
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2013-04-02

Programmable Image-Based Light Capture for
Previsualization
Clifford Lindsay
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Lindsay, C. (2013). Programmable Image-Based Light Capture for Previsualization. Retrieved from https://digitalcommons.wpi.edu/
etd-dissertations/88

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/88?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/88?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

ii

Abstract

Previsualization is a class of techniques for creating approximate previews of a

movie sequence in order to visualize a scene prior to shooting it on the set. Often

these techniques are used to convey the artistic direction of the story in terms of

cinematic elements, such as camera movement, angle, lighting, dialogue, and char-

acter motion. Essentially, a movie director uses previsualization (previs) to convey

movie visuals as he sees them in his ”minds-eye”. Traditional methods for previs

include hand-drawn sketches, Storyboards, scaled models, and photographs, which

are created by artists to convey how a scene or character might look or move. A

recent trend has been to use 3D graphics applications such as video game engines

to perform previs, which is called 3D previs. This type of previs is generally used

prior to shooting a scene in order to choreograph camera or character movements.

To visualize a scene while being recorded on-set, directors and cinematographers use

a technique called On-set previs, which provides a real-time view with little to no

processing. Other types of previs, such as Technical previs, emphasize accurately

capturing scene properties but lack any interactive manipulation and are usually

employed by visual effects crews and not for cinematographers or directors. This

dissertation’s focus is on creating a new method for interactive visualization that will

automatically capture the on-set lighting and provide interactive manipulation of

cinematic elements to facilitate the movie maker’s artistic expression, validate cine-

matic choices, and provide guidance to production crews. Our method will overcome

the drawbacks of the all previous previs methods by combining photorealistic ren-

dering with accurately captured scene details, which is interactively displayed on a

mobile capture and rendering platform.

iii

This dissertation describes a new hardware and software previs framework that

enables interactive visualization of on-set post-production elements. A three-tiered

framework, which is the main contribution of this dissertation is; 1) a novel pro-

grammable camera architecture that provides programmability to low-level features

and a visual programming interface, 2) new algorithms that analyzes and decom-

poses the scene photometrically, and 3) a previs interface that leverages the previous

to perform interactive rendering and manipulation of the photometric and computer

generated elements. For this dissertation we implemented a programmable camera

with a novel visual programming interface. We developed the photometric theory

and implementation of our novel relighting technique called Symmetric lighting,

which can be used to relight a scene with multiple illuminants with respect to color,

intensity and location on our programmable camera. We analyzed the performance

of Symmetric lighting on synthetic and real scenes to evaluate the benefits and lim-

itations with respect to the reflectance composition of the scene and the number

and color of lights within the scene. We found that, since our method is based on a

Lambertian reflectance assumption, our method works well under this assumption

but that scenes with high amounts of specular reflections can have higher errors in

terms of relighting accuracy and additional steps are required to mitigate this limi-

tation. Also, scenes which contain lights whose colors are a too similar can lead to

degenerate cases in terms of relighting. Despite these limitations, an important con-

tribution of our work is that Symmetric lighting can also be leveraged as a solution

for performing multi-illuminant white balancing and light color estimation within

a scene with multiple illuminants without limits on the color range or number of

lights. We compared our method to other white balance methods and show that

our method is superior when at least one of the light colors is known a priori.

iv

Dedications

-I dedicate this dissertation to my son, Noah. Your imagination knows no
bounds and that inspires me. My hope as a father is that I can inspire you
too. May this example of hard work and persistence inspire you someday. And
though every minute spent on this endeavor was time away from you, know
that you were always in my thoughts. Without your love and understanding
I could have never finished this journey.

-To my lovely wife Ana, whose daily sacrifice has made this dissertation a
reality. You stood by me during this process which was just as painful for you
as it was for me and for that I am truly grateful. Thank you for being my
rescue, my shelter, and my home.

v

Acknowledgements

I would like to provide a special acknowledgment and thanks to my advisor
Professor Emmanuel Agu. You believed in me when I found it hard to believe in
myself. You have been a great mentor, guide, and friend. I would also like to thank
you for the many arduous hours you have put into my academic work and helping
me become a better writer, thinker, and person.

I would also like to acknowledge my other committee members for all their
support, insightful conversations, and for directing my academic work. Professor
Robert Lindeman thank you for listening to my crazy ideas with an open mind and
not letting me get away with anything other than my best work. You have made
me a better Computer Scientist by far. Professor Mathew Ward, thank you for
the wonderful discussions, thoughtful insight, and dedication to my work. Not to
mention how much I enjoyed our ”walkie-talkies” together and for organizing my
main proving grounds, ISRG. I would also like to thank Professor Ramesh Raskar
of the MIT Media Lab for opening up his lab and group to me. Your kindness
and graciousness was far greater than I expected. Also, I am extremely grateful to
you for lending me your keen insight and command of the field of Computational
Photography and Optics, which had a tremendous influence on this work. Partial
funding for this work was provided by GAANN Fellowship.

vi

Table of Contents

Abstract iii

Dedications v

Acknowledgements vi

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Introduction to Previsualization . 1

1.1.1 Brief History of Previsualization 6
1.1.2 The Drawbacks with Current Previs Techniques 8

1.2 Motivation: Our Vision of Interactive Previsualization with Full Scene
Capture . 11
1.2.1 Summary of Dissertation Challenges 19

1.3 Thesis Statement . 24
1.4 Dissertation Contributions . 26
1.5 Outline of Dissertation . 31

2 Related Work 32
2.1 Programmable Imaging . 32

2.1.1 Programmable Camera Components 32
2.1.2 Scriptable Cameras . 34
2.1.3 Smart Cameras & Other Camera-Computer Combinations . . 34
2.1.4 Programmable Cameras . 36

3 PCam: A Programmable Camera Architecture 37
3.1 Overview . 37
3.2 Tile-based Streaming Architecture . 39

3.2.1 Overview . 39
3.2.2 Stream Processor . 40
3.2.3 Tile Based Data Structure . 43
3.2.4 Supporting Architectural Features 46

vii

3.2.4.1 Texturing . 46
3.2.4.2 High-Quality Anti-Aliasing 47

3.3 Camera Shader Framework . 48
3.3.1 Overview . 48
3.3.2 Function Classifications . 49
3.3.3 Example Shader . 50

3.4 Implementation . 52
3.4.1 PCam Version 1 . 53

3.4.1.1 Overview . 53
3.4.1.2 UI Server Comparison 53
3.4.1.3 UI Frameworks API Review 55
3.4.1.4 Qt UI Implementation 57
3.4.1.5 Programming Languages & Standards 60
3.4.1.6 Software Packages & Other Frameworks 61

3.4.2 PCam Version 2 . 61

4 PCamUI: A Visual Programming User Interface for PCam 64
4.1 Overview . 64
4.2 Background . 68
4.3 Target Audience & Context . 69
4.4 Filter-Based Abstraction for On-Camera Processing 71

4.4.1 Visual Filters and Camera Pipelines 71
4.5 Task Determination . 73

4.5.1 Task 1: Pipeline Creation . 74
4.5.2 Tasks: 2 & 3, Filter and Pipeline Editing 75
4.5.3 Layout & Interaction Scenarios 79

4.5.3.1 Layout . 79
4.5.3.2 Interaction Scenarios 80

4.6 Conclusion & Future Work . 82

5 Symmetric Lighting Capture and Relighting 84
5.1 Overview . 84
5.2 Symmetric Lighting Theory . 89

5.2.1 Image Formation . 89
5.2.1.1 Camera Model . 89
5.2.1.2 Physically-based Lighting Model 90

5.2.2 Light Contribution Estimation through Symmetry 91
5.2.3 Expanded Symmetric Lighting 98

5.2.3.1 Symmetric Lighting in N-Lights 99
5.2.3.2 Degenerate Cases and Computational Complexity . . 104
5.2.3.3 Error Estimation . 107
5.2.3.4 Minimizing Epsilon for Non-diffuse Reflections 110

5.3 The Beta Map . 113

viii

5.3.1 Shadow Detection Within The Beta Map 118
5.3.2 Gradient Domain Light Distribution 121

5.3.2.1 Method . 124
5.3.2.2 Gradient Domain Operations 129

5.4 Conclusion . 131

6 Previzualization and Evaluations 133
6.1 Overview . 133
6.2 Scene Relighting . 134

6.2.1 Three Point Relighting . 137
6.2.2 High-Dynamic Range Relighting 140
6.2.3 Non-photorealistic Relighting 142
6.2.4 Light Editing . 143
6.2.5 Previous work on Relighting 144
6.2.6 Relighting Implementation . 150
6.2.7 Evaluations . 159

6.2.7.1 Additional Results 166
6.2.7.2 Limitations . 168

6.3 Light Color Estimation and Calibration 169
6.4 Multi-Illuminant White Balance . 176

6.4.1 Overview . 176
6.4.2 Related Work . 178

6.4.2.1 Multiple Illuminants 180
6.4.3 Implementation . 181
6.4.4 Results . 183
6.4.5 Conclusion . 185

6.5 User Studies . 185
6.5.1 User Study #1: Relighting Evaluation 186
6.5.2 User Study #2: Previs Society Survey 191
6.5.3 User Study #3: PCam Expert Review User Study 194

7 Future Work 201
7.1 Expanded Scene Capture . 201
7.2 Relighting With Complex Lighting Environments 203
7.3 Surface Reconstruction Using Geometry Maps 205
7.4 PCam Version 3.0 . 207

8 Conclusions 209

Bibliography 211

Appendix A 230

Appendix B 232

ix

Appendix C 237

Appendix D 244

x

List of Figures

1.1 A Timeline for how films are made 2
1.2 Storyboard and video frames of the ”Bullet Time” sequence 4
1.3 Previs examples from ”Day After Tomorrow” and ”The Matrix” movies 7
1.4 The workflow of an idealized previs tool on a programmable camera . 13
1.5 Our complete vision for an idealized previs interface 14
1.6 Real-time movie making timeline . 16
1.7 A collage of example lighting concepts 17
1.8 An illustration outlining our previs components 25

3.1 Comparison between traditional and programmable camera pipelines 38
3.2 An illustration of an abstract stream processing model 40
3.3 A detailed view of the PCam architecture 42
3.4 Comparison of stream processing languages 48
3.5 An outline of the groups of API functions 49
3.6 Chroma keying stream processing example 51
3.7 Flow of data streams from one kernel to another 52
3.8 Early UI screen shots . 56
3.9 Software organization of the Workbench camera interface 58

4.1 Current development process for programmable cameras using the
API approach . 65

4.2 A continuum that describes the target audience 70
4.3 A sample programmable camera pipeline with four filters 73
4.4 Screen shot of the pipeline creation window 75
4.5 Screen shot of the pipeline editing window 76
4.6 Flow diagram depicting the interaction and flow between the various

windows of the UI described in this work. 77
4.7 Screnshots of widgets and widget interactions 78
4.8 An Org chart of the UI layout . 80
4.9 Screen shot of the preveiw window 81
4.10 Interaction diagram . 82

5.1 Several images of devices used to capture lighting 86
5.2 Depiction of the interaction between an illuminated point the sources 94
5.3 The general camera model with two lights 95

xi

5.4 The relative contribution of a pixel in successive images from two lights 98
5.5 An illustration of the geometric symmetry in a 3 light capture system 101
5.6 7 n-vertex polygons in 2D that corresponds to lighting configurations 102
5.7 The degenerate form of a triangle . 105
5.8 Error estimate due to specular reflection 109
5.9 Separation of diffuse and specular reflection for Symmetric Lighting . 112
5.10 A modified version of the Rendering Equation 114
5.11 Beta Map creation method . 116
5.12 A simplified relighting example performed as texture map operations 116
5.13 Example shadow detection using threshold values and a β map 119
5.14 Example shadow detection method 120
5.15 Large gradients corresponding to edges indicated by the red arrows. . 127
5.16 Results of the edge suppression technique 129

6.1 Images of a candy dish relit with our application 136
6.2 Removing lights and relighting . 137
6.3 3 Point lighting example. 138
6.4 Two and three point lighting of the familiar sphere scene 139
6.5 Relighting of a scene with HDR lighting added 141
6.6 NPR image relighting . 142
6.7 Modifying scene lighting by editing the β map 144
6.8 Diagram illustrating the relighting workflow 152
6.9 Image of Lego scene with the lighting setup described in this work . . 158
6.10 Plot the errror related to specularity 161
6.11 Visual comparison of the error associated with specular reflection . . 162
6.12 Relationship of the error and ground truth images 164
6.13 Visual comparison of the error associated with our relighting application165
6.14 Original image of a food scene compared to a render of the relit scene 166
6.15 Original image of a Lego scene compared to a render of the relit scene 166
6.16 A screen shot of the desktop application developed for relighting. . . 167
6.17 CIE 1931 Chromaticity diagram with Planckian Illuminant Locus. . . 170
6.18 Influence of Gamma correction on the lightness of an image 175
6.19 Image comparison of a scene with multiple light sources 177
6.20 Comparison of our method, ground truth, traditional white balance . 184
6.21 Demographic information and background information regarding the

subjects in this user study. 189
6.22 Qualitative questions regarding the use and realism of the virtual

relighting software. 190

7.1 Approximate representation of the geometry from the depth map and
depth edge map. 202

7.2 The Geometry map creation process 206

xii

List of Tables

3.1 A comparison of various features of four different UI frameworks we
considered for implementing the camera interface. 54

5.1 Truth Table For Cross Projection Tensor Operations 128

6.1 Estimate of lighting color and the error using the average of the image
pixel color rounded to the nearest integer. 173

6.2 Estimate of lighting color and the error using the mode of the color
values instead of the average. 173

xiii

Chapter 1

Introduction

1.1 Introduction to Previsualization

Movie making is the process of storytelling through the recording of creative visual

and auditory scenes. Often this endeavor involves matching the director’s artistic

vision for an initial story or idea to the physical configuration of the movie set, ac-

tor’s portrayal of the story, camera options, sound, and editing. The movie making

process is generally comprised of three main stages, pre-production, production, and

post-production. In pre-production, all the preparations for the entire movie mak-

ing process is performed, including but not limited to script writing, set building,

hiring of actors and other personnel to work on the movies. During pre-production

the director and cinematographers decide on which types of camera equipment and

their various photographic options will be best for conveying the story. When all

preparations have completed, the movie production stage is performed, where scenes

are acted out and captured via video cameras. The process of recording the actor’s

performance is often called principle photography. The last stage of movie produc-

tion, called post-production, is performed after the principle photography. Post-

1

production is where the various shots captured during production are edited, sound

and music is integrated, and visual effects are added to complete the shots. As the

movie making process comes to completion they are marketed and distributed for

viewing. Each stage of this process are illustrated in Figure 1.1 along with some

additional tasks often performed during each stage.

Pre-production Production Post-production

Filmmaking Timeline

On-set

 Color

Correction
Casting

Location

Scouting

Principle

Photography

Visual

E!ects
Set

Building

Sound, Dialogue,

& Music

Marketing

& Distribution

Idea Conception,

Pitch, & Funding

Script

Development

 Color

Correction

3D/Technical Postvis
Pitchvis

Figure 1.1: A general timeline for how films are made based on the description
from [OZ10]. The process of making a film is generally divided into three stages;
pre-production where all preparations for making the movie is done, production
where the principle photography is captures, and post-production where additions
to the movie is made. Previsualization is done as part of the Pre-production or done
during production. This figure lists some of the major tasks that may be performed
during each of the three movie making stage, including four different types of previs
(Pitchvis, Technical, On-set, Postvis).

At various points in the movie-making process, there are many cinematic or

cinematographic options movie makers can use to augment the story telling process.

For example, they often use focus, camera angles, lighting, perspective, and camera

motion to accentuate parts of the story. These options must be weighed carefully by

the movie makers, as subtle changes to these cinematic options can result in drastic

differences to the look and feel of the movie. To help convey their artistic vision for

the story, movie makers will typically plan out the sequence of cinematic elements

prior to shooting the movie or a scene. This plan can then be utilized by the movie

making crew to gauge the requirements for shooting each scene or as a means for the

movie makers themselves to visualize and validate their cinematic choices to make

2

sure it fits the artistic vision. This process of planning and visualizing a sequence

of cinematic elements is often referred to as Previsualization (previs) and is used

extensively during the pre-production and production stages of movie making. The

term previs has is often used to describe any form of planning or conceptualizing

a shot for a movie such as storyboarding, pre-rendering, and pre-photography and

can include a variety of medium such as images, sketches, and renderings. While

there are several advantages to using previs as an aid for filmmaking, its primary

function is that it allows filmmakers to vary the different staging and art direction

options - such as lighting, camera placement and movement, stage direction and

editing - before principle photography without having to incur the costs of actual

production [Fer98]. By understanding the effects of the various options available to

the filmmakers prior to shooting, previs can help to minimize reshoots, save time,

money, and facilitate the creative process [OZ10].

In the context of movie making, previs is often used as a collaborative tool for

disseminating how a particular is to be translated into film. From the Visual Effects

Society (VES) Handbook of Visual Effects, previs is defined as ”a collaborative pro-

cess that generates preliminarily versions of shots or sequences” [OZ10]. Figure 1.2

illustrates how the directors of the movie ”The Matrix” used previs as a collaborative

process. In this figure, the directors commissioned a series of hand-drawn images

(top), called Storyboards, before filming a complicated action sequence. They did

this to solidify their ideas and help convey to the cinematographers and film crew

how they wanted the shots to be setup. As can be seen by the similarity of final

video frames and the Storyboards in Figure 1.2, this type of previs resulted in an

effective communication of the director’s artistic vision for the sequence.

Although previs is not a requirement for making a movie, it is quite ubiquitous

in the movie making industry. This is a testament to the benefits that previs has on

3

Figure 1.2: Storyboard and corresponding video frames of the ”Bullet Time” se-
quence from the movie ”The Matrix” (1999), Warner Bros Entertainment. This
figure shows how the movie’s creators previsualized a complex action sequence us-
ing the Storyboarding technique, which was then reproduced in the production of
the movie [Bro99].

the movie making process, which can be an aid to everyone from directors to actors

to producers and even studio executives. There are two main benefits of previs,

saving time and therefore money and producing a higher quality movie [NIK11].

Fundamentally, previs is a tool for allowing creative control of artistic and technical

exploration prior to committing to any one parameter before filming. This can

benefit the movie in terms of quality, reduction of mistakes, and ultimately money

saved.

Previs can be accomplished using a variety of mediums, which can be divided into

two categories, traditional artistic mediums and digital mediums. The traditional

medium methods include the use of Storyboards, Animatics, photography, or clay

models. Historically, Storyboarding has been the preferred technique for previs

[JOH07], which are hand drawn or painted scenes that are assembled in a sequence

matching the timeline of a story. In the past few years, there has been a shift in previs

techniques from using traditional mediums for movie visualization to the use of

digital technologies such as video game engines and Digital Content Creation tools.

4

Digital tools are used to model, pre-render, or provide motion planning for complex

scenes (i.e., scenes with a significant amount of stunts or complex visual effects).

An example of digital previs is the use of 3D graphics applications for previewing a

scene, which is referred to as 3D previs and is now the predominant way to preview

or plan an action sequence or a shot with complicated camera movement [JOH07].

This shift from hand drawn to digital previs techniques has had such an influence on

movie making that the Joint Subcommittee on Previsualization between VES, the

Art Directors Guild, and the American Society of Cinematographers have proposed

a redefinition of previs as using ”3D animation tools and virtual environments for

visualizing or previewing a shot or movie sequence” [OZ10].

This shift in previs methods is due to the advantage 3D applications have over

traditional techniques. The advantage is that once a scene is digitally modeled (ei-

ther approximately or precisely by means of Technical previs methods), visualizing

changes to the scene can be done interactively and the effects of many potential

changes can be previewed quickly. Storyboards on the other-hand are not interac-

tive. If aspects of the Storyboard needs to be altered, part or all the Storyboards

must be redrawn, which takes time. This quote from Alex McDowell1 explains the

benefits of 3D previs tools, ”With 3D previs, what you end up with is a tool that

ultimately gives everybody access to a much deeper level of information than has

ever been accessible to production...in pre-production” [Des03].

There are several other types of digital previs methods that are generally used

during the movie making process which are tailored to the specific context in which

it is used. For example, on-set previs refers to the real-time integration of captured

video with computer generated (CG) elements to aid directors. Technical previs is

the term coined for the accurate, real-world measurement of set layout and camera

1Alex McDowell is production set designer and Visual effects artist whose credits include Bee
Movie, Watchmen, Fight Club, The Terminal, and Minority Report.

5

http://www.imdb.com/name/nm0568273/

placement for seamless integration into virtual environments and is often utilized in

Postvis (previs for verifying a shot with CG elements prior to editing) or for visual

effects. Pitchvis (pitching a movie using previs) uses 3D rendering and interaction

to illustrate a movie or shot idea in order to pitch the idea for funding a movie

project.

1.1.1 Brief History of Previsualization

The first known Previsualization technique, Storyboarding, used by Disney Studios

circa 1930 included hand-drawn panels which outlined the high-lights of a scene. The

filming of Storyboards and editing them to a sound track soon followed and this pro-

cess became known as the Leica Reel. In the 1970’s, cost-effective video equipment

became available and the Leica Reel morphed into a technique called Animatics.

Animatics added restricted motion and camera angles to video sequences of Story-

baords. Storyboards in Animatics were then replaced with hand-controlled models

and figures used to plan complex sequences in the Star Wars Trilogy [Kat05a]. The

introduction of computer generated imagery or more specifically 3D rendering orig-

inated in 1988 by Lynda Weinman for the movie Star Trek V: The Final Frontier.

In this movie, the motion of the Starship Enterprise was visualized using primi-

tive animation programmed on a computer in order to provide Previsualization of

the scene. Later, video game technology was used to provide pre-planning camera

movements for the movie the Abyss [Kat05b]. The use of 3D graphics applications

or software for Previsualization has come to be known as Digital Previsualization

or 3D Previsualization [OZ10].

More recently, Previsualization has developed into a full-fledge industry em-

ploying a wide variety of techniques and medium. On larger budget projects, the

director works with artists in a visual effects department or with dedicated previs

6

service companies. Previs now routinely include music, sound effects and dialogue

to closely emulate the look of fully produced and edited sequences. Because of

the effort involved in generating rich previs sequences, they are usually employed

for complex or difficult scenes that involve stunts and special effects. To this day,

digital video, photography, hand-drawn art, clip art and 3D animation are all still

being used either singly or in combination to preview sequences alongside some of

the more complicated techniques just mentioned. Figure 1.3 shows some example

previs shots on two recent movies, ”Day After Tomorrow” and ”The Matrix”.

For this project, we restricted our use of previs to the recreation of static movie

sets for the purpose of visualizing on-set lighting changes. This dissertation reserves

the incorporation into our previs framework the planning of action sequences, camera

motion, complex visual effects, motion capture, sound, or acting as future work.

Figure 1.3: Previs examples: The left image is a preliminary render and final shot
for the movie ”Day After Tomorrow” [Boe07] and right image is a storyboard and
final shot for the movie ”The Matrix” [Bro99]

7

1.1.2 The Drawbacks with Current Previs Techniques

Despite the popularity of using digital techniques for previs, Storyboarding is still

used by almost all movie makers in conjunction with digital methods, from the am-

ateur to the high-budget movie studios [JOH07]. The continued use of Storyboards

can be attributed to its low cost, low complexity, and the fact that the content is

limited only by the artist’s imagination. This notion highlights several drawbacks

with current previs techniques, which are cost, complexity, and the limitations of

each individual technique. In this section we describe some of the limitations of the

previously defined methods, 3D and on-set previs.

3D and interactive previs is generally only used by movie studios with large

budgets who can afford to hire visual effects companies that specialize in 3D previs

to handle the complexity of setup and operation of the specialized 3Dprevis software

and hardware [JOH07]. Several companies exist who specialize in 3D previs, such

as Pixel Liberation Front (PLF), Industrial Light and Magic (ILM), or Persistence

of Vision (POV). Also, 3D previs is generally used for planning a shot or sequence

of shots prior to actually shooting and as such generally 3D previs uses virtual

cameras, sets, and actors and does not use live camera feeds therefore is not a viable

tool for viewing shots. This specialized service, software, and hardware needed for

measuring and recreating the scene digitally can add significant cost and time to

the movie’s production. Although specific monetary figures are not available for

movie production budgets, recent posting on the Previsualization website forum

[Poh10] has industry insiders speculating anywhere from five to seven figures in cost

for all types of previs combined. George Lucas has publicly stated that for Star

Wars: Episode III, ”digital previs easily trimmed ten million dollars off the film’s

budget” [Sza95]. Similar statements have been made by visual effects veteran and

creative director at Pixel Liberation Front Ron Frankel, where he said ”The cost

8

for using previz on a film is measured in the tens of thousands of dollars. The

savings associated with previz on a film are measured in the hundreds of thousands

of dollars,”[Doy02]. The cost and complexity of 3D previs generally precludes the

use of intricate previs techniques - techniques that use computer generated imagery,

analyze scene data, and use complicated 3D scanning technologies - in low-budget

movies, independent films, and especially novice or amateur projects.

Since 3D previs tools are used for planning a shot or sequences of shots, they

are not generally used to preview recorded video or film footage. This is because

the 3D scene representation is only an approximation to the real scene and does

not use video as the primary input. On the other hand, on-set previs is primarily

used to view the video of the shots as they happen, usually through a device called

a ”video assist”. This type of previs has a much lower complexity and cost than

3D previs because it requires only a separate screen through which video is fed for

viewing and minimal processing. Because of the simplicity of this device and it’s

low cost, it is generally used on every movie set in some fashion. More recently,

advances in video assist hardware systems for on-set previs now provide additional

processing capabilities with limited complexity processing of video feed for tasks

such as real-time blue/green-screen replacement or color correction.

Systems related to the video assist hardware, which are high-end augmented

camera systems for real-time viewing of video feeds, have also become more popular

in recent years. These systems allow cinematic cameras to be connected directly to

large computer servers in order to provide additional processing capabilities. This

type of previs system, which utilize large mobile trailers for storing computer sys-

tems, have limited mobility of the user or camera but provides significantly more

processing capabilities to perform simultaneous tasks such as background replace-

ment, motion capture rendering, color correction, and rendering of computer gen-

9

erated objects. Although these are dedicated specialized techniques, directors and

cinematographers are requesting more of these features, which indicates the grow-

ing desire of directors and other movie makers to acquire the capability to view

cinematic elements in real-time and interactively instead of waiting for them to be

applied by a visual effects crew during post-production. This type of previs can be

used to verify a shot and the cinematic choices the directors used, which is some-

times referred to as post-vis. Often times the limiting factor for post-vis, is that the

director may have to wait several hours or days to view the shot due to the effort

required to applied all the processing. In general the downside of on-set previs tech-

nique is the reduced processing and rendering capabilities compared to 3D previs,

mobility when the camera feeds are attached to computer systems, or time when

the shot has to be processed off-set.

As previously mentioned, on-set previs usually provides very limited processing

of the scene, unlike another type of previs called Technical previs, which can provide

a more detailed representation of a scene by using capture techniques, can be used as

additional input for specialized rendering software run on server farms. For example,

Technical previs can include the use of Lidar scanners or hand measurements to

record depth and approximate geometry of the scene [FZ09], which is then used

to create visual effects in post-production. Individual objects can be scanned and

photographed to provide shape, material, and reflection data for use in 3D previs or

post-production visual effects [OZ10]. Additionally, relighting can be performed to

capture actors and objects under different lighting conditions. This is usually done

during the post-production phase of the movie making timeline (as seen in Figure

1.1) and is utilized mainly in visual effects.

Generally, all techniques for scene capture are done in an offline fashion and

utilize methods that are not suitable for real-time processing or use complicated and

10

expensive capture equipment. An example of such an offline technique is the state

of the art relighting developed by Einarsson and Debevec [ECJ+06], which requires

a specially designed performance stage with 30-50 2400fps high-speed cameras and

thousands of controllable lights to capture actors and props in a lighting agnostic

environment to facilitate relighting in post-production. The disadvantage of such a

system is that the set or actors need to be moved to this facility in order to perform

relighting, which sometimes is not feasible. Currently there is no method to perform

relighting of a set without the use of expensive and separate relighting facilities.

1.2 Motivation: Our Vision of Interactive Previ-

sualization with Full Scene Capture

Our grand vision for the perfect previs tool is one that provides all the capabilities

to completely manipulate and render physical scenes in a virtual manner. Our

motivation for creating an idealized previs tool is to allow unbridled creative freedom

for movie makers to plan, experiment, and validate all the artistic choices that must

be made during the filmmaking process. We believe this would lead to better movies

created in shorter time and be expressed in a fashion closer to the vision of their

creators. Because our tool would emphasize the capability to edit all aspects of the

scene virtually, this tool would also change the workflow of the movie making process

by incorporating more capture techniques into the first stages of the movie making

process (pre-production and production). Inspiration for our previs tool comes from

similar tools designed for creating, editing, and rendering completely virtual scenes

created with Digital Content Creation tools (DCC tools), such as Maya and 3D

Studio Max. The difference being that our previs tool would create and operate

on virtual representations of real scenes from captured physical data. The rest of

11

this section describes the details of our vision for an idealized previs tool and some

of changes to the current movie making workflow that would result from using this

tool.

In the previous section we described 3D, Technical, and On-set previs meth-

ods and some of their drawbacks and limitations. These drawbacks can hinder the

creative exploration of options for changing scene elements. Despite these draw-

backs, each method provides a vital function to the previs process as a whole, such

as 3D rendering and manipulation capabilities from 3D previs, precise capture and

measurement of Technical previs, and video input and processing from on-set previs.

These previs methods have little overlap in functionality because they were designed

for different tasks, integrating their core functions would complement each method

and alleviate the drawbacks discussed in the previous section. Therefore, we believe

the ideal previs system would be the union of the core features from 3D, Technical,

and on-set previs.

A new workflow for our idealized previs system would capture all scene data,

convert the data to an editable and renderable format, and finally provide a soft-

ware interface to allow the user to change and render the scene interactively. To

accomplish this, a platform that integrates all captured scene data into a single

interface analogous to those used in DCC tools as seen in Figure 1.4. Then using

this interface, the user can be free to create and modify the scene according to

their artistic vision. Figure 1.5 shows an example scenario where an object in the

scene has been selected by the user via the interface (red dotted line). The interface

then provides all the options for editing the real object virtually such as textures,

reflectance, geometry, and lighting changes and seeing the changes in real-time. Ad-

ditionally, nothing precludes this interface from rendering purely virtual objects as

well; since the scene has been fully captured then all virtual objects can be rendered

12

with real lighting and vice-versa. In essence, what we are describing is no longer

just a tool for previs but a tool that could be used visualizing post-production tasks

as well. These tasks could include but are not limited to color correction, visual

effects, relighting, editing, and thus producing as close to the finished rendering of

the scene as possible during the production phase of movie making. This would free

any restrictions on any creative or artistic aspect of the movie making process for

directors as well as reduce the time spent on post-production. Additionally, this

could lead to more rapid movie making or even real-time movie making, where the

movie is essentially finished when the shooting is done without the need for a lengthy

post-production process. For real-time movie making with this idealized interface to

become a reality, it would be necessary to integrate most aspects of post-production

into the production stage of movie making.

-Geometry

-Re�ectance

-Texture

*

1. Capture 2. Convert
3. Edit & Interactive Render

Raw Data Format

-Depth

-Edges

-Surface

-Direct

-Environ

-Shadow

-Lighting

-Envnt. Map

-Shadow

O
b

je
ct

s
L

ig
h

ti
n

g

Original Scene

Geometry

BRDF

Texture

Direct

Light

Indirect

Light

Shadow

Idealized Previs Interface

Figure 1.4: The workflow of an idealized previs tool on a programmable camera:
1) Raw data is sensed and then 2) converted into scene data to represent the scene
virtually. The scene data can then be 3) edited and interactively rendered using a
3D rendering application.

When filming a movie, ideally a full capture of all aspects of the set and actors

would be performed in order to have full control of the artistic ”look and feel” of the

movie. Full scene capture consists of capturing a geometric representation of each

object, including the spatial relationships that object has with the camera, lights and

other objects. Additionally, each object has reflectance and appearance data that

13

Geometry

BRDF

Texture

Direct

Light

Indirect

Light

Shadow

Idealized Previs Interface
Properties Editor

Figure 1.5: Our Vision: As seen in this camera interface mock up, the full vision for
an idealized previs interface includes the ability to edit all of a real scene’s properties
including but not limited to scene geometry, object reflectance, texture, shadows,
and virtually edit real lights. A user would select the object in the scene to edit
and use the properties editor to the left to modify it. This would provide on a
camera the same level of control for visualization as tools dedicated to virtual scene
rendering, such as Maya or 3D Studio max.

must also be captured, which includes texture, bidirectional reflectance distribution

functions (BRDFs), subsurface light scattering, and light that objects may emit.

Finally to complete the capture, all lighting within the scene must be captured

or estimated, including direct, shadows, indirect, and environmental lighting. Full

capture of all aspects of a scene is currently feasible, but directors often choose

to only capture and view a small portion of the available scene data if any at

all. Generally, scene capture falls under the duties of the visual effects crew, in

which the captured data is primarily used in post-production tasks. Therefore, the

director has little or no direct control over the captured data or how it is visualized

and usually only sees the end result of the visual effect. This produces a huge

creativity void for the director who usually defers to creativity decisions to the

14

visual effects crew on matters of post-production. Also, little if anything is done to

integrate the captured data into a single interface for viewing and editing. The data

is usually captured in a disparate way for specific post-production tasks and therefore

distributed to individual visual effects personnel for performing that specific task,

such as incorporating into visual effects or calibration.

Unfortunately we believe that such an idealized previs interface cannot be re-

alized until a suitable camera architecture is developed for this purpose. Recent

advances in manufacturing and technology have made untethered computing, mo-

bile graphics, and high quality imaging ubiquitous. In turn, this ubiquity has driven

down the cost of mobile devices and made them widely available. The combination

of abundant computing power, high quality imaging, and low acquisition costs have

created an opportunity for low-budget, independent filmmakers, and amateurs to

acquire the same high-quality technology that is used by big movie studios to do so-

phisticated Previsualization and interactive visualization of scenes. Unfortunately,

these technologies have not been integrated into a framework specifically designed

for low-cost Previsualization for the masses. We call this disparity The Interactive

Previsualization Problem, which entails providing accurate scene capture, modeling

and interaction techniques for all types of previs that can be used in conjunction

with low cost imaging and abundant computing power. To alleviate this disparity,

we’ve developed a fully programmable camera architecture which can be utilized to

implement the aforementioned idealized previs interface. The camera architecture

for this project, which we call PCam, can be programmed to accommodate an arbi-

trary processing pipeline to accommodate any level of scene processing complexity.

For example, PCam could be programmed to capture video, apply color correction,

integrate virtual objects, and allow modifications to real objects in the scene vir-

tually as depicted in Figure 1.5 all of which we describe as necessary for an ideal

15

previs tool.

We believe that PCam is an ideal solution to the previously mentioned disparity

for previs because it provides a low-cost, mobile image capture system that can be

arbitrarily programmed to fit a director’s visualization needs. PCam would solve

the limited rendering capabilities of on-set previs devices by providing rendering

capabilities similar to 3D previs systems while providing live video feed, thereby

bypassing the limitations of 3D previs. Additionally, PCam could also integrate

capture methods and processing capabilities to integrate captured scene data for

real-time rendering unlike Technical previs. Compared to Figure 1.1, Figure 1.6

presents a new workflow that puts the director more in control of the choices and

the creative aspects of the whole look of the film and the movie production time is

drastically reduced. With the exception of marketing and distribution, almost all

post-production tasks could be moved to production stage.

Pre-production Production Post-production

Real-Time Filmmaking

Casting

Location

Scouting

Principle

Photography

Visual

E!ects
Set

Building

Sound, Dialogue,

& Music

Marketing

& Distribution

Idea Conception,

Pitch, & Funding

Script

Development phy

 Relighting

On-set3D/Technical

Pitchvis

Chroma-key

 Color

Correction

eyey

Match

Moving

&
Composite

Objects
tch Comp

MoCap

 Relighting

Vi

E!

Grading

Figure 1.6: Real-time movie making timeline (modified from Figure 1.1): By mov-
ing most of the post-production tasks into production, we can envision a time when
blockbuster movies can be made in real-time. This means that directors and cin-
ematographers can view what the actual final look of a scene or shot when the
video is filmed rather than months later. For example, replacing Green-screen or
Chroma-key elements with virtual objects can take several days to weeks and not in
real-time, as this task is primarily performed by a different group of people called
the visual effects group.

As previously mentioned, full capture of the all scene properties is currently

feasible and has been studied academically. While integrating all the aforementioned

16

capabilities in to PCam would be a great proof of concept, to do so would be

herculean undertaking and would drastically increase the cost and time for this

project. Therefore, for this dissertation we have chosen to research an area of

scene capture that has not garnered much attention as the other scene properties.

Specifically we focused on capturing and estimating the lighting, independent of the

other scene properties. Scene lighting has a dramatic effect on the artistic aspects of

the scene by evoking mood, directing attention to something specific, and allowing

the director to convey thoughts and ideas. Figure 1.7 highlights several examples

of the use of cinematic lighting; for example the top left of the figure draws your

attention to the oncoming train but the top center of the figure focuses your attention

on the hero and the top right of the figure gives an angelic aurora to the person in

the scene.

Figure 1.7: A collage of example lighting concepts; top left is a scene from the
HBO show ”Dexter”(2010), top center is a spotlight on the main character from the
movie ”V for Vendetta”(2005), and left top is a backlight shot of another character
from the HBO show ”Dexter”(2010). Bottom left is a backlit image of a scene from
the movie ”300” (2006), center another backlit image from a Japanese music video,
and bottom right is illumination focusing our attention in the movie ”127 hours”
(2010)[bEP11].

17

In addition to PCam, the work of this dissertation specifically focused on a

novel method for capturing and relighting the direct lighting emitted from multiple

individual light sources and their relationship to the other parts of the scene. We call

this method Symmetric Lighting and it not only provides the ability to capture but

edit and manipulate the lighting so as to provide the director with tools to preview

physical lighting changes, virtually, in real-time. This would provide directors the

freedom to iteratively change the on-set lighting, fine tune the color, intensity, and

direction with instant feedback, without having to wait on the lighting crew to

physically alter the properties of the light or completely change the lights altogether.

Our personal communications with a movie industry insider and academy award

winning researcher Paul Debevec, highlights this issue; ”Since more than half the

time on-set is involved in setting up lighting, relighting enables directors to correct

inconsistencies in lighting of actors or props only” [Lin10]. Additionally, relighting

has become an active research area in the movie industry in recent years due to what

Paul Debevec describes is the issue that ”committing to a particular lighting choices

at the time of filming is troublesome when so many other elements are decided in

post-production” [Lin10]. These inconsistencies in lighting degrade the quality of

the look of a movie if not fixed in post-production or can cause a reshoot with

lighting changes, which increases the expenditures of the movie, making relighting an

attractive tool for directors. Unfortunately, current relighting techniques only focus

on correcting the lighting of the actors separate from the set, whereas the aim with

our Symmetric Lighting method is to allow the director the ability to get it right in

accordance with his or her vision, the first time, on-set. Additionally, our relighting

can be integrated into the previous described ideal previs interface implemented on

PCam for interactive relighting, which Paul Debevec says ”[In cinematic lighting

design] it is important for the director or lighting artist to change the lighting

18

interactively” [Lin10].

Symmetric Lighting provides a first step toward complete lighting control by

allowing the user to edit and manipulate the direct lighting contributions. Our

future work includes a vision of complete control of lighting, which entails being

able to control indirect lighting phenomena as well. By adding indirect lighting

control we can create plausible and implausible renderings that can accommodate

the artistic vision of directors to create works that use cinematic lighting for evoking

affective responses from their viewers as is seen in Figure 1.7. A vision of being able

to render completely new lighting throughout out the scene is the ultimate goal of

relighting. This brings forth ideas of using techniques such as ray tracing or photon

mapping for real and natural scenes in ways that were only intended for virtual

scenes. Such a vision would include phenomena such as subsurface scattering and

participating media effects even when these properties may not exist in the real

scene, to provide an unprecedented control of the look and feeling of the scene.

1.2.1 Summary of Dissertation Challenges

Listed below are the over-arching challenges faced during the development of this

dissertation as well as for the fully-realized future version of our previs interface.

Specifically, these challenges arise when developing a software framework and hard-

ware technologies that is intended for capturing, analyzing, and rendering of all

scene properties, at interactive rates, on a programmable camera. We present these

challenges to provide a broad-scoped view of the complexity involved in fusing the

different previs types and their respective technologies.

• Integrating Scene Data from Different Capture Techniques: Faith-

fully reconstructing a real scene digitally can be done in several ways, such

as with laser scans, stereo, sonar, or direct measurement. The benefits and

19

limitations of these techniques vary drastically in speed, accuracy, and cost,

which can affect how easily they can be integrated into a previs framework.

The challenge lies in understanding and determining which capture technique

is most suitable for on-set previs and determining the best methods for in-

tegrating this data into our previs framework. Additionally, once a capture

method is chosen, what methods for noise reduction is appropriate for use

within an on-set previs framework. Finally, immediate feedback is imperative

for on-set previs and providing less emphasis on the quality of render is gen-

erally acceptable in the previs community. Therefore, we try to incorporate

a capture technique that is fast but provides a good trade off with respect to

speed and high-quality scene capture and render.

• Data Inversion and Conversion: Most capture techniques provide data

that requires conversion in order to be re-rendered in previs, such as point

data captured from a laser scanner, which needs to be converted to mesh

data before rendering. Also, some data from capture techniques will need

further processing or inversion in order to provide the appropriate raw data

for conversion to renderable data, such as separating lighting from appearance

data in order to generate raw texture information that can converted to texture

maps. The challenge is providing the appropriate methods for conversion and

inversion which can be performed on a programmable camera platform in a

reasonable amount of time for previs purposes.

• Eliminate Noise in Captured Data: Measurement noise and ambiguity

occurs in all capture techniques to varying degrees. The challenge is, once a

capture method is chosen, what methods for noise reduction is appropriate for

use within on-set previs framework?

20

• Investigate Sampling Rates to Balance Speed and Quantity of Cap-

tured Data: Reducing the number of spatial and temporal samples when

capturing scene data can speed up acquisition but can lead to sparse data

and visibly inconsistent reconstruction. Too many samples can produce high-

quality data but at the expense of speed of acquisition and storage costs. The

challenge is choosing a capture technique that is fast but provides a good trade

off with respect to speed and high-quality scene data. For previs, immediate

feedback is imperative and quality of render to a lesser degree.

• Devise Optimal Scene Representation : Once scene data is captured,

the reconstructed geometry of the scene can be represented in many different

ways, such as point data, triangle meshes, or image-based data. Each choice of

representation can impact the visualization technique and reconstruction time.

The challenge is in understanding the trade offs with each representation and

choosing one that is most appropriate for the on-set previs framework (e.g.,

speed, accuracy, interactivity, etc.).

• Visualize Reconstructed Scenes: Techniques for rendering the scene data

for Previsualization are intimately tied to the representation of the recon-

structed scene. Although, surveys have been done [SCD+06] regarding various

data reconstruction methods, there is no standard framework for rendering re-

constructed scene data. The challenge is choosing an appropriate rendering

technique that is compatible with the reconstruction of the captured data and

achieves the desired results for interactive and 3D previsualization.

• Flexible Platform for an Ever Changing Workflow: Developing a pre-

vis method that can satisfy all types of artistic visions and previewing desires

would be an intractable task. Because we cannot know what every director or

21

cinematographer may want or need, anticipating these specific needs is futile.

Therefore, our challenge is in designing a previs interface for on-set previs and

programmable camera that is flexible enough to be customized to fit the needs

of most users. Also, because we assume that in the future more tasks will be

incorporated into the production phase of filmmaking; another challenge is de-

veloping an architecture that scales with the increasing demand of processing

power for each additional task.

In summary, the capture, conversion, representation, and visualization tech-

niques employed in this dissertation must take into account the end goal of inter-

active previs. To do this, proper capture techniques must be chosen which balance

error rates, acquisition time, and acquisition data size. Additionally, in order to pro-

vide interactive visualization of the scene data, the appropriate scene representation,

sampling, and reconstruction techniques must also be employed in the framework.

