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ABSTRACT 

 

This dissertation documents a study on parameter estimation methods for comprehensive pyrolysis 

modeling. There are four parts to this work, which are (1) evaluating effects of applying different kinetic models to 

pyrolysis modeling of fiberglass reinforced polymer composites; (2); evaluation of pyrolysis parameters for 

fiberglass reinforced polymer composites based on multi-objective optimization; (3) parameter estimation for 

comprehensive pyrolysis modeling: guidance and critical observations; and (4) engineering guide for estimating 

material pyrolysis properties for fire modeling.  

In the first part (Section 2), evaluation work is conducted to determine the effects of applying different 

kinetic models (KMs), developed based on thermal analysis using TGA data, when used in typical 1D pyrolysis 

models of fiberglass reinforced polymer (FRP) composites. The study shows that that increasing complexity of KMs 

to be used in pyrolysis modeling is unnecessary for the FRP samples investigated. Additionally, the findings from 

this research indicates that the basic assumption of considering thermal decomposition of each computational cell in 

comprehensive pyrolysis modeling as equivalent to that in a TGA experiment becomes inapplicable at depth and 

higher heating rates. 

The second part of this dissertation (Section 3) reports the results from a study conducted to investigate the 

ability of global, multi-objective and multi-variable optimization methods to estimate material parameters for 

comprehensive pyrolysis models. The research materials are two fiberglass reinforced polymer (FRP) composites 

that share the same fiberglass mats but with two different resin systems. One resin system is composed of a single 

component and the other system is composed of two components (resin and fire retardant additive). The results 

show that for a well-configured parameter estimation exercise using the optimization method described above, (1) 

estimated results are within ± 100% of the measurements in general; (2) increasing complexity of the kinetic 

modeling for a single component system has insignificant effect on estimated values; (3) increasing complexity of 

the kinetic modeling for a multiple component system with each element having different thermal characteristics has 

positive effect on estimated values; and (4) parameter estimation using an optimization method with appropriate 

level of complexity in kinetic model and optimization targets can find estimations that can be considered as effective 

material property values.  

The third part of this dissertation (Section 4) proposes a process for conducting parameter estimation for 

comprehensive pyrolysis models. The work describes the underlying concepts considered in the proposed process 

and gives discussions of its limitations. Additionally, example cases of parameter estimation exercise are shown to 

illustrate the application of the parameter estimation process. There are four materials considered in the example 

cases – thermoplastics (PMMA), corrugated cardboard, fiberglass reinforced polymer composites and plywood. 

In the last part (Section 5), the actual Guide, a standardized procedure for obtaining material parameters for 

input into a wide range of pyrolysis models is presented. This is a step-by-step process that provides a brief 
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description of modeling approaches and assumptions; a typical mathematical formulation to identify model 

parameters in the equations; and methods of estimating the model parameters either by independent measurements 

or optimization in pair with the model. In the Guide, example cases are given to show how the process can be 

applied to different types of real-world materials. 
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insignificant effect in the estimated thermal conductivity and some improvement in the estimated 
specific heat capacity of the fiberglass for a single component system BrUPE. However, for two-
component system MA+A, there is a significant improvement in the estimation for thermal conductivity 
and specific heat capacity for fiberglass when a more complex kinetic model is used. 
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Figure 1. Flow chart of parameter estimation for comprehensive pyrolysis models 

Figure 2. Understanding manual optimization: (a) For a one-step thermal decomposition kinetics that 
takes place within temperature range of Ta < T < Tb, changing parameters related to reactants should 
affect fire behaviors at temperatures below Ta and changing parameters related to products should 
affect fire behaviors at temperatures above Tb; (b) Reducing HoR increases mass loss rate peak; (c) 
Reducing thermal conductivity results in wider spread between Tsurf and Tback; (d) Reducing specific 
heat capacity results in faster increase in temperature throughout.  Note that results from greater 
parameter value are shown in solid lines, while those from smaller value are shown in dashed lines. 

Figure 3. Thermal conductivity of fiberglass estimated from measured thermal conductivities of polymer 
resin and fiberglass reinforced polymer (FRP) composite and volume (X) fraction of resin and fiberglass.  
The solid fill of the markers indicate the mean and the uncertainties are considered with unfilled 
markers. When k < 0, estimation is considered to be non-physical. 

Figure 4. Actual pyrolysis phenomenon of a porous solid phase material under one-dimensional heating 



 

xvii 
 

Figure 5. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive 
pyrolysis modeling (mod) and are shown for MA+A FRP composite.  Applied heat flux levels are 25 (left), 
50 (middle) and 75 (right) kW/m2. Good agreement between experiment data and modeling results is 
found from the cases with applied heat flux level of 25 and 50kW/m2. Deviation in simulation occurs 
from experiment data at 75 kW/m2 case near the initial peak in the mass loss rate (t < 300s). 

Figure 6. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive 
pyrolysis modeling with different kinetic models (A through F) and are shown for BrUPE FRP composite 
at applied heat flux level of 50 kW/m2. Generally, good agreement between experiment data and 
modeling results are found for all cases (A through F) except for case A where a large scatter is found 
near the mass loss rate peak and at the end of the simulation. 

Figure 7. Mass loss rate (MLR, top row) and surface temperature (Tsurf, bottom row) comparisons for 
PMMA between actual from experiment (exp) and modeled (mod) at applied heat flux of 23 (left), 46 
(middle) and 64 (right) kW/m2. Best simulation results were found from estimation with mostly non-
optimization (i.e. independent measurements or literature search) approach for parameter estimation 
of PMMA. 

Figure 8. Mass loss rate (MLR, top row) and surface temperatures (Tsurf , bottom row) comparisons for 
corrugated cardboard between actual from experiment (exp) and modeled (mod) at applied heat flux of 
20 (left), 60 (middle) and 110 (right) kW/m2. The moderate heat flux case is used in optimization and the 
lower and higher heat flux cases are used in extrapolation exercise to examine modeling quality. Best 
simulation results were found from estimation with mostly optimization approach using shuffled 
complex evolution method for parameter estimation of triple layered corrugated cardboard. 

Figure 9. Mass loss rate (MLR) and surface temperatures (Tsurf , Tback) comparisons for fiberglass 
reinforced polymer (FRP) composite with modified acrylic resin with high-charring fire retardant additive 
between actual from experiment (exp) and modeled (mod) at applied heat flux of 25, 50 and 75 kW/m2. 
The moderate heat flux case is used in optimization and the lower and higher heat flux cases are used in 
extrapolation exercise to examine modeling quality. Best simulation results were found from estimation 
with mostly optimization approach using either genetic algorithm or shuffled complex evolution method 
for parameter estimation of this fiberglass reinforced polymer composite. 

Figure 10. Mass loss rate (MLR) and surface temperatures (Tsurf , Tback) comparisons for plywood between 
actual from experiment (exp) and modeled (mod) at applied heat flux of 25, 50 and 75 kW/m2. The 
moderate heat flux case is used in optimization and the lower and higher heat flux cases are used in 
extrapolation exercise to examine modeling quality. Simulation results are from estimation with manual 
optimization approach for parameter estimation of plywood. 

 

- Section 5 - 

Figure 2-1.  Material category: Depending on material’s characteristics, material can be grouped into 4 
categories and examples for each category is given. 

Figure 2-2.  Model selection flowchart: By examining the cross-section of material and analyzing 
experiment data that presents its fire behavior, modeler may determine material’s virtual 
microstructure and appropriate pyrolysis models available for its specific use. 

Figure 3-1.  Flow chart of parameter estimation for empirical pyrolysis models 



 

xviii 
 

Figure 3-2.  Effect of ignition source strength: single seat sofas tested in furniture calorimeter test with 
different ignition source –  

Figure 3-3.  Effect of ignition location: steel framed seat sofa mockups tested in furniture calorimeter 
test with different ignition location –  

Figure 4-1.  Schematic of a piloted ignition experiment 

Figure 4-2.  Pyrolysis modeling set-up used for thermally-thick materials 

Figure 4-3.  Pyrolysis modeling set-up used for thermally-thin materials 

Figure 4-4. Measuring surface temperature with a thermocouple 

Figure 4-5.  Heat balance at the surface of a burning cone calorimeter specimen 

Figure 4-6.  Flow chart of parameter estimation for simple analytical pyrolysis models 

Figure 4-7  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (exp) 
and Modeled MLR (sim) at different applied heat-flux levels – (a) MLR at 25 kW/m2; (b) MLR at 50 
kW/m2; and (c) MLR at 75 kW/m2.  Note that data shown were used to estimate model parameter 
values. 

Figure 4-8  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (exp) 
and modeled MLR (sim) at different applied heat-flux levels – (a) MLR at 28.4 kW/m2; and (b) MLR at 60 
kW/m2.  Note that data shown were not included in the model parameter estimation process; hence, 
these two cases are considered as extrapolation cases. 

Figure 4-9  Mass-Loss Rate (MLR) comparisons for corrugated cardboard between actual MLR from 
experiment (exp) and modeled MLR (sim) at different applied heat-flux levels – (a) MLR at 25 kW/m2; (b) 
MLR at 50 kW/m2; and (c) MLR at 75 kW/m2.  Note that data shown were used to estimate model 
parameter values. 

Figure 4-10  Mass-loss rate (MLR) comparisons for fire-retarded FRP composite between actual MLR 
from experiment (exp) and modeled MLR (sim) at different applied heat-flux levels – (a) MLR at 50 
kW/m2; and (b) MLR at 75 kW/m2.  Note that data shown were used to estimate model parameter 
values. 

Figure 4-10  Mass-loss rate (MLR) comparisons for plywood between actual MLR from experiment (exp) 
and modeled MLR (sim) at different applied heat-flux levels – (a) MLR at 25 kW/m2; (b) MLR at 50 
kW/m2; and (c) MLR at 75 kW/m2.  Note that data shown were used to estimate model parameter 
values. 

Figure 4-12  Mass-loss rate (MLR) comparisons for sandwich composite – GRP skin with balsawood core 
– between actual MLR from experiment (exp) of the composite and modeled MLR (sim) of GRP skin at 
different applied heat-flux levels – (a) MLR at 35 kW/m2; (b) MLR at 50 kW/m2; and (c) MLR at 75 
kW/m2.  Note that data shown were used to estimate model parameter values. 

Figure 4-13  Mass-loss rate (MLR) comparisons for thin FRP composite between actual MLR from 
experiment (exp) and modeled MLR (sim) at different applied heat-flux levels – (a) MLR at 25 kW/m2; (b) 
MLR at 50 kW/m2; and (c) MLR at 75 kW/m2.  Note that data shown were used to estimate model 
parameter values. 

Figure 5-1.  Typical DTG thermogram showing single peak 

Figure 5-2.  Schematic of conducting Ozawa, Flynn and Wall Iso-conversional Method 
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Figure 5-3.  Schematic of conducting Friedmen’s Iso-conversional Method 

Figure 5-4.  Change in DTG curve with respect to changes made in n values using nth order reaction 
model 

Figure 5-5. TG (weight loss) thermogram from TGA experiment (left) and heat flow diagram from DSC 
experiment (right) for decomposition of a rigid foam plastic 

Figure 5-6.  Melting points for a thermoplastic polymer as a function of DSC heating rates 

Figure 5-7.  Flow chart of parameter estimation for comprehensive pyrolysis models 

Figure 5-8.  Understanding manual optimization: (a) For a one-step thermal decomposition kinetics that 
takes place within temperature range of Ta < T < Tb, parameter estimation conductor may understand 
changing parameters related to reactant should affect fire behaviors at temperatures below Ta and 
changing parameters related to product should affect fire behaviors at temperatures above Tb; (b) 
Reducing HoR increases mass loss rate peak; (c) Reducing thermal conductivity results in wider spread 
between Tsurf and Tback; (d) Reducing specific heat capacity results in faster increase in temperature 
throughout.  Note that results from greater parameter value are shown in solid lines, while those from 
smaller value are shown in dashed lines. 

Figure 5-9.  Cone calorimeter test data of thick PMMA (thickness, δ ranging from 24 ~ 29 mm) impinged 
with effective heat fluxes (EHF) of 23, 46, and 69 kW/m2 

Figure 5-10.  TG/DTG curves at 10°C/min heating rate with different estimation results for kinetic 
parameters for thermal decomposition of PMMA 

Figure 5- 11.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (data) 
and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat-flux of 46 kW/m2.  Note 
that data shown were used to estimate model parameter values via numerical optimization using GA, 
SCE or SHC routines. 

Figure 5-12.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (data) 
and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat flux of (a) 23 and (b) 64 
kW/m2.  Note that data shown were not included in the model parameter estimation process; hence, 
these two cases are considered as extrapolation cases. 

Figure 5-13.  surface temperature (Tsurf) comparisons for PMMA modeling using parameters estimated 
from different approaches – direct measurement, literature search, or approximation (A); measurement 
and numerical optimization (B-GA, B-SCE, B-SHC); mostly numerical optimization (C-GA, C-SCE, C-SHC) at 
applied heat flux of 46 kW/m2.  Note that data shown were used to estimate model parameter values 
via numerical optimization using GA, SCE or SHC routines. 

Figure 5-14.  Surface temperature (Tsurf) comparisons for PMMA modeling using parameters estimated 
from different approaches – direct measurement, literature search, or approximation (A); measurement 
and numerical optimization (B-GA, B-SCE, B-SHC); mostly numerical optimization (C-GA, C-SCE, C-SHC) at 
applied heat flux of (a) 23 and (b) 64 kW/m2.  Note that data shown were not included in the model 
parameter estimation process; hence, these two cases are considered as extrapolation cases. 

Figure 5-15.  TGA thermograms of PMMA decomposition conducted under constant heating rates – 2, 5, 
10 and 20K/min – and two different environments – (a) nitrogen and (b) air 

Figure 5-16.  Fire propagation apparatus (FPA) test data – (a) mass-loss rate; and (b) surface-
temperature profile –  of triple-wall corrugated cardboard, i.e., two layers of corrugated cardboard 
(thickness, δ is 30 mm) impinged with effective heat fluxes (EHF) of 20 to 110 kW/m2 
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Figure 5-17.  TG/DTG curves at 10°C/min heating rate with different estimation results for kinetic 
parameters for thermal decomposition of corrugated cardboard: For better comparison, TG and DTG 
thermograms have been scaled to result in 100% conversion. 

Figure 5-18.  Mass-Loss Rate (MLR) comparisons for corrugated cardboard between actual MLR from 
experiment (Data) and modeled MLR (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat flux of 60 
kW/m2.  Note that data shown were used to estimate model parameter values via numerical 
optimization using GA, SCE or SHC routines. 

Figure 5-19.  Mass-Loss Rate (MLR) comparisons for corrugated cardboard between actual MLR from 
experiment (data) and modeled MLR (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat flux of (a) 
20 and (b) 110 kW/m2.  Note that data shown were not included in the model-parameter estimation 
process; hence, these two cases are considered as extrapolation cases. 

Figure 5-20.  Surface-temperature (Tsurf) comparisons for corrugated cardboard between actual tsurf 
from experiment (data) and modeled Tsurf (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat flux 
of 60 kW/m2.  Note that data shown were used to estimate model parameter values via numerical 
optimization using GA, SCE or SHC routines. 

Figure 5-21.  Surface Temperature (Tsurf) comparisons for corrugated cardboard between actual Tsurf 
from experiment (data) and modeled Tsurf (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat flux 
of (a) 20 and (b) 110 kW/m2.  Note that data shown were not included in the model parameter 
estimation process; hence, these two cases are considered as extrapolation cases. 

Figure 5-22.  TGA thermograms of corrugated cardboard decomposition conducted under constant 
heating rate of 20 °C/min and two different environments – nitrogen and air 

Figure 5-23.  Cross-section of FRP composite with modified acrylic resin with high-charring inorganic 
additive 

Figure 5-24.  Total heat flux measured from sample surface during cone calorimeter test 

Figure 5-25.  Cone calorimeter (cone) test data of modifiedacrylic resin with high-charring additive FRP 
composite (thickness, δ is 8.9 ± 0.2 mm, density, ρ is 1900 kg/m3) impinged with effective heat fluxes 
(EHF) of 25 to 75 kW/m2 

Figure 5-26.  TG/DTG curves at 10°C/min heating rate with different estimation results for kinetic 
parameters for thermal decomposition of fire-retarded FRP composite: Testing of resin with additive 
sample (~10mg) with nitrogen purge 

Figure 5-27.  Mass-loss rate (MLR) comparisons for FRP composite with modified-acrylic resin with high-
charring inorganic additive between actual MLR from experiment (data) and modeled MLR (GA, SCE, 
SHC) at applied heat flux of 50 kW/m2.  Note that data shown were used to estimate model parameter 
values via numerical optimization using GA, SCE or SHC routines. 

Figure 5-28.  Mass-loss rate (MLR) comparisons for FRP composite with modified-acrylic resin with high-
charring inorganic additive between actual MLR from experiment (data) and modeled MLR (GA, SCE, 
SHC) at applied heat flux of (a) 25 and (b) 75 kW/m2.  Note that data shown were not included in the 
model parameter estimation process; hence, these two cases are considered as extrapolation cases. 

Figure 5-29.  Surface-temperature (Tsurf) Comparisons for FRP composite with modified-acrylic resin 
with high-charring inorganic additive between actual Tsurf from experiment (data) and modeled Tsurf 
(GA, SCE, SHC) at applied heat flux of 50 kW/m2.  Note that data shown were used to estimate model 
parameter values via numerical optimization using GA, SCE or SHC routines. 
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Figure 5-30.  Surface-temperature (Tsurf) comparisons for FRP composite with modified-acrylic resin 
with high-charring inorganic additive between actual Tsurf from experiment (data) and modeled Tsurf 
(GA, SCE, SHC) at applied heat flux of (a) 25 and (b) 75 kW/m2.  Note that data shown were not included 
in the model parameter estimation process; hence, these two cases are considered as extrapolation 
cases. 

Figure 5-31.  Back-surface temperature (Tback) comparisons for FRP composite with modified-acrylic 
resin with high-charring inorganic additive between actual Tback from Experiment (Data) and Modeled 
Tback (GA, SCE, SHC) at applied heat flux of 50 kW/m2.  Note that data shown were used to estimate 
model parameter values via numerical optimization using GA, SCE or SHC routines. 

Figure 5-32.  Back-surface temperature (Tback) comparisons for FRP composite with modified-acrylic 
resin with high-charring inorganic additive between actual Tback from experiment (data) and modeled 
Tback (GA, SCE, SHC) at applied heat flux of (a) 25 and (b) 75 kW/m2.  Note that data shown were not 
included in the model parameter estimation process; hence, these two cases are considered as 
extrapolation cases. 

Figure 5-33.  Total heat flux measured from sample surface during cone calorimeter test 

Figure 5-34.  Cone calorimeter (cone) test data of plywood (thickness, δ is 11.1 ± 0.1 mm, density, ρ is 
540 ± 10 kg/m3) impinged with effective heat fluxes (EHF) of 25 to 75 kW/m2 

Figure 5-35.  TG/DTG curves at 20°C/min heating rate with different estimation results for kinetic 
parameters for thermal decomposition of plywood: Testing of plywood sample (~10mg) with air purge 

Figure 5-36.  Mass-loss rate (MLR) comparisons for FRP composite with plywood between actual MLR 
from experiment (data) and modeled MLR (M&M) at applied heat flux of 50 kW/m2.  Note that data 
shown were used to estimate model parameter values via manual optimization. 

Figure 5-37.  Mass-loss rate (MLR) comparisons for FRP composite with plywood between actual MLR 
from experiment (data) and modeled MLR (M&M) at applied heat flux of (a) 25 and (b) 75 kW/m2.  Note 
that data shown were not included in the model parameter estimation process; hence, these two cases 
are considered as extrapolation cases. 

Figure 5-38.  Surface-temperature (Tsurf) comparisons for plywood between actual Tsurf from 
experiment (data) and modeled Tsurf (M&M) at applied heat flux of 50 kW/m2.  Note that data shown 
were used to estimate model parameter values via manual optimization. 

Figure 5-39.  Surface-temperature (Tsurf) comparisons for FRP composite with plywood between actual 
Tsurf from experiment (data) and modeled Tsurf (M&M) at applied heat flux of (a) 25 and (b) 75 kW/m2.  
Note that data shown were not included in the model parameter estimation process; hence, these two 
cases are considered as extrapolation cases. 

Figure 5-40.  Back-surface temperature (Tback) comparisons for plywood between actual Tback from 
experiment (data) and modeled Tback (M&M) at applied heat flux of 50 kW/m2.  Note that data shown 
were used to estimate model parameter values via manual optimization. 

Figure 5-41.  Back-surface temperature (Tback) comparisons for plywood between actual Tback from 
experiment (data) and modeled tback (M&M) at applied heat flux of (a) 25 and (b) 75 kW/m2.  Note that 
data shown were not included in the model parameter estimation process; hence, these two cases are 
considered as extrapolation cases. 

Figure A(B)-1.  Schematic of a furniture calorimeter 
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Figure A(B)-2.  HRR curve from furniture calorimeter experiment of 4 identical tests of the same sofa 
mockup 

Figure A(B)-3.  Effect of ignition source strength: single seat sofas tested in furniture calorimeter test 
with different ignition source –  

Figure A(B)-4.  Effect of ignition location: steel framed seat sofa mockups tested in furniture calorimeter 
test with different ignition location –  

Figure A(B)-5.  Simplified representation of a cone calorimeter test of PMMA 

Figure A(B)-6.  MLR curve from cone calorimeter experiment of PMMA 

Figure A(B)-7.  Simplified representation of a cone calorimeter test of corrugated cardboard 

Figure A(B)-8.  MLR curve from cone calorimeter test of corrugated cardboard 

Figure A(B)-9.  Simplified representation of a cone calorimeter test of fire-retarded fiberglass-reinforced 
polymer (FRP) composite 

Figure A(B)-10.  MLR curve from cone calorimeter test of fire-retarded FRP composite 

Figure A(B)-11.  Simplified representation of a cone calorimeter test of plywood 

Figure A(B)-12.  MLR curve from cone calorimeter test of plywood 

Figure A(C)-1.  Simplified representation of a cone calorimeter test of PMMA 

Figure A(C)-2.  Plot of   versus  

Figure A(C)-3.  Plot of steady MLR versus different applied heat-flux levels – 25, 50 and 75 kW/m2 

Figure A(C)-4.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (exp) 
and modeled MLR (sim) at 25 kW/m2.  Note that data shown were used to estimate model parameter 
values. 

Figure A(C)-5.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (exp) 
and modeled MLR (sim) at 50 kW/m2.  Note that data shown were used to estimate model parameter 
values. 

Figure A(C)-6. Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (exp) 
and modeled MLR (sim) at 75 kW/m2.  Note that data shown were used to estimate model parameter 
values. 

Figure A(C)-7.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (exp) 
and modeled MLR (sim) at 28.4 kW/m2.  Note that data shown were not included in the model 
parameter estimation process; hence, this case is considered as extrapolation case. 

Figure A(C)-9.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (exp) 
and modeled MLR (sim) at 60 kW/m2.  Note that data shown were not included in the model parameter 
estimation process; hence, this case is considered as extrapolation case. 

Figure A(C)-10.  Simplified representation of a cone calorimeter test of corrugated cardboard 

Figure A(C)-11.  Plot of   versus  

Figure A(C)-12.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m2 
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Figure A(C)-13.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual MLR from 
experiment (exp) and modeled MLR (sim) at 25 kW/m2.  Note that data shown were used to estimate 
model parameter values. 

Figure A(C)-14.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual MLR from 
experiment (exp) and modeled MLR (sim) at 50 kW/m2.  Note that data shown were used to estimate 
model parameter values. 

Figure A(C)-15.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual MLR from 
experiment (exp) and modeled MLR (sim) at 75 kW/m2.  Note that data shown were used to estimate 
model parameter values. 

Figure A(C)-16.  Simplified representation of a cone calorimeter test of fire-retarded fiberglass-
reinforced polymer (FRP) composite 

Figure A(C)-17.  Plot of   versus  

Figure A(C)-18.  Plot of steady MLR versus different applied heat flux levels – 25 to 75 kW/m2 

Figure A(C)-19.  Mass-loss rate (MLR) comparisons for fire-retarded FRP composite between actual MLR 
from experiment (exp) and modeled MLR (sim) at 50 kW/m2.  Note that data shown were used to 
estimate model parameter values. 

Figure A(C)-20.  Mass-loss rate (MLR) comparisons for fire-retarded FRP composite between actual MLR 
from experiment (exp) and modeled MLR (sim) at 75 kW/m2.  Note that data shown were used to 
estimate model parameter values. 

Figure A(C)-21.  Simplified representation of a cone calorimeter test of plywood 

Figure A(C)-22.  Plot of   versus  

Figure A(C)-23.  Plot of steady MLR versus different applied heat -flux levels – 25 to 75 kW/m2 

Figure A(C)-24.  Mass-loss rate (MLR) comparisons for plywood between actual MLR from experiment 
(exp) and modeled MLR (sim) at 25 kW/m2.  Note that data shown were used to estimate model 
parameter values. 

Figure A(C)-25.  Mass-loss rate (MLR) comparisons for plywood between actual MLR from experiment 
(exp) and modeled MLR (sim) at 50 kW/m2.  Note that data shown were used to estimate model 
parameter values. 

Figure A(C)-26.  Mass-loss rate (MLR) comparisons for plywood between actual MLR from experiment 
(exp) and modeled MLR (sim) at 75 kW/m2.  Note that data shown were used to estimate model 
parameter values. 

Figure A(C)-27.  Simplified representation of a cone calorimeter test of sandwich composite 

Figure A(C)-28.  Plot of   versus  

Figure A(C)-29.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m2 

Figure A(C)-30.  Mass-loss rate (MLR) comparisons for GRP with balsa wood core sandwich composite 
between actual MLR from experiment (exp) and modeled MLR (sim) at 25 kW/m2.  Note that data 
shown were used to estimate model parameter values. 

Figure A(C)-31.  Mass-loss rate (MLR) comparisons for GRP with balsa wood core sandwich composite 
between actual MLR from experiment (exp) and modeled MLR (sim) at 50 kW/m2.  Note that data 
shown were used to estimate model parameter values. 
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Figure A(C)-32.  Mass-loss rate (MLR) comparisons for GRP with balsa wood core sandwich composite 
between actual MLR from experiment (exp) and modeled MLR (sim) at 75 kW/m2.  Note that data 
shown were used to estimate model parameter values. 

Figure A(C)-33.  Simplified representation of a cone calorimeter test of FRP composite sheet 

Figure A(C)-34.  Plot of   versus  

Figure A(C)-35.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m2 

Figure A(C)-36.  Mass-loss rate (MLR) comparisons for thin FRP composite sheet between actual MLR 
from experiment (exp) and modeled MLR (sim) at 25 kW/m2.  Note that data shown were used to 
estimate model parameter values. 

Figure A(C)-37.  Mass-loss rate (MLR) comparisons for thin FRP composite sheet between actual MLR 
from experiment (exp) and modeled MLR (sim) at 50 kW/m2.  Note that data shown were used to 
estimate model parameter values. 

Figure A(C)-38.  Mass-loss rate (MLR) comparisons for thin FRP composite sheet between actual MLR 
from experiment (exp) and modeled MLR (sim) at 75 kW/m2.  Note that data shown were used to 
estimate model parameter values. 

Figure A(D)-1.  Thermal conductivity of PMMA 

Figure A(D)-2.  Heat capacity of PMMA 

Figure A(D)-3.  Kinetic modeling for decomposition of PMMA under nitrogen atmosphere: Arrhenius 
equation with n = 1 reaction model is used. 

Figure A(D)-4.  Simplified representation of a cone calorimeter test of PMMA 

Figure A(D)-5.  Cone experiment results of PMMA with effective heat flux and thickness ranging from 23 
to 69 kW/m2 and 24 to 29 mm, respectively 

Figure A(D)-6.  TG/DTG curves at 10°C/min heating rate with different estimation results for kinetic 
parameters for thermal decomposition of PMMA 

Figure A(D)-7.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (data) 
and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat flux of 46 kW/m2.  Note 
that data shown were used to estimate model parameter values via numerical optimization using GA, 
SCE or SHC routines. 

Figure A(D)-8.  Surface-temperature (Tsurf) comparisons for PMMA modeling using parameters 
estimated from different approaches – direct measurement, literature search, or approximation (A); 
measurement and numerical optimization (B-GA, B-SCE, B-SHC); mostly numerical optimization (C-GA, C-
SCE, C-SHC) at applied heat flux of 46 kW/m2.  Note that data shown were used to estimate model 
parameter values via numerical optimization using GA, SCE or SHC routines. 

Figure A(D)-9.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from experiment (data) 
and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied heat flux of (a) 23 and (b) 64 
kW/m2.  Note that data shown were not included in the model parameter estimation process; hence, 
these two cases are considered as extrapolation cases. 

Figure A(D)-10.  Surface-temperature (Tsurf) comparisons for PMMA modeling using parameters 
estimated from different approaches – direct measurement, literature search, or approximation (A); 
measurement and numerical optimization (B-GA, B-SCE, B-SHC); mostly numerical optimization (C-GA, C-
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SCE, C-SHC) at applied heat flux of (a) 23 and (b) 64 kW/m2.  Note that data shown were not included in 
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INTRODUCTION 
 

This dissertation consists four sections, which covers various aspects of parameter estimation problem for pyrolysis 

modeling. Section 2 is devoted to conducting thermal decomposition kinetic modeling using independent thermal 

analysis. This information is needed as an input to describe the thermal decomposition mechanism in the 

comprehensive pyrolysis models. Additional work is conducted to evaluate the effects of applying different kinetic 

models to pyrolysis modeling. Sample materials used were fiberglass (E-glass mats) reinforced polymer composites 

with two types of resin systems – brominated unsaturated polyester and modified acrylic with inorganic high-

charring fire retardant additive. Section 3 is dedicated to investigate the ability of global, multi-objective/variable 

optimization methods to estimate material parameters for comprehensive pyrolysis models. The estimation exercise 

is prepared with carefulness in terms of selecting the appropriate kinetic model and the optimization targets. The 

estimated results are compared with independently measured or reference values. Same sample materials are used in 

Section 3 as in Section 2. In Section 4, a process for conducting parameter estimation for comprehensive pyrolysis 

model is proposed and the relevant concepts used in the process and the limitations are explained. In addition, 

example cases of conducting parameter estimation following the process proposed are shown for real-world 

materials – thermoplastics (PMMA), corrugated cardboard, fiberglass reinforced polymer composites and plywood. 

Section 5 is the actual step-by-step guide for conducting parameter estimation for a wide range of pyrolysis models 

including comprehensive pyrolysis models.  

 

 



 

Section 2 

EVALUATING EFFECTS OF APPLYING DIFFERENT KINETIC MODELS TO PYROLYSIS MODELING OF 

FIBERGLASS REINFORCED POLYMER COMPOSITES 

 

 

 

  

[Type the abstract of the document here. The abstract is typically a short summary of the contents of 

the document. Type the abstract of the document here. The abstract is typically a short summary of the 

contents of the document.] 



 

 

 

 

Section 2 - 1

EVALUATING EFFECTS OF APPLYING DIFFERENT KINETIC MODELS TO 

PYROLYSIS MODELING OF FIBERGLASS REINFORCED POLYMER 

COMPOSITES 

Kim, E.
1
, Dembsey, N.

1
*, and Shivkumar, S.

2
 

1
WPI, Fire Protection Engineering Dept., Worcester, MA, USA 

2
WPI, Mechanical Engineering Dept., Worcester, MA, USA  

*Corresponding author email: ndembsey@wpi.edu 

ABSTRACT 

This research evaluates the effects of applying different kinetic models (KMs), developed based on thermal analysis 

using TGA data, when used in typical 1D pyrolysis models of fiberglass reinforced polymer (FRP) composites. The 

effect of different KMs is isolated from the FRP heating by conducting pyrolysis modeling based on measured 

temperature gradients. Mass loss rate (MLR) simulations from this pyrolysis modeling with various KMs show 

changes in the simulations due to applying different KM approaches are minimal in general. Pyrolysis simulations 

with the most complex KM are conducted at several heat flux levels. MLR comparison shows there is good overlap 

between simulations and the experimental data at low incident heat fluxes. Comparison shows there is poor overlap 

at high incident heat fluxes.  These results indicate that increasing complexity of KMs to be used in pyrolysis 

modeling is unnecessary for these FRP samples; and that the basic assumption of considering thermal decomposition 

of each computational cell in comprehensive pyrolysis modeling as equivalent to that in a TGA experiment becomes 

inapplicable at depth and higher heating rates. 

 

KEYWORDS 

thermal decomposition; kinetic modeling; thermal analysis; thermoset resin; pyrolysis modeling; fiberglass 

reinforced polymer 

NOMENCLATURE 

a zero order rxn model slope (/K) 

b zero order rxn model intercept (-) 

e Euler’s number (-) 

E activation energy (kJ/mol) 

f function 

k rate constant (/s) 
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r rate (%/min) 

R gas constant (J/mol-K) 

T temperature (K) 

t time (s) 

 

Greek 

α conversion (-) 

β heating rate (°C/min) 

 

Subscripts 

p DTG peak 

0 initial condition 

1. INTRODUCTION 

In the recent years, comprehensive pyrolysis models [1,2,3]  have been released to the fire community. In contrast to 

previous pyrolysis models [4,5,6] where empirical or simple analytical approaches were used with many restrictions 

in terms of describing the material and modelling conditions, these comprehensive pyrolysis models allow greater 

flexibility mathematically as they explicitly solve for conservation of mass, energy and/or momentum of materials 

upon heating and/or thermal decomposition. Additionally, these models can simulate multi-step thermal 

decomposition reactions and materials with multiple homogeneous layers that have different decomposition 

behaviours. However, the downside of utilizing comprehensive pyrolysis models is related to the effort needed to 

estimate the models’ input– parameters related to thermal decomposition kinetics, material properties and model 

fitting parameters. With empirical or simple analytical pyrolysis models, the number of input parameters is only a 

few and they are all obtained through direct measurements or simple data analysis from calorimeter experiments. 

For comprehensive pyrolysis models, the number of input parameters varies from a few to several orders of 

magnitude greater.  Usually the estimation process involves a state-of-the-art practice where independent 

measurements are conducted and/or robust numerical optimization methods are used to solve an inverse problem to 

estimate the parameters [7,8,9,10,11].  These optimization methods are computationally intensive with the time 

needed for estimation increasing rapidly as the number of parameters increases. 

When conducting comprehensive pyrolysis modelling, thermal decomposition kinetic modelling plays a 

critical role for determining the complexity of the entire problem. The complexity of kinetic modelling used 

determines the total number of input parameters involved in pyrolysis modelling. For example, applying single-step 

thermal decomposition kinetics, e.g. virgin � char + vapour, results in two solid phase species: virgin and char.  For 

this case, model parameters related to material properties – thermo-physcial, optical and porosity characteristics – 

need to be estimated for the virgin and char. However, when two-step thermal decomposition kinetics is applied , e.g. 

virgin � intermediate + vapour, intermediate � char + vapour, three solid phase species virgin, intermediate and 
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char are introduced into the  pyrolysis modelling, which results in one additional set of parameters related to 

material properties of the intermediate species to be estimated.  

Accepted practice for conducting kinetic modelling for comprehensive pyrolysis models is to perform 

independent thermal analysis using small-scale experiments such as thermogravimetric analysis (TGA), differential 

scanning calorimetry (DSC), etc. The underlying assumption is that the computational cell in the comprehensive 

pyrolysis model is equivalent to a sample decomposing in a TGA, DSC, etc. In other words, depending on the 

temperature and residual mass in the computational cell, mass loss is predicted based on heat gain or loss from the 

decomposition reaction. Conventionally, single-step reactions are favoured to model thermal decomposition to limit 

the complexity of a given problem [12]. However, for the past few years, efforts have been undertaken to investigate 

more complex kinetic models which have the ability to allow multiple reactions for describing thermal 

decomposition kinetics [9,13,14,15]. To date, although it has been demonstrated that more complex kinetic models 

can be used in comprehensive pyrolysis modelling, strong justification for utilizing them as opposed to simpler 

kinetic models has been absent. This is especially true with inverse problems where any effect of applying different 

kinetic models can be compensated for during the optimization of other unknown parameter.  

In this study, the following objectives are investigated using commercial thermoset polymer resins and their 

fiberglass reinforced polymer (FRP) composites as sample materials: First, conducting kinetic modelling, i.e. 

proposing thermal decomposition kinetic reactions and estimating relevant kinetic parameters, via independent 

thermal analysis with data obtained from thermogravimetric analysis (TGA) and differential scanning calorimetry 

(DSC) experiments. Kinetic models in this work are developed with minimal information about the polymer resins 

as for most real world materials that are commercially available details regarding the chemical structure of the base 

polymer, fire retardant additives, etc. are rarely accessible to the modelers due to the information being proprietary 

to the manufacturer. The models are intended to be simplified but sophisticated enough to capture the characteristics 

of the materials such as the fire retardancy via additives within a polymer matrix, environmental effects, etc. Second, 

understanding the effects of applying different kinetic models with various levels of complexity on comprehensive 

pyrolysis modelling.  This is accomplished by performing a 1D pyrolysis modelling screening process, which 

utilizes kinetic modelling and temperature gradient measurements from bench-scale experiments as a proxy for 

conservation of energy with heat gain/loss from thermal decomposition reactions. This screening process allows the 

evaluation of applying different kinetic models to pyrolysis modelling without the need of estimating the 

corresponding modelinput parameters. 

1. BACKGROUND 

1.1. Kinetic Modeling Using Thermal Analysis 

Kinetic modeling in thermal analysis is generally defined as a description of the sequence of chemical steps through 

which reactants are transformed into products.  Although when a material is thermally decomposing with numerous 

reactions, most times there are rate determining steps. Kinetic modeling is conducted to simulate these rate 

determining steps.  To find the rate determining steps for a thermally decomposing material, one should consider the 
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reaction rate controlling factor(s).  There are three factors [16] to consider in reactions of solids where one or a 

combination of the factors controls the reaction rate.  One is the chemical reaction factor that considers a bond 

redistribution step.  This step usually occurs at a reaction interface and is the chemical control of reactivity.  Another 

factor is the reaction geometry.  A systematic variation in the reaction interface area with respect to the changes in 

the geometry of the reaction interface as the reaction proceeds exerts an important influence on the kinetic behavior.  

Last is the rate of diffusion of reaction participants.  This factor can influence the rate of product formation.  Based 

on the understanding of the reaction rate controlling factors, kinetic models can be developed to describe the thermal 

decomposition of a material. 

In the small-scale experiments used in thermal analysis, milligram samples are decomposed under certain 

testing conditions so that their main reaction rate controlling factor may be the intrinsic chemical reaction with 

reaction geometry and/or diffusion being the sub-factors. Data obtained from these experiments, thermograms, are 

used in data analysis to estimate kinetic parameters either by linear regression or comparison between measured and 

calculated reaction profiles. Note that any changes made to the testing conditions, i.e. changes to the sample particle 

size, abrasion or damage to crystal surfaces, surface impurities and irradiation, local environment, a precursor step, 

etc. can affect the test results [16].  

Typically in thermal analysis, the isothermal rate of degradation or conversion, dα/dt, is assumed to be a 

linear function of the temperature dependent rate constant, k(T), and a temperature independent function of the 

conversion, reaction model, f(α), where α indicates the conversion.  This equation can be further expanded by using 

the Arrhenius expression for the rate constant. Within the Arrhenius expression, two more reaction dependent 

constants are introduced: the pre-exponential constant, A, and the activation energy, Ea (see Eq. 1). The temperature 

independent function of the conversion, f(α) is dependent upon the mechanism of the chemical reactions and there 

are three major types: accelerating, decelerating and sigmoidal (also called autocatalytic).  It is noteworthy that the 

pressure dependence of kinetics is commonly ignored in thermal analysis because the testing conditions can be 

controlled to maintain a favorable environment for certain reactions to occur. The pressure effects on the 

decomposition processes can be profound for some cases, e.g. reversible decomposition reactions such as oxidation 

and/or reduction with gaseous reaction participants, but in general these are considered to be beyond the research 

scope of thermal analysis [17]. 
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The iso-conversional method [18,19,20,21], also known as the “model-free method”, is the method applied 

to identify the minimum number of reactions necessary for a kinetic model.  This method requires data from 

multiple non-isothermal (or dynamic) experiments, i.e. data tested with at least 4 different heating rates.  The basis 

for this method is that at a constant conversion, α, dα/dt and f(α) become constants and therefore, Ea at each 

conversion is found without the pre-knowledge of the reaction mechanisms.  When the Ea is found for the entire 

degradation process, the results provide insight for the minimum number of steps of elementary reactions needed to 
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address the global reaction. A global reaction composed of a single stage process will show no dependence of Ea on 

conversion, α.  When the global reaction is a complex process, the Ea changes with respect to conversion, α.  An 

increase in Ea with α typically indicates parallel reactions.  A decrease in Ea with α suggests that either the process is 

reversible (concave shape) or there is a change in the rate determining step (convex shape).  Therefore, by analyzing 

the shape of the curve of Ea with respect to conversion, α, a minimum number of elementary reactions are suggested 

[22]. 

When conducting kinetic modeling – proposing thermal decomposition kinetic reactions and estimating 

relevant kinetic parameters – using thermal analysis, there are two methods to increase the complexity of a kinetic 

model and increase the fitness of its calculated reaction profile to thermograms: The first approach is to apply a 

more complex reaction model, f(α) to a single step reaction model. In this case, the iso-conversional method should 

be used in advance to ensure that the estimated Ea’s dependency on conversion, α is minimal and therefore a single-

step reaction model is sufficient to describe the kinetics. Kinetic parameters other than the activation energy can be 

estimated via model-free method as an extent to the iso-conversional method [23,24]. The second approach is to 

increase the number of elementary reactions in a kinetic model to develop a multiple-step reaction model using a 

model-fitting method [25,26]. This is applicable when estimated Ea’s from an iso-conversional method significantly 

vary with respect to conversion, α, i.e. complex kinetics. In this case, kinetic parameters are estimated via an 

optimization process that involves either linear or non-linear methods with the pre-selected reaction model, f(α) and 

typically the estimated Ea’s from an iso-conversional method are used as initial estimates.    

One major concern when performing kinetic parameter estimation with thermal analysis is the 

“compensation effect” which exists between the kinetic parameters. This compensation effect allows estimation of 

multiple sets of kinetic parameters that give good fitness to the data. Theoretically, each component of kinetic 

parameters is associated with some fundamental behavior. Ea, A and f(α) can be considered as a certain energy 

barrier, frequency of vibrations of the activated complex [27], and reaction mechanism [28], respectively. However, 

due to the non-species specific nature of the thermal analysis measurements and complexity of the processes 

involved, estimating for the intrinsic kinetic parameters of a decomposition reaction is extremely difficult. Generally, 

the estimated parameters are considered to be “effective” and estimating for invariant kinetic parameters means 

finding a set of values that simulates reaction profiles – either rates or extents of conversions – that are in good 

correspondence with actual data, given the temperature range and/or heating rates. Therefore, when using thermal 

analysis, estimation of Ea based on the iso-conversional method where multiple heating rate thermograms are used 

in the estimation process is considered to be more reliable and preferred than that of a model-fitting method using 

single heating rate data.  

1.2. Kinetic Modeling for Comprehensive Pyrolysis Models 

When conducting kinetic modelling for comprehensive pyrolysis models, a basic assumption is that the 

computational cell is ideally a sample decomposing in a thermogravimetric analysis (TGA) experiment as mass 

transport effects are typically considered to be negligible. Mass loss rate of the cell is a function of temperature and 

residual mass as in Eq. (1) and/or occasionally the availability of gas phase reactant, oxygen. The kinetic parameters 
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used in comprehensive pyrolysis modelling are estimated from independent kinetic modelling based on thermal 

analysis. A sample decomposing in a TGA experiment is conducted under a well-defined condition to maximize the 

effect of the intrinsic chemical reaction on the thermal decomposition rate while limiting other factors and any 

changes made to the testing conditions can have significant effect on the decomposition kinetics. Therefore, 

extrapolating the thermal decomposition kinetic information gained from zero-dimensional thermal analysis to one- 

or higher-dimensional pyrolysis modelling should be conducted with caution as many of the conditions during 

pyrolysis of a slab sample is different from that of the milligram sample during decomposition in a TGA experiment.  

When considering kinetic modelling as a part of comprehensive pyrolysis modelling, estimating for the 

invariant kinetic parameters becomes less important. Applying kinetic parameters that provide similar simulated 

reaction profiles mathematically to thermograms by making use of the compensation effect existing between the 

parameters can be sufficient for pyrolysis modelling purposes as those kinetic parameter sets should result in the 

same modelling outputs. However, it is recommended to estimate invariant kinetic parameters, for estimation of Ea 

at least when considering a possibility of compiling the estimated values in a database as those values may give 

insights to thermal behaviors of the materials. For example, materials with lower Ea indicate that they are thermally 

less stable than the ones with higher Ea as less energy is needed to initiate the decomposition process and having this 

understanding about the material can be beneficial for modelers.  

2. MATERIALS 

FRP composite panels were fabricated by vacuum bagging for relatively high glass content, using two different 

types of fiberglass (E-glass) mats – chopped strand mat and a woven roving mat – that were wetted with resin.  The 

chopped strand mat is thinner and more porous than the woven mat. The laminate schedule is chopped strand mat 

and roving alternating 8 and 6 times with another chopped strand mat layer at the end for the brominated unsaturated 

polyester (BrUPE) and modified acrylic with inorganic additive (MA+A) FRP composites, respectively. Average 

overall glass contents in the FRP composites are 75% for BrUPE composite and 30% for MA+A composite by 

weight. Average thicknesses of these FRPs are 6 – 7 mm for BrUPE composites and 9 mm for MA+A composites. 

Visual inspection is made of a polished cross-section of the composite slab to confirm consistency with the provided 

laminate schedule. BrUPE is an unsaturated polyester resin with bromination for flame retardancy. The bromination 

is built in to the carbon back bone with 20% by weight, which is typically substituted by replacing the hydrogens. 

Along with the bromination, antimony trioxide is added as a synergist that assists the flame retardancy of the 

polymer resin. MA is a modified acrylic resin. This resin is essentially unsaturated polyester (UPE) with 

Methacrylic Acid (MMA) replacing most of the styrene monomers. MA+A is a modified acrylic resin (MA) with an 

inorganic additive (A) for fire retardancy. Typical inorganic additives are hydrates such as alumina trihydroxide 

(ATH) or magnesium hydroxide, antimony trioxide, borax, chalk, silica, etc. [29] Because this additive was known 

to give a high-charring effect with a strong endotherm, A is categorized with typical hydroxides used as flame 

retardant fillers.  These hydroxides work as a flame retardant by an endothermic dehydration reaction that produces 

oxides and water [29,30]. The water produced by this reaction vaporizes and the vapor dilutes the gaseous phase. 

This flame retardant is added in a relatively large amount (50 to 65%) comparing to other types of additives.   
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3. TEST MATRIX 

In this study, 6 different kinetic models developed from independent thermal analysis are investigated. See Table 1 

for kinetic model summary. To investigate a range of kinetic models with different complexity, either different 

reaction models are utilized or the total number of elementary reactions is varied.  The reaction model applied in this 

study is the reaction order models (f(α) = (1- α )
n
 with n = 0, 1 or n), which are commonly used in modeling 

pyrolysis of various polymers. The zero order reaction assumes that decomposition is a linear function of 

temperature (see Eq. (2)) and estimation of kinetic parameters are undertaken by data fitting (model fitting method 

[31,32]) to a single heating rate TGA data (60 °C/min). Note that the slope, a, is estimated as approximately 80% of 

the DTG peak, which is the differential thermogravimetric data equivalent to the mass loss rate divided by the initial 

sample weight. Although kinetic parameter estimation based on a single heating rate TGA data is considered to be 

unreliable in thermal analysis, this approach has been included in the test matrix as for comprehensive pyrolysis 

modeling purposes any parameter set that gives similar simulated reaction profile is sufficient for performing the 

calculations. When a first or nth order reaction model is applied, kinetic parameters other than activation energy are 

(1) calculated analytically by assuming at each DTG peak, the second derivative of conversion, α with respect to 

time is zero and activation energy of each reaction is significantly greater than 2RTp (i.e. Ea >> 2RTp) where Tp is 

the temperature at DTG peak [33] (see Eq. (3) and (4)); or (2) estimated using a model fitting method with kinetic 

models – f(α) = 1- α or (1- α )
n
.   
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Table 1. Different kinetic models considered in this study 

BrUPE  MA+A 

Model Model Assumptions / Data Model Model Assumptions / Data 

A R2: virgin � char + vap↑ 

zero order reaction model using constant 
DTG with respect to temperature  

A R2: virgin � char + vap↑ 

zero order reaction model using constant 
DTG with respect to temperature 

B R2: virgin � char + vap↑ 

first order reaction model using DTG peak 
to estimate kinetic parameters 

B R2: virgin � char + vap↑ 

first order reaction model using DTG peak 
to estimate kinetic parameters 

C R2: virgin � char + vap↑ 

first order reaction model using multiple iso-
heating rates TGA data to estimate 
kinetic parameters 

C R2: virgin � char + vap↑ 
A: additive � additive_residue + vap↑ 
 
first order reaction models using multiple 

iso-heating rates TGA data to estimate 
kinetic parameters 

D R2: virgin � char + vap↑ 

nth order reaction model using multiple iso-
heating rates TGA data to estimate 
kinetic parameters  

D R2: virgin � char + vap↑ 
A: additive � additive_residue + vap↑ 
 
nth order reaction models using multiple 

iso-heating rates TGA data to estimate 
kinetic parameters  

E R1: virgin � intermediate + vap↑ 
R2: intermediate � char + vap↑ 
R3: char � residue + vap↑ 
 
first order reaction models using multiple 

iso-heating rates TGA data to estimate 
kinetic parameters 

E R1: virgin � intermediate + vap↑ 
R2: intermediate � char + vap↑ 
R3: char � residue + vap↑ 
A: additive � additive_residue + vap↑ 
 
first order reaction models using multiple 

iso-heating rates TGA data to estimate 
kinetic parameters 

F R1: virgin � intermediate + vap↑ 
R2: intermediate � char + vap↑ 
R3: char � residue + vap↑ 
 
nth order reaction models using multiple 

iso-heating rates TGA data to estimate 
kinetic parameters 

F R1: virgin � intermediate + vap↑ 
R2: intermediate � char + vap↑ 
R3: char � residue + vap↑ 
A: additive � additive_residue + vap↑ 
 
nth order reaction models using multiple 

iso-heating rates TGA data to estimate 
kinetic parameters 

 
The total number of elementary reactions has been varied from a single-step reaction to maximum of three- 

or four-step reactions for BrUPE or MA+A resins, respectively, based on analyzing iso-conversional method results 

(see section 5.1). Model A and B apply a single step reaction for BrUPE or MA+A polymer decomposition. Model 

C and D applies single step for BrUPE and two step for MA+A case where resin and additive decomposition 

reactions are considered separately. Model E and F are the most complex cases proposed from thermal analyses 

where three steps are applied for the additive-free resin case (BrUPE and MA) – decomposition reactions of resin to 

resin’ (R1) and resin’ to char (R2) and oxidation reaction of char to residue (R3) – and one step is applied for 
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modeling the additive decomposition (A). Justification for suggesting simple one or two step mechanisms rather 

than the three or four step mechanisms is the following: the uncertainty in TG, the thermogravimetric data 

equivalent to mass loss history divided by the initial sample weight, is compared with the total weight loss of a 

sample from each reaction and has shown typically that R1 and R3 are less than the uncertainty estimated for the 

two resin systems decomposing in TGA experiments.  Therefore, decomposition due to R1 and R3 can be 

considered to be negligible. 

4. METHODOLOGY: EXPERIMENTS AND MODELING 

4.1. Small-scale Experiments for Kinetic Modeling Using Thermal Analysis 

The instruments used in this study were manufactured from TA Instruments: Thermogravimetric Analysis Q50 

(TGA) and the Differential Scanning Calorimetry Q20 (DSC).  Throughout this study, TGA and DSC were used for 

non-isothermal test purposes and the tests were conducted in nitrogen and air environments to study pyrolysis and 

oxidation, respectively.  Sample pan used in the TGA was made in platinum and no lid was used. For the DSC 

experiments, sample pan was a standard aluminium pan with a lid, which was prepared with a manufacturer’s 

crimper. To allow better escape of the volatiles produced from decomposition, typically holes were placed on the lid 

manually with tweezers. Using the TGA, 4 different heating rates of 5, 20, 40 and 60°C/min. were applied to 

measure the mass loss history of each resin sample up to 800°C.  Note that based on TGA experiments with various 

sample particle sizes, overall effects of variations in sample particle sizes in TGA data (TG and DTG) were 

considered to be minimal for the sample sizes used in this work (< 10mg for a single particle) for these two 

materials. Therefore, non-thermally lumped behavior affecting results reported in this work can be considered as 

insignificant. For the DSC, a constant heating rate of 20°C/min. was used to measure the heat flow through the 

sample during the thermal decomposition of resins up to 500°C using a sample amount of ~ 10 mg in a standard 

aluminium pan with a punctured lid so that gases may evolve freely away from the pan.  The uncertainty in the mass 

loss (TG) measurements was quantified by plotting 3 or 4 weight loss curves from different tests with respect to 

temperature and finding the maximum standard deviation at each temperature ranging from ambient to 750 °C.  The 

maximum standard deviation is then used to calculate 95% confidence intervals for each material by applying the 

student t distribution with a sample size of 3 or 4.  Uncertainties in TG for BrUPE and MA+A resins are estimated 

to be ± 7 and ± 6 %, respectively. 

4.2. Bench-scale Experiments for Pyrolysis Modeling 

The Cone Calorimeter (Cone, ASTM E 1354 [34]) is a bench-scale fire test apparatus in which the sample is heated 

by an electrically powered rod in the shape of a cone.  The sample is tested by applying a constant radiative heat flux 

set via temperature control of the rod.  The Cone exposes the sample in an ambient environment which results in a 

natural flow field as the sample temperature increases allowing convective cooling above the sample surface. The 

ignition source is an intermittent sparker. Several modifications were made to the standard testing procedure.  First, 
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when testing these FRPs, two different types of sample holders were used to produce nominal one-dimensional data: 

the standard non-insulated square holder with a metal edge frame and a round insulated holder [35]. Second, 

typically 4 thermocouples were installed to measure temperature change of the sample at various depths: exposed 

surface, 1/3, 2/3 and back surface. The uncertainties in experimental mass loss rate (MLR) and thermocouple 

measurements at surfaces (exposed, Ts and back, Tb) were quantified by comparing data from 3 or 4 identical FRP 

composite tests at 50 and 75kW/m
2
 applied heat flux levels for BrUPE and MA+A composites, respectively. Note 

that normalized time, time divided by sample thickness square, i.e., τ = time/δ2
 is used to remove the effect of 

different sample thicknesses.  Because the data is transient, values at different times (τ = 1, 3, 5 s/mm
2
 for BrUPE 

and 1, 3, 5, 7 s/mm
2
 for MA+A composites) from each test have been used to calculate the standard deviation at 

each time.  Then these are averaged and used to estimate uncertainty by applying student t distribution with a sample 

size of 3 or 4 and calculating the 95% confidence interval. Uncertainties in MLR are ± 2.2 g/s-m
2
 for BrUPE or 2.3 

g/s-m
2
 for MA+A composite. In the experimental mass loss rate curves reported in this paper show oscillations that 

have magnitudes which correspond well with the MLR uncertainty. Uncertainties in Ts and Tb are ± 67 or 30 °C, and 

± 14 or 22 °C for BrUPE or MA+A composite. The uncertainty in TC bead location at depth is typically ± 1 mm.  

These uncertainty values were used to evaluate significant differences between the modeling results and 

experimental data. 

4.3. Screening Process: 1D Pyrolysis Modeling with Measured Temperature Gradient 

Assuming mass transport effects during pyrolysis are negligible, a typical assumption in comprehensive pyrolysis 

models; simulating pyrolysis requires an understanding of the heating of a material and the mass loss due to thermal 

decomposition. These two aspects of pyrolysis can be captured by considering conservation of energy and mass. To 

evaluate the effect of kinetic modeling on the thermal decomposition of FRPs, the effect of applying different 

kinetic modeling approaches must be isolated from the heating of the FRPs. By exposing FRPs to various thermal 

insults and measuring the resultant temperature profiles from the exposed surface to the back surface of the solid, a 

representation of conservation of energy on the FRPs can be acquired. The changes in temperature measured in the 

tests account for the heat transport phenomena within the material as well as the heat addition or loss from 

decomposition reactions. Therefore, to determine mass loss of an FRP, only conservation of mass needs to be 

considered which is represented by the decomposition kinetics. Decomposition simulations based on the temperature 

profiles then can be conducted by solving the rate of decomposition (dα/dt) computed from a given assumed kinetic 

model.  

To conduct this 1D simplified pyrolysis modeling, the solid material is discretized into n+1 number of cells 

in the z-direction (depth) with equal length of ∆z except for the two cells at the surfaces (front and back) where a 

half-length (1/2∆z) is used (see Figure 1).  In this work, temperature profiles at 4 different locations were obtained 

via experiments – front and back surfaces, 1/3 and 2/3 depths. With these temperatures known, temperatures at 

intermediate locations which are unknown are found using a 3
rd

 order polynomial curve fit at each time step. 

Knowing the temperature of cells at each time step, weight loss of each cell is calculated by solving the rate of 

decomposition (dα/dt) using an ODE solver (Runge-Kutta 4
th

 order).  
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Figure 1. Schematic of the screening process: mass loss of FRP is simulated with conservation of mass 

and energy represented by the decomposition kinetics and temperature profile measurements 

from bench-scale experiment of FRP, respectively. 
 

When instrumenting the thermocouples in the composites, 1.25 mm thickness drill bits were used to make 

the holes from the side. Hence, when a thermocouple is inserted, the bead where the temperature is actually being 

read may be located anywhere within this hole. When conducting the uncertainty analysis, the in-depth locations 

(1/3 and 2/3 of thickness) of the temperature measurements were varied by ±1mm to check the simulation outputs. 

Although the uncertainty is ± 0.625mm considering the thickness of the drill bit, ± 1mm was used in the uncertainty 

analysis to be more conservative. All the outputs show similar trends meaning considering the positional uncertainty 

of the TC beads do not change the results reported in this work. Note that in this exercise, only the cases that made 

physical sense (smooth decay of temperature from front surface to back) were selected to be included in the 

uncertainty analysis. The material’s cross-section is considered as an effective homogeneous mixture of resin and 

fiberglass mats.  This approach was utilized because although FRP composites are composed of layers of resin-

wetted fiberglass mats stacked one after another, a clear distinction between resin and fiberglass layers was difficult 

to resolve based on visual inspection of the cross-section for these relatively high glass content FRPs considered in 

this study. Additionally, the effect of layering on the experiment data was not observed. When testing the same 

composite with lower glass content that was fabricated via hand lay-up method, which had apparent layers in the 

cross-section (visual inspection), oscillation in the mass loss rate or heat release rate curve was observed. This was 

due to the burning of the resin layers. As the pyrolysis front propagated towards the back surface of the composite, 

resin rich layer gave a higher mass loss or heat release but the fiberglass layers gave a lower mass loss or heat 

release. Because the resin rich and fiberglass layers alternated, the oscillating mass loss rate or heat release rate 

curves were reported. However, for this high glass content composite, the data showed no evidence of the layering 

cross-section. These suggested that adding more complexity to the modeling to account for the layering was 

superfluous. 
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5. RESULTS AND DISCUSSION 

5.1. Thermal Decomposition of Resins 

To understand thermal decomposition behavior, the iso-conversional method [18,19,20,21] was applied to iso-

heating rate (5, 20, 40 and 60°C/min) TGA data. Using this method, activation energy with respect to conversion, α 

is calculated and plotted for both resin systems – BrUPE (see (a) in Figure 2) and MA+A (see (b) in Figure 2) – to 

understand their thermal decomposition characteristics in nitrogen (inert) and air (oxidative) environments.   

