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Abstract

The Regularity Lemma of Szemerédi is a fundamental tool in extremal graph

theory with a wide range of applications in theoretical computer science.

Partly as a recognition of his work on the Regularity Lemma, Endre Sze-

merédi has won the Abel Prize in 2012 for his outstanding achievement.

In this thesis we present both practical and theoretical applications of the

Regularity Lemma. The practical applications are concerning the important

problem of data clustering, the theoretical applications are concerning the

monochromatic vertex partition problem.

In spite of its numerous applications to establish theoretical results, the

Regularity Lemma has a drawback that it requires the graphs under con-

sideration to be astronomically large, thus limiting its practical utility. As

stated by Gowers, it has been “well beyond the realms of any practical appli-

cations” [28], the existing applications have been theoretical, mathematical.

In the first part of the thesis, we propose to change this and we propose

some modifications to the constructive versions of the Regularity Lemma.

While this affects the generality of the result, it also makes it more useful for

much smaller graphs. We call this result the practical regularity partition-
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ing algorithm and the resulting clustering technique Regularity Clustering.

This is the first integrated attempt in order to make the Regularity Lemma

applicable in practice. We present results on applying regularity clustering

on a number of benchmark data-sets and compare the results with k-means

clustering and spectral clustering. Finally we demonstrate its application in

Educational Data Mining to improve the student performance prediction.

In the second part of the thesis, we study the monochromatic vertex

partition problem. To begin we briefly review some related topics and several

proof techniques that are central to our results, including the greedy and

absorbing procedures. We also review some of the current best results before

presenting ours, where the Regularity Lemma has played a critical role.

Before concluding we discuss some future research directions that appear

particularly promising based on our work.
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Chapter 1

Introduction

The Regularity Lemma of Szemerédi [75] has been proven to be a very use-

ful tool in graph theory. It was initially developed as an auxiliary lemma

to prove a long standing conjecture of Erdős and Turán [18] on arithmetic

progressions, which stated that sequences of integers with positive upper

density must contain arbitrarily long arithmetic progressions. Now the Reg-

ularity Lemma by itself has become an important tool and found numerous

applications (see [48]). Based on the Regularity Lemma and the Blow-up

Lemma [46], [47] the Regularity Method has been developed that has been

quite successful in a number of applications in graph theory (e.g. [32], [33]).

The basic content of the Regularity Lemma could be described by saying

that every graph can, in some sense, be partitioned into random graphs.

Since random graphs of a given edge density are much easier to treat than

all graphs of the same edge-density, the Regularity Lemma helps us to carry

over results that are trivial for random graphs to the class of all graphs with

a given number of edges.
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In spite of its importance, most of the applications using the Regularity

Lemma are theoretical in nature. The lack of practical applications is due to

the requirement that the graphs under consideration have to be astronom-

ically large. Specifically, the number of vertices need to be a tower of 2’s

with height proportional to ε−5 to ensure the existence of ε-regular partition

in the Regularity Lemma, this has been demonstrated by Gowers in [27].

In the first part of this thesis, we present practical results using the

Regularity Lemma: a modification to the Regularity Lemma that we call

the “Practical Regularity Partitioning Algorithm” and show experimental

results. First we demonstrate the constructive versions of the Regularity

Lemma, then we discuss some possible modifications, these modifications

lead to a general technique called the “Practical Regularity Partitioning

Algorithm” by modifying the constructive procedure for getting the regu-

lar partition. This Practical Regularity Partitioning Algorithm is a general

technique which can be used in various applications. After the description

of the algorithm we will show how to use it for clustering (Regularity Clus-

tering) with experimental results [72]. Furthermore we will demonstrate

an application in educational data mining, namely, how to improve student

performance prediction by using this technology [73].

The second part of this thesis contains applications of the Regularity

Lemma in the monochromatic vertex partition problem. It is to ask how

many monochromatic vertex disjoint subgraphs are needed to cover all the

vertices of an r-colored complete graph. This is a problem in extremal graph

theory which studies extremal (maximum or minimum) graphs that satisfy

certain properties. To study the monochromatic vertex partition problem,
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we need to review several closely related research branches: Turán type

questions, Ramsey theory and the largest monochromatic subgraph problem.

They are all important branches of extremal graph theory and have a wide

literature. After reviewing them, we note that one plausible way to attack

the monochromatic vertex partition problem is to use the greedy procedure.

We will then show that the greedy procedure does not give the optimal

solution and we will introduce the absorbing technique as an alternative.

After reviewing the research background and proof techniques, we list some

current best results. At the end of this part, we present our research work on

the monochromatic vertex partition problem using the Regularity Lemma.

Our work has resulted in two papers [70], [71], we present the theorems and

the detailed proofs.

The organization of this thesis follows this outline. We start with intro-

ducing the necessary preliminaries.
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Chapter 2

Preliminaries

2.1 Graph Theory

For general graph definitions see the book of Diestel [12]. We list the nota-

tion and definitions that we need below:

1. A graph is a pair G = (V,E) of sets satisfying E ⊆ [V ]2. The elements

of V are the vertices of the graph G, the elements of E are its edges,

denoted as V (G) and E(G).

2. A graph is finite if both its vertex set and edge set are finite. A graph

is simple if it has no loops and no two of its edges join the same pair

of vertices. Except otherwise noted, our thesis is concerned with the

study of finite simple graphs only.

3. The complement G of G is the graph on V with edge set [V ]2 \ E.

4. Two vertices x, y of G are adjacent if xy is an edge of G. Two edges

e 6= f are adjacent if they have an endpoint in common. If all the
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vertices of G are pairwise adjacent, then G is complete, denoted as Kn

on n vertices.

5. The degree degG(v) = deg(v) of a vertex v is the number of edges at

v; Γ(v) is the set of neighbors of v ∈ V , |Γ(v)| = deg(v).

6. A vertex of degree 0 is isolated; the number

δ(G) = min{deg(v)|v ∈ V }

is the minimum degree of G; the number

∆(G) = max{deg(v)|v ∈ V }

is the maximum degree.

7. If all the vertices of G have the same degree k, then G is k-regular.

8. A complete graph Kn is a graph with n vertices and an edge between

every two vertices.

9. A graph is said to be k-connected if there does not exist a set of k− 1

vertices whose removal disconnects the graph.

10. Let G = (V,E) and G′ = (V ′, E′) be two graphs, if V ′ ⊆ V and

E′ ⊆ E then G′ is a subgraph of G. G′ is a induced subgraph of G

if G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′; a

spanning subgraph is a subgraph that contains all the vertices of the

original graph.
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11. A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xn}, E = {x0x1, x1x2, . . . , xn−1xn},

where the xi’s are all distinct. The vertices x0 and xk are called its

endpoints; the vertices x1, . . . , xn−1 are the inner vertices. A path with

n vertices is denoted as Pn. The cycle is a closed path denoted by Cn,

if it has n vertices.

12. A Hamiltonian path/cycle is a path/cycle which visits each vertex of

the graph. If a graph has a Hamiltonian cycle it is called Hamiltonian.

13. Let r ≥ 2 be an integer. A graph G = (V,E) is called r-partite if

V admits a partition into r classes such that every edge has its ends

in different classes, i.e. vertices in the same partition class are never

adjacent. An r-partite graph in which every two vertices from different

partition classes are adjacent is called complete. K(n1, . . . , nk) is the

complete k-partite graph G with classes containing n1, . . . , nk vertices.

Instead of 2-partite, we say bipartite. (A,B,E) denotes a bipartite

graph G = (V,E), where V = A ∪B, and E ⊂ A×B.

14. A star is a complete bipartite graph K1,n which is a tree formed by

the central vertex and n leaves around it; a double star is the tree

obtained from two vertex disjoint stars by connecting their centers.

15. A multi-coloring of a graph G is a coloring where each edge may receive

more than one color.
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16. An independent set is a set of vertices in a graph G such that no two

of which are adjacent. The independent number α(G) of a graph G is

the size of the largest independent set of G.

2.2 Algorithm Complexity

We list the notation and definitions for algorithm complexity analysis. It is

more in a descriptive manner rather than strict definitions. Formal defini-

tions can be found in the book [11].

1. For a given function g(n), we denote O(g(n)) as:

O(g(n)) = {f(n) : 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.}

for some positive constants c and n0.

2. An algorithm solves a problem in time O(T (n)) if, when it is provided

with a problem instance i of length n = |i|, the algorithm can produce

the solution in O(T (n)) time.

3. A problem is polynomial-time solvable, if there exists an algorithm to

solve it in time O(nk) for some constant k.

4. A decision problem is a problem to which the answer is simply “yes”

or “no”.

5. The complexity class P is the set of decision problems that are polynomial-

time solvable.
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6. A verification algorithm is a two-argument algorithm A, such that

A verifies an input string x if there exists a certificate y such that

A(x, y) = 1.

7. The complexity class NP is the class of languages that can be verified

by a polynomial-time algorithm.

8. A language L1 is polynomial-time reducible to a language L2, written

L1 ≤p L2, if there exists a polynomial-time computable function f

such that

x ∈ L1 if and only if f(x) ∈ L2.

9. A language L ⊆ {0, 1}∗ is NP -complete if

(a) L ∈ NP

(b) L′ ≤p L for every L′ ∈ NP.

10. If a language L satisfies “L′ ≤p L for every L′ ∈ NP.”, but not neces-

sarily “L ∈ NP”, we say that L is NP -hard.

11. Define the complexity class co-NP as the set of languages L such that

L ∈ NP .

12. Define the complexity class co-NP -complete as the set of languages L

such that L ∈ NP -complete.
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2.3 Parallel Programming

We introduce some complexity analysis notations for parallel programming.

They will be revisited in Section 6.1 (Alon et al. algorithmic Regularity

Lemma). More details can be found in [66].

A random access machine (RAM) (see [4]) is more similar to a high

level computer than Turing machines. A RAM has its own local random-

access memory, each cell of which can store an arbitrary large integer. The

instructions for RAMs are multiplication, division, addition, subtraction,

conditional branches based on predicates “=”, “<”, “and”, “or” and “not”

and reading and writing into its memory. A parallel random-access machine

([30], [23], [43]) is a collection of RAMs operating synchronously in parallel.

The RAM’s are communicating with one another through a global memory.

All of the processors execute the same program in lock-step fashion, except

that each processor knows its unique processor number, and this can be used

in the instructions.

PRAMs can be classified according to restrictions on global memory

access. Even though there is a variety of PRAM models, they do not differ

very widely in their computational power. Therefore we choose the weakest

possible model, the EREW, as our model. An Exclusive-Read Exclusive-

Write (or EREW) PRAM is a PRAM for which simultaneous access to any

memory location by different processors is forbidden for both reading and

writing.

For the PRAM model we choose the time and the number of parallel

processors to measure the complexity of a computation. The time of the



2.4. MATRIX THEORY 10

computation is the total cost of instructions executed by the processors.

A PRAM algorithm is said to be efficient if it runs in time polynomial in

the log of the input size and uses polynomially many processors. A problem

solvable by such a PRAM algorithm is said to be in NC. We refer to the

algorithm as an NC algorithm. When the running time is O((log n)i), the

algorithm is in NCi.

A major goal in parallel computation is to prove that a given problem

belongs to NC. Additional objectives are to minimize the number of pro-

cessors used and to find the precise time bounds.

2.4 Matrix Theory

Here we introduce definitions that will be used in Section 5.3 in the spectral

clustering algorithm.

Definition 2.1 For any n×n real matrix A, if there exists a non-zero vector

v and a real number λ such that

λv = Av,

then we say that v is an eigenvector of A, λ is said to be the eigenvalue

corresponding to v.

Definition 2.2 Let G = (V,E) be an undirected graph with vertex set V =

{vi, . . . , vn}, assume that each edge between two vertices vi and vj carries

a non-negative weight wij ≥ 0. The weighted adjacency matrix of a given
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graph is the matrix

W = (wij)i,j=1,...,n.

We require wij = wji, and wij = 0 means that there is no edge between vi

and vj.

Recall the definition of the degree in Section 2.1, here in weighted graphs

we define the weighted degree of a vertex as

di =
n∑
j=1

wij .

Now we define the degree matrix:

Definition 2.3 The degree matrix D is defined as the diagonal matrix with

the degrees di, . . . , dn in the diagonal.

We will use normalized graph Laplacians defined as follows:

Definition 2.4 Lsym is a symmetric matrix (called normalized graph Lapla-

cian), defined by

Lsym = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 .
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Chapter 3

Regularity Lemma

The Regularity Lemma [75] is one of the most powerful tools of extremal

graph theory. It was invented as an auxiliary lemma in the proof of a major

result on the Ramsey properties of arithmetic progressions, its importance

has been realized and has been used more and more in recent years.

Basically this lemma claims that all (dense) graphs can be approximated

by random graphs in the following sense: every graph can be partitioned

into a bounded number of equal parts, so that most of its edges run among

different parts and the edges between any two parts are distributed fairly

uniformly, just as they had been generated randomly. Since random graphs

of a given edge density are much easier to treat than all graphs of the same

edge-density, the Regularity Lemma helps us to translate results that are

trivial for random graphs to the class of all graphs with a given number of

edges.

To present the Regularity Lemma precisely, we need some definitions

first:
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Let G = (V,E) denote a graph, where V is the set of vertices and E is

the set of edges. When A,B are disjoint subsets of V , the number of edges

with one endpoint in A and the other in B is denoted by e(A,B). When A

and B are nonempty, recall that the density of edges between A and B is

d(A,B) =
e(A,B)

|A||B|
.

The most important concept is the following.

Definition 3.1 The bipartite graph G = (A,B,E) is ε-regular if for every

X ⊂ A, Y ⊂ B satisfying: |X| > ε|A|, |Y | > ε|B|, we have |d(X,Y ) −

d(A,B)| < ε, otherwise it is ε-irregular.

Roughly speaking this means that in an ε-regular bipartite graph the edge

density between any two relatively large subsets is about the same as the

original edge density. In effect this implies that all the edges are distributed

almost uniformly.

The most important property of regular pairs is the following: let (A,B)

be an ε-regular pair with density d. Then for any Y ⊂ B, |Y | > ε|B| we

have

#{x ∈ A : deg(x, Y ) ≤ (d− ε)|Y |} ≤ ε|A|.

Definition 3.2 A partition P of the vertex set V = V0 ∪ V1 ∪ . . . ∪ Vk

of a graph G = (V,E) is called an equitable partition if all the classes

Vi, 1 ≤ i ≤ k, have the same cardinality. V0 is called the exceptional class.

Note that the exceptional class V0 is there only for a technical reason,

namely to guarantee that the other classes have the same cardinality.
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Definition 3.3 For an equitable partition P of the vertex set V = V0∪V1∪

. . .∪ Vk of G = (V,E), we associate a measure called the index of P (or the

potential) which is defined by

ind(P ) =
1

k2

k∑
s=1

k∑
t=s+1

d(Vs, Vt)
2.

This will measure the progress towards an ε-regular partition.

Definition 3.4 An equitable partition P of the vertex set V = V0 ∪ V1 ∪

. . .∪Vk of G = (V,E) is called ε-regular if |V0| < ε|V | and all but εk2 of the

pairs (Vi, Vj) are ε-regular where 1 ≤ i < j ≤ k.

With these definitions we are now in a position to state the Regularity

Lemma.

Theorem 3.5 (Szemerédi, 1976 [75]) For every positive ε > 0 and posi-

tive integer t there is an integer T = T (ε, t) such that every graph with n > T

vertices has an ε-regular partition into k + 1 classes, where t ≤ k ≤ T .

Below is an r-color version of the Regularity Lemma:

Theorem 3.6 (Szemerédi, 1976 [75]) For every positive ε and positive

integer m there are positive integers M and n0 such that for n ≥ n0 the

following holds. For all graphs G1, G2, . . . , Gr with V (G1) = V (G2) = . . . =

V (Gr) = V , r ≥ 2, |V | = n, there is a partition of V into l + 1 classes

(clusters)

V = V0 + V1 + V2 + ...+ Vl

such that
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• m ≤ l ≤M

• |V1| = |V2| = ... = |Vl|

• |V0| < εn

• apart from at most ε
(
l
2

)
exceptional pairs, the pairs {Vi, Vj} are

(ε,Gs)-regular for s = 1, 2, . . . , r.

There are a large number of applications using the Regularity Lemma.

An important concept in these applications is the reduced graph.

Definition 3.7 Given an arbitrary graph G = (V,E), a partition of V

into k clusters as in Theorem 3.6, and two parameters ε, d, we define the

reduced graph GR as the graph whose vertices are associated to the clusters

and whose edges are associated to ε-regular pairs with density more than d.

If we have a coloring on the edges of G, then the edges of the reduced graph

will be colored with a color that appears on most of the edges between the

two clusters.

The most important property of the reduced graph is that many prop-

erties of G are inherited by GR.
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Part I

Practical applications of the

Regularity Lemma
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Chapter 4

Motivation

The Regularity Lemma has become an important tool and has numerous

theoretical applications, not only in graph theory but also in theoretical

computer science and number theory (see [48]). The original Regularity

Lemma only claims the existence of a partition with certain properties. To

apply the Regularity Lemma in practical settings, first we need a construc-

tive version which describes a method to construct the partition. Alon et

al. [3] were the first to give an algorithmic version. Since then a few other

algorithmic versions have also been proposed [21], [44].

Although these algorithms are efficient and run in polynomial time (see

section 6.1), but they are still not truly applicable. This is due to the fact

that the graph under consideration has to be astronomically large. The

number of vertices of the input graph must be of a tower of 2’s with height

proportional to ε−5. Furthermore, Gowers demonstrated [24] that this tower

bound is necessary.