Even though preventive measures will be taken to minimize error, the primary goal

of this on-set previs project is to approximate the scene to aid in planning and pre-

viewing how the shot would look. Therefore, the resulting data capture techniques

may result in higher-error rates due to environmental and object properties such

as excess ambient lighting, occlusions, and specular surfaces. Even though many of

the capture techniques that may be used for previs have been extensively studied

[DWT+02, WGT+05, HS98, FLW02, Deb98a, SNB07, GH00, HPB06a, OKP+08,

RKKS+07, PTMD07], there is no standard reconstruction and rendering technique.

This is especially true when considering the use of graphics hardware for accelerating

the reconstruction and visualization of the captured data.

Therefore, this dissertation works toward establishing a framework for high-

quality previs which includes automatic modeling of scene lighting using low-cost

”off-the-shelf” camera technology, novel scene analysis algorithms and representa-

22

tion techniques, and interactive visualization. Our research and development of a

system for capturing and interactive rendering of scenes for previs could alleviate

the need for directors to wait for time consuming and complicated effects to be ap-

plied by third parties (visual effects personnel and indie filmmakers). If successful

in alleviating this time gap, the benefits could result in higher-quality movies with

fewer reshoots and less time spent on production because feedback to the direc-

tor would be almost instantaneous. In the future, in conjunction with adding full

scene capture, automatic scene modeling, and interactive rendering, this work could

also lead to advances that allow for high-quality cinematic movie making to be ac-

complished in real-time, potentially spawning new areas of film making and rapid

visual story telling. Additionally, this project could provide a path that leads to

a commoditization of high-quality movie tools embedded in the camera that could

be programmed to perform all the major steps of production and post-production

with the same quality seen in large budget studios. This could lead to a revolu-

tion of high-quality movies made by low-budget and hobbyist movie makers thus

democratizing high-quality movie making.

To achieve interactive on-set previs of elements normally performed in post-

production, a confluence of a new programmable camera architecture, novel GPU

amenable photometric scene analysis and image processing algorithms, and visu-

alization applications must be carefully constructed to maximize throughput and

provide adaptive visualization. To fully appreciate the scope of the approach of this

project and the challenges of Previsualization, one must realize that Previsualiza-

tion is truly an ”end-to-end” technique. Raw data is sensed in the form of photons,

then converted and interpreted into a representation that can be reasoned about

and visualized in an intuitive way. Disciplines such as computer vision strive to rea-

son about sensed visual data from ill-constrained and noisy input but generally lack

23

intuitive and aesthetic visualization. On the other hand, computer graphics tend

to focus on intuitive and aesthetic visualization and is generally initialized with

well-defined input, such as geometry, textures, and lighting. In previs, a formidable

challenge lies with developing a technique that spans several disciplines including

digital photography for capturing and sensing scene data, computer graphics for

conversion and rendering data, and computer vision for capture and understanding

scene data. The convergence of these three fields has been described as Computa-

tional Photography1 [Fer06]. This dissertation views Interactive Previsualization as

being within the realm of Computational Photography, as it strives to sense and rea-

son about data such as in Computer Vision as well as provide intuitive and aesthetic

visualization of data as in Computer Graphics.

1.3 Thesis Statement

The goal of this dissertation is to improve the capabilities, realism, accuracy, speed,

and cost of on-set previs for visualizing movie sets. We developed a framework

composed of three main functions, capture, analysis, and visualization as illustrated

in Figure 1.8. Each of these stages will be embedded in a single platform, a pro-

grammable camera back-end, which we call PCam [LAW09]. PCam not only alle-

viates the current gap between capture and processing within today’s cameras but

also provides a novel visual programming interface to facilitate the implementation

of capture, analysis, and visualization algorithms. Much academic work and many

algorithms exist that can capture parts of a movie set and convert the raw data to

3D digital geometry, texture, and reflectance information (as described in Section

1Alternatively Computational Photography has been defined as any technique that tries to
record a richer visual experience through the use of plentiful computing, digital sensors, modern
optics, actuators, probes and smart lights [RTM+06].

24

1.2), with the exception of on-set lighting. Therefore, this dissertation focused its

efforts on developing a novel photometric capture, analysis, and processing of physi-

cal on-set lighting with the goal of allowing for virtual manipulation of that lighting.

We previously introduced this novel light capture method as Symmetric Lighting.

The work done in this dissertation provides the director the ability to virtually edit

the color, intensity, and locations of the physical lights. An ancillary benefit that is

a consequence of light manipulation, the director now can identify and manipulate

the shadows, provide perform white balance of multiple illuminants, and identify

the color of lighting, all of which has not previously been possible in this fashion.

Lastly, in this dissertation project we developed an interface specifically designed

to integrate all of the aforementioned capabilities into a single application, thus

providing a unique visualization tool that can be used for on-set previs of movie

sets.

Previz

Photometric

Analysis &

Processing

Programmable

Camera

*Relighting

 -Lighting Operations

 -HDR, NPR Relighting

*Multi-Ill. White Balance

*Illuminant Color Est.

*Symmetric Lighting

*Gradient Domain Ill.

*Shadow Detection

*PCam & PCam UI

*Visual Programming

Figure 1.8: This image provides an illustration of the relationship of the developed
Previsualization framework components. The data is then sampled and converted
using a novel programmable camera. The camera input can be photometrically
analyzed and manipulated on camera for interactive feedback. The converted rep-
resentation can then be visualized and further manipulated on-camera.

25

Although the PCam framework does not eliminate the need for hand drawn,

artist centric, storyboarding techniques as a conceptual medium, it will eliminate

the need for tedious measurement and reconstruction of lighting environments and

allow directors to see the implications of their cinematic choices instantly. Also, the

on-set lighting captured via Symmetric Lighting could serve as input to other forms

of previs as well as used in post-production for relighting and visual effects. This

could eliminate the need for manual re-creation lighting in other areas of produc-

tion and other computer generated effects. In addition to advancing the commercial

field of Previsualization, this work makes several novel contributions to the aca-

demic communities of Computational Photography, Computer Vision, and Com-

puter Graphics. This work could also have an impact in the commercial movie

making field as well , with 50 to 75 percent of the on-set time being spent being

spent dealing with and adjusting lighting2. With on-set time being the most expen-

sive part of the movie making process on an hourly-basis, we believe the work in this

dissertation can prove increase the value of previs by reducing the cost associated

with on-set lighting adjustment. For example, Spiderman 2’s on-set production cost

was 45 million dollars. Then if we assume that a reduction in on-set time of only ten

percent could result in a savings of 4.5 million dollars, on-set lighting previs would

only need to reduce the time adjusting lighting to no more than 65 percent of the

time.

1.4 Dissertation Contributions

The primary academic contributions of this dissertation include :

1. PCam: A Programmable Camera Architecture and User Interface

2Refer to the previous quote by Paul Debevec as well as our interview of industry professionals
in Section 6.5

26

(Chapters 3 & 4)

• Novel Programmable Camera back-end : The architecture of mod-

ern digital cameras can generally be decomposed into three main stages:

image capture, image adjustment, and image encoding and storage. While

the technology that implements each camera stage has evolved since its

invention, the core design of digital cameras has not changed and today

remains unprogrammable. To address this issue, a programmable cam-

era backend was developed, which allows users to redefine, re-order, and

modify arbitrary camera pipelines for previs.

• Novel Visual Programming Interface : Current programmable cam-

eras only have text-based programming interfaces[ATP+10], which pro-

vide an Application Programmer Interface (API) which not only requires

a user to understand but also be proficient in a high-level programming

language thus making programming current programmable cameras dif-

ficult. To mitigate this problem, a novel visual programming interface

for programmable cameras was developed during this work, which can be

utilized for PCam as well as other programmable camera architectures.

• Simplified Programming Model : Programmable camera program-

ming has a high learning curve because of the prerequisite knowledge

needed to understand the inner workings of a camera as well as being

familiar with the implementations of the required image processing and

computer vision algorithms. To reduce the learning curve and make pro-

grammable cameras more accessible to a wide audience we designed a

simplified programming model and camera pipeline abstraction that re-

duces the learning curve for non-technical users.

27

• Iterative Programming and Instant Feedback Capability : Cur-

rent development process for programmable cameras require development

to be done somewhere other than the picture taking environment, then

travel to and from the picture taking environment to take and review

the image that was captured using a programmable camera. This can be

time consuming as trivial changes to the camera pipeline require traveling

back to the development environment. WYSIWYG feedback was built

into the UI, which allows users to immediately view changes to camera

pipelines as they develop or edit filters, shortening the development cycle

of previous Computational Photography development approaches.

2. Photometric Analysis & Symmetric Lighting (Chapter 5)

• Novel Light Capture Technique : We developed a new technique for

capturing the combined influence each light on a particular pixel within

an image, which we call Symmetric Lighting. This technique is a novel

light capture method that estimates through global optimization, the

mixture of multiple light sources at each pixel and store this information

in an illumination map, which we refer to as the Beta (β) map. The

β map accounts for each light’s contribution separately, allowing for the

manipulation of each light source independently of each other.

• Novel Light Editing Method : We constructed gradient domain op-

erations manipulate function using first order statistics (i.e., derivatives)

in order to affect groups of pixels in a meaningful way. It has been shown

that the Human Visual System (HVS) is more sensitive to changes in lo-

cal contrasts as opposed to absolute levels [RBH08]. It is also been shown

that image gradients correlate to differences in contrast [BZCC10]. This

28

motivates the use of gradient domain operations for manipulating the

illumination map. A novel gradient based illumination operation was de-

veloped to untangle the influence of geometry from the illumination map.

This method uses an edge suppression technique in the gradient domain

which is then reconstructed using a Poisson solver.

• Novel Shadow Detection Method : Image-based shadow identifica-

tion can be a challenging task especially when the objects casting shad-

ows are stationary. Many academic papers and algorithms have been

published based on different statistical features, intensity, chromaticity,

physical, or other assumptions about the scene. We developed a novel

method based on Symmetric Lighting in conjunction with a threshold

watershed algorithm that can identify the shadows within an image. Our

detection method includes the identification of umbra and penumbra re-

gions within the image, making editing of soft shadows possible. Addi-

tionally, our method allows for identification of shadows corresponding to

specific lights within the scene, which to our knowledge is not currently

feasible with other methods. Unlike other methods, we make no assump-

tions about the scene properties such as, geometry, texture, or spatial or

temporal clues that may exist within a scene.

3. Visualization & Previsualization (Chapter 6)

• Novel Real-Time Relighting Method : Capturing complex light-

ing environments for use in rendering applications require sophisticated

setup, travel to location, and dense sampling of the lighting environment.

We developed a new real-time relighting method that can account for

multiple illumination sources including complex, spatially-varying light-

29

ing environments. Beyond typical relighting, our application allows for

manipulation of the light distribution and location of the lights. Also,

we developed a novel color editing capability for each individual lights

as well as a log-based range scaling method, which can produce High

Dynamic Range images from low dynamic range lighting data.

• Novel Multi-illuminant White Balance : Most current research in

white balance methods make the simplifying assumption that the entire

photographed scene is illuminated by a single light source. However, most

real-life scenes contain multiple lights and the illumination recorded at

each camera pixel is due to the combined influence of these light sources.

A fully automated multi-light white balance method was developed that

requires no user interaction and determines color constancy in low light

and low color images.

• Novel Light Color Estimation Method : The most common way to

measure the color of light is to use a device called a Spectrophotometer

which uses diffraction grating to analyze the spectrum of the light. These

devices can be very expensive and generally require a laboratory setting

to be used effectively. We developed a light color estimation method

that utilizes the β map from our Symmetric Lighting method to esti-

mate the color of a physical light from camera images without the need

for separate and expensive hardware-based estimation method such as a

spectrophotometer.

Although not a direct contribution but more of an over-arching theme, this dis-

sertation leverages graphics hardware (GPUs) to speed up the capture, processing,

and visualization of data captured by computer vision techniques. To my knowl-

30

edge, this is the first full end to end light capture for on-set previs implemented on

graphics hardware. Using graphics hardware in this fashion should help to bridge

the gap between the vision and graphics communities by providing software, algo-

rithms, and evaluations for techniques that utilize graphics hardware for solving

vision problems and the visualization vision data.

1.5 Outline of Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 discusses re-

search in the related areas of this project and provides background knowledge to the

work done; Chapter 3 describes the programmable camera architecture and Chapter

4 outlines the visual programming user interface. Chapter 5 outlines the photomet-

ric analysis and processing that serves as the analytical foundation for Symmetric

Lighting and defines a novel data structure for storing lighting contributions per

pixel of each light, called the β map. Chapter 6 describes the visualization and

Previsualization applications that are now possible as a result of the programmable

camera architecture and the photometric analysis and processing algorithms as well

as the quantitative assessments of all the contributions made in this dissertation.

Chapter 7 outlines work that this project can incorporate in the future. Finally,

Chapter 8 provides the final conclusions followed by the Appendix, which includes

definitions, selected programming code, and additional renderings.

31

Chapter 2

Related Work

2.1 Programmable Imaging

2.1.1 Programmable Camera Components

Shree Nayar has envisioned the concept of a programmable imaging system [Nay06]

as one that controls the properties of the optical components that capture light, while

dynamically changing the software to process the variations in input due to changes

in these properties. Although recent research in Computational Photography has

demonstrated that it is feasible and useful to have various optical components be pro-

grammable, little progress has been made to develop an architecture for dynamically

adapting the software that processes and reconstructs the captured data. These pro-

grammable components strive to extract information from light fields that current

camera components cannot. Multi-flash[RTF+05], flash/no-flash pairs[PAH+04] and

projector-based active illumination[ZN06a, MNBN07] techniques have been used to

extract depth information, denoise images, separate local and global reflection com-

ponents and in general produce higher quality images from a scene. Coded [LFDF07]

and programmable [LLW+08, VRA+07, ZN06b] apertures have been used to ex-

32

tract depth information from a scene, capture light fields, and provide information

for refocusing images. Programmable and coded lenses in the form of wavefront

coding[ERDC95] and programmable Digital Micro-Mirror Arrays[NBB04, NB03]

have been used to extend the camera’s depth of field, increase the dynamic range,

and facilitate object recognition. Shutter programmability[RAT06] has been shown

to reduce or alleviate information loss from motion blur in order to reconstruct an

unblurred image. Programming the imaging sensor involves modifying sensor pa-

rameters, such as exposure time and pixel demosaicing, to capture incoming light

resulting in increased dynamic range of the sensor. Nayar et al.[NB03] developed a

technique to dynamically adapt the exposure time for individual pixels on a sensor

instead of using a predetermined exposure time for the whole sensor. Johansson et

al.[JLMM05] developed a CMOS image sensor with programmable image processing

capabilities integrated into the imager.

Although these advancements provide some level of programmability on the front

end of the camera, these techniques still require external processing to decode and

render the captured information in order to generate the final image. Therefore

the fundamental limitation to developing a fully programmable camera lies in the

fact that current camera architectures cannot process the results of these techniques

on-camera. This limitation causes current camera architectures and the new pro-

grammable components to fall short of the idea of a programmable imaging system

envisioned by Nayar[Nay06]. Therefore, the P-Cam architecture could be used to

fulfill the need for programmable on-camera processing to fill the gap in current

research toward a fully programmable and repurposable camera.

33

2.1.2 Scriptable Cameras

For some time now, camera manufacturers have made digital still cameras (DSC)

with scripting capabilities such as the Kodak DCS260 (with Flashpoint’s Digita

OS), the Minolta Dimage 1500 and the more recent Canon cameras with Digic II

and III processors. Scripting within cameras gives the camera user the ability to

trigger existing camera functionality by automating a sequence of steps, normally

performed by the camera user themselves, through the use of small programs called

scripts. For example, a firmware ”enhancement” called CHDK (Cannon Hacker’s

Development Kit) lets Cannon Powershot users write camera scripts that mostly

emulate button clicks or menu selections the user would perform while using the

camera. Unfortunately, the scripting capabilities of these cameras are limited to the

existing functionality within the camera and add no image processing capabilities.

Also, emerging Computational Photography techniques such as refocusing, geome-

try reconstruction, motion deblurring, or automatically generating High Dynamic

Range Imagery. Unlike the P-Cam architecture, scriptable cameras do not support

arbitrary image processing capabilities, therefore cameras exhibiting only scripting

like programmability cannot be repurposed for tasks other than accurate copying

of light intensities. In essence, scriptable cameras only exhibit a small subset of

functionality provided by P-Cam.

2.1.3 Smart Cameras & Other Camera-Computer Combi-

nations

Smart Cameras (a.k.a Intelligent Cameras) are self-contained cameras with dedi-

cated embedded computer systems. Smart cameras come in a wide range of config-

urations and target a particular market, usually industrial or robotic vision. These

34

cameras can be programmed to meet the needs of the camera user and have tightly

coupled image processing systems based on software and DSP hardware. In addi-

tion to the image processing capabilities, Smart Cameras can have a wide range

of additional capabilities, such as communication interfaces, external memory, self-

illumination, and movement controls. Smart Cameras are currently based on a

slower DSP and CPU architectures instead of the significantly more efficient stream-

based design [CLL05] we are proposing to use with P-Cam. Another difference

between P-Cam and Smart Cameras are that Smart Cameras are targeted for spe-

cific vertical applications and are not reconfigurable on-the-fly as in P-Cam. For

example, most industrial assembly lines use some form of Smart Camera for prod-

uct inspection. These, like most Smart Cameras, cannot be reconfigured without

reprogramming of the camera’s software and possibly hardware. So repurposing an

assembly line Smart Camera to be a ”Point & Shoot” style camera on-the-fly is

not feasible. Smart Cameras are built with application specific design requirements

(vertical design). Whereas the scalability and flexibility of P-Cam allows it to be

used for a wide range of camera applications spanning camera phones, to ”Point &

Shoot” Cameras, to professional and cinematic cameras (horizontal design). Scala-

bility for Smart Cameras is hard to gauge due to the plethora of different hardware

and software components used to build the wide variety of Smart Cameras. In addi-

tion to scalability and flexibility issues, Smart Cameras are generally cost prohibitive

for consumer level cameras, whereas with current projections for Stream Processors

being produced for around $16 per chip making it a cost effective replacement for

current embedded processors. Also, most Smart Cameras have limited image reso-

lution, usually ranging from VGA to XGA standards since they are used mostly for

industrial applications. P-Cam’s architecture does not put a fundamental limitation

on the hardware used for capturing images.

35

2.1.4 Programmable Cameras

Because the area of programmable cameras is such a new field, there are few works

to cite in this area. The two main frameworks for providing programmable camera

pipelines is the work done by Adams et al. called the FrankenCamera [ATP+10].

The FrankenCamera provides an API and a general paradigm for programming

camera pipelines. This API allows the camera user to write programs that control

the camera and then upload them to the camera to replace the existing pipeline. The

FrankenCamera uses pure C programming and does not provide a graphical camera

UI to the user. Since only one pipeline is loaded at a time, the current camera

pipeline is usually replaced. Because the process of installing a new pipeline is

controlled by a development computer no additional UI elements are needed and the

existing camera UI can be utilized. Development is not done on the camera, so the

user is required to transport the camera to and from the development environment

in order to make changes to the existing camera pipeline or create another one. This

differs from the approach described here in that it provides features within the UI

to create, modify, and test new and existing programmable camera pipelines.

36

Chapter 3

PCam: A Programmable Camera

Architecture

3.1 Overview

The architecture of modern digital cameras can be decomposed into three main

stages: 1) Image Capture, 2) Image Adjustment and Encoding, and 3) Storage.

While the technology in each camera stage has evolved, the core design of dig-

ital cameras has not changed. Recent Computational Photography research has

demonstrated how augmented camera components can extract and encode scene

data such as depth, refocusing information, and higher dynamic range [RTM+06]

in ways not possible with traditional camera components, by making traditional

camera components such as the flash, lenses, apertures, shutters, exposure, and

sensors programmable. Shree Nayar has further envisioned an entire programmable

imaging system[Nay06] as one that controls individual programmable camera com-

ponents, while dynamically manipulating and processing camera input using the

system’s software. Unfortunately Nayar’s vision has not been realized because full

37

programmability beyond the image sensor (programmable backend) is still not

possible with current camera architectures thus limiting their capabilities. Conse-

quently, many advanced computational photography algorithms are implemented

by transferring image data generated by programmable and coded components to a

host computer for off-camera processing in order to render their desired effect.

To address this issue, we describe a programmable camera backend (P-Cam)

that achieves Nayar’s vision and can be used to implement many state-of-the-art

computational photography algorithms on-camera. As concrete examples, we have

implemented several image processing, stylized rendering, and matting algorithms

on-camera. High Dynamic Range techniques, tone mapping, color filters, and object

recognition are also discussed as future work. These implemented algorithms and

the proposed future work are examples of algorithms that currently have to be run

off-camera as a post-process using current cameras.

Analog to

Digital

Conversion

Demosaic

Algorithm

Noise

Reduction

Stage 1:

Capture

Image

Adjustment

Tone

Mapping

Stage 2:

Image Adjustments

Encoding

Stage 3:

Encoding & Storage

Color

Conversion

Analog to

Digital

Conversion

Noise

Reduction
EncodingFilter 1

Demosaic

Algorithm
Filter N...Filter 2

Programmable Camera Pipeline

Figure 3.1: Comparison between traditional camera pipelines (top) and current
programmable camera pipeline architectures (bottom).

PCam allows users to redefine, re-order, and modify the camera pipeline. User

programs (or functions), which we call Camera Shaders, are executed on-camera dur-

ing image capture. Since PCam can be reprogrammed for different specific tasks, a

single camera can mimic the capabilities multiple specialized cameras. To facilitate

the enhanced processing requirements of camera shaders and high pixel resolutions,

PCam uses a stream processor-based design which can perform billions of operations

38

per second in conjunction with tile-based image partitioning to increase processing

efficiency. This architecture overcomes the limitations of scalar processors and imag-

ing Digital Signal Processors (DSPs) currently used in camera architectures, while

providing user programmability of the camera components.

The rest of the section is organized into three sections; Section 3.2 describes the

PCam architecture, Section 3.3 describes the the computation model for PCam, and

section 3.4 discusses the implementations.

3.2 Tile-based Streaming Architecture

3.2.1 Overview

The architecture we now describe shall be the basis for a new generation of pro-

grammable digital camera architectures we call P-Cam. P-Cam allows for arbitrary

shader programs to manipulate video and image frames on-camera during image

capture and can be integrated into future digital camera designs. P-Cam’s archi-

tecture applies existing stream processor technologies and tile-based ideas in a new

domain, namely to create a programmable digital camera. P-Cam is flexible and

designed to work with a wide range of camera configurations while maintaining

efficiency and scalability.

The rest of this of section describes the three main features of the architecture,

the stream processor, tile-based data structure, and supporting features. Although

low-level architectural and implementation details are presented in later sections, we

emphasize that our main contribution is in proposing a novel camera architecture

that shall eventually be fabricated as camera hardware. In this paper, we describe

our architecture and develop a simple prototype that sufficiently demonstrates our

idea’s feasibility. In section 3.4.1 we shall describe potential implementations of

39

P-Cam as well as our prototype. In the following subsections, we describe and jus-

tify the use of tiles as a core data structure, the use of programmable stream-based

processors, as well as supporting architectural features such as texture decompres-

sion, out-of-core texture fetching, datatype with user-defined precision, and high

quality anti-aliasing. Since our design has not been fabricated in its final hard-

ware form, we are currently unable to provide accurate performance measurements.

For instance, the entire camera shall be contained on a single circuit board with

high bandwidth data paths between integrated circuit, which is orders of magnitude

faster than external cabling we use in our prototype. Throughout this paper, we try

to give adequate architectural details that make our vision concrete, but we are also

careful to avoid unnecessarily committing to a specific components and processors

or restricting the architecture to a particular camera configuration.

Kernel

Video/Image

Tile Stream

...
Additional

Data Streams
Video/Image

Tile Stream

Programmable Stream Processor

In Out

Kernel

Figure 3.2: An Illustration of an abstract stream processing model. For our archi-
tecture, the main data stream will be the image or video stream transfered from
the image sensor. The power of stream processor comes from the ability to define a
kernel operation that will operate on an entire stream.

3.2.2 Stream Processor

Multimedia processing currently requires tremendous amounts of processing power,

on the order of 10-100 billion operations per second to achieve real-time perfor-

40

mance [Rix01, KRD+03]. To keep pace with evolving trends and user needs, pro-

grammability has become a standard feature on emerging processors. For these rea-

sons, we chose to center our architecture around programmable multimedia stream

processors. Since programmable GPUs have converged to a stream-based design,

in many ways, P-Cam’s stream processor is architecturally similar to GPUs used

on mobile devices. However, we do not tie P-Cam’s processor to a specific proces-

sor. We assume a stream processor with at least the capabilities of the Imagine

stream processor [KDR+02]. Since digital cameras are battery-powered portable

devices, the amount of power and heat they dissipate is a concern. We expect that

in implementating P-Cam, state of the art power efficiency techniques such as low-

power circuit design and voltage scaling shall be used. However, a full description

of these low-power techniques are implementation details that are beyond the scope

of this paper. Moreover, compared to mobile GPUs that run applications such as

mobile gaming or video processing with sustained high workloads, taking pictures

only takes milliseconds.

To increase efficiency, stream processors capitalize on data, instruction and

task parallelism and locality. Data is mapped to streams and when possible, tasks

are executed as independent kernels. Imaging and multimedia operations tend to

be sequential chains of operations that are repeated on groups of pixels. Thus,

they inherently are amenable to high levels of data and instruction-level paralleliza-

tion [KRD+03]. Therefore, organizing applications into data streams and kernels

prepares the application for stream processing and to take advantage of the homo-

geneity of multi-media applications. The P-Cam architecture feeds images as tiles

into the stream processor that has been programmed with user-specified algorithms

using Camera Shaders as kernels.

The stream processor in P-Cam’s architecture in Figure 3.3 is now described.

41

Texture CacheTexture Store

Registers

Tile Cache

FrameBu!er
Accumulation

Bu!er

Texture

Filter/Address

Decompress

T
il

e
 G

e
n

e
ra

to
r/

A
d

d
re

ss
e

r

Stream Processor

Local

Register

File
ALU

uController

Meory Bus

Interface

Host

Processor

Stream

Register

File

Host

Interface

Stream

Processor

Controller

Compress

Blend

New Stage: Process Image

C
C

D
/C

M
O

S

Im
a

g
e

r
S

e
n

so
r

Stage 1:

Image Capture

Memory Bus

Stage 2/3: Stage 2/3:

Adjustments &

Encoding

Figure 3.3: The PCam architecture. This is detailed view of the new camera stage
shown in Figure 3.1. Image data from an image/video source are converted into
tiles. The tiles are then cached and streamed through a series of Camera Shaders
(depicted as rows of white boxes within the stream processor). Camera Shaders
allow user programmability within the architecture by mapping code to kernels.
Stream processor can access additional streams from either texture memory, kernel
output, or data registers.

For efficiency, the processor features a memory hierarchy. At the highest level of

the memory hierarchy is a global memory bank (SDRAM), where data is stored

before and after processing. The secondary level of memory, the Stream Register

File (SRF), stores stream data on the stream processor for ALUs to read input,

share data and makes it possible one ALU’s output can be chained to another

ALU’s input. At the lowest level, each ALU contains a Local Register File (LRF),

where data and instructions used by a single ALU are stored during operations.

The memory hierarchy exploits fast on-chip bandwidth between the LRF and SRF

and stores data on-chip only when necessary. The result is an efficient processor

that provides a speed-up factor of up to 20-times over scalar processors [KDR+02].

The tile cache acts as a data stream queue for the stream processor and improves

performance when tiles are re-used; groups of tiles are removed in parallel as they

are needed by the stream processor (see Figure 3.3) and transfered to the SRF.

42

This transfer is done in bulk to maximize efficiency, utilize the full bandwidth of the

memory lines, and aids in latency hiding. From the SRF, tiles are distributed to

the kernels and stored in the LRFs to be operated on. The results of the operations

are returned to the SRF to be redistributed to other kernels or propagated back out

to global memory when processing is complete. Because the stream processor can

have many kernels and each kernel applies the same operation to each tile, many

tiles can be processed simultaneously. This parallelism and locality are the core of

what makes the stream processor efficient.

The purpose of the stream processor is to apply the programmer-defined tasks

to the stream of image tiles and additional data streams as illustrated in Figure 3.2.

The tasks, which we call Camera Shaders, are written in a high-level language and

translated into stream and kernel instructions, which are stored in the Application

Processor (see Figure 3.3). Similar to the Imagine stream processor, stream-level

instructions are responsible for routing and scheduling streams and kernel-level in-

structions operate on one or more data streams. The Application Processor issues

routing commands for routing stream to and from the SRF as well to and from

various LRF clusters. The kernel instructions are also issued from the Application

processor to clusters of LRFs. Once the video stream has all kernel operations ap-

plied, the tiles are routed to an accumulation buffer and subsequently copied to the

framebuffer to be routed to the rest of the camera pipeline.

3.2.3 Tile Based Data Structure

As mentioned in the previous subsection, P-Cam operates on images divided into

tiles. There are several reasons we can justify partitioning images into tile. First,

the streams of data fed into the stream processor must consist of small records in

order to efficiently fill and fit the two types of memory used in stream processors

43

(SRF & LRF). Second, comparing tiled images to non-partioned images, processing

tiles reduces the number of data lanes needed to transfer data, since bandwidth is

then proportional to the tile size not the image. Additionally, it has been shown

[AMH02] that memory requirements for intermediate storage of data is also pro-

portional to the tile size. By using tiles we can reduce the memory requirements

by over 33% compared to non-partioned images. Third, tile-based partioning of the

image ensures that the architecture scales appropriately even when high resolution

images are used. For example, high-end camera devices with large image capture

capabilities (beyond the 4k video standard), would use tiles sizes matched to stream

processor not the input image. Therefore, this configuration might use two stream

processors in parallel to process the tiles with minimal change to the architecture.

Non-partioned image frames implementations would not scale as well and would be

combersome. Next we will describe how tiles are generated and how they propagate

through P-Cam.

As outlined in Figure 3.1, the standard digital image capture process must

prepare image data before it can be used as input to P-Cam. At the start of the

rendering process, an image frame generated by the image sensor collects light signals

that are converted to a digital representation resembling a square matrix of RGB

pixels called a Bayer pattern (also called a Color Filter Array) [Bay76]. This pattern

can be configured many ways but we shall assume that a standard pattern consists

of twice as many green pixels as red or blue. To produce an array of RGB pixels,

the pattern must be demosaiced or interpolated to obtain the appropriate RGB

pixel values, which we consider as the raw image data. The raw image data is then

transfered to a memory location outside the imager so that subsequent images can

be processed. The image data is then divided into tiles by the tile generator, stored

in a cache, then streamed as input to the stream processor. In addition to generating

44

tiles, The Tile Generator is also responsible for ordering tiles, storing tiles in the

Tile Cache, and generating texture coordinates for each tile which are all part of the

tile data. The texture coordinates are passed to the stream processor’s application

processor to prepare additional data streams as input to stream processor. Ordering

is used by the stream processor to reassemble the tiles into a coherent frame at the

end of processing.

The Tile Cache is used as an intermediate tile storage after they are generated

by the Tile Generator and before they are requested by the stream processor. As

the Tile Cache fills with tiles, the stream of the tiles can be requested by the stream

processor’s application processor. As seen in Figure 3.3 the Tile Cache is interfaced

indirectly by the SRF via the D-RAM interface (facilitates communication between

on-chip memory and off-chip memory), which transfers tiles to and from the SRF.

As tiles are streamed, they are transfered to the SRF before being distributed to

individual LRFs. The size of the tile, the on-chip storage capabilities of the SRF,

and the number of ALU/LRF pairs dictate the number of tiles that can be processed

simultaneously. The goal is to use tile sizes that provide maximum data locality and

allow for kernel and stream scheduling to fully utilize the high-bandwidth between

the SRF and LRF clusters. This balance is dictated by the particular configuration

of the stream processor used to implement P-Cam and is not dictated by the ar-

chitecture itself. The performance is maximized when the SRF is consistently filled

to capacity with tiles, and just before tiles begin spilling back into global memory

[Owe02]. Tile size and number of tiles are dictated by the stream processor and

camera configuration and are known ahead of time. Therefore, the system can be

tuned to this specific configuration. This is not true when rendering 3D scenes on

GPUs such as in an OpenGL pipeline. The batch size is dictated by the scene size

(how many vertices in a scene) therefore batching in this context requires dynamic

45

sizing. For our case, the frame size and capture rate is known ahead of time, and

therefore the throughput is well-known and the tile size can be static and thus the

performance is predictable.

3.2.4 Supporting Architectural Features

In addition to the previously mentioned architectural features, there are two sup-

porting features which we are important to the performance, flexibility, and precision

of P-Cam. Theses features are texturing and high-quality anti-aliasing.

3.2.4.1 Texturing

In P-Cam, texture coordinates can be generated in two ways, by the Tile Gener-

ator or dynamically within a kernel. Dynamic coordinate generation requires that

texture coordinates be generated as an output stream from a kernel, since stream

processors only output streams. The stream of texture coordinates can be used by

the stream processor to generate and schedule a subsequent stream of texture tiles.

To make tile storage efficient in P-Cam, texture files are compressed in memory and

decompressed during the fetching process. In addition to compressed textures, P-

Cam also offers out-of-core texture fetching, which can fetch textures from secondary

memory outside of main memory.

Compression: P-Cam uses texture compression to reduce storage requirements

for textures and LUTs. As, previously mentioned, cinematic-quality rendering re-

quires many textures. In order to accomodate a large number of textures, the ar-

chitecture will require ample global memory and an efficient lossless decompression

technique implemented in hardware. As with other features of P-Cam, the imple-

mentation will dictate the exact specifics and technique used, but we assume at a

minimum that the decompression hardware used in P-Cam has the same features as

46

the iPACKMAN decompression hardware (also called the ETC or Ericsson Texture

Compression) [SAM05].

Out-of-Core Texture Fetching: In conjunction with texture decompression, the

need for large numbers of textures may exceed the limits of global memory within

the P-Cam architecture. For such situations, we have developed a technique that

allows for quick fetching and swapping of textures from locations outside global

memory. Such a system would incur a time delay as a result of fetching from slower

external memory. Texture compression helps mitigate this problem by producing

smaller textures that require less time to load into memory, but still require the use

a latency hiding technique that allows for smart scheduling of streams of textures.

While a kernel works on a texture stream, parts of that stream are used up and no

longer needed. This allows new textures to replace parts of existing textures, thus

when one stream ends transition to a new texture stream will be seamless.

3.2.4.2 High-Quality Anti-Aliasing

In addition to large texture requirements, high quality anti-aliasing is required for

cinematic rendering. Tile-based rendering has the ability to provide four-times anti-

aliasing without incurring additional computational expense. To provide higher

quality anti-aliasing P-Cam offers three features that allow the user to program

high-quality anti-aliasing. Texture filtering, filter functions, and an accumulation

buffer that can be used for supersampling and downsampling tiles before producing

the final image.

47

Language Comparison

Language Stream

Processor

Graphics/

Imaging

Camera

API

CUDA, CTM

Brook

Cg, HLSL, GLSL

Camera Shaders

Figure 3.4: Comparison of several languages that are used for graphics/imaging and
stream processing.

3.3 Camera Shader Framework

3.3.1 Overview

Historically, the term shader described a small program or function that performed

a specialized task, usually in terms of graphics or imaging. In this spirit, we devel-

oped a framework called Camera Shaders, which allows developers to write shaders

that manipulate incoming video or image during the camera’s capture process to

influence the result of the image. Our camera programming framework has three

components, 1) a language that supports stream programming, 2) functions for in-

terfacing with the image capture hardware and attached camera, and 3) support

for graphics and imaging programming. Each of these components exist in various

other languages separately (see Figure 3.4), but no langauge or framework contains

all three. For example, CUDA contains an imaging and graphics framework along

with a stream programming language but lacks a camera interface. And GLSL

(OpenGl Shading Language) supports graphics and imaging but doesn’t explicitly

define a stream programming language. Since no framework exists that provides all

three components, we describe such a framework. Thus, Camera Shaders enables

48

new functionality, through the writing of shaders, to become part of the camera

system. The result is a programmable camera system that allows for a wide range

of applications to be possible with a single camera hardware architecture.

As illustrated in Figure 3.5, the Camera Shader framework exposes four classes

of functions; a camera interface, stream programming, math, and graphics and

imaging. The stream and kernel functions allow the user to define and schedule

data streams, kernels, as well as routing streams to and from kernels. For example,

we may define a texture object as a data stream, then pass that stream into a kernel

for processing. The result of that kernel can also be used as input to another kernel

(see section 3.3.3 for more details on this example).

Stream Data

Kernel Data

Reduction

Structures

Macros

Color Transform

Convolution

Blur

Key

Compositing

Texturing

Registration

Segmentation

Di!erence

Dynamic Range

Operators

Trig

Common

Exponential

Geometric

Matrix/Vector

Noise

logic

Stream ImagingMathCamera

Camera Info

Lens Info

Frame Info

Time/Date

Compression

Light Sensor

Flash

Application Programmer Interface Functions

Figure 3.5: This figure outlines the groups of API functions; compositing, image
processing, math, and camera functions.

3.3.2 Function Classifications

Stream Programming: As previously mentioned, stream datatypes, keywords, macros,

and functions define stream programming constructs of our framework. Our frame-

49

work uses a modified version of the Brook [BFH+04] stream programming language.

Streams are defined using the <> symbols, where a stream of 400 floats would be

declared as float foo<400>. A kernel function is declared using the keyword kernel

preceding the function name, such as kernel void bar(float foo<400>).

Math Functions: The Camera Shader Framework provides a standard set of

math functions that are available in many other shader languages. These functions

include arithmetic types and operations, geometry functions, matrix operations,

trigonometry, and miscellaneous functions.

Imaging Functions: A wide range of imaging functionality will be provided with

the Camera Shader framework. The term Imaging Operation is used in a generic

sense to mean any function that can be applied to an image. This includes com-

positing, image processing, color transformations, blending, and texturing.

Camera Functions: Current camera models provide users facilities for configuring

some of the features within a camera such as exposure, shutter speed, and focus. In

addition to configuration, cameras contain information about the environment and

the camera itself such as light sensor data, timing, and battery level. Our framework

provides access and manipulation capabilities to a wide range of features and data

related to the camera. This data can be used within the shaders to enhance and

manipulate the images during the capture process.

3.3.3 Example Shader

Figure 3.6 is a visual illustration of a technique called Chroma keying (a.k.a. blue/-

green screen) and Figure 3.7 provides psuedo-code for two Camera Shadera that

implement this example technique. Chroma keying replaces a solid color back-

ground with a different color from foreground objects in order to extract it and

replace it with a virtual background. In the shaders, we can map these operations

50

Input Segmentation Composition Output

C - (1− α)B = αF

- =

Fα + (1− α)B’ = C’

+ =

C

F F

B’B∗α

C’

-

B

Figure 3.6: Chroma keying: Using color differences, foreground and background are
separated and foreground is combined with a new background. The foreground (F)
and the background (B) are separated from the original image (C), the 2nd pass is
the composition pass where the extracted foreground F is composited with a new
background B’ to produce a final image C’. The simplified formulas for both passes
are reversing the process of the other pass. This technique relies on alpha (α) and
information at each pixel only.

to the streams and kernels in two passes. The first kernel has one input stream,

the original video/image, and one output stream that is the result of masking the

foreground objects to remove the background. This task is accomplished using the

the provided key function within the kernel, which separates the foreground from

the background, thus making the background completely transparent. The second

shader takes as input three streams, the original video/image, the mask from the

previous kernel, and the new background image. In this pass, the mask is used to

extract the foreground objects again from the video/image frame as well as mask

the new background. The foreground objects are then composited with the new

background to form the final image. The foreground object is then composited with

the background stream and then copied to the out stream.

The output of this kernel could now be passed along to the next kernel without

the use of intermediate buffers. The subsequent kernel could apply an additional

operation on the stream such as color correction, or another effect. It should be

apparent that applying several effects (previously would be considered post process)

51

kernel segment(stream in vs, stream out mask)
{
 float alpha = key(GREEN, in);
 mask = vs - (1.0 - alpha);
}

kernel composite(stream in vs, stream in mask,
 stream in bg, stream out fc)
{
 fc = (vs - mask) + (1.0 - mask)bg;
}

Video

Stream

Video

Stream
Mask

Back

Ground

Final

Composite

Kernel

Kernel

Figure 3.7: This example illustrated in Figure 3.6 outlines directing the flow of data
streams from one kernel to another. The input to the composite function is a stream
of tiles from the capture device and texture data stream for the virtual background.
The overall effect of this operation is called chroma keying, which removes a color
coded background with a virtual background.

would result in the real-time visualization of the visual effects.

3.4 Implementation

The implementation of the PCam architectures has gone through two iterations,

version 1, which is the original prototype and version 2, which is the current version

of PCam from which the rest of this dissertation was implemented. We provide a

description of the implementation of version 1 for completeness, which is described

in Section 3.4.1. The current version of PCam is subsequently described in Section

3.4.2. Additional conceptual features of PCam, which will be part of a version 3,

are described in Section 7.4 as part of the Future Work chapter.

52

3.4.1 PCam Version 1

3.4.1.1 Overview

Version 1 of PCam consisted of two separate applications for the development and

execution of camera pipelines, 1) the on-camera software that captured and pro-

cessed images where the camera pipelines were used, and 2) a Workbench applica-

tion for developing camera pipelines on a desktop computer. Camera pipelines were

developed and tested on the Workbench application and then transferred over to the

camera when ready for use on-camera. The implementation of both the Workbench

application and the camera interfaces went through two phases before completion,

the review phase and implementation phase. The review phase consisted of evaluat-

ing three separate UI frameworks for possible implementation of the Workbench and

camera interfaces. The second phase, the implementation phase, consisted of im-

plementing the Workbench and camera interfaces using our choice of UI framework.

For this project, we chose the Qt framework [Nok09] due to availability on the tar-

get computing platform (Beagleboard [Bea09]), the feature set it provided, and its

compatibility with the chosen programming language (Python) memory footprint.

In the following sections we describe the review process, the implementation, and

the software and hardware used to implement the Workbench and camera interfaces.

3.4.1.2 UI Server Comparison

Each choice of UI framework depends on an underlying graphics rendering envi-

ronment in order to visually display their widgets. Because we are using Linux as

the target operating system kernel (Angstrom as the OS), we have three choices for

graphics rendering environments, the X windows system, Qtopia (Trolltech/Nokia),

and using the frame buffer directly known as DirectFB. By far the most widely used

53

environment on all Linux and Unix kernels is the X windowing system which pro-

vides a client/server configuration for graphics rendering. Qtopia is a self-contained

windowing system implementing the Qt UI framework and is targeted for embed-

ded systems. Several UI frameworks have the capability to directly access the frame

buffer, such as GTK, thereby bypassing the overhead of an intermediate hardware

abstraction layer. Because each framework considered depends on an underlying

graphics environment, these dependencies have to be taken into consideration when

choosing. Table 3.1 provides a comparison of the criteria used for determining the

best UI framework for this project.

Api Mem. M.M. Wigs. On BB Script UI Des. RT

1 Qt 5MB (No X) Yes Yes Yes Yes Yes
2 Flex (Flash) <1MB (No X) Yes Yes Yes No Yes
3 Gtk 12-15MB No Yes Yes Yes Yes
4 FB (No X) N/A N/A N/A N/A Yes N/A

Table 3.1: A comparison of various features of four different UI frameworks we
considered for implementing the camera interface.

The X Windows system (X) allows reuse of many existing UI framework for em-

bedded UI thereby making the available number of frameworks much greater than

other graphics environments. Some examples of UI framework currently running

on the Beagleboard with X are Qt (not Qtopia), GTK, FLTK, Motif, and Java’s

AWT. Because X was designed in a client/server paradigm, the overhead associ-

ated with communication and multiple processes between the server and client can

have performance implications. Additionally, X servers can be particularly use-

ful in computing environments which require several graphical applications to run

simultaneously, such as mobile internet devices (MID).