  
Figure 2. Results from iso-conversional method conducted on BrUPE (left) and MA+A (right) resins: both figures 

show the estimated activation energy of thermal decomposition with respect to conversion (α)  

5.1.1. Brominated Unsaturated Polyester Resin: BrUPE 

Based on the iso-conversional method, thermal decomposition of BrUPE can be grouped into three stages.  The first 

stage is the initial mass loss where the activation energy increases with respect to α.  The changes in the activation 

energies calculated for each conversion indicate that there is more than one reaction resulting in weight loss. At this 

stage, mass loss of approximately 10 to 20% of its initial weight is observed and the temperatures ranges from 

ambient to 300 – 400°C.     

The second stage is the region where most of the mass loss is occurring and is identified with a profound, 

maximum peak in the DTG thermogram obtained from TGA experiments.  As shown in (a) in Figure 2, the 

activation energies calculated for conversion of BrUPE are relatively constant for both nitrogen and air.  This result 

indicates that a single step reaction can describe the degradation process within this stage.  For BrUPE resin 

decomposing both in nitrogen and air, a significant mass loss occurs leaving residue less than 10% of its initial mass 

at this stage where temperatures range up to 400 – 500°C.  The DSC heat flow measurements for BrUPE resin 

decomposition in nitrogen and air indicate that there is an endothermic reaction in this stage, which is stronger than 

that of the first stage (see Figure 3).  
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Figure 3. Heat flow measurements from DSC experiments for BrUPE and MA+A polymer resin samples with 20 

°C/min heating rate using nitrogen purge. MA+A resin shows a significant endothermic heat at lower temperatures, 

which is speculated as the heat associated with thermal decomposition of the fire retardant additive (A) in the resin 

system. There is an overlap in another endothermic heat at relatively higher temperatures for both materials, which 

is considered to be the heat necessary for the thermal decomposition of the resins itself (BrUPE and MA). 

 

The third stage is the region where final mass loss is observed at temperatures above 400-500°C leaving 

almost no mass behind.  In this stage, increase in the activation energy with respect to α occurs for decomposition of 

BrUPE resin and it occurs earlier for decomposition in air than in nitrogen. This increase in estimated activation 

energy can be explained by two possible reasons: One is simply because having a minimal weight on the TGA scale 

and less change taking place in the mass at the end of the experiment. The other is due to a parallel reaction 

occurring in this stage. Based on the weight loss (TG) and mass loss rate (DTG) thermogram shapes from TGA 

experiments and the residue yield – 4-5% in nitrogen and less than 2% in air at 800°C, one can speculate that BrUPE 

decomposition in nitrogen results in a constant increase in activation energy because the weight loss is minimal in 

this stage, but for BrUPE decomposing in air, it occurs because a parallel, oxidative reaction exists. The oxygen 

diffusion through the sample seems to delay the decomposition process only slightly, probably because the sample 

sizes used in this experiment are small.   

The results found from conducting the iso-conversional method are consistent with previous research 

[36,37,38,39] conducted for unsaturated polyester thermoset resins. A typical thermal degradation process of 

unsaturated polyester cross-linked with styrene monomers is described in the following. When unsaturated 

polyesters thermally degrade, a minor weight loss of less than 10% of its total weight is observed below 340°C to 

350°C. This mass loss is mainly due to the escape of impurities, unreacted monomers and non-fully cross-linked 

oligomers within the polymer resin. BrUPE follows this general observation made for degradation of unsaturated 

polyesters. One thing to note is that BrUPE is identified as thermally less stable than the typical UPE knowing that 

the initial weight loss occurs up to 10-20% rather than a minor weight loss of less than 10%.  This discrepancy is 

probably due to the antimony trioxide added in BrUPE as a flame retardant additive or other things that may have 
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been added inadvertently acting as an impurity.  Even a small amount of impurities are known to affect the integrity 

or the stability of the polymer performance [40]. Additionally, adding antimony trioxide to a halogenated compound 

such as UPE is known to have an effect on lowering the charring temperature. This is due to the initial release of 

antimony trioxide and some hydrogen halide (HX) enhancing the dissociation of carbon halide chains (-C-X-) within 

the condensed phase. After the initial weight loss, the major decomposition step occurs. Studies have discovered that 

the decomposition occurs on the ester chain (-CO-C-) and the unsaturated chain (-C=C-) where the weakest 

chemical bonding exists.  This region exists up to 400°C to 500°C depending on the heating rate and is observed in 

thermal degradations of BrUPE. In addition to this major decomposition step, weight loss up to 10% of the UPE 

samples’ initial weight is noticed from the tests conducted in air.  Considering that this only occurs in oxidative 

environment, the weight loss is understood as an oxidative degradation reaction that starts around 500°C and above.  

5.1.2. Modified Acrylic with Inorganic Additive: MA+A 

Based on the iso-conversional method, thermal decomposition of MA+A can be grouped into four stages – three 

similar to those of BrUPE and one additional stage where decomposition of the additive (A) is observed (see (b) in 

Figure 2).  Although the detailed composition of the additive is unknown, additive (A) decomposition for the 

conversion region of 0.0 < α < 0.3 can be considered as follows: (1) a strong endothermic peak is observed from 

DSC heat flow measurements in the temperature range (~ 390°C) relevant to this conversion region (see Figure 3); 

(2) the estimated activation energies, Ea from the iso-conversional method in this region are relatively constant (160 

± 3 kJ/mol with normal distribution, 95% confidence interval) indicating that a single step reaction is sufficient to 

describe the reaction occurring in this conversion region; and (3) weight loss of ~20% is comparable to expected 

from additive decomposition.  

The results found from the iso-conversional method and heat flow measurements show that the 

decomposition of the inorganic additive used in MA+A that gives high-charring effect is similar to the 

decomposition of polymers with typical hydroxides used as flame retardant fillers.  Among various hydroxides, 

possibly alumina trihydroxide (ATH, Al2(OH)3) is used as the unknown additive in the resin and additive mixture 

considering that (1) the decomposition temperature of the additive is below 250°C; and (2) the weight loss of the 

additive after its decomposition reaction is approximately 30% of its initial mass.  The decomposition temperature of 

ATH is 240°C and complete weight loss when decomposing to aluminium oxide (Al2O3) is 35% of its initial mass 

[41,42]. 
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5.2. Kinetic Modeling Results: Comparison to TGA Data and Extrapolation 

Activation energies for each reaction are estimated from the iso-conversional method when multiple heating rate 

TGA data are used in the estimation of kinetic parameters.  Fitness of each kinetic model to TGA data is calculated 

by a least squares method. Estimated kinetic parameter values from 6 different approaches (A through F in Table 1) 

are summarized in Table 2 and Table 3 for decomposition of BrUPE and MA+A resins, respectively. Estimations 

based on a single heating rate TGA data at 60 °C/min are kinetic model A and B. Estimations based on multiple 

heating rates TGA data are kinetic model C, D and F where heating rates of 5, 20, 40 and 60 °C/min have been used. 

The activation energy values estimated from iso-conversional method has been kept as a constant while conducting 

model fitting method to estimate for other kinetic parameters. This approach is adopted to utilize the estimated 

values from iso-conversional method, which are known to be more reliable in terms of reproducing the actual 

reaction profiles independent of the heating rates (see section 1.2 for more discussion). Note that all cases provide 

good fitness (minimum r-square value of 0.98 with most values greater than 0.99) to TGA data (see Figure 4 and 

Figure 5).  
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Table 2. Estimation of kinetic parameters with 6 different kinetic modeling approaches for modeling BrUPE 

decomposition.  Parameters with * are assumed values, with ** estimated values from the iso-conversional method 

and with *** calculated values from analytical solution. R1, R2 and R3 are the reactions for resin decomposition. β 

is the heating rate in °C/min. Note that kinetic model A and B have used single heating rate TGA data (60 °C/min) 

and model C, D and F have used multiple heating rate TGA data (5, 20, 40 and 60 °C/min). 

 

Kinetic 
Model 

Parameters 

Reactions Fitness 

R1 R2 R3 β r-sqaure (N2) 
r-sqaure 

(Air) 

A 

weight frac. 
 

0.93 
 

5 
  

a 
 

0.014 
 

20 
  

b 
 

10.1 
 

40 
  

    60 0.9891 0.9938 

    avg   

B 

weight frac. 
 

0.93 
 

5 
  

Tp (degC) 
 

430 
 

20 
  

rp (%/min) 
 

98.24 
 

40 
  

β (degC/min) 
 

60 
 

60 0.9968 0.9913 

log A 
(log(/s))  

13.3*** 
 

avg 
  

E (kJ/mol) 
 

197*** 
    

n (/) 
 

1* 
    

C 

weight frac. 
 

0.93 
 

5 0.9958 0.9925 

log A 
(log(/s))  

10.2 
 

20 0.9978 0.9963 

E (kJ/mol) 
 

155** 
 

40 0.9974 0.9974 

n (/) 
 

1* 
 

60 0.9956 0.9971 

    avg 0.9966 0.9958 

D 

weight frac.  0.93  5 0.9931 0.9917 

log A 
(log(/s)) 

 10.2  20 0.9956 0.9962 

E (kJ/mol)  155  40 0.9958 0.9958 

n (/)  0.7  60 0.9909 0.9961 

    avg 0.9939 0.9950 

E 

weight frac. 0.10 0.83 0.05 5 0.9982 0.9989 

log A 
(log(/s)) 

13.4 10.2 7.7 20 0.9976 0.9989 

E (kJ/mol) 155** 155** 155** 40 0.9981 0.9982 

n (/) 1* 1* 1* 60 0.9937 0.9990 

    avg 0.9969 0.9987 

F 

weight frac. 0.10 0.83 0.05 5 0.9986 0.9980 

log A 
(log(/s)) 

13.9 10.1 7.5 20 0.9992 0.9992 

E (kJ/mol) 155** 155** 155** 40 0.9993 0.9998 

n (/) 5 0.7 1* 60 0.9966 0.9997 

    avg 0.9984 0.9992 
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Table 3. Estimation of kinetic parameters with 6 different kinetic modeling approaches for modeling MA+A 

decomposition.  Parameters with * are assumed values, with  ** estimated values from the iso-conversional method 

and with *** calculated values from analytical solution. R1, R2 and R3 are the reactions for resin decomposition 

and A is the reaction for additive decomposition. β is the heating rate in °C/min. Note that kinetic model A and B 

have used single heating rate TGA data (60 °C/min) and model C, D and F have used multiple heating rate TGA data 

(5, 20, 40 and 60 °C/min). 

 

Kinetic 
Model 

Parameters 
Reactions Fitness 

R1 R2 R3 A Β 
r-sqaure 

(N2) 
r-sqaure 

(Air) 

A 

weight frac. 
 

0.55 
 

 5 
  

a 
 

0.009 
 

 20 
  

b 
 

6.6 
 

 40 
  

     60 0.9872 0.9898 

     Avg   

B 

weight frac. 
 

0.55 
 

 5 
  

Tp(degC) 
 

434 
 

 20 
  

rp(%/min) 
 

36.84 
 

 40 
  

β(degC/min
)  

60 
 

 60 0.9765 0.9852 

logA(log(/s)) 
 

7.8*** 
 

 Avg 
  

E(kJ/mol) 
 

126*** 
 

 
   

n (/) 
 

1* 
 

 
   

C 

weight frac. 
 

0.35 
 

0.20 5 0.9918 0.9870 

logA(log(/s)) 
 

12 
 

11.9 20 0.9927 0.9926 

E(kJ/mol) 
 

183 
 

160 40 0.9940 0.9963 

n (/) 
 

1* 
 

1* 60 0.9941 0.9960 

     Avg 0.9932 0.9929 

D 

weight frac.  0.35  0.20 5 0.9927 0.9874 

logA(log(/s))  12.3  12.6 20 0.9942 0.9942 

E(kJ/mol)  183**  160** 40 0.9958 0.9985 

n (/)  0.9  5 60 0.9960 0.9973 

     Avg 0.9947 0.9944 

E 

weight frac. 0.05 0.30 0.02 0.20 5 0.9956 0.9893 

logA(log(/s)) 16.3 12.2 10.2 11.4 20 0.9949 0.9955 

E(kJ/mol) 183** 183** 183** 160** 40 0.9967 0.9975 

n (/) 1* 1* 1* 1* 60 0.9965 0.9961 

     Avg 0.9959 0.9946 

F 

weight frac. 0.05 0.30 0.02 0.20 5 0.9981 0.9935 

logA(log(/s)) 16.5 12.5 10.5 12.2 20 0.9978 0.9982 

E(kJ/mol) 183** 183** 183** 160** 40 0.9991 0.9985 

n (/) 5.0 1.3 1* 5.0 60 0.9992 0.9977 

     Avg 0.9985 0.9970 
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Figure 4. Mass loss rates from TGA experiments (exp) and kinetic modeling A; B; C; D; E; and F are shown for 

BrUPE with 60 °C/min heating rate case. Applying various approaches in kinetic modeling results in minor changes 

in modeled mass loss rate. 
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All kinetic models (A through F) are used to simulate an extrapolation case at 200 °C/min heating rate 

knowing that these models will be used in pyrolysis modeling of FRPs. The extrapolation case was found by 

considering the actual Cone test data. Among the various heating rates observed during bench-scale experiments of 

FRPs at applied heat fluxes ranging from 25 to 100 kW/m
2
 those at the front surfaces are the highest. The maximum 

and the average heating rates from the Cone experiments are summarized in Table 4. The maximum heating rates 

reported in the table are observed within the first 10 seconds of exposure to the heating source. Therefore, the 

average heating rates over time which range from 30 to 140 °C/min were considered when determining the 

extrapolation case of the upper bound for the heating rate. The results (see Figure 6) show that the differences 

between different kinetic models are similar to those observed in the lower heating rates used in the kinetic 

parameter estimation (see Figure 4 and Figure 5).  

 

Table 4. Summary of maximum and average heating rates (°C/min) observed at front surface in bench-scale 

experiments of BrUPE and MA+A FRPs when tested at various applied heating rates. Data presented are average 

values where three or four identical tests are used and 95% confidence intervals are calculated using the student t 

distribution. 

Material 
Applied Heat Flux Level (kW/m

2
) 

25 50 70 75 100 

BrUPE 

FRP 

max HR (°C/min)  1400 ± 500 1900 ± 400  1800 ± 600 

avg HR (°C/min)  120 ± 20 130 ± 10  140 ± 10 

MA+A 

FRP 

max HR (°C/min) 700 ± 300 1300 ± 500  1200 ± 500  

avg HR (°C/min) 30 ± 1 60 ± 10  80 ± 2  

. 
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Figure 5. Mass loss rates from TGA experiments (exp) and kinetic modeling A; B; C; D; E; and F are shown for 

MA+A with 60 °C/min heating rate case. Applying various approaches in kinetic modeling results in minor changes 

in modeled mass loss rate. 
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For the extrapolation case, comparison with actual TGA data is not available. TGA experiments at this 

heating rate are undesirable as the samples experience significant thermal lag, mass transport effects, etc. resulting in 

a non-zero-order analysis condition. Hence, verifying the performances of the estimated kinetic parameters in 

modeling thermal decomposition at higher heating rates by directly comparing to TGA data is not possible. However, 

conducting the screening process introduced in this work allows modelers to determine whether the kinetic models 

developed from TGA experiments with relatively low heating rates will produce satisfying results or not for other 

conditions as extrapolation cases.  

5.3. Pyrolysis Modeling 

Simplified pyrolysis modeling of both composites irradiated at 50 kW/m
2
 applied heat flux is conducted with 

different kinetic modeling approaches (A through F) to examine appropriateness of each case. Figure 7 shows the 

temperature data from the bench-scale experiment used in the screening process. Figure 8 shows an example 

calculation using the simplified comprehensive pyrolysis model at the surface location for the two sample materials. 

As shown in BrUPE FRP @50kW/m
2
 and MA+A FRP @50kW/m

2
 in Figure 9, changes in simulated mass loss rate 

due to applying different kinetic modeling approaches are minimal except for case A. There is a larger scatter of 

simulation points occurring near the peak and the beginning stage of the final decay for case A where significant 

changes are observed in the MLR curve. This can be explained by the unsmooth transition between the non-

decomposing and decomposing stage in the modeled DTG curve shown in (a) in Figure 4 and Figure 5. There is 

some benefit in applying more complex three- and four-step decomposition models for modeling BrUPE and MA+A 

composites (case E and F), respectively, for they allow the pyrolysis model to capture the small amount of mass loss 

prior to ignition (shoulder before initial mass loss rate peak) and near mass loss end time .  Other than these two 

advantages, applying more complex kinetic model either by utilizing a different reaction model or increasing the 

number of reaction steps becomes unnecessary in terms of conducting pyrolysis modeling to calculate mass loss rate 

as the effects are minimal. 

 

Figure 6. An extrapolation case at 200 °C/min heating rate for thermal decomposition of BrUPE (left) and MA+A 

(right) resins. Differences between different kinetic models (A through F) are similar to those observed in the lower 

heating rates. 

 

0

100

200

300

400

0 200 400 600 800

D
T

G
 (

%
/m

in
)

T (°C)

BrUPE @ 200°C/min

A

B

C

D

E

F

0

50

100

150

0 200 400 600 800

D
T

G
 (

%
/m

in
)

T (°C)

MA+A @ 200°C/min

A
B
C
D
E
F



 

 

 

 

Section 2 - 22 

  

  

  
Figure 7. Temperature data at front surface (Ts), 1/3 depth (T1/3), 2/3 depth (T2/3) and back surface (Tb) from Cone 

Calorimeter experiments with BrUPE and MA+A FRP samples tested at various heat flux levels ranging from 25 to 

100 kW/m
2
. These have been used in the simplified pyrolysis modeling with different kinetic models. 
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Following this work, mass loss rate simulations of BrUPE and MA+A composites with all kinetic models 

(A through F) were conducted at applied heat flux levels of 50, 70 and 100 kW/m
2
 and 25, 50 and 75 kW/m

2
, 

respectively (see Figure 9). Similar trend is found in simulations of BrUPE and MA+A FRPs at different heat flux 

levels as in those found at 50 kW/m
2
. Other than kinetic model case A having large scatter in the simulated mass 

loss rate near the peak and the beginning stage of the final decay, other models produce similar MLR curves. For 

modeling of both composites, good agreement with experiment data is shown for cases with relatively low applied 

heat flux of less than 50 kW/m
2
. At higher heat flux levels, modeling deviates from experimental data for both FRP 

composites. For modeling of BrUPE composite at or above 70kW/m
2
, a secondary peak in mass loss rate, which is 

comparable to the initial peak immediately occurring after ignition is observed and results in a shorter end time of 

the simulated mass loss  than that of the experiment which has an extended tail.  Modeling results of MA+A 

composite decomposing at 75 kW/m
2
 show a significantly higher mass loss rate peak following ignition than that of 

experiment  resulting in a shorter end time of mass loss than that of experiment. This finding indicates that although 

the temperatures are high enough to result in greater mass loss of the resin system based on TGA data, mass loss is 

reduced and/or delayed when the FRP is decomposing.  This deviation is suggestive that as the pyrolysis front 

propagates from material front surface to back surface and the heating rate increases from low to high applied heat 

flux impinging at the front surface in bench-scale experiments, the assumption that a pyrolysis computational cell 

being equivalent to a sample decomposing in a TGA experiment becomes invalid whichever kinetic model is used. 

In other words, thermal decomposition kinetics of the resins at depth that results in mass loss after the initial peak in 

the mass loss rate curve are affected by conditions that are different from those experienced in the TGA experiments. 

This difference between the resin decomposition in an FRP composite and that in a TGA experiment can be 

attributed to the change in residence time of gaseous reaction participants, e.g. fuel volatiles, during decomposition. 

The inert fiberglass mats within the pyrolyzing FRP composite create a physical barrier to transport of gas phase 

products.  The residence time of these gas phase volatiles in bench-scale experiments increases with respect to 

increasing depth.  This is in contrast to the insignificant barriers to transport in a TGA experiment.  The change in 

residence time can be expected to affect the decomposition kinetics and result in deviation from the proposed kinetic 

model based on thermal analysis.  
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Figure 8. Example calculation using the simplified comprehensive pyrolysis model is shown for the surface location. 

Temperature data at front surface (Ts) from Cone Calorimeter experiments with applied heat flux of 50 kW/m
2
 and 

simplified comprehensive pyrolysis modeling results using various kinetic models (A-F) at this location are shown 

for BrUPE (left) and MA+A (right) FRP composites.  
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Figure 9. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive pyrolysis 

modeling (mod) are shown for BrUPE and MA+A FRP composites.  Applied heat flux levels are 50, 70 and 100 

kW/m
2
 for BrUPE FRP composite and 25, 50 and 75 kW/m

2
 for MA+A FRP composite. Good agreement between 

experiment data and modeling results is found from the cases that are less than 50kW/m
2
.  
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6. CONCLUSION 

In this research, the effects of applying different kinetic models is evaluated when used in typical 1D comprehensive 

pyrolysis modeling where mass transport effects during pyrolysis are assumed to be negligible and each 

computational cell is assumed to be decomposing as in TGA experiments. The kinetic models are developed based 

on thermal analysis using TGA data.   Two FRP composites are used as sample materials – BrUPE and MA+A 

composites. To examine the effect of kinetic modeling on the thermal decomposition of FRPs, the kinetic modeling 

approaches are isolated from the heating of the FRPs by conducting pyrolysis modeling which utilizes temperature 

measurement data from bench-scale experiments of FRP composites as a proxy for conservation of energy.  

Conservation of mass of the materials is represented by decomposition simulation with different kinetic models. 

Mass loss rate simulations with kinetic models A through F for both materials at moderate applied heat flux 

(50kW/m
2
) show that changes in the simulation due to applying different kinetic modeling approaches are minimal 

except for case A where large scatter is observed due to the inherent limitations of this zero order kinetic model. In 

addition, simulations at various heat flux levels with kinetic models A through F are conducted and the mass loss 

rate results are compared to those of experiments. Results show that although at relatively low incident heat fluxes 

there is good overlap between simulations and the experimental data, at higher heat flux levels (> 70kW/m
2
), 

simulated mass loss rates significantly deviate from the experimental data. These findings indicate that (1) 

increasing complexity of kinetic models by applying different reaction models or increasing the number of reaction 

steps to be used in comprehensive pyrolysis modeling is unnecessary for modeling of the FRP samples used in this 

research as the effects are minimal; and (2) the typical assumption of considering thermal decomposition of each 

computational cell in comprehensive pyrolysis modeling as equivalent to that in TGA experiments becomes 

inapplicable at depth and at higher heating rates, whichever kinetic model is used, indicating that for these 

conditions decomposition kinetics are apparently different from what has been captured by thermal analysis. 
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ABSTRACT 

This study was conducted to investigate the ability of global, multi-objective/variable optimization methods to 

estimate material parameters for comprehensive pyrolysis models – thermo-physical and optical properties of two 

Fiberglass Reinforced Polymer (FRP) composites that share the same fiberglass. With these optimization methods 

used in pair with a comprehensive pyrolysis model, parameter estimation was carefully conducted with 

considerations given to applying appropriate thermal decomposition kinetic models (three different models from 

simple to complex) and optimization targets (Cone Calorimeter data irradiated at 50kW/m
2
).  

Estimation results are compared with independently measured effective properties – thermal conductivity, 

specific heat capacity and emissivity of polymer resins and FRPs. Additionally, fiberglass properties estimated from 

the two FRPs are compared to analyze for consistency in optimized values. The results show that for a well-

configured parameter estimation exercise using the optimization method described above, (1) estimated results are 

within ± 100% of the measurements in general and sometimes comparable to effective property values; (2) 

increasing complexity of the kinetic modeling for a single component system has insignificant effect on estimated 

values; and (3) increasing complexity of the kinetic modeling for a multiple component system with each element 

having different thermal characteristics has positive effect on estimated values. 

 

1. INTRODUCTION 

In the recent years, several comprehensive pyrolysis models [1,2,3] have been publically released to the fire 

community as a step forward in modeling materials’ pyrolysis. Unlike previous versions of pyrolysis models where 

material pyrolysis has been modeled empirically or with simple analytical solutions, comprehensive pyrolysis 

models simulate a materials physical and chemical reaction to fire responses based on fundamental conservation 

equations. Typically, models are constructed to conserve mass and energy when the material is being heated and/or 

thermally decomposed. Numerical calculations are conducted using various methods – finite difference, finite 

element, etc. – to determine mass loss and temperature profiles from the heat exposed front surface to unexposed 

back surface with respect to increasing time. However, when applying these models to real world problems, 

generally model users experience significant challenges as these models require estimation of many model 

parameters by the users and there is no material database available to search for the unknown parameter values.  

Typically, comprehensive pyrolysis model parameters can be grouped into three categories: parameters 

related to thermal decomposition kinetics and material properties, and model dependent parameters. Among these 
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parameters, only a few of them may be estimated via independent measurement based on standard tests: those for a 

material’s initial non-decomposing stage.  Measurement techniques do not exist for parameters during a material’s 

decomposing stage or to measure parameters of residual species. To overcome this difficulty in estimating model 

parameters, parameter estimation using global, multi-objective and multi-variable numerical optimization methods 

have been introduced [4,5,6,7,8]. This approach integrates robust, global, numerical optimization methods (e.g. 

genetic algorithm, shuffled complex evolution, etc.) to pyrolysis modeling to optimize for the unknowns by 

iteratively comparing model outputs with optimization targets set as bench-scale experimental data such as mass loss 

rate and temperature profiles from Cone Calorimeter (ASTM E 1354 [9]) experiments. This has become more 

appealing recently due to the inexpensive and accessible nature of “high speed” computer resources. 

Although these multi-objective optimization routines are global methods, applying them to parameter 

estimation naturally results in estimation of multiple near optimal parameter sets as typically there is no unique 

solution to solving this type of inverse problem [10]. The reason for resulting in many near optimals is due to the 

existing compensating effects between different model parameters, which have been already discussed by other 

researchers. For example, low activation energy used in kinetic model can be compensated by applying a lower pre-

exponential factor [11], the effect of poorly estimated kinetic parameters on pyrolysis modeling can be compensated 

by adjusting other thermo-physical property related model parameters [12], etc. 

The ability of multi-objective optimization methods to estimate comprehensive pyrolysis model parameters 

related to material properties is evaluated in this study. This exercise is performed to understand how sensible the 

estimated values via multi-objective optimization method can be in terms of being consistent with their effective 

material properties, independently measured by standard tests. To do so, parameter estimation is conducted with 

great caution in estimating model parameters of two Fiberglass Reinforced Polymer (FRP) composites that share the 

same fiberglass but have different polymer resins. Parameter estimation is conducted by considering the following: 

applying appropriate (1) thermal decomposition kinetic model and (2) optimization targets. First, suitable kinetic 

models that have different levels of complexity are proposed from thermal analysis of the polymer resins and their 

effect on 1D pyrolysis modeling of integrated overall mass loss rate is examined through a screening process which 

involves mass loss rate simulation of 1D FRP pyrolysis using kinetic models and temperature profiles from Cone 

Calorimeter tests. Following this work, optimization targets are selected from the same screening process with 

consideration of data over a range of heat flux levels applied during testing. Finally, parameter estimation exercises 

are conducted and the results are compared with several independently measured effective material properties – 

thermal conductivity, specific heat capacity and emissivity of polymer resins and FRPs. Additionally, fiberglass 

properties estimated from different parameter estimation exercises conducted for the two FRPs are compared to 

analyze consistency in optimized values.  

 

2. SAMPLE MATERIAL 

FRP composite panels were fabricated by vacuum bagging to ensure relatively high glass content, using two 

different types of fiberglass (E-glass) mats – chopped strand mat and a woven roving mat – that were wetted with 
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resin. The chopped strand mat is thinner and more porous than the woven mat. The laminate schedule is chopped 

strand mat and roving alternating 8 and 6 times with another chopped strand mat layer at the end for the brominated 

unsaturated polyester (BrUPE) and modified acrylic with inorganic high charring additive (MA+A) FRP composites 

resulting in average glass contents of 75% and 67% by weight, respectively. Typically, these composites had 

thickness ranging from 7 to 9 mm. Note that these two materials were chosen to represent FRPs with a thermally 

decomposable resin that has a single component (BrUPE) or a thermally decomposable resin (MA) and additive (A) 

mixture that has two distinct components with different thermal characteristics (MA+A). More detailed description 

of sample materials can be found in previous work [13]. 

 

3. EXPERIMENTS 

The milli-scale instruments used in this study were manufactured from TA Instruments: Thermogravimetric 

Analysis Q50 (TGA) and the Differential Scanning Calorimetry Q20 (DSC). Throughout this study, TGA and DSC 

were used for non-isothermal test purposes under nitrogen or air environments to study pyrolysis and oxidation, 

respectively. Further descriptions are found in ref [13].   

The Cone Calorimeter (Cone, ASTM E 1354 [14]) is a bench-scale fire test apparatus in which the sample 

is heated by an electrically powered rod in the shape of a cone.  The sample is tested by applying a constant radiative 

heat flux set via temperature control of the rod.  The Cone exposes the sample in an ambient environment which 

results in a natural flow field as the sample temperature increases allowing convective cooling above the sample 

surface. The ignition source is an intermittent sparker. Several modifications were made to the standard testing 

procedure.  First, when testing these FRPs, two different types of sample holders were used to produce nominal one-

dimensional data: the standard non-insulated square holder with a metal edge frame and a round insulated holder 

[15]. Second, typically 4 thermocouples were installed to measure temperature change of the sample at various 

depths: exposed surface, 1/3, 2/3 and back surface. The uncertainties in experimental mass loss rate (MLR) and 

thermocouple measurements at surfaces (exposed, Ts and back, Tb) were quantified by comparing data from 3 or 4 

identical FRP composite tests at 50 and 75kW/m
2
 applied heat flux levels for BrUPE and MA+A composites, 

respectively. Note that normalized time, time divided by sample thickness square, i.e., τ = time/δ2
 is used to remove 

the effect of different sample thicknesses.  Because the data is transient, values at different times (τ = 1, 3, 5 s/mm
2
 

for BrUPE and 1, 3, 5, 7 s/mm
2
 for MA+A composites) from each test have been used to calculate the standard 

deviation at each time.  Then these are averaged and used to estimate uncertainty by applying student t distribution 

with a sample size of 3 or 4 and calculating the 95% confidence interval. Uncertainties in MLR, Ts and Tb are ± 2.2 

or 2.3 g/s-m
2
, ± 67 or 30 °C, and ± 14 or 22 °C for BrUPE or MA+A composite. The uncertainty in TC bead location 

at depth is typically ± 1 mm.  These uncertainty values were used to evaluate significant differences between the 

modeling results and experiment data.  
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4. PARAMETER ESTIMATION VIA OPTIMIZATION METHOD 

The comprehensive pyrolysis modeling and parameter estimation via numerical optimization reported here are 

conducted with a generalized pyrolysis model [3,8] that can be applied to a wide variety of condensed phase fuels.  

The model simultaneously calculates the condensed phase mass conservation, gas phase mass conservation, 

condensed phase species conservation, and condensed phase energy conservation equations.  This model can be 

applied to 1D systems and is therefore capable of simulating “slab” (Cone Calorimeter) experiments.  Extensive 

details are given in Ref. [3]. In this study, among various optimization routines available in this model, genetic 

algorithm (GA) or shuffled complex evolution (SCE) are used. These optimization routines are evolution 

optimization schemes with high efficiency and robustness that allow multi-objective and multi-variable optimization 

under limited knowledge of the problem. Note that when GA is used, although a parameter set with best fitness to 

targets may be found by the algorithm, multiple near optimal sets that have similar fitness can be identified and 

therefore any analysis in this work using GA optimization results is conducted with an average value for each 

estimated parameter from different optimal sets. For SCE, a single optimal set is found and that is used in the 

analysis. Note that when conducting the optimizations, a fairly wide searchable range – typically 2-3 orders of 

magnitude between minimum and maximum value – was applied for each unknown parameter. 

Details of the modeling approach used in this comprehensive pyrolysis modeling are as follows. The FRP 

composite is construed as a homogeneous mixture of the polymer system and the fiberglass. Pyrolyzate volatiles 

produced from thermal decomposition of the condense phase polymer system is assumed to be released 

instantaneously to the gas phase without any interruption. Local thermal equilibrium is assumed between the 

condense phase and the volatiles. Any condensation of the gaseous products is negligible. Porosity effects are only 

accounted for in defining the bulk thermal conductivity of the composite. When simulating the bench-scale 

experiment, the surface is impinged with a constant radiative heat flux and the backing is insulated with a layer of 

insulation with known properties. The contact resistances (hcrz) between the FRP composite and the insulation and 

the insulation and ambient are estimated roughly as 10 W/m
2
K and 1 W/m

2
K, respectively, based on preliminary 

numerical work on model parameter sensitivity. For both materials, ignition phenomenon is interpreted as an 

additional constant heat flux of 20 kW/m
2
 applied to the surface from a user-specified ignition time to simulation 

end time. This approach is utilized to simulate the effect of the flame after ignition and the value of 20 kW/m
2
 is 

estimated from Cone experiments with a total heat flux gauge embedded in the sample. Thermal conductivity and 

specific heat capacity parameters of each condense-phase species are assumed to be temperature dependent: 

( ) ( ) kn

rTTkTk 0=  and ( ) ( ) cn

rTTcTc 0= , respectively, where Tr is a reference temperature of 300 K. The average 

effective parameters are weighted based on condense-phase volume fractions for thermal conductivity (see Eq.1) 

and emissivity (see Eq.3), and mass fractions for specific heat capacity (see Eq.2). Note that G, R and A are 

abbreviation for fiberglass, resin and additive, respectively in the equations below. 

��� = ��,���,� + ��,	��,	 + ��,
��,
 Eq.1 

��� = �,���,� + �,	��,	 + �,
��,
 Eq.2 
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� �� = ��,���,� + ��,	��,	 + ��,
��,
 Eq.3 

 

Before evaluating whether parameter estimation via numerical optimization is capable of estimating 

physically sensible parameter values, the following must be considered as a basis for conducting reliable parameter 

estimation: applying an appropriate kinetic model for describing thermal decomposition process and selecting 

appropriate optimization targets.  

 

5. THERMAL DECOMPOSITION KINETIC MODELING  

The first step to configure the pyrolysis modeling problem mathematically for a material of interest is to determine 

the level of complexity needed for the thermal decomposition kinetics of the resin and any additives.  Candidate 

kinetics models are developed based on thermal analysis [16,17,18,19] using TGA and DSC data.  In a reduced 

form, thermal decomposition of BrUPE and MA+A can be grouped into a maximum of three and four stages, 

respectively – three for initial (ambient temperature to ~200°C), major (200°C to ~ 500°C), and final (500°C to ~ 

700°C) resin (BrUPE or MA) decomposition and one additional stage where decomposition of the additive (A) is 

observed at relatively lower temperatures (200°C to ~ 400°C). 

The final kinetic model for the FRP is chosen based on a screening procedure that simulates mass loss 

during 1D FRP pyrolysis by using bench scale temperature data from the Cone Calorimeter as a proxy for 

conservation of energy on the FRP.  This approach assumes that thermal decomposition is a function of temperature 

only and products are instantaneously released to the gas phase without interruption, which is typically used in 

general comprehensive pyrolysis modeling in the fire community [1]. Additionally, the FRP composite is construed 

as a homogeneous mixture of a thermally decomposable component of polymer system and an inert fiberglass. This 

homogeneous cross-section is discretized into some number of cells and their mass loss is calculated based on the 

kinetic model proposed with the temperature information obtained from bench-scale experiments. The simulation 

results are a mass loss rate integrated over the cross-section of FRPs at different time steps. This screening process 

is capable of decoupling the kinetic simulation from the overall pyrolysis simulation and evaluating the 

appropriateness of each kinetic model proposed. 

Six different kinetic models were tested which utilize the Arrhenius form (see Eq.4) with n = 0 (see Eq.5); 

1 or nth order reaction models, ( ) ( )nf αα −= 1 ; simplified single step reaction to describe the entire decomposition 

process or multiple step reactions to explicitly describe for each process of different components in the resin 

mixture; and applying single or multiple iso-heating rate TGA data to estimate kinetic parameter values (see Table 

1). Although the changes are minor, fitness of the kinetic models to TGA data increases from the simplest approach, 

A, to the most complex approach, F, as shown in Figure 1.  The results of the screening procedure for 1D pyrolysis 

simulation at a moderate applied heat flux level of 50 kW/m
2
 showed the following. The effects of applying models 

B through F on the overall simulation of mass loss rate is considered insignificant. This is because the difference in 

mass loss rate between kinetic models is less than the uncertainty of the experimental mass loss rate data.  Applying 
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model A resulted in a larger scatter near the peak and the tail of the mass loss rate simulation; however, the trend 

follows well with the other case results.  Further discussion can be found in ref [13].  

 

Table 1. Different kinetic models considered in this study 

BrUPE  MA+A 

Model Model Assumptions / Data Model Model Assumptions / Data 

A virgin � char + vap↑ 

zero order reaction model using constant DTG 

with respect to temperature  

A virgin � char + vap↑ 

zero order reaction model using constant DTG 

with respect to temperature 

B virgin � char + vap↑ 

first order reaction model using DTG peak to 

estimate kinetic parameters 

B virgin � char + vap↑ 

first order reaction model using DTG peak to 

estimate kinetic parameters 

C virgin � char + vap↑ 

first order reaction model using multiple iso-

heating rates TGA data to estimate kinetic 

parameters 

C virgin � char + vap↑ 

additive � additive_residue + vap↑ 
 

first order reaction models using multiple iso-

heating rates TGA data to estimate kinetic 

parameters 

D virgin � char + vap↑ 

nth order reaction model using multiple iso-

heating rates TGA data to estimate kinetic 

parameters  

D virgin � char + vap↑ 

additive � additive_residue + vap↑ 
 

nth order reaction models using multiple iso-

heating rates TGA data to estimate kinetic 

parameters  

E virgin � intermediate + vap↑ 

intermediate � char + vap↑ 

char � residue + vap↑ 
 

first order reaction models using multiple iso-

heating rates TGA data to estimate kinetic 

parameters 

E virgin � intermediate + vap↑ 

intermediate � char + vap↑ 

char � residue + vap↑ 

additive � additive_residue + vap↑ 
 

first order reaction models using multiple iso-

heating rates TGA data to estimate kinetic 

parameters 

F virgin � intermediate + vap↑ 

intermediate � char + vap↑ 

char � residue + vap↑ 
 

nth order reaction models using multiple iso-

heating rates TGA data to estimate kinetic 

parameters 

F virgin � intermediate + vap↑ 

intermediate � char + vap↑ 

char � residue + vap↑ 

additive � additive_residue + vap↑ 
 

nth order reaction models using multiple iso-

heating rates TGA data to estimate kinetic 

parameters 
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Figure 1. Mass loss rates from TGA experiments (exp) and kinetic modeling (A-F) and are shown for BrUPE (a) and MA+A (b) 

with 60 °C/min heating rate case. Applying various approaches in kinetic modeling results in minor changes in modeled mass 

loss rate. 

 

( )αα
f

RT

E
A

dt

d a









−= exp  Eq.4 

.baT +=α  Eq.5 

It is important to choose the appropriate level of complexity in kinetic modeling. As the kinetic modeling 

approach used in pyrolysis modeling becomes more complex, the number of species involved during pyrolysis 

increases meaning that the number of model parameters associated with those species will increase. Therefore, in 

terms of conducting parameter estimation for pyrolysis modeling, simpler kinetic modeling approaches are more 

desirable. Based on the screening procedure conducted previously, insignificant changes were observed in the 

simulations of mass loss rates integrated over the cross-section at each time step with different kinetic models (A 

through F). Although the effect of increasing complexity in kinetic model was trivial in the simulation of mass loss 

rate integrated over the cross-section, its effect on parameter estimation for pyrolysis modeling based on multi-

objective optimization is unknown. Therefore, to understand this effect of kinetic modeling complexity on the 

parameter estimation process, kinetic models with different complexity – model B, C and F – are selected to be 

applied in the pyrolysis modeling problem for both FRP materials. The major differences between these models are 

how the different components in the resin mixture are described. For the BrUPE resin mixture, kinetic model B and 

C have a single step mechanism which simplifies the process into a single reaction; and model F has a three step 

mechanism to address decomposition of different species – resin, intermediate resin and char. For the MA+A resin 

mixture, kinetic model B has a single step mechanism lumping decomposition into a single reaction; model C has a 

two-step mechanism with one reaction for describing decomposition of the polymer (MA) and one reaction for 

describing decomposition of the additive (A); and model F has a four step mechanism to include decomposition of 

different species – resin, intermediate resin and char – from the polymer (MA) as well as the additive (A). When 

these kinetic models are applied, the total number of unknowns in model parameters ranged from less than 20 up to 

40 using the comprehensive pyrolysis model, GPYRO [3,8].      
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6. OPTIMIZATION TARGET 

Finding the appropriate targets is important as the numerical optimization routines are capable of optimizing the 

parameter values to compensate for any undesirable deviation from the given targets. When this happens, numerical 

optimization routines will be more likely to optimize to non-physical values for the model unknowns. The purpose 

of this study is in examining the ability of multi-objective optimization methods to estimate comprehensive 

pyrolysis model parameters related to material properties by evaluating how close are the estimated values to their 

effective material properties, independently measured by various standard tests. Therefore, caution is necessary in 

terms of selecting the appropriate optimization targets in the parameter estimation exercises – bench-scale 

experiment data of mass loss rate, front and back surface temperature histories – as this can affect the estimation 

results.  

To find an appropriate optimization target for parameter estimation, screening simulations with kinetic 

model F (best fitness to TGA data) of mass loss rates are conducted (see Figure 2) for cases with different applied 

heat flux levels – 50, 70 and 100 kW/m
2
 for BrUPE composite and 25, 50 and 75 kW/m

2
 for MA+A composite to 

ensure consistency between simulation and data. The results show that at lower heat flux levels good agreement 

between experimental data and simulations are found where the averaged difference between data and simulations is 

less than the average uncertainty of mass loss rate data.  However, at higher heat flux levels, there is a significant 

deviation in simulation results from measured MLR for both materials.  This is suggestive that at higher heat flux 

levels, applying assumptions of thermal decomposition being only a function of temperature and residual mass and 

having no interruption during release of pyrolysis products becomes inappropriate. 

Based on the screening procedure conducted above, the target data are from a single test with applied heat 

flux level of 50 kW/m
2
 is used instead of utilizing multiple data sets with different applied heat flux levels. This 

ensures that these parameter estimations are performed within the bounds of the pyrolysis modeling assumptions, 

i.e. assuming thermal decomposition is a function of temperature only and products are instantaneously released to 

the gas phase without interruption. Otherwise, the effect of modeling results deviating from experimental data at 

earlier times with higher heat flux levels (see (b), (c) and (f) of Figure 2) will be accounted for in the estimated 

parameter values to compensate for this undesirable deviation. 
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Figure 2. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive pyrolysis modeling (mod) and 

are shown for BrUPE and MA+A FRP composites.  Applied heat flux levels are 50, 70 and 100 kW/m2 for BrUPE FRP 

composite ((a), (b) and (c), respectively) and 25, 50 and 75 kW/m2 for MA+A FRP composite ((d), (e) and (f), respectively).  

Good agreement between experiment data and modeling results are found from (a) for BrUPE composite and (d) and (e) for 
MA+A composite.  
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7. RESULTS AND DISCUSSION 

For the BrUPE FRP composite, the parameter estimation process was successful for all cases with the three kinetic 

models – B, C and F. For parameter estimation cases with kinetic models B and C, SCE routine was used and for 

that with kinetic model F, GA routine was used. When SCE is used, a single optimized parameter set is used to 

conduct further analysis. For GA optimized case, 100 near optimal parameter sets are used to calculate the average 

and the 95% confidence interval by applying a student t-distribution. The best-fit cases from parameter estimation 

with kinetic models B, C and F are shown with experiment data in Figure 3. Mass loss rate simulations from all 

cases are in good agreement with the data considering the experiment uncertainty. For simulations of front and back 

surface temperature histories, that of case F is in agreement with data for the entire time range – pre-ignition, 

ignition and post-ignition. Temperature simulations with kinetic model B and C have poor agreement during pre-

ignition and near ignition time range (t < 150s) where front and back surface temperatures are greater and lower than 

those of experiment data and the differences are greater than the data uncertainty.  

The parameter estimation process for the MA+A FRP composite was successful for kinetic models B and 

C; however, parameter estimation with the most complex kinetic model among the three cases, kinetic model F was 

unsuccessful.  For B and C cases, GA near optimal parameter sets of 50 and 20 are used, respectively, to estimate 

the average and 95% confidence intervals by applying a student t-distribution.  The best-fit cases from parameter 

estimation with kinetic models B and C are shown with experiment data in Figure 4.  Mass loss rate and front and 

back surface temperature history simulations with kinetic models B and C are in a good agreement with the data 

where modeling outputs are mostly within the uncertainty bands of the experiment data. 
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Figure 3.  Mass loss rate, front and back surface temperature histories from Cone Calorimeter experiments (exp) and 

comprehensive pyrolysis modeling results with parameters estimated from numerical optimization using three different kinetic 

models (B, C and F) are shown for BrUPE FRP composite.  Applied heat flux level is 50 kW/m2.  Modeling outputs are mostly 

within the uncertainty bands of the experiment data. 
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Figure 4.  Mass loss rate, front and back surface temperature histories from Cone Calorimeter experiments (exp) and 

comprehensive pyrolysis modeling results with parameters estimated from numerical optimization using two different kinetic 

models (B and C) are shown for MA+A FRP composite.  Applied heat flux level is 50 kW/m2.  Modeling outputs are mostly 

within the uncertainty bands of the experiment data. 
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independent measurements have reported uncertainties of ± 20%, ± 5% and ± 0.03 for thermal conductivity, specific 

heat capacity and emissivity, respectively. For thermal conductivity, the differences between the estimated and 

measured values reduce from 66 to 59% for the BrUPE resin and 80 to 40% for the BrUPE FRP composite with 

0

5

10

15

20

0 100 200 300 400 500 600 700

M
LR

 (
g

/s
-m

2
)

time (s)

(a)

exp
B
C

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700

T
s 

(°
C

)

time (s)

(b)

exp

B

C

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

T
b

 (
°C

)

time (s)

(c)

exp

B

C



Section 3 - 13 

 

respect to increasing complexity in kinetic model (B to F). A similar trend is found for the thermal conductivity 

estimations for MA+A resin and MA+A FRP composite, but with greater decrease in % difference between the 

estimated and measured values than those in BrUPE cases – 67 to 4% for the MA+A resin and 43 to 13% for the 

MA+A FRP composite. For specific heat capacity, although there is some improvement when kinetic model F is 

used where the average difference between estimation and measurement over the temperature range of interest 

decreases from 59% (kinetic model C) to 32% (kinetic model F), the estimated values with all kinetic models have 

poor correlation with the measured values for the BrUPE polymer resin. Good correlation is found between the 

estimations and measurement of specific heat capacity for the MA+A resin case when the more complex kinetic 

model C is used where the average difference between estimation and measurement over the temperature range of 

interest decreases from 31% (kinetic model B) to 8% (kinetic model C). For emissivity, estimations show that the 

differences between the estimated values and measured values range from 2 to 9% and 6 to 12% for BrUPE and 

MA+A FRP composites, respectively. With increasing complexity in applied kinetic model there is increasing 

difference between the estimation and measurement for emissivity of BrUPE FRP composite. The difference 

between the estimated emissivity values and the measured value for MA+A FRP composite becomes smaller as 

more complex kinetic model is applied. 

 

Table 2. Comparison between measured parameter values for thermal conductivity and emissivity of the polymer systems 

(BrUPE and MA+A) and FRP composites (BrUPE FRP and MA+A FRP) and estimated values from numerical optimization: 

Last column shows the percentage difference between measured (at room temperature) and estimated values where generally a 
reduction of difference occurs when more complicated kinetic model is used in the estimation process.  

Parameter Material 
Meas. 

Value 

KM 

Type 

Estimated 

Value 

% 

Diff 

k [W/m-K] 

BrUPE 0.231 ± 0.046 

B 0.078 66 

C 0.058 75 

F 0.368 ± 0.013 59 

MA+A 1.060 ± 0.212 
B 0.349 ± 0.017 67 

C 1.018 ± 0.158 4 

BrUPE FRP 0.327 ± 0.065 

B 0.067 80 

C 0.085 74 

F 0.197 ± 0.007 40 

MA+A FRP 0.573 ± 0.115 
B 0.328 ± 0.012 43 

C 0.643 ± 0.090 13 

ε [-] 

BrUPE FRP 0.913 ± 0.03 

B 0.909 2 

C 0.960 6 

F 0.831 ± 0.013 9 

MA+A FRP 0.912 ± 0.03 
B 0.804 ± 0.020 12 

C 0.856 ± 0.028 6 
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Figure 5.  Comparison between measured specific heat values and estimated values from numerical optimization with different 

kinetic models – B, C and F – for two polymer resin systems of (a) BrUPE and (b) MA+A: Results show that compared to 

measured values there is some improvement in the estimated specific heat capacity of the resins for a single component system 

BrUPE and a significant improvement for two-component system MA+A when a more complex kinetic model is used in the 
estimation process. 

 

From the above analysis, it is shown that when the complexity of the kinetic model increases (model B � 

F) no apparent trend of improvement in the parameter estimations is observed for BrUPE resin/FRP cases. However, 

there is a significant improvement in the estimations for MA+A resin/FRP cases with respect to increasing kinetic 

modeling complexity (model B � C). This is illustrated by comparing to independent measurements for thermal 

conductivity, specific heat capacity and emissivity. It is noteworthy that the difference between the estimated values 

from case C for MA+A resin/FRP material and those of independent measurements are less than the measurement 

uncertainty and therefore they can be considered as effective property values. 

Considering that the fiberglass used in both FRP composites is the same, additional analysis is performed 

for the following fiberglass properties – thermal conductivity, specific heat capacity and emissivity (see Table 3 and 

Figure 6). For thermal conductivity of the fiberglass, a reference value for comparison with the estimated values has 

been calculated based on Eq.1 using measured values for the resin mixture and FRP composite at ambient 

temperature. The thermal conductivity values estimated for the BrUPE case is 0.0 ± 0.2 W/mK and for the MA+A 

case is 0.4 ± 0.2 W/mK as volume fraction of the fiberglass in the composite is 0.24 for BrUPE and 0.56 for MA+A 

FRP case. Because these are the same fiberglass mats used in the two composites, the true thermal conductivity of 
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the glass is considered to be near 0.2 W/mK where the two reference values overlap. The estimated thermal 

conductivities from different parameter estimation cases have shown that those from applying kinetic model C for 

BrUPE FRP case and kinetic model C for MA+A FRP case are the closest to 0.2 W/mK. For specific heat capacity 

of the fiberglass used in the FRP composites, a reference value of 0.8 kJ/kg-K at ambient temperature is used for 

comparison, which is found from [24]. Among various estimations of specific heat capacity, those from applying 

kinetic model F for BrUPE FRP case and kinetic model C for MA+A FRP case are the closest to the reference value. 

For emissivity of the fiberglass, reference values for comparison have been calculated based on Eq.3 similar to the 

thermal conductivity case using measured values for the resin mixture and FRP composite. The emissivity value 

calculated for the BrUPE case is 1.1 ± 0.2 and for the MA+A case is 0.9 ± 0.1. Knowing that emissivity should 

range from 0.0 to 1.0 and the reference value from each FRP case should be consistent as they are the same 

fiberglass mats in two FRPs, the true emissivity of the glass is considered to be within the range 0.9 to 1.0. The 

estimated emissivities from different parameter estimation cases have shown that those from applying any kinetic 

model B through F for BrUPE FRP case and applying kinetic model C for MA+A FRP case are within 0.9 to 1.0 

range. From the above analysis, when the complexity in a kinetic model increases (model B � F) there is no 

apparent trend in improvement in the parameter estimations for BrUPE FRP cases. However, improvement in the 

estimations for MA+A FRP cases are observed as illustrated by making comparison to reference values for thermal 

conductivity, specific heat capacity and emissivity of the fiberglass used in the FRP composites.  

 

Table 3. Comparison of estimated emissivity of glass from parameter estimation exercise conducted for the two composites 

(BrUPE FRP and MA+A FRP) with different kinetic models: For both materials, as the complexity of applied kinetic model 
increases from B to F, the estimated emissivity values become closer to 0.9. 

Parameter Material 
KM 

Type 

Estimated 

Value 

ε [-] 

BrUPE FRP 

B 0.959 

C 0.985 

F 0.919 ± 0.014 

MA+A FRP 
B 0.846 ± 0.032 

C 0.873 ± 0.041 
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Figure 6.  Comparison of estimated (a) thermal conductivity and (b) specific heat capacity values for glass from numerical 

optimization process with different kinetic models – B, C and F – for two FRP composites of BrUPE and  MA+A FRPs: Results 

show that compared to measured values there is insignificant effect in the estimated thermal conductivity and some improvement 

in the estimated specific heat capacity of the fiberglass for a single component system BrUPE. However, for two-component 

system MA+A, there is a significant improvement in the estimation for thermal conductivity and specific heat capacity for 
fiberglass when a more complex kinetic model is used. 

 

These findings are summarized as follows: (1) Excessively complex kinetic models that can reproduce 

TGA data with higher precision may result in too many unknowns resulting in unsuccessful parameter estimation 

using an optimization method which finds no solution for the given problem (e.g. kinetic model F for MA+A 

composite). (2) For the BrUPE resin/FRP cases, all cases – applying kinetic model B (single step reaction with 

single heating rate TGA data used for kinetic parameter estimation), model C (single step reaction with multiple 

heating rate TGA data used for kinetic parameter estimation) and model F (three step reaction to account for 

decomposition of intermediate species) – were successful in terms of finding an optimum parameter set via 

numerical optimization method. Comparing the estimated results to reference values for thermal conductivity, 

specific heat capacity and emissivity of the resin, FRP composite and fiberglass showed that there is no apparent 

trend in improvement in the estimations with respect to increasing kinetic model complexity. (3) For the MA+A 

resin/FRP cases, applying kinetic model B (single step with single heating rate TGA data used for kinetic parameter 

estimation) and model C (two step reaction to account for decomposition of different components (MA and A) in the 

resin mixture, separately) were successful with parameter estimation using optimization method. Comparing the 

estimated results to reference values for thermal conductivity, specific heat capacity and emissivity of the resin, FRP 
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composite and fiberglass showed that there is a significant improvement in the estimations when kinetic model 

complexity is increased. The increased complexity was to explicitly account for decomposition of the different 

components in the resin mixture, i.e. the base resin MA and the additive A, with separate reactions. Some of the 

estimated values of MA+A resin/FRP from case C can be considered as effective property values as the difference 

between the estimated values and those of independent measurements are less than the reported measurement 

uncertainty. 

The above findings suggest following: (1) With a highly tuned parameter estimation exercise using global, 

multi-objective and multi-variable optimization method, estimated results will roughly be within ± 100% of the 

measurements. (2) Increasing kinetic model complexity for a single component system as BrUPE to utilize multiple 

heating rate TGA data when estimating kinetic parameters with a single step global reaction (kinetic model C) or to 

account for decomposition of intermediate species with additional reactions (kinetic model F) have less influence in 

parameter estimation. (3) Increasing kinetic model complexity for a two-component system as MA+A to account for 

decomposition of different components in the resin mixture with separate reactions (kinetic model C) instead of 

applying a single step global reaction (kinetic model B) results in significant improvement in parameter estimation. 

(4) Parameter estimation using numerical optimization method with an appropriate level of complexity in the kinetic 

model used and optimization targets can find estimations that can be considered as effective material property 

values. (5) Good practice for kinetic modeling for pyrolysis modeling when using parameter estimation via 

optimization is to utilize the simpler approach of assuming a global single step reaction since increasing complexity 

results in more model parameters to estimate. However, when a decomposing material is known to be a multi-

component system such as the MA+A resin investigated in this study, applying separate reactions for decomposition 

of each component is desirable since it improves the parameter estimation results to be more consistent with 

independent measurements.  

 

8. CONCLUSIONS 

In this study, parameter estimations for comprehensive pyrolysis modeling [3,8] of brominated unsaturated 

polyester (BrUPE, single component system) and modified acrylic with fire retardant additive (MA+A, two 

component system, MA and A) FRP composites are conducted to investigate the ability of global, multi-objective 

and multi-variable optimization methods to estimate model parameters related to material properties – thermo-

physical and optical properties. To conduct meaningful parameter estimation, first, an appropriate kinetic model for 

describing the thermal decomposition process of the polymer resins needs to be identified. Kinetic modeling is 

conducted with independent thermal analyses using TGA and DSC experimental data and several kinetic models 

with different level of complexity have been proposed. Their effect on modeling is evaluated using a screening 

process that involves simulations of mass loss rate integrated over the cross-section at each time step of 1D FRP 

pyrolysis. The screening process utilizes bench-scale temperature data as a proxy for conservation of energy. 

Through this procedure, it has been shown that insignificant changes occur in the integrated mass loss rate 

simulation of 1D pyrolysis with respect to changes made in the kinetic model for both FRPs. Knowing this, different 
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kinetic models – B, C and F – are applied to the parameter estimation process to examine their effect on the 

estimation with numerical optimization. Second, optimization targets are carefully selected based on the same 

screening process used to evaluate kinetic models. This procedure showed that data from experiments with low to 

moderate applied heat flux levels are appropriate. Therefore, parameter estimation is conducted with three different 

kinetic models, from simple to complex, using optimization targets from Cone Calorimeter experimental data 

irradiated at 50kW/m
2
. Estimation results are compared with independently measured effective material properties – 

thermal conductivity, specific heat capacity and emissivity of polymer resins and FRPs. Additionally, fiberglass 

properties estimated from different parameter estimation exercises conducted for the two FRPs are compared to 

analyze consistency in optimized values. These parameter estimation exercises have shown the following: (1) With a 

well-configured parameter estimation exercise using global, multi-objective and multi-variable optimization method, 

estimated results will be within ± 100% of the measurements. (2) Increasing kinetic model complexity for a single 

component system as BrUPE have less influence in parameter estimation. (3) Increasing kinetic model complexity 

for a two-component system as MA+A to address decomposition of each component separately results in a 

significant improvement in parameter estimation. (4) Parameter estimation using numerical optimization method 

with appropriate level of complexity in kinetic model and optimization targets can find estimations that can be 

considered as effective material property values. (5) Good practice for kinetic modeling for pyrolysis modeling 

when used with parameter estimation via optimization method is to apply a simple single step reaction at first as 

increasing complexity results in more model parameters to estimate. However, when a decomposing material is 

known to be a multi-component system with different thermal characteristics (e.g. MA+A resin), applying separate 

reactions for decomposition of each component is desirable as it should improve the parameter estimation results to 

be more consistent with independent measurements.  

 

9. ACKNOWLEDGEMENTS 

The authors greatly appreciate the support for this work from DOC NIST Award Number 60NANB8D8106 

(Federal Program Officer Dr. Kevin McGrattan).  Special thanks goes to Charles Dore for fabricating and donating 

FRP composite materials used in this study.  Many thanks also to Randall Harris at WPI for conducting the Cone 

Calorimeter tests. 

 

10. REFERENCES 

                                                           

1. Kevin McGrattan, Simo Hostikka, Jason Floyd, Howard Baum, Ronald Rehm, William Mell and Randall 

McDermott, Fire Dynamics Simulator (Version 5) Technical Reference Guide, NIST Special Publication 1018-5, 

October 29, 2010 

2. S.I. Stoliarov, R.E. Lyon, Federal Aviation Administration Technical Note,DOT/FAA/AR-TN08/17, 2008; 

available for download at http://www.fire.tc.faa.gov/reports/reports.asp. 

3. Lautenberger, C., Gpyro – A Generalized Pyrolysis Model for Combustible Solids, Technical Reference, Version 

0.700, February 19, 2009 



Section 3 - 19 

 

                                                                                                                                                                                           

4. Lautenberger, C, Rein, G., & Fernandez-Pello, C., 2006. The Application of a Genetic Algorithm to Estimate 

Material Properties for Fire Modeling from Bench-Scale Fire Test Data, Fire Safety Journal 41(3), pp. 204-214.  

5. Stoliarov, S.I., Crowley, S., Lyon, R.E., & Linteris, G.T., 2009. Prediction of the Burning Rates of Non-Charring 

Polymers, Combustion and Flame 156(5), pp. 1068-1083.  

6. Chaos M, Khan MM, Krishnamoorthy N, et al. Evaluation of optimization schemes and determination of 

solid fuel properties for CFD fire models using bench-scale pyrolysis tests. P Combust Inst 2011; 33(2): 2599–2606.  

7. Marler, R. T., and Arora, J. S. (2004), "Survey of Multi-Objective Optimization Methods for Engineering," 

Structural and Multidisciplinary Optimization, 26 (6), 369-395. 

