Example of a topology of one spout and three bolts. Each spout or each bolt
has multiple tasks assigned by default or users. A spout connects to two bolts and a bolt
receives tuples from different streamings. Different streaming groupings indicate different
ways of sending tuples between sets of tasks. In Storm, there are eight streaming groupings
and here only three of them are used. Direct grouping means a spout or a bolt decides which
bolt receives a tuple emitted by the spout or the bolt. All grouping lets a stream be replicated
across all bolts in a topology. Shuffle grouping refers to randomly distribute tuples across the
bolt’s tasks with load balance.

5.2 Distributed Deployment on Storm

Collective Dynamical Modeling & Clustering (CDMC) is a sequential algorithm. How-

ever, it is not good at dealing with large-scale dataset. The complication would worsen

if Expectation Maximization (EM) algorithm were applied in training dynamical models

due to a big computation complexity brought by EM itself. The running time of CDMC

is naturally high as there is a big number of times series of long length. To solve this scal-

ability problem, we focuses on partitioning the input sequences on a certain way so that

individual partitions run in parallel and independently. To accomplish this, it is necessary

to analyze internal structures of the CDMC framework and distribute them in Storm with
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powers of flexibility of processing streaming data as illustrated in Figure 5.1.

5.2.1 Distributed CDMC System Design

The systematic deployment of the CDMC framework on Storm is briefly depicted in Fig-

ure 5.2. There are four steps of allocating individual components of the original version

of CDMC on Storm. The general idea is to avoid sequential arrangement of the input time

series and decompose CDMC into a parallel architecture. To specific, the number of bolts

for storing cluster results is the number of distinct cluster labels, and the number of bolts

for modeling data likewise. The main design details are listed as follows:

• For the data source, it is necessary to cache a desired number (e.g., n) of time

series before starting procedures of modeling and clustering input data. When n

time series are ready, data source spout gives out each time series into an assigned

bolt in terms of its cluster label. Initially, cluster labels for an input time series are

randomly specified. After that, the clustering results produced by clustering step in

Algorithm 1 are applied to the existing time series.

• For the distribution of the input time series, time series with the same cluster label

are stored in the same bolt. For each bolt, it leaves room for manipulating local

storage of time series before they are sent to the next modeling bolt. For example,

discretizing time series and compressing time series in a further step.

• For the modeling step, each bolt receives tuples (time series) from the correspond-

ing bolt in the clustering step, then builds up a model on the data collection. After

that, it produces model parameters or takes models as input to the next clustering

bolt.

• For the clustering step, based on the trained dynamical models, group each time
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series into some cluster in terms of the predefined criterion, such as maximum

likelihoods of the input data using currently trained models.

Note that if a new time series comes in, it would be temporarily put in the buffer

of data source bolt in Figure 5.2. Until the next clustering results arrive in the bolt, the

new time series could be added into the dataset with randomly selected cluster label. To

extend the parallelism of the CDMC framework, it is able to parallelize the local modeling

procedure, provided that the modeling process could be divided into several independent

parts.
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Figure 5.2: Distributed Collective Dynamical Modeling & Clustering Framework Design.
Distributed CDMC framework design determines if two consecutive clustering results are
similar enough to each other after each clustering step is finished. Thus, it is the occasion
when the given data are grouped into data cluster bolts in parallel. Each data cluster bolt works
as input to the corresponding local modeling bolt. The results in local modeling bolts go to
the clustering bolt that emits the current cluster labels back to data source bolt if converge
not. The cycle never stops until convergence.
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5.2.2 Distributed CDMC System Implementation

There are six components in distributed collective dynamical modeling & clustering sys-

tem implementation as listed in Table 5.1:

Table 5.1: Distributed Collective Dynamical Modeling Clustering System.

Distributed Collective Dynamical Modeling Clustering Components

Core Components

Initial Data Assignment Module
Data Partition Module
Data Modeling Module
Evaluation Module

External Components
Data Source Module
System Parameter Configuration Module

In Table 5.1, “Initial Data Assignment Module” corresponds to clustering time series

in chapter 2; “Data Partition Module” corresponds to clustering step in CDMC frame-

work; “Data Modeling Module” corresponds to dynamical modeling in chapter 3, and

“Evaluation Module” corresponds to stopping criteria in chapter 4. For “Data Source

Module” and “System Parameter Configuration Module”, they work as external parts in

collective dynamical clustering modeling framework, respectively for giving out data in-

stances and making initial configurations in this distributed system. The details of each

component in the system implementation are presented as follows:

Initial Data Assignment Module: This module is responsible for providing initial cluster

labels of data instances as input to the distributed system. As introduced in chapter 2, not

only do those cluster labels predefine data partition in cluster assignment, but also reduce

the probability of locally maximizing parameters in modeling steps. In this system im-

plementation, this module acts as an independent part of distributed collective dynamical

modeling clustering system. The rationale behind this design are two folds:

• Dynamic time warping computation.
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As introduced in section 2.1, dynamic time warping is a dynamic programming

technique that provides an optimal alignment between two time series by nonlin-

early warping their time dimensions. Due to the nature of dynamic programming

optimization, the current optimal warping path should be derived from paths end-

ing in the previously consecutive positions. Dynamic warping path between any

two time series are different from that of another two time series. There are no

sharing paths in those two pairs of time series. Even worse if a majority of time

series are distributed uniquely among them. Thus, there should be no need to make

an distributed version of dynamic time warping computation. Neither variants of

dynamic time warping in section 2.1 do, including deviation-based dynamic time

warping [35].

• System resources limitation.

In reality, there always are a limited amount of computation resources. On the one

hand, these available computation units mainly focus on processing data (cluster-

ing and modeling sequences in our work). Except those allocated resources, this is

the case that few amount of computation units are left to do initial data assignment

task. On the other hand, most of time it is impossible to do dynamic warping over

all input data because of the uncertainty of incoming data. An initial data process

is executed on only a small amount of data instances. Had the distributed collec-

tive dynamical clustering and modeling framework started, this module would exit

forever. In a word, available resources are mainly used to speed up computation

in our distributed framework, rather than being allocated in dynamic time warping

calculation.

Although it is not recommended to integrate initial data processing module into the

distributed system, there is an approach to accelerate initial data processing in virtue of
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big data distribution. The principle is that data instances are loaded into bolts (basic unit

in Storm for processing data) according to uniformly randomized deployment. Then each

bolt conducts dynamic time warping computation over all possible pairs of instances in

it. The computation results are sent to a global bolt (independent from all bolts running

dynamic time warping calculations), which store results of dynamic time warping from

all other bolts. Had a bolt finished its tasks, it would communicate with other bolts to

get access to their instances to continue calculations of dynamic time warping between

its instance and instances from other bolts. Until all pairs of all instances in bolts are

processed, results in the global bolt will be sent to a new bolt that executes clustering

algorithm described in section 2.2 so as to produce initial cluster labels for the input data

instances.