To make the Regularity Lemma applicable to much smaller graphs, say
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with several thousand vertices, we have to make certain modifications. This

is going to be the main theme of this part of the thesis. We start with

introducing data clustering in next chapter.
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Chapter 5

Clustering

5.1 Clustering

Clustering is one of the most important branches in data processing. Intu-

itively it means to divide the data points into meaningful groups, and then

these groups can be used for feature extraction and summarizing, or for

making data-driven inferences. A useful view of clustering is the following:

Given a space X, clustering could be thought of as a partitioning of this

space into k parts, i.e. f : X 7−→ {1, . . . , k}. Usually this partitioning is

obtained by optimizing some internal criteria such as the inter-cluster dis-

tances, etc. However, which criteria will lead to an optimal clustering is still

unclear.

There are variety of clustering algorithms. In this thesis we will use

k-means clustering and spectral clustering, a brief description of both algo-

rithms are given below.
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5.2 k-means clustering algorithm

Define a set of n data points

X = {x1, . . . , xn},

and a set of k centers

C = {c1, . . . , cn},

as the clustering solution. k-means finds the clusters by minimizing the

function :
n∑
i=1

k∑
j=1

‖xi − cj‖2.

k-means Algorithm [41] :

1. Initialize: Select the initial cluster centers.

2. Assign Center: For every data point find the nearest center.

3. Recompute the center: Recompute the center using the data points

inside same cluster.

4. Iteration: If certain criteria meet then output the clustering result,

otherwise iteration with the new centers.

In spite of the great popularity of the k-means algorithm, very few the-

oretical guarantees on its performance are known.
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5.3 Spectral clustering algorithm

Out of the various modern clustering techniques, spectral clustering has

become one of the most popular. This has happened due to not only its

superior performance over traditional clustering techniques, but also due to

the strong theoretical underpinnings in spectral graph theory and its ease

of implementation.

Spectral clustering is to approximately solve the balanced mincut prob-

lem. Attach a weight value to each edge, then the mincut problem can be

formalized as following: find a partition A1, A2, . . . , Ak that minimizes the

value

cut(A1, A2, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Āi).

In practice we want a balanced cut. For example when k = 2, the

optimal solution often gives the answer such that a single vertex stands as

a part [74], which is not a desired result. When dealing with balanced cuts,

it is important to define the meaning of balance. There are several different

definitions [40], [67]. Intuitively, a balanced mincut means a mincut with

more or less the same size for each part.

Finding a balanced mincut is an NP-hard problem. Even further, there

is no polynomial algorithm that can even approximate the optimal solution

up to a constant factor, this approximation problem is NP-hard itself [6].

The advantage of spectral clustering is that it takes an approximation which

can be translated into a standard linear algebra problem and has a standard

yet simple solution.

Despite various advantages of spectral clustering, one major problem is
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that for large datasets it is very computationally intensive. Another in-

teresting issue is that a balanced mincut might not be the best criteria to

evaluate a partition. It is to minimize the inter-cluster distance, not even

considering the uniform behavior inside the clusters.

For the sake of completeness we present the spectral clustering algorithm

here, the detailed analysis and algorithms can be found in [55].

We first introduce the similarity graph.

A similarity graph is to model the local neighborhood relationships be-

tween the data points. Two popular constructions are the following:

1. k-nearest neighbor graphs: Here the goal is to connect vertex vi with

vertex vj if vj among the k-nearest neighbors of vi.

2. The fully connected graph: Here we simply connect all points with

positive similarity with each other, and we weight all edges by sij .

Both graphs mentioned above are regularly used in spectral clustering.

For now we do not have any knowledge on how the choice of the similarity

graph influences the spectral clustering result. We will use both methods

for our sake of comparison.

Basic notation and definitions, such as the weighted adjacency matrix,

eigenvectors and the normalized Laplacian can be found in Section 2.4,

Normalized spectral clustering according to Ng, Jordan and

Weiss [57] :

1. Construct a similarity graph by one of the ways described above. Let

W be its weighted adjacency matrix.
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2. Compute the normalized Laplacian Lsym.

3. Compute the first k eigenvectors {u1, . . . , uk} of Lsym.

4. Let U ∈ Rn×k be the matrix containing the vectors {u1, . . . , uk} as

columns.

5. Form the matrix T ∈ Rn×k from U by normalizing the rows to norm

1.

6. For i = 1, . . . , n, let yi ∈ Rk be the vector corresponding to the i-th

row of T .

7. Cluster the points (yi)i=1,...,n with the k-means algorithm into clusters

{C1, . . . , Ck}.

5.4 Our Methodology: Regularity Clustering

The Regularity Lemma, as we stated in Chapter 3 (Theorem 3.6), is to claim

the existence of a regular partition, from which we can construct the reduced

graph, hence decreasing the order of the input graph significantly. Also the

criteria for a regular partition is quite different from spectral clustering, it

takes into account the uniform distribution of the edge weights.

In the next chapter we will propose a general methodology to make the

Regularity Lemma more useful in practice. To make it truly applicable,

instead of constructing a provably regular partition we construct an approx-

imately regular partition. This partition will be less accurate, yet it behaves

just like a regular partition (especially for graphs appearing in practice) and
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it does not require the large number of vertices as mandated by the orig-

inal Regularity Lemma. We use this approximately regular partition for

performing clustering, and we call the resulting new clustering technique

Regularity Clustering.

We will also present applications of Regularity clustering: first we present

the accuracy comparisons with standard clustering methods such as k-means

and spectral clustering on UCI datasets [72]; then we present an application

within the Educational Data Mining realm to improve student performance

prediction [73].
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Chapter 6

A Practical regularity

partitioning algorithm

The original Regularity Lemma is an existential, non-constructive result. It

does not give a method to construct a regular partition but only shows that

one must exist. To make it truly applicable we first need an algorithmic

version. Alon et al. [3] were the first to give an algorithmic version. Below

we present the details of the Alon et al. algorithm.

6.1 Alon et al. version

For the definition of NC1 see Section 2.3.

Theorem 6.1 (Algorithmic Regularity Lemma, Alon et al., 1994 [3])

For every ε > 0 and every positive integer t there is an integer T = T (ε, t)

such that every graph with n > T vertices has an ε-regular partition into

k + 1 classes, where t ≤ k ≤ T . For every fixed ε > 0 and t ≥ 1 such a
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partition can be found in O(M(n)) sequential time, where M(n) is the time

for multiplying two n by n matrices with 0, 1 entries over the integers. The

algorithm can be parallelized and implemented in NC1.

This result is somewhat surprising from a computational complexity

point of view since it was proved in [3] that the corresponding decision prob-

lem (checking whether a given partition is ε-regular) is co-NP -complete (see

Section 2.2). Thus the search problem is easier than the decision problem.

To describe this algorithm, we need a couple of lemmas.

Lemma 6.2 (Alon et al., 1994 [3]) Let H be a bipartite graph with equally

sized classes |A| = |B| = n. Let 2n−1/4 < ε < 1
16 . There is an O(M(n)) al-

gorithm that verifies that H is ε-regular or finds two subset A′ ⊂ A, B′ ⊂ B,

|A′| ≥ ε4

16n, |B′| ≥ ε4

16n, such that |d(A,B)− d(A′, B′)| ≥ ε4. The algorithm

can be parallelized and implemented in NC1.

This lemma basically says that we can either verify that the pair is ε-

regular or we provide certificates that it is not. The certificates are the

subsets A′, B′ and they help to proceed to the next step in the algorithm.

The next lemma describes the procedure to do the refinement from these

certificates.

Lemma 6.3 (Szemerédi, 1976 [75]) Let G = (V,E) be a graph with n

vertices. Let P be an equitable partition of the vertex set V = V0∪V1∪. . .∪Vk.

Let γ > 0 and let k be a positive integer such that 4k > 600γ−5. If more than

γk2 pairs (Vs, Vt), 1 ≤ s < t ≤ k, are γ-irregular then there is an equitable

partition Q of V into 1 + k4k classes, with the cardinality of the exceptional
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class being at most

|V0|+
n

4k

and such that

ind(Q) > ind(P ) +
γ5

20
.

See Definition 3.3 for ind function.

This lemma implies that whenever we have a partition that is not γ-

regular, we can refine it into a new partition which has a better index (or

potential) than the previous partition. The refinement procedure to do this

is described below.

Refinement Algorithm: Given a γ-irregular equitable partition P of

the vertex set V = V0 ∪ V1 ∪ . . . ∪ Vk with γ = ε4

16 , construct a new partition

Q.

For each pair (Vs, Vt), 1 ≤ s, t ≤ k, s 6= t, we apply Lemma 6.2 with A = Vs,

B = Vt and ε. If (Vs, Vt) is found to be ε-regular we do nothing. Otherwise,

the certificates partition Vs and Vt into two parts (namely the certificate and

the complement). For a fixed s we do this for all t 6= s. In Vs, these sets

define the obvious equivalence relation with at most 2k−1 classes, namely two

elements are equivalent if they lie in the same partition set for every t 6= s.

The equivalence classes will be called atoms. Set m = b |Vi|
4k
c, 1 ≤ i ≤ k.

Then we choose a collection Q of pairwise disjoint subsets of V such that

every member of Q has cardinality m and every atom A contains exactly

b |A|m c members of Q. The collection Q is an equitable partition of V into at

most 1 + k4k classes and the cardinality of its exceptional class is at most

|V0|+ n
4k

.
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Now we are ready to present the main algorithm.

Regular Partition Algorithm (Alon et al.): Given a graph G and

ε, construct a ε-regular partition.

1. Initial partition: Arbitrarily divide the vertices of G into an equitable

partition P1 with classes V0, V1, . . . , Vb, where |V1| = bnb c and hence

|V0| < b. Denote k1 = b.

2. Check regularity: For every pair (Vs, Vt) of Pi, verify if it is ε-

regular or find X ⊂ Vs, Y ⊂ Vt, |X| ≥ ε4

16 |Vs|, |Y | ≥
ε4

16 |Vt|, such that

|d(X,Y )− d(Vs, Vt)| ≥ ε4.

3. Count regular pairs: If there are at most εk2i pairs that are not

verified as ε-regular, then halt. Pi is an ε-regular partition.

4. Refinement: Otherwise apply the Refinement Algorithm and Lemma

6.3, where P = Pi, k = ki, γ = ε4

16 , and obtain a partition Q with

1 + ki4
k
i classes.

5. Iteration: Let ki+1 = ki4
k
i , Pi+1 = Q, i = i+ 1, and go to step 2.

Since the index cannot exceed 1/2, the algorithm must halt after at most

d10γ−5e iterations (see [3]). Unfortunately, in each iteration the number of

classes increases exponentially to k4k from k. This implies that the graph

G must be indeed astronomically large (a tower function) to ensure the

completion of this procedure. As mentioned before, Gowers [27] proved that

indeed this tower function is necessary in order to guarantee an ε-regular

partition for all graphs. The size requirement of the algorithm above makes

it impractical for real world situations where the number of vertices typically
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is a few thousand. We will show our modifications to make it applicable to

small graphs in Section 6.3.

6.2 Frieze-Kannan version

The Frieze-Kannan constructive version is quite similar to the Alon et al.

version, the only difference is how to check regularity of the pairs in Step

2. Instead of Lemma 6.2, another lemma is used based on the computation

of singular values of matrices. For the sake of completeness we present the

details below. More details can be found at [21].

First we need some definitions:

An m× n matrix A has a singular value decomposition into the sum of

rank one matrices, The first singular value σ1 is defined as

σ1(A) = max|x|=|y|=1|xTAy|.

This value can be computed with high accuracy in polynomial time. It

is the square root of the largest eigenvalue of ATA.

For the following lemma, W is a p × q matrix with rows indexed by R,

columns indexed by C. We define

‖W‖∞ = maxi∈R,j∈C |W (i, j)|.

Assume ‖W‖∞ ≤ 1. For S ⊂ R,U ⊂ C we define

W (S, T ) =
∑
i∈S

∑
j∈T

W (i, j) = xTSWxU .
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where xS is the 0-1 indicator vector of S i.e. (xS)i = 1 iff i ∈ S.

Now we state the lemma.

Lemma 6.4 (Frieze, Kannan, 1999 [21]) Let W be an R × C matrix

with |R| = p, |C| = q and ‖W‖∞ ≤ 1 and let γ be a positive real.

a If there exists S ⊆ R, T ⊆ C such that |S| ≥ γp, |T | ≥ γq and

|W (S, T )| ≥ γ|S||T | then σ1(W ) ≥ γ3
√
pq. Where σ1 is the first

singular value.

b If σ1(W ) ≥ γ
√
pq then there exist S ⊆ R, T ⊆ C such that |S| ≥

γ′p, |T | ≥ γ′q and W (S, T ) ≥ γ′|S||T |, where γ′ = γ3

108 . Furthermore,

S, T can be constructed in polynomial time.

Combining Lemmas 6.3 and 6.4, we get an algorithm for finding an ε-

regular partition, quite similar to the Alon et al. version [3], which we

present below:

Regular Partition Algorithm (Frieze-Kannan): Given a graph G

and ε, construct a ε-regular partition.

1. Initial partition: Arbitrarily divide the vertices of G into an equitable

partition P1 with classes V0, V1, . . . , Vb, where |V1| = bnb c and hence

|V0| < b. Denote k1 = b.

2. Check regularity: For every pair (Vs, Vt) of Pi, compute σ1(Ws,t).

If a pair (Vs, Vt) is not ε-regular then by Lemma 6.4 we obtain a proof

that it is not γ = ε9/108-regular.

3. Count regular pairs: If there are at most εk2i pairs that produce

proofs of non γ-regularity, then halt. Pi is an ε-regular partition.
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4. Refinement: Otherwise apply the Refinement Algorithm and Lemma

6.3, where P = Pi, k = ki, γ = ε9

108 , and obtain a partition P ′ with

1 + ki4
k
i classes.

5. Iteration: Let ki+1 = ki4
k
i , Pi+1 = P ′, i = i+ 1, and go to step 2.

This algorithm is guaranteed to finish in at most ε−45 steps with an

ε-regular partition ( see [21]).

6.3 The practical regularity partitioning algorithm

We see that even the constructive versions are not directly applicable to real

world scenarios. We note that the above algorithms have such restrictions

because their aim is to be applicable to all graphs. Thus, to make the

Regularity Lemma truly applicable we would have to give up our goal that

the lemma should work for every graph and should be content with the fact

that it works for most graphs. To ensure that this happens, we modify the

Regular Partition Algorithm(s) (6.1, 6.2) so that instead of constructing a

regular partition, we find an approximately regular partition, which should

be much easier to construct. We have the following 3 major modifications

to the Regular Partition Algorithm (Alon et al. Version).

Modification 1: We want to decrease the cardinality of atoms in each

iteration. In the Refinement Algorithm (6.1) the cardinality of the atoms

in a Vs may be 2k−1, where k is the number of classes in the current parti-

tion. This is because the algorithm tries to find all the possible ε-irregular

pairs such that this information can then be embedded into the subsequent

refinement procedure. Hence potentially each class may be involved with
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up to (k − 1) ε-irregular pairs. One way to avoid this problem is to bound

this number. To do so, instead of using all the ε-irregular pairs, we only use

some of them. Specifically, in this thesis, for each class we consider at most

one ε-irregular pair that involves the given class. By doing this we reduce

the number of atoms to at most 2. We observe that in spite of the crude

approximation, this seems to work well in practice.

Modification 2: We want to bound the rate by which the class size

decreases in each iteration. As we have at most 2 atoms for each class, we

could significantly increase m used in the Refinement Algorithm as m = |Vi|
l ,

where a typical value of l could be 3 or 4, much smaller than 4k. We call

this user defined parameter l the refinement number.

Modification 3: Modification 2 might cause the size of the exceptional

class to increase too fast. Indeed, by using a smaller l, we risk putting 1
l

portion of all vertices into V0 after each iteration. To overcome this draw-

back, we “recycle” most of V0, i.e. we move back most of the vertices from

V0. Here is the modified Refinement Algorithm.

Modified Refinement Algorithm: Given a γ-irregular equitable par-

tition P of the vertex set V = V0 ∪ V1 ∪ . . .∪ Vk with γ = ε4

16 and refinement

number l, construct a new partition Q.

For each pair (Vs, Vt), 1 ≤ s < t ≤ k, we apply Lemma 6.2 with A = Vs,

B = Vt and ε. For a fixed s if (Vs, Vt) is found to be ε-regular for all t 6= s

we do nothing, i.e. Vs is one atom. Otherwise, we select one ε-irregular

pair (Vs, Vt) randomly and the corresponding certificate partitions Vs into

two atoms. Set m = b |Vi|l c, 1 ≤ i ≤ k. Then we choose a collection Q′ of

pairwise disjoint subsets of V such that every member of Q′ has cardinality
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m and every atom A contains exactly b |A|m c members of Q′. Then we unite

the leftover vertices in each Vs, we select one more subset of size m from

these vertices and add these sets to Q′ resulting in the partition Q. The

collection Q is an equitable partition of V into at most 1 + lk classes.

Now, we are ready to present our Practical Regular Partitioning Al-

gorithm. There are three main parameters to be selected by the user: ε,

refinement number l and h, the minimum class size when we must halt the

refinement procedure. h is used to ensure that if the class size has gone too

small then the procedure should not continue.

Practical Regular Partitioning Algorithm: Given a graph G and

parameters ε, l, h, construct an approx. ε-regular partition.

1. Initial partition: Arbitrarily divide the vertices of G into an equitable

partition P1 with classes V0, V1, . . . , Vl, where |V1| = bnl c and hence

|V0| < l. Denote k1 = l.