8. Lautenberger C and Fernandez-Pello C. Optimization algorithms for material pyrolysis property estimation. Fire 

Saf Sci 2011; 10: 751–764. 

9. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen 

Consumption Calorimeter, ASTM E 1354-02, ASTM, 100 Barr Harbor Drive, West Conshohocken, PA, USA 

10. Rick Aster, Brian Borchers, Cliff Thurber, Preface, In: Richard C. Aster, Brian Borchers and Clifford H. 

Thurber, Editor(s), International Geophysics, Academic Press, 2005, Volume 90, Parameter Estimation and Inverse 

Problems, Pages xi-xii, ISSN 0074-6142, ISBN 9780120656042, DOI: 10.1016/S0074-6142(05)80014-2. 

11. Matala, A., Lautenberger, C., & Hostikka, S., “Generalized direct method for pyrolysis kinetics parameter 

estimation and comparison to existing methods,” Journal of Fire Sciences 30 339-356 (2012). 

12. Bal, Nicolas, Uncertainty and complexity in pyrolysis modeling, PhD Dissertation, The University of Edinburgh, 

2012, http://hdl.handle.net/1842/6511 

13. Kim, E., Dembsey, N., and Shivkumar, S., Evaluating Effects of Applying Different Kinetic Models to Pyrolysis 

Modeling of Fiberglass Reinforced Polymer Composites, submitted for review in Fire and Materials Journal 

14. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen 

Consumption Calorimeter, ASTM E 1354-02, ASTM, 100 Barr Harbor Drive, West Conshohocken, PA, U.S. 

15. de Ris, J.L. and Khan, M.M., “A sample holder for determining material properties,” Fire and Materials, 24, 

219-226 (2000).  

16. T. Ozawa, “A new method of analyzing thermogravimetric data,” Bull.Chem. Soc. Jpn., vol. 38, pp. 1881–1886, 

1965. 

17. J. H. Flynn and L. A.Wall, “A quick, direct method for the determination of activation energy from 

thermogravimetric data,” J. Polym. Sci.Polym. Lett., vol. 4, pp. 323–328, 1966. 

18. H. L. Friedman, "Kinetics of thermal degradation of char-forming plastics from Thermogravimetry. Application 

to a phenolic plastic," J. Polym. Sci., Pt. C 6, 183-195 (1964) 

19. J. H. Flynn, L. A. Wall, "A quick, direct method for the determination of activation energy from 

thermogravimetric data," J. Polym. Sci. Polym. Lett. 4, 323-328 (1966). 

20. Standard Test Method for Steady State Thermal Transmission Properties by Means of the Heat Flow Meter 

Apparatus , ASTM C518, ASTM, 100 Barr Harbor Drive, West Conshohocken, PA, USA 

21. Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded Comparative Longitudinal 

Heat Flow Technique, ASTM E1225, 100 Barr Harbor Drive, West Conshohocken, PA, USA 

22. Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM 

E1269, 100 Barr Harbor Drive, West Conshohocken, PA, USA 

23. Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection Meter Techniques, ASTM 

E408, 100 Barr Harbor Drive, West Conshohocken, PA, USA 

24 Hust, J.G., Callanan, J.E. and Sullivan, S.A. (1988). Specific Heat of Insulations. In: Yarbrough, D.W. (ed.), 

Thermal Conductivity 19, pp. 533-550, Plenum, N.Y. 



 

Section 4 

PARAMETER ESTIMATION FOR COMPREHENSIVE PYROLYSIS MODELING: GUIDANCE AND 

CRITICAL OBSERVATIONS 

 

 

 

 

 

 

  

 



Section 4 - 1 

 

PARAMETER ESTIMATION FOR COMPREHENSIVE PYROLYSIS MODELING: 

GUIDANCE AND CRITICAL OBSERVATIONS 

E. Kim
1
 and, N. Dembsey

1
 

1
Fire Protection Engineering, WPI 

1. ABSTRACT  

A process for conducting parameter estimation for comprehensive pyrolysis models is proposed in this study. This 

estimation process was developed based on the following: (1) parameter estimation is about being consistent, 

applying engineering common-sense and correctly following the steps in this guide; (2) parameter estimation is 

conducted by breaking down the problem into groups of unknowns of similar character and considering them 

separately; (3) parameter estimation is conducted in consideration of an appropriate complexity in model set-up 

using certain approximations for simplifications; and (4) parameter estimation is conducted with direct 

measurements of parameters from independent experiments, literature search and/or numerical optimization paired 

with certain pyrolysis models. Additionally, limitations in parameter estimation are discussed by considering 

example cases. They are shown to demonstrate how simplifying the microstructure, modeling thermal 

decomposition kinetics and applying numerical optimization methods affect the estimation results. The process 

developed is applied to modeling of real-world materials: thermoplastics (PMMA), corrugated cardboard, fiberglass 

reinforced polymer composites and plywood. Understanding the limitations in parameter estimation, it was noted 

that (1) the estimated parameter values are compensated by other parameter values in a parameter set allowing 

optimization method to optimize for multiple optimal, linked parameter sets; however, (2) when modeling is well-

configured with optimum complexity, the optimized parameter values may become closer to those of independent 

measurements, highlighting the possibility of utilizing the optimization method to estimate for effective material 

properties. 

2. KEYWORDS  

comprehensive pyrolysis modeling; parameter estimation; numerical optimization 

3. INTRODUCTION 

In recent years with the availability of increased computational power, there has been growing demand for 

conducting Computational Fluid Dynamics (CFD) simulations in the fire community.  Along with this, there has 

been an increased interest in development of pyrolysis models as sub-models to CFD models that can provide 

information about solid phase decomposition.  Early pyrolysis models used in the fire field were empirical and 

simple analytical models [1,2] that only considered solids in an aggregate manner.  The next pyrolysis models 

developed were integral models [3,4,5,6,7] where solids were divided into two parts: pre-decomposed and 

decomposed.  Recently, comprehensive pyrolysis models have gained notice [8,9,10].  In comparison to simpler 

pyrolysis models, comprehensive pyrolysis models have greater flexibility in describing the pyrolysis of a solid 
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mathematically.  The comprehensive models explicitly solve for conservation of mass and energy on the solid.  

However, they require significant effort in estimating model parameters, because the total numbers of unknown 

parameters may vary from less than 10 to over 100 for each and every type of solid material of interest.  This makes 

it difficult for users to utilize these models. 

Understanding this difficulty in conducting comprehensive pyrolysis modeling, a process of parameter 

estimation is proposed in this study. This process is applied to four real-world materials – thermoplastic (PMMA), 

corrugated cardboard, fiberglass reinforced polymer composite, and plywood. Then, limitations in parameter 

estimation were evaluated by following the proposed process.  The effects of simplifying the microstructure, 

modeling thermal decomposition kinetics independently using thermal analysis, and applying numerical and 

optimization methods to parameter estimation are examined in detail by showing example cases to illustrate how 

these modeling assumptions, simplifications and approaches affect parameter estimation results. The work presented 

in this paper – the proposed parameter estimation process and the example cases – has been formatted to a guide as 

well [11].    

4. BACKGROUND 

Comprehensive pyrolysis models are models those account for physical and chemical responses of materials 

exposed to fire conditions [8,9,10].   These models utilize fundamental conservation equations to describe the 

changes in a material during its pyrolysis process.  Typically, models are constructed to conserve mass and energy 

when the material is being heated and/or thermally decomposed.  Numerical calculations are conducted using 

various methods – finite difference, finite element, or integral formats where governing equations are transformed to 

systems of ODEs instead of PDEs using simplifications – to determine mass loss and temperature profiles from the 

heat exposed front surface to unexposed back surface with respect to increasing time. 

Thermal decomposition processes in comprehensive pyrolysis modeling can be modeled by two different 

approaches – reactions that are infinitely fast or finite.  When thermal decomposition is infinitely fast, the pyrolysis 

front becomes an infinitely thin reaction zone where reactants are consumed instantaneously into products releasing 

or consuming reaction heat.  In this case, heat transfer is considered as a limiting factor for modeling the pyrolysis 

problem. Typically, a pre-determined pyrolysis temperature is used to locate the pyrolysis front.  When thermal 

decomposition reaction rate is modeled as finite, the pyrolysis front has a finite thickness.  Whether a virgin material 

is pyrolyzed completely (single solid state case) or partially (multiple solid state case) to fuel vapor, the assumption 

used in this approach allows the model to approximate the pyrolysis kinetics as well as the heat transfer throughout 

the solid fuel.  When pyrolysis kinetics are explicitly considered in modeling, pyrolyzates can be produced at 

various locations within the pyrolysis front.  By performing numerical calculations in these comprehensive pyrolysis 

models, temperature profiles are obtained for a solid fuel and depending on the local temperature pyrolysis 

reaction(s) rates are calculated allowing the reactants to be consumed to produce pyrolyzates or other types of solid 

phase materials with associated energy consumption.  Typically, an Arrhenius type expression is used for describing 
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the pyrolysis kinetics.  Some models of this kind consider mass and heat transfer of gases through a decomposed 

solid phase product layer, which requires additional governing equations to be solved. 

Although accounting for physical and chemical mechanisms observed explicitly during pyrolysis is a merit 

of comprehensive models, difficulties arise when using these models due to the numerous unknown model 

parameters that need to be estimated by the user.  The ability of modeling various aspects of the pyrolysis problem 

results in greater complexity of the model.  Therefore, the numbers of parameters involved in the simulation can 

dramatically increase, which results in significant effort to estimate the additional unknown parameters. 

5. APPLIED PRINCIPALS AND APPROACHES IN DEVELOPING THE 

PARAMETER ESTIMATION PROCESS 

Given all the parameters that are required for modeling, it is very likely that unknown parameters will need to be 

estimated to perform pyrolysis simulations.  This process is called parameter estimation. A guide is proposed in this 

study to find an appropriate approach to estimating parameters for comprehensive pyrolysis modeling.  There are 4 

major principals and approaches taken in developing this guide: (1) parameter estimation is about being consistent, 

applying engineering common-sense and correctly following the steps in this guide; (2) parameter estimation is 

conducted by breaking down the problems into groups of unknowns of similar character and considering them 

separately; (3) parameter estimation is conducted with consideration to an appropriate complexity chosen for 

pyrolysis modeling; and (4) parameter estimation is conducted with measurements of parameters from experiments 

and/or numerical optimization paired with certain pyrolysis models. 

Consistency, Common-sense and Correctness 

Due to the complexity of the parameter estimation problem, there is no simple right or wrong answers to estimating 

unknown model parameters.  Therefore, a guide for estimating model parameters is prepared in this study based on 

the following principals.  First, the guide is to allow users to estimate unknowns in a consistent manner.  Second, the 

guide is developed based on common-sense.  Third, the guide provides enough detail to allow the users to correctly 

follow along. 

Breaking Down the Problem into Groups 

When estimating parameters, a complete list of model parameters should be created first.  It is good practice for 

users to build their model parameter list by certain groups or categories considering their characteristics.  Model 

parameters are related to heat transfer, mass transfer and thermal decomposition kinetics.   Parameters can be 

grouped into (1) parameters related to modeling thermal decomposition process; (2) material properties that are 

intrinsic, i.e. they depend on chemical and physical structure of the material or effective due to neglecting actual 

microstructure of the material and considering the material as homogeneous; and (3) model-dependent fitting 

parameters, which are not material properties but parameter constants that provide the best fitness of model output 

to experiment results.   
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Parameters used in thermal decomposition modeling are the pyrolysis onset temperature for applying the 

infinitely thin reaction zone assumption or kinetic parameters for applying the finite thickness reaction zone 

assumption, and reaction heat. In general, good practice is to determine these by independent kinetic modeling.  

Parameters in this group are crucial as they structure the problem by setting the number of decomposition reactions. 

For example, consider decomposition as “virgin � char + gas”. In this case, as a result of this one-step kinetic 

modeling with two solid phase species, estimation of model parameters of material properties are needed for virgin 

and char.  Material properties can be considered in three groups: (1) thermo-physical properties – density, thermal 

conductivity and specific heat capacity; (2) porous media characteristics – porosity and permeability; and (3) optical 

properties – absorption coefficient and emissivity.  Material property parameters are “ideal” when they are measured 

by independent experiment.  However, there are limitations and disadvantages in direct or indirect measurements, 

which will be discussed below.  An example of a model-dependent fitting parameter is “γ” used in GPYRO [10], 

where this parameter governs the effective conductivity attributed to radiative heat transfer across pores.  Parameters 

in this group are only obtainable through optimization rather than measurements, as they are directly linked to the 

pyrolysis model of use.  With an understanding of these model parameters for each group, an estimation strategy can 

be planned for each parameter. 

Determining Appropriate Complexity of the Problem 

Depending on the complexity of the modeling approach, the total number of model parameters that need to be 

estimated may vary.  There is a tradeoff between increasing modeling complexity to define the material of interest 

more precisely and increasing effort necessary to estimate the model parameters.  For example, consider having 

more than one reaction in kinetic modeling.  If one global decomposition reaction is broken into two elementary 

reactions to be more precise in reproducing the DTG (mass loss rate) curve from TGA experiments, the list of model 

parameters that need to be estimated will be doubled to 4 species.  Therefore, determining the appropriate level of 

complexity for modeling is important for parameter estimation.  Some of the questions that need to be answered are 

– Should a material’s cross-section be modeled as a homogeneous single layer or heterogeneous multiple layers?  

How many reactions are necessary for modeling thermal decomposition kinetics of the material of interest?  Should 

some of the material properties be considered as constants or temperature dependent parameters?  Are there any 

possible approximations that can be made to simplify the material’s fire behavior (e.g. emissivity of charred surface 

approximated as 1)?  A rule of thumb for determining the appropriate complexity level in modeling is as follows: 

start modeling with the simplest approach and apply additional complexity to the problem when simulation results 

deviate from experimental bench marks in a significant manner.  the needed level of complexity should reduce the 

differences between simulations and experiments to a non-significant level.    This requires some trial and error 

exercises; however, once the user has enough experience in how things change in the modeling outputs with respect 

to certain variations in model parameters, finding a good balance between modeling complexities with its gains 

becomes less challenging. 
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Measurements and/or Numerical Optimization 

Parameter estimation can be conducted using three different approaches: (1) measuring each parameter via 

independent experiment; (2) searching the literature for measurement values of similar materials or use 

approximations; (3) conducting numerical optimization by pairing a pyrolysis model with an optimization routine.  

The above approaches can be used by itself or in pair to estimate the entire unknown model parameter set. 

When the unknown parameters are estimated by measurement using independent experiments, typically 

small-scale experiments are used based on standard tests such as ASTM or ISO.  This approach only allows 

measurement of model parameters related to material properties and modeling thermal decomposition kinetics.  In 

general, estimating parameters by measurements is challenging due to the following reasons: First, it is noteworthy 

that material parameters obtained through this approach are not always intrinsic, but in many cases are effective.  

Due to the limited sample size used in small-scale tests, material parameters measured via independent experiments 

are generally accepted as intrinsic.  However, in many cases for real world heterogeneous materials, the material 

parameter measured becomes effective.  Because, the small amount of sample used in these tests are treated as 

homogeneous by neglecting the heterogeneity of the material.   Second, there may be a disconnection between the 

model parameter obtained in a small-scale experiment and the model parameter required by the pyrolysis model.  

For example, a naturally high-charring phenolic resin decomposing during a Thermogravimetric Analaysis (TGA) 

experiment in a powder form – a typical approach when conducting TGA experiment to reduce thermal lag– cannot 

represent decomposition of this same material in a bench-scale calorimeter test as a flat surface.  The resin prepared 

in a powder form results in significantly larger surface area (interface) exposed to the gas phase per unit mass or 

volume.  On the other hand, resin prepared as a flat surface has relatively smaller surface area exposed to the gas 

phase per unit mass or volume.  This difference results in great deviation when comparing thermal decomposition of 

this material, because the smaller surface area per unit mass or volume is proportional to formation of more 

thermally stable carbonated char during decomposition.  For example, a neat phenolic resin tested in the TGA under 

air environment at 20°C/min iso-heating rate with sample particle size of 0.5 mg results in 57% loss by weight at 

600°C, while the same material tested with sample particle size of 2.2 mg results in 36% loss at 600°C.  Obtaining 

kinetic parameters from a TGA experiment using a powder type sample and applying them to pyrolysis modeling to 

describe thermal decomposition occurring on a flat surface results in the parameters being effective.  Third, material 

parameters required in pyrolysis modeling during material decomposition cannot be measured via independent 

experiments.  Typically when measuring material parameters in small-scale experiments, decomposition of the 

sample is considered to be undesirable.  Because the gases from decomposition may affect the measurements, which 

makes it impossible to make measurements for parameters of intermediate species involved in kinetic modeling.  

Fourth, measuring material parameters and conducting thermal analysis for modeling thermal decomposition 

kinetics through a commercial laboratory require significant time and financial investment.   

Another approach to estimating model parameters is searching through the literature for measurement 

values of similar materials or using certain approximations.  Although using this approach is most practical (because 

it is less time-consuming and inexpensive), caution should be given to the following: First, understanding the 
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material and its condition is essential.  Certain polymers may have the same nomenclature, but depending on their 

polymer chain size, length and shapes, its character, e.g. thermal conductivity [12], may vary.  The same material 

with higher moisture containment may show different thermal decomposition kinetics, because water molecules 

physically and/or chemically interfere in the process [13].  The same material with significant aging – e.g. scratches, 

cracks, etc. – may start to decompose at a lower temperature than that without aging [14].  These are some examples 

of how a material and its condition during experiments can affect the measurement results.  Second, consideration of 

model parameter sensitivity and uncertainty is needed.  In addition to the uncertainty reported for the measurement 

value in the literature, a greater uncertainty should be taken into account when using that value in pyrolysis 

modeling, as two “similar” materials may have subtle differences physically or chemically as noted above.  Also, 

when approximation is used to estimate certain model parameters for simplification of the problem, the user should 

be aware of the sensitivity of that parameter on modeling outputs of interest and check whether small changes to the 

approximated parameter value significantly alter the modeling results or not.   

The third approach of estimating model parameters is conducting numerical optimization by pairing a 

pyrolysis model with manual optimization or an optimization routine [15,16,17,18,19,20].  To overcome the 

limitation in estimating parameters through measurements (first approach) or by literature search or approximations 

(second approach), the unknowns in pyrolysis modeling can be obtained by comparing modeling outputs with 

optimizing targets – experimental data such as mass loss rate and temperature profiles from bench-scale test results. 

Then find the optimum parameter set that provides the best fitness to the target.  When unknown parameters in a 

pyrolysis model are estimated by comparing certain modeling outputs with a target, using numerical optimization, 

this is considered as an inverse problem.  These inverse problems in pyrolysis modeling are difficult to solve due to 

the following reasons [21]: First, when the data contains noise or the mathematical model does not account for 

important physics and/or chemistry of the real problem, there may be no optimum that fits the data exactly, i.e. the 

solution to the problem may not exist (existence of solution).  In other words, when data uncertainty is high and/or 

the model is too simplified, the model solution may not be determined through this process [22].  For example, when 

model parameters are estimated by utilizing this approach for certain laminated fiberglass reinforced polymer (FRP) 

composites with relatively high glass content, successful optimization for the parameters separately for the two 

components of the composite, resin and fiberglass mats, may be unsatisfying because the variation in mass loss rate 

data used as targets generally do not show the effect of the alternating layers of resin and fiberglass mats in the 

composite.  Second, even when a solution is found, it may not be unique (uniqueness of solution) [22,24].  This 

occurs usually when the data used in solving the problem is significantly smoothed or biased. Also, it may occur due 

to the compensating effects that exist among model parameters. Therefore, multi-objective/variable numerical 

optimization routines are typically able to converge to many near optimal solutions for these characteristics of the 

problem (see example cases).  In resolving this problem, a typical approach is to reduce the total number of 

unknowns by fixing the unknown parameters to some values utilizing other approaches discussed previously, then 

conducting numerical optimization for all the parameters.  Third, inverse problems are, in most cases, ill-posed, 

where a small change in a solution can lead to an enormous change in the modeling output.  It is known as the 

instability problem of a solution (instability of solution) [21].  Therefore, an effort should be given to check the 
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applicability of the solution upon extrapolation to other modeling conditions not considered during numerical 

optimization knowing that this may result in significant deviation from actual phenomena [23].  Fourth, the 

optimized parameters should be considered as a linked parameter set, in general.  Once numerical optimization is 

used, the optimized parameter value takes into account any assumptions used in pyrolysis modeling, all the intrinsic 

or effective parameter values with their uncertainty which were obtained through other means, etc.  Hence, an 

optimized value for one parameter may not be used for other pyrolysis modeling cases.  However, sometimes when 

the estimation is conducted carefully with appropriate kinetic model and optimization targets, the estimated values 

may be considered to be effective properties [24].  This is possible when the estimated values are significantly close 

to the measured ones, i.e. the difference between the estimated and measured values are within the limit of 

measurement uncertainty.  Last, when applying this method, the estimation process can become confusing. Without 

a consistent approach it can lead to unsatisfying results. 

6. PARAMETER ESTIMATION PROCESS 

This work is focused on presenting a process for estimating model parameters that allows users to conduct parameter 

estimation based on commonsense, consistency and correctness.  The process of parameter estimation can also be 

considered as an exercise of creating a virtual material in comprehensive pyrolysis models. This process is 

composed of the three approaches discussed above: (1) measuring each parameter via independent experiment; (2) 

searching literature for measurement values on similar materials or use of approximation; (3) conducting numerical 

optimization by pairing a pyrolysis model with an optimization routine.  In addition to these, consideration of the 

uncertainty of estimation of each model parameter and its propagation into the pyrolysis modeling uncertainty is 

given in the context of defining the criteria for satisfying or unsatisfying parameter estimation.  Typically, 

estimation based on measurement of the maximum possible number of parameters will be considered first. Then 

estimate parameters by literature review, as they can become practical constraints when conducting numerical 

optimization for solving unknowns.  Therefore, estimation based on use of a numerical optimization routine in pair 

with pyrolysis modeling will be considered as the last option. 

To create a virtual material in comprehensive pyrolysis models, the following tasks must be considered: 

Step 1: Create the microstructure of the virtual material 

Step 2: Identify the decomposition kinetics type  

Step 3: Create a list of model inputs 

Step 4: Obtain the model unknown inputs via measurement or literature search 

When the above tasks are done and every unknown has been estimated, validation work is needed to 

understand the performance of the estimated parameter set: 

Step 5:  Run model 

Step 6: Analyze simulation quality with consideration of uncertainties in modeling outputs and data 
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Step 7: Add commentary 

When there are additional unknowns that need to be estimated, the users may conduct optimization in pair 

with the pyrolysis model.  This process of obtaining unknowns via optimization should be followed by validation 

work as well.  Obtaining parameters using an optimization and validation process should include the following: 

Step 8: Run model in pair with optimization 

Step 9: Analyze simulation quality with consideration of uncertainties in modeling outputs and data 

Step 10: Validate simulation quality upon extrapolation  

Step 11: Add commentary 

When presenting the parameter estimation results, three summary tables will be introduced: Model 

Parameters, Validation and Commentary sections.  The Model Parameters section includes the model parameters 

necessary to conduct pyrolysis modeling, their estimated values, and methods of estimating the unknowns.  The 

Validation section consists of the following information: description of modeling goal, pyrolysis model type and 

modeling approach used in the exercise, experiment type and its data used to compare data to modeling outputs or 

optimize for unknowns, and uncertainty information of experimental data and modeling outputs.  The Commentary 

section discusses any limitations of pyrolysis modeling conducted above, which has been summarized in the Model 

Parameters and Validation sections.  For better visualization of the problem, a flowchart can be used (see Figure 1). 



Section 4 - 9 

 

 
Figure 1. Flow chart of parameter estimation for comprehensive pyrolysis models 
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7. DIFFERENT OPTIMIZATION METHODS 

There are two types of optimization methods applied in the examples: manual optimization or numerical 

optimization routines.  The manual optimization can be done for simple cases, e.g. estimating unknown parameters 

for two solid phase species involved in one-step thermal decomposition kinetics; however, it requires many 

iterations of trial and error.  Rules of thumb for conducting manual optimization are as follows. Consider having 

optimization targets as experiment data from bench-scale tests such as the mass loss rate and temperature at various 

depths, which is a typical case.  First, conduct kinetic modeling independently to understand at what temperatures 

each species will exist.  Assume that the decomposition reaction occurs at temperatures between Ta and Tb where Ta 

< Tb.  Any changes made in parameters related to reactants should affect fire behaviors at temperature smaller than 

Ta and any changes made in parameters related to products should affect behaviors at temperatures greater than Tb 

(see (a) in Figure 2).    Second, understand that any changes made in heat of reaction (HoR) affects the mass loss 

rate peak.  When HoR is reduced, the peak becomes taller (see (b) in Figure 2).  Third, understand that thermal 

conductivity (k) affects the temperature gradient throughout the specimen thickness.  Reducing k results in a wider 

spread between the surface and the back surface temperature profiles (see (c) in Figure 2).  Fourth, understand that 

specific heat capacity (cp) determines how soon a material heats up, i.e. increases its body temperature.  Applying 

smaller cp results in faster increase in temperature profiles throughout, from surface to back surface (see (d) in 

Figure 2).  Last, for estimating optical properties, apply simple approximations, e.g. having emissivity equal to 1 for 

surfaces that are close to black or quickly becomes black after exposure to radiative heating.  Knowing these tips 

helps conducting manual optimization for estimation of unknown model parameters. 

  For numerical optimization routines, there are three types that had been applied to fire pyrolysis modeling 

so far and they were applied for the parameter estimation exercise conducted in this study also – genetic algorithm 

(GA) [15,16], shuffled complex evolution (SCE) [17,18,19] and stochastic hill-climber (SHC) [20].  These are 

evolution optimization schemes with high efficiency and robustness that allow multi-objective and multi-variable 

optimization under limited knowledge of the problem.  All three optimization routines can be considered in terms of 

four processes: (1) Initialization of individuals, which refers to the set of initial guesses of unknown parameters; (2) 

Evolutionary process of selection and reproduction – selection from population for reproduction conducted for 

individuals with good fitness, i.e. better adaptation to their environment and reproduction resulting in new 

generation derived from a previous one while ensuring convergence, i.e. increase in fitness; (3) Termination of 

evolution at a user-defined termination condition. 
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Figure 2. Understanding manual optimization: (a) For a one-step thermal decomposition kinetics that takes place within 

temperature range of Ta < T < Tb, changing parameters related to reactants should affect fire behaviors at temperatures below Ta 

and changing parameters related to products should affect fire behaviors at temperatures above Tb; (b) Reducing HoR increases 

mass loss rate peak; (c) Reducing thermal conductivity results in wider spread between Tsurf and Tback; (d) Reducing specific 

heat capacity results in faster increase in temperature throughout.  Note that results from greater parameter value are shown in 

solid lines, while those from smaller value are shown in dashed lines. 

 

8. LIMITATIONS IN PARAMETER ESTIMATION  

Although parameter estimation is carefully conducted following the process discussed above, consideration should 

be given to what each estimated parameter value means. The parameter estimation process gives guidance to apply 

desirable model assumptions and simplifications, before users begin to estimate the parameter values of the problem. 

This means the estimated parameter values incorporate the effect of how the problem was set up to conduct 

parameter estimation. Therefore, depending on how the modeling was set up, the same parameter for the same 

material may result in different estimations. In the following, discussions of the microstructure, kinetic modeling 

and numerical optimization effects on parameter estimation results are given to illustrate the limitations in estimated 

results.  
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Microstructure Effect 

Generally, in FPE practice, heterogeneous materials are assumed to be a homogeneous mixture of components, 

when pyrolysis modeling is conducted for simplification of the problem. However, when the microstructure effect of 

the material on parameter estimation for pyrolysis modeling is neglected, inconsistency may be observed in 

parameter estimation for the same material component existing in different materials. For example, consider 

estimating the fiberglass thermal conductivity simply from thermal conductivities of polymer resin and fiberglass 

reinforced polymer (FRP) composite at the pre-decomposition stage at ambient temperature. Knowing the thermal 

conductivity values of the polymer resin and FRP composite measured from independent tests, thermal conductivity 

of the fiberglass may be estimated by considering the volume (X) fractions of resin and fiberglass in the FRP 

composite: �� = ����� − 	���
 	��  [8,9,10]. Although the composite has alternating resin and fiberglass layers 

laminated, this approach of estimating thermal conductivity assumes a homogeneous mixture of resin and fiberglass 

in the composite. This exercise is performed for the following two FRP composites – brominated unsaturated 

polyester (BrUPE) and modified acrylic with fire retardant additive (MA+A) FRP composites – with the same 

fiberglass used in the lamination. As shown in Figure 3, the estimated thermal conductivities of the same fiberglass 

are 0.4 ± 0.2 W/mK for the BrUPE FRP case and -1.0 ± 1.2 W/mK for the MA+A FRP case. The uncertainty band 

of estimated thermal conductivity of fiberglass can be found by considering the uncertainty limits of standard 

measurements, which were reported as ± 15 to 16%. Uncertainty calculations are performed with ± 20% to be more 

conservative. Considering that the negative values are non-physical and both estimations are for the same fiberglass 

mats used in different FRPs, the actual thermal conductivity of the fiberglass should be near 0.2 W/mK where the 

two estimations overlap.  This value is the lower limit of the estimation for the BrUPE FRP case and the upper limit 

of the estimation for the MA+A FRP case. Therefore, it shows that when microstructure effects are neglected by 

assuming the material is a homogeneous mixture of different components, parameter estimations for each 

component, e.g. thermal conductivity of fiberglass, may be non-physical (negative mean) or have a narrow overlap 

between two estimations. The above example shows this is true even for estimations solely with measured values 

from standard tests. 
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Figure 3. Thermal conductivity of fiberglass estimated from measured thermal conductivities of polymer resin and fiberglass 

reinforced polymer (FRP) composite and volume (X) fraction of resin and fiberglass.  The solid fill of the markers indicate the 

mean and the uncertainties are considered with unfilled markers. When k < 0, estimation is considered to be non-physical. 

 

Kinetic Modeling Effect 

To understand the kinetic modeling effects on parameter estimation, thermal decomposition during pyrolysis should 

be considered first. Typical materials under decomposition with respect to one-dimensional heating of the solid 

phase material from the surface with a known heat flux of � � is shown in Figure 4 and can be considered similar to 

that of a bench-scale calorimeter experiment.  Assumptions are that the solid material is porous and a gas phase 

reactant is required for decomposition. When a material is exposed to heating from one side (surface), the 

decomposition process can be expressed in 7 stages (A � G) [25].  First, diffusion of the gas phase reactant needs to 

occur through a boundary layer from the gas phase to the solid phase (A).  The gas phase reactant needs to continue 

to diffuse through the voids in the porous solid phase (condense phase) to locate the solid particle  where reaction 

will be occurring, which is located within the reaction zone with a finite thickness (B).  This is known as the intra-

particle diffusion.  After locating the solid particle, adsorption of the reactant occurs at the reaction site, i.e. the 

reactant is diffusing through the solid particle to find other active reactant(s) (C).  With all the reaction participants 

at the reaction site, chemical reaction occurs, which can be considered as “intrinsic” (D).  The gas phase product(s) 

resulting from this reaction need to diffuse through the solid particle (condense phase) to be set off to the gas phase 

(E).  This process is desorption of the gas phase products.  Additionally, intra-particle diffusion of the products 

occurs following the desorption (F).  At the end, products need to diffuse through the boundary layer to enter into 

the bulk gas phase (G). 
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Figure 4. Actual pyrolysis phenomenon of a porous solid phase material under one-dimensional heating 

 

Understanding these 7 stages of thermal decomposition in a slab, one may consider how they are simplified 

in the well-known comprehensive pyrolysis models: the pyrolysis model in FDS [8], Thermakin [9] and GPYRO [10] 

(see Table 1). First, in the case of FDS’s pyrolysis model, the 7 stages of decomposition process are lumped into one 

where everything is represented by a process of decomposition chemical reaction.  This model allows transformation 

of a single solid phase component into another type of solid phase component and/or volatiles that are freely 

released to the bulk gas phase above the solid phase surface.  Second, for Thermakin, the 7 stages of decomposition 

process are reduced to modeling the decomposition chemical reaction with gaseous products transfer due to 

concentration gradient (D � F).  In this model, decomposition kinetics are assumed to be a single solid phase 

component or two solid phase components together becoming another type of single or two solid phase component(s) 

and/or volatiles.  Third, GPYRO includes three out of 7 stages – intra-particle diffusion of the gaseous reactant, 

chemical reaction and intra-particle diffusion of the gaseous products (B � D � F).  Additionally, GPYRO has the 

most flexibility in defining chemical reactions – reactions can be heterogeneous (gas phase – condense phase) or 

homogeneous (gas phase – gas phase). 

Table 1. Summary of thermal decomposition process utilized in three comprehensive pyrolysis models – pyrolysis model in FDS, 

Thermakin and GPYRO: process in red is accounted for in each model 

Model Type Decomposition Process 

FDS A � B � C � D � E � F � G 

Thermakin A � B � C � D � E � F � G 

GPYRO A � B � C � D � E � F � G 
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Although different models have their own ways of describing the decomposition processes of a solid phase 

material, every model assumes that the parameters in their kinetic model can be determined through independent 

kinetic modeling using thermal analysis.  All models assume that the model’s discretized unit is equivalent to a TGA 

(or equivalent) sample.  Throughout the sample, for the first two models – FDS and Thermakin – the decomposition 

chemical reaction rate is determined based on the temperature and the mass fraction of this unit only.  For GPYRO, 

this rate is determined based on unit’s temperature, mass fraction and availability of gaseous reactant(s), when 

reactions involving gaseous reactant(s) are utilized.  These assumptions and simplifications in describing the thermal 

decomposition kinetics for pyrolysis modeling should have certain effects on parameter estimation process, and they 

are illustrated with examples below. 

First, in some cases, the effect of thermal decomposition processes neglected in pyrolysis modeling is 

considerable. For example, consider taking kinetic modeling results from independent thermal analysis of modified 

acrylic with high-charring inorganic fire retardant additive polymer resin and applying to pyrolysis modeling of 

fiberglass reinforced polymer (FRP) composite [26]. Based on thermal analysis using TGA and DSC experiments, 

thermal decomposition of the additive in this polymer resin sample was found to be diffusion controlled, i.e. process 

E in Figure 4 is the rate determining factor. General guidance in conducting experiments with this type of material is 

to significantly reduce the sample particle size used in TGA or DSC to eliminate or limit mass transfer effects on 

thermal decomposition. Following the above, the kinetic model estimated from thermal analysis should be free of 

process E affecting decomposition. However, when this kinetic model is applied to model pyrolysis of the FRP 

composite using a pyrolysis model that assumes negligible mass transport effect on decomposition (C and E in 

Figure 4) as discussed previously and the results are compared with bench-scale pyrolysis data, the effect of 

neglecting process E in both kinetic and pyrolysis models is identified in [26]. As shown in Figure 5, good 

agreement between modeling and data can be found when modeling pyrolysis at lower heating rates (applied heat 

flux of 25 and 50 kW/
2
), where enough travel time is given for mass transfer with respect to temperature increase.  

Poor agreement between modeling and data is found, when modeling pyrolysis is done at higher heating rates 

(applied heat flux of 75 kW/m
2
).  In this case shorter travel time is given for mass transfer with respect to 

temperature increase. Therefore, when parameter estimation is conducted for this case, the estimated model 

parameter values implicitly account for the effect of process E in actual pyrolysis, because it was considered to be 

negligible in both kinetic and pyrolysis modeling.   
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Figure 5. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive pyrolysis modeling (mod) and 

are shown for MA+A FRP composite.  Applied heat flux levels are 25 (left), 50 (middle) and 75 (right) kW/m2. Good agreement 

between experiment data and modeling results is found from the cases with applied heat flux level of 25 and 50kW/m2. Deviation 

in simulation occurs from experiment data at 75 kW/m2 case near the initial peak in the mass loss rate (t < 300s). 

 

Second, in many cases, increasing complexity in kinetic modeling for describing thermal decomposition 

reaction (D) results in insignificant effect on overall pyrolysis modeling [26,27].  For example, consider taking 

kinetic modeling results from independent thermal analysis of a thermosetting polymer resin – brominated 

unsaturated polyester –, and applying to pyrolysis modeling of the fiberglass reinforced polymer (FRP) composites 

[26]. In general practice for thermal analysis, increasing fitness to thermograms from TGA or DSC by increasing 

complexity in kinetic model is favored to study the decomposition mechanism in detail. To understand the effect of 

kinetic model complexity in pyrolysis modeling, various kinetic models are considered – single- or multi-step 

mechanism and zero-, first- or nth-order reaction model in Arrhenius expression: model A through F, from the 

simplest to the most complex (see Table 2). Based on this work, it was shown that increasing complexity in kinetic 

model to account for various aspects of decomposition behavior had an insignificant impact on the simulated overall 

mass loss rate at low to moderate applied heat flux levels (see Figure 6). Although kinetic model case A shows a 

large scatter in the simulated mass loss rate near the peak and the beginning stage of the final decay, other models 

produce similar MLR curves independent of the kinetic modeling approach. Therefore, when parameter estimation 

is conducted for these materials, increasing kinetic model complexity (increasing unknown parameters) to increase 

fitness to TGA data only results in incremental improvements to modeling outputs. 

 

Table 2. Different kinetic models considered in this study 

Model Model Assumptions / Data Model Model Assumptions / Data 

A 
1 zero order rxn/constant 
DTG 

D 
1 or 2 nth order rxn/multi-
heating rate 

B 1 first order rxn/ peak DTG E 
3 or 4 first order rxn/multi-
heating rate 

C 
1 or 2 first order rxn/multi-
heating rate 

F 
3 or 4 nth order rxn/multi-
heating rate 
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Figure 6. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive pyrolysis modeling with 

different kinetic models (A through F) and are shown for BrUPE FRP composite at applied heat flux level of 50 kW/m2. 

Generally, good agreement between experiment data and modeling results are found for all cases (A through F) except for case A 

where a large scatter is found near the mass loss rate peak and at the end of the simulation. 

 

Numerical Optimization Effect 

As mentioned in the previous section, conducting parameter estimation is solving an inverse problem, i.e. applying 

multi-objective, multi-variable numerical optimization routines to a pyrolysis model of choice to estimate unknowns 

iteratively, is challenging due to the following reasons: existence, uniqueness and instability of solutions. Hence, 

whenever parameter estimation is conducted with these numerical optimization methods, the problem should be 

carefully constructed in terms of applying an appropriate kinetic model representing the actual decomposition 

process in slab pyrolysis, use of experimental data for optimization targets which have behavior consistent with the 

model formulation, etc. With a well bounded parameter estimation exercise with appropriate kinetic model and 

optimization targets, the estimated results using numerical optimization method have been shown to produce good 

correlation with the measured values [24]. In this reference, parameter estimation exercise is conducted for two 

material systems: single component brominated unsaturated polyester (BrUPE) fiberglass reinforced polymer (FRP) 

composite and two components modified acrylic with high charring additive (MA+A) fiberglass reinforced polymer 

(FRP) composite. The study shows that the estimated results are within ± 100% of the measurements, considering 

thermal conductivity, specific heat capacity and emissivity of the resin or FRP. Additionally, increasing kinetic 

model complexity for the single component system BrUPE gives less influence in parameter estimation. However, 

increasing kinetic model complexity for the two-component system MA+A to address decomposition of each 

component separately results in a significant improvement in parameter estimation. For this case of MA+A, some of 

the difference between the estimations and measurements are within the limit of the measurement uncertainty, and 

therefore the estimated values via numerical optimization can be considered as effective material property values.  
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9. APPLICATION TO REAL-WORLD MATERIAL PROBLEMS 

The parameter estimation process introduced above has been applied to create virtual materials for the following 

real-world materials – PMMA, cardboard, fiberglass reinforced polymer composite and plywood. These materials 

are selected to cover a wide range of material groups. PMMA is a thermoplastic and has been used in pyrolysis 

studies frequently for its homogeneous characteristics and relatively simple pyrolysis behavior. Corrugated 

cardboard is a cellulose material that is widely used as a packaging material. Fiberglass reinforced polymer 

composite is considered to study parameter estimation for pyrolysis of a mixture of different components, in this 

case thermally decomposing polymer and inert fiberglass. Plywood is a wood composite product with wood and thin 

resin alternating layers laminated with pressure.  

Applying the first two steps in the parameter estimation process, these materials are assumed to have 

homogeneous cross-section (step 1). Their thermal decomposition has been assumed to be a single- or two-step 

reaction without or with residue production (step 2). The lists of model inputs are shown in Table 4 through Table 7 

with the estimated values (step 3). The estimation approaches applied for the example materials were mostly non-

optimization (i.e. independent measurements or literature search, step 4), comparable non-optimization and 

numerical optimization, mostly numerical optimization, or manual optimization (see Table 3). When all of the 

unknowns are estimated through independent measurements or literature search (step 4), step 5 through 7 are 

conducted. When there are additional unknowns estimated based on optimization, step 8 through 11 are conducted. 

Details of the analyses are found in Ref [11] 

 

Table 3. Overview of material examples used in parameter estimation process for comprehensive pyrolysis models 

Material Example PMMA 
Corrugated 

Cardboard 

Fire Retarded FRP 

Composite 
Plywood 

Case Description 

Single-step 

Decomposition 

RxN w/o Residue 

Single-step 

Decomposition 

RxN w/ Residue 

Two-step 

Decomposition 

RxN w/ Residue 

Drying and Single-

step 

Decomposition 

RxN w/ Residue 

E
stim

a
tio

n
 A

p
p

ro
a

ch
 

Mostly Non-

optimization 
PMMA – A    

Comparable Non-

optimization and 

Optimization 

PMMA – B Cardboard – B Composite – B  

Mostly Optimization PMMA – C Cardboard – C   

Manual Optimization    Plywood – D 
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Results and Discussion 

Parameter estimation results with good agreement with data are shown in Figure 7, Figure 8, Figure 9 and Figure 10 

and the estimated values are summarized in Table 4, Table 5, Table 6 and Table 7. They are parameter estimation 

for pyrolysis modeling of PMMA, triple layered corrugated cardboard, fiberglass reinforced polymer (FRP) 

composite with modified acrylic resin with high-charring fire retardant additive and plywood, respectively. For each 

material, experimental data and simulation results are shown for mass loss rate and temperature profiles at surfaces 

at three different heat flux levels ranging from low to high. The moderate heat flux case is used in optimization and 

the lower and higher heat flux cases are used in the extrapolation exercise to examine modeling quality.  

Parameter estimation of PMMA shows that the best agreement with data can be found when the parameter 

values are all estimated by independent measurement, literature referencing and approximated using engineering 

judgment (approach A, see Figure 7 and Table 4). The results show that this approach gave better results in terms of 

following the data trend than other approaches examined in this example (approach B and C). Additionally, the 

estimated values for the same parameters show variation depending on the specific routine (GA, SCE or SHC) used 

in the exercise when a numerical optimization method is applied. The findings are suggestive of the following: (1) 

This exercise shows that the approach of starting with independent measurements, literature reference or 

approximation rather than applying only numerical optimization method discussed in the parameter estimation 

process (see Figure 1) is justified. (2) Having variation in the estimated values when applying different optimization 

routines indicates that there are compensating effects between each parameter allowing the algorithm to optimize for 

different optimal parameter sets.  
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Table 4. Parameter estimation results with approach A for parameter values estimated from measurement, literature or 

approximation; approach B for estimation based on combination of non-optimization and optimization methods using GA, SCE 

and SHC numerical optimization routines; and approach C for estimation based on mostly optimization method using GA, SCE 

and SHC. Best simulation results were found from estimation with approach A (i.e. independent measurements or literature 

search) approach for parameter estimation of PMMA. 

ID A B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Parameter Unit 
Measurement, 
Literature, or 

Approximation 

Comparable Non-optimization 
and Optimization 

Mostly Optimization 

T
h

e
rm

o
-p

h
y
s
ic

a
l 

P
ro

p
e

rt
y
 

iρ  
kg/m

3

 

1200 ± 60  1200 ± 60  1200 ± 60  

Measurement Measurement Measurement 

ik  W/m-K 
0.18 ± 0.01 

0.30 ± 
0.01  

0.21 0.33 
0.29 ± 
0.01  

0.29 0.19 

Literature* GA SCE SHC GA SCE SHC 

ic  J/kg-K 
2.2 ± 0.1  1.8 ± 0.1  0.7 1.7 

2.0 ± 
0.1  

1.1 1.7 

Literature**,*** GA SCE SHC GA SCE SHC 

O
p

ti
c
a
l 

P
ro

p
e

rt
y
 

iκ  /m 
2700 ± 1400  

150000 
± 86000  

1000000 3600000 
2200 ± 

500  
790000 350000 

Literature**** GA SCE SHC GA SCE SHC 

iε  - 
0.85 ± 0.16  

0.91 ± 
0.01  

0.66 0.89 
0.66 ± 
0.01  

0.99 0.54 

Literature**** GA SCE SHC GA SCE SHC 

T
h

e
rm

a
l 
D

e
c
o

m
p

o
s
it
io

n
 K

in
e

ti
c
s
 a

n
d

 H
e
a

ts
 

kn  - 
1 1 

0.5 ± 
0.1  

0.5 1.5 

Approximated Approximated GA SCE SHC 

kZ  /s 

(8.5 ± 4.3) x 10
12

  (8.5 ± 4.3) x 10
12

  
(1.3 ± 
0.6) x 
10

16
 

3.3 x 
10

15
 

5.3 x 
10

19
 

Model Fitting w/ 
multiple heating 
rate TGA data 

Model Fitting with multiple 
heating rate TGA data 

GA SCE SHC 

kE  J/mol 

(1.88 ± 0.06) x 10
5
  (1.88 ± 0.06) x 10

5
  

(1.77 ± 
0.01) x 

10
5
 

2.27 x 
10

5
 

2.43 x 
10

5
 

Model Fitting w/ 
multiple heating 
rate TGA data 

Model Fitting with multiple 
heating rate TGA data 

GA SCE SHC 

kH∆  kJ/kg 
870 ± 130  870 ± 130  

1100 ± 
21  

1300  520 

Literature** Literature
Error! Bookmark not defined.

 GA SCE SHC 

M
o

d
e
l 

D
e

p
e

n
d
e

n

t 

P
a

ra
m

e
te

r hcrz 
W/m

2
-

K 

0 12 ± 3  2 14 38 ± 4  3 -32 

Approximated 
adiabatic condition 

at back surface 
GA SCE SHC GA SCE SHC 

* J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch (Eds.), Polymer Handbook, fourth ed., John Wiley & Sons, New 

York, 1999. 

** S.I. Stoliarov and R.N. Walters, Polym. Degrad. Stab. 93 (2008), pp. 422–427. 

*** Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR, editors. Polymer handbook. 4th ed. New York: John Wiley and 

Sons; 1999. 

**** Stanislav I. Stoliarov, Sean Crowley, Richard E. Lyon, Gregory T. Linteris, Prediction of the burning rates of non-charring 

polymers, Combustion and Flame, Volume 156, Issue 5, May 2009, Pages 1068-1083, ISSN 0010-2180, DOI: 

10.1016/j.combustflame.2008.11.010.  
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Figure 7. Mass loss rate (MLR, top row) and surface temperature (Tsurf, bottom row) comparisons for PMMA between actual 

from experiment (exp) and modeled (mod) at applied heat flux of 23 (left), 46 (middle) and 64 (right) kW/m2. Best simulation 

results were found from estimation with mostly non-optimization (i.e. independent measurements or literature search) approach 

for parameter estimation of PMMA.  
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Parameter estimation of triple layered corrugated cardboard shows that the best agreement with data can be 

found when the parameter values are estimated by mostly optimization using SCE (approach C-SCE, see Figure 8 

and Table 5). The results show that the optimization and the upper limit extrapolation cases have good agreement to 

the experimental data in terms of having similar data trends for all approaches (approach B and C) except for the C-

SHC approach. However, the lower limit extrapolation case from all approaches shows significantly poor agreement 

to the experimental data near the initial mass loss rate peak. Among various results, the lower limit extrapolation 

case from mostly optimization using SCE approach was closest to the experimental data. Additionally, the estimated 

values for the same parameters show variation depending on the specific routine (GA, SCE or SHC) used in the 

exercise when numerical optimization method is applied. The findings are suggestive of the following. (1) 

Comparing the three optimization techniques, GA and SCE gave better estimations of optimal parameter sets than 

SHC, though the computing time needed for SHC to conduct the optimization was an order of magnitude less than 

the other two. (2) When the material is significantly simplified mathematically, e.g assuming a homogeneous cross-

section for a complicated structured heterogeneous material such as this example, estimated parameter values must 

take into account of the effect of simplification. Therefore, pyrolysis modeling has a higher chance of producing 

diverging results when simulating extrapolation cases as shown in this lower limit extrapolation case. (3) Although 

the approach of starting with independent measurements, literature reference or approximation rather than applying 

only numerical optimization method should be favored, in this case the mostly optimization case show a better 

agreement with data. This can also be explained by the simplifications made in the modeling set-up and the 

estimated parameter values taking into account of the simplifications. In such cases, allowing the optimization 

routine to have greater flexibility in searching for the near optimums by leaving the parameters as variables instead 

of fixing them as a constant with measured values. (4) The variation shown in the estimated values when using 

different optimization routines (GA, SCE or SHC) indicates that there are compensating effects between each 

parameter allowing the algorithm to optimize for different optimal parameter sets. 
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Table 5. Parameter estimation results with approach B for estimation based on combination of non-optimization and optimization 

methods using GA, SCE and SHC numerical optimization routines; and approach C for estimation based on mostly optimization 

method using GA, SCE and SHC. Best simulation results were found from estimation with approach C using shuffled complex 

evolution method for parameter estimation of triple layered corrugated cardboard. 

ID B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Parameter Unit 
Comparable Non-optimization and 

Optimization 
Mostly Optimization 

T
h

e
rm

o
-p

h
y
s
ic

a
l 
P

ro
p
e

rt
y
 

i 
=

 1
 

(f
u

e
l)
 

iρ  
kg/m

3

 

110 110 

Measurement Measurement 

ik  W/m-K 
0.08 ± 0.01 0.13 0.21 0.21 

Measurement GA SCE SHC 

ic  J/kg-K 
2.8 2.3 0.6 2.0 2.4 1.7 

GA SCE SHC GA SCE SHC 

i 
=

 2
 

(r
e

s
id

u
e

) iρ  
kg/m

3

 

25 20 11 26 10 43 

GA SCE SHC GA SCE SHC 

ik  W/m-K 
0.29 0.32 0.32 0.20 0.35 0.20 

GA SCE SHC GA SCE SHC 

ic  J/kg-K 
1.5 1.1 0.2 1.0 0.8 2.2 

GA SCE SHC GA SCE SHC 

O
p

ti
c
a
l 
P

ro
p
e

rt
y
 

i 
=

 1
 

(f
u

e
l)
 

iκ  /m 
10

6
 10

6
 

Approximated as opaque Approximated as opaque 

iε  - 
0.88 ± 0.01 0.72 0.50 0.65 

Measurement GA SCE SHC 

i 
=

 2
 

(r
e

s
id

u

e
) 

iκ  /m 
10

6
 10

6
 

Approximated as opaque  Approximated as opaque  

iε  - 
1 0.82 0.93 0.96 

Approximated GA SCE SHC 

T
h

e
rm

a
l 
D

e
c
o

m
p

o
s
it
io

n
 

K
in

e
ti
c
s
 a

n
d
 H

e
a

ts
 kn  - 

1 3.7 3.0 2.2 

Approximated GA SCE SHC 

kZ  /s 

1.1 x 10
21

 3.9 x 10
6
 9.8 x 10

19
 6.0 x 10

14
 

Model Fitting with single heating rate 
TGA data 

GA SCE SHC 

kE  J/mol 

2.49 x 10
5
 7.0 x 10

4
 2.47 x 10

5
 3.02 x 10

5
 

Model Fitting with single heating rate 
TGA data 

GA SCE SHC 

kH∆  kJ/kg 
123 512 809 88 54 0.7 

GA SCE SHC GA SCE SHC 

M
o

d
e
l 

D
e

p
e

n
d
e

n

t 

P
a

ra
m

e
te

r 

hcrz 
W/m

2
-

K 

19 8 14 10 8 10 

GA SCE SHC GA SCE SHC 

nkz(i=1) - 
5.6 4.6 7.6 0 

GA SCE SHC Approximated 
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Figure 8. Mass loss rate (MLR, top row) and surface temperatures (Tsurf , bottom row) comparisons for corrugated cardboard 

between actual from experiment (exp) and modeled (mod) at applied heat flux of 20 (left), 60 (middle) and 110 (right) kW/m2. 

The moderate heat flux case is used in optimization and the lower and higher heat flux cases are used in extrapolation exercise to 

examine modeling quality. Best simulation results were found from estimation with mostly optimization approach using shuffled 

complex evolution method for parameter estimation of triple layered corrugated cardboard.  

Parameter estimation of fiberglass reinforced polymer (FRP) composite shows that the best agreement with 

data can be found when the parameter values are estimated by mostly optimization using optimization routines other 

than SHC (see Figure 9 and Table 6). The results show that both optimization and extrapolation cases produce 

simulations that follows the experimental data trends well for GA and SCE cases. The estimated values for the same 

parameters show variation depending on the specific optimization routine used in the exercise. Some values are 

compared with measured or referenced from literatures values – thermal conductivity, specific heat capacity and 

emissivity of the resin, FRP composite and fiberglass. This exercise is similar to the work conducted in Ref [24]. 

Based on this comparison, it has shown that more than half of the estimated values discussed above are close to 

measured or reference values and their differences are less than the measurement uncertainty. The findings are 

suggestive of the following. (1) GA and SCE were able to optimize better than SHC. (2) The variation shown in the 

estimated values when using different optimization routines (GA, SCE or SHC) indicates that there are 

compensating effects between each parameter allowing the algorithm to optimize for different optimal parameter 

sets. (3) However, when modeling is well-configured with an optimum level of complexity, estimated values with 

optimization method can be close to the independent measurements, which are considered to be effective properties 

of a material.  
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Table 6. Parameter estimation results with estimation based on combination of non-optimization and optimization methods using 

GA, SCE and SHC numerical optimization routines. Best simulation results were found from estimation with GA or SCE method 

for parameter estimation of this fiberglass reinforced polymer composite. 

ID GA(avg) GA(best) SCE SHC 

Parameter Unit Comparable Non-optimization and Optimization 

T
h

e
rm

o
-p

h
y
s
ic

a
l 
P

ro
p
e

rt
y
 

i 
=

 1
  

(R
e

s
in

) 

iρ  
kg/m

3

 

1200 

Measurement 

ik  W/m-K 
0.23 ± 0.02 0.21 0.54 0.04 

GA GA SCE SHC 

ic  J/kg-K 
1400 ± 100 2200 300 1300 

GA GA SCE SHC 

i 
=

 2
  

(R
_

re
s
id

u
e

) 

iρ  
kg/m

3

 

253 

Measurement, Kinetic Modeling 

ik  W/m-K 
0.19 ± 0.02 0.12 0.08 0.31 

GA GA SCE SHC 

ic  J/kg-K 
1900 ± 200 1600 1800 1800 

GA GA SCE SHC 

i 
=

 3
 

(A
d

d
it
iv

e
) iρ  

kg/m
3

 

2300 

Measurement 

ik  W/m-K 
1.22 ± 0.10 1.44 0.82 2.74 

GA GA SCE SHC 

ic  J/kg-K 
1200 ± 100 930 2500 2400 

GA GA SCE SHC 

i 
=

 4
 

(A
_

re
s
id

u
e

) 

iρ  
kg/m

3

 

1558 
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Figure 9. Mass loss rate (MLR) and surface temperatures (Tsurf , Tback) comparisons for fiberglass reinforced polymer (FRP) 

composite with modified acrylic resin with high-charring fire retardant additive between actual from experiment (exp) and 

modeled (mod) at applied heat flux of 25, 50 and 75 kW/m2. The moderate heat flux case is used in optimization and the lower 

and higher heat flux cases are used in extrapolation exercise to examine modeling quality. Best simulation results were found 

from estimation with mostly optimization approach using either genetic algorithm or shuffled complex evolution method for 

parameter estimation of this fiberglass reinforced polymer composite. 

Parameter estimation of plywood shows that there is good agreement with data when manual optimization 

is used (see Figure 10 and Table 7). The results show that both optimization and extrapolation cases have good 

agreement to the experimental data in terms of following the data trend to a certain degree. In this example, 

parameter values from independent measurements, literature reference or approximation are mostly used as initial 

values in the manual optimization process. Other unknown parameters were optimized via trial-and-error method as 

discussed in the previous section. This example illustrates the successful use of manual optimization. 
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Table 7. Parameter estimation results with estimation based on combination of non-optimization and manual optimization 

method. A single simulation results are found for parameter estimation of this plywood. 

Parameter Unit 
Comparable Non-optimization and Manual 

Optimization 

T
h

e
rm

o
-p

h
y
s
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l 
P

ro
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rt
y
 

i = 1 
(water) 

iρ  
kg/m

3

 

1000 

Reference* 

ik  W/m-K 
0.6 

Reference* 

ic  J/kg-K 
4200 

Reference* 

i = 2 
(dry_wood) 

iρ  
kg/m

3

 

504 ± 10 

Measurement 

ik  W/m-K 

0.26 

Manual Optimization with Initial Guess of 0.122 
measured at 20 °C (dry_wood, ASTM C518/E1225) 

ic  J/kg-K 

2400 

Manual Optimization with Initial Guess of 1200 
measured at 20 °C (dry_wood, ASTM E1269) 

i = 3 
(char) 

iρ  
kg/m

3
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Measurement 

ik  W/m-K 

0.12 

Manual Optimization with Initial Guess of 0.122 
measured at 20 °C (dry_wood, ASTM C518/E1225) 
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Approximated as opaque 

iε  - 
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Measurement, ASTM E903 
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kJ/kg 
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Measurement, DSC 
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Heating Rate TGA Data kZ  

/s 5.0 x 10
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Manual Optimization 

Model Dependent Parameter γ (i=3) m 
0.0036 

Manual Optimization 

* NIST Chemistry WebBook, http://webbook.nist.gov/ 
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Figure 10. Mass loss rate (MLR) and surface temperatures (Tsurf , Tback) comparisons for plywood between actual from 

experiment (exp) and modeled (mod) at applied heat flux of 25, 50 and 75 kW/m2. The moderate heat flux case is used in 

optimization and the lower and higher heat flux cases are used in extrapolation exercise to examine modeling quality. Simulation 

results are from estimation with manual optimization approach for parameter estimation of plywood. 

 

The parameter estimation process proposed in this study has been applied to these four real-world materials 

– PMMA, corrugated cardboard, fiberglass reinforced polymer (FRP) composite and plywood. The results have 

shown that the estimations were successful in terms of producing modeling outputs that have good agreement with 

experimental data. The approach of starting the parameter estimation with independent measurements, literature 

reference or approximation rather than applying only numerical optimization method has shown to produce better 
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results for PMMA where much of the material’s characteristics are mathematically described in modeling. This is 

consistent with the parameter estimation process proposed in this work. For the corrugated cardboard example 

where greater simplifications were made in modeling set-up, e.g. homogeneous cross-section, estimation via mostly 

numerical optimization gave better results. This is due to the estimated parameter values taking into account of the 

simplifications. For this case, allowing the optimization routine to have greater flexibility in searching for the near 

optimums by leaving the parameters as variables is better than fixing them with measured values. In all example 

cases, variations in estimated values were identified when using different approaches. This indicates that there is a 

compensating effect between each parameter in a parameter set and the optimization routines are able to find 

multiple optimums. In other words, each estimated parameter set should be considered as a linked parameter set. The 

FRP composite example has shown that, although in general each estimated parameter set is a linked parameter set, 

when modeling is well-configured with an optimum level of complexity, sometimes the difference between the 

estimated values from an optimization method and measured values can be less than the measurement uncertainty. 

In this case, one can consider the estimated values as effective material properties. From the plywood example, it 

was demonstrated that manual optimization can be successful in estimating model parameters. 