DirectFB provide a high-level abstraction of the Linux frame buffer interface.

This option provides access to the underlying hardware via an abstraction but does

54

not provide any graphics or rendering routines. This is a popular choice for develop-

ing new UI frameworks, such as with Clutter [Pro09] for leveraging OpenGL [SGI09]

for rendering UI widgets. It requires drivers for OpenGL ES 2.0, which are currently

unavailable in the public domain for the Beagleboard. This can be very fast as in

future releases may take full advantage of graphics hardware for acceleration.

The embedded version of the QT UI framework called Qtopia [Nok09] is capable

of running directly on the frame buffer, enabling ported or new applications devel-

oped using Qt to run on an embedded system without alleviating the performance

cost overhead of using X. Qtopia is an integrated graphic software stack providing

the graphic environment, support libraries, and widget toolkit. Qtopia provides

an optimized version (somewhat restricted) version of the Qt framework to run on

embedded platforms with a memory footprint around 5MB. Qtopia and Qt on X

provide two options for running Qt based applications on embedded systems. Fu-

ture versions will also provide graphics acceleration via graphics hardware, thereby

allowing for faster rendering and integrated graphics widgets.

3.4.1.3 UI Frameworks API Review

Before determining the UI framework that would be used to implement the Work-

bench and camera interface, we reviewed three potential APIs for implementing our

interface. These APIs were Qt, Flex [Ado09], and Glade [Gla09] with GTK [Gno09].

Qt is a cross platform UI framework originally developed by Trolltech (now owned

by Nokia) in C++ with Python bindings. Flex is an open source framework based on

Adobe’s Flash for developing rich Internet applications to be run within a browser

that is and uses an XML variant called MXML. Glade (User Interface Designer)

and GTK+ are two complimentary tools for creating cross platform UIs written in

C++ but has many bindings. Initially, we started the development of the interfaces

55

using all three frameworks.

Figure 3.8: Three screen shots of early UI from the each of the three sampled
frameworks. Left, is the Glade/GTK+ running on the Beagleboard. Center is the
Adobe Flex interface running within a browser. Right is the Qt interface.

Each of the available implementation frameworks we considered were viable op-

tions. Therefore, we used a method of elimination to determine the best framework

for this project by considering performance, available multi-media widgets, and if it

was currently working on the Beagleboard ditribution operating system (Angstrom).

We conducted an informal review to determine which framework would be the least

viable option for our implementation. Considering that Qt provided a mature frame-

work supported by a large company made it an attractive choice. But one very

important criterion we had to consider was how it would perform in an embedded

environment. Qt is ideal for embedded environments because it offers a specific

version of its runtime for embedded systems called Qt Embedded. The other two

choices did not offer an embedded option, although Adobe Flash (proprietary ver-

sion of Flex) has been implemented on several mobile devices but currently not the

Beagleboard. Due to the lack of Flex/Flash plugins for the Beagleboard browsers,

it was currently impossible to run a Flex interface on the embedded system itself

and required a web browser on an external machine in order to view the camera

interface, which invalidated this choice.

The programming model for Flex was considerably different than the other two

56

(considering the web based client/server model) choices. GTK and Qt could be

developed using a single program with separate classes which is more traditional for

desktop and embedded programming. Flex required a webserver that was configured

to run CGI scripts (for the Beagleboard, this was Apache). In addition to providing a

familiar desktop programming model, QT also provided specific classes implemented

to provide a Model/View/Controller programming implementation.

Another determining factor was that the filters (shaders) implemented for this

project relied heavily on the use of OpenGL for rendering. This means that the

UI framework would have to have an OpenGL compatible display widget. QT and

GTK had such a component, but at the time of implementation it was not clear

that Flex did. Because Qt had embedded support, was mature, provided additional

programming features (MVC), and was OpenGL compatible, it was chosen over the

others.

3.4.1.4 Qt UI Implementation

As previously mentioned, for implementing the UI of the Workbench application

and camera interface, we decided to use the Qt UI framework. From Qt version

4.2 and above, the framework provides groupings of classes specifically designed to

be used within a Model/View/Controller programming paradigm. Both interfaces

used this paradigm for organizing the implementation software (Figure 3.9). The

View consisted of the QT UI widgets. The Controller was Python code designed to

react to and instigate actions that constituted the application logic. A light-weight

database was used as the Model. This separation of components has the advantage of

decoupling the UI from the code, and provides a clear segregation of the application

components, thus minimizing interdependency and facilitating testing, refactoring,

and reuse.

57

QT UI Widgets

Database

Other Libraries OpenGL

OS

Controller

Figure 3.9: The software organization of used for both the Workbench applications
the camera interfaces. The top layer represents the UI components used to interact
with the user, the controller provides the functionality of both interfaces and in-
teraction with the database. Direct access to the Opengl rendering framework was
used to implement the shaders.

The Model of the application consisted of the shaders and their associated prop-

erties, which we used as filters. These properties were loaded and stored within

a lightweight database provided by Qt called the QtStandardItemModel. Each

shader was loaded and converted into a subclassed QtStandardItem called Pcam-

StandardItem. Each item provided a tree structure to store the property values of

the corresponding shader. A root item was created, and each node below the root

was a shader property. Once the tree was completed, it could then be inserted into

the database. The QtStandardItemModel provided many convenience functions for

querying, listing, and updating various properties of each item.

The View of the application was implemented with two kinds of widgets, ”sim-

ple” and ”complex” widgets. The simple widgets, such as labels and buttons provide

a basic look and feel with minimal interaction capabilities. The complex widgets

58

provided a way of viewing models created with the QtStandardItemModel database.

The complex widgets constituted the View portion of the MVC paradigm used be-

cause they allowed the view of the model to be separate from the actual storage of the

items. The view widgets used were the Qt provided QtTableView and QtListView.

In addition to providing views, these widgets allowed a certain level of interaction

with the model through selection and drag and drop operations. The views also

used delegate classes to provide special functionality such as non-standard render-

ing and interaction. These delegates, called QtStyledItemDelegates were used to

provide customized rendering of the pipeline (QtListView), which include an image,

name, and activation checkbox for each filter. The properties of each camera shader

within the pipeline were displayed using the same model but a different view (Qt-

TableView). A customized QtTableView was implemented to provide a hierarchal

view and editing capabilities of the shader’s properties. The View was a vertical

table with the first column being the name of the property and the second column

being the value of the property. Each property had a specific datatype (color, float,

integer, enum, image, etc.) that required a specialized editor to be implemented.

Another complex widget used within the interfaces was the OpenGL rendering wid-

get. The OpenGL widget converted the current pipeline into a visual rendering

using the underlying graphics hardware (GPU).

The controller part of the interfaces facilitates the interaction between the UI

widgets, the databases, and other libraries. The controller takes interaction com-

mands from the UI and performs a specific action related to editing this property,

such as providing a widget to the user for editing. These actions could be the move-

ment of shaders from the toolbox to the pipeline, editing a shader’s property, or

direct manipulation of the pipeline itself. The controller was implemented primarily

in Python and facilitating interaction between Qt, OpenGL, and other libraries such

59

as OpenCV (access/control of camera).

3.4.1.5 Programming Languages & Standards

Independent of the UI framework, we used Python as the foundational programming

language. Python is a high-level programming language used for general-purpose

programming. It has a minimalistic syntax, a comprehensive set of libraries, and

it is cross platform compatible. Because the intention is to utilize this project for

the long-term interface for our programmable camera, cross-platform compatibility

and bindings for each of the possible UI frameworks was an essential trait for our

programming language choice. Another potential language choice was C/C++ but

because of the difficulties in cross compiling and library availability on the Beagle-

board, Python was the better choice of programming languages.

For representing shader assets we used the popular open digital asset standard

called Collada. Collada is a file format standard used to exchange digital assets for

rendering and image synthesis. For example, Collada is used to store 3D models

and textures for games independent of the game engine or Digital Content Creation

(DCC) tool used to manipulate them. Collada is based on XML and contains a

wide variety of supported formats beyond just code for shaders, such as formatting

of 3D models, textures, and scene graphs.

In addition to Collada, we used a simple XML based tree for organizing the

Toolbox within the Workbench application. The XML format organized the default

shaders into categories and supported meta-information as well as parameters for

each shader. The Toolbox categorization and ordering is determined by an XML

file, which is loaded at run time. When a particular shader within the pipeline is

selected, a properties editor is activated. The properties editor allows the user to

edit the specific properties defined by the shader as well as activating and naming

60

the particular shader instance. If the user changes the parameter of a specific shader

and decides to provide this as a new default shader, the user can drag the modified

shader to the Toolbox and save it. This modifies the original XML file used to

configure and load the Toolbox at the start of the application.

3.4.1.6 Software Packages & Other Frameworks

The implementation of the workbench and the camera interface relied on three

other software frameworks for performing rendering and image manipulation Opengl,

GLSL, and Python Image Library (PIL). OpenGL and GLSL (OpenGL shading

language) provided the framework for implementing the camera shaders (i.e., filters)

and PIL was used to perform image enhancements. The Workbench application and

camera interface use both for providing previews of the current pipeline. In addition

to providing a preview, the camera interface uses these two frameworks to render

the final image.

After the captured image has been rendered, the images can be further modified

within the camera interface in the ”Picture Review” interface. There the user can

adjust the brightness, sharpness, and contrast of the images that have been cap-

tured to further enhance the image. The implementation of the basic enhancements

was done using the PIL module for python. The PIL module also provides basic

conversion capabilities for images going between standard formats, such as JPG,

GIF, and PNG, and the image formats used within Qt (Qimage, Qpixmap).

3.4.2 PCam Version 2

Version 2 of the PCam implementation contained the same features as version 1

but re-implemented on Android platform. Only the on-camera version was re-

implemented (not the Workbench application) to take advantage of a stable de-

61

velopment platform provided by Google with the Android operating system (OS)

and software development kit (SDK). Especially important to the implementation

was the stable and working GPU drivers, which the previous version lacked. For

this project we used Android version 2.2 OS and SDK code named Froyo [Goo10]

for all the on-camera development. All implementation was developed using the

standard development kit from Google without requiring the phone to be rooted or

root access to the OS kernel.

The hardware consisted of a Motorola Droid smartphone [Mot09] which has

a Texas Instruments (TI) OMAP 3430 CPU with a PowerVR SGX 530 GPU. The

specific model used for this project was the A853 with 256 MB of RAM and 512 MB

of flash memory with an additional 16 GBmicro-SD memory. The screen consisted of

an 854 x 480 pixel FWVGA display made with TFT LCD technology. The camera

hardware consisted of a single rear-facing 5.0 megapixel camera with LED flash.

We used a smartphone for this version due to the wide availability of the hardware.

Although a smartphone was used as the platform for development, we used it solely

as a camera and did not utilize any of the phone features. The PowerVR SGX

530 GPU is capable of executing pixel shader programs supporting OpenGL ES 2.0

[Gro08] and DirectX 10.1 with Shader Model 4.1. Of particular importance to this

project was the compatibility with OpenGL ES 2.0, which replaces a fixed function

rendering pipeline on the GPU with a fully programmable pipeline defined by the

shaders. This allowed us to implement the PCam as series of low-level shaders that

defined our custom OpenGL ES 2.0 rendering pipeline completely on the GPU.

Camera shaders are a slightly higher-level abstraction to the low-level GPU shaders

that are used to define the rendering pipeline and are only concerned with processing

camera images.

The software implementation of PCam was implemented using the Eclipse [IBM01]

62

integrated development environment (IDE) with the java programming language.

The Android SDK 2.2 provided a plugin for the Eclipse IDE to aid in development

and debugging, which included an emulator for testing and debugging projects. Due

to the dependence of specific hardware for this project (camera and GPU) and the

inability of the emulator to emulate the camera or GPU, it was only valuable for

certain simple UI development tasks. The Android Eclipse plugin also provided a

debugging interface for compatible hardware that allowed the developer to run a de-

bug version of their project directly on a smartphone attached to the development

computer. To be consistent with the OpenGL ES 2.0 standard as well as pro-

vide cross-platform compatibility, we developed our GPU shaders using the GLSL

shader language. Specific implementation details and GLSL code for relighting are

presented in Section 6.2.6 as well as in the Appendix B. For camera pipelines, GLSL

code was used to setup the pipeline rendering context in the form of a vertex and

fragment shader. Using multi-pass rendering, a vertex and fragment shader were

used to render a screen-aligned quad then save the quad to off-screen texture mem-

ory for the first pass. Then the Camera Shaders that made up a particular camera

pipeline were then chained together in sequence, with the input of the last shader

being used as texture input to the next shader. After the last Camera Shader was

rendered, a final shader rendered the final image to the screen for the user to see.

Additionally, each shader could reference additional parameters which could be set

using the visual programming user interface described in Chapter 4.

63

Chapter 4

PCamUI: A Visual Programming

User Interface for PCam

4.1 Overview

Computational Photography (CP) research has recently become popular in the

graphics community and many promising techniques have been published. In fact,

in 2009 nearly 40% of all papers submitted to the ACM SIGGRAPH conference

were in the area of computational photography [Lev10]. Despite its increasing inter-

est in the graphics research community, a majority of the proposed CP techniques

are still inaccessible to non-technical users and have only been evaluated by small

groups of researchers. This has led to a disconnect between the CP community and

the non-technical users who might utilize their techniques. We would like to better

understand how the non-technical user might want or need these new techniques.

For example, do photographers use bilateral filters in their photography and if so,

how? We will begin to better answer this and other related questions only after

the barriers keeping non-technical users from utilizing these techniques have been

64

lowered. We attribute the lack of dissemination of these techniques to the high-level

Development

Travel

To Location

Test

Travel

From Location

1.

2.

3.

4.

Figure 4.1: Current development process for programmable cameras using the API
approach. Development is done somewhere other than the target picture taking
environment, then the programmable camera needs to be transported, tested, and
transported back for adjust to the algorithm. This process is repeated until the user
is satisfied with the algorithm.

of prerequisite knowledge required to implement these techniques and to several

shortcomings in the typical development cycle for implementing them. So what is

the typical development cycle and what kind of knowledge is required to implement

these techniques? The most common development approach is a four step process

in which the CP technique is programmed in Matlab or in a high-level programming

language such as C/C++. The user then goes to the desired location to capture

image data and returns to the computing environment where the data is processed

by the programmed implementation (this cycle is illustrated in Figure 4.1). De-

spite the success of this approach in the research community, there are three major

shortcomings for non-technical users applying this approach. First, users must un-

65

derstand, what are often, highly-mathematical algorithms and they need to possess

significant programming skills to implement them. Secondly, if the captured images

are not sufficient or were captured with error, this would not be discovered until

post-processing of the images, requiring the user to recapture the image data. This

development cycle would iterate until the user was satisfied with the implemented

algoritm and the captured image data. But since this iterative cycle could take

a considerable amount of time, the original scene may have changed or been lost

completely. Third, this development style is not consistent with the way most pho-

tographers work. Photography is a visual endeavor and photographers generally

work in a creative cycle where they iterate between taking pictures, applying quick

edits or effects to the pictures, inspecting them, and retaking bad shots, all in rapid

succession.

Recently, a second development approach for implementing CP techniques has

been proposed which is intended to improve the typical four step development cycle

just mentioned. This approach involves the use of a camera with a programmable

back-end, such as the FrankenCamera [ATP+10] to execute a programmed CP tech-

nique on-camera in the desired location alleviating the need to transport the images

data back to the development computer. At first glance, programmable cameras

seem to mitigate the shortcomings of the previously mentioned development cycle.

However closer examination reveals that the development cycle remains largely the

same. This is because any change that is needed to modify the programmable cam-

era program requires traveling back to the development environment to make the

changes and re-upload the modified program to the camera. Travel could be mini-

mized by carrying a laptop for development and uploading of new camera pipelines,

but this still only a partial reduction in time delay. As previously mentioned pho-

tographers tend to work on a creative cycle that iterates quickly from shot to shot,

66

so development needs to be quick. Thus, all the shortcomings that exist in the

previous development approach also exist with the programmable camera approach.

Additionally, these cameras impose a steep learning curve on non-technical users

since they are programmed through an Application Programmer Interface (API)

that requires in depth knowledge of the inner workings of camera pipeline. As re-

ported by the designers of the FrankenCamera, the system was designed for use by

C P practitioners [ATP+10].

We describe a new User Interface (UI) for use with programmable cameras

that addresses the shortcomings of both the previously mentioned development

approaches for applying CP techniques. Our UI provides a visual programming

interface that abstracts all the technical details of programmable camera pipelines

to simply arranging a sequence of visual blocks. Each visual block, which we call

filters, is automatically mapped to an atomic operation and its underlying code

that performs the operation in the camera pipeline. Our UI also provides an ex-

tensive library of pre-programmed filters, which the user can easily add to existing

or newly created camera pipelines, without requiring programming knowledge or an

understanding of the technical details of the inner workings of the camera. Addi-

tionally, the interface provides immediate WYSIWYG feedback of filter and pipeline

changes., thereby alleviating the shortcomings of the previous CP development ap-

proaches by allowing quicker turn-around time for creating and editing programmed

camera pipelines (seconds vs. hours). The interface also provides a simplified ab-

straction of the camera pipeline that is more intuitive to program than current

programmable cameras, that minimizes the learning curve for creating and testing

CP techniques. Additionally, since programming is done on the camera, the user

does not need to travel back and forth within the development.

The main contributions of this work are:

67

• A novel visual programming interface for programmable cameras.

• A simplified programming model and camera pipeline abstraction that reduces

the learning curve for non-technical users.

• WYSIWYG feedback that allows users to immediately view changes to camera

pipelines as they develop or edit filters, shortening the long development cycles

of previous approaches.

• An extensive library of pre-programmed filters that facilitates rapid prototyp-

ing of new CP techniques and camera pipeline development.

The rest of this section is organized as follows; Section 4.2 gives a quick overview

of programmable camera pipelines, their current UI and the target audience is de-

scribed in section 4.3. Section 4.4 provides an overview of the main tasks our UI is

designed to perform. Section 4.5 describes envisaged user interactions with the UI

and how they relate to typical interactions on existing camera UIs.

4.2 Background

Before presenting the programmable camera User Interface, we give a brief overview

of the image capture process used in traditional cameras by describing the role of

each stage in that process. We then contrast the traditional camera capture process

with that of programmable camera CP.

Traditional or non-programmable camera pipelines in current commodity cam-

eras generally have a fixed three-stage pipeline [RSYD05] that converts rays of light

that enter the camera to a final image (Figure 3.1). These three stages can be

categorized as Capture, Image Adjustment, and Encoding & Storage as shown. In

68

the first stage, light enters the optics and is focused on the image sensor. The sen-

sor then converts the photons into a digital signal that is processed and eventually

demosaiced into a raw image. The second stage, which is responsible for most of

the color rendering of the image, performs a series of operations on the image such

as white balancing, gamma correction, tone-mapping, color conversion, and other

image adjustments. This stage is generally camera manufacturer specific and sub-

ject to trade secrets. The last stage converts the image to its final color space and

encodes the image to storage as a JPEG, PNG, or any other format supported by

the camera.

Programmable cameras generally replace stage 2 (Image Adjustment) with an

arbitrary color rendering pipeline stage that can be programmed by the user. By pro-

viding users with access to this stage of the camera, programmable camera pipelines

allow significant control over the resulting image.

Recently, several different architectures for programmable cameras have been

proposed in the scientific community. As the specific details of any particular pro-

grammable camera architecture are not the focus of the described UI design, the

our approach is hardware agnostic, providing a simplified abstraction for pipeline

operations into on a visual filter paradigm and abstracting the camera pipeline into

a sequence of filters (described in the next section). As such, we believe that the our

UI design would work in conjunction with any programmable camera architecture

and the underlying hardware and software.

4.3 Target Audience & Context

In order to best describe the target audience, it is useful to place camera users on

a continuum based on the extent of control they require and/or desire over how

69

the camera renders an image as illustrated in Figure 4.2. We can assume these

demands will, in turn, dictate the type of camera a user needs. On one end of

the continuum is the novice camera user. The novice user requires and/or desires

little or no control over the camera; they literally just want it to work when they

click the button. As a result, they are likely to select a ”point and shoot” type

camera to fulfill their photography needs. Next on the continuum would be the

experienced but non-technical camera user. The experienced user has an advanced

working knowledge of camera functions and desires more control over a broader

selection of features with more sophisticated settings. Experienced users are likely

to select professional type cameras such as the SLR style that allow for interchanging

lenses and the ability to exert greater control over the produced images. However,

the experienced user does not typically have (nor desires to have) the technical

understanding of the complex inner workings of the camera. Which leads us to

the other end of the continuum - the technical camera user. Technical users are

simply those who indeed possess the in-depth, technical knowledge of every aspect

of the camera pipeline and functionality (e.g., academic researchers in the field

of computer vision or computational photography). Cameras utilized by technical

users are generally specialty devices sold by specialty camera manufacturer, such

Novice Experienced Professional Technical

Knowledge About Internal Workings CameraLow High

Figure 4.2: A continuum that describes the target audience with the left hand side
labeling the novice user all the way to the right handside which labels the technical
camera user. The continuum axis is in terms of technical knowledge regarding the
inner workings of the camera. Although, this figure may not classify every person,
it is used as a general guide of how we targeted our users for PCam.

70

as cameras for machine/computer vision, security, image processing, and laboratory

use.

The target audience for the developed UI is the experienced, non-technical user.

Because he lacks the necessary technical knowledge and may be unwilling to tackle

the steep learning curve, the experienced user is unable to take advantage of the

greater level of control over image manipulations afforded by programmable cameras.

Given that the new UI would not require highly technical knowledge and would

minimize the learning curve with the use of programmable cameras, it appears

highly suited to meet the needs of experienced users who desire to optimize the

extent of control over image capture. Although the experienced user is the target

audience, the described UI could also be advantageous to technical users since it

incorporates a simplified programming model and pipeline abstraction that could

result in increased efficiency over existing textual-base programming interfaces.

4.4 Filter-Based Abstraction for On-Camera Pro-

cessing

4.4.1 Visual Filters and Camera Pipelines

As described in the previous section, stage two of the camera pipeline is comprised

of a sequence of image manipulation and adjustment operations. At a fundamental

level, image manipulation involves receiving an input image, modifying it, and out-

putting the modified image. This behavior we call filtering. Therefore, any image

manipulation operation that conforms to this behavior is referred to as a filter. We

can then use this idea to simplify the notion of a camera pipeline to be a sequence

of filters, which are chained together so that the output of one filter is the input to

71

another. This results in an accumulation of all the filter effects on the input image,

which dictates how the final image looks.

Furthermore, we can define a programmable camera as a camera which has a

pipeline with filters that can be interchanged with other filters. The inspiration for

this pattern comes from the Visual Design Pattern (VDP) [STST00] concept found

in the visual dataflow programming field. VDPs specify a predetermined layout or

organizational structure for a program, with empty slots where a particular type of

process can be inserted dynamically at run time.

In particular, the camera pipeline abstraction contains empty slots which are

filled by the user with filters (which are themselves abstractions for image manip-

ulation operations). These abstractions help to simplify the means by which a

programmable camera pipeline can be constructed by reducing the complexity to

that of simply arranging filters.

A filter has three attributes associated with it: the underlying programming code

that implements the operations, a set of parameters that control the filter’s behavior,

and an icon which displays visually how the image data looks when operated on by

this filter with the current set of parameters. The users do not see the code that

performs the operation or the mechanisms that execute the code; users only interact

with the filter by manipulating the parameters (including its position in the pipeline)

and receives visual feedback on the rendering of the filter.

The described UI has a full library of available filters for user to utilize for

creating new camera pipelines. The provided filters can be grouped into several

categories including color conversion, image processing, computer vision, and some

miscellaneous effects. All of the filters provided generally perform a single task in

order to facilitate the ease at which they can be chained together to create more

sophisticated effects. The provided UI does not enforce this but users should consider

72

Input To Grayscale Blur Edge Detection Threshold

Result

Figure 4.3: A sample programmable camera pipeline with four filters. The first filter
applied to the input image converts the image to grayscale. The second filter applies
a Gaussian blur. The third filter is a Sobel edge detection algorithm. Fourth filter
is a threshold operation. The two rows have different results due the Blur filter has
a different parameter value.

this when designing their own filters. The current UI provides just over fifty filters.

We envision that future versions of the UI will provide mechanisms for users to share

individually developed filters as well as pipelines.

4.5 Task Determination

Our UI was designed to make three tasks easier on-camera: 1) Selecting, cascading

and re-ordering filters that are available in a filter library, to create new camera

pipelines 2) Testing and previewing camera pipelines and 3) Editing and fine-tuning

the parameters of individual filters after they have been added to the currently active

pipeline. We have not yet included a task for creating new filters from scratch on

the camera because this task requires programming and compiling, which is beyond

the scope of the visual programming paradigm described here. However, we have

implemented and provided several filters covering a broad range of image manipu-

73

lation operations, and made them available in a filter library to users. Despite our

best efforts, it is inevitable that users will want to use additional filters not available

in our filter library. In future work, we hope to provide a mechanism for designing

new filters without violating our visual programming paradigm. Our main camera

tasks are now described in some detail as well as how users interact with the UI to

accomplish each task.

4.5.1 Task 1: Pipeline Creation

The pipeline of camera stages determines how the raw image generated by the cam-

era’s image sensor, is rendered [RSYD05]. The UI allows users to reconfigure the

programmable camera stages (Stage 2 in Figure 3.1) using simple graphical interac-

tions. Specifically, our UI allows users to create new camera pipelines by selecting

filters from a filter library, chaining multiple filters together, and re-ordering them.

The process of creating a pipeline is initiated from the selection camera screen (Fig-

ure 4.4). Initially, an empty camera pipeline (no filters) is created. The user can

then select filters from a list to populate the pipeline. The idea of creating an

empty pipeline with ”slots” that can be filled with filters is an instance of a VDP,

an abstraction that was originated by Shizuki, et al [STST00].

A valid pipeline must contain at least one filter. Therefore, once an empty

pipeline is created, the user is immediately presented with a filter selection dialog.

Once a filter is selected, it is added to the current pipeline. The user can then either

add more filters to the pipeline or edit the properties of the pipeline as a whole

(as opposed to editing individual filters, which is discussed in the next section).

This process is repeated until the user is satisfied with the filters that make up the

pipeline. The user may also change the sequence of filters in the current pipeline.

Because of the limited screen space on the camera for user interaction, we keep

74

the screens for each task very specific. Each screen focuses on a few actions. Each

filter that is added to the pipeline has pre-determined, default parameters that

cannot be modified until the pipeline creation process is finished. Once satisfied

with the created pipeline, the user can indicate this by selecting Done. At this

point the user is brought to the pipeline editing testing screen where additional

pipeline editing, testing and previewing can occur.

Figure 4.4: Screen shot of the pipeline creation window. This newly created pipeline
has been given the name fun and has four filters associated with it. The filters are
ordered left to right, with the leftmost filter being applied to the input image first.

4.5.2 Tasks: 2 & 3, Filter and Pipeline Editing

To avoid redundancy during exposition, we shall describe both the pipeline and

filter testing tasks (Figure 4.6, Tasks 2 & 3) at the same time. To aid testing, the

our UI includes a preview window (see Figure 4.5) that shows images resulting from

any changes made to any selected filters and the cumulative effect on the pipeline.

Previewing the results of the entire pipeline or just selected filters is a novel idea

for use with programmable cameras. Also, since graphics rendering is a subjective

endeavor, users like to inspect the effects of any changes before making new ones.

75

Figure 4.5: screen shot of the pipeline editing window with the standing example of
edge detection camera pipeline.

We believe that the immediate feedback on-location is a powerful means for rapid

prototyping of pipelines because it helps to facilitate the often complex task of

building a pipeline of filters by constantly providing visual feedback . Additionally,

we believe that our claim that the UI described in this work reduces the learning

curve for experienced users is a direct result of the visual feedback provided by the

UI. Abram and Whitted found that during visual programming of Shader Networks

for 3D rendering, users did not need a complete technical understanding of the

underlying Shader algorithms or implementations, as long as they were provided

with immediate previews and the ability to ”tinker” with shader parameters [AW90].

The filter testing task allows the user to change the values of filter parameters

in order to influence how a filter renders. When presented with the editing screen

the user can select any filter in the currently selected pipeline for editing. Selecting

a filter brings it into focus and widgets for editing its parameters are provided

(Figure 4.5). The user can then change filter parameters by manipulating their

respective widgets and immediately previewing the effects of parameter values that

they choose on the rendering of that filter. Supported parameter types are floating

76

Edit or Create

Pipeline?

Selection

Window

Preview

Window

Select A New

Pipeline?

Yes

No

Yes

Create New

Pipeline?

Create New

Pipeline Window

Yes

No Edit Pipeline

Window

No

Done Editing

Pipeline?

Yes

No

Done Adding

Filters?
No

Yes

Add Filter

Figure 4.6: Flow diagram depicting the interaction and flow between the various
windows of the UI described in this work.

point, integer, boolean, matrix, and vector values. After the user edits the value

of a filter parameter, an internal variable is updated and the parameter values

are automatically propagated to the renderer where a preview is generated. The

user can iterate between changing filter parameter values and previewing the filter’s

rendered look until they are satisfied. The pipeline testing task involves previewing

the cumulative effect of modifying the filters that make up the pipeline. Similar to

the filter testing task, the pipeline testing task is iterative and is finished when the

user is satisfied with the visual result of the pipeline. One difference between filter

testing and pipeline testing is that pipeline testing is intended to be progressive.

During pipeline testing, the user can repeatedly activate and test any filter within a

given pipeline until the user is satisfied with the accumulated result of the pipeline.

77

Additionally, the user can add, remove, and re-order filters as needed in order to

finish the task.

A filter can be temporarily de-activated from the current pipeline by, toggling,

the active widget next to the name of the filter. This removes the influence of this

filter and the pipeline is rendered using the remaining active filters (see Figure 4.7).

A filter can be removed from the current pipeline by delete widget. Removed filters

can only be reintroduced into the pipeline by selecting them again from the filter

library. To reduce visual clutter, adding a new filter to the pipeline is initiated using

a pulldown menu, which presents a list of available filters to the user to choose from.

Once a filter is selected it is automatically added to the end of the current pipeline.

The user can then proceed to change the filter’s position in the pipeline using the

position widget for that filter.

Figure 4.7: This figure shows four screnshots of widgets. Left side on the top and
bottom show the toggle button for individual filters and how it effects the camera
pipeline. Right show two widgets for editing filter parameters (top) and adding a
new filter (bottom).

78

4.5.3 Layout & Interaction Scenarios

Our UI was designed to be used on the camera specifically for organizing, manipu-

lating, and creating programmable camera pipelines. Because of this narrow focus,

it is not intended to replace the existing camera UI but rather to augment them.

As illustrated in Figure 4.8, the new camera UI layout hierarchy contains both the

new UI as well as typical representations of a traditional camera UI. The function-

ality of both UI layouts are mutually exclusive with the exception of the preview

window at the top. As a practical note, this means that any manufacturer-supplied

traditional camera UI does not need to be modified. A user simply installs the UI

implementation as extra software that augments the manufacturer’s UI. The rest of

this section describes in more detail the relationship between the traditional and our

interfaces as well as the function each new window performs. We end the section

with a description of user interaction scenarios for the UI described in this work.

4.5.3.1 Layout

Our UI design provides three new additional windows to the traditional camera UI

and repurposes a fourth for live previews of the programmed camera pipeline effects

(see illustration in Figure 4.8). The preview window provides views for both the

live programmable camera rendering and traditional camera rendering. Because the

programmable camera pipelines can produce images that are potentially hard to

discern, this window has a preview switcher widget that allows the user to toggle

between the programmable camera pipeline and a traditional view to aid the camera

user. In this way, during debugging, the user can switch to the traditional camera

image when the image rendered by the programmable pipeline is indiscernible.

The pipeline selection window provides two functions: first it allows the user to

select the active pipeline and acts as the entry point for pipeline creation (screen

79

Pipeline

Selection

Pipeline

Creation
Pipeline

Edit/Test

Camera

Settings

Image

Gallery

Settings

Submenu

Settings

Submenu

Preview

Camera UI Heirarchy

New UI Windows
Traditional UI Windows

Legend

Figure 4.8: An Organizational chart of the UI layout (yellow) and the traditional
camera UI layout (blue)

shot in Figure 4.4) and editing windows (screen shot in Figure 4.5). To start the

new pipeline wizard (we use a wizard to enforce pipeline attributes are initialized,

i.e., each pipeline must have a name and at least one filter), in the selection window,

the user taps the create new pipeline button from the window’s options menu. To

select a pipeline for editing, the user chooses the desired pipeline from the list

of pipelines presented and is transitioned to the pipeline editing window with the

selected pipeline. The pipeline creation and editing windows have already been

described in detail in the previous section, and all information and interactions

needed to organize, create, and manipulate the camera pipelines is presented in

these four windows. The complete flow between all the windows within the UI is

mapped out in Figure 4.6.

4.5.3.2 Interaction Scenarios

Each interaction scenario with the programmable camera pipeline UI is displayed

in an interaction diagram in Figure 4.10 and a corresponding screen view is pro-

80

Figure 4.9: Screen shot of the preveiw window. The menu on the bottom can move
onto and off the screen by toggling the menu button.

vided in Figures 4.5, & 4.9. Interaction within the UI design starts at the preview

window. From there, users navigate to the rest of the programmable camera UI

through the pipeline selection window or to the traditional camera UI to edit cam-

era properties or view images in the photo gallery. We have envisioned three main

interaction scenarios, which we describe in this section, pipeline selection, pipeline

creation, and pipeline editing. We differentiate interactions from tasks by the navi-

gation and relationship of the task window to the other windows in the UI. In each

scenario, navigating to a new window essentially places that new window on top of

an interaction stack. When the user finishes interacting with that window (either

by finishing the activity or clicking the back button) the current window is removed

from the stack and the previous window is reinstated as the current window. For

example, the pipeline creation scenario places four windows on the stack when the

user is on the window that is actually responsible for the creation of the pipeline.

The first interaction scenario allows the user to select a programmable camera

pipeline from the available pipelines. When on the preview window, the user navi-

gates to the selection window, selects the desired pipeline and clicks the back button.

81

P
ip

e
li

n
e

S
e

le
ct

io
n

P
ip

e
li

n
e

C
re

a
ti

o
n

P
ip

e
li

n
e

E
d

it
in

g

Window
Preview

Pipeline

Selection

Pipeline

Editing

Pipeline

Creation

Figure 4.10: Interaction diagram

By selecting a pipeline the user activating that pipeline for use in preview and image

capture, therefore when returning to the preview window the user will now see the

new activated pipeline.

4.6 Conclusion & Future Work

In conclusion we have shown the potential benefit of using our UI design over exist-

ing programmable camera user interfaces. We believe that the described interface

provides a unique way to create and edit programmable camera pipelines outside the

typical laboratory development environment. In addition to being able to create and

edit camera pipelines in the picture-taking environment, we believe that the unique

visual feedback method for programmable camera pipeline development would be

beneficial for any programming environment, not just for ”on-the-fly” development.

We also believe that the visual feedback provided by the system can lower the

learning curve for CP algorithms and programming camera pipelines, making them

82

accessible to a wide range of experienced and expert camera users.

In future work, because the process of creating filters on-camera can be more

complicated than the other three tasks we reserve this improvement for future work.

In order to accomplish this, a new metaphor for inserting small programs into the

pipeline has to be created. Because this is generally a text based-activity, this

would be a difficult task to perform on-camera. Additionally, we would like to

perform a larger scale study of non-technical end users to determine the benefits and

utility of our visual programming interface, which could be novel and informative.

Finally, the current implementation lacks some convenience features such as an Undo

function. There are several instances where an Undo operation might be helpful,

such as moving and deleting filters from the pipeline. Future versions of the UI will

contain additional convenience feature to provide a better user experience with our

programmable camera.

83

Chapter 5

Symmetric Lighting Capture and

Relighting

In Section 1.3 we described the components of this dissertation as a pyramid of

contributions with a programmable camera as the foundation, photometric analysis

and processing as the second tier, and the final tier as the previs components.

The previous chapter, Chapter 4, concluded the description of the foundation of

this pyramid by providing a description of the programmable camera user interface

and visual programming paradigm and implementation. This chapter describes the

contributions listed in the second tier, photometric analysis and processing, which

describes our Symmetric Lighting and relighting methods.

5.1 Overview

Relighting is the process of producing a new image of a previously rendered scene

under new lighting conditions. What often makes relighting difficult is that informa-

tion about the scene necessary to perform relighting is often missing or incomplete.

84

Therefore, to invert the pre-existing lighting in a scene, usually information about

the scene, such as geometry, reflectance, appearance, or lighting must be estimated

or captured directly. Capturing or measuring light is a difficult endeavor which

requires expensive measurement hardware, complicated lighting setup, and environ-

ments that can be controlled and have known properties. The difficulty of light

capture is because the problem is ill-posed due to unknown scene properties such

as geometry, reflectance, and object appearance. For example, if we wanted to infer

lighting from the reflectance of an object, neglecting atmospheric effects within the

scene and assuming surface reflectance is not dependent on the wavelength of light

(light is a ray not a wave), translucent, changing over time, in motion, or have sig-

nificant subsurface scattering, then reflectance functions can be considered to have

six degrees of freedom [Jen09]. Six degrees of freedom makes it difficult to infer any

lighting properties with an unknown reflectance function, therefore this problem is

often addressed by alternate means. For example, photographers and cinematogra-

phers often get around this problem by directly measuring the light at a point using

a device called a light meter [DeC97]. The Light meter produces a single incident

luminance value, which is then used to set camera exposure settings. This is analo-

gous to using a single pixel camera to estimate light intensity (not color) at a single

point in the scene, which is inadequate for estimating the illumination for an entire

scene. To produce the same number of data points as a modest camera, a Light

meter would need to be moved to more than 10 million locations in the scene, which

is impractical. Consequently, this description is similar in spirit to a state of the art

relighting facility proposed by Debevec et al. [DWT+02] performs relighting, which

is extremely complicated having fifty High-Definition high-speed video cameras and

more than one thousand controllable Light Emitting Diode (LED) lights as seen in

Figure 5.1 (c).

85

a) b) c)

Figure 5.1: Images of devices used to capture lighting with increasing degrees of
complexity and cost (left to right). Left (a): A digital light meter used for pho-
tography to estimate the intensity of the ambient light[wik12]. Center (b): is an
Integrating Sphere used to determine the color of light from a particular light source
which is placed in the circle opening at the front[DeC97]. Right (c): the Light Stage
6, state-of-the-art light capture and relighting facility at the USC Institute for Cre-
ative Studies [Lin10].

This chapter describes our novel photometric and active illumination method

for capturing the lighting of a scene without explicitly knowing or measuring its

geometry, reflectance, or appearance. We call this method Symmetric Lighting.

Our method captures the proportion of illumination contributed by each light within

the scene using only a single camera and no other light measurement equipment or

facilities. We accomplish this by modeling the light and its interaction with the scene

as a system of symmetric equations, where each light is coded with a specific and

unique light color making these equations simple and efficient to solve. Symmetric

Lighting facilitates the separation of lighting from all other scene properties within

a camera image, making photorealistic relighting a simple and efficient operation

that can be performed on-camera and on-location. In contrast to the state-of-

the-art relighting [DWT+02], which requires orders of magnitude more processing

capabilities, many high-speed cameras and lights, and is performed at a separate

86

facility as a post process not during the shoot in contrast to our method which is

real-time.

Our main focus in this dissertation is relighting, but several additional con-

tributions result from our Symmetric Lighting capture method. These additional

contributions stem from the development of a novel data structure for storing the

results of our capture method, which we call the β (Beta) map. The β map, which

is derived from the camera image, represents the contribution of each light source

(β value) at every pixel in the camera image. Therefore, each β value in the β map

corresponds to the same location in the camera image. Image processing methods

can be used to modify or interpret the β map making it a powerful representation

for editing the lighting environment. In this chapter we describe image processing

methods for shadow detection, and gradient-based methods for detecting and ma-

nipulating other light properties. In the next chapter and in the context of previs, we

describe a novel multi-illumination white balance, color correction, and light color

estimation methods that are made possible by processing of the β map. Although we

derive several image-based methods for manipulating lighting via processing the β

map, we hypothesize that similar methods can be utilized for capturing and manip-

ulating many more lighting and reflectance phenomena, such as subsurface scatter,

transparent and emissive surfaces, and Global Illumination, which will be examined

in future work.

The majority of previous efforts for relighting a scene have focused on capturing

the reflectance [DHT+00a, MWL+99, ZREB06, LKG+03, GCHS05, WRWHL07] of

objects within a scene. Capturing geometry [FRC+05, FRC+08, SCMS01, Dye01,

SCD+06, SCD+06], and appearance [LKG+03, WLL+09, FH09, SH98, KBD07,

DvGNK99] of objects. Prior work on capturing lighting environments make re-

strictive assumptions such as requiring the lighting to be emanating from an in-

87

finitely distant location in order to create environment maps [BN76, MH84, Deb98b,

GSHG98, UGY06]. But little effort has gone into developing techniques for captur-

ing and manipulating the pre-existing lighting within a scene. The work presented

here focuses on identifying the influences of individual light sources have on a scene,

quantifying this influence, and providing the capability to manipulate these quan-

tities, while avoiding the complexity of measuring or inferring the other properties

of the scene. Our relighting method allows for previsualization and editing of on-

set lighting in real-time, which cannot be accomplished using previous methods.

This will enable directors and cinematographers to virtually preview and edit on-set

lighting for greater artistic control and faster decisions on physical lighting changes,

resulting in higher quality lighting in movies, fewer reshoots, and less on-set time.

The main contribution of these techniques are:

• Develop a technique for determining the relative light contributions per pixel

for each individual light source, which we call Symmetric Lighting.

• Simplified and efficient relighting that can be done on-camera, in real-time.

• A novel data structure for storing Symmetric Lighting calculations called β

map, which allows for image-based light manipulation beyond relighting.

• Shadow detection method that leverages the lighting information stored within

the β map to detect cast and self-shadows using a threshold watershed method.

• A gradient-based method for providing second order statistics for manipulating

the distribution of photons for each light, which can be applied to the β map.

• A computationally efficient implementation for each technique that make these

techniques amenable to hardware implementation and executable in real-time.

88

5.2 Symmetric Lighting Theory

5.2.1 Image Formation

5.2.1.1 Camera Model

Before progressing, we will lay out the basic image model from which our photo-

metric processing and image capture techniques are derived. We assume that all

calculations are done in a linear RGB space λ = {R,G,B} and that an image sensor

provides only three color (RGB) values after a raw image is demosaiced. Further-

more, this work performs image processing in the camera’s native RGB space, which

has been shown to produce less color distortion [Vig04]. These three values, which

form the pixel of an image C, are the result of the illumination L within the scene

and how the scene reflects this light, represented by R in the following equation.

Therefore, our input image can be simply stated as:

C = R ∗ L (5.1)

Even though this model appears to be simple, there is a significant amount of

complexity in the interaction of these terms. In Equation 5.2 we expand on Equation

5.1 by assuming that the sensitivities of the image sensor S, are narrow band and

thus modeled as a delta function. Furthermore, if we assume that illumination is

uniform across the scene1, then we can consider the influence of the geometry G on

the reflectance to be equivalent to 1. Later in this section we will relax the geometry

assumption, but for now it serves to simplify our model for ease of explanation.

Thus, after incorporating these assumptions, our image model in Equation 5.1 can

1In general this is a restrictive assumption that does not reflect reality but is often made in the
context of illumination estimation [Hor06]

89

be expanded with respect to the previously defined λ:

Cλ = G

∫

Ω

RλLλSλ (5.2)

The expanded model allows for more complicated lighting calculations that in-

corporates all lighting contributions within a closed hemisphere, namely Ω, where

Ω is the spherical coordinates denoted θ for azimuth and φ for the polar angle.

The hemispherical formulation is common in rendering contexts [DBB02] as it pro-

vides convenient parameterization. Additionally, it also provides convenient way to

implicitly parameterize the importance associated with lighting samples as natural

scenes tend to contain a majority of primary light sources away from the horizon

(i.e., φ ≈ π/2) [DWA04] (the cosine of the angle between light and object normal is

close to 0).