2. Check size and regularity: If |Vi| < h, 1 ≤ i ≤ k, then halt.

Otherwise for every pair (Vs, Vt) of Pi, verify if it is ε-regular or find

X ⊂ Vs, Y ⊂ Vt, |X| ≥ ε4

16 |Vs|, |Y | ≥
ε4

16 |Vt|, such that |d(X,Y ) −

d(Vs, Vt)| ≥ ε4.

3. Count regular pairs: If there are at most εk2i pairs that are not

verified as ε-regular, then halt. Pi is an ε-regular partition.

4. Refinement: Otherwise apply the Modified Refinement Algorithm,

where P = Pi, k = ki, γ = ε4

16 , and obtain a partition Q with 1 + lki

classes.
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5. Iteration: Let ki+1 = lki, Pi+1 = Q, i = i+ 1, and go to step 2.

The Frieze-Kannan version is modified in a similar way.

6.4 Regularity clustering

To make the Regularity Lemma applicable in clustering settings, we adopt

the following two phase strategy (as in [68] and illustrated in Figure 6.1):

1. Application of the Practical Regularity Partitioning Algo-

rithm: In the first stage we apply the Practical Regularity Parti-

tioning Algorithm as described in the previous section to obtain an

approximately regular partition of the graph representing the data.

Once such a partition has been obtained, the reduced graph as de-

scribed in Definition 3.7 could be constructed from the partition.

2. Clustering the Reduced Graph: The reduced graph as constructed

above would preserve most of the properties of the original graph (see

[48]). This implies that any changes made in the reduced graph would

also reflect in the original graph. Thus, clustering the reduced graph

would also yield a clustering of the original graph. We apply spectral

clustering (Section 5.3, though any other pairwise clustering technique

could be used) on the reduced graph to get a partitioning and then

project it back to the higher dimension. Recall that vertices in the ex-

ceptional set V0 are leftovers from the refinement process and must be

assigned to the clusters obtained. Thus in the end these leftover ver-

tices are redistributed amongst the clusters using k-nearest neighbor
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Figure 6.1: A Two Phase Strategy for Clustering

classifier to get the final grouping.

We call this method Regularity Clustering. We present our experimental

results in the next Section.

6.5 Experimental results on UCI data sets

In this section we present extensive experimental results to indicate the

efficacy of regularity clustering by employing it for clustering on a number

of benchmark datasets. We compare the results with spectral clustering

and k-means clustering in terms of accuracy. We also report results that

indicate the amount of compression obtained by constructing the reduced

graph. Results including some numbers on the increase in the index with

each step of the algorithm (as defined earlier) and on the number of iterations

to obtain a regular partition are also reported.

We first review the datasets considered and the metrics used for com-

parisons.
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6.5.1 Datasets and metrics used

The datasets considered for empirical validation were taken from the Uni-

versity of California, Irvine machine learning repository [79]. A total of 12

datasets were used for validation. We considered datasets with real valued

features and associated labels or ground truth. In some datasets that had

a large number of real valued features, we removed categorical features to

make it easier to cluster. Unless otherwise mentioned, the number of clus-

ters was chosen so as to equal the number of classes in the dataset (i.e. if

the number of classes in the ground truth is 4, then the clustering results

are for k = 4 etc). An attempt was made to pick a wide variety of datasets

i.e. with integer features, binary features, synthetic datasets and of course

real world datasets with both very high and small dimensionality.

The following datasets were considered: (1) Red Wine (R-Wine) and (2)

White Wine (W-Wine) are two datasets having 1599 and 4898 datapoints

respectively, each having 11 features. The target measures wine quality on

a scale of 0-10. Though both are ten class problems, they only contain

labels for 6 and 7 classes respectively. (3) The Arcene dataset (Arcene) has

data for the task of distinguishing cancer from normal patterns from mass

spectroscopic data. Thus it is a 2-class problem and was used in the NIPS

2003 feature selection challenge. The data consists of a train set with 100

points, a validation set with 100 points and a test set with 700 points (the

test set does not come with labels). However, since we are not making any

prediction as such we can combine the train and validation sets here and

use it as one dataset. Thus, this dataset has 200 datapoints with each data
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instance described by 10000 features. Given this very high dimensionality,

this should be an interesting dataset to experiment on. (4) The Blood

Transfusion Dataset (Blood-T) has 748 data-instances with 4 features each.

The task is to predict whether a person donated blood in a certain month

(March, 2007) and hence is a two-class problem. (5) The Ionosphere dataset

(Ionos) has 351 data instances each of which is 34 dimensional feature vector

having information about radar returns from the Ionosphere. The task is

to classify the radar returns as “good” i.e. those showing some structure in

the ionosphere and “bad” i.e. those returns that do not.

(6) The Wisconsin Breast cancer dataset (Cancer) has 699 datapoints

and 9 attributes. The task is classifying a point as benign or malignant.

Some rows having missing values were deleted so the actual number of dat-

apoints considered is 683. All the features in this dataset are integer valued.

(7) The Pima Indian diabetes dataset (Pima) is a standard dataset provided

by the National Institute of Diabetes and Digestive and Kidney diseases. It

has 8 attributes for 768 patients (all female of the Pima Indian heritage).

The 2-class task for this dataset is to predict whether or not a patient has

diabetes. (8) The Vertebral Column dataset (Vertebral-1) has data for 310

orthopaedic patients with 6 bio-mechanical features. The task is to classify

patients into either normal, disk hernia or spondilolysthesis and alternately

as normal and abnormal. The second task (9) (Vertebral-2) is considered

as another dataset. (10) The Steel Plates Faults Dataset (Steel) is a 7-class

dataset having 1941 instances and 27 attributes. The goal is to recognize

faults of seven different types. (11) The Musk 2 (Musk) dataset has in-

formation about a set of 102 molecules of which 39 are judged by human
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experts to be musks and the rest judged to be non-musks. Thus, this is a

two class problem in which the goal is to predict whether a new molecule

will be a musk or not. However, considering all the possible conformations,

this dataset has 6598 examples,each with 168 features. Two of which are

deleted. (12) Haberman’s Survival (Haberman) has data from a study con-

ducted on the survival of patients who had undergone surgery for breast

cancer. It only has three features and 306 points, the task is to predict if

the patient (described by three features each) survived for more than five

years or not after surgery, thus being a two class problem.

Next we discuss the metric used for comparison with other clustering

algorithms. For evaluating the quality of clustering, we follow the approach

of [81] and use the cluster accuracy as a measure. This is an interesting

combinatorial measure that relies on the confusion matrix. The measure is

defined as:

Accuracy = 100 ∗
(∑n

i=1 δ(yi,map(ci))

n

)
Where, n is the number of data-points considered, yi represents the true

label (ground truth) while ci is obtained cluster label of data-point xi. The

function δ(y, c) equals one if the true and the obtained labels match (y = c)

and 0 if they don’t. The function map is basically a permutation function

that maps each cluster label to the true label. An optimal match can be

found by using the Hungarian Method for the assignment problem [50].

In the next section we report some experiments and results on one of the

above datasets as a case study.
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Table 6.1: Clustering Results on Red Wine Dataset by Other Methods

Clustering Method k = 6 k = 3

Self Tuned Spectral (k-nearest neighbor graph) 26.0163 40.6504
Self Tuned Spectral (fully connected graph) 25.8286 37.3984

k-means 23.8899 37.0857

6.5.2 Case study

Before reporting comparative results on benchmark datasets, we first con-

sider one dataset as a case study. While experiments reported in this case

study were carried on all the benchmark datasets considered, the purpose

here is to illustrate the investigations conducted at each stage of application

of the Regularity Lemma. An auxiliary purpose is also to underline a set of

guidelines on what changes to the practical regularity partitioning algorithm

proved to be useful.

For this task we consider the Red Wine dataset which has 1599 instances

with 11 attributes each. For the Red Wine dataset, the number of classes

involved is six. It must be noted though that the class distribution in this

dataset is pretty skewed (with the various classes having 10, 53, 681, 638,

199 and 18 datapoints respectively), this makes clustering this dataset quite

difficult when k = 6. We however consider both k = 6 and k = 3 to compare

results with spectral clustering.

Recall that our method has two meta-parameters that need to be user

specified (or estimated by cross-validation) - ε and l. The first set of exper-

iments thus explore the accuracy landscape of regularity clustering spanned

over these two parameters. Care has to be taken that ε is not too large

or small, so we consider 25 linearly spaced values of ε between 0.15 and
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Figure 6.2: Accuracy Landscape for Regularity Clustering on the Red Wine
Dataset for different values of ε and refinement size l (with k = 6 on the
left and k = 3 on the right). The Plane cutting through in blue represents
accuracy by running self-tuned spectral clustering using the fully connected
similarity graph.

0.50. The “next refinement size”, l as noted in Section 6.3 can not be too

large. Since it can only take integer values, we consider six values from 2

to 7. For the sake of comparison, we also obtain clustering results on the

same dataset with spectral clustering with self tuning [64] (both using all

connected and k-nearest neighbor graph versions) and k-means clustering.

We pick the variant of spectral clustering that is known to return the best

results to make for a good comparison. Figure 6.2 gives the accuracy of

the regularity clustering on a grid of ε and l. Even though this plot is only

for exploratory purposes, it shows that the accuracy landscape is in gen-

eral much better than the accuracy obtained by spectral clustering for this

dataset. In this particular dataset it appears that the better performance

of regularity clustering is not really too dependent on the choice of ε and l.

We summarize results obtained by other methods on the Red Wine dataset

in Table 6.1.
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Table 6.2: Reduced Graph Sizes. Original Affinity Matrix size : 1599 ×
1599

ε
l

2 3 4 5 6 7

0.15 16 × 16 27 × 27 27 × 27 27 × 27 36 × 36 49 × 49

0.33 49 × 49 49 × 49 66 × 66 66 × 66 66 × 66 66 × 66

0.50 66 × 66 66 × 66 66 × 66 66 × 66 66 × 66 66 × 66

An important aspect of the regularity clustering method is that by using

a modified constructive version of the Regularity Lemma we obtain a much

reduced representation of the original data. The size of the reduced graph

depends both on ε and l. However, in our observation it is more sensitive to

changes to l and understandably so. From the grid for ε and l we take three

rows to illustrate the obtained sizes of the reduced graph (more precisely,

the dimensions of the affinity matrix of the reduced graph). We compare

these numbers with the original dataset size. The compression obtained is

quite striking. As we note in the results over the benchmark datasets in

section 6.5.3, this compression is quite big in larger datasets.

The proof of the Regularity Lemma is using a potential function, the

index of the partition defined earlier in Definition 3.3. In each refinement

step the index increases significantly. Surprisingly this remains true in our

modified refinement algorithm when the number of partition classes is not

increasing as fast as in the original version, see Table 6.3. Another interesting

observation is that if we take ε to be sufficiently high, we do get a ε-regular

partition in just a few iterations. A few examples where this was noticed in

the Red Wine dataset are mentioned in Table 6.4.

It is mentioned above that for refinement we only consider one ε-irregular



6.5. EXPERIMENTAL RESULTS ON UCI DATA SETS 42

Table 6.3: Illustration of Increase in Potential

(ε,l)
ind(P )

ind(P1) ind(P2) ind(P3) ind(P4)

0.15, 2 0.1966 0.2892 0.3321 0.3539

0.33, 2 0.1966 0.2883 0.3321 0.3683

0.50, 2 0.1965 0.2968 0.3411 0.3657

Table 6.4: Regular Partitions with required number of regular pairs and
actual number present

(ε, l) # for ε-regularity # of Reg. Pairs # Iterations

0.6, 2 1180 1293 6

0.7, 6 352 391 2

0.7, 7 506 671 2

pair for each class. Strategies for picking this irregular pair were also inves-

tigated and compared. Two natural strategies were tried: Picking a random

irregular pair from the set of all irregular pairs and picking the most irreg-

ular pair. Intuitively, the second strategy should yield better results, but

it was observed that this was rarely the case. It should be noted that the

accuracy results reported earlier were based on choosing a random irregular

pair.

Another aspect of the implementation that was investigated in detail

was attempting to model the intra-cluster similarities. The practical reg-

ularity partitioning algorithm gives a method to model inter-cluster varia-

tions. However for clustering, modeling the intra-cluster variations are as

important. One way of doing this is to sort the subsets in the refinement

process by decreasing degree. By ordering subsets by degree it could be en-

sured that vertices with higher degrees remain in the same subset while the

vertices with the lowest degree are put in the exceptional set. This seems
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intuitive as the vertices with the lowest degree would perhaps be leftovers.

An unexpected advantage of ordering vertices is that the randomness in the

algorithm is substantially reduced. Using the strategy outlined above (and

with a random irregular pair and no ordering of vertices) causes some varia-

tions in the results on each run with the same meta-parameters. By ordering

vertices this randomness is substantially reduced and the results are more

stable. As for the most irregular pair, ordering vertices did not necessarily

lead to better accuracy in all datasets. We consider exploring this aspect of

the methodology an important aspect to fine-tune and refine. For now we

only report results when the vertices are not ordered.

Finally, before reporting results we comment on constructing the re-

duced graph. The reduced graph was defined in Definition 3.7. But note

that there is some ambiguity in our case when it comes to constructing the

reduced graph. The reduced graph GR is constructed such that the vertices

correspond to the classes in the partition and the edges are associated to

the ε-regular pairs between classes with density above d. However, in many

cases the number of regular pairs is quite small (esp. when ε is small) mak-

ing the matrix too sparse, making it difficult to find the eigenvectors. Thus

for technical reasons we added all pairs to the reduced graph. We contend

that this approach works well because the classes that we consider (and

thus the densities between them) are obtained after the modified refinement

procedure and thus enough information is already embedded in the reduced

graph.

We now report clustering results on a number of benchmark datasets.
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Figure 6.3: Accuracy Landscape on the Red Wine Dataset (with k = 6 on
the left and k = 3 on the right) when the most irregular pair is considered
in each refinement. The Plane cutting through in blue represents accuracy
by running self-tuned spectral clustering using the fully connected similarity
graph.
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6.5.3 Clustering results on benchmark datasets

In this section we report results on a number of datasets described earlier

in Section 6.5.1. We do a five fold cross-validation on each of the datasets,

where a validation set is used to learn the meta parameters for the data.

The accuracy reported is the average clustering quality on the rest of the

data after using the learned parameters from the validation set. We use a

grid-search to learn the meta-parameters. Initially a coarse grid is initialized

with a set of 25 linearly spaced values for ε between 0.15 and 0.50 (we do

not want ε to be outside this range). For l we simply pick values from 2 to 7

simply because that is the only practical range that we are looking at. This

also justifies the use of grid-search in the following way: In the initial coarse

grid search, because l can take only integer values, once a good value of l

(with ε) has been identified the search becomes one dimensional (looking for

the best ε given l) in the subsequent finer grid searches.

We compare our results with a fixed σ spectral clustering with both a

fully connected graph (Spect2) and a k-nearest neighbour graph (Spect1).

For the sake of comparison we also include results for k-means on the en-

tire dataset. These results are reported in Table 6.5 (the best accuracy is

indicated by bold-face). The results for the compression obtained on these

datasets are reported in Table 6.6.

In these results we observe that the regularity clustering method, as in-

dicated by the clustering accuracies is quite powerful; it gave significantly

better results in 10 out of 12 datasets. It was also observed that the regular-

ity clustering method did not appear to work very well in synthetic datasets.
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Table 6.5: Clustering Results on UCI Datasets. Regular-A and Regular-FK
represent the results obtained by the constructive versions due to Alon et
al. and Frieze-Kannan, respectively. Spect1 and Spect2 give the results
obtained by spectral clustering with a k-nearest neighbor graph and a fully
connected graph, respectively. The best accuracy is indicated by bold-face.
Follow the text for more details.

Dataset Regular - A Regular - FK Spect1 Spect2 k-means

R-Wine 47.0919 46.8342 23.9525 23.9524 23.8899

W-Wine 44.7509 44.9121 23.1319 20.5798 23.8465

Arcene 68 68 61 62 59

Blood-T 76.2032 75.1453 65.1070 66.2331 72.3262

Ionos 74.0741 74.6787 70.0855 70.6553 71.2251

Cancer 93.5578 93.5578 97.2182 97.2173 96.0469

Pima 65.1042 64.9691 51.5625 60.8073 63.0156

Vertebral-1 67.7419 67.8030 74.5161 71.9355 67.0968

Vertebral-2 70 69.9677 49.3948 48.3871 65.4839

Steel 42.5554 43.0006 29.0057 34.7244 29.7785

Musk 84.5862 81.4344 53.9103 53.6072 53.9861

Haberman 73.5294 70.6899 52.2876 51.9608 52.2876

Table 6.6: Compression Obtained on the UCI Datasets

Dataset No. of Features Original Dimension Reduced Dimension

R-Wine 11 1599 × 1599 49 × 49

W-Wine 11 4898 × 4898 125 × 125

Arcene 10000 200 × 200 9 × 9

Blood-T 4 748 × 748 49 × 49

Ionos 34 351 × 351 25 × 25

Cancer 9 683 × 683 52 × 52

Pima 8 768 × 768 52 × 52

Vertebral-1 6 310 × 310 25 × 25

Vertebral-2 6 310 × 310 25 × 25

Steel 27 1941 × 1941 54 × 54

Musk 166 6598 × 6598 126 × 126

Haberman 3 306 × 306 16 × 16
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This seems understandable given the quasi-random aspect of the Regularity

Method. We also report that the results obtained by the Alon et al. and by

the Frieze-Kannan versions are virtually identical, which is not surprising.
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Chapter 7

Prediction improvement

using Regularity Clustering

We have also applied our new regularity clustering technique to an Educa-

tional Data Mining task: predicting student test result from features derived

from tutors. (This work appears in FLAIRS 2013 [73]).