10. CONCLUSION 

In this study, a process for conducting parameter estimation for comprehensive pyrolysis models was proposed. The 

estimation process was developed based on the following four principals and approaches: (1) parameter estimation is 

about being consistent, applying engineering common-sense and correctly following the steps in this guide; (2) 

parameter estimation is conducted by breaking down the problem into groups of unknowns of similar characters and 

considering them separately; (3) parameter estimation is conducted with consideration to an appropriate complexity 

in model set-up using certain approximations for simplifications; and (4) parameter estimation is conducted with 

direct measurements of parameters with independent experiments, literature search and/or numerical optimization 

paired with certain pyrolysis models. Following this, limitations in parameter estimation was discussed by 

considering how simplifying the microstructure of a heterogeneous material to homogeneous mixture, modeling 

thermal decomposition kinetics independently using thermal analysis and applying multi-objective and multi-

variable numerical optimization method affect the estimation results. Examples were given to show any assumptions 

and conditions used during parameter estimation process are accounted for in the estimated value itself and/or other 

parameter values in the parameter set. The process developed was applied to modeling of real-world materials of 

thermoplastic (PMMA), corrugated cardboard, fiberglass reinforced polymer composite and plywood and the 

estimation results – mass loss rate and temperature profiles at front and back surfaces – were shown. Understanding 

the limitations in parameter estimation, it was noted that when parameter estimation is conducted via numerical 

optimization, the estimated parameter values are compensated by other parameter values in a parameter set. This 

allows optimization method to optimize for multiple optimal parameter sets. In other words, each estimated 

parameter set should be considered as a linked parameter set. However, when modeling is well-configured with 

optimum complexity, the optimized parameter values become closer to those of independent measurements. This 

highlights the possibility of utilizing the optimization method to estimate for effective material properties. 
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Chapter 1–Introduction 

BACKGROUND 

The use of fire models in Fire Protection Engineering (FPE) is widespread, and as 

a tool these models are vital to the practicing engineer especially in performance-based 

design.  Typical classes of fire models are algebraic,
1
 zone, 

2
 and field/CFD.

3
  The input 

data required for these models can be generally characterized as gas phase (combustion 

and radiation sub-models) and solid phase (heating and pyrolysis sub-models).  A 

significant challenge for the practicing engineer is compiling and developing input data 

consistent with model assumptions, as FPE is yet to develop standard input databases. 

Recognizing this absence of input databases, a standard guide on creating model 

input data has been developed as ASTM E 1591,
4
 which was developed for zone models.  

The standard describes the input data required by a model mathematically and presents 

guidelines to obtain the data.  The existence of this guide has enabled users to develop 

input data in a consistent manner for zone models.  Similarly, this new guide will enable 

the users to develop input data in a consistent manner for different pyrolysis models and 

various materials.   

Among fire-model inputs, in general, gas-phase input is readily available to the 

practicing engineer, as a range of standard information for certain materials can be found 

in the combustion literature.  In contrast, solid-phase input for heating and thermal 

decomposition of materials is rarely available. Some standard information on heating 

may be found in the heat transfer literature for certain materials.  However, this 

information is significantly limited compared to the needs of practitioners.  Hence, other 

practical methods are necessary to estimate model parameters to conduct fire modeling. 
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In search of a method for estimating parameters, over the past few decades 

numerous approaches have been developed to extract solid-phase pyrolysis parameters 

from bench-scale fire test data for computer model input.  Examples of early research 

involving ignition temperature and steady burning are the work performed by Tewarson,
5
 

and Quintiere and Harkleroad.
6
  These approaches consider only the aggregate behavior 

of solids (time-to-ignition and MLR) but not details of the decomposition of the solids.  

Parameter estimation is accomplished via slope-based plotting techniques of the bench 

scale data.  Field/CFD models
3,7
 use essentially the same thermal model as described in 

these references, but field/CFD models do not have any built-in parameter estimation 

method, like the slope based techniques.  These pyrolysis models have shown good 

success at providing meaningful parameters for thermoplastic solids.  Charring solids and 

other complex systems (composites: thin linings over substrates, fiber-reinforced 

polymers, plywood, etc.) have not shown as good success. Flame-spread models
8,9

 based 

on this approach have been created that have demonstrated some degree of success. 

Building on this work, development of pyrolysis (ignition) temperature based 

solid integral pyrolysis models
10,11,12,13,14

 that address certain details of the decomposition 

of solids have been undertaken.  The key detail of decomposition included in these 

models is propagation of a regression or charring front through the solid.  Each of these 

models has an associated bench-scale testing procedure to develop data needed for the 

associated parameter-estimation procedure using the model.  The model of Theuns et 

al.
12,13

 has been coupled to a field/ CFD model.  These models have shown good success 

with thermoplastic-type solids and classic charring solids (wood).  Complex systems have 

not been shown to be successful. 

Recently, pyrolysis modeling focusing on details of solid decomposition, 

including “microstructure” and (multi-step) kinetics, have been developed with 

accompanying procedures to estimate parameters.
15,16,17,18,19

   Parameter estimation is 

accomplished via optimization routines.  These models have the potential to handle 

complex solids that need to have “micro structure” explicitly detailed as well as multi-

step kinetics.   

These pyrolysis models are relatively new and have not yet been extensively 

evaluated against a range of solids, including complex ones.  Initial assessment of the 
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models shows promise.  An interesting observation of the above high quality work is that 

the focus has been on the important tasks of developing pyrolysis models and parameter-

estimation routines as well as showing their potential with “limited” data comparison.  As 

the work has been incorporated into the body of FPE knowledge, the assumptions and 

limitations of the models have not in general been clearly identified, accepted, and 

followed by practitioners.  Accepted methods for comparing the models and estimated 

parameters, as well as guidance on how to use the parameters correctly in flame spread 

and other models, are also lacking.  This points to the equally important tasks of 

interfacing these “theoretical” tools with proper empirical techniques to develop data 

strictly consistent with the assumptions and limitations of the models.  Additionally the 

“robustness” and utility of the parameters needs to be assessed so as to allow comparison 

and proper use of the parameters. 

In recent years, there has been a high demand for conducting Computational Fluid 

Dynamics (CFD) simulations in the fire community.  The importance of accurate 

pyrolysis data for the continued use and development of CFD fire models becomes quite 

clear, especially given that none of the models has a pyrolysis-parameter database, and 

users are required to develop their own parameters.  The current state of the art in 

procedures for development of model input data, ASTM E 15914, is out-of-date, as it 

focuses only on zone models and does not address solid-phase pyrolysis.  This situation 

had set the stage for development of a standard guide for estimation of pyrolysis 

parameters for various types of fire pyrolysis models based on the current knowledge 

about solid pyrolysis models and parameters, and proper empirical techniques to develop 

“robust” pyrolysis parameters for fire models.   

PURPOSE 

With this Guide, standardized procedures for obtaining material parameters for 

input into fire-pyrolysis models are presented, such as empirical, simple analytical and 

comprehensive pyrolysis models.   
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ORGANIZATION OF THE GUIDE 

The following section (Chapter 2) offers guidance to show what pyrolysis models 

are available for modelers and what may be appropriate for their modeling needs.  To 

provide standardized procedures for obtaining material-pyrolysis parameters for input 

into fire models, pyrolysis models are grouped into three categories based on their 

modeling characteristics, understanding that most of the model-input unknowns are 

related to the solid phase during thermal decomposition.  The three categories are 

Empirical Models (Chapter 3), Simple Analytical Models (Chapter 4), and 

Comprehensive Models (Chapter 5).  For each model category the following information 

is provided:  

• A brief description of its modeling approach and assumptions applied to simplify 

the problem. 

•  A typical mathematical formulation with identification of model parameters in 

the equations. 

• Methods of estimating the unknown parameters either by independent 

measurements or numerical optimization in pair with the model.   

 

Using this information, example cases are introduced for better understanding of the 

parameter-estimation procedure described for each model category.  Additionally, the 

Appendix provides thorough explanation of example solutions from different chapters. 
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Chapter 2–Determine Model Type  

In this chapter, guidance is given to the modeler to help her/him to select certain types of 

pyrolysis models by considering processes involved in pyrolysis, characteristics of typical 

materials, and the models available today that incorporate various assumptions.  For more 

information about each model type in terms of mathematical expressions and application, see the 

following chapters: Chapter 3 – Empirical Models, Chapter 4 – Simple Analytical Models, and 

Chapter 5 – Comprehensive Models.  

 

PYROLYSIS OF MATERIALS 

Pyrolysis refers to the thermal decomposition of porous or non-porous solid-phase 

materials caused by heating during exposure to fire conditions.  Pyrolysis is a complicated 

phenomenon, which is a combination of the following interactive processes: heat transfer 

through materials from fire exposure; thermal decomposition that produces combustible or non-

combustible pyrolyzates in gas, liquid or solid form; and mass transfer of oxygen from ambient 

and those pyrolyzates.    

Materials subject to pyrolysis can be first categorized into one of two groups depending 

on the geometry of interest: an object or a flat surface (see Figure 2-1).  The object covers 

situations where the material’s geometry is non-flat or complex in its fire behavior.  Whether 

materials are considered an object or a flat surface, their physical structure may or may not 

remain stable during pyrolysis.  When changes in structural stability do occur, those are typically 

due to melting, flowing and/or dripping, expanding, popping due to steam expansion, collapsing, 

etc.  When materials maintain their structural stability throughout pyrolysis, further 

categorization can be applied depending on the location of thermal decomposition sites – Is 

thermal decomposition occurring near the surface or surface and at in-depth?   

Examples of each material group are as follow: (1) Objects: furniture, boxed products, 

products in pressurized containers, electronics, and more; (2) Flat surfaces that experience 

structural instability during pyrolysis: flowing and/or dripping thermoplastics due to low melting 

and glass transition points, intumescent materials, plastic foams that liquefy, phenolic resin that 

pops, etc; (3) Flat surfaces that maintain their structural stability during pyrolysis and have 

decomposition occurring mostly on surface: non-flowing thermoplastics, etc; and (4) Flat 
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surfaces that maintain their structural stability during pyrolysis and have decomposition 

occurring near surface and at in-depth: wood, highly cross-linked thermosets, plastics with 

charring additives, etc. 

 

Figure 2-1.  Material category: Depending on material’s characteristics, material can be grouped into 4 

categories and examples for each category is given. 

  

Material

Complex 
Configuration

(Object)

Possible change in 
structural stability 

during pyrolysis

Melting, flowing/ 
dripping, popping, 

collapsing, etc.

furniture, boxed 
products, products 

in pressurized 
containers, 

electronics, etc.

Large Flat 
Surfaces

Change in 
structural stability  

during pyrolysis

Melting, flowing/ 
dripping, popping, 

expanding, etc.

flowing 
thermoplastics, 

intumescent 
materials, foam, 

phenolic resin, etc.

Maintain 
structural stability 

during pyrolysis

Decomposition 
only on surface

non-flowing 
thermoplastics, etc.

Decomposition on 
surface and at in-

depth

wood, thermosets, 
plastics with 

charring additive, 
etc
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PYROLYSIS MODELS 

As aforementioned, pyrolysis is a complicated phenomenon and is a combination of heat 

transfer, thermal decomposition, and mass transfer.  When pyrolysis is modeled, various 

approaches can be taken by approximating the three processes of pyrolysis.  Note that the goal of 

conducting pyrolysis modeling in fire engineering is to simulate the mass-loss rate per unit area 

as a result of decomposition of a solid-phase material under fire conditions.  This information 

can be then used as input parameters for pyrolysis sub-models in a zone or CFD model. 

The simplest approach of modeling pyrolysis is utilizing empirical data from calorimetry 

experiments: Empirical Models.  Heat transfer, thermal decomposition, and mass-transfer effects 

are confounded assuming that the difference between testing and modeling conditions are 

negligible at all times.  Another simple approach but more sophisticated than Empirical Models 

is using analytical solutions to describe pyrolysis: Simple Analytical Models.  This approach 

analytically solves for heat transfer of pyrolyzing materials at the pre-ignition stage by assuming 

materials as inert and semi-infinite or lumped.  Thermal decomposition is modeled by having an 

ignition criterion, ignition temperature (Tig) at surface.  At the post-ignition stage, steady-state 

burning is assumed.    Any mass-transfer effects on pyrolysis are neglected.   

The most complex approach available for fire problems is directly solving for the three 

processes using conservation equations: Comprehensive Models.  In this approach, heat transfer 

is modeled using conservation of energy, which allows the most flexibility in specifying 

boundary conditions for front and back surfaces, i.e., in specifying heating and cooling at 

material boundaries.  Thermal decomposition is modeled by using conservation of mass and 

either a pyrolysis criterion, pyrolysis temperature (Tp), or defining a finite reaction rate through 

kinetic modeling.  This approach may also account for mass-transfer effects; however, in this 

Guide, Comprehensive Models will be considered without modeling mass-transfer effects on 

pyrolysis due to the lack of current understanding of these effects. 

   Empirical Models can be used for any kind of materials from any of the four material 

groups discussed previously.  Simple Analytical Models can be used only for flat surfaces that 

maintain their structural stability during pyrolysis.  Additionally, strictly, due to model 

assumptions these models should be applied to thermally-thick or thermally-thin behaving flat 

surface materials that have decomposition occurring mostly at the surface and resulting in 

steady-state burning after ignition.  Despite this limitation, some modeling work has been 
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conducted on charring materials such as wood by conducting analysis with data that has a short 

pre-ignition period followed by a quasi-steady burning.  These behaviors allow the assumptions 

of thermally-thick or thermally-thin behavior and inert at the pre-ignition stage followed by 

steady-state burning at post-ignition stage to be applied.  Comprehensive Models can be used to 

model all materials that are flat surfaces that maintain their structural stability during pyrolysis.  

However, caution should be used for modeling materials that have mass transfer of pyrolyzates 

and gas-phase reactants that significantly affect pyrolysis given the lack of knowledge in this 

area. 
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PROCESS OF CHOOSING PYROLYSIS MODEL 

 

Figure 2-2.  Model selection flowchart: By examining the cross-section of material and analyzing 

experiment data that presents its fire behavior, modeler may determine the material’s virtual 

microstructure and appropriate pyrolysis models available for its specific use. 

  

Material for Modeling 

How can I model this material behavior 

under fire conditions? 

The material is best described as 

Flat Surface Multiple 

Layers  

Multiple layers of 

homogeneous or 

relatively homogeneous 

mixture in the 

component 

(macroscopic) level  

Flat Surface Single Layer  

Homogeneous or 

relatively homogeneous 

mixture in the 

component 

Object:  

Fire characteristics of 

materials are excessively 

complicated due to 

chemical and/or physical 

structure at pre-pyrolysis 

or during pyrolysis stage.  

Therefore, an advanced 

computer simulation of 

pyrolysis is not 

applicable.  In these 

cases, it is best to 

perform a calorimetry 

test (bench, intermediate 

or full-scale) to find 

appropriate energy 

release or mass loss rate. 

Examine Cross-

section and Analyze 

Experiment Data 

Consider Model Limitations 

Chapter 3: 

Empirical Models 

 

Models in this category apply a 

measured HRR or MLR based 

on an assumed or computed 

ignition time. 

Chapter 4: 

Simple Analytical 

Models 

 

Models in this category 

utilize a simple 

analytical approach. 

Chapter 5: 

Comprehensive Models  

 

Models in this category utilize a 

comprehensive modeling approach using 

assumptions of having an infinitely thin or 

finite thickness zone for thermal 
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A flow chart is shown above (see Figure 2-2) to describe the process of model selection.  

As shown in this chart, a material’s virtual microstructure is decided through “Examine Cross-

section and Analyze Experiment Data.”  The virtual microstructure can be Object, Flat Surface 

Single Layer, or Flat Surface Multiple Layers.   

Object is for materials without homogeneous or relatively homogeneous mixture layers 

based on this guide at the pre-pyrolysis stage or during pyrolysis stage, i.e., material geometry 

that cannot be considered one-dimensional knowing that typically pyrolysis models assume a 

one-dimensional geometry. 

Flat Surface Multiple Layers is for materials that satisfy the following three conditions:  

(1) Distinctive homogeneous or relatively homogeneous mixture layers based on visual 

inspection 

(2) Experiment data, such as Heat Release Rate or Mass Loss Rate, from a bench-scale 

test that identify any effects of having multiple layers on material’s thermally 

decomposing or burning characteristics 

(3) That those effects found from analyzing data with consideration of the assumed 

microstructure are important for modeling purposes, and therefore multiple layers 

microstructure is necessary, although it adds more complexity to modeling 

Flat Surface Single Layer is for materials either with one homogeneous or relatively 

homogeneous mixture layer, or with multiple homogeneous or relatively homogeneous mixture 

layers but does not satisfy all three conditions listed above for Flat Surface Multiple Layers. 

The modeler now can select the model of his/her interest from the three model categories 

– Empirical Models, Simple Analytical Models, and Comprehensive Models – depending on 

its assumed microstructure (Object, Flat Surface Single Layer, or Flat Surface Multiple Layers) 

and each model’s limitations (“Consider Model Limitations”).  Note that the complexity of the 

model increases as model category changes from Empirical Models to Comprehensive Models.  

This means that the number of parameters that need to be estimated increases as well.   

Empirical Models can be used for modeling materials with any microstructure discussed 

previously – Object, Flat Surface Single Layer, or Multiple Layers.  The advantage of utilizing 

this approach is that it is simple, i.e., unknown model parameters are minimal and easy to obtain 

through various scale calorimetry experiments.  Typically, these models are for materials that 

have excessively complicated fire behaviors due to either material geometry/structural stability at 
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pre-pyrolysis stage (e.g., sofa, chair, bookshelf, etc.) or burning behavior during pyrolysis stage 

(e.g., melting, dripping, non-uniform expanding, etc.).  The disadvantage of using models in this 

category is that, because empirical data such as the heat-release rate or mass-loss rate from a 

certain test is directly applied to modeling, effects of variation in fire conditions (e.g., ignition 

scenario, environment, etc.) of the fire scenario from a standard test condition is not considered.  

See Chapter 3 – Empirical Models for more description.  There are five different materials 

considered as example cases in this chapter (see Table 2-1). 

 

Table 2-1.  Example materials in Chapter 3 – Empirical Models: materials are either considered as a 

burning object or flat surface in modeling 

 Burning Object Burning Flat Surfaces 

Example 

Materials 
Sofa PMMA 

Corrugated 

Cardboard 

Fire-Retarded 

FRP 

Composite 

Plywood 

 

 

Simple Analytical Models are for materials that have Flat Surface Single Layer 

geometry only.  The advantage of considering models in this category is that, due to the 

simplicity of model, only a few unknown model parameters exist, and they are easily estimated 

typically using bench-scale test results.  The disadvantage of using models in this category is that 

pyrolysis conditions under fire environment need to be applicable to many assumptions used in 

developing the model – material is considered to be homogeneous, thermally-thick or thermally-

thin behavior, and results in steady burning after ignition.  See more details on model 

assumptions and description in Chapter 4 – Simple Analytical Models.  There are six different 

materials considered as example cases in this chapter (see Table 2-2). 
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Table 2-2.  Example materials in Chapter 4 – Simple Analytical Models: materials are considered either 

thermally-thick and inert at pre-ignition with steady burning at post-ignition, or thermally-thin and 

inert at pre-ignition with steady burning at post-ignition in modeling 

 
Thermally-thick and Inert at Pre-ignition, Steady 

Burning at Post-ignition 

Thermally-thin and Inert 

at Pre-ignition, Steady 

Burning at Post-ignition 

Example 

Materials 
PMMA 

Corrugated 

Cardboard 

Fire 

Retarded 

FRP 

Composite 

Plywood 

Vinyl Ester 

GRP and 

Balsa Wood 

Core 

Sandwich 

Panel 

Class C FRP 

Composite 

Sheet 

 

Comprehensive Models are for materials that have either Flat Surface Single Layer or 

Multiple Layers geometry.  The advantage of utilizing these models is that the modeler has much 

flexibility in setting up the pyrolysis problem mathematically.  Generally, these models explicitly 

solve for heating of material during pyrolysis and account for weight loss due to thermal 

decomposition by conserving mass and energy.  Some models even track mass transfer effects 

such as interactions between pyrolysis products, diffusion of oxygen from surface, etc.  The 

disadvantage of using these models is that significant effort may be needed to estimate unknown 

model parameters, knowing that the number of unknowns can dramatically increase with respect 

to increasing modeling complexity.  It can range from less than 10 unknowns up to 100 or even 

more.  See Chapter 5 – Comprehensive Models for more description.  There are four different 

materials considered as example cases in this chapter (see Table 2-3). 

Table 2-3.  Example materials in Chapter 5 – Comprehensive Analytical Models: materials are 

considered to decompose with single or multiple reaction(s) with or without residue production in 

modeling 

 

single-step 

decomposition 

RxN w/o residue 

single-step 

decomposition 

RxN w/ residue 

two-step 

decomposition 

RxN w/ residue 

drying and sinlge-

step 

decomposition 

RxN w/ residue 

Example 

Materials 
PMMA 

Corrugated 

Cardboard 

Fire Retarded FRP 

Composite 
Plywood 

 



Section 5 - 14 

Chapter 3–Empirical Models 

UNDERSTANDING MODEL 

General Description of Models 

This chapter focuses on empirical methods to estimate the pyrolysis rate of 

Objects (complex geometry) and Flat Surfaces materials in a fire scenario, typically in a 

compartment-fire situation.  These methods are referred to as “Empirical Models.”  This 

is the easiest approach to estimate the burning rate of an object or flat surfaces, where 

heat release and mass loss rate data measured in a test is directly applied to describe a 

material’s pyrolysis behavior.  Data for burning of an object can be obtained through full-

scale test with various ignition sources and locations, e.g., furniture calorimeter test.  For 

flat surfaces, data can be obtained through intermediate/bench-scale calorimeter test at a 

specified heat flux.   

Principle assumption is that the ignition scenario and exposure conditions in the 

fire are comparable to those used in the laboratory.  In addition, Empirical Models for flat 

surfaces assume that (1) heat and mass transfer is one-dimensional, i.e., perpendicular to 

the exposed surface; (2) edge effects in material testing are not included; and (3) applied 

heat-flux level during testing is representative average (over space and time) for the fire 

scenario that is being modeled.
1
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Governing Equations 

Mathematically the model for estimating the onset (ignition) and subsequent rate 

of pyrolysis can be described as follows:  

�t������ = �t���
�� 
Eq.3-1 

and 

�Q� ″�
���

= �Q� ″�

��

= Δh�,
�� �m″�
��   Eq.3-2 

where 

 �t������ = ignition time used in the pyrolysis model (s) 

 �t���
�� = ignition time measured in the calorimeter (s) 

 �Q� ″�
���

 = heat release rate used in the compartment fire model (kW/m
2
) 

 �Q� ″�

��

 = heat release rate measured in the calorimeter (kW/m
2
) 

 �m� ″�
�� = mass loss rate measured in the calorimeter (g/ m
2
⋅s) 

 Δh�,
��  =  effective heat of combustion of the fuel (kJ/g) 

Note that heat-release and mass-loss rates measured in a small- and intermediate-scale 

calorimeter are usually expressed as rate per unit exposed area (hence the double prime).  

However, for data obtained in a full-scale calorimeter experiment are typically expressed 

as rate. 
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MODEL PARAMETERS AND MEASUREMENT METHODS 

Virtual Material 

Virtual material is an energy source releasing heat to gas phase expressed in terms 

of heat-release rate or mass-loss rate and effective heat of combustion without certain 

geometry, whether material is an object or a flat surface. 

 

Model Parameter Table 

The following table (see Table 3-1) summarizes model parameters that need to be 

estimated: 

Table 3-1.  Model parameter table: summary of model parameters required to conduct 

pyrolysis modeling 

Ignition Parameters igt  Time-to-Ignition 

Burning-Rate 

Parameters 

Using HRR Using MLR and HoC 

Q"� �t� 
Heat-Release 

Rate 

m"� �t�
 

Mass-Loss 

Rate 

Δh�,
�� 
Effective Heat-

of-Combustion 
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Model Parameter Measurement Methods 

1. Time to Ignition 

For burning of an object with a complex geometry, full-scale tests such as 

Furniture (maximum capacity of 1 MW) or Larger (maximum capacity of 40 MW) 

Calorimeters are conducted.  Various ignition sources are used in these tests and they are 

placed at certain locations for some specified time at the start of each test.  Typically, due 

to this testing procedure, ignition time is at the start of the test.  A number of ASTM 

standards have been tabulated below for full-scale calorimeter tests (see Table 3-2): 

Table 3-2.  Ignition sources specified in standard fire tests 

Test Method Specimen 
Gas Burner Ignition Source 

Location of Application 
No. Type Heat Output 

ASTM E 603 Various 1 Square Various Various 

ASTM E 1537 

CAL TB 133 
Single chair 1 Square 19 kW for 80 s 

Horizontal seating 

surface 

ASTM E 1822 Stacked chairs 1 Line 18 kW for 80 s Bottom chair front edge 

ASTM E 1590 Mattress (set) 1 Line 18 kW for 180 s Front bottom edge 

CAL TB 603 

16 CFR 1633 
Mattress (set) 2 

Line 

Line 

19 kW for 70 s 

10 kW for 50 s 

Top surface 

Vertical along side 

NFPA 286 
Wall / Ceiling 

Lining 
1 Square 

40 kW for 300 s 

160 kw for 600 s 
Room corner 

 

For burning of a flat surface material, an intermediate/bench-scale calorimeter 

test(s) is conducted at a specified heat flux.  In these tests, an apparatus that consists of a 

radiant panel that exposes the specimen to a preset irradiance is used to measure the 

ignition time.   The heat source can be a gas panel or consist of one or several electrical 

heating elements.  A small flame, electric spark or hot wire is usually present in the gas 

phase above the specimen surface (horizontal specimen orientation) or at the top edge of 

the specimen (vertical or inclined surface).  Time of ignition is typically determined on 

the basis of visual observations.  This can be tricky when the material exhibits extensive 

flashing before sustained flaming.  An alternative method based on the second time 

derivative of the mass of the specimen has been suggested to alleviate this problem.
2
  

Ignition criteria based on a critical mass loss rate of 1 g/m
2
·s or a critical heat-release rate 
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of 24 kW/m
2
 have also been proposed.

3
  A number of ASTM standards have been 

tabulated below (see Table 3-3) for measuring the time to ignition of a material exposed 

to a specified level of incident radiant heat and intermediate/bench-scale calorimeter 

tests: 

Table 3-3.  ASTM standards for measurement of time-to-ignition of materials exposed to 

specified level of incident radiant heat source in intermediate/bench-scale calorimeter tests 

Standard Test Description 

ASTM E 1321 

– 09 

Standard Test Method for Determining Material Ignition and Flame Spread 

Properties 

ASTM E 1354 

– 11b 

Standard Test Method for Heat and Visible Smoke Release Rates for Materials 

and Products Using an Oxygen Consumption Calorimeter 

ASTM E 2058 

– 09 

Standard Test Methods for Measurement of Synthetic Polymer Material 

Flammability Using a Fire Propagation Apparatus (FPA)  

 

2. Heat-Release Rate or Mass-Loss Rate and Effective Heat of 

Combustion 

HEAT RELEASE RATE 

Heat-release rate is measured via calorimetry test in various scales.  Two major 

methods used since the early 1980s are oxygen-consumption and carbon-oxides 

generation techniques.  Oxygen-consumption method is based on test results of organic 

fuels showing a nearly constant net amount of heat, E, is released per unit mass of oxygen 

consumed for complete combustion.
4,5

  Carbon-oxides generation method is based on the 

fact that amount of heat released per mass unit of carbon dioxide and carbon monoxide 

generated is also relatively constant within a category of fuels or polymers.  This method 

is particularly useful for oxidizers.
6
  See section for measurement of Time to Ignition for 

a list of ASTM standards for calorimetry tests. 

MASS-LOSS RATE  

The energy release by material pyrolysis can also be expressed in terms of mass-

loss rate and effective heat of combustion.  Mass-loss rate is found from direct 

measurement of mass loss, as calorimeters are often equipped with a scale.   The mass-

loss rate of the specimen in a test is then determined by continuously weighing the 
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specimen during the test and by subsequently calculating the time derivative of the mass 

vs. time curve.   

EFFECTIVE HEAT OF COMBUSTION 

The effective heat of combustion, ∆hc,eff, is equal to the net heat-release rate 

divided by the mass-loss rate measured in a calorimeter (see Eq.3-3): 

"m

"Q
 

m

Q
  h eff,c

&

&

&

&

=≡∆  Eq.3-3 

The effective heat of combustion at a particular time t can be calculated by 

substituting the values for Q& (or 
"Q& ) and m& (or 

"m& ) at that time as in above equation.  

The average effective heat of combustion over a specified time period is equal to the 

cumulative heat released over the specified period divided by the mass loss over the 

specified period.  Theoretically it is possible to calculate ∆hc,eff at every data scan.  In 

practice, however, there are several challenges. 

1. The heat-release rate and mass-loss rate measurements are not completely 

synchronized.  This may result in significant errors, in particular at times when 

there is a rapid change in the burning rate. 

2. Measurement errors are amplified during periods of slow burning, as both 

numerator and denominator in Eq.3-3 are small. 

3. Even if a general math filter is used, calculated mass-loss rates can still be very 

noisy, resulting in fluctuations in the calculated effective heat of combustion 

values. 

For this reason it usually better to report the average effective heat of combustion over a 

specified period of time, i.e., the cumulative heat released over the specified period 

divided by the mass loss over the specified period.  It is very common to report the 

average effective heat of combustion over the entire test (see Eq.3-4): 

( )
f0

tot
avgeff,c

mm

Q
h

−
=∆  Eq.3-4 

where 

( )
avgeff,ch∆  = average effective heat of combustion over the entire test (kJ/g); 

Qtot = total heat released over the entire test duration (kJ); 
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m0 = specimen mass at the start of the test (g); and 

mf = specimen mass at the end of the test (g). 

Dillon et al. found the average effective heat of combustion over the peak burning 

period to be useful for predicting fire growth of wall linings (flat surfaces) in a 

room/corner test on the basis of Cone Calorimeter data.
7
  The peak burning period was 

defined in this study as the time during which the heat release rate in the Cone 

Calorimeter is equal to or higher than 80% of the (first) peak heat release rate. 
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UNCERTAINTY ANALYSIS  

An engineering fire safety analysis involving compartment fire modeling must 

take into account the uncertainty of the input data in order to determine the uncertainty of 

the results of the analysis.  This process is referred to a “propagation of uncertainty.” 

Some input data, such as the dimensions of the compartment, are relatively well known 

and their uncertainty can be neglected.  Other input parameters, such as the heat release 

rate of an object, are significantly more variable and the uncertainty of these parameters 

must be accounted for.  A distinction is made between two types of uncertainly: Type A 

and Type B.  The former is uncertainty due to uncertainty due to random variation, while 

the latter is due to lack of (complete) knowledge.  A brief and general discussion of the 

two types of uncertainty can be found in Appendix A. 

Considering that the model input parameters are time-to-ignition and heat-release 

rate directly found from certain tests, uncertainty in measurements from calorimetry tests 

in the literature are searched for.  For a large-scale apparatus, a 3 MW quantitative HRR 

facility at NIST has been assessed to calculate the HRR uncertainty.
8
  This work has 

taken into account the basic measurement inputs, which are the instrument voltages, 

thermocouple temperatures, and constant parameters used in calculations, and  has 

showed that the relative uncertainties were ±7.5, ±5.3, and ±5.3% for HRR at 0.05, 0.65, 

and 2.7MW, respectively.  There are studies that have addressed the uncertainty 

associated with the HRR calculation for bench-scale apparatuses – Cone Calorimeter and 

Fire Propagation Apparatus (FPA).
9,10

  Enright and Fleischmann
9
 have reported that the 

relative HRR uncertainty is about ±5.5% for the HRR in the range of 200–500kW/m2.  

Zhao and Dembsey
10

 have estimated the relative HRR uncertainties are 20 to 30%, 10% 

and 10% for 1 kW, 3 kW and 5 kW methane fires, respectively.   
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PARAMETER ESTIMATION PROCESS 

To create a virtual material, these tasks must be considered: 

• Create a list of model inputs, which needs to be determined 

• Obtain model unknown inputs via measurement or literature search 

 

When the above is done and every unknown has been estimated, validation work 

and commentary is needed to understand the performance of the estimated parameter set: 

• Run model 

• Analyze simulation quality with consideration of uncertainties in modeling 

outputs and data 

• Add commentary 

 

 When presenting the parameter estimation results, three summary tables will be 

introduced: Model Parameter Table, Validation, and Commentary sections.  Model 

Parameter Table includes the model parameters necessary to conduct pyrolysis modeling, 

their estimated values, and methods of estimating the unknowns.  Validation work 

consists of the following information: description of modeling goal, pyrolysis model type 

and modeling approach used in the exercise, experiment type and its data used to 

empirically simulate material’s heat release rate and uncertainty information of 

experimental data, and modeling outputs.  Commentary section discusses any limitations 

of pyrolysis modeling conducted above, which has been summarized in Model Parameter 

and Validation Tables. 

For better visualization of the problem, a flowchart is shown below (see Figure 3-

1): 
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Figure 3-1.  Flow chart of parameter estimation for empirical pyrolysis models 
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EXAMPLE CASES OVERVIEW 

Table 3-4.  Overview of example cases using empirical pyrolysis models 

Case Description Examples 

1 Burning Objects Sofa 

2 Burning Flat Surfaces 

PMMA 

Corrugated Cardboard 

Fire-Retarded FRP Composite 

Plywood 

 

In the following, summarized results are shown for each example case.  Detailed 

solutions of these example cases are given in Appendix B. 
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CASE 1: BURNING OBJECT 

General Model Parameter Table 

Table 3-5.  Model-parameter table for Case 1 examples 

Ignition Parameters igt  Time-to-Ignition 

Burning-Rate 

Parameters 

Using HRR Using MLR and HoC 

Q"� �t� 
Heat-Release 

Rate 

m"� �t�
 

Mass-Loss Rate 

Δh�,
�� 
Effective Heat-

of-Combustion 
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Example 3.1 Modeling Sofa 

3.1.1 Model Parameter Table 

Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters igt  s 

80  

Measurement, 

Furniture Calorimeter 

Burning- 

Rate 

Parameters 

HRR kW 

  

Measurement, 

Furniture Calorimeter 

 

3.1.2 Validation 

3.1.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of an object under 

well-ventilated condition. 

 

3.1.2.2 MODEL TYPE 

Empirical Pyrolysis Model 

3.1.2.3 MODELING APPROACH 

• Pre-ignition stage is: 

o Inert: decomposition before ignition is neglected 

o Always the same as in Furniture Calorimeter test  

• Ignition scenario is the same as in Furniture Calorimeter experiment: time to 

ignition is the same in modeling as determined in experiment  

• Post-ignition stage is: 
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o Considered to have instantaneous release of volatiles from solid to gas 

phase: typically, an area is specified that can be correlated to the actual 

burning object where energy is released to the gas phase 

o Considered to be the same as in Furniture Calorimeter test in terms of 

heat-release rate or mass-loss rate 

 

3.1.2.4 EXPERIMENT DESCRIPTION 

Furniture Calorimeter test 

 

3.1.2.5 DATA SET 

Experiment data of a single-seat sofa mockup is found for pyrolysis modeling using 

Empirical Model.  This sofa mockup was burned under a hood of a furniture 

calorimeter.  The mockup consisted of a steel frame with untreated polyurethane 

foam cushions (80% of the combustible mass) and a cotton fabric (20% of the 

combustible mass).  Total combustible mass was 3.93 kg.  The test was performed 

according to ASTM E 1537 and CAL TB 133.  The ignition source consisted of a 0.25 m 

square tubular propane burner producing a 19 kW flame for 80 seconds applied to 

the top of the seat cushion. 

 

3.1.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• Data reproducibility is checked by repeating four identical sofa mockup tests  

• Uncertainty of HRR is estimated by first calculating the confidence interval for 

95% confidence level (α = 0.05) assuming student t distribution with a sample 

size of 3 (four data sets) at each time step.  Then an average confidence interval 

is calculated for the time interval of interest (0 < t < 800 min), which results in ± 

20.4 kW.     

• Assume:  

o Uncertainties are comparable to those of similar objects pyrolyzing in a 

compartment fire 

 

Uncertainty in Modeling Outputs 

• Same as in experiment data 
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3.1.3 Commentary 
When using the Empirical Model to simulate pyrolysis of a sofa, furniture calorimeter 

test data has been utilized to estimate the time to ignition from exposure to a propane 

burner and the energy released from burning.  As noted in the Understanding Model 

part of the chapter, this approach is limited as follows in terms of the conditions being 

comparable to those found in the fire scenario of interest: 

 

• Ignition scenario and exposure conditions 

The basic assumption used in Empirical Models is that the ignition scenario and 

exposure conditions in the fire are comparable to those used in the laboratory.  

Therefore, any changes made in the ignition scenario and exposure conditions have to 

be accounted for by the model user when applying the data to Empirical Models.  The 

furniture calorimeter experiment in this example is conducted under certain conditions: 

ignition is achieved by applying propane flame on the horizontal surface (seating 

cushion) for 80 s and sufficient supply of air is provided throughout its burning phase.  

To illustrate the effect of altering the conditions in HRR curves, two other HRR curves 

are shown below: 

 

Effect of ignition source strength (see Figure 3-2):  Two identical single-seat sofas were 

obtained for testing.  In the first test the sofa was ignited with a 45 W butane gas flame 

applied to the center of the seat cushion for 20 s.  In the second test 59 ml (2 oz) of 

gasoline was poured on the seat cushion to simulate an incendiary fire.  The resulting 

heat-release rate measurements are shown below.  In this case the use of the weaker 

ignition source delays the propagation to full involvement by approximately 170 s.  For 

this case the effect of ignition source strength can relatively easily be accounted for, 

although in practice it may not be trivial to determine the exact time period over which 

to shift the HRR curve.  The effect can be much more pronounced when the source 

strength is close to the level needed to obtain sustained burning. 
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Figure 3-2.  Effect of ignition source strength: single-seat sofas tested in furniture 

calorimeter test with different ignition sources – ignition with 59 mL gasoline poured 

(����) or with 45 W butane gas flame (����) 
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Effect of ignition location (see Figure 3-3):  Two tests were conducted on a steel-framed-

seat sofa mockup according to the same procedure and using the same padding and 

fabric as in the tests described in the Example case.  In the first test the burner flame 

was applied to the seat cushion on the right side.  In the second test the burner was 

applied to the center seat cushion.  The resulting HRR measurements are compared in 

Figure 3-3 below.  In the first test the flames spread from the right side to the left side.  

When the flames reached the armrest on the left side, part of the material on the right 

side had already been consumed.  This resulted in a relatively steady HRR that peaked 

slightly above 400 kW.  In the second test the flames spread in two directions.  As a 

result the heat rate continuously increased until the two armrests ignited and a peak 

heat-release rate of close to 1 MW was reached.  This case illustrates that a seemingly 

small difference in the ignition scenario can have a surprisingly dramatic effect on fire 

growth. 

 
Figure 3-3.  Effect of ignition location: steel-framed seat sofa mockups tested in 

furniture calorimeter test with different ignition locations – ignition on center seat 

cushion (����) or seat cushion on right side (����) 

• Heat and mass transfer 

This is a multi-dimensional problem, and the dimensional effect is implicitly 

addressed in modeling by a single parameter – HRR or MLR and effective heat of 

combustion. 
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CASE 2: BURNING FLAT SURFACES 

General Model Parameter Table 

Table 3-6.  Model Parameter Table for Case 2 Examples 

Ignition Parameters igt  Time-to-Ignition 

Burning-Rate 

Parameters 

Using HRR Using MLR and HoC 

Q"� �t� 
Heat-Release 

Rate 

m"� �t�
 

Mass-Loss 

Rate 

Δh�,
�� 
Effective Heat-

of-Combustion 
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Example 3.2 Modeling PMMA 

3.2.1 Model Parameter Table 

Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters igt  s 

22 

Measurement, 

Cone Calorimeter 

Burning-

Rate 

Parameters 

MLR 
g/s-

m
2
 

 
* Measurement is made at applied heat flux of 50 kW/m

2
 in Cone 

Calorimeter. 

Measurement, 

Cone Calorimeter 

HoC kJ/g 

24.8 ± 0.1 

Measurement, 

Cone Calorimeter 

 

3.2.2 Validation 

3.2.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of a flat surface 

under well-ventilated condition. 

 

3.2.2.2 MODEL TYPE 

Empirical Pyrolysis Model 
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3.2.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: decomposition with bubbling before ignition is neglected 

o Always the same as in Cone Calorimeter test with a specified heat flux  

impinging on material’s surface (typically ~50 kW/m
2
 is used) 

• Ignition phenomenon is the same as in Cone Calorimenter experiment: time to 

ignition is the same in modeling as determined in experiment  

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase: bubbling layer is neglected and is considered as a surface phenomena 

o Considered to be the same as in Cone Calorimeter test in terms of heat-

release rate or mass-loss rate per unit area 

 

3.2.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

3.2.2.5 DATA SET 

Cone Calorimeter test data of black PMMA with thickness of 18 mm, density of 1170 

kg/m
3
 and applied heat flux of 50 kW/m

2
 is found.   

 

3.2.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• Uncertainty in time-to-ignition and mass-loss rate: From the experiment work 

done by Beaulieu and Dembsey
11

 on thermally-thick behaving black PMMA using 

AFM apparatus, the experiment uncertainty in time-to-ignition and mass-loss 

rate at steady burning were determined as ± 2 s and ± 3 g/m
2
s, respectively.  The 

test results were compared with other literature values using different 

apparatuses such as Cone Calorimeter as well, which were considered as 

consistent.       

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

• Same as in experiment data 
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3.2.3 Commentary 

When using Empirical Model to simulate pyrolysis of PMMA, PMMA test data from a 

bench-scale Cone Calorimeter experiment at a set heat-flux level has been utilized to 

estimate the time-to-ignition from exposure to heating and the energy released from 

burning of PMMA.  As noted in the Understanding Model part of the chapter, this 

approach is limited as follows in terms of the conditions being comparable to those 

found in the fire scenario on interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating PMMA with a set 

heat flux impinging on the front surface, where this applied heat-flux level during 

testing is assumed to be representative average (over space and time) for the 

fire scenario that is being modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed 

surface 

• Surface-burning data: edge effects in material testing are not included; 

therefore, data per unit area can be applied to simulate larger areas by simply 

multiplying by the material surface area involved in fire 
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Example 3.3 Modeling Corrugated Cardboard 

3.3.1 Model Parameter Table 

Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters igt  s 

32 ± 4 

Measurement, Cone Calorimeter 

(4 tests at 25 kW/m
2
 average and 95% C.I. using student t distribution) 

Burning- 

Rate 

Parameters 

MLR 
g/s-

m
2
 

 
* Measurement is made at applied heat flux of 25 kW/m

2
 in Cone 

Calorimeter. 

Measurement, Cone Calorimeter 

HoC kJ/g 

13.5 ± 0.5 

Measurement, Cone Calorimeter 

(2 tests at 25 kW/m2 average and 2 times standard deviation) 

 

3.3.2 Validation 

3.3.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of a flat surface 

under well-ventilated condition. 

 

3.3.2.2 MODEL TYPE 

Empirical Pyrolysis Model 
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3.3.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: non-uniform charring is considered to be evenly distributed 

o Always the same as in Cone Calorimeter test with a specified heat flux  

impinging on material’s surface  

• Ignition phenomenon is the same as in Cone Calorimenter experiment: time-to-

ignition is the same in modeling as determined in experiment  

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase 

o Considered to be the same as in Cone Calorimeter test in terms of heat-

release rate or mass-loss rate per unit area 

 

3.3.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

3.3.2.5 DATA SET 

Cone Calorimeter test data of triple-layer cardboard with thickness of 15 mm, 

density of 116 kg/m
3
, and applied heat flux of 25 kW/m

2
 is found. 

 

3.3.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• The uncertainty in the mass-loss rate data is estimated via statistical approach, 

taking the standard deviation (0.58 g/sm2) from the mean of a steady burning of 

five identical PMMA tests conducted in a Cone Calorimeter
12

.  The estimated 

uncertainty is 1.4 g/sm2, which is found by calculating the 95% confidence 

interval applying student t distribution with a sample size of 5.   

• The uncertainty in time to ignition data is estimated via statistical approach, 

taking four identical Cone Calorimeter test data at heat flux 25 kW/m2 of this 

cardboard.  95% confidence interval is calculated for each heat-flux level 

assuming student t distribution. 

• The uncertainty in effective heat-of-combustion is estimated by average heat-

release rate divided by average mass-loss rate of two identical tests.  Two times 

the standard deviation is used as its uncertainty band. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

• Same as in experiment data 
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3.3.3 Commentary 

When using Empirical Model to simulate pyrolysis of this triple-layer cardboard, test 

data from a bench-scale Cone Calorimeter experiment at a set heat-flux level has been 

utilized to estimate the time to ignition from exposure to heating and the energy 

released from burning of this cardboard.  As noted in the Understanding Model part of 

the chapter, this approach is limited as follows in terms of the conditions being 

comparable to those found in the fire scenario of interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating sample with a set 

heat flux impinging on the front surface, where this applied heat-flux level during 

testing is assumed to be representative average (over space and time) for the 

fire scenario that is being modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed 

surface 

• Surface-burning data: edge effects in material testing are not included ; 

therefore, data per unit area can be applied to simulate larger areas by simply 

multiplying by the material surface area involved in fire 
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Example 3.4 Modeling Fire Retarded FRP Composite 

3.4.1 Model Parameter Table 

Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters igt  s 

175 ± 36 

Measurement, Cone Calorimeter 

(4 tests at 50 kW/m
2
 average and 95% C.I. using student t distribution) 

Burning- 

Rate 

Parameters 

MLR 
g/s-

m
2
 

 
* Measurement is made at applied heat flux of 50 kW/m

2
 in Cone 

Calorimeter. 

Measurement, Cone Calorimeter 

HoC kJ/g 

14.7 ± 3.8 

Measurement, Cone Calorimeter 

(4 tests at 50 kW/m2 average and 95% C.I. using student t distribution) 

 

3.4.2 Validation 

3.4.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of a flat surface 

under well-ventilated condition. 

 

3.4.2.2 MODEL TYPE 

Empirical Pyrolysis Model 

3.4.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: non-uniform charring is considered to be evenly distributed 

o Always the same as in Cone Calorimeter test with a specified heat flux  

impinging on material’s surface  

• Ignition phenomenon is the same as in Cone Calorimenter experiment: time-to-

ignition is the same in modeling as determined in experiment  

• Post-ignition stage is: 
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o Considered to have instantaneous release of volatiles from solid to gas 

phase 

• Considered to be the same as in Cone Calorimeter test in terms of heat-release 

rate or mass-loss rate per unit area 

 

3.4.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

3.4.2.5 DATA SET 

Cone Calorimeter test data of FRP composite with thickness of 9.2 mm, density of 

1900 kg/m
3
, and applied heat flux of 50 kW/m

2
 is found.   

 

3.4.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• The uncertainty in the mass loss rate data is estimated via statistical approach, 

taking the standard deviation (0.58 g/sm
2
) from the mean of a steady burning of 

five identical PMMA tests conducted in a Cone Calorimeter.
12

  The estimated 

uncertainty is 1.4 g/sm
2
, which is found by calculating the 95% confidence 

interval applying student t distribution with a sample size of five.   

• The uncertainty in time to ignition data is estimated via statistical approach, 

taking four identical Cone Calorimeter test data at heat flux 50 kW/m
2
 of this 

cardboard.  95% confidence interval is calculated for each heat-flux level 

assuming student t distribution. 

• The uncertainty in effective heat of combustion is estimated by average heat 

release rate divided by average mass loss rate of four identical tests.  95% 

confidence interval is calculated for each heat-flux level assuming student t 

distribution. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

• Same as in experiment data 
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3.4.3 Commentary 

When using Empirical Model to simulate pyrolysis of this fire retarded FRP composite, 

test data from a bench-scale Cone Calorimeter experiment at a set heat-flux level has 

been utilized to estimate the time to ignition from exposure to heating and the energy 

released from burning of this material.  As noted in the Understanding Model part of the 

chapter, this approach is limited as follows in terms of the conditions being comparable 

to those found in the fire scenario of interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating sample with a set 

heat flux impinging on the front surface, where this applied heat flux level during 

testing is assumed to be representative average (over space and time) for the fire 

scenario that is being modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed surface 

• Surface-burning data: edge effects in material testing are not included; therefore, 

data per unit area can be applied to simulate larger areas by simply multiplying by 

the material surface area involved in fire 
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Example 3.5 Modeling Plywood 

3.5.1 Model Parameter Table 

Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters igt  s 

27 ± 9 

Measurement, Cone Calorimeter 

(3 tests at 50 kW/m
2
 average and 95% C.I. using student t distribution) 

Burning- 

Rate 

Parameters 

MLR 
g/s-

m
2
 

 
* Measurement is made at applied heat flux of 50 kW/m

2
 in Cone 

Calorimeter. 

Measurement, Cone Calorimeter 

HoC kJ/g 

11.0 ± 0.3 

Measurement, Cone Calorimeter 

(2 tests at 50 kW/m2 average and 2 times standard deviation) 

 

3.5.2 Validation 

3.5.2.1 Modeling Goal 

Estimate model parameters for conducting modeling of pyrolysis of a flat surface under 

well-ventilated condition. 

3.5.2.2 Model Type 

Empirical Pyrolysis Model 

3.5.2.3 Modeling Approach 

• Pre-ignition stage is: 

o Inert: non-uniform charring is considered to be evenly distributed 

o Always the same as in Cone Calorimeter test with a specified heat flux  

impinging on material’s surface  

• Ignition phenomenon is the same as in Cone Calorimenter experiment: time to ignition 

is the same in modeling as determined in experiment  

• Post-ignition stage is: 

Considered to have instantaneous release of volatiles from solid to gas phase 

o Considered to be the same as in Cone Calorimeter test in terms of heat-release 

rate or mass loss rate per unit area 
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3.5.2.4 Experiment Description 

Cone Calorimeter test 

3.5.2.5 Data Set 

Cone Calorimeter test data of triple-layer cardboard with thickness of 11.1 mm, density of 

542 kg/m
3
 and applied heat flux of 50 kW/m

2
 is found.   

 

3.5.2.6 Uncertainty 

Uncertainty in Experiment Data 

• The uncertainty in the mass loss rate data is estimated via statistical approach, taking 

the standard deviation (0.58 g/sm
2
) from the mean of a steady burning of five identical 

PMMA tests conducted in a Cone Calorimeter.
12

  The estimated uncertainty is 1.4 g/sm
2
, 

which is found by calculating the 95% confidence interval applying student t distribution 

with a sample size of five.   

• The uncertainty in time-to-ignition data is estimated via statistical approach, taking 

three identical Cone Calorimeter test data at heat flux 50 kW/m
2
 of this cardboard.  95% 

confidence interval is calculated for each heat flux level assuming student t distribution. 

• The uncertainty in effective heat of combustion is estimated by average heat release 

rate divided by average mass loss rate of two identical tests.  Two times the standard 

deviation is used as its uncertainty band. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing under 

heating 

 

Uncertainty in Modeling Outputs 

• Same as in experiment data 
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3.5.3 Commentary 

When using Empirical Model to simulate pyrolysis of this plywood, test data from a bench-scale 

Cone Calorimeter experiment at a set heat-flux level has been utilized to estimate the time-to-

ignition from exposure to heating and the energy released from burning of this material.  As 

noted in the Understanding Model part of the chapter, this approach is limited as follows in 

terms of the conditions being comparable to those found in the fire scenario of interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating sample with a set heat flux 

impinging on the front surface where this applied heat-flux level during testing is assumed 

to be representative average (over space and time) for the fire scenario that is being 

modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed surface 

• Surface-burning data: edge effects in material testing are not included; therefore, data per 

unit area can be applied to simulate larger areas by simply multiplying the by material 

surface area involved in fire 
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Chapter 4–Simple Analytical Models  

UNDERSTANDING MODEL 

General Description of Models 

In this model category, surface temperature of a material is solved based on 

transient heat conduction equation using either thermally-thick or thermally-thin 

assumption.  When the thermally-thick assumption is used, material is considered as a 

semi-infinite inert solid up until ignition from time-of-exposure to heating.  The rate of 

surface-temperature increase is dependent upon the thermal inertia (kρc) of the material.  

The thermally-thin approach can be used for materials that are subject to heating under 

condition of greater convective resistance between solid and gas phase than conductive 

resistance within solid phase.  This condition allows the material to be modeled with 

thermally-lumped analysis to calculate its temperature increase during pre-ignition stage 

where any temperature gradient within the solid phase and mass loss is neglected.  The 

rate of temperature increase is dependent upon the density multiplied by heat capacity 

(ρc) of the material.  For both approaches, the material is assumed to ignite when its 

surface temperature reaches a material-dependent value (Tig).  Following ignition the 

mass-loss rate of the material is determined based on the net heat flux at the exposed 

surface and the heat of gasification (∆hg).  Finally the heat release rate is determined by 

multiplying the mass-loss rate by the effective heat of combustion (∆hc,eff). 

Principal assumptions are the same as those for Empirical Models for flat 

surfaces.  In addition, the methods to obtain the two combustion properties (∆hc,eff and 

∆hg) are based on the assumptions of steady burning on the material surface. 
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Governing Equations 

Assuming that the material is a thermally-thick solid being heated on one side by 

applying a constant heat flux with the other side insulated (see Figure 4-1), conservation 

of energy with initial and boundary conditions can be written as below (see Eq. 4-1 

through Eq. 4-4): 
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where 

T = temperature (K); 

x = distance from the exposed surface of the specimen (m); 

δ = specimen thickness (m); 

T∞ = ambient and initial temperature (K); 

ε = surface emissivity/absorptivity; 

hc = convection coefficient (kW/m
2⋅K); 

Ts = surface temperature (K); and 

σ = Boltzmann constant (5.67⋅10
-11

 kW/K
4⋅m2

). 
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Figure 4-1.  Schematic of a piloted ignition experiment 

For the thermally-thin approach, the following governing equation is used (see 

Eq. 4-5 and Eq. 4-6): 

netq
dt

dT
c ′′= &δρ  Eq. 4-5 

∞= = TTt 0

 
Eq. 4-6 

 

By assuming that the applied heat flux is constant, time-to-ignition can be solved 

as below (see Eq. 4-7 and Eq. 4-8): 
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where typically, "

netq& impinging on material surface for times prior to ignition in an 

intermediate or bench-scale calorimetry tests can be expressed as below assuming 

material is inert and opaque: 
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( ) )(
44""

∞∞ −−−−= TTTThqq sscenet εσε &&  Eq. 4-9 

 

To determine whether the material of interest is acting thermally-thick or 

thermally-thin, one may examine the time-to-ignition data and plot them as 1/tig
n
 vs. 

applied heat flux and vary the exponent of tig, n value from 0.5 to 1.0.  When data gives 

its best fitness at n � 0.5, the material may be considered as thermally-thick behaving 

material.  When data gives its best fitness at n � 1, the material can be considered as 

thermally-thin.  Hence, careful examination of the ignition data should be done prior to 

parameter estimation for simple analytical pyrolysis modeling, because the model takes 

into account the material’s thermal characteristics to simplify the model equations. 

For both thermally-thick and -thin behaving materials, heat release at steady 

burning following ignition is calculated from Eq. 4-10: 
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MODEL PARAMETERS AND MEASUREMENT METHODS 

Virtual Material 

For modeling transient heating of an inert, semi-infinite homogeneous material and 

pyrolysis after ignition, the following set-up is used (see Figure 4-2): 

 

Figure 4-2.  Pyrolysis modeling set-up used for thermally-thick materials 

For modeling transient heating of an inert, thermally-thin homogeneous material and 

pyrolysis after ignition, the following set-up is used (see Figure 4-3): 

 

Figure 4-3.  Pyrolysis modeling set-up used for thermally-thin materials 
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Model-Parameter Table 

Table 4-1.  Model-parameter table: summary of model parameters required to conduct 

pyrolysis modeling  

Ignition 

Parameters 

igT  Surface Temperature at Ignition 

"
crq&

 
Critical Heat Flux for Ignition 

kρc
 

Thermal Inertia (Thermally-thick) 

ρcδ
 

Thermal Capacity (Thermally-thin) 

Burning-Rate 

Parameters 

∆hc,eff   Effective Heat of Combustion 

∆hg Heat of Gasification 

Parameters for 

Specifying 

Conditions 

hc Convection Coefficient 

∞T  Ambient Temperature 

ε Surface Emissivity/Absorptivity 

burnt∆  Burn Duration 

 

Model-Parameter-Measurement Methods 

1. Surface Temperature at Ignition 
DIRECT MEASUREMENT 

The most common approach for directly measuring surface temperature at 

ignition involves the use of fine thermocouples.  The wire diameter has to be as small as 

possible to avoid having the thermocouple alter the material’s response in the test.  

Although pre-welded type K unsheathed thermocouples are available with wire diameters 

down to 0.013 mm, it is extremely tedious to handle wires that are less than 0.25 mm in 

diameter.  Butt-welded thermocouples are preferred because they have no bead.  Since 

the smallest diameter of commercially available butt-welded thermocouples is 0.25 mm, 

it is recommended that these be used instead of 0.13-mm standard beaded wire 

thermocouples. 

Thermocouples are installed on the surface by drilling two small holes through the 

specimen at 5–10 mm from opposite sides of its center.  The wires are pulled through the 

holes and taped to the back side of the specimen, so that the thermocouple junction is in 
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the middle between the holes and in contact with the specimen surface.  It is beneficial to 

make a small incision between the holes so that the exposed part of the thermocouple 

wire is partially below the surface (see Figure 4-4(a)).  It is critical to apply the right 

tension so that the wire is neither pulled into the material (see Figure 4-4(b)) nor loses 

contact with the surface (see Figure 4-4(c)). 

 

Figure 4-4. Measuring surface temperature with a thermocouple 

It is very difficult and time-consuming to accurately measure the surface 

temperature of a specimen in a fire test with a thermocouple.  The problems of this 

technique can be avoided by using a non-contact method that relies on an optical 

pyrometer or infrared camera.  However, this approach is not without challenges either.  

First of all, it may not be possible to position the pyrometer or camera so that the 

instrument has a clear unobstructed view of the target surface.  Often the radiant panel of 

the test apparatus is in the way and the pyrometer has to be positioned at an angle.  

Second, if the absorptivity of the target surface is less than unity, part of the incident heat 

flux from the radiant panel is reflected.  The pyrometer or camera signal has to be 

corrected to account for this reflection.  Finally, to accurately measure surface 

temperature with an optical pyrometer or infrared camera, the absorption of radiation, 
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e.g., by CO2 and water vapor,
1
 in the space between the target and the sensor has to be 

accounted for.  This presents a major challenge when measuring the surface temperature 

of a burning specimen due to the radiation from the flame and interference of the flame 

with the radiation from the surface.  This challenge has been successfully addressed by 

using a narrow-band pyrometer that operates in the 8–10 µm range of the IR spectrum, 

i.e., outside the absorption/emission bands of carbon dioxide and water vapor.
2,3

 

Investigators in Sweden have recently experimented with the use of 

thermographic phosphors to measure the surface temperature in fire tests.
4,5,6

  This 

technique relies on the fact that the phosphorescence lifetime and spectral properties of 

UV laser-induced emissions from a thermographic phosphor applied to the surface of a 

test specimen are a function of the temperature of the phosphor.  This method is still in its 

infancy, and more work is needed to demonstrate that it can be used for a wide range of 

materials and fire-test conditions. 