5.2.1.2 Physically-based Lighting Model

We further expand the model to a more physically-based model that we will utilize

later on in this section. The model for Equation 5.3, often referred to as the Ren-

dering Equation introduced by Kajiya [Kaj86] incorporates global effects such as

interreflections from indirect light sources (also called mutual illumination in other

scientific domains) as well as light emitting surfaces. This lighting model math-

ematically formulates the equilibrium of distributed light energy within the scene

in order to create a system that has a steady state observed and measured in the

physical world. This steady state is consistent with the conservative nature of the

rendering equation and compliments the bidirectional reflectance distribution func-

tion (BRDF), which is often used in conjunction with the rendering equation. The

notion of conservation of energy and reciprocity is a key feature of the Rendering

equation and of one of the novel contributions of the dissertation, which will be

90

discussed in section 5.2.2.

I(x,
→
w) = Le(x,

→
w) +

∫

Ω

R(x,
→
w,
←
w)Li(x,

←
w)(Nx·

←
w)d

←
w (5.3)

The Rendering Equation is generally defined in terms of wavelength of light and

time, but as this work does not consider either, for simplicity we ignore both. Also,

the Rendering equation defines light emitting surfaces Le, but this work does not

consider this phenomena or other phenomena not accounted for in the rendering

equation such as light scattering within a volume of participating media. This

formulation is an integral equation that accounts for all incoming directions
←
w for

which the angles are appropriately attenuated by a cosine factor calculated as Nx·
←
w.

In general this continuous function is difficult to evaluate unless approximated. We

approximate by discretizing the integral and if the number of light sources is known

to be N and assuming that there are no emitting light or surfaces, we can rewrite

Equation 5.3 as such:

I(x,
→
w) =

N∑

i=0

Ri(x,
→
w,
←
wi)Li(x,

←
wi)(Nx·

←
wi) (5.4)

Where i in this case refers to the ith light source.

5.2.2 Light Contribution Estimation through Symmetry

The goal of this section is to describe the novel light capture technique we devel-

oped, which determines the relative contributions of each light illuminating a scene.

Due to the complexity of the interaction between the lighting and the scene being

illuminated, this is a non-trivial task involving up to 7 variables that are difficult

to infer or measure from a single pixel sample (see Appendix C for a description

of these variables). Despite this complexity, the technique presented here provides

91

straight-forward and computationally efficient method for manipulating the indi-

vidual lights in a scene independently from the other lights without limiting their

influence on a scene’s illumination. Our method, called Symmetric Lighting, shows

that it is relatively simple to avoid much of the complexity associated with many

variables that are explicit and implicit in the Rendering Equation 5.3 by performing

simple interactions with the lighting environment through a technique known as Ac-

tive Illumination. Active Illumination is the name given to a class of Computational

Photography [RTM+06] methods that manipulate only the lighting in a scene in or-

der to estimate scene properties. In our Symmetric Lighting method, we manipulate

the lighting by alternating the color each light emits, which allows us to estimate

the proportion each light contributes to illuminating a given camera pixel. Using

the image model from Equation 5.1, we can describe the technique for estimating

the lighting within a scene without knowledge the scene geometry, reflectance, and

appearance of the objects within the scene.

As previously mentioned, most techniques for relighting or light estimation ac-

quire the reflectance function of objects within the scene [Hor06]. This in turn is

where much of the aforementioned complexity originates. If we consider the path of

a single photon within a scene, it may interact with many surfaces and be reflected,

refracted, and scattered any number of times. As can be seen from Equations 5.1

and 5.2, the pixel values captured by the camera are dependent on the lighting, the

scene reflectance, and appearance, so therefore cannot ignored. In order to avoid

the complexity of measuring the reflectance and appearance, we have developed a

technique to implicitly estimate its value without explicitly measuring it.

Most scenes are comprised of two or more light sources with distinct color and

intensity [Hor06, Ebn08, HMP+08, KIT05]. Despite this fact, many of the techniques

developed to measure light often make the assumption of a single light source, as is

92

common in white balancing [Buc80, LM71, FT04, vdWGG07, GG07], Bi-directional

Reflectance Distribution Function (BRDF) capture [DHT+00a, MWL+99, ZREB06,

LKG+03, GCHS05, WRWHL07], and illumination estimation [MG97, Hor06]. The

research presented here does not make the restrictive assumption that the scene

contains only a single light. Instead, we exploit the notion that most scenes are

illuminated by multiple lights by calculating the differences in illumination at each

camera pixel due to the different colored light sources. We assume that the light

source colors are distinct and known by the user and we utilize this information to

discover the proportion of light each source contributes to a given camera pixel Ci,j

from an image C with dimensions {i, j ∈ I × J} for our camera model in Equation

5.2. Let us assume that the total light impinging on a point P that is reflected into

the camera and contributes to Ci,j is some quantity of light, call it Ltotal. Then each

light source will contribute some proportion of its photons to Ltotal seen by pixel

Ci,j.

If we abide by the physical constraint that the number of photons is conserved

and unobstructed in free space without volume scattering due to atmospheric effects

or other participating medium, and we assume that if a scene contains two lights,

then the proportions from two lights l1 and l2 forms a linear relationship from the

additive nature of light. This relationship can then be stated as a linear interpolation

between the two lights.

Ltotal = l1 ∗ β + (1− β) ∗ l2 (5.5)

Then for each camera pixel Ci,j, there is a value β, which describes the proportion

of the total number photons that each light contributes to illuminating the pixel Ci,j

captured by the camera. We then extrapolate this idea for all camera pixels Ci,j

that form the 2D camera image C with dimensions I×J and {i, j ∈ I×J}. We then

93

form the notion of the image’s corresponding β map with the same dimensions I×J ,

where {∀Ci,j ∈ C, i, j ∈ I×J | ∃βi,j ∈ <[0−1] 7→ Ci,j}. In other words, every camera

pixel has a β value and every camera image has a β map (the β map is discussed in

more detail in Section 5.3). If we assume that the camera pixels intensities are linear

with respect to the scene illumination intensity2, then the proportion between the

lights and the camera model from Equation 5.1 is preserved. This idea is illustrated

in Figure 5.2.

N

l
1

l
2

P

L T
=l 1

β+(1
-β

)l 2

C=R*L
T

Figure 5.2: For two lights sources illuminating point P reflecting into the camera
which captures the interaction between the point being illuminated and the sources.
Symmetric Lighting determines how much each light source contributes to the light
total received by the camera, which we call the β value, by solving Equation 5.7 by
interchanging the intensity values (i.e., color) of l1 and l2.

Finding the relative contribution of each light to illuminating a point is the same

as determining β from Equation 5.5. There are many ways to determine the β value

at each pixel for a scene with two lights such as illustrated in Figure 5.2, most of

which are not feasible. For example, we could measure the orientation of the lights

2Although cameras do not in general produce pixels that have intensities that are linear with
respect to the illumination, linear correction is often applied to make the camera’s response curve
linear [RKAJ08].

94

and surface normal of each point corresponding to a camera pixel, but this would be

tedious and error prone. On the other hand, determining the β values numerically

by inference using only the pixel values from a single camera image and solving

for the β values using the equation in Figure 5.3 is not feasible either, due to the

ill-constrained nature of this problem, which would result in a non-unique solution

for the β values. Actually, the solution set for this problem is β ⊆ <[0 − 1], which

contains an infinite number of solutions for β. In other words, with a single camera

image, for each pixel and β value, we have a single equation with two unknown

variables as seen in Figure 5.3.

C = R *(l
1

β + (1-β) l
2
)

1 Equation, 2 Unknowns

β = any value [0-1]
Unknown Unknown Unknown

Figure 5.3: The general camera model from Equation 5.1 with two lights. Here we
show that with only a single image captured C, that this single equation has two
unknown variables and cannot be solved for uniquely.

To solve for β we introduce the novel idea of Symmetric Lighting, which allows us

to introduce further constraints on the ill-constrained formulation for determining β.

The idea is that while keeping the camera and light positions constant and assuming

the lights emit different colored light, we acquire two images of the scene. After

acquiring the first image, the second image is acquired with the colors between lights

swapped3. If we consider each corresponding pixel location {i, j} in both camera

images C1i,j and C2i,j, then each pixel value (an RGB triplet) results from the two

light {l1, l2} and the reflection function R as indicated in the equation from Figure

5.3. Since BRDFs in general are parameterized by the orientation of the lights and

3As previously stated, Symmetric Lighting assumes the lights emit different colored lights. In
Section 5.2.3.2 we describe what happens when this assumption is violated.

95

camera and the orientation remains constant, R remains constant between the two

equations. Also, due to reciprocity and not moving the camera or lights (we assume

that reflectance is not wavelength dependent), the β value or proportion will remain

constant between the two equations while the pixel values C1i,j and C2i,j change.

Therefore, capturing two images provides us with two equations (one from each

image), while maintaining the same number of unknown variables β and R.

Because all variables remain constant except for the light color values, in the

case of a scene with two lights, we can solve for β by setting up two simultaneous

equations. We assume that the reflection and appearance of the point being illumi-

nated in the scene does not vary with time, which allows for the substitution of the

implicit value for the reflectance function R, giving a constrained objective function

for solving a single unknown, β.

C1 = R ∗ LT 12

∣∣ LT 12 = l1 ∗ β + (1− β) ∗ l2

C2 = R ∗ LT 21

∣∣ LT 21 = l2 ∗ β + (1− β) ∗ l1

C1

LT 12

= R =
C2

LT 21

(5.6)

Where LT 12 and LT 21 are the lighting color values from the right hand side of

Equation 5.5. To determine the optimal value for β in the least squares sense we

minimize the following objective function.

argmin
β∈[0−1]

‖C1 ∗ (l2 ∗ β + (1− β) ∗ l1)− C2 ∗ (l1 ∗ β + (1− β) ∗ l2)‖
2 (5.7)

For each pixel location {i, j}, there are two different pixel values, C1i,j and

C2i,j, which are the direct result of our image model from Equation 5.1. For each

pixel location, solving Equation 5.6 to determine the β for each pixel, essentially

96

constructs a β map for the camera image C. We now have a map that provides the

proportions each light contributes to each pixel in the camera image C. In Section

5.3 we show how to use the β map to perform relighting.

To gain further intuition on how our Symmetric Light capture works, we present

a geometric interpretation using Euclidian geometry in the 3D space of the RGB

color cube as illustrated in Figure 5.4. If we plot the light values of l1 and l2 in

the RGB cube, they form two points in the cube. By definition, a line segment

is consists of every point between two endpoints. If we consider the line segment

created by the color values of lights l1 and l2, this line segment l1l2 spans the range of

possible color values that any mixture of these lights can have. If we then multiply

the light line segment l1l2 by a pixel of the color C1, this corresponds to a transform

of the line segment to a new location in the RGB cube, call it C1l1l2. The new line

segment C1l1l2 spans a color range, where every point on the line segment is some

interpolation of the end points C1l1 and C1l2 where β is the interpolation variable.

If we also consider a second transformation of l1l2 by a different pixel color C2, this

forms a different line segment, call it C2l1l2. Since the two line segments C1l1l2 and

C2l1l2 are related by Equations 5.6 and 5.7 and our objective function finds the

proper interpolant value β that solves these equations. Then the solution is just the

β value where C1l1l2 and C2l1l2 intersect as indicated in Figure 5.4.

The geometric interpretation provides a different way to solve the objective func-

tion in Equation 5.6 by finding the intersection of the two lines C1l2l1 and C2l1l2.

This formulation of our model works for reflection functions that are not dependent

on the orientation or position of the light sources. In other words, Equations 5.7

and 5.6 assumes a Lambertian reflection function. If this assumption is violated,

the estimate of the β value will contain some error ε (Epsilon). This error can ge-

ometrically be interpreted as the distance between the two lines C1l2l1 and C2l1l2,

97

l1

l2

R
G

B

l1 l2

ε

β β}

C
1
l

1

C
1
l

2

C
2
l

1

C
2
l

2

Figure 5.4: The relationship between camera pixel C1 and C2 located in successive
images at the same pixel location (i,j) and the two lights that provide a relative
contribution in linear RGB space. The two light sources l1 and l2 form a line l1l2.
Each pixel in the image can be considered illumination by some linear interpolation
of l1 & l2 denoted β. A solution to Equation 5.7 is the intersection of the two line
C1l2l1 and C2l1l2, if there is one. Any error in the estimate of the β value can be
interpreted as the closest distance between the two line segments, labeled ε in the
diagram.

which is labeled in Figure 5.4 as ε. In the next section we expand this model to

include more than two light sources as well as describe how to extend our technique

beyond the Lambertian reflectance assumption and describe a formal model for the

error ε.

5.2.3 Expanded Symmetric Lighting

In the previous Subsection we introduced our theory of Symmetric Lighting, which

we showed how to determine what proportion of two lights contribute to illuminating

a point given the assumption of Lambertian reflectance. Because real world scenes

often present reflection and lighting that is more complicated than just a diffuse re-

98

flection with two lights sources, in Subsection 5.2.3.1 we present an expanded view

of our idea of Symmetric Lighting. In particular we generalize Symmetric Light-

ing to n-lights without any knowledge about their physical location. Additionally,

we expand the geometric interpretation for Symmetric Lighting from the previous

subsection by abstractly relating lighting configuration with n-lights to that of an

2-dimensional polygon. This geometric interpretation helps build intuition for the

mathematical representation of Symmetric Lighting as well as providing a simplified

explanation of degenerate cases in the lighting setup. Also, it is reasonable to as-

sume that most scenes will violate the Lambertian reflectance assumption and that

a certain amount of error will be present in the β map as a results. In Subsections

5.2.3.3 and 5.2.3.4 we model the error resulting from specular reflections and utilize

this model to develop an expanded Symmetric Lighting model for use on scenes that

exhibit non-diffuse reflections.

5.2.3.1 Symmetric Lighting in N-Lights

Recall Equation 5.6, which shows the relationship between a pixel in a single image

Ci,j, the reflectance R, and the proportions of each light illuminating a point LT .

The first step towards generalizing Symmetric Lighting is extending the LT to n-

lights, which was previously defined for only two lights by l1 ∗ β + (1 − β) ∗ l2

and β representing the proportions. The generalization of LT to n-lights and their

respective proportions now follow the form:

(β1, . . . , βn) ∈ <+

∣∣∣∣
n∑

n=1

βi = 1 and βi ≥ 0 for all i (5.8)

A lighting configuration with n-lights can essentially be modeled as an 2-dimensional

geometric object or polygon with {β1, . . . , βn} representing the polygon’s Barycen-

99

tric coordinates. Thus giving LT the following reprentation.

LT = B · L =
{ n∑

n=1

βi ∗ li

}
(5.9)

This represents the set of all lights defined by the system and for every light there

is a corresponding proportion βi that quantifies its contribution. This provides a

system of equations in terms of the lights and their proportions that is always fully

determined and therefore always has a solution. These system of equations are :

Ci1 = R ∗ LT1

...
...

Cin = R ∗ LTn

∣∣∣∣∣LTi
|Ti 6= Ti+1 (5.10)

What Equation 5.10 show is that LTi
is the ith lighting total after rotating

the light colors li to a different lighting locations. This is analogous to the light

colors being vertices on the polygon and each light total LTi
is a rotation of these

vertices, which is illustrated in Figure 5.5. For the two-light case, we used the

term ”swap” in place of ”rotation” because we had not introduced the geometric

notion of the lighting. Since in the two-light case, the geometric representation is

a line, therefore the notion of rotation holds for lines. From here onward we will

use the term ”light rotation” in place of swap as it appropriately characterizes the

operation. The light rotation is restricted to placing li in a previously unvisited

location (non-repeating) of the light locations. Because the proportion of lighting

impinging on a point βi is determined by the light’s location, βi remains fixed,

whereas rotating li provides additional equations for balancing and solving 5.10.

We use a non-repeating rotation instead of a random permutation of the lights in

order to describe the lighting Equation 5.10 as a positive definite matrix, which

100

allows us to use a more efficient method for solving the simultaneous equations. We

describe the complexity of solving these equation in more detail in Section 5.2.3.2.

β1

β2β3

l1

l2l3























2
l

1
l

3
l

1
l

3
l

2
l

3
l

2
l

1
l

β1 β2 β3

r1

r2

r3 r1

r2

r2

3
l

1

Figure 5.5: A three vertex polygon (triangle) representing a three light capture
system. The geometric relationship shows the symmetry of the system and how,
through rotations of the light colors li we can have a system of equations representing
the lighting. Additionally, we have listed the lighting values in matrix form with the
corresponding rotations (left side of matrix) and the proportions (β values top of
matrix). This figure illustrates that rotating li does not change the proportions βi,
which are determined by the light locations but only changes the resulting camera
pixel value Ci based on the change in light values li in our system of Equations 5.10.

As can be seen in Figure 5.5, the process of capturing the proportions of lights

is based on a symmetric relationship between the lights and their mathematical

representation. The light colors li are rotated about a center axis to produce the

system listed in Equation 5.10. In Figure 5.5 for example, we have three lights

{l1, l2, l3}, three locations (vertices), three proportions {β1, β2, β3}, and three ro-

tations {r1, r2, r3}. Therefore we can consider the geometric interpretation of this

configuration as being a regular polygon (symmetric) with the number of vertices, n,

corresponding to the number of lights in LT . The rotations of lights to produce the

101

necessary system of equations, results in a lighting matrix that can be represented

as a positive definite symmetric matrix as seen in Figure 5.5. The symmetry within

the lighting setup and system of equations is the reason our light capture technique

is referred to as Symmetric Lighting.

Line Segment Triangle Square Pentagon Heaxagon Heptagon Octagon

2 3 4 5 6 7 8

2 3 4 5 6 7 8

Schla!i #

of Vertices

Name

Image

Figure 5.6: A listing of the first seven n-vertex polygons in 2-dimensional Euclidean
space that corresponds to the lighting configuration with Schlafli numbered polygons
equaling the number of lights.

Figure 5.6 lists the first seven two dimensional Euclidean space polygons which

can be used to geometrically interpret the first seven light configurations with the

each geometric representation having the same number of vertices as lights. Our

method of Symmetric Lighting can be applied to an infinite number of lights in

theory, which essentially corresponds to an infinite vertex polygon or a circle. But

in reality, only a finite number of lights will be used.

Given the relationship described by Equation 5.10, we can rewrite the system of

equations to be in an inhomogeneous matrix representation of the form Ax = b.

L =




l1 · · · ln
...

. . .
...

ln · · · li



, B =




β1

...

βn



, C =




Ci1

...

Cin




R

(
L
)
×

(
B

)
=

(
C

)
=⇒ RLB = C

(5.11)

102

Where L is the n × n symmetric lighting matrix of coefficients, B is a 1 × n

matrix of variable proportions, and C is a 1 × n matrix of pixel values for each

equation. For all equations corresponding to a single pixel location i with n-lights,

R is a single value. This can be interpreted as the value for R simply being a scale

value for the coefficient matrix L, which does not change the proportions of light. So

since we are not explicitly solving for R, we can essentially set R to the value 1 and

remove it from the matrix multiplication. The result is a system of linear equations

in the Ax = b form that has a symmetric positive definite coefficient matrix.

Given that we have a matrix representation of our light capture method stated

in Equation 5.11 as a linear system of equations, this allows us to choose from many

matrix solvers that can provide solutions to our equations. But since we know that

our coefficient matrix is symmetric and given the geometric nature of our lighting

setup illustrated in Figures 5.6 and 5.5 we can further restrict the search space for

our solution and provide a faster solution. Because the geometry of our lighting

corresponds to a regular 2-dimensional polygon with matching light numbers and

vertices, our solution set is in the subspace spanned by the area of the polygon. Fur-

thermore, our solution is the Barycentric coordinates of the polygon corresponding

to an interior point of the polygon. For example, assume that our lighting setup

was the same as Figure 5.5, with three lights corresponding to a polygon of the

named triangle. Then the solution is the Barycentric coordinates of the triangle

that uniquely satisfies LB = C, where the coordinates are the proportions β1, β2, β3

corresponding to ratios between lights one, two, and three. This implies that a

good lighting setup would be one where the Barycentric coordinates have the same

span (length) and are not too close together to as to cause the polygon shape to

degenerate (e.g., go from triangle to line segment, without reducing the number of

vertices).

103

5.2.3.2 Degenerate Cases and Computational Complexity

Degenerate forms: A failure case in terms of our lighting capture method described

previously is any situation where a unique solution for Ax = b cannot be determined,

which occurs when either no solution exists or more than one solution exists. This

may happen when the color values for li and lj are too close together thereby making

the solution set for LB = C to be not unique.

A geometric interpretation of this situation is one that causes a polygon of vertex

number n to have a degenerate form of a lesser class of polygon (i.e. a class of

polygon where the number of vertices is < n). For example, assume we have a

light configuration that has three lights and therefore can be modeled as a triangle

polygon as illustrated in Figure 5.7. When the light color li of the setup has the

same value li+1 then the geometry changes from a triangle to a line without changing

the number of variables. This is referred to as the degenerate form of the polygon.

Referring to Figure 5.6, every polygon with n vertices is the degenerate form of

polygons with greater than n vertices. For our previous example, the line segment

is a degenerate form of a triangle. In the context of our lighting setup, degeneracy

changes the solution set from being unique to one that has an infinite number of

solutions (i.e., every point collinear to the overlapping lines).

Another way to think about the degenerate case is that we have the same num-

ber of equations but one pair of these equations that are exactly the same. This

essentially gives us two equations with three lights and three variables. Therefore

the we have a system of equations that becomes underdetermined and has an infinite

solution set over [0 − 1], as every proportion is a solution to this equation. As a

final note with respect to lighting colors being unique, it is often the case that many

lighting configurations have light colors that are the same. To use our Symmetric

Lighting method each light that is to be controlled separately must have a unique

104

β1

β2β3

l1

l2l3

β1

β2β3

l1

l2l3

β1

l1

β3

l3

β2

l2

Collapsing An Edge

l3≈l2

Figure 5.7: The degenerate form of a triangle is a line segment. All polygons of
n-vertices are degenerate forms of polygons of n+1 vertices.

color. So a lighting setup that uses our method will need to be designed with each

light having a unique color. Much like, when using a method for performing Alpha

Matting (Chroma-keying), a green or blue screen must be included in the setup

of the scene. This may be perceived as a challenging aspect to using our method,

but there are several ways such a system can be configured that allow for flexible

implementation. We describe more detail on how the system can be implemented

in Chapter 6.

Complexity of solving Ax=b: There are many ways to solve a system of linear equa-

tions such as with Gaussian Elimination [TB97] or Cramer’s rule [TB97]. Because

we have a coefficient matrix that is symmetric we can further decrease our complex-

ity by using a method that exploits symmetry. The LU decomposition algorithm

called developed by Alan Turing [Poo10] is such an algorithm. This method takes

the coefficient matrix and decomposes it into a two matrices L and U , where L is

the lower triangular portion of the coefficient matrix and U is the upper triangular

105

part. To further reduce the complexity of solving the Symmetric Lighting, we take

into consideration that we have a matrix that is also positive-definite. This allows

us to utilize a faster method of LU decomposition called Cholesky decomposition

[TB97]. Like LU decomposition, the matrix A is decomposed into its upper and

lower triangles, but since we have a positive-definite matrix we can take advantage

of that by computing L and LT , where LT is the transpose of the L triangular

matrix.

Cholesky decomposition method has a complexity on the order of O(n3) in terms

of the size of the matrix A [TB97] or in our case the number of lights. This is about

half of the running time of LU decomposition. As far as decomposition methods,

the Cholesky method is known to be the most efficient method [JO06] for matrix

decomposition and can be implemented on the GPU efficiently [JO06]. Also, since

the decomposition is in terms of coefficient matrix and in our case the lighting

matrix which is known ahead of time, we can compute the Cholesky method as a

pre-process before rendering and then substituting its results back to solve the linear

equations. Back substitution by itself has a known complexity on the order of O(n)

in the number of equations [Pre92].

Given the low number of lights in a configuration, the running time listed here is

entirely acceptable as O(n3) of a lighting configuration with < 10 lights, which can

be executed on a GPU in real time. In reality, if we preprocess the lighting matrix,

then our run time complexity reduces to O(n). Below, in Listing 5.1, is pseudocode

for performing Cholesky decomposition adapted from [JO06].

Listing 5.1: Cholesky Decomposition pseudocode adapted from [JO06]

106

f o r i=1 to n−1 do

A (i , i) = sq r t (A (i , i)) %Square root

A (i+1:n , i) = A (i+1:n , i) /A (i , i)%Normalize

f o r j = i+1 to n do %Inner product subtract

A (j , i+1) = A (j , i+1)−c r o s s (trans (A (j , 1 : i)) , A (i+1 ,1:i))

end f o r

end f o r

A (n , n) = sq r t (A (n , n))

5.2.3.3 Error Estimation

If we again consider the case with a scene with only two lights, then the camera pixels

C1i,j and C2i,j are the products of the lighting LT 12 and LT 21 and the reflectance R,

it follows that our error would be bound by the lighting and reflectance. Of course

this is only true if we have an ideal camera, but assuming that any camera errors

manifest themselves in the estimates of L and R variables and also assume that the

camera has been calibrated and that any noise process related to the camera has

been modeled (i.e., subtraction of a dark image). When capturing the color values

C1 and C2, we are measuring the product of L and R. Therefore, we can estimate

the lighting error u and reflectance error v (see Equations 5.13) as being due to

errors in measurement εi and εr for each respectively and the total error E as the

product of L and R and their associated errors.

u = L(1 + εi) (5.12)

v = R(1 + εr) (5.13)

As previously mentioned the reflection function is implicitly modeled and not

107

explicitly known in the Symmetric Lighting capture. This is one of the benefits of

this technique, but with scenes that violate the Lambertian reflection assumption

can cause errors associated with solving the simultaneous equations from Equation

5.6. Because the reflection function is unknown, we have to account for how it varies

with the lighting orientation in the presence of specular reflections. Therefore we

suggest that this will be the primary cause of error associated with the minimization

of the objective function for finding a β based on diffuse reflection. Additional errors

will result from measurement of the light sources. If we assume both errors are

relative to the measurement or approximated value of L and R respectively, then

we can represent their relative linear relationship and estimate total error as the

multiplication of the error estimates. In Equation 5.14 we substitute back in the

values from Equation 5.13, which provides a model of the total error.

E = uv

E = [L(1 + εi)][R(1 + εr)]

E = LR(1 + εr + εi + εrεi)

(5.14)

Experiments for modeling the error were performed in this work using a synthetic

scene rendered in a physically-based rendering system called VRay (version 1.5RC4).

Using a synthetic scene and a physically-based rendering system gave us the benefit

of knowing the lighting exactly, utilizing an ideal camera, thus eliminating any error

associated with estimating L and C. Also, we eliminate Global Illumination from

the tests, thus eliminating any noise from estimates of the light transport and an

exact solution can be generated with direct lighting only. Therefore, any error in

the synthetic render will be the result of the unknown reflection function, E =

LR(1 + εr). Figure 5.8 shows the error associated with Symmetric Lighting capture

using a specular reflectance function compared to the ground truth, which uses a

108

Lambertian reflectance function. The Absolute Difference between the calculated β

maps of the two renderings is shown in the right column, with the differences of the

specular version multiplied by ten for visualization purposes. Additional evaluations

with respect to error are provided in Chapter 6.

The diffuse model provides a uniform distribution of reflection and is therefore

not dependent on the direction of the incoming light. This reflection function is the

basis for Equation 5.6 since it can be factored out from the light contribution esti-

mation (i.e., estimating β). The β map from the Lambertian reflection experiment

will be used to calculate the L2 norm.

Ward

Di�use

(Lambertian)

Render Beta Map

Abs. Di�erence

Di�use

Ward

Specular +

Anisotropic

Figure 5.8: Error estimate due to specular reflection. The β maps (center column)
for Lambertian (top row) and specular reflection (bottom row) are compared by
calculating the absolute difference image between the β map of the non-Lambertian
reflectance and the β map of the Lambertian reflectance (in this case the Ward
Diffuse model). Each scene has the exact same setup, with only the reflectance of
the geometry modified being different. Errors manifest themselves as differences in
the β shown in the right column.

In terms of a two light system, we can define the absolute error to be the deviation

of the pixel’s β value from the β value for the same pixel of the ground truth. This

is visually illustrated in Figure 5.4 as the minimum distance between the two line

109

segments C1l1l2 and C2l1l2. Therefore the error from specular reflection is bounded

by Max(d2rgb) is the maximum of the closest distance between the line segments

C1l1l2 and C2l1l2. In other words, the domain of the solution to the system of

equations for Symmetric Lighting is in the RGB color cube, the maximum error is

bounded by the size of the cube, which is unity in all dimensions. In Subsection

5.2.3.4 we utilize this idea for extending the reflectance assumption for Symmetric

Lighting to include specular reflections. The error associated with measuring L, will

be dealt with in the next chapter.

E ≤
√

Max(d2r) +Max(d2g) +Max(d2b) (5.15)

5.2.3.4 Minimizing Epsilon for Non-diffuse Reflections

For materials that exhibit typical and non-conducting behavior, a linear model for

reflection is commonly assumed [WLL+09, DHT+00a, LPD07, MHP+07]. Specifi-

cally, the linear modeled for reflection is expressed as a sum of the reflectance terms,

which generally includes separate diffuse and specular reflectance. To show that the

Symmetric Lighting model can be extended to include non-diffuse reflection, in par-

ticular specular reflection, we utilize the previously mentioned linear model. We

have already shown that the Symmetric Lighting formulation from Equation 5.7 as-

sumes a Lambertian reflection, and a Lambertian model for the diffuse is understood

to accurately represent reality with non-spatially varying functions [WLL+09], then

an additional specular term is all that is required to extend our formulation.

First we assume that separating the diffuse and specular properties of a re-

flectance function is feasible not just in theory, but in practice. Indeed, several aca-

demic works have shown the plausibility of separating the diffuse and specular parts

of an object’s reflection function with relative ease either by color separation or using

110

polarized light and polarized filters. [NFB97, LPD07, DHT+00b, MHP+07, KSK92].

For the specular portion of the reflectance function R, we consider only the view-

dependent points seen by the camera and not attempt to acquire the function as a

whole. By eliminating the specularity from the camera images, we have only the

diffuse portion remaining. We can then solve for the diffuse term as previously done

using the Lambertian assumption. Then the βi for each camera pixel Ci that was

solved for the diffuse term is also used as the β value for the specular term. This is

true because the β represents the proportion of each light source contributing to the

total illumination at that point, and this value is independent of reflection function.

Therefore, solving for the specular term can be done in the same fashion as solving

for β through simultaneous equations.

C = Cdiff + Cspec (5.16)

Cspec = Rs1L1β +Rs2L2(1− β) (5.17)

Were Cdiff is the result of Equation 5.6. Given two values for the Cspec from the

separated terms and two images, we have two equations (one for each image) and

two unknowns, Rs1 and Rs2. Substituting the equations and solving for Rs1 and

Rs2 gives enough information to utilize the specular in conjunction with the diffuse

reflection without the need to approximate the specular reflection further. This idea

is illustrated in Figure 5.9.

Another factor that may contribute to the error is Global Illumination (GI). In

this research we assume that the error is not significant enough to warrant inves-

tigation at this time and is reserved for future work. This is mainly due to the

assumption that for our main application of relighting for the purposes of Previsu-

111

Figure 5.9: Separation of diffuse (left) and specular (right) reflection for Symmetric
Lighting.

alization, which can tolerate low amounts of error. Although, if it were determined

to be a significant source of error, GI can also be removed or estimated using a sim-

ilar method to that of separating diffuse and specular reflection using the technique

proposed in [NKGR06].

112

5.3 The Beta Map

In this section we describe the main data structure developed for storing the results

of our Symmetric Lighting method. This novel data structure, which we call the β

map (Beta map), stores the normalized proportion of each light’s contribution to

each camera pixel independent of reflection. The β map is analogous to the alpha,

normal, and depth maps for a scene, in that it stores per-pixel information about

the scene that, in our case this information is related to lighting evaluated from

Equation 5.7. Additionally, like that of its analogues, the β map is image-based

and stores the lighting and partial geometry data corresponding to pixel location

of the camera image. In essence the β map stores pre-multiplied shading values, or

the values of the light multiplied by the geometric information of the scene prior

to it being multiplied by the reflectance and appearance values. In terms of the

Rendering equation from Figure 5.10, this is the value of each light times visibility

and the orientation of the surface normal and lighting direction. In the context of

multi-pass rendering, such as done when using software such as Maya or 3D Studio

Max, this is known as Light or Lighting pass [Bir06] and prior to this work was only

available in synthetic rendering contexts and not with real scenes.

An important property of the β map is that the process of capturing the light-

ing information through Symmetric Lighting, we have extracted the reflectance and

appearance information R() from the camera image. As can be seen in the Figure

5.10 below, the β map consists of only a combination of scene lighting and geometry

information. Another way to think about the β map is that it is a ”reduced com-

plexity” version of the camera image (i.e., no reflection or appearance information)

that makes inferring information about the lighting and geometry easier. Taking

an image-based approach has the benefit of not requiring a transformation to map

113

ωωωωωω dnxVxLxRxC
ii

))((),(),,(),(⋅′−′′= ∫
Ω

Reflectance Lights Geometric Orienta"on

Measure Over Hemisphere Ω

β-Map

Figure 5.10: Here we present a modified version of the Rendering Equation intro-
duced by Kajiya [Kaj86], where a camera pixel Ci is the result of multiplying all
lighting contributions Li and reflection R with respect to the scene geometry over a
hemisphere. Symmetric Lighting allows us to separate the product of the reflectance
and lighting and geometry, which we store the result in a data structure called the β
map. Additionally, the β map records the proportion each light contributes at each
pixel within the camera image providing the capability to distinguish each lights
contributions.

the coordinates of one representation to another, unlike that of an atlas-based map,

which allows for less complicated processing and interpretation of the maps. In that

spirit, we have extended Equation 5.3 to include a visibility term V () as indicated

in Figure 5.10, which when interpreted in the context of the β map, can be used

to determine which lights are visible at every pixel location in the camera image.

Through the use of simple image processing techniques performed only on the β

map, we can determine the visibility of a point located within the scene without the

need for explicit geometry, normal, or depth information. In Ray Tracing, visibility

is the main component in determining whether a point in the scene is in shadow.

In Subsection 5.3.1 we describe a threshold watershed method for determining the

location of shadows in the camera image individually for each light source.

If we consider most lights sources to follow some level of falloff as a result of

distance or shape, then approximating the shape of the light can be considered a

flow field as it reflects off a surfaces within the scene. Specifically, the gradients (first

order) and divergence (second order) of the β map values (zeroth order) indicate the

direction and magnitude of the flow of photons in the scene, which we use to gauge

114

the geometric information and lighting direction. We then utilize this information

to identify how the flow of photons are influenced by the scene geometry, which

allows us to decouple the geometry from the lighting within the β map to provide

an approximate light distribution. This method, which we call Light Sinks, can be

seen as an inversion of irradiance (photons after reflecting off a surface) to radiance

(photons as emitted from source prior to reflecting off a surface) lighting values. As

described in more detail in Section 5.3.2, this inverse process approximately restores

the lighting values to a point in time right before photons reflect off the surfaces of

the geometry in the scene, which can provide direct light editing.

In terms of the β map representation, grayscale maps as seen in Figure 5.10 are

sufficient for maps that contain lighting from only two lights as their proportions

are easily calculated. When using more than two lights, the map can be trivially

extended to utilize the color channels of the maps images instead of grayscales across

all channels. For example, if we had three lights having values β1, β2, andβ3|β1 +

β2 + β3 = 1, then each value for each pixel could be assigned to each color channel

of an RGB image. Additionally, the alpha channel could be used for a fourth

light, although visualizing such results might be unintuitive as alpha channel is

typical reserved for opacity and any imaging program that support opacity could

misinterpret such values. So, we prefer to use separate maps for numbers of light >

3, instead of using the alpha channel.

Because we specify the β map in the form of an image, we can utilize this

representation to take advantage of texture hardware on graphic processing units

(GPUs) when performing relighting. In essence, the formulation actually becomes

simplified as a result, since looping through all the pixels is no longer required as all

relighting calculations are performed in parallel using shader programs on the GPU.

Using the formulation for Symmetric Lighting for two lights we can generate a β

115

% L1

% L2Image 1 Image 2 β Map

Figure 5.11: Beta Map Creation: input two images containing the same setup with
the light colors interchanged resulting in a grayscale image where the pixel values
correspond to the proportion of light each source provides for a particular pixel.

map that can be used to factor out the lighting information leaving only the values

for R(), which is known as the reflectance image. This process can be considered a

form of intrinsic images [BT78, Fer06, ED04], where a fully rendered image is de-

composed into separate images containing only lighting (i.e., light pass), reflectance,

and appearance data. Then relighting simply becomes the generation of a new light-

ing image, which is achieved by multiplying the β map by the new lighting values.

Furthermore, a new camera image is generated by multiplying the reflectance albedo

by the new lighting. This process is described in more detail in the Previsualization

and Evaluation Section 6 and sample programming code is provided in the Appendix

Section B. Figure 5.12 provides a visual illustration of this process.

L2•

β Map R() Map R() Map

=

Relit Camera Image

•

Camera Images & Lights

L1•

β Map

L’1

L’2

•

New

Lights

Symmetric Light Capture Relighting

Figure 5.12: A simplified relighting example performed as a series of texture map
operations as executed on graphics hardware. Left side is the Symmetric Lighting
light capture, which results in two maps (center). Right shows relighting as the
product of the new lights L’, β map, and the R() map to produce a relit camera
image.

116

In addition to relighting, we believe that the β map is a powerful data structure

that can be purposed for many other tasks. For example in Section 5.3.1, we show

how it can be used to solve multi-shadow detection. Additionally, we show how it

can be used to solve multi-illuminant white balance in Section 6.4, and light color

estimation in Section 6.3. Beyond the methods described in this work, there are

several other problems which we plan to explore in future work that we could utilize

the β map to solve. The following is a list of some of these potential methods:

• Surface Normal Estimation : In Subsection 5.3.2 we describe in more detail

our idea of Light Sinks. It is possible, but not fully explored in this work, to

estimate the orientation of the lights or the light normal using this method.

Using the β map, and light normal, using the simplified formula for the Ren-

dering equation which describes an attenuated cosine factor N ·L, we can solve

for the surface normal N using a least-squares method.

• Depth Estimation : Physical lights exhibit a decrease in intensity with distance

or fall-off called the Inverse-Square Law. With β maps, it could be possible

to estimate the distance from the lights by tracking the β values that exhibit

an inverse-square increase of decrease in value.

• Global Illumination (GI) Estimation : As stated previously Symmetric Light-

ing assumes a Lamerbertian reflectance model and therefore the presence of

GI will manifest itself as error. If we develop a method for measuring the error

associated with GI, this will be equivalent to measuring GI.

• BRDF Estimation : Given the camera model for Symmetric Lighting in Equa-

tion 5.1, the reflectance R is implicitly know and substituted out to solve for

β. Once the value for β is found, it is straightforward to substitute R back in

117

and solve for R. Although our value for R contains reflectance and appearance

information, it may be possible to further separate these values.

5.3.1 Shadow Detection Within The Beta Map

In the context of the beta map, we show a new way to detect shadows in an image

with more than one light that is independent of shape, albedo, or reflectance of

the object. Because most shadow detection algorithms assume a single light source,

we provide an alternate definition of a shadow as a location that is illuminated

by n − 1 or less lights, with the assumption of n lights within a scene. In other

words, a point in the scene is in shadow if there is no direct illumination from one

or more lights within the scene. Leveraging the information available with the β

map makes searching for and detecting shadows straight forward, and essentially

involves finding pixels with β values below some threshold.

Because we can separate the proportions of contributing lights into different color

channels of the β map, searching for shadows associated with a particular light is

trivial. In this case a simple thresholding of the β values in a particular channel will

produce an estimate of the shadows present in the scene by segmenting the β map

into two distinct regions. We can precisely define this as:

βst{x ∈ R2|f(x) = β, β ≤ st} (5.18)

Every pixel location x in the β map f() has a β value. Then if st is the shadow

threshold, then βst are the values of the β map that are equal to or below the

threshold st. Conversely every β > st is above the threshold. Coarse thresholding

such as this can detect both self-shadows as well as cast shadows as seen in Figure

5.13.

118

Figure 5.13: Example shadow detection using threshold values and a β map of the
scene. The image on the left shows our ability to detect both cast and self-shadows
from a single light source. The image on the right is for comparison.

Shadows can exist with different levels of intensities, especially when shadows

from different lights overlap. In the context of cast shadows, the Umbra is a shadow

component that is entirely blocked and therefore has low intensity values. The

penumbra is only partially blocked and has higher intensity values than the Umbra

but is still low relative to the rest of the scene [JW92]. In the presence of multiple

light sources (or area lights), umbra generated from one light can have the intensity

increased due to light coming from other sources changing it to a penumbra in the

camera image.

To be able to capture different levels of intensities or umbra and penumbra we

use the watershed transformation technique [BL79] based on β values within the β

map. The watershed technique uses regional minima to establish seed locations for

a ”catchment basin” or areas where water would collect in terms of topology. In

terms of shadow detection, these catchment basins represent areas of low β values

representing shadows. The catchment basins are separated by higher areas called

”watersheds” which in terms of topology force water to roll down and collect water

in the catchment basin, like a ridge in a canyon. The watershed technique, which

is widely used in image segmentation, identifies the catchment basin and watershed

areas in order to demarcate regions of interest. For shadow detection, watersheds

119

represent the delineation of the shadow areas from other high intensity areas. If

we assume the β map represents a grayscale topographic map, with high β values

areas being areas with high elevations or watersheds and low values being catchment

basins, then shadows will exist in the catchment basins.

200

150

100

50

50 100 150 200 250

watershed

Catchment Basin

Cast Shadow

B
e

ta
 V

a
lu

e

Line Sample #

Self Shadow

0

250

Figure 5.14: Example shadow detection using threshold values and a β map of the
scene. The image on the left shows our ability to detect both cast and self-shadows
from an individual single light source instead of grouping all shadows together,
which is how previous shadow detection methods work. The image on the right is
for comparison.

To use this technique, we let W be the set of all watersheds and Wm be a subset

of W with minimum height m. Then we can define W as the following:

W =
⋃

m

Wm (5.19)

To determine all Wm we need to determine all the points whose height is less

than m {x ∈ X|x < m} that belong to only one catchment basin. Also, if a point

x has a value equal to m and it is the same distance from two catchment basins,

then it belongs to Wm and is therefore a watershed. Figure 5.14 illustrates these

definitions.

120

Our technique allows for separation of the umbra and penumbra for each light

making it possible to see each light’s shadow individually. We do this by using

the watershed method with windowed thresholds. By using multiple thresholds in

conjunction with the watershed algorithm we can identify regions of different β

levels (different catchment basins). This would be similar to the shadow detection

illustrated in Figure 5.14 but with umbra and penumbra instead cast and self-

shadows corresponding to umbrae and penumbrae of different shadows.

5.3.2 Gradient Domain Light Distribution

This section describes a novel technique for manipulating the individual lights within

a scene by editing their photon distributions in images space. Small changes in light-

ing can have a dramatic effect on the how the image is rendered. In reality, lighting

on a movie set is often moved, turned, and adjusted many times before and during

a shot. Analogously in Relighting applications, users want to edit the parameters of

the virtual or simulated lights in many of the same ways that they could physically

and then reapply the new light settings to the scene. This includes the ability to

reshape, translate, or rotate the lights. Combining virtual lights (i.e., lights that do

not exist physically in the real scene) with fully captured scene information (i.e., ge-

ometry, reflectance, and appearance) is certainly feasible. Another technique used

for Relighting applications is employing captured real-world lighting such as En-

vironment Maps [HS98, FLW02] or Light Probes [Deb98a]. But these techniques

assume the user considers the captured lighting as the desired lighting environment

and at best only provides basic editing capabilities such as rotating the environment

maps. Sampling techniques can be used to generate individual points on the maps

that may act as individual lights. These are generally used to improve the render-

ing and are usually considered distant and therefore have a uniform distribution of

121

photons throughout the scene, and are not optimized for editing.