System Parameter Configuration Module: This module deals with system parameter

estimation, including bolt allocation (clustering, modeling, and evaluation tasks), cache

size (memory and disk spaces) in each bolt, and parallelism (number of processors) in

each bolt.

• Bolt allocation.

A topology consists of spout and bolt units. In our system, there is just one spout

emitting tuples coming from external data source. However, the total number of

bolts is determined by clustering, modeling, and evaluation tasks theoretically. For

clustering tasks, the number of bolts depend on the number of unique cluster labels

and percentages of instances over all instances in clusters. For modeling tasks, spe-

cific models specify the number of needed bolts. For instance, each semi-Markov

model in section 3.2 has two parts: state transition and state duration distribution.

Thus, there are at least two bolts corresponding to each of two parts in each semi-

Markov model. For evaluation, one bolt is big enough to hold current clustering

results and execute comparison with the previous one. Note that the actual number
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of available computation units decides bolt allocation in distributed system. This is

possibly the case that two or more bolts might be deployed in the same computation

resource.

• Cache Size.

It is meaningless to calculate cache size for computation unit, if there are unlimited

memory and disk spaces to save input data instances and intermediate results. Given

the fact of finite computing resources (memory, disk space, and CPUs), there thus

is a necessity of estimating cache size up to capacities of computation pieces. In

addition to the limited computation power, the size of input data instances, the

total number of bolts, and intermediate results during modeling steps are previously

derived. In terms of these factors, the cache size in memory for one computation

unit, for example, is estimated in equation 5.1.

cache in memory = input data instances∗ number o f bolts in a computation unit
total number o f bolts

+ intermediate results
(5.1)

• Parallelism.

For each bolt, it is guaranteed that there is at least one thread of operating it in

Storm. If there are still available threads, they are successively assigned into bolts

of modeling data instances with the highest priority. Then the remaining threads

are allocated in clustering step. For data source and evaluation modules, one thread

satisfies sending out instances and comparing clustering results.

Note that since bolts in Storm are able to process streaming data from different spouts,

it is possible in our system to apply for more than one spout to emit data. We assume that

it is big enough for one spout to hold all of instances and the number of spouts is set to be
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one by default. If our system detects spouts fails to send out tuples, we could apply two

or more spouts in a new start-up computation.

Data Source Module: This module aims at sending out data instances given a data source

stored in disks. In Storm, a spout is a source of streams in a topology. When the system

starts, a spout will read user-defined tuples from the external source such as data instances

in disk and emit them into the topology. Besides data resided in disk, there are following

data stored in this module:

• Used Instances.

Used instance refer to the existing instances which has been grouped into clusters

in the system. Generally, there are two types of them: (i) initial instances processed

by “Initial Data Assignment Module” to start up the distributed system and (ii)

instances that come after those initial instances but have been processed by bolts.

• Newly Incoming Instances.

Newly incoming instances are those loaded into system but being processed by

bolts after initial instances have been used to do clustering and modeling tasks in

the system.

• Global Grouping Table.

Global grouping table records the clustering info of data instances and bolt alloca-

tion for data instances, which would be sent out to all bolts directly connected to

the spout. Due to the popularity of global grouping table in the entire system and

big amount (e.g., millions) of instances, a bit array in its implementation is taken to

reduce its space so as to achieve fast transmission between bolts.

The procedure of data source module is: when a newly incoming instance comes, it is

first stored in cache. Until a predefined number of new instances are arrived, they would

be send out to the neighboring bolts. This strategy not only allows to give a certain amount
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of time to data modeling module to build up models before updating them, but also takes

care of the case that few number of recent data takes no effect on forming new clusters

from the past clustering results. When the global grouping table is received, the spout

checks the new table with the current one in it, finds the difference between them, and

emit tuples only in the new table. The difference indicates the number of used instances

to be resent because of the absence of instances from destination bolts.

Note that at the beginning of running a topology, its spout spends lots of time on

sending out used instances due to a big update from the received table. After several

rounds of clustering and modeling modules, the difference is so small that it is fast to

process of sending used instances.

Data Partition Module: This module focuses on partitioning data from data source mod-

ule and extracting features from data instances, and then deliver features to connected

bolts.

• In partitioning data, it is assumed that bolts in this module are dependent from

each other and there are communications between them. In other words, when

an instance is needed but not in the current node, it is able to get access to the

needed instance from other partners. The reason behind this design is that given

bolts allocation in the received global grouping table from data source module, a

bolt information that an instance belongs to which of bolts is known. The current

node with missing instance sends a request to the designated node, which gives out

the needed instance in return. Also, the utilization of CPUs is taken into account.

It is ideally to put CPUs in execution most of time and hold a performance balance

between clustering and modeling modules.

• The features depend on model types. For example, in semi-Markov chain model,

extract state transition and state duration as features and send them out to modeling
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bolts. Each instance is represented by a vector of features, which is outputs of

clustering bolts.

The procedure of data partition module is: when receiving the global grouping table

from data source module, a clustering bolt compares the received table with the existing

table to find out missing instances. The bolt requests all missing data from other cluster-

ing bolts. When a missing instance is arrived, extract its features and cache them. When

all missing instances are processed, the bolt outputs feature presentations to neighbor-

ing modeling bolts. Note that when the distributed system is initiated, all instances are

missing in clustering bolts because of no instance cached in it. After the first round of

clustering and modeling parts, instances cached in clustering bolts might be hit and thus

there is no need for clustering bolts to extract features from those instances. Therefore,

cache results reduces time of processing delivering instances.

Data Modeling Module: This module builds up models given features from clustering

module and evaluates them based on trained models. This module guarantees integrity of

training data both from clustering modules and cached data. While training model, bolts

independently work by themselves. In evaluation step, bolts communicate with each other

to evaluate their own models on all instances bolts have. Evaluation results depend on

types of models. For example, semi-Markov chain model saves negative log-likelihoods

of data instances.

The procedure of this module is: when a global table arrives from data partition mod-

ule, modeling bolts start checking needed data in their caches, while receiving data from

data partition module. when data is ready, a modeling routine is initiated. Initial model

parameter is randomly chosen if there is no definition in advance. Otherwise, previous

modeling results do. When one modeling bolt itself finishes evaluating instances, it sends

requests to other modeling bolts get all other instances that are not present in it. All other

bolts receiving the requests send back requested data in return. After the modeling bolt
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is done evaluating all instances, evaluation results are transmitted to evaluation module.

Finally, when all of modeling bots output results, the evaluation module begins grouping

data task.