The surface temperature at ignition of a thermoplastic is reasonably constant and 

independent of heat flux.
7,8

  A number of investigators measured Tig for a range of wood 

products.
9,10,11,12,13,14

  Reasonably constant values were found for each material at heat 

fluxes ≥ 25 kW/m
2
.  All studies reported a significant increase of Tig at lower heat fluxes 

(50 °C–150 °C at 15 kW/m
2
).  This is due to the fact that pyrolysis and char formation at 

the surface are no longer negligible for ignition times exceeding 3 min.  Under those 

conditions one of the basic assumptions of thermal-ignition theory, i.e., that the specimen 

behaves as an inert solid, is no longer valid. 
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A number of ASTM standards have been tabulated below for calorimeter tests 

that allow measurements of ignition and burning properties of materials (see Table 4-2): 

Table 4-2.  ASTM standards of calorimeter tests measuring ignition and burning properties of 

material  

Standard Test Description 

ASTM D 1929 

– 11 

Standard Test Method for Determining Ignition Temperature of Plastics 

ASTM E 1321 

– 09 

Standard Test Method for Determining Material Ignition and Flame Spread 

Properties 

ASTM E 1354 

– 11b 

Standard Test Method for Heat and Visible Smoke Release Rates for Materials 

and Products Using an Oxygen Consumption Calorimeter 

ASTM E 2058 

– 09 

Standard Test Methods for Measurement of Synthetic Polymer Material 

Flammability Using a Fire Propagation Apparatus (FPA)  

 

IGNITION DATA ANALYSIS 

Because it is very tedious to measure Tig directly, it is much more common to 

determine ignition properties on the basis of an analysis of time-to-ignition data obtained 

over a range of heat fluxes.  The analysis is usually based on a simple heat conduction 

model, which assumes that the solid is inert (negligible pyrolysis prior to ignition) and 

thermally-thick (heat wave does not reach the back surface prior to ignition) or thermally-

thin (heat wave does reach the back surface prior to ignition; therefore, temperature 

gradient can be neglected within solid phase).  It is important to understand that material 

properties obtained from such analyses are model parameters, which are not necessarily a 

good estimate of the real values.   

THERMALLY-THICK MATERIALS 

Quintiere and Harkleroad developed a practical method for analyzing ignition 

data obtained with the LIFT apparatus.
15

  The method is described in ASTM E 1321.  The 

first step of the method consists of conducting ignition tests starting at a radiant heat-flux 

level near the maximum for the apparatus (60–65 kW/m
2
).  Time-to-ignition is obtained 

at heat-flux levels in descending order at intervals of 5 kW/m
2 

to 10 kW/m
2
, preferably 

with some replicates.  When ignition time becomes sufficiently long (of the order of 

10 min), data is obtained at heat-flux levels more closely together (1.5 kW/m
2
 to 

2 kW/m
2
 intervals).  At a certain level, ignition will no longer occur within the (arbitrary) 

maximum test duration of 20 min.  The critical heat flux is taken to be slightly above this 
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level.  Usually, a few more tests are conducted around this level to confirm its value.  

Once the critical heat flux is known, Tig can be calculated from a heat balance at the 

surface (see Figure 4-1) after very long exposure, since heat conduction into the specimen 

then becomes negligible (see Eq. 4-11): 

)()( 44"

∞∞ −+−= TTTThq igigccr εσε &  Eq. 4-11 

 

THERMALLY-THIN MATERIALS  

The same approach can be applied to estimate Tig for thermally-thin materials. 

 

2. Critical Heat Flux for Ignition 
A quantity related to Tig is the minimum heat flux for ignition, "

minq& .  The 

minimum heat flux is just sufficient to heat the material surface to Tig for very long 

exposure times (theoretically ∞).  It is not a true material property, because it depends on 

the rate of convective cooling from the surface.  This, in turn, depends primarily on the 

orientation, size, and flow field around the exposed surface.  Since these are different in a 

small-scale test vs. a real fire, the minimum heat flux determined based on test data is an 

approximate value.  To make the distinction, it is referred as the critical heat flux for 

ignition, 
"
crq& when measured directly.  The critical heat flux may also vary between 

different small-scale test apparatuses due to differences in convective cooling.  For 

example, Dietenberger obtained critical heat flux values of 14.3 kW/m
2
 and 18.8 kW/m

2
 

for conditioned redwood in the Cone Calorimeter (ASTM E 1354) and Lateral Ignition 

and Flame spread Test (LIFT) apparatus (ASTM E 1321) respectively.
16

 

The critical heat flux, 
"
crq& , can be determined by bracketing, i.e., by conducting 

experiments at incrementally decreasing heat flux levels until ignition does not occur 

within a specified period (usually 10 or 20 min).   
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3. Thermal Inertia or Thermal Capacity per Unit Area 
The thermal inertia, kρc, is a measure of how fast the surface temperature of a 

thermally-thick material rises when exposed to heat.  A material with lower kρc will 

ignite faster than a material with higher kρc and the same Tig exposed to the same heat 

flux.  Similar to thermal inertia, for materials that are thermally-thin, thermal capacity per 

unit area, ρcδ, is a measure of how fast the material’s lumped body temperature rises 

when exposed to heat. 

DIRECT MEASUREMENT 

This parameter can be determined by measuring thermal conductivity, density, 

and specific heat separately.  Methods for measuring k, ρ, and c are described in the 

section on thermophysical parameters (see Chapter 5).  Since k and c are temperature-

dependent, the question is, at which temperature should these parameters be determined?  

A possible approach involves using average parameter values for the temperature range 

between ambient and Tig. 

IGNITION DATA ANALYSIS 

Similar to measuring Tig directly, direct measurement of kρc or ρcδ requires 

investment of time and financial commitment.  Therefore, it is more common to 

determine this parameter on the basis of an analysis of time-to-ignition data obtained over 

a range of heat fluxes.  The analysis is usually based on a simple heat-conduction model, 

which assumes that the solid is inert (negligible pyrolysis prior to ignition) and thermally-

thick (heat wave does not reach the back surface prior to ignition) or thermally-thin (heat 

wave does reach the back surface prior to ignition; therefore, temperature gradient can be 

neglected within solid phase).  It is important to understand that material properties 

obtained from such analyses are model parameters, which are not necessarily a good 

estimate of the real values.   

THERMALLY-THICK MATERIALS  

Once the 
"

crq& and Tig are known, total heat-transfer coefficient at ignition, hig, can 

be calculated from a heat balance at the surface after very long exposure, since heat 

conduction into the specimen then becomes negligible (see Eq. 4-12): 
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)()()( 44"

∞∞∞ −≡−+−= TThTTTThq igigigigccr εσε &  Eq. 4-12 

where 

hig = total heat transfer coefficient at ignition (kW/m
2⋅K). 

Surface temperature measurements under steady-state conditions for a number of inert 

materials and some combustible materials resulted in the following fit
15

: 

)()()(015.0 44"

∞∞∞ −≡−+−= TThTTTTq igigigigcr σ&  Eq. 4-13 

 

Thus, if specimens are heated for a sufficiently long time in the LIFT apparatus, it may be 

assumed that ε = 1 and that hc = 15 W/m
2⋅K.  Once Tig is calculated from the empirical 

value for 
"

crq&  via Eq. 4-11, a total heat-transfer coefficient from the surface at ignition can 

be obtained by rearranging this equation as follows (see Eq. 4-14):  
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Based on approximate solutions of Eq. 4-1 through Eq. 4-4 with linearized heat losses 

from the exposed surface, the surface temperature at ignition for exposure to a constant 

radiant heat flux is approximated by (see Eq. 4-15): 
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where 

tig = time to ignition at incident heat flux 
"
eq&  (s); and 

F = function of time. 

This leads to the following expression for correlation of piloted-ignition data (see Eq. 4-

16):  
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where 

t* = time to reach steady conditions (s). 

Thus, all data are plotted in a graph of 
""

/ ecr qq &&  versus igt .  An “apparent” value 

for kρc can be calculated from the slope of the line through zero that best fits the data.  

This line crosses 
""

/ ecr qq &&  = 1 at t*, the time needed to reach “steady-state” conditions.  

The functional form of Eq. 4-16 for small times is identical to that of the solution of the 

one-dimensional heat conduction equation for a semi-infinite solid exposed to a constant 

heat flux without heat losses from the surface.  Consequently, kρc values obtained with 

this procedure are higher than actual average values.  The same procedure can be used to 

analyze piloted-ignition data obtained with the Cone Calorimeter, provided an adjustment 

is made to hc to account for the differences in convective cooling conditions. 

THERMALLY-THIN MATERIALS  

Similar to what has been done for thermally-thick materials, ignition theory can 

be applied to thermally-thin materials.  The only difference from the method introduced 

above is the F(t) function (see Eq. 4-17): 
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where ρcδ is the thermal capacity per unit area.  This parameter is comparable to 

thermal inertia in equations derived for thermally-thick behaving material, which may be 

estimated from the slope of the line from linear regression method. 

 
4. Effective Heat of Combustion 

See Chapter 3. 
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5. Heat-of-Gasification 
The heat-of-gasification, ∆hc,g, is defined as the net heat flow into a specimen 

required to convert one mass unit of solid material to volatiles.  The net heat flux can be 

obtained from an energy balance at the surface of the specimen.  Typically, a specimen 

exposed in a small-scale calorimeter is heated by external heaters and by its own flame.  

Heat is lost from the surface in the form of radiation.  A schematic of the heat balance at 

the surface of a burning specimen in the Cone Calorimeter (ASTM E 1354) is shown in 

Figure 4-1.  Hence, ∆hc,g is defined as (see Eq. 4-18): 
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Figure 4-5.  Heat balance at the surface of a burning cone calorimeter specimen 

where 

"
netq&  = net heat flux into the specimen (kW/m

2
); 

"
eq&  = heat flux to the specimen surface from external sources (kW/m

2
); 
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"
fq&  = heat flux to the specimen surface from the flame (kW/m

2
); and 

"
lq&  = heat losses from the exposed surface (kW/m

2
). 

The heat of gasification is defined by Eq. 4-18.  If the flame is approximated as a 

homogeneous grey gas volume, the heat flux from the flame can be expressed as follows 

(see Eq. 4-19): 

  TTThq q= q ffsfrfcff

4"

,

"

,

" )( σε+−=+ &&&  Eq. 4-19 

where 

"
c,fq&  = convective fraction of the flame flux (kW/m

2
); 

"
r,fq&  = radiative fraction of the flame flux (kW/m

2
); 

h* = convection coefficient corrected for blowing (kW/m
2⋅K); 

Tf = flame temperature (K); 

Ts = surface temperature (K); 

σ = Boltzmann constant (5.67⋅10
-11

 kW/m
2⋅K4

); and 

εf = emissivity of the flame. 

The flow of combustible volatiles emerging through the exposed surface of the 

specimen adversely affects the convective heat transfer between the flame and the 

surface.  This effect is referred to as “blowing.”  The flame flux in a small-scale 

calorimeter is primarily convective, in particular in the vertical orientation, and flame 

absorption of external heater and specimen surface radiation can be neglected. 

The heat losses from the surface can be expressed as Eq. 4-20: 

 TT = "q ssl
)( 44

∞−σε&  Eq. 4-20 

where 

εs = surface emissivity of the specimen; and 

T∞ = ambient temperature (K). 

Some materials exhibit nearly steady mass-loss rates when exposed to a fixed 

radiant-heat flux.  Ts for these materials reaches a steady value after a short initial 

transient period, and all terms in Eq. 4-20 are approximately constant.  ∆hg can then be 
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obtained by measuring steady mass-loss rates at different radiant-heat flux levels, and by 

plotting "m&  as a function of 
"

eq& .  The reciprocal of the slope of a straight line fitted 

through the data points is equal to ∆hg.  The intercept of the line with the abscissa is equal 

to ""

fl qq && − .  Tewarson et al.
17

 and Petrella
18

 have used this technique to obtain average 

∆hg values for a large number of materials.  Tewarson et al. also conducted tests in 

vitiated O2/N2 mixtures and found "
fq&  to decrease linearly with decreasing oxygen 

concentration.  Analysis of these additional experiments made it possible to separate "

fq&  

and "

lq& . 

Many materials, in particular those that form an insulating char layer as they burn, 

take a long time to reach steady burning conditions or may never reach steady conditions.  

Eq. 4-18 is still valid for such materials, but the heat and mass fluxes and resulting ∆hg 

values vary with time.  Tewarson and Petrella have used the method described in the 

previous paragraph to determine average ∆hg values for non-steady burning materials 

using average mass-loss rates.  They found that average 
"m&  is still an approximately 

linear function of 
"

eq& .  However, the average heat-of-gasification values obtained in this 

manner may not have any physical meaning.  For example, Janssens demonstrated that 

the values based on average mass loss rates are too high for wood, and suggested a 

method to determine ∆hg as a function of char depth. 
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6. Convection Coefficient 
The convection coefficient depends on the apparatus that was used to obtain the 

piloted ignition data.  Table 4-3 summarizes recommended hc values for different 

apparatuses. 

Table 4-3.  Recommended hc values for different test apparatuses 

Apparatus Orientation hc (kW/m
2⋅⋅⋅⋅K) 

ISO Ignitability Test Horizontal 0.011 

Cone Calorimeter Horizontal 0.012 

Cone Calorimeter Vertical 0.016 

LIFT Vertical 0.015 

Fire Propagation Apparatus Horizontal 0.010 

 

7. Ambient Temperature 
Typically, ambient temperature is directly measured using a thermometer 

measuring room temperature located in the lab where testing is conducted. 

 

8. Surface Emissivity / Absorptivity 
The emissivity can be (1) obtained from the literature; (2) assumed to be equal to 

1, or close to 1 (which is reasonable for many materials); or (3) measured according to a 

standard test method (see Table 4-4). 

Table 4-4.  ASTM standards for Measuring Emissivity 

Standard Test Description 

ASTM C 835 Standard Test Method for Total Hemispherical Emittance of Surfaces up to 

1400°C 

ASTM C 1371 Standard Test Method for Determination of Emittance of Materials Near Room 

Temperature Using Portable Emissometers 
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9. Burn Duration 
Burn duration is the time of burning, i.e., time of complete burnout minus time of 

ignition.  This parameter can be calculated by considering steady burning rate after 

ignition and available amount of fuel mass to burn.  At a certain level of applied heat 

flux, the modeler can estimate the burning rate from linear-regression plotting external 

applied heat flux, 
"

eq& versus burning rate, 
"m&  (see Eq. 4-17).  Burn duration can be 

estimated by Eq. 4-21: 

 
m

tburn ′′
=∆

&

ρδ
 Eq. 4-21 
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UNCERTAINTY ANALYSIS 

When a parameter is obtained via direct measurement, a statistical approach may 

be used to quantify the uncertainty.  Use at least three identical measurements to analyze 

confidence interval, assuming data is not biased due to inherent problem during data 

collection.  When parameters are obtained via data analysis, uncertainty can be calculated 

using the Law of Propagation of Uncertainty.  These are shown below: 

 

Ignition Data Analysis 

Thermally-thick Materials 
ΔTIG  

This parameter is a function of 
"

crq& , hc, and T∞.  Knowing the uncertainty of 
"

crq& , 

hc and T∞ uncertainty of Tig can be estimated as below using the Law of Propagation of 

Uncertainty. 

Recall the heat-balance equation at the front surface during steady burning (see 

Eq. 4-11).  Using the Law of Propagation of Uncertainty, the following mathematical 

expression is found (see Eq. 4-22): 
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Therefore, the uncertainty of Tig becomes (see Eq. 4-23): 
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ε
εσ 3" 4 ∞

∞

−−
=

∂

∂ Th

T

q ccr
&

 

Δ(KρρρρC) 

This parameter is a function of estimated slope of the best-fit line that represents 

the relationship between ""
/ ecr qq &&  and igt  and 

igh  where 
igh is a function of ε,

"

crq& , Tig and 

T∞.   

Recall 
( )2

24

slope

 h
ck

ig

⋅
=
π

ρ  and )("

∞−≡ TThq igigcr
&ε

. 

By substituting 
igh , thermal inertia can be rearranged to Eq. 4-24: 
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Therefore, using the Law of Propagation of Uncertainty, the following 

mathematical expression is found (see Eq. 4-25): 
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Thermally-thin Materials 
ΔTIG  

Uncertainty of this parameter is the same as in thermally-thick case. 

Δ(ρρρρCΔ) 

This parameter is a function of the estimated slope of the best-fit line that 

represents the relationship between ""
/ ecr qq &&  and

igt  and 
igh  where 

igh is a function of ε,
"

crq&

, Tig and T∞.   

Recall 
slope

 h
c

ig=δρ  and )("

∞−≡ TThq igigcr
&ε

. 

By substituting 
igh , thermal capacity per unit area can be rearranged to Eq. 4-26: 
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δρ  Eq. 4-26 

Therefore, using the Law of Propagation of Uncertainty, the following 

mathematical expression is found as Eq. 4-27: 
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Burning-Rate Data Analysis 

Δ∆∆∆∆HG  

This parameter is estimated by calculating the reciprocal of the slope of the best-

fit line of "m&  versus "q
e
&

 
using mass-loss rate data obtained from Cone tests at different 

heat-flux levels.  Recall  
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆ during steady burning and therefore

( )
 

h

"q - "q 
 "q

h

 
 "m

g

lf

e

g ∆
+

∆
=

&&
&&

1
.  The uncertainty of the slope (=1/∆hg) can be estimated 

through calculating the standard error of the slope of the best-fit line.  Knowing the 

uncertainty of the slope, calculation of uncertainty of ∆hg becomes possible by 

considering the boundary values. 
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PARAMETER-ESTIMATION PROCESS 

To create a virtual material, these tasks must be considered: 

• Create a list of model inputs, which needs to be determined 

• Obtain model unknown inputs via measurement or literature search 

 

When the above is done and every unknown has been estimated, validation work 

and commentary is needed to understand the performance of the estimated parameter set: 

• Run model 

• Analyze simulation quality with consideration of uncertainties in modeling 

outputs and data 

• Add commentary 

 

 When presenting the parameter-estimation results, three summary tables will be 

introduced: Model-Parameter Table, Validation, and Commentary sections.  The Model-

Parameter Table includes the model parameters necessary to conduct pyrolysis modeling, 

their estimated values, and methods of estimating the unknowns.  The Validation section 

consists of the following information: description of modeling goal, pyrolysis model 

type, and the modeling approach used in the exercise, experiment type and its data used 

to empirically simulate the material’s heat-release rate and uncertainty information of 

experimental data and modeling outputs.  The Commentary section discusses any 

limitations of pyrolysis modeling conducted above, which has been summarized in the 

Model Parameter Table and Validation sections. 

For better visualization of the problem, a flowchart is shown below (see Figure 4-

6): 
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Figure 4-6.  Flow chart of parameter estimation for simple analytical pyrolysis models 
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EXAMPLE CASES OVERVIEW 

Table 4-5.  Overview of example cases using simple analytical pyrolysis models 

Case Description Examples 

1 
Thermally-thick, inert at pre-ignition 

with steady burning at post-ignition 

PMMA 

Corrugated Cardboard 

Fire-Retarded FRP Composite 

Plywood 

2 
Thermally-thin, inert at pre-ignition 

with steady burning at post-ignition 

Sandwich Composite 

Thin FRP Composite  

 

In the following, summarized results are shown for each example case.  Detailed 

solutions of these example cases are given in Appendix C. 
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CASE 1: THERMALLY-THICK, INERT AT PRE-IGNITION 

WITH STEADY BURNING AT POST-IGNITION 

Virtual Microstructure of Virgin Material 

• Homogeneous flat surface single layer in horizontal position 

• Pre-ignition stage: inert, semi-infinite thickness (i.e., thermally-thick) 

• Post-ignition stage: steady burning 

General Model-Parameter Table 

• Ignition and burning-rate parameters are considered in this example 

• Reduced Model Parameter Table (see Table 4-6): 

Table 4-6.  Model Parameter Table for Case 1 Examples 

Ignition 

Parameters 

igT  Surface Temperature at Ignition 

"
crq&

 
Critical Heat Flux for Ignition 

kρc
 

Thermal Inertia (Thermally-thick) 

Burning-Rate 

Parameters 

∆hc,eff   Effective Heat-of-Combustion 

∆hg Heat-of-Gasification 

Parameters for 

Specifying 

Conditions 

hc Convection Coefficient 

∞T  Ambient Temperature 

ε Surface Emissivity/Absorptivity 

burnt∆  Burn Duration 
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Example 4.1 Modeling Poly(methylmethacrylate), PMMA 

4.1.1 Model Parameter Table 
Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters 

igT
 

°C 
318 ± 4 

Ignition Data Analysis 

"

crq&  kW/m
2
 

10.5 ± 0.5 

Measurement, Cone Calorimeter by bracketing 

kρc
 

kJ
2
/m

4
K

2
s 

0.649 ± 0.151 

Ignition Data Analysis 

Burning- 

Rate 

Parameters 

∆hc,eff   g/s-m
2
 

24.6 ± 0.9 

Burning-Rate Data Analysis 

∆hg kJ/g 
2.9 ± 1.0 

Burning-Rate Data Analysis 

Parameters 

for 

Specifying 

Conditions 

hc W/m
2
K 

12 ± 0.5 

Reference value for horizontal position in cone calorimeter 

∞T  °C 
20 ± 2 

Measurement 

ε - 
0.9 ± 0.09 

Approximated 

burnt∆
 

s 

�1170��18�

0.351
��
" + 8.896

 

Burning-Rate Data Analysis 
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4.1.2 Validation 
4.1.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of PMMA under 

various heating rates – heat-flux levels ranging up to ~ 100kW/m
2
. 

 

4.1.2.2 MODEL TYPE 

Thermally-thick model for ignition analysis (Quintiere and Harkleroad, ASTM E 1321) 

and steady burning model 

 

4.1.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: decomposition with bubbling before ignition is neglected 

o Thermally-thick: heat transfer does not reach back surface 

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase: bubbling layer is neglected and is considered as a surface 

phenomenon 

o Considered to have a constant thickness: regression of PMMA is 

neglected 

o Steady burning: heat loss equals heat gain at front surface 

 

4.1.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

4.1.2.5 DATA SET 

• Cone Calorimeter test data of black PMMA with thickness of 18 mm, density of 

1170 kg/m
3
 and applied heat-flux levels ranging from 10 to 75 kW/m

2
 is found.   

• For ignition data analysis, only time-to-ignition with respect to applied heat-flux 

data will be used.   

• For burning-rate data analysis, data for the entire testing time duration at HF 

=25, 50, and 75 kW/m
2
, mass loss and heat release during testing period with 

respect to applied heat flux will be used. 

• PMMA AFM tests
19

 conducted under 28.4 and 60 kW/m
2
 are used to compare 

data with extrapolated modeling cases – time of ignition and MLR at steady 

burning stage. 
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4.1.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

 

• Uncertainty in time to ignition and mass loss rate: From the experimental work 

done by Beaulieu and Dembsey19 on thermally-thick behaving black PMMA using 

AFM apparatus, the experiment uncertainty in time-to-ignition and mass-loss 

rate at steady burning were determined as ± 2 s and ± 3 g/m
2
s, respectively.  The 

test results were compared with other literature values using different 

apparatuses, such as Cone Calorimeter as well, which were considered as 

consistent.       

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

 

• Uncertainty in tig and ��� "can be estimated from linear regression process and 

using the Law of Propagation of Uncertainty 
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4.1.2.7 MODELING OUTPUT: MASS LOSS RATE (MLR) 

• Ignition and Burning-Rate Data Analysis 

 
 

 
 

 
Figure 4-7  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at different applied heat-flux levels – (a) 

MLR at 25 kW/m
2
; (b) MLR at 50 kW/m

2
; and (c) MLR at 75 kW/m

2
.  Note that data 

shown were used to estimate model-parameter values.  
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• Extrapolation 

 
 

 
Figure 4-8  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at different applied heat-flux levels – (a) 

MLR at 28.4 kW/m
2
; and (b) MLR at 60 kW/m

2
.  Note that data shown were not 

included in the model-parameter-estimation process; hence, these two cases are 

considered as extrapolation cases.  
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4.1.3 Commentary 
GENERAL COMMENTS ABOUT MLR 

• Ignition and Burning-Rate Data Analysis at HF = 25, 50 and 75 kW/m
2
: Good 

agreement exists between experiment data and all modeling results   

• Extrapolation at HF = 28.4 and 60 kW/m
2
: Generally, good agreement exists 

between MLR data and modeling results, except near ignition stage.  In modeling 

time-to-ignition, the model’s outputs are shorter than those from AFM tests for 

both heat-flux levels.  This discrepancy can be explained by considering the in-

depth absorption of radiation during heating of PMMA.  The data from AFM 

tests, where IR lamps are used to heat the samples, possibly were subject to in-

depth radiative absorption delaying ignition, knowing that the PMMA samples 

are somewhat transparent.  However, this phenomenon is not accounted for in 

modeling assumptions and in parameter estimation process where Cone 

Calorimeter test data is used – in the Cone, radiation is absorbed mostly on the 

surface. 

 

LIMITATION IN MODELING 

• When using the Simple Analytical Model to simulate pyrolysis of black PMMA 

(density 1170 kg/m
3
, thickness 18 mm), test data from a bench-scale Cone 

Calorimeter experiment at several heat flux levels have been utilized to estimate 

the time-to-ignition from exposure to heating and the mass-loss rate at steady-

burning stage after ignition.  The comparison between the model outputs (time- 

to-ignition and steady-burning rate) and the data from bench-scale experiment 

showed good agreement for both checking purposes, where the same heat flux 

levels (25, 50 and 75 kW/m
2
) used in parameter estimation have been 

considered and extrapolation purposes where heat-flux levels (28.4 and 60 

kW/m
2
) not included in parameter estimation process have been considered. 

• Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seem to be reasonable, limitations of Simple Analytical Modeling 

has been acknowledged in literature for modeling black PMMA at relatively high 

applied heat-flux levels.  At high-heat flux levels, the assumption of having an 

inert condition during pre-ignition stage and neglecting thermal decomposition 

behavior- such as bubbling- cannot be made where these effects become more 

profound on temperature profile and ignition process of PMMA.  Therefore, 

caution should be given when conducting modeling for cases with higher heat-

flux levels. 
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Example 4.2 Modeling Corrugated Cardboard 

4.2.1 Model Parameter Table 
Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters 

igT
 

°C 
293 ± 17 

Ignition Data Analysis 

"

crq&  kW/m
2
 

9 ± 1 

Measurement, Cone Calorimeter by bracketing 

kρc
 

kJ
2
/m

4
K

2
s 

0.297 ± 0.101 

Ignition Data Analysis 

Burning- 

Rate 

Parameters 

∆hc,eff   g/s-m
2
 

13.9 ± 1.3 

Burning-Rate Data Analysis 

∆hg kJ/g 
21.6 ± 10.9 

Burning-Rate Data Analysis 

Parameters 

for 

Specifying 

Conditions 

hc W/m
2
K 

12 ± 0.5 

Reference value for horizontal position in Cone Calorimeter 

∞T  °C 
293 ± 17 

Ignition Data Analysis 

ε - 
0.9 ± 0.09 

Approximated 

burnt∆
 

s 

�116��15.1�

0.046
��
" + 5.530

 

Burning-Rate Data Analysis 
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4.2.2 Validation 
4.2.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of triple-layer 

corrugated cardboard under various heating rates – heat flux levels ranging up to ~ 75 

kW/m
2
. 

 

4.2.2.2 MODEL TYPE 

Thermally-thick model for ignition analysis (Quintiere and Harkleroad, ASTM E 1321) 

and steady-burning model 

 

4.2.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: non-uniform charring is considered to be evenly distributed 

o Thermally-thick: heat transfer does not reach back surface 

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase 

o Considered to have a constant thickness: exfoliation of surface layers is 

neglected  

o Steady burning: heat loss equals heat gain at front surface 

4.2.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

4.2.2.5 DATA SET 

• Cone Calorimeter test data of triple-layered corrugated cardboard with thickness 

of 15 mm, density of 116 kg/m
3
 and applied heat-flux levels ranging from 8 to 75 

kW/m
2
 is found.   

• For ignition-data analysis, only time-to-ignition with respect to applied heat-flux 

data will be used.   

• For burning-rate data analysis, data for the entire testing time duration mass loss 

and heat release during testing period with respect to applied heat flux will be 

used. 
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4.2.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

 

• The uncertainty in the mass loss rate data used for comparison between data 

and model outputs is estimated via statistical approach, taking the standard 

deviation (0.58 g/sm
2
) from the mean of a steady burning of five identical PMMA 

tests conducted in a Cone Calorimeter.
20

  The estimated uncertainty is 1.4 g/sm
2
, 

which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of 5.   

• The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking two to four identical Cone Calorimeter test data at 

heat fluxes ranging from 25 to 75 kW/m
2
 of this cardboard.  A 95% confidence 

interval is calculated for each heat-flux level assuming student t distribution. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

 

• Uncertainty in tig and ��� "can be estimated from a linear regression process and 

using the Law of Propagation of Uncertainty 
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MODELING OUTPUT: MASS LOSS RATE (MLR) 

• Ignition and Burning-Rate Data Analysis 

 

 

 
Figure 4-9  Mass-loss rate (MLR) comparisons for corrugated cardboard between 

actual MLR from experiment (exp) and modeled MLR (sim) at different applied heat-

flux levels – (a) MLR at 25 kW/m
2
; (b) MLR at 50 kW/m

2
; and (c) MLR at 75 kW/m

2
.  

Note that data shown were used to estimate model-parameter values.  
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4.2.3 Commentary 
 

GENERAL COMMENTS ABOUT MLR 

• Ignition and Burning-Rate Data Analysis at HF = 25, 50 and 75 kW/m
2
: Good 

agreement exists between experiment data and all modeling results   

• The peaks are not captured in all cases, for averaged mass-loss rates have been 

used to estimate burning rate in the model. 

 

LIMITATION IN MODELING 

 

• When using the Simple Analytical Model to simulate pyrolysis of triple-layered 

corrugated cardboard (density 116 kg/m
3
, thickness 15 mm), test data from a 

bench-scale Cone Calorimeter experiment at several heat-flux levels have been 

utilized to estimate the time-to-ignition from exposure to heating and the mass-

loss rate at steady-burning stage after ignition.  The comparison between the 

model outputs (time-to-ignition and steady-burning rate) and the data from 

bench-scale experiment showed good agreement for both checking purposes, 

where the same heat flux levels (25, 50, and 75 kW/m
2
) used in parameter 

estimation have been considered. 

• Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical 

Modeling should be noted, which is that the model is for thermally-thick-

behaving materials and steady burning after ignition. 
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Example 4.3 Modeling Fire Retarded FRP Composite 

4.3.1 Model Parameter Table 
Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters 

igT
 

°C 
523 ± 5 

Ignition Data Analysis 

"

crq&  kW/m
2
 

29 ± 1 

Measurement, Cone Calorimeter by bracketing 

kρc
 

kJ
2
/m

4
K

2
s 

1.834 ± 0.408 

Ignition Data Analysis 

Burning- 

Rate 

Parameters 

∆hc,eff   g/s-m
2
 

18.3 ± 6.7 

Burning-Rate Data Analysis 

∆hg kJ/g 
13.7 ± 3.5 

Burning-Rate Data Analysis 

Parameters 

for 

Specifying 

Conditions 

hc W/m
2
K 

12 ± 0.5 

Reference value for horizontal position in Cone Calorimeter 

∞T  °C 
23 ± 3.45 

Measurement 

ε - 
0.9 ± 0.09 

Approximated 

burnt∆
 

s 

�609��8.9�

0.073
��
" + 0.830

 

Burning-Rate Data Analysis 
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4.3.2 Validation 
4.3.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of fire retarded FRP 

composite under various heating rates – heat-flux levels ranging up to ~ 75 kW/m
2
. 

 

4.3.2.2 MODEL TYPE 

Thermally-thick model for ignition analysis (Quintiere and Harkleroad, ASTM E 1321) 

and steady burning model 

 

4.3.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: non-uniform charring is considered to be evenly distributed 

o Thermally-thick: heat transfer does not reach back surface 

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase 

o Considered to have a constant thickness 

o Steady burning: heat loss equals heat gain at front surface 

 

4.3.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

4.3.2.5 DATA SET 

• Cone Calorimeter test data of FRP composite with thickness of 9.2 mm, density 

of 1900 kg/m3, and applied heat-flux levels ranging from 20 to 75 kW/m2 is 

found.   

• For ignition-data analysis, only time-to-ignition with respect to applied heat-flux 

data will be used.   

• For burning-rate data analysis, data for the entire testing time duration mass loss 

and heat release during testing period with respect to applied heat flux will be 

used. 

 

  



Section 5 - 84 

4.3.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• The uncertainty in the mass-loss rate data used for comparison between data 

and model outputs is estimated via statistical approach, taking the standard 

deviation (0.58 g/sm
2
) from the mean of a steady burning of five identical PMMA 

tests conducted in a Cone Calorimeter
20

.  The estimated uncertainty is 1.4 g/sm
2
, 

which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of five.   

• The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking four to five identical Cone Calorimeter test data at 

heat fluxes ranging from 50 and 75 kW/m
2
 of this cardboard.  A 95% confidence 

interval is calculated for each heat-flux level assuming student t distribution. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

• Uncertainty in tig and ��� "can be estimated from the linear-regression process 

and using the Law of Propagation of Uncertainty 
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4.3.2.7 MODELING OUTPUT: MASS LOSS RATE (MLR) 

• Ignition and Burning-Rate Data Analysis 

 

 
Figure 4-10  Mass-loss rate (MLR) comparisons for fire-retarded FRP composite 

between actual MLR from experiment (exp) and modeled MLR (sim) at different 

applied heat-flux levels – (a) MLR at 50 kW/m
2
; and (b) MLR at 75 kW/m

2
.  Note that 

data shown were used to estimate model-parameter values.  
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4.3.3 Commentary 
 

GENERAL COMMENTS ABOUT MLR 

• Ignition and Burning-Rate Data Analysis at HF = 25, 50, and 75 kW/m
2
: Good 

agreement exists between experiment data and all modeling results   

• The peaks are not captured in all cases, for averaged mass-loss rates have been 

used to estimate burning rate in the model 

 

LIMITATION IN MODELING 

• When using the Simple Analytical Model to simulate pyrolysis of a fire-retarded 

fiberglass-reinforced polymer (FRP) composite (density 2100 kg/m
3
, thickness 8.9 

mm, 71 wt% of composite remains as residue), test data from a bench-scale 

Cone Calorimeter experiment at several heat-flux levels have been utilized to 

estimate the time to ignition from exposure to heating and the mass-loss rate at 

steady-burning stage after ignition.  The comparison between the model outputs 

(time-to-ignition and steady-burning rate) and the data from bench-scale 

experiment showed good agreement for both checking purposes- where the 

same heat-flux levels (50 and 75 kW/m
2
) used in parameter estimation have 

been considered. 

• Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical 

Modeling should be noted, which is that the model is for thermally-thick-

behaving materials and steady burning after ignition. 
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Example 4.4 Modeling Plywood 

4.4.1 Model Parameter Table 
Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters 

igT
 

°C 
377 ± 11 

Ignition Data Analysis 

"

crq&  kW/m
2
 

14.5 ± 1 

Measurement, Cone Calorimeter by bracketing  

kρc
 

kJ
2
/m

4
K

2
s 

0.501 ± 0.138 

Ignition Data Analysis 

Burning- 

Rate 

Parameters 

∆hc,eff   g/s-m
2
 

14.4 ± 1.2 

Burning-Rate Data Analysis 

∆hg kJ/g 
8.0 ± 1.1 

Burning-Rate Data Analysis 

Parameters 

for 

Specifying 

Conditions 

hc W/m
2
K 

12 ± 0.5 

Reference value for horizontal position in Cone Calorimeter 

∞T  °C 
20 ± 2 

Measurement 

ε - 
0.9 ± 0.09 

Approximated 

burnt∆
 

s 

�542��11.1�

0.125
��
" + 4.110

 

Burning-Rate Data Analysis 
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4.4.2 Validation 
4.4.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of plywood under 

various heating rates – heat-flux levels ranging up to ~ 100 kW/m
2
. 

 

4.4.2.2 MODEL TYPE 

Thermally-thick model for ignition analysis (Quintiere and Harkleroad, ASTM E 1321) 

and steady-burning model 

 

4.4.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert 

o Thermally thick: heat transfer does not reach back surface 

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase: any mass transportation effect on pyrolysis is neglected and 

pyrolysis is considered as surface phenomenon only 

o Considered to have a constant thickness: shrinkage, regression and 

bending near the end is neglected 

o Steady burning: heat loss equals heat gain at front surface 

 

4.4.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

4.4.2.5 DATA SET 

• Cone Calorimeter test data of Douglas Fir plywood with thickness of 11.1 ± 0.1 

mm, density of 542 ± 11 kg/m
3
 and applied heat flux levels ranging from 14 to 

100 kW/m
2
 is found (student t distribution, α = 0.05, sample size of 10).   

• For ignition data analysis, only time-to-ignition with respect to applied heat-flux 

data will be used.   

• For burning-rate data analysis, data for the entire testing time duration mass loss 

and heat release during testing period with respect to applied heat flux will be 

used. 
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4.4.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• The uncertainty in the mass-loss rate data used for comparison between data 

and model outputs is estimated via statistical approach, taking the standard 

deviation (0.58 g/sm
2
) from the mean of a steady burning of five identical PMMA 

tests conducted in a Cone Calorimeter
20

.  The estimated uncertainty is 1.4 g/sm
2
, 

which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of five.   

• The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking three to four identical Cone Calorimeter test data at 

heat fluxes ranging from 25 to 75 kW/m
2
 of this cardboard.  A 95% confidence 

interval is calculated for each heat-flux level assuming student t distribution. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

• Uncertainty in tig and ��� "can be estimated from linear regression process and 

using the Law of Propagation of Uncertainty 
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4.4.2.7 MODELING OUTPUT: MASS LOSS RATE (MLR) 

• Ignition and Burning-Rate Data Analysis 

 

 

 
Figure 4-11  Mass-loss rate (MLR) comparisons for plywood between actual MLR from 

experiment (exp) and modeled MLR (sim) at different applied heat-flux levels – (a) 

MLR at 25 kW/m
2
; (b) MLR at 50 kW/m

2
; and (c) MLR at 75 kW/m

2
.  Note that data 

shown were used to estimate model-parameter values.  
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4.4.3 Commentary 
GENERAL COMMENTS ABOUT MLR 

• Ignition and Burning-Rate Data Analysis at HF = 25, 50 and 75 kW/m
2
: Good 

agreement exists between experiment data and all modeling results   

 

LIMITATION IN MODELING 

• When using the Simple Analytical Model to simulate pyrolysis of Douglas Fir 

Plywood, test data from a bench-scale Cone Calorimeter experiment at several 

heat flux levels have been utilized to estimate the time-to-ignition from exposure 

to heating and the mass-loss rate at steady-burning stage after ignition.  The 

comparison between the model outputs (time-to-ignition and steady-burning 

rate) and the data from bench-scale experiment showed good agreement for 

both checking purposes where the same heat-flux levels (25, 50 and 75 kW/m
2
) 

used in parameter estimation have been considered. 

• Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical 

Modeling should be noted, which is that the model is for thermally-thick-

behaving materials and steady burning after ignition. 

 

 

  



Section 5 - 92 

CASE 2: THERMALLY-THIN, INERT AT PRE-IGNITION 

WITH STEADY BURNING AT POST-IGNITION 

Virtual Microstructure of Virgin Material 

• Homogeneous flat surface single layer in horizontal position 

• Pre-ignition stage: inert, thermally thin 

• Post-ignition stage: steady burning 

General Model-Parameter Table 

• Ignition and burning-rate parameters are considered in this example 

• Reduced Model Parameter Table (see Table 4-7): 

Table 4-7.  Model Parameter Table for Case 2 Examples 

Ignition 

Parameters 

igT  Surface Temperature at Ignition 

"
crq&

 
Critical Heat Flux for Ignition 

ρcδ
 

Thermal Capacity (Thermally-thin) 

Burning-Rate 

Parameters 

∆hc,eff   Effective Heat-of-Combustion 

∆hg Heat-of-Gasification 

Parameters for 

Specifying 

Conditions 

hc Convection Coefficient 

∞T  Ambient Temperature 

ε Surface Emissivity/Absorptivity 

burnt∆  Burn Duration 
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Example 4.5 Modeling Sandwich Composite – GRP Skin with 

Balsawood Core 

This material is composed of approximately 1 mm thickness of laminated glass-

reinforced polymer (GRP) over approximately 25 mm thickness of resin-soaked balsa 

wood core as a skin layer (sandwich construction).  The resin used in the GRP and with 

balsa wood is vinyl ester (VEX).  The light weight core, balsa wood acts as an insulating 

layer for the thin GRP skin and allows the ignition data to behave thermally thin.  This 

thermal behavior is examined by plotting 1/tig
n
 vs. applied heat flux where its best fitness 

of a linear regression occurs near n = 0.9. 

 

4.5.1 Model Parameter Table 
Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters 

igT
 

°C 
350 ± 36 

Ignition Data Analysis 

"

crq&  kW/m
2
 

12.5 ± 2.5 

Measurement, Cone Calorimeter by bracketing  

kρc
 

kJ
2
/m

4
K

2
s 

7.625 ± 19.1 

Ignition Data Analysis 

Burning-

Rate 

Parameters 

∆hc,eff   g/s-m
2
 

23.5 ± 2.1 

Burning-Rate Data Analysis 

∆hg kJ/g 
8.7 ± 1.4 

Burning-Rate Data Analysis 

Parameters 

for 

Specifying 

Conditions 

hc W/m
2
K 

12 ± 0.5 

Reference value for horizontal position in Cone Calorimeter 

∞T  °C 
20 ± 5 

Measurement 

ε - 
0.9 ± 0.09 

Approximated 

burnt∆
 

s 

�600��1.3�

0.129
��
" + 7.415

 

Burning-Rate Data Analysis 
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4.5.2 Validation 
4.5.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of vinyl ester glass-

reinforced polymer (GRP) skin with 1” thick resin soaked balsa wood core sandwich 

composite under various heating rates – heat-flux levels ranging up to ~ 90 kW/m
2
. 

 

4.5.2.2 MODEL TYPE 

Thermally-thin model for ignition analysis and steady-burning model 

 

4.5.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: decomposition with bubbling and changing color on surface before 

ignition is neglected 

o Thermally-thin GRP skin: heat transfer does reach back surface quickly 

and the surface layer (vinyl ester resin GRP) is considered to have 

uniform temperature throughout  

o Control volume for ignition analysis is the thermally-thin GRP skin layer 

on the front surface facing the heating source 

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase: any mass-transportation effect on pyrolysis is neglected and 

pyrolysis is considered as surface phenomenon only 

o Considered to have a constant thickness 

o Steady burning: heat loss equals heat gain at front surface 

o 30% of the GRP skin layer (density of 2000 kg/m
3
) is consumed via 

burning, and this information is used to calculate the model’s burnout 

time prediction 

 

4.5.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

4.5.2.5 DATA SET 

• Cone Calorimeter test data of this sandwich composite panel with thickness of 

28 mm, density of 500 kg/m
3
 and applied heat flux levels ranging from 15 to 90 

kW/m
2
 is found.   

• For ignition data analysis, only time-to-ignition with respect to applied heat-flux 

data will be used.   

• For burning-rate data analysis, data for the entire testing time duration mass loss 

and heat release during testing period with respect to applied heat flux will be 

used. 
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4.5.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• The uncertainty in the mass-loss rate data used for comparison between data 

and model outputs is estimated via a statistical approach, taking the standard 

deviation (0.58 g/sm
2
) from the mean of a steady burning of five identical PMMA 

tests conducted in a Cone Calorimeter.
20

  The estimated uncertainty is 1.4 g/sm
2
, 

which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of five.   

• The uncertainty in time-to-ignition data used for comparison is estimated via a 

statistical approach, taking three to four identical Cone Calorimeter test data at 

heat fluxes ranging from 35 to 75 kW/m
2
 of this cardboard.  A 95% confidence 

interval is calculated for each heat-flux level assuming student t distribution. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces 

pyrolyzing under heating 

 

Uncertainty in Modeling Outputs 

• Uncertainty in tig and ��� "can be estimated from a linear regression process and 

using the Law of Propagation of Uncertainty 
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4.5.2.7 MODELING OUTPUT: MASS LOSS RATE (MLR) 

• Ignition and Burning-Rate Data Analysis 

 

 

 
Figure 4-12  Mass-loss rate (MLR) comparisons for sandwich composite – GRP skin 

with balsawood core – between actual MLR from experiment (exp) of the composite 

and modeled MLR (sim) of GRP skin at different applied heat-flux levels – (a) MLR at 

35 kW/m
2
; (b) MLR at 50 kW/m

2
; and (c) MLR at 75 kW/m

2
.  Note that data shown 

were used to estimate model-parameter values.  
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4.5.3 Commentary 
 

GENERAL COMMENTS ABOUT MLR 

• Ignition and Burning-Rate Data Analysis at HF = 35, 50 and 75 kW/m
2
: Good 

agreement exists between experiment data and all modeling results   

 

LIMITATION IN MODELING 

• When using the Simple Analytical Model to simulate pyrolysis of Douglas Fir 

Plywood, test data from a bench-scale Cone Calorimeter experiment at several 

heat flux levels have been utilized to estimate the time-to-ignition from exposure 

to heating and the mass-loss rate at steady-burning stage after ignition.  The 

comparison between the model outputs (time-to-ignition and steady-burning 

rate) and the data from bench-scale experiment showed good agreement for 

both checking purposes where the same heat-flux levels (35, 50 and 75 kW/m
2
) 

used in parameter estimation have been considered. 

• Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seem to be reasonable, limitation of this Simple Analytical 

Modeling should be noted, which is that the model is for thermally-thick-

behaving materials and steady burning after ignition. 
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Example 4.6 Modeling Thin FRP Composite 

The rigid FRP panel chosen for use in full-scale testing is commercially available 

and advertised for use as ceiling and wall linings (flat surfaces) in environments designed 

to be moisture- and mold-free. The panel has a Class C (ASTM E84) flame-spread rating. 

It is consisted of modified polyester copolymer and inorganic fillers as the resin base and 

reinforced with a weave of random chopped fiberglass. The panel’s thickness is 0.09” 

(2.3 mm) nominal, with a smooth backface and a pebbled, embossed white front surface. 

When this material is tested for ignition in Cone Calorimeter test, thermally-thin behavior 

is observed.  This thermal characteristic is examined by plotting 1/tig
n
 vs. applied heat 

flux where its best fitness of a linear regression occurs near n = 1.0. 

 

4.6.1 Model Parameter Table 
Model Parameters Unit Estimated Values and Estimation Methods 

Ignition 

Parameters 

igT
 

°C 
397 ± 10 

Ignition Data Analysis 

"

crq&  kW/m
2
 

16 ± 1 

Measurement, Cone Calorimeter by bracketing  

kρc
 

kJ
2
/m

4
K

2
s 

4.333 ± 4.369 

Ignition Data Analysis 

Burning-

Rate 

Parameters 

∆hc,eff   g/s-m
2
 

25.5 ± 1.8 

Burning-Rate Data Analysis 

∆hg kJ/g 
16.3 ± 4.7 

Burning-Rate Data Analysis 

Parameters 

for 

Specifying 

Conditions 

hc W/m
2
K 

12 ± 0.5 

Reference value for horizontal position in Cone Calorimeter 

∞T  °C 
23 ± 3.45 

Measurement 

ε - 
0.9 ± 0.09 

Approximated 

burnt∆
 

s 

�600��2.0�

0.061
��
" + 1.194

 

Burning-Rate Data Analysis 
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4.6.2 Validation 
4.6.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of this Class C FRP 

composite under various heating rates – heat-flux levels ranging up to ~ 75 kW/m
2
. 

 

4.6.2.2 MODEL TYPE 

Thermally-thin model for ignition analysis and steady burning model 

 

4.6.2.3 MODELING APPROACH 

• Pre-ignition stage is 

o Inert: decomposition with crackling sound and changing color on surface 

before ignition is neglected 

o Thermally thin: heat transfer does reach back surface quickly, and the 

entire layer is considered to have uniform temperature throughout  

o Control volume for ignition analysis is the thermally-thin GRP skin layer 

on the front surface facing the heating source 

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to gas 

phase: any mass-transportation effect on pyrolysis is neglected and 

pyrolysis is considered as a surface phenomenon only 

o Considered to have a constant thickness 

o Steady burning: heat loss equals heat gain at front surface 

o 40% of the FRP composite sheet (density of 1500 kg/m
3
) is consumed via 

burning, and this information is used to calculate the model’s burnout 

time prediction 

 

4.6.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter test 

 

4.6.2.5 DATA SET 

• Cone Calorimeter test data of this sandwich composite panel with thickness of 2 

mm, density of 1500 kg/m
3
 and applied heat-flux levels ranging from 15 to 75 

kW/m
2
 is found.   

• For ignition data analysis, only time-to-ignition with respect to applied heat-flux 

data will be used.   

• For burning-rate data analysis, data for the entire testing time duration mass loss 

and heat release during testing period with respect to applied heat flux will be 

used. 
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4.6.2.6 UNCERTAINTY 

Uncertainty in Experiment Data 

• The uncertainty in the mass-loss rate data used for comparison between data 

and model outputs is estimated via a statistical approach, taking the standard 

deviation (0.58 g/sm
2
) from the mean of a steady burning of five identical PMMA 

tests conducted in a Cone Calorimeter
20

.  The estimated uncertainty is 1.4 g/sm
2
, 

which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of five.   

• The uncertainty in time-to-ignition data used for comparison is estimated via a 

statistical approach, taking two to three identical Cone Calorimeter test data at 

heat fluxes ranging from 25 to 75 kW/m
2
 of this cardboard.  A 95% confidence 

interval is calculated for each heat-flux level assuming student t distribution. 

• Assume:  

o Uncertainties are comparable to those of similar flat surfaces pyrolyzing 

under heating 

 

Uncertainty in Modeling Outputs 

• Uncertainty in tig and ��� "can be estimated from a linear regression process and 

using the Law of Propagation of Uncertainty 

 

  



Section 5 - 101 

4.6.2.7 MODELING OUTPUT: MASS LOSS RATE (MLR) 

• Ignition and Burning-Rate Data Analysis 

 

 

 
Figure 4-13  Mass-loss rate (MLR) comparisons for thin FRP composite between actual 

MLR from experiment (exp) and modeled MLR (sim) at different applied heat-flux 

levels – (a) MLR at 25 kW/m
2
; (b) MLR at 50 kW/m

2
; and (c) MLR at 75 kW/m

2
.  Note 

that data shown were used to estimate model-parameter values.  
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4.6.3 Commentary 
GENERAL COMMENTS ABOUT MLR 

• Ignition and Burning-Rate Data Analysis at HF = 25, 50 and 75 kW/m
2
: Good 

agreement exists between experiment data and all modeling results   

• The peaks are not captured in all cases, for averaged mass-loss rates have been 

used to estimate burning rate in the model   

 

LIMITATION IN MODELING 

• In this example, the Simple Analytical Model is used to simulate pyrolysis of 

thermally -thin-behaving FRP composite sheet.  Test data from a bench-scale 

Cone Calorimeter experiment at several heat-flux levels have been utilized to 

estimate the time-to-ignition from exposure to heating and the mass-loss rate at 

steady-burning stage after ignition.  The comparison between the model outputs 

(time-to-ignition and stead-burning rate) and the data from bench-scale 

experiment showed good agreement for both checking purposes where the 

same heat-flux levels (25, 50 and 75 kW/m
2
) used in parameter estimation have 

been considered.  To improve modeling results, one may consider taking the 

peak average of the mass-loss rate and the heat-release rates to estimate heat-

of-gasification, for most of the burning occurs near the peak.  The tail following 

the peak (MLR or HRR curve) extends for a longer period of time until flame-out, 

where smaller percentage of the combustible resin between fiber glass layers is 

burning off at in-depth. 

• Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical 

Modeling should be noted, which is that the model is for thermally-thick-

behaving materials and steady burning after ignition. 
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Chapter 5–Comprehensive Models  

UNDERSTANDING MODEL 

General Description of Models 

Comprehensive pyrolysis models are models that account for physical and 

chemical responses of fire characteristics of a solid material.
1,2,3

   These models utilize 

fundamental conservation equations to describe the changes in a material during 

pyrolysis.  Typically, models are constructed to conserve mass and energy when material 

is being heated and/or thermally decomposed.  Numerical calculations are conducted 

using various methods – finite difference, finite element, or integral formats, where 

governing equations are transformed to system of ODEs instead of PDEs using 

simplifications – to determine mass loss and temperature profile from the heat-exposed 

front surface to unexposed back surface with respect to increasing time. 

The thermal-decomposition process in comprehensive pyrolysis modeling can be 

modeled by two different approaches: reactions that are infinitely fast or finite.  When 

thermal decomposition is infinitely fast, pyrolysis front becomes an infinitely thin 

reaction zone where reactants are consumed instantaneously into products with releasing 

or consuming reaction heat.  In this case, heat transfer is considered as a limiting factor 

for modeling the pyrolysis problem. Typically, a pre-determined pyrolysis temperature is 

used to locate the pyrolysis front.  When thermal-decomposition reaction rate is modeled 

as finite, pyrolysis front has a finite thickness.  Whether the virgin material pyrolyzes 

completely (single solid-state case) or partially (multiple solid-state case) to fuel vapor, 

the assumption used in this approach allows the model to approximate the pyrolysis 

kinetics as well as the heat transfer throughout the solid fuel.  When pyrolysis kinetics is 

explicitly considered in modeling, pyrolyzates can be produced at various locations 

within the pyrolysis front, which has a finite thickness.  By performing numerical 

calculations in these comprehensive pyrolysis models, the temperature profile is obtained 

for a solid fuel, and, depending on the local temperature, the pyrolysis reaction(s) rate is 

calculated, allowing the reactants to be consumed to produce pyrolyzates or other types 

of solid phase materials with associated energy consumption.  Typically, an Arrhenius-

type expression is used for describing the pyrolysis kinetics.  Some models of this kind 
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consider mass and heat transfer of gases through a decomposed solid-phase product layer, 

which requires additional governing equations to be solved. 

Although accounting for physical and chemical phenomena observed during 

pyrolysis explicitly is a merit for comprehensive models, difficulties arise when using 

these models due to the numerous unknowns of model parameters that the model user 

needs to estimate.  The ability of modeling various aspects of the pyrolysis problem 

results in greater complexity of the model.  Therefore, the number of parameters involved 

in the simulation can dramatically increase, which results in the need of extra effort in 

estimating the additional unknown parameters.   

 

Brief Description of Typical Pyrolysis Models Available in the 

Fire Community 

In this section, a brief discussion of well-known comprehensive pyrolysis models 

available to fire community is given. These include a pyrolysis model in Fire Dynamics 

Simulator (FDS) version 5
1
, Thermakin

2
, and GPYRO.

3
  Typically, pyrolysis modeling is 

composed of modeling of mass, energy and momentum transfers, and decomposition 

kinetics within the decomposing material.     

Pyrolysis Model in FDS version 51 

In FDS, mass transfer within a porous solid phase material is not modeled.  The 

assumption is that, when decomposition reaction occurs, the volatile from solid 

decomposition is released instantaneously to the gas phase.  Additionally, condensation 

of gaseous products within the solid phase is assumed to be negligible.  Energy transfer 

within a solid is described via a one-dimensional heat conduction equation for the solid 

phase, including the voids from the pores, which allows the model to track temperature 

changes of the solid phase with respect to time and space.  This approach is allowed due 

to the local thermal equilibrium assumed between the solid and the volatiles at all times.  

In this equation, the heat-source term is included and it accounts for heat release or 

absorption due to chemical reactions, radiative absorption, and emission-in-depth.  In-

depth radiative absorption and emission is modeled as a “two-flux” model based on the 

Schuster-Schwarzschild approximation,
4
 where the radiative intensity is assumed to be 

constant at the “forward” and “backward” hemispheres.  At the front surface boundary, 
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convective heat transfer is modeled via combination of natural and forced convection 

correlation for horizontal or vertical surfaces.  Momentum transfer is not solved for the 

solid phase in this model.  Decomposition kinetics is modeled using an Arrhenius type 

expression with an n
th

 order reaction model.  This kinetic model allows decomposition of 

a single solid-phase component into another type of solid-phase component and/or 

volatiles to be modeled.  The model can configure multiple layers with multiple reactions 

for decomposition.   

Thermakin2 

Thermakin models gas-phase mass transfer within a porous solid-phase material; 

however, the condense phase is immobile.  The traveling of gases within the solid is 

governed by concentration gradient.  Gases can be produced by chemical reactions and 

released to the gas phase.  The model tracks the changes of gases in the volume.  

Transportation of energy is modeled by taking into account the conductive heat transfer 

through solids (condense phase in porous solid phase) via the Fourier law, convective 

heat transfer from one element to another due to the travel of gases and heat generation or 

consumption due to chemical reactions.  Radiation transport within the condensed phase 

is modeled by considering a single element absorbing the external radiation via a 

maximum-absorption or random-absorption algorithm.  For both cases, the external 

radiation modeled to penetrate material and behave in accordance with Beer-Lambert’s 

law.
5
  These approaches assume that the absorbing element also acts as a gray-body 

reflector and emitter.  Convective heat transfer is modeled at the front surface boundary 

using a simple Newtonian heat-transfer equation, where the convection coefficient is a 

user-specified input parameter.  Momentum transfer is not solved for the solid phase in 

this model.  Decomposition kinetics is modeled using an Arrhenius-type expression with 

a first-order reaction model.  This kinetic model allows decomposition of a single 

solid/liquid/gas phase component or two together into another type of a single or two 

solid/liquid/gas phase component(s) to be modeled.  The model can configure multiple 

components with multiple reactions for decomposition.   

GPYRO3 

In GPYRO, the condense phase and the gas phase within a porous solid material can 

be modeled separately.  Transfer of condense phase is prohibited by the model.  Mass 
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transfer of gases within the porous solid material is modeled by considering the 

convective transfer, where conversion of condensed phase mass to gas phase via 

chemical reactions is accounted for in the source term.  Any changes in species mass due 

to reactions in condense or gas phases are conserved.  Transportation of energy in the 

condense phase is modeled by considering heat transfer via conduction using Fourier’s 

law; source terms that account for volumetric rate of heat release (or absorption) due to 

condense phase and volumetric rate of heat transfer from the condense phase to the gas 

phase; and in-depth radiative heat transfer.  In this model, in-depth radiative heat transfer 

accounts only for “one–way” radiation, meaning the penetration of radiation into the 

solid is calculated, but the emission from interior parts of the solid is not calculated.  For 

energy transfer in the gas phase, conductive and diffusive heat transfers have been 

included in the model.  For calculating the diffusive flux term, Fickian diffusion is 

applied, and all gases are assumed to have the same diffusion coefficient for 

simplification.  Momentum transfer within the gas phase is conserved in this model by 

assuming a Darcian flow of the gases with buoyancy.  For modeling of decomposition 

kinetics, an Arrhenius type expression with various reaction models is allowed to 

describe heterogeneous (gas phase – condense phase) or homogeneous (gas phase – gas 

phase) reactions.  The model can configure multiple layers with multiple reactions for 

decomposition.   

The advantage of using GPYRO is that only this pyrolysis model comes with various 

numerical optimization algorithms, including Genetic Algorithm (GA), Shuffled 

Complex Evolution (SCE), and Stochastic Hill Climber (SHC).  These algorithms can be 

used to estimate unknown model parameters by comparing modeling outputs to certain 

optimization targets, e.g., experiment data. 

 

Governing Equations 

Although the effect of the porous nature of the material can be simulated directly 

by considering the gas phase and the pore-free condense phase separately
3,6

 in 

comprehensive pyrolysis modeling, a more simplified and general approach is to consider 

a single mixture of the two phases: gas and condense phase.  By doing so, material 

porosity is accounted for indirectly.     



Section 5 - 109 

 

In Table 5-1, the system of equations is given for a Comprehensive Model, where 

conservation equations are solved for a single, porous, condense phase.  Note that the 

equations are presented in a one-dimensional form in the z-direction, considering that 

typical pyrolysis modeling is conducted in 1D.  Additionally, basic assumptions are the 

volume change of a cell is negligible ( constz =∆ ), and gases produced from thermal 

decomposition leave the porous-condense phase instantaneously without any restriction.  

These equations are a simplified version of GPYRO’s; hence, similarities in 

mathematical expression exist. See the technical
3
 and user’s guide

6
 of GPYRO 

(http://code.google.com/p/gpyro) for more information. 

The major difference in the system of equations between models in 

Comprehensive Models with finite-thickness pyrolysis fronts and those with infinitely 

thin pyrolysis fronts is the approach in mathematically describing the decomposition 

reaction in terms of its speed (finite or infinitely fast).  In general, the location of the 

infinitely thin reaction zone is identified by a material-dependent temperature known as 

the pyrolysis temperature, Tp, that remains on the pyrolyzing surface for non-charring 

materials or propagates toward in-depth, leaving a char layer behind near the surface for 

charring materials.  At this location, pyrolysis heat, ∆Hp, is consumed, and reaction 

reactants and products are consumed and released, respectively.   
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MODEL PARAMETERS AND MEASUREMENT METHODS 

Virtual Microstructure of Virgin Material and Decomposition 

Kinetics Type 

When conducting parameter estimation for a material of interest, visual inspection 

should be conducted first to model its microstructure.  Considering that typical pyrolysis 

models are available in one-dimension in the direction of the depth from the sample 

surface, the material’s cross-section should be examined to determine whether the virtual 

microstructure should be considered as a single layer of homogeneous material or 

multiple layers of homogeneous materials.  Note that, when the virtual microstructure 

is determined as a single layer of homogeneous material, the modeler has an option of 

utilizing models of either type of Comprehensive Model.  However, when multiple layers 

of homogeneous materials are necessary to describe the material’s microstructure, using 

Comprehensive Models with pyrolysis fronts of finite thickness are required.   