The β map from the previous section describes the proportion of the total il-

lumination that each light contributes to a point in the scene for each pixel value

in the map. Looking at the β map at different scales, reveals that it is also pro-

vides higher-ordered information about the proportion of light, which conveys the

shape and distribution of light radiated. Because the β map also encodes geometric

information regarding the relationship between the lights and the scene geometry,

this gives the β the overall appearance of the geometric shape of the scene, which

includes depth edges, visibility, and the cosine term relating the surface normal to

the orientation of the lights. This section describes the method used to untangle

the intrinsic geometric information from the illumination to create an illuminance

image [BT78].

If we consider neighborhoods of pixels, then changes in proportions of light within

the neighborhood can be represented as the gradient of the β values. The gradient

represents the partial derivative of the lighting function in the spatial domain, thus

provides first order information. We can then extrapolate this idea further to a

larger scale which can encompass many pixel neighborhoods and greater areas of

lighting influence. This higher-ordered information describes the distributions of

photons within these local regions, which we can describe using the divergence

operator. The divergence operator is the derivative of the gradient operator, and

thus provides second order information about the lighting function. This operator

provides some notion of the shape of the light relative to the scene. Therefore, we

developed a technique for changing the shape of individual lights by altering the

gradients and divergence of β map associated with the lighting without the need to

physically alter the lighting system or being restricted to distant light sources.

The work presented here is in the same spirit of Fattal et al. [FLW02] where they

122

too consider lighting and the gradients associated with the lighting. The difference

between their work and ours is that they are primarily focused on the dynamic

range compression of the luminance values within a scene. We instead are similarly

interested in luminance, but not necessarily the dynamic range but other properties

such as the distribution of photons and the placement of those photons within a

scene. Their operation, dynamic range compression, is performed by attenuating

the magnitude of the gradients in areas that exhibit the high-end of the range and

scaling up those in the low-end of the range slightly. Finally, this work is also draws

from the ideas of Agrawal et al. [ARC06], who employed the use gradient domain

operations to suppress depth edges, shadows, and spurious light. In their work,

they observed that under variable lighting, an operator could be devised to suppress

parts of the gradient-field in the target image using the gradients from another

image of the same scene under different lighting. Our goal in using gradient domain

operations differs from Agrawal et al., in that instead of suppressing the gradients

of an image that correspond to shadows or spurious lighting, we have focused on

suppressing the gradient edges of the geometric scene information and separating

it from the lighting. This has allowed us to develop operators that provide the

capability to refine the lighting to the user’s specification, such as changing shape,

intensity, and location.

The main contributions of this section are:

• Novel Gradient domain approach to manipulating the illuminance of individual

light sources independently to modify the lighting within an image.

• Simple but robust discriminator, based on separation of components and gra-

dient histograms.

• Novel data structure for identifying areas of varying influences of a light and,

123

in turn adding more information to the β map.

5.3.2.1 Method

There are two motivating factors for using the gradients of the β map for editing the

distribution of photons in a scene. First, the Human Visual System (HVS) is sensi-

tive to local contrasts rather than absolute luminance values[RBH08]. It is known

that image gradients are correlated with contrast differences [BZCC10] and larger

differences in luminance values result in larger gradients. The second motivation

for performing the gradient domain operations in the illuminance images is that

performing gradient editing in the composite image (R*L) does not just edit the

lighting gradient, but edits the reflectance gradient as well. More precisely, it will

edit the gradient of R*L including gradients that result from the appearance (i.e.,

texture) and geometry of the object in the scene. In order to precisely edit just the

lighting, we need to discriminate between the lighting and the other properties of

the scene. As suggested in [ARNL05, ARC06], the orientation of the image gradient

remains stable under variable illumination, since a gradient is just a vector with

magnitude and direction, changes in illumination must serve to scale the magnitude

of the gradient. Therefore if we proceeded to edit the image gradients indiscrimi-

nately with some operation that performs an orientation change to the vector, then

artifacts related to the modified gradients will become apparent.

The gradient of the β map from Section 5.2 is defined as:

∇β(x, y) =
∂βx

∂x
+

∂βy

∂y
(5.20)

and ∂βx,y

∂x,y
is the partial derivative of the β map with respect to the spatial direc-

tions x and y. This can be interpreted as the change in proportion of the lighting

of L1 and L2, where the direction of ∇β(x, y) indicates the direction of the greatest

124

increase in proportion.

In particular, we find local maxima within the scenes gradient field using a

divergence operator, which measures the gradient field’s tendency toward a sink

(negative divergence) or source (positive divergence). Since we are interested in

areas that exhibit a ”collecting of photons”, we consider only areas of negative

divergence, which we call Light Sinks.

∇ · ∇β =
∂∇β

∂x
+

∂∇β

∂y
≤ 0 (5.21)

In Equation 5.21 we define the gradient field β over the dimensions of the image

β(x, y), then the divergence of that field is defined over the partial derivative of the

x direction ∂∇β and the y direction ∂∇β with respect to partial derivative of the x

and y direction. The light sink then has a maximum divergence when the ∇ · β has

a maximum negative value. Since we assume that each light will produce at least

one Light Sink, we can cluster these values in the RGB cube to estimate the value

of the light colors.

We then perform our gradient operations in the 2D spatial domain. Our opera-

tions, which we will define in the next subsection is applied directly to the gradients

of the scalar field of the β map. It is important to keep in mind that, instead of

a color image with three tri-stimulus values, we are working in a light proportion

space defined by the β map creation process which has a single value for two lights

or two values for three lights. This helps us to avoid any color artifacts that may

result in the operation or the reconstruction of the β map.

F̃ (x, y) = ∇β(x, y)φ(x, y) (5.22)

Where F̃ (x, y) is the gradient field resulting from the operation of φ(x, y) and

125

the gradient of the β map. If F̃ = ∇β̃ in our newly modified β map, then ∇β̃ must

satisfy:

∂2β̃

∂x∂y
=

∂2β̃

∂y∂x
(5.23)

Because F̃ has been shown to almost always not be integratable, then we can

assume that β̃ will not satisfy Equation 5.23 and utilize other means for determining

β̃. Mainly

min
∥∥∥∇β̃ − F̃

∥∥∥
2

(5.24)

Which searches the space of all gradient fields to find some β̃ that has the minimal

difference, in the least squares sense, between itself of the calculated gradients F

from the operation in Equation 5.22. The new β̃ should satisfy the Euler-Lagrange

equation allowing us to obtain the Poisson equation from the new β̃.

∇2β̃ = ∇F̃ (5.25)

Where ∇2 is the well-known Laplacian operator and ∇F̃ is the divergence of the

gradient field from Equation 5.21 without the condition of being ≤ 0.

Edge Suppression : As previously mentioned, the β map has encoded geometric

information about the scene from which it was created as well as relative contribu-

tions from the lights. Our goal is to untangle the geometric information from the

lighting in order to generate an Illuminance map, which we could use to manipulate

the spatial properties of the light such as location and shape. The β map contains

geometric information about the scene such as depth edges (discontinuities), shad-

ows, and the relative orientation between the surface normals within the scene and

the light direction which manifest themselves as gradients as illustrated in Figure

126

5.15. The gradient edges caused by shadow boundaries and depth discontinuities,

have large gradients relative to the other gradients within the map. Removing these

gradients from the map would constitute a significant portion of the geometric in-

formation contained with the map.

Depth Edge

Shadow Edge

β Map Original Image

Figure 5.15: Large gradients corresponding to edges indicated by the red arrows.

We utilize the technique developed by Agrawal et al. [ARC06] for suppressing

large gradients associated with these geometric features. Edge detection filter could

also be used to identify large gradients in order to build a mask for suppressing.

Such techniques can leave small gradient edges, which in our case are undesirable

due to assumption that the illumination is smoothly varying and any gradients that

do not constitute a transformation from one light to the next can be considered a

result of geometric or texture properties of the scene and not the illumination.

This approach builds what is referred to as the projection tensor of two images.

The tensor can then be used as an operator to remove parts of the gradient-field in

another image from the same scene under different lighting.

∇β̃ = Db∇β (5.26)

127

Where ∇β̃ is the β map with the geometry edges removed. The Projection

Tensor Db is generated from two Gaussian smoothed tensors Gσ with variance σ.

The Eigen values and vectors of Gσ are used for constructing the Cross Projection

Tensor D in a similar fashion to that of Diffusion Tensors [Wei97]. This approach

removes edges in ∇β that also exist in the rendered version of the image C resulting

from R*L, but retains the edges from ∇β that do not exist in ∇C. In other words,

this can be thought of in terms of a set of operations and formed in tautologies,

which could used as bitwise operations on gradient edges within images. So the

Cross Projection Tensor is equivalent to (∇C ⊕ ∇β)∧∇β, using the truth table in

Table 5.1:

Edges In: Retained:

∇I ∇β ∇β̃
0 0 0
1 0 0
1 1 0
0 1 1

Table 5.1: Truth Table For Cross Projection Tensor Operations

While we do not go beyond this observation of the gradient edge operations as

set operators, but it might be interesting and is thus left for future work. Readers

familiar with Agrawal et al.’s work in [ARC06] may notice that a benefit to this

technique over their previous work [ARNL05] is that it utilizes the information

across the color channels for tri-stimulus images (RGB, CIE Lab, etc). The β

map we describe as input contains only a single channel of information while the

background image contains tri-stimulus values. We can mitigate this issue in one

of two ways; first, it is noted that the Cross Projection Tensor can be utilized for

gray scale images. We can therefore convert the background image to gray scale to

match the β map as color is not the primary concern, but the edges of the gradients.

128

Or secondly, we can convert the β map to tri-stimulus values by smearing the single

channel across the other two to make a 3-channel grayscale image.

In Figure 5.16 we present some results of the edge suppression.

Figure 5.16: Results of the edge suppression technique. Top two images are the
separated β map with multiplied lights, L1 & L2 from Figure 5.15. Bottom row, left
are the two lights together multiplied with β map. Bottom row, right, is the edge
suppressed version of the combined β map.

5.3.2.2 Gradient Domain Operations

In this section we describe a series of operations that can be performed using the

gradient-domain editing technique presented in this section.

Scale: The scale operation performs a scaling to the magnitude of the gradient

vectors associated with the currently selected light. This has the effect of changing

the apparent or perceived falloff or brightness of the associated light. This operation

provides a scalar C|C ∈ R and is subject to the constraint that β + C ≤ 1.

Rotate: The rotate operation describes the rotation of the gradient vectors as-

sociated with the gradient-field belonging to the selected light. Rotation of the

129

magnitude of the vector at a pixel will have the effect of reorienting the light by the

rotation amount. The operation provides a scalar value V |V ∈ R and the vector

rotation value is constrained to V ≤ 2π.

Translate:The translate operation describes the translation of the gradient from

one pixel to another in the spatial domain (x,y). This has the effect of moving the

light in the spatial direction specified by the values x and y. This operation provides

two scalar values x, y|x, y ∈ I and correspond to the number of pixel values in term

of L0 or the Manhattan distance for which the gradients is to be translated.

Diffuser: This operations describes the process of diffusing the light as though

some uniform scattering medium was placed in the lights path. This gives the effect

of creating a more diffuse and softer light with fewer areas of non-uniform lighting.

This is done by averaging the gradient magnitudes within regions in order to remove

high-frequency or noise related gradients variations.

Sharpen: This operations has the opposite effect as the Diffuser operation above.

It serves to accentuate the differences in magnitude between gradients within a small

region.

130

5.4 Conclusion

In conclusion, this chapter introduced our novel photometric and active illumination

method for capturing the lighting of a scene, which we call Symmetric Lighting. This

method works without explicitly knowing or measuring its geometry, reflectance, or

appearance. In this chapter we developed an initial theory for a two-light scene

and then generalized this theory to N-lights. We also provided an analysis of the

computational complexity as well as efficient and hardware amenable ways to cal-

culate each lights contribution based on the Symmetric Lighting by leveraging the

symmetric nature of our technique. In addition to Symmetric Lighting, we also

introduced several other contributions that resulted from our Symmetric Lighting

capture method, such as an efficient and versatile data structure for storing the

lighting contributions called the β map, novel shadow detection algorithms, and a

gradient-based method for manipulating the distribution of photons for each light

individually.

Our relighting method allows for previsualization and editing of on-set lighting

in real-time, which cannot be accomplished using previous methods. This will en-

able directors and cinematographers to virtually preview and edit on-set lighting for

greater artistic control and faster decisions on physical lighting changes, resulting

in higher quality lighting in movies, fewer reshoots, and less on-set time. Although

our method is less complex and costly to other relighting methods described in

the Previous Work Section 6.2.5 in the next chapter, it is not without limitations.

As previously described our method is based on the Lambertian reflectance model,

which is a gross approximation to real world reflectance. Therefore our method,

at this time, cannot be used to capture and manipulate more complex reflectance

phenomena, such as subsurface scattering, transparent and emissive surfaces, and

131

Global Illumination. Specular reflectance can be captured, but at a cost of dou-

bling the number of image acquisitions. This means that certain scenarios where

our method might not excel is in capturing the lighting within scenes that con-

tain humans skin or faces as they have been shown to require capturing sub-surface

scattering. Additionally, scenes that contain no movement are ideal for the current

version of our method; therefore scenes with fast moving objects or cameras will

cause image blurring and produce large errors in terms of Symmetric Lighting.

Finally, a drawback of the β map is that the values represented at each pixel

of the map contains the relative proportions of each lights contribution but not

absolute amount of light. This becomes problematic when actual amount of light

represented by a pixel in the β map is small. This can in techniques such as the

shadow detection method described in this chapter when differentiating which pixel

in the β map belongs to which shadow. This is due to the fact that shadows tend to

have little or no light contribution from the light source. A method that represents

the absolute value of the light contribution instead of the relative contribution may

be beneficial in determining error with the β map as well as providing additional

information GI contributions.

132

Chapter 6

Previzualization and Evaluations

6.1 Overview

In this chapter we describe the previs relighting application based on the Symmetric

Lighting that was developed for this dissertation. As part this description, we ex-

plore the features of the relighting application as well as provide evaluations on the

performance of the relighting technique. In Section 6.2 we describe the different re-

lighting operations and how it can be used for different types of scenes, such as those

with two and three-lights, High Dynamic Range lighting, and non-photorealistic

scenes. In Section 6.3 we describe a separate application for estimating the color

of unknown light sources in a novel way. Our light color estimation technique also

leverages Symmetric Lighting theory and does not require expensive hardware or

restrictive assumption used in previous techniques. The next technique developed

for this dissertation is a novel multi-illuminant white-balance method, which is de-

scribed in Section 6.4. In Section 6.5 we describe the three user studies we performed

to validate the design and implementation of 1) our relighting method, 2) its poten-

tial viability in the movie industry as a virtual on-set relighting tool, and 3) expert

133

review of our programmable camera.

The main contributions in this chapter are :

• Novel View-dependent relighting method that can be utilized for real, physically-

based synthetic, and Non-photorealistic scenes that uses a simple hardware

setup, is fast, and provides many options for manipulating the lighting.

• Novel technique to solving the light color estimation problem

• Novel technique for calculating the white-balance of scenes that contain an

arbitrary number light sources.

• Simple extensions to the Symmetric Lighting technique that can provide spatially-

varying, near-field, High-dynamic Range features.

6.2 Scene Relighting

Relighting is the process of inferring the pre-existing lighting in a scene, undoing its

effects, and applying new lighting. In a virtual scene, this can be achieved näıvely by

editing the lighting and performing a full re-render of the scene. Since rendering a

scene can be time-consuming, it is not practical to iteratively test minor changes in

the scene. Therefore, more efficient methods for iteratively testing changes in scenes

without full renders have been devised, which take advantage of a priori knowledge

such as in virtual scene relighting which includes scene geometry, reflectance, and

lighting information. Image-based relighting on the other hand, attempts to achieve

the same goal of general relighting, but with the constraint of utilizing only image-

based methods to estimate scene information.

If we consider the light traveling through a scene that is eventually sensed by

some observer or camera, the lights path can be described by a function with seven

134

degrees of freedom called the Plenoptic [AB91] function. Furthermore, if you con-

sider that the light that emitted that ray also has a similar function, then the total

dimensionality of light radiated and irradiated can be considered a function of four-

teen degrees of freedom (parameters of the Plenoptic function are described in more

detail in the Appendix C). To fully capture this function with dense sampling is

daunting, therefore most attempts to do so by ignoring certain dimensions, sparse

sampling, or otherwise restricting the degrees of freedom. This idea of sampling

the Plenoptic function gives way to applications such as Relighting, which aims to

record some approximate form of this function in order to re-integrate this function

virtually.

For relighting, view-dependence is a common way that lighting design software

reduce the degrees of freedom, as lighting artists are often concerned with chang-

ing the lighting and not other parameters related to the camera, scene object, or

materials [PHB08, HPB06b]. Using the Symmetric Lighting technique developed in

Chapter 5, we can perform relighting of scenes if we maintain the assumptions that

the camera and scenes are static during the capture process. If the scene, camera,

or lights move, then the light capture process needs to be performed again. In our

experiments the light capture process can take a few seconds to a few minutes as

our system is in the prototype stage. A fully realized capture system could be de-

veloped for commercial purpose that could perform the capture process in real-time

alleviating the assumption that the scene does not move. This is discussed briefly

in the implementation but left as an extension for future work.

In Figures 6.1 and 6.2 show two scene examples relit using our method. These

scenes consist of two lights, several objects with unknown geometry, reflectance,

and appearance (texture). The only information known about the scene is the

color of the two lights used to illuminate the scene (Figure 6.1: RGB values for

135

Figure 6.1: Images of a dish of candy relit with the application developed in this
work. The candy was originally lit with blue light and red light (left image). The
light color is then removed from the image using our relighting application and is
re-rendered with a new lighting consisting of a green and purple light colors (right
image).

l1=[226,95,120],l2=[77,80,131] and Figure 6.2: RGB value for l1=[36 ,128, 36], l2=[128,

36, 36]). The capture process consists of acquiring two images from which a β map

is generated. The β map is then used in the relighting pipeline to perform real-

time modification of the lights at over 100 frames per second (FPS) on a modest

GPU1. Our relighting application also has the capability of reducing or removing

the influence or specific lights within the scene, which differentiates our relighting

method from image re-coloring [RAGS01]. Figure 6.2 shows three images, on the

left a scene with two lights (as originally designed), the center image shows the scene

with one light removed, and third image with both lights removed. Evidence that

the lights were actually manipulated is obvious when looking at the shadows below

the spheres, the left images has two shadows generated from the two lights and the

center has only one shadow generated from the single light. The lights were removed

completely using only our relighting technique. Additionally, we can also increase

the intensity of the lights to produce virtual High-Dynamic Range (HDR) images of

the scene. We discuss our HDR technique as well as other lighting configurations,

such as three-point lighting and non-photorealistic rendering (NPR) relighting in

1In this context we mean modest to assume a consume level gaming card manufactured within
the last five years which has a minimum shader level that includes fragment programs

136

the next subsections.

Figure 6.2: With relighting it is possible to remove the lights as well; left is the full
scene with all lights (2 lights), left center is the same scene with one of the lights
removed with our technique. The light was removed completely in the relighting
application without additional processing. The center right image is the same scene
re-rendered with only a single light for comparison. It is easy to see that the two
center images contain only one shadow for the sphere compared to two shadows for
the sphere in the left image. The image on far right shows an absolute difference of
the pixel values of the two center images (difference was multiplied by a factor of
two in order to make the difference perceptible).

6.2.1 Three Point Relighting

In our early relighting examples, most our scenes show a lighting setup which is

illuminate by two lights. A more common method of lighting used extensively in

the Entertainment industry, is a lighting method that utilizes three lights [Bir06].

This method, aptly called three-point lighting2, uses three lights to eliminate some of

the problems that can be encountered when using only two lights, mainly to provide

background separation, removing hard shadows, and accentuate shape definition

better [Bir06]. The first light in this method, called the Key light, is responsible for

providing the dominant lighting of the subject or scene. The second light, called

the Fill light, provides soft lighting, which is used to reduce hard shadow lines and

self-shadowing. The Fill light is often used to simulate indirect light by adding a

softer and more diffuse light source from a different direction from the Key light.

The third light, called the Back light, is primarily responsible for visually separating

2This is a misnomer as generally point lights are not used to illuminate scenes, but rather area
lights as they provide more desirable lighting.

137

the subject from the background of the scene. The back light is generally placed

behind the subject, casting light in the direction of the subject and the camera while

not being visible in the camera image. Figure 6.3 shows an example setup using the

three-point lighting method.

Fill Light
CameraKey Light

Back Light

Figure 6.3: 3 Point lighting example.

One of the main problems solved with three-point lighting is separating the

subject from the background in the scene. This is particularly true when the subject

and background are similar visually or when color cannot be used to distinguish them

(black and white film or low-light situations), which causes them to blend together.

To show the benefits of three point lighting, we have added a third light to our

standard relighting example scene depicted, which is depicted in Figure 6.4. The

three-point light scene is in the center image of the figure has two lights at opposite

sides (left and right) and a back light behind the sphere. To compare the three-

point light method, this figure also has an image of the two-light setup from previous

examples (left image). It is easy to see how the back light adds the perception of

additional depth to the image that is not as apparent in the scene with only two

138

lights, thus providing a better delineation between the foreground and background.

Artistically, this feature is an important tool for directors as it allows the director

to focus the viewer’s attention on the subject [Bir06]. As previously shown on the

right image of Figure 6.2, we can also virtually remove any of three lights in this

method through relighting providing the director the ability to blend the subject

into the background if that is desirable.

Figure 6.4: Two (left) and three point lighting (center and right) of the familiar
sphere scene. In the center image two of the lights are to the left (Key) and right
(Fill) of the sphere off-camera and the third light is behind the sphere providing back-
lighting. Notice how the center image provides a perceptually deeper scene when
compared to the two-light scene. Additionally, when the back light is modified, parts
of the foreground where there is no influence of from the backlight is unaffected by
the light change. Simple recoloring would not be able to precisely differentiate the
different areas of the image.

139

6.2.2 High-Dynamic Range Relighting

In this subsection, we show that we can extend the range of the source luminance

values beyond the typical 8-bit integer range. An important assumption of our cap-

ture method thus far, is that the luminance values of the lighting stay within the

display range of the camera in order to appropriately estimate each light’s contri-

bution, or β value, to illuminating a pixel. Once the β values have been calculated,

we can manipulate these proportions, as we have already seen with the dimming or

removal of lights in the previous subsection. We can also use the β value to increase

a light’s contribution to a camera pixel to increase its intensity, thus making part

of an image more bright. Furthermore, because the intensity values are represented

virtually in the application, we can increase the luminance values beyond the physi-

cal capabilities of the original capture hardware creating an arbitrarily high-dynamic

range image.

To achieve HDR rendering of the images we convert pixel values from 8-bit

integers to floating point values and utilize a logarithmic scale for multiplying the

luminance values of the lights, which was developed by Debevec et al [Deb98b] for

luminance scaling. This provides a significant increase in the range of the lighting

values which can multiply with the reflectance to produce the higher luminance

images. This simulates the appearance of light with much stronger bulbs in the real

scene and adds a separate dimension for editing the lights beyond just color. In

Figure 6.5 we show an example image relit with our relighting application. On the

left, the image with the green dragon creature (Yoshi) has significantly fewer high-

luminance pixels compared to the same scene relit with higher intensity luminance.

Below each image is a luminance histogram showing the actual luminance values for

all pixels in the image. As is evident from the histograms, the image on the right

has more pixels with higher luminance values.

140

Figure 6.5: Left is the original image, and right is a relighting of the scene with
HDR lighting added. Notice the dragon creature (Yoshi) has a significant increase
in luminance with no color change, which is not present in the original image.
These images are being presented as luminance images to convey the difference in
luminance values better. Below each image is its respective luminance histogram.
As you can see, the image on the right has significantly more values in the higher
luminance range (values distributed to the right of the graph) than the left image.
The histogram scale ranges from 0-255, because tone mapping is performed in order
to map the image to a displayable range for 8-bit color channels.

141

6.2.3 Non-photorealistic Relighting

Figure 6.6 shows that relighting can be performed using Non-Photorealistic Ren-

dering (NPR) of images as an alternative to photorealistic images. In the image in

Figure 6.6, we apply a series of image processing filters to convert a photorealistic

image into a NPR image using the techniques described in [WOG06] called Image

Abstraction. This NPR method modifies the contrast of several image features,

such as luminance and color opponency by reducing regions with lower contrast and

artificially increasing regions of high contrast. A β map is then generated for the

NPR image and subsequently relit. Since the light colors used to generate the illumi-

nance of the image are known, the NPR effect does not hinder the relighting as the

Symmetric Lighting calculations minimize the difference between pixels regardless

of how the scene is lit.

Figure 6.6: Left is the original NPR image and right image is the original image relit
with our method. The lighting can be modified as part of the NPR effect rendering
or as a separate process. The NPR effect modifies the contrast in regions of low and
high contrast (low contrast regions in the original image are subsequently reduced
in contrast where higher contrast regions are increased). Relighting is performed
after the NPR effect is applied, since Symmetric Lighting is not influenced by the
NPR effect. The relit image provides a dramatic change in color.

142

6.2.4 Light Editing

In this section we demonstrate how light editing can be performed in conjunction

with our relighting method. Given that a β map describes the proportion of light

each light source contributes to the light impinging on the location in the scene, edit-

ing the β map is tantamount to changing this proportion. In essence, modifications

to the β map changes the way lights distribute photons within the scene. Typically,

light modifications are made in terms of color, intensity, and sometimes location.

The β map allows for light editing changes that are fundamentally different than

those typically associated light changes, such as light painting or light stenciling as

described in the remainder of this section.

There many different ways to edit the β map which effect the look of an image

during relighting. Figure 6.7 illustrates three examples of such methods which can

be described as, 1) modifying regions of interest, 2) global modifications, and 3)

artistically driven. The types of light modification demonstrated in this section

are performed after the Symmetric light capture therefore editing the dispersion

of light photons in the scene in this manner results in changes that can violate the

physically accuracy of the lighting. For example, the image on the far right of Figure

6.7 demonstrates an artistically driven light painting in the shape of WPI, which

adds additional light to the scene that previously did not exist. Additional methods

for editing β map could include other image-based operations such as masks, per

pixel operations, blending with patterns and gradients. These operations are often

used in many other image editing contexts outside of the one described here and are

therefore available in popular image manipulation programs such as Photoshop or

GIMP. Since we store each individual lights influence in a different color channel of

the β map, the aforementioned operations can easily be applied to individual lights

within the scene by simply applying these operations to the appropriate channel in

143

the β map. Additional examples of image-based operations used to manipulate the

β map are provided in the Appendix D.

Figure 6.7: In this example we show how editing the β map essentially edits the
lights, their distribution of photons, and their influence on parts of the scene. Left
is the original bath scene relit. The other images show several edits to the β map;
left-center image has had a specular high-light changed from cast by a red light to
a blue by selecting the β map area in an image editing tool and reversing the values
(see red arrow), whereas the right-center image has had the influence of the blue
light reduced by editing spread of β values corresponding to the blue light using the
curves tool in an image editing tool. The image on the far right has a less nuanced
change, where we’ve placed the acronym ”WPI” in blue light cast from blue light.
Each of the edits can be done procedurally, by hand in a separate tool such as
Photoshop, or by operations provided in our relighting tool.

In addition to editing lights, adding lights to an existing scene is also possible.

Because the β map provides separate channels for each light, adding another chan-

nel to the β map is as trivial as adding an additional channel to the β map image.

Typical images have up to four channels (RGBA), therefore β maps with the num-

ber of lights greater than 4 can just utilize a separate image. This could provide

additional scenarios, such as removing real lights and adding synthetic lights to real

scenes.

6.2.5 Previous work on Relighting

Capturing Lighting & Illumination Environments: Another approach to relighting

a scene other than capturing the reflectance information is by capturing the illumi-

144

nation of a scene through inverse rendering. This process is thoroughly described

in a doctoral dissertation by Stephen Marchner [MD98]. In his work he focuses on

images captured on camera and using linearity properties of light to develop a for-

mulation of inverse measurements of various properties of a scene including textures,

light, and BRDFs. Later, Yu et al. [YDMH99] showed how this model could also be

applied to inversely capture the global illumination of a scene by performing inverse

Radiosity of a known scene.

In another direction, Debevec et al. [DWT+02], assume the lighting environment

from some other location has been captured a priori and uses this lighting data to

relight actors in order to composite them into the original scene footage for seamless

video. The problem to solve here is how to position a real lighting environment to

match the illumination properties of another captured environment. They solve

this by building a light stage, which is a dome with 156 colored lights that can be

activated to mimic the original lighting environment with the captured data. This

was followed up by Wenger et al. [WGT+05] who used the same light dome in

conjunction with very high-speed video cameras to capture the subject illuminated

with basis illumination, which can be recombined for relighting. They additionally

showed how to combine motion compensation to alleviate motion blur of the actor’s

movement that occurred despite capturing at 2160 frame per second (FPS). In this

work, we opted for a more simple, although view-dependent, approach of capturing

only two images in the natural lighting environment. This eliminates the need for a

light dome and compositing after the fact, while drastically reducing the complexity

of the system presented here. Although our method reduces the cost and complexity

needed compared to the systems developed by Debevec and Wegner, our method

sacrifices view-independence and motion compensation.

As mentioned previously, another technique used for Relighting applications is

145

employing the use of captured real-world lighting such as Environment Maps [HS98,

FLW02] or Light Probes [Deb98a]. These techniques assume the user utilizes the

captured lighting as the desired lighting environment and at best only provides

basic editing capabilities such as rotating the environment maps. They do however

accurately capture the spatially-varying aspects of the whole lighting environment

but provide little in the way of editing the lighting. Pellacini [Pel10] developed

an interface called EnvyLight for editing the environment maps and provide clear

lighting parameters for designers to edit the environment maps and light probes.

Despite EnvyLight’s ability to edit the lighting maps, the ability to edit individual

light sources does not exist. This is in contrast to the work presented here, in which

the capability to edit the properties of the individual lights is a primary feature. It

would be interesting to integrate a hybrid approach where the user can choose to

either edit the environment map or the individuals lights in a global versus local

fashion, but this will be left for future work.

Finally, a webpage titled Synthetic Lighting for Photography [Hae92]3 describes

a simple technique for exploiting the linearity of light. This work is similar to the

Symmetric Lighting technique presented here but lacks any academic theory, ex-

position, or results other than an image. To the best of our knowledge, this work

has never been academically published but never the less warrants mentioning. The

Symmetric Lighting technique presented in this dissertation exploits the linearity

of light as well but is expanded beyond two lights, provides error analysis, and a

formulation and representation for relative light contributions. Additionally, captur-

ing lights individually does not take advantage of the reduce Signal-to-Noise Ratio

when utilizing the ”multiplex advantage” [SNB07]. In other words, generally in

photography insufficient lighting can result in noisy images making inferring infor-

3We mention this idea for completeness only as it applies only to related work.

146

mation about the scene more difficult. By photographing more lights simultaneously

instead of individually, the images generated will be taken under more light produc-

ing a better signal-to-noise ratio when processing the images. This is referred to the

”multiplex advantage” of photographing multiple lights.

Full Scene Description, Light Fields and Virtual Scenes: Relighting can also

be considered in the context of virtual scenes in addition to real scenes. Virtual

scene relighting presents a special case of the relighting application in that gener-

ally speaking all scene information is directly available or can be calculated with

relative ease. The availability of full scene information means that virtual scene

relighting is expected to perform as well or better than lighting modifications that

would physically occur on a real set from modifying the lighting. As observed by

Gershbein and Hanrahan [GH00] both virtual and real scene contain visually com-

plex scene with equally complex characteristics, but until recently the visual results

of modifications to the lighting environment was immediately available only in the

real scenes. Several academic works have been proposed to not only increase the

rendering capabilities including speed of virtual relighting, but also the properties of

light. Gershbein and Hanrahan [GH00] developed an OpenGL based virtual lighting

system that used a deep framebuffer on the graphics hardware and was reported to

speed up relighting by 2500 times for interactive rates of 20Hz. This technique used

factored BRDFs and lighting and calculated their product in texture hardware.

Utilizing faster graphics hardware, Hasan et al. [HPB06a] was the first to in-

corporate indirect lighting into the relighting applications for virtual scenes. They

work under the assumption of fixed views but with highly complex geometric and

material details. Their key observation was to linearly transform samples of direct

lighting within the framebuffer to indirect lighting. Similarly, Obert [OKP+08] pro-

vides relighting control for indirect lighting but adds a more comprehensive artistic

147

control of indirect lighting. Then Ragan-Kelley et al. [RKKS+07] added the ability

to integrate transparency, motion blur, and antialiasing. In contrast to the tech-

nique present in this work, which was primarily developed to be used on real scenes

and does not have access to the full scene information, the aforementioned works

provide many more features. Although the presented work shares the use of accel-

erated graphics hardware as the main computational platform, indirect lighting for

our technique has been left as future work.

Precomputed Radiance Techniques: Relighting is frequently performed on com-

pressed representation or basis for the lighting. In real-time rendering, the use a

Spherical Harmonics (SH) (low-frequency) and Wavelets (All-frequency) has been

shown to be an effective set of bases for representing lighting environments. Kautz

et a l. [KSS02] showed that relighting can be performed simply via dot product of

the precomputed SH coefficients for the Lighting with coefficients for the BRDF.

Similarly, Sloan et al. [SKS02] showed this technique could include global effects as

well.

Ng et al. [NRH04] showed that a variant of the precomputed radiance could

utilize a wavelet basis instead of SH with the added benefit of not being restricted

to low-frequency lighting. This allowed them to perform a triple integral represented

as a full six-dimensional space of materials, visibility, cosine term and lighting. This

technique then extended to include time-varying lighting and enhanced shadows

[NRH03]. Finally, Cheslack-Postava et al. [CPGN+07] proposed a technique to

reduce the storage via a compression representing 4D wavelets for light-transport.

All these and related radiance pre-computation techniques require precise geometry

information as part of the factored light transport is stored per vertex and thus

limited to virtual scenes. This differentiates the work presented here from their

technique in that Symmetric Lighting can be utilized for both virtual and real

148

scenes. Precomputation techniques are also computationally expensive and time

consuming to perform as the factored light transport is performed for all views due

to the interactive nature of the geometry for those scene. This is in contrast to the

technique presented here which can be done in real-time but has the limitation of

being view-dependent.

Active Illumination Techniques: Illumination can not only be sensed from a scene

but it can be projected as well for the purposes of relighting. This can be in the

form of a projector illuminating a scene, flash photography, or even using lighting

outside the visible spectrum. Eisemann & Durand [ED04] used pairs of images with

and without flash to enhance images in low light situations using an image with

ambient light and with flash to reduce noise, enhanced color, and relight images

with information from both. Similarly, Wang et al. [WDC+08] used Near-infrared

(750nm-1.4 micro meters) lighting to mitigate low light situations by capturing the

illumination using video sequences. Another novel flash based technique used to

relight images was that of Kim and Kautz [KK09], which captured an illumina-

tion estimation of the correlated color temperature and designed a chromatic flash

that would automatically match the color temperature. These techniques generally

introduce artificial lighting into the real scene using patterns or coded light. Our

technique is similar to these techniques and is considered an Active illumination

technique due to manipulation of the scene lights. Instead of introducing patterns

or artificial light that is not part of the scene as the aforementioned techniques do,

we manipulate only the light that already exists as part of the scene. In other words,

we utilize only the natural lighting that would occur within the scene, manipulate

it in a timed sequence for our calculations.

Different basis have been used to perform relighting, capturing dense sampling

of both reflectance and illumination. Using a proprietary light dome, Wegner et

149

al. [WGT+05] capture a spherical set of images using time-multiplexing represent-

ing lighting from all angles using high-speed video and discrete LED light sources.

Moreno-Noguer et al. [MNNB05] use a similar technique using video and lighting

to capture a basis representation of the scene illumination but show that a minimal

optimal basis can be obtained through calibration. Finally, Sen et al. [SCG+05]

exploit the Helmholtz reciprocity of light for capturing the light transport of a scene

by interchanging the light and camera within a scene. Their technique like the one

presented here requires no knowledge of the reflectance or geometry present in the

scene. The work presented here is similar in spirit to the work of Sen et al. but does

not exploit reciprocity but instead the symmetry of the lighting within the scene.

Furthermore, the work presented here is much less complicated than that of Wenger

et al and Noguer et al, in that we do not require or even need a specialized basis for

representation, or to capture hundreds of images per second. Instead the technique

presented here is simple and only requires a single image per light.

6.2.6 Relighting Implementation

In the entertainment industry, there is strong motivation for performing relighting

in order to create images that convey the creator’s vision, as well as to allow for

images to have been captured in different locations but brought together to appear

as if they were shot in the same location. In terms of the movie making timeline,

the relighting process is performed in post-production. This can be problematic for

directors since they have to make lighting decisions during principle photography

(i.e., before post-production) based on lighting changes that may be made later

on in the movie making process [PTMD07]. Therefore it would be advantageous

for directors to view how a scene might look in post-production, while actually

shooting the scene. This work achieves this goal, by allowing for relighting of real

150

and synthetic scenes using PCam, on-set during filming. This will give directors

more control and freedom for lighting during principle photography and reduces the

need for reshoots, saving time and money.

The method for relighting used in this work was developed in Section 5.2.2 called

Symmetric Lighting. This involves taking two or more photographs of the scene

with the lighting colors transposed as described in Section 5.2.3.1. As illustrated in

Figure 6.8, the previs relighting process consists of acquiring images from a camera

as input to the relighting application. The relighting application then calculates a

β map (Step 1), which depends on the two input images and light color values l1

and l2. One of the original images is then processed to remove all lighting, which

results in a lighting-free image that has only reflectance and shading information

(Step 2). Then during relighting (Step 3) a new set of light colors chosen by the user

l′1 and l′2 are multiplied with the β map to produce a new lighting map. The new

lighting map can then be multiplied element-wise with the lighting-free image to

produce a relit and rendered image. The user can change the lighting values l′1 and

l′2, which are subsequently incorporated into the next render update. This allows

the relighting application to remake the lighting map in real-time, thus performing

real-time relighting simply by iterating over step three, as is shown in Figure 6.8.

As can be seen in the code Listings 6.1 and 6.2, this workflow can easily be

translated into a program for performing these operations. In these two listings

we present GLSL code that was used to implement a Camera Shader for use on

PCam. The camera populated two texture maps with the two captured images

(in this example we assume two lights). Then for each pixel4 in the two images we

calculate the β value by searching through all possible β values to find the value that

is minimal in terms of the least squares (i.e., L2). On a first generation Motorola

4in our configuration we assigned a single texel to each pixel in order to avoid any imaging
artifacts.

151

L1 & L2

β-map
L’1 & L’2

Lighting Stripped Relit

Relighting Application Pipeline

Input

Step 1

Step 2 Step 3

Figure 6.8: Diagram illustrating the relighting workflow; images from the camera are
and light color information are input into the relighting application. The application
generates a β map from the input. Using the original image and β map, the original
image has the original lighting removed. Then new light colors can be multiplied
with the β map and the lighting-free image to generate a relit image.

Droid phone this operation can be performed at 24 FPS with the un-optimized

version shown here. We have also listed in the Appendix B a Matlab version of the

code for exposition purposes.

Listing 6.1: A brute force implementation of the Symmetric Lighting capture tech-

nique performing calculations outlined in Equations 5.6 and 5.7. This GLSL code

shows a simple way to perform Step 1 from Figure 6.8 which generates a β map

to be used as input to Steps 2 and 3. For exposition purposes we omitted any

optimizations.

/∗Symmetric L ight ing

∗ Descr ipt i on : For expo s i t i on purposes t h i s method per forms

∗ a brute f o r c e approach to f i nd i ng the Beta value f o r each

∗ p i x e l i n the input images . The l i g h t va lues are predetermined

∗ from e i t h e r the s yn the t i c r ender ing system or from the l i g h t i n g

∗ g e l s used to i l l um ina t e the scene . Assumes the images are l i n e a r

∗ i n terms o f t h e i r c o l o r r e sponse (i . e . gamma=1) .

∗ Ouput : A Beta map ca l cu l a t ed from the l i g h t va lues l 1 & l 2 and the two

∗ images rgb1 and rgb2 generated from the scene .

152

∗ Written by : C l i f f o r d Lindsay , Feburay 26 , 2011.

∗ Department o f Computer Science , WPI ∗/

uniform sampler2D src_tex_unit0 ; // Image 1 textur e

uniform sampler2D src_tex_unit1 ; // Image 2 textur e

uniform vec3 l1 ; // Light c o l o r s used in the scene

uniform vec3 l2 ;

vo id main () {

f l o a t finalBeta = 0 . 0 ;

f l o a t finalLength = 100 . 0 ;

// get image 1 and image 2

vec3 c1 = texture2D (src_tex_unit0 , gl_TexCoord [0] . st) . rgb ;

vec3 c2 = texture2D (src_tex_unit1 , gl_TexCoord [0] . st) . rgb ;

vec3 I1 ;

vec3 I2 ;

// I t e r a t e through Beta va l s .

f o r (f l o a t beta=0.0; beta < 1 . 0 ; beta=beta + .001) {

I1 = beta∗l1 + (1.0− beta)∗l2 ;

I2 = beta∗l2 + (1.0− beta)∗l1 ;

// Ca l cu l ate Euc l i d i an l ength

i f (l ength (c1∗I2 − c2∗I1)< finalLength) {

finalLength = len ;

finalBeta = beta ;}

}

// r eturn Beta

g l FragColor = vec4 (finalBeta , finalBeta , (1−finalBeta) , 1 . 0) ;

}

The relighting is performed in Steps 2 and Steps 3 as previously mentioned. In

Listing 6.2 we have combined these steps into a single GLSL fragment shader used

to implement a Camera Shader in PCam and the relighting application used in the

user studies. In this example, we have an image from a scene lit by two lights and a

β map produced from Step 1. Four light values (two previous values l1 and l2 and

two new values l′1 and l′2) are used to remove the lighting from the image and apply

new lighting. The resulting image is rendered using a multi-pass method where Step

1 is performed in the first pass and Steps 2 and 3 are performed in the second pass.

153

To scale this to more than two lights the same structure of the code is virtually the

same except for the additional light values. We have also listed in the Appendix B

a Matlab version of the code for exposition purposes.

Listing 6.2: A brute force implementation of the relighting technique performing

calculations outlined in Equations 5.6 and 5.7. This GLSL code shows a simple

way to perform Step 2 and Step 3 from Figure 6.8 which produces an image of the

scene relit using different lighting values. For exposition purposes we omitted any

optimizations.

/∗Re l i gh t i ng

∗ Descr ipt i on : For expo s i t i on purposes t h i s method per forms

∗ a r e l i g h t i n g o f an image by removing the old l i g h t va lues

∗ from each p i x e l i n the input image . The new l i g h t i n g i s

∗ added by mul t ip ly ing the Beta map time the new l i g h t s .

∗ Assumes the images are l i n e a r in terms o f t h e i r

∗ co l o r r esponse (i . e . gamma=1) .

∗ Ouput : A fragment that cor r esponds to the imput image

∗ with new l i g h t i n g va lues .

∗ Written by : C l i f f o r d Lindsay , Feburay 26 , 2011.

