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Abstract

The area of Human-Robot Interaction deals with problems not only related to robots interacting
with humans, but also with problems related to humans interacting and controlling robots. This
dissertation focuses on the latter and evaluates multi-sensory (vision, hearing, touch, smell)
feedback interfaces as a means to improve robot-operator cognition and performance. A set of
four empirical studies using both simulated and real robotic systems evaluated a set of multi-
sensory feedback interfaces with various levels of complexity. The task scenario for the robot in
these studies involved the search for victims in a debris-filled environment after a fictitious
catastrophic event (e.g., earthquake) took place.

The results show that, if well-designed, multi-sensory feedback interfaces can indeed
improve the robot operator data perception and performance. Improvements in operator
performance were detected for navigation and search tasks despite minor increases in workload.
In fact, some of the multi-sensory interfaces evaluated even led to a reduction in workload.

The results also point out that redundant feedback is not always beneficial to the operator.
While introducing the concept of operator omni-directional perception, that is, the operator’s
capability of perceiving data or events coming from all senses and in all directions, this work
explains that feedback redundancy is only beneficial when it enhances the operator omni-
directional perception of data relevant to the task at hand.

Last, the comprehensive methodology employed and refined over the course of the four
studies is suggested as a starting point for the design of future HRI user studies.

In summary, this work sheds some light on the benefits and challenges multi-sensory

feedback interfaces bring, specifically on teleoperated robotics. It adds to our current



understanding of these kinds of interfaces and provides a few insights to assist the continuation

of research in the area.
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1. Introduction

1.1. Overview

We perform tasks effectively in the real world using our highly advanced human senses.
Through constant evolution and repetition, humans are able to effortlessly take in, filter, fuse,
and make sense of huge amounts of high-fidelity visual, auditory, touch, smell, and taste stimuli.
Furthermore, due to our extremely versatile nature, we are able to adapt to input/output (I/O)
mechanisms in order to use tools and computers, and operate machines and robots, even if their
interfaces are sub-optimally designed.

While robotic systems are assuming an ever-increasing role in our lives, current Human-
Robot Interaction (HRI) interfaces for teleoperated robotic systems seldom take advantage of the
high-bandwidth, multi-sensory capacity offered by their human operators. Instead, they present
all the necessary information to the eyes alone using visual displays. Although our visual sensory
system is highly evolved, its capacity is not limitless, and its overuse may demand excessive
mental effort from the robot operator and limit his ability to efficiently and effectively perform
the tasks he has been assigned.

The reasons for the predominance of visual-only HRI interfaces include: (a) the ease with
which information can be displayed on computer monitors, (b) a lack of understanding within the
interface design community of the salient aspects of displays for other sensory modalities, and
(c) a lack of methods for evaluating multi-sensory interface effectiveness. There is still no
consensus among HRI researchers on what the fundamental criteria for evaluating human-robot
interfaces are. While performance is one valid measure of interface effectiveness, other higher-

level measures, such as workload, presence, and situation awareness (SA) are also important



indicators, though they appear less frequently in the literature. Moreover, because HRI labs have
different sets of robots that are typically expensive to purchase, reproducing the exact conditions
of another researcher’s previous research work becomes more difficult, hampering the validation
of results and standardization amongst the research community.

The goal of this work is to design multi-sensory feedback robot interfaces and measure
how they cognitively impact both the robot operator and his effectiveness and efficiency when
performing common HRI tasks such as search and navigation. To this end, a set of four studies
with virtual and real robots was carried out to evaluate the impact of gradually enhancing
interface feedback over multiple senses during a simple urban search-and-rescue (USAR) robot
teleoperation task. The evaluation methodology progressively enhanced along these studies
brings together separate but related metrics from the Virtual Reality (VR), HRI, and HCI
communities.

With the support of multiple positive study results, the author claims that redistributing
the feedback from visually intense HRI interfaces to properly-designed multi-sensory interfaces
can improve robot use. In addition, the methodology used for assessing multi-sensory interfaces
is left as a reference for future work in this area. Last, through this research work | hope to
motivate the HRI community to reduce their reliance on visual-only interfaces and increase the
use of multi-sensory interfaces to further enhance robot operator data perception and cognition,

but more importantly to improve efficiency and effectiveness of robot-related tasks.

1.2. Definitions

In order to delve into the field of HRI, an understanding of a common set of definitions is
necessary. This section highlights core concepts in HRI and VR, such as SA and immersion.
They will be defined from an HRI perspective, although some concepts may also be presented
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with definitions that are more general. In this and all other chapters, terms in italics will be
found. These are concepts small enough to not deserve a detailed explanation, but important

enough to be briefly explained in the text or in the Glossary.

1.2.1. Robot

Robots are artificial virtual or electro-mechanical agents. As pointed out by Scholtz (Sch04),
however, there is no standard definition of what a robot is. Similar to humans themselves, they
are capable of perceiving their surrounding environment, reasoning about it, and applying some
actions to it according to goals, be the latter human programmed in their memories or acquired
through their own experiences with the surrounding environment.

Robots can be classified into three groups. The first group comprises industrial robots,
which are used in modern manufacturing companies. They generally have very little intelligence
and perform specific repetitive tasks with a high level of precision. The second group includes
service robots which have features that are the opposite of industrial robots. They are more
intelligent and perform a set of various tasks that do not require precise results, but yet achieve
general goals (Bien & Lee, 2007). The third group consists of robots with special missions
(Drury et al., 2006a) (Drury et al., 2006b; Murphy, 2004; Aubrey et al., 2008). These robots are
designed to perform specific tasks. However, unlike industrial robots, the tasks to be performed
are generally very complex. Because of this, these robots require not only a high level of
artificial intelligence, but also an operator to guide the robot and help it accomplish its goals.
This research work focuses on this last group.

Mission robots are typically capable of navigating through their environments and

making complex physical movements to manipulate objects and affect the state of the



environment. Most of the time, however, these robots are not completely autonomous, being
operated, remotely or locally, by one or more human specialists.

Like any other tool, robots enhance human capabilities, enabling an operator to perform
tasks that he would not be able to do bare-handedly. These advanced tools can perceive more
information from the environment by sensing even human extra-sensorial data such as radiation,
temperature, pressure, humidity and specific gas levels (Yanco et al., 2006). They are also more
resistant to human-hazardous environments and to larger ranges of atmospheric conditions, and
have been used for undersea exploration, fire rescue, and duct cleaning (Koh et al., 2001).

The construction of a robot is a non-trivial task and requires knowledge from different
areas of engineering, as well as Computer Science, Psychology, Mechanical and Electrical
Engineering, Industrial Design and others. The evaluation of an entire robotic system, including

the robot and the team of humans behind it, is therefore an even more difficult task to carry out.

1.2.2. Human-Robot Interaction

Human Robot Interaction (HRI) is the area of research that deals with robot-related HCI kinds of
problems. It comprises not only research on improving interactions between humans and robots,
but more specifically on enhancing the remote operation of robots and the human perception of
robot sensed data. It accomplishes that by improving the HRI system interface, that is, the part of
the system that allows the human to interact with the robot. With the help of the area of Artificial
Intelligence (Al), it also includes the development of autonomous robot behavior so that robots
can interact among themselves and humans with little human intervention (Adams & Skubic,

2005; Crandall & Cummings, 2007).



1.2.3. Task

A task is any activity that a user (or robot operator) has to accomplish within an environment
through the system interface (e.g., achieving a goal or state), and differs from the concept of an
action. A set of actions may contribute or not to the performance of a task in a virtual or remote
environment.
A task can be divided into four main parts (Parasuraman et al., 2000):

1) Information acquisition: gathering information from the robot and its surrounding

environment;
2) Information analysis: understanding what the gathered information means;
3) Decision and action selection: deciding what is the next action the HRI system should

perform;
4) Action implementation: performing that action.

As noted by Miller & Parasuraman (2007), the tasks that an HRI system can perform can

generally be categorized into a hierarchy of subtasks in order to enhance performance and

optimize workload. The concept of workload is explained in section 1.2.8.

1.2.4. Pose

Pose can be defined as the current physical configuration of the robot’s limbs and joints. A pose
may limit the set of tasks a robot can perform, not only because of inappropriate robot shape, but
also because the tools available may differ from one configuration to another (Drury et al.,
2006b).

The complexity in the number of robot poses may be measured by the number of joints

and degrees-of-freedom in each joint. The higher the number, the greater the operator’s cognitive



load and interaction time will be. Proper interface design may reduce the effort to understand the

complexity of a robot pose.

1.2.5. Artificial Intelligence

In general terms, artificial intelligence (Al) defines the capacity of a machine to reason about a
situation and take actions that maximize its chances of success in performing a task. Tasks may
span from playing chess well to finding optimal paths between locations, expressing feelings,
controlling a vehicle or simply avoiding conflict. In HRI, this concept is mostly related to a
robot’s levels of autonomy (section 1.2.7) and its capacity of recognizing external events

(Adams, 2005; Bien & Lee, 2007; Humphrey et al., 2008).

1.2.6. Delegation

According to the Merriam-Webster dictionary (Merriam-Webster, 2009), delegation can be
defined as: (1) the act of empowering to act for another or (2) a group of people that is chosen to
represent others. For HRI, delegation can be understood as the act of designating tasks for a
group of one or more entities, be they humans or not.

Delegation, also called tasking, task management, or dynamic function allocation (DFA)
(Calefato et al., 2008), can also be described as a real-time division of labor (Miller &
Parasuraman, 2007). Its dynamicity contrasts with the concept of application design, where
division of labor is done during the creation of a system and becomes static when the system is

finished. As described in the next section, delegation can be done manually or autonomously.

1.2.7. Autonomy

Autonomy is defined in HRI as how independent a robot is from humans or other external



intervention when performing actions to complete a task. In other words, it defines how well
behaved a robot is when left alone. One way to estimate the level of autonomy or automation of
a robot during a task is by measuring how much time the robot spends performing the task on its
own versus requesting operator assistance and being intervened by the operator (Yanco & Drury,
2002; Zeltzer, 1992). The robot may assume the same level of autonomy for an entire task or
change between levels of autonomy along the task subparts (Miller & Parasuraman, 2007). The
more autonomous a robot, the higher is its level of autonomy.

One important point about autonomy is that changing its level may have unpredictable
effects on human performance as part of an HRI system. The correct design of autonomy makes
it beneficial for the robot-operator task relationship (Dekker & Hollnagel, 2004; Dekker &
Woods, 2002) by enabling a conversation between human and machine through which a
decision-making and status awareness consensus can be reached (Miller et al., 2005). This
paradigm is also called the “Horse-Rider paradigm” (Calefato et al., 2008). The performance of
such a mixed system must be measured using its robot and operator parts in conjunction.

Autonomy is often designed to deal with only a subset of the situations faced by the HRI
system and becomes useless if an unforeseen situation occurs (Parasuraman et al., 2000).
Because of this, it is generally implemented only in highly reliable parts of a system or in parts

whose tasks have low risk.

1.2.7.1. Levels of Autonomy

The levels of autonomy (LOAS) for a robot, also called interaction scheme or autonomy mode
(Crandall & Goodrich, 2002), may be defined according to different operation modes it can
assume. Scales to grade different levels of automation have already been created (Sheridan &

Verplank, 1978; Sheridan & Parasuraman, 2006), part of which originated from the rather



controversial Maba-maba list (Fallon, 2010; DW04; Parasuraman et al., 2000). A simplification

of these scales is presented below and attempts to categorize the most distinctive levels of

automation:

Fully controlled: the operator directly controls each and every action of the robot (Yanco et
al.,, 2004). The latter has no autonomy. This level of autonomy is commonly called
teleoperation.

Shared control: both robot and operator make decisions about the robot’s final behavior. It
can be subdivided into:

o Safe teleoperation: the robot is still being controlled, but can perform some actions on its

own to guarantee its survival or success, such as avoiding obstacles unseen or ignored by
its operator (Yanco et al., 2006; Goodrich et al., 2001);

Semi-autonomous: The robot is able to take some decisions and actions on its own, but
requires assistance in certain situations (Adams, 2006). This mode of operation can also
be called standard shared operation mode. An example of a semi-autonomous interface
design technique is the use of way points for navigation (Skubic et al., 2006; Goodrich et
al., 2001);

High-level of autonomy: the robot is almost completely autonomous, requiring minimal
or more-abstract user intervention such as in social or service robots (Bien & Lee, 2007).
The operation of these types of robots is often referred to as collaborative tasking mode

(YYanco et al., 2006).

Fully autonomous: the robot is completely autonomous. Currently, this only realistically

occurs in virtual robots, called bots.

Often, intermediate LOAs reach better results (Parasuraman et al., 2003; Miller &



Parasuraman, 2007). A high LOA may lead to a mismatch between how autonomous, robust and
reliable the operator thinks a system is (Parasuraman et al., 2000) and how it actually is
(Murphy, 2004), which may lead to undesirable operator behaviors such as overreliance
(overtrust, naive trust) and complacency. In addition, the more autonomous the system is, the
higher its level of reliance or trust should be so that, in case of error, compliance on the part of
the operator occurs without hesitation (Sheridan & Parasuraman, 2006; Moray, 2003). Reliance
can be achieved by making the system robust with a transparent and affordable interface

(Skubic et al., 2006).

1.2.8. Workload

Workload is the amount of work attributed to each member of an HRI team. It is dependent on

factors such as:

e Intra-Robot autonomy: The less autonomous a robot is, the higher the operator’s workload
(Scholtz, 2003);

e Number of robots being controlled: as the number of robots to be controlled increases, so
does the operator’s workload (Humphrey et al., 2008; Parasuraman et al., 2005). Inter-agent
autonomy plays an essential role in reducing workload by allowing robots to work
collaboratively as a coalition (Adams, 2005);

e Interface complexity: the greater the different types of data that need to be assimilated by the
user are, the higher the operator cognitive overhead and workload will be (Johnson et al.,
2003; Miller & Parasuraman, 2007);

e World complexity: as the complexity or entropy (Crandall & Goodrich, 2002) of the remote
world where the robot is increases, the chances of decreased performance and higher

workload also grow.



It is essential that a careful mapping of sensor data to an operator’s sensorial system be
performed during system design to reduce workload and avoid incidents and accidents. If
humans are present in the system, proper workload distribution among human and robot team

members is also important to remove bottlenecks and increase global performance.

1.2.9. Situation Awareness

Situation awareness (SA) is an important concept in HRI (Endsley & Garland, 2000) and has
been studied in many application areas, including unmanned aerial vehicles (UAVS) and
unmanned vehicles (UVs) (Drury et al., 2006a; Freedman & Adams, 2007). The definition of

SA, along with other definitions such as workload and complacency, and their experimental

usefulness, has been a matter of debate in the last decade (Dekker & Hollnagel, 2004; Dekker &

Woods, 2002; Parasuraman et al., 2000).

In general terms, SA can be defined as the amount of knowledge about the state of a
remote environment and the HRI system that the user (or operator) has based on the information
presented to him/her by the system itself.

Situation awareness is categorized into three levels (Endsley & Garland, 2000):

e Level 1 — Perception: The operator perceives cues in the environment, that is, notices
important information;

e Level 2 — Comprehension: The operator integrates, stores, and retains the perceived
information. In other words, this level involves not only finding chunks of information, but
also making sense of them;

e Level 3 — Projection: The operator forecasts future situation events and dynamics from the
current situation. This level of awareness allows timely actions and is a characteristic of an

expert user.
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An HRI interface is composed of many types of information displays. These displays
define the interface degrees-of-freedom. A competent operator assumes an eutactic behavior
(Moray, 2003), that is, he knows how frequently parts of the interface must be monitored and for
how long (fixation time) in order to obtain optimal results. To avoid complacency or skepticism
when monitoring autonomous systems, it has been a topic of discussion whether each part of the
interface should be optimally monitored following its Nyquist update frequency or if other
approaches such as the use of alarms should be considered (Parasuraman et al., 2008) (Moray,
2003; Senders, 1964). Operator workload, system (Endsley & Garland, 2000) or environmental
(Freedman & Adams, 2007) factors tend to influence operator SA levels.

The concept of situation awareness has also been extended to an entire HRI team
(Freedman & Adams, 2007) where SA levels comprise the SA of the robots plus the SA of the
human team. In this case, SA is directly related to other robot-interaction concepts such as
neglection, interaction time, switch time and fan out (Goodrich et al., 2001; Goodrich et al.,

2005) (see the Glossary for definitions in italics).

1.2.10. Human-Robot Ratio

The relation between the number of humans and robots in a system can be specificed using the
human-robot ratio which is, as implied, the ratio between the number H of humans over the
number R of robots involved in an HRI system (Yanco & Drury, 2002; Yanco & Drury, 2004).
Hence, if there is only one operator for controlling one or more robots, this ratio should be

smaller than or equal to 1.

1.2.11. Immersion

Immersion can be defined as an objective measurement of the degree of perceptual freedom of a

11



certain real or virtual reality that a sensorial interface portrays to the user (Zanbaka et al., 2005;
Bowman et al., 2005). In other words, it is the measure of realistically representing a reality. It
can be measured by the quality of display devices and user interaction in an HRI system (Zeltzer,
1992). A display device is more generally interpreted in this work as any device that provides the

user with sensory feedback for any of the five senses, not just for vision.

1.2.12. Presence

Many definitions for presence have been proposed in the Virtual Reality (VR) and Tele-robotics
communities (Zeltzer, 1992; Draper et al., 1998; Mantovani & Riva, 2001; Steuer, 1992). In
general terms, presence is the sensation that the user has of really being in the world that is
presented to him/her by the system interface.

A general methodology for accurately measuring presence is still unknown. However,
some factors that relate to presence are known, such as a user’s level of immersion. It is also
known that presence may positively affect user performance. Three methods are currently in use
for measuring presence (Insko, 2003):

e Subjective: The user is asked about his level of presence (Slater, 1999);

e Behavioral: Presence is measured based on the user’s behavior while using the system, such
as ducking when a virtual object approaches the user rapidly;

e Physiological: Physiological properties of the user’s body, such as heart beat rate, skin
conductance, and skin temperature, can be monitored while the user is using the system
(Meehan et al., 2002). These factors are then related to the level of presence of the user in the
environment.

The HRI community has applied similar measurements to other metrics such as situation

awareness (Crandall & Cummings, 2007), but SA and presence are not the same concept, and
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high levels in one does not necessarily imply a high level in the other.

1.2.13. Telerobotics

Telerobotics can be defined as “a direct and continuous human control by the teleoperator” or
as “a machine that extends a person’s sensing and/or manipulating capability to a location
remote from that person” (Sheridan, 1999). It also refers to research in remotely operated robots

of any complexity.

1.2.14. Data Sonification

Data sonification is the use of sound to provide a better understanding and analysis of data by
listening to it instead of looking at it. It is more commonly associated with the use of non-speech
sound (Hermann & Hunt, 2005).

Interactive sonification is a subcategory of sonification applications. It is defined as “the
use of sound within a tightly closed human-computer interface where the auditory signal
provides information about data under analysis” (Hermann & Hunt, 2005). In other words,
sounds are defined in real-time as the user explores the data space that the sonification

represents. Chapter 2 will present more details on this topic.

1.2.15. Omni-Directional Perception

The concept of omni-directional perception has been associated in the past with robotic
locomotion (Rojas & Foster, 2006; West, 2013), and vision (Nieuwenhuisen et al., 2013). The
remotely operated robot is equipped with sensors that enable it to perceive data coming from all
directions in the surrounding environment. A good example of this is the identification of objects

and sounds around the robot. This capability allows data sensed by the robot to be associated
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with spatial information. Omni-directionally robot-sensed data then becomes spatialized data
because it can originate and be sensed from any direction and location around the robot. In other
words, the robot is not limited to sensing data in the direction toward which it is moving or has
its camera pointing.

In this work, we introduce the concept of omni-directional perception from the
perspective of the user or robot operator. The idea is that the operator should perceive data
coming from all directions in the same way the robot is able to sense them. Spatially displaying
the robot-sensed data to the user in the same way as it was captured might enable the user to
more easily put himself or herself in the place of the robot and more efficiently and effectively
understand the situation of the remote environment surrounding the robot. More importantly, it
allows attention resources to be cognitively distributed and balanced among different senses
(Wickens, 2008), instead of being solely handled by human visual perception.

The display of omni-directional data to the user is only possible if the interface feedback
IS not restricted to the sense of vision, which is inherently directional. The use of multi-sensory
feedback interfaces, which can display robot-sensed data to multiple senses other than just to the
sense of vision, have the capacity to present robot-sensed data spatially and the potential to
improve the user’s omni-directional perception. The multi-sensory feedback level of an interface
can be associated with VR concept of interface immersveness. As in VR, however, having an
immersive or multi-sensory feedback interface does not necessarily lead to higher levels of
presence and improvements in the user’s omni-directional data perception. Interface design plays
an important role in leading to such improvements.

In consonance with Wicken’s multiple resource theory (Wickens, 2008), the author

believes that improvements in user omni-directional perception can lead to improvements in
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cognitive load, presence and SA and, consequently, impact task-related performance measures,
such as navigation and search measures. However, this causal relationship has never been
empirically validated. This work contains a set of studies that attempt to delineate the
relationship between these experimental measures and different levels of multi-sensoriality and

omni-directionality in a robot interface.

1.3. Problem Statement

In order to fully appreciate the challenges for which this work aims to find solutions, it is
important to gain a broad summary of the current context in HRI interface research in which it is
immersed.

In terms of display devices, monitors and portable devices are the common way of
outputting data to the operator in HRI. In VR, the variety of devices tends to be greater and
spread over the five senses, although video, audio, and haptic feedback are more frequently used
in descending order of prevalence. Devices that are commonly used for robot control include
keyboards, mice, joysticks, touchscreens and simple speech commands (Correa et al., 2010).
This work aims to integrate a wider range of output devices to provide a more immersive,
effective and efficient interface for the robot operator.

Regarding interface evaluation in more-traditional HCI it is important to consider the
naturalness of the mappings of data to display. For example, if a virtual character bumps into a
wall, is it more natural to alert the player with spatialized sound emanating from the point of
contact or to give the user a vibration using a wearable haptic device? Similarly, if a motion
sensor on a robot detects movement to the left and behind the robot, is it more natural to display
this visually in a tiled window, or to use vibration (Yanco et al., 2004)? Different types of mental
transformations are required for successful teleoperation (DeJong et al., 2006), and reducing the
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effort required to perform these transformations can significantly reduce task time and improve
interaction accuracy.

Both HRI and 3D User Interaction (3DUI) deal with the problem of improving
interaction with a remote environment, be it a physical or a virtual one. In fact, research in HRI
could benefit from research in the area of 3DUI (Bowman et al., 2005). Interfaces for 3DUI and
VR focus on recreating a first-person experience, and can be thought of as human-to-human
mappings of sensory input and output. In teleoperated HRI, while some input maps directly to
the human senses (e.g., camera feeds to a first-person visual view), others have no clear human-
sensory analogs, such as motion sensors or sonar. More importantly, optimal mappings do not
necessarily need to be visual-only mappings. They can potentially involve multiple human
senses. Determining a priori these optimal machine-to-human mappings, however, is very
challenging.