The data considered in this chapter comes from the ASSISTments sys-

tem, a web-based tutoring system hosted by WPI, for 4th to 10th grade

mathematics. The system is widely used in Northeastern United States by

students in labs and for doing homework in the night.

7.1 Background

An important concept in student modeling is of “mastery learning” - that

is, a student continues to learn a skill till mastery is achieved. Intuitively,

whether a student will remember enough to answer a question after taking a



7.2. CLUSTERING STUDENTS AND STRATEGY FOR

BOOTSTRAPPING 49

break is a better definition of mastery as compared to a local measure based

on next item response.

A recent work [80] drew our attention to the question whether such a

near singular focus is important after all. That is, they found that features

such as the number of distinct days that the student practiced a skill was

more important than features that accounted for how many questions they

got correct.

To attempt to improve upon Wang & Beck [80], we have used the tech-

nique of using clustering to generate an ensemble introduced by [77] to see

if we can improve our predictions. The research question that we have is:

Can we employ this technique to increase accuracy in predicting long term

retention? In [78] it was found that spectral clustering was more effective

than k-means for this type of work. It is natural to ask: “How does reg-

ularity clustering compare in performance with spectral and k-means?” In

the next section we review a technique that uses (general) clustering for

bootstrapping.

7.2 Clustering students and strategy for bootstrap-

ping

The idea that students are perhaps quite different when it comes to for-

getting makes it quite apparent that it is perhaps not a good idea to fit a

global model on all of the data. In spite of individual differences, we hypoth-

esize that broadly the patterns and underlying reasons of forgetting would

fall into several coarse groups, with each such group having students more
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“similar” to each other in regard to forgetting. Honing on this intuition,

it might make more sense to cluster students into somewhat homogeneous

groups and then train a predictor separately on each such group, which

considers only the points from that cluster as the training set for itself. It

is clear that each such predictor would be a better representative for that

group of students as compared to a single global predictor trained on all the

students at one time. While this idea sounds compelling, there is a major

issue with it. While it is useful to model students as belonging to different

groups, it is perhaps not a good idea to simply divide them into clusters.

This is because the groupings are usually not very clear. For example, a

student might be extremely good at retaining information about certain as-

pects of Trigonometry but not other aspects, while at the same time might

be strong with retaining algebra. Such complex characteristics can not be

modeled by a simplistic solution as only clustering the data to some upper

limit and then training predictors on each cluster. The “fuzzy” nature of

such a process, which is like a spread of features across groups needs to be

captured to make a distributive model such as the above more meaning-

ful. This issue can be fixed by varying the granularity of the clustering and

training separate models each time so the such features can be accounted

for. A simple strategy to do so was proposed recently and was found quite

useful in various tasks in student modeling [77], [78].

The technique is actually a simple ensemble method. The basic idea

behind ensemble methods is that they involve running a “base learning al-

gorithm” multiple times, each time with some change in the representation

of the input (e.g. considering only a subset of the training examples or a
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subset of features etc) so that a number of diverse predictions can be ob-

tained. This process also gives a rich representation of the input, which

is one of the reasons why they work so well. In the particular case of our

method, unlike many other ensemble methods that use a random subset to

bootstrap, we use clustering to bootstrap. The training set is first clustered

into k disjoint clusters and then a logistic regression model is trained on each

of the clusters only based on the training points that were assigned to that

cluster. Each such model, being a representative of a cluster is referred to as

a cluster model. Thus for a given value of k there would be k cluster models.

Note that since all the clusters are mutually exclusive, the training set is

represented by all the k cluster models taken together. We refer to this as a

Prediction Model, PMk. For an incoming test point, we first figure out the

cluster that point belongs to and then use the concerned cluster model alone

to make a prediction on that point. Now also note that we don’t specify

the number of clusters above. Hence, we can change the granularity of the

clustering from 1 (PM1, which is the entire dataset as one cluster) to some

high value K. In each such instance we would get a different Prediction

Model, thus obtaining a set of k Prediction Models. Since the granularity

of the clustering is varied, the predictions obtained would be diverse and

hence could be combined together by some method such as averaging them

together to get a single prediction.

Note that the clustering algorithm above is not specified and hence could

be any clustering technique, as long as there is a straightforward way to map

test points to clusters. In particular we clustered students using three algo-

rithms: k-means [41], spectral clustering [55] and our regularity clustering
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Figure 7.1: Construction of a Prediction Model for a given K. See text for
details

[72], then we compare the accuracy using different algorithms.

7.3 Dataset description and experimental results

The dataset used is the same as used in [80]. The only exception being that

we considered the data for a unique 1969 students and did not consider mul-

tiple data points of the same student attempting something from a different

skill. This was only done because we were interested in clustering students

according to user id. The following features were used. The goal was to

predict whether a response was correct i.e. 1 or incorrect 0.

1. n correct: the number of prior student correct responses on this skill;

This feature along with n incorrect, the number of prior incorrect re-



7.3. DATASET DESCRIPTION AND EXPERIMENTAL RESULTS 53

sponses on this skill are both used in PFA models.

2. n day seen: the number of distinct days on which students practiced

this skill. This feature distinguishes the students who practiced more

days with fewer opportunities each day from those who practiced fewer

days but more intensely, and allow us to evaluate the difference be-

tween these two situations. This feature was designed to capture cer-

tain spaced practice effect in students data.

3. g mean performance: the geometric mean of students previous perfor-

mances, using a decay of 0.7. For a given student and a given skill, use

opp to represent the opportunity count the student has on this skill, we

compute the geometric mean of students previous performance using

formula: g mean performance(opp) = g mean performance(opp −

1)× 0.7 + correctness(opp)× 0.3. The geometric mean method allows

us to examine current status with a decaying memory of history data.

The number 0.7 was selected based on experimenting with different

values.

4. g mean time: the geometric mean of students previous response time,

using a decay of 0.7. Similar with g mean performance, for a given

student and a given skill, the formula of the geometric mean of students

previous response time is: g mean time(opp) = g mean time(opp −

1)× 0.7 + response time(opp)× 0.3.

5. slope 3: the slope of students most recent three performances. The

slope information helps capture the influence of recent trends of stu-
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dent performance.

6. delay since last: the number of days since the student last saw the

skill. This feature was designed to account for a gradual forgetting of

information by the student.

7. problem difficulty: the difficulty of the problem. The problem difficulty

term is actually the problem easiness in our model, since it is repre-

sented using the percent correct for this problem across all students.

The higher this value is, the more likely the problem can be answered

correctly.

Out of these features it was reported that features such as n correct and

n incorrect had very little influence on the prediction performance while the

features g mean performance and n day seen appear to be reliable predictors

of student retention. This observation is consistent with the spaced prac-

tice effect in cognitive science. Hence, in our experiments we don’t consider

n correct and n incorrect while training the model. As mentioned before,

we used k-means, Spectral and Regularity Clustering in conjunction with

the ensemble technique described. It must also be noted that the features

were normalized to values between -1 and 1 to avoid undue dominance of

performance by a specific feature. The results obtained were rather surpris-

ing. The use of k-means clustering and Spectral Clustering, that has been

reported useful in other tasks does not seem to help in the case of predicting

long term retention (at least on this data). The baseline model used by

Wang & Beck is represented in Figure 7.2 by PM1, the starting point on

the x-axis. The other values on the x-axis represent how many Prediction
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Figure 7.2: Mean Absolute Errors on Using the three Clustering Techniques
for Bagging

Models were averaged. The errors reported are the mean absolute errors.

As reported in Table 7.1, the ensemble used in conjunction with Regularity

Clustering is significantly better than the baseline with strong p-values.

The Paired t-test compares the means of two variables. The p-value is

the probability of the differences in the variables generated from the same

population by chance. It is calculated using the outcome of the t-test. In our

case, the less p-value is, the more reliable of our test result. A convention

in statistics is to accept the result with p-value less than 0.05.
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Table 7.1: Paired t-tests on the predictions obtained with the baseline
(PM1) and regularity clustering

Pred. Models Baseline & Regularity

1 -

2 0.00531

3 0.0401

4 0.0018

5 0.0044

Table 7.2: Paired t-tests on the predictions obtained with spectral and with
regularity clustering at different k

Pred. Models Spectral & Regularity

1 -

2 0.1086

3 0.0818

4 0.0045

5 � 0.005
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Part II

Theoretical applications of

the Regularity Lemma
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Chapter 8

Background

In [36] Gyárfás conjectured the following:

Conjecture 8.1 (Gyárfás, 1989 [36]) If the edges of a finite undirected

complete graph K are colored with r colors, then the vertex set of K can be

covered by at most f(r) vertex disjoint monochromatic paths.

The key part of this conjecture is that this partition number depends

only on r. It means that no matter how large the graph is, we are able to

cover all vertices by monochromatic paths, and the number of these paths

is only determined by the number of colors to color the edges and it does

not depend on n.

A natural generalization is the following. Assume that Kn is a complete

graph with n vertices, its edges are colored with r colors and H is a family

of graphs, then how many monochromatic subgraphs from H are needed to

cover all the vertices of Kn.
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We call questions of this type the monochromatic vertex partition prob-

lem and denote the number of subgraphs needed as

p(r,H).

The study of this quantity is the main goal of this part of this thesis. This

problem is in extremal graph theory. Extremal graph theory studies ex-

tremal (maximum or minimum) graphs which satisfy certain properties. It

has several important branches which are closely related to our topic, in this

chapter we will review three of them: Turán-type questions, Ramsey theory

and the largest monochromatic subgraph problem. Several of the results

reviewed here will be used later.

We begin our discussion with Turán-type questions.

8.1 Turán-type questions

A vitally important question in extremal graph theory is to determine the

size of the largest subgraph given some properties of the original graph,

especially how many edges a graph must contain to ensure the existence of

a certain subgraph. Here, the most important result is Turán’s Theorem.

To address it formally, we need to define the Turán graph first.

Below is the definition of the Turán graph. For simplicity we will assume

n is divisible by r. The definition of r-partite graph can be found at Section

2.1.

Definition 8.2 the Turán graph Tr(n) is a complete r-partite graph on n
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vertices such that each partition class has exactly n
r vertices.

Figure 8.1: Turán graph

The Turán graph satisfies the following: choose any r+ 1 vertices, there

must be at least 2 vertices x and y from the same partition class; and by the

definition of r-partite graphs, there is no edge xy, so the Turán graph does

not contain a Kr+1 (see Section 2.1) as a subgraph. The importance of the

Turán graph is that it gives an optimal construction for a Kr+1-free graph.

Each vertex of a Turán graph has degree n− n
r , thus the number of edges

of a Turán graph is

(n− n
r )n

2
=
r − 1

2r
n2

and if n is not divisible by r the edges will be slightly less than this. Turán

proved that this is an upper bound for the number of edges of a Kr+1-free

graph.

Theorem 8.3 (Turán, 1941 [76]) Let G be a graph on n vertices and con-

tains no Kr+1 as a subgraph, then G has at most r−1
2r n

2 edges.



8.1. TURÁN-TYPE QUESTIONS 61

Here generally, a Turán-type question is the following: for a graph Gn,

if it contains no subgraph from a family H, what is the maximum number

of edges Gn can have. Formally we define the maximum number of edges as

ex(n,H):

Definition 8.4 Given a fixed graph H,

ex(n,H) = max{|E(G)||H 6⊂ G, |V (G)| = n}.

So Turán theorem says

ex(n,Kr+1) =
r − 1

2r
n2.

The special case r = 2 is one of the earliest Turán-type results, Mantel’s

Theorem.

Theorem 8.5 (Mantel, 1907) If a simple graph on n vertices has more

than bn2

4 c edges, then it contains a triangle.

A famous generalization of Turán’s theorem is the Erdős-Stone theorem,

where instead of a complete subgraph, they find a complete r-partite graph

with equal size t of each partition class.

Theorem 8.6 (Erdős, Stone, 1946 [16]) For r ≥ 2,

en(n,Kr+1(t, . . . , t)) = (
r − 1

2r
)

(
n

2

)
+ o(n2).

Notice that t does not show up in the formula. To understand the
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importance of the Erdős-Stone Theorem, first let us look at the definition

of the chromatic number of a graph:

Definition 8.7 A proper coloring of a graph G is a function from the ver-

tices to a set C of colors such that the end points of every edge have distinct

colors. The chromatic number χ(G) of a graph G is the minimal number of

colors for which a proper coloring exists.

We get a generalization of Theorem 8.6 when we look for subgraphs of

a given chromatic number.

Theorem 8.8 (Erdős, Stone, 1946 [16]; Erdős-Simonovits, 1966 [17])

Let H be a fixed graph with χ(H) = r + 1 then

ex(n,H) = (
r − 1

2r
)

(
n

2

)
+ o(n2)

Note that χ(Kr+1(t, . . . , t)) = r + 1, so Theorem 8.6 is a special case of

Theorem 8.8.

For a bipartite graph H, r = 1, this theorem just says that ex(n,H) =

o(n2); for a non-bipartite graph it provides the general asymptotic solution.

Refer to [13] for generalizations for different kinds of H.

In [14], Erdős and Gallai have proved a classical Turán-type result about

the occurrence of a cycle.

Theorem 8.9 (Erdős, Gallai, 1959 [14]) Every graph with n nodes and

more than (n−1)l
2 edges (l ≥ 2) contains a cycle with more than l edges.

In an r-colored complete graph, select the most frequent color, say red;

by the pigeon hole principle, the number of red edges is at least n(n−1)
2r , so
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by Theorem 8.9, we can claim that the largest monochromatic path or cycle

contains at least n
r vertices. We will formalize this theorem later.

Thus we can use the above Turán-type Theorem 8.9 to give a lower bound

on the size of the largest monochromatic cycle. In addition, it is shown in

the same paper [14] that this bound is best possible for general graphs.

8.2 Ramsey Theory

Turán-type questions try to identify the conditions to ensure the existence of

certain subgraphs. In Ramsey theory, we have an r-coloring of the complete

graph, and we try to find the conditions to ensure the existence of certain

monochromatic subgraphs.

First let us take a look at the well-known pigeonhole principle:

Theorem 8.10 (Pigeonhole Principle) If n > r and n items are put

into r pigeonholes, then there must be at least one pigeonhole containing at

least 2 items.

Now try to rephrase it in another way: suppose we have n vertices and r

colors, n > r, color all these vertices, then there must be at least 2 vertices

with the same color.

This is the simplest case of Ramsey theory which colors the 1-subsets

(vertices) of the vertex set, and r + 1 is the Ramsey Number. It can be

formalized as

R1(2, . . . , 2) = r + 1

The 2-subset version of Ramsey theory colors the edges. The simplest
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case of this version is a 2-coloring: define R2(m1,m2) to be the minimum

number n such that if each edge of Kn is colored red of blue, then there

must exist either a red Km1 or a blue Km2 subgraph. An example is the

well-known fact (also known as the 6-party theorem):

R2(3, 3) = 6

This means that we have a 2-coloring of K5 with no monochromatic trian-

gles, but for any 2-coloring of K6 there must be a monochromatic triangle.

Figure 8.2: A 2-coloring of K5 with no monochromatic triangle

Now we generalize this to r-colorings of the edges:

Definition 8.11 R2(m1, . . . ,mr) is the minimum n such that if the edges

of Kn are colored by r colors, then there must exist a monochromatic Kmi

subgraph in color i.

Finally, we come to the general version of Ramsey Theorem:

Theorem 8.12 (Ramsey, 1930 [61]) Let u ≥ 1 and mi ≥ u, i = 1, 2, . . . , r

be given. There exists a minimal positive integer Ru(m1,m2, . . . ,mr) with

the following property. Let S be a set with n elements. Suppose that all
(
n
u

)
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u-subsets of S are divided into r mutually exclusive families T1, . . . , Tr. Then

if n ≥ Ru(m1,m2, . . . ,mr) there is an i, 1 ≤ i ≤ r, and some mi-subset of

S for which every u-subset is in Ti.

Definition 8.13 This minimal positive integer Ru(m1,m2, . . . ,mr) in Ram-

sey’s Theorem is called the Ramsey number.

In the above for r > 2 we get hypergraphs, in this thesis we only consider

graphs n = 2, so we drop the index 2.

Below we list some important results from Ramsey theory.

Theorem 8.14 (Greenwood, Gleason, 1955 [26]) R(k, l) ≤ R(k−1, l)+

R(k, l − 1).

The inequality is strict when both terms on the right hand side are even.

Theorem 8.15 (Harary, 1972 [38]) R(K1,n,K1,m) = n + m − ε, where

ε = 1 for even n and m, and ε = 0 otherwise.

For a 2-colored complete graph we have:

Theorem 8.16 (Gerencseŕ, Gyárfás, 1967 [25]) R(Pn, Pm) = n+bm2 c−

1 for all n ≥ m ≥ 2.

For a 3-colored complete graph, Gyárfás, Ruszinkó, Sárközy and Sze-

merédi [32] established that for sufficiently large n:

Theorem 8.17 (Gyárfás, Ruszinkó, Sárközy, Szemerédi, 2007 [32])

R(Pn, Pn, Pn) =

 2n− 1 : for odd n

2n− 2 : for even n
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8.3 Largest monochromatic subgraphs

Ramsey theory studies how large the graph is to ensure the existence of a

certain monochromatic subgraph. The opposite direction is to ask, given an

r-coloring of the complete graph, what is the size of the largest monochro-

matic subgraph. In this section we will list some best results for the largest

monochromatic subgraph problem in an r-colored graph. We will start with

2-colorings, then give some results for r-colorings.