∗ Department o f Computer Science , WPI

∗/

uniform sampler2D src_tex_unit0 ;

uni form sampler2D src_tex_unit1 ;

uni form vec3 l1 ; // old l i g h t 1

uniform vec3 l2 ; // old l i g h t 2

uniform vec3 l3 ; //new l i g h t 1

uniform vec3 l4 ; //new l i g h t 2

void main () {

// r e t r i e v e o r i g i n a l image .

vec3 c1 = texture2D (src_tex_unit0 , gl_TexCoord [0] . st) . rgb ;

// r e t r i e v e Beta map image .

vec3 beta = texture2D (src_tex_unit1 , gl_TexCoord [0] . st) . rgb ;

// c a l c u l a t e the propor t i ons o f the old l i g h t s f o r each p i x e l

154

vec3 I = beta . r∗l1 + beta . b∗l2 ;

// c a l c u l a t e the propor t i ons o f the new l i g h t s f o r each p i x e l .

vec3 new_l1 = beta . r∗l3 ;

vec3 new_l2 = beta . b∗l4 ;

// remove old l i g h t to generate l i g h t i n g f r e e image .

vec3 wb = c1 ∗ (1 . 0 / (I+.01)) ;

// apply new l i g h t i n g .

vec3 r1 = (wb∗new_l1)+(wb∗new_l2) ;

// r eturn r e l i t image .

g l FragColor = vec4 (r1 , 1 . 0) ;

}

Our technique assumes that, apart from the light color rotation, everything

else within the scene remains stationary during the capture. If the scene is most

composed of diffuse objects, then only two images are required. If the scene contains

a significant number of specular objects then four images would be captured, two for

Symmetric Lighting and two extra to compensate for the specularity as described

in Section 5.2.3.4. Compared to other prior techniques, one or two images per light

source as input is significantly lower than the number of inputs required inall other

techniques, which can require hundreds of images [PTMD07] with the caveat is that

our technique is view-dependent. Being view-dependent is not a limitation as it

may be unnecessary to fully enumerate all camera positions to capture all potential

variations as they may never be used. Additionally, when performing relighting it

has been shown that relighting artists focus on lighting parameters such as color

or intensity and not camera locations [PHB08, HPB06b]. Additionally, if camera

positions do change, recalculating the β map in real-time to accommodate new views

can be achieved with modest improvements to our Symmetric Lighting method.

The lighting setup we used to calculate the β map described in Chapter 5.2 con-

sists of a number of lights with predetermined light colors. We assume that the light

colors are known to the relighting application in order to provide a constrained sys-

155

tem of variables to solve Equation (5.7) to perform the inverse lighting calculations.

Our original lighting setup used two lights with bulbs that emit light with Corre-

lated Color Temperature (CCT) of 6500k or over cast daylight illumination which is

sometimes referred to as CIE D65. Each light was filtered with a different RoscoLux

polycarbonate gels made by Rosco [Lab11] in order to alter the color of the light.

Each filter gel has published specifications for transmittance and wavelengths that

are filtered including the dominant wavelength transmitted through the filter when

used in conjunction with a specified source. Because the light source and filter gels

have manufacturer provided specifications, the light source color is actually provided

when using the gels according to their specifications. Although not recommended,

If light bulbs with color different than what is recommended by gel manufacture are

used, formulas for determining light color of the light plus the gels can be found in

[GW00]. LED light panels with mono-chromatic color are commonly used for set

lighting. Alternatively, these panels could be augmented with tri-color LEDs, which

could provide set lighting that can be electronically altered to other colors for per-

forming Symmetric Lighting calculations. This type of lighting setup would provide

two equally viable scenarios for performing Symmetric Lighting calculations, 1) two

lights with their color set to a typical white light (e.g., CIE D65, which is midday

sun) would be used nominally, which are then momentarily switched to different

light colors (red and green) in order to capture the Symmetric Lighting images, or

2) use two different light colors permanently on set (again red and green) and only

rotate the colors in order to capture the Symmetric Lighting images. Consequently,

scenario 1) is what we performed when using the Rosco gels, but scenario two is

also feasible with the gels as well.

Color gel filters are often used for entertainment industry, such as television,

movie production, and stop-motion animation. For previs relighting as previously,

156

the colors of the lights used with the Symmetric Light capture setup do not have to

match those used nominally on set (they should be in the same location). In other

words, typical white light can be used on set until Symmetric Lighting calculations

are performed for previs. Then gels would be placed over the lights then removed

once the Symmetric Lighting calculations were finished. Since this is an active

illumination technique, the light colors used in the Symmetric Lighting are chosen

to be far enough apart as to provide a clear separation of the lights. In other words,

to avoid a degenerate lighting setup (i.e., having light colors that are too close to one

another, which reduces the Symmetric Lighting dimensionality describe in Section

5.2.3.2), the light colors are chosen to be a significant distance from one other in

terms of the sRGB color space. In our setup we use shades of red (Rosco #4660,

60-red:R=218,G=131,B=102), green (Rosco #89, Moss Green:R=42,G=165,B=95),

yellow (Rosco #12, Straw Yellow:R=255,G=203,B=0), and blue (Rosco #59, Indigo

Blue:R=0,G=38,B=96). The lighting system acts more like a camera flash so the

lights from the capture system are only on briefly long enough to perform the capture

(few seconds) and perform the relighting for the previs, then the typical light colors

could be restored. Figure 6.9 show an image of our lighting setup in the Lego scene

with two lights filtered using the Roscolux gels.

For this project there were three different cameras used to capture images or real

scenes, the first was a Point Grey Research FireFly MV Firewire camera (Model

FFMV-03M2MC) with resolution of 640x480 pixels with a Nikon machine vision

lenses. The second camera was a Canon Rebel DLSR 500D with Canon lens, with

the capability to capture images up to 5184 x 3456 pixels (much larger than necessary

for previs). The third was a stock camera from a Motorola Droid Smart phone.

In addition to images capture from a real scene, synthetic scenes were also used

for relighting. The Canon DSLR and Firefly cameras we used to compare the

157

Exploded Diagram of Light Setup

Gel (blue) + Gel Holder

Light Bulb

Light Enclosure

Figure 6.9: Left side of the figure is a picture of the Lego scene with the lighting
setup described in this work. This scene has two lights (yellow enclosures) with
colored gels placed in front of the two stationary light sources. The right side of the
figure shows a diagram of the lighting setup. Placed in front of the light enclosure is
a rectangular gel holder (cardboard frame) with a colored Rosco gel inserted inside.
The gel and gel holder completely cover the opening of the light enclosure so that
only filtered light from the gel is emitted. The enclosure houses a CIE D65 light
bulb and is lined with foil to reflect the light outwards.

noise profiles of the camera, while the Smart phone camera was chosen because it

contained on-board processing capabilities. The Canon DSLR produced much less

noise than the other two cameras, resulting in Symmetric Lighting calculations with

fewer noise anomalies (i.e., wrong β values). The synthetic scenes were rendered

using a physically-based rendering system called VRay [Gro11]. Once captured, the

images are transferred to the relighting application in order to calculate the β map.

For the Firefly camera images can be acquired and copied directly to memory on a

laptop or desktop computer, where the β map can be generated on-the-fly. For the

Smartphone with built-in camera, the images can be acquired directly on the phone

and a β map can be accessed directly within the Smartphone’s internal memory

instead of needing to be physically copied. Because the camera for the Smartphone

is built-in to the camera and the phones are generally handheld which can cause

blurring during image capture, it is necessary to use a tripod or some other device

to keep the phone from moving during image capture. For the synthetic scenes,

158

the images can take several minutes to hours to generate in VRay depending on

the complexity of the scene and the sampling rates of the ray tracer. Then the

images from the rendering system are hand copied over to the relighting application.

Similarly for the Canon 550D, the images have to hand copied to the relighting

application, due to the camera not being able to directly copy the files over without

proprietary software.

6.2.7 Evaluations

In this section we provide quantitative photometric evaluation for assessing the per-

formance the relighting operations described in Section 6.2 at the beginning of this

chapter as well as the β map calculation from Chapter 5. At the end of this section

we also provide additional results to show our relighting method being used with

different scenes and different lighting setups. In Section 5.2.3.3 we described what

happens when scenes violate our Lambertian reflectance assumption by containing

specular highlights. Therefore, our first evaluation in this section provides a quanti-

tative assessment of error associated with specular highlights when calculating the

β map. Our second evaluation assesses the performance of our relighting method by

comparing several relit scenes to ground truth images using a perceptual color differ-

ence metric. Our third evaluation compares the luminance differences in scenes that

have been augmented during relighting with a HDR multiplier to that of similarly

rendered scenes with increased luminance.

The evaluations were performed using three difference types of metrics, a met-

ric for determining color differences, an absolute difference metric, and metrics for

determining luminance differences. For color difference, the Delta E (∆E00) metric

[LCR01] will be used as it is a standardized method developed by the CIE group

for evaluating color. This metric is commonly used to assess perceptual difference

159

images that exhibit small color differences. Because we expect our relighting method

to manifest errors in small differences in color, we use the ∆E00 assess our relighting.

The absolute image difference or L1 norm metric is a pixel-wise subtraction of two

images, where the absolute difference in pixel values shows how they deviate from

each other [Rus11]. Because the β map has no human visual system analogue, we

chose an absolute measure to gauge the differences in error for generating β maps

with scenes that contain specularities.

In Section 5.2.3.3 we described the error associated with scenes that violate our

Lambertian reflectance assumption. We previously hypothesized that scenes that

contain more specular reflections would produce more error. In this section we

quantify that error for five different reflection models that contain various levels

of specular reflection. If we assume that the ground truth β map is one that is

calculated using a scene which contains only objects with Lambertian reflectance,

then we can estimate the error by comparing any other scene’s β map with the β

map from our ground truth. Because there is no analogue for β maps in the Human

Visual System, there is no need to use a perceptual metric for gauging error. The

metric we use is the absolute image difference, which we calculate using the imabsdiff

difference method provided by Matlab (Matlab code provided in Appendix B). The

absolute difference is calculated per pixel and normalized, allowing us to calculate

exploratory statistics regarding our error. Figure 6.10 provides a set of Box plots

describing our error statistics.

For the five different reflectance models containing specularity, we have ordered

their plots in increasing values of specularity from left to right. It is easy to see that

the error increases with the amount of specularity in the reflectance model, since no

other properties of the scene have been changed. Parts of every scene may exhibit

negligible specularity as seen in Figure 6.11, therefore all error ranges start at zero

160

0

1

2

3

4

5

6

7

8

9

10

+

+
+
+
+
+
+
+
+

+
+
+
+

+

+
+
+

+

+
+
+

AnisotropicPhong
Oren-Nayar-

Blinn
Ward

Ward +

Anisotropic

Error From Specular Re!ection

Ground

Truth

A
b

so
lu

te
 D

i"
e

re
n

ce
 (

%
 o

f
p

ix
e

ls
)

Figure 6.10: Since our model is based on a Lambertian reflectance, then we can
assume that the ground truth error related to specularity is a pure Lambertian
reflectance model and all other models can be compared to this one. We plot the
absolute difference in terms of pixel values for the β maps for a subset of different
reflection models that exhibit specularity. All other variables of the scene remain
constant and only the reflectance changes.

and can produce error as high as 5% for any pixel and an average error around 1%.

Figure 6.11 below shows visually the error graphed in Figure 6.10.

161

Figure 6.11: Visual comparison of the error associated with specular reflection. Top
row are the relit images with various reflectance models. The second row shows
their β maps. Third row shows the absolute difference.

162

To assess the performance of our relighting method we used the ∆E00 metric.

The ∆E00 metric provides a measure of the differences in color based on the Eu-

clidian distance within a specified color gamut. Since 1976, there have been several

revisions of the current ∆E metric that use a different color space and slightly

different equations for calculating color differences, which resolve issues related to

perceptual uniformity as well as providing color differences for use in different con-

texts, such textile manufacturing, digital application, and print media.

∆E∗00 =

√(
∆L′

SL

)2

+

(
∆C ′

SC

)2

+

(
∆H ′

SH

)2

+RT

∆C ′

SC

∆H ′

SH

(6.1)

In the case for CIE ∆E00 the primaries are specified in the L*C*h color space

[LCR01], where S specifies the compensation coefficient and RT is the hue rota-

tion term. The LCh color space is three dimensional and specifies the color in

terms of lightness or luminance (L), chromaticity (C), and hue (h). This method

is commonly used for evaluation of Color Appearance Models (CAMs) as well as

other color related experiments. As long as the color are transformed to the same

whitepoint or recorded under the same illumination, then differences in color that

are imperceptible can be adjusted using a global tolerance. This tolerance affects

the hue of LCh color space by allowing a range within the compensation coefficient

weighting of the hue (Sh). Essentially, any color difference that does not cross the

just-noticeable-difference (JND) threshold based on this tolerance is considered the

same color. That threshold depends on the environment the viewer is in, and con-

text in which the differences are used, but in general it is not possible to view color

differences below ∆E00 < 1 [Fai05]. Additionally, it is common in the textile and

print industries that two sample colors having a ∆E00 < 5 are considered equivalent

[BBS00]. We adopt this threshold for our evaluations because currently a standard

threshold for our context does not yet exist and this threshold seems reasonable

163

given the stringentness of the print industry.

In our relighting experiments we used several different scenes for which we relit

with predetermined light values. Using the same predetermined light values we ren-

dered the same scenes using the physically-based rendering system VRay to produce

ground truth images of the scenes to compare against our relit images. For five dif-

ferent lighting values, we compared the relit scenes with the rendered ground truth

images using the ∆E00 metric previously described. Matlab code for performing the

color difference statistics is located in Section 8.

0

1

2

3

4

5

6

7

8

9

10

+

+
+
+
+

+
+
+
++

+
+
+

+

+
+
+

Color 2Color 1 Color 3 Color 4

Relighting Error Color Di!erence ΔE
00

Ground

Truth

C
o

lo
r

D
i!

e
re

n
ce

 Δ
E

0
0

Color 5

+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+
+
+
+
++
+
+
+

+

+

+

+
+
+
+

+

+
+

++

+
+
+
+

+
+
+
+

+
+
+
+

+

+

+

+
+

+
+
+
+

+
+
+
+

+
+
+
+
+
+
+
+

+
+
+
++
+
+
+
+
+
+
+

+
+
+
+

+
+
+
+

++

(c
o

lo
r

d
is

ta
n

ce
)

Figure 6.12: This figure show the relationship between the error of a set of relit image
and their corresponding ground truth images. As previously stated we have chosen
to use the ∆E00 threshold from the print industry to gauge perceptible differences in
images. An image containing pixel differences below a threshold of five is considered
the same. As you can see most of the pixels for each set of images fall below the
threshold with the exception of a few outlier pixels, which we attribute to noise in
the images.

Figure 6.12 shows a set of box plots describing the error between the relit images

and the ground truth. Each box plot describes the error associated with different

lighting values used to relight and re-render the scenes. As can be seen by the

164

figure, all color difference values for relighting fall well below the ∆E00 = 5 line

which we stated as an acceptable difference. The images from the scenes do contain

small amounts of specular reflection, at least a portion of the outliers (red crosses)

in the figure can be attributed to that while others can be attributed to noise in

the images. We should point out that the number of outliers is actually quite small

relative to the total number of pixels used to calculate the statistics in this figure.

Additionally, the scale for the ∆E00 plots in Figure 6.13 is transformed to a scale

from one to six to allow the values for viewing purposes, as the original scale of one

to twenty made the images too dark to see the differences as they are quite small.

Figure 6.13: Visual comparison of the error associated with our relighting appli-
cation. First column is the original images before relighting. The second column
shows a relighting of the original image. Third column is the ground truth images
to compared the to the relit images of the second column. Fourth column is a fig-
ure showing the color difference at each pixel using the ∆E00 values plotted with
Matlab.

165

6.2.7.1 Additional Results

This section shows some additional results of our relighting application. The results

are mixed virtual scenes rendered with a physically-based rendering system and the

rest are real scenes. For each scene the light source colors are known and the β map

for each scene image is calculated ”on-the-fly” using hardware acceleration. Each

real scene use colored lighting generated from polycarbonate gels filters placed in

front of a light source with CIE D65 color temperature.

Figure 6.14: Left is the original image, and right is a render of a real scene relit with
scene lighting.

Figure 6.15: Left is the original image, and right is a render of a real scene relit
with scene lighting. Despite having a significant amount of specularity within this
image, this relighting works well.

166

Figure 6.16: A screen shot of the desktop application developed for relighting.

167

6.2.7.2 Limitations

In general, the method presented here for relighting is faster, amenable to GPU

acceleration, less complicated, and less data intensive then the other methods pre-

viously proposed. But it does have several limitations that the other methods do

not have. The first limitation is that Symmetric Lighting is view-dependent. The

consequence of view-dependence is that the camera or the lights must not move,

otherwise a new β map must be calculated. Since the application performs it’s com-

putation on the GPU, this can be done relatively fast on mobile device with speeds

approaching real-time and real-time on more powerful GPUs. In other words, all

operations, including creating a new β map is done for every frame with render

times in 30 frame per second on a desktop with modest GPU (Nvidia 9600 GT).

The second limitation is that the relighting calculation assumes a discrete set

of light sources, not a continuous environment, such as an outdoor scene. This

implies that it cannot handle spatially varying light sources as input to the relighting

algorithm. Indeed this is true, as the initial testing setup used several multi-color

LED lamps. The lamps would produce light colors as a mixture of red, green, and

blue LEDs. But the low-quality manufacture of the lamps made them inconsistent

spatially. In other words, a lamp that was emitting a yellow light, would have some

areas that exhibited red light that green or vice versa, causing large errors in the

β map calculation. This necessitated the change from low-quality LED lights, to

movie quality Rosco gel lighting.

168

6.3 Light Color Estimation and Calibration

There are many situations where estimating the illumination within a scene can

be important. On movie sets, estimating the illumination is often used to aide in

relighting, rendering virtual objects in consistent lighting as real objects, and in

color processing. Light color estimation is the task of estimating the color of a par-

ticular light source which is different from the task of estimating the illumination

of a scene. The difference is that light source color estimation refers to explicitly

estimating the photometric or radiometric properties from a full range of possible

color values that produce the sensed color, whereas illumination estimation tries to

classify an a lighting environment within restricted group of standard color values

called blackbody radiators [Fai05]. Blackbody radiators are group of evenly spaced

color estimates that follow a specialized locus called the Planckian or black body

Locus [WS67], which is single path on the CIE 1931 chromaticity chart correspond-

ing to correlated color temperatures [CIE87] as seen in Figure 6.17. The black body

radiators, measured in degrees Kelvin (K), have a series of corresponding standard

illuminants which are defined by the CIE and emit light colors on this locus. Exam-

ples of such illuminants include Tungsten A (2856K), B (4874K), C (6774K), D55

(5500K), D60 (6000K), D65 (6500K), E (5454K) and F1-F12 (fluorescent light range

6430K - 3000K).

As can be seen from Figure 6.17, estimating the illuminant is a matter of search-

ing the restricted space of the Planckian Locus, but finding the color of a light

source is a much broader search that could span the entire chromaticity chart.

Most techniques for determining the color of an illuminant estimate the illumina-

tion of a scene and therefore search the restricted space rather than the light color

[CFB02, DWA04, HMP+08, LM71, BCF02, FHH01]. This is generally due to the

169

Plankian

Locus

Figure 6.17: CIE 1931 Chromaticity diagram with Planckian Illuminant Locus.

fact that most common light sources fall within the Planckian Locus, including

most Tungsten, Halogen, fluorescent, other filament based light bulbs, and various

positions of the Sun. This is not always true however for LED-based lighting or

lighting that is covered by a color spectral filter, which is commonly used in the en-

tertainment industry, therefore the previous methods will incorrectly estimate these

light colors. Therefore we have developed a light color estimation method that will

determine the color of scene illuminants without the restriction of belonging to the

group of blackbody radiators.

The most reliable and commonly used method for measuring the full range of

color of a light source is via a spectrophotometer, which use diffraction gratings to

separate the light sample into spectrum bands and measuring the light intensity

at specific wavelengths [DeC97]. Spectrophotometers are highly specialized devices

170

and can cost several hundreds to thousands of dollars making them cost-prohibitive

for most people. We present our alternative method, which is relatively simple and

inexpensive using the Symmetric Lighting technique developed for this dissertation.

Restating the Symmetric Lighting Equation 5.7 with the modification of globally

minimizing the light color (e.g., L2) for all pixels within a captured image, yields

Equation 6.2 below:

argminL2
‖[C1 ∗ (L2 ∗ β + (1− β) ∗ L1)]− [C2 ∗ (L1 ∗ β + (1− β) ∗ L2)]‖ (6.2)

Then if we assume that we know the color of light L1 and calculated the β map

for another previously known light source, then the process of re-acquiring two new

images of the same scene with a new and unknown light source is needed. After

acquiring the new images, the new light color estimate is found by minimizing the

objective function above in Equation 6.2. This technique also alleviates the need to

convert to the sRGB [(IE99] color space from full spectrum values, which requires

estimating in-gamut tri-stimulus values from those that may arise from a spectral

conversion.

Results : Below in Table 6.1 is a sample of the values collected in our light color

estimation tests. We used a synthetic scene rendered several time with the second

light L2 having different light color values. We then performed the calculations in

Equation 6.2 to estimate the light value for L2 in each image compared our estimate

with the known ground truth. Best we calculate our light color estimate globally

across all image pixels, the error associated with each image is averaged across

the entire image. Areas within the image with high Signal-to-Noise (SNR) provided

almost the exact answer, while other areas with lower SNR (i.e., high noise) provided

171

answers that varied significantly from the ground truth. As a means to quantify our

comparison, we use an error metric based on Euclidian distance between the two

color vectors, which is implemented in Matlab as d = dist(X, Y). In our case, X

is the ground truth color value for L2 and Y is the estimated value and d is the

error. Most academic work related to white balancing use the same error metric,

in which values ≤ 10 are generally considered acceptable [Hor06]. The best white

balance algorithms using highly restrictive assumptions routinely perform well with

error values in the 5-10 range using proper training data sets [Hor06]. The average

distance of the estimated color vector compared to the ground truth is provided in

Table 6.1. It is not surprising that consistent across the images used in our tests,

that values that showed significant deviations of light color estimate from the ground

truth were those areas in the images that corresponded to higher levels of noise. If

we assume that areas in the images with lower noise can estimate the light color

correctly, then as an alternative to using the average value for the light estimate

we could use the statistical mode as was done in [TEW99]. The mode values are

located in Figure 6.2. We justify this by showing images with low to moderate noise

levels produce the proper light color estimate in a majority of the pixels, allowing

the statistical mode to be the prevailing and lowest error estimate. Future work on

estimating the light color will focus on more varied scenes using real images. Real

scenes were not used due to the high amount of noise, and the goal of this section

was to test the light estimation algorithm for validity not noise analysis. These

results show that this technique for light color estimation is a viable method.

Calibration : Image sensors generate values that are linearly proportional to

the light sensed by the imaging pixels. The non-linearity of images is generally

the result of the camera’s imaging system applying a nonlinear color transform to

raw pixel values to compress saturated pixel values so they can be converted to a

172

Ground Truth (sRGB) Estimate Color (sRGB) Error (vector distance)
(91,138,240) (93,130,242) 8.48
(160,160,50) (168,172,51) 14.46
(115,50,110) (113,55,118) 9.64
(175,50,70) (173,48,64) 6.63
(175,210,212) (177,202,212) 8.25

Avg.

Table 6.1: Estimate of lighting color and the error using the average of the image
pixel color rounded to the nearest integer.

Ground Truth (sRGB) Estimate Color (sRGB) Error (vector distance)
(91,138,240) (95,141,236) 6.40
(160,160,50) (165,154,53) 8.37
(115,50,110) (118,52,112) 4.12
(175,50,70) (172,51,73) 4.36
(175,210,212) (176,208,210) 3.00

Mode

Table 6.2: Estimate of lighting color and the error using the mode of the color values
instead of the average.

standard RGB color space. This process is often referred to as Gamma Correction.

To avoid applying linear operations to nonlinear pixel values that have been gamma

corrected, it is necessary to apply an inverse gamma correction as seen in Figure

6.18 by multiplying the pixels values Vin by the power of the inverse of the gamma

correction that was applied by the camera, in most cases a γ of 1/2.2 would be used

in Equation 6.3. For display devices that expect a gamma correction, the original

gamma power must be reapplied to the pixel values prior to being displayed by using

a γ value of 2.2 for Equation 6.3.

Vout = V γ
in (6.3)

For all image capture and interpretation tasks many of the camera properties

require calibration. Calibration involves solving for and correcting your cameras

173

intrinsic and extrinsic properties, lens aberrations, chromatic transforms, and tone

response curves. The work presented in this chapter assumes that the workflow,

the process of going from input image to rendered image, has a known mapping

for color values and requires no other calibration steps. Often after camera calibra-

tion the images have an inverse gamma applied to the pixels values. The inverse

gamma operation linearizes the pixels values making most subsequent operations

also linear, which is commonly known as a linear workflow in many areas of image

manipulation such as photography, image processing, computer vision, and render-

ing. Linearization is usually the first step prior to manipulating image or video

in order to transform the image colors to an independent subspace of the original

color space [RKAJ08]. This process usually entails performing an inverse gamma

operation to not only images but also supplemental data such as look up tables,

color values, and light estimates that will also be used in the image manipulation in

order to maintain a linear workflow.

For this dissertation, any operation performed on images or image related data is

assumed to be part of a linear workflow and therefore an inverse gamma correction

has been applied prior to any processing. Unfortunately when acquiring images from

cameras that have proprietary camera processing pipelines (most consumer level and

professional level cameras), gamma correction is not the only non-linear operation

applied to the image. In addition to nonlinear gamma, a camera’s processing pipeline

generally add several other operations to provide a more ”satisfying” image for

the consumers of the cameras. These operations map light values that enter the

camera and convert them to non-linear pixel values, which is generally referred to the

camera’s response curve. The details of these operations are general not provided

by the manufacturer of the cameras and are considered part of the trade secrets

and distinguishing features of the cameras [RWPD05], but usually include some

174

Gamma = 1.0 Gamma = 1.0/1.5 Gamma = 1.0/2.0 Gamma = 1.0/2.2

Figure 6.18: Image with dark regions that have had a Gamma correction applied.
The values under the region specify how much correction was applied.

175

noise correction, white balancing, color correction, and color/gamut transforms.

Because the operation details are not available and these nonlinear adjustments in

the camera pipeline can introduce nonlinearities in an otherwise linear workflow, it

is imperative for the response curve of the camera to be derived in order to account

for any nonlinearity. The process of deriving a response curve has been the topic

of several academic works [DM97, MN99] related to High Dynamic Range image

capture techniques. The basic method for determining a camera’s response curve is

to capture a set of images with a range of exposure settings then fit the luminance

values to a known nonlinear curve. After fitting the luminance values to a known

curve, the values can then converted to a linear response analytically by inverting

the nonlinear curve. Several different methods for deriving a camera’s response

curve have been developed. For an overview of these methods the reader is referred

to [RWPD05]. For the presented work, we use the technique developed by Debevec

and Malik [DM97] for deriving the response curve.

6.4 Multi-Illuminant White Balance

6.4.1 Overview

Color constancy is the ability of the human visual system to mitigate the effects of

different lighting conditions on an object’s reflectance such that the object’s per-

ceived color is unchanged under different illumination In photography, the process

of color constancy is mimicked in a camera by applying a white balance method to

a photograph after capture in order to compensate for colors cast by non-canonical

lighting. For example, white balancing can remove the yellow tint that results from

incandescent lighting or a blue cast caused by the early morning sun.

Most current research in white balance methods make the simplifying assumption

176

that the entire photographed scene is illuminated by a single light source However,

most real-life scenes contain multiple lights and the illumination recorded at each

camera pixel is due to the combined influence of these light sources. Furthermore,

most of today’s cameras and photo-editing software employ white balance techniques

that make classic assumptions, such as the Grey World assumption [Buc80], which

also assumes the scene being white balanced contains only a single light source. To

solve the issue of multiple light source white balancing, it is common to segment the

image and apply a traditional white balance technique to the different regions. In

practice though, this can lead to hard transitions in white balanced images as neigh-

boring regions can potentially estimate different light sources at region boundaries.

Also, this solution does not account for partial lighting contributions from any light

source thereby increasing the chance for incorrect white balancing.

Figure 6.19: Comparison of a scene with multiple light sources (yellow fill in the
background and blue light in foreground). Left is the original image, center is our
method, and right is the method of Ebner [Ebn03].

We provide a solution to white balancing images that contain two different col-

ored light sources by utilizing the known color of each light and determining their

appropriate contribution to each camera pixel by utilizing our Symmetric Lighting

177

method derived in Chapter 5. Our white balance technique has two main steps.

First, we determine the β map for the image that is be white balanced. We then use

a simple projection technique to shift each illuminant colors to a specified White

point, such as CIE D50 or D65 as is commonly done when white balancing. Shift-

ing the illuminant color is simply a series of vector multiplications. Because our

algorithm uses mostly vector math, our technique is amenable to on-camera hard-

ware implementation and real-time executions as is shown in the implementation in

Section 6.4.3.

6.4.2 Related Work

Single light source white balance algorithms: Research into solving the color con-

stancy and white balance problems has yielded many techniques. Classical color

constancy techniques based on simple statistical methods include the Gray World

[Buc80] and Max RGB [LM71] algorithms. These techniques make simplifying as-

sumptions about scene or image statistics, which work only in special cases (i.e.,

scene reflectance averages to gray for Gray World assumption) but fail in more gen-

eral application. Higher order statistical methods such as Generalized Grey World

[FT04], the Grey-Edge algorithm [vdWGG07], and techniques employing natural

image statistics [GG07] have been successful in solving illumination estimation prob-

lems. Several other classes of statistical methods that estimate scene illumination

based on probabilistic assumptions such as Bayesian methods [FHH01], assumptions

about the color spaces such as Gamut Mapping [For90] or color shifts [Ebn04], or

using machine learning such as Neural Networks [CFB02]. The majority of the color

constancy and white balance research, including the methods just mentioned, make

the assumption that the scene is illuminated by a single light source.

Multiple light source white balance algorithms: A few methods have been pro-

178

posed for white balancing images that contain multiple light sources. However these

techniques either require some user input or make restrictive assumptions that make

them somewhat impractical to use. Hsu et al [HMP+08] proposed a method that

determines the light mixture per pixel by modeling it as an alpha matting problem.

They then use the matting Laplacian from [LLW06] to determine the mixture. Aside

from being complicated and not amenable to hardware implementation, their tech-

nique also requires the user to know the light colors a priori as our technique does

as well. Kawakami [KIT05] proposed a technique that determines the light color

automatically for outdoor scenes only. They make the assumption that the scene

consists only of lights whose color follow the Planckian black body radiator line (see

Figure 6.17). In contrast to our technique, we do not restrict the range of possible

light source colors to black body radiators but the full color gamut and our tech-

nique can be indoors as well as outdoors. The technique proposed by Ebner [Ebn03]

is most similar to our method. This method can automatically determine the light

color and because it employs only vector operations within pixel neighborhoods it is

amenable to hardware implementation. However, unlike our method, this method

does make the simplifying assumption that small pixel neighborhoods average to

a gray color (also known as the Gray World assumption [Buc80]). Consequently,

this method works well for scenes in which the gray world assumption is true but

can produce incorrect white balancing when this assumption is not met, which is

common. Our method makes no assumption about the average scene color locally

or globally, does not require any user adjustments related to lighting, and does not

require the user to know all the light colors a priori (if we assume the light color

estimation method described in Section 6.3 is used to discover the single unknown

light color).

179

6.4.2.1 Multiple Illuminants

Color constancy and white balance algorithms generally fall into two broad cat-

egories [Hor06]; the first class being techniques that determine the reflectance of

objects within the scene in order to estimate illumination by reducing the complex-

ity of inverting the light transport. The second class involves transforming an input

image in order to discount the effects of non-canonical scene lighting. Our method

falls within the latter classification and as such we are not concerned with recover-

ing reflectance but instead in determining the contribution of each illuminant and

discounting their effects.

If we assume for the moment that the scene is illuminated by two known il-

luminants that differ in color. Then using the interpolation method described in

Equation 5.5 (rewritten below as Equation 6.4), we can assume that each pixel,

located at (x,y) in image I, has a relative contribution of light from each illuminant.

Equation 6.4 is the same formulation, generally known as a linear interpolation,

used to describe the relative light contribution in our Symmetric Lighting method

as well.

Ĺ = βl1 + (1− β)l2 (6.4)

We note that the assumption relative contribution of each illuminant in Equation

6.4 is also made by Hsu et al. [HMP+08]. However there are four main differences

between our work and Hsu et al’s.; 1) our method differs in how we come to deter-

mine the value of β or the relative contributions of each illuminant l1 and l2 from

that of Hsu et al.’s work (described in the related work Section 6.4.2), 2) unlike

Hsu et al., we do not assume that the light colors are bound to the range of the

black body radiators, 3) also we do not assume that all scenes contain at most two

180

lights as we previously described in Section 5.2.3.1, and 4) Hsu et al. categorizes

specular reflection as errors and is therefore a limitation of their method, but we

explicitly described in Chapter 5 the influence of specular reflection and the effect

on estimating the β map and how to compensate. Similar to Hsu et al. though, we

assume that the light colors are known but not their relative contribution.

Assuming the light contributions from l1 & l2 are conserved then we can say the

0 < β < 1, and that all the light present in the scene comes from only these lights

and not any other source (i.e., no florescence or emitters). Ix,y is a result of the

reflectance within the scene scaled by some factor G. The task of white balancing

image I then becomes a two part task, a) determining the colors of l1 and l2 in RGB

space, and then b) determining their relative contributions, β to pixel Ix,y. In the

following section we develop techniques for accomplishing both these tasks.

6.4.3 Implementation

As described in Section 5.2.2, finding the shortest distance between the color line

and the light line l1l2 requires minimizing a quadratic function per pixel. A faster

approximation to minimizing the shortest distance is to project the color to the light

line. This technique requires only a subtraction, addition, multiplication, and a dot

product. Since these operations can be translated into simple hardware operations

or GPU commands, they can be performed very fast. Furthermore, instead of using

pixel neighborhoods as suggested in citation [HMP+08] we can perform this oper-

ation on a per-pixel basis with little or no additional performance cost. Figure 6.3

shows our implementation using pixel shader code from the GLSL shading language.

181

Listing 6.3: This GLSL code shows our method of performing white balance to an

image with multiple illuminants. We assume that a β map exists for the image

and the two light values are known. Then we determine the appropriate values for

undoing the previous lighting and apply a new light with a D65 color.

/∗Re l i gh t i ng

∗ Descr ipt i on : White balance an input image with

∗ mul t ip l e i l l um inan t s .

∗ Ouput : A fragment that cor r esponds to the imput image

∗ with new l i g h t i n g va lues .

∗ Written by : C l i f f o r d Lindsay , Feburay 26 , 2011.

∗ Department o f Computer Science , WPI

∗/

uniform sampler2D src_tex_unit0 ;

uni form sampler2D src_tex_unit1 ;

uni form vec3 l1 ; // old l i g h t 1

uniform vec3 l2 ; // old l i g h t 2

void main () {

vec3 D65 = {1 . 0 , 1 . 0 , 1 . 0 } ; // approx noon sun l i gh t

// r e t r i e v e o r i g i n a l image .

vec3 c1 = texture2D (src_tex_unit0 , gl_TexCoord [0] . st) . rgb ;

// r e t r i e v e Beta map image .

vec3 beta = texture2D (src_tex_unit1 , gl_TexCoord [0] . st) . rgb ;

// c a l c u l a t e the propor t i ons o f the old l i g h t s f o r each p i x e l

vec3 I = beta . r∗l1 + beta . b∗l2 ;

// s h i f t l i g h t to CIE D65 then apply to image .

vec3 wb = c1 ∗ (1 . 0/ I) ∗ D65 ;

g l FragColor = vec4 (wb , 1 . 0) ;

}

The description of our implementation assumes certain technical details, such as

the image being white balanced is mapped to a quadrilateral so that each pixel/texel

from the image is being passed into the pixel shader listed in Figure 6.3. Since the

light and image colors are defined in a linear RGB color space, the operations are

182

performed in three dimensions thus are vectorized for efficiency and parallelism.

To demonstrate that our algorithm is amenable to real time execution, we im-

plement it on an Android based Motorola Droid smart phone with OpenGL 2.0

rendering capabilities and a built-in camera. The smart phone has a Texas Instru-

ments OMAP 3430 Arm Cortex A8 CPU running at 600 MHz with 256 MB of ram.

The GPU on the smart phone is a PowerVR SGX 530 GPU. A customized camera

application was developed that captured photographs from the built-in camera and

transferred them to an OpenGL rendering application which performed the white

balance operation and wrote the image to the phone’s file system. The whole oper-

ation, from click to white balance preview, took less than 1 second with the bulk of

the time spent on transferring the image from memory to the GPU (not the actual

white balance render time).

6.4.4 Results

We now describe the results of testing our white balance method against the ground

truth as well as other methods. Our test scenes were comprised of a variety of syn-

thetic images with known illuminant colors. For the synthetic images, renderings

were done in the VRay physically based renderer, which produced physically accu-

rate direct and indirect lighting (global illumination). Every effort was made to use

plausible light source colors in order to test the performance of our white balance

algorithms on real-world illumination. We should point out that all prior work al-

gorithms for white balance assumes that the color of the illuminants lie relatively

close to the Planckian Locus illustrated in Figure 6.17. We significantly relax this

assumption and assume that the light source color lie within the boundary of the

sRGB gamut (although measurements can be taken if the values are provided in

dominant wavelength form). In addition to expanded the colors of the light sources,

183

Figure 6.20: Results comparing our method, the Grey World method, and the Grey
Edge method to the ground truth. The comparisons consists of a absolute difference
images performed in Matlab using the imabsdiff function in the Imaging Toolbox
and the CIE Delta E 2K function [LCR01]

we also produce good results with low-light images and with scenes that exhibit

low-color complexity, on which white balance algorithms in general perform poorly

with [Hor06]. Also, it is assumed that the values of the pixels within the image are

properly exposed. In other words, that there does not exist any saturated pixels

resulting in clamped pixel values. This is can cause errors to occur in the light color

estimation as well as the relative light contribution.

In the presence of both specular and diffuse reflection our light contribution

method works well as can be seen from Figure 6.20. The chess scene exhibits a

high amount of specular highlights as well as diffuse reflection within areas lit by

different lights. Notice also that the light colors in the input image for the chess

scene are visually quite different. This scene is similar in setup to what might occur

during a flash photograph under incandescent lighting. The foreground is lit by

a cool blue light from the flash whereas the background is lit by a reddish-yellow

184

artificial light. This contrast in light color shows how robust our method is to colors

outside the group of black body radiators, which is not possible with previous white

balance algorithms. In Figure 6.20 we show the Chess scene with comparisons with

the traditional and common used white balance methods gray world [Buc80] and

the gray edge methods [vdWGG07].

6.4.5 Conclusion

In conclusion we have shown that our automatic white balance method can estimate

dual lighting in complex scenes that exhibit both diffuse and specular highlights

without the need for user assistance. We would like to point out that the prior

technique of Symmetric Lighting developed in Chapter 5 makes what is generally

a very difficult problem of white balancing multiple illuminant images relatively

straightforward. Our white balance method relaxes many of the restrictive assump-

tions made in traditional white balance methods (i.e., illuminant color and number

of lights) making our method the only method to our knowledge that can achieve

white balancing scene with multiple lights of colors outside the black body radiators.

In the future we would like to extend this method to three and possibly generalize it

to N light sources. We believe that using the distance measure can also be applied

to three light sources which is essentially a triangle representation in the linear RGB

color cube. Also, we would like to make our light estimation technique to be more

robust and applicable to images that contain both direct and indirect lighting.

6.5 User Studies

In this section we describe three user studies that were conducted to further evaluate

the ideas implemented in this work. The first user study involved an evaluation of

185

the relighting theory and application in order to validate the use of Symmetric

Lighting and as a relighting tool for previs (which we presented in Chapter 5). The

second user study consisted of surveying experts in the field of Previsualization

of their opinions on the need and desire for a previs virtual relighting tool that

could be used on-set to perform set relighting (which we presented results for in

Chapter 6). The third study was an Expert Review user study to validate the

design and implementation of the our programmable camera back-end PCam (which

we presented in Chapter 3). The WPI Institutional Review Board approved the

procedures for all user studies. For reference, all user study questionnaires and

scripts are listed in the Appendix Section C.

6.5.1 User Study #1: Relighting Evaluation

Recruitment : Eight WPI students, 6 males and two females between the ages of 18-

32 years were recruited to participate in the user study. They performed relighting

tasks in a library Tech Room and each study lasted about 30 minutes. We ran

the study initially with only two people after which some issues with the software

were discovered. So we delayed the remaining six participants until the software was

fixed. Then subsequently, reran the study with same protocol with six additional

participants for a total of eight. Our justification for using only eight participants

comes from the claim that for usability testing, ”five is enough” users is all that

is required [NM90] for simple design iterations. For our application, this iteration

only seeks to prove that our software provides at least a minimum level of intuitive

usability. All of the participants in the study were students at WPI (2 graduate

students, 6 undergraduates).

Study Design : This first user study was conducted with the goal of validating

the design of our virtual relighting software. There were two primary objectives

186

associated with this study: 1) to determine if our software application met minimum

usability engineering standards such as those described by [Nie94] and 2) determine

if our software performed relighting in a realistic and qualitatively convincing way.

Additionally, we surveyed the participant’s knowledge about Previsualization in

order to determine their understanding of the context for which the application was

being developed.

To validate the usability of our software design the user was asked to perform

a series of relighting tasks using the relighting application developed for this dis-

sertation. After being consented at the very beginning of the user study, we asked

”On a scale of 1-10, how familiar are you with movie Previsualization and relight-

ing?” to gauge their understanding of previs. We did this to establish a baseline

understanding of the concept of previs and relighting. We then proceeded to explain

what previs is in general, then how we could incorporate relighting into previs. We

then gave them a preview of the relighting application view video and walked the

subjects through all the operations that could be performed using the application.

We then asked them to independently perform a series of tasks related to relighting

using our relighting application (see script in Appendix C.2.1). The participants

were asked to manipulate the intensity, color, dispersion, and location of the lights.

For changing the intensity, they were provided a slider which increased the intensity

of the lights on a logarithmic scale. Several methods were provided to modify light

colors including, a color wheel, a hue slider, and numerical values for RGB values

(red, green, blue) and HSV values (hue, saturation, and values). For dispersion, the

user could apply a paint brush like tool to the screen to adjust the lighting (i.e.,

light painting). Finally, the application allowed for small movements of the light via

a translation slider (only one degree of freedom, translation in the x direction).They

were allotted 10 minutes to perform the relighting tasks and were also given the

187

opportunity to experiment on their own with the application. The users were su-

pervised while performing these tasks in case any difficulties were encountered with

the software. Additionally, users were told that they could provide comments or ask

questions during the time they performed the relighting tasks.

After performing the relighting tasks, the participants completed a twenty-item

questionnaire regarding their experience with the relighting application. The first

five questions of the questionnaire determined demographic information as well a

computer familiarity and usage. The next set of questions focused on their un-

derstanding of computer graphics, photography, and previs. Finally, the remaining

questions were regarding the realism and capabilities of the relighting application.

In particular, we asked their thoughts on how the application performed in manip-

ulating the properties of the lights when relighting the scene.

Results : All of the participants were asked about their familiarity with comput-

ers and how much time they spend using them on a weekly basis, with the average

being 34.5 hours per week (a potentially high average resulted because one person

reported 108 hours per week). The rationale for asking this question was to assess

their level of comfort with computers in general. Next questions were used to gauge

their familiarity with computer graphics, movie lighting, and movie making in gen-

eral. We asked them if they had either take a computer graphics or photography

classes and only three of them had (all three were computer graphics classes) and

all but two rated their photography skills as amateur (lowest rank) and two rated

themselves as intermediate (one above amateur). Also, we asked if they were famil-

iar with virtual lighting concepts used in 3D rendering on a scale of 1-5 (1=none,

2=a little bit familiar, 3=fairly familiar, 4= good familiarity, and 5=excellent fa-

miliarity). Additionally, each subject had experience with either creating a 2D/3D

rendering or movie. Figure 6.21 shows a the responses to these questions from the

188

subjects.

0

1

2

3

4

5

6

7

8

Ever Made a Movie or Video Game

or Visualization with Lighting?

M
ovie or Video

Video G
am

es

Rate Your Pro!ciency in

Photography?

Am
ateur

Interm
ediate

Advanced

Professional

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

N
ot

Som
ew

hat

Understood

Good

Rate your current level of understanding

with respect to movie previsualization?

Excellent

Figure 6.21: Demographic information and background information regarding the
subjects in this user study.

