
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2006-04-06

Exploiting Flow Relationships to Improve the
Performance of Distributed Applications
Hao Shang
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Shang, H. (2006). Exploiting Flow Relationships to Improve the Performance of Distributed Applications. Retrieved from
https://digitalcommons.wpi.edu/etd-dissertations/95

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212997807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/95?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Exploiting Flow Relationships to Improve the

Performance of Distributed Applications

by

Hao Shang

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

January 1, 2006

APPROVED:

Prof. Craig E. Wills
Advisor

Prof. Robert E. Kinicki
Committee Member

Prof. Michael Gennert
Head of Department

Prof. Mark Claypool
Committee Member

Dr. Ralph Droms
Cisco Systems
External Committee Member

i

Abstract

Application performance continues to be an issue even with increased In-

ternet bandwidth. There are many reasons for poor application perfor-

mance including unpredictable network conditions, long round trip times,

inadequate transmission mechanisms, or less than optimal application de-

signs. In this work, we propose to exploit flow relationships as a general

means to improve Internet application performance. We define a relation-

ship to exist between two flows if the flows exhibit temporal proximity

within the same scope, where a scope may either be between two hosts or

between two clusters of hosts. Temporal proximity can either be in parallel

or near-term sequential.

As part of this work, we first observe that flow relationships are plenti-

ful and they can be exploited to improve application performance. Second,

we establish a framework on possible techniques to exploit flow relation-

ships. In this framework, we summarize the improvements that can be

brought by these techniques into several types and also use a taxonomy

to break Internet applications into different categories based on their traf-

fic characteristics and performance concerns. This approach allows us to

ii

investigate how a technique helps a group of applications rather than a

particular one. Finally, we investigate several specific techniques under the

framework and use them to illustrate how flow relationships are exploited

to achieve a variety of improvements.

We propose and evaluate a list of techniques including piggybacking

related domain names, data piggybacking, enhanced TCP ACKs, packet

aggregation, and critical packet piggybacking. We use them as examples

to show how particular flow relationships can be used to improve appli-

cations in different ways such as reducing round trips, providing better

quality of information, reducing the total number of packets, and avoiding

timeouts.

Results show that the technique of piggybacking related domain names

can significantly reduce local cache misses and also reduce the same num-

ber of domain name messages. The data piggybacking technique can pro-

vide packet-efficient throughput in the reverse direction of a TCP connec-

tion without sacrificing forward throughput. The enhanced ACK approach

provides more detailed and complete information about the state of the for-

ward direction that could be used by a TCP implementation to obtain better

throughput under different network conditions. Results for packet aggre-

gation show only a marginal gain of packet savings due to the current traf-

fic patterns. Finally, results for critical packet piggybacking demonstrate

a big potential in using related flows to send duplicate copies to protect

performance-critical packets from loss.

iii

Acknowledgments

I would like to express my gratitude to my advisor, Prof. Craig E. Wills, for

his support, advice, patience, and encouragement throughout my graduate

studies. It is not often that one finds an advisor and colleague that always

finds the time for listening to the little problems and hurdles that unavoid-

ably crop up in the course of performing research. His technical and ed-

itorial advice was essential to the completion of this dissertation and has

taught me innumerable lessons and insights on the workings of academic

research in general.

My thanks also go to the members of my Ph.D. committee, Prof. Robert

E. Kinicki, Prof. Mark Claypool, and Dr. Ralph Droms, who provided valu-

able feedback and suggestions to my previous talks and dissertation drafts

that helped to improve the presentation and contents of this dissertation.

The friendship of Chunling Ma, Mingzhe Li, Jae Chung, Huahui Wu,

Feng Li, and all the other previous and current PEDS members is much

appreciated. They have contributed to many interesting and good-spirited

discussions related to this research. They also provided tremendous mental

support to me when I got frustrated at times.

iv

Last, but not least, I would like to thank my wife Lily for her under-

standing and love during the past few years. Her support and encour-

agement was in the end what made this dissertation possible. My parents

receive my deepest gratitude and love for their dedication and the many

years of support during my studies.

v

Contents

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 Application Performance Is Still An Issue 1
1.2 Observation of Flow Relationships 5
1.3 Lack of Systematic Study on Flow Relationship 8
1.4 The Thesis . 10
1.5 Outline of the Thesis . 13

2 Related Work 16

2.1 Shared or Centralized State Information 16
2.2 Aggregation and Multiplexing 18
2.3 Coordination among Flows between the Same Pair of Clusters 21
2.4 Prediction . 24
2.5 Related Taxonomy Techniques 26
2.6 Summary . 27

3 Background Study on Existence of Flow Relationships 30

3.1 Existence of Flow Relationships 31
3.2 Relationships for Specific Applications 36
3.3 Non-full Packets inside Flows 41
3.4 Application Traffic Behavior 46
3.5 Summary . 48

4 Framework of Exploiting Flow Relationships 49

4.1 Internet Application Taxonomy 50
4.2 A Stage-based Taxonomy . 51
4.3 Potential Performance Improvements 56

CONTENTS vi

4.4 Techniques using Relationships within a Flow 60
4.5 Techniques using Relationships across Flows 64
4.6 Techniques by Levels . 68
4.7 Summary . 69

5 Piggybacking Related Domain Names to Improve DNS Perfor-
mance 71

5.1 Background . 73
5.2 DNS Latency . 75
5.3 The Piggybacking Related Names Approach 79
5.4 Related Approaches . 82
5.5 Potential Impact . 84
5.6 Implementation and Policy Issues 87

5.6.1 Piggybacked Responses 88
5.6.2 DNS Response Message Capacity 88
5.6.3 Piggyback Policies . 91
5.6.4 Maintenance of Information 92

5.7 Evaluation . 93
5.7.1 Methodology . 93
5.7.2 Results . 94
5.7.3 Results for Short ATTLs 96
5.7.4 Results for Total DNS Queries 98

5.8 Comparison and Combination with Other Approaches . . . 100
5.8.1 Performance Comparison Among Approaches 100
5.8.2 Combination of PRN and RUP 101
5.8.3 Combination of PRN and R-LFU 103

5.9 Summary . 104

6 Data Piggybacking 107

6.1 Mechanism . 109
6.2 Testing Environment and Methodology 112
6.3 Results . 116
6.4 Observations . 121
6.5 Summary . 123

7 TCP Enhanced ACK 125

7.1 Mechanism . 126
7.2 Testing Methodology . 130
7.3 Results . 134
7.4 Observations . 142

CONTENTS vii

7.5 Summary . 145

8 Packet Aggregation 147

8.1 Measurement Method . 149
8.2 Results . 152
8.3 Summary . 155

9 Critical Packet Piggybacking 157

9.1 Measurement Method . 162
9.2 Results . 164

9.2.1 Piggybacking for SSH 164
9.2.2 Piggybacking for the Web 169
9.2.3 Piggybacking for “Real” Streaming 172
9.2.4 Piggybacking for TCP Establishment 177

9.3 Summary . 180

10 Conclusion 183
10.1 Review of Motivation and Goals 183
10.2 Results and Evaluation . 184

10.2.1 Study on the Existence of Flow Relationship 184
10.2.2 Framework of Exploiting Flow Relationships 185
10.2.3 Piggybacking Related Domain Names to Improve DNS

Performance . 187
10.2.4 Data Piggybacking . 188
10.2.5 TCP Enhanced ACKs 190
10.2.6 Packet Aggregation . 191
10.2.7 Critical Packet Piggybacking 193

10.3 Examination of the Hypothesis and Summary of Contributions194
10.4 Future Directions . 198
10.5 Summary . 202

viii

List of Tables

3.1 Log Description . 32
3.2 Percentage of Host-to-Host Network Flows within a Speci-

fied Time Threshold of a Previous Flow 34

3.3 Percentage of Cluster-to-Cluster Network Flows within a Spec-
ified Time Threshold of a Previous Flow 35

3.4 Percentage of Host-to-Cluster Network Flows within a Spec-
ified Time Threshold of a Previous Flow 36

3.5 Percentage of Cluster-to-Host Network Flows within a Spec-
ified Time Threshold of a Previous Flow 37

3.6 Relationship between Selected Flow Types for wpi1 Log
t: TCP; u: UDP; for example: u500 means flows using UDP port 500 39

3.7 Flow Relationships between Non-full Flows with Different
Thresholds for the wpi1 Log under the Time Threshold of 10
Seconds . 45

4.1 Different Types of Application Stages 52
4.2 Potential Performance Improvements 57
4.3 Techniques using Intra-flow Relationships 61
4.4 Techniques using inter-flow Relationships 64

5.1 Summary of Trace Logs Used 85

6.1 Summary of Network Connections Used in Experiments . . 114

7.1 Means to Measure Connection Metrics Using Different TCP
Options . 132

LIST OF TABLES ix

7.2 Summary of Packet Spacing and ACK Delay Under File Trans-
fer Traffic (Times in ms) . 136

7.3 Summary of Packet Spacing and ACK Delay Under Web and
Streaming Traffic (Times in ms) 139

8.1 Percentages of Packet Reduction by Aggregating All Packets 153
8.2 Percentages of Packet Reduction by Aggregating Only Inter-

flow Packets . 154

x

List of Figures

1.1 Organization of the Thesis . 14

3.1 Illustration of Flow Relationships: flow2 and flow1 has a
concurrent relationship while flow3 and flow2 has a sequen-
tial relationship given the threshold ∆t 33

3.2 Packet Size Distributions for wpi1 43
3.3 Packet Size Distributions for isp2 43

4.1 Techniques by Levels . 68

5.1 DNS Response Time for Non-Cached Results 78
5.2 Illustration of the Piggybacking Mechanism 81
5.3 Potential Performance Improvement for Ideal PRN Policy

with WPI Log . 86
5.4 Potential Performance Improvement for Ideal PRN Policy

with RTP Log . 86
5.5 CDF of Size of DNS Bundles 89
5.6 CDF of Sizes for DNS Response Packets on a Unique Name

and a Trace-Based Set . 90
5.7 FOL and ROLs for zone “cnn.com.” 92
5.8 Relative Decrease in Cache Misses Over Different Policies on

WPI Log . 95
5.9 Relative Decrease in Cache Misses over Different Policies on

RTP Log . 96
5.10 Relative Decrease in Cache Misses over Different Policies on

WPI Log Entries with ATTL ≤ 30min. 97
5.11 Relative Decrease in Cache Misses over Different Policies on

WPI Log Entries with ATTL ≤ 5min. 98
5.12 Relative Decrease in All DNS Cache Misses Over Different

Policies on WPI Log . 99

LIST OF FIGURES xi

5.13 Performance Comparison among Approaches on WPI Log . 102
5.14 Performance Comparison among PRN-CHF and its Two Com-

ponent Approaches on WPI log 103
5.15 Performance for Hybrid Approaches on WPI Log 104

6.1 Standard Core Client and Server Code 110
6.2 Modified Core Client and Server Code 111
6.3 Calif to WPI (less than 1% packet loss) 117
6.4 WPI to Georgia (around 1% packet loss from GA to WPI) . . 119
6.5 WPI to Italy (1% to 5% packet loss from IT to WPI) 120
6.6 WPI to Local DSL Home (less than 1% packet loss) 122

7.1 TCP Timestamps Option Layout 127
7.2 Example Usage of TCP Timestamps Option 128
7.3 Enhanced TCP Timestamps Option Layout 129
7.4 Packet Spacing Difference among Data Recved, ACK Sent,

and ACK Recved for California to WPI Windows Client . . 136
7.5 CDF of ACK Delayed Time for First and Second Data Packets

for California to WPI Windows Client 138
7.6 CDF of ACK Delay for CNN Web to WPI Windows Platform 140
7.7 Comparison between RTT Based on the Original Timestamps

Option and RTT Calculated Based on Enhanced Timestamps
Option: California to WPI Link 142

9.1 CDFs of the Number of Packets and the Number of Non-full
Packets in SSH Upstream Flows (for wpi1 log) 166

9.2 CDFs of the Number of Packets and the Number of Non-full
Packets in SSH Downstream Flows (for wpi1 log) 166

9.3 CCDFs of Percentages of Piggyback-able Non-full Packets in
SSH Upstream Flows under Different Scopes (for wpi1 log) 168

9.4 CCDFs of Percentages of Piggyback-able Non-full Packets in
SSH Downstream Flows under Different Scopes (for wpi1
log) . 168

9.5 CDFs of the Number of Packets and the Number of Non-full
Packets in Web Upstream Flows (for wpi1 log) 171

9.6 CDFs of the Number of Packets and the Number of Non-full
Packets in Web Downstream Flows (for wpi1 log) 171

9.7 CDFs of Average Packet Sizes for Upstream and Downstream
Web Flows (for wpi1 log) . 172

LIST OF FIGURES xii

9.8 CCDFs of Percentages of Piggyback-able Non-full Packets in
Web Upstream Flows (for wpi1 log) 173

9.9 CCDFs of Percentages of Piggyback-able Non-full Packets in
Web Downstream Flows (for wpi1 log) 173

9.10 CDFs of the Number of Packets and the Number of Non-full
Packets in “Real” Upstream Data Flows (for wpi1 log) . . . 176

9.11 CDFs of the Number of Packets and the Number of Non-full
Packets in “Real” Downstream Data Flows (for wpi1 log) . . 176

9.12 CDFs of Average Packet Sizes for Upstream and Downstream
“Real” Data Flows (for wpi1 log) 177

9.13 CCDFs of Percentages of Piggyback-able Non-full Packets in
Upstream “Real” Data Flows (for wpi1 log) 178

9.14 CCDFs of Percentages of Piggyback-able Non-full Packets in
Downstream “Real” Data Flows (for wpi1 log) 178

9.15 Possibility of SYN and SYN ACK Packets of TCP Flows Be-
ing Piggybacked by Other Flows (for wpil log) 180

1

Chapter 1

Introduction

The Internet has grown from its original four hosts in 1969 to currently

millions of hosts, from a single Email application to currently tens of pop-

ular applications. It has become one of the most important communica-

tion mechanisms for information dissemination and individual interactions

without regard to geographic location. Many research topics have focused

on the improvement of Internet application performance. We have selected

one interesting direction by exploring and seeking to exploit flow relation-

ships.

1.1 Application Performance Is Still An Issue

The speed of the Internet has substantially improved from the time when

it was invented, which brings opportunities as well as challenges. Both the

variety and instances of applications have significantly increased. Many

applications built for local area networks (LANs) have been extended to be

1.1. APPLICATION PERFORMANCE IS STILL AN ISSUE 2

used in wide area networks (WANs). However, end users are still expe-

riencing unsatisfactory Internet performance due to many reasons includ-

ing the intermediate network, transport protocols, and applications them-

selves.

Internet resources are still limited and network conditions change dra-

matically due to Internet traffic dynamics. The best effort behavior of the

current Internet does not guarantee an adequate network environment for

all applications all the time. Improving application performance under

poor network conditions is still necessary.

Even with ample network bandwidth, applications may still perform

poorly due to inherent latency between two end hosts. For example, the

three-way handshake procedure required by the TCP connection establish-

ment introduces one round trip time (RTT) delay before any user data can

be exchanged, which causes a performance problem for long RTT paths. A

badly designed application may also incur unnecessary packet exchanges.

One example is that the sequential transmission scheme used by old Web

browsers establishes a TCP connection for each Web object. Studies on how

to accelerate transaction procedures are still needed.

The widely used TCP and UDP transmission protocols are not always

suitable in terms of application performance. On one hand, TCP enforces

additive-increase/multiplicative-decrease (AIMD) congestion control as well

as reliable in-order transmissions. On the other hand, UDP does not do any

control except providing multiplexing over IP. Applications may find that

neither protocol performs optimally. UDP is not responsive to any network

congestion and the throughput of a TCP connection may be much less than

1.1. APPLICATION PERFORMANCE IS STILL AN ISSUE 3

available bandwidth (e.g. for a long RTT, but high bandwidth path). Opti-

mizing existing transmission schemes or building new transmission proto-

cols are also required.

With new applications coming into use, application performance con-

cerns become more diverse. For example, “telnet” or “ssh” are resilient to

available bandwidth but sensitive to long RTTs, while applications such as

non-interactive video or audio streaming (e.g. video/audio on demand)

can tolerate long RTTs but perform poorly if required minimal available

bandwidth is not met. Providing satisfactory performance for a variety of

applications is challenging.

Consequently, improving application performance is an important Internet-

related research topic. Researchers have taken approaches from different

directions. Proposals like integrated [BCS94] or differentiated [BBC+98]

services seek to provide enhanced network services for data flows or groups

of flows. These approaches need participation of all intermediate routers

between two end hosts. Numerous studies have sought to achieve better

performance by improving transmission mechanisms under various net-

work conditions. As an example, [JBB92] tries to improve the performance

of TCP for large bandwidth/delay product paths by using scaled windows

and timestamp options. Another set of studies, such as stream control

transmission protocol [SXM+00] and T/TCP [Bra94], seek to design new

transmission protocols for particular application needs. Much work has

also been done at the application level. For example, persistent connec-

tion and pipelining mechanisms are introduced in HTTP/1.1 [FGM+99] to

improve the performance of Web applications.

1.1. APPLICATION PERFORMANCE IS STILL AN ISSUE 4

While the above approaches seek to improve application performance

from various angles, two problems still exist. First, many approaches pro-

pose to improve transmission throughput or provide prioritized services.

However, even with sufficient bandwidth, providing satisfactory applica-

tion performance is not guaranteed. Long round trip times and inefficient

use of available bandwidth may also cause performance problems, espe-

cially for applications that require multiple packet interactions before the

user can get a response.

Second, few approaches seek to improve transmission efficiency or ex-

ploit the unused packet capacity. We use unused packet capacity to refer to

the available packet space in non-full packets, which can be presented as

the difference between the size of an IP packet and its path maximum trans-

mission unit (MTU) size [MD90]. While MTU sizes for most link types are

over 1500 bytes 1, about only 20% of packets reach this size and most pack-

ets are small as found in our background study described in Chapter 3

and many other Internet traffic studies. As the permitted MTU size grows

[KSO+01, BDH99], the problem of having much unused packet capacity

becomes more severe.

The described problems pose a challenge to application performance

and will become more serious as the variation of network applications

grows. As the “last mile” problem is being resolved by cable and ADSL,

the Internet backbone may become the new bottleneck. Approaches to im-

1During the time of this study, we were aware of only three link types using MTU size
under 1500 bytes: IEEE 802.3/802.2, PPPoE, and X.25. The first two link types use MTU
size of 1492, which is very close to 1500 bytes. For convenience, we treat them the same
as Ethernet, which uses MTU size of 1500 bytes. The X.25 link type uses MTU size of 576
bytes, but this link technique is rarely used nowadays.

1.2. OBSERVATION OF FLOW RELATIONSHIPS 5

proving application performance as well as increasing network efficiency

are required. In this thesis, we address these problems by seeking to exploit

relationships between network flows.

1.2 Observation of Flow Relationships

We define a network flow as a stream of data sharing the same end points.

An end point is a virtual entry inside a host, which is normally identified

as an assigned port along with its associated protocol. We define a relation-

ship to exist between two flows if packets inside the flows exhibit temporal

proximity within the same scope. Scope may either be between two hosts

or between two clusters of hosts where a cluster is the set of hosts at a site

sharing the same end router. Temporal proximity can be either concurrent

where one flow has temporal overlap with another flow, or sequential where

one flow follows another that recently terminates. By extension, a flow has

a relationship with itself as packets within a flow have temporal proximity.

It is not interesting to study flow relationships if the number and types

of flows are few. In 1970’s and 1980’s, the use of the Internet was sparse and

the major applications included only E-Mail, file transfer, remote login and

news. The number of network flows generated per host, even per subnet,

was limited. A flow had few chances to overlap with another.

The situation began to change when a new application, the WWW (World

Wide Web), was invented in the early 1990’s, which brought millions of

users to the Internet. While the WWW did not change any underlying facil-

ities, this application made them easier to use. Along with the boom of the

1.2. OBSERVATION OF FLOW RELATIONSHIPS 6

WWW from the middle 1990’s, more network applications have come into

use. Applications like streaming media, peer-to-peer, grid, instant messen-

gers, and network games are common nowadays in addition to the WWW

and other traditional applications [FML+03]. Both the number and the va-

riety of network flows have significantly increased, which brings opportu-

nities for us to observe flow relationships.

In this thesis, we have observed the existence of flow relationships by

doing a background study on several traffic logs. There are over 10K flows

generated per minute on average for a regular day from WPI to the rest of

the Internet. Many flows end with the same pair of hosts or clusters within

a short period of time. This observation indicates a considerable amount of

relationships between network flows. We elaborate on the details in Chap-

ter 3.

While a relationship is represented by temporal proximity between flows,

it may be caused by different reasons.

• Application Behavior: An application may initiate multiple flows in

parallel or sequentially for the completion of a transaction. One ex-

ample is a streaming application that normally generates two flows—

one for control and one for data. Another example is when an appli-

cation network flow is preceded by a DNS (Domain Name System)

lookup causing a network flow between a local DNS server and a

remote authoritative DNS server. The relationships observed in this

type are caused by application themselves, no matter how users use

them and what content data are involved.

1.2. OBSERVATION OF FLOW RELATIONSHIPS 7

• Content Relationship: Concurrent or sequential flows may be gener-

ated because the content involved in those flows has an internal re-

lationship. An example is when multiple servers at a Web site serve

content for a page leading to concurrent cluster-to-cluster network

flows when a Web browser downloads the page content. This type of

relationship can be deduced once the relationship among content is

known.

• User Behavior: Relationships other than the above two fall into this

category, which is due to user access behavior. Users in one site may

access servers of another site simultaneously, which causes multiple

network flows existing in parallel between cluster pairs. One possi-

bility could be a group of local users playing on-line games by using

the same remote server. A flash crowd is another example, where a

number of users attempt to access a same site due to a common inter-

est.

Flow relationships can be exploited to improve application performance.

The relationships caused by particular application behavior or internal con-

tent relationships normally have relatively fixed patterns. In many cases,

future flows or packets can be predicted given a known relationship. By

removing predicted traffic from the critical path of an application, the num-

ber of WAN round trips is reduced, resulting in improved performance.

A relationship observed due to application behavior may also be used

as an indicator of whether a particular application implementation is op-

timal. Web browsers prior to HTTP/1.1 used parallel TCP connections to

1.3. LACK OF SYSTEMATIC STUDY ON FLOW RELATIONSHIP 8

download multiple Web objects from the same server, which is considered

inefficient in the term of resource usage. Persistent connection and pipelin-

ing requests supported by HTTP/1.1 make better use of network resources

by allowing multiple objects to be transmitted over one TCP connection.

Concurrent or sequential relationships can be used for an application to

piggyback any useful information with an ongoing flow. We have observed

that many packets are smaller than the path MTU (Maximum Transmission

Unit). The unused packet capacity can be exploited to help applications in

a number of ways. Applications may be benefited from improved perfor-

mance without introducing any extra transmissions.

1.3 Lack of Systematic Study on Flow Relationship

With the ever increasing instances and varieties of applications, opportuni-

ties to observe flow relationships have significantly increased. Those rela-

tionships can be exploited to improve application performance. However,

little research work has been done in this area and none in a systematic

way.

Most applications are developed with little knowledge of others. While

the independence brings ease in the sense of development, it may not ex-

ploit relationships across applications. Consequently, much research work

has focused on particular applications and tried to improve the perfor-

mance of an application on its own, while little work has examined and

exploited relationships across applications.

There is also a lack of coordination between applications and under-

1.3. LACK OF SYSTEMATIC STUDY ON FLOW RELATIONSHIP 9

lying transmission layers. An application has no way to convey its spe-

cific transmission requirements. Without such a mechanism, it is hard for

transmission layers to coordinate flows from different applications. As a

result, flow relationships may not be well exploited as transmission lay-

ers do not have any knowledge of how to handle those flows. The ap-

plication level framing (ALF) principle [CT90] states that the underlying

transmission mechanism should be properly designed to help applications

meet their specific objectives. However, proposals to improve a particu-

lar protocol are many, while suggestions for better coordination between

applications and transmissions are few.

Several studies that exploit flow relationships have limited scopes. For

example, both Ensemble-TCP [EHT00] and Congestion Manager [BRS99]

seek only to coordinate flows within the same host pair. However, modern

applications tend to be distributed. Services involving intensive comput-

ing or a large volume of requests normally require a farm of servers instead

of a single host. Related flows do not necessarily have the same end hosts.

Expanding the study scope from host-to-host to cluster-to-cluster is neces-

sary, as flows ending with the same cluster pair share a common path that

is the primary contributor of transmission delay and the source of dynamic

network conditions including loss, congestion and jitter. Techniques, such

as information piggybacking and coordinated congestion control, may also

apply to cluster-to-cluster flows, facing more challenges though.

As a consequence, there needs to be a systematic study on flow relation-

ships. First, it is necessary to have a better understanding on flow relation-

ships. Questions such as to what extent flow relationships exist and what

1.4. THE THESIS 10

types of relationships exist between flows need to be answered. Second,

there is a need to establish a framework on how flow relationships can be

exploited in general. Examination of potential performance improvements

along with applicable situations needs to be done. Finally, investigation

of specific techniques is essential to demonstrate how particular flow rela-

tionships can be exploited to improve applications. All of the above reasons

constitute the motivation of this thesis.

1.4 The Thesis

Our central thesis is this:

Internet applications continue to have performance issues even

with the ever-increasing network bandwidth. Exploiting flow

relationships and available packet space inside flows could help

to improve application performance, but have not been well-

studied. Our hypothesis is that classes of techniques can be de-

ployed to exploit these relationships and enhance application

performance with minimal costs.

We establish a framework on general approaches of exploiting flow re-

lationships. The framework is based on two categorizations. In the first cat-

egorization, Internet applications are broken into different categories based

on their traffic characteristics and performance concerns. We use a stage-

based taxonomy to categorize commonly seen application stages into four

types: bulk transfer, interactive, transactional, and streaming. An applica-

tion session may include only one stage or can be composed of multiple

1.4. THE THESIS 11

stages. By using this stage-based taxonomy, we look for general techniques

that help a type of stage instead of a particular application. In the sec-

ond categorization, we summarize the potential improvements that can be

brought by exploiting flow relationships into four categories including re-

ducing total packets, providing better information, avoiding timeouts, and

reducing the number of RTTs. By combining the two categorizations to-

gether, the framework explicitly gives expected improvements and the ap-

plicable types of applications for a particular technique. This framework

is important as it generalizes possible techniques that exploit flow relation-

ships. Under this framework, we investigate several specific techniques

and use them to illustrate how flow relationships are exploited in certain

situations. Examples of these techniques are:

Piggybacking related domain names: we use this example to show how

relationships between packets or flows are used to infer future traf-

fic, and how this predicted traffic is piggybacked to ongoing traffic.

Due to the internal content association and fixed application behav-

ior, we find that much future traffic is predictable. In this example,

we show high possibilities of related domain names being queried

after an original domain name lookup. We propose to send answers

to all related names in the response message for the first query, there-

fore avoiding future queries. This method not only improves latency

performance for DNS, but also reduces the total number of query and

response messages.

Using ACKs to send data: we use this example to show how available packet

1.4. THE THESIS 12

space in flows can be used to improve transmission efficiency. As

we have observed many ACK-only packets in current Internet traffic,

there is potential to use them to send data. We find that using ACKs

to piggyback data can achieve the same throughput as using two

separate TCP connections or one traditional TCP connection which

blindly sends data on both directions, while our method results in

much fewer packets. This method is appropriate when a primary

and secondary data direction exist. For example, a current P2P ap-

plication “BitTorrent” has a “tit-for-tat” incentive mechanism that re-

quires users to share their data resources at the same time data are

retrieved from somewhere else.

Providing enhanced timestamp information: we use this example to show

how available packet space can be used to provide better quality of

information for applications. As TCP ACKs are sent back anyway,

they can be used to provide better information to the sender. In this

example, we propose an extended timestamp option, which provides

more latency details than the current standard timestamp option. By

using this extended information, the sender is able to distinguish jit-

ter in one direction from the other as well as have a more accurate

RTT estimation. We find that this method can help TCP to decide con-

gestion conditions in each direction and to tune congestion windows

more appropriately. It is especially useful for transmission schemes

like TCP-Vegas [FCL01] and TCP-Westwood [WVSG02] that use de-

lay jitter to estimate available path bandwidth.

1.5. OUTLINE OF THE THESIS 13

Packet aggregation: we use this example to show another way to improve

transmission efficiency. While the scheme of using ACKs to send data

uses available packet space within one flow, packet aggregation ex-

ploits packet space across flows. Aggregating small packets together

directly leads to improved transmission efficiency as well as reduced

switching workload for intermediate routers.

Protecting critical packets: we use this example to show the potentials of

using available packet space in related flows to avoid timeouts. Packet

loss hurts application performance. For interactive applications like

“telnet” or critical application stages like TCP connection establish-

ment, a packet loss normally results in a long timeout. By using the

available packet space provided by related flows, we could send du-

plicate copies or redundant data to protect packets that are sensitive

to loss.

1.5 Outline of the Thesis

The organization of the thesis is shown in Figure 1.1. Chapter 1 is the intro-

duction of the thesis. We discuss related work in Chapter 2 and talk about a

background study of flow relationships in Chapter 3. Chapter 4 is the core

of the thesis, in which we discuss a general framework of exploiting flow

relationships. After that, we investigate five specific techniques of using

flow relationships, each described in Chapters 5 to 9 respectively. At the

end, we conclude our work in Chapter 10.

The outline of Chapter 2 to 10 is the following. In Chapter 2, we look

1.5. OUTLINE OF THE THESIS 14

Chapter 1

Chapter 2

Chapter 3

Chapter 10

Chapter 6 Chapter 7Chapter 5 Chapter 8 Chapter 9

Chapter 4

Figure 1.1: Organization of the Thesis

at the related work in five broad categories. We examine how previous

techniques have been used in different layers, the types of relationships

they exploit, and different scopes where they are applied. We also discuss

the related taxonomy techniques for Internet applications.

In Chapter 3, we identify flow relationships by examining the temporal

relation between flows. We investigate how many flow relationships exist

between flows within the same host pairs or cluster pairs and how partic-

ular types of flows are related to others. In addition, we study the packet

size characteristics inside flows and examine how much packet space is

available.

In Chapter 4, we discuss possible performance improvements that ex-

ploit flow relationships and available packet space. We characterize these

improvements and their expected benefits for applications. By using a

taxonomy, we classify applications into different types and examine what

1.5. OUTLINE OF THE THESIS 15

potential improvements fit best for each category. This chapter gives the

framework of how flow relationships can be exploited.

In Chapter 5, we illustrate how a particular relationship between con-

secutive DNS queries is used to improve DNS performance. We discuss

in details how the scheme works, implementation issues, and the perfor-

mance gain.

In Chapter 6, we discuss a technique which piggybacks data with ACKs.

We investigate how application performance and the resulting number of

packets are influenced by this technique under a number of network paths.

In Chapter 7, we explore an approach which uses a bit of the available

bandwidth to provide an enhanced timestamp option. We show how the

enhanced information helps TCP to have a better understanding of current

network conditions.

In Chapter 8, we look at a method of packet aggregation which intends

to reduce the total number of packets on the Internet. We evaluate the gain

of packet savings that can be brought by packet aggregation.

In Chapter 9, we examine the potentials to protect critical packet from

loss by using available packet space to send duplicates. We investigate the

possibilities that these duplicates can be piggybacked by concurrent flows

under four example scenarios.

In Chapter 10, we discuss the future work that would complement our

study and conclude the thesis with a summary of the work and its major

contributions.

16

Chapter 2

Related Work

Even though flow relationships have not been studied in a systematic way,

a number of previous techniques use flow relationships either explicitly or

implicitly. In this chapter, we first look at four broad categories of how

the techniques have been used in different layers, the types of relationships

they exploit, and different scopes where they are applied. As we seek to

apply the techniques of exploiting flow relationships in a general way, clas-

sification of Internet applications is also of our interest. In a separate cate-

gory, we discuss related taxonomy techniques for Internet applications.

2.1 Shared or Centralized State Information

A network flow runs independently of other flows, which causes two prob-

lems. One is inter-flow competition where concurrent flows sharing the

same bottleneck link compete for bandwidth when congestion occurs. Inter-

flow competition hurts the overall throughput. Results in [CSA00, QZK99,

2.1. SHARED OR CENTRALIZED STATE INFORMATION 17

MB00] have shown that transmission time for the same amount of data over

independently controlled TCP flows are much longer than that over TCP

flows controlled in an aggregated manner when the network is congested.

The other problem caused by the independence of network flows is that

every TCP connection has to perform the slow-start procedure in order to

gradually probe for available bandwidth, even though previous flows al-

ready have such knowledge. Much work seeks to avoid those problems by

sharing state information among flows.

Work on Ensemble-TCP [EHT00] and shared TCP control blocks [Tou97]

are ways for multiple TCP connections to share network information and

better inform the TCP congestion control mechanism to avoid slow-start.

An ensemble, no matter how many connections are part of it, is as aggres-

sive as a single regular TCP connection in terms of getting network band-

width. Inter-connection competition is avoided as all of them share the

same congestion state. A newly established connection can directly use the

current (if available) or the previous congestion window to avoid or speed

up the slow-start procedure. This approach to congestion control has been

implemented as part of the Linux kernel [SK02a]. This technique is good for

concurrent TCP flows and is also useful for sequential flows if the shared

information is retained. However, this approach is limited to traffic of one

(the most prevalent) transport protocol.

Another approach to sharing is centralized scheduling of flows and

packets. Work on the Congestion Manager (CM) [BRS99] is an example

of this approach where a manager maintains congestion parameters and

schedules data transmission for all flows ending with the same receiver.

2.2. AGGREGATION AND MULTIPLEXING 18

The congestion control module inside the CM emulates the window-based

congestion control scheme for a single TCP connection, whereas the sched-

uler module controls the sending rate of each flow by providing APIs for

applications to adapt to network congestion. The centralized congestion

control scheme eliminates the need for an individual application or proto-

col to conduct congestion control on its own, and at the same time avoids

inter-flow competition. The CM mechanism does require the insertion of

a new CM header between the IP and transport headers. This header is

used to detect the CM capability on the receiver side and provide feedback

about the transmission status to the sender.