The first important result in this area is that every 2-colored complete

graph has a monochromatic spanning tree, it is a remark of Erdős and Rado:

Theorem 8.18 (Erdős, Rado) Every 2-colored complete graph has a monochro-

matic spanning tree.

Since a tree is a connected component, a natural generalization is to ask

for the largest monochromatic k-connected subgraph in a 2-coloring of Kn.

This was studied in [5] by Bollobás and Gyárfás:

Theorem 8.19 (Bollobás, Gyárfás, 2008 [5]) For n ≥ 5 there is a

monochromatic 2-connected subgraph with at least n − 2 vertices in every

2-coloring of Kn.

There is a conjectures about this question in the same paper [5]:

Conjecture 8.20 (Bollobás, Gyárfás, 2008 [5]) For n > 4(k−1), every

2-colored Kn has a k-connected monochromatic subgraph with at least n −

2(k − 1) vertices.
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In the same paper the authors proved that this conjecture is true for

k ≤ 2. Liu, Morris and Prince [53] showed the conjecture holds for k = 3.

Fujita and Magnant have proved a weaker version of this conjecture:

Theorem 8.21 (Fujita, Magnan, 2011 [22]) For n > 6.5(k − 1), every

2-colored Kn has a k-connected monochromatic subgraph with at least n −

2(k − 1) vertices.

For the double star (a special tree), Gyárfás and Sárközy [31] has proved:

Theorem 8.22 (Gyárfás, Sárközy, 2008 [31]) In every 2-coloring of Kn

there is a monochromatic double star with at least 3n+1
4 vertices.

Now we take a look at the generalizations to r-colorings.

Theorem 8.18 has been generalized to r-colorings by Gyárfás [24]:

Theorem 8.23 (Gyárfás, 1971 [24]) In every r-coloring of Kn there is

a monochromatic component with at least n
r−1 vertices.

This result is sharp if r− 1 is a prime power and (r− 1)2 divides n. The

proof is based on the following lemma:

Lemma 8.24 In every r-coloring of a complete bipartite graph on n vertices

there is a monochromatic subtree with at least n
r vertices.

A similar lemma for a double star is given in [53] and [56] :

Lemma 8.25 (Liu, Morris, Prince, 2009 [53]; Mubayi, 2002 [56]) In

every r-coloring of a complete bipartite graph on n vertices there is a monochro-

matic double star with at least n
r vertices.
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A corollary of Lemma 8.25 is the following:

Corollary 8.26 Suppose that the edges of Kn are colored with r colors.

Then either all color classes have monochromatic spanning trees or there is

a monochromatic double star with at least n
r−1 vertices.

This raises the question to find the largest monochromatic double star in

an r-coloring. Gyárfás and Sárközy have investigated this problem. Their

conclusion [31] is:

Theorem 8.27 (Gyárfás, Sárközy, 2008 [31]) For r ≥ 2 there is a

monochromatic double star with at least n(r+1)+r−1
r2

vertices in any r-coloring

of the edges of Kn.

The bound in this theorem is close to best possible for r = 2, the exis-

tence of such a 2-coloring is proved by the random method. However, for

r ≥ 3 the random method seems to fail to provide good bounds for such a

function and it is conceivable that it is n
r−1 , a good test case would be r = 3.

For paths and cycles, as in the discussion followed by Theorem 8.9, the

largest monochromatic path or cycle has size at least n
r .

Theorem 8.28 (Erdős, Gallai, 1959 [14]) In an r-colored complete graph,

there exists a monochromatic cycle (path) of length at least n
r .

Furthermore, our recent result gives a bound on the largest connected

monochromatic k-regular subgraph in an r-colored complete graph:

Theorem 8.29 (Sárközy, Selkow, Song, 2013 [71]) For every positive

ε and integers r, k ≥ 2 there exists a constant n0 = n0(ε, r, k) such that
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for any r-coloring of the edges of a complete graph on n ≥ n0 vertices, we

can find a connected monochromatic k-regular subgraph spanning at least

(1− ε)n/r vertices.
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Chapter 9

Monochromatic Vertex

partitions

Let us recall the monochromatic vertex partition problem; i.e. the study of

P (r,H). In the last section of the last chapter, we have listed some results

for the size of the largest monochromatic subgraph in an r-colored complete

graph. Based on this information, we discuss potential ways to solve the

monochromatic vertex partition problem.

9.1 First idea: the greedy procedure

A natural approach is to use a greedy procedure. Take the largest monochro-

matic substructure, then remove the vertices belonging to it, consider the

leftover vertices to form a subgraph G′ ⊂ G, and continuously keep removing

monochromatic substructures in this manner.

Let us analyze the greedy procedure for cycles (so H is the family of
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cycle). G is a complete graph on n vertices and its edges are r edge colored,

the question is how many monochromatic vertex disjoint cycles are needed

to cover all the vertices. Here single vertices and edges are considered to

be (degenerate) cycles. By Theorem 8.28, the largest monochromatic cycle

contains at least n
r vertices. Then applying the greedy procedure described

above, after t iterations, the number of leftover vertices is at most:

u = n(1− 1

r
)t

In order to cover all the vertices by the greedy procedure only, we need

to make sure that the number of leftover vertices is a constant. Then we

can cover it by constant monochromatic cycles (isolated vertices). Suppose

this constant number of vertices is c. Then we need to ensure:

n(1− 1

r
)t ≤ c (9.1)

Since

1− x ≤ e−x,

(9.1) is true, if the following is true:

ne−
t
r ≤ c.

From this we get

t ≥ r log
n

c
.
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Thus we get the conclusion:

t ≥ c1r log n.

This gives an answer to the vertex partition problem, which is to cover all

the vertices of an r-colored complete graph with vertex-disjoint monochro-

matic subgraphs H, in our case, by cycles. Later we will show that this

answer O(r log n) is far from optimal since it depends on n and the optimal

answer will not. To improve, let us analyze the greedy procedure first.

The greedy procedure has two steps. The first step is to remove the

largest monochromatic subgraphs greedily; after t steps there would be only

a constant number of vertices left. The second step is to cover the leftovers

by u subgraphs. Since there are only a constant number of vertices left, we

can treat them as single vertices. We got the conclusion that for the cycle

partition, t = O(r log n) and u = O(1).

To improve on t, we need to enlarge the leftover set as a function l(r, n).

By the same analysis as before, we need to ensure:

n(1− 1

r
)t ≤ l(r, n).

Then we get the conclusion:

t ≥ r log
n

l(r, n)
.

This way we improve on t, but now we have l(r, n) vertices left uncovered,

u is not a constant anymore. If we still treat these vertices as single vertices,
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then u = O(l(r, n)), which will make our bound even worse. Therefore we

need to find another way to cover the leftover vertices, the greedy procedure

alone is not sufficient.

9.2 The Absorbing procedure

In a landmark paper [15], Erdős, Gyárfás and Pyber proved that p(r, cycles) ≤

cr2 log r with some constant c, thus they also proved Conjecture 8.1 with

f(r) = cr2 log r. Their approach has become a standard proof technique in

this research area.

Theorem 9.1 (Erdős, Gyárfás, Pyber, 1991 [15]) If the edges of a fi-

nite complete graph K are colored with r colors then the vertex set of K can

be covered by at most cr2 log r vertex disjoint monochromatic cycles.

We will discuss this absorbing idea in general first and present their proof

details later.

The absorbing procedure has three steps. In the first step, instead of

just finding the largest monochromatic subgraph, we try to seek a smaller

monochromatic subgraph, with the following additional property: removing

some portion from this subgraph, we can still find a spanning monochromatic

subgraph. This property will be used to cover the leftovers after the greedy

procedure.

The second step is the greedy procedure until l(r, n) vertices left uncov-

ered.

The third step is to cover the leftovers by using the subgraph found in the

first step. This step involves the vertex partition for unbalanced complete
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bipartite graphs which is interesting on its own.

The special subgraph mentioned above is a triangle cycle in [15]:

Definition 9.2 A triangle cycle of length k, Tk, is a cycle a1, a2, . . . , ak of

length k and k further vertices b1, b2, . . . , bk such that bi is adjacent to ai

and to ai+1 for i = 1, 2, . . . , k(ak+1 = a1).

The property of Tk that is important to us is that Tk has a Hamiltonian

cycle (see Section 2.1 after the deletion of any subset of {b1, b2, . . . , bk}.

In the same paper the authors also proved a lemma on the Ramsey

number of a triangle cycle:

Lemma 9.3 (Erdős-Gyárfás-Pyber, 1991 [15]) If the edges of Kn are

colored with r colors then there exists a monochromatic Tk with k ≥ cn
r(r!)3

.

To prove their main theorem, the authors also proved the following:

Theorem 9.4 (Erdős, Gyárfás, Pyber, 1991 [15]) Assume that the edges

of the complete bipartite graph (A,B) are colored with r colors. If |B| ≤ |A|
r3

then B can be covered by at most r2 vertex disjoint monochromatic cycles.

Now we demonstrate the proof of Theorem 9.1. It follows the general

absorbing proof technique described above.

Proof:

• Step 1: By Lemma 9.3 we can find a sufficiently large monochromatic,

say red, triangle cycle Tk. More specifically the size of this triangle

cycle is at least k ≥ cn
r(r!)3

; let X denote the set {b1, . . . , bk}.
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• Step 2: By Theorem 8.28, Kn contains a monochromatic cycle of legth

at least n
r . Apply repeatedly this fact to Kn − Tk until the leftover

vertices are small. How many times do we need to apply this? To use

Theorem 9.4, we need to repeat t times until the leftover is smaller

than k
r3

, which means

(n− 2k)(1− 1

r
)t ≤ k

r3

Calculation shows that t = bcr2 log rc is good enough with some con-

stant c; denote the set of leftover vertices by Y .

• Step 3: Using Theorem 9.4, for the unbalanced r-colored complete bi-

partite graph (X,Y ), cover Y by at most r2 vertex disjoint monochro-

matic cycles. By the above property of the triangle cycle, after remov-

ing the vertices to cover Y , it still can be covered by one red cycle.

2

9.3 Apply the Regularity Lemma and the Blow-up

Lemma

Many of the up-to-date results for the monochromatic vertex partition prob-

lem are using the Regularity Lemma (Chapter 3) as a central tool. Here we

use the proof of Theorem 8.29 as an example to show how to use the Regu-

larity Lemma to prove a theoretical result (and we will need Theorem 8.29

later).

First, we need a definition:
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Definition 9.5 (A,B,E) is (ε, δ,G)-super-regular if it is (ε,G)-regular and

degG(a) > δ|B| ∀ a ∈ A, degG(b) > δ|A| ∀ b ∈ B.

Then we need to state a lemma:

Lemma 9.6 Given |A| = |B|, density ε � d, for any (ε,G)-regular graph

(A, B) that has density ≥ d, by removing no more than ε portion vertices

from each part we can get a induced ( ε
1−ε ,

d−2ε
1−ε , G1)-super-regular subgraph

G1 = (A1, B1), |A1| = |B1| = (1− ε)|A|.

Now we present the proof for Theorem 8.29, which is to find the largest

monochromatic k-regular subgraph in an r-colored complete graph.

Proof: We will assume that n is sufficiently large, and

0 < ε� δ � 1.

• Step 1: Construct the reduced graph GR (Definition 3.7). For an r-

colored complete graph G = (G1, . . . , Gr), apply the r-color version of

Regularity Lemma, get a partition of V (G) = ∪0≤i≤lVi, where |Vi| =

m, 1 ≤ i ≤ l. We define the reduced graph GR: The vertices of

GR are p1, . . . , pl corresponding to V1, . . . , Vl, and we have an edge

between vertices pi and pj if the pair {Vi, Vj} is (ε,Gs)-regular for

s = 1, 2, . . . , r. Then,

|E(GR)| ≥ (1− ε)
(
l

2

)
,
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and thus GR is a (1 − ε)-dense graph on l vertices. Define an edge-

coloring (GR1 , G
R
2 , . . . , G

R
r ) of GR by r colors in the following way. The

edge pipj is colored with a color s that contains the most edges from

K(Vi, Vj). Let us take the color class in this coloring that has the

most edges, for simplicity assume that this is GR1 and call this color

red. Clearly, we have

|E(GR1 )| ≥ (1− ε)1

r

(
l

2

)
,

• Step 2: Find a ”fat” cycle. More precisely, in GR1 , apply Theorem 8.9

to find a cycle C of length at least (1− ε)1r l. According to lemma 9.6,

by removing at most 2ε portion vertices we can make all pairs along

the cycle super-regular.

• Step 3: By using the Blow-up lemma [46] (see below), we are able to

find a red connected spanning k-regular subgraph within the remainder

of C.

2

The Regularity Lemma is a powerful tool for embedding subgraphs into

dense graphs. However, as we have seen in the example above, to embed

spanning subgraphs, all degrees of the host graph are required to be large.

That is why solely using regular pairs is not sufficient, we need super-regular

pairs. The Blow-up Lemma plays an important role for embedding spanning

subgraphs :
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Theorem 9.7 (Komlós, Sárközy, Szemerédi, 1997 [46], 1998 [47]) Given

a graph R of order r and positive parameters δ,∆, there exists a positive

ε = ε(δ,∆, r) such that the following holds. Let n1, n2, . . . , nr be arbitrary

positive integers and let us replace the vertices v1, v2, . . . , vr of R with pair-

wise disjoint sets V1, V2, . . . , Vr of sizes n1, n2, . . . , nr (blowing up). We con-

sturct two graphs on the same vertex-set V = ∪Vi. The first graph R is

obtained by replacing each edge {vi, vj} of R with the complete bipartite

graph between the corresponding vertex-sets Vi and Vj. A sparser graph G

is constructed by replaing each edge {vi, vj} arbitrarily with an (ε, δ)-super-

regular pair between Vi and Vj. If a graph H with ∆(H) ≤ ∆ is embeddable

into R then it is already embeddable into G.

To make it short, the Blow-up Lemma states that regular pairs behave

as complete bipartite graphs from the point of view of embedding bounded

degree subgraphs.

Now we list some important results on the monochromatic vertex parti-

tion problem.

9.4 Best known results

9.4.1 Unbalanced complete bipartite graphs

In [33] the authors made a significant improvement on Theorem 9.4:

Theorem 9.8 (Gyárfás, Ruszinkó, Sárközy, Szemerédi, 2006 [33])

There exists a constant n0(r) such that the following is true. Assume that

the edges of the complete bipartite graph K(A,B) are colored with r colors.
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If |A| ≥ n0, |B| ≤ |A|
r2

, then B can be covered by at most (6rdlog re + 2r)

vertex disjoint monochromatic cycles.

Then, the same authors improved this even further [35]:

Theorem 9.9 (Gyárfás, Ruszinkó, Sárközy, Szemerédi, 2006 [35])

For every fixed r there exists a n0 = n0(r) such that the following is true.

Assume that the edges of the complete bipartite graph K(A,B) are colored

with r colors. If |A| ≥ n0, |A| ≥ 2r|B|, then B can be covered by at most 3r

vertex disjoint monochromatic cycles.

A similar result has been established by Sárközy and Selkow in [69] for

k-regular subgraphs.

Theorem 9.10 (Sárközy, Selkow, 2000 [69]) If the edges of the com-

plete bipartite graph (S, Y ) are colored with r colors, |S| = m and |Y | < m
x2

(where x is defined as x = 2r2(2er)d
k
2
e), then the vertices of Y can be covered

by at most rx(1 + dk2e) + 2r2dk2e vertex-disjoint connected monochromatic

k-regular graphs and vertices.

9.4.2 Monochromatic Cycles, Trees and k-regular subgraphs

In [15] (see also [36]) the authors construct an example to show that the

path (and cycle) partition number is at least r:

Consider pairwise disjoint sets A1, A2, . . . , Ar and for x ∈ Ai, y ∈ Aj , i ≤

j, color the edge xy with color i. If the sequence |Ai| grows fast enough

then the vertex set of this r-colored complete graph cannot be covered by
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less than r monochromatic paths. Motivated by this example they refined

Conjecture 8.1 to the following remarkable conjecture.

Conjecture 9.11 (Erdős, Gyárfás, Pyber, 1991 [15]) p(r) = r, where

p(r) is the cycle partition number.

Unfortunately, a counterexample has been found by Pokrovskiy [59] re-

cently. However, the counterexample is quite “weak”, in it all but one vertex

can be covered by r vertex disjoint monochromatic cycles. Perhaps, a weak-

ening of the conjecture is true : apart from a constant number of vertices

all vertices can be covered by r monochromatic vertex disjoint cycles.

The current best result is due to Gyárfás, Ruszinkó, Sárközy and Sze-

merédi [33]. They follow the same proof methodology as Erdős, Gyárfás and

Pyber in Theorem 9.1, by making improvements on Step 1 and Step 3 to

achieve a better bound:

Theorem 9.12 (Gyárfás, Ruszinkó, Sárközy, Szemerédi, 2006 [33])

For every integer r ≥ 2 there exists a constant n0 = n0(r) such that if n ≥ n0

and the edges of the complete graph Kn are colored with r colors then the

vertex set of Kn can be partitioned into at most 100r log r vertex disjoint

monochromatic cycles.

To present the proof we need the following definition and lemmas:

Definition 9.13 A matching in a graph G is a set of edges without common

vertices. A matching in a graph G is called k-half dense if one can label

its edges as x1y1, . . . , x|M |y|M | so that each vertex of X = {x1, . . . , x|M |}
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(called the strong end points) is adjacent in G to at least k vertices of Y =

{y1, . . . , y|M |}.