In this work we aim to evaluate some of these different multi-sensory mappings in the
context of a robot teleoperation interface. Following state-of-the-art multidisciplinary literature
surveys and research, a set of interfaces are proposed and designed. Through formal empirical
studies, the levels of effectiveness of these interfaces are comparatively assessed, and the
efficiency and effectiveness with which users can perform the representative tasks with each of
them is measured. Draper et al. (1998) discuss ways of thinking about presence and SA, and
suggest two methods to design user interfaces for presence: the anthropomorphic approach and
the informatic approach. As Burke et al. (2004) point out, “robots have been designed from the
robot point of view. While this focus was appropriate in developing the existing hardware and
software robot platforms, it is not team-centric.” Both of these research groups advocate a

human-centered design approach, and this is the approach adopted here for designing our
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interfaces.

The ultimate goal of the work proposed here is improving human perception, cognition
and performance during robot tasks in 3D real and virtual environments, making better use of
non-visual human sensory channels, and providing the research community with a valid set of

instruments for assessing effectiveness of multi-sensory interfaces in HCI, VR and HRI.

1.4. Original and Significant Contributions

The main contribution of this dissertation is to provide evidence of the benefits in representation,
perception and cognition that the use of multi-sensory feedback interfaces can bring to HRI
systems and how to measure them. This will be done in the context of urban search-and-rescue
(USAR) robot teleoperation.

The contribution of this dissertation can be divided as follows:

1. Verify benefits of multi-sensory interfaces: we define a set of multi-sensory interfaces
that lead to improvements in operator performance, efficiency or cognitive load in the
context of USAR telerobotics. These interfaces are tested using a consistent set of
controlled user studies;

2. Explore how far the benefits of multisensory interfaces go: we provide a glimpse of
how complex multi-sensory interfaces can be before they become unwieldy, that is,
before the effort to understand them overcomes the benefits they can bring. As far as the
author knows, this is the first time the effects of these rather elaborate interfaces
(involving up to four senses) are explored in this domain.

3. Evaluate the impact of redundant feedback on these interfaces: we determine when
and how presenting the same type of feedback through different senses is beneficial to the
user. Three of the four studies presented cover this topic and lead to interesting results.
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4. Design a reusable methodology for testing HRI interfaces: by gradually enhancing our
evaluation techniques through multiple studies, we have constructed an initial
methodology that may guide future multi-sensory HRI interface evaluations in a more
standardized manner. The work brings together and iteratively improves separate but
related metrics from VR and HRI which may potentially be reused by other researchers.

5. Introduce the concept of user omni-directional perception: omni-directional
perception is presented here not from the point of the machine or robot, but from the
perspective of the user. The concept is brought up as it is impacted by the use of multi-
sensory feedback interfaces.

The impact of the proposed work is both broad and deep. Whenever we take advantage of
automation, e.g., driving a car, we relinquish some amount of low-level control and
understanding in exchange for increased productivity, accuracy, or enjoyment. However, we are
at the mercy of the interface designer in terms of how effective we can be, given the reduced
amount of available information. If such a design is solely restricted to one human sense, our
interface awareness and human perceptual capacities are greatly constrained. Challenging though
it may seem, adding feedback to more human senses in a robotic interface not only expands the
user’s perceptual horizon, but also has the potential to lead to more natural interface designs.
Therefore, the use of multiple senses in the design of robotic interfaces as supported by this work
has a broad impact on the interface research community.

While the current work focuses on HRI for rescue robots only and includes only one
robot, this work explores deeply the area of USAR telerobotics, and presents interface designs
based on current guidelines and built upon current interfaces in the area. Such an effort enabled

the provision of a base interface experience as enhanced as currently possible. The interface
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designs presented also explore many types of multi-sensory feedback, encompassing feedback
for all senses but the sense of taste.

As a consequence of this approach, and allowing the necessary adjustments, the author
believes that the results obtained here could be similarly extended and obtained not only for
other types of mission robots, but for other more general types of industrial and social robots, as

well as for the simultaneous control of multiple robots.

1.5. Roadmap

The remainder of this work is organized as follows. Chapter 2 discusses topics from different
research areas that are relevant to this work. Chapter 3 explains in detail the studies carried out
and their results. Chapter 4 reviews the contributions and draws conclusions for this work. It is
followed in sequence by the glossary, references and appendices. The latter contains all the data
for the four studies presented. Such data is referenced in previous chapters, especially in chapter

3.

19



2. Literature Review

Humans perform tasks effectively in the real world by combining information from their five
senses of sight, hearing, touch, smell, and taste. Our increasing acceptance and reliance on
electro-mechanical, digital and virtual machines (e.g., robots, 3D games) to be extensions of
ourselves requires us to monitor and assess their performance, and alter their actions should the
need arise. Through these extensions, we are confronted with an ever increasing number of low-
fidelity sensors, putting us at a greater distance, both physically and cognitively, from the high-
fidelity physical world with which we are accustomed to interacting. Humans can filter and
integrate large amounts of multi-sensory data in complex, real-world situations, but performing
tasks effectively and efficiently in sensorially deprived environments depends almost exclusively
on the available interface elements provided by the system. Therefore, there is a growing need
for people to interact effectively in sensorially deprived 3D environments.

A surgeon performs a laparoscopic procedure by manipulating tools with constrained
degrees of freedom while looking at a video feed from a camera that has possibly been rotated so
that a movement of a tool in the “up” direction is shown as down on the screen, or right is
swapped with left (Berkelman & Ma, 2009). Teleoperators of robotic devices, such as rescue
robots, must deal with similar situations where awareness of the current state of things can get
confusing very quickly with possibly catastrophic results. For example, we are taught that when
backing a car up, or when changing lanes on the highway, it is best for the driver to turn her head
around, in addition to using her mirrors, to look before acting. Because the act of turning the
head becomes more difficult as we age, it is reasonable to believe that more drivers will perform
these tasks without directly looking, increasing the number of automobile accidents. One

possible solution to this is to use feedback from sensors on the car to alert drivers to the
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environment around them. How to best “display” the information (e.g., sound, vibration, video)
in all of the above examples is a Human-Computer Interaction (HCI) question that is
nevertheless very relevant to robot interface design.

The fundamental challenges involved in the area of Human-Robot Interaction (HRI) that
are motivating researchers lately are related not only to making robots assume human behaviors
and tasks and thus have the potential for broad applicability in our society, but also to providing
robot “users” feedback.

One feature that greatly affects a robot’s applicability to society is its level of autonomy.
The more autonomously and unsupervised an HRI system can perform without posing any
danger, the higher is its potential to become an independent social agent. But designing a safe
robot capable of coping with the unpredictable situations in the real world is a complex task
(Dautenhahn, 2007; Bien & Lee, 2007; Miller & Parasuraman, 2007).

Even for urban search-and-rescue (USAR) tasks, Casper & Murphy (Casper & Murphy,
2002) highlight the need for Al support in performing complete search coverage, collaborative
teleoperation, and topological mapping (Nielsen & Goodrich, 2006), but argue the problems
related to accomplishing the tasks because of sensing and data transmission and power resource
limitations. Therefore, in USAR, there is a need to not only enhance robot Al, but also optimize
how resources are used to make the robot operator more aware of the situation and hence use his
own brain to find solutions to complex situations he may be exposed to. This brings us to the
second abovementioned issue of providing robot users feedback.

In the context of USAR (Casper et al., 2000), video and audio feeds, analog data
transmission, and wireless Ethernet are generally the only means to get data in and out of the

robot. Specifically for USAR, signal frequencies around 450Mhz are preferred for building
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penetration. However, because of the need for sharing channels, and problems with signal
interferences among others, such communication is sometimes not enough to allow the operator
to perceive the environment as if he was physically present in the remote environment.

Furthermore, the robot sensors should allow the operator to detect features in the
environment that would be impossible to detect even if the operator was there in person, such as
detecting heat and CO: level variations in the remote environment that may indicate the location
of victims nearby. Therefore, it is extremely important to integrate vision algorithms to process
image input according to what needs to be detected or monitored in the environment and adapt to
different conditions imposed by the environment, such as illumination, dust, and video quality.
Much is yet to be done in this direction.

The study of HCI focuses on supporting dialog between people and machines. This
dialog can be viewed as a continuous loop of the human interpreting the state of the machine
and, by using affordances, altering such a state. A similar dialog occurs in HRI, this time
between the robot and its controlling human team as seen in Figure 2.1, which was adapted from
the work of Crandall & Goodrich (Crandall & Goodrich, 2002). It shows how local input is
converted into remote actuation and how remote sensing is converted into local feedback. The
work presented here is focused in the latter part, that is, how to locally display remotely robot-

sensed data as feedback to the robot operator.
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Figure 2.1: HRI interaction loop (Crandall & Goodrich, 2002).

Urban search-and-rescue (USAR) robotics has been identified by both the National
Research Council (NRC, 2002) and the Computing Research Association (CRA, 2003) as a
critical technology area. Chen et al. (2006) give a good overview of how various current HRI
technologies can be applied to Army robotic applications, but focus mainly on feedback for
human senses in isolation. Robin Murphy (Murphy, 2004) gives a thorough description of the
state of USAR robotics, based on significant experience in both real-world (e.g., the World Trade
Center disaster) and simulated exercises. Murphy identifies visual search as one of the most
appropriate tasks to study for USAR robots, because it requires cooperative perception by the
members of the robot team. USAR fits into the class of fielded applications, which involve
significant teleoperation, with the robot performing as an extension of the controlling human
operator.

As robot teams are being used ever more often to perform more complex tasks,
coordination between operators, supervisors, and robots is becoming a complicated problem

whose solution requires the use of not only technological but also social and psychological skills.
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The VR and HRI communities need effective interface design principles and infrastructure for
creating and experimenting with multi-sensory interfaces. The following scenario illustrates how
HRI, specifically for USAR, could benefit from such an infrastructure.

USAR scenario: A team of experts is deployed on the site of a building collapse, caused
by a recent earthquake, with their rescue robot equipped with various sensors (e.g., heat, motion,
sonar, video, CO2). The USAR team's main task is to safely explore the area and search for any
survivors stuck in the wreckage. The team is composed of two members with distinct roles: an
operator, who controls the robot, and a supervisor, who makes decisions about the actions to be
taken by the team and performs the search task. Communication with other teams may be done
by either of the team members. Data from the robot sensors is transmitted back to the team and
displayed on computer monitors, from which the team must decide on the robot's next move.
However, each type of data is displayed in a separate part of the screen (Figure 2.2a), requiring
team members to mentally fuse them to gain a better understanding of the environment around
the robot (Yanco et al., 2004). In addition, the computer interface used by the operator to control
both the robot, its camera, and switch between the many open windows on screen is a mouse and
a keyboard or touchscreen on a laptop or tablet. The team either operates the robot close to the
entrance where the robot was released on the collapsed site or in a sheltered location nearby. In
the latter case, a special team member is responsible for releasing and retrieving the robot in the
collapsed site. The same interface is shared by both team members, and it must simultaneously
attend to the interaction needs for all of its users.

This scenario underscores the increasing need people have to use intuitive interfaces for
field operations, receive and rapidly make sense of large amounts of dynamically changing data,

transform it into usable information, and to make decisions about actions to take. Rather than

24



requiring team members to understand and fuse all of the visual data from the robot, the HRI
system should have interfaces for each team member, where data is fused in the most optimal
way to meet their specific activity requirements. Other interface optimizations could also consist
of offloading some of the data to non-visual displays such as audio, touch or smell feedback
displays. This is the main motivation behind the research work presented here.

For input controls, they should be mapped to more intuitive interfaces. For example, head
and body tracking could be used to define the robot and camera orientation. With training, the
use of more and varied input and output modalities could then increase the team's feeling of
“tele-existence” (Tachi, 1992), that is, the feeling of “being there” as the robot itself, or at least
of being in the space that the robot is occupying. While effective mapping of operator input to
robot actuation is an important area of study, it is beyond the scope of this dissertation. The work
presented here will instead focus on mapping sensor information to operator displays and use
relatively standard input control techniques.

Even though USAR interfaces have evolved significantly in terms of data fusion as can
be seen in Figure 2.2, they still heavily rely on visual displays only. To this point, the display
problem has mainly been treated as a data visualization problem, and solutions have focused
almost exclusively on feeding the sensor data to the eyes. Very few attempts have been made to
offload robot information to other sensory modalities or combine the data to reduce cognitive
load and improve understanding. The main focus of this work is to explore how well display of

information can be done, and discover new scientific principles for multi-sensory display in HRI.

25



Current autonomy mode
mmp— Trust indicator

AIBO Control Interface

[EEEre] i) [ pauscun |
DOCK DOG Forward . ‘ T
UNDOCK DOG Lt Right
Reverse .. . = -! I -
DOG 1 DOG 3 = “
SWITCH OFF | creer | poaz | poaa |

c d
I(:i)gure 2.2: Operator display for urban searc(h )and rescue robots. (a) Separate tiled windows
(Yanco et al., 2004),(b) multiple windows arranged on screen (Desai et al., 2013a), (c) Single
view with overlaid visual sensor displays (Kadous et al., 2006), (d) interchangeable windows
with single view layout for operation of a forklift (Correa et al., 2010).
Bi-sensory interfaces have been shown to help search in the past. The work of Gréhn et

al. (Grohn et al., 2005) has shown that audio and visual cues for searching objects are more
effective than just providing either of them. In fact, they complement each other. Auditory cues
are utilized in the beginning to locate the approximate location of a searched object, while visual
cues are used to approach the object once it was visible.

The disadvantages of bi-sensory interfaces have also been discussed in the past. Gunther

et al. (Gunther et al., 2004) compared search tasks for objects that emit sound to those that don't.
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The comparison was made in terms of the efficiency with which objects are located, as well as
environment understanding. Having sounds helped in finding objects, but not in getting a better
understanding of the environment. When no sound was present, more visual cues were captured
by subjects and that led to better environment understanding.

Survey articles underscore the timeliness of the work proposed here. A report by the 2004
joint DARPA/NSF interdisciplinary study on HRI (Burke et al., 2004) lists among the most
important future research directions:

1. Developing and delivering cues to facilitate remote perception;

2. Interaction modalities, both input and output, that depart from today's typical means -
keyboards, mice, displays - and can be used in various physical environments;

3. Designing tools for developing human-robot interfaces;

4. Evaluation methodologies and metrics to assess research progress of human-robot teams.

Burke et al. (Burke et al., 2004) provide an interesting perspective on issues for HRI
research growth, including a list of research directions for the area of HRI, such as studies on
levels of autonomy, cognitive studies on human limitations in human-robot tasks, interaction
modalities, and scalable and adaptable Ul. From their perspective, research on HRI should be
focused on three categories: representation, cognition, and control. This research work focuses
on representation and cognition, but also on perception, which consists of the operator awareness
of the displayed sensory information.

The remainder of this chapter provides a more thorough review of the state-of-the-art of
research in the field of HRI, specifically in teleoperated HRI. It provides a general categorization

structure of interfaces, devices, taxonomies and techniques in the area.
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Some of the definitions in the field were already covered in section 1.2. Section 2.1
identifies the users involved in human-robot interaction. Section 2.2 describes the technology
used in the field. Section 2.3 provides a list of current HRI techniques. Section 2.4 discusses
taxonomies and requirements. Section 2.5 gives an overview of the common metrics for
validation and verification of a human-robot system. Last, section 2.6 gives some conclusions

and visions for future work.

2.1. Users

Most HRI researchers have found that at least two people are needed for one USAR robot
(Murphy, 2004), one acting as the operator and the other acting as the problem holder or
supervisor (Woods et al., 2004). Additionally, robots may be part of a team of humans or robot
coalition (Adams, 2006) and cooperate in a shared environment (Atherton et al., 2006). Scholtz
(Scholtz, 2003) describes five roles humans can take in USAR HRI: supervisor, operator,
mechanic, peer or team mate, and bystander, each of which demands different information and
SA.

The supervisor (or sensor/payload operator) is a person who monitors sensors and
cameras and controls the overall situation (Miller & Parasuraman, 2007). The operator’s (or
pilot’s) role is to ensure the robot is acting as expected. Whenever the robot is unable to
autonomously deal with a situation, the operator intervenes to make it perform the right action. A
mechanic assists in the resolution of remote hardware and software issues that the operator
cannot remotely resolve. The peer or team mate represents other supervisors and operators that
are controlling other robots or other parts of the robot. The bystander’s job is to affect the robot

actions by directly interacting with it in the remote environment.
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For some tasks, such as USAR, HRI teams are coordinated individually by leaders and in
general by managers. Although such personnel are not directly in contact with the robot, they
constantly communicate with the robot teams, access relevant data, coordinate the many HRI
teams and decide the feasibility of certain activities or the course of the mission as a role
(Murphy, 2004; Casper et al., 2000; Osuka et al., 2002).

Other roles include mentor, who teaches or leads, and an information consumer who
simply obtains information (e.g., in a reconaissace task) (Goodrich & Schultz, 2007). Depending
on the complexity of the search and resuce task, roles can become very specialized. For
wilderness search and resuce (WiSAR) operations using UAVSs, for example, specific roles for
video analyst and ground searcher are required (Adams et al., 2009).

Human tasks in a human-robot team (HRT) include: mission (re)planning, robot path
(re)planning, robot monitoring, sensor analysis and scanning, and target designation (Crandall &

Cummings, 2007).

2.1.1. Teamwork

Interaction between members inside or among teams is crucial to goal achievement (Casper &
Murphy, 2002). Establishing etiquette rules is recommended to guarantee objective, concise and
unambiguous communication (Sheridan & Parasuraman, 2006). Depending on the task,
environmental stressors and fatigue levels may affect the performance of the team as a whole,
from a human and also from a robotic perspective (Miller & Parasuraman, 2007; Murphy, 2004;

Freedman & Adams, 2007).
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2.1.2. Team Composition

Some research groups work with a single robot and multiple operators (Murphy, 2004; Osuka et
al., 2002; Yanco et al., 2004). Most research on cognitive load presents experiments where a
single operator looks over a set of robots (Goodrich et al., 2001; Adams, 2006; Crandall &
Cummings, 2007; Humphrey et al., 2008; Parasuraman et al., 2003). But reducing the human-
robot ratio may not always be possible.

Different types of robots with different roles may also be involved in a task. Marsupial
robots, for example, are larger robots whose main role is to protect and carry other smaller robots
to task areas (Murphy, 2004). Once a desired location is reached, the smaller robots are released
to perform their tasks (Osuka et al., 2002).

When having one operator control more than one robot, many issues may occur, such as
uncalibrated trust (Desai et al., 2013a), mode error, reduced situation awareness, loss of operator
skill, and unbalanced mental workload (Parasuraman et al., 2005). Most of these can be
associated with the constant switching among different robot situations (Goodrich et al., 2005;
Burke et al., 2004). Casper & Murphy (Casper & Murphy, 2002) have reported that USAR
operators could not perform as well without a supervisor, due to the workload required in
controlling the robot itself and performing a search task.

Figure 2.3 is a refinement of the work of Yanco and Drury (Yanco & Drury, 2004) that
presents the possible relations between the number of robots and the number of operators. Figure
2.3 also derives a similar relation between the operator-robot team and the number of tasks they
may perform. There might also be collaboration between humans and robots (Yanco & Drury,
2002; Yanco & Drury, 2004). The refinement and optimal matching between the number of

operators, number of robots, and number of tasks for an HRI system is a non-trivial problem that
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requires the attention from researchers with a great deal of experience and knowledge in human-

robot interaction.
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Figure 2.3: Potential configurations between operators, robots and tasks.

2.1.3. Team Presence

While the operator is directly controlling the teleoperated robot, the robot output is shared among
the entire team, but parts of the interface are more important for some members than for others.
Hence, the sense of presence from the point-of-view of each member must be measured
according to their role. However, since presence measurement is currently still a topic of prolific
research even in general terms, measuring presence for each of the specific categories of users in

the HRI domain is an open topic.
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2.2. Technology

The design of technology used in teleoperated HRI is mostly directed towards four types of
users: operators, supervisors, mechanics and information consumers (GS09). Although there are
systems to assist in the interaction with bystanders, such as the ones used in gesture and face
recognition (Song et al., 2010), in practice in USAR this higher level of processing is typically
done by the operator and/or supervisor themselves. Because of this, the technology presented
here is directed to these types of users and divided in four categories (Table 2.1).

Table 2.1: Relation between the four technology categories in HRI.

Operator side (local): Robot side (remote):
Sense Displays: Hardware and software Sensors: Hardware and software that
(In): that process and present data from  capture data from the HRI system and the
sensors to operators and robot Al. remote environment to be transmitted to

operators and robot Al

Response  Input: Hardware and software Actuators: Hardware and software that
(Out): interfaces that collect and process transform data from operators and robot Al
data from operators and robot Al to into interactions between the HRI system
be transmitted to the robot and and the remote environment surrounding the
other operators or robots. robot.

2.2.1. Sensors

Table 2.2 lists the most common types of sensors used in HRI systems, partly extracted from
Sciavicco and Siciliano (2000). On the description column in Table 2.2, notice the prevalence of
visual-related sensors in obtaining information from the environment.

Another way of categorizing sensors is according to how they perceive the environment.
In this case, sensor categories could be divided as radiation (Suarez & Murphy, 2012; Zhang et
al., 2013), physical properties, movement, chemical (Aubrey et al., 2008) and mechanical
Sensors.
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Table 2.2: Sensor types used in HRI.

Type

Description

Visual

Purpose: 2D camera feed analysis, 3D perception of the environment, visual extra-human
perception (infrared, radiation, spectrum filtering), atmospheric and structural analysis (e.g.,
void spaces location in USAR).

Used by: operators, supervisors, mechanics.

Hardware: emitters (flash lights, laser diodes, lasers, infrareds) and receivers (photoelectric
Sensors, cameras).

Haptic

Purpose: detect collisions, vibration, tilt sensing and forces applied to joints or an external
object surface.

Used by: operators

Hardware: collision sensors, force sensing resistors (FSRs) and contact sensors such as strain
gauges, shaft torque sensors, wrist force sensors.

Proximity

Purpose: collision avoidance, fall avoidance.
Used by: operators.

Hardware: capacitive proximity sensors, photoelectric sensors, but also range sensors such as
visual sensors.

Atmospheric

Purpose: detect humidity, temperature, pressure.
Used by: operators, supervisors, mechanics.

Hardware: humidity, temperature, pressure.

Olfactory Purpose: atmospheric analysis and specific gases detection, such as CO2.
Used by: supervisors, operators.
Hardware: chemical sensors.
Audio Purpose: Perceive sound or noise in the environment or in the robot, structural analysis.