By conducting coordinated congestion control over flows sharing the

same bottleneck, the above approaches eliminate inter-flow competition as

well as avoid unnecessary slow-start procedures. However, these schemes

make little effort to aggregate flows and packets. Reducing the number

of TCP connections helps alleviate the workload of servers as well as avoid

performance overhead incurred by connection establishment and teardown.

Reducing the number of packets helps alleviate the workload of the net-

work, where less packets need to be routed or switched.

2.2 Aggregation and Multiplexing

Another class of work has looked at aggregating traffic at different levels.

An approach to aggregate traffic at the application layer is to multiplex data

streams on top of a TCP connection. HTTP/1.1 [FGM+99] is an object-wise

multiplexing scheme, which uses a persistent TCP connection to fetch mul-

2.2. AGGREGATION AND MULTIPLEXING 19

tiple objects. Another approach to this same problem is to bundle multiple

objects in one response [WTM03, WMS01]. SCP [Spe] and SMUX [GN98]

are two general-purpose session control protocols that multiplex data from

applications on one TCP connection.

In essence, these application or session layer approaches use only one

TCP connection. The inherent TCP congestion control mechanism is ap-

plied on all the multiplexed data streams. The TCP establishment and tear-

down as well as the slow-start procedure are only conducted once. How-

ever, these schemes introduce undesirable coupling, where logically inde-

pendent data streams have to obey the syntax of a single TCP stream. The

in-order delivery behavior imposed by TCP causes head-of-line blocking,

where the loss of one packet prohibits release of successive packets, even

though they belong to different data streams. Another problem of applica-

tion level multiplexing is that it is not feasible for aggregating traffic from

different applications and protocols.

The Stream Control Transmission Protocol (SCTP) [SXM+00] has multi-

stream support, which allows multiple independent data streams to be

multiplexed over one SCTP association. Unlike TCP, which enforces strict

in-order delivery for the whole transmission, SCTP provides partially in-

order delivery service where sequencing of messages is maintained on a

per-stream basis. Message loss in one stream does not influence deliv-

ery of other streams. This mechanism resolves the head-of-line blocking

problem caused by multiplexing streams over one TCP connection. At the

same time, all streams within a single SCTP association are still subjected

to a common congestion control mechanism. In addition, SCTP permits

2.2. AGGREGATION AND MULTIPLEXING 20

bundling of more than one user message into a single SCTP packet, al-

though SCTP can introduce a small delay as it tries to bundle. Users may

disable bundling (like the PUSH flag is used in TCP) in order to avoid any

delay.

SCTP is especially useful for applications that initiate multiple streams

that have the property of independently sequenced delivery. An example

is the delivery of a Web page which includes multiple in-line objects. On

the other hand, a SCTP association may not be shared across applications,

indicating that coordination among SCTP associations is still needed. For

the same reason, bundling is only applicable for messages generated by the

same application instance.

Another approach named ”car pooling” [BS99] tries to aggregate pack-

ets at the network level. It suggests to place aggregation and splitting de-

vices at desirable locations in the network. The aggregation devices merge

small packets going to the same destination, while the splitting devices

regenerate the packets at the destination. Packet car pooling reduces the

total number of packets in the network, therefore alleviates the workload

of intermediate routers whose processing cost is packet-based other than

byte-based. By sharing the common packet headers, certain overhead can

be avoided, resulting in improved transmission efficiency. The downside

of the approach is the additional delay that is introduced in favor of packet

aggregation.

Aggregation and multiplexing solutions at or above the transport layer

avoid inter-flow competition as multiple data streams are now using one

connection or association and subject to a single congestion control. This

2.3. COORDINATION AMONG FLOWS BETWEEN THE SAME PAIR OF

CLUSTERS 21

kind of approach also minimizes the number of connections or associations,

reducing the overhead incurred for each connection or association. How-

ever, multiplexing may introduce undesirable coupling and is only feasible

for flows generated by the same application instance. Packet aggregation

at the network layer seeks to aggregate packets instead of aggregating data

flows. Its objective is to reduce the total number of packets other than to

avoid inter-flow competition. As the network layer is below the application

and transport layers, packet aggregation is not constrained to particular ap-

plications or transport protocols.

2.3 Coordination among Flows between the Same Pair

of Clusters

We discussed approaches that perform aggregated congestion control or

multiplexing for flows between the same pair of hosts (host-to-host flows).

While similar approaches can also be applied to flows between the same

pair of clusters (cluster-to-cluster flows), they present unique challenges.

Because cluster-to-cluster flows may not terminate with the same hosts,

TCP control block state parameters cannot be directly shared by connec-

tions ending with different hosts. For the same reason, APIs exposed by a

central congestion control unit like CM [BRS99] are not applicable for ap-

plications residing on machines other than the one where the control unit

exists. Multiplexing schemes like SMUX and SCTP can not even aggregate

flows outside one application instance, let alone across different machines.

Other approaches must be taken in order to achieve coordinated control

2.3. COORDINATION AMONG FLOWS BETWEEN THE SAME PAIR OF

CLUSTERS 22

among cluster-to-cluster flows. We discuss this class of techniques in this

section.

Most work for coordinating cluster-to-cluster flows introduces an ag-

gregation point, which may be an individual box sitting in front of an edge

router or the edge router itself. The aggregation point conducts aggregated

congestion control over a collection of flows and regulates the sending rate

of each flow. Based on whether the functionality is transparent to end ap-

plications or not, we further divide related approaches into two types.

The first approach type does not require participation of applications,

where aggregated congestion control and traffic shaping are transparent to

end applications. Both the Internet Traffic Manager (ITM) [MB00, DVM+03,

GM02b] and the Aggregated TCP (ATCP) architecture [PCN00] achieve

such an objective by breaking the control loop between the two end ap-

plications into two control loops, one between the local application and the

aggregation point and the other between the aggregation point and the re-

mote application. The aggregation point allows state information sharing

among all flows passing through it and regulates the flow sending rate by

manipulating legitimate feedback (e.g. TCP ACKs) to sender applications.

While ATCP is particularly designed for aggregated congestion control, the

ITM architecture may carry other functions like flow isolation. Another ap-

proach of this type is the “TCP Trunk” scheme [KW99] where edge routers

use management TCP connections to control the sending rate of data flows.

The aggregated sending rate of all flows from a cluster is regulated by the

sending windows of those management TCP connections. As this approach

type is transparent to end applications, it does not complicate implemen-

2.3. COORDINATION AMONG FLOWS BETWEEN THE SAME PAIR OF

CLUSTERS 23

tation of end systems. However, without the participation of applications,

inter-flow tradeoff based on smart application decisions is not possible.

The other approach type allows applications to control the data send-

ing rate for each flow by providing aggregated network state information.

In Ott and Mayer-Patel’s coordination mechanism [OMP02], they use an

aggregation point (AP) on each cluster and insert a coordination protocol

(CP) layer between the IP and Transport layers. An AP calculates network

conditions based on all flows passing through it and conveys the informa-

tion to end hosts by CP. Each flow decides its sending rate based on both

current network conditions and pre-configured information. In [SAA+99],

Savage et al. introduced an overlay network called “Detour” and each

node in “Detour” can aggregate traffic from its local hosts over tunnels

(TCP connections). Aggregate flow information can be shared by each in-

dividual flow. Approaches of this type seek to provide aggregate network

information by a central node. The control of data transmission is left to

applications, which obeys the ALF principle in [CT90]. On the other hand,

implementation of the end system may be complicated. Current applica-

tion implementations, as well as protocol stacks, may need to be changed.

Sharing congestion information across clusters may also be possible. In

[Pad99], Padmanabhan outlines a receiver-based architecture in which a

receiver sends congestion notification to senders that share a common bot-

tleneck link. The senders may be scattered in different clusters. However,

studies in this area are sparse and none of them has implemented a practi-

cal model.

2.4. PREDICTION 24

2.4 Prediction

Approaches in the above classes are based on the observation that many

flows occur concurrently or sequentially, therefore flows having the same

WAN path can share state information between each other or be multi-

plexed over a single connection. However, these approaches did not look

into the causes of these concurrent or sequential relationships. Concurrent

or sequential flows may be caused by internal content relationships or the

results of particular application behavior. These deterministic relationships

can be used in prediction of future work. Observing one flow may be an

indication of a future flow(s). Several approaches use these kinds of rela-

tionships to perform work in anticipation of future work.

As an example, the use of persistent connection specified in HTTP/1.1

[FGM+99] is a method to keep the current connection open in anticipation

of future object transmissions. While this mechanism is embodied as object-

level multiplexing (we have discussed it in Section 2.2), it is encouraged by

the observation of the existence of internal relationships between in-line

objects and the container page.

Previous work [WMS03] presents a methodology to use DNS queries

to infer the relative popularity of any Internet server that can be identified

by a name. It exploits the relationship that DNS lookups foreshadow the

access of those Internet servers. The relative times a server name is looked

up implies the relative popularity of the server. This approach seeks to

explicitly use the relationship between a DNS flow and a successive data

flow, although it does not try to improve performance.

2.4. PREDICTION 25

Another approach that takes advantage of the relationship between a

DNS flow and a successive application flow is the DNS-enabled Web (DEW)

scheme proposed by Krishnamurthy et al. [KLR03]. In this approach, the

unused portions of DNS messages are used to piggyback predicted HTTP

requests and responses, therefore reducing the overall latency of the Web

application.

Observation of flow patterns for a particular application can also be

used as an indicator of whether the application performs optimally. Many

short TCP flows only comprise one or two packets besides those used to

open and close connections. TCP overhead is heavy for such a short trans-

action. T/TCP [Bra94] is one proposal to combine the TCP SYN and initial

payload into one packet therefore saving the number of packets as well

as avoiding one round-trip between sender and receiver. T/TCP was pro-

posed for transactions, but currently only FreeBSD has implemented it and

its usage is still in the experimental stage. Linux does not have plans for

the implementation due to T/TCP’s potential security problems [Han96].

T/TCP is more vulnerable to a sequence number attack and SYN flooding

attack than a regular TCP which conducts a full 3-way handshake.

Prediction is commonly done at the application level, where content re-

lationships and particular application behavior are known to infer relation-

ships between flows and packets. By performing predicted future work,

packets may be removed from the critical path of an application therefore

achieving improved performance.

2.5. RELATED TAXONOMY TECHNIQUES 26

2.5 Related Taxonomy Techniques

An early study [CDJM91] looks at characterizing TCP/IP conversations. In

this work, TCP applications are broken into two categories: bulk transfer

and interactive. For example, FTP, SMTP, and NNTP are categorized into

bulk transfer while telnet and rlogin belong to the other. This study gives

the different traffic characteristics for the two sets of applications. It indi-

cates that most packets for interactive applications are smaller than 10 bytes

excluding TCP/IP headers and the packet inter-arrival time is mostly de-

pended on user activities, i.e., key-stokes. On the other hand, packets from

bulk transfer applications exhibit variety of packet sizes and their inter-

arrival time is more dependent on transport protocols and physical charac-

teristics of the network. While most of the observations still hold today for

these particular applications, new applications that emerged after the early

1990’s are not covered. For example, the Web, one of the most important

Internet applications, does not seem to fit in either category.

Work like SURGE [BC98], RAMP [cLH03b], and Harpoon [SB04], focus

on application characterization for traffic generation. Instead of analyzing

application traffic at the packet level, they characterize source-level pat-

terns in which data are sent. For example, Web traffic is modeled by SURGE

as a sequence of requests for Web files with particular parameters follow-

ing certain distributions. Similarly, RAMP models Web and FTP traffic with

source-level descriptions of how applications generate this traffic. Finally,

Harpoon uses a simplified model to simulate all Internet traffic, which is

composed of many application sessions. Each session is represented by

2.6. SUMMARY 27

a number of connections and each connection is associated with a file of

a given size. Source-level modeling is another way to categorize applica-

tions. Applications sharing the same source-level model can be classified

into the same category. The difference between source-level modeling and

packet-level characterization is that the former is independent of network

dynamics and underlying transmission schemes.

A more recent work [RSSD04] seeks to classify applications for different

quality of service (QoS) treatment. It put applications into four categories:

interactive, bulk data transfer, streaming, and transactional. This work dis-

tinguishes applications by their statistical signatures: packet size, session

duration, and packet inter-arrival time. Applications that share the same

set of signatures are grouped together. This classification method does not

depend on port numbers to identify applications, but rather on the way in

which an application is used. For example, the Web can be an interface for

file downloading or interactive gaming. Simply using the application port

can not distinguish these two cases.

2.6 Summary

In this chapter, we examined related techniques in five broad categories.

The first four categories cover previous techniques of using flow relation-

ships. The last category introduces related taxonomy techniques for Inter-

net applications.

Observation of many concurrent and sequential network flows moti-

vates much work to avoid inter-flow competition and provide aggregated

2.6. SUMMARY 28

flow control. One class of approaches allow independent flows to share

common state information. A specific central unit may be used to do ag-

gregated congestion control and schedule flow transmissions. While these

approaches successfully eliminate inter-flow competition and avoid unnec-

essary slow-start procedures of TCP, they do not reduce the total number

of flows and packets.

Another class uses multiplexing or aggregation at different levels. Ap-

plication or transport level multiplexing provides aggregated flow control

as well as reducing the number of connections or associations. However,

these approaches introduce undesirable coupling between logically inde-

pendent data streams, which may cause head-of-line blocking. In addition,

with most multiplexing schemes, it is not feasible to aggregate data streams

beyond a single application instance. On the other hand, packet aggrega-

tion at the network level reduces the number of packets in the network, but

does not try to avoid inter-flow competition. Network-level aggregation is

not constrained to particular applications or transport protocols.

Approaches of the third class are designed for coordination between

cluster-to-cluster flows. Among these approaches, one type requires par-

ticipation of end applications while the other type is transparent to end

applications. The former type grants better flexibility to applications for

doing smart inter-flow tradeoff with the cost of more complicated imple-

mentations.

The fourth class of approaches exploit internal relationships between

flows or packets to predict future events. These internal relationships may

result from internal content relationships or particular application behav-

2.6. SUMMARY 29

ior. By doing predicted future work, applications may have a shorter criti-

cal path, resulting in improved performance.

The last class of techniques are for classification of Internet applica-

tions. A taxonomy of Internet applications is important for generalizing

techniques of using flow relationships. Taxonomy techniques can be quite

different depending on what set of characteristics are used to classify ap-

plications. One group of taxonomy techniques look at the source-level pat-

terns of how data are created, while another group focuses on packet-level

characteristics observed in generated traffic.

30

Chapter 3

Background Study on Existence

of Flow Relationships

As a background study for this thesis, we examine the existence of flow

relationships in this chapter. We start with checking the temporal proxim-

ity between flows within several traffic logs. By breaking down flows into

different types based on their corresponding transport protocols and ports,

we further inspect relationships between particular types of flows. There-

after, we check the number of non-full packets (packets that are less than the

full Ethernet MTU size of 1500 bytes) inside each type of flow and examine

the relationships only between flows that have a certain amount of non-full

packets. Finally, we study a list of popular applications using packet traces

in order to understand flow and packet behavior of particular applications.

In the course of these studies, we also examine packet size distribution.

3.1. EXISTENCE OF FLOW RELATIONSHIPS 31

3.1 Existence of Flow Relationships

In this section, we examine the extent to which relationships exist among

network flows between the same host pairs and the same cluster pairs. We

have obtained two sets of trace logs. One set was collected at the link be-

tween the WPI edge router and a commercial ISP (henceforth called WPI

logs). The tool argus [arg] was used to trace IP packets and combine these

packets into flows based on common host, port and transport protocol.

Each record in argus logs describes the number of packets and total bytes

in each direction for a flow in the last minute. The other set was collected

at the head-end of a cable broadband service provider who uses Motorola

cable modem devices (henceforth called ISP logs). The tool tcpdump [tcpa]

was used to trace all IP packets but only save packet headers. The details

of these logs are shown in Table 3.1.

A flow is the collection of all packets over a period of time between the

same source and destination pairs, using the same transport protocol (e.g.

TCP, UDP) and associated port numbers. For a TCP flow, it is normally

bounded by SYN and FIN/RST packets. For flows of other types including

UDP, the end of a flow is decided when a period of idle time (we use five

minutes in our experiment) is observed. To facilitate our study, we define

a flow to include traffic in both directions. Flows influenced by boundary

conditions due to the start and end of logs are not explicitly separated from

other flows. However, only less than 1% of flows are involved in boundary

conditions, which does not likely influence the tone of the results.

Among the five logs, four of them were collected at the end of year 2003

3.1. EXISTENCE OF FLOW RELATIONSHIPS 32

while the other one were gathered more recently in September of 2005. For

the analysis we focused on TCP and UDP flows with 80%-90% of these

flows for TCP traffic. Furthermore, we filter out flows that are incomplete.

We define an incomplete flow as a flow that only has one-way traffic, or a

TCP flow that has less than 3 packets in both directions. These incomplete

flows are mostly caused by unsuccessful connection requests while some

of them we suspect are sent by some automatic port scan programs like

“nmap”. The purpose of this flow relationship study is to find relation-

ship patterns between legitimate flows generated by regular application

sessions and find ways to improve the performance of these applications.

For such a reason, we excluded these “incomplete” flows from the study.

27% to 70% of the flows are incomplete across these logs 1. In Table 3.1, we

exclude these incomplete flows and only show packet and flow counts for

the rest of the flows.

Table 3.1: Log Description

Log Time Length Flow Flow/Min Pkt Pkt/Min

Name (hour) Cnts Cnts

wpi1 Dec’03 24 10.1M 7.0K 687.3M 477K

wpi2 Nov’03 24 8.0M 5.5K 607.7M 422K

wpi3 Sept’05 24 11.7M 8.1K 696.1M 483K

isp1 Dec’03 9.5 5.7M 10.0K 245.6M 430K

isp2 Dec’03 3.5 2.1M 9.8K 82.8M 394K

A flow relationship is identified if there exists temporal proximity be-

1The percentages of incomplete flows are 38%, 27%, 37%, 70%, 53% for wpi1, wpi2, wpi3,
isp1, and isp2 respectively.

3.1. EXISTENCE OF FLOW RELATIONSHIPS 33

tween two flows that share the same scope (same host pairs or cluster

pairs). We use different interval thresholds to check the existence of a rela-

tionship. Let t denote the start time of a new flow and ∆t denote a threshold

value. We say a relationship exists if there is another flow at time (t−∆t).

In other words, using a threshold of zero catches concurrent relationships

where a flow exists when a new flow begins. Using larger threshold values

captures sequential relationships where a flow begins within the given time

interval after a previous flow. Figure 3.1 shows an example of a concurrent

relationship between flow1 and flow2, a sequential relationship between

flow2 and flow3 with the threshold ∆t, and no relationship between flow1

and flow3 with the same threshold.

Time line

FLOW 1

FLOW 2

FLOW 3

∆∆∆∆ t

Figure 3.1: Illustration of Flow Relationships: flow2 and flow1 has a con-
current relationship while flow3 and flow2 has a sequential relationship
given the threshold ∆t

We examined the existence of relationships under different time thresh-

olds as well as within different scopes for each of the five logs. Table 3.2

gives the results for the scope of host-to-host, where each cell is the per-

centage of flows that follow at least one previous flow between the same

host pairs using different time thresholds. We see a significant relationship

between flows even with thresholds as small as 10 seconds.

3.1. EXISTENCE OF FLOW RELATIONSHIPS 34

Table 3.2: Percentage of Host-to-Host Network Flows within a Specified
Time Threshold of a Previous Flow

Time Threshold

Period 0 Sec 10 Sec 30 Sec 180 Sec

wpi1 39% 51% 56% 65%

wpi2 49% 59% 63% 71%

wpi3 28% 40% 43% 50%

isp1 27% 40% 44% 52%

isp2 27% 43% 47% 57%

Table 3.3 shows the results using the same data but under the scope of

cluster-to-cluster. For WPI logs, we treat all WPI hosts as one cluster and

group non-WPI hosts into clusters using BGP routes as others have done

[KW00]. There are about 10% of IP addresses that do not have a corre-

sponding BGP route. We cluster these IP addresses by applying traditional

class C definition. For the ISP logs, all IP addresses are sanitized due to

privacy reasons. The sanitization process scrambles each octet of an IP ad-

dress separately. While we still have one-to-one IP address mapping, the

network information of IP addresses is lost. For such a reason, we clus-

ter IP addresses in ISP logs uniformly with traditional class C. In order to

understand how the clustering method influences the results of flow rela-

tionships, we conducted experiments by using both clustering methods on

WPI logs. The results show that 10% to 15% more flow relationships are

found under the cluster-to-cluster scope when using BGP routes to cluster

IP addresses than when using the traditional class C definition.

These results show that more than 40% of the flows exist in parallel with

3.1. EXISTENCE OF FLOW RELATIONSHIPS 35

Table 3.3: Percentage of Cluster-to-Cluster Network Flows within a Speci-
fied Time Threshold of a Previous Flow

Time Threshold

Period 0 Sec 10 Sec 30 Sec 180 Sec

wpi1 75% 83% 86% 92%

wpi2 77% 84% 87% 92%

wpi3 69% 77% 80% 87%

isp1 41% 51% 54% 61%

isp2 44% 54% 58% 65%

other flows from the same cluster and more than half of flows exist within

10 seconds of a previous flow from the same cluster. The two ISP logs

show fewer relationships than those for the three WPI logs in the cluster-to-

cluster scope. This observation is partially because the nature of the traffic

is different between the two sets of logs. Another reason is that we use a

more conservative clustering method for the ISP logs. When we also use

traditional class C to cluster IP addresses in WPI logs, the percentages for

WPI logs are reduced by 10 to 15%.

There are two special cases under the cluster-to-cluster scope. One case

is that a local host initiates several flows to multiple hosts of a remote clus-

ter. For example, a Web client retrieves multiple Web objects from the same

site but different content servers. Another situation is that multiple hosts

of a local cluster initiate flows to the same remote host. For example, local

clients play Internet games using the same game server. We call the first

case as host-to-cluster and the latter case as cluster-to-host. We distinguish

these two special cases from other cluster-to-cluster relationships because

3.2. RELATIONSHIPS FOR SPECIFIC APPLICATIONS 36

they both have a common end host. The common host has information

for all related flows and therefore can work as a central control unit itself

without introducing a separate cluster coordinator as done by [OMP02].

We show flow relationships for the host-to-cluster and cluster-to-host

cases in Table 3.4 and 3.5 respectively. The results show considerably more

relationships under the two situations than under the host-to-host scope.

When combining the two cases together (adding the two cases together and

subtracting the host-to-host relationships), we see most cluster-to-cluster

relationships belong to either case. When comparing the two cases them-

selves, we do not observe an obvious pattern that one case is more domi-

nant than the other.

Table 3.4: Percentage of Host-to-Cluster Network Flows within a Specified
Time Threshold of a Previous Flow

Time Threshold

Period 0 Sec 10 Sec 30 Sec 180 Sec

wpi1 49% 61% 66% 74%

wpi2 57% 66% 71% 78%

wpi3 40% 51% 54% 61%

isp1 32% 45% 48% 56%

isp2 35% 48% 52% 61%

3.2 Relationships for Specific Applications

The results in Tables 3.2 and 3.3 show the existence of a significant number

of relationships among network flows between hosts and clusters. We fur-

3.2. RELATIONSHIPS FOR SPECIFIC APPLICATIONS 37

Table 3.5: Percentage of Cluster-to-Host Network Flows within a Specified
Time Threshold of a Previous Flow

Time Threshold

Period 0 Sec 10 Sec 30 Sec 180 Sec

wpi1 49% 63% 69% 78%

wpi2 56% 67% 72% 80%

wpi3 37% 52% 58% 67%

isp1 34% 44% 48% 55%

isp2 33% 47% 51% 60%

ther broke down the network flows according to their related applications

and studied the relationship between each type of flow. Compared with

relationships shown for all flows, we found the relationships between dif-

ferent types of flows to be relatively stable and to exhibit a similar pattern

for all the logs. Table 3.6 shows the results for a small sample of applica-

tions from the wpi1 log.

We identify the type of a flow by mapping the used common port num-

ber to its associated application as specified by [por]. This mapping method

is accurate if a port number is used exclusively by one application and

that application always uses the corresponding port. The first condition

holds for most applications that have registered particular port numbers

with IANA (Internet Assigned Numbers Authority). However, the second

condition is more loosely followed. An application may use a port num-

ber other than the assigned one. Many current P2P applications do not use

a fixed port number, instead they negotiate a dynamic port at the begin-

ning of a session. When these cases happen, it is hard to catch all traffic

3.2. RELATIONSHIPS FOR SPECIFIC APPLICATIONS 38

flows belonging to one application without the access to the application-

level information of packets. In our experiments, we distinguish a flow

for a particular application only if the flow uses the port assigned for that

application. As a result, we may miss flows that actually belong to that

application, but use other port numbers. However, the number of flows

for an application does not change the tone of the results. For the five logs

in Table 3.1, we see different flow counts for almost any application, but

observe relatively stable relationships between different types of flows.

The first column in Table 3.6 is the application type based on transport

protocol (“t” for TCP and “u” for UDP) and port number. Columns 2 and

3 show related flows that exist between two hosts for thresholds of 0 sec-

onds (concurrent flows) and 30 seconds (a previous flow existed within the

last 30 seconds). Similarly, columns 4 and 5 show related flows that exist

between hosts in two clusters. We again show results for a threshold of 0

and 30 seconds.

The results shown in each cell of the table are the percentages of flows

for the flow type in the first column that are related to other types of flows

(including its own type). To conserve space we only list specific flow types

when the relationship occurs for more than 10% of flows. In addition, we

show cumulative percentages for all TCP and UDP flows.

The results in Table 3.6 show a number of relationships. A FTP (File

Transfer Protocol) or SSH (Secure SHell) flow follows a previous flow of

the same type in about 15% of cases within the same host pairs. The per-

centages become much larger under the scope of the same cluster pairs,

where a FTP flow starts within 30 seconds of a previous FTP flow for over

3.2. RELATIONSHIPS FOR SPECIFIC APPLICATIONS 39

Table 3.6: Relationship between Selected Flow Types for wpi1 Log
t: TCP; u: UDP; for example: u500 means flows using UDP port 500

AppPort h2h:0s h2h:30s c2c:0s c2c:30s

t21
(ftp)

tcp:3.3%
udp:0.0%

t21:13.8%
tcp:14.5%
udp:0.0%

t21:63.1%
tcp:64.7%
udp:14.3%

t113:26.8%
t21:93.7%
tcp:95.0%
u500:11.2%
udp:25.5%

t22
(ssh)

tcp:9.1%
udp:0.1%

t22:15.9%
tcp:17.0%
udp:0.1%

t22:24.7%
tcp:44.0%
u500:12.5%
udp:18.5%

t110:18.1%
t22:33.5%
t443:14.6%
t80:12.1%
tcp:57.5%
u500:15.1%
udp:23.6%

t25
(smtp)

tcp:5.2%
udp:0.0%

t25:18.0%
tcp:18.1%
udp:0.0%

t25:11.7%
tcp:15.4%
udp:9.4%

t25:30.0%
tcp:34.9%
u53:15.8%
udp:16.9%

t80
(http)

t80:43.0%
tcp:43.1%
udp:0.1%

t80:58.6%
tcp:58.7%
udp:0.1%

t80:61.1%
tcp:62.2%
u53:10.0%
udp:11.4%

t80:91.9%
tcp:92.4%
u53:14.1%
udp:15.7%

t113
(auth)

t25:86.9%
tcp:98.4%
udp:0.0%

t25:86.9%
tcp:98.5%
udp:0.0%

t25:87.7%
tcp:99.2%
udp:5.3%

t113:11.2%
t25:87.8%
tcp:99.7%
u53:13.7%
udp:15.5%

t554
(rtsp)

t554:10.5%
tcp:13.8%
udp:4.5%

t554:53.1%
tcp:55.7%
u6970-7170:10.4%
udp:11.8%

t554:47.3%
t80:16.8%
tcp:63.7%
u6970-7170:38.8%
udp:49.5%

t554:72.6%
t80:23.0%
tcp:82.2%
u53:16.4%
u6970-7170:42.6%
udp:60.8%

t7070
(real-stream)

t554:40.0%
t7070:36.0%
t80:68.0%
t8080:56.0%
tcp:84.0%
udp:0.0%

t554:76.0%
t7070:72.0%
t80:82.0%
t8080:76.0%
tcp:86.0%
udp:0.0%

t554:40.0%
t7070:36.0%
t80:86.0%
t8080:56.0%
tcp:92.0%
udp:2.0%

t554:76.0%
t7070:74.0%
t80:92.0%
t8080:76.0%
tcp:92.0%
u53:10.0%
udp:10.0%

u6970-7170
(real-stream)

t554:53.9%
tcp:54.5%
udp:6.7%

t554:54.0%
tcp:54.6%
u6970-7170:32.4%
udp:34.2%

t554:54.0%
tcp:54.7%
u6970-7170:42.6%
udp:45.2%

t554:54.1%
tcp:54.9%
u6970-7170:69.6%
udp:74.5%

u27015-27017
(halflife)

tcp:0.0%
udp:2.8%

tcp:0.0%
udp:5.1%

tcp:1.5%
u27015-
27017:11.0%
udp:12.3%

tcp:2.2%
u27015-
27017:30.9%
udp:32.2%

u41170
(blubster)

tcp:0.0%
udp:1.2%

tcp:0.0%
u41170:13.0%
udp:13.0%

tcp:5.1%
udp:2.6%

tcp:7.3%
u41170:15.5%
udp:16.8%

3.2. RELATIONSHIPS FOR SPECIFIC APPLICATIONS 40

90% of cases. Other types of flows like secure key exchange (using UDP

port 500), Web (using TCP ports 80 and 443), are also often observed before

a FTP or SSH flow within the same cluster pairs.

The authentication protocol using TCP port 113 is used 86.9% of the

time with the SMTP protocol (t25). The DNS protocol (u53) precedes most

applications when we consider cluster-to-cluster sequential relationships.

HTTP flows (t80) are used 43% of the time concurrent with a previous

HTTP flow between the same hosts and over 60% of the time concurrent

with hosts in the same cluster. The last column shows that over 90% of

HTTP flows occur within 30 seconds of a previous HTTP flow between

hosts in the same cluster.

The “real” stream application normally uses multiple flows. The control

flow using RTSP protocol (t554) is frequently seen in parallel with the data

flows using either TCP (t7070) or UDP (u6970-7170). We also observe the

TCP-based Real player streaming frequently occurs in temporal proximity

to HTTP.

“Halflife”, a popular on-line game, is often played concurrently or se-

quentially by different users within the same cluster. Network flows gener-

ated by “blubster”, a peer-to-peer file sharing application, also show a fair

amount of sequential relationships to its own type.

Again, we observe numerous flow relationships for particular applica-

tions and these relationships exhibit relatively stable patterns across all the

traffic logs. These patterns are due to different reasons. For example, the

relationship between DNS flows and other application flows is caused by

application behavior. The relationship between one Web flow with another

3.3. NON-FULL PACKETS INSIDE FLOWS 41

Web flow is mostly because of the content relationship between Web ob-

jects. The observation of concurrent FTP flows or “half-life” game flows

are due to user access activities. While the reasons behind these patterns

may be different, they can all be used to infer future flows or packets.

3.3 Non-full Packets inside Flows

Exploiting flow relationships requires two conditions. The presence of flow

relationships is one of them. The other requirement is the existence of avail-

able packet space in these related flows. If all packets are full, there is little

use of flow relationships. On the other hand, if most packets are small,

there is a big potential that the unused transmission capacity can help to

improve performance and transmission efficiency of Internet applications.

We first study the packet sizes for both the downstream and upstream

directions. We define downstream as the direction from an application server

to an application client while upstream as the reverse direction. We ob-

served that all WPI logs show a similar pattern while all ISP logs show

another. Figure 3.2 and Figure 3.3 give packet size distributions for the

wpi1 log and isp2 log respectively. We note that each record in a WPI log

gives aggregated information for a flow in the past minute. It only provides

the total packet count and byte count in that period instead of details for

each packet. For this reason, we calculate the average packet size and use

it to represent the size for all packets included in each record. If a record

is the first or the last record for a TCP flow, we assume there is a SYN or

FIN packet that has the minimal packet size and exclude the packet from

3.3. NON-FULL PACKETS INSIDE FLOWS 42

the average calculation.

Not surprisingly, most upstream packets are small. Around half of the

upstream packets are pure ACKs. The average packet size for all upstream

packets for both logs is around 400 bytes. For the downstream direction,

the two logs show different patterns. For the isp2 log, over 60% of packets

are either full (i.e. 1500 bytes) or empty (i.e. 40 bytes) and the average

packet size is around 700 bytes. On the other hand, for the wpi1 log, most

packet sizes are between 40 bytes and 1500 bytes with an average at 850

bytes. One reason for the difference between the two sets of results is that

we use the mean packet size to represent all packet sizes of a record in

WPI logs, which blurs the edges at both ends. Another reason is that we

observed much P2P traffic in ISP logs while there is only a little in the WPI

logs. Most packets involved in P2P traffic are either full for data chunks or

empty for pure ACKs.

Compared with previous work [TMW97, MC00, FKMkc03, FML+03],

we do not see a clear tri-modal distribution in our study. This observation

is largely because of the wide use of Ethernet with a 1500B MTU and that

modern TCP/IP implementations use path MTU [MD90] instead of the de-

fault 576 bytes. A recent study [SPH05] also confirms that the mode of 576

bytes is not observed in traffic logs collected in several locations.