We predicted that most participants would not have a full understanding of

”movie previsualization relighting” but that once the concept was introduced that

their level of understanding would increase rapidly. Everyone answered that they

had little or no understanding of movie previs light at the beginning of the experi-

ment but by the end of the experiment they expressed that their understanding had

improved by indicating that they now have a good or somewhat of an understanding

of movie lighting previs. Also, we predicted that as the participant becomes familiar

with the goals of relighting, that the interface and the tools provided by our soft-

ware would complement these goals making it easy to edit the lights appropriately

as well as provide intuition about the light property they were changing. Our main

reasoning for this is that relighting is just a method for manipulating how lights

interact with an environment, which is similar to tasks people do on a daily basis

when adjusting the lights in their environment. As indicated in Figure 6.22 most

participants reported that it was extremely easy to change the light color. And when

the participants were asked if the lighting property that was changed was intuitive

189

in the context of the relighting, most answered either fairly or very intuitive. In

other words, when I changed a property of a light, such as color did the application

and relit image produce the expected results. This indicates that the software ap-

plication was designed in a manner that was consistent with participant’s intuition

about light change. Also, when asked which property of the lighting changes were

intuitive, most said changing color. Our design of the application appeals to this

intuition by providing three-times as many UI widgets for manipulating light color

than the other properties (3:1 ratio).

0

1

2

3

4

5

6

7

8

How Easy Was It To Change

Color?

N
ot

Som
ew

hat

Fairly

Exterem
ely

How intuitive were the changes

in Light Color?

N
ot

Som
ew

hat

Fairly

Exterem
ely

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

How Realistic did the Relit

Images Look?

N
ot

Som
ew

hat

Very

0

1

2

3

4

5

6

7

8

N
ot

Som
ew

hat

Fairly

Very

How Useful For Movie Directors

and Professional Photographers?

Figure 6.22: Qualitative questions regarding the use and realism of the virtual
relighting software.

Additional questions were asked to determine how real the participants perceived

the relighting to be and how useful the software might be for directors and profes-

sional photographers. When asked how real the relighting looked after a lighting

change all indicated a moderate level of realism (see Figure 6.22). To gauge their

understanding at this point we asked them to indicate what property they would

manipulate in the interface if a director asked them to ”change the lighting to a

cool morning”, all indicated at least the color property was needed to be modified

(which was correct). Our justification for asking a question comes from the notion

that most people possess a certain level of Color or Lighting Vocabulary that we

borrow from our perception of these colors in our environment [RKAJ08]. We also

190

asked for their opinion on how useful they thought this tool might be, when fully

implemented, for directors or professional photographers. As shown in Figure 6.22,

all participants indicated that it might be useful in the context of movie making or

professional photography.

In the last questions we asked the participants for additional feedback or opinions

that were not addressed by questionnaire, which they thought might be necessary

to convey to us. Several participants suggested features to be added to the software

such as more options for changing the lights and lighting presets. This feedback

indicated to us that they were comfortable enough with the tool in the short amount

of time that they wanted to go be given more advanced control over relighting. Their

desire to have more controls also indicated to us that they had increased their level of

understanding of relighting. The first participant discovered a bug in the software,

which was subsequently fixed for the other users. Also, some of the participants

indicated there were no changes in the shadows shape (as it was not featured in this

version of the software). This may have contributed to a greater realism score if

there had been more shadow manipulation. A couple of the participants praised the

tool as being ”cool”, ”very fun”, and ”pretty easy to understand”. In conclusion,

the data seems to suggest that the relighting tool was easy enough to understand

in the limited amount of time given to learn the tool, provided all the functionality

needed to perform the relighting tasks (although a couple of non-essential features

were suggested), and achieved at least a moderate level of realism.

6.5.2 User Study #2: Previs Society Survey

Domain Expert User Study Design and Recruitment : This second user study was

conducted with the goal of validating the utility of our virtual relighting software in

the movie industry. Specifically, we wanted to gather the opinions of professionals

191

in the previs field regarding the usefulness of employing software for virtual relight-

ing of movie sets during the previs stage of movie making. The Previsualization

Society is an organization of professional movie makers and cinematographers who

specialize in movie previs. We conducted a web-based survey that presented the

questions from a questionnaire we developed (see Appendix C.2.3). We then posted

a link to the web-based survey on a message board posting at the Previsualization

Society’s website (membership is required to post message) located at [Soc]. The

survey contained seventeen questions, which included demographics and questions

regarding on-set lighting and relighting. The survey focused on questions about how

lighting and relighting was performed on-set and their opinions about the utility of

virtual relighting in improving on-set lighting previs.

Results of Domain Expert User Study : For our survey, we had responses from

three professional movie makers. The first was a Previs Artist with three years of

experience, the second was a Professor of Cinematography and a Director with 12

years of experience, and the third was a Technical Director with 7 years of experience

(all males, ages: 50, 41, and 35). The opinion of these three professionals, varied

widely on most matters, but all agreed that on-set lighting takes up a large portion

of the on-set time to perform. When asked what percentage of on-set time is spent

adjusting the lighting all three said greater than 75%, and given that the largest

part of the movie making budget is spent for on-set, it would stand to reason that

waiting for lighting to be modified adds considerable costs. They all stated that

lighting is currently generally not a part of previs but all agree that it should be

more prevalent in previs. All the subjects stated that the director is usually not

directly responsible for lighting design and direction, but is more often delegated

to other movie personnel such as cinematographers, technical directors (TD), or

directors of photography. Also, the lights are physically modified by a lighting crew

192

and a person called a Gaffer who is generally the head electrician responsible for

managing the lighting crew.

According to our survey participants, the director’s central vision for a story

does not usually revolve around a particular lighting setup. One participant of our

survey offered his opinion that ”[lighting] is usually not important because they

don’t understand lighting”. This certainly cannot be true for all directors but does

support the notion that directors may usually focus on other parts of the story,

such as acting, choreography of action, and dialogue. This supports the previous

statement that directors may delegate most of the lighting responsibility. In the

context of light direction, all three participants suggested that a director would

convey their ideas about the lighting or how they want the scene to have a particular

look to other movie personnel. Then the lighting design and setup would be directed

by that person and not the director of the movie. Additionally, the only people who

seem to be concerned with previs of lighting at the moment are the visual effects

crews (VFX) for the purpose of matching the current on-set lighting with that of

the virtual lighting used to create visual effects in post-production. VFX crews

often photograph the scene or take lighting measurements during filming [FZ09]

and subsequently loaded into visual effects software for previewing.

Another participant stated that previs of on-set lighting may currently not occur

because of a limitation of current technology. In response to the following question

”is previs generally concerned with on-set lighting”, the participant said ”at the

moment no as technology progresses, it may and should become more important

especially with respect to digital workflows”. This indicates a notion that there is

currently a technology gap preventing relighting capabilities for on-set previs. This

notion of a technology gap that will be filled in the near future seems to also be sup-

ported by the Visual Effects Handbook, which prophesizes that we should ”expect

193

that lighting previs will have an increasing impact - and that cinematographers will

play a role in that” [OZ10]. These statements seem to be in support of developing

a tool for virtual relighting, such as the one developed for this dissertation.

In conclusion, according to our research the future of previs will include an on-

set lighting component, which will probably be used by cinematographers and is

already used by visual effects crews (in a limited fashion). As a cinematographer’s

main tool consists of cameras, it makes sense to integrate these features into the

camera or have a separate camera with these capabilities. As indicated by two of

the participants, having the capability to preview lighting changes virtually would

be useful, and furthermore having a camera with the ability to preview lighting

changes would also be useful (one participant specifically said ”very useful”). This

may also signify closer involvement from VFX crews with respect to lighting as

they already perform such tasks, the gap between principle photography and some

post-production activities will get shorter or even disappear as speculated in our

motivating vision from Chapter 1. Since VFX crews already do lighting capture for

post-production and cinematographers will in the future be using lighting previs to

better plan lighting and produce better shots. The participants seem to indicate that

having a programmable camera to run on-set lighting previs on would be valuable

to the future of previs and filmmaking in general.

6.5.3 User Study #3: PCam Expert Review User Study

Expert User Study Design : In Chapter 4, we described a camera interface designed

to complement our programmable camera architecture called PCam. To validate and

refine our new camera user interface (UI) we performed a user study that tested the

UI through a series of scripted tasks in order to discover usability issues. Instead of

using random study participants to evaluate of camera UI, we performed an Expert

194

Review [Nie94]. Expert Reviews have been shown to undercover as many as three

times the number of issues than general populations [ATT10, DR99] when testing is

performed within the domain knowledge of the expert. Because we were developing

a new type of camera interface which consisted of blending existing camera functions

with a set of new features, we decided to utilize a professional photographer and

movie maker as the expert for the study. Our expert was a twenty five year old

professional photographer, artist, and independent filmmaker. She owns a small

design firm specializing in television and web commercials as well as advertisement

art. The main goal of our study was to ensure that our new UI preserved the usability

of existing camera function5 while providing new functionality in an intuitive and

usable way.

To achieve our goal, the study protocol focused on three areas for the evaluation:

1) testing ”normal camera interface” of our UI, 2) testing the ”advanced camera

interface”, 3) the study included a series of tasks for testing a separate desktop

application called the Workbench. The ”normal camera interface” incorporates

the standard UI camera features that exist on most typical ”Point and Shoot”

cameras. The ”advanced camera interface” includes new UI features for controlling

and programming our PCam architecture described in Chapter 3. The Workbench

application was developed for programming the low level features of PCam as well

as developing new camera pipelines. In our testing protocol, we asked the expert

to perform a series of predetermined camera operations that represented the typical

camera usage, such as taking, reviewing, and editing photographs. This allowed

us to focus the expert’s feedback on the UI layout, how the UI was organized for

performing typical camera tasks, and how well our UI preserved familiarity with

existing camera UI and functionality. The evaluation was done on a camera system

5our normal camera functions were modeled after the typical Canon ”Point and Shoot” camera
interface design

195

simulated using a laptop with an embedded web camera. The study was recorded

via video camera for review purposes.

For evaluating the ”normal camera interface”, the expert was instructed to per-

form a series of tasks related to normal camera functions, such as taking a picture,

reviewing and adjusting captured images, and modifying the camera settings. In

our study protocol, the expert was allowed to take as many pictures as was desir-

able. As the expert transitioned from one interface to another (i.e., picture capture,

picture review, and camera adjust interfaces), we observed the experts actions and

recording any usability issues. When the user completed all the tasks for this inter-

face, a questionnaire was administered orally by the study administrator regarding

the usability of the ”normal camera interface”. Although the evaluations were per-

formed on a programmable camera, when evaluating the ”normal camera interface”,

we restricted the camera to use only a traditional camera pipeline that produced

photorealistic images.

The next focus area was the evaluation of the ”advanced camera interface”, in

which the expert user was asked to perform a series of tasks relating to selecting and

configuring alternative camera pipelines. At this point, the user was given access

to the advanced interface and was given instruction on how to select and configure

new camera pipelines. The ”advanced camera interface” was pre-programmed with

a set of alternative camera pipelines, such as Night Vision, edge detection, cartoon

rendering, sepia tone mapping, and several others. The expert user was not asked to

create or program any new pipelines at this time, but instead was asked to configure

the parameters of the pre-programmed pipelines (descriptions of the implemented

imaging algorithms and camera pipelines are located in the Appendix B). Once

a new pipeline was selected and configured by the expert, the expert was asked

to perform a series of picture acquisitions, picture reviews, and re-configuration of

196

the pipeline in the same fashion as was done the ”normal camera interface”. The

user was allowed to acquire as many photographs as was desirable and when the

expert completed taking pictures; a questionnaire was administered relating to the

”advanced camera interface”.

The third part of the user study involved the expert performing pipeline-creation

tasks on the Workbench application, which involved building, previewing, and ex-

porting new camera pipelines to our programmable camera. To create a new camera

pipeline, the user must arrange a series of digital camera filters in sequential order

within the Workbench application. Digital camera filters are small programs that

are designed to modify the camera image, such as convert a color image to black

and white, change the contrast of the image, or more complicated operations like

converting the image to a cartoon rendering. The camera pipeline works by taking

the input to the pipeline, which is an unmodified image, and passing it through a

series of digital filters. After being modified by a filter, the modified image is then

passed to the next filter until the end of the pipeline, producing the desired look of

the image. The expert was asked to create a new pipeline using pre-programmed

filters, which were available within the Toolbox area of the Workbench application.

The expert user was not asked to perform any text-based programming of the dig-

ital filters. When the expert was sufficiently satisfied with how pipeline modified

the input image, the expert was asked to export the pipeline to the camera. When

the user completed evaluating the workbench application, a questionnaire related to

the Workbench interface was administered. To conclude the study we asked several

questions with respect to the interfaces as a whole.

Results of Expert User Study : The Expert User study provided informative feed-

back with respect to the design of all the UIs including the Workbench application.

The expert felt that the organization and layout of the ”normal camera interface”

197

was consistent with typical camera operations seen in commodity Point and Shoot

cameras. The most prominent issue indicated by the expert was the lack of visual

and audio feedback when taking pictures. For example, when taking a picture with

film-based cameras, the mechanics of the shutter provided ”click” sound and sub-

tle vibrations. Digital cameras mimic this cue by providing a synthetic auditory

”clicking” sound in conjunction with blacking out the preview screen momentarily

to simulate a mechanical shutter action of closing and the re-opening. All other

features of the ”normal camera interface” performed in a manner consistent with to

other cameras.

For the advanced operations, such as selecting and tuning a new camera pipeline,

the expert indicated that the additional functionality and layout did not over com-

plicate the design and operation of the traditional camera functionality. Two issues

were raised with respect to the interaction with the advanced functionality of the

camera: 1) preserving the original image (traditional pipeline) was desirable, which

was not part of the current design, and 2) making the normal interface aware of the

advanced features. For the first issue, the expert indicated that she would prefer to

view the result of the new pipeline in real-time as well as acquire the image of the

new pipeline but also retain a copy of the unmodified photorealistic image as if it

were rendered using the traditional camera pipeline. The second issue stemmed from

the inability of the expert to change the camera pipelines from within the normal

camera interface. Specifically, the expert suggested that users would want to have

the capability to rapidly change the scene type as well as the camera pipeline, which

is not possible with the current ”normal camera interface”. For example, currently

the camera user has to first switch to the advanced camera interface, select a new

pipeline, and then navigate back to the ”normal camera interface”, which can be

time consuming. In other words, the expert suggested that we allow the ”advanced

198

camera interface” to save new pipelines to the list of pre-existing scene types in the

”normal camera interface” as well as consumer cameras (e.g., snow scene, indoor,

twilight, beach, fireworks, etc.). The expert indicated that it would ”seem natural

that new camera pipelines would be available for selection within the normal camera

interface under Camera Settings as a new scene type” (refer to Section 4.2 for more

details about the interface features). This would integrate new camera pipelines

into the category of new scenes, which is how the expert envisioned they would be

perceived by users. This would alleviate any confusion about the technical details

of camera pipelines to the average user by calling them ”new scene type”, to which

most cameras user are somewhat familiar with. Additionally, this would also allevi-

ate the need for additional steps for switching between different scenes and different

camera pipelines, thus minimizing the number of steps needed to switch between

camera pipelines and saving time when capturing time sensitive moments or events

on-camera.

The majority of the constructive feedback and observations came from the expert

when using the Workbench application. The expert was familiar with cameras,

video editing, and various digital content creation tools but not programming, so

was not able to create any new digital filters for creating pipelines. Creating new

digital filters involved writing Camera Shaders (see Section 3.3 for more details)

and although the expert was aware that these shaders could be written, the expert

had no experience in doing so. Fortunately, the Workbench application provided

several pre-programmed digital filters and within several seconds the expert was

able to assemble a new pipeline as a few minutes of instructions on how to create

the pipelines. When the expert was asked about the intuitiveness of the layout

and design, the expert indicated it was ”easy to use and produced results rapidly”.

One flaw in the layout was the fact that the user repeatedly tried to drag and

199

drop digital filters onto the preview window (instead of the pipeline widget) despite

being instructed that the filters needed to be dropped on to the pipeline. When

asked about the tendency to want to drop the filters on to the Preview Window, the

expert indicated that the ”it seemed like the logical place to drop the digital filter and

I intuitively want to do that”. This desire to want to drop the filters there probably

stems from the visual layout and Direct Manipulation style of the application. The

user also indicated the need for reversing or ”undoing” actions, as was common in

other content creation tools. Undo capability was indicated a missing feature that

the expert thought would be highly desirable as part of the interface for creating

new pipelines was primarily designed for users to rapidly modify the pipeline and

view changes. The final constructive criticism from the expert was that it would

be useful for the application to indicate the progressive changes each filter made by

providing a thumbnail image for each filter indicating how the pipeline looked at

various points in the pipeline. In other words, the expert would like to be able to

view the result of each successive digital filter in the pipeline on the input image.

200

Chapter 7

Future Work

7.1 Expanded Scene Capture

Multi-view stereo capture techniques have improved to the point of accuracy that

rivals that of laser scanners with sub-millimeter accuracy. Despite these advance-

ments, Multi-view stereo capture can still suffer from the inability to properly match

corresponding points due to edge discontinuities and occlusions [FTR+04, Fer06,

FRC+05, GCS06, FRC+08]. Conversely, capturing edges only for the purpose of

reconstructing geometry and surface appearance can be equally accurate as Multi-

view stereo but result in large data sets (GBs), acquisition times in the hours,

narrow vertical field-of-view (no viewpoint change in elevation), and additional cap-

ture hardware [CLS+06]. This project seeks to develop a 3D capture technique

that is adequately accurate without generating large data sets and deals with point

matching issues in Multi-view stereo methods.

In the future, we will develop a novel geometry capture technique that combines

acquiring the Depth Map from Multi-view stereo with capturing Edge Maps from

Multi-flash imaging (this concept is illustrated in Figure 7.1). Combining these

201

+ =

Depth Map Depth Edge Map Visualization

Figure 7.1: Approximate representation of the geometry from the depth map and
depth edge map.

two approaches will allow for the capture of precise geometry without sacrificing

the fidelity at depth edges, which is common problem with Stereo and Multi-view

stereo capture techniques. Additionally, combining these approaches will decrease

the acquisition time and sampling density needed for geometry capture exhibited in

previous Multi-flash capture methods [CLS+06] while simultaneously increasing the

vertical sampling density for appearance capture. Feris et al. [FRC+08] showed that

this marriage of Stereo with Multi-flash imaging significantly enhanced passive stereo

matching near discontinuities and specularities. They show that the error, using a

root-mean-squared error (RMS) measure, decreases with window size without adding

any significant processing time to the overall method. The rationale is that since

Stereo and Multi-view stereo suffer from the same occlusion problems that extending

this technique to Multi-view Stereo will also improve capture.

As we just described how Multi-flash can be employed to improve Multi-view

stereo capture, we can also leverage the Multi-view camera to improve the surface

appearance capture of Multi-flash imaging. Previous Multi-flash imaging techniques

that capture the appearance of an object [LSC+06], simply sample along an arch

around the object. This leads to sufficient sampling horizontally around the object

but neglects sampling vertically, resulting only in the capture of empirical reflectance

202

functions and no explicit normals. To improve on previous surface appearance cap-

ture using Multi-flash imaging, we can leverage the greater vertical resolution of

the Multi-view camera. In particular, we propose using the non-parametric BRDF

capture approach of [AZK08] and the Spherical gradient approach for capturing

Specular and Diffuse Normal Maps as in [MHP+07]. In addition, the proposed tech-

nique of Multi-view stereo and Multi-flash imaging will not require a turntable or

other non-portable hardware; therefore it can be readily used outside the laboratory

and in real-world scenes.

7.2 Relighting With Complex Lighting Environ-

ments

Generating complex lighting environments that are independent of a scene is de-

sirable for producing realistic relighting. The fundamental quantity for lighting

is the Light Field [Ger39], which is a vector field that quantifies light originating

from all direction within a volume and can parameterized as a 4D function. Most

techniques for games use environment maps which produce visibly plausible light-

ing only at the location the environment map was recorded. This is equivalent to

only recording a single light vector [Arv94] within Light Field [Ger39], and not ac-

curately capturing spatial variations or changes in lighting as objects move. For

Previsualization and production rendering a full light field is desirable in order to

aid in Global Illumination techniques such as Ray Tracing, Photon mapping, and

Radiosity, which can accurately capture spatial variation in lighting. Capturing a

”real-world” Light Field generally requires sophisticated light setups such a geodesic

light emitting dome called the Light Stage [DHT+00a] and densely sampled lighting

environments with precise measurements. These requirements make such techniques

203

impractical to outside of a laboratory in real-world lighting environments. Alterna-

tively, lighting environments can be estimated with Light probes [Deb98b] or other

photographic and Catadioptric camera [Nay97] techniques but are essentially equiv-

alent to Environment maps. So the capture of many Light probes in necessary for

estimation of complex lighting environments or Light fields. The major challenge is

how to capture complex lighting environments that exhibit the real-world features

such as spatially-varying, temporally-varying, and near and far field illumination in

a feasible way without requiring complex light capture setups.

For future work, we propose to develop a method for approximating Incident

Light Fields from a collection of online photographs. The proposed solution will

aim to recreate complex lighting environments from collections of photographs by

inferring the 3D location, direction, color, and intensity ranges of objects emitting

or reflecting light within that scene. Additionally, the proposed technique will also

develop a data structure and rendering algorithm that is GPU amenable to facili-

tate its use for relighting and 3D Previsualization. The main contribution of this

proposed technique will have two parts. As far as we know, this will be the first

technique that will attempt to recreate a lighting environment from unorganized

photographs from a Community Photo Collection, allowing for the generation of

complex lighting environments without the use of complicated recording devices

and light reproduction techniques such as a Light Stage which was not previously

possible. Secondly, by developing a new GPU amenable data structure and render-

ing algorithm, this technique will improve upon the existing environment mapping

techniques by allowing for spatial and angular light variation which is not possible

with existing real-time rendering techniques.

204

7.3 Surface Reconstruction Using Geometry Maps

The first step of visualizing the capture data is converting the raw data into a format

that is amenable to rendering on graphics hardware. The reasoning behind this idea

is that most of the processing and visualization will be accelerated using graphics

hardware. Therefore, the raw data that we capture will be converted into a series

of maps which will be the standard data structure for visualization. As shown in

Figure 7.2 the objects within the scene will be represented by a data structure called

a Geometry map. The surface details, such as normals, tangents, and bi-tangents

will be stored in a normal map. The reflectance will be stored in a BRDF map and

the textures will be stored in a texture map.

Geometry maps (also known as Geometry Images [GGH02] store an approx-

imation of a three-dimensional mesh (vertices, edge connectivity, faces) that has

been sampled and reparameterized into two-dimensional representation. Most of

the benefits of representing meshes as Geometry maps over a traditional irregu-

lar linear basis representation (triangles/quads) stems from the resampling of the

meshes to create a completely regular structure within a simple NxN array of val-

ues [GGH02]. As a result, we can represent geometry as images and fully utilize

the texture domain of graphics hardware in a similar fashion to that of Texture

mapping and Normal mapping. Moreover the geometry representation can benefit

from the same types of hardware acceleration that are utilized for texturing, such

as compression, image processing and anti-aliasing may be useful for mesh related

operations (see Figure 7.2 for a visual illustration of creating a Geometry map).

Traditionally, Multi-view capture techniques, like those being proposed, gener-

ally represent a reconstructed scene in one of four ways; voxels, level-sets, polygon

meshes, or depth maps. For reasons of compatibility with Multi-flash imaging,

205

depth maps are our representation of choice. Often these representations can be

sufficient for rendering as is or the representations can be converted to an alternate

data structure such as a polygon mesh (if it is not already in this format. Polygon

mesh construction can be accomplished through a series of computationally inten-

sive steps; sampling, normal integration, surface reconstruction, vertex coloring, and

smoothing the mesh. Since the desired final format of the geometry is the Geometry

map, further sampling and reparameterization is required to convert a polygon mesh

to Geometry map. Both of these steps (depth map to polygon mesh, and polygon

mesh to Geometry map) can be computationally expensive and add significant time

to the preprocessing stage. There is also redundant work that is performed by both

techniques, specifically the sampling required by each technique. Additionally, er-

rors that originate in the polygon mesh creation process will propagate through the

Geometry mapping process.

Orig. Geometry Reparameterize Sample Vertex/Pixel

G
e

o
m

e
tr

y
 M

a
p

Figure 7.2: The Geometry map creation process outlined in [GGH02]

For future work we plan to alleviate the unnecessary sampling and redundant

reconstruction, a regular sampling and subsequent parameterization of the depth

and edge data will be performed directly on the depth map to create a Geometry

map. In essence we will short circuit the previously outlined steps by creating

the Geometry map straight from the captured data. To my knowledge this is the

first time such a process has been conceived using depth and edge data to create

206

Geometry maps. In addition to a potential preprocessing speedup, the Geometry

map representation will allow for smoothing, noise reduction, and some rendering

operations that would normally be done in mesh space to be done in image space

on the graphics hardware. In particular, ambient occlusion operations have been

shown to be feasible in image or screen space [SA07, BS09]. This technique would

give an approximate solution to global illumination without the need to do costly

ray tracing, such as soft and self shadowing.

7.4 PCam Version 3.0

There are two limitations with the current version of PCam, first is the bottleneck

of transferring image frames from image sensor to GPU and the second is the lack of

high-quality optics and lenses. At the moment, the major bottleneck for the GPU

computing is actually loading data into GPU memory from host or CPU memory,

which is 10-100 x times slower than loading data from GPU memory to kernel

register memory. This assumes that the desired data is in CPU memory, which in

terms of camera processing; the data has to travel across a buss first before residing

in host memory, making it more of a bottleneck. It would be desirable for the

next version of PCam to avoid these bottlenecks by writing image frames directly

from the image sensor to GPU memory. Currently there are no architectures which

support such an operation. There are some good prospects; mainly Nvidia has a

product line that is designed for video capture which uses a complimentary GPU

board which can write directly to GPU memory. This system though still requires

the original frame to be transferred over analog line (RCA or BNC connections) to

the complimentary card, and then subsequently written to the GPU memory. This

setup is mainly geared toward the encoding of video frames to compressed format.

207

This system is available for desktops computers only and is not available to the

general public and is probably cost prohibitive. Another limitation with current

version of PCam is the lack of high-quality optics for cameras that have GPUs (and

vice-versa). A desirable improvement for the next version of PCam is to include

higher-quality optics onboard of the new PCam version. Currently, the version of

PCam is implemented on a mobile phone system which tends to have flat little or

no optics beyond a simple flat lens. The system lacks the ability to provide real

focus capabilities and zoom is only provided digitally. The improvement of optics

on mobile phones or the use of an amenable platform with higher quality optics can

improve the image quality of current capabilities of PCam.

208

Chapter 8

Conclusions

This dissertation presented a new method for interactive previs, which automatically

captures set lighting and provide interactive manipulation of cinematic elements to

facilitate movie maker’s artistic expression, validate cinematic choices, and provide

guidance to production crews. This dissertation describes a new hardware and soft-

ware previs framework that enables interactive visualization of on-set relighting and

post-production elements. In this dissertation we describe a three-tiered framework

which is our main contribution; 1) a novel programmable camera architecture that

provides programmability to low-level features and a visual programming interface,

2) a series of new algorithms that analyze and decompose the scene photometri-

cally, and 3) a previs component that leverages the previous to perform interactive

rendering and manipulation of the photometric and computer generated elements.

The architecture of modern digital cameras can be decomposed into three stages;

while the technology in each camera stage has evolved the core design of digital cam-

eras has not changed. To address this issue we designed a programmable camera

backend, called PCam, which can implement many of the state-of-the-art compu-

tational photography (CP) algorithms on-camera. PCam allows users to redefine,

209

re-order, and modify the camera pipeline. User developed programs for use on

our programmable camera, which we call Camera Shaders, are executed on-camera

during image capture. Since PCam can be easily reprogrammed for different spe-

cific tasks, a single camera can mimic the capabilities multiple specialized cameras

through software programming instead of hardware.

Additionally, we designed a new User Interface (UI) for use with programmable

cameras that addresses the shortcomings of both the previously mentioned devel-

opment approaches for applying CP techniques. The our UI provides a visual pro-

gramming interface that abstracts all the technical details of programmable camera

pipelines to simply arranging a sequence of visual blocks. Each visual block, which

we call a digital filter (also called Camera Shaders), is automatically mapped to an

atomic operation and its underlying code that performs the operation in the camera

pipeline. Our UI provides an extensive library of pre-programmed filters, which the

user can easily add to existing or newly created camera pipelines, without requiring

programming knowledge or an understanding of the technical details of the inner

workings of the camera. Additionally, our interface provides immediate WYSIWYG

feedback of filter and pipeline changes, thereby alleviating the shortcomings of the

previous CP development approaches by allowing quicker turn-around time for cre-

ating and editing programmed camera pipelines (seconds vs. hours).

In terms of Photometrics, this dissertation presented two techniques for analyz-

ing and manipulating the properties of light within a captured scene. Each new

technique focuses on a different property of light, intensity (color) and distribution

of photons. Capturing a light’s influence on a scene is generally an ill-posed prob-

lem and often difficult to do in the presence of an unknown geometry, reflectance,

and appearance for each the object within the scene. The first technique estimates

the proportion of light each light source contributes to illuminating a point in the

210

scene using an active illumination technique called Symmetric Lighting. The second

technique builds upon the first by incorporating second-order statistics to provide

the capability to manipulate the distribution of photons for each light.

Lastly, for Relighting, an interface was designed to bring all the parts previ-

ously mentioned into one application. It has also been shown the Photometric

work presented here can also be utilized for several outstanding problems, such as

multiple-illuminant white balance, and light source color estimation.

In conclusion, this dissertation provides an end-to-end solution for performing

relighting of scenes with multiple, real-world lights utilizing our new programmable

camera architecture, a novel Symmetric Lighting technique, and a user interface

for performing the relighting. We have shown that Symmetric Lighting can be re-

formulated to solve other lighting and image-based problems, such as light color

determination and multi-illuminant white balancing. Symmetric Lighting is a sim-

ple but effective technique that can be quickly implemented and utilized for many

relighting applications but provides a level of sophistications that proves useful in

many areas.

211

Bibliography

[AB91] Edward H. Adelson and James R. Bergen. The plenoptic function
and the elements of early vision. In Computational Models of Visual
Processing, pages 3–20. MIT Press, 1991. 135

[Ado09] Adobe. Adobe flex 3. http://www.adobe.com/products/flex/, 2009.
55

[AMH02] Tomas Akenine-Moller and Eric Haines. Real-Time Rendering. A. K.
Peters, 2 edition, 2002. 44

[ARC06] Amit Agrawal, Ramesh Raskar, and Rama Chellappa. Edge suppres-
sion by gradient field transformation using cross-projection tensors. In
Proceedings of the 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition - Volume 2, CVPR ’06, pages
2301–2308, Washington, DC, USA, 2006. IEEE Computer Society.
123, 124, 127, 128

[ARNL05] Amit Agrawal, Ramesh Raskar, Shree K. Nayar, and Yuanzhen Li.
Removing photography artifacts using gradient projection and flash-
exposure sampling. ACM Transactions on Graphics, 24(3):828–835,
August 2005. 124, 128

[Arv94] James Arvo. The irradiance jacobian for partially occluded polyhedral
sources. In SIGGRAPH ’94: Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, pages 343–350, New
York, NY, USA, 1994. ACM. 203

[ATP+10] Andrew Adams, Eino-Ville Talvala, Sung Hee Park, David E. Ja-
cobs, Boris Ajdin, Natasha Gelfand, Jennifer Dolson, Daniel Vaquero,
Jongmin Baek, Marius Tico, Hendrik P. A. Lensch, Wojciech Matusik,
Kari Pulli, Mark Horowitz, and Marc Levoy. The frankencamera: an
experimental platform for computational photography. In ACM SIG-
GRAPH 2010 papers, SIGGRAPH ’10, pages 29:1–29:12, New York,
NY, USA, 2010. ACM. 27, 36, 66, 67

212

[ATT10] W. Albert, T. Tullis, and D. Tedesco. Beyond the Usability Lab:
Conducting Large-Scale User Experience Studies. Morgan Kaufmann.
Elsevier Science, 2010. 195

[AW90] Gregory D. Abram and Turner Whitted. Building block shaders. SIG-
GRAPH Comput. Graph., 24:283–288, September 1990. 76

[AZK08] N. Alldrin, T. Zickler, and D. Kriegman. Photometric stereo with non-
parametric and spatially-varying reflectance. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages
1–8, June 2008. 203

[Bay76] Bryce E. Bayer, 1976. US Patent Number 3,971,065, Assigned to
Eastman Kodak Company by the US Patent Office. 44

[BBS00] R.S. Berns, F.W. Billmeyer, and M. Saltzman. Billmeyer and Saltz-
man’s principles of color technology. Wiley-Interscience publication.
Wiley, 2000. 163

[BCF02] K. Barnard, V. Cardei, and B. Funt. A comparison of computational
color constancy algorithms. I: Methodology and experiments with syn-
thesized data. IEEE Transactions on Image Processing, 11:972–984,
September 2002. 169

[Bea09] Beagleboard. The beagleboard is an ultra-low cost, high performance,
low power omap3 based platform designed by beagleboard.org com-
munity members. http://beagleboard.org/, 2009. 53

[bEP11] Warner brothers, HBO Entertainement, and Fox Searchlight Pictures.
Movie collage., April 2011. 17

[BFH+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fa-
tahalian, Mike Houston, and Pat Hanrahan. Brook for gpus: stream
computing on graphics hardware. ACM Trans. Graph., 23(3):777–786,
2004. 50

[Bir06] J. Birn. Digital lighting and rendering. [digital] Series. New Riders,
2006. 113, 137, 139

[BL79] S. Beucher and C. Lantuejoul. Use of watersheds in contour detection.
In International Workshop on Image Processing: Real-time Edge and
Motion Detection/Estimation, Rennes, France., September 1979. 119

[BN76] James F. Blinn and Martin E. Newell. Texture and reflection in com-
puter generated images. Commun. ACM, 19(10):542–547, 1976. 88

213

[Boe07] Steve Boelhouwer. Machinima gets a day job - the emerging use of
game technology in feature films. web article on cinema without bor-
ders, Feb. 2007. 7

[Bro99] Warner Brothers. Matrix storyboards. www.whatisthematrix.com,
1999. 4, 7

[BS09] Louis Bavoil and Miguel Sainz. Multi-layer dual-resolution screen-
space ambient occlusion. In SIGGRAPH ’09: SIGGRAPH 2009:
Talks, pages 1–1, New York, NY, USA, 2009. ACM. 207

[BT78] H.G. Barrow and J.M. Tenenbaum. Recovering intrinsic scene char-
acteristics from images. Computer Vision System, 1978. 116, 122

[Buc80] G. Buchsbaum. A spatial processor model for object colour percep-
tion. Journal of the Franklin Institute, 310(1):1 – 26, 1980. 93, 177,
178, 179, 185

[BZCC10] Pravin Bhat, C. Lawrence Zitnick, Michael Cohen, and Brian Curless.
Gradientshop: A gradient-domain optimization framework for image
and video filtering. ACM Transactions on Graphics, 29(2):10:1–10:14,
March 2010. 28, 124

[CFB02] Vlad C. Cardei, Brian Funt, and Kobus Barnard. Estimating the
scene illumination chromaticity by using a neural network. J. Opt.
Soc. Am. A, 19(12):2374–2386, 2002. 169, 178

[CIE87] CIE. International lighting vocabulary, 1987. 169

[CLL05] Sek M. Chai and Abelardo Lopez-Lagunas. Streaming i/o for imaging
applications. In CAMP ’05: Proceedings of the Seventh International
Workshop on Computer Architecture for Machine Perception, pages
178–183, Washington, DC, USA, 2005. IEEE Computer Society. 35

[CLS+06] Daniel Crispell, Douglas Lanman, Peter G. Sibley, Yong Zhao, and
Gabriel Taubin. Beyond silhouettes: Surface reconstruction using
multi-flash photography. In 3DPVT ’06: Proceedings of the Third
International Symposium on 3D Data Processing, Visualization, and
Transmission (3DPVT’06), pages 405–412, Washington, DC, USA,
2006. IEEE Computer Society. 201, 202

[CPGN+07] Ewen Cheslack-Postava, Nolan Goodnight, Ren Ng, Ravi Ramamoor-
thi, and Greg Humphreys. 4d compression and relighting with high-
resolution light transport matrices. In Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games, I3D ’07, pages 81–88,
New York, NY, USA, 2007. ACM. 148

214

[DBB02] Philip Dutre, Kavita Bala, and Philippe Bekaert. Advanced Global
Illumination. A. K. Peters, Ltd., Natick, MA, USA, 2002. 90

[Deb98a] Paul Debevec. Rendering synthetic objects into real scenes: bridg-
ing traditional and image-based graphics with global illumination and
high dynamic range photography. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, SIG-
GRAPH ’98, pages 189–198, New York, NY, USA, 1998. ACM. 22,
121, 146

[Deb98b] Paul Debevec. Rendering synthetic objects into real scenes: bridg-
ing traditional and image-based graphics with global illumination and
high dynamic range photography. In SIGGRAPH ’98: Proceedings
of the 25th annual conference on Computer graphics and interactive
techniques, pages 189–198, New York, NY, USA, 1998. ACM. 88, 140,
204

[DeC97] Casimer DeCusatis. Handbook of Applied Photometry. Aip Press,
1997. 85, 86, 170

[Des03] Bill Desowitz. The previs gospel according to mcdowell and frankel.
Animation World Network, September 2003. 5

[DHT+00a] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker,
Westley Sarokin, and Mark Sagar. Acquiring the reflectance field
of a human face. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages
145–156, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co. 87, 93, 110, 203

[DHT+00b] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker,
Westley Sarokin, and Mark Sagar. Acquiring the reflectance field of a
human face. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’00, pages 145–156,
New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co. 111

[DM97] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range
radiance maps from photographs. In SIGGRAPH ’97: Proceedings
of the 24th annual conference on Computer graphics and interac-
tive techniques, pages 369–378, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co. 176

[Doy02] Audrey Doyle. The power of previz. Computer Graphics World,
25(7):5, July 2002. 9

215

[DR99] J.S. Dumas and J. Redish. A practical guide to usability testing. Lives
of Great Explorers Series. Intellect Books, 1999. 195

[DvGNK99] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J.
Koenderink. Reflectance and texture of real-world surfaces. ACM
Trans. Graph., 18:1–34, January 1999. 87

[DWA04] Ron O. Dror, Alan S. Willsky, and Edward H. Adelson. Statistical
characterization of real-world illumination. Journal of Vision, 4(9),
2004. 90, 169

[DWT+02] Paul Debevec, Andreas Wenger, Chris Tchou, Andrew Gardner, Jamie
Waese, and Tim Hawkins. A lighting reproduction approach to live-
action compositing. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’02, pages
547–556, New York, NY, USA, 2002. ACM. 22, 85, 86, 145

[Dye01] Charles R. Dyer. Volumetric scene reconstruction from multiple views.
In Foundations of Image Understanding, pages 469–489. Kluwer, 2001.
87

[Ebn03] Marc Ebner. Combining white-patch retinex and the gray world as-
sumption to achieve color constancy for multiple illuminants. In Pat-
tern Recognition, volume 2781 of Lecture Notes in Computer Science,
pages 60–67. Springer Berlin / Heidelberg, 2003. 177, 179

[Ebn04] Marc Ebner. Color constancy using local color shifts. In ECCV (3),
pages 276–287, 2004. 178

[Ebn08] Marc Ebner. Gpu color constancy. journal of graphics, gpu, and game
tools, 13(4):35–51, 2008. 92

[ECJ+06] Per Einarsson, Charles-Felix Chabert, Andrew Jones, Wan-Chun Ma,
Bruce Lamond, Tim Hawkins, Mark Bolas, Sebastian Sylwan, and
Paul Debevec. Relighting human locomotion with flowed reflectance
fields. In Rendering Techniques 2006: 17th Eurographics Workshop
on Rendering, pages 183–194, June 2006. 11

[ED04] Elmar Eisemann and Frédo Durand. Flash photography enhancement
via intrinsic relighting. ACM Trans. Graph., 23:673–678, August 2004.
116, 149

[ERDC95] Jr. Edward R. Dowski and W. Thomas Cathey. Extended depth of
field through wave-front coding. Appl. Opt., 34(11):1859–1866, 1995.
33

216

[Fai05] M D Fairchild. Color Appearance Models, volume 8. Addison Wesley
Longman, Inc., 2005. 163, 169

[Fer98] Bill Ferster. Idea editing: Previsualization for feature films. POST
Magazine, 04, 1998. 3

[Fer06] Rogerio Schmidt Feris. Detection and modeling of depth discontinu-
ities with lighting and viewpoint variation. PhD thesis, Santa Barbara,
CA, USA, 2006. Adviser-Turk, Matthew. 24, 116, 201

[FH09] Jǐri Filip and Michal Haindl. Bidirectional texture function modeling:
A state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell.,
31:1921–1940, November 2009. 87

[FHH01] Graham D. Finlayson, Steven D. Hordley, and Paul M. Hubel. Color
by correlation: A simple, unifying framework for color constancy.
IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1209–1221, 2001.
169, 178

[FLW02] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient do-
main high dynamic range compression. In Proceedings of the 29th
annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’02, pages 249–256, New York, NY, USA, 2002. ACM.
22, 121, 122, 146

[For90] D. A. Forsyth. A novel algorithm for color constancy. Int. J. Comput.
Vision, 5(1):5–36, 1990. 178

[FRC+05] Rogerio Feris, Ramesh Raskar, Longbin Chen, Kar-Han Tan, and
Matthew Turk. Discontinuity preserving stereo with small baseline
multi-flash illumination. In ICCV ’05: Proceedings of the Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1,
pages 412–419, Washington, DC, USA, 2005. IEEE Computer Society.
87, 201

[FRC+08] Rogerio Feris, Ramesh Raskar, Longbin Chen, Karhan Tan, and
Matthew Turk. Multiflash stereopsis: Depth-edge-preserving stereo
with small baseline illumination. IEEE Trans. Pattern Anal. Mach.
Intell., 30(1):147–159, 2008. 87, 201, 202

[FT04] Graham D. Finlayson and Elisabetta Trezzi. Shades of gray and colour
constancy. In Color Imaging Conference, pages 37–41, 2004. 93, 178

[FTR+04] Rogerio Feris, Matthew Turk, Ramesh Raskar, Karhan Tan, and Go-
suke Ohashi. Exploiting depth discontinuities for vision-based fin-
gerspelling recognition. In CVPRW ’04: Proceedings of the 2004

217

Conference on Computer Vision and Pattern Recognition Workshop
(CVPRW’04) Volume 10, page 155, Washington, DC, USA, 2004.
IEEE Computer Society. 201

[FZ09] C.L. Finance and S. Zwerman. The Visual Effects Producer: Under-
standing the Art and Business of VFX. Focal Press. Elsevier Science,
2009. 10, 193

[GCHS05] Dan B. Goldman, Brian Curless, Aaron Hertzmann, and Steven M.
Seitz. Shape and spatially-varying brdfs from photometric stereo. In
ICCV ’05: Proceedings of the Tenth IEEE International Conference
on Computer Vision (ICCV’05) Volume 1, pages 341–348, Washing-
ton, DC, USA, 2005. IEEE Computer Society. 87, 93

[GCS06] Michael Goesele, Brian Curless, and Steven M. Seitz. Multi-view
stereo revisited. In CVPR ’06: Proceedings of the 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion, pages 2402–2409, Washington, DC, USA, 2006. IEEE Computer
Society. 201

[Ger39] A. Gershun. The light field. Journal of Mathematics and Physics,
Vol. XVIII:51–151, 1939. 203

[GG07] Arjan Gijsenij and Theo Gevers. Color constancy using natural image
statistics. Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, 0:1–8, 2007. 93, 178

[GGH02] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry im-
ages. ACM Trans. Graph., 21(3):355–361, 2002. 205, 206

[GH00] Reid Gershbein and Pat Hanrahan. A fast relighting engine for inter-
active cinematic lighting design. In Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, SIGGRAPH
’00, pages 353–358, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co. 22, 147

[Gla09] Glade. Glade - a user interface designer. http://glade.gnome.org/,
2009. 55

[Gno09] Gnome. Gtk+ is a highly usable, feature rich toolkit for creating
graphical user interfaces which boasts cross platform compatibility
and an easy to use api. http://www.gtk.org/, 2009. 55