Used by: operators, supervisors, mechanics.

Hardware: (directional) microphones, ultrasonic emitters and receivers.

Pose, Position
and Velocity
Sensors.

Purpose: detect location and orientation of robot or its parts and as well as speed of movement.
Used by: operators, supervisors.

Hardware: GPS systems, accelerometers, gyroscopes, potentiometer, linear variable differential
transformers (LVDT), inductosyns, encoders, resolvers, inertia measurement units (IMUs),
tachometers, strain gauges.
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2.2.2. Input

Table 2.3 lists input devices used in HRI in terms of potential applicability and user category.

They range from simple PC devices to virtual-reality and application-specific ones.

Table 2.3: Input device types used in HRI.

Type Input Capabilities Applicability

Used by

Keyboard -Sequential

character input.

-Symbolic input;

-Graphical user interface (GUI)

control;

-General param. control.

Operators, supervisors,
mechanics.

Mouse -2 DOF input; -GUI control, Operators, supervisors,
-Binary input. -General param. control. mechanics.

Joystickand -2, 3 or 6DOF -Robot navigation; Operators.

gamepads input. -Camera/sensor control.

Touchscreen -Binary input.

-GUI control;

-General param. control.

Operators, supervisors.

Tablet -Binary input; -GUI control, Operators, supervisors.
displays -2 DOF input. -Camera/sensor control;
-Robot navigation.
Audio input  -Analog input. -Speech recognition; Operators, supervisors.
-Voice recognition;
-Command issuing;
-Team coordination.
Motion -2, 3 or 6DOF -Monitoring and search; Operator, supervisors.
tracking input. -Robot control;

-Interface interaction;
-Actuation.
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2.2.3. Output

Displays are used to present or output data about the status of the robot to its operator. They can
be categorized according to the sense they relate to: audio, visual and data (Yanco & Drury,
2004), the latter encompassing interfaces for the remaining three, seldom-used human senses.
However, data is often mapped into a visual abstraction on the GUI. Due to high human
sensitivity to visual information over information provided through other senses, this approach
tends to be effective (JAK93; Kobayashi et al., 2005).

Despite optimization efforts, visual data overload is still a problem in HRI interfaces and
leads to operator cognitive overhead and a decrease in productivity. On the other hand, the use of
senses other than vision to reduce overload is increasing (Zelek & Asmar, 2003; Calhoun et al.,
2003; Lindeman et al., 2008). Lindeman et al. (Lindeman et al., 2006; Lindeman et al., 2003;
Lindeman & Yanagida, 2003; Sibert et al., 2006) have presented results of using vibro-tactile
displays on the hips, back, and thorax. Other types of haptic feedback displays have been
proposed in VR, a review of which can be found in Zelek & Asmar (Zelek & Asmar, 2003).
Force feedback has also been explored in robot tele-manipulation (Griffin et al., 2005; Mitra &
Niemeyer, 2008; Johannes et al., 2013). Table 2.4 gives an overview of the types of displays

used in HRI and VR (Bowman et al., 2005).
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Table 2.4:

Display device types used in HRI.

Type Hardware Output capabilities  Applicability
Visual -LCD/ CRT displays -Visual stereo and -Camera feed display, processed image
-Head-mounted displays, ~ M°N° display. and huma_ln vis_ion; _
CAVES, other stereo- -Therma}l imaging and infrared data;
display devices* -Ultra-violet data;
-Ultrasound data;
-Other sensors data;
-Map view;
-Mission diagrams.
Auditory  -Speakers -Aural surround, -Environment sound;
-Headphone stereo and mono -Team communication;
-Bone conduction display. -Sensor monitoring.
headset™
Haptic -Vibro-tactors (1D-2D) -Localized 3D -Information alerts;
-Force-feedback spatial haptic -Directional cueing;
joysticks* display. -Environment information and
-Phantom(Phantom, feedback.
2014)*
-Falcon*
-Gloves and exoskeleton*
Olfactory  -Air cannon (Yanagidaet -Smell display. - Atmospheric data.

al., 2004) *
- Tube-delivery system*
-Fan-based system*

*: Used in VR but not yet in HRI.
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2.2.4. Actuators

Actuators define the HRI technology used to physically interact with the environment. Table 2.5
lists the devices commonly classified as actuators (Sciavicco & Siciliano, 2000) and used by the
operator as such.

Table 2.5: Actuator types used in HRI.

Type Applicability Hardware
Electric motors -Locomotion; -Robotic joints (rotary,
-Movement; prismatic);
-Grabbing & moving objects; -Stepper motors;
-Pose control. -Linear motors;
-Etc.
Artificial muscles -Precise limb movement. -Collision sensors,
-Force sensing resistors
(FSRs);

-Contact sensors.

Pneumatic motors -Used in industry for diverse purposes, but

) not used for mobile robotics.
Hydraulic motors

Shape memory alloys -Used for providing small movements.

Electro-active -Biological muscle behavior emulation.
Polymers (EAPs)

2.3. Interaction Techniques

A mission-specific HRI system consists of a set of technologies and methodologies combined to
solve a problem in a specific domain. Robots are used as a communication channel between the

environment and specialists (Berkelman & Ma, 2009).
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In every case that such a robot is used, the accompanying HRI system is required to have

the following set of features:

e Sensors to gather data from the remote environment;

e Display devices to present processed data to the user;

e Input devices to give the operator control over the robot;

e A processing unit to convert data from the user to the robot and vice-versa;

e An autonomous reasoning unit to react to the input from the environment in place of the

operator. This is not a necessary feature but it has become increasingly common.

Human-robot interaction techniques implement these features in an HRI system. This

section groups HRI techniques according to these important features.

2.3.1. Output Techniques

This section describes the methodologies, algorithms and hardware setups that have been used to

display data to the user or robot.

2.3.1.1. Visual Feedback

As mentioned in section 2.2.3, visual techniques generally include LCD or CRT monitors to
display data to the operator. But what and how data is displayed varies for each application.
Common techniques exist, however, and they are presented in this section.

A technique called 3D mapping consists of discovering object positions in 3D space
relative to the robot by analyzing different types of environmental data. Such data may be the
output from sonar, cameras, or photoelectric sensors, for example. Each system has its own way
of processing data (Johnson et al., 2003; Nielsen et al., 2007; Yanco et al., 2006), but there are

well-known and more widely used techniques (Zelek & Asmar, 2003), such as optical flow,
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stereo and probabilistic vision (Zelek & Asmar, 2003), and point clouds (Suarez & Murphy,
2012; Zhang et al., 2013).

Different robot perspectives have also been used to improve the amount and organization
of visual information on screen (Atherton et al., 2006; Cooper & Goodrich, 2008; Nielsen et al.,
2007; Nielsen & Goodrich, 2006). They represent camera models similar to the ones used in
virtual environments (VES), such as first-person view (Micire et al., 2011; Drury et al., 2006b),
third-person view (Nielsen & Goodrich, 2006) and map, god-like or bird’s-eye view (Dury et al.,
2003), the latter using either a robot-up or egocentric perspective or a north-up or geocentric
perspective (Bowman et al., 2005). Gestures and facial expressions visual displays (monitors or

robotic units) can also be used to convey feedback.

2.3.1.2. Aural Feedback

Audio feedback can be used to display robot data in either analog (e.g., direct sound stream) or
symbolic (e.g., speech sysnthesis and sound icons) forms. Aural feedback has been shown to
improve user performance in search (Grohn et al., 2005; Gunther et al., 2004) and remote

vehicle-control (Nehme & Cummings, 2006) tasks.

An area closely related to aural feedback is data sonification, which attempts to explore
representation of any kind of data through sound. Research in this area encompasses a wide
gamut of application areas, such as art (Maes et al., 2010; GroRhauser & Hermann, 2010),
security monitoring (Hoferlin et al., 2011), safe driving (Spath et al., 2007; Larsson et al., 2006),
search (Gonot et al., 2007; Grohn et al., 2005), geo-location (Zhao et al., 2005), text-writing
(Rinott, 2004), process-control (Walker & Kramer, 2005), remote-vehicle control (Nehme &

Cummings, 2006), and image analysis (Dewhurst, 2010).
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2.3.1.2.1. Properties of Hearing that Affect Sound Display

Because of the omni-directional nature with which humans perceive sound, audio feedback can
be effectively used to provide alerts and reminders and call the user’s visual attention to specific
parts of the graphical user interface at which he is not looking. While speech is always presented
in a sequential and therefore time-consuming mode, non-speech audio provides the possibility to
encode multiple bits of information in a parallel manner, for example, by using the different
attributes of sound, such as pitch (Golledge, 2011), rhythm, loudness, timbre (Shinn-
Cunningham et al., 2005), and location (Lindeman et al., 2008; Sheridan & Parasuraman, 2006).
Moreover, non-speech sound is much less disruptive than speech (Spath et al., 2007).

In fact, human auditory perception is actually capable of separating out at least a few
sound sources and focus on a specific one, the so called “Cocktail party effect” (Gonot et al.,
2007). Audio source location identification is usually determined by the human auditory system
thanks to the Interaural Time Difference (Dubus & Bresin, 2011). Because humans generally
tend to underestimate the distance of sound sources (Loomis et al., 1998), spatially separating
sound sources could decrease the mental effort of selective attention.

However, according to Zhao et al. (2005), human auditory perception is less synoptic
than visual perception. In other words, it is harder to merge data from different audio sources
than to merge data from different visual sources.

In terms of the acceptable real-time audio feedback delay relative to other senses, the
levels of delay acceptable seem to vary depending on how they are integrated with other senses.
A 20 ms delay between visual and sound is an acceptable and imperceptive value for most users
(Maes et al., 2010). However, when sound feedback is integrated with haptic feedback, the

acceptable audio delay drops to 2 ms (Difilippo & Pai, 2000).
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2.3.1.2.2. Sonification Techniques

Different data sonification techniques exist (De Campo, 2007). The most commonly found
techniques in the literature can be broadly separated in three categories: continuous data
representation (e.g., audification (Hermann & Hunt, 2005) and parameter mapping (Hermann &
Ritter, 1999)), discrete point data representation (e.g., earcons (Larsson et al., 2006)), auditory
icons (Larsson et al., 2006; Barrass, 2005; Brazil, 2009), and spearcons (Wersényi, 2009)) and
model data representation (e.g., sonic mapping (Brazil, 2009; Pauletto & Hunt, 2004; Dubus &
Bresin, 2011; Nasir & Roberts, 2007)).

The imitation of sound properties that the user commonly perceives in real world objects
(e.g., large or slow-moving objects generate louder and lower pitch sounds, while fast-moving or
small objects generate quieter and higher pitch sounds) is among the most popular ways to map
sounds (Hermann & Ritter, 1999; Walker & Kramer, 2005). Pitch is known to be one of the most
prominently used attributes of sound (Dubus & Bresin, 2011). There are also mappings
commonly associated with specific physical properties. For example, distance is generally
related to sound level, frequency and size to pitch, and velocity to tempo. Spatialization, that is,
making sounds feel they originate from a specific point in space, is almost only used to render
kinematic quantities (NRO7; Gonot et al., 2007).

The number of sounds that can be differentiated by a human varies according to the
sound frequencies, their pattern, location, as well as the listener’s physiological features (e.g., the
size and shape of ears) and sound listening experience. Among the factors that affect audio
feedback perception are continuity/discreteness, realism/cartoonification (Rocchesso et al.,
2004), (un)expectability (Wersenyi, 2009), urgency (Larsson, 2009; Larsson et al., 2006), and

verbality (Edworthy & Hellier, 2000).
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2.3.1.2.3. Interactive Sonification

The area of interactive sonification involves display of sound by interactions through input
devices with virtual environments and their objects (Diniz et al., 2010) or even by the direct
capture of body gestures (Maes et al., 2010; GrofRhauser & Hermann, 2010). According to Hunt
and Hermann (Hermann & Hunt, 2005), interactive audio perception implies that the the data-to-
sound mappings depend on context, goals, and the user’s interaction. In addition, these mappings
determine whether they allow the practiced user to build an expectation of the behavior of the

sound-producing system and hence experience flow.

2.3.1.3. Tactile Feedback

Broadly speaking, our sense of touch can be divided into kinesthetic and cutaneous sub-senses.
Kinesthetic stimulation maps roughly to forces being exerted on, and sensed by,
mechanoreceptors in the joints, tendons, and muscles. For example, we feel the weight of a
heavy object held in an upturned palm because the object weight exerts forces on the wrist,
elbow, and shoulder joints, and we exert opposite forces to counter the weight. Proprioception is
another example of a kinesthetic sense. Cutaneous or tactile stimuli, in contrast, are sensed
through mechanoreceptors in the skin. The various kinds of receptors allow us to sense other
types of stimuli, such as thermal properties, vibration of varying frequencies, pressure, and pain.
Since the skin is the largest organ in the body, cutaneous cues are an attractive method of
displaying information.

Because we are using vibro-tactile feedback in our studies, the related work here
presented focuses on tactile instead of kinesthetic feedback (Dominjon & Lecuyer, 2005). Tactile
cues have been used as display devices on various parts of the body such as the forehead, tongue,

palms, wrist, elbows, chest, abdomen, back, thighs, knees, and foot sole (Lindeman, 2003; Zelek
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& Asmar, 2003).

Based on Lindeman (Lindeman, 2003), the parameters that can be directly mapped to
data output from the robot or the environment are summarized in Table 2.6, accompanied by
suggestions for the sensor data type they can represent. These mappings are intuitive
propositions, not experimentally validated. In Table 2.6, analog display presents a continuous
range of values and symbolic output presents codes or symbols that an operator may recognize or
associate with some idea.

Table 2.6: Vibro-tactile parameters and suggested mappings (Lindeman, 2003).

Tactor configuration parameters Suggested outputs

Intensity Analog display

Frequency Analog display

Vibration duration Symbolic output or analog display

Sequence of different/equal vibrations interspersed Symbolic output or analog display
by non-vibration periods (pulses)

Spatial arrangement Symbolic output or analog display

2.3.1.4. Olfactory Feedback

Olfactory feedback has been explored in VR and different technologies have been devised for
providing it to users. The most common ones are projection-based devices using wind (Noguchi
et al., 2009), air puffs (Yanagida et al., 2004), or close-to-nose tube-delivery devices (Narumi et
al., 2011; Yamada et al., 2006). Effects of smell in human cognition and performance have been
measured in the past (Herz, 2009; Moss et al., 2003), but no research was found that applied
smell to remote teleoperation or as a source of aid in a search task as is done in our fourth study

described in section 3.5.
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2.3.1.5. Gustatory Feedback

Many researchers have come up with different solutions for providing gustatory or palatal
feedback. There are devices that provide the correct tactual and aural sensation when one is
drinking (Hashimoto et al., 2006) or eating (lwata et al., 2004). Others devices present a range of
flavors to the users (Nakamura & Miyashita, 2012) through a mix of flavors (Maynes-Aminzade,
2005), scents (Narumi et al., 2011) and provision of electrical current (Ranasinghe et al., 2012).
Other devices simply enhance the current experience of eating (Tanaka et al., 2011).

Though not explored in this work, a relationship between taste feedback and robot
teleoperation could be envisioned. The sense of taste could be associated with chemical or
thermal temperature data collected from air or soil from a remote robot. The operator would then
make decisions on whether to proceed on a certain route or get new soil samples based on the

feedback.

2.3.2. Input Techniques

In Human-robot interaction, specifically in robot teleoperation, input techniques vary according
to the types of user and robot, and the application goals. Because the focus of this work is on
output, input techniques for teleoperated robots will be covered briefly in this section.

In terms of level of action, a robot may receive input and represent it in exactly the same
way as the movement of the operator’s body, called direct mapping, or map it to other types of
movement or control as an indirect mapping (Poupyrev et al., 2000; Poupyrev et al., 1999). An
example of direct mapping is using arm movement to control a robotic arm. An example of
indirect mapping is using a joystick to control robot movement speed. Input is also used for

system control, such as setting up the robot’s control parameters and algorithms. Input may be
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done remotely with a machine solely dedicated to that purpose (Taylor Il et al., 2001).

Most of the time robot input works in imperative mode. However, reasoning robots exist
that can learn from bystanders or team members nearby (Murphy, 2004). In addition, computer
vision and Al may aid its decision of what it should consider as valid or relevant input.
Operability may be categorized in terms of locality. A robot is operated locally (directly) when
operator and robot are in the same place, or remotely (indirectly), when they are in adjacent
rooms, such as operating a robot arm in a laboratory or factory, or when operator and robot are

geographically apart from each other (Hill & Bodt, 2007).

2.3.3. Other 3D User Interaction Techniques Relevant for HRI

Research in HRI could benefit from research in the area of 3D User Interaction (3DUI) (Burns et
al., 2005) (Henry & Furness, 1993; Mine et al., 1997; Larssen et al., 2006; Razzaque et al., 2002;
Usoh et al., 1999; Zanbaka et al., 2005). The main difference between HRI and 3DUI techniques
is that, while the latter has unlimited access to information about the environment, the former is
limited by the data given by the sensing devices, which might even be imprecise or incorrect.
3DUI techniques may be divided into selection (Atherton et al., 2006) and manipulation,
travel, wayfinding (Billinghurst & Weghorst, 1995; (Micire et al., 2011), system control and
symbolic input (Bowman et al., 2005) techniques. Recently a trend towards the addition of body
gesture and perception has also been discussed among researchers. Steinfeld et al. (Steinfeld et
al., 2006) divides HRI tasks in five categories for task-oriented mobile robots. They are
perception, navigation, manipulation, management, and social. Notice how closely-related these
are to the abovementioned five areas of research in 3DUI. Both of these are shown for
comparison in Table 2.7. Notice there is some overlap between the two taxonomies. A
recommendation by the author is that both research communities should discuss whether these
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two taxonomies should actually converge towards a single taxonomy, since the only overall
difference is that interactions take place with a real versus a virtual world.

A superset encompassing both categorizations is proposed in Table 2.7 as a generic Host
Interactions Categorization. A host is the remote entity the user or operator is in control. The
host is used by the user or operator to observe and potentially affect the remote or virtual
environment and interact with other co-located entities. Host management relates to the control
of multiple robots in HRI or virtual entities or avatars in 3DUI. Host perception encompasses
techniques to aid how the user perceives (i.e.: perception of output and host-body display and
mapping of host-body to user-body) and interacts with the host robot or avatar it is controlling
(i.e.: input mapping between user-body to host-body and between their physical and
mental/processing capabilities). Pose finding indicates techniques that allow the positioning of
the host physical or virtual representation to allow it to perform a manipulation. The other
categories are the same ones used in the two previous categorizations. As techniques grow in
number and variety, however, it is expected that further sub-categories be added to each of the
types of interaction. Tables 2.8 through 2.10 in section 2.5.5.1 provide some insight on potential
sub-categories that could be added to the list on Table 2.7.

Tables 2.8 through 2.12 seem to indicate that the VR and 3DUI interface evaluation
techniques could be effectively utilized for evaluating HRI interfaces. The methodology
developed along the studies presented in this work attempts to do exactly that. It merges
techniques used in VR, 3DUI and HRI, and applies them to the evaluation of multi-sensory

interfaces for USAR robot teleoperation.
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Table 2.7: The first two columns respectively show research areas in 3DUI and HRI (the latter
for task-oriented mobile robots).The third column presents the proposed Host Interaction
Categorization as a merge of the 3DUI and HRI categorizations

3DUI HRI Host Interaction Categorization
Selection Perception e Perception:
1) Environment;
2) Host.
Manipulation Manipulation e Selection
Travel Navigation e Manipulation
1) Pose-finding.
Wayfinding e Navigation:
1) Wayfinding;
2) Travel.
System control Management e Host Management
Symbolic input e System Control
Body gesture and Social e Symbolic Input
perception e Social Interaction

2.4. HRI Taxonomies and Requirements

As mentioned by Miller & Parasuraman (Miller & Parasuraman, 2007) human-robot tasks have
already been categorized and classified using various HCI models, such as GOMS (Yanco et al.,
2004), Plan-Goal graphs, PERT, Critical Path Method charts, Petri Nets, Hierarchical task
network planner, and CIRCA among others. Requirements for HRI systems have also been
emphasized as a result of data collected during robot competitions (Yanco et al., 2004; Osuka et
al., 2002). Yanco & Drury (Yanco & Drury, 2004) have devised a taxonomy for HRI systems
and reported on other existing ones. The results obtained by these research groups are a good

starting point during the analysis and design of HRI systems.

2.5. Experimental Validation and Verification

HRI techniques and interfaces must be validated and verified before they are put into use. This

section explains how this process can be accomplished.
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The techniques to assess an HRI system may be categorized as pre-experimental,
experimental, post-experimental and atemporal assessment techniques. Most techniques
presented here evaluate either the entire system or its software and hardware. There are
techniques, however, that evaluate the operator only, such as the widely used NASA-TLX (Hart,
2006; Parasuraman et al., 2005; Nielsen et al., 2007), which is applied during or after an
experiment. Others are used to define how to measure certain parameters, such as awareness

(SAGAT and SCAPE methods) (Drury et al., 2006a; Yanco & Drury, 2002).

2.5.1. Pre-Experimental Assessment

Pre-experimental assessment implies following a set of guidelines during system development.
Guideline examples include those of Scholtz (Scholtz, 2002; Scholtz, 2003) and Drury (Drury et
al., 2004) (Dury et al., 2003). Robot simulation has also been used as a pre-experimental
assessment technique (Lewis et al., 2003). A similar approach is taken in the research work

presented here.

2.5.2. Experimental Assessment

Experimental assessment may be objective or subjective. Examples of objective assessment are
video monitoring and software and hardware logging (Yanco et al., 2004). Techniques include
thinking aloud (Dury et al., 2003; Steinfeld et al., 2006), SAGAT and its derivations (Drury et
al., 2006a). Notice, however, that techniques such as video monitoring may still be subjectively
biased by the experimenter intervention during the process of information extraction from the
video stream. Examples of subjective assessment are information annotation using pen and paper
and post-filtering collected data as explained above (Yanco et al., 2004; Osuka et al., 2002).

Techniques include SART (Parasuraman et al., 2005).
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2.5.3. Post-Experimental Assessment

Post-experimental assessment collects subject opinion after the experiment is over.

Questionnaires are commonly used, whose answers are recorded in audio or paper.

2.5.4. Atemporal Assessment

HRI assessment may also be performed on an HRI system independent of experiments. A
common way of doing this is through inspection or, that is, making sure the system works as
expected. This approach is also called heuristic evaluation can be done subjectively or through a

formal assessment.

2.5.5. HRI Metrics

In order to evaluate the usefulness of any system, a set of metrics is required. This section

describes commonly used VR and HRI metrics.