Despite the increase in modeling complexity, multiple layers of homogeneous 

materials can be necessary.  Rule of thumb of when to utilize multiple layers structure is 

as follows: (1) the virgin material is composed of several distinctive layers that bear 

significantly different pyrolyzing characteristics; (2) different pyrolyzing characteristics 

can be identified in experiment data, where layers exist in test samples; and (3) this effect 

is desired to be captured in the simulations. 

The next step should be determining the decomposition kinetics type for each 

layer of homogeneous material identified above.  In the following (see Table 5-2), typical 

decomposition thermograms observed from a Thermogravimetric Analysis (TGA) 

experiments are shown for fire problems, which will be dealt with in the example cases in 

this Guide.  Based on the characteristics of the TGA curve, the modeler may choose the 

type of example case to consider for their problem.  Note that decomposition kinetics 

should be identified for each layer of the specified microstructure or decomposable 

component of the material composing a layer.  In the following table, different types of 

decomposition kinetics and the corresponding minimum number of elementary reactions 

to describe materials’ full decomposition are shown based on TGA data (DTG) obtained 

from nitrogen and air environments.  Conduct a minimum of three TGA experiments with 
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heating rates lower than 10°C/min., sample sizes smaller than 10 mg, and various sample 

shapes, assuming that, with these conditions, chemical reaction becomes the 

decomposition kinetic controlling factor rather than diffusion.   
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Table 5-2.  Various Types of Decomposition Kinetics 

Type Inert (solid, typically nitrogen) and Oxidative (dash, typically air) Environments 

0 

 

Weight-loss rate (DTG) with respect to 

temperature can be described with a single 

line independent of the testing environment 

(inert or oxidative) at pyrolysis temperature, 

Tp. 

 Minimum of 1 reaction 

1 

 

Weight-loss rate (DTG) with respect to 

temperature can be described with a single 

peak independent of the testing 

environment (inert or oxidative).  In DSC 

experiments, endotherm is observed for 

tests conducted in both environments. 

 Minimum of 1 reaction 

2 

 

Weight-loss rate (DTG) with respect to 

temperature in inert environment can be 

described with a single peak.  However, 

when sample is tested in oxidative 

environment (air), additional, secondary 

peak is observed at higher temperature 

range, typically considered as “char 

oxidation reaction.”  From DSC experiments, 

the first and second peak in TGA should 

correspond to an endothermic and 

exothermic peak, respectively. 

 Minimum of 2 reactions 

3 

 

Weight-loss rate (DTG) with respect to 

temperature in inert environment should be 

described with multiple (k) peaks.  When 

sample is tested in oxidative environment 

(air), additional peak is observed at higher 

temperature range, typically considered as 

“char oxidation reaction.”  From DSC 

experiments, the first few and last peak in 

TGA should correspond to endothermic and 

exothermic peaks, respectively. 

 Minimum of k+1 reactions 

D
T

G
 

Tp 

D
T

G
 

T 

 

D
T

G
 

T 

D
T

G
 

T 
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Model-Parameter Table 

With the virtual microstructure set and decomposition-kinetics type determined 

for each layer of the specified microstructure or decomposable component of the material 

composing a layer, the modeler is able to identify every species in the porous-condense 

phase (i) and decomposition reaction involved in pyrolysis modeling.  

To mathematically describe a pyrolyzing solid-phase material in comprehensive 

pyrolysis modeling in fire, a set of parameters are needed.  Model parameters are related 

to heat transfer, mass transfer, and thermal-decomposition kinetics.   Parameters consist 

of (1) material properties that are intrinsic, i.e., they depend on chemical and physical 

structure of the material or effective due to neglecting actual microstructure of the 

material and considering the material as homogeneous; (2) parameters related to 

modeling the thermal-decomposition process; and (3) model-dependent fitting 

parameters, which are not material properties but parameter constants that provide the 

best fitness of model output to experiment results.  Typically, material properties can be 

considered in three groups: (1) thermo-physical properties – density, thermal 

conductivity, specific-heat capacity; (2) porous media characteristics – porosity, 

permeability; and (3) optical properties – absorption coefficient and emissivity.  

Parameters used in thermal decomposition modeling are pyrolysis onset temperature or 

kinetic parameters for applying infinitely thin or finite-thick reaction zone assumption, 

respectively, and reaction heats.  An example of model-dependent fitting parameters 

can be exponent or constants used to describe temperature dependence of thermal 

conductivity, k: ( ) ( ) kn

rTTkTk 0= or ( ) 32 dTcTbTaTk +++= .   

This allows the modeler to construct a model parameter table as below (see  

Table 5-3).  Note that in this table only model-independent parameters are included.  

There can be other parameters related to material property in different models.  For 

example, in GPYRO γT
3
 term is used in the effective thermal conductivity to model 

radiative heat transfer through pores when material is porous, where γ is a fitting 

parameter.  These model-dependent parameters should be identified and obtained after 

setting up the problem in a model of choice in the validation part. 
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Table 5-3.  Model parameter table: Summary of model parameters required to conduct 

pyrolysis modeling 

 Condense Phase (i) 

Material Property 

iρ  Density 

ik  Thermal conductivity 

ic  Specific-heat capacity 

iκ  
Absorption coefficient 

Parameters for Specifying 

Conditions 

0iX  Volume fraction 

0iY  
Mass fraction 

iε  
Emissivity 

 Heterogeneous RxN (k) 

Thermal 

Decomposition 

Infinitely 

Thin 

Reaction 

Zone 

pT  

pH∆  

Finite 

Thickness 

Reaction 

Zone 

kn  Reaction order 

kZ  Pre-exponential factor 

kE  Activation energy 

kH∆  heat 
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Model-Parameter Measurement Methods 

This section provides descriptions of how the model parameters identified above 

can be obtained via direct measurement using experiments.  Relevant standard tests are 

listed when found.  However, the most efficient approach for obtaining parameter values 

through independent measurements involves making contact with a commercial 

laboratory and consulting with them about the nature of your sample (brittle, soft, 

isotropic, melting, porous, etc.).   Density, thermal conductivity and specific-heat 

capacity are thermophysical properties.  Absorption coefficient and emissivity are optical 

properties.   Kinetic parameters and heats are properties of thermal-decomposition 

kinetics.  A modeler may search for test methods or labs that measure these properties. 

 

1. Density 

The bulk density of a porous solid material can be determined by measuring the 

mass of a representative specimen of the material and then dividing it by the measured 

volume of the specimen.  Mass is generally measured with an analytical balance or scale.  

Volume can be determined, for example, by measuring the dimensions of the specimen or 

by submerging the specimen in a liquid and measuring the resulting displacement of the 

liquid.  The bulk density of a material can also be determined on the basis of its specific 

gravity, i.e., the ratio of the density of the material to the density of a reference material.  

Although there are number of ASTM standards for measuring density or specific gravity 

at ambient temperature of specific materials, the typical approach in pyrolysis modeling 

is measuring the bulk density as noted above.  

 

2. Thermal Conductivity 

Various methods have been developed to measure the thermal conductivity of 

solids.  In these methods the thermal conductivity is determined either under steady state 

or under transient conditions.  The general principles of the two types of methods are 

summarized below. 
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STEADY-STATE METHODS 

The one-dimensional heat-conduction equation based on Fourier’s Law for a slab 

with infinitely large surface area and finite thickness, L- is as follows (see Eq.5-1): 

L

T
kq

∆
="&  Eq.5-1 

where    q"�  = heat flux through the slab (W/m
2
) 

k = thermal conductivity of the slab material (W/m⋅K) 

∆T = temperature difference between two faces of the slab (K)  

L = thickness of the slab (m) 

Steady-state methods are based on the above equation and are classified into two 

categories: absolute and comparative.  In absolute methods, ∆T and q"� are measured, and 

k is determined from the equation.  The test specimen (a slab of the material of which the 

thermal conductivity is to be determined) is sandwiched between a heater and a cooled 

plate.  The temperature is measured on both faces of the specimen.  To ensure one-

dimensional heat transfer, guard heaters and insulation are used around the perimeter of 

the main heater and the specimen, respectively. 

The main drawback of absolute methods is that it takes several hours to get to 

steady-state conditions with low thermal conductivity materials.  Comparative methods 

were developed to reduce the test time (at the expense a slight reduction in accuracy).  In 

comparative methods the heat flux is determined from the temperature gradient over a 

slab of a reference material with a known thermal conductivity.  The specimen and 

reference material slabs are sandwiched between a heat source and a heat sink.  The 

difference between the heat source and the heat sink is approximately 50-100K. 
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ASTM has standardized and published several steady-state methods (see Table 5-

4).  ASTM C 177 and ASTM E 1530 are absolute methods while the other two standards 

describe a comparative method. 

Table 5-4.  ASTM standards for measuring thermal conductivity using steady state methods 

Standard Test Description 

ASTM C 177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal 

Transmission Properties by Means of the Guarded-Hot-Plate Apparatus 

ASTM C 518 Standard Test Method for Steady-State Thermal Transmission Properties by 

Means of the Heat Flow Meter Apparatus 

 

TRANSIENT METHODS 

The limitations of steady-state methods are: (1) it takes a long time to reach 

steady conditions (even when a comparative approach is used); (2) a relative large 

quantity of material is needed; and (3) it is not easy to perform measurements at elevated 

temperature.  Transient methods are generally not as accurate, but they do not have the 

limitations of steady-state methods.  Two well-known ASTM standards are shown in 

Table 5-5. 

Table 5-5.  ASTM standards for measuring thermal conductivity using transient methods 

Standard Test Description 

ASTM C 1113 Standard Test Method for Thermal Conductivity of Refractories by Hot Wire 

(Platinum Resistance Thermometer Technique) 

ASTM D 5930 Standard Test Method for Thermal Conductivity of Plastics by Means of a 

Transient Line-Source Technique 

 

The hot-wire method is a typical example of a transient method.  A fine metallic 

wire is placed at the center between two pieces of the material.  The temperature of the 

wire is changed in step-wise fashion by incrementally increasing the current flowing 

through the wire.  The generated heat flows in all radial directions and produces a 

temperature field in the material that increases with time.  In most cases the wire itself 

serves as a temperature sensor as its resistance changes with temperature.  The thermal 

conductivity of the material is a direct function of the heat dissipated in the wire and the 

rate at which its temperature rises.  ASTM has developed standards that describe the use 
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of the hot-wire method specifically for measuring the thermal conductivity of refractory 

materials and plastics. 

Variations of the hot-wire method have been developed with different heat-source 

geometries (strip, plane, disc, or spiral) and an energy pulse instead of step-wise increases 

of the heat generated in the source.  Adl-Zarrabi et al. used the Transient Plane Source 

(TPS) method to measure the thermal conductivity of concrete and wood at elevated 

temperatures and obtained reasonable agreement with literature values.
7
  The TPS 

method was developed by Gustafsson and Long
8,9

 and uses a heat source in the shape of a 

disc. 

Bentz recently developed a transient method to determine the thermal 

conductivity of fire resistive materials.
10,11

  The basic specimen configuration consists of 

a “sandwich,” with a square central stainless-steel plate (slug) surrounded on two sides by 

a slab of the test material.  This sandwich configuration provides an adiabatic boundary 

condition at the central axis of the slug plate, which greatly simplifies the analysis.  The 

edges of the steel plate and specimens are insulated using a low thermal-conductivity 

fumed silica board.  Two metal plates manufactured from a high-temperature alloy 

provide a frame for placing the entire sandwich specimen slightly in compression.  The 

entire configuration is centrally placed at the bottom of an electrically heated box 

furnace, and the temperatures of the metal slug and exterior specimen surfaces are 

monitored during multiple heating and cooling cycles.  Knowing the heat capacities and 

densities of the steel slug and the specimen material, an effective thermal conductivity 

can be estimated.  The effective thermal conductivity of the specimen is influenced by its 

true thermal conductivity and by any endothermic or exothermic reactions or phase 

changes occurring within the specimens.  The method is now standardized as ASTM E 

2584. 

 

3. Specific Heat Capacity 

The enthalpy of a solid material is related to the kinetic energy of the particles in 

the solid.  In the absence of chemical reactions or phase changes, the enthalpy of a solid 

material increases when it is heated.  The rate at which it increases with respect to 
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temperature is referred to as the specific-heat capacity.  The specific-heat capacity for 

most solids varies with temperature. 

Table 5-6.  ASTM standard for measuring specific heat capacity 

Standard Test Description 

ASTM E 1269 Test Method for Determine Specific Heat Capacity by Differential Scanning 

Calorimetry 

 

Differential Scanning Calorimetry (DSC) is an accurate and convenient method to 

obtain specific heat capacities of solid materials at elevated temperatures.  A standard 

procedure is described in ASTM E 1269 (see Table 5-6).  In a DSC, a milligram-size 

sample and a reference are heated at a constant rate.  The power required to increase the 

temperature of the sample and reference at the specified rate is proportional to their heat 

capacities.  The sample heat capacity is determined on the basis of the power measured 

during the test, the baseline, and calibrations with a material with known heat capacity 

over the temperature range of interest (typically sapphire).  The specific-heat capacity of 

the sample is then obtained by dividing the measured heat capacity by the sample mass.  

If the mass of the sample changes as a function of temperature, the heat capacity at a 

specified temperature should be divided by the sample mass at that same temperature.  

The latter can be obtained from TGA measurements performed under the same 

conditions, i.e., same heating rate, same purge gas, etc.  DSC and TGA are often 

combined in a single instrument, which facilitates specific-heat capacity measurements. 

As with TGA, DSC tests can be performed with different sample pans (aluminum, 

platinum or ceramic; open or sealed, with or without a pin hole), heating rates (typically 

between 1°C/min. and 60°C/min.), purge gases (typically air, nitrogen, or argon) and 

purge-gas rates.  DSC tests are routinely performed at temperature ranging from ambient 

to 600°C.  Many instruments can reach much higher temperatures. 

 

4. Absorption Coefficient  

With the absorption coefficient for radiation, a material’s ability to allow 

penetration of thermal radiation in-depth can be quantified.  Having a large radiative 

absorption coefficient means that the incident thermal radiation is attenuated quickly after 
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passing through the material, i.e., the material is opaque and most of thermal radiation is 

absorbed near the surface.  Having a lower value means that the material is more 

transparent; therefore, more in-depth radiation is occurring.  Note that the absorption 

coefficient is strongly wavelength-dependent; therefore, some averaged value should be 

used to remove wavelength dependency.  Additionally, it is known that obtaining 

accurate property data that characterizes the in–depth absorption (normally, the “gray” 

absorption coefficient) can be difficult.   
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5. Emissivity 

Emissivity is a measure of a material’s ability to emit energy by radiation at the 

surface.  Although emissivity changes with respect to temperature, emission angle, 

wavelength, and more, a typical simplification made when determining this value is 

applying a grey body assumption, resulting in a wavelength- and temperature-

independent constant.   See Table 5-7 for relevant standard tests for measuring 

emissivity.  

 

Table 5-7.  ASTM standards for measuring emissivity 

Standard Test Description 

ASTM C835 - 

06 

Standard Test Method for Total Hemispherical Emittance of Surfaces up to 

1400°C 

ASTM E 408-

71 

Standard Test Methods for Total Normal Emittance of Surfaces Using 

inspection-Meter Techniques 

 

6. Parameters Related to Thermal Decomposition  

INFINITELY-THIN REACTION-ZONE CASE 

Assuming that the ignition temperature of a material is comparable to its pyrolysis 

temperature, this parameter can be directly measured using experiments or estimated 

using Ignition Data Analysis.  See Chapters 3 and 4 for details. 

REACTION ZONE WITH A FINITE-THICKNESS CASE 

Mass as a function of temperature is most conveniently measured through 

thermogravimetric analysis (TGA).  A TGA apparatus consists of a high-precision 

balance with a pan (usually aluminum, platinum, or ceramic) loaded with the sample.  

The sample mass is typically of the order of one milligram.  It is kept as small as possible 

(to ensure uniform temperature) and depends on the material that is tested.  The sample 

pan is placed in a small computer-controlled furnace with a thermocouple to accurately 

measure the temperature.  The atmosphere may be purged with an inert gas (e.g., nitrogen 

or argon) to prevent oxidation or other undesired reactions.  During a test, the furnace 

temperature is either kept constant or increased at a fixed rate (typically between 1 and 60 

°C/min.) to a predefined maximum temperature (routinely 1000°C or higher).  The result 

consists of a plot of mass (percentage) as a function of time and/or temperature. 
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For TGA testing and comparison of data, one needs to consider heating rates and 

atmosphere when studying mass-loss data relevant for fire models.  Heating rates will 

affect the rate of thermal decomposition of a polymer, but in TGA faster heating rates 

tend to push the mass-loss curves to higher temperatures.  Therefore, one should not 

compare different polymers unless they were tested at the same heating rate. 

Atmosphere has a very important effect on TGA data in that a polymer will 

decompose in different chemical pathways under inert and oxidizing atmospheres.  These 

changes in polymer decomposition chemistry can result in very different mass-loss rate 

curves, and so data for the same polymer collected under inert vs. oxidizing atmospheres 

can be compared qualitatively but not quantitatively.  Likewise data for two different 

polymers collected under different atmospheres should not be compared.  Of final note, it 

is always good practice to conduct TGA experiment in inert and oxidizing atmosphere to 

make comparison and understand the effect of the change in the environment.  Generally, 

oxygen is known to affect only thermal decomposition prior to ignition. After the 

material ignites all oxygen is known to be consumed at the flame front.  In this sense, 

TGA data collected under inert atmospheres tends to be far more useful for understanding 

polymer decomposition and pyrolysis behavior under fire conditions.
12

  This is why NIST 

created its gasification apparatus to study mass loss pyrolysis behavior in the absence of 

flaming combustion.
13,14,15

  However, there are cases when the availability of oxygen 

affects the burning rate of the material as well, e.g., PMMA, wood, etc.  Therefore, a 

careful consideration of the effect of atmosphere on TGA data should be given prior to 

modeling.  See Table 5-8 for ASTM standards related to using TGA for studying thermal 

decomposition kinetics. 

Table 5-8.  ASTM standards for thermogravimetry analysis (TGA) 

Standard Test Description 

ASTM E 2550 Standard Test Method for Thermal Stability by Thermogravimetry 

ASTM E 1641 Standard Test Method for Decomposition Kinetics by Thermogravimetry 

 

In the following section, brief descriptions of estimating methods for kinetic 

parameters using TGA data (single- or multiple-rate data) are provided.  In both cases, 

decomposition kinetics is represented by an Arrhenius expression as below (see Eq.5-2): 
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( ) ( ) ( )αα
α

f
RT

E
AfTk

dt

d a

















−== exp

 
Eq.5-2 

where 

k(T)  = temperature dependent rate constant 

f(α)  = temperature independent kinetic function of conversion, α (typically, α = 

1-m/m0) and this function is dependent upon the mechanism of 

decomposition 

A  = pre-exponential factor 

Ea  = activation energy 

ESTIMATION BASED ON SINGLE HEATING RATE TGA DATA USING DTG 

PEAK VALUES (TPEAK, RPEAK)
16

 

Assuming that every peak in the DTG thermogram from the iso-heating rate 

(dynamic) TGA experiment can be considered as a single reaction with first-order 

reaction model (i.e., f(α) = (1-α)
1
), this approach models the kinetics as follows: a 

condense-phase reactant thermally degrades to fuel vapor directly or to a secondary 

condense phase, which may or may not degrade further, producing fuel vapor and 

releasing it to the gas phase.   

Consider an arbitrary DTG curve shown as below (see Figure 5-1).  There is a 

single peak in this thermogram.  Based on this approach, the modeler can assume a 

reaction for modeling thermal decomposition of this material.  Apply a constant heating 

rate of β = dT/dt and first-order kinetic model to above Arrhenius expression for 

describing decomposition. Rearranging it results in Eq.5-3: 

( )α
β

α
−








−= 1exp
RT

EA

dT

d a  
Eq.5-3 
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Figure 5-1.  Typical DTG thermogram showing single peak 

Assuming that, at each peak the second derivative of conversion, α, with respect 

to time is zero, and activation energy of each reaction is significantly greater than 2RTp 

(i.e. Ea >> 2RTp), estimation of A and Ea for each reaction can be done using the 

following equations (see Eq.5-4 and Eq.5-5): 

( )0

2

1 αβ −
≈ pp

a

erRT
E  

Eq.5-4 

( ) 







−

≈
RT

Eer
A ap

exp
1 0α

 
Eq.5-5 

 

ESTIMATION BASED ON MULTIPLE HEATING RATE TGA DATA USING ISO-

CONVERSIONAL AND MODEL FITTING METHODS 

Estimation of kinetic parameters based on multiple heating-rate data obtained 

from TGA experiments tries to take into account of any changes that may occur in 

thermally degrading behavior as the heating rate is changed.  This approach requires a 

minimum of four iso-heating rate (dynamic) TGA data.  The four heating rates should 

spread out in the range of less than 10 K/min. to above 40 K/min.    

The Iso-conversional Method allows one to determine activation energy in terms 

of conversion with a minimum of four TGA tests with different heating rates without 

assuming the kinetic function.  Two methods are introduced below: 

D
T

G
 

T 

(Tpeak, rpeak) 
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Method of Ozawa, Flynn and Wall17,18 (OFW) 

Apply a constant heating rate β = dT/dt to the above Arrhenius expression for 

describing decomposition. Rearranging it results in Eq.5-6: 

( )
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Eq.5-6 

A plot of ln(β) versus 1/T should give a slope of –Ea/R for a wide range of conversion, α.  

For example, at α = α*, four ln(β) values are found – ln(β1), ln(β2), ln(β3) and ln(β4) – at 

four different temperatures – T1, T2, T3 and T4 – when data from four iso-heating rate 

TGA tests are used as in the first figure below.  These data points can be plotted in a ln(β) 

versus 1/T graph and the slope of the four points gives –Ea/R at α = α* as shown in the 

second figure.  This can be repeated for α ranging from 1 to 0, and the estimated Ea can 

be plotted with respect to alpha as in the last figure below (see Figure 5-2.) 

Figure 5-2.  Schematic of conducting Ozawa, Flynn, and Wall Iso-conversional Method 

 

 

 

Figure 5-2.  Schematic of conducting Ozawa, Flynn, and Wall Iso-conversional Method 
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Method of Friedmen19,20 (Friedmen) 

( ) ( )( )
RT

E
Aff

RT

E
A

dt

d aa −=















−=







 αα
α

lnexplnln

 
Eq.5-7 

A plot of ln(dα/dt) versus 1/T is used to find the slope of –Ea/R (see Eq.5-7).  For 

example, at α = α*, four dα/dt values are found – (dα/dt)β1,  (dα/dt)β2, (dα/dt)β3 and 

(dα/dt)β4 – at four different temperatures – T1, T2, T3 and T4 – when data from four iso-

heating rate TGA tests are used as in the first figure below.  These data points can then be 

plotted in a ln(dα/dt) versus 1/T graph and the slope of the four points gives –Ea/R at α = 

α* as shown in the second figure.  This can be repeated for α ranging from 1 to 0 and the 

estimated Ea can be plotted with respect to alpha as in the last figure below (see Figure 5-

3). 

 

Figure 5-3.  Schematic of conducting Friedmen’s Iso-conversional Method 

 

Interpreting Results from the Iso-conversional Method 

When the Ea is found for the entire degradation process, the results provide 

insight for the minimum number of steps of elementary reactions needed to characterize 

the global reaction.
21

 A global reaction composed of a single stage process will show no 

dependence of Ea on conversion, α.  When the global reaction is a complex process, the 
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Ea changes with respect to conversion, α.  An increase in Ea with α typically indicates 

parallel reactions.  A decrease in Ea with α suggests that either the process is reversible 

(concave shape) or there is a change in the rate determining step (convex shape).  

Therefore, by analyzing the shape of the curve plotted with Ea with respect to conversion, 

α, a minimum number of elementary reactions are suggested.   

Model Fitting Method 

Once the minimum number of reactions and their activation energies are 

estimated by conducting the Iso-conversional Method, other kinetic parameters to fully 

mathematically describe the decomposition of MA+A need to be estimated as well.  This 

is done by conducting the model-fitting method with a kinetic model assumed.  

Typically, an nth order reaction model is used due to its flexibility in providing good 

fitness between the data and the model.  Therefore, an nth order will be utilized in this 

example.   

Based on the model-fitting method, estimation for weight-loss fraction (f), pre-

exponential constant (A), and exponent in the nth order kinetic model (n) is conducted for 

each reaction.  Note that the estimation has been done with a least-square method by 

comparing TGA data (TG and DTG from iso-heating rate tests) with the kinetic 

modeling’s output.  The kinetic modeling’s output is a sum of properly scaled elementary 

reactions with the weight-loss fraction found for each reaction.  Without scaling, every 

reaction results in 100% conversion.  Each reaction is calculated by applying the Runge-

Kutta 4
th

 order method (ODE solving method) to decomposition and constant heating rate 

ODE equations: two dependent variables (α, T) with time (t) as the independent variable 

(see Eq.5-8 and Eq.5-9).   

( )
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dt
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Eq.5-9 
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Weight-loss fraction (f):  This parameter is for determining how much of the 

total weight of the entire sample (100%) is consumed by each reaction.  Note that kinetic 

modeling is conducted in terms of conversion, 1-α, and each reaction results in 100% 

conversion.  Therefore, mathematically, weight loss (dα/dt) should be properly scaled 

with the weight-loss fraction parameter (f) to have the summation of weight loss due to 

all elementary reactions and any solid-phase leftover (typically labeled as residue) at 

temperatures exceeding maximum temperature considered in TGA experiment to equal 

100%.  For this example, where two elementary reactions have been proposed, total 

weight loss (conversion) and weight-loss rate (derivative of conversion) can be expressed 

as follows (see Eq.5-10 and Eq.5-11). 

�����	 = ���� + ���������� + �������� Eq.5-10 

������	�� = �� ����� + ����� ��������  Eq.5-11 

 

To optimize for this parameter (f), consider results from the Iso-conversional 

Method to find an initial guess.   

Pre-exponential constant (A):  This parameter, also known as the collision 

frequency, is originally from the Collision Theory
22

 defined as the average number of 

collisions experienced by a reacting molecule with other molecules.  However, in solid-

state reactions, classical frequency factor becomes inappropriate, as reactions do not 

occur with molecules colliding but due to molecules being mostly stationary during solid-

state decomposition.  Although this parameter is different from that of Collision Theory, 

the A value can provide a measure of reactivity of the decomposition reaction.   

When optimizing for this parameter, the modeler should be aware of the 

compensation effect
23

 between the activation energy and pre-exponential constant, i.e., 

there are several sets of Ea and A that result in similar reaction rates.  An increase in Ea 

can be compensated by a decrease in A and vice versa.  Currently, no theory is accepted 

as explaining this effect, but it is well acknowledged that this exists.  Therefore, it is 

important to estimate the activation energy value based on the Iso-conversional Method 

and optimize for A value using a model-fitting method. 
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Exponent in nth order kinetic model (n):  Typically, n values considered for 

this reaction-order-type kinetic model (nth order) are between 0 and 3. Changing n value 

results in changes in the shape of DTG, i.e., an increase in n results in a lower peak in the 

DTG curve with wider temperature range as shown below (see Figure 5-4). 

 

Figure 5-4.  Change in DTG curve with respect to changes made in n values using nth order 

reaction model 

Optimization:  When optimizing for the parameters, an initial guess should be 

given for the weight fractions (f) for each reaction as the mid-values within the 

optimization range found via examining TGA and DSC data and results from the Iso-

conversional Method.  Additionally, an initial guess of the n value can be given as 1, 

where a first-order reaction model is the most simple and common model used to fit the 

data.  The next step is to estimate the pre-exponential constants.  Typically, the initial 

guess of this parameter can start from 10
10

. The pre-exponential constant, A, for each 

reaction can be adjusted with other parameters set as their initial values to match the 

temperature range of the model’s mass-loss rate peak (DTG) with the known temperature 

range found from analyzing the TGA and DSC data and results from the Iso-conversional 

Method.  After this step, the n values can be optimized to match the peak of the mass-loss 

rate (DTG) from modeling to that of the data.  As mentioned in the previous section, 

changing n value results in changes in the shape of DTG, i.e., increase in n results in 

lower peak in the DTG curve with wider temperature range.  After going through these 

steps, manually each parameter can be optimized by comparing the kinetic modeling 
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results (mass loss or mass loss rate, i.e., TG or DTG) to data from the TGA experiment.  

In general, a correlation coefficient can be calculated to evaluate the fitness of the 

estimation to actual data, e.g., as the square of the correlation coefficient (R
2
) becomes 

close to 1 by optimizing each parameter, it reflects that a stronger linear relationship 

exists between the modeling results (x) and data (y).  See Eq.5-12. 

� = ��� − ���� −  !�
"��� − ���#�� −  !�# Eq.5-12 

where �� and  ! are sample means. 

 

7. Heats 

If the DSC sample goes through a transition, such as a phase change (e.g., 

evaporation of bound water) or a chemical reaction (e.g., pyrolysis), the associated 

enthalpy changes (e.g., the latent heat-of-vaporization or the heat-of-pyrolysis) will be 

recorded by the instrument.  An example of decomposing polyurethane foam is shown in 

Figure 5-5.   

 

Figure 5-5. TG (weight loss) thermogram from TGA experiment (left) and heat-flow diagram 

from DSC experiment (right) for decomposition of a rigid-foam plastic 

The polyurethane foam loses 85% of its mass between 100°C and 600°C.  The thermal 

degradation is initially endothermic as the enthalpy rises above the baseline (see red 
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arrow).  Between 400°C and 600°C the enthalpy drops below the baseline, which is 

characteristic of exothermic reactions (see blue arrow).  The heat-of-pyrolysis associated 

with the endothermic reactions is determined from the area under the peaks and is 

approximately 215 J/g.  The heat-of-pyrolysis associated with the exothermic reactions is 

determined in a similar way and is equal to approximately -99 J/g (since heat is released 

in exothermic reactions, the enthalpy change is negative).  The fact that there are two 

separate peaks indicates that there are two distinct endothermic reactions.  Likewise, the 

two valleys imply that there are two distinct exothermic reactions.  To model the thermal 

degradation of this material, the data suggest a four-step reaction scheme, which is not 

obvious from inspection of the TGA curve.  The uncertainty of the baseline can result in 

significant errors of heat-of-transition values obtained with this method.  ASTM D 3418 

(see Table 5-9) provides some guidance on how to address this problem. 

Table 5-9.  ASTM standard for measuring reaction enthalpies 

Standard 

Test 

Description 

ASTM D 

3418 

Standard Test Method for Transition Temperatures and Enthalpies of 

Fusion and Crystallization of Polymers by Differential Scanning 

Calorimetry 

 

The main experimental parameter that can affect DSC results is the heating rate.  

Faster heating rates can cause some thermal events to disappear or blur together (such as 

glass transition temperatures and low-energy melting events) as well as shift the 

temperatures of events.  An example of this is shown below for an engineering crystalline 

thermoplastic.  As the heating rate is increased, the melting point shifts to lower 

temperature (see Figure 5-6, Figure 5-5).  While the range of peak melt temperatures is 

not so large for this sample (332-335 °C), one should not assume that this is true for all 

materials.  Therefore, some consideration needs to be given to the heating rate when 

selecting DSC data for different polymers in a model.  Of particular importance is the 

effect of the heating rate on the onsets of thermal decomposition (an endothermic event) 

or potential exothermic events (such as cross-linking).  So, DSC data on different 

polymers should only be compared to each other if the data was collected at the same 

heating rate.  Note that the above-mentioned trend will not be seen in combined 
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TGA/DSC experiments, as the loss of sample mass (evaporative cooling) will dominate 

the heat-transfer effects in the DSC measurements once the polymer begins to 

decompose.  So one can argue that stand-alone DSC instruments are more accurate for 

measuring thermal events below thermal decomposition temperature, whereas TGA/DSC 

instruments are more accurate (or appropriate) for measuring thermal events where the 

polymer has begun to lose mass and is pyrolyzing/burning.  However, in general 

TGA/DSC instruments are sufficient for fire pyrolysis modeling purposes, because more 

interest is given in the post-decomposition stage, where weight loss is considered in terms 

of heat being released.  

 

 

Figure 5-6.  Melting points for a thermoplastic polymer as a function of DSC heating rates 

Atmosphere choice in the DSC is typically not a parameter that gets changed, but 

some dual TGA/DSC units now commercially available can allow a material to have 

DSC data collected under oxidizing atmospheres while stand-alone DSC instruments are 

almost always tested under nitrogen.  The atmosphere to which a polymer is exposed will 

affect its decomposition chemistry and therefore its kinetics of mass-loss rate.  Likewise, 

a sample in a dual TGA/DSC unit will have very different behavior in nitrogen vs. air 

atmospheres (aerobic vs. anaerobic thermal decomposition).  Therefore, any data from 
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these types of units should only be compared to other polymer data on the same 

instrument if they are collected under the same atmosphere.  Certainly, however, the 

results from the same polymer in air vs. nitrogen could be studied and compared, and this 

can be very useful in the above-mentioned TGA/DSC experiments.  For standalone DSC 

instruments, which are closed-cell systems, it is highly recommended that the polymer 

not be taken to decomposition temperatures – and definitely not in air – so that the 

sensitive DSC heating cell is not damaged or contaminated with polymer-decomposition 

products.  The reason for this is that these decomposition products will condense out into 

the cell and change the heat sensitivity/thermal conductivity of the cell over time. 
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PARAMETER-ESTIMATION PROCESS 

Knowing all the parameters required in modeling to create a virtual material, 

unknown parameters need to be estimated to perform actual calculations.  This process is 

called parameter estimation.  Parameter estimation for comprehensive pyrolysis modeling 

can be done using three different approaches: (1) measure each parameter via 

independent experiment; (2) search literature for measurement values on similar materials 

or use approximation; (3) conduct numerical optimization by pairing the pyrolysis model 

with an optimization routine.  These approaches can be used alone or paired to estimate 

the entire unknown model-parameter set. 

When the unknown parameters are estimated by measurement using independent 

experiment, typically small-scale experiments are used based on standard tests, such as 

ASTM or ISO.  This approach only allows measurement of model parameters that are 

material properties and parameters related to modeling the thermal-decomposition 

process.  It is noteworthy that material properties obtained through this approach are not 

always intrinsic, but in many cases are effective.  Due to the limited sample size used in 

small-scale tests, material properties measured via independent experiment are generally 

accepted as intrinsic.  However, in many cases for real-world heterogeneous materials, 

the material property measured becomes the effective property, as the small amount of 

sample used in these tests is also heterogeneous but treated as homogeneous by 

neglecting the heterogeneity nature of the material.  Therefore, a caution should be given 

to a common misconception of understanding that measurements always result in 

obtaining intrinsic material properties whereas often effective properties are measured.  In 

general, applying this approach of conducting experiments to directly measure model 

parameters is challenging due to the following reasons:  First, there may be a 

discontinuity in model parameter obtained in a small-scale experiment and in model 

parameter required in the pyrolysis model.  For example, a naturally high-charring 

phenolic resin decomposing during a Thermogravimetric Analaysis (TGA) experiment in 

a powder form – a typical approach when conducting TGA experiment to reduce thermal 

lag effect – cannot represent decomposition of this same material in a bench-scale 

calorimeter test as a flat surface.  This resin prepared in a powder form results in 

significantly large surface area (interface) exposed to the gas phase per unit mass or 
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volume.  On the other hand, resin prepared as a flat surface has relatively smaller surface 

area exposed to the gas phase per unit mass or volume compared to resin in powder form.  

This difference results in great deviation when comparing thermal decomposition of this 

material, because the smaller surface area per unit mass or volume is proportional to the 

formation of more thermally stable carbonatious char during decomposition. Therefore, 

for this case, obtaining kinetic parameters from a TGA experiment using powder-type 

sample and applying them to pyrolysis modeling to describe thermal decomposition 

occurring on a flat surface is not applicable.  Second, material properties required in 

pyrolysis modeling that occurs while material is decomposing cannot be measured via 

independent experiments.  Typically, when measuring material properties in small-scale 

experiments, decomposition of the sample is not allowed, which makes it impossible to 

make measurements for material properties of intermediate species involved in kinetic 

modeling.  Third, measuring material properties and conducting thermal analysis for 

modeling thermal-decomposition kinetics through a commercial laboratory require 

significant financial investment.   

Another approach to estimating model parameters is searching through literature 

for measurement values on similar materials or using certain approximations.  Although 

using this approach is most practical because it is less time-consuming and inexpensive, 

caution should be given for the following: First, understanding of the material and its 

condition is essential.  Certain polymers may have the same nomenclature, but depending 

on their polymer chain size, length and shapes, its character may vary.
24

  Same material 

with moisture may show different thermal decomposition kinetics than that at dry state by 

water molecules chemically or physcially interfering in the process.
25,26,27,28

  Same 

material with significant aging – e.g., scratches, cracks, etc. – may start to decompose at a 

lower temperature than that without aging.
29

  These are some examples of how material 

and its conditions during experiments can affect the measurement results.  Second, 

consideration to model parameter sensitivity and uncertainty is needed.  In addition to the 

uncertainty reported for the measurement value in a literature, a greater uncertainty 

should be taken into account when using that value in pyrolysis modeling, for the two 

materials may have subtle differences physically or chemically as noted above.  Also, 

when approximation is used to estimate certain model parameters for simplification of the 
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problem, modeler should be aware of the sensitivity of that parameter on modeling 

outputs of interest and check whether or not small changes to the approximated parameter 

value do not significantly alter the modeling results.   

The third approach to estimating model parameters is by conducting numerical 

optimization by pairing the pyrolysis model with an optimization routine.
30,31,.32,33,34,35

  To 

overcome the limitation in estimating parameters through measurements (first approach) 

or by literature search or approximations (second approach), the unknowns in pyrolysis 

modeling can be obtained by comparing modeling outputs with optimizing targets – 

experiment data such as mass-loss rate and temperature profiles from bench-scale test 

results – and finding the optimum parameter set that provides the best fitness to the 

target.  When unknown parameters in a pyrolysis model are estimated using numerical 

optimization by comparing certain modeling outputs with a target, this is considered an 

inverse problem.  These inverse problems in pyrolysis modeling are hard due to 

following reasons:
36

 First, when the data contains noise or the mathematical model does 

not account for important physics and/or chemistry of the real problem, there may be no 

optimum that fits the data exactly, i.e., the solution to the problem may not exist 

(existence of solution).  In other words, when data uncertainty is high enough to exert 

certain characteristics of a material through the acquired data and/or the model is too 

simplified, the model solution may not be determined through this process.  For example, 

when model parameters are estimated by utilizing this approach for certain laminated 

fiberglass reinforced polymer (FRP) composite with relatively high glass content, 

successful optimization for the parameters separately for the two components of the 

composite, resin and fiberglass mats, may be unsatisfying, because the variation in mass-

loss rate data used as targets generally do not show the effect of the alternating layers of 

resin and fiberglass mats in the composite.   

Second, even when a solution is found, that may not be unique (uniqueness of 

solution).  This occurs usually when the data used in solving the problem is significantly 

smoothed or biased.  In resolving this problem, the typical approach is to reduce the total 

number of unknowns. This can be accomplished by fixing the unknown parameters to 

some values by utilizing approaches other than numerical optimization, as discussed 

previously.   
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Third, inverse problems are in most cases ill-posed, where a small change in a 

solution can lead to an enormous change in the modeling output, which is known as the 

instability problem of a solution (instability of solution).  Therefore, effort should be 

given to always check the applicability of the solution upon extrapolation to other 

modeling conditions, which were not considered during numerical optimization, knowing 

that this may result in significant deviation from actual phenomena.   

Fourth, the optimized parameters should be considered as a linked parameter set.  

Once numerical optimization is used, the optimized parameter value takes into account 

any assumptions used in pyrolysis modeling, all the intrinsic or effective parameter 

values with their uncertainty which were obtained through other means, etc.  Hence, an 

optimized value for one parameter may not be used for other pyrolysis modeling cases, in 

general.  Last, when applying this method, the estimation process can become confusing, 

and without a consistent approach it can lead to unsatisfying results.   

This Guide is focused on presenting a process for estimating model parameters 

that allows modelers to conduct parameter estimation based on commonsense, 

consistency, and correctness.  This process of creating a virtual material is composed of 

the three approaches discussed above: (1) measure each parameter via independent 

experiment; (2) search the literature for measurement values on similar materials or use 

approximation; (3) conduct numerical optimization by pairing the pyrolysis model with 

an optimization routine.  In addition to these approaches, consideration is given to 

uncertainty of estimation of each model parameter and its propagation into pyrolysis 

modeling uncertainty, in the context of defining the criteria for satisfying or dissatisfying 

parameter estimation.  Typically, estimation based on measurement of the maximum 

number of parameters possible will be considered first, then by literature review, as those 

can become practical constraints when conducting numerical optimization for solving 

unknowns.  Therefore, estimation based on numerical optimization routine in pair with 

pyrolysis modeling will be considered as the last option. 

 

To create a virtual material, these tasks must be considered: 

• Create microstructure of the virtual material 

• Identify decomposition kinetics type  
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• Create a list of model inputs, which needs to be determined 

• Obtain model unknown inputs via measurement or literature search 

 

When the above is done and every unknown has been estimated, validation work 

is needed to understand the performance of the estimated parameter set: 

• Run model 

• Analyze simulation quality with consideration of uncertainties in modeling 

outputs and data 

• Add commentary 

 

When there are additional unknowns that need to be estimated, the modeler may 

conduct numerical optimization in pair with modeling.  This process of obtaining 

unknowns via numerical optimization should be followed by validation work as well.  

Obtaining parameters using numerical optimization and validation should consist the 

following: 

• Run model in pair with numerical optimization 

• Analyze simulation quality with consideration of uncertainties in modeling 

outputs and data 

• Validate simulation quality upon extrapolation  

• Add commentary 

 

When presenting the parameter estimation results, three summary tables will be 

introduced: Model Parameter Table, Validation, and Commentary sections.  The Model 

Parameter Table includes the model parameters necessary to conduct pyrolysis modeling, 

their estimated values, and methods of estimating the unknowns.  Validation consists of 

the following information: description of modeling goal, pyrolysis model type and 

modeling approach used in the exercise, experiment type and its data used to compare 

data to modeling outputs or numerically optimize for unknowns, and uncertainty 

information of experimental data and modeling outputs.  Commentary discusses any 

limitations of pyrolysis modeling conducted above, which has been summarized in the 

Model Parameter Table and Validation sections. 
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For better visualization of the problem, a flowchart is shown below (see Figure 5-

7): 
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SENSITIVITY ANALYSIS 

Example Case 1 and 2 

For these example cases, less than a total of 20 parameters are necessary due to 

the single step thermal decomposition kinetic modeling applied in these problems.   

Therefore, extensive sensitivity analysis is not necessary to determine sensitive 

parameters on model outputs of interest, because work conducted by Stoliarov
37

 and 

Chaos
38

 for similar cases considers the effect of variation in material properties on the 

rate of burning.  According to those, it was recognized that the knowledge of parameters 

related to emissivity of virgin and char material and the decomposition reaction – 

Arrhenius pre-exponential factor, activation energy, heats, char yield – are significantly 

important for predicting the peak, average burning rates and surface temperatures.  Based 

on this result, when determining the uncertainty of the model output, only these 

parameters will be considered where simulation quality is analyzed by comparing the 

model output with its uncertainty with experiment data with its uncertainty.  Further 

details on sensitivity of each parameter can be found in this reference.
37,38

 

Example Case 3 (Global Sensitivity Analysis: Morris Method) 

For these example cases, a greater number of parameters is involved in pyrolysis 

modeling.  Therefore, a structured global sensitivity analysis technique is used to 

determine the sensitivity of model input parameters.  Among various global analysis 

techniques, screening design is one of the simplest methods to identify important 

parameters.
39,40,41

  Typical screening designs are one-at-a-time (OAT) experiments, 

where a value is changed and its impact is evaluated in turn.  It is known that classical 

OAT experiments are less meaningful if the model of interest is affected by nonlinearities, 

which causes drastically different “sensitivities” when parameter changes around the 

“control” scenario, depending on the chosen “control” scenarios.  To address this 

limitation, Morris (1991) has proposed a global OAT design method, by covering the 

entire space in which the parameters may vary independently of the specific initial 

“control” scenario with which one may commence the experiment.  A global OAT design 

assumes that the model is characterized by a large number of parameters and/or is 
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computationally expensive (regarding computational time and computational resources) 

to run. 

Although originally the Morris method was used for unitless parameters, for these 

problems it was used for parameters with units.  Because the Morris method allowed the 

user to interpret the effect of changes made in the inputs to the model outputs in terms of 

simulation variation observed in dimensional units (i.e., seconds for time, °C for 

temperature and g/m2-s for mass-loss rate), one was able to apply the significance level 

(see below) directly.  This allows the user to rank the sensitivity of each parameter with a 

quantifiable variation. 

To identify the sensitive parameters of a model via a sensitivity analysis, there 

needs to be a measure to determine the sensitivity.  This measure, defined as the level of 

significance, should be able to distinguish which effects shown in the simulation results 

due to changes made in the inputs are significant and which are not.  A typical sensitivity 

analysis allows the user to rank the input parameters in terms of its sensitivity to model 

outputs.  Defining the level of significance allows the user also to determine how many of 

the parameters from the top ranking should be set with caution, because those 

significantly affect the simulation results.  The level of significance that defines the 

sensitivity of an input parameter should be predetermined by the user based on one’s goal 

of conducting the simulation.  When the best simulation accuracy is desired, the level of 

significance should be determined by the experimental uncertainty obtained by tests 

identical to the simulation set-up, such as the cone calorimeter tests.  For example, if the 

ignition time has an uncertainty of +/- 20 sec. in the cone calorimeter tests, any changes 

in the model input that allows more than +/- 20 sec. in the model output should be 

considered as a “significant change.”  However, there are situations where low simulation 

accuracy is acceptable for one’s simulation purposes.  In these cases, the level of 

significance can be set by the modeler to be greater than the experimental uncertainty, 

and this approach results in less parameter being considered as sensitive to model outputs. 

After identifying the necessary parameters for pyrolysis modeling with a model of 

choice and selecting the significance level, a sensitivity analysis is performed to identify 

sensitive input parameters to model output.  To determine the region of experimentation 

for the Morris method, a minimum and maximum range for each parameter is selected by 
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the user through common sense.  Four levels, P1 through P4, are used in this Guide 

example cases (p = {0,1/3,2/3,1}) with an increment of ∆ = p/[2(p-1)] = 2/3 following the 

guide presented by Morris.  Four cases are simulated in each example case, which results 

in four elementary effects for each parameter.   

To calculate an elementary effect, first a baseline case needs to be constructed.  

The baseline is a group of the entire parameters with their values randomly chosen from 

P1 or P2.  This is because there are four levels in this analysis, and when conducting the 

analysis, adding ∆ should not exceed the region of experiment.  Next, a random order 

should be created for each case, where this order is used to change the parameter value 

from its baseline by ∆ one at a time.  The effect of changing a parameter by ∆ is 

evaluated by running the model and evaluating the changes made in the model output of 

interest.  Using these four effects found from four cases for each parameter, the modeler 

now can calculate the mean and its standard deviation or variance of changes that 

occurred due to an increase/decrease made to a single parameter value by ∆.  Any 

parameter resulting in a significant change in model outputs when changed by ∆ (i.e., a 

large mean and/or standard deviation/variance for changes made in the modeling outputs) 

are considered to be “sensitive.”  Based on this analysis, when determining the 

uncertainty of the model output, only parameters that are “sensitive” will be considered, 

where simulation quality is analyzed by comparing the model output with its uncertainty 

versus experiment data with its uncertainty.   
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UNCERTAINTY ANALYSIS 

To conduct uncertainty analysis for modeling outputs of interest, the uncertainty 

of each parameter value should be estimated first.  When model parameters are estimated 

using experiment measurements or by literature search, the uncertainty of the measured 

value is typically estimated through the experiments.  However, when numerical 

optimization is used to estimate unknown model parameters, estimating the uncertainties 

associated with those optimized values is nontrivial.   

Assuming that the uncertainty of every parameter is known and each parameter 

can be considered as independent, the uncertainty propagated to pyrolysis modeling 

outputs of interest may be calculated via the Law of Propagation of Uncertainty.  To 

conduct this calculation, first the sensitive parameters should be identified based on 

sensitivity analysis.  Then those parameters are varied to their boundary values 

(minimum or maximum from representative values by considering parameter uncertainty) 

in modeling one at a time from its baseline case, which is the one modeled with all 

representative values for each parameter.  The effect of variation is calculated by 

determining the modeling outputs of interest – e.g., peak heat-release rate, average heat-

release rate, time-to-ignition, time to peak heat-release rate, etc. – and comparing the 

changes occurring from those in the baseline case.  At the end, the overall summation of 

each maximum effect of changing one sensitive parameter at a time is calculated by the 

Law of Propagation of Uncertainty, which is used as a measure of the uncertainty in 

modeling results of interest. 

When numerical optimization is utilized to estimate unknown parameters, one 

possible approach of addressing the uncertainty of those parameters is to use the near 

optimal parameter sets, or “best solutions,” to generate a relatively large population of 

parameter sets.  A multi-objective optimization algorithm such as Genetic Algorithm (GA) 

applied to pyrolysis modeling typically produces many near-optimal sets or “best 

solutions,” which are a set of solutions that represent tradeoffs between many objective 

functions.  Each parameter value from each set can be evaluated together to determine 

whether a near-optimal value of one parameter changes significantly from one set to 

another.  Computing a histogram to understand the distribution of the optimized values 

and estimating uncertainty for each parameter would be a good practice.   
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Another possible approach for determining the uncertainty of optimized 

parameter values is using asymptotic methods.
32

  This approach is conceptually appealing 

and easy to implement.  However, when problems are highly nonlinear, they may be a 

poor representation of the actual uncertainties of optimized parameters, for they are 

calculated locally at the optimum point found by the optimization routine.  Nevertheless, 

the uncertainties estimated can become a useful indication of the reliability of the 

optimized parameters.  At a certain optimum point, the standard error of the parameter 

estimates is approximated by a variance-covariance matrix based on the Jacobian of the 

model response.  This matrix is then used along with the t-distribution at some desired 

confidence level to estimate the uncertainty. The set of equations shown below 

summarizes this approach: 
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Where )* is the optimum parameter vector (i.e., set of material properties), nd is 

the number of data points used for optimization, np is the number of parameters (i.e., 

material properties), COV and J are the covariance and Jacobian matrices, respectively, f 

is the vector of differences between model results (ymod) and experimental data (yexp), and 

t-1 is the value of the inverse t-distribution at a given confidence level (CL) and degrees 

of freedom (nd–np).  The availability of the the Jacobian matrix further allows for the 

computation of the sensitivity of model responses to changes in input parameters. 

 

  



Section 5 - 149 

 

OPTIMIZATION  

There are two types of optimization method applied in this Guide: manual 

optimization or numerical optimization routines.  The manual optimization can be done 

for simple cases, e.g., estimating unknown parameters for two solid-phase species 

involved in one-step thermal decomposition kinetics; however, it requires many trials and 

errors.  Rules-of-thumb for conducting manual optimization are as follows. Consider 

having optimization targets as experiment data from bench-scale tests, such as the mass 

loss rate and temperature at various depths, which is a typical case.  First, conduct kinetic 

modeling independently to understand at what temperatures each species will exist.  

Assume that the decomposition reaction occurs at temperatures between Ta and Tb, where 

Ta < Tb.  The parameter estimation conductor may understand any changes made in 

parameters related to reactant should affect fire behaviors at temperature smaller than Ta, 

and any changes made in parameters related to product should affect behaviors at 

temperatures greater than Tb (see (a) in Figure 5-8).  With this in mind, manual 

optimization can be done.  Second, understand that any changes made in heat-of-reaction 

(HoR) affects the mass-loss rate peak.  When HoR is reduced, the peak becomes taller 

(see (b) in Figure 5-8).  Third, understand that thermal conductivity (k) affects the 

temperature gradient throughout the specimen thickness.  Reducing k results in a wider 

spread between the surface and the back surface temperature profiles (see (c) in Figure 5-

8).  Fourth, understand that specific-heat capacity (cp) determines how soon material 

heats up, i.e., increases its body temperature.  Applying smaller cp results in faster 

increase in temperature profiles throughout, from surface to back surface (see (d) in 

Figure 5-8).  Last, for estimating optical properties, apply simple approximations, e.g., 

having emissivity equal to 1, for surfaces that are close to black or quickly become black 

after exposure to radiative heating.  Knowing these tips help manual optimization for 

estimation of unknown model parameters. 
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Figure 5-8.  Understanding manual optimization: (a) For a one-step thermal-decomposition 

kinetics that takes place within temperature range of Ta < T < Tb, the parameter-estimation 

conductor may understand changing parameters related to reactant should affect fire 

behaviors at temperatures below Ta, and changing parameters related to product should 

affect fire behaviors at temperatures above Tb; (b) Reducing HoR increases mass-loss rate 

peak; (c) Reducing thermal-conductivity results in wider spread between Tsurf and Tback; (d) 

Reducing specific-heat capacity results in faster increase in temperature throughout.  Note 

that results from greater parameter value are shown in solid lines, while those from smaller 

value are shown in dashed lines.  

There are three types of numerical optimization routines that have been applied to 

fire pyrolysis modeling so far.  In Table 5-11, these numerical optimization routines are 

introduced and compared.  These are evolution-optimization schemes with high 

efficiency and robustness that allow multi-objective and multi-variable optimization 

under limited knowledge of the problem.  All three optimization routines can be 

considered in terms of four processes: (1) Initialization of individuals, which refers to the 

set of initial guesses of unknown parameters; (2) Evolutionary process of selection and 

reproduction – selection from population for reproduction conducted for individuals with 
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good fitness, i.e., better adaptation to their environment and reproduction resulting in new 

generation derived from a previous one while ensuring convergence, i.e., increase in 

fitness; (3) Termination of evolution at a user-defined termination condition. 

Table 5-10.  Three types of numerical optimization routines applied to comprehensive 

pyrolysis modeling in literature: Genetic Algorithm,
33,34

 Shuffled Complex Evolution,
42,43,44

 and 

Stochastic Hill-climber
35

 

 Genetic Algorithm 

(GA) 

Shuffled Complex Evolution (SCE) Stochastic Hill-

climber 

(SHC) 

P
ro

ce
ss

 

In
it

ia
li

za
ti

o
n

 

Initial traits of 

individuals are 

customarily 

randomly generated 

within a user-

defined parameter 

space as many as 

the user-defined 

population size. 

Random set of material properties is 

initial selected within the feasible 

parameter space (i.e., a population) 

and partitions it into several subsets 

or “complexes.” 

Initial traits of 

individuals are 

customarily 

randomly generated 

within a user-

defined parameter 

space as many as 

the user-defined 

population size. 

E
v

o
lu

ti
o

n
a

ry
 P

ro
ce

ss
 o

f 
Se

le
ct

io
n

 a
n

d
 

R
e

p
ro

d
u

ct
io

n
 

Probability of 

selection is 

customarily based 

on fitness. 

Reproduction occurs 

through the genetic 

processes of 

crossover (also 

called 

recombination) 

and/or mutation. 

Each complex is allowed to evolve 

independently and, after a specified 

number of iterations, all points in 

each complex are combined back 

into a single population, ranked 

according to their objective function 

value, and then re-partitioned, i.e., 

shuffling the complexes.  This 

procedure is iteratively repeated 

and allows for more extensive and 

freer exploration of the parameter 

space due to the partition of 

complexes.  Shuffling enhances 

survivability by sharing information 

about the space gained 

independently by each complex. 

Probability of 

selection is 

customarily based 

on fitness. 

Reproduction occurs 

through the genetic 

processes of random 

mutation only, i.e., 

same with genetic 

algorithm but 

without cross-

mutation and a 

population of two - 

parent and child.  

The parents outlive 

the children if they 

are better adapted 

to the environment. 

T
e

rm
in

a
ti

o
n

 The evolutionary 

process is continued 

until a user-defined 

termination 

condition is 

reached. 

The evolutionary process is 

continued until a user-defined 

termination condition is reached. 

The evolutionary 

process is continued 

until a user-defined 

termination 

condition is reached. 

Computat-

ional 

Expense 

High High Low 



Section 5 - 152 

 

EXAMPLE CASES OVERVIEW  

Table 5-11.  Overview of example cases using comprehensive pyrolysis models 

 Case 1 Case 2 Case 3 

Case Description 

Single-step 

Decomposition 

RxN w/o 

Residue 

Single-step 

Decomposition 

RxN w/ Residue 

Two-step 

Decomposition 

RxN w/ Residue 

Drying and 

sinlge-step 

decomposition 

RxN w/ residue 

Material Example PMMA 
Corrugated 

Cardboard 

Fire Retarded 

FRP Composite 
Plywood 

E
stim

a
tio

n
 A

p
p

ro
a

ch
 

Mostly Non-

optimization 
Case 1 – A    

Comparable 

Non-

optimization and 

Optimization 

Case 1 –  B Case 2 – B Case 3 – B  

Mostly 

Optimization 
Case 1 – C Case 2 – C   

Manual 

Optimization 
   Case 3 – D 

 

In the following, summarized results are shown for each example case.  Detailed 

solutions for these example cases are given in Appendix D. 
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CASE 1: SINGLE-STEP DECOMPOSITION REACTION 

WITHOUT RESIDUE PRODUCTION 

Virtual Microstructure of Virgin Material 

• Homogeneous single layer 

Decomposition Kinetics Type  

• Type 0 or 1: fuel (solid) � pyrolyzates (gas) 

• No solid-phase residue formed 

• Weight-loss rate (DTG) with respect to temperature described with a 

single peak independent of the testing environment (inert or oxidative) 

General Model-Parameter Table 

• Virgin material is nonporous (no gas phase, only condense phase 

considered in modeling)   

• Reduced-Model Parameter Table (see Table 5-12) 

Table 5-12.  Model-parameter table for Case 1 examples 

 No Condense Phase (i=1) 

Material Property 

1 iρ  Density 

2 ik  Thermal conductivity 

3 ic  Specific heat capacity 

4 iκ
 Absorption coefficient 

Parameters for Specifying 

Conditions 
5 iε

 Emissivity 

  Heterogeneous RxN (k=1) 

T
h

e
rm

a
l D

e
co

m
p

o
si

ti
o

n
 

Finite 

Thickness 

Reaction Zone 

6 

kn  Reaction order 

kZ  Pre-exponential factor 

kE  Activation energy 

7 kH∆  heat 

Infinitely Thin 

Reaction Zone 

6 pT  Pyrolysis temperature 

7 pH∆  heat 
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Example 5.1 Modeling Poly(methylmethacrylate), PMMA 

5.1.1 Model-Parameter Table 

ID A B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Parameter Unit 

Measurement, 

Literature, or 

Approximation 

Comparable Non-optimization 

and Optimization 
Mostly Optimization 

T
h

e
rm

o
-p

h
y

si
ca

l 

P
ro

p
e

rt
y 

iρ
 kg/m

3

 

1200 ± 60  1200 ± 60  1200 ± 60  

Measurement Measurement Measurement 

ik  
W/m-

K 

0.18 ± 0.01 
0.30 ± 

0.01  
0.21 0.33 

0.29 ± 

0.01  
0.29 0.19 

Literature
45

 GA SCE SHC GA SCE SHC 

ic  J/kg-K 
2.2 ± 0.1  

1.8 ± 

0.1  
0.7 1.7 

2.0 ± 

0.1  
1.1 1.7 

Literature
46,47

 GA SCE SHC GA SCE SHC 

O
p

ti
ca

l P
ro

p
e

rt
y 

iκ  /m 
2700 ± 1400  

150000 

± 

86000  

1000000 3600000 
2200 ± 

500  
790000 350000 

Literature
48

 GA SCE SHC GA SCE SHC 

iε  - 
0.85 ± 0.16  

0.91 ± 

0.01  
0.66 0.89 

0.66 ± 

0.01  
0.99 0.54 

Literature
48

 GA SCE SHC GA SCE SHC 

T
h

e
rm

a
l D

e
co

m
p

o
si

ti
o

n
 K

in
e

ti
cs

 a
n

d
 H

e
a

ts
 kn  - 

1 1 
0.5 ± 

0.1  
0.5 1.5 

Approximated Approximated GA SCE SHC 

kZ  /s 

(8.5 ± 4.3) x 10
12

  (8.5 ± 4.3) x 10
12

  

(1.3 ± 

0.6) x 

10
16

 

3.3 x 

10
15

 

5.3 x 

10
19

 

Model Fitting w/ 

multiple heating 

rate TGA data 

Model Fitting with multiple 

heating rate TGA data 
GA SCE SHC 

kE  J/mol 

(1.88 ± 0.06) x 

10
5
  

(1.88 ± 0.06) x 10
5
  

(1.77 ± 

0.01) x 

10
5
 

2.27 x 

10
5
 

2.43 x 

10
5
 

Model Fitting w/ 

multiple heating 

rate TGA data 

Model Fitting with multiple 

heating rate TGA data 
GA SCE SHC 

kH∆  kJ/kg 
870 ± 130  870 ± 130  

1100 ± 

21  
1300  520 

Literature
46

 Literature
46

 GA SCE SHC 

M
o

d
e

l 

D
e

p
e

n
d

e
n

t 

P
a

ra
m

e
te

r 

hcrz 
W/m

2
-

K 

0 12 ± 3  2 14 38 ± 4  3 -32 

Approximated 

adiabatic 

condition at 

back surface 

GA SCE SHC GA SCE SHC 
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*Note that GA, SCE and SHC refer to optimization routines – Genetic Algorithm, Shuffled 

Complex Evolution, and Stochastic Hill-climber. The GA’s summarized parameter values 

are averaged values from near optimal parameter sets as sample population. 