Despite the tri-modal distribution shapes, independent work shows com-

patible results of packet size characteristics. An earlier study [TMW97] on

two MCI backbone links show only 10% of packets reach 1500 bytes while

nearly half of packets are 40 to 44 bytes in length. A later longitudinal

study [MC00] on traffic at the Ames Internet Exchange site also gives sim-

3.3. NON-FULL PACKETS INSIDE FLOWS 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

C
D

F

Size of Packet (bytes)

upstream

downstream

Figure 3.2: Packet Size Distributions for wpi1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

C
D

F

Size of Packet (bytes)

upstream

downstream

Figure 3.3: Packet Size Distributions for isp2

3.3. NON-FULL PACKETS INSIDE FLOWS 44

ilar statistics. Another longitudinal study [FKMkc03] based on NLANR

PMA traffic archives indicates that the average packet sizes are between

500 to 1000 bytes for 20 sites. A more recent measurement [FML+03] from

Sprint IP backbone shows various packet size distributions for a number

of links. The percentages of full-size packets range from 10% to 30% while

packets around 40 bytes are 10% to 70% for different links. A current ongo-

ing study [SPH05] shows similar results for the two modes at 40 bytes and

1500 bytes. However, it also shows a strong mode at 1300 bytes for some

links because of the usage of VPN (Virtual Private Network).

All of these results show a significant amount of unused packet capac-

ity in current Internet traffic. Even for downstream traffic, there are still

over 60% of packets that are less than the MTU size of 1500 bytes. The ca-

pacity will further increase once MTU sizes become larger. A proposal of

jumbo frame [KSO+01] suggests using 9000 bytes as the MTU size for giga-

bit Ethernet in order to improve transmission performance. This MTU size

is also being supported by more routers on their WAN interfaces. Jumbo-

grams defined in IPv6 [BDH99] further extends IP payload size to exceed

64K bytes. There is great potential for this unused transmission capacity to

be exploited for the purpose of improving application performance. Note

that the use of VPN increases packet size due to the overhead incurred by

IPSec (IP Security). In practice, packets to be sent over a VPN tunnel are

recommended not to exceed 1300 bytes in order to avoid fragmentation

once the IPSec header is added [SPH05]. However, even under the limit of

1300 bytes, there are still much available packet space. With the usage of

jumbo frames, the much increased packet size overly counteracts the effect

3.3. NON-FULL PACKETS INSIDE FLOWS 45

introduced by the IPSec overhead.

While we have seen many flow relationships and much available packet

space, a question is whether the available space can be combined with the

flow relationships. In other words, only relationships between flows that

have available space are useful. For this reason, we count a flow relation-

ship only when both flows have over a certain level of non-full packets. We

say a packet is a non-full packet if it is smaller than the Ethernet MTU of 1500

bytes. We define a non-full flow as a flow that has equal or above a certain

amount of non-full packets. We use 20%, 50%, and 80% as thresholds to

decide whether a flow has enough non-full packets. For example, the 50%

threshold means that a flow relationship is counted only when a flow has

equal or above 50% non-full packets and see another flow that also has at

least 50% non-full packets. We show the results of non-full flow relation-

ships in Table 3.7 for the wpi1 log under the time threshold of 10 seconds.

Results for other logs and different time thresholds have the same tone and

are not shown.

Table 3.7: Flow Relationships between Non-full Flows with Different
Thresholds for the wpi1 Log under the Time Threshold of 10 Seconds

Non-full Scope

Pkt ≥ h2h h2c c2h c2c

0% 51% 61% 63% 83%

20% 50% 60% 61% 82%

50% 46% 56% 58% 80%

80% 41% 52% 53% 77%

The numbers at the 0% line are copied from previous results when we

3.4. APPLICATION TRAFFIC BEHAVIOR 46

did not put the non-full packet constraint. It is used as the baseline for com-

parison with the results when such a constraint is applied. We do not see

that flow relationships have changed much due to the non-full packet con-

straint. For the 20% threshold the change is trivial and for the 80% thresh-

old the drop is less than 10 percent. A further investigation shows that

most network flows satisfy the constraint of having enough non-full pack-

ets, which explains the minor influence of the constraint. We also observed

that a small amount of flows have few non-full packets, but contribute sig-

nificantly to the total packet count. Because these flows amount to only

a small portion of the total flows, they do not influence the results much

even after they are excluded from relationship check. However such flows

do have a big influence on packet aggregation, which we will discuss in

Chapter 8 .

3.4 Application Traffic Behavior

The results from the previous sections show that significant relationships

do exist between network flows and most of these flows have a certain

amount of non-full packets. However, the results do not reflect the spe-

cific traffic patterns of packets within a flow. Knowledge of specific traffic

behavior is important as we look at exploiting the relationships between

network flows. We studied the packet and flow behavior for a number of

sample applications such as SSH, the Internet Explorer browser, RealAu-

dio, RealVideo, Windows Media Player, QuickTime, network games, in-

stant messaging, and electronic mail applications. From the results of this

3.4. APPLICATION TRAFFIC BEHAVIOR 47

study we make a number of observations about the behavior of applica-

tions:

• A single application often causes multiple flows to be created to the

same host or hosts within the same cluster.

• Interactive applications such as SSH, games, and instant messaging

generally use small packets. Applications over TCP use small packets

in setting up a connection and sending acknowledgments.

• Many applications that use TCP have the PUSH flag set if the packet

is less than full-MTU size, even if the packet may not need to be sent

immediately to avoid control by Nagle’s algorithm, which attempts

to aggregate small amounts of TCP data [Nag84]. The setting of the

PUSH flag causes the data to be immediately sent.

• The packet size for streaming applications depends on the encoding,

but most packets we observed are not full. When TCP is used for

streaming, the server always uses the PUSH flag.

While these observations are not novel, each of these is a factor as we ex-

amine exploiting the relationships between flows. In Chapter 4 we discuss

general approaches of exploiting flow relationships and take these obser-

vations into account.

3.5. SUMMARY 48

3.5 Summary

In this chapter, we have shown results from a background study on flow

relationships. We found many flows between the same host or cluster pairs

exhibit temporal proximity. This observation indicates a significant amount

of relationships existing between network flows. We further quantified

these relationships by examining the possibilities when two types of flows

happen together. Results show that many types of flows are coupled due

to application behavior or user access patterns.

The study on packet size characteristics shows that most packets are

not full and many of them are small. The unused transmission capac-

ity provides great potential in the sense of improving application perfor-

mance. Much useful information can be sent without additional transmis-

sions. After applying the constraint of having a minimal percentage of non-

full packets, we still observe the existence of numerous flow relationships.

By monitoring packet interactions for several popular applications, we

noticed several interesting facts. One is that many applications generate

multiple flows, which directly leads to relationships between these flows.

Another observation is that most packets are less than the full MTU size,

which is partially because the “PUSH” flag is frequently used to defeat the

delay caused by the Nagle’s algorithm [Nag84].

49

Chapter 4

Framework of Exploiting Flow

Relationships

The results in the previous chapter indicate the existence of numerous flow

relationships across flows and much available packet space inside flows.

These facts are encouraging as we seek to exploit flow relationships and

enhance applications in terms of performance, quality, and transmission

efficiency.

In this chapter, we establish a framework on possible techniques that

exploit flow relationships and available packet space. By using a taxon-

omy, we break Internet applications into different categories based on their

traffic characteristics and performance concerns. We then discuss the po-

tential improvements that can be brought by using flow relationships for

these application categories. Thereafter, we propose particular techniques

that exploit relationships within a flow or across flows. Finally, we examine

4.1. INTERNET APPLICATION TAXONOMY 50

where these techniques fit into the current TCP/IP protocol stacks.

4.1 Internet Application Taxonomy

In this thesis, we are looking to exploit flow relationships and non-full

packet relationships in a systematic way. Instead of locking in a particu-

lar technique for a specific application, we search for general methods of

using relationships. For that purpose, we need to classify both Internet ap-

plications and techniques that exploit flow relationships. We expect that a

technique designed for one application is also applicable to other applica-

tions of the same type.

Applications can be classified quite differently depending on the goals

set for the classification. In terms of using flow and non-full packet rela-

tionships, we seek to exploit the available packet space in or across flows.

Consequently, we are interested in the following characteristics and cate-

gorize applications based on them.

• Packet-level statistics: what are the packet size characteristics? Small

packet sizes indicate much available space in these non-full packets.

• Flow-level statistics: how many non-full packets are inside a flow?

The number of non-full packets along with packet sizes give the total

remaining capacity provided by a flow.

• Performance concerns: what is the most important factor that influ-

ences the performance of an application? This factor decides how we

should exploit available packet space.

4.2. A STAGE-BASED TAXONOMY 51

Having reviewed the previous taxonomy techniques in Section 2.5, we

find none of them is fully appropriate for our objective. We see that the

source-level modeling techniques such as SURGE, RAMP, and Harpoon,

are good for traffic generation tools. However they include many appli-

cation level details while lacking explicit information about packet level

characteristics such as the packet size. Work of [CDJM91] splits TCP appli-

cations into either bulk transfer or interactive categories, where each cat-

egory has different packet level characteristics. However, this taxonomy

does not include UDP traffic, nor many current applications such as Web

and streaming. The signature-based categorization method [RSSD04] gives

insights of how application sessions differentiate from each other in packet

size, duration, and packet inter-arrival time. However, it treats the whole

duration of each application session uniformly and does not examine inter-

flow relationships.

4.2 A Stage-based Taxonomy

Previous taxonomy techniques treat an application session uniformly and

categorize applications based on the characteristics of the whole duration.

The problem with these techniques is that an application session can have

different characteristics in different time periods, each period having a dif-

ferent performance concern. For example, a FTP session, which is cate-

gorized as bulk-transfer in the previous work, is in fact composed of two

sequential time periods. In the first period, transmission control and file

meta information are exchanged between a client and a server. File trans-

4.2. A STAGE-BASED TAXONOMY 52

Table 4.1: Different Types of Application Stages

Stages Packet Size Non-full Packets

Downstream Upstream Downstream Upstream

Bulk Transfer Big Small Few Many

Interactive Small Small Many Many

Transactional Small Small A Few A Few

Streaming Vary Small Vary Manya

aIf TCP is used for transmission

fer actually takes place in the second period. We observe different traffic

characteristics during the two time periods. In the first period, the pack-

ets are sent back and forth in a “ping-pong” pattern and the packet sizes

are generally small. User-perceived latency is sensitive to long round trip

times (RTT) and packet loss. In the second period when bulk transfer takes

place, traffic follows a packet-train pattern [CDJM91] and most packets are

full. The tranmission performance is mainly determined by the available

bandwidth and is more resilient to packet loss when fast retransmission

and recovery schemes take control [Ste97].

In this work, we use stages to represent such time periods that have

different traffic characteristics. In Table 4.1, we list four stage types that

are commonly seen in application sessions, along with their characteris-

tics. We follow the definition of “downstream” and “upstream” given in

Section 3.3. Note that while we choose the same categories as those pro-

posed in [RSSD04], we use them to distinguish application stages instead

of separating application themselves.

The bulk transfer stage involves a large volume of data transfer over the

4.2. A STAGE-BASED TAXONOMY 53

network without real-time constraints. Most packets in the downstream di-

rection are full while the acknowledgment (ACK) packets in the upstream

direction are mostly empty. The number of packets varies with the data

size. For large data transfers, many full-size packets are generated in the

downstream direction while a lot of ACKs are generated in the upstream

direction. We often observe this type of stage in big file transfers using

FTP, P2P, or HTTP. These applications are usually over TCP due to its reli-

able and in-order transmission features. Available bandwidth is the major

contributor to the speed of bulk transfer, assuming that both TCP send-

ing and receiving windows are big enough. While packet loss also influ-

ences the performance of this stage, in most cases it is just a reflection of

network congestion where the sending rate is higher than available band-

width. However, packet loss may happen independently of network con-

gestion in certain situations such as over wireless segments with poor sig-

nals. The current TCP mechanism is not able to distinguish this situation

and transmission speed may degrade significantly.

The interactive stage includes the traffic generated by multiple real-time

interactions between a client and a server. The client behavior is generally

controlled by human activities such as key-strokes. A telnet or SSH session,

as an example, is composed of a single interactive stage. Packets in the up-

stream direction normally carry commands and packets in the downstream

direction enclose responses. For both directions, packets are small and only

a few packets are involved in each round trip. The duration of an interac-

tive stage can be long and includes many back and forth packets. Sessions

for many network games and Internet chatting (messenger) applications

4.2. A STAGE-BASED TAXONOMY 54

are also composed of interactive stages. Due to the real-time constraint,

this type of stage is sensitive to long round trip times. For applications

over TCP, packet loss causes timeouts and retransmissions, which also add

user perceived latency. Because of only a few packets in each round trip

for most interactive stages, fast retransmission and recovery [Ste97] are not

likely to take control.

The transactional stage comprises a small number of request-response

pairs, which can be combined together to represent a transaction. Unlike

the interactive stage, the transactional stage does not require human in-

volvement and packets are normally generated by applications themselves.

Examples like a domain name lookup or an email exchange session are

composed of this type of stage. TCP connection establishment, as a special

case, can also be seen as a transactional stage which includes three hand-

shaking packets. Like the interactive stage, packets in the transactional

stage are also small. However, unlike the interactive stage, the transac-

tional stage is normally short and only includes a few packets. For the

same reason as the interactive stage, the transactional stage is also sensitive

to long round trip times and packet loss.

The streaming stage includes audio and/or video traffic with real-time

constraints. Depending on the encoding methods of the multimedia data

and the streaming applications, packet size in the streaming stage varies

from half to full MTU size [LCK02]. The duration of a streaming stage also

has a wide range from several minutes to tens of minutes [LCKN04]. For

most streaming stages, a minimal available bandwidth is required in order

to have acceptable performance. Streaming stages that only involve data

4.2. A STAGE-BASED TAXONOMY 55

traffic in one direction such as audio broadcast or video on demand, long

round trip time and delay jitter can be compensated by using a receiver-

side buffer. However, for streaming stages requiring real-time interactions

such as voice over IP (VoIP), long delay and delay jitter may cause severe

performance problems. For situations when media data is ready before

streaming, some applications push data as fast as possible at the begin-

ning (called pre-buffering) and send chunks of data periodically afterwards

[LCK02]. In that case, the pre-buffering stage can be seen as a bulk transfer

stage and the rest of the session can be seen as a streaming stage.

These types of stages are abstracted from commonly seen applications.

They may not be complete, nor be expected to cover all applications. For

example, we do not study Internet game applications extensively. Particu-

lar game applications may not fit into any of the above categories. Also note

that the same application may be composed of different stages depending

on how it is used. For example, big file transfers using Web applications

consist of bulk transfer stages while on-line transactions with Web inter-

faces are composed of interactive stages. In addition, the borders between

these stage categories may not be strictly clear. For example, a VoIP ses-

sion shares partial characteristics with both the streaming and interactive

stages.

An application session can be composed of the four types of stages ei-

ther sequentially or in parallel. The previous example of the FTP session

can be seen as the concatenation of two consecutive stages: interactive and

bulk transfer. A Web session, as another example, can be seen as an inter-

leaving of transactional stages and bulk-transfer stages. In each transaction

4.3. POTENTIAL PERFORMANCE IMPROVEMENTS 56

stage, a connection is first established (if no previous connection exists or

no persistent connection is in use) and then a request for an object is issued.

The corresponding object is downloaded in the subsequent bulk-transfer

stage. It is possible that an application session may comprise only a sin-

gle stage. For example, a domain name lookup session can be seen as a

single transactional session, which includes several request and response

messages.

We need to note that stage and flow are two different concepts. We use

stages to distinguish periods in an applications session that have different

packet characteristics and performance concerns. On the other hand, we

use flows to capture flow relationships within one application or across

applications. A flow relationship may be induced by different reasons in-

cluding application behavior, content relationships, and user access pat-

tern. However, a stage only reflects the nature of an application. A flow

may include multiple stages. For example, a ftp data flow includes a trans-

actional stage for TCP connection establishment and a followed bulk trans-

fer stage. We join these two concepts together by looking at the techniques

that exploit flow relationships to help different types of stages.

4.3 Potential Performance Improvements

In the previous section, we defined four types of stages and use them to

compose application sessions. In this section, we look for potential per-

formance improvements achieved by exploiting flow relationships. As an

application session may be composed of multiple stages and each type of

4.3. POTENTIAL PERFORMANCE IMPROVEMENTS 57

stage can have different performance concerns, we examine each potential

improvement for its best applicable stages. In the later part of this chapter,

we discuss a number of techniques that exploit flow relationships. We ab-

stract the potential improvements that are brought by these techniques in

several categorizes and list them in Table 4.2.

Table 4.2: Potential Performance Improvements

Potential Improvement Applicable Stage(s)

Reducing total packets All

Providing better information All

Avoiding timeouts Interactive

Transactional

Reducing the number of RTTs Transactional

Reducing total packets: we have observed many non-full packets in the

packet size study conducted in Chapter 3. Even for a bulk transfer

stage, much packet space is available from the ACK packets in the

upstream direction. Could small packets be merged so that the to-

tal number of packets in the Internet is reduced? Reduction in the

total number of packets brings several benefits. 1) The routing table

lookup cost for each packet is irrelevant with respect to the size of

the packet. Fewer packets means a reduced workload for immediate

routers/switches. 2) Fewer yet bigger packets improve the buffer-

ing efficiency of routers. Most router implementations buffer packet

headers and bodies separately [BS99]. Packet headers are stored in a

faster memory while packet bodies are saved in a slower but cheaper

4.3. POTENTIAL PERFORMANCE IMPROVEMENTS 58

memory. The fast memory being expensive decides the packet queue

size. 3) By letting packets for the same destination share the same IP

header, a fraction of overhead can be saved.

Providing better information: our packet size study in Chapter 3, as well

as other studies, show a significant amount of ACK-only packets for

TCP flows. This phenomenon is mostly caused by the nature of TCP

and due to that most applications only use a TCP connection to send

data in one direction. As an ACK needs to be sent back anyways,

can it provide better information than just an acknowledgment to

previously received packets? A TCP connection could have a bet-

ter understanding of network conditions and packet loss situations

if provided with improved information. The TCP timestamp option

[JBB92] and selective acknowledgment (SACK) option [MMFR96] are

two examples in which higher quality of information than regular

ACKs is provided. The former makes the RTT calculation easier and

the latter gives more details of packet loss. There are other possible

techniques in this direction. We will discuss them shortly.

Avoiding timeouts: for interactive and transactional stages, there is nor-

mally only one or two packets in each RTT. A packet loss will cause

timeout and retransmission, which normally occurs long after a RTT.

Avoiding long timeouts will help to reduce user-perceived latency. As

packet sizes in both stages are small, we see two possibilities to avoid

a long timeout. One is to let a timeout happen earlier than a nor-

mal timeout by piggybacking the retransmission with a subsequent

4.3. POTENTIAL PERFORMANCE IMPROVEMENTS 59

packet. This method may cause premature retransmissions, but not

extra packets. The other method is to protect packets from loss by

sending redundant data such as forward error correction (FEC). The

protective data can also be piggybacked into other packets without

introducing extra transmissions.

Reducing the number of RTTs: as we have seen potential improvements

to avoid timeouts, is it possible to avoid RTTs as well? If we can pre-

dict future packets, we may send them ahead of time to avoid future

RTTs. If the predicted packets can be piggybacked with the current

ongoing traffic, the cost is minimal even if the prediction is wrong.

It is hard to predict future packets for interactive stages which nor-

mally involve unpredictable human activities. It is also hard to con-

jecture prospective content for a streaming stage. For bulk transfer,

even though prediction is possible, most packets in the downstream

direction are full and piggybacking is not possible. As a result, the

transactional stage is the only stage in which both prediction and

piggybacking are achievable. As an example, the transactional TCP

(T/TCP) [Bra94] proposes to send the request message and the FIN

packet together with the initializing SYN packet. It exploits a sim-

ple relationship among the SYN, the request, and the FIN packets

that normally exist in short transactions using TCP. In more complex

cases, prediction needs the input of application-level information and

flow relationships that exhibit a relatively fixed pattern.

4.4. TECHNIQUES USING RELATIONSHIPS WITHIN A FLOW 60

We seek to achieve the above improvements by exploiting available

packet space in existing traffic, therefore not introducing additional pack-

ets. However, these improvements do not necessarily reduce the total num-

ber of bytes. In general, transmission of a packet involves both per-packet

and per-byte costs. The former includes the processing time for routing

and switching in the intermediate routers. The latter includes buffering

and transmission time incurred for each byte. For most techniques we will

dicuss below, they do not introduce additional packets or even reduce the

number of packets. However, these techniques do not seek to explicitely

reduce the number of total bytes. In some cases, there could be more bytes

introduced. We will discuss this issue in more detail as we examine each

technique.

4.4 Techniques using Relationships within a Flow

After exploring potential performance improvements that can help appli-

cations in different stages, we now look at particular techniques that exploit

flow relationships to achieve these expected improvements. There are two

types of flow relationships. One type of relationships are between pack-

ets within a flow (henceforth called intra-flow relationships). The other type

is between packets across flows (henceforth called inter-flow relationships).

In this section, we focus on exploiting the first set of relationships. In Ta-

ble 4.3, we list particular techniques that exploit intra-flow relationships

under different categories of the potential performance improvements we

have discussed in Section 4.3.

4.4. TECHNIQUES USING RELATIONSHIPS WITHIN A FLOW 61

Table 4.3: Techniques using Intra-flow Relationships

Potential Improvement Applicable Stage(s) Intra-Flow Techniques

Reducing total packets All Data piggybacking

[Chapter 6]

Providing better information All Enhanced ACK

[Chapter 7]

Avoiding timeouts Interactive and Aggressive timeout

Transactional

Reducing the number of RTTs Transactional Packet prediction

[Chapter 5]

Data piggybacking: while TCP allows ACKs to be piggybacked in data

packets, our technique uses ACKs to piggyback data. Previous stud-

ies [TMW97, MC00, FKMkc03, FML+03] and our packet size study

in Chapter 3 show that nearly a half of TCP packets are only ACKs

without any payload. As many ACK-only packets exist in the Inter-

net, there is a good chance to piggyback a significant amount of data

without introducing extra packets. This method fits best for the bulk

transfer stage where many ACKs are present in the upstream direc-

tion. One scenario of using data piggybacking is in P2P applications

such as “BitTorrent” (BT) [Coh03, Tur05]. The “tit-for-tat” incentive

mechanism of BT requires users to share their data resource at the

same time when retrieving data from somewhere else. We investi-

gate this approach in greater depth in Chapter 6.

Enhanced ACKs: to help provide higher quality of information for appli-

cations, we suggest to have ACKs include better information than

4.4. TECHNIQUES USING RELATIONSHIPS WITHIN A FLOW 62

what they currently do. Like data piggybacking, this method also ex-

ploits the available packet space in the ACK packets in the upstream

direction. For example, the current TCP timestamp option [JBB92]

provides an easy way to calculate RTT between two end hosts. How-

ever, we find that there is still room to extend this option to offer en-

hanced information. We propose to add timestamps to record when

data packets are received in addition to the existing timestamps which

record only when data packets are sent. By using this additional in-

formation, the sender can calculate one-way delay jitters as well as

have a more accurate estimation of RTTs. We will discuss in more

detail the enhanced timestamp option in Chapter 7. In general, en-

hanced ACKs help TCP to have a better understanding of network

conditions, which is especially useful for applications that are sensi-

tive to network dynamics, such as those that include bulk transfer or

streaming stages.

Aggressive timeout: to avoid a long timeout when packet loss occurs, one

way is to let the sender retransmit more aggressively. A drawback

of aggressive timeout is that it may cause premature retransmissions.

However, we may require that an aggressive retransmission only hap-

pens if it can be piggybacked into a succeeding packet, so that no

extra packets are introduced. It is reasonable to assume that prema-

ture retransmissions do not occur often and retransmitted message

sizes are small, in which case this method does not introduce many

additional bytes. Aggressive timeout fits best in interactive and trans-

4.4. TECHNIQUES USING RELATIONSHIPS WITHIN A FLOW 63

actional stages in which packet sizes are small and user-perceived la-

tency is sensitive to packet loss. While we do not examine the aggres-

sive timeout method within a flow, we do investigate the possibilities

of sending duplicate packets using related flows in Chapter 9.

Packet prediction: it is possible to predict future packets by exploiting re-

lationships between packets within a flow. These predicted packets

can be sent with the current ongoing traffic if there is enough avail-

able packet space. If the prediction is correct, we save a number of

RTTs. If the prediction is wrong, only minimum costs are incurred as

no extra packets are introduced. The accuracy of prediction highly

depends on the stability of relationships observed between packets.

In Chapter 5, we illustrate how relationships between domain names

are used to predict future queries with the help of application-level

knowledge.

All the above four techniques exploit available packet space and packet

relationships within a flow. Both the data piggybacking and enhanced-

ACKs approaches use the available space provided in ACK packets in the

upstream direction of a TCP flow. The former attempts to improve trans-

mission efficiency while the latter seeks to provide better quality of infor-

mation. Aggressive timeout tries to use temporal relationships between

consecutive packets within a flow and utilizes a succeeding packet to pig-

gyback an aggressive retransmission. Finally, packet prediction takes ad-

vantage of packet relationships that exhibit relatively stable patterns.

4.5. TECHNIQUES USING RELATIONSHIPS ACROSS FLOWS 64

4.5 Techniques using Relationships across Flows

In the previous section, we have discussed approaches that use available

packet space in a flow to help the flow itself. As we have observed many

flow relationships across flows in Chapter 3, it is also possible to exploit

the available packet space from all related flows. In this section, we ex-

amine how inter-flow relationships can be used to help with application

stages. In the last column of Table 4.4, we list particular techniques that

exploit inter-flow relationships under their corresponding categories of the

potential performance improvements.

Table 4.4: Techniques using inter-flow Relationships

Potential Improvement Applicable Stage(s) Inter-flows

Reducing total packets All Packet Aggregation

[Chapter 8]

Providing better information All Information Sharing

Avoiding timeouts Interactive, Critical Pkt Piggybacking

Transactional, and [Chapter 9]

Streaming

Reducing the number of RTTs Transactional Upcoming Flow Prediction

Packet aggregation: merging small packets is a way to improve transmis-

sion efficiency. For example, the Nagle’s algorithm [Nag84] was de-

signed for that purpose, but only for messages within one TCP flow.

We can extend the scope to aggregate packets from multiple flows.

For example, packets from a Web flow can be combined with packets

4.5. TECHNIQUES USING RELATIONSHIPS ACROSS FLOWS 65

from another Web flow or a streaming flow as long as the merged

packet size does not exceed the MTU. There are better opportuni-

ties to aggregate packets from multiple flows than from just one flow

while still maintaining a reasonable delay in favor of aggregation. We

examine the gain of packet savings by using packet aggregation in

Chapter 8.

Information sharing: with the presence of flow relationships, it is possi-

ble to let a flow share information from previous or concurrent flows.

Previous work such as Ensemble-TCP [EHT00] and Congestion Man-

ager (CM) [BRS99] use a shared tcp control block (TCB) and a cen-

tral unit respectively to facilitate information sharing among flows

within the same host pair. By employing an aggregation point (AP)

in each cluster, another study [OMP02] allows information sharing

across flows within the same cluster pair. As an extension to the tech-

nique of enhanced ACKs within a flow, we may use ACKs or SYN

packets to carry the information obtained from other flows. This

extension allows information sharing among flows within the same

host-to-cluster pair without demanding for an additional device such

as an AP. A scenario for this type of usage is that in a Web session,

in-line objects of one Web page are served by multiple servers in the

same site. The first connection to the site has no previous informa-

tion to use. But for subsequent connections, the same receiver can

use SYN or ACK packets to provide to senders the information such

as RTTs or congestion window sizes that are obtained from previous

4.5. TECHNIQUES USING RELATIONSHIPS ACROSS FLOWS 66

connections. With the help of this information, a sender learns cur-

rent network condition quickly and may avoid the TCP slow-start

procedure.

Critical packet piggybacking: we have previously suggested to use ag-

gressive retransmissions to avoid long timeouts and let retransmitted

messages be piggybacked into successive packets in the same flow.

With the presence of concurrent flows, there are also possibilities for

these retransmitted messages to be piggybacked into packets from

other flows. Aggressive timeout is especially helpful for interactive

and transactional stages, which is sensitive to packet loss. More gen-

erally, an aggressive retransmission is used to protect a packet that is

suspected of being lost during the first transmission. This packet is

critical for performance as it has a high chance of being lost which will

cause a long timeout. Critical packet piggybacking is a general tech-

nique that sends redundant data to protect packets critical to appli-

cation performance. The redundant data are sent using the available

packet space provided in the same flow or other concurrent flows,

therefore no extra packets are introduced. As another example, the

I frames in MPEG-1 video [MPFL96] are critical to streaming qual-

ity. The loss of one I frame causes all frames that depend on it use-

less. Due to the delay constraint, a retransmitted I frame may be too

late to be useful. Schemes such as [WCK05, FB02, LC00] propose to

protect these frames from loss by using the forwarding error correc-

tion (FEC). FEC codes, as another type of redundant data, may also

4.5. TECHNIQUES USING RELATIONSHIPS ACROSS FLOWS 67

be piggybacked into other packets if space is available. We add the

streaming stage into the applicable stages under the “avoid timeout”

category in Table 4.4 as sending FEC is another way to avoid timeout.

We discuss critical packet piggybacking in more details in Chapter 9.

Upcoming flow prediction: as we have observed that many flows have

relatively fixed relationships in Chapter 3, it is possible to infer future

flows from the occurrence of the existing flows. The previous pro-

posed packet prediction approach uses packet relationships within a

flow. This approach exploits relationships across flows. For example,

the DNS-enabled Web (DEW) scheme [KLR03] uses the relationship

between a DNS flow and a subsequent Web flow, therefore proceed-

ing DNS messages may piggyback following Web requests and re-

sponses. As another example, in Web sessions we often observe many

sequential connections to the same Web site. It is possible to predict

future connections with the knowledge of site content. A connection

establishment procedure can be seen as a transactional stage and it

can be easily piggybacked by other transactional stages. In a simple

way, we can use the SYN packet for the first connection request to

indicate the intention to open multiple connections.

The above four techniques use relationships between flows and exploit

available packet space presented in all concurrent flows. Both packet aggre-

gation and critical packet piggybacking try to use temporal relationships

between non-full packets from all concurrent flows. The former seeks to

improve the transmission efficiency while the latter aims to improve the

4.6. TECHNIQUES BY LEVELS 68

transmission quality. Information sharing exploits relationships among se-

quential or concurrent flows and allows the information of one flow to be

conveyed to others. Finally, upcoming flow prediction makes use of the

relationships between flows that exhibit relatively fixed patterns.

4.6 Techniques by Levels

Previously, we have examined techniques that exploit intra-flow and inter-

flow relationships. We organize them by their respective improvements. In

this section, we discuss where are most appropriate places for these tech-

niques to be implemented. In Figure 4.1, we put these techniques into three

levels (layers): application, transport, and network.

Packet Aggregation Network Level

Data
Piggyback

Aggressive
Timeout

Enhanced
ACKs

Information
Sharing

Transport Level

Packet
Prediction

Upcoming Flow
Prediction

Application Level

Critical
Packet

Piggyback

Figure 4.1: Techniques by Levels

We put both prediction approaches at the application layer because

application-level knowledge is normally needed for the prediction pur-

pose. We have observed many consistent relationships between non-full

packets and flows in Chapter 3. A significant amount of these relationships

are caused by the relationships between content enclosed in these packets

or flows.

We place the data piggybacking, aggressive timeout, enhanced ACKs,

4.7. SUMMARY 69

and information sharing approaches at the transport level as both timeout

and ACK are the concepts of this layer. Data piggybacking uses packet

space in ACKs to send data. Enhanced ACKs and information sharing add

more information to regular ACKs. Aggressive timeout avoids long time-

outs by aggressively retransmitting packets that may get lost.

Packet aggregation fits best in the network layer. The network layer is

the natural point to aggregate packets from different transport protocols

and applications. It also facilitates the aggregation of traffic from different

machines within a cluster, as the network layer itself also performs routing

and forwarding functions.

Finally, critical packet piggybacking is across all the three layers. The

application layer or transport layer decides which packets to protect and is

also responsible for generating protective data. Once the data are passed

down to the network layer, the network layer seeks opportunities to send

them with other ongoing packets.

4.7 Summary

In this chapter, we established a framework on potential performance im-

provements that exploit flow relationships. By using a stage-based tax-

onomy, we categorize four type of stages that are commonly observable,

including bulk transfer, interactive, transactional, and streaming. An appli-

cation session may only include one stage or can be composed of multiple

stages. By classifying application sessions into stages, we look for general

techniques to help with a type of stage instead of a particular application.

4.7. SUMMARY 70

Next, we examine potential performance improvements that help dif-

ferent stages in a number of ways, including reducing total packets, pro-

viding better information, avoiding timeout, and reducing the number of

RTTs. There are two types of flow relationships to be exploited. One type

includes the relationships within a flow. The other includes the relation-

ships across flows. We examine four approaches that exploit intra-flow

relationships as well as four other approaches that exploit inter-flow rela-

tionships. Among them, we will investigate the techniques of packet pre-

diction, data piggybacking, enhanced ACKs, packet aggregation, and crit-

ical packet piggybacking in further details in Chapters 5 to 9 respectively.

Finally, we discuss the best locations in the protocol stacks to place these

techniques.

71

Chapter 5

Piggybacking Related Domain

Names to Improve DNS

Performance

In this chapter, we illustrate how a particular relationship between con-

secutive DNS queries can be used to improve DNS performance. This

approach belongs to the category of packet prediction we discussed in Sec-

tion 4.4. We use this example to show how relationships between packets

or flows are used to infer future traffic, and how this predicted traffic is

piggybacked onto ongoing traffic.

During our relationship study in Chapter 3, we found that a local do-

main name server (LDNS) 1 frequently sends more than one query to the

same authoritative domain name server (ADNS) for different names within

1More strictly, a local domain name server should be called a recursive name server.

CHAPTER 5. PIGGYBACKING RELATED DOMAIN NAMES TO IMPROVE

DNS PERFORMANCE 72

a short period of time. Using data from Chapter 3, we observed that over

40% of flows involving the DNS protocol for name server lookups result in

multiple packet exchanges between client and server. At the same time, we

also noticed that most DNS messages are smaller than the allowed size of

the UDP packet in which they are carried.