2.55.1. Task Metrics

An HRI system may be evaluated according to a variety of task metrics. Here, they are
categorized mostly according to Steinfeld (Steinfeld et al., 2006), Crandall & Cummings (2007)
and Goodrich (Goodrich et al., 2005). Some are recognized as general performance metrics that
are system independent, such as effectiveness and efficiency. Others are more specific to HRI
tasks. They are categorized according to common HRI tasks: navigation, perception,

management, manipulation and social tasks (Table 2.8, Table 2.9 and Table 2.10 respectively).
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Table 2.8: Common metrics for Navigation and perception tasks.

Navigation  -Effectiveness metrics -Percentage of navigation task completed:;
-Coverage of area;
-Deviation from planned route;
-Obstacles avoided or, not yet, but that could be
overcome;
-Global and local navigation awareness.

-Efficiency metrics -Time to complete task;
-Operator time for the task;
-Average time for obstacle extraction;
-Number of obstacle encounters.

-Non-planned looping  -Interventions per unit time;

/workload metrics -Ratio of operator time to robot time.
Perception  -Passive perception -Detection measures;
metrics: -Recognition measures;

-Judgment of extent;
-Judgment of motion.

-Active perception -Active -Efficiency;
metrics: identification -Effort.
metrics:
-Stationary search -Detection accuracy for targets
metrics: within range;

-Efficiency as time to search or -
non-overlapping coverage;
-Ratio of coverage to sensor

coverage;
-Operator confidence in sensor
coverage.
-Active search -Efficiency;
metrics: -Number of identification errors;

-Degree of operator fusion.
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Table 2.9: Common metrics for manipulation and social tasks.

Manipulation  -Degree of mental computation;
-Contact errors.

Social -Interaction characteristics;
-Persuasiveness;
-Trust;
-Engagement;
-Compliance.

Table 2.10: Common metrics for management tasks.

Management - Fan out metrics: - Attention allocation efficiency;
- Interaction efficiency;
- Neglection times;
- Switch time delay.

- Intervention response time - Time to deliver request from the robot;

metrics: - Time for the operator to notice request;
- Situation awareness and planning time;
- Execution time.

- Level of autonomy discrepancies
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2.5.5.2. Performance Metrics

Performance metrics also exist for HRI. They are divided according to which part of the system
is being evaluated: the entire system, or only the robot or operator (Table 2.11 and Table 2.12).

Table 2.11: Common metrics for system performance.

System - Quantitative - Effectiveness;
performance metrics: - Efficiency.
- Subjective ratings - Ease of use;
metrics: - Ease of learning.
- Appropriate utilization - Number of requests for assistance made by robot;
of mixed-initiative - Number of requests for assistance made by operator;
metrics: - Number of interruptions of operator rated as non-
critical;

- Functional primitive decomposition;
- Interaction effort.
Table 2.12: Common metrics for operator and robot performance.

Operator - Situation awareness - Human-robot SA;
(SA) metrics: - Human-human SA;
- Robot-human SA;
- Robot-robot SA;
- Human’s overall mission SA;
- Robot’s overall mission SA.

- Workload.
- Accuracy of mental models of device operation.
- Time to learn;
- Ability to remember;
- Error rate;
- Subjective satistfaction.
Robot - Self-awareness;
- Human awareness;
- Autonomy.

2.5.5.3. Other Types of Metrics

HRI researchers have also defined metrics according to other features in the system, such as
human-robot ratio or robot type. Previous work in the VR and HRI fields suggests that levels of

52



operator presence, SA, and workload are good measures of overall interface effectiveness (Slater
et al.,, 1994; Endsley & Garland, 2000; Hill & Bodt, 2007). As these measures are not
independent (e.g., better SA can reduce workload), the redundancy can be used to cross-validate
the measures.

1. For presence (Mantovani & Riva, 2001; Slater & Usoh, 1994; Slater et al., 1994; Usoh et
al., 2000; Lindeman, 1999; Interrante et al., 2007; Lindeman et al., 2004; Kontarinis &
Howe, 1995; Lindeman et al., 1999) (Zeltzer, 1992; Fontaine, 1992), the SUS-PQ (Usoh
et al., 1999) questionnaire is used, along with Witmer & Singer's (Witmer & Singer,
1998) ITQ questionnaire to predict user likelihood of achieving presence.

2. For SA (Endsley & Garland, 2000; Drury et al., 2004; Drury et al., 2006a; Scholtz et al.,
2004; Desai et al., 2013b), the SAGAT and SART questionnaires are used (Endsley et al.,
1998). An approach for measuring SA is asking the operator to draw a map with the
places traversed by the robot (Billinghurst & Weghorst, 1995) and to pinpoint victims’
locations. Another approach is to ask about environment changes after or in-between
tasks (Goodrich et al., 2005);

3. For workload (Hill & Bodt, 2007; Goodrich & Olsen, 2003; Zhao et al., 2005), Hart &
Staveland's (Hart & Staveland, 1988) NASA Task Load Index (NASA-TLX)
questionnaire (Hart, 2006) asks the user to rate differenct kinds of workload, such as
mental or physical, for a performed task upon its completion. Other physiological
measures, such as heart rate, heart-rate variability, skin conductance, and skin
temperature are used to determine user engagement (Rowe et al., 1998; Meehan et al.,

2002) and dynamically alter interface elements (Steinfeld et al., 2006);
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4. For cognitive load, biometrics can be used (lkehara & Crosby, 2005), or secondary tasks
such as the Stroop task (Gwizdka, 2010). Performance on a secondary task can be usedto
measure the impact on cognitive load that the robot interface has when the user is
performing the main task.

One of the research challenges confronting HRI researchers today is determining the
appropriateness of these instruments. While there is support in the literature for them, apart from
the NASA-TLX, we are unaware of any that have been extensively or specifically used to
measure the effects of multi-sensory cues in teleoperation (Ghinea et al., 2011). Therefore, some
of the abovementioned metrics and questionnaires are used in the research presented here as a
starting point. Throughout the empirical studies, depending on their appropriateness, the

techniques used will be improved and refined for subsequent studies.

2.6. Conclusions

This chapter has covered the state-of-the-art in HRI and related areas. It gave an overview of
input and output interfaces, introduced the core concepts in depth, detailing important
taxonomies, techniques and metrics for designing a robotic interface.

This concludes the VR and HRI literature review of HRI. Some of the concepts presented
here are applied to the design of the interfaces used in the studies reported next, but are also

considered during experimental evaluation.
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3. Empirical Studies

3.1. Summary

This chapter describes the four studies that were carried out to evaluate the use of multi-sensory
feedback in robot teleoperation. The studies are contextualized in the area of Human-Robot
Interaction (HRI) called urban search-and-rescue (USAR) robotics, where a robot is remotely

operated to give rescuers access to human-hazardous areas and rescue survivors and victims.

For all four studies presented in this chapter, subjects had to control a robot located in a
remote virtual or real environment. The task for all studies was the same: search for red objects
in a debris filled environment as effectively and efficiently as possible. After the task, subjects
were asked to report the location of the objects found by sketching a map of the environment and

pointing out the location of these objects. A summary of the four studies is presented below.

e Study 1 - Vibro-tactile vs. Visual Feedback in Virtual Robot USAR: Most of the
feedback received by operators of a robot-teleoperation system is graphical. When a large
variety of robot data needs to be displayed however, this may lead to operator cognitive
overload. This study focuses on cognitively off-loading visual feedback to the sense of
touch, and as a consequence, increasing the level of operator performance and situation
awareness. Graphical and vibro-tactile versions of feedback delivery for collision-related
sections of the interface were evaluated in a search task using a virtual teleoperated robot.
Results indicate that the combined use of both graphical and vibro-tactile feedback
interfaces led to an increase in the quality of sketch maps, a possible indication of increased
levels of operator situation awareness, but also a slight decrease in the number of robot

collisions.
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e Study 2 - Comparing Different Types of Vibro-tactile Feedback in Virtual Robot USAR:
This study further explores study #1 vibro-tactile interface and evaluates the performance
effects of adding different modes of vibro-tactile feedback for collision proximity to a virtual
robot’s interface during a search task in a virtual environment. One varies vibration intensity,
while other varies frequency of vibratory pulses. Results indicate that the addition of any of
the vibro-tactile feedback modes caused positive performance effects, especially for the
intensity variation mode. Nevertheless, both modes also had an impact on comfort for

prolonged use.

e Study 3 - Exploring Multi-Sensory Feedback Interfaces and Redundant Feedback in
Virtual Robot USAR: Multi-sensory displays can be designed for the purpose of creating a
more-natural interface for users and reducing the cognitive load of visual-only displays.
However, the optimal amount of information that can be perceived through multi- sensory
displays without making them more cognitively demanding than visual-only displays is
unclear. Moreover, the effects of using redundant feedback across senses on multi- sensory
displays are not well understood. As an attempt to elucidate these issues, this study evaluates
the effects of increasing the amount of multi-sensory feedback on an USAR virtual
teleoperation interface. While objective data showed that increasing the number of senses in
the interface from two to three still led to an improvement in performance, subjective feedback
indicated that multi-sensory interfaces with redundant feedback may impose an extra cognitive

burden on users.

e Study 4 - Further Exploring Multi-sensory Feedback Interface in Virtual USAR and
Validating Previous Results with a Real Robot: Previous studies have evaluated multi-

sensory interfaces in robot teleoperation using a virtual robot in a USAR scenario. However,
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whether the same results can be obtained using a real robot in a real-world task is still
unknown. This study aims at verifying that the previous results can also be achieved with a real
robot experiment in the same context. In addition to that, it also adds the sense of smell to the
interface and evaluates the efficacy and suitability of this type of feedback. The results show
that that the types of feedback led to similar results, although the pool of subjects was
statistically small. Some differences in results for the touch feedback were obtained as a
consequence of factors not present in previous studies simulations such as input response delay
and robot friction with the ground. While the sense of audio led to overall improvements in
performance much as in study 3, the same was not true for the vibro-tactile feedback. The
smell feedback improved search performance, showing applicability of multi-sensory
interfaces to areas other than navigation. It also showed that redundant feedback might work
well in covering for interface design flaws present in the original type of feedback. The results
verified, at least in part, that the same improvements obtained with a virtual rotobt can also be

obtained with a real robot.
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3.2. Study #1: Vibro-tactile vs. Visual Feedback in Virtual Robot USAR

3.2.1. Motivation

This first study attempts to help answer the question of whether the use of a bi-sensory interface
can help the user better operate a robot and perform a search task. In addition, it compares the
provision of a certain type of feedback through individual senses versus through both senses
(redundant feedback). To answer these questions, the study evaluates the impact on situation
awareness (SA) and performance when part of the data transmitted by the robot is displayed to

the operator using the senses of touch instead of the sense of vision.

Specifically, the proposed interface uses a body-worn vibro-tactile display to provide
feedback to the operator for collision proximity between the robot and the remote environment.
In a four-way comparison, as shown in Table 3.1, the use of vibro-tactile feedback is compared
with the use of no feedback, the use of visual-only feedback, and the use of both visual and
vibro-tactile feedback in the performance of a simple search task.

Table 3.1: The four experimental conditions for study #1.
Codition Graphical Ring Vibro-tactile belt

Control

Ring yes

Vibro-tactile yes
Both yes yes

3.2.2. Robot Interface

A Collision-Proximity Feedback (CPF) interface has been designed following a superset of the
guidelines proposed in the field of USAR HRI and by merging successful features from interface

designs tested by other research groups. Our design (Figure 3.1) uses as a starting point the
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interface proposed by Nielsen (Nielsen & Goodrich, 2006; Nielsen et al., 2007). In this work, a
simulated robot was used instead of a physical one, in order to quickly prototype different

interface elements.

The operator is presented with a third-person view of a 3D virtual representation of the
robot, called its avatar. The real robot size and the size of its avatar (relative to the map
blueprint) match the size of a standard search robot (0.51m x 0.46m x 0.25m). Data collected by
the robot sensors are also presented, including a video feed from a pan-tilt camera mounted on

the robot, the location of object surfaces near the robot, and potential collision locations.

R.otateable patel Chronometer
with video feed (disabled during
from robat training session)
CATTIErA

Three out of the Robot avatar
eight collizion-
prozirity feedback -
ring components : : < s -
around the robot —— . e 7

= "~ ER\ -

Blue lines representing object surfaces

Figure 3.1: Visual interface for study #1.
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The robot camera has a field-of-view of 60°. A panel located in front of the robot avatar
projects data from the robot’s simulated camera. The camera, and hence the panel, can be rotated
about both the vertical and horizontal axes, up to an angle of 100° horizontally and 45°
vertically, relative to the front of the robot. The camera-panel rotations occur relative to the robot

avatar and match the remote virtual robot camera rotations controlled by operator input.

The robot avatar consists of a red box in the middle of the screen. A graphical ring with
eight cylindrical objects surrounding the robot avatar indicates imminent collisions near the
robot, similar to the Sensory EgoSphere proposed by Johnson (Johnson et al., 2003) but with a
more specific purpose: the brighter the red color in the ring the closer to a collision point the
robot is. The ring’s radius and height are set so that it can be seen in its entirety from the back of
the robot at an inclined downward angle, it does not occlude the front of the robot and it is

aligned with the approximate height of the simulated robot proximity sensors.

The same type of feedback is also provided as vibration through the vibro-tactile
interface, henceforth called the TactaBelt (Lindeman, 2003) (Figure 3.2b). The TactaBelt
consists of eight pager motors, also called tactors, arranged in a belt with the motors evenly
spaced around and above the user’s waistline. The more intense a tactor in the TactaBelt
vibrates, the closer the robot is to colliding in that direction, similar to the feedback technique

proposed by Cassineli (Cassinelli et al., 2006).

Both visual and vibro-tactile feedback interfaces are only activated when an object is
within a distance d from the robot (d < 1.25m, based on subjective feedback during pilot study).
Directional feedback values for the ring-cylinder redness and tactor vibration vary continuously
from near zero, when the distance is close to d, to near their maximum values when the robot is

about to collide with the object.
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A map of the environment is gradually projected on the ground in the form of blue lines
as the robot captures data from the environment. These blue lines represent the locations of
objects and wall surfaces detected by the robot sensors. The detection of these lines was
simulated using trigger boxes in the game engine. Whenever the robot intersects the volume of a

line trigger box, the line appears.

The robot avatar position on the map matches the virtual robot position in the real world

virtual environment (VE). These positions are always synchronized.

A timer is presented in the top right hand corner of the screen. It is triggered once the
training session finishes. The robot is then transferred to another VE where the actual experiment

takes place. This transition and both VEs are further described in section 3.2.5.

The controller used in the experiment was a Sony PlayStation2 Dual-shock (Figure 3.2a).
The controller allowed the subject to move the robot backward and forward and rotate the robot
to the left or right. The robot rotation was controlled using differential drive, which meant the
robot could rotate in place or while in movement, similar to how a military tank is controlled.
The pan-tilt movement of the camera was inverted and moving the joystick forward would move
the camera down. This camera control option was chosen based on subject preference during a

pilot study.

The machine used for running the experiment was a Dell XPS 600 with 2 GB RAM and a
Pentium (R) D Dual-core 3GHz processor. The graphics card used was a GeForce 7800 GTX
with 256MB of memory. The environment was run in a window with resolution of 1280x1024 at
an average frame rate of 30 frames-per-second (fps) on a 20” Viewsonic Q20wb LCD monitor
placed on top of an office table and approximately aligned with the subject’s view height. The

monitor was positioned at an approximate distance of 0.5m from the subject’s eyes.
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Figure 3.2: Interface used in addition to the standard LCD monitor in study #1: (a) PlayStation® 2
dual-shock controller; (b) TactaBelt.

3.2.3. Task

The task subjects had to complete consisted of locating red spheres, with a radius of 0.25m, in
the ruins of a small closed environment. Subjects were informed they would have to search for as
many red spheres as they could while avoiding collisions between the robot and the environment.
They were also asked to perform the task in as little time as possible. Additionally, they were
also informed beforehand that they would have to report the location of the spheres found once

the search task was over using the pictures they took with the robot camera as a reference.

A total of nine spheres were hidden. Subjects did not know in advance the number of
spheres. The search task would stop whenever subjects thought they have searched and found all
spheres. To end the task search, they would have find the exit door in the house, which was
marked with an exit sign above it, and pass the robot through it. Once the search task was over,

they would sketch a detailed map of the task space with the approximate location of the spheres.

62



3.2.4. Hypotheses

Previous results obtained from other research groups have shown improvements in performance
when vibro-tactile displays (Blom & Beckhaus, 2010; Bloomfield & Badler, 2007; Burke et al.,
2006; Herbst & Stark, 2005; Lindeman et al., 2005; Ryu & Kim, 2004) and enhanced visual
interfaces (Johnson et al., 2003) were used. Based on these results, we claim that the use of the
graphical ring and the TactaBelt should cause an improvement in subjects’ perception of the
surrounding environment, indicating an increase in their situation awareness level. This should
be especially evident through a reduction in the number of collisions. Improvement should also
be visible in the results collected by other dependent variables. These variables will be described

in detail in section 3.2.5.

By making navigation more intuitive with the addition of directional feedback, and less
visual with the addition of vibro-tactile feedback, we hypothesize that subjects using the
enhanced interfaces will be able to focus more on the task, find a larger number of objects, and
better understand how the environment is organized. The first two ability-enhancement effects
may be understood as a consequence of a lower cognitive load while the second and third may be
seen as a result of higher levels of situation awareness. Therefore, task time, number of
collisions, number of objects found, and understanding of the positions of objects are

measurements that are relevant to the validation or rejection of our hypotheses.
The following two hypotheses are considered for this first study (S1):

S1H1. Subjects using either the vibro-tactile or the graphical ring feedback interface should
have an increase in navigational performance and situation awareness (SA) measured by

four factors: a reduction in the number of collisions (local SA improvement), a reduction
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in the time taken to perform the task (performance improvement), an increase in the
number of objects found (performance improvement) and a better reporting of the
location of the objects and understanding of the environment through the sktechmap
(global SA and memory accuracy improvements) in relation to the control group, which

IS using neither the graphical ring nor TactaBelt.

S1H2. Subjects who are using both the vibro-tactile and the graphical ring feedback interfaces
should have an even larger increase in navigational performance and situation

awareness.

3.2.5. Methodology

A study was carried out to confirm the above-stated hypotheses that the use of either or both
feedback modalities would result in an improvement in operator performance and situation

awareness.

There are at least two ways to compare user interfaces. The first one, lab interfaces,
attempts to hold constant all aspects of the interfaces being compared, with the exception of the
independent variables. These experiments allow statements to be made about the effects of the
variations in the interfaces, but suffer from the fact that for use in the field, an interface designer
might construct a vastly different interface given the value of the independent variable. This
leads to the comparison of interfaces that vary greatly, but are more "optimized” given the
independent variable. This motivates the design of a second type of experiment, where interfaces
are constructed that represent the best efforts of the Ul designer given the independent variables

being studied, called fielded interfaces.
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For this and the subsequent studies, we opted for a fielded interface experiment. We
designed our interface to approximate an interface that is actually used by research groups and
experts in performing USAR tasks as much as possible. This was done by adding to our interface
common features of these interfaces, such as a gradually presenting map blueprint of the world
and allowing the subject to navigate the robot and perform the search task. Despite the
challenges in having many potential variables that may affect subject performance, it was only
by taking this approach that we could detect the correct effect of inserting a multi-sensory

proximity feedback interface to the application in a reasonably realistic USAR context.

3.2.5.1. Independent Variable

The independent variable for the study was the type of collision-proximity feedback (CPF)
interface. Subjects were divided into four groups: the first group (“None”) operated the robot
without using any CPF interface. The second (“Ring”) received this type of feedback from the
graphical ring. The third (“Vibro-tactile”) received this type of feedback from the TactaBelt. The

fourth (“Both”) received this type of feedback from both the graphical ring and TactaBelt.

3.2.5.2. Dependent Variables

The dependent variables for the study were the number of collisions, the time taken to
accomplish the search task, the number of spheres found, and the quality of the sketchmaps. The
rating for the latter is explained ate the end of section 3.2.5.4. The first two were measured

objectively using the robot application.

The number of spheres found was reported by subjects, but was also counted by the
experiment observer, since subjects might miscount the spheres they found. The former counting

is considered here as a subjective measure of the number of spheres found, while the latter is
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considered as an objective measure of that number, despite that it is still prone to subjective

error.

The sketchmaps are maps drawn by the subjects once the experiment is over. These are

considered subjective measures. They were graded solely by the experimenter.

3.2.5.3. Study environment

The robot side of the system was simulated using a VE. In fact, two VEs, built using the C4
game engine (C4 Game Engine, 2012), were used by the application. The first VE was the
simulated world where the robot was present and where it should complete the search task
(Figure 3.3). In the context of the AAAI Rescue Robotics Competition, the environment is
qualified as being in the yellow level of the competition, where the robot traverses the entire
world by moving around the same ground level with some debris spread across the floor (Jacoff
et al., 2003). The second VE represented the robot teleoperation interface as seen from the

operator's point of view (Figure 3.1).
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Figure 3.3: Study #1 task virtual environment from a bird's eye view.

3.2.5.4. Experimental Procedure

The study consisted of a between-subjects experiment. Hence, each subject was exposed to only
one of the four available interfaces. In this and succeeding studies, subjects were not color-blind

and had their visual acuity corrected if necessary.
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All subjects wore the TactaBelt, but the interface was not active during the experiment

for half of them. The neoprene belt with Velcro-attached tactors adapted to most subjects waists

without problems. When subjects were very slim or the opposite, the tactors were repositioned so

they were correctly aligned with the cardinal and intermediate directions relative to the subject’s

waist.

Subjects could control the robot and its camera using the two analog joysticks of the

gamepad. Two trigger buttons on the gamepad allowed subjects to take pictures of the

environment. These pictures were used by subjects in the map-sketching exercise that followed

the search task as explained in more detail below.

The user study can be summarized by a list of eight steps for each subject, some of which

are further explained in the paragraphs following this list.

1.

Institutional Review Board (IRB) approved consent forms were read and signed,
Demographic information was collected;

The experiment instructions and a Q&A session occurred,

Robot controls for the experiment were explained;

The training session task was explained, questions answered, and the subject started this

session when ready;

After the training session, the experimenter explained that the robot would be moved to the
world where the real task would be performed and briefly reviewed the objective of the

latter. The experiment started when the subject was ready;

During the main experiment, the experimenter took general notes about the subject and his

or her performance;
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8. Once the main experiment task was over, the subject filled in a post-task questionnaire

containing the sketchmap and asking for general experiment feedback.

The demographics questionnaire collected subject information about their gender, age,
how often they played videogames and used or worked with robots. For the last two questions,
the possible answers were one of the four following Likert scale values: “daily” (1), “weekly”
(2), “seldom” (3) or “never” (4). Other than the answer from these questions, no general spatial

ability information was collected from subjects.