Evaluation Module: This module is in charge of two tasks: (i) group data instances

into a designated number of clusters and (ii) stop running the topology if comparison of

current clustering results with the previous one is close enough to each other. There is

one bolt working on the two tasks in our system implementation. The procedure is that

when evaluation results from data modeling module are arrived, each instance is assigned

to one of clusters with the best one. All instances get clustered and then the bolt compares

the current clustering results with the previous one. If they are close to each other, it stops

running the system and produces the final clustering and modeling results. Otherwise, the

evaluation bolt updates clustering results and sends back a copy to data source module.

Note that evaluation results may be cached since it provides another way of defining

stopping criteria, setting up a threshold value for all negative log-likelihoods of instances

for example.

The mechanism of the above six components works as follows: “Initial Data As-

signment Module” labels data instances as input to “Data Source Module”. “System Pa-

rameter Configuration Module” estimates initial configurations in the distributed system

according to data instances, constructs a topology from the estimation, and configures pa-

rameters before our system launches. “Data Source Module” loads data with cluster labels

stored in a global grouping table and emits them into connected clustering bolts. Then

“Data Partition Module” partitions data based on cluster labels in the global grouping ta-

ble from “Initial Data Assignment Module” in the first round or a new global grouping

table in the following rounds. After getting data partitioned, “Data Modeling Module”

builds up dynamical models and evaluates input data instances. Next, “Evaluation Mod-

ule” groups input data and compares the current grouping results with the previous one. If
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they reach a stable status, it produces the current grouping results and dynamical models

as final results. Otherwise, it updates the global grouping table and sends a copy back

to “Data Source Module” to start up a new round of computations. The role of a global

grouping table is considered as a signal to initiate each components in the distributed

system.

Apache Storm supports dynamic distribution of computation resources to some de-

gree. However, it requires that when one of bolts fails, it can start itself over again, apply

for a new bolt to replace the bad bolt, or even stop the current run and re-distribute com-

putation sources. All solutions have a very long response time. Thus, it is necessary

to respond such bad case in a short time. The past experiences in experiments proved

that the effect of adjusting parameters in Storm is not a good choice, relative to the re-

quirement of adapting fast re-clustering and re-modeling processes. Even worse if that

Storm promises fault tolerant and fail fast features. Both of solutions need extra computa-

tion sources to be auxiliary sources to be prepared for data recovery. Therefore, a certain

number of resources are wasted while waiting for Storm to make use of them. So this way

of dynamically allocating resources could be considered as a passive one on the system

level.

On the software level, it is flexible to detect general usage of computation units and

thus respond it with dynamic distribution of sources. In principle, we can detect heavy

workload indicated by the number of instances in each cluster bolt (bolts in a cluster are

guaranteed to be workload balance). To collect such global information of instance dis-

tribution, there needs to gain a general distribution table with exact number of instances

in each bolt. In each bolt, the system locally collects the number of instances in it and

reports it to the distribution table within a time interval. If we detect a bad case of un-

equal distributions of instances, we could move new data into a bolt with light workload

if possible. This dynamic scheduling method could prevent from failing running tasks
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and thus solve the proposed problem in a fast responding time. Although at the cost of

additional requirement of extra resources, it is meaningful for the system to add such

detecting component.

Overall, the systematic deployment of distribute collective dynamical modeling clus-

tering framework on Storm is illustrated in Figure 5.4.

Table 5.2: A summary of caches in distributed CDMC system

Module Name Cache Functionality

Data Source

1. Used instances including initial instances and others in bolts.

2. Newly incoming instances not processed by bolts.

3. A global grouping table.

Data Partition

1. Feature representation of data instances.

• A state transition of data instance.

• A state duration of data instance.

2. A global grouping table.

Continued on next page
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Table 5.2 – Continued from previous page

Module Name Cache Functionality

Data Modeling

1. A set of modeling parameters.

2. Features information.

3. A global grouping table.

Evaluation 1. Evaluation results.

2. A global grouping table.

Note Caches in collective dynamical modeling & clustering framework refer

to available memories and external disks in computation unit such as

computers, nodes in clusters, and so on.

Compared with sequential system, the main factors that determine efficiency gains

due to parallelization are as follows:

1. Intermediate results caching. The intermediate results as shown in Table 5.2 include

clustering results for instances, extracted features of instances (for semi-Markov

chain model, state transition matrices and state duration matrices collected from

dedicated bolts in modeling step), and the parameters derived from the models.

Except the current clustering results saved in the sequential system, others are only

stored in the distributed system. These cached information reduces the processing

time in the next rounds, rather than being recalculated in the sequential system.
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2. Multiple task processing. For distributed system, it has advantages of processing

multiple tasks in parallel and allocated resources (memory, hard disk, registers in

processors) reasonable for dealing with multiple tasks in parallel. Even if sequen-

tial system shares the same resources as the distributed system does, the internal

parallelized architecture only maximizes the usage of processors, reduces disk I/O,

and memory consumptions. In Storm, it is capable of allocating many bolts to do

one task (clustering or modeling processing components) and the resulting compu-

tation power is greatly enhanced. Therefore, such mechanism speeds up outputs of

the entire collective dynamical modeling & clustering framework.

5.3 Experimental Evaluation

We evaluate distributed collective dynamical modeling clustering framework through

time limit of processing modeling and clustering instances, as a metric to compare perfor-

mances of sequential system of collective dynamical modeling & clustering framework

and the distribution solution.

5.3.1 Experimental Setup & Methodology

Two real datasets are used in experiments: human sleep patterns [59] and web user navi-

gation behaviors [31]. Experiments on web user behavior dataset are much different from

those on human sleep. The size of human sleep dataset is much smaller than web user be-

havior. When loading web user behavior datasets into distributed system, it is reasonable

to put a predefined number of instances in the system and then when the system could

accommodate more instances, new instances from the dataset are entered into the system

bunch by bunch. Such deployment of instances could be easily to record and observe the

performance differences between sequential and distributed systems with the increasing
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number of instances.

In web user behavior dataset, there are over a million instances in the dataset. It is

possible to duplicate instances in the dataset to test a maximum processing capacity for

distributed system. To make the comparison of experiments reasonable between sequen-

tial and the distributed system, it begins with a small amount of instances in the system.

The small dataset could evaluate the time interval of modeling and clustering in the se-

quential system and then more instances are loaded into the system. It is possible that

the sequential system could not process a large amount of instances since it exceeds the

capacity of computing devices, unlike the distributed one that distribute such amount of

instances into various computing devices to extend the computing capacity.