As a means to reduce multiple-packet DNS flows between a local DNS

server and an authoritative DNS server, we hypothesize that in many cases

the authoritative DNS server can predict subsequent requests by a local

DNS server based on knowledge of site usage and history of its DNS ac-

cesses. For example, the content of Web pages at busy Web sites is often

served by multiple servers at the site, each with distinct names. Similarly,

streaming or Instant Messaging applications use their own servers and are

often combined with access to Web servers.

If the ADNS can piggyback resolutions of those related names in the

response to the first query, it will save the LDNS from sending further

queries. We call this approach Piggybacking Related Names (PRN). It benefits

end-users as they experience less latency for DNS lookups. It also bene-

fits ADNSs as they receive fewer DNS requests. Assuming that the pig-

gybacked resolutions do not require additional packets then the approach

reduces the number of packets needing to be routed through the Internet

resulting in less congestion.

5.1. BACKGROUND 73

5.1 Background

DNS is a distributed database providing mappings between addresses and

names [Moc87a, Moc87b]. The domain name space is a hierarchical struc-

ture with a group of root name servers at the top of the hierarchy. Below the

root servers are generic Top Level Domains (gTLD) servers, which are del-

egated servers for domains such as “.com” and “.edu”. The gTLD servers

in turn can delegate their sub-domains to other name servers and so on.

These domains are also called zones and these delegated servers are called

authoritative servers for their assigned zones. Each zone can have a set of

resource records (RRs) associated with it. There are many types of RRs.

The most common type at an ADNS is an “A” RR that gives the mapping

from a domain name to an IP address. For each RR, there is an associated

time-to-live (TTL) parameter that indicates how long the RR can be cached.

The most common function of DNS is to return IP addresses for a given

domain name. The process is typically initiated by a local application that

calls an underlying resolver routine and passes the name as a parameter.

The resolver sends a query to the local domain name server (LDNS), which

in turn sends queries to responsible domain name servers if RRs for the

name are not cached locally. As needed, the LDNS iteratively communi-

cates with a root server then to a gTLD server then the authoritative do-

main name server for the name. Once the LDNS obtains the resolution, it

returns the result to the caller application.

A domain name lookup is required for any application that identifies

servers by names instead of IP addresses. The latency incurred by the

5.1. BACKGROUND 74

lookup procedure can influence the application’s performance as a whole.

In a previous study [WS00] we found that the median and mean lookup

time for non-cached domain names is on the order of several hundred mil-

liseconds. About 20% of the lookups took more than one second. Cohen et

al. [CK02] indicates that DNS lookup time exceeds three seconds for over

10% of Web servers. This result is consistent with the measurement con-

ducted by Chandranmenon and Varghese [CV01]. Jung et al. found that

10-20% of DNS lookups take more than one second based on traces col-

lected in MIT and KAIST [JSBM02]. A more recent study shows the average

latency for resolving non-cached domain names ranges from 0.95 seconds

to 2.31 seconds for a variety of clients [LSZ02]. All of these measurements

suggest that the DNS lookup time for non-cached domain names can influ-

ence the performance of interactive applications.

Caching is effective for reducing user perceived latency and is com-

monly adopted by DNS implementations. Previous studies [WS00, JSBM02,

JC03, CK01, CV01] have shown cache hit rate varies from 50-90%. How-

ever with the increasing number of networked applications, there are many

DNS requests generated for a single application and many of the cached

copies of DNS mappings have a short time-to-live value in the cache. The

result is that many requests for non-cached or stale DNS entries still ex-

ist. For example, in one day of WPI network flow data we observed over

40,000 DNS flows per hour. Thus further reduction of cache misses is still

necessary for improving application performance.

5.2. DNS LATENCY 75

5.2 DNS Latency

A central question about any proposal to improve DNS performance is to

understand to what extent DNS performance is an issue. Recent work on

DNS performance found that the average time to resolve non-cached do-

main names ranged from 0.95 seconds to 2.31 seconds for a variety of clients

[LSZ02]. Previous studies had also found 10-20% of DNS resolution times

greater than one second [WS00, CK02, CV01, JSBM02]. These collective

results indicate that DNS latency performance is an issue for applications.

In conjunction with our primary work on improving DNS performance,

we performed a study in June 2004 and again in February 2005 to better

understand current DNS performance for a subset of locations. We used 20

LDNSs that we identified as part of previous work [WMS03]. These servers

are all located in the United States and comprise four categories: commer-

cial sites, educational sites, Internet Server Providers (ISPs) serving com-

mercial companies, and ISPs serving home customers. Servers in the first

three categories were found by using the dig tool to obtain the ADNS for

an institution and then using directed DNS “A” record queries to deter-

mine if these authoritative name servers also played the role of LDNS for

the institution. Servers in the last category were found by using published

addresses for DNS servers of ISPs known to serve home customers.

For testing DNS performance, we used a list of just over 5000 unique

names randomly drawn from 164,000 domain names from the logs dis-

cussed in Section 5.5. This list initially contained only valid names that

were successfully resolved by using a local client, although in the second

5.2. DNS LATENCY 76

study about 100 of the names were no longer valid. Each test involved us-

ing the dig DNS tool to direct a DNS query for each domain name to each

of the 20 LDNSs. There are two possible situations. First, a LDNS could

have the resolution for a domain name cached, in which case the total time

is simply the round-trip time (RTT) between the dig client and the LDNS.

Second, the LDNS needs to recursively perform a DNS lookup before re-

turning the resolution. As part of the study we repeatedly measured the

time for an entry known to be cached at a LDNS for establishing a base-

line RTT measure between our dig client and each LDNS. We subtracted

the mean of these RTT measures from all resolution times to determine

the DNS resolution time by the LDNS for a given name. This is a similar

approach as used in [GSG02] of using DNS to measure the RTT between

arbitrary points in the Internet, but we use valid domain names rather than

randomly generated names.

To distinguish between cached and uncached entries during analysis

of the results, we first examined the distribution of resolution times from

our separate study of entries known to be cached. For most LDNSs, the

difference between the minimum and 95% RTT value was within 10ms and

we used the 95% RTT value to determine cached/uncached entries. For

LDNSs with more variation in RTT values, we used the mean RTT value

as the threshold. We confirmed the validity of these time-based thresholds

by comparing results against one where we checked for the presence of the

authoritative Time-to-Live (ATTL) value in the returned entry to determine

non-cached entries. We had independently found the ATTL value for each

entry. We were able to make this check for the latter timeframe in our study.

5.2. DNS LATENCY 77

We applied these time-based thresholds for cached/uncached entries for

both timeframes in the study.

We used results for completed requests only with mean, median, 90%

and 95% values for the 20 LDNSs in rank order shown in Figure 5.1. More

than 5% of the queries did time out for six of the 20 LDNSs. We determined

an effective timeout rate for each LDNS by subtracting the timeout rate

to the LDNS itself from the overall timeout rate. The “95%-to” values in

Figure 5.1 show the rank order 95% levels if the effective timeout rates are

included for each LDNS.

An observation about the results is that the average response time is

generally between 200 and 300ms for both timeframes, which is consistent

with [WS00], but less than the average times on the order of a second re-

ported in [LSZ02]. This difference may occur because the tested LDNSs

are all in the relatively well-connected United States as well as the vast

majority of the server names, so better average results than [LSZ02] are not

surprising. The results do show that over half of the tested LDNSs exhibit a

95th percentile response time of over a half-second and 25% of the LDNSs

yield a 95% response time over one second. If we include the timed out

responses for valid server names, then the majority of the LDNSs have a

95% response time of greater than one second with about half over three

seconds.

The outcome of this study is that the current average DNS latency is

generally in the range of 200-300ms, but poor DNS performance is still a

problem. While we do not know the source of all latency problems, po-

tential causes are packet RTT variance and loss combined with relatively

5.2. DNS LATENCY 78

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
T

im
e

N
on

-C
ac

he
d

R
es

ul
ts

 (
m

s)

Sites

95%-to
95%
90%

mean
median

a. June 2004

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
T

im
e

N
on

-C
ac

he
d

R
es

ul
ts

 (
m

s)

Sites

95%-to
95%
90%

mean
median

b. February 2005

Figure 5.1: DNS Response Time for Non-Cached Results

5.3. THE PIGGYBACKING RELATED NAMES APPROACH 79

long timeouts typically used by DNS clients. In addition, [PPPW04] found

that request overload and competition from periodic tasks can cause re-

sponse problems for DNS servers. Approaches that reduce the amount of

DNS traffic will improve the overall response time for applications. A clear

direction for future work is to consider extending this methodology to a

wider range of LDNSs with more work on the methodology to better un-

derstand how to handle the effects of caching and timeouts.

5.3 The Piggybacking Related Names Approach

As a means to improve DNS performance, the Piggybacking Related Names

(PRN) approach is motivated by the observation that many applications

and related applications generate a sequence of DNS requests for “A” re-

source records to the same ADNS for domain names within the same DNS

zone of authority. The approach exploits the observation that most DNS

packets are smaller than the allowed size of the UDP packet in which they

are carried and hence there is potential for ADNSs to include “Additional

Records” in response to a client’s request. In RFC1034, it says the “Addi-

tional Records” response field “carries RRs which may be helpful in using

the RRs in the other sections.” In our work we propose that this field can

also be used to contain additional RRs that the ADNS expects the client to

subsequently request based upon the current request. As long as includ-

ing the additional records does not exceed the maximum allowed size of a

DNS packet then these additional records are delivered to the client with

no additional packets and minimal cost on the packet-switched Internet.

5.3. THE PIGGYBACKING RELATED NAMES APPROACH 80

Figure 5.2 illustrates the approach with the query/response dialogue

between a LDNS client and an ADNS for resolution of multiple server

names. In this example, names from a1.b.c to a5.b.c belong to zone b.c.

The first query (in this example is a1.b.c) triggers a response that includes

resolutions for the additional names in the zone. Once it obtains the re-

sponse, the LDNS caches all included entries. Queries for names a2.b.c,

a3.b.c, a2.b.c and a4.b.c will be cache hits. We assume the interval between

T6 and T1 is bigger than the authoritative TTL (ATTL) for a2.b.c. So at T6,

the entry for a2.b.c is stale and a query for it causes a cache miss. A cache

miss causes a new query to be sent to the ADNS by the LDNS.

It is obviously not practical for an ADNS to piggyback resolutions for

all the names in a zone. In reality, an ADNS only needs to piggyback reso-

lutions it expects to be used in the interval before the next query is needed.

In the example both “T1 to T6” and “T6 to T8” are such intervals. In Sec-

tion 5.6 we study the expected number of these additional records as well

as the amount of available room in a DNS response.

A clear advantage of the Piggybacking Related Names (PRN) approach is

that it requires no changes to the existing DNS protocol while reducing the

amount of DNS traffic for local and authoritative DNS servers. However

the approach does require changes to the implementation of LDNSs and

ADNSs. An ADNS must determine which names to be piggybacked and

add them to the Additional Records section of a response message. This

determination can be based on existing DNS queries as well as from knowl-

edge of the site contents. A LDNS must extract the additional records and

store them in its cache, which could be a problem in unnecessarily filling

5.3. THE PIGGYBACKING RELATED NAMES APPROACH 81

T
i m

el
in

e

LDNS ADNS for zone b.cUser Queries

a1.b.c cache miss a1.b.c
resolutions for all
names in zone b.c

query
Legend:

response

query
Legend:

response

cache all entries

a2.b.c

re:a1.b.c

cache hit
re:a2.b.c

a3.b.c cache hit
re:a3.b.c

a2.b.c cache hit
re:a2.b.c

a2.b.c entry expired a2.b.c
resolutions for all
names in zone b.c

cache all entriesre:a2.b.c

a4.b.c cache hit
re:a4.b.c

T1

T2

T4

T5

T6

T3

,QW
H UY

DO�
E H

WZ
HH

Q�W
ZR

�T X
HUL

H V�
WR�

W KH
�$

'1
6� I

RU�
] R

QH
�E �

F

a1.b.c entry expired a1.b.c
resolutions for all
names in zone b.c

cache all entriesre:a1.b.c

a5.b.c cache hit
re:a5.b.c

T7

T8

,QW
H UY

DO�
E H

WZ
HHQ

�W Z
R�T

XH
ULH

V�W
R�W

KH
�$

'1
6� I

RU�
] R

QH
�E �

F

Figure 5.2: Illustration of the Piggybacking Mechanism

5.4. RELATED APPROACHES 82

up the DNS cache, but in practice DNS cache records are small and cache

space is not expected as a limitation. In our experiments, we assume all pig-

gybacked records can be cached and will not be evicted before they expire.

In the situation when cache space is limited, those piggybacked records can

be tagged and be the first to be replaced if the cache is full.

One potential security issue with including resource records in the ad-

ditional records field is a DNS-based attack called “cache poisoning” that

is caused by allowing non-authoritative RRs to be cached by LDNSs [CER].

Our approach does not lead to this problem because a ADNS only piggy-

backs RRs for which it is the authoritative server.

5.4 Related Approaches

Previous research has examined other approaches for reducing the cache

miss rate at a LDNS. This section discusses three proposed approaches and

compares them with the PRN approach.

One approach to improve DNS performance is for clients to pre-resolve

server names [CK02]. This approach requires applications such as Web

browsers to predict, based on Web content, which DNS lookups will be

required and to issue those lookups before the content is retrieved. While

this type of predictive policy is similar to the server-side predictions of our

PRN approach it requires changes in applications and allows predictions to

be made based only on client-available information.

A second approach is to use separate DNS queries to renew stale DNS

cache entries [CK01]. This approach has the advantage that these queries

5.4. RELATED APPROACHES 83

are done outside of the critical path of an application and will improve the

performance of an application. The problem with this approach is that it

can generate many DNS queries for which the result is never used.

The third approach is to piggyback requests for stale entries onto a

needed request to an ADNS [JC03]. This “renewal using piggybacking”

(RUP) approach causes no additional DNS packets to be generated, but re-

quires each LDNS to organize all resource records according to their zone.

As in previous methods it also causes resolutions of names that may not

be used again. This approach also requires that the DNS protocol support

more than one request in a message.

To compare these approaches we examine the types of cache misses that

they avoid. Using the terminology of [CK01], cache misses can be divided

into two types: “first-seen” (FS) misses, indicating the first lookup of a DNS

name; and “previously-seen” (PS) misses, indicating entries that have been

previously seen, but expired. The two renewal approaches only reduce

PS misses because they can only renew entries that have been seen before.

The pre-resolving approach of [CK02] can reduce both FS and PS misses,

but will only do so based on the immediate needs of the application. The

PRN approach not only reduces FS misses based on server knowledge, but

if those entries are already cached, it can be used to restore these entries to

their full TTL duration, thus reducing PS misses.

5.5. POTENTIAL IMPACT 84

5.5 Potential Impact

Before looking at the details of implementing the PRN approach, an impor-

tant question is to examine its potential impact in terms of miss rates. It is

known that LDNS caches satisfy over 50% of DNS requests received from

local applications. With these hit rates, an argument can be made that DNS

performance is not a problem. However, a number of factors justify the

need to further reduce the number of non-cached lookups. First, despite

the high hit rates, a substantial number of DNS queries must still be sat-

isfied by contacting the appropriate ADNS and as previously mentioned

40% of the DNS traffic in WPI flow data indicate multiple DNS requests.

Second, our own study in Section 5.2 along with recent studies have shown

that latency is an issue for a portion of requests. Third, in the presence of a

dropped packet the delay is much larger as LDNSs use a three or five sec-

ond timeout. Fourth, more applications leads to more domain names at a

site that must be looked up and many of these names carry shorter ATTLs

to allow flexible load balancing.

We used three logs summarized in Table 5.1 to study the performance

of DNS and examine the potential impact of improvements. The first log is

of data from WPI’s primary DNS server, which serves as both a LDNS and

ADNS for the campus. For our purposes the log was filtered to only con-

sider queries from WPI clients that are handled by the server in its role as

a LDNS. We augmented these data by fetching the ATTL and the ADNS(s)

for each unique name in the log.

The other two logs are generated from two NLANR Web traces [NLA]

5.5. POTENTIAL IMPACT 85

Table 5.1: Summary of Trace Logs Used

Name Queries Date Dur. From

WPI 1169569 Apr ’03 28 hrs WPI DNS

RTP 1041275 Oct ’03 7 days NLANR

SJ 457070 Oct ’03 7 days NLANR

as done in [CK01]. Each entry of the Web trace is a request to an object

identified by a uniform resource locator (URL). We extract the host name

part from a URL as a query in a DNS trace. Because many browsers them-

selves cache name-to-IP address mappings for a short time, we make the

same assumption as in [CK01] that there is no DNS lookup incurred if the

same name is requested again within a 60-second window.

We used these three logs along with the augmented data to determine

the miss rate performance of DNS using a trace-driven simulation assum-

ing the cache is empty at the beginning of the simulation. The simulation

mimics the regular behavior of a DNS cache as well as an ideal behavior

where whenever an ADNS receives a query, it returns resolutions for all

the names in its zone. Subsequent queries that belong to this zone are sat-

isfied locally as long as these entries are still fresh.

Results in Figure 5.3 show that 26% of requests in the WPI DNS log

result in misses and this percentage can be potentially reduced to 10% for a

relative improvement of over 60%. Similar results are shown in Figure 5.4

for the RTP log where the percentage of total misses is over 45% with a

potential reduction to under 25% for a relative improvement of about 50%.

Similar results were obtained for the SJ log and are not shown.

5.5. POTENTIAL IMPACT 86

 0

 5

 10

 15

 20

 25

 30

PRN-IdealRegular

P
er

ce
nt

ag
e

Approaches

For All Entries in WPI Log

FS Miss
PS Miss

Total Miss

Figure 5.3: Potential Performance Improvement for Ideal PRN Policy with
WPI Log

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

PRN-IdealRegular

P
er

ce
nt

ag
e

Approaches

For All Entries in RTP Log

FS Miss
PS Miss

Total Miss

Figure 5.4: Potential Performance Improvement for Ideal PRN Policy with
RTP Log

5.6. IMPLEMENTATION AND POLICY ISSUES 87

The collective results show significant reductions are possible in reduc-

ing both first-seen and previously-seen misses. Prediction of first-seen re-

quests are not possible in renewal-based approaches while prediction of

previously-seen requests extend the lifetime of the corresponding cached

entries.

Note that adding related names does increase the packet size of DNS

packets. However, because DNS type A RRs are generally small and only

a few related RRs needs to be added, we do not expect that the inclusion

of these related RRs will introduce many additional bytes. Given the po-

tential of 60% reduced cache miss rate and the same percentage of reduced

packets, the cost in bytes is well compensated by the saving of improved

performance and the reduced number of packets. In the following, we dis-

cuss how many RRs can be piggybacked with the current size constraint of

DNS packets and policies to pick related RRs.

5.6 Implementation and Policy Issues

Having established the potential usefulness of the PRN approach, in this

section we discuss specific implementation issues regarding the number of

resource records that need to and can be piggybacked on a DNS response.

We also describe specific policies for an ADNS to make decisions on what

records to piggyback and what information the ADNS must maintain for

these policies.

5.6. IMPLEMENTATION AND POLICY ISSUES 88

5.6.1 Piggybacked Responses

We used the data from the WPI DNS log to determine the number of re-

sponses that would ideally be piggybacked on a response. We used the

request intervals in Figure 5.2 to define DNS “bundles” for a zone. A DNS

bundle includes all unique server names for the zone that occur in a request

interval. The size of this bundle determines the number of DNS responses

that would be useful for the ADNS of the zone to return.

Using this definition, we found about 20,000 DNS bundles in the DNS

log. Figure 5.5 shows the cumulative distribution function (CDF) for the

number of names inside each bundle. As shown, about half of the bundles

have only one name—the response itself—while the other half have two or

more names. The results show that only 5% of bundles have more than 15

entries and only 15% of the bundles have more than 5 entries. These results

are encouraging for the PRN approach as they indicate it is useful for half

of the bundles and the number of names that need to be piggybacked is not

large.

5.6.2 DNS Response Message Capacity

DNS messages are limited to 512 bytes in size when sent over UDP [Moc87b],

however DNS extension mechanisms [Vix99] extend the limit to 1280 bytes.

These mechanisms are supported in the latest 9.0 version of the widely-

used BIND software [Con]. We checked the sizes of DNS response pack-

ets for the 164K unique domain names collected from the three logs in Ta-

ble 5.1. The CDF for the response message size for the unique names as

5.6. IMPLEMENTATION AND POLICY ISSUES 89

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

C
D

F

Names

DNS Bundle

Figure 5.5: CDF of Size of DNS Bundles

well as for message sizes based on access patterns are shown in Figure 5.6.

With respect to the trace-based statistic, most responses are 100-300 bytes,

which affords 200-400 remaining bytes if we use the traditional 512B limit

and many more bytes if we use the limit for extended DNS.

Given the available room, we examined the number of additional type

“A” records that can be piggybacked on a response. If we consider type

“A” RRs in IPv4, the size of all its fields are fixed except the name. While

a domain name can be long, it is not necessary to put the full name in

that field. DNS provides a mechanism that enables domain names to share

their common suffix. Using the same trace-based statistics, we observe that

over 90% of names have a first distinguishing label (excluding “www”)

less than 10 characters while the median and average are between 4 and

5. Putting those statistics together, the length for a piggybacked record is

5.6. IMPLEMENTATION AND POLICY ISSUES 90

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

C
D

F

Bytes

uniq names
trace-based names

Figure 5.6: CDF of Sizes for DNS Response Packets on a Unique Name and
a Trace-Based Set

likely between 18 and 27 bytes (14 bytes for all fields with fixed length,

2 bytes for the pointer to the common suffix, 1 byte for the length count

for the first label, and 1-10 bytes for the first label itself). With available

space of 200-400 bytes, the total RRs that can be piggybacked are between 7

(200/27) and 22 (400/18). For extended DNS, the range is between 36 and

65.

We considered the situation when one domain name maps to multiple

IP addresses, which requires multiple RRs for one name. We find that over

90% of domain names have less than five associated IP addresses while 72%

have only one or two. Taking this factor into account, the total names that

can be piggybacked are 1-22 for the traditional DNS length and 7-65 for the

extended DNS length.

5.6. IMPLEMENTATION AND POLICY ISSUES 91

5.6.3 Piggyback Policies

The previous two sets of results indicate that a sizeable percentage of the

records that could be piggybacked will fit in the additional space of a DNS

response. In cases where there are more potential names than can be pig-

gybacked, an ADNS needs to have a policy to decide which names to in-

clude. In addition to the ideal policy, which we described in Section 5.5,

we define two practical policies: Most Frequently Queried (MFQ) First and

Most Related Query (MRQ) First. The former policy gives preference to pig-

gybacking names that are popular in the zone independent of the current

request, while the latter policy gives preference to piggybacking names that

are most related to the current query. These policies are described in more

detail as follows.

MFQ(n): The ADNS selects up to n names in the order of their

requested frequencies. For this policy, the ADNS needs to track

query frequencies for each name in its zone and maintain them

in a Frequency Ordered List (FOL).

MRQ(n, r): The ADNS selects names in the order of their rel-

evancy to the current query. A Relevancy Ordered List (ROL)

is maintained for each name. ROL(a) denotes the relevancy list

for domain name “a”. The MRQ policy chooses names from the

ROL list with a relevancy greater than r for the current query up

to the bound of n. If there is still remaining space then names

from the FOL are added.

5.6. IMPLEMENTATION AND POLICY ISSUES 92

 1: twdns-01.ns.aol.com. : #zone cnn.com, identified by its first ADNS
2: i.cnn.net(4379) www.cnn.com(1494) sportsillustrated.cnn.com(588) money.cnn.com(263) ... fyi.cnn.com(1) # FOL
3: www.cnn.com(723) i.cnn.net(0.78) money.cnn.com(0.07) ... # ROL(www.cnn.com)
4: sportsillustrated.cnn.com(271) i.cnn.net(0.42) www.cnn.com(0.09) ... #ROL(sportsillustrated.cnn.com)
… …
51: www.cnnfn.com(7) i.cnn.net(1.00) www.cnn.com(0.29) money.cnn.com(0.14) ... #ROL(www.cnnfn.com)
… …

Figure 5.7: FOL and ROLs for zone “cnn.com.”

Figure 5.7 shows an example of a FOL and ROLs for the zone “cnn.com”

based on queries from the WPI DNS log. The first line contains the name of

first ADNS (in sorted order) for the zone “cnn.com.” The second line is the

FOL for the zone and has all names in the order of their query frequency.

All subsequent lines are the ROLs for each name. The first element on each

line is the name and the remaining elements are its related names in the

order of their relevancy values.

5.6.4 Maintenance of Information

Each ADNS must maintain data structures as shown in Figure 5.7 to sup-

port piggybacking of related names. In the combination of the logs in Ta-

ble 5.1, we observed the maximal number of names in a zone is 1650 and

the maximal number of ROLs is 627.

The FOL and ROLs can either be set up manually by administrators

who know the internal connections among names, or by tracking query

patterns. The example shown in Figure 5.7 is generated by analyzing the

query patterns for the zone “cnn.com.” The FOL is created by counting

queries to each name. For generating ROLs, we group queries from the

5.7. EVALUATION 93

same client to the same ADNS that occur within a short period of time

(5 minutes in our experiment). Whenever a name happens to be the first

query in a group, the counter for its corresponding ROL is increased by

1. For all other names (after removing duplicates) in the group, each is

counted once in the ROL for the first query. The relevancy value from name

“a” to name “b” is calculated by dividing the counter of “b” in ROL(“a”)

by the counter of ROL(“a”). For instance, in Figure 5.7, line 3 is the ROL for

query “www.cnn.com”. The following number “723” is the count for the

ROL and indicates there are 723 times “www.cnn.com” is the first query in

a group. The number “0.78” following “i.cnn.net” is the relevancy value

from “www.cnn.com” to “i.cnn.net”, which indicates out of 723, 78% of

times “i.cnn.net” follows “www.cnn.com”. The relationship table is cre-

ated based only on the WPI DNS trace. In general, it is expected that a

server could create more accurate lists based on a larger number of client

users. The internal relationships and access patterns between these domain

names are not expected to change in the time scale of hours so these rele-

vancy tables can be computed offline or when the ADNS server is not busy.

5.7 Evaluation

5.7.1 Methodology

We evaluate the PRN approach by trace-drive simulations of the ideal pol-

icy as described in Section 5.5 as well as the MRQ and MFQ policies de-

scribed in Section 5.6.3. We use the relative decrease in the cache miss per-

centage as the metric to evaluate each policy. The regular policy is used as

5.7. EVALUATION 94

the baseline to compare effects of other policies with all results shown as

the relative decrease in misses compared to the total number of first-seen

(FS) and previously-seen (PS) misses for the regular DNS policy. Results

for the ideal policy from Section 5.5 are shown for reference.

We studied the MFQ and MRQ policies with fixed upper bounds. We

choose 5 and 15 as two upper bounds based on results from Section 5.6. In

addition to these bounds, the MRQ policy is tested with relevancy values of

0.5 and 0 for a total of four MRQ policy combinations. Note that relevancy

bound equal to 0 means the relevancy value should be bigger than 0, hence

a qualified name must have some relevancy, even if weak.

5.7.2 Results

We used the first half of a log to generate relevancy tables and conducted

the simulation on the second half of the log beginning with an empty DNS

cache. The results are shown in Figure 5.8 and Figure 5.9 for the WPI and

RTP logs respectively. Simulation on the SJ log produced similar results as

the RTP log and they are not shown here. In the figures, each set of bars

corresponds to a policy. The first bar in a set shows the relative (to the

total misses for the regular DNS approach) decrease of first-seen misses,

the second bar indicates the relative decrease of previously-seen misses,

and the third bar is the relative decrease of the total misses.

The results show that both the FS misses and PS misses are significantly

reduced when any piggyback policy is in use. The MRQ and MFQ policies

reduce the total misses in the range from 25% to close to 40%. The results

are significant because they are obtained by also reducing the number of

5.7. EVALUATION 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

MFQ(5)MRQ(5,.5)MRQ(5,0)MFQ(15)MRQ(15,.5)MRQ(15,0)Ideal

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

policies

For All Entries in WPI Log

FS Miss
PS Miss

Total Miss

Figure 5.8: Relative Decrease in Cache Misses Over Different Policies on
WPI Log

queries by the same amount.

In terms of the policies, MRQ policies consistently outperform MFQ

policies when they have same bound constraints. Among MRQ policies,

those having a smaller relevancy bound perform better. As MFQ(n) is sim-

ilar to MRQ(n, 1), we can summarize the performance relationship among

the policies as MFQ(n) < MRQ(n, .5) < MRQ(n, 0). These results indi-

cate names with relevancy, even weak, should be given higher preference

than simply piggybacking popular names. Increasing the bound helps re-

duce cache misses, but even the smaller bound results in a 25% reduction

in cache misses.

The same methodology is used for the RTP log with the results shown in

Figure 5.9. The relative decrease in cache misses for this log varies between

5.7. EVALUATION 96

25% and 35% with similar variation between the policies as we found with

the WPI log.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

MFQ(5)MRQ(5,.5)MRQ(5,0)MFQ(15)MRQ(15,.5)MRQ(15,0)Ideal

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

policies

For All Entries in RTP Log

FS Miss
PS Miss

Total Miss

Figure 5.9: Relative Decrease in Cache Misses over Different Policies on
RTP Log

5.7.3 Results for Short ATTLs

As a means to test the PRN approach for resource records with relatively

short ATTLs, we filtered the log for queries to servers whose resolution

have ATTLs of 30 minutes or less. This filter removed roughly half of the

original DNS requests. These records must be requested more frequently

by a LDNS and we hypothesize that the PRN approach would be relatively

more effective at reducing the number of cache misses. Results for this

analysis for the WPI log are shown in Figure 5.10 where the total miss rate

for regular DNS is 32% as compared to 26% in Figure 5.3. The results in

5.7. EVALUATION 97

Figure 5.10 show relative decreases in cache misses from nearly 30% to over

40%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

MFQ(5)MRQ(5,.5)MRQ(5,0)MFQ(15)MRQ(15,.5)MRQ(15,0)Ideal

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

policies

For All Entries Whose ATTL <= 30min in WPI Log

FS Miss
PS Miss

Total Miss

Figure 5.10: Relative Decrease in Cache Misses over Different Policies on
WPI Log Entries with ATTL ≤ 30min.

We pushed this analysis further and filtered the log to include only en-

tries with an ATTL of 5 minutes or less. This filter removed roughly 80%

of the log entries with 46% of requests for these entries resulting in a cache

miss. As shown in Figure 5.11, the PRN policies reduce the cache miss rate

by over 40%. We found a similar tone of results when we did the same

analysis for the RTP log. The results indicate this approach is more useful

as the ATTLs grow shorter in duration.

5.7. EVALUATION 98

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

MFQ(5)MRQ(5,.5)MRQ(5,0)MFQ(15)MRQ(15,.5)MRQ(15,0)Ideal

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

policies

For All Entries Whose ATTL <= 5min in WPI Log

FS Miss
PS Miss

Total Miss

Figure 5.11: Relative Decrease in Cache Misses over Different Policies on
WPI Log Entries with ATTL ≤ 5min.

5.7.4 Results for Total DNS Queries

Another direction we explored was the total number of DNS queries re-

duced by our approach. This avenue of exploration is relevant because

while the PRN approach reduces DNS query traffic to ADNSs, it has lit-

tle effect on traffic to root and gTLD servers. The previous results treat all

cache misses as incurring the same cost when in fact the first time a LDNS

encounters a domain name such as x.foo.com it must first find the ADNS for

foo.com, which may involve contacting a root server as well as a .com gTLD

server before the query is sent to the ADNS for foo.com. A subsequent ac-

cess to y.foo.com would only require a query be sent to the ADNS for foo.com

assuming the information about the ADNS is still fresh.

To model the situation where multiple DNS queries may be needed to

5.7. EVALUATION 99

resolve a domain name we obtained the ATTL for all ADNSs in the WPI

log. We then reran our simulation on the WPI log to determine the relative

decrease of not only requests to the ADNS, but the decrease for all DNS

requests, which include those to obtain the authority for a zone. We did

ignore queries to root name servers, which are relatively small in number.

The results are shown in Figure 5.12.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

MFQ(5)MRQ(5,.5)MRQ(5,.0)MFQ(15)MRQ(15,.5)MRQ(15,.0)Ideal

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

policies

For All Entries in WPI Log

ADNS FS Miss
ADNS PS Miss

ADNS FS+PS Miss
Total DNS Miss

Figure 5.12: Relative Decrease in All DNS Cache Misses Over Different
Policies on WPI Log

The results show that the additional DNS queries generated to obtain

the authority for a zone lower the relative decrease in cache misses by less

than 5%. This small reduction indicates that the number of queries gener-

ated to gTLD servers is much less than the number of queries sent directly

to the ADNSs (about 20%) because the ATTLs for “A” records are generally

smaller than those for records of ADNSs. Figure 5.12 shows that the PRN

5.8. COMPARISON AND COMBINATION WITH OTHER APPROACHES 100

approach reduces the total number of DNS requests by 20-35%.

To better understand the costs of query to a gTLD server versus an

ADNS we used the dig DNS client from WPI to measure the respective

times. Using the names from the WPI log we found a mean response time

of 47ms for queries to gTLD servers and a mean of 145ms for queries to

the ADNSs. For queries from a home DSL client we found queries to gTLD

servers take 63ms on average versus an average of 142ms for queries to the

ADNSs. These results, along with the simulation results, indicate that the

requests to ADNSs are the dominant DNS costs so that an approach such

as PRN does yield significant cost savings.

5.8 Comparison and Combination with Other Approaches

Our final analysis was to compare the performance between our approach

and others proposed to reduce cache misses. Because our approach is com-

patible with the others, a combination with these approaches is possible.

We evaluate these hybrid approaches on all the three logs with results for

the WPI log shown.

5.8.1 Performance Comparison Among Approaches

The proactive caching approach proposed in [CK01] has several policies.