A single page of instructions contained a description of the experiment, the task to be
completed, the interface, and how subjects should behave before, during, and after the

experiment

The training session happened in a virtual training room (15m x 15m) larger than the one
for the real task session (8m x 10m). The training room (Figure 3.4) contained large colored
geometric primitives. A single red sphere was hidden behind one of these primitives. The
training task for this room was to find the hidden red sphere and take a picture of it. This gave
subjects time (~4 min.) to practice and become accustomed to the robot controls. During this
session, if subjects seemed to be already comfortable with the robot controls but were having
problems in finding the red sphere, the experimenter would intervene and give them hints on the
location of the sphere so that they could practice taking pictures, ask questions, and then move

on to the real experiment.

In the real task room, objects such as doorways, barrels and tables were represented in
their size in reality (Figure 3.3). The data on the location and time of the collisions was recorded
as well as the time spent in performing the task. Additionally, the periods of time spent during

the training session and sketching the location of the spheres were recorded for some of the
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subjects; the idea of collecting such data only came up half-way through the studies. Subjects did

not have access to a bird’s eye view such as the one presented in Figures 3.3 and 3.4.

N

Robot Avatar

Hidden Sphere

Figure 3.4: Training environment in study #1 from a bird's eye view.

The post-task questionnaire asked subjects to report the number of spheres found and
their location by sketching a map of the environment. They were provided with the pictures they
took during their traversal of the environment to help them in sketching. The images were

displayed with a resolution of 800 x 640 pixels on a Web page.

The sketchmaps were evaluated following the criteria proposed by Billinghurst &
Weghorst (Billinghurst & Weghorst, 1995). The first criterion was map goodness, which was
evaluated on a scale from 1 to 5, instead of the original scale from 1 to 3. The criterion for

grading map goodness was how well the sketched map would help in guiding someone through
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the environment. The second criterion was counting the number of objects of different classes or
groups that were drawn. The objects were divided into three groups: walls, doorways, and debris.
These groups were scored separately. Each object found corresponded to a one-point increment
to their object group score. The third criterion was a general scoring and analysis of the correct
placement of objects relative to other nearby objects. Sphere placement was not considered
during grading of any criteria, since the pictures taken would allow subjects to position them

correctly relative to nearby objects most of the time.

3.2.5.5. Other Materials

Other materials used in this user study, such as the script used by the experimenter, the study
instruction sheet, and the questions contained in the user study post-task questionnaire, are found

in Appendix A.1.

3.2.6. Results

All the comparisons among the results for study #1 presented in this section were made using a
single-factor ANOVA with confidence level of a= 0.05. The f and p values for the data analyses
that resulted in relevant and statistically signifcant results are presented in tables. Further details

about results that were not statistically signifcant can be obtained in Appendix A.2.

Multimodality was detected in the histograms for task time, number of collisions, and
number of spheres found. In order to normalize these results in terms of time and reduce the
effect of multimodality, we have also adopted in our analysis the measures of number of spheres
found per minute and number of collisions per minute instead of considering only number of

spheres found and number of collisions.
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Sections where a statistically significant difference (SSD) in results was found have their
titles marked with an asterisk (*). If only a trend was found, the title of that section is marked

with a plus sign (+).

3.2.6.1. Demographics

A total of 13 female and 14 male university students have participated. All groups had 7 subjects,
except group “Ring”, which had 6. A comparison between genders for the dependent variables

showed no SSD. The mean age was 20.52, with standard deviation of 5.24.

No SSD was found among groups in terms of videogame experience, although subjects in
group “Both” had a lower average than others, that is, they had a slightly higher level of
experience. Interestingly, videogame experience did prove to have a statistically significant
effect on the result for number of collisions between groups “Weekly” and “Never” (f=5.18,
p=0.04). Groups with different levels of videogame experience were also compared in terms of

task time, number of spheres found, and map goodness, but none of these showed any SSDs.
Only two groups had subjects with robot experience. However, robot experience did not

have any statistically significant effect on the results of any of the dependent variables.

3.2.6.2. Task Time+

A comparison of task time among collision-proximity feedback (CPF) interface groups led to no
SSD, that is, these interfaces had little to no impact on task time. A trend between groups None
and Ring was detected however (F = 4.665, p = 0.054, A.2.5.1), indicating that subjects with the

ring interface took longer to perform the task than subjects in the control group.
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3.2.6.3. Number of Collisions*

A comparison of the number of collisions between groups showed SSDs between groups
(“None”, “Ring”) (F = 6.695, p = 0.025, A.2.6.1) and (“Ring”, “Vibro-tactile”) (F = 5.079 p =
0.046, A.2.6.1). No difference was found for any of the other pairs of groups. For group “Both”,
the cause for non-significant difference in the results might have been the high variation found in
subject data from this group (s»: 33.30), although the largest variation value was obtained in
group “Ring”. However, a trend for the (“Ring”, “Both”) pair was detected (p = 0.066). This is
close to being significant. The redundant feedback has improved the average number of
collisions compared to the ring-only interface. We conjecture that this indicates how the
redundant feedback provided by vibro-tactile interface seemed to have balanced out negative

effects on collision avoidance caused by the graphical ring interface due to occlusion.

For the number of collisions per minute, no statistically significant difference was found
amongst groups, although a visually perceptible difference in results is noticeable among groups
(Figure 3.5, A.2.7), where the “Both” group has the lower result. Due to no SSD, the part of both
hypotheses referring to an improvement in the number of collisions caused by the use of CPF

interfaces is not supported.
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Figure 3.5: Number of collisions per minute per interface group in study #1.
Lines define * standard deviation.

3.2.6.4. Number of Spheres Found*

For the number of spheres found per minute (Figure 3.6, A.2.9.1), a statistically significant
difference between groups “Ring” and “Both” was found (F = 11.17, p = 0.0066). This only
indicates that the use of the Ring interface by itself seems to lead to a smaller number of spheres
found while the vibro-tactile interface seem to have no effect on improving the number of
spheres found. This means that the part of both hypotheses that refers to an improvement in the
number of spheres found caused by the use of CPF interfaces is not supported. The fact that
“None” has the highest mean indicates that the use of feedback interfaces has some impact on

subjects’ cognitive load and search performance, but such impact is not statistically significant.
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Figure 3.6: Number of spheres per minute per interface group in study #1.
Lines define * standard deviation.

A comparison of the number of spheres found among interface groups also showed no
SSD. Nevertheless, a slight increase is perceived in the median value of the number of spheres
found as the interface group changes from group “None” (no interface enhancement is used)
moving through groups “Ring” and ‘“Vibro-tactile” (some interface enhancement is used)
towards group “Both” (both interface enhancements are used), the latter having the highest

median value (Figure 3.7, A.2.8.1).

Mean and Median Number of Spheres Found
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i w— - - E % Median

None Ring Vibro-tactile Both
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Number of
spheres found

Interface

Figure 3.7: Mean and median per group for the number of spheres found in study #1.

Interestingly, a trend was found when the number of spheres found by female versus male
subjects was compared (F = 3.690, p = 0.066, A.2.24), males having a higher score. It is not
clear what the reason behind this effect is.
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3.2.6.5. Map Quality

Map samples sketched during the experiment as well as the blueprint of the original scene are
presented in Figure 3.8. Maps scored as 1 provided no help as a guidance tool through the
environment. Maps scored as 2 had the description of a few features of the environment
represented with a large number of mistakes in terms of spatial representation. Maps scored as 3
had some features of the environment well placed and described in text, but still had major errors
in their sketches, such as the number of rooms and doorways. Maps scored as 4 described the
environment correctly except for the misplacement of some objects and walls. Maps graded as 5

had the environment almost completely correct and all the objects found were correctly placed.
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Figure 3.8: Sketchmap samples from study #1 for maps with different scores: (a) goodness
score = 1; (b) goodness score = 2; (c) goodness score = 3; (d) goodness score = 4; (e)
goodness score = 5; (f) original map.
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Some subjects also added extra features to their descriptions of the scene, by drawing the
approximate path they went through during the search task (Figure 3.8d) or the order with which
they found the spheres and how these related to the pictures taken (Figure 3.8b and Figure 3.8c).
Almost half of the subjects failed to make good representations of the environment, and had their
maps graded as 1 or 2. When comparing groups with different levels of map goodness to task
time, no SSD was found. Good and poor maps were sketched by subjects who spent from 4

minutes to 20 minutes in the environment.

Since sketchmaps must be scored only by one person, results may be affected by
subjectivity and thus scoring effectiveness needs to be validated. In this study, the first
evaluation criterion, map goodness, was used as a general score for map quality. However, we
ensured map quality results were in accordance with the results obtained by the other more
specific criteria: object counts for walls, doorways and debris, and their relative position to

nearby objects. Please refer to (de Barros et al., 2009) for more details.

When comparing map goodness with the type of CPF interface used, a SSD was found
only between groups “None” and “Both” (F = 5.654, p = 0.035, A.2.4). Figure 3.9 presents a
histogram for interface types colored according to levels of map goodness and more clearly
represents this variation for group “Both”. Notice that there is a trend towards significance
between groups “Vibro-tactile” and “Both”. This might be an indication that using the “Ring”
interface together with the TactaBelt is better than using the TactaBelt by itself. The average

rating per interface group can be seen in Figure 3.10.

Notice in the group “Both” graph column of Figure 3.9 the absence of sketchmaps rated
with goodness levels 1 or 2. This is an important result, because it may indicate the positive

effect caused by the CPF interfaces on subject’s SA levels. In addition, notice a larger variation
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in map goodness for groups “Ring” and “Vibro-tactile” compared to group “None”. It indicates
that using CPF interfaces separately may result in a positive or negative effect on individual

operators, but no improvement on average.
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Figure 3.9: Map quality ratings distribution among different groups in study #1.
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Figure 3.10: Map quality average ratings among different groups in study #1.
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3.2.7. Discussion

Results have shown that gender, age, robot experience, and videogame experience did not have
any biasing effect on the results obtained from this user study. However, our analysis confirms
that videogame experience may bias results in case the groups are not properly balanced as in our

study. This is an important variable to consider in future similar HRI studies.

Our results have also shown that the use of CPF interfaces had no negative or positive
effect on the time-normalized number of spheres found. For the number of spheres found per
minute, the “Ring” group performed worse than the “Both” group with SSD. This means that
while the use of both CPF interfaces might have improved overall navigation, the sole use of the

“Ring” interface led to worse results than the control group.

In terms of task time we did notice that the Ring interface led to a slight increase in task
time. This might have been due to it blocking the view of the operator and hence hindering robot
navigation. Although subjects commented on their difficulty in navigating with the robot, the
comments were vague and did not provide evidence that could associate them to the ring

occlusion problem.

With respect to number of collisions, the “Ring” interface group performed worse than
interface groups “None” and “Vibro-tactile”. A trend was also detected between groups “Ring”
and “Both”. Once again, this might be due to the fact that the ring itself occludes part of the
blueprints on the ground around the robot, making it harder for the operator to visually discern
closeness of nearby objects and navigate the robot around the environment. This negative effect
seemed to have been counter-balanced by the use of complementary vibro-tactile feedback in the

“Both” group, whose collision-count was not statistically worse than any of the other groups and
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whose average collision-count per minute had the smallest value. However, the group “None”
was the one that generated the lowest average number of collisions. It could be that the vibro-
tactile feedback causes distraction and a visual-only feedback allows more concentration. This
seems to indicate that we cannot yet reach any positive or negative conclusions about the effect
of CPF interfaces in collision avoidance and improvement of subject’s level of local situation

awareness.

The most interesting result was that group “Both” outperformed the “None” interface
group in map goodness scores. This result shows that the combined use of both CPF interfaces
might have been beneficial for the operator in terms of understanding of the virtual environment
and location of objects. This result could be associated with an increase in operator global
situation awareness. The fact that the coupled CPF interfaces did not affect task time, number of
collisions or spheres found, combined with the fact that task-time had no correlation with
increase in sketchmap quality, seem to support the claim that only CPF interfaces could have
caused the increase sketchmap quality. The improvement caused by the use of redundant multi-
sensory feedback goes in hand with previous research results in different tasks and applications
(Burke et al., 2006; Herbst & Stark, 2005). The small population that participated in this study
(6-7 per group), however, does not allow us to reach that conclusion with statistical soundness

yet. A user study with a larger population size would be required for that.

3.2.8. Conclusions

The fact that group “Both” drew better maps than all other groups, and that the vibro-tactile
interface had no negative impact for all conditions, may indicate that the use of this interface in

conjunction with other graphical CPF interfaces can improve operator situation awareness
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without detriment to cognitive load. Interestingly, the results seem to point to an increase in

global situation awareness instead of local situation awareness.

In terms of collisions, it appears that the current version of the ring feedback interface
needs to be improved, as it blocks the operator view of the map blueprint. Although the results
with the graphic ring interface were opposite to what our hypotheses stated, we believe that a
more in-depth study must be performed in order to verify whether this is indeed an invalid

approach.

From the results obtained from this study, it seems that the vibro-tactile feedback seems
to have helped navigation, but such help was enhanced when redundant feedback from the
graphical ring was present. None of the types of feedback was good enough by itself. Instead,
they seemed to complement each other. However, that does not mean that the use of redundant
feedback must always be required. If the display of feedback through one sense suffices for the
operator to understand the information presented, redundancy might become useless. The

succeeding studies will further explore this question from different perspectives.

By looking at the results obtained in this first study, we believe that the use of multi-
sensory interfaces, including vibro-tactile ones, may be potentially beneficial to the robot
operator compared to a visual only interface. However, from the results obtained for the ring

interface, it is clear that data display in this bi-sensory interface still needs further optimization.

In the study to follow, the plan was to explore different ways of providing vibro-tactile
feedback other than varying vibratory intensity, such as providing vibratory patterns. Other ideas
include the creation of an improved version of the graphical feedback interface that may not

necessarily be a ring, and adding more feedback mechanisms from the robot to operator that are
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already commonly used graphically in HRI interfaces, such as CO> level meters. These ideas will

be explored in studies #3 and #4.
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3.3. Study #2: Comparing Different Types of Vibro-tactile Feedback in

Virtual Robot USAR

3.3.1. Motivation

This study builds on the results from the first study (de Barros et al., 2011), and aims to evaluate
the impact on performance when the robot interface is enhanced with different types of vibro-
tactile feedback displays for robot collision avoidance in a search task. The idea is to compare
how providing vibro-tactile feedback in different ways can impact user perception of data and
overall task performance. Two vibro-tactile interfaces were compared to a no-vibration control
case: a vibration intensity variation mode and a vibratory pulse frequency mode. The type of data

provided was related to collision-proximity feedback (CPF) as in study #1.

3.3.2. Robot Interface

The robot interface design in Figure 3.11 is similar to the one from our previous study (de Barros
et al., 2011). The only differences from the interface used in study #1 are the enhanced robot
avatar and the presentation of object surfaces near the robot on the map blueprint. Object
surfaces are now detected by performing raycasting on the remote scene.This provides a more
accurate simulation of the robot sensors. The rest of the interface, belt and controller were

identical.

Notice, however, that in this study the graphical ring is no longer present. The reason for
that is that we want to reassess the impact of adding only CPF through vibro-tactile feedback,
without having CPF data being redundantly presented through visuals. This will help us identify

how well the operator can “read” the vibro-tactile data being displayed.
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Figure 3.11: Visual interface (left), and bird’s eye view of training room (right) for study #2.

In this study, two vibro-tactile feedback modes are explored (Figure 3.12). In the first one
(Intensity, or 1), the closer the robot is to colliding in the direction the tactor points, the more
intense a tactor in the TactaBelt continuously vibrates, similar to the work of Cassineli
(Cassinelli et al., 2006) and study #1. In the second mode (Frequency, or F), the more frequently
a tactor vibration pulsates or “beeps”, the closer the robot is to colliding in the direction the
tactor points. Notice that this mode differs from the former one because the vibration is not
continuous. In both modes, the vibro-tactile feedback is only activated when the robot is within a
distance d from an object (d < 1.25m). Regardless of the vibration mode used, if an actual

collision occurs in a certain direction, the tactor pointing in that direction vibrates continuously
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at the maximum calibrated vibration intensity. This calibrated intensity was determined through
subjective feedback during a pilot study. These two modes were selected because they represent
the same data with two levels of complexity and accuracy. The range of intensity and frequency
variations were wide enough that their variation could be perceived by anyone with normal skin
sensitivity. Very high frequencies for the pulsing behavior could not be used, because the tactor
motor had to be allowed some time to decelerate its rotational speed to zero after a single pulse.
This limitation in frequency guaranteed that there would always be a period without vibration

between adjacent pulses.

dp< do<1.25m

Type of Belt Belt Vibration Signal
Feedback da dp
intensity intensity
A A
Intensity (l) 1 1;
time time
='. —'
intensity intensity
Frequency (F) 1 1
time time

Figure 3.12: Vibro-tactile feedback behavior types used in study #2.
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An ASUS G50V laptop with 4 GB RAM and an Intel® Core®2 Duo P4750 (2.13 GHz)
processor with a 15.4" LCD monitor was used. It was positioned on top of an office table at 0.5m
from subject’s eyes. The graphics card was a 512MB GeForce 9800M GT. The environment was

run in a window with resolution of 1024 x 768 at an average frame rate of 17 fps.

3.3.3. Task

To evaluate the validity of the interfaces proposed, the same search task as in study #1 was used.
The only difference was that there were now twelve spheres hidden instead of only nine. The
reasoning behind adding more spheres was to provide a wider range of variation in subject’s
sphere-search performance. It is expected that the chances of detecting variations in search

performance due to interface use are expected to increase if more spheres are available.

3.3.4. Hypotheses

The use of vibro-tactile and enhanced interfaces has been shown to improve user performance
(Blom & Beckhaus, 2010; Bloomfield & Badler, 2007; Burke et al., 2006; Herbst & Stark, 2005;
Lindeman et al., 2005; Johnson et al., 2003). The results of study #1 (de Barros et al., 2009) have
shown that using both a vibro-tactile display and a visual display for collision proximity
feedback (CPF) can improve performance in a simple USAR task. This study evaluates the
isolated impact on cognitive load for different vibro-tactile feedback modes, through the analysis

of search performance variables, sketchmaps and subject questionnaires.

In a pilot study preceding this study, subjects reported that the Frequency interface gave
more accurate feedback for estimating the distance between the robot and surrounding objects,
but it was more annoying and difficult to use. The Intensity interface, on the other hand, was

reported to be easier to understand but not very accurate in estimating distances.
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Based on these pilot study results, and because this study (S2) deals with a population
comprised of college students mostly inexperienced in using robots for USAR, we hypothesize

that:

S2H1. Using either vibro-tactile feedback interface should lead to an improvement in

performance and SA in the search task compared to the control case;

S2H2. Using the Intensity interface should lead to a higher performance and SA improvement
compared to the Frequency interface because of its ease of use and due to the lack of

experience of subjects with such an environment.

3.3.5. Methodology

The empirical study was designed to confirm whether the use of either proposed vibro-tactile
feedback interface would lead to a reduction in operator cognitive load related to navigation. A
within-subjects design was selected for this study. This design enabled a more comparative
subjective interface feedback to be obtained. With the proper experimental procedures and data
analysis, it also enabled the achievement of more statistically significant results while using a
smaller pool of subjects. As in study#1 (section 3.2.5) (de Barros et al., 2011), a fielded interface

approach was used.

3.3.5.1. Independent Variable

The independent variable was the type of CPF interface, which includes the vibro-tactile
interfaces “Intensity” (I) and “Frequency” (F) described in section 3.3.2 and a control case

without vibro-tactile feedback (“None” or “N”).
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3.3.5.2. Dependent Variables

The eight dependent variables were the time taken to complete the search task, the number of
collisions, the number of collisions per minute, the ratio between number of collisions and path
length, the number of spheres found, the number of spheres found per minute, the ratio between
number of spheres found and path length, and the quality of the sketchmaps. When comparing
the dependent variables in this study to the ones used in study #1, notice that, for this study, the
number of collisions and the number of spheres found are now being normalized not only by task

time, but also by path length.

In addition to that, in order to reduce variation of results among subjects (see Figure 3.14),
variables were also normalized on a per-subject basis. Such normalization helped neutralize

noise added due to users varying levels of experience with robot, RCV and videogame interfaces.

Here is an example that explains this per-subject normalization process: if subject A, for a
dependent variable X, had the following results (Interface 1, Interface 2, Interface 3) = (10, 20,
30), these values would be converted to (10/60, 20/60, 30/60) ~ (0.17, 0.33, 0.5). The results then
become a percetual value, the sum of the results leading to 100% or 1.0. For all four studies,

results reported as “percentual” or “percentage” have been normalized using this approach.

3.3.5.3. Study environment

The experiment (Figure 3.13) and training (Figure 3.11) VEs as well as the robot interface
(Figure 3.12) were built using the C4 game engine (C4 Game Engine, 2012) similarly to study
#1. This time however, due to the within subjects design, different worlds had to be used for each

interface and their order randomized. The experiment VEs difficulty level was still yellow
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(Jacoff et al., 2003). Figure 3.13 shows an example of what the subjects could see through the

robot virtual camera.

Figure 3.13: Sample robot camera view from where the virtual robot is located in study #2.

3.3.5.4. Experimental Procedure

As stated earlier, a within subjects design was used in study #2. Each subject was sequentially
exposed to three interface designs. Subjects were exposed to them in different orders,
randomized among treatments using a Latin Square to compensate for effects within treatments.

Each interface was considered one treatment or trial.

In the beginning of the experiment, demographic information was collected and a spatial
aptitude test was applied. After that, instructions about the experiment were given and then the

sequence of treatments was performed.
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As in study#1, subjects were allowed to use the robot camera to take pictures of the

environment and spheres they found. After each treatment, and using the pictures taken as a

reference, subjects were asked to report the number of spheres found by drawing a map of the

environment explored. After that, they filled-in a post-questionnaire giving their impressions

about the interface they were just exposed to. After each treatment, subjects were also asked to

fill-in the NASA-TLX workload questionnaire (Hart, 2006; Hart & Staveland, 1988).

After all three treatments, subjects were asked to fill-in a summative questionnaire where

they would comparatively rate all interfaces. For all treatments, subjects had to wear the belt,

even for the control case.

Each subject took at most two hours to complete the study with some subjects completing

it in only one hour. The procedure to which each subject was submitted was the following:

1.

Institutional Review Board (IRB) approved consent forms were read and signed,
Demographic information was collected;

A spatial aptitude paper test was administered;

The experiment instructions and a Q&A session occurred,

Robot controls for the experiment were explained;

The training session task was explained, questions answered, and the subject started

training when ready;

The transition from training to the real task was explained by the experimenter who also

briefly reviewed the task goal. The experiment started when the subject was ready;

During the main experiment, the subject behavior and on-screen actions were recorded on
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video;

9. Once the treatment was over, the subject filled in a treatment questionnaire where they

drew the sketchmap and were asked for subjective opinions on the interface used,;
10. Steps 5 - 9 were repeated for the other two interface modes;

11. Once the three treatments were over, a final questionnaire asked to rate the interfaces in
terms of presence and comfort levels based on the SUS (Kennedy & Land, 1993; Kennedy

et al., 1993) and SSQ questionnaires (Usoh et al., 2000).