Another difference between these two datasets are parameter setup (the number of

states in dynamical model, the number of bolts in clustering and modeling modules, for

example) in web user behavior dataset. There are 17 states (the number of categories of

web pages in the entire dataset). There are at least five bolts of modeling instances in

the distributed system and there are another set of 5 bolts for clustering instances. The

topology of all nodes (including bolts and spouts) is more complex than the structure

of five bolts in human sleep dataset. Due to a large deployment of computing nodes in

Storm system, it takes a long time (in hours or in days) to processing the final results

of dynamical models (hidden Markov models and semi-Markov models) and clustering

results.

For the sequential system, there is a single machine with one processor and a 1-

Gigabyte memory and 100-Gigabyte disk space to store web user behavior dataset as well

as models and clustering results in the device. For the distributed system, there are three

machines with one processor for each machine and the same size of 1-Gigabyte memory

and 100-Gigabyte disk space to hold data instances as well as models and clusters. The

dynamical models are semi-Markov chains.
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5.3.2 Time Performance

In Figure 5.3, for human sleep patterns, time performance has not a big variance between

sequential procedure and parallel procedure at the beginning of loading a small amount

of instances. For web use navigation behavior data, the number of bolts for modeling

instances is set to be 5 compared with each clusters with 17 states. The number of log

instances increases from 500000 to 4000000. The sequential system has a very long

time of modeling and clustering at most 2500000 instances. It is a big workload for the

sequential system and its entire computation time is beyond the time spent in the parallel

system that processed 3500000 instances under 70 hours. Thus, a substantial reduction

in processing time is observed in the distributed (parallel) version as compared with the

sequential algorithm as shown in Figure 5.3. The performance improvement increases

noticeably as the number of instances grows in web user navigation dataset.
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Figure 5.3: Time performances of human sleep patterns (the left subplot) and web user be-
havior navigation (the right subplot) datasets in distributed collective dynamical modeling &
clustering system. With the increase of data instances, the distributed system outperforms the
sequential one in processing input data. Note that due to the relatively small number of human
patterns, at the beginning of experiments there is a twist of performances in the two systems.
When more data are loaded into the distributed system, it gives a substantially decrease in
processing time.
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Figure 5.4: Distributed Collective Dynamical Modeling & Clustering Framework Implemen-
tation. Take three models and three clusters as example. When incoming sequences come into
the system, they first are loaded into data source bolt, and then grouped into the corresponding
clustering bolt according to initial cluster label guesses. Then for each group, there would be a
dedicated bolt to build one model over data. After finishing modeling process, all of instances
in all three bolts would be reassigned to clusters according to the currently created models.
Finally, if two consecutive clustering results are close enough to each other, the system would
stop; otherwise the clustering-modeling process would continue until a stable clustering result
is produced or a maximum number of iteration is reached. A global grouping table (GGT) is
considered as a signal to initiate each components in the distributed system.
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Chapter 6

Applications

In this chapter, we apply our semi-Markov dynamical model version of CDMC to the

human sleep dataset described in section 6.1 and to the web user navigation dataset de-

scribed in section 6.2. We present experimental results and analysis.

6.1 Human Sleep Patterns

Human sleep can be described by individual sleep stages determined by physiological

signals obtained through full-night polysomnography. The signals used for sleep staging

include brain electrical signals (electroencephalography, EEG) and eye movement signals

(electrooculography, EOG). Stages correspond very roughly to different depths of sleep.

There is an alternation among stages during the night shown in Figure 6.1, though not a

deterministic one, and not one that is yet well understood by researchers.

Human sleep patterns are closely associated with overall health and quality of life,

making the scientific study of sleep an important pursuit. Sleep stage composition is

a basic description of sleep structure that comprises total sleep time, sleep efficiency,

and percentage of sleep period time in each of the stages within a night of sleep [116].
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6.1 HUMAN SLEEP PATTERNS

However, these features provide an incomplete description of human sleep that does not

capture the dynamical information in hypnograms.

Sleep stage transitions [11] and bout durations [10] shown in Figure 1.1 are essential

indicators in characterizing the structure of sleep. Typical patterns of human sleep have

been found [9], yet sleep microstructure varies across individuals, being affected by age,

circadian rhythms [117], and other factors.

A substantial challenge in modeling the dynamics of sleep is the scarcity of key dy-

namical events including stage transitions within sleep sequences as shown in Figure 1.1.

This scarcity yields small samples over which dynamical models are to be trained, leading

to high uncertainty in parameter estimates. An approach known as dynamical modeling-

clustering (CDMC) was proposed [34] to address this challenge. CDMC reduces model

variance through selective aggregation of instances during a clustering phase, so that mod-

els are learned over collections of dynamically similar instances rather than individual

instances. The following section shows that CDMC initialization using clustering by Dy-

namic Time Warping (DTW) similarity [51, 57] yields good convergence properties [59].

We focus on modeling the statistical and dynamical characteristics of sleep, both the

transitions between stages and stage durations. Using full-night sleep stage data for sev-

eral hundred patients, it is going to extract statistical information about sleep stage du-

rations and transitions, with a goal of developing new statistical machine learning ap-

proaches to modeling the dynamics of human sleep.

The main objectives in human sleep patterns are displayed in the following three di-

rections:

• Study empirical statistical properties of human sleep stage dynamics, particular

stage transitions and stage durations.

• Propose suitable non-stationary statistical (dynamic) models for human sleep, which
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aims at clustering.

• Investigate the potential of using the proposed model in the discovery of relation-

ships between sleep dynamics and overall health.

6.1.1 Data Description

The human sleep dataset consists of a total of 244 fully anonymized human polysomno-

graphic recordings. They were extracted from polysomnographic overnight sleep studies

performed in the Sleep Clinic at Day Kimball Hospital in Putnam, Connecticut, USA.

This population consists of 122 males and 122 females, all suffering from sleep problems.

The subjects’ ages range from 20 to 85 and the mean value is 47.9. The polysomnographic

recording is extracted from C3-A2 EEG time signals at a sampling rate of 200Hz and then

staged by lab technicians at the Sleep Clinic [116]. Staging of each 30-second epoch into

one of the sleep stages (wake, stage 1, stage 2, stage 3, and REM (Rapid Eye Movement))

is done by analyzing EEG, EOG and EMG recordings during the epoch [79]. In this sec-

tion, stages 1, 2, and 3 may be grouped into a non-REM stage (NREM) and stages 1, 2,

and REM be combined into light sleep stage. We directly use human hypnogram record-

ings to capture dynamical features of sleep. The durations of continuous uninterrupted

bouts in each stage are natural candidates for feature representation of the hypnogram

recordings.

In sum, three versions of the human sleep datasets are considered, depending on

whether these stage labels are grouped in some way:

• (W5) uses the five standard stage labels Wake, 1, 2, 3, REM.

• (WNR) uses the three stage labels Wake, NREM (stages 1, 2, and 3), REM.