Lemma 9.14 For every δ > 0 there exist an ε > 0 and m0 such that the

following holds. Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2

such that |V1| = |V2| = m ≥ m0, and let the pair (V1, V2) be (ε, δ,G)-super-

regular. Then for every pair of vertices v1 ∈ V1, v2 ∈ V2, G contains a

Hamiltonian path connecting v1 and v2.

Lemma 9.15 Every graph G of average degree at least 8k has a connected

k-half dense matching.

Now we demonstrate the proof:

Proof:

• Step 1: By applying the Regularity Lemma we construct the Reduced

Graph GR, by the same argument as in the proof of Theorem 8.29, we

take the color class with most edges, say red, and denote it as GR1 . It

satisfies the requirements of Lemma 9.15, hence we find the large, red,

half-dense, connected matching M in GR1 . Some preparations need to

be done on M . First we find the connecting paths among the edges of

M within G1, then remove some vertices to achieve super-regularity

between the edges of M , this is guaranteed by Lemma 9.6. By Lemma

9.14, we could have a red cycle spanning the remaining all vertices of

M .

• Step 2: Greedily remove cycles until the leftover is small enough. This

is almost identical to the proof of Theorem 9.1.
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• Step 3: Cover the leftover with the help of vertices from M , this is

guaranteed by Theorem 9.8. Notice that we need to make sure that

for any cluster only a small portion of it has been used.

• Step 4: We make the matching M balanced again and cover it by one

red cycle.

2

Another special case is to cover the vertex set by vertex-disjoint monochro-

matic trees.

In the classical paper [15], Erdős, Gyárfás and Pyber remarked that the

tree cover number is at most r since monochromatic stars at any vertex give

a good covering (Note that in a covering, unlike a partition we can reuse the

vertices.). And they give an example that shows that the tree cover number

is at least r − 1: Consider a complete graph with vertex set identified with

the points of an affine plane of order r − 1. Color the edge pq with color

i (1 ≤ i ≤ r) if the line through p and q is in the ith parallel class. This

example demonstrated that the following conjecture, if true, is best possible.

Conjecture 9.16 (Erdős, Gyárfás, Pyber, 1991 [15]) The tree parti-

tion number is r − 1.

Furthermore, they proved the following result for the case r = 3 in the

same paper.

Theorem 9.17 (Erdős, Gyárfás, Pyber, 1991 [15]) For r = 3, the tree

partition number is 3.
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The latest result for tree partition is due to Haxell and Kohayakawa [39]:

Theorem 9.18 (Haxell, Kohayakawa, 1996 [39]) Let r ≥ 1 and n ≥

3r4r!(1− 1
r )3(1−r) log r be integers, and suppose the edges of Kn are colored

with r colors. Then Kn contains t ≤ r monochromatic trees of radius at

most 2, each of a different color, such that their vertex sets V (Ti)(1 ≤ i ≤ t)

partition the vertex set of Kn.

Sárközy and Selkow generalized the problem for k-regular graphs and in

[69] proved the following.

Theorem 9.19 (Sárközy, Selkow, 2000 [69]) There exists a constant c

such that f(r, k) ≤ rc(r log r+k), i.e. for any r, k ≥ 2 and for any coloring of

the edges of a complete graph with r colors, its vertices can be partitioned

into at most rc(r log r+k) connected monochromatic k-regular subgraphs and

vertices.

One of the main results of this thesis is an improvement on Theorem

9.19. The new result will be presented in Chapter 6.

9.4.3 2-colorings and 3-colorings

A special case of Conjecture 9.11 is when r is equal to a constant. The case

r = 2 was asked earlier by Lehel and for n ≥ n0 was first proved by  Luczak,

Rödl and Szemerédi [54]:

Theorem 9.20 ( Luczak, Rödl, Szemerédi, 1998 [54]) There exists n0

such that, for every n ≥ n0, and every 2-coloring of the edges of Kn, there
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exists a partition of the vertices of Kn into two monochromatic cycles of

different colors.

However, again the Regularity Lemma [75] was used in the proof, which

means it applies only to large n. Later Allen [1] offered a proof without the

Regularity Lemma and recently Bessy and Thomassé [7] found an elemen-

tary argument that works for every n.

For r = 3, the current best known result is given by Gyárfás, Ruszinkó,

Sárközy and Szemerédi [34]:

Theorem 9.21 (Gyárfás, Ruszinkó, Sárközy, Szemerédi, 2011 [34])

In every 3-coloring of the edges of Kn the vertices can be partitioned into at

most 17 monochromatic cycles.

They first proved:

Theorem 9.22 (Gyárfás, Ruszinkó, Sárközy, Szemerédi, 2011 [34])

In every 3-coloring of the edges of Kn all but o(n) of its vertices can be par-

titioned into three monochromatic cycles.

Then they use Theorem 9.22 to prove the main theorem (Theorem 9.21).

This proof methodology provided a possible way to get a linear bound for

general r. As they stated: “in the same way for a general r if one could

prove the corresponding asymptotic result as in Theorem 9.22 (even with a

weaker linear bound on the number of cycles needed; unfortunately we are

not there yet), then we would obtain a linear bound overall.”
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9.4.4 Non-complete graphs

To generalize the vertex partition problem, we can cover other graphs instead

of a complete graph. Here we discuss two cases: a bipartite complete graph

and a graph with independence number α(G) = α (see Section 2.1).

In [37] Haxell generalized Conjecture 9.11 to complete bipartite graphs

and she gives the following upper bound:

Theorem 9.23 (Haxell, 1997 [37]) Let a positive integer r be given. Let

ε be such that

1

16r
< ε <

1

7r
(1− 1

r3
)(

4

5
− 1

r2
),

and let s ≥ 10 be such that fs(ε) > 0. Then for every positive integer n and

for every coloring of the edges of K(n, n) with r colors, there exists a set

of at most 2r(s+ 3) log r + 3r2 vertex-disjoint monochromatic cycles whose

vertex sets partition the vertex set of K(n, n). Here fs(ε) stands for

fs(ε) =
1

1− ε
− (1− ε)1−

1
s − 2ε1−

1
s .

For graphs with independence number α(G) = α, Sárközy conjectured

that f(α, r) = αr and proved the following theorem:

Theorem 9.24 (Sárközy, 2011 [65]) If the edges of a graph G with α(G) =

α are colored with r colors then the vertex set of G can be partitioned into

at most 25(αr)2 log(αr) vertex disjoint monochromatic cycles.

We may combine the two types of generalizations: we can cover non-

complete graphs by using structures other than cycles/paths. One example
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is to ask for a graph with independence number α(G) = α and its edges are

colored with r colors, how many vertex disjoint connected monochromatic

k-regular subgraphs and vertices are needed to cover its vertices. In the next

chapter we present a new result in this direction.
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Chapter 10

Vertex partitions of

non-complete graphs by

connected monochromatic

k-regular graphs

The material of this chapter is from [70].

Let p(α, r, k) denote the minimum number of connected monochromatic

k-regular subgraphs needed to partition the vertex set of any r-colored graph

G with α(G) = α.

Theorem 10.1 (Sárközy, Selkow, Song, 2011 [70]) There exists a con-

stant c such that for a graph with independence number α(G) = α and

its edges colored with r colors, its vertices can be partitioned into at most

(αr)c(αr log (αr)+k) vertex disjoint connected monochromatic k-regular sub-
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graphs and vertices.

In the other direction we have the following bound.

Claim 10.2

p(α, r, k) ≥ α((r − 1)(k − 1) + 1).

Indeed, to see this let us take α cliques of roughly equal size and r-edge

coloring inside each clique which requires at least (r − 1)(k − 1) + 1 vertex

disjoint connected monochromatic k-regular subgraphs and vertices to cover.

This can be obtained in the following way. Let S1 be a set of size k− 1 and

let all edges incident to a vertex of S1 be colored with color 1. Let S2 be

a set of size k − 1 disjoint from S1 and let all edges incident to a vertex of

S2 (that are not colored yet) be colored with color 2. We continue in this

fashion; finally Sr−1 is a set of size k − 1 disjoint from ∪r−2i=1Si and all edges

incident to a vertex of Sr−1 (that are not colored yet) are colored with color

r−1. All remaining edges are colored with color r. Then in this construction

we cannot have a non-trivial connected monochromatic k-regular subgraph

in color i, 1 ≤ i ≤ r − 1. Indeed, we cannot have a vertex from outside of

Si (since the degree of any vertex outside in color i is less than k), but we

have only k−1 vertices inside Si. Thus all vertices in ∪r−1i=1Si must be single

vertices in the partition, giving the claimed lower bound.

The rest of this chapter is devoted to the proof of Theorem 10.1.

10.1 Sketch of the proof

We follow a similar absorbing technique as before :
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• Step 1: Greedily find and remove a series of monochromatic super-

regular pairs until the number of leftover vertices is small enough; all

but the first pair will be covered by a spanning connected monochro-

matic k-regular subgraph. The first pair (denoted by (A1, B1)) will

be combined in Step 2 with some of the leftover vertices to form

monochromatic k-regular subgraphs.

• Step 2: Divide the leftover vertices Y into three sets Y = Y ′∪Y ′′∪Y ′′′.

We will use a bipartite lemma (Lemma 10.7) to cover the vertices

of Y ′ and some vertices of A1 and to cover the vertices of Y ′′ and

some vertices of B1 by vertex disjoint connected monochromatic k-

regular subgraphs. After balancing the sizes of the two color classes

in the remainder of A1 and B1, we will find a spanning connected

monochromatic k-regular subgraph in the remainder of (A1, B1).

• Step 3: In Y ′′′ we will have α(G|Y ′′′) ≤ α− 1, so we can use induction

on α to partition the vertices in Y ′′′ into vertex disjoint connected

monochromatic k-regular subgraphs.

10.2 Tools

Our first tool will be a lemma of Komlós ([45], see also [37]) claiming that

whenever a graph is sufficiently dense, it contains a super-regular pair. The

size of this super-regular pair depends on the density.

Lemma 10.3 There exists a constant ε0 such that if ε ≤ ε0, t = (3/ε) log (1/ε)

and Gn is a graph with n vertices and cn2 edges, then Gn contains an (ε, δ)
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super-regular subgraph (A1, B1) with

|A1| = |B1| = m ≥ (2c)tbn
2
c and δ ≥ c.

We will also use the following lemma from [69] (Lemma 6 in [69]). Note

that this lemma is a very special case of the Blow-up Lemma [46]. It says

that we can always find a spanning connected k-regular subgraph inside a

super-regular pair.

Lemma 10.4 Given an ε > 0 and an integer k ≥ 2, if (A,B) is an (ε, δ)

super-regular pair with |A| = |B| = m ≥ k
ε2

and δ > 9ε, then (A,B) contains

a connected k-regular spanning subgraph.

We will also need a simple consequence of the complementary form of

Turán’s theorem.

Lemma 10.5 In a graph G on n vertices we have

e(G) ≥ n

2

(
n

α(G)
− 1

)
.

Proof: Indeed, Turán’s theorem applied to the complement of G yields

the fact (see e.g. inequality (10.1) on page 150 in [60]) that

α(G) ≥ n2

2e(G) + n
.

From this we get

e(G) ≥ n2

2α(G) + nα(G)
e(G)

=
n

2

(
2ne(G)

α(G)(2e(G) + n)

)
=
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=
n

2

(
n

α(G)
− n2

α(G)(2e(G) + n)

)
≥ n

2

(
n

α(G)
− 1

)
,

as desired. 2

Finally we will need the following lemma of Pósa ([58], see also Exercise

8.3 in [51]).

Lemma 10.6 The vertices of a graph G can be covered by not more than

α(G) vertex disjoint cycles, edges and vertices.

10.3 Proof of Theorem 10.1

10.3.1 Step 1

Let G be a graph on n vertices with α(G) = α. Let Hi be the subgraph of G

with all edges of color i. Let i1 be a color for which e(Hi1) ≥ e(G)/r. Using

this and Lemma 10.5, for the number of edges of Hi1 we get the following.

e(Hi1) ≥ e(G)/r ≥ n

2r
(
n

α
− 1) ≥ n2

4αr
.

Let ε0 be as in Lemma 10.3 and ε = ε0
50αr . Applying Lemma 10.3 to Hi1

there is a δ1 ≥ 1
4αr and a pair (A1, B1) in color i1 such that

• |A1| = |B1| = m1 ≥
(

1
4αr

)t
n where t =

(
3
ε

)
log
(
1
ε

)
, and

• (A1, B1) is (ε, δ1) super-regular.

Let us remove the vertices in the pair (A1, B1) and denote the result by

G1. With a similar procedure we find a super-regular pair (A2, B2) in color

i2 (possibly different from i1). Removing (A2, B2) and continuing in this
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fashion, after p steps the number of remaining vertices is at most

n

(
1− 2

(
1

4αr

)t)p
. (10.1)

Defining

x = 2(αr)2(2eαr)d
k
2
e and x′ = max

(
m1

x2
,
(4αr)tk

ε2

)
, (10.2)

we stop with the procedure when no more than x′ vertices remain. Denote

the last chosen super-regular pair by (Ap′ , Bp′). Note that we may apply

Lemma 10.4 for a pair (Ai, Bi), 1 ≤ i ≤ p′, since |Ai| = |Bi| ≥ k
ε2

and

δi ≥ 1
4αr > 9ε.

In the case x′ = (4αr)tk
ε2

, we are done; we do not even need Step 2 and

Step 3. The remaining vertices are just going to be single vertices in the

partition (the fact that their number is small enough is checked in the final

computation in (10.6)), and by using Lemma 10.4 in (Ai, Bi), 1 ≤ i ≤ p′, the

rest of G is partitioned by p′ connected monochromatic k-regular graphs.

In the other case when x′ = m1
x2

holds, we apply Lemma 10.4 only in

(Ai, Bi), 2 ≤ i ≤ p′, so G consists of (A1, B1), a set of p′ − 1 connected

monochromatic k-regular graphs, plus a set Y of fewer than m1
x2

vertices and

we go to Step 2.

Next let us estimate p′. Let us consider a p′ for which

n

(
1− 2

(4αr)t

)p′
≤ m1

x2
.
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This inequality is certainly true (using the lower bound on m1) if

(
1− 2

(4αr)t

)p′
≤ 1

(4αr)tx2
,

which in turn is true using 1− x ≤ e−x if

e
− 2p′

(4αr)t ≤ 1

(4αr)tx2
.

Thus it follows from the above and (10.1) that in either case we have

p′ ≤ d(4αr)
t

2
(2 log x+ t log (4αr))e. (10.3)

10.3.2 Step 2

Divide the remaining vertices Y into three sets Y = Y ′ ∪ Y ′′ ∪ Y ′′′ in the

following way. If a vertex y ∈ Y satisfies

deg(y,A1) < m1/α and deg(y,B1) < m1/α,

we put it into Y ′′′, and we will deal with this set later in Step 3 by using

induction on α.

Next we consider the vertices y ∈ Y satisfying

deg(y,A1) ≥ m1/α and deg(y,B1) ≥ m1/α. (10.4)

We may assume that the number of vertices satisfying (10.4) is even by

removing a single vertex (a vertex that is going to be a singleton in the final



10.3. PROOF OF THEOREM 10.1 94

partition). Then we put half of these vertices into Y ′ and the other half into

Y ′′.

Then the vertices y ∈ Y satisfying

deg(y,A1) ≥ m1/α and deg(y,B1) < m1/α

are also put into Y ′, and the vertices y ∈ Y satisfying

deg(y,A1) < m1/α and deg(y,B1) ≥ m1/α (10.5)

are put into Y ′′.

Without loss of generality, assume that |Y ′| ≤ |Y ′′|. Take |Y ′′| − |Y ′|

vertices from Y ′′ satisfying (10.5) and put them into Y ′′′ (note that there

must be |Y ′′| − |Y ′| such vertices). Thus now |Y ′| = |Y ′′|, for every y ∈ Y ′

we have deg(y,A1) ≥ m1/α, for every y ∈ Y ′′ we have deg(y,B1) ≥ m1/α

and finally for every y ∈ Y ′′′ we have deg(y,A1) < m1/α.

Then the following lemma will help to cover the vertices in Y ′ and some

vertices in A1 and the vertices in Y ′′ and some vertices in B1. We will apply

the lemma twice: once with the choices S = A1 and Y = Y ′, then again

with the choices S = B1 and Y = Y ′′.

Lemma 10.7 If the edges of a bipartite graph (S, Y ) are colored with r

colors, |S| = m, |Y | < m
x2

(where x is given by (10.2)), and for every y ∈ Y

we have deg(y, S) ≥ m/α, then the vertices of Y can be covered by at most

rx(1 + dk2e) + 2αr2dk2e vertex disjoint connected monochromatic k-regular

graphs and vertices.
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Proof: For each y ∈ Y and 1 ≤ i ≤ r, we define

Ni(y) = {s ∈ S : (s, y) has color i},

and for Y ′ ⊂ Y we define Ni(Y
′) = ∩y∈Y ′Ni(y). Clearly Y can be parti-

tioned into classes Y1, Y2, . . . , Yr such that |Ni(y)| ≥ m
αr for each y ∈ Yi. In

the proof of Lemma 10.7 we will need two claims.

Claim 10.8 For each Yi, there is an ai such that Yi can be partitioned into

classes Yi0, Yi1, . . . , Yiai where

• |Yi0| < 2αrdk2e,

• |Yij | = dk2e for 1 ≤ j ≤ ai, and

• |Ni(Yij)| ≥ αrm
x for 1 ≤ j ≤ ai.