Subject gender and age, how often they played video games and used or worked with
robots was collected in the demographics questionnaire. The spatial aptitude paper test had nine
questions, including painted cube faces association and map orientation questions. Subjects had

strictly five minutes to complete the test, otherwise questions would be left blank.

The instruction page given to subjects explained the experiment procedure, the task and
the interface. Apart from answering questions, the experiment explanation and procedure was
automated using a digital slideshow. This approach helped avoid bias caused by explanation

mistakes by the experimenter.

Each training session world was identical to study #1 (Figure 3.11), with the exception
that there were now three of them organized differently. The task was again to find a red sphere
and take a picture of it. As in study #1, objects in the experiment room represented real life-size
debris (Figure 3.13). The experiment time and the location and time of the collisions were

recorded. A sample of the information recorded is presented in Figure 3.14.
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Figure 3.14: Sample data collected for two treatments of different subjects in study #2. Behavioral
variation between subejcts is evident. Each yellow circle presents a collision, circles with an “S” in the
middle represent the spheres being searched for and the triangular arrows along the path represent the
robot camera orientation. Both paths start in orange and end in blue.

For each treatment questionnaire, subjects had to draw sketchmaps, report the number of
spheres found and answer questions about their levels of presence and comfort using the
interfaces. The feedback for subjective impressions were given on a Likert scale (1-7) and
included questions about the interface difficulty of use and levels of nausea, dizziness, and
presence, adapted from the SUS (Kennedy & Land, 1993; Kennedy et al., 1993) and SSQ
questionnaires (Usoh et al., 2000). In the final questionnaire, subjects rated all interfaces on a

Likert scale (1-7).

The sketchmaps were evaluated using Billinghurst & Weghorst (Billinghurst &

Weghorst, 1995) approach, but resized to a scale from 1 to 5. The definition used for grading
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map goodness was the same as in study #1 (de Barros et al., 2011), that is, how well the sketched

map would help in guiding one through the environment.

3.3.5.5. Other Materials

Other materials used in this study, such as the script used by the experimenter, the information
contained in the user study instruction sheet, and the questions contained in the user study post-

task questionnaire, are found in Appendix B.1.

3.3.6. Results

This section presents all the relevant results for this second study. Data for all the data analysis

can be found in appendix B.2.

Our results were obtained using a single-factor ANOVA with confidence level of a =
0.05. Results close to significance had a confidence level of « = 0.1 and were described as trends.
When a statistically significant difference (SSD) among more than two groups was found, a
Tukey test (HSD, 95% confidence level) was performed to reveal the groups that differed from

each other. In some cases, ANOVAs were also applied to compare groups in a pair-wise fashion.

For questionnaire ratings, Friedman tests were used to compare all groups together, while
Wilcoxon tests were used to compare them in a pair-wise fashion. Sections where SSD results
were found have their titles marked with an asterisk (*). If only a trend was found, the title of

that section is marked with a plus sign (+).

3.3.6.1. Demographics

A total of 14 female and 22 male university students participated in the study (mean age: 19.67,

S.D.: 1.49, B.2.1).
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3.3.6.2. Task Time

Task time represents the time spent by a subject from the start of the search task until the robot
passed through the exit door. For task time, no SSD was found among these groups (F = 0.135, p

=0.874, B.2.7).

3.3.6.3.  Number of Collisions*

This variable accounts for the total number of collisions between the robot and the remote
environment. For different interface types, no SSD was found for this variable (F = 0.283, p =
0.754, B.2.6). Nonetheless, compared to the control case, the Frequency interface seemed to have
decreased the dispersion of results and the mean, while the Intensity interface led to more
dispersion. On the other hand, the median for both interfaces decreased, the Intensity interface
leading to a larger reduction. Hence, for this dependent variable, the results seem to support
S2H1, but only partially since no SSD was found. Notice in Table 3.2 the large values in
standard deviation. Despite the attempt of a further analysis (removing outliers), still no SSD was
found. However, when this variable was normalized on a per-subject basis (Figure 3.15,
B.2.6.1), SSDs were found between groups None and Frequency (F = 7.481, p = 0.008), and

None and Intensity (F = 4.808, p = 0.032).

Collisions-per-minute represents a time-normalized value for the number of collisions
and confirms the obtained results by the latter variable. Even though no SSD was found for
different CPF interfaces (F = 1.416, p = 0.247, B.2.8), both CPF interfaces decreased the
variable mean and median values; when normalized on a per-subject basis, SSDs were again
found between groups None and Frequency (F = 9.672, p = 0.003, B.2.8.1), and None and

Intensity (F = 13.28, p < 0.001, B.2.8.1).
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Collisions-per-path-length represents a space-normalized value for the number of
collisions. Despite such normalization, no SSD was found for different interfaces (F = 0.875, p =
0.420, B.2.9). This variable’s results were also scaled by a factor of 100 in Table 3.2. As seen on
this table, both vibro-tactile interfaces have decreased in the median and mean values of this
variable. For the intensity interface, even the dispersion was reduced. And, again, when
normalized on a per-subject basis, SSDs were once again found between groups None and
Frequency (F = 9.172, p = 0.003, B.2.9.1), and None and Intensity (F = 13.82, p < 0.001,

B.2.9.1).

3.3.6.4. Number of Spheres Found

Contradicting the hypotheses for the number of spheres found, when comparing groups using
different interfaces types, no SSD was detected (F = 0.183, p = 0.833, B.2.4). In fact, both non-

normalized and normalized versions of this dependent variable led to no SSDs.

The time and path normalized number of spheres found variables have however, led to an
increase in spread for the Frequency interface, indicating that further subject training might be

required for this interface.
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Figure 3.15: In study #2, both types of vibro-tactile feedback showed statistically significant
performance improvements in the data for normalized number of collisions, normalized number of
collisions per minute and normalized number of collisions per path length.

96



Table 3.2: Dependent variable non-normalized data for different interfaces in study #2. The
SSDs below were obtained with the subject-normalized versions of the data presented in this

table.
Measure None Intensity Frequency
N.Collisions Mean: 58.994 57.907* 45.639**
* f,=0.283 S.D.: 82.121 106.802 52.382
fw=4.373 Median: 35.500 22.500 25.500
N. spheres Mean: 5972 6.361 6.194
fo=0.183 S.D.: 2772 2.576 2.847
fw = 0.549 Median: 6.000 6.500 6.000
Task Time (sec.): Mean: 594,722 613.917 563.472
fo=0.135 S.D.: 466.919 434.875 335.013
fw=10.471 Median: 478.000 479.000 475.000
* N. Coll./Min. Mean: 4.982 3.854** 4.032***
v fo=1.416 S.D.: 2.893 3.286 2.981
fw = 8.067 Median: 4.814 3.074 3.243
N. Sphs. /Min. Mean: 0.727 0.775 0.775
fo =0.160 S.D.: 0.410 0.395 0.443
fw=0.161 Median: 0.758 0.677 0.698
Path Length Mean: 82.830 84.984 82.472
fo=0.028 S.D.: 49.220 51.654 45.508
fw=0.061 Median: 70.458 70.963 68.983
* N.Coll./P. Lgth. Mean: 0.593 0.474** 0.475***
~ f=0.875 S.D.: 0.419 0.491 0.400
w= 8.072 Median: 0.469 0.342 0.337
N. Sphs./P. Lgth. Mean: 0.083 0.087 0.086
fo = 0.084 S.D.: 0.051 0.040 0.047
fw=0.1914 Median: 0.078 0.084 0.084
Map Quality Mean: 2.694° 2.722° 2472
* ,=0.378 S.D.: 1.348 1.406 1.253
fw = 2.397 Median: 2.000 2.000 2.000

*p<0.1;*p<0.05;*p<0.01; * p <0.001

3.3.6.5. Map Quality+

Sketchmaps are a measure of the operator’s situation awareness (SA). If cognitive load was
decreased by the use of multi-sensory interfaces, such a decrease should lead to a higher level of
map quality and SA, since the operator will be able to pay more attention to the environment

surrounding the robot instead of paying attention to robot controls.
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As in study#1, maps were graded on a scale from 1 to 5 (de Barros et al., 2011). When
comparing groups with different interfaces, no SSD was found for sketchmaps (F = 0.378, p =
0.686, Table 3.2 and B.2.3). Nevertheless, the use of the Frequency interface led to a slight
reduction for both the mean and the dispersion of the quality of grades. The analysis of the
normalized map quality (Figure 3.16) has shown a trend showing degradation in map quality for

the Frequency Interface compared to the other two interfaces (F = 2.397, p = 0.096, B.2.3.1).

Normalized Sketch Map Quality Percentuals
for Different Interface Types
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Figure 3.16: Frequency interface of study #2 led to a small degradation in map quality.
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3.3.6.6. Treatment Questionnaires*

For the treatment questionnaires subjective rating questions, one SSD and a few trends were
detected (Table 3.3, B.2.2). In Table 3.3, the black lines represent groups of interfaces with

results statistically equal. If no line is present, all interface results were statistically equal.

Table 3.3: Comparison of treatment questionnaires for different interfaces.

Measure Interfaces Stats. Summary Pair-wise comparison
N I F NI NF IF
Difficulty: Mean 5.083 4.899 5.083 w 181.5 140.0 82.5
(Friedman S.D. 1.381 1430 1.422 V4 1.093 -0.284 -0.916
x?=1.299 Med. 5.0 5.0 5.0 P 0.285 0.809 0.403
p = 0.522) R 0.129 -0.033 -0.108
BeingThere: Mean 3.556 3.994 3.917 w 129.0 96.5 97.5
. (Friedman S.D. 1.576 1.372 1.500 V4 -1.703 -1.691 0.468
x?= 3.515 Med. 3.0 4.0 4.0 P 0.087 0.095 0.661
p=0.173) R -0.201  -0.199 0.055
Reality: Mean 3.556 3.667 3.250 w 101.5 2095 1725
. (Friedman S.D. 1.780 1.656 1.318 V4 -0.355 1.022 1.802
x?=1.787 Med. 4.0 4.0 3.0 P 0.752 0.321  0.074
p = 0.409) R -0.042 0.120 0.212
Visited: Mean 3.306 4.083 3.694 w 18.0 44.0 148.0
* (Friedman S.D. 1.954 1.663 1.910 4 -3.135 -1.692 1.507
* x?=9.407 Med. 3.0 4.0 3.0 P 0.001 0.092 0.141
p =0.009) R -0.370 -0.199 0.178
Walking Mean 3.000 3.167 2.861 w 110.5 74.0 159.5
(Friedman S.D. 1.971 1.781 1.791 V4 -0.488 0.104 1.222
X2 =1.238 Med. 2.0 3.0 2.0 P 0.631 0.901 0.231
p = 0.538) R -0.057 0.012 0.144
Nausea Mean 1.944 2.056 2.306 w 45.5 27.0 27.5
. (Friedman S.D. 1.530 1.433 1.704 4 -0.916 -1.818 -0.967
X? = 3.964 Med. 1.0 1.0 1.0 P 0.401 0.084 0.328
p =0.138) - R -0.108 -0.214 -0.114
Dizziness Mean 1.972 2.056 2.139 w 51.5 34.0 32.5
(Friedman S.D. 1.558 1.453 1.641 4 -0.706 -0.845 -0.574
x?= 1.088 Med. 1.0 1.0 1.0 P 0.537 0426 0.637
p =0.581) R -0.083 -0.100 -0.068

*p<0.1;*p<0.05;**p <0.01; ** p <0.001
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Compared to interface None, the Saw vs. Visited scores (6" question in section B.1.4)
were higher (y2 = 9.407, p = 0.009, B.2.2.4) for both Frequency and Intensity interfaces. In other
words, both of these interfaces, but especially the Intensity interface, made subjects feel more as

if they had visited the environment as opposed to feel as simply having seen it.

Improvements in the results of other ratings were visible, but not statistically significant.
For example, a trend showed that both Frequency (w = 96.5, z = -1.691, p = 0.095, r = -0.199,
B.2.2.2) and Intensity (w = 129.0, z = -1.703, p = 0.087, r = -0.201, B.2.2.2) interfaces seemed to
have enhanced the sense of being there. On the other hand, the Frequency interface caused an
increase in nausea levels (w = 27.0, z = -1.818, p = 0.084, r = -0.214, B.2.2.6) compared to the
control case. A trend using a Wilcoxon test also showed that the Frequency interface had a lower
score for Reality compared to the Intensity interface (w = 172.5, z = 1.802, p = 0.074, r = 0.212,
B.2.2.3). Overall, and in support of S2H2, the Intensity interface seemed to have received more

positive scores than the Frequency interface.

3.3.6.7.  Final questionnaires™

The main goal of the final questionnaire was to obtain a global comparative view of the three
interfaces from the subject’s perspective. In Table 3.4, the black lines represent groups of

interfaces with results statistically equal.

No SSD was detected for the scores of difficulty, though a trend was detected between
the Intensity and Frequency interfaces (w = 93.5, z =-1.737, p = 0.082, r =-0.205, B.2.5.1). The
Frequency interface had a higher mean difficulty score than the Intensity interface. SSDs were
not detected for the help-in-understanding-environment and straight-forwardness variables. On

average, the Intensity interface was rated as more straight-forward than the Frequency interface.
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For the difficulty scores, there was a visible improvement in the average score for the
interfaces with vibro-tactile feedback, but no SSD was found. A similar effect was perceived for
the help-in-understanding-environment variable for the Intensity interface. For the straight-

forwardness score, a reduction in the dispersion for the Intensity interface was also perceived.

A SSD was found for the scores of distraction (F = 56.573, p < 0.001, B.2.5.3) and
comfort (F = 19.969, p < 0.001, B.2.5.4). For the former, the Frequency interface was the most
distracting, followed by the Intensity interface. The comfort scores were similar, the Frequency

interface being the most uncomfortable, followed by the Intensity interface.

Table 3.4: Comparison of final questionnaire results for different interfaces in study #2.

Measure Interfaces Stats. Pair-wise comparison
Summary
N I F NI NF IF

« (Friedman S.D. 1767 1.854 1.699

« X>=27.133 Med. _6.0 4.0 3.0
p <0.001)
H. Underst. Mean 4.250 4.556 4.000
(Friedman S.D. 1713 1.731 1.805
¥? = 1.295 Med. 4.0 5.0 4.0
p =0.523)

*p<0.1;*p<0.05;*p<0.01; * p<0.001

3.867 4.224 1.954
0.000 0.000 0.053
0.456 0.498 0.230
213.5 339.0 174.5
-0.822 0.657 0.907
0.412 0.518 0.373
-0.097 0.077 0.107

Difficulty: Mean 3.486 3.257 3.829 W 2455 196.0 93.5
. (Friedman S.D. 2049 1597 2036 Z 0.513 -0.850  -1.737
X?= 2.243 Med. 4.0 3.0 30 p 0.618 0.402 0.082
p = 0.326) - - R 0.060 -0.100  -0.205
Straightf.: Mean 5.057 5143 4657 W 1575 147.0 203.5
. (Friedman S.D. 1714 1556 1830 Z -0.598 1.368 1.634
x?= 3.857 Med. 5.0 5.0 50 p 0.556 0.175 0.105
p = 0.145) - - R -0.070 0.161 0.193
. NotDistract.: Mean 6.839 4.000 2771 W  465.0 595.0 237.5
« (Friedman S.D. 0453 2072 1880 Z 5.060 5.178 2.982
¥?= 54.496 Med. 7.0 4.0 20 p 0.000 0.000 0.002
p <0.001) R 0.596 0.610 0.351
. Comfort: Mean 5.722 3861 3167 W 417.0 484.0 152.5
V4
p
R
w
V4
p
R
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It seems that both Frequency and Intensity caused improvements, but also led to some
problems in terms of distraction and health. The vibration of the tators was too frequent at times
and distracted subjects form the visual search task. Additionally, such vibration also caused skin
itchiness in some subjects. Once again in support of S2H2, overall the Intensity Interface seems

to have obtained better scores than the Frequency interface.

3.3.6.8. Learning Effects for Different Interfaces

For the analyses above, subject treatments were divided into groups according to the interface
used. In sequence, these groups were compared within themselves to see if there was an effect on
dependent variables when using an interface in the first, second, or third treatments. To achieve
that, these groups were further divided into three subgroups that contained occurrences of each

interface in each of the three treatments as shown in Table 3.5.

The data for all variables were normalized on a per-subject basis before being statistically
processed using the same previously described method for the results in Table 3.2. In addition, as
an attempt to make learning effects more clearly displayed, the subgroup results are arranged
differently for each condition to match the order with which such condition was presented during
trials. That is, “N” (None) subgroup results are presented in the order NIF (1%, FNI (2"%), IFN
(3%, while “I” (Intensity) subgroup results order is IFN (1%), NIF (2"%), FNI (3%, and “F”
(Frequency) subgroup results order is FNI (1%), IFN (2", NIF (3). The black lines represent
groups of interfaces with results statistically equal. The number of decimal digits has been
reduced to save table row space, but they can be found with more accuracy in appendix B.2 for

each of their respective variables (e.g., section B.2.3.2 for Map Quality).

102



Table 3.5 illustrates the compromise when using a within-subjects experiment design:
learning effects. Even though such an effect did not impact as much the results for collision-
related variables, it might well have been the cause for not having achieved statistically
significant results for the sphere-finding variables. Notice that these differences are indeed
statistically stronger for these sphere-finding variables, but this was anticipated. As subjects
perform the trials and learn about the virtual environment and how the spheres are hidden, it is

only expected that subjects will also learn how to better search for these spheres in later trials.
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Table 3.5: Learning effects on dependent variables for study #2.

Measure
per Interface

1St

2nd

Interface Order (Mean, S.D., Median)

3rd

» N (78577288, 533.5) (523.4,249.0, 420.0) (475.1,199.1, 434.5)
'E | (718.1, 483.9, 536.0) (642.9, 561.4, 437.5)** (480.7, 142.8, 482.5)*
8 (622.0, 387.7, 573.0) (526.6, 274.2, 502.0) (542.0, 354.8, 448.5)
o N (93.1, 126.3, 48.0)** (41.1, 27.2, 31.0) (42.7, 53.5, 19.5)
59 | (84.2, 138.9, 29.5) (63.5, 121.6, 22.5)** (26.1, 18.4, 20.5)**
§ © F (44.0 , 37.7, 36.5)* (46.8, 58.0, 22.0) (46.1, 62.7, 20.5)
N (5.0, 2.9, 4.5) (6.1, 2.2, 6.0)* (6.8, 3.1, 6.5)**
(‘,?}% | (5.4, 2.6, 5.0) (7.2, 2.0, 7.0)* (6.4, 2.8, 7.0)*
zth E (5.2, 3.4, 5.5)* (5.9, 2.5, 5.0)* (7.4,2.2,7.5)
SN (6.0, 2.3, 5.9)* (4.7, 2.0, 4.3) (4.3,3.9, 3.4)
S § | (4.7, 4.6,3.1) (3.7, 3.0, 2.8)* (3.1, 1.8, 2.8)*
“3 ¢ (4.0, 2.4, 3.4) (4.4,3.9, 4.1) (3.6, 2.6, 2.5)
N (0.5,0.3, 0.5) (0.8, 0.3, 0.8)*** (0.9, 0.4, 0.9)**
?%é ! (0.6, 0.3, 0.6) (0.9.0.4, 0.8 (08,03, 0.7)™
5E (0.5, 0.3, 0.5) (0.8, 0.4, 0.7) (1.0, 0.4, 1.0)
Z 2
N (72.1, 37.5, 72.2) (50.8, 21.3, 44.7) (55.0, 58.7, 42.8)
% Em | (65.2, 73.4, 37.2) (43.5, 36.7, 33.5)* (33.4, 18.9, 31.5)*
Z& (45.5, 33.1, 33.2) (50.3, 50.8, 39.9) (46.8, 37.3, 30.8)
N (5.4,3.8,5.5) (8.2, 3.1, 7.8)* (11.1, 6.4, 10.1)***
‘?_U%%» | (6.8, 3.3, 6.8) (10.7, 4.6, 10.1)** (8.4, 3.2, 8.6)**
Za (5.4, 3.5, 5.8) (8.7, 4.4, 8.3) (11.8, 4.1, 11.5)
N (2.5, 1.4, 2.0) (2.6, 1.4, 2.0) (3.0, 1.3, 3.0)
g (2.7, 1.2, 2.5) (2.8,1.7, 2.5) (2.7, 1.4, 2.0)*
o F (2.0, 0.9, 2.0) (2.9, 1.4, 2.5)* (2.5, 1.2, 2.5)*

*p<0.1;*p<0.05; *p <0.01; **p <0.001

f-value

3.5*
5.6**
1.8
4.7*
8.2**

2.7°

6.8**
2.7°
3.5%
2.8°
4.2*
1.2
19.9%**
3.2%**

9 . 7***

2.3
5.5%*
1.2
15.7%+*
3.3**
10.4%+*
15
2.9°

3.2°
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3.3.6.9. Comments

Subjective feedback about the interface and the experiment in general was collected in both final
and treatment questionnaires. The Frequency interface was mentioned more times (7 times) as a
better mode than the Intensity interface compared to the other way around (4 times). However,
and supporting S2H2, subjects reported the Intensity interface to be less precise but easier to
learn, while the Frequency interface was harder to comprehend but more precise. The precision
refers to how easy it was for subjects to detect variations in the the signal displayed by the tactors
for each mode. Because variations in Intensity mode tended to be harder to detect once the skin
got asccostumed to the vibration after prolonged use, the Frequency interface pulsing behavior

led users to better differentiate variations in the data and hence better estimate distances.

Subjects have also pointed to the fact that the Intensity interface made the perception of
multiple tactors of the belt as a single vibrational display easier. In other words, a set of adjacent
tactors vibrating at different intensities around a subject’s waist could be easily seen as the
smooth display of a single object sensed at different distances in an average direction. For the
Frequency interface, because the pulses of adjacent tactors varied in frequency, fusing the data in

such a way was more difficult.

3.3.7. Discussion

This study continued the work developed in study #1 on multi-sensory vibro-tactile interfaces
(de Barros et al., 2009) and explored novel ways to represent robot sensed data, specifically
collision-proximity feedback (CPF) through vibro-tactile feedback. Intensity and Frequency CPF
interfaces were proposed and it was claimed they would enhance subject performance (S2H1)

and that the Intensity interface would outperform the Frequency interface (S2H2).
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In accordance with our expectations, both of the proposed hypotheses were validated by
the results obtained at least for part of the dependent variables considered. In terms of S2H1, the
results have shown that using the TactaBelt with either vibro-tactile configuration appears to
indeed have caused a positive impact in navigation performance. The lack of statistical strength
in the sphere-finding results, however, might have been due to the learning effects presented in
Table 3.5, but could have also been caused by subjects’ diverse experience levels with advanced

interfaces as could be noticed by the path trace results in Figure 3.14.