• (WDL) uses the three stage labels Wake, Deep (stage 3), Light (stages 1,2,REM).
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6.1 HUMAN SLEEP PATTERNS

Figure 6.1: EEG is used to record the electrical activities of participants in sleep research
during night, which measures voltage fluctuations of current flows as a cap with multiple
electrodes installed on the human scalp. The raw electric signal is then discretized by sleep
experts in a finite number of stages, which could be categorized into wake, stage 1, stage
2, stage 3, and REM stages. A sequence of stages in a person’s sleep during a full night is
called hypnogram. A continuous subsequence of a stage in a hypnogram is called duration
of the stage and labeled by its length, the number of stages that appears in the subsequence.
Furthermore, the frequency of duration of one stage in the hypnogram is collected in a table
is represented as statistical property of human sleep.

6.1.2 Dynamical Model Evaluation

A comparison between sequences generated by each the Markov chain models (MM) and

semi-Markov chain models (SMM), and between these and the original dataset hypno-

grams, shed additional light on the stage transition dynamics captured by each of the

models. Figure 6.2 shows an original dataset hypnogram, simulated stage sequences gen-

erated by the trained models, and a randomly generated sequence. The randomly gener-

ated sequence was obtained by assigning a randomly chosen sleep stage to each epoch

using a uniform distribution over the sleep stages. The typical hypnogram shown, s, was

selected from the dataset, such that its generative log likelihoods in the Markov chain

104



6.1 HUMAN SLEEP PATTERNS

model and the semi-Markov chain model, P(s|MM) and P(s|SMM), are close to the cor-

responding average log likelihood values over the entire dataset, which are approximately

-148 and -152, respectively.
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Figure 6.2: Comparison of an original dataset hypnogram, hypnograms generated by Markov
chain and by semi-Markov chain models, and a randomly generated hypnogram.

Figure 6.2 shows, especially near the middle of the night, that the SMM better captures

the frequency of both short and long wake durations observed in the original hypnogram,

as compared with the MM. At the onset of the night, the long uninterrupted duration of

wake stage in SMM simulates the original hypnogram for the same time period better

than the short durations of wake stage in the MM sequence do. Although MM is com-

paratively worse than SMM, its overall distribution of stages matches the all-night stage

composition of the original hypnogram more accurately than the random sequence does.

This single example is of course intended only as an illustration. The more general anal-
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ysis of section 3.3 makes clear the superiority of the SMM over the MM as a model of

stage bout durations, in a robust statistical sense.

6.1.3 CDMC Framework Evaluation

The collective dynamical modeling clustering algorithm was used for clustering, with

semi-Markov chain models as the dynamical models. Initial cluster guesses were com-

puted by deviation-based DTW clustering as described in Algorithm 4, with either gwDTW

(Equation 2.5) or sdDTW (Equation 2.6) as the distance metric. Clustering driven by the

standard DTW (Equation 2.4) distance metric was used as a basis for comparison.

Clusters Quality: Due to the long average duration of a given stage in human sleep, it

is better to explicitly describe its distribution of the sleep stage. In contrast with the expo-

nential one (as shown in Figure 3.6) in hidden Markov models (HMM), Figure 6.3 illus-

trates the CDMC clustering results for the semi-Markov dynamical models with Weibull

state durations over 100 randomly chosen instances in the human sleep data. The coordi-

nates of each instance are the estimated parameter values of the Weibull distribution for

that instance’s wake duration distribution. Cluster centroids are significantly separated

along both parameter axes (p < 0.05). The resultant two-sample t-test over coordinates

of clustered instances in Table 6.1 of instances proves the significantly difference of sep-

arating those two clusters in Figure 6.3.

Table 6.1: T-test of coordinates on human sleep dataset.

H value P value
Param1 1 0.0017
Param2 1 0.0092

Models Analysis: Generative negative log likelihood was used to measure the qual-

ity of model fit for unsupervised clustering. Given a dynamical model, M, built over a
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Figure 6.3: Visualization of CDMC clustering of human sleep data with Weibull semi-
Markov dynamical model. Coordinates of each instance are parameter values of wake stage
Weibull model fit individually to the instance.

group of sequences such as human sleep sequences, the generative negative log-likelihood

−log(P(s|M)) of a sequence, s, is a measure of the probability that the sequence, s, would

be produced by the model, M. Lower negative log-likelihood values (higher generative

probabilities) imply a better model fit. The goal of clustering was to minimize the genera-

tive negative log likelihood. Comparison of median negative log likelihoods for different

models was measured by a Wilcoxon rank sum test as described in section 2.4.

To investigate the importance of models in analyzing data, the human sleep data

(WNR version) were clustered using CDMC with two clusters, for each of three dy-

namical model types: semi-Markov chains with Weibull state durations , hidden Markov

models, and Markov chains. Three-state chains were used in all cases. The genera-

tive negative log-likelihood −log(P(s|M)) was used to measure the quality of model fit.

Figure 6.4 shows the results. The median negative log-likelihood of the semi-Markov

version is significantly better than that of the Markov chain version (p < 0.05, Wilcoxon-
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Mann-Whitney test). Comparison of the semi-Markov version of CDMC against a hidden

Markov model version also resulted in superior performance of the semi-Markov version

(p < 0.05).
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Figure 6.4: Negative generative log-likelihoods of CDMC clusters for semi-Markov (left)
and hidden Markov (right) dynamical models in Figure 6.4(a), as well as semi-Markov (left)
and standard Markov dynamical models (right) in Figure 6.4(b). Non-overlapping notches
indicate significant difference in medians (p < 0.05). Semi-Markov models provide signifi-
cantly better log-likelihood than other two models.

To fully examine dynamical models and various versions of hypnograms described in

section 6.1.1, three Markov models were respectively tested in pairs as dynamical models

in the CDMC framework. The t-tests of generative log-likelihoods (logarithmic values of

probabilities of generating hypnograms given each Markov model) between each pair of

models are shown in Table 6.2. Semi-Markov chain models with Weibull state durations

perform significantly better than other models in terms of generative log-likelihoods on

instances of hypnograms. Markov chain model and hidden Markov model imply expo-

nential distribution of stage bout durations while semi-Markov not. With the increase of
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the number of stages from three to five in data, semi-Markov chain version further shows

its superiority due to significantly better (p < 0.05) than others.

Table 6.2: T-tests of generative log-likelihoods (LL) of hypnograms on dynamical models.
CI is confidence interval for the log likelihood difference in each case.