Among them, R-LFU is one of the better and more straightforward poli-

cies. We implemented R-LFU(r) for comparison purposes. The renewal

using piggyback (RUP) approach proposed in [JC03] also has several poli-

cies. We implemented RUP-MFU, which performs best among all practical

5.8. COMPARISON AND COMBINATION WITH OTHER APPROACHES 101

approaches. Among our PRN policies, MRQ performs better than MFQ.

We choose MRQ(15,0) for the comparisons between approaches. We refer

it as PRN-MRQ(15,0).

Figure 5.13 shows the relative decrease in cache miss percentages for

the three approaches relative to normal DNS. The reduction in total cache

misses is close for all the three approaches. When considering FS misses

and PS misses separately, RUP-MFU and R-LFU policies behave almost the

same, where FS misses are untouched and the reduction rates for PS misses

are close. While PRN-MRQ does not reduce PS misses as much as the other

two, its reduction on FS misses compensates for the difference. Despite the

fact that the performance gains among the three approaches are similar,

their costs are different. For the variation of the R-LFU policy we studied,

it introduces 56% more queries and responses than normal DNS. The PRN-

MRQ and RUP-MFU policies do not produce additional queries. Instead,

by reducing the total misses, the total queries and responses are reduced as

well.

5.8.2 Combination of PRN and RUP

In Figure 5.13 we observe that PRN-MRQ reduces more FS misses while

RUP-MFU reduces more PS misses. This result encourages us to consider

the possibility of combining the two approaches. Both approaches use pig-

gybacking, but one makes the decision on the server side while the other

does on the LDNS client side.

To combine these policies we define a new policy called “piggyback re-

lated names with client hint first” (PRN-CHF), where the client DNS server

5.8. COMPARISON AND COMBINATION WITH OTHER APPROACHES 102

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

R-LFU(1)RUP-MFUPRN-MRQ(15,0)

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

Approaches

For All Entries in WPI Log

FS Miss
PS Miss

Total Miss

Figure 5.13: Performance Comparison among Approaches on WPI Log

piggybacks its stale names in the query message and the ADNS uses these

hints as well as its own relevancy table. The policy is described as:

PRN-CHF(n, r): The total number of names that can be piggy-

backed is bounded by n, but instead of first looking at the cor-

responding ROL, the ADNS gives priority to the names piggy-

backed in the query message. If there is still extra space left, the

ROL and FOL are checked in turn.

We show the performance of PRN-CHF and its two component ap-

proaches in Figure 5.14. As we expected, PRN-CHF has the same FS miss

rate as PRN-MRQ and the same PS miss rate as RUP-MFU, so it performs

the best among the three.

5.8. COMPARISON AND COMBINATION WITH OTHER APPROACHES 103

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

RUP-MFUPRN-MRQ(15,0)PRN-CHF(15,0)

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

Approaches

For All Entries in WPI Log

FS Miss
PS Miss

Total Miss

Figure 5.14: Performance Comparison among PRN-CHF and its Two Com-
ponent Approaches on WPI log

5.8.3 Combination of PRN and R-LFU

We also studied the combination of these policies with active renewal. As

the R-LFU approach is initiated by the LDNS cache and the PRN approach

is initiated by an ADNS, the two approaches can complement each other.

We show performance of the various hybrid approaches along with R-

LFU in Figure 5.15. In order to distinguish our original PRN approaches

from their hybrid versions with R-LFU, we refer to those three hybrid ap-

proaches with a prefix “R-” to their original names. As with the R-LFU

approach, each approach is tested with different aggressiveness in prefetch-

ing. As aggressiveness increases, the cache misses are further reduced, but

more queries are generated.

The hybrid approaches show significant performance gains in Figure 5.15

5.9. SUMMARY 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4

re
la

tiv
e

de
cr

ea
se

 in
 c

ac
he

 m
is

se
s

relative increase in queries

R-PRN-Ideal
R-PRN-CHF(15,0)
R-PRN-MRQ(15,0)

R-LFU

Figure 5.15: Performance for Hybrid Approaches on WPI Log

compared with either R-LFU or their original PRN approaches. With about

the same number of queries, R-PRN-MRQ performs much better than R-

LFU. For instance, having 1.5 times queries as the regular approach, R-

PRN-MRQ reduces 54% of total misses while R-LFU reduces 28%. R-PRN-

CHF performs slightly better than R-PRN-MRQ as it is the combination of

the PRN, RUP and R-LFU approaches. Renewal also benefits the original

PRN approach at the expense of more queries.

5.9 Summary

This work is motivated by research on studying the relationships among

network data flows. We found many cases where a local DNS server sends

multiple DNS queries to the same authoritative DNS server within a short

5.9. SUMMARY 105

period of time. If the ADNS can predict these near-future queries once it

receives the first one then it can send answers for all of them with the first

response. We call this the piggybacking related names (PRN) approach. It

helps reduce local cache misses and therefore reduces user-perceived DNS

lookup latency. By piggybacking multiple answers in one response packet,

the total queries and responses are also reduced, which alleviates the work-

load on both LDNSs and ADNSs.

Compared with other approaches that also address improving local cache

hit rate, our approach is novel. We explictly use the relationships among

queries and allow an ADNS to push resolutions for predicted names to

the LDNS. The PRN approach reduces both first-seen misses as well as

previously-seen misses while other approaches reduce just the latter. The

cost of PRN is also low as it reduces the number of query and response

packets while requiring no changes to the DNS protocol.

Trace-base simulations show more than 50% of cache misses can be re-

duced if prediction is perfect and response packet space is plentiful. Realis-

tic policies, using frequency and relevancy data for an ADNS, reduce cache

misses by 25-40% and all DNS traffic by 20-35%. These percentages im-

prove if we focus the policies on resource records with smaller ATTLs. We

also show improved performance by combining the PRN approach with

renewal-based approaches to create hybrid approaches that perform sig-

nificantly better than their component approaches.

In conjunction with this work we also did a study on current DNS per-

formance for 20 locations in the United States. The outcome of this study is

that the current average DNS latency is generally in the range of 200-300ms,

5.9. SUMMARY 106

but range from 500ms to multiple seconds if we look at the 95% response

time. The reduced cache misses for the PRN approach will be reflected in

improved response latency and timeout performance.

107

Chapter 6

Data Piggybacking

In the previous chapter, we show an example of how a particular relation-

ship between domain names is used to improve DNS performance. It takes

advantage of available packet space provided in the first DNS response

message. In this chapter, we look at exploiting packet space in a more gen-

eral way by using acknowledge (ACK) packets on the reverse direction of

a TCP data flow. We use this example to show how available packet space

within flows is used to improve transmission efficiency.

TCP is a widely used protocol on the Internet designed for reliable bidi-

rectional data transfer. However, large numbers of TCP connections show

an asymmetric traffic pattern where significantly more data is sent in one

direction than the other. It is a common scenario with applications such

as HTTP or bulk data transfer that a client initiates a request to a server

and then the data flow is entirely from the server to the client. Traffic in

the reverse direction is only TCP ACK packets to acknowledge receipt of

the downloaded data. In addition, packets used for TCP connection estab-

CHAPTER 6. DATA PIGGYBACKING 108

lishment and teardown also have minimal TCP packet size and carry no

user data. For convenience, we call all TCP packets that carry only TCP/IP

headers (and possibly some TCP options) ACK-only packets.

The large number of ACK-only TCP packets on the Internet is well doc-

umented. Results in [TMW97] show a trimodal distribution of TCP packet

sizes where the size of ACK-only packets (40 bytes with no TCP options) is

one of the modes. Statistics in [MC00] show just under 50% of TCP packets

are of TCP header size. More recently, various traces from the IP Mon-

itoring Project taken at monitoring points in the SprintLink IP backbone

in February 2004 show 40-70% of packets in individual traces are of TCP

header size [Spr04]. An ongoing study [SPH05] also shows that over 40%

of packets are 40 bytes for traffic collected at five different network points,

including Los Nettos, a USC Internet2 connection, and three connections

monitored by NLANR during December 2004 to October 2005 period. In

addition, our packet size study conducted in Chapter 3 shows that over

60% of packets are of TCP header size in the upstream direction (from client

to server).

Our approach is to piggyback application-level data onto ACK packets

sent in the reverse channel. Normally TCP piggybacks acknowledgment

information onto the data packets it sends. In this work we explore the

potential for a mechanism to piggyback data only when an ACK packet

would normally be generated. If a mechanism was available for applica-

tions to send reverse-channel data without generating additional network

packets then client receivers of data could upload feedback to the server

providers of the data without incurring new connections or generating ad-

6.1. MECHANISM 109

ditional traffic. Such a mechanism could also be used by peers in a peer-to-

peer environment where the transfer of desired content from peer A to peer

B could simultaneously support the exchange of useful content via piggy-

backed transfer from B to A. We discuss the piggybacking data mechanism,

experiment setup, and evaluation results in the following sections.

6.1 Mechanism

The TCP protocol allows data transfer in both directions of a connection

with ACKs for data packets received in the forward direction piggybacked

onto data transferred in the reverse direction. However because many

connections primarily transfer data in only one direction many ACK-only

packets are generated by the receiver. The key idea of our work is to invert

the traditional TCP mechanism and piggyback data onto packets carrying

needed ACK information. This approach creates a clear primary and sec-

ondary direction of data flow within a TCP connection.

This approach is interesting to explore because it allows data transfer to

occur in both directions while being potentially more efficient in the num-

ber of packets generated for data transfer in the reverse direction. Poten-

tial applications of this approach include asymmetric connections where

previous work shows that less bandwidth in the reverse direction impacts

performance for forward data transfer [BPFS02]. Other work [KVR98] has

shown that bidirectional traffic can cause reduced throughput due to un-

desired interaction effects such as ACK compression [ZSC91].

Peer-to-peer (p2p) applications can also be written to take advantage

6.1. MECHANISM 110

of reverse ACK traffic where the transfer of content from peer A to peer

B could simultaneously support the transfer of useful content from peer

B to peer A. Incentives in a p2p application such as BitTorrent encourage

clients to exchange data tit-for-tat in both directions [Coh03], which could

be done more efficiently with our approach. Others have proposed the

idea of generalizing BitTorrent with a Data Exchange Market [Tur05]. Our

approach could be used with this idea as well.

Our approach does require a new mechanism to be supported by TCP

with modifications to client and servers. To illustrate, Figure 6.1 shows the

core code for a standard data transfer from a server to a client. The server

continually sends data in a buffer (buf) to a socket (s) while the client reads

data from its socket into a buffer and processes it.

// Client // Server

while (not done) { while (not done) {

recv from s into buf; put data into buf;

process buf data; send buf to s;

} }

Figure 6.1: Standard Core Client and Server Code

Figure 6.2 shows the modified code using a new data piggybacking TCP

option, which causes the TCP implementation to only send buffered data if

a packet is generated to ACK data received. In Figure 6.2 the client checks

if reverse direction send buffer space is available and if so then sends data

to the socket (s). Otherwise the client works just as the standard case. The

server requires fewer modifications as it simply checks the availability of

6.1. MECHANISM 111

input data on the socket, using a call such as select(), and if available it

receives and processes that data. Because each loop is driven by the data

being sent in the forward direction a mechanism is needed for the client to

query how much of the buffered data has actually been sent. Depending on

the application, the client may need to finish sending any unsent data via

the traditional mechanism or simply terminate the connection if the data

do not need to be sent.

// Client // Server

turn on data piggyback; while (not done) {

while (not done) { if (revdata avail) {

recv from s into buf; recv from s into rbuf;

if (send buf space) process rbuf data;

send revdata to s; }

process buf data; put data into buf;

} send buf to s;

}

Figure 6.2: Modified Core Client and Server Code

A primary issue with this approach is how much data can be piggy-

backed onto an ACK packet. In a bandwidth constrained environment try-

ing to piggyback too much data could have a negative effect of forward

traffic. This issue is examined in our testing. In our testing we did not

modify the TCP implementation for this initial work, but used the existing

TCP implementation with the code shown in Figure 6.2. The result is that

each time data is received from the socket in the loop, we send reverse data

to the socket if buffer space is available. The amount of reverse data sent

is a parameter of each experiment. This approximated approach does not

6.2. TESTING ENVIRONMENT AND METHODOLOGY 112

guarantee that reverse data and ACKs are sent together, but with a client

buffer big enough to receive a full packet we observe that generally each

application-level receive corresponds to a packet reception thus the client

generally sends one packet for each received. Ideally, we could have a

kernel-level support to ensure that each data transmission matches an ACK

packet. However, we use the user-level approach to quickly test the con-

cept of data piggybacking. The experiments over different paths do show

that the results using the approximated approach are close to those we cal-

culate under the ideal situation where the kernel-level support would be

available. With only a user-level modification, we are able to test the data

piggybacking method widely as no privilege to change TCP/IP kernel is

required.

6.2 Testing Environment and Methodology

We tested the piggybacking data approach over network connections be-

tween our home institution of WPI, on the east coast of the U.S., and seven

endpoints with various RTT and throughput connectivity values as sum-

marized in Table 6.1. The RTTs were measured by calculating the time

interval between the SYN and SYN ACK packets when TCP connections

were established. The throughput was measured at the application level,

which is the ratio of the data size over the time used to transmit the data

(more strictly speaking, we measured goodput). The RTT and throughput

values are representative of those obtained during testing, although some

variation in packet loss occurred, which is noted as appropriate. Four of

6.2. TESTING ENVIRONMENT AND METHODOLOGY 113

the links to institutions in California and Georgia in the U.S. as well as to

Italy and the Netherlands (NL) show relatively good bandwidth in both di-

rections, although as shown in Table 6.1 demonstrate asymmetric through-

put. Further investigation of this throughput asymmetry found that for

the California to WPI path the advertised receiver window was 64K bytes

by Linux on the WPI side while it was only 32K bytes by the Linux version

running in California. For the other three links, the asymmetric throughput

is primarily due to higher packet loss in one direction than the other.

The three other links in Table 6.1 do exhibit asymmetric bandwidth.

These links include local machines accessing WPI via DSL and cable mo-

dem as well as one in the Netherlands connected via DSL. All seven of these

links were used for data piggyback tests described in the following section

while just the Calif/WPI, Italy/WPI and WPI/Local DSL links were used

for the enhanced ACK tests described in Section 7.2 because tcpdump was

needed on both sides of the link to capture packets. Unless noted, all tests

were run using Linux TCP implementations (we used Linux kernel version

2.4 and 2.6 in the experiments).

The question for the data piggybacking approach is to understand how

much data can be piggybacked with ACK packets without introducing

more packets and not influencing the performance of forward-channel traf-

fic. We answer this question with a series of experiments conducted under

the variety of real network conditions described in Table 6.1. For each ex-

periment we evaluate performance and efficiency of different transmission

methods, where throughput (transmitted bytes divided by transmission

time) is used as the metric of performance and packet counts is used as

6.2. TESTING ENVIRONMENT AND METHODOLOGY 114

Table 6.1: Summary of Network Connections Used in Experiments

End Points Thruput(KBps) RTT

A B A to B B to A (ms)

WPI Calif 350 600 80

WPI Italy 400 200 120

WPI Georgia 1100 600 30

WPI NL 520 150 90

WPI NL DSL 280 90 80

WPI Local DSL 190 27 40

WPI Local Cable 350 10 40

the metric of efficiency.

As a standard, we used the transfer of a 1MB file for all testing. We

deliberately chose this size as its transfer normally takes around 700 pack-

ets, which is large enough to minimize throughput effects of slow start, but

small enough for a reasonable experimental time.

We evaluated the approach described in Section 6.1 where a server sends

a 1M byte file in the forward direction to a client. As shown in Figure 6.2,

each time the client reads some data it sends data of a particular size to

the server if buffer space is available. Ideally the TCP implementation on

the client-side only sends the data when it would normally generate an

ACK, but given that we have not modified the TCP implementation the

reverse data sent is not exactly matched with the sending of ACKs. How-

ever, because the client application code sends data immediately after it

receives data from the server, the sending of the data is roughly matched

with the sending of ACKs (that are generated for the received data). As part

6.2. TESTING ENVIRONMENT AND METHODOLOGY 115

of the experiment we control how much data is sent in the reverse direction

for each packet received. In an ideal implementation, this amount of data

would be piggybacked with each ACK. Idealized values for throughput

and the number of packets are shown in the results for each size.

In addition, we evaluated two control approaches: In the first, labeled

“2Con” in the results, the algorithm in Figure 6.1 is used by two identical

and separate processes on each side to transfer 1MB in each direction. In

the second control approach, labeled “1Con”, 1MB is again transfered in

each direction, but only a single connection is used for the transfer so that

ACKs may be piggybacked on reverse data traffic. The identical endpoints

are written so that they do not needlessly block waiting to send or receive

data.

For each network condition, experiments are conducted with each of

the three approaches, where the size of piggyback data sent in the reverse

direction varies from zero (i.e. no piggyback) to 1500 bytes. Note that the

size of 1500 bytes is over the size of the MSS (1460 in this experiment). It is

intended to check the effects when the piggybacked data is more than the

MSS. The maximum piggyback size tested within the MSS is 1400 bytes in

these experiments. Results are reported based on five runs for each case,

although in cases where the loss rate is generally over 1%, 10 runs are con-

ducted to mitigate fluctuations in throughput.

6.3. RESULTS 116

6.3 Results

Tests for all links in Table 6.1 were made as described in the previous sec-

tion. Rather than show all results, this section shows results across a rep-

resentative set of network conditions. The first set of results are shown

in Figure 6.3 for the connection from the California site to WPI. The first

graph shows throughput results and the second graph shows packet count

results. In each figure, the curves on the left side are for the piggyback ap-

proach, where one curve represents the download direction and the other

curve represents the upload direction. There are two sets of bars on the

right side of each figure. The rightmost set of bars are for the 1Con ap-

proach where one network connection is used to download and upload a

1MB file. The set of bars to its left are for the approach where two indi-

vidual connections are used. In each set of bars, the left one represents the

download direction and the right one represents upload direction.

For the Down and Up piggyback curves, the measured throughput and

packet count results are shown for piggyback sizes of 0 (no piggybacking),

50, 100, 200, 300, 400, 700, 1000, 1400 and 1500 bytes. The Ideal throughput

results are obtained by multiplying the number of ACKs observed in the

no piggybacking case by the piggyback size, constrained by the maximum

observed reverse throughput.

The results show that the downlink throughput is unaffected by the pig-

gyback size while the uplink throughput rises to a level comparable to the

2Con and 1Con approaches. The packet count graph shows the number of

uplink packets to be relatively constant and fewer than the control cases.

6.3. RESULTS 117

 0

 100

 200

 300

 400

 500

 600

 700

 1Con 2Con1400120010008006004002000

T
hr

ou
gh

pu
t (

K
B

ps
)

Piggyback Size (B)

Down
Up

Ideal

 0

 200

 400

 600

 800

 1000

 1200

 1Con 2Con1400120010008006004002000

N
um

be
r

of
 P

ac
ke

ts

Piggyback Size (B)

Down
Up

Ideal

Figure 6.3: Calif to WPI (less than 1% packet loss)

6.3. RESULTS 118

More important, the uplink packet count is significantly less that the two

control cases with comparable throughput for the largest piggyback sizes.

The results show that for piggyback sizes of a few hundred bytes, the ex-

isting TCP implementation does not generate many more packets than the

ideal implementation.

Figure 6.4 shows another network connection within the U.S. with min-

imal packet loss, but a shorter RTT. The results are comparable to Figure 6.3

with similar throughput as the control cases while generating significantly

fewer packets than the control cases. The throughput of the reverse direc-

tion flattens after the piggyback size goes over 1000 bytes because of some

packet loss. When packet loss occurs no new data is read by the client and

thus no new data is sent as shown in the code of Figure 6.2. With an ideal

TCP implementation, an additional check to ensure the send buffer always

has data could be added to the beginning of the loop to make sure data

is still available for piggybacking onto duplicate ACKs and hence provide

better reverse throughput.

Figure 6.5 shows a longer network connection with a packet loss rate of

1-5% observed during testing. The effect due to lost packets is even more

pronounced in this test as the Up throughput flattens out beginning with

piggyback sizes of 400 bytes while an Ideal implementation would allow

data to be piggybacked on duplicate ACKs generated because of errors.

Finally Figure 6.6 shows results for a forward network connection from

WPI to a host connected locally via DSL. As the throughput results show,

the downlink throughput is significantly affected once the uplink capacity

of approximately 40KBps is reached. The control approaches show how

6.3. RESULTS 119

 0

 200

 400

 600

 800

 1000

 1200

 1Con 2Con1400120010008006004002000

T
hr

ou
gh

pu
t (

K
B

ps
)

Piggyback Size (B)

Down
Up

Ideal

 0

 200

 400

 600

 800

 1000

 1200

 1Con 2Con1400120010008006004002000

N
um

be
r

of
 P

ac
ke

ts

Piggyback Size (B)

Down
Up

Ideal

Figure 6.4: WPI to Georgia (around 1% packet loss from GA to WPI)

6.3. RESULTS 120

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1Con 2Con1400120010008006004002000

T
hr

ou
gh

pu
t (

K
B

ps
)

Piggyback Size (B)

Down
Up

Ideal

 0

 200

 400

 600

 800

 1000

 1200

 1Con 2Con1400120010008006004002000

N
um

be
r

of
 P

ac
ke

ts

Piggyback Size (B)

Down
Up

Ideal

Figure 6.5: WPI to Italy (1% to 5% packet loss from IT to WPI)

6.4. OBSERVATIONS 121

saturation of the uplink negatively affects both directions. For this asym-

metric network, these results do show that our approach can be effective for

uploading more modest amounts of data without increasing the number of

uplink packets and without impacting the downlink throughput.

6.4 Observations

Results from the previous experiments lead to a number of observations

about the potential benefits of the data piggybacking. We found that the re-

verse channel throughput can match the effective reverse bandwidth limit

without negative effects on forward channel throughput. Second, the num-

ber of reverse channel packets generated to achieve this throughput is sig-

nificantly less than a simple bidirectional transfer over one connection or

two independent connections. Even in the case of an application-only ap-

proach with no TCP implementation support there is a reduction in the

number of reverse-channel packets. Third, even in the case of asymmet-

ric links such as a home DSL connection, data piggyback sizes up to a few

hundred bytes per packet can be supported in either an application-only or

TCP-level implementation without reducing forward-channel throughput

nor having an appreciable effect on the number of reverse-channel packets.

Having data piggybacked by ACK packets not only saves the total num-

ber of packets, but also the total number of bytes as less packet headers are

generated. A drawback of this scheme is that it requires availability of ACK

packets in order to send data on the reverse direction. For the situations

when data needs to be sent immediately but no available ACK packets,

6.4. OBSERVATIONS 122

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1Con 2Con1400120010008006004002000

T
hr

ou
gh

pu
t (

K
B

ps
)

Piggyback Size (B)

Down
Up

Ideal

 0

 200

 400

 600

 800

 1000

 1200

 1Con 2Con1400120010008006004002000

N
um

be
r

of
 P

ac
ke

ts

Piggyback Size (B)

Down
Up

Ideal

Figure 6.6: WPI to Local DSL Home (less than 1% packet loss)

6.5. SUMMARY 123

separate packets can be generated as the current TCP does. The current

socket APIs should be extended to allow applications to indicate whether

they want this feature enabled or not.

An interesting question about the approach is whether it improves or

exacerbates problems that occur due to dropped or out-of-order packets. In

the case of data piggybacking and forward-direction congestion, duplicate

ACKs in the reverse direction provide more opportunities for piggyback-

ing. However, too much data piggybacked in the reverse direction could

cause congestion and negatively affect forward throughput.

6.5 Summary

In this work we have discussed and evaluated the data piggybacking ap-

proach, which provides packet-efficient throughput in the reverse direction

of a connection without sacrificing forward throughput. This work is mo-

tivated by the observation of lots of ACK-only packets on the current In-

ternet. These packets can provide a certain transmission capacity on the

reverse channel of a TCP connection without introducing extra packets.

This approach creates a clear primary and secondary direction of data flow

within a TCP connection. Data are piggybacked on the reverse channel

only when an ACK packet would normally be generated.

By using a user-level modification to a regular client and server code,

we are able to approximate the effect of letting ACKs to piggyback user

data on the reverse channel. Results show that the reverse channel through-

put can match the effective reverse bandwidth limit without negative ef-

6.5. SUMMARY 124

fects on forward channel throughput. The number of reverse channel pack-

ets generated to achieve this throughput is significantly less than a simple

bidirectional transfer over one connection or two independent connections.

Even in the case of asymmetric links such as a home DSL connection, data

piggyback sizes up to a few hundred bytes per packet can be supported

in either an application-only or TCP-level implementation without reduc-

ing forward-channel throughput nor having an appreciable effect on the

number of reverse-channel packets.

125

Chapter 7

TCP Enhanced ACK

We have looked at two particular approaches that exploit flow relationships

and available packet space within flows in the previous two chapters. The

approach of piggybacking related domain names directly improves perfor-

mance of DNS application. The method of piggybacking data improves

transmission efficiency without hurting application performance. In this

chapter, we propose an approach to let a receiver provide additional con-

trol information to the sender via additional TCP header information. We

use this approach as an example to show how available packet space is

used to provide better quality of information for applications.

This work is also motivated by the observation of a large number of

ACK-only packet on the Internet and the fact that limited control infor-

mation is provided by current TCP acknowledgements. We examine the

introduction of a new TCP option that provides more detailed and more

complete information about the reception of data packets at the receiver

compared with the existing TCP Timestamps Option [JBB92]. This infor-

7.1. MECHANISM 126

mation allows a TCP sender to track the spacing between all data packets

arriving at the receiver and to have complete timing information for the for-

ward and reverse directions of the connection. The information can be used

to better detect jitter and congestion in the forward direction than what is

currently available.

By using this new option, TCP can also have a more accurate RTT esti-

mation, which is not influenced by the factors of ACK delay or packet loss.

If we can extend the current “tcp info” structure [tcpb] to include this RTT

information along with the delay jitter information, an application can have

a better understanding of current network conditions, therefore adjusting

its data generation decision more appropriately. For example, a streaming

application needs to adjust its sending rate based on network conditions

such as RTT, packet loss, and delay jitter. If TCP can already provide this

information, the streaming application does not need its own mechanism

in order to get the same set of information.

7.1 Mechanism

This approach uses a bit of the available bandwidth to enhance the contents

of ACKs to provide more detailed and complete information about the re-

ception of data packets at a receiver. The TCP Timestamps Option allows

TCP implementations to calculate round-trip times (RTTs) on more than

one packet per window of packets and allows time stamp echoing in either

direction [JBB92]. The contents of the option, shown in Figure 7.1, include

four fields: one-byte each for the kind (k) and length (l) with four-bytes

7.1. MECHANISM 127

each for the packet timestamp (TSval) and echo reply timestamp (TSecr).

1 1 4 4

k l TSval TSecr

Figure 7.1: TCP Timestamps Option Layout

The use of these timestamp fields is illustrated in Figure 7.2, which

shows two common scenarios for how the Timestamps Option is used when

an ACK is generated by the receiver. The example is illustrative and does

not show all packets in a TCP connection nor does it show how the TCP op-

tion is used when packet loss occurs. The first ACK in the example is gener-

ated at time 30 in response to data segment 1 being received at time 28 with

a TSval of 18. The delay between when a packet is received and the corre-

sponding ACK generated is defined in [APS99] to be within 500ms of the

arrival of unACKed packet and at least every second full-sized segment, al-

though 200ms is a commonly used maximum time. Previous work [BG99]

found that transmission of small data packets often incurred close to 200ms

ACK generation delay in the presence of the TCP Nagle algorithm [Nag84].

The first ACK TSval indicates it was sent at time 30 and is an echo re-

sponse to the packet with timestamp 18. The second ACK is generated at

time 70 after two data segments have been successfully received. This be-

havior occurs with the TCP delayed ACK feature, which effectively ACKs

every other packet. The TSecr value of 45 indicates the timestamp of the

earliest previously unACKed packet as defined in [JBB92].

The Timestamps Option was proposed to enable the sender of a TCP

connection to more frequently determine the RTT of sent data segments,

7.1. MECHANISM 128

.

.

.

.

.

.

time

78

50

45
40

18

28
30

55

70

Client Server

SEG1, val=18

SEG2, val=45

SEG3, val=50

ACK1, val=30, ecr=18

ACK3, val=70, ecr=45

Figure 7.2: Example Usage of TCP Timestamps Option

but as the example shows the option still does not capture as much infor-

mation about the nature of the connection as it could. We conjecture that

more complete information about the pattern of received packets would

allow better transmission of sent packets despite issues due to congestion

or the delayed ACK option. It can also help to detect the effects of ACK

compression when ACKs are grouped together [ZSC91].

The layout for the variable-length enhanced TCP Timestamps Option

we propose is shown in Figure 7.3. It extends the existing Timestamps Op-

tion in two ways. First, the reception time for each data segment received

by the receiver is returned to the sender in a TSrcv field, and second the

TSecr and TSrcv values are returned for all packets received since the last

ACK was sent. Given that the maximum size of a TCP option field is 40

bytes, information for up to four packets could be included, although if

every other packet is ACKed then information for no more than two pack-

7.1. MECHANISM 129

ets would need to be included. For the example in Figure 7.2, the second

ACK would have the fields: val=70, ecr1=45, rcv1=55, ecr2=50, rcv2=70.

Once sent, the receiver no longer needs to retain the information thus the

amount of receiver state maintained is bounded.

1 1 4 4 44 4

k l TSval TSecr1 TSrcv1 TSecr2 TSrcv2 ...

Figure 7.3: Enhanced TCP Timestamps Option Layout

This enhanced Timestamps Option provides three improvements rela-

tive to current TCP functionality.

1). The capability to measure one-way jitter and packet spacing in each

direction. The enhanced option allows the packet spacing on the re-

ceiver side to be communicated to the sender rather than trying to

use ACK spacing at the sender to approximate packet spacing.

2). The option explicitly captures the delay for generating an ACK at the

receiver. While ACK generation may be immediate for full-size pack-

ets received during slow start or when the second of two full-sized

packets is received, the sender does not know unless this information

is recorded.

3). The option captures the delay information for all received packets. In

the presence of delayed ACKs, information is lost because an ACK is

only generated for every other received packet and there is no way to

know when the first packet of each pair arrives at the receiver. The

current Timestamps Option is intended for a round-trip measure that

7.2. TESTING METHODOLOGY 130

includes delays, not for precise timing of each packet.

We envision the enhanced Timestamps Option to be particularly use-

ful in asymmetric networks. Balakrishnan, et al [BPK99] describe a num-

ber of issues using TCP with asymmetric networks where low bandwidth

on the reverse link causes problems for the timely arrival of ACK packets

needed for the ACK-clocked nature of TCP. Variants of TCP such as TCP

Vegas [BP95] and TCP Westwood [WVSG02] use rate estimation to drive

when packets are sent based on the rate at which ACKs are received. How-

ever work such as [FCL01] shows that in asymmetric networks TCP Vegas

does not perform well because it is using ACK rate to estimate data rate at

the receiver. They describe the need to encode the arrival times at the re-

ceiver and show improved results if these data are available, but imply the

TCP Timestamps Option can be used for gathering forward path flow rate

without specifying details. Similarly, [AER98] uses the Timestamps Option

to estimate forward trip time in a TCP connection, but this option does not

account for ACK generation delay and it loses information when delayed

ACKs are used. Finally, the availability of one-way jitter information al-

lows investigation of using jitter to predict congestion loss before it occurs.

As part of measurement work on audio transmission, [RASHB02] found

that RTT variation can be an indicator of packet loss.

7.2 Testing Methodology

The methodology for testing the enhanced ACK Timestamp mechanism

seeks to examine the measurement of connection metrics using the en-

7.2. TESTING METHODOLOGY 131

hanced mechanism compared to using TCP with no options and the exist-

ing TCP Timestamps Option. With our enhanced Timestamps Option, the

sender can learn exactly when the data packets are received on the receiver

side. It allows several potential benefits:

• enables the capability to calculate packet interarrival spacing, which

can be combined with packet sending spacing to determine forward

direction jitter effects,

• provides the sender information about the delay for generating an

ACK at the receiver, and

• allows more accurate calculation of RTTs by the sender.

We choose packet interarrival spacing, ACK generation delay and RTT

as the three metrics to examine the potential benefits of using the enhanced

Timestamps Option compared to currently available methods. Table 7.1

summarizes how these metrics are calculated with the enhanced Times-

tamps Option as well as how they are calculated with current methods.

The interarrival spacing of data at the receiver is important because this

information can be combined with the spacing of sent data to monitor the

queuing delays in the forward direction, which may be used to infer con-

gestion in this direction before packet drops occur. The first metric in Ta-

ble 7.1 shows how the data arrival spacing is calculated with each of the

three approaches. The spacing can be explicitly calculated using our en-

hanced Timestamps Option. With no Timestamps Option, the sender must

match an ACK with the corresponding sent data. This match is non-trivial

7.2. TESTING METHODOLOGY 132

Table 7.1: Means to Measure Connection Metrics Using Different TCP Op-
tions

Metric Enh. ACK TCP w/out TCP TS

Timestamp Timestamp Option [JBB92]

Data Inter- Explicitly Use ACK Use ACK

arrival Spacing Calculate Recv Spacing Send Spacing

ACK Gener- Explicitly unavailable unavailable

ation Delay Calculate

RTT Recv-TSecr Recv-Send Recv-TSecr

-ACKDelay

to do in the case of packet loss and the use of delayed ACKs. The spacing

calculation also includes ACK generation delays as well as reverse direc-

tion congestion effects. The use of the current TCP Timestamps Option

removes reverse direction congestion effects from the calculation, but ACK

generation delays are still present. In addition, with the presence of de-

layed ACKs, an ACK may represent two received data packets.

As shown in Table 7.1, the delay to generate an ACK at the receiver is

explicitly captured with our enhanced Timestamps Option, but unavailable

using existing approaches. Variability in the ACK generation algorithm by

a TCP receiver introduces variability in the ACK receiver spacing at the

sender regardless of any congestion in the network between the sender and

receiver.