[Goo10] Google. Android operating system. http://www.android.com/, May
2010. 62

218

[Gro08] Khronos Group. Opengl es specification - the
standard for embedded accelerated 3d graphics.
http://www.khronos.org/registry/gles/specs/, August 2008. 62

[Gro11] Chaos Group. V-ray for 3ds max and maya.
http://www.chaosgroup.com/en/2/vray.html, April 2011. ver 1.
158

[GSHG98] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Green-
berg. The irradiance volume. IEEE Comput. Graph. Appl., 18(2):32–
43, 1998. 88

[GW00] W. S. Stiles Gnther Wyszecki. Color Science: Concepts and Methods,
Quantitative Data and Formulae. Wiley, 2nd edition edition, 2000.
156

[Hae92] Paul Haeberli. Synthetic lighting for photography. web, January 1992.
http://www.graficaobscura.com/synth/index.html. 146

[HMP+08] Eugene Hsu, Tom Mertens, Sylvain Paris, Shai Avidan, and Frédo
Durand. Light mixture estimation for spatially varying white balance.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–7, New
York, NY, USA, 2008. ACM. 92, 169, 179, 180, 181

[Hor06] Steven D. Hordley. Scene illuminant estimation: Past, present, and
future. Color Research & Application, 31(4):303–314, 2006. 89, 92,
93, 172, 180, 184

[HPB06a] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Direct-to-indirect
transfer for cinematic relighting. ACM Trans. Graph., 25(3):1089–
1097, July 2006. 22, 147

[HPB06b] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Direct-to-indirect
transfer for cinematic relighting. ACM Trans. Graph., 25:1089–1097,
July 2006. 135, 155

[HS98] Wolfgang Heidrich and Hans-Peter Seidel. View-independent environ-
ment maps. In Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS workshop on Graphics hardware, HWWS ’98, pages 39–ff., New
York, NY, USA, 1998. ACM. 22, 121, 146

[IBM01] IBM. Eclipse. http://www.eclipse.org/, November 2001. 62

[(IE99] International Electrotechnical Commission (IEC). Iec # 61966-2-
1:1999 # srgb # specifications. IEC Specification, 2 1999. 171

219

[Jen09] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Map-
ping. A. K. Peters, Ltd., Natick, MA, USA, 2009. 85

[JLMM05] R. Johansson, L. Lindgren, J. Melander, and B. Moller. A multi-
resolution 100 gops 4 gpixels/s programmable cmos image sensor for
machine vision. IEEE Journal of Solid-State Circuits, 40(6):1350–
1359, 6 2005. 33

[JO06] Jin H. Jung and Dianne P. O’Leary. Cholesky Decomposition and Lin-
ear Programming on a GPU. Master’s thesis, University of Maryland,
2006. 106

[JOH07] DAVID M. JOHNSON. ’pre-viz’ carves out niches on set. Variety
Magazine, Online:1, April 2007. 4, 5, 8

[JW92] C. Jiang and M.O. Ward. Shadow identification. CVPR, 92:606–612,
92. 119

[Kaj86] James T. Kajiya. The rendering equation. In SIGGRAPH ’86: Pro-
ceedings of the 13th annual conference on Computer graphics and in-
teractive techniques, pages 143–150, New York, NY, USA, 1986. ACM.
90, 114

[Kat05a] Steve D. Katz. Charting the stars v.3. Millimeter, 04, 2005. 6

[Kat05b] Steven D. Katz. Is realtime real? Millimeter, April, 2005. 6

[KBD07] Jan Kautz, Solomon Boulos, and Frédo Durand. Interactive editing
and modeling of bidirectional texture functions. ACM Trans. Graph.,
26, July 2007. 87

[KDR+02] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and
Brucek Khailany. The Imagine stream processor. In Proceedings 2002
IEEE International Conference on Computer Design, pages 282–288,
September 2002. 41, 42

[KIT05] Rei Kawakami, Katsushi Ikeuchi, and Robby T. Tan. Consistent sur-
face color for texturing large objects in outdoor scenes. In ICCV ’05:
Proceedings of the Tenth IEEE International Conference on Computer
Vision, pages 1200–1207, Washington, DC, USA, 2005. IEEE Com-
puter Society. 92, 179

[KK09] Min H. Kim and Jan Kautz. Consistent scene illumination using a
chromatic flash. In Proc. Eurographics Workshop on Computational
Aesthetics (CAe 2009), pages 83–89, British Columbia, Canada, 2009.
Eurographics. 149

220

[KRD+03] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany,
Jung Ho Ahn, Peter Mattson, and John D. Owens. Programmable
stream processors. IEEE Computer, pages 54–62, August 2003. 41

[KSK92] Gudrun J. Klinker, Steven A. Shafer, and Takeo Kanade. Color. chap-
ter The measurement of highlights in color images, pages 309–334.
Jones and Bartlett Publishers, Inc., , USA, 1992. 111

[KSS02] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, arbitrary brdf
shading for low-frequency lighting using spherical harmonics. In Pro-
ceedings of the 13th Eurographics workshop on Rendering, EGRW ’02,
pages 291–296, Aire-la-Ville, Switzerland, Switzerland, 2002. Euro-
graphics Association. 148

[Lab11] Rosco Laboratories. 52 harbor view, stamford, ct usa, 06902.
http://www.rosco.com/, 2011. 156

[LAW09] Clifford Lindsay, Emmanuel Agu, and Fan Wu. P-cam:a pro-
grammable architecture for digital camera back-ends. Technical Re-
port WPI-CS-TR-09-11, Worcester Polytechnic Institute, 100 Insti-
tute Road, Worcester, MA 01609-2280, October 2009. 24

[LCR01] M. R. Luo, G. Cui, and B. Rigg. The development of the cie 2000
colour-difference formula: Ciede2000. Color Research & Application,
26(5):340–350, 2001. 159, 163, 184

[Lev10] M. Levoy. Experimental platforms for computational photography.
Computer Graphics and Applications, IEEE, 30(5):81 –87, September
2010. 64

[LFDF07] Anat Levin, Rob Fergus, Frédo Durand, and William T. Freeman.
Image and depth from a conventional camera with a coded aperture.
ACM Trans. Graph., 26(3):70, 2007. 32

[Lin10] Clifford Lindsay. Personal communications with paul debevec,
academy award winner and associate director of usc institute for cre-
ative technologies, los angeles, ca., 2010. 18, 19, 86

[LKG+03] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolfgang Hei-
drich, and Hans-Peter Seidel. Image-based reconstruction of spatial
appearance and geometric detail. ACM Trans. Graph., 22(2):234–257,
2003. 87, 93

[LLW06] Anat Levin, Dani Lischinski, and Yair Weiss. A closed form solution
to natural image matting. In CVPR ’06: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern

221

Recognition, pages 61–68, Washington, DC, USA, 2006. IEEE Com-
puter Society. 179

[LLW+08] Chia-Kai Liang, Tai-Hsu Lin, Bing-Yi Wong, Chi Liu, and Homer
Chen. Programmable aperture photography: Multiplexed light field
acquisition. ACM Transactions on Graphics, 27(3):55:1–55:10, 2008.
32

[LM71] EDWIN H. LAND and JOHN J. McCANN. Lightness and retinex
theory. J. Opt. Soc. Am., 61(1):1–11, 1971. 93, 169, 178

[LPD07] Bruce Lamond, Pieter Peers, and Paul Debevec. Fast image-based
separation of diffuse and specular reflections. In ACM SIGGRAPH
2007 sketches, SIGGRAPH ’07, New York, NY, USA, 2007. ACM.
110, 111

[LSC+06] Douglas Lanman, Peter G. Sibley, Daniel Crispell, Yong Zhao, and
Gabriel Taubin. Multi-flash 3d photography: capturing shape and
appearance. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Research
posters, page 99, New York, NY, USA, 2006. ACM. 202

[MD98] Stephen Robert Marschner and Ph. D. Inverse Rendering for Com-
puter Graphics. PhD thesis, 1998. 145

[MG97] Stephen R. Marschner and Donald P. Greenberg. Inverse lighting
for photography. In IN FIFTH COLOR IMAGING CONFERENCE,
pages 262–265, 1997. 93

[MH84] Gene S. Miller and C. Robert Hoffman. Illumination and reflection
maps: Simulated objects in simulated and real environments. In SIG-
GRAPH 84 Course Notes for Advanced Computer Graphics Anima-
tion, July 1984. 88

[MHP+07] Wan-Chun Ma, Tim Hawkins, Pieter Peers, Charles-Felix Chabert,
Malte Weiss, and Paul Debevec. Rapid acquisition of specular and
diffuse normal maps from polarized spherical gradient illumination.
In Rendering Techniques 2007: 18th Eurographics Workshop on Ren-
dering, pages 183–194, June 2007. 110, 111, 203

[MN99] T. Mitsunaga and S.K. Nayar. Radiometric Self Calibration. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 374–380, Jun 1999. 176

[MNBN07] F. Moreno-Noguer, P.N. Belhumeur, and S.K. Nayar. Active Refo-
cusing of Images and Videos. ACM Trans. on Graphics (also Proc. of
ACM SIGGRAPH), Aug 2007. 32

222

[MNNB05] F. Moreno-Noguer, S.K. Nayar, and P.N. Belhumeur. Optimal Illumi-
nation for Image and Video Relighting. In IEE European Conference
on Visual Media Production (CVMP), pages 199–208, Dec 2005. 150

[Mot09] Motorola. Droid smartphone. http://en.wikipedia.org/wiki/Motorola,
October 2009. 62

[MWL+99] Stephen R. Marschner, Stephen H. Westin, Eric P. F. Lafortune, Ken-
neth E. Torrance, and Donald P. Greenberg. Image-based brdf mea-
surement including human skin. In Eurographics Workshop on Ren-
dering, 1999. 87, 93

[Nay97] S.K. Nayar. Catadioptric Omnidirectional Camera. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
482–488, Jun 1997. 204

[Nay06] Shree Nayar. Computational cameras: Redefining the image. IEEE
Computer Magazine, Aug.:30–38, 2006. 32, 33, 37

[NB03] S.K. Nayar and V. Branzoi. Adaptive Dynamic Range Imaging: Op-
tical Control of Pixel Exposures over Space and Time. In IEEE In-
ternational Conference on Computer Vision (ICCV), volume 2, pages
1168–1175, Oct 2003. 33

[NBB04] S.K. Nayar, V. Branzoi, and T. Boult. Programmable Imaging using a
Digital Micromirror Array. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume I, pages 436–443, Jun 2004.
33

[NFB97] Shree K. Nayar, Xi-Sheng Fang, and Terrance Boult. Separation of
reflection components using color and polarization. Int. J. Comput.
Vision, 21(3):163–186, 1997. 111

[Nie94] Jakob Nielsen. Usability engineering. Morgan Kaufmann Series in
Interactive Technologies. AP Professional, 1994. 187, 195

[NIK11] Lesley Northam, Joe Istead, and Craig Kaplan. Rtfx: On-set previs
with unrealengine3. In Junia Anacleto, Sidney Fels, Nicholas Gra-
ham, Bill Kapralos, Magy Saif El-Nasr, and Kevin Stanley, editors,
Entertainment Computing ICEC 2011, volume 6972 of Lecture Notes
in Computer Science, pages 432–435. Springer Berlin / Heidelberg,
2011. 4

[NKGR06] Shree K. Nayar, Gurunandan Krishnan, Michael D. Grossberg, and
Ramesh Raskar. Fast separation of direct and global components of
a scene using high frequency illumination. In SIGGRAPH ’06: ACM

223

SIGGRAPH 2006 Papers, pages 935–944, New York, NY, USA, 2006.
ACM. 112

[NM90] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user inter-
faces. In Proceedings of the SIGCHI conference on Human factors in
computing systems: Empowering people, CHI ’90, pages 249–256, New
York, NY, USA, 1990. ACM. 186

[Nok09] Nokia. Qt a cross-platform application and ui framework.
http://qt.nokia.com/, 2009. 53, 55

[NRH03] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shad-
ows using non-linear wavelet lighting approximation. ACM Trans.
Graph., 22:376–381, July 2003. 148

[NRH04] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple product
wavelet integrals for all-frequency relighting. ACM Trans. Graph.,
23:477–487, August 2004. 148

[OKP+08] Juraj Obert, Jaroslav Křivánek, Fabio Pellacini, Daniel Sýkora, and
Sumanta N. Pattanaik. iCheat: A representation for artistic control
of indirect cinematic lighting. Computer Graphics Forum, 27(4):1217–
1223, 2008. 22, 147

[Owe02] John D. Owens. Computer Graphics on a Stream Architecture. PhD
thesis, Stanford University, November 2002. 45

[OZ10] J.A. Okun and S. Zwerman. The VES Handbook of Visual Effects: In-
dustry Standard VFX Practices and Procedures. Focal Press. Elsevier
Science, 2010. 2, 3, 5, 6, 10, 194

[PAH+04] Georg Petschnigg, Maneesh Agrawala, Hugues Hoppe, Richard
Szeliski, Michael Cohen, and Kentaro Toyama. Digital photography
with flash and no-flash image pairs. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2004), 2004. 32

[Pel10] Fabio Pellacini. envylight: an interface for editing natural illumina-
tion. ACM Trans. Graph., 29:34:1–34:8, July 2010. 146

[PHB08] Fabio Pellacini, Milo Haan, and Kavita Bala. Interactive cinematic
relighting with global illumination. In Hubert Nguyen, editor, GPU
Gems 3, pages 183–202. Addison-Wesley, 2008. 135, 155

[Poh10] Brian Pohl. Previs on low to micro budgets.
http://www.previssociety.com/society-qa/post/1056286, August
2010. 8

224

[Poo10] D. Poole. Linear Algebra: A Modern Introduction. Brooks/Cole, 2010.
105

[Pre92] W.H. Press. Numerical Recipes in C: The Art of Scientific Computing.
Number bk. 4. Cambridge University Press, 1992. 106

[Pro09] OpenHand Project. Clutter. http://clutter-project.org/, 2009. 55

[PTMD07] Pieter Peers, Naoki Tamura, Wojciech Matusik, and Paul Debevec.
Post-production facial performance relighting using reflectance trans-
fer. ACM Trans. Graph., 26, July 2007. 22, 150, 155

[RAGS01] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley.
Color transfer between images. IEEE Comput. Graph. Appl.,
21(5):34–41, September 2001. 136

[RAT06] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded exposure
photography: motion deblurring using fluttered shutter. ACM Trans.
Graph., 25(3):795–804, 2006. 33

[RBH08] Alexa I. Ruppertsberg, Marina Bloj, and Anya Hurlbert. Sensitivity
to luminance and chromaticity gradients in a complex scene. Journal
of Vision, 8(9), 2008. 28, 124

[Rix01] Scott Rixner. Stream Processor Architecture. Number 0792375459 in
Academic. Springer, Kluwer Academic Publishers, Boston, MA, 1st
edition, October 2001. 41

[RKAJ08] Erik Reinhard, Erum Arif Khan, Ahmet Oguz Akyz, and Garrett M.
Johnson. Color Imaging: Fundamentals and Applications. A. K. Pe-
ters, Ltd., Natick, MA, USA, 2008. 94, 174, 190

[RKKS+07] Jonathan Ragan-Kelley, Charlie Kilpatrick, Brian W. Smith, Doug
Epps, Paul Green, Christophe Hery, and Frédo Durand. The light-
speed automatic interactive lighting preview system. ACM Trans.
Graph., 26, July 2007. 22, 148

[RSYD05] R. Ramanath, W.E. Snyder, Y. Yoo, and M.S. Drew. Color image
processing pipeline in digital still cameras. IEEE Signal Processing
Magazine Special Issue on Color Image Processing, 22:34–43, 2005.
68, 74

[RTF+05] Ramesh Raskar, Kar-Han Tan, Rogerio Feris, Jingyi Yu, and Matthew
Turk. Non-photorealistic camera: depth edge detection and stylized
rendering using multi-flash imaging. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Courses, page 2, New York, NY, USA, 2005. Merl,
ACM. 32

225

[RTM+06] Ramesh Raskar, Jack Tumblin, Ankit Mohan, Amit Agrawal, and
Yuanzen Li. Computational photography. ACM / EG Computer
Graphics Forum, Vol 25(3):1–20, 2006. 24, 37, 92

[Rus11] J.C. Russ. The Image Processing Handbook. CRC Press, 2011. 160

[RWPD05] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul Debevec.
High Dynamic Range Imaging: Acquisition, Display and Image-Based
Lighting. Morgan Kaufmann Publishers, December 2005. 174, 176

[SA07] Perumaal Shanmugam and Okan Arikan. Hardware accelerated ambi-
ent occlusion techniques on gpus. In I3D ’07: Proceedings of the 2007
symposium on Interactive 3D graphics and games, pages 73–80, New
York, NY, USA, 2007. ACM. 207

[SAM05] Jacob Ström and Tomas Akenine-Möller. ipackman: high-quality, low-
complexity texture compression for mobile phones. In HWWS ’05:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 63–70, New York, NY, USA, 2005. ACM.
47

[SCD+06] Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and
Richard Szeliski. A comparison and evaluation of multi-view stereo
reconstruction algorithms. In CVPR ’06: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 519–528, Washington, DC, USA, 2006. IEEE
Computer Society. 21, 87

[SCG+05] Pradeep Sen, Billy Chen, Gaurav Garg, Stephen R. Marschner, Mark
Horowitz, Marc Levoy, and Hendrik P. A. Lensch. Dual photography.
In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 745–755,
New York, NY, USA, 2005. ACM. 150

[SCMS01] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafe. A survey
of methods for volumetric scene reconstruction from photographs. In
International Workshop on Volume Graphics, 2001. 87

[SGI09] SGI. Open graphic language. http://www.opengl.org/, 2009. 55

[SH98] P. H. Suen and G. Healey. Analyzing the bidirectional texture func-
tion. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR ’98, pages 753–,
Washington, DC, USA, 1998. IEEE Computer Society. 87

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Trans. Graph., 21:527–536, July 2002. 148

226

[SNB07] Y. Y. Schechner, S. K. Nayar, and P. N. Belhumeur. Multiplexing
for Optimal Lighting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(8):1339–1354, Aug 2007. 22, 146

[Soc] Previsualization Soceity. Previsualization soceity website.
http://www.previssociety.com/. 192

[STST00] BUNTAROU SHIZUKI, MASASHI TOYODA, ETSUYA
SHIBAYAMA, and SHIN TAKAHASHI. Smart browsing among
multiple aspects of data-flow visual program execution, using visual
patterns and multi-focus fisheye views. Journal of Visual Languages
& Computing, 11(5):529 – 548, 2000. 72, 74

[Sza95] Joseph Szadkowski. Desktops set lucas plan. Washington times,
evening:2, May 1995. 8

[TB97] L.N. Trefethen and D. Bau. Numerical linear algebra. Miscellaneous
Bks. Society for Industrial and Applied Mathematics, 1997. 105, 106

[TEW99] Shoji Tominaga, Satoru Ebisui, and Brian A. Wandell. Color tempera-
ture estimation of scene illumination. In Color Imaging Conference’99,
pages 42–47, 1999. 172

[UGY06] Jonas Unger, Stefan Gustavson, and Anders Ynnerman. Densely sam-
pled light probe sequences for spatially variant image based lighting.
In GRAPHITE ’06: Proceedings of the 4th international conference
on Computer graphics and interactive techniques in Australasia and
Southeast Asia, pages 341–347, New York, NY, USA, 2006. ACM. 88

[vdWGG07] J. van de Weijer, T. Gevers, and A. Gijsenij. Edge-based color con-
stancy. Image Processing, IEEE Transactions on, 16(9):2207 –2214,
sept. 2007. 93, 178, 185

[Vig04] J. A. Stephen Viggiano. Comparison of the accuracy of different white-
balancing options as quantified by their color constancy. volume 5301,
pages 323–333. SPIE, 2004. 89

[VRA+07] Ashok Veeraraghavan, Ramesh Raskar, Amit Agrawal, Ankit Mohan,
and Jack Tumblin. Dappled photography: mask enhanced cameras for
heterodyned light fields and coded aperture refocusing. ACM Trans.
Graph., 26(3):69, 2007. 32

[WDC+08] Oliver Wang, James Davis, Erika Chuang, Ian Rickard, Krystle
de Mesa, and Chirag Dave. Video relighting using infrared illumi-
nation. Comput. Graph. Forum, 27(2):271–279, 2008. 149

227

[Wei97] Joachim Weickert. A review of nonlinear diffusion filtering. In Pro-
ceedings of the First International Conference on Scale-Space Theory
in Computer Vision, SCALE-SPACE ’97, pages 3–28, London, UK,
1997. Springer-Verlag. 128

[WGT+05] Andreas Wenger, Andrew Gardner, Chris Tchou, Jonas Unger, Tim
Hawkins, and Paul Debevec. Performance relighting and reflectance
transformation with time-multiplexed illumination. ACM Trans.
Graph., 24:756–764, July 2005. 22, 145, 150

[wik12] Digital light meter image. Wikipedia Creative Commons, 2 2012. 86

[WLL+09] Tim Weyrich, Jason Lawrence, Hendrik P. A. Lensch, Szymon
Rusinkiewicz, and Todd Zickler. Principles of appearance acquisi-
tion and representation. Foundation and Trends Computer Graphics
and Vision, 4, 2009. 87, 110

[WOG06] Holger Winnemöller, Sven C. Olsen, and Bruce Gooch. Real-time
video abstraction. In ACM SIGGRAPH 2006 Papers, SIGGRAPH
’06, pages 1221–1226, New York, NY, USA, 2006. ACM. 142

[WRWHL07] R. Peter Weistroffer, Kristen R. Walcott, Greg Humphreys, and Ja-
son Lawrence. Efficient basis decomposition for scattered reflectance
data. In EGSR07: Proceedings of the Eurographics Symposium on
Rendering, Grenoble, France, June 2007. 87, 93

[WS67] Gunter. Wyszecki and W. S. Stiles. Color science : concepts and
methods, quantitative data and formulas / Gunter Wyszecki & W. S.
Stiles. Wiley, New York :, 1967. 169

[YDMH99] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. Inverse
global illumination: recovering reflectance models of real scenes from
photographs. In Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH ’99, pages 215–
224, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publish-
ing Co. 145

[ZN06a] L. Zhang and S. K. Nayar. Projection Defocus Analysis for Scene
Capture and Image Display. ACM Trans. on Graphics (also Proc. of
ACM SIGGRAPH), Jul 2006. 32

[ZN06b] A. Zomet and S.K. Nayar. Lensless Imaging with a Controllable Aper-
ture. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Jun 2006. 32

228

[ZREB06] T. Zickler, R. Ramamoorthi, S. Enrique, and P.N. Belhumeur. Re-
flectance sharing: predicting appearance from a sparse set of images
of a known shape. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(8):1287–1302, Aug. 2006. 87, 93

229

A - Glossary of Terms and Definitions

• Point & Shoot : Refers to the type of commodity digital camera that has
been designed for ease of use. Most of the camera settings are automatic,
allowing novice users to focus on shooting the scene. These cameras tend be
less expensive than higher-end cameras with lenses and sensors that are less
flexible and precise.

• Light-field : This concept refers to the notion that light can be considered
an 8-dimensional ray space (4D incoming & 4D outgoing, neglecting time &
color).

• Traditional camera processing : Is the process by which camera manufacturers
adjust the raw pixel values in accordance with human visual perception. The
adjustments applied to the raw pixels compensate for various environmental
factors in order to improve the visual look of the rendered image to that of
the human observer (see Figure 3.1).

• Reconfigurable Camera : Is the idea that a camera that posses a programmable
back-end can be programmed to perform the functionality of a completely
different camera.

• Natural Photography : Natural photography is the taking of photographs with
image adjustments only. In other words, there is no additional post-processing
done to the images. The purpose of natural photographs is to capture the scene
as it is seen by the viewer.

• Active Illumination : Are a set of computer vision techniques that control
light in a specified way in order to infer or measure properties of a scene.

• White Point : Is a set of tristimulus values or chromaticity coordinates that
serve to define the color ”white” in image capture, encoding, or reproduction.

• White Balance : Adjusting the color or lighting in an image for preserving
the neutral colors of the image as if the scene were illuminated by a white
light.

• Regular Simplex : Is a generalization of a triangle.

• Regular Polytope : A polytope whose symmetry is transitive.

• Convex Hull : A set of points whose surface is minimal and completely en-
velopes the surface of another set of points convexly.

• Convex Set : In Euclidean space, is the set of all points on a straight line.

230

• Correlated Color Temperature : The color associated with the temperature of
a black body radiator.

• CIE D65 Illuminant : A standard illuminant color proposed by the CIE which
is commonly noted as noon day sun.

• Shader (program) : A small program used to modify part of a rendering
pipeline.

231

B - Programming Code

We present alternate exposition of generating a β map using the pseudo-code.

Listing 1: Psuedo-code for calculating the β map for a camera image and scene with
two lights.

C1 % image 1
C2 % image 2
l1 % co l o r o f l i g h t 1
l2 % co l o r o f l i g h t 2

f o r i=1 to I do % I dimension
f o r j=1 to J do % J dimension

βmap (i , j)=find_min (C1 (i , j) ∗(l2∗β+l1∗(1−β))−%C2 (i , j) ∗(l1∗β+l2∗(1−β)) , β) % ←↩
f i nd min β value

end f o r
end f o r

Listing 2: Matlab file written to perform shadow detection and segmentation in
Section 5.3.1.

c l e a r a l l ;
alpha = imread (’ alpha . png ’) ;
rgb = imread (’ rgb . png ’) ;
%imgN = double ((alpha−min(alpha (:))) / max(alpha (:)−min(alpha (:)))) ;
bw = im2bw (alpha , . 7 5) ;
bw2 = imfill (bw , ’ h o l e s ’) ;
bw3 = imopen (bw2 , ones (9 , 9)) ;
bw4 = bwareaopen (bw3 , 40) ;
bw4_perim = bwperim (bw4 , 8) ;
overlay1 = imoverlay (rgb , bw4_perim , [1 . 0 . 0 .]) ;
f i g u r e ; imshow (overlay1)
imwrite (overlay1 , ’ seg . png ’) ;
alpha2 = 255−alpha (: , : , :) ;
c = smooth (improfile (alpha2 , [75 360] , [290 265])) ;
f i g u r e ; p l o t (c) ;
% f i gu r e , imshow (alpha) , hold on
% himage = imshow (bw4 perim) ;
% s e t (himage , ’AlphaData ’ , 0 . 4) ;

% th1=graythr esh (adapth i s teq (imgN)) ;
% cel lMsk = imgN>th1 ;
% th2 = graythr esh (imgN(imgN>th1)) ;
% nucMsk = imgN>th2 ;
% f i gu r e , imshow (cel lMsk , [])

Listing 3: Matlab written to calculate the absolute difference between two images
from Section 6.2.7.

c l c ;
c l e a r ;
c l e a r a l l ;

232

cd ’ .\ data \ e r r o r b a l l s \ward aniso \ ’

gt = ’ . . \ ward d i f f \beta . png ’ ; % ground truth , rendered
compare = ’ beta . png ’ ; % generated from data
out = ’ d i f f . png ’ ; % generated from r e l i g h t i n g app l i c a t i on
e r r o r = ’ e r r o r . txt ’ ; % generated from r e l i g h t i n g app l i c a t i on

gt = im2double (imread (gt)) ;
dt = im2double (imread (compare)) ;

d i f f = imabsdiff (gt , dt) ;

%boxplot (reshape (d i f f (d i f f (: , : , 1) <.1) , [] , 1))
save ’ d i f f f i l e ’ d i f f ;
imwrite (d i f f , out) ;
diff_out = reshape (d i f f (d i f f (: , : , 1) <.1) , [] , 1) ;

fid = fopen (er ror , ’w ’) ;
f p r i n t f (fid , ’Mean=%f \n ’ , mean(diff_out)) ;
f p r i n t f (fid , ’ Std=%f \n ’ , s td (diff_out)) ;
f p r i n t f (fid , ’Var=%f \n ’ , var (diff_out)) ;
f p r i n t f (fid , ’Med=%f \n ’ , median (diff_out)) ;
f c l o s e (fid) ;

cd ’ . . \ . . \ . . ’

Listing 4: Matlab written to calculate the perceptual using δE difference between
two images from Section 6.2.7.

% Based on the a r t i c l e :
% ”The CIEDE2000 Color−Di f f e r enc e Formula : Implementation Notes ,
% Supplementary Test Data , and Mathematical Observations , ” , G. Sharma ,
% W. Wu, E. N. Dalal , submitted to Color Research and Appl icat ion ,
% January 2004.
% ava i l a b l e at http : //www. ece . r o che s t e r . edu /˜/ gsharma/ c i ede2000 /

%% Writeen By : C l i f f o r d Lindsay , www. wpi . edu , 2011
c l c ;
c l e a r ;
c l e a r a l l ;

gt = ’ g t d i f f r g b . png ’ ; % ground truth , rendered
compare = ’ c e r e a l . png ’ ; % generated from r e l i g h t i n g app l i c a t i on
out = ’ d i f f . png ’ ; % generated from r e l i g h t i n g app l i c a t i on
e r r o r = ’ e r r o r . txt ’ ; % generated from r e l i g h t i n g app l i c a t i on
%% CIE Delta E Tol erances L , C, H
KLCH = [5 1 1] ; % used in c a l c u l a t i o n s ; t o l e r a t e more l i g h t n e s s than co l o r /hue ←↩

d i f f

%% read images , 1 s t image i s ground truth , 2nd i s sample
rgb1 = im2double (imread (gt)) ;
rgb2 = im2double (imread (compare)) ;

%% convert to lab (del taE only works in lab)
C = makecform (’ s r gb2 l ab ’) ;
lab_rgb1 = applycform (rgb1 , C) ;
lab_rgb2 = applycform (rgb2 , C) ;

%% s i z e i n f o and p r e a l l o c a t e ar rays
[xDim , yDim , zDim] = s i z e (lab_rgb1) ;

233

l1 = zer o s (xDim∗yDim , zDim) ;
l2 = zer o s (xDim∗yDim , zDim) ;

%% convert to dE200 format kx3 matr i ce s
l1 (: , 1) = reshape (lab_rgb1 (: , : , 1) , [] , 1) ;
l1 (: , 2) = reshape (lab_rgb1 (: , : , 2) , [] , 1) ;
l1 (: , 3) = reshape (lab_rgb1 (: , : , 3) , [] , 1) ;
l2 (: , 1) = reshape (lab_rgb2 (: , : , 1) , [] , 1) ;
l2 (: , 2) = reshape (lab_rgb2 (: , : , 2) , [] , 1) ;
l2 (: , 3) = reshape (lab_rgb2 (: , : , 3) , [] , 1) ;

%% perform CIE Delta E 2000 d i f f e r e n c e operat i on
dE00 = deltaE2000 (l1 , l2 , KLCH) ;

%% Convert back to viewable format and d i s p l ay
final = reshape (dE00 , [xDim yDim]) ;

f i g u r e ;
imagesc (final) ;
colormap (’ hot ’) ;
c ax i s ([0 . 0 6 . 0]) ;
c o l o r ba r ;

f i g u r e ;
boxplot (dE00) ;
imwrite (final , out) ;

%% pr i n t some s t a t s
fid = fopen (er ror , ’w ’) ;
f p r i n t f (fid , ’ quan t i l e=%f %f %f %f %f \n ’ , quantile (dE00 , [. 0 2 5 . 25 . 50 . 75 . 9 7 5])) ;
f p r i n t f (fid , ’ i r q=%f \n ’ , iqr (dE00)) ;
f p r i n t f (fid , ’Mean=%f \n ’ , mean(dE00)) ;
f p r i n t f (fid , ’ Std=%f \n ’ , s td (dE00)) ;
f p r i n t f (fid , ’Var=%f \n ’ , var (dE00)) ;
f p r i n t f (fid , ’Med=%f \n ’ , median (dE00)) ;
f c l o s e (fid) ;

Listing 5: Camera Shader code in Section 5.3.1 converts camera image to gray scale.

/∗ g r ay s ca l e e f f e c t
∗ Descr ipt i on : Converts a l l c o l o r va lues to a g r ay s ca l e tona l r ep r e sn ta t i on .
∗ Ouput : A camera image converted to g r ay s ca l e .
∗ Written by : C l i f f o r d Lindsay , Feburay 26 , 2011.
∗ Department o f Computer Science , WPI ∗/
p r e c i s i o n mediump f l o a t ;
varying vec2 vTextureCoord ;
uni form sampler2D textur e ;
void main (void)
{

vec4 col = texture2D (texture , vTextureCoord) ;
f l o a t gray = dot (vec3 (col [0] , col [1] , col [2]) ,
vec3 (0 . 3 , 0 . 59 , 0 . 11)) ;
g l FragColor = vec4 (gray , gray , gray , 1 . 0) ;

}

Listing 6: Camera Shader code in Section 5.3.1 that converts camera image to a
posterize style.

234

/∗ Pos t e r i z e E f f e c t
∗ Descr ipt i on : Po s t e r i z e o f an image e n t a i l s conver s i on o f a continuous gradat i on
∗ o f tone to s e v e r a l r eg i on s o f f ewer tones , with abrupt changes from one tone to
∗ another .
∗ Ouput : Camera image with p o s t e r i z e e f f e c t app l i ed
∗ Written by : C l i f f o r d Lindsay , Feburay 26 , 2011.
∗ Department o f Computer Science , WPI ∗/
uniform sampler2D textur e ;
uni form f l o a t threshhold = 0 . 5 ;
void main (void)
{

vec4 pel = texture2D (texture , gl_TexCoord [0] . xy) ;
vec4 res = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

// Now, f o r every value above threshhold , put in the maximum:
i f (pel . r > threshhold) { res . r = 1 . 0 ; } ;
i f (pel . g > threshhold) { res . g = 1 . 0 ; } ;
i f (pel . b > threshhold) { res . b = 1 . 0 ; } ;

g l FragColor = res ;
}

Listing 7: Camera Shader code in Section 5.3.1 that converts a camera image to
halftone style.

/∗ ha l f t one e f f e c t
∗ Descr ipt i on : Hal f tone i s the r eprograph i c techn ique that s imulates continuous ←↩

tone imagery
∗ through the use o f dots , varying e i t h e r in s i z e , i n shape or in spac ing .
∗ Ouput : A camera image converted to a ha l f t one s t y l e .
∗ Written by : C l i f f o r d Lindsay , Feburay 26 , 2011.
∗ Department o f Computer Science , WPI ∗/
uniform sampler2D textur e ;
uni form f l o a t steps = 32 . 0 ;

void main (void)
{

f l o a t dotsize = 1.0 / steps ;
f l o a t half_step = dotsize / 2 . 0 ;

vec2 center = gl_TexCoord [0] . xy − vec2 (mod(gl_TexCoord [0] . x , dotsize) ,mod(←↩
gl_TexCoord [0] . y , dotsize)) + half_step ;

vec4 pel = texture2D (texture , center) ;
f l o a t size = length (pel) ;

i f (dotsize ∗size /4 . 0 >= di s tance (gl_TexCoord [0] . xy , center)) {
g l FragColor = pel ;

} e l s e {
g l FragColor = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

}
}

Listing 8: Camera Shader code in Section 5.3.1 that converts a camera image to a
negative.

/∗ negat i ve e f f e c t
∗ Descr ipt i on : Convert co l o r va lues to t h e i r negat i ve .
∗ Ouput : A camera image converted to a negat i ve s t y l e .

235

∗ Written by : C l i f f o r d Lindsay , Feburay 26 , 2011.
∗ Department o f Computer Science , WPI ∗/
p r e c i s i o n mediump f l o a t ;
varying vec2 vTextureCoord ;
uni form sampler2D textur e ;
void main ()
{

vec3 col = texture2D (texture , vTextureCoord) . rgb ;
g l FragColor . rgb = vec3 (1 . 0 , 1 . 0 , 1 . 0) − col ;

}

236

C - Reference Material

C.1 Description of Plenoptic Function :

In order to measure the Plenoptic function, imagine placing an idealized camera
at every possible location in space, say (X,Y,Z) . Then record the intensity of the
light rays passing through the center of the camera at every possible angle (θ, φ),
for every wavelength, λ, at every time point t. It is simplest to have the camera
always look in the same direction, so that the angles (θ, φ) are always computed
with respect to an optic axis that is parallel to the Z axis. The resulting function
then has the following form listed in Equation 1 :

P = P (θ, φ, λ, t, X, Y, Z) (1)

This seven variable formulation is sometimes referred to a light field, with minor
differences from various authors providing their own take on the Light Field defini-
tion. Furthermore, if we have a corresponding functions for all reflected light with
the same formulation as Equation 1, then we can fully describe all light paths in a
scene using these fourteen variables. The reflected paths are sometimes referred to
as a Reflectance field.

C.2 User Study Documents

C.2.1 PCam Expert User Study Script

237

User Study Script:

This study looks at the usability of an advanced camera interface. This study will walk you through

several steps with the goal of applying image processing effects to images on a new type of

programmable camera. The steps below should be followed in order.

Step 1 – Generate a pipeline that does simple edge detection. You will use three shaders

organized in a pipeline: Grayscale, Sobel Filter, and Negative.

Open the Pcam Workbench application. To generate a pipeline, you need to drag and drop shaders

from the Shader Toolbox area to the Rendering Pipeline area (see figure 1). A preview of the how the

pipeline will affect the rendering is visible in the Preview Window, which appears below the Rendering

Pipeline area.

F

Figure 1: Workbench Application. To apply image filter to

the preview window, drag and drop a specific filter from the

Camera Shaders Toolbox to the Rendering Pipeline are.

Step 2 – Export the new pipeline to the Camera Interface.

Once you are satisfied with the look of the rendering for your new pipeline, you need to export the

pipeline to the camera so the camera can use it to affect images captured by the camera. To do this,

click on the Save icon in the application. This will bring up a file dialog for which you will have to

name your pipeline. Type in a name for your new pipeline and click “Save”.

Step 3 – Apply the new pipeline on the camera.

Open the camera interface application and select the Shaders Tab. This will open the part of the camera

interface where you can load and configure the pipeline you saved in the Pcam Workbench application.

Click on your pipeline in the Available Pipelines area. This will select and load the pipeline, and the

camera will begin rendering this pipeline's effects. Once you’ve selected your pipeline, you can then

1

238

User Study Script:

This study looks at the usability of an advanced camera interface. This study will walk you through

several steps with the goal of applying image processing effects to images on a new type of

programmable camera. The steps below should be followed in order.

Step 1 – Generate a pipeline that does simple edge detection. You will use three shaders

organized in a pipeline: Grayscale, Sobel Filter, and Negative.

Open the Pcam Workbench application. To generate a pipeline, you need to drag and drop shaders

from the Shader Toolbox area to the Rendering Pipeline area (see figure 1). A preview of the how the

pipeline will affect the rendering is visible in the Preview Window, which appears below the Rendering

Pipeline area.

F

Figure 1: Workbench Application. To apply image filter to

the preview window, drag and drop a specific filter from the

Camera Shaders Toolbox to the Rendering Pipeline are.

Step 2 – Export the new pipeline to the Camera Interface.

Once you are satisfied with the look of the rendering for your new pipeline, you need to export the

pipeline to the camera so the camera can use it to affect images captured by the camera. To do this,

click on the Save icon in the application. This will bring up a file dialog for which you will have to

name your pipeline. Type in a name for your new pipeline and click “Save”.

Step 3 – Apply the new pipeline on the camera.

Open the camera interface application and select the Shaders Tab. This will open the part of the camera

interface where you can load and configure the pipeline you saved in the Pcam Workbench application.

Click on your pipeline in the Available Pipelines area. This will select and load the pipeline, and the

camera will begin rendering this pipeline's effects. Once you’ve selected your pipeline, you can then

1

239

preview of the picture you are about to take with the shaders

applied is presented in the window. Here a negative shader is in

effect.

Step 5 – Editing and saving photographs.

Photographs taken with the camera can be edited and saved using an interface similar to that of a

traditional camera. To use this interface, click on the “Picture Review” tab at the top of the camera

interface. Edit the previously taken photographs by modifying the brightness, saturation, and contrast

using the provided Spinboxes.

Figure 4: The camera interface's picture review tab. Once the picture

has been taken, you can review the picture, adjust some of the basic

properties, and save any changes.

Step 6 – Changing the camera settings.

To change the camera settings, click on the “Camera Settings” tab to select the camera setting

window. To edit the base camera settings such as shutter speed, focus, and encoding, select the

appropriate settings from the pull-down menus.

3

240

Figure 5: The Camera interface's Settings Tab. In this tab you can

modify the camera settings.

4

241

C.2.2 Relighting User Study Questionnaire

Virtual Relighting Questionnaire

Please mark your answer in the spaces indicated. If a question provides multiple choice answers,

mark an X in the box indicating your answer.

1. How old are you? _______ years

2. What is the highest education level you have achieved?

¨ 8
th

 grade

¨ high school

¨ GED

¨ Some college

¨ College degree

¨ Some graduate school

¨ Graduate degree

3. What is your gender?

¨ Male

¨ Female

4. How often do you use comupters (work or leisure)?

¨ 0-5 hours per week

¨ 6-10 hours per week

¨ 11-15 hours per week

¨ 16-20 hours per week

¨ More than 20 hours per week

5. If you use a computer regularly, how much time do you spend on a computer in a

week? __________ hours/week

6. Have you taken a Computer Graphics course?

¨ Yes

¨ No

242

C.2.3 Previsualization Society Questionnaire

243

D - Additional Renderings

Figure 1: Early preliminary renderings done with the first prototype hardware sys-
tem.

Figure 2: Results using the laptop GPU with basic image processing. Each example
is rendered on-camera in real-time instead of being offloaded to a computer for
post processing. Left: Is a simulation heavy film grain. Left Center: Is a stylistic
rendering. Right Center: Is a sepia tone filter applied to the image. Right: Edge
detection used on an image of a house.

244

Figure 3: Additional β map manipulation images with their corresponding gradient
masks. These were generated in Photoshop.

Figure 4: Pipeline images rendered using PCam; Left is the original image, left
center has applied a color to gray scale conversion filter. Right center is a Gaussian
blur kernel applied to the gray scale image. Left is an edge detection filter applied
to the grey scale and blurred image.

245

Figure 5: Pipeline images rendered using PCam; Top far left is a simulation of old
scanlines, top center left is a Gaussian blur, top right center is gray scale conversion,
and top far right is an effect called rotoscoping. Bottom far left is a negative effect,
bottom center left is a night vision effect, bottom center right is a tile effect (groups
of pixels converted to tiles), bottom far right is a watercolor painting simulation
effect.

246

	Worcester Polytechnic Institute
	Digital WPI
	2013-04-02

	Programmable Image-Based Light Capture for Previsualization
	Clifford Lindsay
	Repository Citation

	Abstract
	Dedications
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction to Previsualization
	1.2 Motivation: Our Vision of Interactive Previsualization with Full Scene Capture
	1.3 Thesis Statement
	1.4 Dissertation Contributions
	1.5 Outline of Dissertation

	2 Related Work
	2.1 Programmable Imaging

	3 PCam: A Programmable Camera Architecture
	3.1 Overview
	3.2 Tile-based Streaming Architecture
	3.3 Camera Shader Framework
	3.4 Implementation

	4 PCamUI: A Visual Programming User Interface for PCam
	4.1 Overview
	4.2 Background
	4.3 Target Audience & Context
	4.4 Filter-Based Abstraction for On-Camera Processing
	4.5 Task Determination
	4.6 Conclusion & Future Work

	5 Symmetric Lighting Capture and Relighting
	5.1 Overview
	5.2 Symmetric Lighting Theory
	5.3 The Beta Map
	5.4 Conclusion

	6 Previzualization and Evaluations
	6.1 Overview
	6.2 Scene Relighting
	6.3 Light Color Estimation and Calibration
	6.4 Multi-Illuminant White Balance
	6.5 User Studies

	7 Future Work
	7.1 Expanded Scene Capture
	7.2 Relighting With Complex Lighting Environments
	7.3 Surface Reconstruction Using Geometry Maps
	7.4 PCam Version 3.0

	8 Conclusions
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D