WNR H value P value CI
LL(MM) - LL(SMM) 1 0.0086 [-18.5311, -2.7123]

LL(SMM) - LL(HMM) 1 0.0061 [3.1023, 18.5397]
WDL H value P value CI

LL(MM) - LL(SMM) 1 0.0069 [-20.6407, -3.2936]
LL(SMM) - LL(HMM) 1 0.0217 [1.4640, 18.4472]

W5 H value P value CI
LL(MM) - LL(SMM) 1 2.8972e-11 [-53.9527, -29.7896]

LL(SMM) - LL(HMM) 1 3.3696e-13 [33.4582, 57.2735]

Initialization Evaluation: For deviation-based DTW clustering, Figure 6.5 shows the

CDMC clusters (circles and triangles) coordinated by the parameters values of Weibull

distribution (scale and shape) on wake stage in WNR dataset. The cluster assignments

made by global weighted DTW clusters are better to separate patients in human sleep

dataset into two clusters, in contrast with cluster boundaries made by standard DTW as

the similarity metric.

During the below experimental procedure, model fit was significantly better for both

global weighted DTW (gwDTW) clustering and stepwise deviated DTW (sdDTW) clus-

tering as compared with standard DTW-driven clustering, as shown in Table 6.3. This

shows that deviation-based DTW is superior to standard DTW as a similarity metric for

initialization of CDMC clustering over human sleep data, as well as for standalone clus-

tering over synthetic data as shown in section 2.4.

Experimental procedure, sleep data clustering:

begin

D1, D2, D3 = W5, WNR, WDL datasets
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Figure 6.5: Visualization of clusters over human sleep dataset using gwDTW as similarity
measure. Coordinates are Weibull shape and scale parameters for Wake stage. Red circles
and blue triangles denote gwDTW clusters; background colors represent DTW clusters.

m1, m2, m3 = DTW , gwDTW , sdDTW

for j := 1 to 3

for k := 1 to 3

(M, nlogll(j, k, l, . . . 244)) = CDMC(D j,mk);

end

Perform Wilcoxon rank sum test on nlogll( j,1 . . .3,1 . . .244)

end

end

Note:
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• The W5, WNR, WDL datasets are as in section 6.1.1.

• DTW refers to clustering using standard DTW as the similarity metric; gwDTW

and sdDTW refer to the deviation-based clustering techniques described in sec-

tion 2.3.2.

• CDMC(D j,method) refers to CDMC clustering [34] with semi-Markov cluster

models, using the given method for clustering initialization, and is assumed to re-

turn a set of dynamical models together with negative generative log likelihoods for

all input sequences.

Table 6.3: Median negative log likelihoods of gwDTW, sdDTW, and standard DTW clus-
terings over WNR, WDL, and W5 human sleep datasets in section 6.1.1. Asterisks indicate
Bonferroni-corrected significance of differences with standard DTW in Wilcoxon rank sum
test (p < 0.05).

DTW gwDTW sdDTW
WNR 150.7 148.2∗ 147.9∗

WDL 159.4 157.9∗ 158.1∗

W5 194.1 192.3∗ 191.9∗

6.2 User Navigation Behavior

Nowadays, web usage mining has been defined as an essential technique of finding hidden

knowledge from a web server log file, which records the interaction between website and

user [118]. Web designers analyze the file and extract patterns from the trails formed by

users during the navigation process to improve the web topology [119]. The prediction

mining process in this section aims at predicting online user requests ahead of time and

thus creating a robust web information service [31]. The main objectives in this section

are displayed in three directions:
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• Examine characteristics of page switches from one to another and switch durations.

• Present dynamical models for fitting web usage dataset well to do clustering task.

• Investigate effects of dynamical models in web data analysis about relationships

between user habits and surfing histories.

6.2.1 Data Description

The MSNBC dataset (web user navigation behavior dataset) on a website comes from

Internet Information Server (IIS) logs for msnbc.com on September,28,1999 (Pacific

Standard Time) [20]. It has been applied to visualize navigation patterns in the light

of model-based clustering [118].

Each sequence in the dataset corresponds to a webpage browsing history of a user

during the day. Every event in a sequence corresponds to a user’s request for a certain

page. Requests are represented at the level of page category rather than at the level of

uniform resource locator (URL). The categories consist of “frontpage”, “news”, “tech”,

and so on. There are totally 17 categories in this dataset. Each category is associated with

an integer starting with “1” as listed in Table 6.4.

Table 6.4: Encodings of user navigation behavior categories.

Category Code Category Code
Frontpage 1 Living 10

News 2 Business 11
Tech 3 Sports 12
Local 4 Summary 13

Opinion 5 BBS 14
On-air 6 Travel 15
Misc 7 msn-news 16

Weather 8 msn-sports 17
Health 9
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As shown in Table 6.5, there are as many as 1 million users in the dataset. For each

user, there is a corresponding sequence to denote the user’s visiting history in the server

logs. About 90 percent of users have visits of length less than 10 requests. And the

rest of users have more than 10 requests. There are 36 users who have more than 500

requests, which are considered as outliers, in the common sense that users could not stay

at a website for a very long time.

Table 6.5: Statistics of MSNBC dataset.

Number of users 989818
Average number of visits per user 5.7

Average length of users’ visiting history 4.74
Extra length of users’ visiting history 36

The number of users’ visits less than 10 887471
The number of users’ visits more than 10 102347
The percentile of users’ visits less than 10 89.66%

The percentile of users’ visits more than 10 10.34%

Figure 6.6 shows the cumulative distribution of session lengths of 989818 users. For

users with more than 10 requests, they take up only 10 percent of all users, approximately

less than 10000 users. The observation implies that web users could be roughly divided

into two types: users with short-term (session length less than 10) visits and users with

long-term (session length more than 10) visits.

If the distribution of page transitions (from one category to another one, including self

transition) is considered, Figure 6.7 illustrates that self-transitions of categories play an

vital part in modeling web user navigation behavior, although there are a small portion

of users (indicated by lighter squares) located far away from the diagonal line in the

transition matrix.
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Figure 6.6: The cumulative distribution of session lengths over all users. As a cutoff point in
session length, there are only 10 percent of users with more than 10 visits in the server logs.
More than 89 percent of users belong to short-term visit type. In addition, there are 36 users
whose session length is over 500 that are excluded in data analysis.

6.2.2 Dynamical Model Evaluation

In addition to the distribution of page transitions as shown in Figure 6.7, it is necessary

to dig into distributions of page self-transitions. Since if Markov chain model [118] is

taken into outlining dynamics of visiting histories on the server logs, it implies that the

distribution of durations of a given category follows exponential distribution. Otherwise,

it is wise to take different parametric model to depict the distribution of durations of a

given category.

From Figure 6.8 to Figure 6.11, we show the distributions of short-term visitors and

long-term visitors, divided by the length of sequences over all categories. Note that there

are totally 17 categories and each category is encoded into a number as listed in Table 6.4.