The final row in Table 7.1 shows how the RTT is calculated using each

of the three approaches. The existing TCP Timestamps Option allows more

frequent and accurate RTT calculation than without use of the option. Our

approach yields a yet more accurate RTT and it allows the RTT for all pack-

7.2. TESTING METHODOLOGY 133

ets to be calculated in the presence of the delayed ACK option, although as

discussed in [JBB92], the sender must be less aggressive in using the RTT

for retransmission time out (RTO) calculation.

In order to examine the behaviors of the delayed ACK option on dif-

ferent platforms, we conducted experiments on both Windows and Linux.

The Linux kernel versions we tested are 2.4.21 and 2.6.11, while for Win-

dows we used Windows 2000 and Windows XP. Our experiments show the

two Linux versions have similar behavior and the two Windows variants

behave similarly. However, Windows and Linux do show differences on

how ACKs are generated. While both platforms set the maximal ACK de-

lay as 200ms, Linux uses the measured RTT as the waiting time whereas

Windows uses a round-robin scheme rotating from 100ms to 200ms. In

addition, Linux ACKs immediately during the slow-start phase while Win-

dows tries to acknowledge two data packets if possible even at slow-start.

Furthermore, Linux sends an ACK immediately for data packets whose

sizes are smaller than 500 bytes assuming they belong to an interactive ses-

sion. Windows shows no discrimination based on packet sizes. In general,

Linux reacts more aggressively than Windows on ACK generation.

We conducted experiments on the three links described in Section 6.2

for both directions. We varied the client receiver platform between Linux

and Windows. During the tests, packets were captured at both endpoints

using tcpdump with millisecond time granularity. For comparison, [VLL05]

recently found about 75% of popular Web servers support the existing TCP

Timestamps Option with the majority using a 10ms timestamp granular-

ity. One problem is that the timestamps given by tcpdump are at the data

7.3. RESULTS 134

link layer when packets are just received from or to be sent to the network

card, while timestamps in the TCP option are given by the transport layer.

The two sets of timestamps may have discrepancies due to the internal pro-

cessing and queuing time when packets are passed between the two layers.

However, we compare the timestamps included in the current TCP Times-

tamp Option with the corresponding timestamps marked by tcpdump in

our experiments, the results do not show any difference if using the lower

time granularity of the two sets.

We used the “2Con” approach described in Section 6.2 to generate FTP-

like traffic simultaneously in both directions over two separate connections.

Again the file size is set to 1MB on both sides. We use two-way traffic to

introduce cross traffic in the reverse direction, which may influence the

latency of ACK packets. As expected, we only found reverse traffic to have

an effect for the DSL client connected with asymmetric bandwidth. We

did run each test with and without the delayed ACK option, but all results

shown use the default where the delayed ACK option is turned on. We also

introduce tests with the download of Web and streaming data from actual

Web sites as described in the following section.

7.3 Results

Using the file transfer test with 1MB of data, Figure 7.4 shows one of the

more pronounced cases for differences of using ACK spacing to calculate

spacing of received data packets. The results are for data sent from Califor-

nia to a client at WPI running on a Windows platform. The results in the

7.3. RESULTS 135

CDF are obtained by comparing the data packet reception spacing (drecv)

with the ACK send spacing at the receiver (asend) and ACK receive spacing

at the sender (arecv). The results show the cumulative differences between

the data spacing and each of the ACK spacings. In computing the differ-

ence in spacing between data and ACKs, if the sending or receiving of a

delayed ACK represents the reception of two data packets, half of the ACK

spacing is used to approximate each of the data spacings.

The significance of these results is that for over 50% of the packets there

is a difference between the actual data reception spacing and the approxi-

mated spacings obtained using the ACK sent or ACK received results. In

the figure, the two data lines overlap for these results because there is no

congestion in the reverse direction. The average absolute difference is 60ms

as shown in Table 7.2, which contains a summary of all file transfer tests.

There are two important points about the calculation of results in Table 7.2:

1) we count a difference or delay as zero if it is less than 1ms; and 2) we use

absolute values of packet spacing differences to calculate mean and median

values.

Table 7.2 shows the spacing differences are almost non-existent for the

California to WPI connection when the client receiver is running Linux.

The reason for the different results for a Windows client versus a Linux

one is because there are many packet losses (about 10%) on the path from

California to WPI for this test. Linux responds with an ACK immediately

after a packet loss is detected and continues to respond with one ACK for

each received data packet for a while even after the lost packet is recovered,

which causes almost one ACK for every data packet for a high loss path.

7.3. RESULTS 136

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-250 -200 -150 -100 -50 0 50 100 150 200

C
D

F

Time (ms)

asend-drecv
arecv-drecv

Figure 7.4: Packet Spacing Difference among Data Recved, ACK Sent, and
ACK Recved for California to WPI Windows Client

Table 7.2: Summary of Packet Spacing and ACK Delay Under File Transfer
Traffic (Times in ms)

Recv |ACKSnd-DataRcv| > 0 |ACKRcv-DataRcv| > 0 Last ACK Delay > 0 First ACK Delay > 0

Connection O.S. % Mean Med. % Mean Med. % Mean Med. % Mean Med.

WPI→IT Linux 8.8 26 19 13.9 17 7 2.1 41 40 56.4 2 1

IT→WPI Linux 38.9 16 7 40.2 16 6 3.2 44 41 23.8 7 1

Win 19.6 17 3 20.1 16 3 0.3 101 101 10.3 15 1

WPI→Calif Linux 38.7 17 10 42.9 15 8 3.5 34 32 23.7 19 26

Calif→WPI Linux 0.5 25 10 3.1 5 1 0.3 25 10 0 0 0

Win 57.6 60 44 57.5 60 44 5.9 146 139 46.0 87 88

DSL→WPI Linux 28.6 4 1 36.2 15 4 0 0 0 100.0 30 30

WPI→DSL Linux 13.6 150 3 92.9 33 7 0 0 0 100.0 8 8

Win 20.5 73 87 99.9 21 7 0.3 110 110 100.0 8 8

7.3. RESULTS 137

Windows also sends an ACK immediately once packet loss is detected, but

right after the loss is recovered, delayed ACK processing is immediately

restored.

Except for these two extreme cases, the other file transfer tests in Ta-

ble 7.2 show non-zero differences between the data reception spacing and

ACK sending spacing for 8-38% of the packets received with an average

difference generally between 15 and 25ms.

When using ACK reception spacing to infer data reception spacing, the

estimation error is further enlarged as the reverse side congestion causes

ACKs themselves to get delayed. For the path from WPI to the local DSL

host, ACKs are transmitted with varied latency due to the congestion in

the reverse direction. The ACK delay variance causes a difference for each

estimation that is on average 20-30ms in magnitude.

For the same California to WPI Windows client connection used for re-

sults in Figure 7.4, the “Last ACK Delay” line in Figure 7.5 shows the delay

between when an ACK is sent and the last data packet was received. As

shown, only about 6% of ACKs show a non-zero delay. This result is not

surprising given that under FTP-like traffic, the receiver generally receives

data as quickly as the sender is allowed to send it and more or less immedi-

ately generates the corresponding ACK, although occasionally the ACK is

delayed for over a 100ms. In the case of a generated ACK covering the re-

ceipt of two packets, the “First ACK Delay” results in Figure 7.5 show that

there is no delay between the ACK and this first packet more than half the

time, but for approximately 45% of these ACKs the first of the two packets

had arrived 85-90ms ago. This “First ACK Delay” is not so much an issue

7.3. RESULTS 138

of the receiver’s TCP implementation, but reflects differences in the spac-

ing between reception of the first and second data packet. Complete ACK

Delay results for all tests are shown in Table 7.2. The results in the table

show little delay to generate an ACK after the last packet is received, but

frequently there is a delay between the receipt of the first and last packet of

a pair.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200

C
D

F

Time (ms)

first.ack.delay
last.ack.delay

Figure 7.5: CDF of ACK Delayed Time for First and Second Data Packets
for California to WPI Windows Client

With FTP-like traffic, we have established the usefulness of including

explicit delay information in ACK packets to help the sender more accu-

rately determine data reception spacing, which can be used to infer for-

ward jitter. We postulate the method is more useful for Web and streaming

traffic, where Web objects or streaming frames are not always sent at the

rate allowed by TCP as is typical with during a file transfer. ACK delay

on the receiver side is more significant. Table 7.3 shows the results for ac-

7.3. RESULTS 139

Table 7.3: Summary of Packet Spacing and ACK Delay Under Web and
Streaming Traffic (Times in ms)

Traffic Recv |ACKSnd-DataRcv| > 0 Last ACK Delay > 0 First ACK Delay > 0

Type Connection O.S. % Mean Med. % Mean Med. % Mean Med.

Web CNN→DSL Win 81.1 853 20 52.4 50 4 100.0 13 7

CNN→WPI Win 87.0 427 26 69.0 66 57 7.7 10 10

Linux 54.2 814 15 17.1 25 39 12.5 29 29

Cisco→DSL Win 70.9 346 48 33.8 84 101 95.3 18 8

Cisco→WPI Win 73.6 155 44 34.1 81 107 41.4 37 2

Linux 56.5 93 40 21.2 40 40 32.3 2 2

Stream- Amazon→DSL Win 90.3 7 2 100.0 111 110 0 0 0

ing Audio Amazon→WPI Win 30.9 3 1 100.0 108 107 0 0 0

Stream- Yahoo→DSL Win 12.3 9382 121 0.3 111 130 99.6 8 8

ing Video Yahoo→WPI Win 24.0 2319 7 1.1 143 151 12.0 12 13

cessing two Web site home pages and two streaming media sites from two

different client locations. We used the Internet Explorer (IE) browser for

Web access on the Windows platform and Firefox for access on the Linux

platform. Each browser used persistent connections. We were unable to ac-

cess the streaming media sites using a Linux client. For the Amazon audio

stream, which provides online listening for sample music, we used Real

Player, a plug-in to IE. For the Yahoo video, which provides movie pre-

views, we used the Window Media Player, also a plug-in to IE. As we only

have client side packet traces, we are not able to determine the difference

between ACK reception spacing and data reception spacing.

The “Last ACK Delay” and “First ACK Delay” results in Table 7.3 show

significantly higher non-zero percentages as well as mean and median val-

ues than those results under FTP-like traffic in Table 7.2. In particular, Fig-

ure 7.6 shows the CDF of ACK delays when accessing the CNN Web home

7.3. RESULTS 140

page from a Windows platform. Around 70% of ACKs are delayed from

receipt of the last data packet and the delay varies from several millisec-

onds to close 200ms. For the cases when one ACK acknowledges two data

packets, both “First ACK Delay” and “Last ACK Delay” are small, but this

situation only occurs for around 30% of the total packet counts.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

C
D

F

Time (ms)

first.ack.delay
last.ack.delay

Figure 7.6: CDF of ACK Delay for CNN Web to WPI Windows Platform

Another interesting result is the ACK delay for the Amazon streaming

audio to the Home DSL Windows platform. The last ACK delay is nearly a

constant 110ms and there is no first ACK delay because each ACK is gen-

erated for exactly one data packet and the receiver is trying to wait for a

second packet to arrive. The constant ACK generation delay does result

in little difference between the data reception and ACK generation spacing

for the Amazon to Home DSL connection as shown in Table 7.3. However,

in general there is a large discrepancy between these two spacing calcu-

lations in Table 7.3 because the sender of Web and streaming traffic is not

7.3. RESULTS 141

always sending packets and the receiver delays waiting for a second packet

to arrive before generating the ACK. These gaps between when data pack-

ets are sent combined with the delayed ACK feature mean that the gap

between ACK transmissions is an unreliable estimator for the gap between

data packet arrivals.

The final benefit of having more complete data and ACK packet trans-

mission information is to calculate more accurate path RTT than using the

Timestamps Option. The difference is trivial when there is no ACK de-

lay and packet loss. However, in many cases as shown in Table 7.2 and

7.3, ACKs are delayed and consequently the RTT is overestimated. The

situation becomes much worse when packet loss occurs because the RTT

calculation could include packet retransmission time [JBB92].

As an example, results in Figure 7.7 show a file transfer from California

to WPI where the path involves around a 10% packet loss. The RTT cal-

culation based on RFC 1323[JBB92] is 2-4 times higher than the real RTT.

The sender may treat the enlarged RTT as a sign of congestion and react

conservatively. However, in some cases the RTT and packet loss should

be decoupled such as in a path where routers use Random Early Detection

(RED) [FJ93] rather than drop-tail as the algorithm to handle congestion, or

in a path where a wireless segment is involved. Having a much larger esti-

mated RTT compared to the real RTT could cause retransmissions to occur

much later than they should.

7.4. OBSERVATIONS 142

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400

C
D

F

Time (ms)

orig.rtt
real.rtt

Figure 7.7: Comparison between RTT Based on the Original Timestamps
Option and RTT Calculated Based on Enhanced Timestamps Option: Cali-
fornia to WPI Link

7.4 Observations

We obtained many useful results from the enhanced ACK experiments to

maintain more complete packet transmission information at the receiver

in a TCP connection and share this information with the sender via a new

Timestamps Option. A desirable feature in a TCP connection is to be able to

know the spacing between data packets received at the receiver and hence

establish jitter in the forward data transmission channel. Currently this

spacing can only be inferred from spacing between ACK generation at the

receiver or ACK reception at the sender. However, results from many file

transfer experiments show discrepancies between the spacing of ACKs and

the actual spacing of received data packets. In one file transfer experiment

we found a difference between these spacings in over 50% of cases with

7.4. OBSERVATIONS 143

an average difference of 60ms. These differences are due to reverse chan-

nel congestion, variation when data packets are received, which is masked

with the delayed ACK feature, as well as delays when ACK packets are

generated by the receiver. These differences occur more frequently with

generally a larger magnitude when traffic is not sent as frequently as al-

lowed by TCP as can be the case with Web or streaming data. All of these

variations, combined with packet loss, make the determination of the ac-

tual RTT difficult for the sender resulting in conservative estimates to be

made in determining the RTO for the connection.

The knowledge of the data packet inter-arrival time at the receiver side

may help congestion control schemes that are based on bandwidth estima-

tion such as TCP Westwood [MCG+01]. TCP Westwood uses the inter-

arrival spacing of ACK packets at the sender side to estimate available

bandwidth in the forward direction. The bandwidth estimation is compli-

cated when delayed ACK or ACK compression [Mog92] in the reverse di-

rection occurs [GM02a]. These problems can be avoided if the inter-arrival

information of data packets at the receiver side is explicitly available to the

sender.

If delay jitter information is available to applications (e.g. by extending

the “tcp info” structure [tcpb]), applications can have a better understand-

ing of current network conditions. For example, the delay jitter for data

packets sent back-to-back roughly reflects the bandwidth of the bottleneck

link of the path. The steady increasing of delay jitters can be used as a

sign for congestion on the way. With the enhanced TCP timestamp option,

delay jitter can be measured for each direction and the congestion in the

7.4. OBSERVATIONS 144

reverse direction will not influence the measurement in the forward direc-

tion. Applications such as streaming may use that information to tune the

data sending rate.

Traditional TCP implementations including TCP NewReno [FH99] use

packet loss as signs for congestion on the path and reduce congestion win-

dow correspondingly. This conjecture does not work well for paths includ-

ing wireless segments, where packet loss is mainly caused by poor wireless

signal [GM04]. A TCP implementation can adopt the enhanced timestamp

option to help differentiate the congestion from loss for wireless. A sim-

ple method is to use RTT variance along with packet loss to infer network

congestion other than using packet loss alone. This method is not possible

with the current RTT calculation using the traditional timestamp option,

which already includes the factor of packet loss besides ACK delays. Tak-

ing the path condition shown in Figure 7.7 as an example, the high loss

rate but constant RTTs together imply that a loss-prone link is more likely

involved rather than congestion on the path. The RTT measurement using

the traditional timestamp option (also shown in the Figure 7.7) shows a big

variance of RTTs and cannot be used to distinguish these two situations.

An important point concerning the availability of this more complete

and accurate information about the TCP connection is that it is obtained

with minimal, bounded overhead by the TCP receiver and only a small

amount of additional information (12 bytes more in the case of accumu-

lated ACKs and 4 bytes more in the case of non-accumulated ACKs) added

to an ACK packet that must be sent anyways. Results from our data piggy-

backing experiments show that adding a small number of bytes to reverse-

7.5. SUMMARY 145

channel traffic over even a bandwidth-constrained link can be accommo-

dated.

If dropped or out-of-order packets occur with the enhanced ACK ap-

proach as did occur in some of our experiments then its additional infor-

mation provides a more complete picture of what is happening with the

data transmission, although the approach would complement, not replace,

the existing selective ACK option [MMFR96] in retransmission of missing

packets.

An interesting question is whether the data piggybacking approach and

the enhanced ACK approach should be combined. Because the enhanced

Timestamps approach is proposed as a TCP option it could be combined

with the data piggybacking approach. In terms of whether the combina-

tion makes sense, the enhanced ACK information could help both end-

points of a connection determine the available bandwidth between them,

although use of the proposed option in the direction of data flow would

cause a small reduction in the per-packet data capacity for that direction.

Further research is needed to study the relative tradeoffs of combining the

approaches.

7.5 Summary

In this work we have discussed and evaluated the enhanced ACK approach,

which is an extention to the existing TCP Timestamps Option. The en-

hanced ACK option allows a TCP sender to track the spacing between all

data packets arriving at the receiver and to have more complete timing

7.5. SUMMARY 146

information for the forward and reverse directions of the connection. The

information can be used to better detect jitter and congestion in the forward

direction than what is currently available.

Results from many file transfer experiments show discrepancies be-

tween the spacing of ACKs and the actual spacing of received data packets.

These differences occur more frequently with generally a larger magnitude

when traffic is not sent as frequently as allowed by TCP as can be the case

with Web or streaming data. The new option also allows a more accurate

RTT estimation, which is not influenced by the factors of ACK delay or

packet loss. Our results show that the current mechanism of RTT calcula-

tion can make over 200ms overestimation when packet loss occurs.

147

Chapter 8

Packet Aggregation

Previous results in Section 3.3 indicate that less than 20% of packets reach

the full MTU size and many packets are small. The median and mean sizes

for all IP packets are about 200 and 550 bytes respectively. These results

are consistent with other work [TMW97, MC00, FKMkc03, FML+03] con-

ducted at different time periods and locations. At the same time, we have

also observed numerous concurrent flows existing between the same host

or cluster pair. These facts bring the opportunities to aggregate small pack-

ets into big packets to save the total number packets for transmission. Re-

ducing the total number of packets helps alleviate workload of interme-

diate routers whose processing cost is packet-based instead of byte-based.

By sharing the common IP headers, a certain amount of overhead can be

reduced, therefore improving the bandwidth usage efficiency.

Previous work has addressed aggregation at different levels. Approaches

like HTTP/1.1 [FGM+99]), SCP [Spe], and SMUX [GN98]) are at the appli-

cation or session layer. They all seek to multiplex independent data streams

CHAPTER 8. PACKET AGGREGATION 148

over one TCP connection in order to reduce the cost of opening and closing

TCP connections. As a side effect, they may result in less packets because

of more data to be sent on one connection.

The Nagle Algorithm [Nag84] used in TCP and the built-in multiplex

option in SCTP [SXM+00], both at the transport layer, allow user data to

be aggregated into packets. TCP uses Nagle’s algorithm to force user data

to be accumulated before all acknowledgments are received or a full MTU

size packet is filled up. SCTP allows bundling of multiple user messages

into one SCTP packet. The aggregation efforts for both TCP and SCTP are

limited to one TCP connection or one SCTP association.

The ”car pooling” method [BS99] aggregates packets at the network

level. This work suggests placing aggregators and splitters in desirable

locations of the network. Aggregators combine small packets going to the

same destination while splitters regenerate the packets at the destination.

Under a simulated environment, “car pooling” shows performance gain

when assuming the bottleneck is the number of packets that can be queued.

Packet aggregation is based on the same idea as the “car pooling” method.

However, we evaluate the performance of packet aggregation in a different

way. In the “car pooling” work, network traffic is simulated as 100% Web

request-response traffic, where the object size is fixed and the packet size

is a uniform 536 bytes. In addition, the aggregation efforts are based on a

hard limit of how many packets can be aggregated instead of using MTU

as the boundary. Furthermore, the queue size of routers, represented as the

number of packets, is assumed as the path bottleneck in spite of other fac-

tors like bandwidth and buffer size in bytes. The throughput gain shown

8.1. MEASUREMENT METHOD 149

in the results largely depends on the above assumptions, which may not be

realistic or representative.

We adjust the evaluation method in the following aspects. First, we use

real traffic traces as the input to a packet aggregator instead of simulated

Web traffic. Second, we use both MTU size and a deadline as constraints

for aggregation. We use the Ethernet MTU as the space boundary for ag-

gregated packet size and a deadline as the time boundary for how long a

packet can be held before it must be sent out. Third, we use the reduced

number of packets instead of improved throughput as the metric to eval-

uate the gain of packet aggregation. Throughput is an intricate measure-

ment that depends on many factors such as topology, bandwidth, traffic

dynamic, and router queue management disciplines. We pick the number

of packets as a simple indicator for upper-bound improvement by using

packet aggregation.

8.1 Measurement Method

We use a trace-based simulation to evaluate the packet saving benefit that

can be achieved by packet aggregation. The trace logs are described in

Table 3.1 of Chapter 3. For the ISP logs, each record is a packet trace, which

can be used as input to the simulation directly. However, for the WPI logs,

each record is a summary of the number of packets and total bytes in the

last minute of a flow. We use the following method to estimate packet sizes

in a record. 1) For a record that has SYN or/and FIN flags, we consider

this record to have one/two packets that have the minimal TCP packet size

8.1. MEASUREMENT METHOD 150

of 40 bytes and exclude the packets from the following calculation. 2) For

TCP, given the number of packets and bytes in a record, we calculate the

maximal number of packets that can carry the full MTU size of 1500 bytes.

We then count all the remaining packets as non-full packets and they have

the same packet size. 3) For UDP, we simply use the average size for all

packets in that record. We find that this method gives a good estimation on

packet sizes. We compare the packet size distributions for particular types

of flows between the ISP logs and WPI logs, and the results are very close.

For WPI logs, we also assume that the packets in a record are evenly

distributed for the duration of the record. When two flows have a overlap,

the available space of one flow in the overlap can be used by the other. This

method simplifies the simulation but may overestimate the aggregation ef-

fects by giving more flexibility of how the available space can be used. For

this reason, we only use the results for the WPI logs as a upper bound for

the benefit that can be gained by packet aggregation.

We examine aggregation effects on two types of scopes: host-to-host

and cluster-to-cluster. For the host-to-host scope, we assume that both the

aggregator and splitter exist at the end hosts. For example, we can add

the aggregation/split function to the IP layer of TCP/IP kernel. All pack-

ets are subjected to be aggregated before being sent to the data link layer

and all aggregated packets are split once the network layer received them

from the data link layer. For the cluster-to-cluster scope, we assume that

the combination of aggregator and splitter exists for each cluster that we

have identified with BGP routes (Chapter 3). The aggregator/splitter can

be a separate unit sitting in front of the edge router for the cluster or be

8.1. MEASUREMENT METHOD 151

combined with the edge router itself. All traffic from the cluster is sub-

jected to aggregation. We use the same clustering method as described in

Section 3.1. For WPI logs, we use BGP routes to classify IP addresses, while

for ISP logs we just use traditional class C.

For the purpose of aggregation, small packets are delayed in the hope

that they can combined with other small packets. We set a deadline for how

long a packet can be held before it has to be sent. Ideally, an application

can set the deadline value for each message it generates because a dead-

line can be different from application to application or from message to

message. However, in most cases, a deadline can be set for each type of ap-

plication. For example, interactive applications are given a short deadline

and file transfer applications can have a longer deadline. In the following

experiments, we apply a fixed deadline for all applications while varying

the deadline value for each experiment. We use such a simplified proto-

type to quickly understand the benefits of aggregation and the influence of

different deadline parameters.

Another constraint for aggregation is the maxim packet size. As all the

traffic logs used in the following experiments were collected at an Ethernet

subnet. We use the Ethernet MTU size as the upper boundary for the aggre-

gated packet size. It is possible that an actual path MTU [MD90] is smaller

than the MTU size we use. We consider these cases are rare as nearly all

current networks support MTU size equal to or bigger than 1500 bytes and

the MTU size tends to be larger as proposed in [KSO+01]. We calculate

the size of an aggregated packet as equal to the sum of the sizes of its all

component packets, including IP and transport layer headers. Delivery of

8.2. RESULTS 152

such aggregated packets can be done through encapsulation of multiple IP

packets into a single IP packet as is currently done for tunneling [Per96].

Aggregation may cause packet reordering problems, where a packet

sent earlier is received later than another packet due to aggregation delay.

Packet reordering is harmful if the reordered packets belong to the same

flow. We avoid packet reordering by enforcing packets of the same flow be

sent in order. When a packet must be sent out (e.g. a full-size packet), all

previously delayed packets of the same flow must be sent out immediately

before this packet.

8.2 Results

We first perform aggregation on all packets without regarding whether

these packets are from the same flow or different flows. We empirically pick

0.05 and 1 second as two fixed deadline values for each experiment under

different scopes. For most applications, 50ms is a tolerable delay and we

push the deadline to 1 second to examine the improved aggregation effects

when using a much longer delay. The results are shown in Table 8.1.

For the two ISP logs, there is about a 20% packet reduction when us-

ing 0.05 second deadline threshold and this number increases to nearly

50% when using 1 second deadline. The results under the cluster-to-cluster

scope do not show much bigger improvement than these under the host-

to-host scope. Results for the three WPI logs show higher percentages of

packet reduction than the two ISP logs. One reason is that the WPI logs

have little P2P traffic as P2P applications are forbidden due to campus pol-

8.2. RESULTS 153

Table 8.1: Percentages of Packet Reduction by Aggregating All Packets

LogName Host-to-Host Cluster-to-Cluster

0.05Sec 1Sec 0.05Sec 1Sec

wpi1 28.3% 55.8% 29.5% 56.3%

wpi2 29.1% 56.1% 29.7% 57.0%

wpi3 29.3% 56.2% 30.1% 57.3%

isp1 18.5% 44.7% 18.8% 45.0%

isp2 19.3% 47.5% 20.3% 48.5%

icy. On the other hand, about half of the packets in the ISP logs belong

to P2P applications. P2P traffic generally has large packet size and small

aggregation opportunities. Another reason is that the method used to esti-

mate packet traces from a flow record for the WPI logs exaggerates aggre-

gation effects to a certain extent.

The results look promising as a significant amount of packets can be

saved. However, a closer check reveals that most aggregation takes place

between packets inside a flow, especially the ACK packets on the reverse

direction of a TCP flow. Packet aggregation inside a flow has several prob-

lems. First, aggregating ACKs on the reverse direction causes the ACK

compression problem [BPS+98], which is undesirable as TCP uses recep-

tion of ACKs to pace the transmission rate. Second, a dependency exists

between packets within a flow. If the generation of a succeeding packet

depends on the response of a previous packet, these two packets cannot

be aggregated. Third, packet aggregation within a flow can be done and

most appropriately done at the application level, which obeys the ALF

(Application-Level Framing) principle in [CT90] that suggests applications

8.2. RESULTS 154

should take control of data sending units.

As aggregation is undesirable for packets within a flow, we limit aggre-

gation to take place only for packets belonging to different flows (hence-

forth called inter-flow packet aggregation). The results are shown in Table 8.2.

Table 8.2: Percentages of Packet Reduction by Aggregating Only Inter-flow
Packets

LogName Host-to-Host Cluster-to-Cluster

0.05Sec 1Sec 0.05Sec 1Sec

wpi1 8.9% 9.8% 18.5% 19.6%

wpi2 9.5% 10.5% 19.3% 20.4%

wpi3 10.0% 10.9% 20.1% 21.1%

isp1 2.9% 3.8% 3.9% 5.9%

isp2 2.8% 4.0% 4.1% 6.3%

Not surprisingly, the number of packets that have been reduced is much

smaller than that when aggregation is applied on all packets. For the two

ISP logs, there are only 3-6% packet reduction for all experiments. These

small reduction percentages are largely because of the massive P2P traffic

in ISP logs. Using traditional class C to cluster IP addresses also under-

estimates the aggregation effects under the cluster-to-cluster scope. The

results for WPI logs show higher packet reduction, about 10% under the

host-to-host scope and almost doubled for the cluster-to-cluster scope. Us-

ing a longer deadline does not show a significantly higher gain than using

a short deadline.

Despite the marginal savings on the total number of packets, packet

aggregation introduces additional delay as well as requires more state in-

8.3. SUMMARY 155

formation such as deadlines for packet transmission. In addition, less and

fatter packets are not always good. When packets are transmitted over

wireless, bigger packets have higher chance of getting errors. The opti-

mal packet size to reach highest goodput is a function of the current error

bit rate. Similarly, intermediate routers using rate-based dropping schemes

such as adaptive virtual queue [KS04] also have a higher possibility to drop

bigger packets. Finding optimal transmission size for this type of scheme

is out of the scope of this study. However, assuming that size is known,

packet aggregation can treat it as an effective MTU for the path and only

aggregate packets up to that limit.

8.3 Summary

While aggregation over all packets has a significant packet savings, the re-

sults for inter-flow aggregation show much less of a gain. Despite that

the “car pooling” work [BS00] presents much performance improvement

by using packet aggregation, our results show only marginal packet sav-

ings in more realistic experiments. For traffic involving many P2P flows,

packet aggregation is not effective. We observed only about 6% packet re-

duction even under the cluster-to-cluster scope. For traffic exempting P2P

flows, the gain is higher, but still not much. We show the upper bound

of packet savings for two such logs are about 10% under the host-to-host

scope and 20% under the cluster-to-cluster scope. On the other hand, ag-

gregation introduces extra delay and more implementation complexity to

TCP/IP stacks. Comparing the cost and gain, we do not see this direction

8.3. SUMMARY 156

as appropriate for further investigation unless traffic patterns change in the

future.

In a closer examination, we find that the low aggregation ratio is caused

by a small number of flows that involve large file transfers. This amount

of flows takes less than 10% of total flows but account for over 90% of total

packets. The observation is called the “elephants and mice” phenomenon

in previous studies [SRS99, FP99, BDJ01, SRB01, PTB+02, cLH03a]. Ele-

phants, i.e. flows having big transmission size, only take a small share of

flow counts but contribute the majority of network traffic. Most packets in

the download direction of these flows are full and aggregation is fruitless.

157

Chapter 9

Critical Packet Piggybacking

Previous results for packet aggregation in Chapter 8 did not show much

packet savings. While aggregation is ineffective for elephant flows, an in-

teresting question is whether available packet space should and could be

used to help other flows. In one study [EV01], the authors point out that

routers should focus on the elephants and ignore the mice. It may be impor-

tant for routers as the elephants take most of link bandwidth. However, the

statement is not true from the end user point of view. The elephants, which

usually involve large file transfers, do not have as critical performance re-

quirements as interactive or transactional applications. A P2P user nor-

mally puts the downloading process in background or leaves it unattended

overnight. In contrast, an interactive or transactional session requires the

attention of an end user all the time. These types of sessions normally gen-

erate mice flows and their performance is critical to user-perceived latency.

In terms of flow counts, mice flows take the majority share of total flows

and are our focus in this chapter.

CHAPTER 9. CRITICAL PACKET PIGGYBACKING 158

Interactive or transactional sessions are sensitive to round trip time and

packet loss. In these types of sessions, the generation of the next message

is normally based on the response to the previous message. The request-

response delay highly depends on the round trip time between the two end

hosts. When packet loss occurs, the request-response delay may become

much longer due to timeouts and retransmissions. For example, the time-

out for resending a DNS request is 3 to 5 seconds depending on different

DNS client implementations. The loss of TCP SYN or SYN ACK causes a

timeout of 3 seconds by default on both Windows and Linux systems. Even

after a TCP connection has been established, the minimal retransmission

timeout (RTO) value is still 200 milliseconds in the Linux operating system

[SK02b] and one second in many other systems as suggested by [AP99].

The fast retransmission and recovery scheme [Ste97] is not likely to take

control in interactive and transactional sessions as there are not enough

packets to send in one RTT.

To protect packets from loss and incurred timeout, we propose a scheme

called critical packet piggybacking, which protects critical packets from loss

by exploiting available packet space in other concurrent flows. We define

critical packets as the packets that are significant in the critical path for the

performance of an application. For example, the handshake packets for

a TCP connection establishment are critical for applications as the loss of

SYN or SYN ACK packets will incur a timeout measured in seconds. DNS

query and response messages are also critical as the loss of either message

will add a 3-5 second delay. Another example is the I frames in MPEG

video streams [MPFL96]. Loss of one I frame causes many unusable P and

CHAPTER 9. CRITICAL PACKET PIGGYBACKING 159

B frames that depend on it. To protect these critical packets, we can either

send duplicate copies or redundant forward error correction (FEC) data for

them. With the available space provided by other flows, these data can be

piggybacked without introducing extra packets.

Critical packet piggybacking can also be used for predicted packets.

Predicted packets shortcut the critical path if the prediction is accurate. But

it introduces unnecessary traffic if the prediction is wrong. Previously in

Chapter 5, we sent predicted responses with the first legitimate response

without adding any extra packets. With available space provided by other

flows, more piggybacking opportunities exist.

Although both critical packet piggybacking and packet aggregation seek

to use the available packet space provided in other concurrent flows, they

have different objectives. Packet aggregation applies to all non-full pack-

ets and seeks to reduce the total number of packets. Critical packet piggy-

backing only applies to packets that are critical for application performance

and protects them from packet loss. Elephant flows have a big influence

on packet aggregation, but little impact on critical packet piggybacking as

there are not many critical packets in these flows. Critical packet piggy-

backing does not necessarily require a lot of available packet space. For the

critical packets in interactive and transactional sessions, they are normally

small and easy to be piggybacked by other flows.

In terms of costs, while critical packet piggybacking does not intro-

duce additional packets, it adds more bytes. Precautions should be made

when deciding which packets should be protected from loss. Small but

performance-critical packets are good candidates when considering the ra-

CHAPTER 9. CRITICAL PACKET PIGGYBACKING 160

tio of value over cost.