In terms of S2H2, the only objective data result that supported this hypotheses was the
degradation in map quality by the use of Frequency interfaces compared to the more synoptic
Intensity interface. Nevertheless, in support of S2H2, the subjective data collected by both
questionnaires did provide evidence for subjects’ preference for the Intensity interface by the
results obtained for difficulty, straight-forwardness, comfort and distraction measures as well as

subjects comments.

The above results together with the results of the previous experiment (de Barros et al.,
2011) lead us to believe that the use of vibro-tactile feedback interfaces does enhance
performance even if no redundant visual feedback is present. This study’s results have also
shown that care must be taken when designing the multi-sensory interfaces using vibro-tactile
feedback. Vibration pattern, intensity and exposure time must be adjusted to avoid user

distraction and discomfort.

In terms of SA, the map quality results provided a glimpse of the potential impact in
cognitive load of using more complex CPF interfaces. However, a new experiment with a

parallel task needs to be performed to further investigate any such effects.
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The feedback obtained from questionnaires seems to suggest that the Intensity interface is
easier to use and learn than the Frequency interface. This is in agreement with the pilot study
comments and, in fact, makes sense, since the representation of information is more complex
with the Frequency interface. This feedback has also pointed out deficiencies in the CPF

interfaces such as long activation periods for the tactors dring a specific situation or task.

Interestingly, it was also pointed out by subjects during the pilot and user study that the
Frequency interface was more accurate. This claim also seems reasonable because the vibration
intensity variations generated by the Intensity interface were harder to distinguish than the
vibration-frequency pulse variations generated by the Frequency interface. This is due to the way
the skin sensitivity changes when exposed to constant vibration after prolonged periods, making
it more difficult to differentiate vibrations coming from adjacent tactors for the Intensity

interface.

Despite the positive results obtained for the Intensity interface in this study, we believe it
is still too early to decide whether the Frequency or the Intensity interface is better for practical
use. Such a question can only be answered when a study with USAR experts is implemented,
since their experience may impact the choice of interface. With the current results, however, it

seems that the Intensity interface is the better choice for inexperienced users.

3.3.8. Conclusion

The analysis of different types of vibro-tactile feedback for USAR robot teleoperation interfaces
has offered a new insight into how vibro-tactile feedback integrates into these interfaces. It

contributes as evidence of the usefulness of multi-sensory interfaces in HRI.
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Nonetheless, this work was simply an initial step towards the integration of multi-sensory
interfaces for USAR robots. A more thorough batch of tests using multiple senses (visual,
auditory, tactile, olfactory) and encompassing different data representations must be carried out
in order to further our understanding of the benefits and drawbacks brought by the use of multi-

sensory interfaces.

In view of the overwhelming number of interface configurations that are possible to be
designed, the initial scope of such multi-sensory interface exploration should be restricted to
understanding how much these interfaces can increase in complexity without cognitively
overloading the operator and identifying the impact of adding new senses to the interface.
Moreover, research into the choice of sensors and data to associate with each of the senses
should be conducted. For the context of the research presented here, CPF data seems to be in

alignment with the type of vibro-tactile feedback provided and the task at hand.

For other senses, a similar alignment should also be sought out. Audio feedback should
integrate with events that naturally generate sound in the real world (e.g., playing a sound when
the robot bumps into an object). Similarly, smell feedback should be associated with events that
are related to the perception of smell (e.g., associating a smell to how much smoke is in the air).
Association events should be viable even for the sense of taste (e.g., soil and liquid samples
obtained by the robot should taste different to the operator depending on the type and level of a

chemical being measured by the robot sensors).

User studies #3 and #4 to follow add feedback for the senses of hearing and smell on top
of the current bi-sensory (vision, touch) interface presented in this study and evaluate the effect
of such enhancements. Moreover, they will further explore the role that redundant feedback

plays on multi-sensory interfaces. Additionally, study #4 will verify whether the results obtained
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for multi-sensory interfaces in a robot simulation can be reproduced using a real robot in a

remote physical environment.
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3.4. Study #3: Exploring Multi-Sensory Feedback Interfaces and

Redundant Feedback in Virtual Robot USAR

3.4.1. Motivation

The current work builds on the results o the two previous studies and evaluates the effect of
adding audio feedback to a bi-sensory interface (vision and touch), and the effect of presenting

data redundantly across user senses.

3.4.2. Robot Interface

Results from previous studies (de Barros et al., 2011; de Barros & Lindeman, 2012) suggest that
vibro-tactile feedback by itself is not the best navigation interface among the interfaces available.
Instead, it should be used as a supplement to other interfaces (Pielot & Boll, 2010). In this work,
three multi-sensory interfaces with increasing complexity were created by supplementing a

vibro-tactile one with extra feedback.

The first interface used in this new study (Interface 1) is a control case interface and the
starting point for the enhancements done by the two other interfaces following it. It is based on
the study #2 Intensity interface in section 3.3.2 (de Barros & Lindeman, 2012). It fuses
information as close as possible to the operator’s point of focus, around the parafoveal area
(Kaber et al., 2006). The vibro-tactile feedback belt and gamepad controls are the same ones

used in the previous studies as well.

Interface 2 builds upon Interface 1 by adding sound feedback to it using a stylized
(cartoonified and metonymic) approach similar to what is done in videogames. The first type of

sound feedback is a stereoscopic bump sound when collisions between the virtual robot and the
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VE occur. The second one is an engine sound that increases in pitch as speed increases. The

motivation behind the engine sound is to provide feedback on the robot’s moving speed.

Interface 3 builds upon Interface 2 but adds extra visual feedback to the interface (Figure
3.17). A ring of eight dots is displayed on the top of the robot and mimics the current state of the
vibro-tactile belt. It is an improvement over previous work on redundant CPF displays (de Barros
et al., 2011), which used a ring ofcoloured cylinders arrayed in 3D around the virtual robot. The
positioning on the belt of each tactor is associated with one of the dots in the ring and their
locations match. The more intensely a tactor vibrates, the more red the dot associated with that
tactor becomes (as opposed to its original color black). The second added visual feature is a
speedometer positioned on the back of the robot as a redundant display for the engine sound.

Table 3.6 summarizes the features for each interface.

Sound feedback was displayed through an lon iHPO3 headset. The headset was worn for
all treatments. The same ASUS G50V laptop and office space set-up used in study #2 were used

for this study. The environment was run with a resolution of 1024x768 at a refresh rate of 17 fps.
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Figure 3.17: Visual components for all three interfaces of study #3. The visual ring and speedometer
are only part of Interface 3.
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Table 3.6: Display features for each interface treatment in study #3.

Interface Standard Visual Vibro-tactile Audio feedback Visual ring and
Number Interface feedback speedometer
1 X X
2 X X X
3 X X X X
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3.4.3. Task

To evaluate the validity of the proposed interfaces, the same primary task used in study #2 was
designed: search for twelve red spheres (radius: 0.25m) in a debris-filled environment. However,

this study also asked subjects to perform the secondary Stroop task.

3.4.4. Hypotheses

As seen in previous studies, the use of vibro-tactile and enhanced interfaces has been shown to
improve user performance (Blom & Beckhaus, 2010; Burke et al., 2006; Herbst & Stark, 2005;
Johnson et al., 2003; de Barros & Lindeman, 2012). What is not a consensus yet among these
and other studies (Van Erp & Van Veen, 2004; de Barros et al., 2011), however, is whether the

use of redundant feedback actually brings overall benefits.

Additionally, for study #1, it was not clear whether using redundant feedback as a CPF
visual ring (de Barros et al., 2011) would bring benefits due to the ring interface occlusion
problem. This motivated us to improve on this interface and create a similar ring structure, but
now sitting on top of the robot avatar to resolve the reported occlusion problem. With this new
ring layout, it is possible that the redundant visual display benefits outweigh any potential

disadvantages.

It has been claimed in the past that high levels of workload can lead to lower levels of SA
(Endsley & Garland, 2000). This study attempts to measure the impact on SA and performance
of adding redundant and complementary audio-visual displays to a control interface with
vibration and visual feedback. It is expeted that variations in cognitive load and workload (as
captured by the Stroop task and NASA-TLX test results) could cause variations in SA. The effect

of interface use on SA is measured by the evaluation of sketchmaps (global SA) and navigation
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performance (local SA). Performance is measured in terms of robot task time, navigation, and
search. Based on the insights collected from previous work, and with the interface enhancements

proposed, the following two results are hypothesized:

S3H1. Adding redundant and complementary sound feedback to the control interface should

improve performance and SA in the search task;

S3H2. Adding redundant visual feedback should lead to even further improvements in

performance and SA in the search task.

3.4.5. Methodology

The experiment consisted of a within-subjects design where the search task was performed by
each subject for all interface types. Because this study also had the same design as study #2
(three trials within subjects) the interface and virtual world presentation order for each subject

was done exactly as in study #2 using Latin Square.

However, in addition to the search task as in study #2, subjects also had to perform a
secondary task: a visual Stroop task (Gwizdka, 2010). Subjects had to indicate whether the color
of a word matched its meaning. For example, in Figure 3.17, the word “red” does not match its
color. Words such as this one were presented periodically (every 20+~5s) for a period of
7.5+~2.5s, disappearing after that. Subjects were asked to answer the Stroop task as soon as they
noticed the word on the screen using two buttons on the gamepad. The purpose of this task was
to measure subject cognitive load variations due to exposure to interfaces with different levels of

multi-sensory complexity.
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3.4.5.1. Independent Variable

As mentioned earlier, the independent variable (1) was the type of interface, with three possible
treatments: Interface 1 (control), Interface 2 (audio-enhanced) and Interface 3 (audio and

visually-enhanced).

3.4.5.2. Dependent Variables

3.45.2.1. Main measures

The objective dependent variables (DV) were the time taken to complete the search task, the
average robot speed, the number of collisions, the number of spheres found, the number of
collisions per minute, the ratio between number of collisions and path length, the number of
spheres found per minute, the ratio between number of spheres found and path length, and the
quality of the sketchmaps. These variables were normalized on a per-subject basis as described

in section 3.3.5.2.

3.4.5.2.2. Stroop Task Measures

Cognitive load was compared using the Stroop task results. The Stroop task objective DVs were
the percentage of incorrect responses, response time, and percentage of unanswered questions.
These measures are reasonably common ones (Walker & Kramer, 2005). The first two variables
were analyzed for three data subsets: responses to questions where color and text matched,
responses to questions where color and text did not match, and all responses. These variables

were also normalized on a per-subject basis.
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3.45.2.3. NASA-TLX Measures

The NASA-TLX test (Hart & Staveland, 1988; Hart, 2006) was taken after each of the interface

treatments to measure user workload.

3.45.2.4. Questionnaire Measures

For subjective D.V.s, the treatment and final questionnaires compared subjects’ impressions of

each interface as in study #2.

3.4.5.3. Study environment

The physical space and virtual environments used were the same as in study #2. As in the

previous two studies, this study’s VE had difficulty level yellow (Jacoff et al., 2003).

3.4.5.4. Experimental Procedure

The study took approximately 1.5+0.5 hours per subject. The experiment procedure steps are
listed in Table 3.7. For each trial, the time and location of collisions were recorded. Subject
gender and age, how often they used computers, played video games, used robots, used remote-
controlled ground/aerial/aquatic vehicles (RCVs) and used gamepads was collected in the
demographics questionnaire. For all but the first two questions, a Likert scale with four values
(“daily” (1), “weekly” (2), “seldom” (3) or “never” (4)) was used. The spatial aptitude test was
identical to the one used in study #2. The instructions page explained the experiment procedure,

the task and the interface.

The training sessions used the same environments and task as study #2. They lasted
approximately 4 minutes per subject. The treatment questionnaire subjective questions (3-8)

were adapted from the SUS (Usoh et al., 2000) and SSQ (Kennedy & Land, 1993; Kennedy et
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al., 1993) questionnaires and followed a Likert scale (1-7). The final questionnaire questions 1-5

were also given on a Likert scale (1-7).

The sketchmaps were evaluated using the same approach as previous studies (Billinghurst

& Weghorst, 1995). This time, maps were graded twice by two evaluators.

Table 3.7: Experimental procedure in study #3 for one subject.

Step Description
1 Institutional Review Board approved consent forms;
2 Demographics questionnaire;
3 Spatial aptitude test;
4 Study instructions and Q&A session,;
5 User puts belt and headset. Robot interface explained;
6 Task review;
7 Training explanation and Q&A followed by training task;
8 Study task review and Q&A followed by study task;
9 During task, video and objective data is recorded;
10 Trial is over: treatment questionnaire with sketchmap;
11 NASA-TLX questionnaire;
12 Five-minute break before next trial;
13 Steps 7-12 repeated for the other two interface treatments;
14 Three treatments are over: final questionnaire.
3.4.5.5. Other Materials

Other materials used in this study, such as the script used by the experimenter, the information

contained in the user study instruction sheet, and the questions contained in the user study post-

task questionnaire, are found in Appendix C.1.

3.4.6. Results

This section presents all the relevant results for study #3. Data for all the data analysis of this

study can be found in appendix C.2.

Our results were obtained using a single-factor ANOVA with confidence level of a =

0.05. Results close to significance had a confidence level of « = 0.1 and were described as trends.
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When a statistically significant difference (SSD) among more than two groups was found, a
Tukey test (HSD, 95% confidence level) was performed to reveal the groups that differed from

each other. In some cases, ANOVAs were also applied to compare groups in a pair-wise fashion.

For questionnaire ratings, Friedman tests were used to compare all groups together, while
Wilcoxon tests were used to compare them in a pair-wise fashion. Sections where SSD results
were found have their titles marked with an asterisk (*). If only a trend was found, the title of

that section is marked with a plus sign (+).

3.4.6.1. Demographics*

In terms of demographics, a total of 18 university students participated in the study. Their
average age was 25 years (o = 3.18, C.2.1). The average videogame experience was 2.7 on a 4
scale (1 = daily, 4 = never) and the average robot experience was 3.5 on the same scale, that is

subjects were expectedly more experienced with videogames than robots.

In terms of experience levels among groups exposed to interfaces in different orders,
SSDs were found for computer and remotely-controlled vehicle (RCV) experience levels. Group
with interface order 123 had more computer experience than Group 312 (y? = 5.2, p = 0.074,
C.2.1.5). On the other hand, Group 312 had more RCV experience than Group 123 (>=5.571, p
= 0.062, C.2.1.6). These differences were one of the main motivators for applying the data

normalization referred to in section 3.4.5.2 and explained in section 3.3.5.2.

In terms of spatial aptitude scores, no SSD was found among groups of subjects with
different trial orders (F = 1.000, p = 0.391, C.2.1.8).
3.4.6.2. Task Time

For task time, no SSD was found among these groups.
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3.4.6.3. Number of Collisions*

Two collision-related variables led to relevant results. For the normalized number of collisions
per minute (Figure 3.18a, C.2.8.1), trends were found between pairs of interfaces (1, 2) (F =
3.70, p = 0.06) and (1, 3) (F = 3.65, p = 0.06). For the normalized number of collisions per path
length (Figure 3.18b, C.2.9.1), SSDs were found for the same pairs of interfaces (1, 2) (F = 4.32,

p =0.04) and (1, 3) (F =4.16, p = 0.05). These results support S3H1, but not S3H2.

Percentual Number Percentual Number
(a) of Collisions per Minute (b) of Collisions per Path Length
for Different Interface Types for Different Interface Types
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Figure 3.18: Both Interface 2 and Interface 3 in study #3 caused a decrease in number of collisions:
(a) per minute; (b) per path length.

3.4.6.4. Average Robot Speed

Although a difference in speed was visually noticeable, it was not statistically significant (Figure
3.19, C.2.15). Had it been so, such variation in speed could have been a potential explanation for
the reduction in the number of collisions. Notice the increase in spread from nterface 1 through
3. This seem to show that the interface enhancements have impacted subjects in different ways in

terms of speed.
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Avgd. Robot Speed Percentage for Different Interface Types
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Figure 3.19: Robot speed percentual variation for different
interfaces in study #3.

3.4.6.5. Number of Spheres Found

For the variables related to the number of spheres found by subjects, no SSDs were detected.
This means even though navigation performance was improved in terms of number of collisions,

the same was not true for search performance.

Table 3.8: Mean, median and standard deviation of the number of spheres found for the different
interface types in study #3. No SSDs detected.

Mean Std. Dev. Median
None 5.972 2.772 6.000
Intensity 6.361 2.576 6.500
Frequency 6.194 2.847 6.000
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3.4.6.6. Map Quality
The interfaces did not have an effect on the sketchmaps scores with statistical significance.

Table 3.9: Mean, median and standard deviation of the map quality ratings for the different
interface types in study #3. No SSDs detected.

Mean Std. Dev. Median
None 2.694 1.348 2.000
Intensity 2.722 1.406 2.000
Frequency 2.472 1.253 2.000

3.4.6.7. Stroop Task Cognitive Load

No SSDs were obtained by the analysis of the Stroop task data, although there was a slight
decrease in response time for Interface 2 and Interface 3, as can be seen in Figure 3.20a
(C.2.14.2.1). In addition, Interface 2 has also shown a small reduction in the number of
unanswered Stroop question (Figure 3.20b, C.2.14.3.1), but no SSD was detected for either of

these.

It is important to notice that the Stroop task itself adds to the cognitive load of the
subjects. It attepts to consume any remaining unused cognitive resources from the user.
Therefore, the Stroop taks as a secondary task is really only effective when it can actually fill up
or overflow those resources. If the primary task itself is too easy, it is unlikely that the Stroop
task will use the large amount of cognitive resources available and hence be able to measure

variations in cognitive load and workload due to the use of different interfaces.
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Figure 3.20: Stroop task results for (a) normalized response time and (b) normalized percentage of
unanswered questions in study #3.

3.4.6.8. NASA-TLX Workload+

For the NASA-TLX questionnaire, a trend indicated that Interface 2 had a higher temporal
workload score than Interface 1 (w = 37.0, z = -1.87, p = 0.06, r = -0.31, Figure 3.21a,
C.2.13.3.1). This measure indicates how hurried or rushed subjects felt during the task. Subjects
felt more in a rush when exposed to Interface 2 (higher score). Because no difference in task time
was detected among interface groups, the only other factor that could have affected subjects’
rush levels would have to be related to the visual timer on screen and subjects’ behavior towards
it. A plausible explanation would be that subjects were able to check the timer more often to see
how efficiently they were doing. This behavioral change would only be possible if the rest of the
interface was less cognitively demanding. Hence, an increase in timer look-ups could have been
due to a decrease in cognitive demand from the rest of the interface. If this claim is true, such a

decrease would support S3H1.
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For the NASA-TLX performance measure, a trend has indicated a lower rating for
Interface 3 compared to Interface 1 (w = 103.0, z = 1.80, p = 0.08, r = 0.30, Figure 3.21b,
C.2.13.4.1). This measure indicates how successful subjects felt in accomplishing the task. In

other words, Interface 3 made subjects feel as if they performed worse than with Interface 1. This

result goes against what was predicted in S3H2.
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Figure 3.21: In study #3: (a) Subjects felt significantly more rushed when using Interface 2 than

with Interface 1; (b) Interface 3 caused subjects to feel as if they performed worse than Interface
1.

3.4.6.9. Questionnaire*

For the treatment questionnaires, a SSD was found for the sense of “being there” for Interface 1
and Interface 2 (y* = 6.28, p = 0.04, Figure 3.22a, C.2.2.2). The latter led to higher “being there”
levels compared to the former. Moreover, a SSD was also found for Walking results between
Interface 2 and Interface 3 (> = 7.82, p = 0.02, Figure 3.22b, C.2.2.5). When exposed to

Interface 3, moving around the computer-generated world seemed to subjects to be more like
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walking than when exposed to Interface 2. These results seem to go against the prediction in

S3H2 once again.

Subjective Level of "Being There" Subjective Level of Walking
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Figure 3.22: (a) Interface 2 increased user sense of being in the VE; (b) Interface 3 made users
feel more like walking rather than driving.

The final questionnaire showed interesting results, especially for Interface 2. On the one
hand, a pair-wise Wilcoxon test showed Interface 2 was more difficult to use than Interface 1 (w
=18.5,z=-1.75 p =0.09, r = -0.29, Figure 3.23a, C.2.5.1). On the other hand, Interface 2 was
more comfortable to use than Interface 1 (y? = 5.51, p = 0.06, Figure 3.23b, C.2.5.4). It also more
positively impacted the comprehension of the environment compared again to Interface 1 (% =
10.98, p < 0.01, d.o.f. = 2, Figure 3.23c, C.2.5.5). In Figure 3.23a, notice also how data variation

was reduced for enhanced interfaces, especially Interface 3. This is an indication that subjects

opinion was more consistent for these interfaces than for the control one.
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Figure 3.23: In study #3: (a) Interface 2 was deemed more difficult to use than Interface 1, but it was
also (b) more comfortable and (c) better impacted comprehension than Interface 1; (d) both Interfaces
2 and 3 helped better understand the environment than Interface 1.

Intertace straighttorwardness levels also differed (y“ = 5.92, p = 0.06, Figure 3.23d,

C.2.5.2). Using Interface 2 and Interface 3 made it more straightforward to understand the data
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presented than using Interface 1. A pair-wise Wilcoxon test showed that Interface 2 had a
statistically significant increase compared to Interface 1 (w = 10.0, z = -2.15, p = 0.04, r = -0.36).
The same pair-wise comparison for Interface 3 and Interface 1 only showed a trend however (w
=15.0,z=-1.89, p=0.07, r =-0.31). For Figures 32.23c and 3.23d, notice how interface 3 led to
more variation in the data. This seem to indicate that this interface affected subjects differently

with regard to these variables.

These results from the final questionnaire seem to support S3H1, but do not present any

evidence in support of S3H2.

3.4.6.10. Comments

Subject comments were collected on the treatment and final questionnaires. The comments were
categorized according to interface features (e.g., touch, audio, extra GUI, map) or experimental
features (e.g., Stroop task, learning effects). For each category, the comments were divided into

positive and negative ones.

There was a prevalence of positive comments directed to the audio interface. One subject
stated: “Adding the audio feedback made it feel much less like a simulation and more like a real
task. Hearing collisions and the motor made it feel like I was actually driving a robot.” Another
said, “The sound made it much easier to figure out what the robot was doing. It was clear when
there was a collision.” Most comments praised the collision sound, but not so much the motor

sound.