Proof: If |Yi| < 2αrdk2e, the proof is trivial. Let Hi be the subgraph of

(S, Yi) with all edges of color i. If |Yi| ≥ 2αrdk2e, then we have

∑
s ∈ S

degHi(s) ≥ dk2e

degHi(s) ≥
m

αr
|Yi| − d

k

2
em ≥ m

2αr
|Yi|.

We are going to count with multiplicity the number of subsets of Yi of size

dk2e with a common neighbor s ∈ S (meaning that if a particular subset

has l common neighbors in S, then it is counted l times). Using Jensen’s
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inequality,

∑
s ∈ S

degHi(s) ≥ dk2e

(
degHi(s)

dk2e

)
≥ m

2αr

( |Yi|
2αr

dk2e

)
≥ m

2αr

(
|Yi|

2αrdk2e

)d k
2
e

.

But there are only (
|Yi|
dk2e

)
≤

(
e|Yi|
dk2e

)d k
2
e

subsets of Yi of size dk2e. Thus there must be a Yi1 ⊂ Yi such that

|Yi1| = d
k

2
e and |Ni(Yi1)| ≥

m

2αr

(
|Yi|

2αrd k
2
e

)d k
2
e

(
e|Yi|
d k
2
e

)d k
2
e

=
m

2αr(2αer)d
k
2
e

=
αrm

x
.

Replacing Yi by Yi\Yi1 we repeat the procedure until for the leftover we have

|Yi0| < 2αrdk2e. We denote the number of repetitions by ai. This completes

the proof of Claim 10.8. 2

For each Yi we define an auxiliary graphGi with vertices {Yi1, Yi2, . . . , Yiai}

and edges {
(Yij , Yil) : |Ni(Yij) ∩Ni(Yil)| ≥

m

x2
> |Y |

}
.

The second claim we need in the proof of Lemma 10.7 is the following.

Claim 10.9 The size of a maximum independent set of Gi is less than x.

Proof: Assume indirectly that {w1, w2, . . . , wx} ⊂ {Yi1, Yi2, . . . , Yiai} is

an independent set of vertices of Gi. If wj = Yij , then we define Ni(wj) =
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Ni(Yij). Hence we have |Ni(wj)| ≥ αrm
x for 1 ≤ j ≤ x. But then

m ≥ |∪1≤j≤xNi(wj)| ≥ αrm−
∑

1≤j<l≤x
|Ni(wj) ∩Ni(wl)| ≥

≥ αrm− x2

2

m

x2
= (αr − 1

2
)m > m.

By contradiction, Gi can not have an independent set of x vertices, finishing

the proof of Claim 10.9. 2

Now we are ready to prove Lemma 10.7. By Claim 10.9 and Lemma 10.6,

the vertices of Gi can be partitioned into at most x cycles (and edges and

vertices), and thus the vertices of ∪1≤i≤rGi can be partitioned into at most

rx cycles (and edges and vertices). The single vertices in this partition will

correspond to single vertices (dk2e vertices of Y for each) in the final partition.

Between every adjacent pair of vertices on these cycles, we insert disjoint

sets of S. Between adjacent vertices Yij and Yil, we insert Sij ⊂ S such that

|Sij | = dk2e and Sij × (Yij ∪ Yil) is monochromatic in color i. Inserting these

sets (from S) between the corresponding pairs of sets (from Y ) on a cycle

yields a new, blown-up “cycle”, Z1, Z2, . . . , Z2p of sets of vertices of size dk2e,

where we have complete bipartite graphs between adjacent sets. The graph

with vertices ∪1≤j≤2pZj and edges ∪1≤j<2p(Zj × Zj+1) ∪ (Z1 × Z2p) is a

connected monochromatic k+ (k mod 2)-regular subgraph of G. For odd k,

removing a perfect matching in each of Z2j+1×Z2j+2 for 0 ≤ j < p yields a

connected monochromatic k-regular graph. Hence the vertices of S×Y can

be partitioned into at most rx connected monochromatic k-regular graphs

plus at most rxdk2e+2αr2dk2e single vertices resulting from the single vertices
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in the cover of Gi and the vertices in Yi0. This finishes the proof of Lemma

10.7. 2

Applying Lemma 10.7 for S = A1 and Y ′, we obtain a set of at most

rx(1 + dk2e) + 2αr2dk2e connected monochromatic k-regular graphs and ver-

tices that partition the vertices in Y ′ and a subset A′ of A1. Similarly we

have a set of at most rx(1 + dk2e) + 2αr2dk2e connected monochromatic k-

regular graphs and vertices that partition the vertices in Y ′′ and a subset

B′ of B1. Assuming |A′| < |B′|, we add |B′| − |A′| additional single vertices

from A1 to A′; thus now |A1 \A′| = |B1 \B′|. Finally we apply Lemma 10.4

for Hi1 |(A1\A′)∪(B1\B′). It is not hard to check that the conditions of Lemma

10.4 are still satisfied.

Thus, using (10.2) and (10.3), we get the conclusion that the number

of vertex disjoint monochromatic k-regular graphs and vertices needed to

cover G except vertices in Y ′′′ is at most

p′+ 3

(
rx(1 + dk

2
e) + 2αr2dk

2
e
)

+
(4αr)tk

ε2
+ 1 ≤ (αr)c(αr log (αr)+k) (10.6)

with some constant c. Indeed, here the p′ comes from the super-regular pairs,

in the factor 3, one is for the application of Lemma 10.7 for (A1, Y
′), one is

for the application of Lemma 10.7 for (B1, Y
′′) and one is for the balancing

of the remainder of (A1, B1) with single vertices. The (4αr)tk
ε2

term is for the

remaining single vertices when we had the case x′ = (4αr)tk
ε2

in Step 1 and

finally the plus 1 is the potential single vertex needed to make |Y ′ ∪ Y ′′|

even.
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10.3.3 Step 3

In the graph G|Y ′′′ we claim that α(G|Y ′′′) ≤ α− 1.

Indeed, otherwise let us take an independent set {y1, y2, . . . , yα} in G|Y ′′′ .

By the definition of Y ′′′, we have

deg(yj , A1) < m1/α for every 1 ≤ j ≤ α.

But then we can choose a vertex a ∈ A1 that is not adjacent to any of

the vertices yj , 1 ≤ j ≤ α, giving an independent set of size α + 1 in G, a

contradiction.

But then, we can iterate our whole procedure with α − 1 inside G|Y ′′′ .

Hence for p(α, r, k), the minimum number of connected monochromatic k-

regular subgraphs needed to partition the vertex set of any r-colored graph

G with α(G) = α, we get the following bound.

p(α, r, k) ≤ (αr)c(αr log (αr)+k) + p(α− 1, r, k).

Repeating this for all 1 < j < α and finally using the bound p(1, r, k) ≤

rc(r log r+k) from [69], we get the bound

p(α, r, k) ≤ (αr)c(αr log (αr)+k)+((α−1)r)c((α−1)r log ((α−1)r)+k)+p(α−2, r, k) ≤ . . . ≤

≤ α(αr)c(αr log (αr)+k) ≤ (αr)(c+1)(αr log (αr)+k),

and the proof is finished. 2
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Chapter 11

Vertex partitions by

connected monochromatic

k-regular graphs

This chapter presents the results from [71].

Theorem 11.1 (Sárközy, Selkow, Song, 2013 [71]) For every integer r ≥

2 and k ≥ 2 there exists a constant n0 = n0(r, k) such that if n ≥ n0 and

the edges of the complete graph Kn are colored with r colors then the vertex

set of Kn can be partitioned into at most f(r, k) connected monochromatic

k-regular subgraphs and vertices such that

f(r, k) ≤ cr log r + r(k − 1).



11.1. SKETCH OF THE PROOF 101

We note that this is not far from being best possible (especially if r is

small compared to k), as we have the following lower bound.

Theorem 11.2

f(r, k) ≥ (r − 1)(k − 1) + 1.

One of our tools in the proof of Theorem 11.1 is Theorem 8.29, a Ramsey-

type result for the existence of connected monochromatic k-regular sub-

graphs that may be of independent interest. For the completeness we restate

Theorem 8.29 here.

Theorem 11.3 For every positive ε and integers r, k ≥ 2 there exists a con-

stant n0 = n0(ε, r, k) such that for any r-coloring of the edges of a complete

graph on n ≥ n0 vertices, we can find a connected monochromatic k-regular

subgraph spanning at least (1− ε)n/r vertices.

Thus perhaps surprisingly we can guarantee a connected monochromatic

k-regular subgraph almost as large as the largest monochromatic cycle we

can guarantee.

The next three sections of this chapter are devoted to the proof of The-

orem 11.1.

11.1 Sketch of the proof

To prove Theorem 11.1 we apply the edge-colored version of the Regularity

Lemma to an r-colored Kn. Again we introduce the reduced graph GR, the

graph whose vertices are associated with the clusters and whose edges are
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associated with dense ε-regular pairs. The edges of the reduced graph will

be colored with a color that appears most often on the edges between the

two clusters. Then we study large monochromatic connected matchings in

the reduced graph. That was initiated in [52] and for example it played an

important role in [32] where the three-color Ramsey numbers of paths for

large n have been determined (see Theorem 8.17).

We follow the absorbing proof technique as before. We establish the

bound on f(r, k) in the following steps.

• Step 1: We find a sufficiently large monochromatic (say red), dense

(more precisely half-dense as defined earlier in Definition 9.13), con-

nected matching M in GR.

• Step 2: We remove the vertices of M from GR and greedily remove a

number (depending on r) of vertex disjoint connected monochromatic

k-regular subgraphs from the remainder in Kn until the number of left-

over vertices is much smaller than the number of vertices associated

with M . For this purpose we will use the Ramsey-type result (The-

orem 8.29) for the existence of connected monochromatic k-regular

subgraphs.

• Step 3: Using a lemma about k-regular subgraph covers of r-colored

unbalanced complete bipartite graphs we combine the leftover vertices

with some vertices of the clusters associated with vertices of M . (M

absorbs the leftover vertices.)

• Step 4: Finally after some adjustments through alternating paths with
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respect to M , we find a red k-regular subgraph spanning the remaining

vertices of M .

The proof of Theorem 11.1 in Section 11.3 will follow this outline. Since

some steps in the proof are straightforward adaptations of the corresponding

steps from [33] to k-regular graphs, at some places we will omit the details.

First we discuss the necessary tools. Then the easy construction for Theorem

11.2 is given in Section 11.5.

11.2 Tools

As stated in Lemma 9.6, a well-known property of ε-regular pairs is that

they contain large super-regular subgraphs.

Lemma 10.4 is a special case of the Blow-up Lemma, [46], [47], claiming

that a balanced super-regular pair can be spanned by a k-regular subgraph.

We will also need a lemma of Gyárfás, Ruszinkó, Sárközy and Szemerédi

from [33].

Lemma 11.4 (Lemma 5 in [33]) Let ~G = ~G(V,E) be a directed graph

with |V | = n sufficiently large and minimum out-degree d+(x) ≥ cn for

some constant 0 < c ≤ .001. Then there are subsets X,Y ⊆ V such that

• |X|, |Y | ≥ cn/2;

• From every x ∈ X there are at least c6n internally vertex disjoint paths

of length at most c−3 to every y ∈ Y (denoted by x ↪→ y).
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11.3 Proof of Theorem 11.1

11.3.1 Step 1

We will assume that n is sufficiently large and that k ≥ 3. In fact for k = 2

Theorem 11.1 follows from the main result of [33] (actually the proof there

gives a 98r log r bound). We will use the following main parameters

0 < ε� δ � 1, (11.1)

where a � b means that a is sufficiently small compared to b. In order to

present the results transparently we do not compute the actual dependencies,

although it could be done.

Consider an r-edge coloring (G1, G2, . . . , Gr) of Kn. Apply the r-color

version of the Regularity Lemma (Theorem 3.6), with ε as in (11.1) and

get a partition of V (Kn) = V = ∪0≤i≤lVi, where |Vi| = m, 1 ≤ i ≤ l. We

define the reduced graph GR: The vertices of GR are p1, . . . , pl, and we

have an edge between vertices pi and pj if the pair {Vi, Vj} is (ε,Gs)-regular

for s = 1, 2, . . . , r. Thus we have a one-to-one correspondence f : pi → Vi

between the vertices of GR and the clusters of the partition. Then,

|E(GR)| ≥ (1− ε)
(
l

2

)
,

and thus GR is a (1− ε)-dense graph on l vertices.

Define an edge-coloring (GR1 , G
R
2 , . . . , G

R
r ) of GR by r colors in the fol-

lowing way. The edge pipj is colored with a color s that contains the most

edges from K(Vi, Vj), thus clearly eGs(Vi, Vj) ≥ 1
r |Vi||Vj |. Let us take the
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color class in this coloring of GR that has the most edges. For simplicity

assume that this is GR1 and call this color red. Clearly, we have

∣∣E(GR1 )
∣∣ ≥ (1− ε)1

r

(
l

2

)
, (11.2)

and thus using (11.1) the average degree in GR1 is at least (1− ε)(l− 1)/r ≥

l/2r. Using Lemma 9.14 we can find a connected l/16r-half dense matching

M in GR1 . Say M has size

|M | = l1 ≥
l

16r
, (11.3)

and the matching M = {e1, e2, . . . , el1} is between the two sets of end points

U1 and U2, where U1 contains the strong end points, i.e. the points in U1

have at least l/16r neighbors in U2. Furthermore, define f(ei) = (V i
1 , V

i
2 )

for 1 ≤ i ≤ l1 where V i
1 is the cluster assigned to the strong end point of ei,

and V i
2 is the cluster assigned to the other end point. Hence we have our

large, red, half-dense, connected matching M as desired in Step 1.

However, we need to do some preparations on the matching M . We will

need the following lemma (this will be used later again).

Lemma 11.5 Assume that for some positive constant c we find a monochro-

matic connected matching M (say in GR1 ) saturating at least c|V (GR)| ver-

tices of GR. Then in the original r-edge colored Kn we find a connected

monochromatic k-regular subgraph in G1 covering at least c(1 − 3ε)n ver-

tices.

Proof: Note that for k = 2 this lemma is well-known and has been used
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extensively (e.g. in [33], [32]). Let us use the same notation as above, the

matching M = {e1, e2, . . . , el1}, f(ei) = (V i
1 , V

i
2 ) for 1 ≤ i ≤ l1 and 2l1 ≥ cl.

First we make the matching edges super-regular by applying Lemma

9.6. Then we find connecting paths between the edges of the matching

M . Since M is a connected matching in GR1 we can find a connecting path

PRi in GR1 from f−1(V i
2 ) to f−1(V i+1

1 ) for every 1 ≤ i ≤ l1 (for i = l1

we have i + 1 = 1). Note that these paths in GR1 may not be internally

vertex disjoint. From these paths PRi in GR1 we can construct l1 vertex

disjoint connecting (almost) k-regular subgraphs Hi in G1 connecting V i
2

and V i+1
1 . More precisely we construct H1 with the following simple greedy

strategy. Denote PR1 = (p1, . . . , pt), 2 ≤ t ≤ l, where according to the

definition f(p1) = V 1
2 and f(pt) = V 2

1 . First let us take a set C1 of 2k

“typical” vertices in f(p1) = V 1
2 , more precisely we have |C1| = 2k and

NG1(C1, f(p2)) ≥ (1/r − ε)2km. By (ε,G1)-regularity most of the vertices

in V 1
2 satisfy this. We halve C1 arbitrarily: C1 = C1

1 ∪C1
2 , |C1

1 | = |C1
2 | = k.

Next we take a set C2 of 2k typical vertices in NG1(C1, f(p2)), more precisely

we have |C2| = 2k and NG1(C2, f(p3)) ≥ (1/r−ε)2km. By (ε,G1)-regularity

most of the vertices satisfy this in NG1(C1, f(p2)). Note that between C1

and C2 we have a complete bipartite graph K(2k, 2k). Again halve C2

arbitrarily: C2 = C2
1 ∪ C2

2 , |C2
1 | = |C2

2 | = k. We continue in this fashion.

Finally for the last Ct we take 2k typical vertices in NG1(Ct−1, f(pt)).

To define the connecting subgraph H1, we do the following. First from

each K(2k, 2k) between Ci and Ci+1, 1 ≤ i ≤ t − 1 we take a bk/2c-

regular subgraph (clearly this can be done). Then if k is odd, we add

perfect matchings between Ci1 and Ci+1
2 , 1 ≤ i ≤ t − 1. Then for the
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resulting connecting subgraph H1, all interior vertices (vertices in ∪t−1i=2C
i)

have degree k, the degrees in C1
1 and Ct2 are dk/2e and the degrees in C1

2

and Ct1 are bk/2c.

Then we move on to the next connecting subgraph H2. We follow the

same greedy procedure, we always take the next subset from the next cluster

in PR2 . However, if the cluster has occurred already on the path PR1 , then

we just have to make sure that we pick vertices that have not been used yet

on H1.

We continue in this fashion and construct the vertex disjoint connecting

subgraphs Hi in G1, 1 ≤ i ≤ l1. Note that for k = 3 these connecting

subgraphs may not be connected. However, the final k-regular subgraph will

be connected. These will be parts of the final connected k-regular subgraph

in G1. We remove the internal vertices of these subgraphs from G1. At this

point we might have some discrepancies in the cardinalities of the clusters

of a matching edge. We remove some more vertices from some clusters V i
j of

the matching to assure that now we have the same number of vertices left in

both clusters of a matching edge. For simplicity we still keep the notation

f(ei) = (V i
1 , V

i
2 ) for the modified clusters. Note that from each cluster V i

j

we removed altogether at most 2εm vertices.