One issue with sending duplicate packets is that these packets must be

idempotent, where reception of duplicate copies of the same packet should

have the same effect as receiving exactly one such a packet. This problem

can be resolved by setting a tag for the duplicates or just sending FEC codes

instead of the original packets. Upon receiving a duplicated packet, the

receiver should silently discard it if it already gets the original one.

Another issue with critical packet piggybacking as well as packet ag-

gregation discussed in Chapter 8 is that they introduce delay in favor of ag-

gregation. This delay influences RTT calculations and cannot be excluded

even with the help of the enhanced TCP timestamp option we proposed in

Chapter 7. The reason is that aggregation takes place at the network layer

and TCP timestamps are marked earlier at the transport layer. TCP does

not know whether a packet will be delayed in the future. One solution to

this problem is to let the network layer remark the sending timestamp in

TCP timestamp options for delayed packets. If a delayed packet is a data

packet, the remarked timestamp reflects when this packet leaves the ma-

chine and will be echoed back in its corresponding ACK. The aggregation

delay therefore will not be included in RTT calculations. If a delayed packet

is an ACK packet, the remarked timestamp reflects when this ACK leaves

the machine. With the help of the enhanced timestamp option, this aggre-

gation delay is counted as part of the ACK delay, which is excluded in RTT

calculation as well.

Results in Chapter 3 show the general existence of flow relationships

and the presence of available packet space. In the following, we focus

CHAPTER 9. CRITICAL PACKET PIGGYBACKING 161

on several scenarios where critical packets can be piggybacked by related

flows. We examine how much available space can be provided by these

related flows and how many critical packets can be piggybacked. These

scenarios are:

1). Packet piggybacking for an interactive application. We choose SSH

(Secure SHell) as a representative interactive application, which in-

volves interactions between an end user and a remote service. Due

to its secure feature, SSH is much more common in our traffic logs

than its predecessors like “telnet” or “rlogin”. Packets inside a SSH

session normally enclose commands and responses between the user

and the server. They are generally small and can be easily piggy-

backed by other flows. The SSH application is vulnerable to long

RTTs and packet loss. The loss of one packet normally incurs a time-

out and packet retransmission happens thereafter. As a way to re-

cover quickly from a packet loss, the SSH application can ask the

transport layer to send certain packets in duplicate if piggybacking

is possible.

2). Packet piggybacking for a Web application. The Web provides a ver-

satile interface for multiple purposes. On one hand, the Web flows

involving large file transfers are generally large in transmission size.

On the other hand, flows for Web transactions are normally small in

transmission size. As packet piggybacking is ineffective for the for-

mer case, we study piggybacking opportunities only for small Web

flows. As with the SSH application, small Web flows are also vul-

9.1. MEASUREMENT METHOD 162

nerable to long RTTs and packet loss. Sending duplicate packets for

certain critical data (e.g. Web object requests) helps protect against

packet loss. Furthermore, due to relationships between Web objects,

it is possible to predict and piggyback future packets.

3). Packet piggybacking for streaming applications. We pick “real” (re-

alplayer streaming application) as it is one of the most popular stream-

ing media applications. Packets inside a streaming flow have dif-

ferent significance. Packets that are more critical than others can be

protected by sending redundant data. These redundant data can be

piggybacked with other concurrent flows without introducing extra

packets.

4). Packet piggybacking for TCP establishment. A TCP establishment

procedure includes a three-step handshake. Any packet loss during

this procedure will incur a long timeout. We can avoid this delay

by letting other concurrent flows piggyback protective duplicates for

these packets. In addition, if we can foreshadow upcoming future

flows, the connection establishment procedure(s) can be piggybacked

by ongoing flows, as a shortcut in an application’s critical path.

9.1 Measurement Method

We use a similar method as we did to examine flow relationships in Chap-

ter 3. However, in addition to examining temporal overlaps between flows,

we also count the number of non-full packets inside a flow and check to

9.1. MEASUREMENT METHOD 163

what extent these non-full packets can be piggybacked by concurrent flows.

For the ISP logs, we have packet size information for each packet. For the

WPI logs, we have aggregated information at a one-minute granularity for

each flow. We use the same method described in Section 8.1 to estimate the

number of non-full packets and their sizes in a record.

For the same reason as we discussed in Section 8.2, we examine the

possibilities of inter-flow packet piggybacking only, i.e. piggybacking du-

plicate critical packets into other flows. We are aware that applications

themselves may send duplicates or redundant data within the same flow

such as FEC used in some streaming applications [WCK05, FB02, LC00]. It

is purely an application-level decision. Here we try to understand to what

extend piggybacking is possible given the existence of concurrent flows.

For the four scenarios described above, we use transmission protocols

along with port numbers to identify application flows of interest. This

method introduces some inaccuracy when the same protocol and port com-

bination is used for multiple purposes. For example, both SSH and SFTP

(Secure FTP) use the same TCP port 22. However, the flow types of our in-

terests are generally much more common in the logs than other flow types

that use the same protocol and port number. We believe that the results

based on the mixture of flows should not change the tone of observations.

When two flows have a temporal overlap, we assume the available

space from the non-full packets of one flow can be used by the other dur-

ing the overlap period. This assumption exaggerates the piggybacking ef-

fects because it grants more flexible temporal constraints for a packet to be

piggybacked. We use this estimation because the WPI logs only include

9.2. RESULTS 164

flow traces. Another reason is that under that assumption we only need

to maintain states for recent flows instead of for all recent packets, which

significantly reduces the spatial and temporal complexity of the simulation.

There are two possibilities for a flow of interest to have temporal over-

lap with other flows. The flow can have overlaps with flows that already

exist when it starts or with flows that begin after its starting time. For both

cases, available space in the overlaps can be utilized by the flow in ques-

tion. However, only for the first case, packets involved in TCP handshakes

can be piggybacked. For the latter case, we look ahead for another flow

within a one second limit. If a flow begins later than the starting time of

the flow in question but within a one second period, we consider it still

possible for the following flow to piggyback protective packets for TCP es-

tablishment of the first flow. The one second grace period is chosen because

if a SYN packet can be resent within one second, it still represents a saving

compared with the 3 second default timeout.

9.2 Results

9.2.1 Piggybacking for SSH

As we check the piggyback opportunities for normal SSH flows, we only

focus on flows that actually go through the connection establishment stage.

For that reason, we filter out TCP flows that have less than 3 packets in

either direction. We discard a significant number of flows according to that

criteria. The majority of these incomplete flows only show traffic in one

direction, which can be explained as connection attempts but no response.

9.2. RESULTS 165

We have examined all the logs included in Table 3.1. The results for all

the five logs except wpi3 are similar. However the results for the wpi3 log

show a different pattern. A closer examination shows that there are 5 times

more SSH flows in the wpi3 log than the other two wpi logs. Among them,

over 80% of SSH flows have near constant numbers of packets between 10-

13 for each direction and the majority of these flows are initiated from 3

hosts. We suspect that these flows are generated by automatic programs,

which skew the results for the wpi3 log.

We show the results for wpi1, which are representative for the four logs

excluding wpi3. There are just over 4K SSH flows included in the wpi1

log. Figure 9.1 and 9.2 give the cumulative density functions (CDFs) for the

number of packets and the number of non-full packets in each SSH flow

in both directions. Here “downstream” means the direction from a SSH

server to a SSH client and “upstream” is the reverse direction. About 80%

of flows have less than 400 packets in each direction and the median values

are around 65 packets. There are about 1% of flows that have over 100K

packets in each direction. We conjecture that these SSH flows are actually

used for SFTP.

We see that the curve for the number of non-full packets almost over-

laps with the curve for the number of packets, which indicates the major-

ity of the SSH packets are not full. The average packet sizes for 90% of

SSH flows are under 385 bytes for the downstream direction and under 260

bytes for the upstream direction. The general small sizes of packets suggest

that these packets are easy to be piggybacked if there are other concurrent

flows.

9.2. RESULTS 166

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Number of Packets in Upstream Flows

non-full
total

Figure 9.1: CDFs of the Number of Packets and the Number of Non-
full Packets in SSH Upstream Flows (for wpi1 log)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Number of Packets in Downstream Flows

non-full
total

Figure 9.2: CDFs of the Number of Packets and the Number of Non-
full Packets in SSH Downstream Flows (for wpi1 log)

9.2. RESULTS 167

We then check the overlaps of SSH flows with other flows. Under the

host-to-host scope, there are close to 20% of SSH flows that overlap with

other flows. Under the cluster-to-cluster scope, this number goes up to

60%. Most of these concurrent flows are also SSH flows, but for different

sessions. Other important concurrent flows are Web and PoP3 flows. We

examine how many packets in a SSH flow can be piggybacked given the

available space provided by these concurrent flows. The results are shown

in Figure 9.3 and 9.4 for upstream and downstream directions respectively.

We calculate the percentage of non-full packets that can be piggybacked

over the total number of non-full packets for each flow. The CCDFs (Com-

plementary CDF) for all SSH flows are given in Figure 9.3 and 9.4. We

observe that under the host-to-host scope nearly 20% of SSH flows have

at least one packet that can be piggybacked by other flows. About 8% of

SSH flows can have all non-full packets piggybacked by other flows. Un-

der the cluster-to-cluster scope, the piggybacking opportunities are signif-

icantly increased. For 60% of the SSH flows, one or more non-full pack-

ets can be piggybacked by other flows within the same cluster pair. Close

to 30% of SSH flows can have all non-full packets piggybacked under the

cluster-to-cluster scope.

Most flow relationships observed between SSH flows with other flows

are caused by an end user opening multiple SSH sessions, browsing Web

information, or reading E-mails from the same site. It is more related to

user access patterns than inherent application behavior. While we do not

observe the existence of a huge amount of relationships between SSH flows

with others especially under the host-to-host scope, a considerable amount

9.2. RESULTS 168

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Percentages of Piggyback-able Non-full Packets

c2c
h2h

Figure 9.3: CCDFs of Percentages of Piggyback-able Non-full Pack-
ets in SSH Upstream Flows under Different Scopes (for wpi1 log)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Percentages of Piggyback-able Non-full Packets

c2c
h2h

Figure 9.4: CCDFs of Percentages of Piggyback-able Non-full Pack-
ets in SSH Downstream Flows under Different Scopes (for wpi1 log)

9.2. RESULTS 169

have overlaps with others. As most packets inside SSH flows are small,

there are good piggybacking opportunities whenever overlaps occur. SSH

applications can decide which packets should be protected and ask the

transport layer to send duplicate copies if piggybacking is possible. One

simple scheme is to let the transport layer (i.e. TCP) retransmit every packet

that has not been acknowledged in one round trip if piggybacking is pos-

sible. This scheme is essentially the aggressive timeout technique we dis-

cussed in Section 4.4, but using inter-flow relationships.

9.2.2 Piggybacking for the Web

For the same reason as what we have done with SSH flows, we filter out in-

complete Web flows that have less than 3 packets in either direction. For the

three WPI logs, Web traffic is dominant for all the TCP traffic. For the two

ISP logs, Web traffic is not dominant but still takes a significant share. The

results for all five logs are consistent except that the piggybacking percent-

ages under the cluster-to-cluster scopes for ISP logs are lower than these for

WPI logs. This difference may be caused by the way we used to cluster IP

addresses in ISP logs, which is more conservative than using BGP routes.

Again, we only show results for the wpi1 log.

Figures 9.5 and 9.6 show the CDFs for the number of packets and the

number of non-full packets in Web flows. Most Web flows only include a

small amount of packets in each direction. About 80% of the flows have

less than 10 packets in the downstream direction. For the upstream direc-

tion, the number of packets inside a flow is even less. This observation is

understandable as most Web objects are small and take only a few packets

9.2. RESULTS 170

to be transfered.

For the upstream direction, the two curves for the number of total pack-

ets and non-full packets almost overlap, indicating most upstream packets

are not full. On the other hand, for the downstream direction, non-full

packets are considerably less than the total packets. It is understandable

as a Web object is normally carried by several full packets and one non-

full packet at the end. The average packet size for upstream and down-

stream Web flows are also quite different as shown in Figure 9.7. Packet

sizes for the upstream Web flows are generally small, while packet sizes for

the downstream Web flows have a big range.

We show CCDFs for the percentages of non-full packets that can be

piggybacked in Figure 9.8 and 9.9. Even under the host-to-host scope,

over 70% Web flows can have part of their packets piggybacked and over

60% Web flows can have all their non-full packets piggybacked. Under the

cluster-to-cluster scope, the percentages are about 15% higher. The curves

for the upstream and downstream directions are similar. However, because

there are less non-full packets in the downstream direction than the up-

stream direction, the number of packets that can be piggybacked is actually

smaller for the downstream direction.

Most concurrent traffic of the Web flows are other Web flows. Under

the cluster-to-cluster scope, a significant amount of DNS flows are also

observed preceding the Web flows. Most of these flow relationships are

caused by inherent application behavior. A Web session normally starts

with a DNS query, then has several TCP connections established. In each

connection, one or more Web objects may be retrieved. These rich and

9.2. RESULTS 171

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

Number of Packets in Upstream Flows

non-full
total

Figure 9.5: CDFs of the Number of Packets and the Number of Non-
full Packets in Web Upstream Flows (for wpi1 log)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

Number of Packets in Downstream Flows

non-full
total

Figure 9.6: CDFs of the Number of Packets and the Number of Non-
full Packets in Web Downstream Flows (for wpi1 log)

9.2. RESULTS 172

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

C
D

F

Average Packet Size (Bytes)

upsteam
downstream

Figure 9.7: CDFs of Average Packet Sizes for Upstream and Downstream
Web Flows (for wpi1 log)

inherent relationships grant two types of opportunities. First, important

packets such as requests can be protected by letting related flows piggy-

back duplicate copies. Second, future flows or packets can be predicted

given existing relationships between Web objects. These predicted packets

can be piggybacked by other flows without introducing any extra transmis-

sions. For example, the DNS-enabled Web (DEW) approach [KLR03] takes

advantage of this type of relationship and lets DNS packets piggyback pre-

dicted Web messages.

9.2.3 Piggybacking for “Real” Streaming

A “real” streaming session normally includes two flows, one for control

and one for data. For both flows, there are a list of ports to choose from.

By default, the control flow uses the standard RTSP (Real Time Streaming

9.2. RESULTS 173

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Percentages of Piggyback-able Non-full Packets

c2c
h2h

Figure 9.8: CCDFs of Percentages of Piggyback-able Non-full Pack-
ets in Web Upstream Flows (for wpi1 log)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Percentages of Piggyback-able Non-full Packets

c2c
h2h

Figure 9.9: CCDFs of Percentages of Piggyback-able Non-full Pack-
ets in Web Downstream Flows (for wpi1 log)

9.2. RESULTS 174

Protocol) port (i.e. TCP port 554) and the data flow picks a UDP port be-

tween 6970 and 7170. If the connection is refused at the TCP port or no

packet is received on the UDP port within a certain period, other ports are

tried in turn. For simplicity, we use TCP port 554 to identify the “real”

control flow and UDP port range 6970-7170 to identify the data flow. By

this method, some “real” streaming flows may be missed if they are using

different ports.

Using port numbers to identify “real” streaming flows may also cause a

false positive problem, where a flow is identified as a “real” streaming flow

but actually is not. ”Real” streaming applications by default use UDP port

range 6970-7170 for data transmission. But this port range is not reserved

exclusively for that purpose. In order to distinguish “real” flows from

others, we study the packet characteristics of “real” streaming flows. We

manually collected packet traces for several “real” streaming sessions. We

found that the average packet sizes for “real-audio” data flows are around

600 bytes and over 1000 bytes for “real-video” flows. In addition, most data

flows are preceded by a RTSP flow (the control flow). Using the packet size

and the relationship with RTSP flows as criteria, we found that most flows

that have been identified as “real” data flows by port numbers in the isp1,

isp2, and wpi3 logs are actually not. However for the wpi1 and wpi2 logs,

over 90% of the identified data flows pass the test of the criteria.

We also consider the “real” data flows that have less than 10 packets in

the downstream direction incomplete and discard them. The cutoff number

is chosen based on our observation that even a few seconds of streaming

incurs over tens of packets. There are just above 100 valid “real” flows

9.2. RESULTS 175

included in the isp1, isp2, and wpi3 logs. The wpi1 and wpi2 logs both

have over a thousand valid “real” flows and they have similar results. We

only show the set of results for the wpi1 log.

Figure 9.10 and 9.11 show the CDFs for the number of packets and the

number of non-full packets in “real” data flows. We do not show the results

for “real” control flows as we focus on examining the piggybacking oppor-

tunities for data packets. In the downstream direction, about 50% of flows

have over 1K packets and a small amount of flows have over 10K packets.

The curve for the non-full packets is close to that of total packets, indicat-

ing most packets are not full. The observation is the mixed results for audio

and video flows. “Real” audio flows normally have packet size around 600

bytes, while “real” video flows have many full packets and some non-full

packets. Not surprisingly, the upstream flows have fewer packets as these

packets are only used to provide feedbacks.

The average packet size for each flow is shown in Figure 9.12. The

packet sizes for upstream flows are small as these packets carry only feed-

back information. The majority of downstream flows have average packet

sizes just above 600 bytes, indicating that most flows are audio flows.

We show CCDFs for the percentages of non-full packets that can be pig-

gybacked in Figure 9.14 and 9.13. There are significant differences between

the host-to-host and cluster-to-cluster scope. Under the host-to-host scope,

most flows have opportunities to have a small amount of packets be pig-

gybacked. The majority of the available space comes from their concurrent

control flows. On the other hand, under the cluster-to-cluster scope, much

space comes from another streaming data flow or a Web flow. As a result,

9.2. RESULTS 176

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

C
D

F

Number of Packets in Upstream Flows

non-full
total

Figure 9.10: CDFs of the Number of Packets and the Number of
Non-full Packets in “Real” Upstream Data Flows (for wpi1 log)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

C
D

F

Number of Packets in Downstream Flows

non-full
total

Figure 9.11: CDFs of the Number of Packets and the Number of
Non-full Packets in “Real” Downstream Data Flows (for wpi1 log)

9.2. RESULTS 177

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

C
D

F

Average Packet Size (Bytes)

upstream
downstream

Figure 9.12: CDFs of Average Packet Sizes for Upstream and Downstream
“Real” Data Flows (for wpi1 log)

significantly more packets can be piggybacked under the cluster-to-cluster

scope.

Under the host-to-host scope, we do not see many piggybacking op-

portunities as available packet space from other flows is limited. However,

under the cluster-to-cluster scope, a considerable amount of non-full pack-

ets can be piggybacked by other flows. While we did not study directly

how critical packets inside streaming flows could be protected by sending

redundant data, we show there are certain opportunities given much space

provided by other flows within the same cluster pair.

9.2.4 Piggybacking for TCP Establishment

We have examined packet piggybacking possibilities for several particular

applications. We now look at piggybacking possibilities for all TCP appli-

9.2. RESULTS 178

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Percentages of Piggyback-able Non-full Packets

c2c
h2h

Figure 9.13: CCDFs of Percentages of Piggyback-able Non-full
Packets in Upstream “Real” Data Flows (for wpi1 log)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Percentages of Piggyback-able Non-full Packets

c2c
h2h

Figure 9.14: CCDFs of Percentages of Piggyback-able Non-full
Packets in Downstream “Real” Data Flows (for wpi1 log)

9.2. RESULTS 179

cations. The TCP connection establishment procedure requires a three-step

handshake. The loss of a SYN or SYN ACK packet causes a long timeout

before a retransmission can take place. For both Linux and Windows sys-

tems, the default RTO for SYN packets is 3 seconds. This long timeout may

cause serious performance problems in the presence of packet loss.

We can treat these handshake packets as another type of critical packets.

They can be protected by letting a concurrent flow piggyback a duplicate

copy after a small delay. As SYN and SYN ACK are both small, these dupli-

cates require little space. We investigate the possible extent to which both

the SYN and SYN ACK packets of a TCP flow can be piggybacked by other

concurrent flows. We examine all TCP flows as well as TCP flows for some

popular applications. The observations are consistent across all WPI logs

while the results for ISP logs are lower under the cluster-to-cluster scope.

We show the results for the wpi1 log in Figure 9.15.

For all TCP flows, about 40% of them can have their SYN and SYN

ACK packets piggybacked by other flows in the host-to-host scope. This

percentage goes up to over 70% under the cluster-to-cluster scope. We also

list the possibilities for some popular applications. Most Web flows could

have their TCP connection establishment protected. 98% of FTP data flows

may have SYN packets piggybacked by their corresponding control flows

or other concurrent data flows. Applications like msn-messenger, SSH, Tel-

net, SMTP, and RTSP show significant difference between the host-to-host

scope and cluster-to-cluster scope. While there are not many opportuni-

ties for SYN packets to be piggybacked by other flows from the same host

pairs, these applications have a much better chance by taking advantages

9.3. SUMMARY 180

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RSTPSMTPTELNETSSHFTPMSNMSGWebTotal

R
at

io

TCP Protocols

h2h
c2c

Figure 9.15: Possibility of SYN and SYN ACK Packets of TCP Flows
Being Piggybacked by Other Flows (for wpil log)

of available space from flows within the same cluster pairs.

Note that duplicated SYN does not cause the SYN attack problem. SYN

attack happens when an attacker sends a series of SYN requests with spoofed

source IP addresses to a target attempting to use up the victim’s resource.

The SYN packets in a SYN attack are unique and the victim treats each of

them as a request for a new connection. However, duplicated SYN pack-

ets are exactly the same. The server treats them for the same connection

request and silently discards the duplicate if it already gets the original.

9.3 Summary

We have examined the potentials of critical packet piggybacking in four

particular scenarios. Depending on the relationships with other flows and

9.3. SUMMARY 181

the packet characteristics, an application could have different opportunities

for its packets to be piggybacked. Web flows show the biggest potential as

there are many non-full packets and plenty of flow relationships between

Web and other flows. Performance-critical packets or even a whole flow

can be protected by sending them in duplicate by other flows. In addition,

due to the inherent relationships between flow contents, future packets or

flows may be predicted. An application can indicate predicted traffic to be

sent only if piggybacking is possible. When those predicted packets are

successfully piggybacked, applications may experience better performance

without extra transmissions. If they fail to find an opportunity of being

piggybacked, the normal functionality of the application will not be influ-

enced.

Critical packet piggybacking for SSH is not as promising as for Web

flows. There are not many concurrent flows under the host-to-host scope.

However, flow relationships become much richer under the cluster-to-cluster

scope, which provides considerable opportunities to protect a certain amount

of packets. As most packets inside a SSH flow are small, they can be eas-

ily piggybacked even only a small amount of space is available from other

flows.

Reliability of the streaming application can be improved by sending

redundant data for important packets. Under the host-to-host scope, the

opportunities to piggyback these redundant data are small as there is little

space provided by other concurrent flows. However, significantly more

space is available if we also consider flows within the same cluster pairs.

We have observed that in our logs over 70% of streaming flows could have

9.3. SUMMARY 182

all of its packets protected. As the majority of the streaming flows in these

logs are audio flows, we expect that this number will be smaller if video

flows take more share.

The loss of SYN or SYN ACK packet can have a more negative impact

than the loss of a regular packet in the middle of a TCP connection. In order

to improve reliability, one approach is to send a duplicate SYN packet after

the original SYN packet is sent. Our results show that over 40% of TCP

flows could have these duplicate SYN packets be piggybacked by other

concurrent flows. Under the cluster-to-cluster scope, the percentage goes

up to 70%. Another similar usage of this approach is to send duplicate DNS

requests with a shorter timeout than normal.

183

Chapter 10

Conclusion

10.1 Review of Motivation and Goals

Internet applications continue to have performance issues due to many rea-

sons such as imperfect network conditions, inefficient transport protocols,

and less optimal application designs. Increased bandwidth cannot help

to reduce long round trip times, which are still a problem to applications

that need fast request-response interactions. Even with current bandwidth

over-provisioning in core networks and significantly improved access-link

speed, packet loss is still unavoidable due to Internet traffic dynamics.

Packet loss may cause serious performance problems to applications, es-

pecially when they incur long timeouts. Due to the nature of how current

Internet applications are used, a large number of packets are small, which

not only causes a problem for transmission efficiency, but also incurs much

switching overhead to intermediate routers. All of these problems are chal-

lenges to current Internet application performance.

10.2. RESULTS AND EVALUATION 184

In this work, we seek to exploit flow relationships as a way to improve

the performance of Internet applications. While there is much potential

in this direction, little work has been done, and none in a systematic way.

The goals of this thesis are to first have a better understanding of flow re-

lationships; then to examine the potential improvements by using these re-

lationships and establish a framework on possible techniques; finally to in-

vestigate specific techniques that exploit particular flow relationships and

evaluate their offered improvements.

10.2 Results and Evaluation

10.2.1 Study on the Existence of Flow Relationship

In order to exploit flow relationships, the first question is to understand

to what extent flow relationships exist and how much available space is

provided by related flows. We answer this question in our background

study in Chapter 3. We define a relationship to exist between two flows if

packets inside the flows exhibit temporal proximity within the same scope,

where the scope may either be between two hosts or between two clusters.

We examine the existence of flow relationships in five trace logs col-

lected at two sites. Our results show the existence of a significant number of

flow relationships. Under the host-to-host scope, we observed that 27-49%

flows have concurrent flow relationships, in which one flow has tempo-

ral overlap with another flow. The percentages go up to 40-59% if we also

include sequential flow relationships, in which one flow follows another

within a 10-second threshold. We observed more flow relationships under

10.2. RESULTS AND EVALUATION 185

the cluster-to-cluster scope, where 44-77% flows show concurrent flow rela-

tionships and the percentage increases to 51-84% if also including sequen-

tial flow relationships within a 10-second threshold. By breaking down

flows into different types based on their corresponding transport protocols

and ports, we find that many relationships between different types of flows

present relatively stable patterns.

We also study the characteristics of packet size and observed that many

packets are small and that most packets do not reach the full Ethernet MTU

size of 1500 bytes. This observation is consistent with other packet size

studies conducted at different times and locations. We combine flow rela-

tionships and packet size characteristics to examine the existence of rela-

tionships between flows that have minimum percentages of non-full pack-

ets. Even with this constraint, the results still show the existence of many

flow relationships as most flows have enough non-full packets.

The results on the flow relationship study are encouraging. Many flow

relationships exist and most related flows have non-full packets. The un-

used transmission capacity provides potential for improving application

performance. Given the existence of many flow relationships, the available

packet space can be used by not only a flow itself, but also its related flows.

10.2.2 Framework of Exploiting Flow Relationships

Having examined the existence of flow relationships, we explore possible

techniques that exploit flow relationships in Chapter 4. In this chapter, we

established a framework on general approaches of exploiting flow relation-

ships. One challenge of the generalization is that there are many Internet

10.2. RESULTS AND EVALUATION 186

applications. We need to abstract the common characteristics of the appli-

cations and apply techniques to types of applications instead of to partic-

ular applications. The other challenge is that there are also many ways to

exploit flow relationships. We need to generalize the potential improve-

ments that can be obtained by using flow relationships and explore partic-

ular techniques under each type of improvement.

Based on different traffic characteristics and performance concerns, we

first categorize four types of stages that are commonly seen, including bulk

transfer, interactive, transactional, and streaming. An application session

may include only one stage or can be composed of multiple stages. By

using this stage-based taxonomy, we look for general techniques that help

a type of stage instead of a particular application.

We then examine the potential improvements that can be achieved by

exploiting flow relationships. We categorize them as reducing total packets,

providing better information, avoiding timeout, and reducing the number

of RTTs. Under each category, we look at specific techniques that use two

types of flow relationships. First, techniques such as data piggybacking, en-

hanced TCP ACKs, aggressive timeout, and packet prediction essentially

use intra-flow relationships. Second, techniques such as packet aggrega-

tion, information sharing, critical packet piggybacking, and upcoming flow

prediction exploit inter-flow relationships.

The framework is an integration of the stage-based taxonomy and the

improvement categories. Under this framework, we seek techniques to

achieve potential improvements to help particular types of application stages.

For example, packet prediction is one way to reduce the number of RTTs.

10.2. RESULTS AND EVALUATION 187

It uses content relationships between flow packets and helps to improve

latency performance of transactional stages. As another example, the en-

hanced ACK technique uses the packet space in the reverse direction of a

flow to provide better information for the forward direction, which is most

useful to stages that are sensitive to network dynamics such as bulk trans-

fer or streaming. We investigate several specific techniques and evaluate

their offered potential improvements thereafter.

10.2.3 Piggybacking Related Domain Names to Improve DNS Per-

formance

This study is motivated by the observation that a local domain name server

(LDNS) frequently sends more than one query to the same authoritative

domain name server (ADNS) for different names within a short period of

time. With the help of application-level information, we find it possible to

predict subsequent queries based on the first query. At the same time, we

find that most DNS response packets are small and allow additional DNS

records to be attached. We hence propose the piggybacking related names

(PRN) approach, which predicts future queries and piggybacks related do-

main name resolutions to the response to the first query.

Trace-base simulations show that more than 50% of cache misses can be

reduced if the prediction is perfect and response packet space is plentiful.

Realistic policies, using frequency and relevancy data for an ADNS, reduce

cache misses by 25-40% and all DNS traffic by 20-35%. These percentages

improve if we focus the policies on resource records with smaller ATTLs.

10.2. RESULTS AND EVALUATION 188

Reduced local cache misses helps to improve user-perceived DNS lookup

latency. By piggybacking multiple answers in one response packet, the to-

tal number of queries and responses is also reduced, which alleviates the

workload on both LDNSs and ADNSs.

Compared with other approaches that also address improving the lo-

cal cache hit rate, our approach is novel. We explictly use the relationships

among queries and allow an ADNS to push resolutions for the predicted

names to the corresponding LDNS. The PRN approach reduces both first-

seen misses as well as previously-seen misses while other approaches re-

duce just the latter. The cost of PRN is also low as it reduces the number of

query and response packets while requiring no changes to the existing DNS

protocol. We also show improved performance by combining the PRN ap-

proach with the renewal-based approaches to create the hybrid approaches

that perform significantly better than each of their component approaches.

We use the PRN approach as an example to show how relationships be-

tween flow packets are used to reduce the total number of RTTs. While this

approach is particularly to DNS lookup, it is extensible to similar situations

where future packets are predictable and there is enough packet space to

piggyback them.

10.2.4 Data Piggybacking

TCP is a widely used protocol on the Internet. Due to the asymmetric traf-

fic pattern presented in a large number of TCP connections, there is a sig-

nificant amount of ACK-only TCP packets on the current Internet. Data

Piggybacking is to piggyback application-level data into ACK packets to

10.2. RESULTS AND EVALUATION 189

be sent in the reverse channel. This approach creates a clear primary and

secondary direction of data flow within a TCP connection. Data are piggy-

backed on the reverse channel only when an ACK packet is generated.

This mechanism allows applications to send reverse-channel data with-

out generating additional network packets or incurring new connections.

Such a mechanism could be used by peers in a peer-to-peer environment

where the transfer of desired content from peer A to peer B could simul-

taneously support the exchange of useful content via piggybacked transfer

from B to A. Incentives of a p2p application such as BitTorrent encourage

clients to exchange data tit-for-tat in both directions [Coh03], which can be

done more efficiently with our approach.

This approach does require changes to the current TCP mechanism.

However, by using a user-level modification to regular TCP client and server

programs, we are able to estimate the potential benefits of the data piggy-

backing. We find that the reverse channel throughput can match the ef-

fective reverse bandwidth limit without negative effects on the forward

channel throughput. The number of reverse channel packets generated

to achieve this throughput is significantly less than a simple bidirectional

transfer over one connection or two independent connections. Even in

the case of asymmetric links such as a home DSL connection, data pig-

gyback sizes up to a few hundred bytes per packet can be supported in ei-

ther an application-only or TCP-level implementation without reducing the

forward-channel throughput or having an appreciable effect on the number

of the reverse-channel packets.

We use this approach as an example to show how the available packet

10.2. RESULTS AND EVALUATION 190

space in flows is used to improve the transmission efficiency. Data piggy-

backing uses the relationship between the ACK packets in the download-

ing direction and the data packets in the uploading direction. When this

relationship is properly used, we see the potential for reducing the total

number of packets without impacting application performance.

10.2.5 TCP Enhanced ACKs

TCP enhanced ACKs is another way to exploit the available space provided

in reverse-channel ACKs. Different from data piggybacking, the objective

of TCP enhance ACKs is to provide better quality of information for ap-

plications. The current TCP acknowledge mechanism along with the tradi-

tional timestamp option only allow TCP to roughly measure the path con-

ditions in the forward direction. The measurement is not only influenced

by the congestion of the reverse direction, but also by the widely used TCP

delayed ACK mechanism.

We propose a new TCP option that provides more detailed and com-

plete information about the reception of data packets at the receiver com-

pared with the existing TCP Timestamp Option [JBB92]. This information

allows a TCP sender to track the spacing between all data packets arriving

at the receiver and to have complete timing information for the forward

and reverse directions of the connection. Such information can be used

to better detect jitter and congestion in the forward direction than what is

currently available.

Using the new TCP timestamp option, we can explicitly calculate the

spacing between data packets received at the receiver and hence establish

10.2. RESULTS AND EVALUATION 191

jitter in the forward data transmission channel. Currently this spacing can

only be inferred from the spacing between ACK generation at the receiver

or ACK reception at the sender. Results from many file transfer exper-

iments show discrepancies between the spacing of ACKs and the actual

spacing of received data packets. These differences occur more frequently

and with a larger magnitude when traffic is not sent as frequently as al-

lowed by TCP as can be the case with Web or streaming data. In addition,

the new option allows for a more accurate RTT estimation, which is not

influenced by the factors of ACK delay or packet loss. Our results show

that the current mechanism of RTT calculation may overestimate by more

than 200ms when packet loss occurs. This discrepancy not only causes a

more conservative determination of RTO, but also make it difficult for situ-

ations where it is desirable to decouple RTT from packet loss such as paths

involving wireless subnets.

The TCP enhanced ACKs technique is an example of how available

packet space is used to provide better quality of information for applica-

tions. An important point concerning the availability of this more complete

and accurate information about the TCP connection is that it is obtained

with minimal, bounded overhead by the TCP receiver and only a small

amount of additional information is added to an ACK packet that must be

sent anyways.