For the belt, it seemed that having it on all the time, even when it was evident no collision
was imminent, annoyed subjects. A few subjects admitted that the belt was useful for navigation

however. Many subjects seemed to ignore the belt feedback for the vast majority of the time and
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only used it when either a collision had already occurred or when passing through narrower

places. These comments agree with the ones obtained in study #2 (de Barros & Lindeman, 2012).

In terms of redundant feedback, the redundant visual feedback seemed to have distracted
more than helped. One subject mentioned: “The visual speed feedback was not very useful at all,
since the auditory speed feedback conveyed the idea much more effectively, so the visual
speedometer became a distraction.” These comments support the slight worsening in results for

Interface 3 as shown in Figure 3.22b and Figure 3.20.

Subjects’ comments confirm the results obtained from subjective and objective measures,

and supporting S3H1, but rejecting S3H2.

3.4.7. Discussion

The main goal of study #3 was to search for answers to the question of how much one can make
use of multi-sensory displays to improve user experience and performance before an
overwhelming amount of multi-sensory information counter-balances the benefits of having such
an interface. As a second goal, this study aimed at assessing the potential benefits, if any, of

having redundant feedback in multi-sensory displays.

In study #2 (de Barros & Lindeman, 2012), it was shown that, in the context of virtual
robot teleoperation, adding touch-feedback to a visual-only interface as an aid to collision
avoidance significantly improved user performance. In addition, study #1 (de Barros et al., 2011)
showed that adding redundant visual feedback for representing the same information as touch
feedback could lead to a performance decrease, although the reason for that was assumed to be

occlusion problems and not the fact that display of information was redundant.
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Based on the interface and experiment results of these and other previous studies, our
current study explored enhancing a visual-tactile interface with audio and redundant visual
displays. Our enhancements over previously proposed interfaces allowed us to more accurately
measure not only the impact of adding feedback to an extra human sense, but also to measure the

effects of different types of redundant feedback in multi-sensory displays.

Unlike the belt feedback, which provided collision proximity feedback as the robot
approached the surface of a nearby object, the collision audio display provided feedback only
after a collision had occurred. This difference in feedback behavior led to an interesting result.
Even though the audio feedback provided was an after-the-fact type of feedback, it led to further
reductions in the number of collisions with the environment. But the audio display could not
have helped reduce collisions in the same way as the touch display because of this difference in
the time of the feedback. And the speed with which subjects moved the robot was not
significantly affected by the engine sound feedback. Hence, two possible explanations for such

reductions are:

1. The sound feedback made the remote VE feel more real and helped subjects become more

immersed and focused on the task, leading them to perform the task with fewer collisions;

2. The sound feedback allowed subjects to better understand the relative distances between
the robot and the remote VE. By experimenting with collisions a few times, subjects used
sound feedback to learn what visual distance to maintain from walls to better avoid

collisions from a robot camera perspective.

Both explanations matched subjects’ feedback on the topic, inidicating that perhaps both
of these are actually true. However, the author believes that the latter is a more plausible one.

The distance estimation between the robot and the remote VE was not as easy to do using only
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the vibro-tactile feedback from the belt due to the continuous nature of the cues it provided.
Hence, the sound feedback supplemented such cues with more accurate estimations. And even
though these sound feedback events were displayed only after a collision occurred, they taught

subjects how to better make their distance estimation and void further collisions in the future.

Subjective feedback and objective data indicated that the engine sound did not have a
major role in improving understanding of the spatial relationship between robot and
environment. Nevertheless, it was reported that this sound did improve their presence levels. It
might also have improved their control of robot speed. Even though no SSD was detected for the
speed variable, the minimal variation in its average values for different interfaces could be a
reflection of a change in subjects’ navigational behavior. Hence, the addition of the sense of
hearing to the multi-sensory display has indeed improved performance and our first hypothesis

(S3H1) is confirmed.

Our second hypothesis (S3H2), on the other hand, was not supported. As mentioned
earlier, results from similar studies on redundant feedback were inconsistent (de Barros &
Lindeman, 2012; Van Erp & Van Veen, 2004). This work showed that redundant feedback may
not always improve performance. In fact, its effect may vary depending on how the multi-

sensory interface is integrated.

One explanation for the degradation in results for Interface 3 is considered here. It seems
that the addition of new visual features created a new point on the screen users needed to focus
on. The basic visual interface (used in Interface 1 and Interface 2) already demanded a great deal
of the user's attention, containing points of focus for the timer on the top-right corner, the Stroop

task text field, the robot camera panel and the map blueprint. Hence, adding more focus points in

129



Interface 3 might have reduced user performance more than the amount of performance

improvement that the addition of such interface features could have added.

However, would the same results be obtained if the extra visual information added was
novel instead of redundant? In the case of this study, because the information displayed by the
enhanced visual display was already being presented in other forms, no information was gained for
most subjects, who already effectively read that same information through the vibro-tactile belt.
For these subjects, the visual enhancements were either ignored or caused distraction, the latter to
the detriment of their performance. Nonetheless, it would be interesting to compare the
improvement results of individually using an audio-visual-only interface or a visual-only interface
with the speedometer and visual ring added to the current audio-visual-tactile interface. After all,
the order with which the multi-sensory features were gradually added among treatments and

interacted with each other in this study might also have had an impact on the results obtained.

Last, the use of the touch and audio feedback as opposed to the visual feedback for
collision detection and proximity might be an indication that, when offered the same information
through different multi-sensory displays, users may try to balance load among multiple senses as
an attempt to reduce their overall cognitive load. Interesting though this claim may seem, the
results obtained in this study do not support this notion. Such multi-sense load balancing could
have been caused simply by user preference for the vibro-tactile interface design over the ring
interface design. The verification of either justification and the search for an answer to the question

stated in the previous paragraph is the subject of future work.
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3.4.8. Conclusions

The main goal of this study was to advance one more step towards understanding the effects of
multi-sensory interfaces on users. We have explored the effects of adding audio to an existing
visual-tactile interface. The context in which this exploration took place was in a virtual robot

teleoperation search task in a 3D virtual environment.

The study has shown that adding audio as the third sense to the bi-sensorial interface
(visuals, touch) of study #2 resulted in further improvements in navigation performance. This
means the user had not yet been cognitively overwhelmed by the control case display and could

still process further multi-sensory data without detriment on performance.

This study also presented evidence indicating that displaying more data to a certain sense
(vision) when it is already in high cognitive demand is detrimental to performance if the added data
does not improve the user’s SA of the system and environment. It remains to be seen how much of
an effect the information relevance of the newly added visual data has on counter-balancing such
degradation in performance. In order to measure such an effect, a new study needs to be carried out
to compare the impact of a multi-sensory interface by adding more visual data that is not yet
conveyed through other senses (novel data) versus adding visual data that is already conveyed

through another sense (redundant data).

Redundancy could be beneficial to mitigate the fact that vision is uni-directional. A visual
display could become at least partially omni- or multi-directional by adding redundant feedback
through senses such as hearing and touch. The larger the number of focus points on screen, and the
larger their relative distance on screen, the higher are the chances that the user will miss some

information or event. However, having data redundancy spread across a multi-sensory display in a
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balanced, fused, non-distracting and non-obtrusive manner could reduce event misses and increase

SA and comprehension.

Following the same thread of reasoning, it would be interesting to explore the validity of

the following more general statement:

CL1: Redundant data over multiple senses brings no benefit to the user of a multi-sensory

display that already maximizes the user s omni-directional perception of relevant data.

In other words, the more omni-directional a display is, the more data can be perceived by
the user simultaneously, the smaller the chances that changes in the data displayed are missed, and
hence, the smaller the need for providing redundant data displays. Admittedly, the study presented
here barely scratches the surface of such a topic. Similar studies exploring the optimization of
multi-sensory omni-directionality must be performed and their results cross-validated for this

statement to be considered as plausible.

Nevertheless, the question of how complex multi-sensory displays can get is still not
completely answered. In the context of this study, it was seen that using three senses in an USAR
robot interface proved to be better than using only two, especially in terms of navigation, but what
if more senses are considered? Is it possible to display data to olfactory and gustatory senses to
improve displays for practical applications? Are the results obtained in all previous studies
reproducible in a real robot scenario? The fourth and last study aims to explore the sense of smell
in the same USAR context and validate the results obtained with a simulated environment in a

physical environment with a real robot.
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3.5. Study #4: Further Exploring Multi-sensory Feedback Interface in

Virtual USAR and Validating Previous Results with a Real Robot

3.5.1. Motivation

The motivation of this fourth study was two-fold. Firstly, we wanted to validate with a real robot
and environment the results previously obtained in studies #1, #2 and #3 with a simulated robot
and environment. Secondly, we also wanted to explore further multi-sensory enhancements to
the robot interface and how they impact user performance. For this study we built our multi-
sensory robot and updated the previous interface so that it could display robot-sensed data not
only through visuals, audio and vibration, but also through smell. The specification of the robot
design and architecture as well as the interface improvements are detailed next, followed by the

study methodology, results and their analysis and discussion.

3.5.2. Robot

The robot used was a custom-made four-wheel rover as seen in Figure 3.24.
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Figure 3.24: Robot used in study #4.

The robotic chassis (Figure 3.25) used was an All-Terrain Robot (ATR) that can handle
outdoor terrain, but it was still small enough to be navigated indoors. Four motors allowed
differential drive. A battery pack (24V, 4,500mAHr NiMH, 2 x 10, Figure 3.26a), was placed
inside the robot chassis and used only by the motors. A power switch for motors could be
accessed from outside the chassis and enabled running the robot sensors without the motors on.
Tape and a garden hose (see Figure 3.25) were put around the chassis wheels to reduce friction
with the carpet of the lab where the study took place. This reduction in friction reduced the

amount of power needed to move the robot. As a consequence, it made the robot more easily
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navigable by making the transition from stopped to moving less abrupt when the user pressed the

robot-movement joystick in the gamepad.

The details for the platform chassis are the following:

o Four-wheel drive, independent drive shafts;

e 42mm 24V DC motors at 252RPMs;

e Four 6.75 inch diameter wheels;

« Sabertooth dual 25A motor driver control board;

e Theoretical top speed: ~5SMPH.

Garden Hose

to Reduce Friction

Controllina Board Batterv Slot
Motors Power Switch

Figure 3.25: Inside view of robot platform.
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The four motors were operated through a Sabertooth board which was connected to the
Neuron Robotics DylO board. The latter was in turn connected to the computer on top of the
robotic platform. The computer had an ATOM processor (1.66GHz, 1 core, 2 threads with HT)
with 2GB RAM and a 64GB SSD disk. The latter minimizes disk damage while the robot is in
movement. The mother board had PCI-Express, VGA, USB 2.0 and SATA and was protected by
a ventilated metallic black box. The computer was powered by a second battery (12V, 13Ah,
NiMH, 2 x 5, Figure 3.26c) sitting on top of the chassis behind the computer. This battery was

connected to the computer after going through a fuse and a power switch (Figure 3.26b).

Figure 3.26: (a) the battery for powering the robot motors, (b) the power switch
and fuse for the robot computer battery, and (c) the battery for powering the robot
computer.

All the sensors used in the robot, including the cameras and the wireless network card,

were connected to the computer via USB. A Neuron Robotics DylO board (Neuron Robotics,
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2014) was used to connect the robot sensors. The detail on the USB devices and robot sensors is

presented below:

Logitech Quickcam Orbit MP Digital: This pan-tilt camera was used to capture video
in front of the robot to replace the virtual video data that was displayed in the panel in
front of the robot avatar in previous studies.

Logitech C270 webcam: this camera was pointing upward and was used to detect
augmented reality markers placed on the ceiling. The purpose of these markers is
explained in section 3.5.6.

Neuron Robotics DylO board (Figure 3.27): The control for the motors and the data
captured from all other robot sensors was done through this board. The sensors used were
the following:

o Omron Snap Action Switch: Six of these were attached to the strengthened
Styrofoam bumpers on the front and back of the robot and used as collision
sensors. They were positioned to the center-front, front-left, front-right, center-
back, back-left and back-right of the robot.

o Infrared sensors (Sharp IR Distance Sensor GP2Y0A02YK): Six of these
were organized in a circle around the robot and detected proximity of objects in
six homogeneously spread directions at the angle of 0° (forward), 60°, 120°, 180°,
240° and 300°.

o Carbon monoxide sensor MQ-7 (5V, 33Q — 0.15A): this was used to detect
CO levels in the environment around the robot. Even though it was properly

installed and working, it was not used in the study.
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o Potentiometer: A small potentiometer was attached to the top of the orbit camera
to detect its pan angle and send that information back to the robot application
through the Neuron Robotics DylO board. The pitch angle of the camera could

not be obtained and was approximated through software.

Motor Pair 1

Motor Pair 2

Front Left Bumper

Front Center Bumper Back Left Bumper

Back Center Bumper

Front Right Bumper

Carbon Monoxide Back Right Bumper

Infrared 1 Potentiometer

Infrared 2 Infrared 4

Infrared 3 Infrared 5
Infrared 6

Figure 3.27: Neuron Robotics DylO and the sensor channel configuration used in study #4.
The motor pairs are the only input channels, the other ones are output channels with data

coming from the robot.

In addition to the sensors, the DylO was also responsible for sending the signals to the
Sabertooth board to control the wheel motors. The motors were paired into left and right motors

that were controlled independently.

In terms of software, the operating system used in the robot was Microsoft Windows® 7.

To operate the camera pan-tilt camera in front of the Robot, scripts were developed using the
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Robotrealm API and software (Roborealm, 2014). The camera used to detect the markers on the
ceiling was operated using a simple C++ program using the ARToolkit. The remaining sensors
were operated through a small Java program run in the Eclipse IDE (Eclipse, 2013) that used the

Neuron Robotics SDK (Neuron Robotics, 2014) to communicate with the DylO sensor board.

On the robot operator side a DELL XPS 630i (Dell, 2013) (Intel® Core™ 2 Duo, 4GB
RAM, 2 x Nvidia GeForce 9800 GT) desktop machine was used. The operating system in the
machine was Windows Vista. The visual interface (Figure 3.31) was similar to the one in all
previous experiments, which was developed using the C4 game engine (C4 Game Engine, 2012).
A few differences are visible, however. The map blueprint was removed due to resource
constraints. Additionally, a visual bar has been added to visually represent the CO sensor.Apart
from that, the difference is that now real sensors are connected and program libraries were
created to accomplish data communication with the robot. Connected to the computer were all

output devices used in this study, except for the smell display (Figure 3.28d). These were:

e A computer monitor (Viewsonic Optiquest Q20wb, Figure 3.28a): The computer monitor
displayed visual feedback.

o A stereophonic headset displayed audio feedback. It also blocked exterior noise (Figure
3.28Db);

e The TactaBelt displayed vibro-tactile feedback (Figure 3.28c).

The audio and visual feedback was displayed using the C4 engine, as well as RoboRealm
library. The latter was used to capture the video stream from the robot pan-tilt camera to the C4
game engine. A custom program communicated with the smell server to send information to the

smell display through the robot wireless local area network.
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(a)
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Figure 3.28: Output devices used in study #4: (a) 20" computer monitor, (b) stereosphonic headset, (c)
TactaBelt, and (d) smell feedback device.

The smell display server (DELL OptiPlex GX 620, Pentium D326 2.66GHz, 512MB,
Integrated Intel Graphics Media Accelator 950) uses Fedora Linux as its operating System. The
smell display is composed of a humidifier and a small USB fan (Figure 3.28d). The humidifier is

filled with approximately 100 ml of water and 5ml of rosemary essential oil.

The humidifier is connected to a USB hub (D-Link® 7-Port Hi-Speed USB 2.0 Hub,
DUB-H7) whose power is computer controlled on a per-port basis (Figure 3.29). The use of the

USB hub as an intermediary power controlling unit allows us to expand the variety and intensity
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of smells to be displayed by adding more humidifiers to the other USB ports available in the hub.

In this study, only one port and humidifier has been used.

The control of the amount of smell dispersed to the operator is done by controlling the
continuous amount of time the humidifier is left on. The more time the humidifier is kept
continuously on, the more intense the smell becomes. The smell display server uses a simple
C++ program together with shell scripts to control the state of the USB ports on the hub
connected to the computer and hence control when and for how long the USB port to which the
humidifier is connected should be on. The smell could be easily felt within 1 — 2 seconds after it

has been released by the humidifier.

The humidifier is placed on the lower compartment of the white box (6” x 12” x 6)
supporting the fan, so that it is hidden from the subjects view (Figure 3.29). Hiding is necessary
so that subjects will not know when the humidifier is on or not by looking at it. And since the fan
of the smell device is kept on during the entire study, the only way for subjects to detect if the
smell feedback device is on or not is by actually sensing the variation in smell in the air being
blown by the device. The smell device was placed on the front-left of the user, at approximately
half a meter from his left arm and horizontally pointing towards his head direciton. The device

dimensions were 6” x 6” x 12” (width x depth x height).

141



e

e
| ————— |
Smell Hidden
Display Compartment
Server 0 b et

/

Figure 3.29: Study #4 smell device schematics.

Figure 3.30 presents an overview of how data communication took place in the developed
HRI system. Input from the operator came from a single source of input, which was the gamepad
as in the three previous studies. Feedback to the operator came mostly from the operator
computer through the game engine rendering the robot interface, with the exception of the smell
feedback which had to run on a Linux machine. The notes following Figure 3.30 give details on
the projects used for each part in the architecture and available on-line (de Barros & Lindeman,

2014). However, due to the game engine copyrights, not all code used in the study is available.
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Figure 3.30: Architecture for robot communication between operator, computer, smell server and robot
for study #4. Please notice asterisk comments on the next page.



Notes for Figure 3.30:

*1 _ ARToolkit (Kato & Billinghurst, 1999) simpleTest2 project (C++) integrated with
smellDisplayC4Diplomat ~ (C++)  server side  (SmellDisplayC4Diplomat  project,
DistanceRequestsServer_ServerThread) through SmellDisplayC4Diplomat.dll to send robot-

circle distance updates to the C4 game engine;

*2 _ ARToolkit (Kato & Billinghurst, 1999) simpleTest2 project (C++) integrated with
smellDisplayC4Diplomat  (C++)  server side  (SmellDisplayC4Diplomat  project,
UpdateSmellDevice_ClientThread) through SmellDisplayC4Diplomat.dll to send smell level

messages to the smell device server;

*3 _ Roborealm IDE with pre-configured scripts that process both camera control input and video

output using the Roborealm library installed in the robot;

** _ C4 Game project (C++) integrated with smellDisplayC4Diplomat (C++) client side
(SmellDisplayC4Diplomat  project, UpdateDistanceRobotMarker_ClientThread)  through
SmellDisplayC4Diplomat.dll to process camera control output and video input;

*® _ C4 Game project (C++) integrated with RoboRealmInterface (C++) client side (RRC4Diplomat
project) through RRC4Diplomat.dll;

*6 _ HIVEUSARBOotNRController project (Java) integrated with NRC4Diplomat (C++, JNI) server
side (NRC4Diplomat_ServerRobot project) through NRC4Diplomat.dll to capture and output
bumpers, camera pan and infrared data. If the CO sensor is used, it also processes and outputs

CO levels as data for the smell server. Currently, this feature is disabled.

*! _ C4 Game project (C++) integrated with NRC4Diplomat and the sensors Database (C++,
NRC4Diplomat project) through NRC4Diplomat.dll.

*8 _ SmellServer/ServerEcho program (C++) that processes smell level messages from the

smellDisplayC4Diplomat server side and runs scripts to control flow of power in the specific
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The operator computer transmitted data input to operate the robot motors and pan-tilt
camera to the robot computer. These sources of input were the only way the operator could affect

the robot and hence the remote physical environment the robot was in.

For visual, audio and vibro-tactile feedback, the robot-sensed data was sent to the
operator machine back to the game engine, which would process such data and convert it into
displayable data through the respective output devices. Visual feedback for the CO sensor was
also transmitted to the game engine. The CO level in the air was simulated using the distance
between the robot and fiducial markers attached on the ceiling above each of the red circles in
the remote environment that were to be located by the operator. Cardboard circles were used in
this study to replace the virtual spheres used in previous studies. They were oriented to face the

robot likely view position and make them easily visible through the robot camera.

For smell feedback, the distance-to-marker data obtained from the ARToolkit application
was converted into smell intensity levels and transmitted to the Smell server. This server would
trigger custom USB-hub-power-controlling scripts to adjust the intensity and persistence of the

smell based on the intensity level received.

Most of the code was implemented in C++, with the exception of the interface to the
Neuron Robotics DylO, which was implemented in Java and integrated to the rest of the

application using JNI.

3.5.3. Robot Interface

The interface used in this study was an improved version of the one used in study #3. It

consisted of the same 3D visual interface where the robot is viewed from the back.
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In order to explain the interface, the task needs to be briefly explained .More details of
the task can be found in section 3.5.4. The task was similar to the one of previous studies. It
consisted of searching for red objects. This time, however, the objects to be searched were red

cardboard circles instead of red spheres as seen in Figure 3.31.

In this study, the video panel now presents a video from the robot's pan-tilt camera as can
be seen on Figure 3.31. Subjects could use this panel to perform the search task and look down
at the robot wheels and chassis. Subjects could use this lower view of the robot to better
understand the distance between the robot and the surrounding objects, and clarify the robot

situation during a frontal or lateral collision.

In addition, a CO display bar was added to the interface to indicate the current levels of
CO in the robot location. This design was based on other USAR interfaces that measure CO or
CO:2 levels (YYanco et al., 2006). Because the study was run in a university lab, the levels of CO
in the area could not be changed to keep the environment safe for humans. As previously
mentioned, the change of CO level in the air was simulated with the use of augmented reality
markers placed on the lab ceiling above the location of each of the circles. The markers were
detected using the ARToolkit library (Kato & Billinghurst, 1999) (see section 3.5.3). The robot
camera that was always pointing to the ceiling would detect proximity to the closest marker and
calculate the distance between the robot and the marker. The closer the robot would be to the
marker, the higher the level of CO that would be reported by the camera application. Only one
marker would be processed at a time, but circles were arranged in the lab so that they were far
enough away that their markers would not interfere with the detection mechanism. The result of
this approach was that the closer the robot was to a red circle, the higher was level of CO

reported by the feedback interface.
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The map blueprint that was presented on the virtual ground in previous studies has been
removed in this study because there was not enough resources to reproduce it in the real robot
scenario. Because the position of the robot is now unknown, it was not possible to place the
blueprint details relative to the robot avatar on the visual interface. As there was also no virtual
world to be displayed, the environment where the robot avatar would move was simply a blank

virtual space (Figure 3.31).

Cardboard
Circle

Figure 3.31: Visual interface for study #4.

Our previous studies have show that the improvements in multi-sensory interfaces are
present even when the blueprint is present. In this study, multi-sensory interfaces should lead to
improvements that are perhaps even better than the ones detected in previous studies