If the length of a sequence is less than or equal to 10, it is categorized into a short-term
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Figure 6.7: The distribution of web users browsing history. A lighter color indicates a higher
probability of page switching transitions. Self-transitions within pages indicate browsing his-
tory from one page to another under the same category. It is a scaled graphical representation
of a Markov transition matrix. Self-transitions within individual pages are much higher than
any other transitions.

visitor; otherwise it is a long-term visitor.

For short-term visitors, there are many categories having good fitness for exponential

distributions, such as categories 1, 2, 3, 4, 6, 9, 11, 12, 15, 16, 17. On the other hand,

for Weibull distribution, all of categories have good fitness. Analyzed by fitting function

formulations in section 3.3, Weibull distribution could be degenerated into exponential

distribution when the shape parameter λ is equal to 1.

For long-term visitors, there are several categories such as 7, 9, 12, and 17 with good

fitness for exponential distributions, while Weibull distribution performs much better than

the exponential one. We show that for visiting patterns in the long-term visitors, Weibull
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fits are much better than exponential one to depict dynamical characteristics in user navi-

gation patterns.

In a conclusion, the distributions of category durations in web user navigation behav-

ior dataset possess Markov properties to some degree, such as good fitness of exponential

distributions. Furthermore, it is better to use semi-Markov chains as dynamical models in

the CDMC framework to cluster the dataset.

6.2.3 CDMC Framework Evaluation

As introduced in section 6.2.1, the MSNBC dataset was divided into two parts: short-

term dataset and long-term dataset. The collective dynamical modeling clustering algo-

rithm was used for clustering, with semi-Markov chains as dynamical models. Initial

cluster guesses were provided by deviation-based DTW clustering as described in Algo-

rithm 4, with either gwDTW (Equation 2.5) or sdDTW (Equation 2.6) as the similarity

of sequences. Clustering driven by the standard DTW (Equation 2.4) distance metric was

used as a basis for comparison.

Models Analysis: To fully examine dynamical models and various versions of web

user navigation behavior described in section 6.2.1, three Markov models were respec-

tively tested in pairs as dynamical models in the CDMC framework. Two clusters were

built on the collection of short-term visits and long-term visits respectively due to their

different characteristics. The t-tests of generative log-likelihoods (logarithmic values of

probabilities of generating user requests given each Markov model) between each pair

of models are shown in Table 6.6. Semi-Markov chain models with Weibull state dura-

tions perform significantly better than other models in terms of generative log-likelihoods

on sequences of web user navigation behavior dataset. The confidence intervals on the

difference of the log likelihoods means in Table 6.6 further establish the superiority of

semi-Markov chains over Markov chains and hidden Markov models as dynamical mod-
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els in CDMC.

Table 6.6: T-tests of generative log-likelihoods (LL) of web user navigation behavior dataset
on dynamical models. CI is confidence interval for the log likelihood difference in each case.

Short-Term Dataset H value P value CI
LL(MM) - LL(SMM) 1 0.0075 [-0.8948, -0.8715]

LL(SMM) - LL(HMM) 1 0.0059 [0.0165, 0.0586]
Long-Term Dataset H value P value CI
LL(MM) - LL(SMM) 1 0.001 [-2.4373, -2.2522]

LL(SMM) - LL(HMM) 1 0.0138 [0.0204, 0.1796]

Therefore, CDMC with semi-Markov chains as dynamical models gives a higher prob-

abilistic description of user navigation patterns, compared with the original CDMC with

Markov chains or hidden Markov models as dynamical models.

Initialization Evaluation: Generative negative log likelihood was used to investi-

gate the effect of initialization technique in the CDMC framework, with lower negative

log-likelihood values (higher generative probabilities) indicating a better initial cluster

guesses as input to the CDMC framework. The generative negative log-likelihood is de-

fined as−log(P(s|M)) of a sequence, s, which is a measure of the probability that s, would

be produced by a dynamical model M, built over a group of sequences in the dataset. The

goal of clustering in CDMC was to minimize the generative negative log likelihood. Sta-

tistical difference of median negative log likelihoods with respect to different initialization

techniques was tested by a Wilcoxon rank sum test.

Similar to the experimental procedure in section 6.1.3, model fit over web user naviga-

tion dataset was significantly better for both global weighted DTW (gwDTW) clustering

and stepwise deviated DTW (sdDTW) clustering as compared with standard DTW-driven

clustering, as shown in Table 6.7. Thus, deviation-based DTW is superior to standard

DTW as a similarity metric for initialization of CDMC clustering over web user naviga-

tion data.
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6.2 USER NAVIGATION BEHAVIOR

Table 6.7: Median negative log likelihoods of gwDTW, sdDTW, and standard DTW clus-
terings over short-term and long-term web user navigation behavior datasets in section 6.2.1.
Asterisks indicate significance of differences with standard DTW in Wilcoxon rank sum test
(p < 0.05).

DTW gwDTW sdDTW
Short-Term 5.360 5.322∗ 5.279∗

Long-Term 27.76 26.38∗ 26.19∗
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Figure 6.8: Exponential plots over all categories of duration distributions in short-term vis-
iting history (sequences of length less than 10). The reference line (a dashed line) indicates
a perfect exponential fit. Exponential fits are good to describe the short-term visitors (close
to the reference line), since they only temporarily visit some website and then go away. Such
patterns lead to the fact that the frequency of short durations of the given category would be
much higher than the frequency of longer durations.

119



6.2 USER NAVIGATION BEHAVIOR

100

0.0001
0.00050.001
0.0050.01

0.050.1
0.25

0.50.750.90.990.99950.9999

Category 1

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 2

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 3

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 4

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.9990.9999

Category 5

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 6

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 7

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 8

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 9

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 10

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.9990.9999

Category 11

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 12

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 13

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.99950.9999

Category 14

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0001

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.750.9
0.990.9990.9999

Category 15

Pro
bab

ility

Probability plot for Weibull distribution

100

0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.75
0.90.95

0.99
0.999

Category 16

Pro
bab

ility

Probability plot for Weibull distribution

100
0.0005
0.001

0.005
0.01

0.05
0.1

0.25
0.5

0.75
0.9

0.990.9990.9999

Category 17

Pro
bab

ility

Probability plot for Weibull distribution

Figure 6.9: Weibull plots over all categories of duration distributions of short-term visiting
history (sequences of length less than 10). The reference line indicates a perfect Weibull fit.
The Weibull fits are better than exponential fit, since all distributions of categories should be
much closer to the reference line, although there is a big tail at the beginning of the distribution
of each category.
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Figure 6.10: Exponential plots over all categories of duration distributions of long-term vis-
iting history (sequences of length more than 10). The reference line indicates a perfect ex-
ponential fit. The exponential fits are worse than that in the situation for short-term visitors,
since many distributions of categories are much far away from the duration distributions of
categories.
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Figure 6.11: Weibull plots over all categories of duration distributions of long-term visiting
history (sequences of length more than 10). The reference line indicates a perfect Weibull
fit. Compared with the exponential fits, Weibull fits are much better than those for long-terms
visitors, since there is a large impact of long duration of categories on the overall distribution
of all categories.
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Chapter 7

Conclusions of This Dissertation

The goal of this dissertation was to construct an automated framework for the discovery

of dynamical patterns in time series with seldom occurrences of dynamical events. We

investigated novel theoretical and practical aspects of the state-of-the-art sequence mod-

eling technique, Collective Dynamical Modeling Clustering (CDMC) [34], and addressed

the crucial need to scale up the original CDMC framework to process big data. The four

major contributions of this dissertation can be summarized as follows.