10.2.6 Packet Aggregation

Packet aggregation is encouraged by the observation of lots of non-full

packets on the Internet and many concurrent flows existing between the

10.2. RESULTS AND EVALUATION 192

same host or cluster pairs. The assumption is that if we can aggregate

small packets going to the same destination, we can save the total num-

ber of packets on the Internet. Reducing the total number of packets helps

to alleviate the workload of intermediate routers whose processing cost is

packet-based instead of byte-based. By sharing the common IP headers, a

fraction of overhead can be reduced, therefore improving the bandwidth

usage efficiency.

The results from a trace-based simulation are promising when we ap-

ply aggregation to all packets regardless to which flow they belong. There

is about 20% packet savings if we use a small aggregation delay of 50ms

and this number goes up to 50% if we use a larger aggregation delay of 1

second. However, problems exist in aggregation within the same flow. One

example is the ACK compression problem and another is the packet depen-

dency of a flow. Once we apply a constraint that requires aggregation occur

only between packets from different flows, the packet savings are signifi-

cantly reduced. There is only about 3%-6% packet savings for one log set

in which a lot of P2P traffic is observed. For another log set in which P2P

traffic is little, the packet savings are considerably bigger, but still marginal

as only 10%-20% packet reduction is observed.

While packet aggregation does not gain much due to current Internet

traffic patterns, we still consider it as a good example on how flow relation-

ships can be used to improve the transmission efficiency. If an application

allows for more flexibility in terms of when a packet may be sent (e.g. by

giving a deadline), the gain of aggregation can be achieved without impact-

ing the performance of the application.

10.2. RESULTS AND EVALUATION 193

10.2.7 Critical Packet Piggybacking

Packet loss may cause a severe problem to the application performance if

the loss incurs a long timeout delay. We often observe this situation occur-

ring in interactive or transactional stages of an application. For example, a

DNS retransmission will occur in several seconds when an original request

gets lost. The loss of TCP SYN or SYN ACK packets causes a 3 seconds

delay before another try. We propose a scheme called critical packet pig-

gybacking, which protects critical packets from loss by exploiting available

packet space in other concurrent flows. The essence of this scheme is to let

other flows piggyback a duplicate copy for packets that are critical to ap-

plication performance. The transmission of the duplicate data only occurs

if piggybacking is possible, therefore no extra packets are introduced.

We examine four particular scenarios in which critical packet piggy-

backing can be useful. We look at “SSH” and Web applications as they

usually involve interactive or transactional stages which are sensitive to

packet loss. We also examine the “real” streaming application as it repre-

sents a type of applications whose decoding algorithm is more sensitive

to the loss of one set of frames than that of others. Finally, we check the

possibility to protect packets for TCP establishment.

For these four scenarios, we investigate the possible extent to which the

non-full packets in one flow can be piggybacked by other flows. We find

that Web flows have the biggest potential in terms of piggybacking as there

are many non-full packets and plenty of flow relationships for Web flows.

A considerable percentage of SSH flows can also have a certain amount of

10.3. EXAMINATION OF THE HYPOTHESIS AND SUMMARY OF

CONTRIBUTIONS 194

packets to be sent in duplicates by other flows under the same cluster pair.

“Real” streaming flows do not show many opportunities for piggybacking

under the host-to-host scope, but the opportunities increase significantly

under the cluster-to-cluster scope. Finally, it is highly likely that the TCP

SYN and SYN ACK packets can be protected by letting other concurrent

flows send duplicate copies.

Critical packet piggybacking is another way to exploit packet space in

related flows. Different from the objective of packet aggregation, critical

packet piggybacking protects performance-critical packets from loss, there-

fore avoiding long timeouts. We find that this scheme has much potential

for applications that involve interactive or transactional stages. First, the

performance of these stages is vulnerable to packet loss. Second, packets

in these stages are normally small and can be easily piggybacked by other

concurrent flows.

10.3 Examination of the Hypothesis and Summary of

Contributions

The results and evaluation support the hypothesis made in Section 1.4, i.e.,

“classes of techniques can be deployed to exploit flow relationships and en-

hance application performance with minimal costs.” First, the existence of

numerous flow relationships suggests much potential in exploring flow re-

lationships. Second, the establishment of the framework indicates the gen-

eral usefulness of exploiting flow relationships. Third, the investigation of

specific techniques illustrates that a variety of improvements to Internet ap-

10.3. EXAMINATION OF THE HYPOTHESIS AND SUMMARY OF

CONTRIBUTIONS 195

plications can be achieved with minimal costs by exploiting particular flow

relationships. All of the above evidence supports the hypothesis that ex-

ploiting flow relationships is an effective direction to improve application

performance.

We summarize the contributions of this work as following:

A systematic study of flow relationships: to our best knowledge, it is the

first time that relationships between network flows are studied ex-

plicitely and in a systematic way. We studied the overall flow rela-

tionships as well as individual relationships between particular flow

types. The scope of our study is for not only host pairs, but also

cluster pairs. By combining packet size characteristics and flow re-

lationships, we also investigated the available packet space in related

flows. The results can be directly exploited to improve application

performance, or used as a guideline for a better development of ap-

plications and protocols. Our study is beneficial to application per-

formance in both cases.

A general framework on exploiting flow relationships: with a better un-

derstanding of the flow relationships, we realized that there is also

a lack of a general framework on how flow relationships can be ex-

ploited. We hence established such a framework by using two sets of

categorization. We classify applications by using a stage-based tax-

onomy and categorize techniques by their potential improvements.

The framework combines the two categorizations together, which ex-

plicitly gives expected benefits and the applicable stages for a partic-

10.3. EXAMINATION OF THE HYPOTHESIS AND SUMMARY OF

CONTRIBUTIONS 196

ular technique. This framework is important as it generalizes possi-

ble techniques that exploit flow relationships. It facilitates a specific

technique to be extended to fit for a group of applications. The frame-

work also helps a particular application to find the most appropriate

techniques that meet its performance concerns.

A mechanism of application-level prediction: we proposed and evaluated

a mechanism that predicts and piggybacks related domain names.

Our experiment results show that this mechanism can significantly

reduce local DNS cache miss rates, while at the same time reducing

the same amount of DNS query and response messages. While this

mechanism improves performance of a particular application, it can

be applied to similar situations in which packet relationships can be

exploited to predict future traffic and the available packet space can

be used to piggyback this predicted information.

A method to efficiently use the reverse-channel of TCP connections: we pro-

posed and evaluated the “data piggybacking” method, which uses

the packet space provided in ACK packets of the reverse-channel to

send data. This method does not influence the performance of the

forward direction of a TCP connection, while it can provide transmis-

sion capacity on the reverse direction without introducing additional

packets in the ideal case. Compared to the traditional TCP transmis-

sion mechanism, this method can reach compatible throughput for

paths with symmetric bandwidth, but is more efficient in the number

of generated packets. In the case of asymmetric links, data piggy-

10.3. EXAMINATION OF THE HYPOTHESIS AND SUMMARY OF

CONTRIBUTIONS 197

backing can provide even better throughput than the traditional TCP

transmission mechanism when data are sent blindly in both direc-

tions.

A new TCP option to provide better information: we proposed and eval-

uated a new TCP option which extends the current TCP Timestamp

option. This new option allows explicit calculation of one-way de-

lay jitter, which can only be estimated by the current TCP mecha-

nism. Experiments show that the discrepancy between the inferred

and the real measurement can be significant under certain situations.

The new timestamp option also makes it possible to have a more ac-

curate estimation of RTTs, which is decoupled from the packet loss

and the delayed ACK mechanism. All these benefits can be obtained

by adding only a few bytes to the current ACK packets.

An evaluation of packet aggregation: packet aggregation was proposed in

a previous study, but its benefits were only evaluated under the as-

sumptions that are not realistic. We used real traffic traces as well as

a more realistic simulation model to examine the gains of packet ag-

gregation. Under the constraint of aggregation for inter-flow packets

only, the gain of packet savings is marginal. While we do not see this

direction as appropriate to further investigate under current Internet

traffic patterns, we provided valuable results of the possible benefits

that can be gained by the scheme.

An approach to avoid timeouts: we proposed to use critical packet piggy-

backing to protect performance-critical packets from loss. We exam-

10.4. FUTURE DIRECTIONS 198

ined four particular scenarios and investigated the possibilities for

packets in the corresponding applications to be piggybacked by other

concurrent flows. The results show significant potential for these sce-

narios, especially for applications that have plenty of flow relation-

ships and generate many small packets. While we did not explicitly

measure the time saving of this scheme by avoiding timeouts, we did

show that critical packet piggybacking has the potential to protect

packets from loss for a minimum cost.

10.4 Future Directions

In this thesis, we presented that exploiting flow relationships is an valu-

able direction for improving application performance. Besides a number of

techniques that we have explored, there remains much future work in this

direction as outlined below:

Continuation of examining flow relationships: while we have studied flow

relationships in a systematic way, we have not explicitly examined

flow relationships for all applications. Applications such as P2P are

not extensively studied in this thesis. We also expect that future ap-

plications may introduce new patterns of flow relationships. Contin-

uation of examining flow relationships is a straightforward direction

for future work.

Evaluation on broader data sets: we have evaluated our approaches in two

sets of traffic traces in this study. With the establishment of the use-

10.4. FUTURE DIRECTIONS 199

fulness of these approaches, it will be interesting to see how they per-

form for a broader range of data sets. Examination and understand-

ing how different traffic patterns influence these approaches will help

to improve them.

Investigation of other techniques in the framework: while we have estab-

lished a framework of potential improvements by exploiting flow re-

lationships, the techniques discussed in this thesis are still only a part

of the overall framework. Exploring and investigating other tech-

niques to fill the framework is clearly a direction for future work.

Improvement of the PRN approach: an obvious direction for future work

on the PRN approach is to examine alternate policies such as ones to

consider the ATTL for an entry. Policies should also be tested with ad-

ditional logs. Another direction of future work is to deploy the PRN

approach at an ADNS. We expect it should perform better than our

simulation because an ADNS has more complete knowledge of its site

contents and it can also aggregate reference patterns from a greater

number of clients. An ADNS will not know if predicted names are

actually used, but it can detect and modify its piggybacked list as it

learns new access patterns that could have been predicted. A final

direction to explore with this approach is the different types of sites

and contents for which it is most useful. Sites with few servers and

long authoritative TTLs likely do not need improvement in DNS per-

formance while we expect more dynamic sites would be the first to

benefit from this approach.

10.4. FUTURE DIRECTIONS 200

Improvement of the data piggybacking approach: first, the data piggyback

mechanism needs to be implemented and tested. Second, for asym-

metric connections, too much data transmission in the reverse direc-

tion negatively affects forward-direction throughput. Mechanisms

for the data piggybacking approach to monitor and adjust to avail-

able bandwidth limits need to be investigated. Another direction

that was not explored in this work is how these approaches would

work for network connections incorporating different types of wire-

less connectivities. On one hand increasing the size of packets be-

yond the minimum amount needed is a bad idea because it could

increase the packet loss rates due to transmission errors. On the other

hand, our results show that data piggybacking can yield compara-

ble reverse-channel throughput comparing to more conventional ap-

proaches while generating fewer reverse channel packets, which would

be a potential improvement in the face of higher loss rates. Investiga-

tion of these types of tradeoffs is a clear direction for future work.

Improvement of enhanced ACKs: future work includes the implementa-

tion of the enhanced Timestamp Option in the current TCP/IP stack.

Another direction is to investigate potential improvements to TCP

implementations using the more detailed and complete timestamp

information. Another direction to explore is to understand how this

enhanced information can help applications to make decisions. Cur-

rently in Linux systems, an application can get network information

from the transport layer. This information can be extended to include

10.4. FUTURE DIRECTIONS 201

the information provided by the new TCP Timestamp Option such

as the one-way delay jitter and more accurate RTT. Exploring how

this enhanced information can help applications such as streaming is

certainly an interesting direction for future work.

Exploration of additional use of TCP ACKs: another interesting direction

is to explore additional uses for the unused capacity in the gener-

ated TCP ACK packets beyond what we have investigated in this

work. Given the volume of such packets in the Internet, any im-

provements have much potential for making an impact. For exam-

ple, while currently not allowed in TCP, it is possible to consider TCP

options that are not constrained by the 40-byte limit in the existing

TCP standard. It could be possible to propose a “fat” option that is

reserved for use only when an ACK-only packet is generated by a re-

ceiver where the traditional data portion of the packet could be used

for control information intended for the TCP-layer at the sender. This

TCP-layer would know that the packet contains control information

based on the kind of TCP option and know to use the control infor-

mation rather than pass it up as data to an application.

Improvement of critical packet piggybacking: a direction of future work

is to investigate how critical packet piggybacking behaves under dif-

ferent packet loss conditions. We expect that this scheme is most

useful for error-prone paths. Another direction is to investigate the

policies for applications or transport layers to decide which packets

are critical. A third direction is to implement a piggybacking mech-

10.5. SUMMARY 202

anism that allows applications to explicitly specify a deadline for a

packet to be piggybacked. If the sending request is not fulfilled be-

fore the deadline, the application needs to be notified of the failure.

The mechanism should also allow an application to revoke a sending

request if the packet is still in the queue.

10.5 Summary

This thesis is a coherent piece of work, which covers a systematic study of

flow relationships, a general framework of exploiting flow relationships,

and specific techniques that exploit particular flow relationships and show

different types of improvements. Our experimental results show positive

support for the hypothesis we made in Section 1.4, i.e., “classes of tech-

niques can be deployed to exploit flow relationships and enhance applica-

tion performance with minimal costs.”

In this work, we have shown that exploiting flow relationships is a use-

ful direction for improving application performance. Given the existence

of numerous flow relationships and various exploitation techniques, we

see that exploration in this direction is fruitful and it leads to much future

work.

203

Bibliography

[AER98] Hossam Afifi, Omar Elloumi, and Gerardo Rubino. A dynamic
delayed acknowledgment mechanism to improve TCP perfor-
mance for asymmetric links. In Proceedings of the IEEE Sympo-
sium on Computers and Communications. IEEE, June/July 1998.

[AP99] Mark Allman and Vern Paxson. On estimating end-to-end net-
work path properties. In SIGCOMM ’99: Proceedings of the
conference on Applications, technologies, architectures, and proto-
cols for computer communication, pages 263–274, New York, NY,
USA, 1999.

[APS99] M. Allman, V. Paxson, and W. Stevens. TCP congestion con-
trol, April 1999. RFC 2581.

[arg] Argus - IP network auditing facility.
http://www.qosient.com/argus.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services, Decem-
ber 1998. RFC 2475.

[BC98] Paul Barford and Mark Crovella. Generating representative
web workloads for network and server performance evalua-
tion. In Proceedings of the 1998 ACM SIGMETRICS joint inter-
national conference on Measurement and modeling of computer sys-
tems, pages 151–160, Madison, WI, 1998.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: an Overview, June 1994. RFC 1633.

[BDH99] D. Borman, S. Deering, and R. Hinden. IPv6 Jumbograms, Au-
gust 1999. IETF RFC 2675.

BIBLIOGRAPHY 204

[BDJ01] Supratik Bhattacharyya, Christophe Diot, and Jorjeta Jetcheva.
Pop-level and access-link-level traffic dynamics in a tier-1 pop.
In IMW ’01: Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement, 2001.

[BG99] Robert Buff and Arthur Goldberg. Web servers should turn
off Nagle to avoid unnecessary 200 ms delays, April 1999.
http://www.cs.nyu.edu/artg/research/speedingTCP/

buff_goldberg_speeding_up_TCP.ps.

[BP95] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: End
to end congestion avoidance on a global internet. IEEE Journal
on Selected Areas in Communications, 13(8):1465–1480, October
1995.

[BPFS02] H. Balakrishnan, V.N. Padmanabhan, G. Fairhurst, and
M. Sooriyabandara. TCP performance implications of network
path asymmetry, December 2002. RFC 3449.

[BPK99] Hari Balakrishnan, Venkata Padmanabhan, and Randy H.
Katz. The effects of asymmetry on TCP performance. Mobile
Networks and Applications, 4:219–241, 1999.

[BPS+98] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, M. Stemm,
and R.H. Katz. TCP Behavior of a Busy Internet Sever: Analy-
sis and Improvements. In Proceedings of the IEEE Infocom 1998
Conference. IEEE, March 1998.

[Bra94] R. Braden. T/TCP – TCP Extensions for Transactions Func-
tional Specification, July 1994. RFC 1644.

[BRS99] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated
Congestion Management Architecture for Internet Hosts. In
Proceedings of the ACM SIGCOMM 1999 Conference, pages 175–
187. ACM, September 1999.

[BS99] B. R. Badrinath and Pradeep Sudame. Car pooling on the Net:
Performance and implications. Technical report, Rutgers Uni-
versity, May 1999.

[BS00] B.R. Badrinath and Pradeep Sudame. Gathercast: The design
and implementation of a programmable aggregation mecha-
nism for the internet. In Proceedings of the IEEE International

BIBLIOGRAPHY 205

Conference on Computer Communications and Networks, October
2000.

[CDJM91] R. Caceres, P. B. Danzig, S. Jamin, and D. J. Mitzel. Characteris-
tics of wide-area tcp/ip conversations. In Proceedings of ACM
SIGCOMM ’91, pages 101–112, Zurich, Switzerland, Septem-
ber 1991.

[CER] CERT/CC. Vulnerability Note VU109475.
http://www.kb.cert.org/vuls/id/109475.

[CK01] Edith Cohen and Haim Kaplan. Proactive caching of DNS
records: Addressing a performance bottleneck. In Proceedings
of the Symposium on Applications and the Internet, pages 85–94,
San Diego-Mission Valley, CA, USA, January 2001. IEEE-TCI.

[CK02] Edith Cohen and Haim Kaplan. Prefetching the means for
document transfer: A new approach for reducing web latency.
Computer Networks, 39(4):437–455, July 2002.

[cLH03a] Kun chan Lan and John Heidemann. On the correlation of in-
ternet flow characteristics. Technical Report Technical Report
ISI-TR-574, USC/Information Sciences Institute, July 2003.
http://www.isi.edu/~johnh/PAPERS/Lan03c.html.

[cLH03b] Kun chan Lan and John Heidemann. A tool for rapid model
parameterization and its applications. In Proceedings of the
ACM SIGCOMM workshop on Models, methods and tools for re-
producible network research, Karlsruhe, Germany, August 2003.

[Coh03] Bram Cohen. Incentives build robustness in BitTorrent, May
2003.
http://www.bittorrent.com/bittorrentecon.pdf.

[Con] Internet Software Consortium. BIND DNS Server.
http://www.isc.org/products/BIND/.

[CSA00] N. Cardwell, S. Savage, and T. Anderson. Modeling tcp la-
tency. In Proceedings of the IEEE Infocom 2000 Conference, Tel-
Aviv, Israel, March 2000. IEEE.

[CT90] D.D. Clark and D.L. Tennenhouse. Architectural Considera-
tions for a New Generation of Protocols. ACM Computer Com-
munication Review, 20(4):200–208, September 1990.

BIBLIOGRAPHY 206

[CV01] Girish P. Chandranmenon and George Varghese. Reducing
web latency using reference point caching. In Proceedings of
IEEE Infocom 2001, pages 1607–1616, 2001.

[DVM+03] Gali Diamant, Leonid Veytser, Ibrahim Matta, Azer Bestavros,
Mina Guirguis, Liang Guo, Yuting Zhang, and Sean Chen. itm-
Bench: Generalized API for Internet Traffic Managers. Techni-
cal Report BU-CS-2003-032, CS Department, Boston Univer-
sity, Boston, MA 02215, December 2003.

[EHT00] L. Eggert, J. Heidemann, and J. Touch. Effects of Ensemble-
TCP. ACM Computer Communication Review, 30(1):15–29, Jan-
uary 2000.

[EV01] Cristian Estan and George Varghese. New directions in traffic
measurement and accounting. In IMW ’01: Proceedings of the
1st ACM SIGCOMM Workshop on Internet Measurement, pages
75–80, 2001.

[FB02] Nick Feamster and Hari Balakrishnan. Packet Loss Recovery
for Streaming Video. In 12th International Packet Video Work-
shop, Pittsburgh, PA, April 2002.

[FCL01] Chengpeng Fu, Ling Chi Chung, and Soung C. Liew. Perfor-
mance degradation of TCP Vegas in asymmetric networks and
its remedies. In Proceedings of the IEEE International Conference
on Communications, June 2001.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1, June 1999. RFC 2616.

[FH99] S. Floyd and T. Henderson. The NewReno Modification to
TCP’s Fast Recovery Algorithm, April 1999. RFC 2582.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Transactions on Net-
working, 1(4):397–413, 1993.

[FKMkc03] M. Fomenkov, K. Keys, D. Moore, and k claffy. Longitudinal
study of Internet traffic from 1998-2003: a view from 20 high
performance sites. Technical report, Cooperative Association
for Internet Data Analysis (CAIDA), April 2003.

BIBLIOGRAPHY 207

[FML+03] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and C. Diot. Packet-level traffic measure-
ments from the Sprint IP backbone. IEEE Network, 2003.

[FP99] W. Fang and L. Peterson. Inter-as traffic patterns and their im-
plications. In IEEE Global Internet Symposium, December 1999.

[GM02a] Luigi Alfredo Grieco and Saverio Mascolo. Tcp westwood
and easy red to improve fairness in high-speed networks. In
PIHSN ’02: Proceedings of the 7th IFIP/IEEE International Work-
shop on Protocols for High Speed Networks, pages 130–146, 2002.

[GM02b] Liang Guo and Ibrahim Matta. Differentiated Control of Web
Traffic: A Numerical Analysis. In Proceedings of SPIE IT-
COM’2002: Scalability and Traffic Control in IP Networks, Boston,
MA, August 2002.

[GM04] Luigi A. Grieco and Saverio Mascolo. Performance evaluation
and comparison of westwood+, new reno, and vegas tcp con-
gestion control. SIGCOMM Comput. Commun. Rev., 34(2):25–
38, 2004.

[GN98] Jim Gettys and H. F. Nielsen. SMUX Protocol Specification,
July 1998. Work In Progress (W3C Working Draft WD-mux-
19980710).

[GSG02] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble.
King: Estimating latency between arbitrary internet end hosts.
In Proceedings of the Second ACM SIGCOMM Internet Measur-
ment Workshop, Marseille, France, 2002.

[Han96] Charles M. Hannum. Security Problems Associated With
T/TCP, September 1996.
http://tcp-impl.grc.nasa.gov/tcp-impl/list/archive/1292.html.

[JBB92] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance, May 1992. RFC 1323.

[JC03] Baekcheol Jang and Kilnam Chon. DNS resolution with re-
newal using piggyback. In Proceedings of the Twelfth Interna-
tional World Wide Web Conference (Poster), Budapest, Hungary,
May 2003.

BIBLIOGRAPHY 208

[JSBM02] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris.
Dns performance and the effectiveness of caching. IEEE/ACM
Transactions on Networking, 10(5):589–603, October 2002.

[KLR03] Balachander Krishnamurthy, Richard Liston, and Michael Ra-
binovich. DEW: DNS-enhanced web for faster content deliv-
ery. In Proceedings of the Twelfth International World Wide Web
Conference, Budapest, Hungary, May 2003.

[KS04] Srisankar S. Kunniyur and R. Srikant. An adaptive vir-
tual queue (avq) algorithm for active queue management.
IEEE/ACM Trans. Netw., 12(2):286–299, 2004.

[KSO+01] Jed Kaplan, P.J. Singh, Mike O’Dell, John Hayes, Ted
Schroeder, Daemon Morrell, and Jennifer Hsu. Extended
Ethernet Frame Size Support, November 2001.
http://www.ietf.org/proceedings/03nov/I-D/draft-ietf-isis-ext-

eth-01.txt.

[KVR98] Lampros Kalampoukas, Anujan Varma, and K.K. Ramakr-
ishnan. Two-way TCP traffic over rate controlled channels:
Effects and analysis. IEEE/ACM Transactions on Networking,
6(6):729–743, December 1998.

[KW99] H.T. Kung and S.Y. Wang. TCP trunking; design, implementa-
tion, and performance. In Proceedings of IEEE ICNP 1999 Con-
ference. IEEE, November 1999.

[KW00] Balachander Krishnamurthy and Jia Wang. On network-aware
clustering of web clients. In Proceedings of the ACM SIGCOMM
’00 Conference, Stockholm, Sweden, August 2000.

[LC00] Y. Liu and M. Claypool. Using Redundancy to Repair Video
Damaged by Network Data Loss. In ACM Multimedia Comput-
ing and Networking (MMCN), San Jose, CA, Jan 2000.

[LCK02] Mingzhe Li, Mark Claypool, and Robert Kinicki. MediaPlayer
versus RealPlayer – A Comparison of Network Turbulence. In
Proceedings of the ACM SIGCOMM Internet Measurement Work-
shop (IMW), pages 131 – 136, Marseille, France, November
2002.

BIBLIOGRAPHY 209

[LCKN04] Mingzhe Li, Mark Claypool, Robert Kinicki, and James
Nichols. Characteristics of Streaming Media Stored on the
Web. ACM Transactions on Internet Technology (TOIT), 2004.
(Accepted for publication).

[LSZ02] Richard Liston, Sridhar Srinivasan, and Ellen Zegura. Diver-
sity in DNS performance measures. In Proceedings of the Second
ACM SIGCOMM Internet Measurement Workshop, pages 19–31,
Marseille, France, 2002.

[MB00] Ibrahim Matta and Azer Bestavros. QoS Controllers for the In-
ternet. In Proceedings of the NSF Workshop on Information Tech-
nology, Cairo, Egypt, March 2000.

[MC00] S. McCreary and K. Claffy. Trends in wide area IP traffic pat-
terns: A view from Ames Internet Exchange. In Proceedings
of the ITC Specialist Seminar on IP Traffic Modeling, Measurement
and Management, September 2000.
http://www.caida.org/outreach/ papers/AIX0005/AIX0005.pdf.

[MCG+01] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi,
and Ren Wang. Tcp westwood: Bandwidth estimation for en-
hanced transport over wireless links. In MobiCom ’01: Proceed-
ings of the 7th annual international conference on Mobile computing
and networking, pages 287–297, 2001.

[MD90] J. Mogul and S. Deering. Path MTU Discovery, November
1990. IETF RFC 1191.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selec-
tive acknowledgement options, October 1996. RFC 2018.

[Moc87a] P. Mockapetris. Domain Names - Concepts and Facilities,
November 1987. RFC 1034.

[Moc87b] P. Mockapetris. Domain Names - Implementation and Specifi-
cation, November 1987. RFC 1035.

[Mog92] Jeffrey C. Mogul. Observing tcp dynamics in real networks. In
SIGCOMM ’92: Conference proceedings on Communications archi-
tectures & protocols, pages 305–317, 1992.

BIBLIOGRAPHY 210

[MPFL96] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, and
Didier J. Legall, editors. MPEG Video Compression Standard.
Chapman & Hall, Ltd., London, UK, UK, 1996.

[Nag84] J. Nagle. Congestion Control in IP/TCP internetworks, Jan-
uary 1984. RFC 896.

[NLA] NLANR. network traffic packet header traces.
http://pma.nlanr.net/Traces/.

[OMP02] D. Ott and K. Mayer-Patel. Transport-level Protocol Coordina-
tion in Cluster-to-Cluster Applications. In Proceedings of 2002
USENIX Annual Technical Conference, pages 147–159, June 2002.

[Pad99] V. Padmanabhan. Coordinated congestion management and
bandwidth sharing for heterogeneous data streams. In Proceed-
ings of NOSSDAV 1999 Conference, pages 187–190, June 1999.

[PCN00] P. Pradhan, T. Chiueh, and A. Neogi. Aggregate TCP conges-
tion control using multiple network probing. In Proceedings of
the 20th International Conference on Distributed Computing Sys-
tems (ICDCS2000), April 2000.

[Per96] C. Perkins. IP Encapsulation within IP, October 1996. IETF
RFC 2003.

[por] Port Numbers Specified by Internet Assigned Numbers Au-
thority.
http://www.iana.org/assignments/port-numbers.

[PPPW04] KyoungSoo Park, Vivek S. Pai, Larry Peterson, and Zhe Wang.
CoDNS: Improving DNS performance and reliability via co-
operative lookups. In Symposium on Operating Systems Design
and Implementation, San Francisco, CA, December 2004.

[PTB+02] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran, K. Sala-
matian, and C. Diot. A pragmatic definition of elephants in
internet backbone traffic. In IMW ’02: Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, 2002.

[QZK99] L. Qiu, Y. Zhang, and S. Keshav. On individual and aggre-
gate tcp performance. In Proceedings of ICNP, Toronto, Canada,
November 1999.

BIBLIOGRAPHY 211

[RASHB02] Lopa Roychoudhuri, Ehab Al-Shaer, Hazem Hamed, and Greg
Brewster. On studying the impact of the internet delays on
audio transmission. In Proceedings of the IEEE Workshop on IP
Operations and Management, October 2002.

[RSSD04] Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and
Nick Duffield. Class-of-service mapping for qos: a statistical
signature-based approach to ip traffic classification. In IMC
’04: Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 135–148. ACM Press, 2004.

[SAA+99] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: Informed internet routing and transport.
IEEE Micro, 19(1):50–59, January 1999.

[SB04] Joel Sommers and Paul Barford. Self-configuring network traf-
fic generation. In Proceedings of the 4th ACM SIGCOMM confer-
ence on Internet measurement, pages 68–81, Sicily, Italy, October
2004.

[SK02a] Pasi Sarolahti and Alexey Kuznetsov. Congestion Control in
Linux TCP. In Proceedings of 2002 USENIX Annual Techni-
cal Conference, Freenix Track, pages 49–62, Monterey, CA, June
2002.

[SK02b] Pasi Sarolahti and Alexey Kuznetsov. Congestion control in
linux tcp. In Proceedings of the FREENIX Track: 2002 USENIX
Annual Technical Conference, Berkeley, CA, USA, 2002. USENIX
Association.

[Spe] S. Spero. Session Control Protocol, Version 1.1.
http://www.w3.org/Protocols/HTTP-NG/http-ng-scp.html.

[SPH05] Rishi Sinha, Christos Papadopoulos, and John Heidemann. In-
ternet packet size distributions: Some observations, October
2005.
http://netweb.usc.edu/~rsinha/pkt-sizes/.

[Spr04] Sprint IP monitoring project, packet trace analysis, February
2004.
http://ipmon.sprint.com/packstat/packetoverview.php.

BIBLIOGRAPHY 212

[SRB01] Shriram Sarvotham, Rudolf Riedi, and Richard Baraniuk.
Connection-level analysis and modeling of network traffic. In
IMW ’01: Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement, 2001.

[SRS99] Anees Shaikh, Jennifer Rexford, and Kang G. Shin. Load-
sensitive routing of long-lived ip flows. In SIGCOMM ’99:
Proceedings of the conference on Applications, technologies, archi-
tectures, and protocols for computer communication, pages 215–
226, 1999.

[Ste97] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Re-
transmit, and Fast Recovery Algorithms, January 1997. IETF
RFC 2001.

[SXM+00] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, K. Kalla, L. Zhang, and V. Paxson. Stream
Control Transmission Protocol, October 2000. IETF RFC 2960.

[tcpa] Tcpdump/libpcap.
http://www.tcpdump.org/.

[tcpb] Unix man pages : tcp (7).

[TMW97] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Internet
Traffic Patterns and Characteristics. IEEE Network, 11:10–23,
November 1997.

[Tou97] J. Touch. TCP Control Block Interdependence, April 1997. RFC
2140.

[Tur05] Bryan Turner. Generalizing bittorrent: How to build data ex-
change markets (and profit from them!), January 2005.
http://www.fractalscape.org/GeneralizingBitTorrent.htm.

[Vix99] P. Vixie. Extension Mechanisms for DNS (EDNS0), August
1999. RFC 2671.

[VLL05] Bryan Veal, Kang Li, and David Lowenthal. New methods
for passive estimation of TCP round-trip times. In Proceedings
of the Passive and Active Measurement Workshop, Boston, Mas-
sachusetts, March/April 2005.

BIBLIOGRAPHY 213

[WCK05] Huahui Wu, Mark Claypool, and Robert Kinicki. Adjusting
forward error correction with quality scaling for streaming
mpeg. In NOSSDAV ’05: Proceedings of the international work-
shop on Network and operating systems support for digital audio
and video, pages 111–116, 2005.

[WMS01] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. N for the
price of 1: Bundling web objects for more efficient content de-
livery. In Proceedings of the Tenth International World Wide Web
Conference, Hong Kong, May 2001.

[WMS03] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. Inferring
relative popularity of Internet applications by actively query-
ing DNS caches. In Proceedings of the ACM SIGCOMM Internet
Measurement Conference, Miami, Florida, November 2003.

[WS00] Craig E. Wills and Hao Shang. The contribution of DNS
lookup costs to web object retrieval. Technical Report WPI-
CS-TR-00-12, Worcester Polytechnic Institute, July 2000.
http://www.cs.wpi.edu/~cew/papers/tr00-12.ps.gz.

[WTM03] Craig E. Wills, Gregory Trott, and Mikhail Mikhailov. Us-
ing bundles for web content delivery. Computer Networks,
42(6):797–817, August 2003.

[WVSG02] Ren Wang, Massimo Valla, M.Y. Sanadidi, and Mario Gerla.
Using adaptive rate estimation to provide enhanced and ro-
bust transport over heterogeneous networks. In Proceedings of
the International Conference on Network Protocols, Paris, France,
November 2002. IEEE.

[ZSC91] L. Zhang, S. Shenker, and D.D. Clark. Observations and dy-
namics of a congestion control algorithm: The effects of two-
way traffic”. In Proceedings of ACM SIGCOMM, pages 133–147,
1991.

	Worcester Polytechnic Institute
	Digital WPI
	2006-04-06

	Exploiting Flow Relationships to Improve the Performance of Distributed Applications
	Hao Shang
	Repository Citation

	thesis.dvi