 

5.1.2 Validation 

5.1.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of PMMA under 

various heating rates – heat-flux levels ranging up to ~ 100kW/m
2
. 

 

5.1.2.2 MODEL TYPE 

GPYRO 

 

5.1.2.3 MODELING APPROACH 

• Instantaneous release of volatiles from solid to the gas phase 

• Local thermal equilibrium between the solid and the volatiles 

• No condensation of gaseous products 

• No porosity effects 

 

When conducting the GPYRO simulation for the cone calorimeter set-up, metal edge 

frame will be ignored, and backing is insulated.  The ignition phenomenon is interpreted 

as the following in the simulations: at a known time-of-ignition (from experiment data), 

additional heat flux of 20 kW/m
2
 is applied to the surface to simulate heat flux from the 

flame.  This is the reference value found from the work of Beaulieu
49

, where actual 

measurement of the flame heat flux of a black PMMA was conducted.  The heat-of-

combustion was determined using micro-scale combustion calorimeter
50

 operating in 

following condition: pyrolysis in nitrogen atmosphere by heating samples (2 to 4 mg) at 

a fixed rate of 1 K/s from 373 to 1173 K.  Value is normalized by initial sample weight: 

ΔHc = 24100 kJ/kg 

 

5.1.2.4 EXPERIMENT DESCRIPTION 

Cone calorimeter test 

5.1.2.5 DATA SET 

• Cone calorimeter test data of thick PMMA (thickness, δ ranging from 24 ~ 29 mm) 

impinged with effective heat fluxes (EHF) of 23, 46, and 69 kW/m
2
 is found to 

show the burning behavior under various heat-flux levels that are less than 100 

kW/m
2
.  Data were reproduced from Stoliarov’s paper

48
, which are shown in 

Figure 5-9: 
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Figure 5-9.  Cone calorimeter test data of thick PMMA (thickness, δ ranging from 24 ~ 29 mm) 

impinged with effective heat fluxes (EHF) of 23, 46, and 69 kW/m
2
 

• Surface temperature measured at steady burning during cone tests of black 

PMMA decomposing under various heat flux levels is found from Beaulieu’s 

work
49

 on black PMMA to be within 350 ± 50°C. 

 

5.1.2.6 OPTIMIZATION TARGETS 

MLR at EHF = 46 kW/m
2
 with thick PMMA sample from cone calorimeter test 

 

5.1.2.7 SENSITIVE PARAMETERS 

iε , kn , kZ , kE , kH∆  

 

5.1.2.8 UNCERTAINTY 

Uncertainty in Experiment Data 

• Data reproducibility is checked by repeating 5 identical PMMA tests under 49 

kW/m
2
 heat flux level with medium thickness samples (thickness, δ ranging from 

7.7 ~ 9.4 mm)  

• Uncertainty of peak HRR, average HRR and time to peak HRR are estimated via 

taking 2 standard deviation of the difference and normalizing them by the mean 

of this parameter – 17%, 7% and 17%, respectively 

• Assume:  

o Uncertainty of HRR is comparable to that of MLR  

o Uncertainties are comparable to those of thicker PMMA tested at various 

heat-flux levels 

o Data set found above is close to the averaged curves from multiple 

identical tests under same conditions 
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o Uncertainty in surface temperature during steady burning is ±50°C 

 

Uncertainty in Modeling Outputs 

• Baseline case: HF = 46 kW/m
2
, thickness = 29 mm 

• Sensitive parameters varied one at a time from baseline to its max and min by 

considering uncertainty; however, due to compensation effect, pre-exponential 

factor and activation energy will be considered in pair to have max and min 

decomposition temperature 

• Uncertainty is considered for GA optimization cases (B-GA, C-GA) only using 50 

near-optimal parameter sets 

• Integration of uncertainty is calculated by Law of Propagation of Uncertainty 

 

5.1.2.9 TG / DTG PREDICTIONS AT 10 °C/MIN HEATING RATE USING ESTIMATED 

KINETIC PARAMETERS 

 

Figure 5-10.  TG/DTG curves at 10°C/min heating rate with different estimation results for 

kinetic parameters for thermal decomposition of PMMA 
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5.1.2.10 COMPARISON BETWEEN DATA AND COMPUTED-MODELING OUTPUTS 

• Modeling is conducted for case with HF = 46 kW/m
2
, thickness = 29 mm  

 

Table 5-13.  Comparison between experiment data from cone calorimeter test and modeling 

outputs using estimated parameter values via either direct measurement, literature search, or 

approximation (A); measurements and numerical optimization (B-GA, B-SCE, B-SHC); or mostly 

numerical optimization (C-GA, C-SCE, C-SHC) 

 Data A B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Peak MLR (g/m
2
s) 

36.9 

±6.3 

45.1 

±10.6 

40.9 

±5.3 
32.6 39.3 

27.5 

±0.7 
34.4 67.0 

Avg MLR (g/m
2
s) 

24.9 

±1.7 

24.2 

±5.2 

26.7 

±2.7 
25.9 26.6 

24.0 

±0.5 
26.4 28.0 

t to pMLR (s) 
1310 

±223 

1408 

±252 

1285 

±123 
1317 1284 

1391 

±32 
1297 1233 

Ts (°c) 
350 

±50 

413 

±21 

433 

±20 
407 409 

244 

±3 
419 343 

 

  



Section 5 - 159 

 

5.1.2.11 MODELING OUTPUT: MASS LOSS RATE (MLR) 

• Case used in optimization process  

 
Figure 5- 11.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (data) and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied 

heat flux of 46 kW/m
2
.  Note that data shown were used to estimate model-parameter values 

via numerical optimization using GA, SCE, or SHC routines. 

• Extrapolation 

 

 
Figure 5-12.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (data) and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied 

heat flux of (a) 23 and (b) 64 kW/m
2
.  Note that data shown were not included in the model-

parameter-estimation process; hence, these two cases are considered as extrapolation cases.  
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5.1.2.12 MODELING OUTPUT: SURFACE TEMPERATURE (TSURF) 

• Case used in optimization process  

 

 
Figure 5-13.  Surface-temperature (Tsurf) comparisons for PMMA modeling using parameters 

estimated from different approaches – direct measurement, literature search, or 

approximation (A); measurement and numerical optimization (B-GA, B-SCE, B-SHC); mostly 

numerical optimization (C-GA, C-SCE, C-SHC) at applied heat flux of 46 kW/m
2
.  Note that data 

shown were used to estimate model-parameter values via numerical optimization using GA, 

SCE, or SHC routines. 
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• Extrapolation 

 

 
Figure 5-14.  Surface-temperature (Tsurf) comparisons for PMMA modeling using parameters 

estimated from different approaches – direct measurement, literature search, or 

approximation (A); measurement and numerical optimization (B-GA, B-SCE, B-SHC); mostly 

numerical optimization (C-GA, C-SCE, C-SHC) at applied heat flux of (a) 23 and (b) 64 kW/m
2
.  

Note that data shown were not included in the model-parameter-estimation process; hence, 

these two cases are considered as extrapolation cases.  
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5.1.3 Commentary 

GENERAL COMMENTS  

• TG/DTG 

o Whether kinetic modeling is conducted independently using TGA data (A, 

B-GA, B-BSE, B-SHC) or as a part of numerical optimization (C-GA, C-SCE, 

C-SHC), decomposition of PMMA is considered to occur within the 

temperature range of 200°C to 400°C. 

o Among GA, SCE and SHC, estimation of SCE was closest, followed by SHC 

and GA to TGA data 

o Having surface temperature data as an additional optimization, target 

should have provided constraints to the optimization problem, because 

kinetic parameters directly determine the surface temperature.  However, 

this approach was not utilized, for uncertainty in surface temperature 

measurement was too high – 350 ± 50°C 

• Comparison Between Data and Computed-Modeling Outputs 

o Better agreement between data and modeling outputs for the peak MLR 

is found when kinetic parameters are estimated through a separate 

process using TGA data (A, B-GA, B-BSE, B-SHC) compared with numerical 

optimization along with estimating other unknowns together (C-GA, C-

SCE, C-SHC) 

o Average MLR and time-to-peak-MLR from all modeling cases show good 

agreement with data 

o Simulated surface temperature at steady burning of PMMA is greater 

(less than 10 s) than that of measurement for cases B-GA, B-SCE, B-SHC 

and C-SCE, while simulated surface temperature is lower (greater than 50 

s) than that of measurement for case C-GA.  Results from cases A and C-

SHC are in good agreement. 

• MLR 

o Direct Measurement or Optimization at HF = 46 kW/m
2
: Good agreement 

exists between experiment data and all modeling results, whether 

modeled with measured parameters or optimized in the time frame of 

exposure to heating source up to steady burning.  However, in the later 

time, where the peak occurs, the result from C-SHC becomes unsatisfying, 

considering the data with its uncertainty, while others can be considered 

as satisfying.   

o Direct Measurement or Extrapolation at HF = 23 kW/m
2
: Good 

agreement exists between experiment data and all modeling results, 

except for C-SHC case. 

o Direct Measurement or Extrapolation at HF = 64 kW/m
2
: Good 

agreement exists between experiment data and all modeling results, 

except for C-GA and C-SHC case.  
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• Surface Temperature 

o See above 

 

LIMITATION IN MODELING 

• When considering limitation of the parameters in simulating PMMA, the 

modeler should take into account the applicability of the parameters and their 

associated uncertainties.  For example, any assumptions used when determining 

a parameter value via experiment direct or indirect measurements can be 

utilized to understand when the parameter value becomes inappropriate.  For 

this example of pyrolysis modeling of PMMA, most consideration can be given to 

the parameters related to decomposition kinetics. 

• In this example, kinetic modeling was conducted with TGA data obtained from 

nitrogen environment.  However, studies
49,51,52

 have suggested that PMMA 

decomposes differently with respect to heating rates and availability of oxygen.  

The decomposition rate of PMMA increases with respect to oxygen 

concentration, because oxygen aids unzipping of the polymer by being involved 

in the depolymerization process of the polymer.  Also, the oxygen dependency 

increases at lower heating rates than at higher heating rates.  Possible 

explanation for this can be given by considering the diffusion of oxygen from 

nearby gas phase to the condense phase.  At lower heating rates, decomposition 

rate is relatively slow; therefore, the time allowed for oxygen to diffuse to the 

polymer layer and be involved in the decomposition process is relatively longer. 

However, at higher heating rates, decomposition rate is relatively higher even 

without the involvement of oxygen in the decomposition process.  This results in 

a shorter time scale for transportation of oxygen via diffusion to the condense 

phase.  In other words, the positive effect of enhancing decomposition by having 

oxygen involved in the process, compared to decomposition in non-oxidative 

condition, is compensated by the time necessary for oxygen diffusion to occur 

from the gas phase to the condense phase.  Hence, the increase in 

decomposition rate of PMMA due to the presence of oxygen in the gas phase is 

more profound in conditions with lower heating rates than in higher heating 

rates.  Visual observations of the surface phenomena during PMMA 

decomposition also provide evidence that above explanation is reasonable.  

Based on experimental work conducted by Beaulieu
49

 during decomposition of 

PMMA, “bubbling” occurs on the surface.  The bubbles are relatively large, 

forming a thick layer of bubbles when irradiated at lower heat-flux levels and 

they are smaller, forming a thin bubbling layer, when irradiated at higher heat-

flux levels.  Considering the bubbling is an effective way of the polymer to 
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enhance oxygen diffusion and larger bubbles entrains more oxygen, reduction in 

decomposition rate due to increasing time necessary for oxygen diffusion at 

higher heat-flux levels seems plausible, with bubbles becoming smaller as 

increasing from a lower heat flux to a higher heat flux. 

• Figure 5-15 shows TGA thermograms of PMMA decomposition conducted under 

constant heating rates – 2, 5, 10 and 20 K/min – and two different environments 

– nitrogen and air (data obtained from work conducted by Matala
34

).  As shown 

below and discussed earlier, there is significant difference between the curves 

produced from nitrogen and air tests.  This indicates that decomposition kinetics 

is different in two cases, and the difference is due to oxygen diffusion from the 

gas phase surrounding the solid sample surface with respect to the “bubbling” 

phenomenon.    

 

 
Figure 5-15.  TGA thermograms of PMMA decomposition conducted under constant-heating 

rates – 2, 5, 10, and 20K/min – and two different environments – (a) nitrogen and (b) air 
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CASE 2: SINGLE-STEP DECOMPOSITION REACTION 

WITH RESIDUE PRODUCTION 

Virtual Microstructure of Virgin Material 

• Homogeneous single layer 

Decomposition Kinetics Type  

• Type 0 or 1: fuel (solid) � residue (solid) + pyrolyzates (gas) 

• Weight-loss rate (DTG) with respect to temperature described with a 

single peak independent of the testing environment (inert or oxidative) 

General Model Parameter Table 

• Although actual virgin material is porous, porous nature of material is 

implicitly accounted for in density only (no gas phase, only condense 

phases – virgin state fuel and residue –  considered in modeling)    

• Reduced Model Parameter Table (see Table 5-14) 

Table 5-14.  Model-parameter table for Case 2 examples 

 No Condense Phase (i=1,2) 

Material Property 

1 iρ  Density 

2 ik  Thermal conductivity 

3 ic  Specific-heat capacity 

4 iκ  
Absorption coefficient 

Parameters for Specifying 

Conditions 
5 iε  

Emissivity 

  Heterogeneous RxN (k=1) 

T
h

e
rm

a
l D

e
co

m
p

o
si

ti
o

n
 

Finite- 

Thickness 

Reaction Zone 

6 

kn  Reaction order 

kZ  Pre-exponential factor 

kE  Activation energy 

7 kH∆  Heat 

Infinitely-Thin 

Reaction Zone 

6 pT  Pyrolysis temperature 

7 pH∆  heat 
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Example 5.2 Modeling Triple-layered Corrugated Cardboard 

5.2.1 Model Parameter Table 

ID B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Parameter Unit 
Comparable Non-optimization 

and Optimization 
Mostly Optimization 

T
h

e
rm

o
-p

h
y

si
ca

l 
P

ro
p

e
rt

y 

i 
=

 1
 

(f
u

e
l)

 

iρ
 kg/m

3

 

110 110 

Measurement Measurement 

ik  
W/m-

K 

0.08 ± 0.01 0.13 0.21 0.21 

Measurement GA SCE SHC 

ic  J/kg-K 
2.8 2.3 0.6 2.0 2.4 1.7 

GA SCE SHC GA SCE SHC 

i 
=

 2
 

(r
e

si
d

u
e

) 

iρ
 kg/m

3

 

25 20 11 26 10 43 

GA SCE SHC GA SCE SHC 

ik  
W/m-

K 

0.29 0.32 0.32 0.20 0.35 0.20 

GA SCE SHC GA SCE SHC 

ic  J/kg-K 
1.5 1.1 0.2 1.0 0.8 2.2 

GA SCE SHC GA SCE SHC 

O
p

ti
ca

l P
ro

p
e

rt
y 

i 
=

 1
 

(f
u

e
l)

 

iκ  /m 
10

6
 10

6
 

Approximated as opaque Approximated as opaque 

iε  - 
0.88 ± 0.01 0.72 0.50 0.65 

Measurement GA SCE SHC 

i 
=

 2
 

(r
e

si
d

u
e

) 

iκ  /m 
10

6
 10

6
 

Approximated as opaque  Approximated as opaque  

iε  - 
1 0.82 0.93 0.96 

Approximated GA SCE SHC 

T
h

e
rm

a
l D

e
co

m
p

o
si

ti
o

n
 K

in
e

ti
cs

 

a
n

d
 H

e
a

ts
 

kn  - 
1 3.7 3.0 2.2 

Approximated GA SCE SHC 

kZ  /s 

1.1 x 10
21

 3.9 x 10
6
 9.8 x 10

19
 6.0 x 10

14
 

Model Fitting with single heating 

rate TGA data 
GA SCE SHC 

kE  J/mol 

2.49 x 10
5
 7.0 x 10

4
 

2.47 x 

10
5
 

3.02 x 

10
5
 

Model Fitting with single heating 

rate TGA data 
GA SCE SHC 

kH∆  kJ/kg 
123 512 809 88 54 0.7 

GA SCE SHC GA SCE SHC 

M
o

d
e

l 

D
e

p
e

n
d

e
n

t 

P
a

ra
m

e
te

r 

hcrz 
W/m

2
-

K 

19 8 14 10 8 10 

GA SCE SHC GA SCE SHC 

nkz(i=1) - 
5.6 4.6 7.6 0 

GA SCE SHC Approximated 

*Note that GA, SCE and SHC refer to optimization routines – Genetic Algorithm, Shuffled 

Complex Evolution, and Stochastic Hill-climber. 
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5.2.2 Validation 

5.2.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of triple-layered 

corrugated cardboard under various heating rates – heat-flux levels ranging up to ~ 

100kW/m
2
. 

 

5.2.2.2 MODEL TYPE 

GPYRO 

 

5.2.2.3 MODELING APPROACH 

• Instantaneous release of volatiles from solid to the gas phase 

• Local thermal equilibrium between the solid and the volatiles 

• No condensation of gaseous products 

• No porosity effects 

 

Further details can be found from Reference 43. 

 

When conducting the 1D simulation for the FPA set-up, insulation at back surface is 

not modeled explicitly but included as some heat loss to the back surface.  In this 

example case, only AN FPA experiment with nitrogen as purge gas will be considered; 

hence, there is no ignition phenomenon to be modeled. 

 

5.2.2.4 EXPERIMENT DESCRIPTION 

Fire Propagation Apparatus Test 

5.2.2.5 DATA SET 

• Fire Propagation Apparatus (FPA) test data of triple-wall corrugated cardboard, 

i.e., two layers of corrugated cardboard (thickness, δ is 30 mm) impinged with 

effective heat fluxes (EHF) of 20 to 110 kW/m
2
 is found.  Data were reproduced 

from Chaos’ paper
43

, which are shown below for 20, 60 and 110 kW/m
2
 cases for 

mass loss rate (MLR) and surface temperature measurements using pyrometer 

(see Figure 5-16): 
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Figure 5-16.  Fire propagation apparatus (FPA) Test Data – (a) mass-loss rate; and (b) surface-

temperature profile –  of triple-wall corrugated cardboard, i.e., two layers of corrugated 

cardboard (thickness, δ is 30 mm) impinged with effective heat fluxes (EHF) of 20 to 110 

kW/m
2
 

 

5.2.2.6 OPTIMIZATION TARGETS 

MLR, cumulative mass loss (CML), and surface-temperature data with triple-layered 

corrugated cardboard sample from Fire Propagation Apparatus test at HF = 60 kW/m
2
 

 

5.2.2.7 SENSITIVE PARAMETERS 

iε , 2=iρ , kn , kZ , kE , kH∆  
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5.2.2.8 UNCERTAINTY 

Uncertainty in Experiment Data 

• Data is acquired from two repeating FPA tests of triple-wall corrugated 

cardboard under 60 kW/m
2
 heat-flux level with nitrogen atmosphere.    

• Uncertainty analysis is conducted based on these two data sets.  The 

uncertainties are quantified with confidence intervals with α = 0.05 and 

assuming normal distribution of population (size 2). 

• Assume:  

o Uncertainties are comparable to the same sample tested at various heat-

flux levels 

 

Uncertainty in Modeling Outputs 

• Typically, uncertainty is considered for GA optimization cases (B-GA, C-GA) only 

by taking an average of a large population of near-optimals with their confidence 

intervals to quantify uncertainty when numerical optimization is used to 

estimate unknowns.  However, in this case, GA found the best optimized 

parameter set that has relatively large fitness than other near-optimals.  

Therefore, estimation of uncertainty of GA’s optimization was not possible; 

hence, was considered as certain. 
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5.2.2.9 TG / DTG PREDICTIONS AT 10 °C/MIN HEATING RATE USING ESTIMATED 

KINETIC PARAMETERS 

 
 

Figure 5-17.  TG/DTG Curves at 10°C/min heating rate with different estimation results for 

kinetic parameters for thermal decomposition of corrugated cardboard: For better 

comparison, TG and DTG thermograms have been scaled to result in 100% conversion. 
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5.2.2.10 COMPARISON BETWEEN DATA AND COMPUTED-MODELING OUTPUTS 

• Modeling is conducted for case with HF = 46 kW/m
2
, thickness = 29 mm  

 

Table 5-15.  Comparison between experiment data from fire-propagation apparatus test and 

modeling outputs using estimated parameter values via either measurements and numerical 

optimization (B-GA, B-SCE, B-SHC) or mostly numerical optimization (C-GA, C-SCE, C-SHC) 

 Data B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Peak MLR (g/m
2
s) 35 ± 4 28 24 53 23 29 N/A 

Avg MLR (g/m
2
s) 

5.7 ± 

0.6 
4.6 5.4 5.9 4.8 6.0 N/A 

t to pMLR (s) 27 ± 1 19 13 19 4 12 N/A 

Ts at 300 s (°c) 
696 ± 

16 
685 682 684 679 679 685 
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5.2.2.11 MODELING OUTPUT: MASS-LOSS RATE (MLR) 

• Case used in optimization process  

 
Figure 5-18.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual MLR 

from experiment (data) and modeled MLR (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied 

heat flux of 60 kW/m
2
.  Note that data shown were used to estimate model-parameter values 

via numerical optimization using GA, SCE, or SHC routines. 
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• Extrapolation 

 

 
Figure 5-19.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual MLR 

from experiment (data) and modeled MLR (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied 

heat flux of (a) 20 and (b) 110 kW/m
2
.  Note that data shown were not included in the model 

parameter estimation process; hence, these two cases are considered as extrapolation cases.  
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5.2.2.12 MODELING OUTPUT: SURFACE TEMPERATURE (TSURF) 

• Case used in optimization process  

 
Figure 5-20.  Surface-temperature (Tsurf) comparisons for corrugated cardboard between 

actual Tsurf from experiment (data) and modeled Tsurf (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) 

at applied heat flux of 60 kW/m
2
.  Note that data shown were used to estimate model-

parameter values via numerical optimization using GA, SCE or SHC routines. 
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• Extrapolation 

 

 
Figure 5-21.  Surface-temperature (Tsurf) comparisons for corrugated cardboard between 

actual Tsurf from experiment (data) and modeled Tsurf (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) 

at applied heat flux of (a) 20 and (b) 110 kW/m
2
.  Note that data shown were not included in 

the model-parameter-estimation process; hence, these two cases are considered as 

extrapolation cases.  
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5.2.3 Commentary 

GENERAL COMMENTS  

• TG/DTG 

o When kinetic modeling is conducted independently using TGA data (B-GA, 

B-BSE, B-SHC), the DTG peak exist near 300°C.   

o Among GA, SCE, and SHC, optimization of SCE of kinetic parameters as 

part of other unknown parameter estimation is closest to actual TGA data 

(B-GA, B-SCE, B-SHC), followed by GA and SHC. 

o Optimization of SHC of kinetic parameters along with other unknown 

parameter estimation is considered as unsuccessful, because 

decomposition temperature is excessively high (see mass-loss rate 

optimization and extrapolation results) 

• Comparison between Data and Computed-Modeling Outputs 

o Generally, better agreement between data and modeling outputs is 

found when kinetic parameters are estimated through a separate process 

using TGA data (B-GA, B-BSE, B-SHC) than numerical optimization, along 

with estimating other unknowns together (C-GA, C-SCE, C-SHC) 

o None of the modeled peak MLRs is in quantitative agreement with data  

o Average MLR of B-SCE, B-SHC and C-SCE are in good agreement with data 

o None of the modeled time to peak MLRs is in quantitative agreement 

with data 

o Surface temperatures at 300 s of B-GA, B-SCE, B-SHC, and C-SHC are in 

good agreement with data 

• MLR 

o Optimization at HF = 60 kW/m
2
: Although the peak may be off for some 

cases, generally good agreement exists between experiment data and all 

modeling results considering the trend, except for that of C-SHC, 

indicating that optimization of C-SHC – optimizing for all unknowns using 

SHC – was unsuccessful.  Oscillation in the MLR curve is due to the 

inhomogeneity of the sample – corrugated cardboard – which is not 

captured in modeling due to the homogeneous assumption made when 

solving the problem. 

o Extrapolation at HF = 20 kW/m
2
: Poor agreement exists between 

experiment data and all modeling results.  None of the modeling cases is 

able to capture the slow increase in mass-loss rate in the earlier times 

after exposure to heating source. 

o Extrapolation at HF = 110 kW/m
2
: Good agreement exists between 

experiment data and all modeling results, except for C-SHC case.  

• Surface Temperature 

o Optimization at HF = 60 kW/m
2
: Generally good agreement exists 

between experiment data and all modeling results considering the trend, 

even for that of C-SHC.  Also, when thermal conductivity of the sample at 
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its virgin state was independently measured and that value was used, 

modeling was able to capture the slow increase in surface temperature 

up until 400°C followed by a jump up to ~550°C. 

o Extrapolation at HF = 20 kW/m
2
: Poor agreement exists between 

experiment data and all modeling results.  None of the modeling cases is 

able to capture the slow increase in surface temperature in the earlier 

times after exposure to heating source. 

o Extrapolation at HF = 110 kW/m
2
: Good agreement exists between 

experiment data and all modeling results, including C-SHC case. 

 

LIMITATION IN MODELING 

• When considering limitation of the parameters in modeling corrugated 

cardboard, the modeler should take into account the applicability of the 

parameters and their associated uncertainties.  For example, any assumptions 

used when determining a parameter value via experiment direct or indirect 

measurements can be utilized to understand when the parameter value 

becomes inappropriate.  For this example of pyrolysis modeling of corrugated 

cardboard, most consideration can be given to the parameters related to 

decomposition kinetics. 

• As shown in the figure below of corrugated cardboard decomposed in TGA at 20 

K/min under nitrogen and air atmosphere, the simplified kinetic modeling using 

a one-step decomposition mechanism is only true for a “dry” sample tested in 

nitrogen.  Clearly, decomposition of a “dry” sample in air results in two distinct 

DTG peaks.  Therefore, the effect of the simplification (one-step) made to kinetic 

modeling should be addressed when discussing large-scale simulation quality of 

the parallel panel experiment using the optimized parameter set from this 

exercise. 

 

 
Figure 5-22.  TGA thermograms of corrugated cardboard decomposition conducted under 

constant-heating rate of 20 °C/min and two different environments – nitrogen and air 
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CASE 3: TWO-STEP DECOMPOSITION REACTION WITH 

RESIDUE PRODUCTION 

Virtual Microstructure of Virgin Material 

• Effective homogeneous single layer 

Decomposition Kinetics Type  

• Type 3 with two-step reaction  

o Reactant1 (solid) � Product1 (solid) + pyrolyzates (gas) 

o Reactant2 (solid) � Product2 (solid) + pyrolyzates (gas) 

• Weight-loss rate (DTG) with respect to temperature described with two 

overlapping peaks independent of the testing environment (inert or 

oxidative) 

General Model Parameter Table 

• Although actual virgin material is porous, the porous nature of the 

material is implicitly accounted for in density only (no gas phase, only 

condense phases – Reactant 1 and 2, Product 1 and 2 – considered in 

modeling)   

• Reduced Model Parameter Table (see Table 5-16) 

Table 5-16.  Model-parameter table for Case 3 examples 

 No Condense Phase (i=1,2,3,4) 

Material Property 

1 iρ  Density 

2 ik  Thermal conductivity 

3 ic  Specific-heat capacity 

4 iκ
 Absorption coefficient 

Parameters for 

Specifying 

Conditions 

5 iε
 Emissivity 

  Heterogeneous RxN (k=1,2) 

Kinetic Parameters 

and Heats Assuming 

n
th

 Order Model 

and Arrhenius-type 

Expression 

6 

kn  Reaction order 

kZ  Pre-exponential factor 

kE  Activation energy 

7 kH∆  Heat 
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Example 5.3 Modeling FRP Composite with Modified Acrylic 

Resin with High-charring Inorganic Additive 

An example case is shown for a fiberglass-reinforced polymer (FRP) composite 

with modified-acrylic resin with high-charring inorganic fire-retardant additive.  Most of 

the approach and reference values of the input parameters for this simulation were 

obtained from Kim and Dembsey’s work.
30

   

Modified-acrylic resin (MA) is essentially unsaturated polyester (UPE) with 

Methacrylic Acid (MMA) replacing most of the styrene monomers.  Flame-retarded resin 

with MA is manufactured by adding a filler-type inorganic additive (A) as an additive 

where its loading versus resin is MA:A = 0.38:0.62 by weight.  Typical inorganic 

additives are hydrates such as alumina trihydroxide (ATH) or magnesium hydroxide, 

antimony trioxide, borax, chalk, silica, etc.
53

  Because this additive was known to give a 

high-charring effect, A was categorized with typical hydroxides used as flame-retardant 

fillers.  These hydroxides works as a flame retardant by resulting in an endothermic 

dehydration reaction that produces oxides and water.
54,55

  The water produced by this 

reaction vaporizes, which is an endothermic reaction, and the vapor dilutes the gaseous 

phase.  The oxides remain in the char layer, which adds an insulative effect.  This flame 

retardant is added with a relatively large amount (50 to 65%) compared with other types 

of additives.  By adding a significant amount of an inorganic flame retardant, the polymer 

becomes more brittle.  Because this is an inorganic additive, inserting this material into 

the polymer system by 50 to 65 wt% of its original polymer reduces the available fuel 

within the condensed phase.  In addition to this effect, usually the additive has a higher 

heat capacity compared with the base polymer; hence, the flame retarded polymers with 

these types of hydroxides require more energy to increase the body temperature to its 

pyrolysis level. According to the product description, this resin with the flame-retardant 

additive is formulated to be Class I per ASTM E 84
56

 (flame spread index < 20 and 

smoke developed < 225). ����Propose two parallel reactions for MA and A thermal 

decomposition 
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Figure 5-23.  Cross-section of FRP composite with modified-acrylic resin with high-charring 

inorganic additive 

 

Composite panels were fabricated by vacuum bagging for a relatively high glass-

content composite (31 ± 2 wt% of glass, thickness of 8.9 ± 0.2 mm) using two different 

types of fiberglass mats that were wetted with resin (see Figure 5-23 for cross-section of 

composite).  The two types of fiberglass (E-glass) used in the composite are a chopped-

strand mat and a glass-roving woven mat with an area density of 25 g/m
2
 and 880 g/m

2
, 

respectively.  The chopped-strand mat is thinner and more porous than the woven mat.  

The laminate schedule (provided by the manufacturer) is chopped-strand mat and roving 

alternating three times with another chopped-strand mat layer at the end.  Visual 

inspection of a polished cross-section of the composite slab is consistent with this 

laminate schedule, but with polymer-resin layers between each fiberglass layer.  The 

chopped-strand mat layer is difficult to identify in the cross section, perhaps because 

more resin is soaked into this layer than the roving layer.  The roving layer is observed as 

a prominent glass layer possibly because the resin is absorbed only at the fiberglass layer 

surfaces leaving the interior with primarily glass. ���� Apply effective homogeneous 

single layer of resin, additive and fiberglass mixture  
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5.3.1 Model Parameter Table 

ID GA(avg) GA(best) SCE SHC 

Parameter Unit Comparable Non-optimization and Optimization 

T
h

e
rm

o
-p

h
y

si
ca

l 
P

ro
p

e
rt

y 

i 
=

 1
  

(R
e

si
n

) 
iρ
 kg/m

3

 

1200 

Measurement 

ik  W/m-K 
0.23 ± 0.02 0.21 0.54 0.04 

GA GA SCE SHC 

ic  J/kg-K 
1400 ± 100 2200 300 1300 

GA GA SCE SHC 

i 
=

 2
  

(R
_

re
si

d
u

e
) iρ

 kg/m
3

 

253 

Measurement, Kinetic Modeling 

ik  W/m-K 
0.19 ± 0.02 0.12 0.08 0.31 

GA GA SCE SHC 

ic  J/kg-K 
1900 ± 200 1600 1800 1800 

GA GA SCE SHC 

i 
=

 3
 

(A
d

d
it

iv
e

) iρ
 kg/m

3

 

2300 

Measurement 

ik  W/m-K 
1.22 ± 0.10 1.44 0.82 2.74 

GA GA SCE SHC 

ic  J/kg-K 
1200 ± 100 930 2500 2400 

GA GA SCE SHC 

i 
=

 4
 

(A
_

re
si

d
u

e
) iρ

 kg/m
3

 

1558 

Measurement, Kinetic Modeling 

ik  W/m-K 
0.24 ± 0.04 0.22 0.59 0.36 

GA GA SCE SHC 

ic  J/kg-K 
1200 ± 100 2200 300 780 

GA GA SCE SHC 

i 
=

 5
 

(G
la

ss
) 

iρ
 kg/m

3

 

2600 

Reference (MSDS) 

ik  W/m-K 
0.18 ± 0.02 0.15 0.30 0.09 

GA GA SCE SHC 

ic  J/kg-K 
400 ± 100 170 300 110 

GA GA SCE SHC 

O
p

ti
ca

l P
ro

p
e

rt
y 

i 
=

 1
 

(R
) 

iκ  /m 
10

6
 

Approximated as opaque  

iε  - 
0.84 ± 0.03 0.81 0.82 1.24 

GA GA SCE SHC 

i 
=

 2
 

(R
_

re
s)

 

iκ  /m 
10

6
 

Approximated as opaque  

iε  - 
0.90 ± 0.03 0.87 1.00 0.97 

GA GA SCE SHC 

i 
=

 3
 

(A
) 

iκ  /m 
10

6
 

Approximated as opaque  

iε  - 
0.81 ± 0.04 0.77 1.00 0.84 

GA GA SCE SHC 



Section 5 - 182 

 

i 
=

 4
 

(A
_

re
s)

 

iκ  /m 
10

6
 

Approximated as opaque  

iε  - 
0.89 ± 0.03 0.96 1.00 0.42 

GA GA SCE SHC 
i 

=
 5

 

(G
la

ss
) 

iκ  /m 
10

6
 

Approximated as opaque  

iε  - 
0.88 ± 0.02 0.90 1.00 1.41 

GA GA SCE SHC 

K
in

e
ti

cs
 a

n
d

 H
e

a
ts

 

k
 =

 1
 

R
 �

 R
re

si
d

u
e
+

v
a

p
↑

 

kn  - 1.3 Model Fitting with 

Multiple-Heating-Rate 

TGA Data 
kZ  /s 3.2 x 10

12
 

kE  J/mol 1.83 x 10
5
 

kH∆  kJ/kg 

(2.5 ± 0.2) x 

10
3
 

2.0 x 10
3
 2.6 x 10

3
 2.6 x 10

3
 

GA GA SCE SHC 

k
 =

 2
 

A
 �

 

A
re

si
d

u
e

 +
 v

a
p

↑
 

kn  - 5.0 Model Fitting with 

Multiple-Heating-Rate 

TGA Data 
kZ  /s 1.6 x 10

12
 

kE  J/mol 1.60 x 10
5
 

kH∆  kJ/kg 
3760 ± 1130 (30%) 

Measurement, DSC 

M
o

d
e

l-
D

e
p

e
n

d
e

n
t 

P
a

ra
m

e
te

r 

nkz (i=5) - 
0.59 ± 0.06 0.58 0.01 0.18 

GA GA SCE SHC 

nc (i=5) - 
0.53 ± 0.06 0.37 0.88 -0.26 

GA GA SCE SHC 

ϒ (i=2) m 

0.00348 ± 

0.00134 
0.00051 0.00002 0.02482 

GA GA SCE SHC 

ϒ (i=4) m 

0.00475 ± 

0.00184 
0.00625 0.00001 0.05832 

GA GA SCE SHC 

ϒ (i=5) m 

0.00769 ± 

0.00225 
0.00001 0.00003 -0.02453 

GA GA SCE SHC 

*Note that GA, SCE and SHC refer to optimization routines – Genetic Algorithm, Shuffled 

Complex Evolution, and Stochastic Hill-climber.  For GA, there are two cases.  GA(avg) is the 

average estimated values from ~50 near-optimal-parameter-sets population.  GA(best) is the 

parameter set with best fitness among those near-optimal population. 
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5.3.2 Validation 

5.3.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of modified-acrylic 

resin with high-charring additive FRP composite under various heating rates – heat-flux 

levels ranging from 25 kW/m
2
 to 75kW/m

2
. 

 

5.3.2.2 MODEL TYPE 

GPYRO 

 

5.3.2.3 MODELING APPROACH 

• Instantaneous release of volatiles from solid to the gas phase 

• Local thermal equilibrium between the solid and the volatiles 

• No condensation of gaseous products 

• No porosity effects 

• When conducting the GPYRO simulation for the cone calorimeter set-up, metal 

edge frame will be ignored, and backing is insulated.  The ignition phenomenon 

is interpreted as the following in the simulations: at a known time-of-ignition 

(from experiment data), additional heat flux of 20 kW/m
2
 is applied to the 

surface to simulate heat flux from the flame.  This value is estimated from a 

measurement from this material pyrolyzing in the cone with a total heat-flux 

gauge measuring heat flux impinging on the sample surface (see Figure 5-24– 

test conducted at 50 kW/m2 applied heat flux; from time-of-ignition an increase 

in measured heat flux is observed due to flame). 

 

 
Figure 5-24.  Total heat flux measured from sample surface during cone calorimeter test 

• For the back surface, an additional layer of insulation with known properties is 

modeled to simulate some heat loss through the back.  The contact resistance 

(hcrz) between the FRP composite and the insulation is estimated as roughly as 

10 W/m
2
K and that of insulation layer and ambient as 1 W/m

2
K. 

• In addition to the parameters introduced in the previous section (see parameter 

table), the model (GPYRO) has a coefficient (γ, GAMMA) that is used to model 
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radiative heat transfer through the pores.  This parameter with T
3
 is a model-

dependent parameter that is added as another term in the effective thermal 

conductivity.  γ is used for porous fiberglass and decomposed solid species, 

which results in more a porous state due to the weight loss; therefore, more 

radiative-heat transfer through the gas phase pores, i.e., for condense-phase 

species i = 2 (A_residue), 4 (MA_residue) and 5 (G).   

• Another set of parameters included as unknowns is the temperature-dependent 

terms used to describe the variation of thermal conductivity and specific-heat 

capacity with respect to temperature increase: ( ) ( ) kn

rTTkTk 0=  and ( ) ( ) cn

rTTcTc 0= , 

respectively, where Tr is a reference temperature.  Only properties of fiberglass 

is temperature dependent knowing that for high glass-content FRP composite, 

glass may be a controlling factor for its fire behavior.  This approach is utilized to 

give much flexibility during parameter estimation for fiberglass. 

 

5.3.2.4 EXPERIMENT DESCRIPTION 

Cone calorimeter Test 

 

5.3.2.5 DATA SET 

• Cone calorimeter (cone) test data of modified-acrylic resin with high-charring 

additive FRP composite (thickness, δ is 8.9 ± 0.2 mm, density, ρ is 1900 kg/m
3
) 

impinged with effective heat fluxes (EHF) of 25 to 75 kW/m
2
 is obtained and are 

shown below (see Figure 5-25) for mass-loss rate (MLR), surface and back-face 

temperature measurements: 
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Figure 5-25.  Cone calorimeter 

 Cone test data of modified-acrylic resin with high-charring additive FRP composite (thickness, 

δ is 8.9 ± 0.2 mm, density, ρ is 1900 kg/m
3
) impinged with effective heat fluxes (EHF) of 25 to 

75 kW/m
2
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5.3.2.6 OPTIMIZATION TARGETS 

Mass-loss rate (MLR), cumulative mass loss (CML), surface (Ts), and back (Tb) surface 

temperature data with FRP composite sample from cone calorimeter test at HF = 50 

kW/m
2
 

 

5.3.2.7 SENSITIVE PARAMETERS 

• Identified by conducting OAT method (see Appendix for detail) 

• R residue’s ε, A_residue’s k, A_residue’s γ, G’s nk, G’s nc 

 

5.3.2.8 UNCERTAINTY 

Uncertainty in Experiment Data 

 

• Data is acquired from three repeating cone tests of modified-acrylic resin with 

inorganic high-charring additive FRP composite with relatively high glass content 

under 50 kW/m
2
 heat flux level.  

• The uncertainties in the MLR and thermocouple measurements at front surface 

were quantified by comparing data from these three identical FRP composite 

tests.  Note that normalized time, time divided by sample thickness square, i.e., τ 

= time/δ2
, is used to remove the effect of different sample thicknesses when 

comparing.  Because the data is transient, values at different times (τ = 1, 3, 5 

and 7 s/mm
2
) from each test have been used to calculate the standard deviation 

at each time.  Then these are averaged and used to estimate uncertainty by 

applying student t distribution with a sample size of three and calculating the 95% 

confidence interval: uncertainty in MLR and Ts are ± 2.2g/sm
2
 and ± 67 °C, 

respectively. 

• Assume:  

o Uncertainties are comparable to the same sample tested at various heat 

flux levels 

o Data set found above is close to the averaged curves from multiple 

identical tests under same conditions 

 

Uncertainty in Modeling Outputs 

 

• Baseline case: HF = 50 kW/m
2
, thickness = 8.7 mm 

• Sensitive parameters varied one at a time from baseline to its max and min by 

considering uncertainty 

• Uncertainty is considered for GA optimization case only using ~50 near-optimal 

parameter sets 

• Integration of uncertainty is calculated by the Law of Propagation of Uncertainty: 

uncertainty in model’s MLR, Ts, and Tb are ± 1.2g/sm2, ± 6 °C and ± 43 °C, 

respectively. 
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5.3.2.9 TG / DTG PREDICTIONS AT 10 °C/MIN HEATING RATE USING ESTIMATED 

KINETIC PARAMETERS 

 
 

Figure 5-26.  TG/DTG curves at 10°C/min heating rate with different estimation results for 

kinetic parameters for thermal decomposition of fire retarded-FRP composite: testing of resin 

with additive sample (~10mg) with nitrogen purge 

5.3.2.10 COMPARISON BETWEEN DATA AND COMPUTED-MODELING OUTPUTS 

• Modeling is conducted for case with HF = 46 kW/m
2
, thickness = 29 mm  

 

Table 5-17.  Comparison between experiment data from cone calorimeter test and modeling 

outputs using estimated parameter values using numerical optimization (GA, SCE, SHC) 

 Data GA(avg) GA(best) SCE SHC 

Peak MLR (g/m
2
s) 27 ± 31 10.7 ± 1.2 11.4 10.6 12.4 

Avg MLR (g/m
2
s) 5.8 ± 1.6 6.3 ± 1.2 6.1 6.2 8.1 

t to pMLR (s) 200 ± 70 196 189 189 196 

Ts at τ = 1 s/mm
2
 (°c) 341 ± 54 336 ± 6 327 339 326 

Ts at τ = 3 s/mm
2
 (°c) 541 ± 100 496 ± 6 515 519 450 

Ts at τ = 5 s/mm
2
 (°c) 632 ± 9 583 ± 6 607 611 517 

Tb at τ = 1 s/mm
2
 (°c) 101 ± 14 111 ± 43 117 91 133 

Tb at τ = 3 s/mm
2
 (°c) 240 ± 23 274 ± 43 276 265 289 

Tb at τ = 5 s/mm
2
 (°c) 299 ± 25 302 ± 43 302 302 330 
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5.3.2.11 MODELING OUTPUT: MASS-LOSS RATE (MLR) 

• Case used in optimization process  

 
Figure 5-27.  Mass-loss rate (MLR) comparisons for FRP composite with modified acrylic resin 

with high-charring inorganic additive between actual MLR from experiment (data) and 

modeled MLR (GA, SCE, SHC) at applied heat flux of 50 kW/m
2
.  Note that data shown were 

used to estimate model-parameter values via numerical optimization using GA, SCE, or SHC 

routines. 
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• Extrapolation 

 

 
 

Figure 5-28.  Mass-loss rate (MLR) comparisons for FRP composite with modified acrylic resin 

with high-charring inorganic additive between actual MLR from experiment (data) and 

modeled MLR (GA, SCE, SHC) at applied heat flux of (a) 25 and (b) 75 kW/m
2
.  Note that data 

shown were not included in the model-parameter-estimation process; hence, these two cases 

are considered as extrapolation cases.  
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5.3.2.12 MODELING OUTPUT: SURFACE TEMPERATURE (TSURF) 

• Case used in optimization process  

 
Figure 5-29.  Surface-temperature (Tsurf) comparisons for FRP composite with modified-acrylic 

resin with high-charring inorganic additive between actual Tsurf from experiment (data) and 

modeled Tsurf (GA, SCE, SHC) at applied heat flux of 50 kW/m
2
.  Note that data shown were 

used to estimate model-parameter values via numerical optimization using GA, SCE, or SHC 

routines. 
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• Extrapolation 

 

 
 

Figure 5-30.  Surface-temperature (Tsurf) comparisons for FRP Composite with modified acrylic 

resin with high-charring inorganic additive between actual Tsurf from experiment (data) and 

modeled Tsurf (GA, SCE, SHC) at applied heat flux of (a) 25 and (b) 75 kW/m
2
.  Note that data 

shown were not included in the model-parameter-estimation process; hence, these two cases 

are considered as extrapolation cases.  
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5.3.2.13 MODELING OUTPUT: BACK SURFACE TEMPERATURE (TBACK) 

• Case used in optimization process  

 
Figure 5-31.  Back-surface-temperature (Tback) comparisons for FRP composite with modified-

acrylic resin with high-charring inorganic additive between actual Tback from experiment (data) 

and modeled Tback (GA, SCE, SHC) at applied heat flux of 50 kW/m
2
.  Note that data shown 

were used to estimate model-parameter values via numerical optimization using GA, SCE, or 

SHC routines. 
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• Extrapolation 

 

 
 

Figure 5-32.  Back-surface-temperature (Tback) comparisons for FRP composite with modified 

acrylic resin with high-charring inorganic additive between actual Tback from experiment (data) 

and modeled Tback (GA, SCE, SHC) at applied heat flux of (a) 25 and (b) 75 kW/m
2
.  Note that 

data shown were not included in the model-parameter-estimation process; hence, these two 

cases are considered as extrapolation cases.  

 

  

0

300

600

900

0 200 400 600 800 1000

T
e

m
p

 (
d

e
g

C
)

(a)

data
GA(avg)
GA(best)
SCE
SHC

0

300

600

900

0 200 400 600 800 1000

T
e

m
p

 (
d

e
g

C
)

time (s)

(b)

data
GA(avg)
GA(best)
SCE
SHC



Section 5 - 194 

 

5.3.3 Commentary 
 

GENERAL COMMENTS  

• TG/DTG 

o Good agreement between simulated TG/DTG thermograms and those of 

actual from TGA experiment is shown when thermal decomposition 

kinetics is modeled using multiple heating rate data.  

o Proposed kinetic model does not account for minor mass loss at relatively 

lower and higher temperature range. 

• Comparison between Data and Computed Modeling Outputs 

o Modeled peak MLRs are all in quantitative agreement with data 

considering its uncertainty. 

o Avg MLRs of modeling are in good agreement with data except for that of 

SHC 

o Modeled time to peak MLRs are all in quantitative agreement with data 

o Modeled surface temperatures at earlier time (τ = 1 s/mm
2
) show good 

agreement with data while at later times (τ = 3 and 5 s/mm
2
) modeling 

results deviates from experiment results; however, considering that there 

is flame interfering with data collection from surface thermocouple, 

uncertainty in data should probably be larger.   

o Modeled back-surface temperatures at different times from GA(avg) 

show good agreement with data considering the modeling uncertainty.  

Those from GA(best), SCE and SHC are  off by ~ 10 °C from experiment 

results.  

• MLR 

o Optimization at HF = 50 kW/m
2
: Generally good agreement exists 

between experiment data and all modeling results considering the trend, 

except for that of SHC indicating that optimization of SHC was close to 

being unsuccessful.   

o Extrapolation at HF = 25 kW/m
2
: Good agreement exists between 

experiment data and all modeling results.  All of the modeling cases are 

able to capture the slow increase in mass-loss rate in the earlier times 

after exposure to heating source and a jump near 1000 s due to ignition. 

o Extrapolation at HF = 75 kW/m
2
: Good agreement exists between 

experiment data and all modeling results, except for SHC case.  SHC’s 

prediction is slightly higher than data and predictions from other cases; 

however, considering the uncertainty in the data, this falls within the 

acceptable bounds.  

• Surface Temperature 

o Optimization at HF = 50 kW/m
2
: Generally good agreement exists 

between experiment data and all modeling results considering the trend, 

even for that of SHC.  Note that after ignition (post-ignition stage) the 

flame interferes with data reading of thermocouple on surface. 
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o Extrapolation at HF = 25 kW/m
2
: Good agreement exists between 

experiment data and all modeling results.   

o Extrapolation at HF = 75 kW/m
2
: Good agreement exists between 

experiment data and all modeling results, except for SHC case. 

 

LIMITATION IN MODELING 

• When considering limitation of the parameters in modeling this fire-retarded 

FRP composite, the modeler should take into account the applicability of the 

parameters and their associated uncertainties.  For example, any assumptions 

used when determining a parameter value via experiment direct or indirect 

measurements can be utilized to understand when the parameter value 

becomes inappropriate.  For this example, most consideration can be given to 

the parameters related to decomposition kinetics.  One should be cautious that 

these findings can cause this FRP composite to behave differently under 

changing conditions, which were not included in the parameter-estimation 

process. 

• First, the reaction-order-type kinetic model can be used to fit the DTG data with 

some degree of satisfaction for all reactions (see +A-R and R).  However, the 

estimated reaction order is high as 5 for +A-R reaction.  This indicates that the 

model is forced to fit the data, knowing that the reaction order in this magnitude 

is rare to find in the literatures.  Also, the DSC data confirms that the reaction- 

order-type model was inappropriate for +A-R as well.  Although the model is 

giving high correlation coefficients between the data and modeling for +A-R 

reaction, the DSC data show that +A-R should exist from 200°C and end before 

400°C, where a strong endotherm is observed.  When the data is fit with a 

reaction-order-type kinetic model, the additive decomposition temperature 

range extends beyond 400°C, ending near 600°C.  

• Second, the decomposition of the additive reaction is best described by a kinetic 

model that describes a diffusion-controlled reaction (Jander’s type model).  The 

model type is reasonable considering that the model simulates the weight loss to 

be slow initially with respect to temperature increase and decays relatively fast 

after the weight-loss rate peak. This modeling becomes suitable for an additive 

decomposing within a resin-polymer system resulting in a time delay due to the 

time necessary to degrade the polymer near the additive.  Consider the additive 

being mixed within the resin polymer.  For the additive to undergo a 

decomposition reaction, the degradation of the resin polymer should occur 

simultaneously, because the additive is aggregated within the resin.  Having the 

additive decomposition temperature lower than that of the resin, the 

decomposition of the additive is delayed until the temperature is higher to allow 

the resin to decompose.  When this model is actually applied, it provides good 

estimate of the slow weight loss at the initial stage near 200°C and the 

temperature range for the entire reaction. Additionally, when this model is used, 
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the modeling results for weight-loss rate after 300°C matches well with the 

actual DTG data together with R reaction described with a reaction-order-type 

kinetic model. 

• Third, although kinetic modeling has been conducted to give best fitness 

between the modeling and the DTG data obtained over various heating rates (5 

to 60°C/min), assuming that the kinetics are identical irrespective of heating 

rates, changes in the kinetic over four heating rates have been noticed.  At lower 

heating rates, the portion of the sample weight consumed via R_residue 

oxidation increases where at higher heating rates it decreases.  This can be 

explained by understanding that the R_residue oxidation reaction is controlled 

by oxygen diffusion from the ambient to the condense phase.  At a low heating 

rate, more time is available for oxygen diffusion with respect to temperature 

change, allowing an increase in the weight loss due to oxidation.  However, when 

the heating rate is higher, the conditions become the opposite and pyrolysis 

reaction (R) dominates. The fitness of the model to DTG data increases when this 

effect is accounted for in the modeling. 
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Example 5.4 Modeling Plywood 

5.4.1 Model Parameter Table 

Parameter Unit 
Comparable Non-optimization and Manual 

Optimization 

T
h

e
rm

o
-p

h
y

si
ca

l 
P

ro
p

e
rt

y 

i = 1 

(water) 

iρ
 kg/m

3

 

1000 

Reference
57

 

ik  W/m-K 
0.6 

Reference
57

 

ic  J/kg-K 
4200 

Reference
57

 

i = 2 

(dry_wood) 

iρ
 kg/m

3

 

504 ± 10 

Measurement 

ik  W/m-K 

0.26 

Manual Optimization with Initial Guess of 0.122 

Measured at 20 °C (dry_wood, ASTM 

C518/E1225) 

ic  J/kg-K 

2400 

Manual Optimization with Initial Guess of 1200 

Measured at 20 °C (dry_wood, ASTM E1269) 

i = 3 

(char) 

iρ
 kg/m

3

 

173 

Measurement 

ik  W/m-K 

0.12 

Manual Optimization with Initial Guess of 0.122 

Measured at 20 °C (dry_wood, ASTM 

C518/E1225) 

ic  J/kg-K 

3700 

Manual Optimization with Initial Guess of 1200 

Measured at 20 °C (dry_wood, ASTM E1269) 

O
p

ti
ca

l P
ro

p
e

rt
y 

i = 1 

(water) iε  - 
1.00 

Approximated 

i = 2 

(dry_wood) 

iκ  /m 
10

6
 

Approximated as opaque 

iε  - 
0.891 ± 0.018 

Measurement, ASTM E903 

i = 3 

(char) 

iκ  /m 
10

6
 

Approximated as opaque 

iε  - 
1.00 

Approximated 

K
in

e
ti

cs
 a

n
d

 

H
e

a
ts

 

k = 1 

water � vap↑ 

kn  - 5.0 Model Fitting with 

Multiple Heating Rate 

TGA Data 
kZ  /s 2.5 x 10

12
 

kE  J/mol 83 x 10
4
 

kH∆  kJ/kg 
2500 ± 800 (30%) 

Measurement, DSC 
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k = 2 

dry_wood � 

char + vap↑ 

kn  - 1.7 Model Fitting with 

Multiple-Heating-Rate 

TGA Data 
kZ  /s 5.0 x 10

16
 

kE  J/mol 2.10 x 10
5
 

kH∆  kJ/kg 
631 

Manual Optimization 

Model-Dependent 

Parameter 

ϒ 

(i=3) 
m 

0.0036 

Manual Optimization 

 

5.4.2 Validation 

5.4.2.1 MODELING GOAL 

Estimate model parameters for conducting modeling of pyrolysis of plywood under 

various heating rates – heat-flux levels ranging from 25 kW/m
2
 to 75kW/m

2
. 

 

5.4.2.2 MODEL TYPE 

GPYRO 

 

5.4.2.3 MODELING APPROACH 

• Instantaneous release of volatiles from solid to the gas phase 

• Local thermal equilibrium between the solid and the volatiles 

• No condensation of gaseous products 

• No porosity effects 

• When conducting the GPYRO simulation for the cone calorimeter set-up, metal 

edge frame will be ignored and backing is insulated.  The ignition phenomenon is 

interpreted as the following in the simulations: at a known time-of-ignition (from 

experiment data), additional heat flux of 20 kW/m2 is applied to the surface to 

simulate heat flux from the flame.  This value is estimated from a measurement 

from this material pyrolyzing in the cone with a total-heat-flux gauge measuring 

heat flux impinging on the sample surface.  Figure 5-33 shows the total-heat-flux 

measurement from sample surface (test conducted at 50 kW/m2 applied heat 

flux).  From the time-of-ignition (τ ~ 0.1 s/mm2) an increase above the 50 

kW/m2 line in measured heat flux is observed due to flame.  The oscillation in 

data in the time interval of ignition to τ = 1 s/mm2 is an artifact due to water 

evaporation, which had condensed near the water-cooled heat-flux gauge. 

 



Section 5 - 199 

 

 
Figure 5-33.  Total heat flux measured from sample surface during  

cone calorimeter test 

• For the back surface, an additional layer of insulation with known properties is 

modeled to simulate some heat loss through the back.  The contact resistance 

(hcrz) between the FRP composite and the insulation is estimated as roughly 10 

W/m2K and that of insulation layer and ambient as 1 W/m2K. 

• In addition to the parameters introduced in the previous section (see parameter 

table), the model (GPYRO) has a coefficient (γ, GAMMA) that is used to model 

radiative heat transfer through the pores.  This parameter with T3 is a model 

dependent parameter that is added as another term in the effective thermal 

conductivity.  γ is used for porous fiberglass and decomposed solid species, 

which results in a more porous state due to the weight loss; therefore, more 

radiative heat transfer through the gas phase pores, i.e., for condense phase 

specie i = 2 (char). 

 

5.4.2.4 EXPERIMENT DESCRIPTION 

Cone Calorimeter Test 
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5.4.2.5 DATA SET 

• Cone calorimeter (cone) test data of plywood (thickness, δ is 11.1 ± 0.1 mm, 

density, ρ is 540 ± 10 kg/m
3
) impinged with effective heat fluxes (EHF) of 25 to 

75 kW/m
2
 is obtained and are shown below for mass-loss rate (MLR), surface 

and back face temperature measurements (see Figure 5-34): 

 

 

 
Figure 5-34.  Cone calorimeter (cone) test data of plywood (thickness, δ is 11.1 ± 0.1 mm, 

density, ρ is 540 ± 10 kg/m
3
) impinged with effective heat fluxes (EHF) of 25 to 75 kW/m

2
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5.4.2.6 OPTIMIZATION TARGETS 

Mass-loss rate (MLR), surface (Ts), and back (Tb) surface temperature data with 

plywood sample from cone calorimeter test at HF = 50 kW/m
2
 

 

5.4.2.7 SENSITIVE PARAMETERS 

• iε , 2=iρ , kH∆  

• Kinetic parameters are considered to be certain in this example case. 

 

5.4.2.8 UNCERTAINTY 

Uncertainty in Experiment Data 

 

• Data is acquired from two repeating cone tests of plywood under 50 kW/m2 

heat flux level.  

• The uncertainties in the MLR and thermocouple measurements at front surface 

were quantified by comparing data from these two identical FRP composite tests.  

Note that the effect of different sample thicknesses was considered to be 

negligible for sample thicknesses in two tests were 11.1 and 11.2 mm.  Because 

the data is transient, the standard deviation at each time step was calculated.  

Then these are averaged and multiplied by 2 to estimate uncertainty: 

uncertainty in MLR, Ts and Tb are ± 3.4g/sm2, ± 54 °C and ± 27 °C, respectively. 