First, we considered semi-Markov chains as models of discrete time series. Both state

transitions and the durations of continuous bouts in each state are taken into account. A

semi-Markov chain comprises an underlying Markov chain that models the temporal se-

quence of states but not the timing details, together with a separate statistical model of

the bout durations in each state. The state bout durations are modeled explicitly by the

Weibull parametric family of probability distributions. The Weibull semi-Markov chain

model improves considerably on standard Markov chain models, which force geomet-

rically distributed (discrete exponential) state bout durations for all states, contradicting

known experimental observations. Our results provide more realistic dynamical modeling

of sleep stage dynamics that can be expected to facilitate the discovery of interesting and
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useful dynamical patterns in human sleep data.

Second, we used semi-Markov chains as the CDMC dynamical models, as they better

capture infrequent dynamical events in comparison with the more widely used Markov

models. The experimental results over both synthetic data and real data (human sleep

and user navigation behavior) confirm the validity of this statement. We proposed the use

of distance-based dynamic time warping clustering for CDMC initialization, which led

to significantly more accurate CDMC clustering results in experiments with labeled syn-

thetic data than pseudorandom initialization does, as well as significantly faster CDMC

convergence. We tested the adjusted Rand index as the clustering similarity metric that

defines the CDMC stopping criterion, in order to correct for clustering agreements due

to chance. However, it did not lead to significantly more accurate clusterings, while sig-

nificantly increasing the number of iterations required for convergence as compared with

the standard Rand index. Similar statements hold for the Normalized Mutual Information

metric as compared with the standard Rand index. Therefore, the standard Rand index

was the best choice of similarity metric for CDMC among these candidates.

Third, we proposed two versions of a modified dynamic time warping (DTW) ap-

proach for comparing discrete time series such as human sleep sequences: global weighted

dynamic time warping (gwDTW) and stepwise deviated dynamic time warping (sdDTW).

Both versions penalize deviations from the path of constant slope in the warping space,

yielding the efficiency advantages of DTW approaches based on global constraints such

as the Itakura parallelogram or the Sakoe-Chiba band, while better accounting for local

deviations. gwDTW adds a deviation-based term to the standard DTW distance metric.

sdDTW adds a deviation term into the local cost function that drives the DTW dynamic

programming optimization itself, yielding an improved warping path together with a sim-

ilarity metric. Both gwDTW and sdDTW lead to significantly better clustering results

than DTW in a classification task over labeled synthetic Markov data, as well as in unsu-
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pervised clustering of human sleep data.

Lastly, we developed a distributed version of the collective dynamical modeling clus-

tering algorithm. This distributed version scales up the original CDMC framework to

process big data. The core components of our distributed approach include grouping in-

coming data instances and modeling over the aggregated dataset. We used Storm, an

open source distributed real-time computation system, to support batch and distributed

processing of data. A systematic evaluation of the proposed approach was carried out via

experimentation with real-world data on human sleep and web user navigation behavior

to establish the efficiency and scalability of our approach.
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Chapter 8

Future Work

Future work may address further improvements to the initialization, dynamical modeling

and distributed aspects of the collective dynamical modeling and clustering framework.

For the initialization component, dynamic time warping has been applied to the ini-

tialization of a different clustering technique based on Hidden Markov Models [51]. In

the presence of big data, it would be worthwhile to investigate clustering time series us-

ing optimized dynamic time warping [120] and its integration into our current distributed

CDMC framework. Another possible future work is to examine deviation-based con-

straints in dynamic time warping computation, compared with other constrained DTW

work. For example, [121] mentioned a salient feature approach, which extracts features

of the input sequences that are then used to define locally adaptive constraints on the

warping path. The local constraints can affect the mean value of the warping band as

a function of time, as well as its width. It would be desirable to pursue a performance

comparison of the salient feature approach with that of our work.

For dynamical models, our work sheds light on investigating discrete time series anal-

ysis of state-based dynamics. For real-valued continuous time series, it is useful to con-

sider approaches for converting them into discrete symbolic time series using dimension-
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ality reduction techniques, more precisely feature extraction techniques. Future work

could consider using Wavelet transform [109, 110] or Fourier transform [111] to effi-

ciently detect signal components as user-defined states. An alternative approach is time

series shapelets [112] which have been thought of as features for time series classification.

It would be interesting to study the effect of using such features as part of our dynamical

models during clustering in the CDMC framework. Another direction for future work

is to investigate the use of semi-Markov models with hidden states, analogous to hid-

den Markov models. It is important to address whether temporal differences in discrete

time series are adequately described by the transient (non-equilibrium) behavior of semi-

Markov chains, or if it will instead be necessary to explicitly incorporate non-stationarity

into the dynamical models.

For our distributed collective dynamical modeling clustering approach, we used Apache

Storm as the distributed system platform. As optimizations of Hadoop [115] appear in

new releases, it would be worthwhile to incorporate these optimizations in our frame-

work. Another aspect worth exploring is that of estimating an appropriate value for the

number of iterations of modeling and clustering in our framework – too large or too small

a value may cause slow response or inadequate modeling and clustering results.

127



References

[1] Chotirat Ann Ratanamahatana and Eamonn Keogh. Making time-series classifica-

tion more accurate using learned constraints. In Proceedings of SIAM International

Conference on Data Mining (SDM’04), pages 11–22. SIAM, 2004. 1, 23

[2] Wayne F Velicer and Joseph L Fava. Time series analysis. J. Schinka & WF Velicer

(Eds.), Research Methods in Psychology, 2:581–606, 2003. 1

[3] Jessica Lin, Eamonn J. Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX:

a novel symbolic representation of time series. Data Mining and Knowledge Dis-

covery, 15(2):107–144, 2007. 1

[4] Martin T Hagan, Howard B Demuth, Mark H Beale, and Orlando De Jesús. Neural
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