Finally by applying Lemma 10.4 we close the connected k-regular sub-

graph in G1 within each super-regular matching edge in such a way that we

span all the remaining vertices in (V i
1 , V

i
2 ). Indeed, let us take a balanced

super-regular matching edge. In both clusters in this subgraph there must

be k vertices with degree bk/2c, k vertices with degree dk/2e and all other

vertices must have degree k (so here these are the missing degrees in the
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k-regular subgraph we are constructing). First remove the vertices with de-

gree bk/2c, and by applying Lemma 10.4 with dk/2e (note that dk/2e ≥ 2)

we find a connected dk/2e-regular subgraph in the remainder. Remove the

edges of this subgraph and those vertices that only need degree dk/2e and

add back the vertices with degree bk/2c. By applying Lemma 10.4 again

with bk/2c we find a connected bk/2c-regular subgraph in the resulting pair

(if k = 3 we just find a perfect matching) in such a way that we are not

using any edges from the bipartite graph between the two sets of vertices

with degree bk/2c (since these sets have a constant size this is not a signif-

icant restriction). Then from the construction it follows that the resulting

subgraph is a connected k-regular subgraph. 2

Returning to Step 1, for our matching M = {e1, e2, . . . , el1} satisfying

(11.3) we follow the same procedure as in Lemma 11.5 (so in Lemma 11.5 we

have c = 1/8r). However, for technical reasons we postpone the last step,

the closing of the k-regular subgraph within each (V i
1 , V

i
2 ), until the end of

Step 4, since in Step 3 we will use some of the vertices in f(M), and we will

have to make some adjustments first in Step 4.

11.3.2 Step 2

We go back from the reduced graph to the original graph and we remove the

vertices assigned to the matching M , i.e. f(M). We apply repeatedly The-

orem 11.3 to the r-colored complete graph induced by Kn \f(M). This way

we choose t vertex disjoint connected monochromatic k-regular subgraphs

in Kn \ f(M). Define the constant c = 1/500r (thus note c ≤ 0.001 what is

needed in Lemma 11.4). We wish to choose t such that the remaining set
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B of vertices in Kn \ f(M) not covered by these t cycles has cardinality at

most c11n. Since after t steps at most

(n− |f(M)|)
(

1− 1− ε
r

)t

vertices are left uncovered, we have to choose t to satisfy

(n− |f(M)|)
(

1− 1− ε
r

)t
≤ c11n.

This inequality is certainly true if

(
1− 1− ε

r

)t
≤ c11,

which in turn is true using 1− x ≤ e−x if

e−
(1−ε)t
r ≤ c11.

This shows that we can choose t = 12rdlog 500re (assuming that ε is small

enough).

We may assume that the number of remaining vertices in B is even by

removing one more vertex (a degenerate cycle) if necessary.

11.3.3 Step 3

This step is similar to the corresponding step in [33]. The key to this step is

the following lemma about r-colored complete unbalanced bipartite graphs.

Lemma 11.6 There exists a constant n0 such that the following is true.



11.3. PROOF OF THEOREM 11.1 110

Assume that the edges of the complete bipartite graph K(A,B) are colored

with r colors. If |A| ≥ n0, |B| ≤ |A|/2r, then B can be covered by at most

(k + 1)r vertex disjoint connected monochromatic k-regular subgraphs.

The proof of this lemma is postponed until Section 11.4. We have the

connected, red matching M of size l1 between U1 and U2. Define the auxil-

iary directed graph ~G on the vertex set U1 as follows. We have the directed

edge from V i
1 to V j

1 , 1 ≤ i, j ≤ l1 if and only if (V i
1 , V

j
2 ) ∈ GR1 . The fact that

M is l/16r-half dense implies that in ~G for the minimum outdegree we have

min
x∈U1

d+(x) ≥ l

16r
≥ |U1|

16r

(
≥ |U1|

500r

)
.

Thus applying Lemma 11.4 for ~G with c = 1
500r (< .001), there are subsets

X1, Y1 ⊂ U1 such that

• |X1|, |Y1| ≥ c|U1|/2;

• From every x ∈ X1 there are at least c6|U1| internally vertex disjoint

paths of length at most c−3 to every y ∈ Y1 (x ↪→ y).

Let X2, Y2 denote the set of the other endpoints of the edges of M in-

cident to X1, X2, respectively. Note that a path in ~G corresponds to an

alternating path with respect to M in GR1 .

In each cluster V i
1 ∈ Y1 let us consider an arbitrary subset of c8|V i

1 |

vertices. Denote by A1 the union of all of these subsets. Similarly we

denote by A2 the union of arbitrary subsets of V j
2 ∈ X2 of size c8|V j

2 |. Then
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we have

|A1|, |A2| ≥ c8|f(Y1)| ≥ c8
c

2
|f(U1)| ≥ c8

c

2

n

16r
≥ c10n.

Let us divide the remaining vertices in B (B was defined in Step 2) into

two equal sets B1 and B2. Thus we have |B1|, |B2| ≤ |B| ≤ c11n. We

apply Lemma 11.6 in K(A1, B1) and in K(A2, B2). The conditions of the

lemma are satisfied by the above since |Bi| ≤ |Ai|/2r for i = 1, 2. Let

us remove the at most (k + 1)r vertex disjoint connected monochromatic

k-regular subgraphs covering B1 in K(A1, B1) and the at most (k + 1)r k-

regular subgraphs covering B2 in K(A2, B2). By doing this we may create

discrepancies in the number of remaining vertices in the two clusters of a

matching edge. In the next step we have to eliminate these discrepancies

with the use of the many alternating paths.

11.3.4 Step 4

Again similar to Step 4 in [33]. By removing the vertex disjoint connected

monochromatic k-regular subgraphs covering B1 in K(A1, B1) we have cre-

ated a “surplus” of |B1| vertices in the clusters of Y2 compared to the re-

maining number of vertices in the corresponding clusters of Y1. Similarly

by removing the k-regular subgraphs covering B2 in K(A2, B2) we have cre-

ated a “deficit” of |B2|(= |B1|) vertices in the clusters of X2 compared to

the number of vertices in the corresponding clusters of X1. The natural idea

is to “move” the surplus from Y2 through an alternating path to cover the

deficit in X2. The details can be found in [33]. The only difference is the
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way we extend the connecting subgraphs (see page 864 in [33]); the adap-

tation for k-regular subgraphs is straightforward. Assume that the surplus

s ≤ 2k (we move at most 2k vertices at a time). Instead of extending the

connecting path Pj−1 by a path of length 2s+2 as in [33], we have to extend

the connecting subgraph Hj−1 by a 4-partite subgraph. The partite sets (of

size 2k) in this extension come from the following sets (in this order):

V j
2 , V

j
1 , V

j
2 ∪ V

j1
2 , V j

1 ,

where we make sure that the third partite set includes exactly s vertices

from V j1
2 . Otherwise the construction of this extension is the same as in the

proof of Lemma 11.5. All other details are as in [33].

After this process the remaining vertices in a matching edge f(ei) =

(V i
1 , V

i
2 ) will form a balanced super-regular pair where the parameters are

somewhat weaker (say (2ε, 1/2r,G1)-super-regular). Then as we mentioned

at the end of Step 1 we can close the k-regular subgraph to span all the

remaining vertices of f(M).

Thus the total number of vertex disjoint connected monochromatic k-

regular subgraphs we used to partition the vertex set of Kn is at most

12rdlog(500r)e+ 2(k + 1)r + 2 ≤ 100rdlog re+ 2kr,

finishing the proof of Theorem 11.1. 2
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11.4 Proof of Lemma 11.6

Again similar to the corresponding Lemma 6 in [33] (so at some places we will

omit the details) but we will use a more recent, improved lemma from [35].

Lemma 11.6 clearly follows from the following two lemmas (corresponding

to Lemmas 7 and 8 in [33]).

Lemma 11.7 For every positive ε there exists a constant n0 = n0(ε) such

that the following is true. Assume that the edges of the complete bipartite

graph K(A,B) are colored with r colors. If |A| ≥ n0, |B| ≤ |A|/2r, then

apart from at most ε|B| vertices B can be covered by at most r vertex disjoint

connected monochromatic k-regular subgraphs.

Lemma 11.8 There exists a constant n0 such that the following is true.

Assume that the edges of the complete bipartite graph K(A,B) are colored

with r colors. If |A| ≥ n0, |B| ≤ |A|/(8r)8(r+1), then B can be covered by at

most kr vertex disjoint connected monochromatic k-regular subgraphs.

Lemma 11.7 follows easily from Lemma 11.5 and the following lemma

from [35].

Lemma 11.9 (Gyárfás, Ruszinkó, Sárközy, Szemerédi, 2006 [35]) For

some 0 < ε < 1/9 assume that the edges of a (1 − ε)-dense bipartite graph

G(A,B) are colored with r colors, |B| ≤ 2|A|/3r. Then there are vertex

disjoint monochromatic connected matchings, each of a different color, such

that their union covers at least (1−
√
ε)-fraction of the vertices of B.
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Indeed, we apply the bipartite, colored version of the Regularity Lemma for

K(A,B), define the bipartite reduced graph GR, apply Lemma 11.9 in GR

and then return to K(A,B) by Lemma 11.5. See [35] for the details.

The proof of Lemma 11.8 will use the following simple lemma (corre-

sponding to Lemma 9 in [33]). Note that this is the only place in the proof

of our main theorem where the bound depends on k.

Lemma 11.10 Assume that the edges of the complete bipartite graph K(A,B)

are colored with r colors. If (|B| − 1)r|B| < |A|, then B can be covered by at

most (k− 1)r vertex disjoint connected monochromatic k-regular subgraphs.

Proof of Lemma 11.10: Denote the vertices of B by {b1, b2, . . . , b|B|}.

To each vertex v ∈ A we assign a vector (v1, v2, . . . , v|B|) of colors, where vi

is the color of the edge (v, bi). The total number of distinct color vectors

possible is r|B|. Since we have |A| > (|B|−1)r|B| vectors, by the pigeon-hole

principle we must have a vector that is repeated at least

|A|
r|B|
≥ |B|

times. In other words, there are at least |B| vertices in A for which the

colorings of the edges going to {b1, b2, . . . , b|B|} are exactly the same. Now if

for these vertices in A the number of edges in one color is at least k, then we

can clearly cover the other endpoints of these edges in B with one connected

k-regular subgraph in this color. However, if the number of edges is less than

k for a certain color, then the corresponding endpoints in B will be isolated

vertices in our cover. Thus altogether in the worst case we need (k − 1)r
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vertex disjoint connected monochromatic k-regular subgraphs to cover B.

2

Proof of Lemma 11.8: This is almost identical to the proof of the

corresponding lemma (Lemma 8) in [33]. Therefore we omit the details and

highlight only the differences. Of course, one difference is that whenever we

have a monochromatic connected matching in the reduced graph we saturate

it with a connected k-regular subgraph instead of a cycle by applying Lemma

11.5. The second difference is again in the way we handle the vertices v

satisfying (16) in [33] (see the top of page 869 in [33]). The adaptation

is again straightforward (similar to the adaptation in Step 3); instead of

extending the connecting path Pi−1 by a path of length 6, we have to extend

the connecting subgraph Hi−1 by a 6-partite subgraph. The partite sets in

this extension come from the following sets (in this order):

V i
B, f(pjA), v ∪ V i

B, f(pjA), V i
B, V

i
A,

where we make sure that the third partite set includes v. Otherwise the

construction of this extension is the same as in the proof of Lemma 11.5.

The rest of the proof is identical to the proof of Lemma 8 in [33] but of

course we finish with Lemma 11.10 resulting in at most (k − 1)r + r = kr

connected monochromatic k-regular subgraphs in the cover. This finishes

the proof of Lemma 11.6. 2
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11.5 Proof of Theorem 11.2

In this section we present the easy construction for Theorem 11.2. Let

A1, . . . , Ar−1 be disjoint vertex sets of size k − 1, and Ar is the set of re-

maining vertices (assuming n > (r− 1)(k− 1)). The r-coloring is defined in

the following way: color 1 is all the edges containing a vertex from A1, color

2 is all the edges containing a vertex from A2 and not in color 1, etc. we

continue in this fashion. Color r−1 is all the edges containing a vertex from

Ar−1 and not in color 1, . . . , r− 2. Finally color r is all the edges within Ar.

To show the lower bound let us assume that we have a covering by

vertex disjoint connected monochromatic k-regular subgraphs. It is not

hard to see that in this covering the vertices in A1 ∪ . . . ∪ Ar−1 must be

isolated vertices. Indeed, to cover any vertex in Ai, 1 ≤ i ≤ r − 1 by a non-

trivial connected monochromatic k-regular subgraph, the only possible color

is color i. However, we have to include at least one vertex from the outside

of Ai. But then this vertex must have k neighbors in Ai, a contradiction.

The vertices in A1 ∪ . . . ∪ Ar−1 must be indeed isolated vertices. Counting

one more subgraph to cover Ar, altogether we need at least (r−1)(k−1)+1

connected monochromatic k-regular subgraphs to cover all the vertices. 2
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Chapter 12

Future directions

The Regularity Lemma states that there is a regular partition for every

dense graph; from this regular partition one can construct a reduced graph

of much smaller size which is an essence of the original graph. However,

the size requirement of the Regularity Lemma makes it impractical for real

world situations where the number of vertices typically is a few thousand

only. Our practical regularity partitioning algorithm is a tradeoff between a

(almost) perfect representation of the original graph and the requirement of

the large graph size. Our strategy is one possible way to make this tradeoff.

Based on our work, below we list some possible future extensions.

12.1 Different algorithms

In our work we modify the algorithmic version of the Regularity Lemma

due to Alon et al. [3] and Frieze and Kannan [21] for constructing a re-

duced graph. As we note earlier, there is another constructive version of
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the Regularity Lemma due to Fischer et al. [19]. They give a new approach

for finding a regular partition which is quite different from the previous ap-

proaches. All the previous ones try to find partitions of the tower type, while

this paper gives a method to find a smaller regular partition if one exists in

the graph. Employing this methodology for refinement instead of using an

approximate version of the algorithmic Regularity Lemma could also be a

fruitful direction of work.

All the algorithms described above are designed to find the (perfect)

regular partition, they are balanced algorithms in which each iteration gen-

erates the same amount of information. On the contrary, in practice we

might not need the perfect regular partition. This fact could be used to

make the practical regularity partitioning algorithm more efficient. Specifi-

cally, we believe that a greedy strategy based on local optimization in which

the first several iterations give as much information as possible might be

useful.

12.2 Refinement strategy

Currently our strategy in the practical regularity partitioning algorithm is

to use only one certificate for each class while doing the refinement, there

are several possible ways to make an improvement. Theoretically, the more

certificates we use, the more information we preserve, so a straightforward

way is to use two or more certificates and compare the result with current

one.

Another possibility is to use all the certificates just as in the original
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algorithm, but instead of going till the end we stop after some iterations

to make it applicable on small graphs. Here how to define the stopping

condition will be the main issue.

In the Regularity Lemma, the clusters found in each iteration are to be

of equal size. In practical problems, we might not need this constraint. For

example, in clustering it is more natural that different clusters have differ-

ent sizes. This could lead to another possible modification to the practical

regularity partitioning algorithm. Notice in the constructive version due to

Alon et al. [3] it does require equal sized clusters, but in Frieze and Kannan

[21] there is no such constraint and the clusters can be of different size.

12.3 Sparse graph

Our practical regularity partitioning algorithm is only applicable when the

graph is dense. However, there are sparse versions of the Regularity Lemma

that work with, as the name indicates, sparse graphs. Implementation of the

sparse Regularity Lemma for refinement has important meaning in solving

practical problems. For example, the spectral clustering pipeline involves

two stages: Construction of the pairwise affinity matrix (and hence the

graph Laplacian) and eigendecomposition of the output of this stage for

dimensionality reduction. It is on this reduced dimension that we run a

traditional clustering method such as k-means to obtain the final clustering.

As we note earlier, both of these stages require significant computation and

have inspired research to get around these bottlenecks. In our current work

(the practical regularity partitioning algorithm on dense graph) we give a
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method to substantially ease the second bottleneck. To make the entire

method far more powerful with a very wide range of applicability we need

to make changes to the first stage of the bottleneck. Utilizing the sparse

Regularity Lemma for refinement in our method could be used to get around

the first bottleneck in the framework above as well (this would be possible

as it work allow us to work with k-nearest neighbor graphs). And thus

together, the regularity clustering method could be made really powerful.

12.4 Extensions to hypergraphs

One of the most attractive notions of pairwise clustering methods is that they

give a more ”global” view of the data. Given enough number of data-points

we could at least approximately get an idea about the geometry of the data,

thus significantly improving its performance over traditional methods which

are more “local”. As pointed out by Fowkles et al. [20],when seen through

the lens of computer vision this makes such ”global” clustering methods (for

segmentation) closer to the original views on form and perception that for a

human an image is much more than a mere collection of objects. However,

while pairwise affinities capture a more global view of the data, it is not

necessary that the relationship between data-points in most domains has

to be dyadic and thus restricting it to being dyadic might lead to loss of

information. Indeed, it might be the case that the relationship between data-

points is triadic or even higher. Thus, this natural extension has led to work

on clustering methods for such problems, which can be naturally formulated

as a hypergraph partitioning problem [2], [82], [9]. There are a number of
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important results that extend the Regularity Lemma to hypergraphs [62],

[63], [29], [10]. It is thus natural that our methodology could be extended

to hypergraphs and then used for hypergraph clustering. This seems to be

a particularly promising direction.
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