• Assume:  

o Uncertainties are comparable to the same sample tested at various heat-

flux levels 

o Data set found above is close to the averaged curves from multiple 

identical tests under same conditions 

 

Uncertainty in Modeling Outputs 

 

• Baseline case: HF = 50 kW/m
2
, thickness = 8.7 mm 

• Sensitive parameters – density of dry_wood and char, emissivity of water, 

dry_wood and char, heat-of-reaction for drying process, and thermal 

decomposition of dry_wood to char – varied one at a time from baseline to its 

max and min: ±10% of estimated value or uncertainty limits found from 

measurement experiment. 

• Kinetic parameters are considered to be certain in this example 

• Integration of uncertainty is calculated by the Law of Propagation of Uncertainty: 

uncertainty in model’s MLR, Ts and Tb are ± 7.2g/sm
2
, ± 57 °C and ± 157 °C 

respectively. 
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5.4.2.9 TG / DTG PREDICTIONS AT 20 °C/MIN HEATING RATE USING ESTIMATED 

KINETIC PARAMETERS 

 
Figure 5-35.  TG/DTG curves at 20°C/min heating rate with different estimation results for 

kinetic parameters for thermal decomposition of plywood: testing of plywood sample (~10mg) 

with air purge 

 

* Note that only the first two peaks in the DTG curve in T < 400°C have been included in 

kinetic modeling for simplification of the parameter-estimation problem.  This approach 

is considered to be reasonable, knowing that the third peak is due to char oxidation 

(confirmed by comparing thermograms from nitrogen and air-purge runs) and while 

flame exists on the surface, it is commonly accepted that char oxidation becomes 

minimal due to the oxygen-diffusion-limiting condition. 
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5.4.2.10 COMPARISON BETWEEN DATA AND COMPUTED MODELING OUTPUTS 

• Modeling is conducted for case with HF = 50 kW/m
2
, thickness = 11.2 mm 

 

Table 5-18.  Comparison between experiment data from cone calorimeter test and modeling 

outputs using estimated parameter values via measurements and manual optimization 

 

Data 

(Based on 2 tests, uncertainty as 

2 times standard deviation) 

Measurements and Manual 

Optimization 

Peak MLR (g/m2s) 19.9 ± 4.8 18.1 ± 7.2 

Avg MLR (g/m2s) 6.8 ± 0.5 6.6 ± 7.2 

t to pMLR (s) 81 ± 113 23 

Ts at 100 s (°c) 604 ± 112 628 ± 57 

Ts at 200 s (°c) 734 ± 10 670 ± 57 

Ts at 300 s (°c) 732 ± 45 689 ± 57 

Tb at 100 s (°c) 68 ± 20 56 ± 157 

Tb at 200 s (°c) 118 ± 1 185 ± 157 

Tb at 300 s (°c) 196 ± 10 291 ± 157 
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5.4.2.11 MODELING OUTPUT: MASS-LOSS RATE (MLR) 

• Case used in optimization process  

 
Figure 5-36.  Mass-loss rate (MLR) comparisons for FRP composite with plywood between 

actual MLR from experiment (data) and modeled MLR (M&M) at applied heat flux of 50 

kW/m
2
.  Note that data shown were used to estimate model-parameter values via manual 

optimization. 
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• Extrapolation 

 

 
 

Figure 5-37.  Mass-loss rate (MLR) comparisons for FRP composite with plywood between 

actual MLR from experiment (data) and modeled MLR (M&M) at applied heat flux of (a) 25 

and (b) 75 kW/m
2
.  Note that data shown were not included in the model-parameter-

estimation process; hence, these two cases are considered as extrapolation cases.  
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5.4.2.12 MODELING OUTPUT: SURFACE TEMPERATURE (TSURF) 

• Case used in optimization process  

 
Figure 5-38.  Surface-temperature (Tsurf) comparisons for plywood between actual Tsurf from 

experiment (data) and modeled Tsurf (M&M) at applied heat flux of 50 kW/m
2
.  Note that data 

shown were used to estimate model-parameter values via manual optimization. 
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• Extrapolation 

 

 
Figure 5-39.  Surface-temperature (Tsurf) comparisons for FRP composite with plywood 

between actual Tsurf from experiment (data) and modeled Tsurf (M&M) at applied heat flux of 

(a) 25 and (b) 75 kW/m
2
.  Note that data shown were not included in the model-parameter-

estimation process; hence, these two cases are considered as extrapolation cases.  
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5.4.2.13 MODELING OUTPUT: BACK-SURFACE TEMPERATURE (TBACK) 

• Case used in optimization process  

 
Figure 5-40.  Back-surface-temperature (Tback) comparisons for plywood between actual Tback 

from experiment (data) and modeled Tback (M&M) at applied heat flux of 50 kW/m
2
.  Note that 

data shown were used to estimate model-parameter values via manual optimization. 

  

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

T
e

m
p

 (
d

e
g

C
)

time (s)

data

M&M



Section 5 - 209 

 

• Extrapolation 

 

 
Figure 5-41.  Back-surface-temperature (Tback) comparisons for plywood between actual Tback 

from experiment (data) and modeled Tback (M&M) at applied heat flux of (a) 25 and (b) 75 

kW/m
2
.  Note that data shown were not included in the model-parameter-estimation process; 

hence, these two cases are considered as extrapolation cases.  
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5.4.3 Commentary 
 

GENERAL COMMENTS  

• TG/DTG 

o Good agreement between simulated TG/DTG thermograms and those of 

actual from TGA experiment is shown when thermal decomposition 

kinetics is modeled using multiple heating-rate data.  

o Proposed kinetic model does not account for mass loss due to char 

oxidation at relatively higher temperature range (T > 400°C). 

• Comparison between Data and Computed Modeling Outputs 

o Modeled peak MLR, Avg MLR, time to peak MLR, and Ts and Tb at various 

times are all in quantitative agreement with data, considering its 

uncertainty. 

• MLR 

o Optimization at HF = 50 kW/m
2
: Generally good agreement exists 

between experiment data and all modeling results, considering the trend.  

Some deviation of modeling results from data is shown at later times, 

where the second peak is observed in the MLR curve.  Near this region, 

bending of the sample toward the front surface occurs with respect to a 

rapid temperature increase throughout the back surface.  This 

phenomenon is strictly a 3D behavior, which is not explicitly accounted 

for in current 1D model.  Additionally, mass loss due to minor char 

oxidation at this region is speculated, for flame height becomes smaller 

and bending of sample may allow an ease to oxygen diffusion to solid 

phase. 

o Extrapolation at HF = 25 kW/m
2
: Good agreement exists between 

experiment data and modeling results.  Modeling is able to capture the 

initial mass-loss rate peak followed by a decrease qualitatively and 

quantitatively. A qualitative agreement between data and modeling 

results exists for the second mass-loss rate peak; however, actual sample 

in cone testing extends for a longer period of time (~100 s), while in 

modeling burn out time occurs earlier.  This is probably due to excluding 

char oxidation in kinetic modeling.   

o Extrapolation at HF = 75 kW/m
2
: Good agreement exists between 

experiment data and modeling results, except for the second peak in 

mass-loss rate curve.  See above for discussion. 

• Surface Temperature 

o Optimization at HF = 50 kW/m
2
: Generally good agreement exists 

between experiment data and modeling results, considering the trend.  

Note that after ignition (post-ignition stage) the flame interferes with 

data reading of thermocouple on surface. 

o Extrapolation at HF = 25 kW/m
2
: Good agreement exists between 

experiment data and modeling results.   
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o Extrapolation at HF = 75 kW/m
2
: Good agreement exists between 

experiment data and modeling results. 

 

LIMITATION IN MODELING 

• When considering limitation of the parameters in modeling this plywood, the 

modeler should take into account the applicability of the parameters and their 

associated uncertainties.  For example, any assumptions used when determining 

a parameter value via experiment direct or indirect measurements can be 

utilized to understand when the parameter value becomes inappropriate.  For 

this example, most consideration can be given to the parameters related to 

decomposition kinetics.  One should be cautious that these findings can cause 

this FRP composite to behave differently under changing conditions, which were 

not included in the parameter-estimation process. 

• In this example, drying is simplified as a heterogeneous reaction (i.e., an 

Arrhenius law temperature-dependent evaporation rate), which occurs near 

100 °C based on TGA experiment results.  However, water evaporation from a 

wet wood is governed by transport phenomena of liquid-phase water and vapor 

diffusion.  Additionally, typically the water travels toward the back surface 

during heating and re-condensation may occur, allowing the back surface to be 

colder.  This phenomenon will not be captured in this modeling. 

• Any char oxidation has been considered to be minimal in this example, 

considering that with a flame sheet on material surface, oxygen diffusion 

becomes limited.  However, when analyzing the cone calorimeter results, some 

oxidation is speculated, for the sample loses ~4 to 6% more of the initial sample 

weight comparing to TGA experiment. 
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Chapter 6–Conclusions 

As an effort to create input data for fire models in a consistent manner and allow 

for compilation of accepted model input databases for various materials, a Guide for 

estimating material pyrolysis properties for fire modeling has been developed.  The 

Guide provides standardized procedures for obtaining fire-model-input parameters related 

to the thermal decomposition of materials.  Considering that these unknowns are 

dependent on the certain pyrolysis model of choice, this Guide describes a method to 

determine model type to be used for a material of interest (Chapter 2) followed by 

parameter-estimation procedures for three types of pyrolysis models: empirical (Chapter 

3), simple analytical (Chapter 4), and comprehensive (Chapter 5) pyrolysis models.   

Each chapter was designed to describe the pyrolysis-model type by presenting the 

modeling approach and assumptions used with its mathematical formulation identifying 

the model parameters to be obtained.  This was followed by methods of estimating the 

unknown parameters via independent experiments for measurements or numerically 

using optimization routines.  At the end, example cases are included for better 

understanding of the procedure discussed previously.  For each example in the three 

chapters – Chapter 3, 4, and 5 – detailed problem solutions are given in the appendices. 
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Appendix A - Uncertainty Analysis 

The objective of a measurement is to determine the value of the measurand, i.e., 

the physical quantity that needs to be measured.  The value of the measurand is generally 

not obtained from a direct measurement, but is determined as a function (f) from N input 

quantities X�, X�, … , X� (see Eq.A(A)-1): Y = f
X�, X�, … , X�� Eq.A(A)-1 

where 

 Y = true value of the measurand; 

 f = functional relationship between measurand and input quantities; and 

 X� = true values of the input quantities (i = 1 … N). 

The input quantities may be categorized as: 

• quantities whose values and uncertainties are directly determined from single 

or repeated observation; or 

• quantities whose values and uncertainties are brought into the measurement 

from external sources, such as reference data obtained from handbooks. 

An estimate of the value of the measurand, y, is obtained from Eq.A(A)-1 using input 

estimates x�, x�, … , x� for the values of the N input quantities (see Eq.A(A)-2):  y = f
x�, x�, … , x�� Eq.A(A)-2 

The standard uncertainty of y is obtained by appropriately combining the standard 

uncertainties of the input estimates x�, x�, … , x�.  If all input quantities are independent, 
the combined standard uncertainty of y is given by Eq.A(A)-3: 

u�
y� = �� � ∂f∂X�����
� u�
x���

��� ≡ ���c�u
x�����
���  Eq.A(A)-3 

where 

 u = standard uncertainty; 

 u� = combined standard uncertainty; and 

 c�, = sensitivity coefficients. 
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Eq.A(A)-3 is referred to as the law of propagation of uncertainty
1,2
 and based on a 

first-order Taylor series approximation of Y = f
X�, X�, … , X��.  When the nonlinearity of 

f is significant, higher-order terms must be included.  When the input quantities are 

correlated, Eq.A(A)-3 must be revised to include the covariance terms.  The combined 

standard uncertainty of y is then calculated from Eq.A(A)-4: 

u�
y� = ���c�u
x�����
��� + 2 � � c�c u
x��u!x "r!x�, x "�

 ��$�
�%�
���  Eq.A(A)-4 

Where 

 r!x�, x " = estimated correlation coefficient between X� and X� . 
Since the values of the input quantities are not known, the correlation coefficient 

is estimated on the basis of the measured values of the input quantities.  The combined 

standard uncertainty in Eq.A(A)-3 and Eq.A(A)-4 is usually multiplied by a coverage 

factor to raise the confidence level, to obtain the “expanded” uncertainty.  A multiplier of 

2 is often used, which corresponds to a confidence level of approximately 95%. 

The standard uncertainty of an input estimate x� is obtained from the distribution 

of possible values of the input quantity X�.  There are two types of evaluations depending 
on how the distribution of possible values is obtained: Type A and Type B 

 

TYPE A UNCERTAINTY 

Type A uncertainty is also known as aleatory, stochastic, variability and 

irreducible uncertainty.  This uncertainty is characterized by inherent randomness, which 

cannot be reduced further.  Typically, Type A uncertainty is modeled with a probability 

distribution projected with repeated data acquisition, i.e., evaluation of this standard 

uncertainty of x� is based on the frequency distribution, which is estimated from a series 

of n repeated observations x�,&  (k = 1 … n).  See Eq.A(A)-5:  

u
x�� ≈ (s�
x*+� = ,s�
x*+�n = ,. !x�,& − x*+"�0&��n
n − 1�  Eq.A(A)-5 
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TYPE B UNCERTAINTY 

Type B uncertainty
3
 is also known as the state-of-knowledge uncertainty, 

subjective uncertainty, or reducible uncertainty.  This uncertainty is characterized by the 

degree of understanding of the given problem, which is not directly based on repeated 

measurements.  In this case the uncertainty is determined from previous measurements, 

experience or general knowledge, manufacturer specifications, data provided in 

calibration certificates, uncertainties assigned to reference data taken from handbooks, 

etc.  Type B uncertainty can be reduced by increasing the understanding of the problem 

by collecting relevant data. 

An example of taking into account for Type B uncertainty is considering the 

effect of different ignition scenarios in pyrolysis modeling using Empirical Models (see 

Chapter 3).  To consider this effect, the modeler may conduct a series of experiments 

using different ignition scenarios that are plausible.  Then modeler can decide to conduct 

modeling with the most sever scenario that may have a small but non-negligible 

probability of occurrence.  
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Appendix B - Example Solutions for Chapter 3 

EXAMPLE 3.1 MODELING SOFA 

Obtain Parameters via Experiment 

Run model 

SELECT MODEL: EMPIRICAL USING FULL-SCALE CALORIMETER DATA 

UNDERSTAND EXPERIMENT  

A furniture calorimeter typically consists of a weighing platform placed on the 

floor of the laboratory beneath a hood connected to an instrumented exhaust duct (see 

Figure A(B)-1).  The specimen is placed on the platform and ignited with the specified 

ignition source.  The products of combustion are collected in the hood and extracted 

through the exhaust duct.  Measurements of the concentration of oxygen (and typically 

also carbon dioxide and carbon monoxide), flow rate (from bidirectional probe and 

thermocouple measurements) and light transmission in the exhaust duct are used to 

determine heat release and smoke-production rate as a function of time. 

Figure A(B)-1.  Schematic of a furniture calorimeter 
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Furniture calorimeters were initially developed in the 1980s.  These calorimeters 

have since been used to obtain heat-release rate and related data for a wide range of other 

types of combustibles.
30

 

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is 

o Inert: decomposition before ignition is neglected 

o Always the same as in furniture calorimeter test  

• Ignition scenario is the same as in furniture calorimeter experiment: time-

to-ignition is the same in modeling as determined in experiment  

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to 

gas phase: typically an area is specified that can be correlated to 

the actual burning object where energy is released to the gas 

phase 

o Considered to be the same as in furniture calorimeter test in terms 

of heat-release rate or mass-loss rate  

ACQUIRE DATA SETS THAT CAN REPRESENT BURNING BEHAVIOR OF INTEREST 

Experiment data of a single seat sofa mockup is found for pyrolysis modeling 

using Empirical Model.  This sofa mockup was burnt under a hood of a furniture 

calorimeter.  The mockup consisted of a steel frame with untreated polyurethane foam 

cushions (80% of the combustible mass) and a cotton fabric (20% of the combustible 

mass).  Total combustible mass was 3.93 kg.  The test was performed according to ASTM 

E 1537 and CAL TB 133.  The ignition source consisted of a 0.25 m square tubular 

propane burner producing a 19 kW flame for 80 seconds applied to the top of the seat 

cushion. 
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ESTIMATE UNKNOWNS 

1. Time-to-Ignition 

Time-to-ignition of the furniture is found from the experiment procedure, where a 

propane burner producing a 19 kW flame is placed to the furniture for 80 sec. in the 

initial phase of the test.   

2. HRR  

To check repeatability of the data, four identical tests of the same sofa mockup 

have been conducted (see Figure A(B)-2).  Using these data, an average heat-release rate 

is calculated at each time step and will be used as an input for pyrolysis modeling with 

Empirical Model for burning objects.  

 

Figure A(B)-2.  HRR curve from furniture calorimeter experiment of 4 identical tests of the 

same sofa mockup 

  

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800

H
R

R
 (

k
W

)

time (min)

avgHRR

Test 1
Test 2
Test 3

Test 4



Section 5 - 223 

Obtain Uncertainty for Estimated Parameters 

Because time-to-ignition is directly given from the experiment procedure, this 

parameter can be considered as certain.  For the uncertainty in HRR, uncertainty analysis 

is conducted based on above four data sets.  The uncertainty of HRR is estimated by first 

calculating the confidence interval for 95% confidence level (α = 0.05), assuming student 

t distribution with a sample size of three (four data sets) at each time step.  Then an 

average confidence interval is calculated for the time interval of interest (0 < t < 800 

min), which results in ± 20.4 kW.     

 

Validation and Commentary 

When using Empirical Model to simulate pyrolysis of a sofa, furniture-

calorimeter test data has been utilized to estimate the time-to-ignition from exposure to a 

propane burner and the energy released from burning.  As noted in the Understanding 

Model section of the chapter, this approach is limited as follows in terms of the 

conditions being comparable to those found in the fire scenario on interest: 

• Ignition scenario and exposure conditions 

A basic assumption used in empirical models is that the ignition scenario and 

exposure conditions in the fire are comparable to those used in the laboratory.  Therefore, 

any changes made in the ignition scenario and exposure conditions have to be accounted 

for by the model user when applying the data to empirical models.  The furniture-

calorimeter experiment in this example is conducted under certain conditions: ignition is 

achieved by applying propane flame on the horizontal surface (seating cushion) for 80 s 

and sufficient supply of air is provided throughout its burning phase.  To illustrate the 

effect of altering the conditions in HRR curves, two other HRR curves are shown below: 

o Effect of ignition source strength:  

Two identical single-seat sofas were obtained for testing (see Figure A(B)-3).  

In the first test the sofa was ignited with a 45 W butane gas flame applied to 

the center of the seat cushion for 20 s.  In the second test 59 ml (2 oz) of 

gasoline was poured on the seat cushion to simulate an incendiary fire.  The 

resulting heat-release-rate measurements are shown below.  In this case the 

use of the weaker ignition source delays the propagation to full involvement 
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by approximately 170 s.  For this case the effect of ignition-source strength 

can relatively easily be accounted for, although in practice it may not be trivial 

to determine the exact time period over which to shift the HRR curve.  The 

effect can be much more pronounced when the source strength is close to the 

level needed to obtain sustained burning. 

 

 

Figure A(B)-3.  Effect of ignition source strength: single-seat sofas tested in furniture-

calorimeter test with different ignition source – ignition with 59 mL gasoline poured (����) or 

with 45 W butane gas flame (����) 

o Effect of ignition location: 

Two tests were conducted on a steel-framed-seat sofa mockup according to 

the same procedure and using the same padding and fabric as in the tests 

described in this example case (see Figure A(B)-4).  In the first test the burner 

flame was applied to the seat cushion on the right side.  In the second test the 

burner was applied to the center seat cushion.  The resulting HRR 

measurements are compared in Figure A(B)-4.  In the first test the flames 

spread from the right side to the left side.  When the flames reached the 

armrest on the left side, part of the material on the right side had already been 

consumed.  This resulted in a relatively steady HRR that peaked slightly 

above 400 kW.  In the second test the flames spread in two directions.  As a 

result, the heat rate continuously increased until the two armrests ignited and a 
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peak heat-release rate of close to 1 MW was reached.  This case illustrates that 

a seemingly small difference in the ignition scenario can have a surprisingly 

dramatic effect on fire growth. 

 

Figure A(B)-4.  Effect of ignition location: steel-framed-seat sofa mockups tested in furniture-

calorimeter test with different ignition location – ignition on center seat cushion (����) or seat 

cushion on right side (����) 

• Heat and mass transfer 

This is a multi-dimensional problem, and the dimensional effect is implicitly 

addressed in modeling by a single parameter – HRR or MLR and effective heat of 

combustion.  
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EXAMPLE 3.2 MODELING PMMA 

Obtain Parameters via Experiment 

Run model 

SELECT MODEL: EMPIRICAL USING BENCH-SCALE CALORIMETER DATA 

UNDERSTAND EXPERIMENT 

 
Figure A(B)-5.  Simplified representation of a cone calorimeter test of PMMA 

A simplified representation of a cone calorimeter test of PMMA is shown in 

Figure A(B)-5.  The sample is placed on top of an insulation, which sits on a metal 

holder.  Another metal frame is placed on top of the sample, insulation, and the holder.  A 

metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on the sample surface (large red arrow), cooling also begins 

via natural convection (blue arrows) and re-radiation.  The surface decomposes with 

bubbling with respect to temperature increase occurring through heat conduction and/or 

in-depth radiative transport.  The pyrolyzates leave through the surface until complete 

burn-off because this material leaves no residue.  When ignition occurs as the fuel vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 
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flux from the flame is introduced on the surface (red arrows).  Regression of the sample 

surface with respect to consumption of PMMA in pyrolysis occurs.     

Back surface:  The sample is placed on top of insulation.  In the experiment, air 

gap of few millimeters thickness exist between the sample and the insulation due to 

thermal contact.  Due to the insulation, nothing leaves through the back face when 1D 

assumption holds for the experiment.      

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is 

o Inert: decomposition with bubbling before ignition is neglected 

o Always the same as in cone calorimeter test with a specified heat 

flux  impinging on material’s surface (typically ~50 kW/m
2
 is 

used) 

• Ignition phenomenon is the same as in cone calorimeter experiment: time- 

to-ignition is the same in modeling as determined in experiment  

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to 

gas phase: bubbling layer is neglected and is considered as a 

surface phenomena 

o Considered to be the same as in cone calorimeter test in terms of 

heat release rate or mass-loss rate per unit area 

ACQUIRE DATA SETS THAT CAN REPRESENT BURNING BEHAVIOR OF INTEREST 

Cone calorimeter test data of black PMMA with thickness of 18 mm, density of 

1170 kg/m
3
, and applied heat flux of 50 kW/m

2
 is found.   
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ESTIMATE UNKNOWNS 

1. Time-to-Ignition 

tig = 22 s after exposure to heating  

2. MLR and Effective HoC 

 

Figure A(B)-6.  MLR curve from cone calorimeter experiment of PMMA 

MLR curve with effective heat of combustion calculated from a cone experiment 

will be used directly (see Figure A(B)-6).  This MLR data is from a PMMA test at 

50kW/m
2
 with sample thickness of 18 mm.  The MLR profile changes with respect to the 

burning history of the sample.    From time-of-ignition, initial steady-state-burning phase 

occurs.  Then, near t = 400 s after exposure to heating, second steady-state-burning phase 

is reached, which has a slightly higher mass-loss rate than the initial phase, possibly due 

to the thermal wave penetrating to the back surface and increasing heating.  At the end of 

the test, a mass-loss rate peak is observed.  This is probably due to the rapid heating of 

thin layer of residual PMMA.  Understanding the MLR profile enables modelers to adjust 

the curve when using it as an input to a pyrolysis model if needed.  For example, the 

modeler may decide to only use data from time-to-ignition up to the initial steady-state 

burning phase if PMMA involved in a fire scenario of interest has a thickness greater 

than what has been used in the experiment (18 mm).  

Effective heat-of-combustion is calculated from the heat-release rate and mass-

loss rate data at every measurement, as discussed in Model Parameter Measurement 
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Methods.  The average with its confidence interval with 95% confidence is: 24.8 ± 0.1 

kJ/g.  Note that this average and confidence interval has been obtained for the steady-

burning phases only due to significant changes in effective heat-of-combustion values 

near ignition and burn-off periods at the start and the end of testing, respectively. 

 

Obtain Uncertainty for Estimated Parameters 

For estimating the uncertainty in parameters, experimental uncertainty can be 

used, as the parameters are obtained from data directly.  From the experiment work done 

by Beaulieu and Dembsey
1
 on thermally-thick-behaving black PMMA using AFM 

apparatus, the experiment uncertainty in time-to-ignition and mass-loss rate at steady 

burning were determined as ± 2 s and ± 3 g/m
2
s, respectively.  The test results were 

compared with other literature values using different apparatuses, such as cone 

calorimeter as well, which were considered as consistent.  This uncertainty information 

will be used when comparing modeling output to experiment data. 

  

Validation and Commentary 

When using Empirical Model to simulate pyrolysis of PMMA, PMMA test data 

from a bench-scale cone calorimeter experiment at a set heat-flux level has been utilized 

to estimate the time-to-ignition from exposure to heating and the energy released from 

burning of PMMA.  As noted in the Uncertainty part of the chapter, this approach is 

limited as follows in terms of the conditions being comparable to those found in the fire 

scenario of interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating PMMA with a set 

heat flux impinging on the front surface where this applied heat-flux level during 

testing is assumed to be representative average (over space and time) for the fire 

scenario that is being modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed 

surface 



Section 5 - 230 

• Surface burning data: edge effects in material testing are not included; therefore, 

data per unit area can be applied to simulate larger areas by simply multiplying 

the material surface area involved in fire 
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EXAMPLE 3.3 MODELING CORRUGATED CARDBOARD 

Obtain Parameters via Experiment 

Run model 

SELECT MODEL: EMPIRICAL USING BENCH-SCALE CALORIMETER DATA 

UNDERSTAND EXPERIMENT 

 
Figure A(B)-7.  Simplified representation of a cone calorimeter test of corrugated cardboard 

A simplified representation of a cone calorimeter test of triple-layered corrugated 

cardboard is shown above (see Figure A(B)-7).  The sample is placed on top of an 

insulation, which sits on a metal holder.  Another metal frame is placed on top of the 

sample, insulation, and the holder.  A metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with 

charring, i.e., surface becoming black and white smoke, which typically indicates 

moisture loss with heating of the sample.  Note that the surface becomes non-uniformly 

black due to corrugation showing linear shading. As the surface layer is burned away, it 

exfoliates toward the sides and opens up, allowing the first layer of the corrugation to 
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appear on the surface.  Then the middle flat layer of the cardboard, which separates the 

two layers of corrugation, starts to burn, allowing the heat release to grow.  As this layer 

is decomposed throughout, the second layer of the corrugation becomes involved in the 

burning process.  Followed by the burning of the second corrugation layer, the last flat 

layer of the cardboard – back surface of the sample – burns.  This results in another 

growing phase in the heat-release-rate curve.  When ignition occurs as the fuel vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 

flux from the flame is introduced on the surface (red arrows).       

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of few millimeters thickness exists between the sample and the insulation due to 

thermal contact.  Nothing leaves through the back face with the insulation when 1D 

assumption holds for the experiment.          

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is 

o Inert: non-uniform charring is considered to be evenly distributed 

o Always the same as in cone calorimeter test with a specified heat 

flux impinging on material’s surface  

• Ignition phenomenon is the same as in cone calorimeter experiment: time-

to-ignition is the same in modeling as determined in experiment  

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to 

gas phase 

o Considered to be the same as in cone calorimeter test in terms of 

heat-release rate or mass-loss rate per unit area 

ACQUIRE DATA SETS THAT CAN REPRESENT BURNING BEHAVIOR OF INTEREST 

Cone calorimeter test data of triple-layer cardboard with thickness of 15 mm, 

density of 116 kg/m
3
, and applied heat flux of 25 kW/m

2
 is found.   

 

  



Section 5 - 233 

ESTIMATE UNKNOWNS 

1. Time-to-Ignition 

tig = 32 ± 4 s after exposure to heating  

2. MLR and Effective HoC 

 

Figure A(B)-8.  MLR curve from cone calorimeter test of corrugated cardboard 

MLR curve with effective heat-of-combustion calculated from a cone experiment 

will be used directly (see Figure A(B)-8).  This MLR data is from a triple-layer cardboard 

test at 25 kW/m
2
 with sample thickness of 15 mm.  The MLR profile changes with 

respect to the burning history of the sample.     

Effective heat-of-combustion is calculated from the heat-release rate and mass-

loss-rate data at every measurement, as discussed in Model Parameter Measurement 

Methods.  The average of two tests with its confidence interval calculated by 2 times the 

standard deviation is: 13.5 ± 0.5 kJ/g.   
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Obtain Uncertainty for Estimated Parameters 

The uncertainty in the mass-loss-rate data is estimated via statistical approach, 

taking the standard deviation (0.58 g/sm
2
) from the mean of a steady burning of five 

identical PMMA tests conducted in a cone calorimeter.
2
  The estimated uncertainty is 1.4 

g/sm
2
, which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of five.   

The uncertainty in time-to-ignition data is estimated via statistical approach, 

taking four identical cone calorimeter test data at heat flux 25 kW/m
2
 of this cardboard.  

95% confidence interval is calculated for each heat-flux level assuming student t 

distribution. 

The uncertainty in effective heat-of-combustion is estimated by average heat-

release rate divided by average mass-loss rate of two identical tests.  2 times the standard 

deviation is used as its uncertainty band. 

  

Validation and Commentary 

When using Empirical Model to simulate pyrolysis of this triple-layer cardboard, 

test data from a bench-scale cone calorimeter experiment at a set heat-flux level has been 

utilized to estimate the time-to-ignition from exposure to heating and the energy released 

from burning of this cardboard.  As noted in the Understanding Model part of the chapter, 

this approach is limited as follows in terms of the conditions being comparable to those 

found in the fire scenario on interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating sample with a set heat 

flux impinging on the front surface, where this applied heat-flux level during testing 

is assumed to be representative average (over space and time) for the fire scenario 

that is being modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed surface 

• Surface-burning data: edge effects in material testing are not included; therefore, data 

per unit area can be applied to simulate larger areas by simply multiplying the 

material surface area involved in fire 
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EXAMPLE 3.4 MODELING FIRE RETARDED FRP 

COMPOSITE 

Obtain Parameters via Experiment 

Run model 

SELECT MODEL: EMPIRICAL USING BENCH-SCALE CALORIMETER DATA 

UNDERSTAND EXPERIMENT 

 
Figure A(B)-9.  Simplified representation of a cone calorimeter test of fire-retarded fiberglass- 

reinforced polymer (FRP) Composite 

A simplified representation of a cone calorimeter test of fire-retarded fiberglass-

reinforced polymer (FRP) composite is shown in Figure A(B)-9.  The sample is placed on 

top of an insulation, which sits on a metal holder.  Another metal frame is placed on top 

of the sample, insulation, and the holder.  A metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with 

charring, i.e., surface becoming black and white smoke, which typically indicates 

moisture loss with heating of the sample.  Note that the surface becomes non-uniformly 
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black. As thermal decomposition of the resin with additive progresses, blackened surface 

becomes white, as the resin leaves a white powder-type residue (possible due to 

decomposition of fire-retardant additive).  Shrinkage or regression during pyrolysis can 

be considered to be minimal for this material.  When ignition occurs as the fuel vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 

flux from the flame is introduced on the surface (red arrows).       

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of few millimeters thickness exist between the sample and the insulation due to 

thermal contact.  Nothing leaves through the back face with the insulation when 1D 

assumption holds for the experiment.          

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is 

o Inert: non-uniform charring is considered to be evenly distributed 

o Always the same as in cone calorimeter test with a specified heat 

flux impinging on material’s surface  

• Ignition phenomenon is the same as in cone calorimeter experiment: time-

to-ignition is the same in modeling as determined in experiment  

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to 

gas phase 

o Considered to be the same as in cone calorimeter test in terms of 

heat-release rate or mass-loss rate per unit area 

ACQUIRE DATA SETS THAT CAN REPRESENT BURNING BEHAVIOR OF INTEREST 

Cone calorimeter test data of this FRP composite with thickness of 9.2 mm, 

density of 1900 kg/m
3
, and applied heat flux of 50 kW/m

2
 is found.   
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ESTIMATE UNKNOWNS 

1. Time-to-Ignition 

tig = 175 ± 36 s after exposure to heating  

2. MLR and Effective HoC 

 

Figure A(B)-10.  MLR curve from cone calorimeter test of fire-retarded FRP composite 

MLR curve with effective heat-of-combustion calculated from a cone experiment 

will be used directly (see Figure A(B)-10).  This MLR data is from FRP composite test at 

50 kW/m
2
 with sample average thickness of 9.2 mm.  The MLR profile changes with 

respect to the burning history of the sample.     

Effective heat-of-combustion is calculated from the heat-release rate and mass-

loss-rate data at every measurement as discussed in Model Parameter Measurement 

Methods.  The average of four tests with its confidence interval calculated by 95% 

confidence using student t distribution is: 14.7 ± 3.8 kJ/g.   
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Obtain Uncertainty for Estimated Parameters 

The uncertainty in the mass-loss-rate data is estimated via statistical approach, 

taking the standard deviation (0.58 g/sm
2
) from the mean of a steady burning of five 

identical PMMA tests conducted in a cone calorimeter
2
  The estimated uncertainty is 1.4 

g/sm
2
, which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of five.  
 

The uncertainty in time-to-ignition data is estimated via statistical approach, 

taking four identical cone calorimeter test data at heat flux 50 kW/m
2
 of this cardboard.  

95% confidence interval is calculated for each heat-flux level assuming student t 

distribution. 

The uncertainty in effective heat-of-combustion is estimated by average heat-

release rate divided by average mass-loss rate of four identical tests.  95% confidence 

interval is calculated for each heat-flux level assuming student t distribution. 

  

Validation and Commentary 

When using Empirical Model to simulate pyrolysis of this fire-retarded FRP 

composite, test data from a bench-scale cone calorimeter experiment at a set heat-flux 

level has been utilized to estimate the time-to-ignition from exposure to heating and the 

energy released from burning of this material.  As noted in the Understanding Model part 

of the chapter, this approach is limited as follows in terms of the conditions being 

comparable to those found in the fire scenario of interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating sample with a set heat 

flux impinging on the front surface, where this applied heat-flux level during testing 

is assumed to be representative average (over space and time) for the fire scenario 

that is being modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed surface 

• Surface-burning data: edge effects in material testing are not included and therefore 

data per unit area can be applied to simulate larger areas by simply multiplying the 

material surface area involved in fire 
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EXAMPLE 3.5 MODELING PLYWOOD 

Obtain Parameters via Experiment 

Run model 

SELECT MODEL: EMPIRICAL USING BENCH-SCALE CALORIMETER DATA 

UNDERSTAND EXPERIMENT 

 
Figure A(B)-11.  Simplified representation of a cone calorimeter test of plywood 

A simplified representation of a cone calorimeter test of plywood is shown in 

Figure A(B)-11.  The sample is placed on top of an insulation, which sits on a metal 

holder.  Another metal frame is placed on top of the sample, insulation and the holder.  A 

metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with moisture 

loss at first appearing as white smoke followed by thermal decomposition of the wood 

component.  When ignition occurs as the fuel vapor concentration above the surface 

exceeds its LFL (lower flammable limit), additional heat flux from the flame is 

introduced on the surface (red arrows).  As decomposition occurs under flaming 
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condition, relatively uniform cracks appear on the surface with some shrinkage, allowing 

easy evacuation of the pyrolyzates to the gas phase even as the pyrolysis front propagates 

toward in-depth.  Near the burn-out leaving grey residue, the center of the sample bends 

upward then quickly falls apart resulting in flame out.       

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of few millimeters thickness exists between the sample and the insulation 

resulting in some thermal resistance.  Due to the insulation, nothing leaves through the 

back face when 1D assumption holds for the experiment.          

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is 

o Inert: non-uniform charring is considered to be evenly distributed 

o Always the same as in cone calorimeter test with a specified heat 

flux  impinging on material’s surface  

• Ignition phenomenon is the same as in cone calorimeter experiment: time 

to ignition is the same in modeling as determined in experiment  

• Post-ignition stage is 

o Considered to have instantaneous release of volatiles from solid to 

gas phase 

o Considered to be the same as in cone calorimeter test in terms of 

heat release rate or mass loss rate per unit area 

ACQUIRE DATA SETS THAT CAN REPRESENT BURNING BEHAVIOR OF INTEREST 

Cone calorimeter test data of triple-layer cardboard with thickness of 11.1 mm, 

density of 542 kg/m
3
, and applied heat flux of 50 kW/m

2
 is found.   
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ESTIMATE UNKNOWNS 

1. Time-to-Ignition 

tig = 27 ± 9 s after exposure to heating  

2. MLR and Effective HoC 

 

Figure A(B)-12.  MLR curve from cone calorimeter test of plywood 

MLR curve with effective heat-of-combustion calculated from a cone experiment 

will be used directly (see Figure A(B)-12).  This MLR data is from a triple-layer 

cardboard test at 50 kW/m
2
 with sample thickness of 11.1 mm.  The MLR profile 

changes with respect to the burning history of the sample.     

Effective heat-of-combustion is calculated from the heat-release rate and mass-

loss-rate data at every measurement as discussed in Model Parameter Measurement 

Methods.  The average of two tests with its confidence interval calculated by 2 times the 

standard deviation is: 11.0 ± 0.3 kJ/g.   

 

Obtain Uncertainty for Estimated Parameters 

The uncertainty in the mass-loss-rate data is estimated via statistical approach, 

taking the standard deviation (0.58 g/sm
2
) from the mean of a steady burning of five 
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identical PMMA tests conducted in a cone calorimeter.
2
  The estimated uncertainty is 1.4 

g/sm
2
, which is found by calculating the 95% confidence interval applying student t 

distribution with a sample size of 5.   

The uncertainty in time-to-ignition data is estimated via statistical approach, 

taking four identical cone calorimeter test data at heat flux 25 kW/m
2
 of this cardboard.  

95% confidence interval is calculated for each heat flux level assuming student t 

distribution. 

The uncertainty in effective heat-of-combustion is estimated by average heat-

release rate divided by average mass-loss rate of two identical tests.  2 times the standard 

deviation is used as its uncertainty band. 

  

Validation and Commentary 

When using Empirical Model to simulate pyrolysis of this plywood, test data from 

a bench-scale cone calorimeter experiment at a set heat-flux level has been utilized to 

estimate the time-to-ignition from exposure to heating and the energy released from 

burning of this material.  As noted in the Understanding Model part of the chapter, this 

approach is limited as follows in terms of the conditions being comparable to those found 

in the fire scenario of interest: 

• Ignition scenario: piloted ignition with an electric sparker 

• Exposure conditions: electrically heated coil uniformly heating sample with a set heat 

flux impinging on the front surface where this heat-flux level during testing is 

assumed to be representative average (over space and time) for the fire scenario that 

is being modeled 

• Heat and mass transfer: one-dimensional, i.e., perpendicular to the exposed surface 

Surface-burning data: edge effects in material testing are not included; therefore, data per 

unit area can be applied to simulate larger areas by simply multiplying the material 

surface area involved in fire 
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Appendix C - Example Solutions for Chapter 4 

EXAMPLE 4.1 MODELING PMMA 

Measure Parameters  

1. Ambient Temperature 

Direct measurement of ambient temperature is made as 20°C. 

2. Surface Temperature at Ignition 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

3. Critical Heat Flux for Ignition 

By bracketing to within +/- 0.5 kW/m
2
 in cone calorimeter tests, 

"

crq&  has been 

determined to be 10.5 kW/m
2
.  Ignition data is provided below for PMMAs with 

thickness of 18.0 mm, density of 1170 kg/m
3
 (see Table A(C)-1): 

Table A(C)-1.  Ignition data from cone calorimeter tests for PMMA 

Heat Flux tig 

(kW/m²) (s) 

10 NI 

11 1138 

12 961 

15 471 

25 87 

25 84 

25 97 

25 90 

50 24 

50 22 

75 14 

75 11 
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4. Thermal Inertia 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

5. Effective Heat-of-Combustion 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

6. Heat-of-Gasification 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

7. Convection Coefficient 

Because this is a material laid in horizontal position in a cone calorimeter, hc = 12 

W/m
2
K is used based on literature reference. 

8. Surface Emissivity/Absorptivity 

Emissivity is approximated as 0.9. 

Summary 

Table A(C)-2.  Summary of model parameter table with estimated values via direct 

measurements, literature search, or approximation 

Ignition 

Parameters 

∞T  20 °C 

igT  Ignition Data Analysis 

"
crq&

 
10.5 kW/m2 

kρc
 

Ignition Data Analysis 

Burning-Rate 

Parameters 

∆hc,eff   Burning-Rate Data Analysis 

∆hg Burning-Rate Data Analysis 

hc 12 W/m2K 

ε 0.9 

 



Section 5 - 246 

Obtain Parameters via Data Analysis 

Run model  

SELECT MODEL: THERMALLY THICK MODEL FOR IGNITION ANALYSIS (QUINTIERE AND 

HARKLEROAD, ASTM E 1321) AND STEADY-BURNING MODEL 

UNDERSTAND EXPERIMENT AND FIRE CHARACTERISTICS OF MATERIAL 

 
Figure A(C)-1.  Simplified representation of a cone calorimeter test of PMMA 

A simplified representation of a cone calorimeter test of PMMA is shown in 

Figure A(C)-1.  The sample is placed on top of an insulation, which sits on a metal 

holder.  Another metal frame is placed on top of the sample, insulation and the holder.  A 

metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with 

bubbling with respect to temperature increase occurring through heat conduction and/or 

in-depth radiative transport.  The pyrolyzates leave through the surface until complete 

burn-off, because this material leaves no residue.  When ignition occurs as the fuel-vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 
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flux from the flame is introduced on the surface (red arrows).  Regression of the sample 

surface occurs with respect to consumption of PMMA in pyrolysis.     

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exists between the sample and the insulation due to 

thermal contact.  Due to the insulation, nothing leaves through the back face when 1D 

assumption holds for the experiment.    

Configure model conditions based on understanding of experiment and material 

characteristics   

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is: 

o Inert: decomposition with bubbling before ignition is neglected 

o Thermally thick: heat transfer does not reach back surface 

• Post-ignition stage is: 

o Considered to have instantaneous release of volatiles from solid to 

gas phase: bubbling layer is neglected and is considered as a 

surface phenomenon 

o Considered to have a constant thickness: regression of PMMA is 

neglected 

o Steady burning: heat loss equals heat gain at front surface 

ACQUIRE DATA SETS  

Cone calorimeter test data of black PMMA with thickness of 18 mm, density of 

1170 kg/m
3
, and applied heat-flux levels ranging from 10 to 75 kW/m

2
 is found.  For 

Ignition Data analysis, only time-to-ignition with respect to applied heat-flux data will be 

used.  For burning-rate-data analysis, data for the entire testing time duration, mass loss 

and heat release during testing period with respect to applied heat flux will be used. 

 

CONDUCT IGNITION DATA ANALYSIS 

1. Estimate Tig  

Heat balance at front surface during steady burning is as follow: 

)()( 44"

∞∞ −+−= TTTThq igigccr εσε &
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Knowing that emissivity is approximated as 0.9, critical heat flux is estimated as 

10.5 kW/m
2
, and heat-transfer coefficient in cone calorimeter experiment is estimated as 

12.0 W/m
2
K, ignition temperature, Tig is calculated as: 

Tig = 318 °C
 

2. Estimate hig 

hig is the total heat-transfer coefficient at ignition; therefore, at steady-state 

burning stage, the following can be defined: 

)("

∞−≡ TThq igigcr
&ε

 

Knowing the ignition temperature, hig can be calculated: 

hig = 31.7 W/m
2
K 

3. Calculate "" / ecr qq &&  versus igt from ignition data (see Table A(C)-3) 

Table A(C)-3.  
"" / ecr qq &&  versus igt  

Heat Flux tig CHF/HF tig
0.5 

(kW/m²) (s)   (s0.5) 

10 NI     

11 1138 0.9546 33.73 

12 961 0.8750 31.00 

15 471 0.7000 21.70 

25 87 0.4200 9.33 

25 84 0.4200 9.17 

25 97 0.4200 9.85 

50 22 0.2100 4.69 

75 11 0.1400 3.32 

 

4. Plot  "" / ecr qq &&  versus igt to estimate the time needed to reach “steady-state” 

burning, t* and thermal inertia, kρc 

Recall 
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πkρc
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q
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ig

*
igigig

ig
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&
for piloted-ignition data where t* is 

the time when 1/ "" =ecr qq && .  Thermal inertia can be estimated from the best-fit line through 
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t = 0.  Its slope at 0 < t < t* is 
πkρc

h ig2
; therefore, 

( )2
24

slope

 h
ck

ig

⋅
=
π

ρ .  Note that in the 

analysis, few data points at lower heat-flux levels with large time-to-ignition data were 

excluded (see Figure A(C)-2, open circles) to increase fitness of the best-fit line.  This 

approach is reasonable, considering that at this region analysis assumptions of having 

inert and thermally thick conditions are less likely to be satisfied. 

kρc = 0.649 kJ
2
/m

4
K
2
s 

 

Figure A(C)-2.  Plot of 
"" / ecr qq &&  versus igt  

CONDUCT BURNING-RATE DATA ANALYSIS 

1. Estimate ∆hc,eff   

There are two approaches in estimating the effective heat of combustion via 

calorimeter tests: by using the peak in HRR or the average heat released over the entire 

test.  In this example, ∆hc,eff will be estimated by considering the total heat released 

divided by the total amount of mass loss during a test.  Cone test results at 25, 50 and 75 

kW/m
2
 are summarized below (see Table A(C)-4): 

  

y = 0.0444x

R² = 0.9925
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Table A(C)-4.  Estimation of effective heat-of-combustion using cone calorimeter test results at 

applied heat flux of 25, 50 and 75 kW/m
2
 

Heat Flux tstart Massstart tend Massend Total HR Total ML Δhc, eff 

(kW/m2) (s) (g) (s) (g) (kW/m2) (g/m2) (kJ/g) 

25 0 222.7 1330 0.0 539.9 222.7 24.2 

50 0 236.9 838 0.0 586.8 236.9 24.8 

75 0 221.1 645 0.0 550.9 221.1 24.9 

Average             24.6  

 

∆∆∆∆hc,eff = 24.6 kJ/g 
2. Estimate ∆hg  

Recall  
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆ ; therefore, when plotting mass-loss rates at 

different radiant-heat-flux levels during steady-burning condition, the reciprocal of the 

slope of the best-fit line should be the heat-of-gasification (see Table A(C)-5 and Figure 

A(C)-3). 

∆∆∆∆hg = 2.9 kJ/g 
 

Table A(C)-5.  Estimation of effective heat-of-gasification using cone calorimeter test results at 

applied heat flux of 25, 50 and 75 kW/m
2
 

Heat Flux tstart tend Total ML MLR 

(kW/m2) (s) (s) (g) (g/m2s) 

25 0 1330 222.7 16.7 

50 0 838 236.9 28.3 

75 0 645 221.1 34.3 
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Figure A(C)-3.  Plot of steady MLR versus different applied heat-flux levels – 25, 50 and 75 

kW/m
2
 

 

 

Obtain Uncertainty for Estimated Parameters 

UNCERTAINTY FOR MEASURED PARAMETERS 

1. δT∞ 

Fluctuation in ambient temperature during testing is estimated to be less than 

±10% of reported measurement data. 

2. 
"

crq&δ
 

The resolution of bracketing experiment was 1 kW/m
2
; hence, uncertainty can be 

estimated as ± 0.5 kW/m
2
. 

3. δhc 

Considering that the reference values sited in the Guide for different apparatuses 

and set-up have two significant figures, uncertainty for this convection coefficient can be 

estimated as ± 0.5 W/m
2
K. 

4. δε 

Based on literature review, black PMMA’s emissivity should be within ± 10% of 

what has been approximated in this example. 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING IGNITION-DATA ANALYSIS 

1. δTig  

See Chapter 4 for detail.
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Therefore, 
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2. δ(kρc) 

 See Chapter 4 for detail.
 

The uncertainty of the slope of the best-fit line, 0.0444 s
-0.5

, can be estimated 

through calculating 2 times the standard error of the slope, which is +/- 0.00136 s
-0.5
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Therefore, 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING BURNING-RATE DATA ANALYSIS 

1. δ∆hc,eff   

This parameter is estimated by considering the average of the total heat released 

divided by the total amount of mass loss during three cone tests at 25, 50 and 75 kW/m
2
 

heat-flux levels.  Assuming the estimated ∆hc,eff at each test results in normal distribution, 

confidence interval with α = 0.05 (95%) can be predicted using student t distribution with 

a sample size of three, which is ± 0.9 kJ/g. 

2. δ∆hg  

 See Chapter 4 for detail.
 

The uncertainty of the slope (=1/∆hg=0.351g/kJ) can be estimated through 

calculating 2 times the standard error of the slope of the best-fit line, which is +/- 0.127.  

Therefore, the uncertainty in ∆hg is  
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UNCERTAINTY SUMMARY 

Table A(C)-6.  Summary of model-parameter table with estimated values with uncertainty 

Ignition 

Parameters 

∞T  20 ± 2 °C 

igT  318 ±  4 °C 

"
crq&

 
10.5 ± 0.5 kW/m2 

kρc
 

0.649 ± 0.151 kJ2/m4K2s 

Burning-Rate 

Parameters 

∆hc,eff   24.6 ± 0.9 kJ/g 

∆hg 2.9 ± 1.0 kJ/g 

hc 12 ± 0.5 W/m2K 

ε 0.9 ± 0.09 
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Validation 

Analyze Simulation Quality 

DETERMINE DATA AND MODEL OUTPUT UNCERTAINTY TO MAKE COMPARISON 

1. Conduct uncertainty analysis of data 

From the experiment work done by Beaulieu and Dembsey
1
 on thermally-thick 

behaving black PMMA using AFM apparatus, the experiment uncertainty in time-to-

ignition and mass-loss rate at steady burning were determined as ± 2 s and ± 3 g/m
2
s, 

respectively.  The test results were compared with other literature values using different 

apparatuses such as cone calorimeter in this work, which were considered as consistent.  

This uncertainty information will be used when comparing modeling output to 

experiment data. 

2. Conduct uncertainty analysis for MLR profile modeling 

Because uncertainty information of the data is found in terms of time-to-ignition 

and mass-loss rate, mass-loss-rate profile is considered as the modeling output of interest 

for comparison purposes.  For Simple Analytical Models, time-to-ignition (tig) and 

steady-burning rate ( "m& ) are needed when simulating the mass-release-rate profile.  The 

uncertainty in MLR profile in modeling can be determined via considering the 

uncertainties in the calculation results below: 

tig ± δtig 

"m& ± δ "m&  

To determine the uncertainty in time-to-ignition, recall: 
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Knowing that all heat-flux levels of interest, 25, 50 and 75 kW/m
2
, are above the 

critical heat flux, time-to-ignition should be smaller than t*.  Hence, uncertainty in tig can 

be estimated from linear-regression process as: 

t
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The above equation can be re-written as below after conducting linear regression: 
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( ) tslope =estimatey ig  

Therefore,  

��� = ����	�
����	��� �� 

Assuming that the y estimate and slope are independent and propagating the 

uncertainties in these two variables in estimating the time to ignition, the following 

calculation can be made: 

���� = �� ���������	�
����� �����	�
������� + � ������	���� ��	������ 

where  ���������	�
����� = 2 ∙ ����	�
������	�����  

������	���� = −2 ∙ ����	�
�������	�����  

with  �����	�
����� and ��	���� estimated through calculating 2 times the 

standard error of the y estimate and slope of the best-fit line, which are 0.002365 and 

0.001363 s
-0.5

, respectively. 

 

To determine the uncertainty in steady-heat-release rate at post-ignition stage, 

recall: 

 
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆  

Above equation can be rearranged to  

�� " = 1∆ℎ� #�$" + #�%" − #�&"∆ℎ�  

The steady-burning rate at post-ignition stage is determined by the best-fit line 

obtained when data are plotted as steady-burning rate versus applied heat flux.  The 

uncertainty in steady-burning rate can be determined by considering 2 times the standard 

error of the y estimates, i.e., �� ", which is obtained through linear-regression process: ± 

4.5 g/m
2
s.     
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COMPARE DATA WITH SIMULATION RESULTS WITH CONSIDERATION OF 

UNCERTAINTIES 

Parameters in this simple analytical pyrolysis model have been estimated with 

cone calorimeter test data from 25, 50 and 75 kW/m
2
.  To check the quality of the 

modeling using the estimated parameters, three cases have been simulated and compared 

with experiment data, with the consideration of their uncertainty bands as shown in table 

and figures below (see Table A(C)-7). 

 

Table A(C)-7.  Comparison of time-to-ignition at different heat-flux levels from actual 

experiment and pyrolysis modeling 

Heat-Flux Level 
Actual tig (s) 

tig ± δti 

Model tig (s) 

tig ± δti 

25 kW/m
2
 87 ± 2 90 ± 12 

50 kW/m
2
 22 ± 2 22 ± 5 

75 kW/m
2
 11 ± 2 10 ± 3 

 

All three cases show good overlap between the data and simulation of time-to-

ignition and the mass-loss rate during steady burning, considering the uncertainties, i.e., 

the parameter estimation was conducted successfully (see Figure A(C)-4, Figure A(C)-5 

and Figure A(C)-6). 
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Figure A(C)-4.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at 25 kW/m
2
.  Note that data shown were used to 

estimate model-parameter values. 

 

Figure A(C)-5.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at 50 kW/m
2
.  Note that data shown were used to 

estimate model-parameter values. 
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Figure A(C)-6. Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at 75 kW/m
2
.  Note that data shown were used to 

estimate model-parameter values. 

 

Validate Simulation Qquality upon Extrapolation 

In this example, cone calorimeter data at applied heat flux of 25, 50, and 75 

kW/m
2
 were used to estimate the unknown model parameters.  In order to check the 

performance of modeling with the estimated parameters, PMMA AFM tests
1
 conducted 

under 28.4 and 60 kW/m
2
 are used to compare with modeling outputs – time-of-ignition 

and MLR at steady-burning stage (see Table A(C)-8). 

Table A(C)-8.  Comparison of time-to-ignition at different heat-flux levels from actual 

experiment and pyrolysis modeling 

Heat-Flux Level 
Actual tig (s) 

tig ± δti 

Model tig (s) 

tig ± δti 

28.4 kW/m2 102 ± 2 70 ± 12 

60 kW/m2 31 ± 2 16 ± 5 

 

In modeling time-to-ignition, the model’s outputs are shorter than those from 

AFM tests for both heat-flux levels.  This discrepancy can be explained by considering 

the in-depth absorption of radiation during heating of PMMA.  The data from AFM tests, 
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where IR lamps are used to heat the samples, possibly were subject to in-depth radiative 

absorption delaying ignition, knowing that the PMMA samples are somewhat transparent.  

However, this phenomenon is not accounted for in modeling assumptions and in 

parameter estimation process where cone calorimeter test data is used – in the cone, 

radiation is absorbed mostly on the surface. 

In modeling the MLR at steady-burning stage, both cases show good overlap between the 

data and simulation, considering the uncertainties (see  

Figure A(C)-7.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at 28.4 kW/m2.  Note that data shown were not 

included in the model-parameter-estimation process; hence, this case is considered as 

extrapolation case. 

 

 and Figure A(C)-8). 

 

 

Figure A(C)-7.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at 28.4 kW/m2.  Note that data shown were not 

included in the model-parameter-estimation process; hence, this case is considered as 

extrapolation case. 
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Figure A(C)-8.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (exp) and modeled MLR (sim) at 60 kW/m
2
.  Note that data shown were not 

included in the model-parameter-estimation process; hence, this case is considered as 

extrapolation case. 
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Commentary 

When using Simple Analytical Model to simulate pyrolysis of black PMMA 

(density 1170 kg/m
3
, thickness 18 mm), test data from a bench-scale cone calorimeter 

experiment at several heat-flux levels have been utilized to estimate the time-to-ignition 

from exposure to heating and the mass-loss rate at steady-burning stage after ignition.  

The comparison between the model outputs (time-to-ignition and steady-burning rate) 

and the data from bench-scale experiment showed good agreement for both checking 

purposes, where the same heat-flux levels (25, 50, and 75 kW/m
2
) used in parameter 

estimation have been considered, and extrapolation purposes where heat-flux levels (28.4 

and 60 kW/m
2
) not included in the parameter estimation process have been considered. 

Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seem to be reasonable, limitations of Simple Analytical Modeling has been 

acknowledged in literature for modeling black PMMA at relatively high applied heat-flux 

levels.
1
  At high heat-flux levels, the assumption of having an inert condition during pre-

ignition stage and neglecting thermal decomposition behavior, such as bubbling, cannot 

be made where these effects become more profound on the temperature profile and 

ignition process of PMMA.  Therefore, caution should be given when conducting 

modeling for cases with higher heat-flux levels. 
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EXAMPLE 4.2 MODELING CORRUGATED CARDBOARD 

Measure Parameters  

1. Ambient Temperature 

Direct measurement of ambient temperature is made as 23°C. 

2. Surface Temperature at Ignition 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

3. Critical Heat Flux for Ignition 

Corrugated cardboard’s CHF is measured to between 8 and 10 kW/m
2
 from cone 

calorimeter testing by bracketing.  Hence, CHF is 9 ± 1 kW/m
2
.   

4. Thermal Inertia 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

5. Effective Heat-of-Combustion 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

6. Heat-of-Gasification 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

7. Convection Coefficient 

Because this is a material laid in horizontal position in a cone calorimeter, hc = 12 

W/m
2
K is used based on literature reference. 

8. Surface Emissivity/Absorptivity 

Emissivity is approximated as 0.9. 
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Summary 

Table A(C)-9.  Summary of model-parameter table with estimated values via direct 

measurements, literature search, or approximation 

Ignition 

Parameters 

∞T  23 °C 

igT  Ignition Data Analysis 

"
crq&

 
9 kW/m2 

kρc
 

Ignition Data Analysis 

Burning-Rate 

Parameters 

∆hc,eff   Burning-Rate Data Analysis 

∆hg Burning-Rate Data Analysis 

hc 12 W/m2K 

ε 0.9 
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Obtain Parameters via Data Analysis 

Run Model  

SELECT MODEL: THERMALLY THICK MODEL FOR IGNITION ANALYSIS (QUINTIERE AND 

HARKLEROAD, ASTM E 1321) AND STEADY-BURNING MODEL 

UNDERSTAND EXPERIMENT AND FIRE CHARACTERISTICS OF MATERIAL 

 
Figure A(C)-9.  Simplified representation of a cone calorimeter test of corrugated cardboard 

A simplified representation of a cone calorimeter test of triple-layered corrugated 

cardboard is shown in Figure A(C)-9.  The sample is placed on top of an insulation, 

which sits on a metal holder.  Another metal frame is placed on top of the sample, 

insulation and the holder.  A metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with 

charring, i.e., surface becoming black and white smoke, which typically indicates 

moisture loss with heating of the sample.  Note that the surface becomes non-uniformly 

black due to corrugation showing linear shading. As the surface layer is burned away, it 

exfoliates toward the sides and opens up, allowing the first layer of the corrugation to 
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appear on the surface.  Then the middle flat layer of the cardboard, which separates the 

two layers of corrugation, starts to burn, allowing the heat release to grow.  As this layer 

is decomposed throughout, the second layer of the corrugation becomes involved in 

burning process.  Followed by the burning of the second corrugation layer, the last flat 

layer of the cardboard – the back surface of the sample – burns.  This results in another 

growing phase in the heat-release-rate curve.  When ignition occurs as the fuel vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 

flux from the flame is introduced on the surface (red arrows).       

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exists between the sample and the insulation due to 

thermal contact.  Nothing leaves through the back face with the insulation when 1D 

assumption holds for the experiment.     

 

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT AND 

MATERIAL CHARACTERISTICS  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is: 

o Inert: non-uniform charring is considered to be evenly distributed 

o Thermally thick: heat transfer does not reach back surface 

• Post-ignition stage is: 

o Considered to have instantaneous release of volatiles from solid to 

gas phase 

o Considered to have a constant thickness: exfoliation of surface 

layers is neglected 

o Steady burning: heat loss equals heat gain at front surface 

ACQUIRE DATA SETS  

Cone calorimeter test data of triple layered corrugated cardboard with thickness of 

15 mm, density of 116 kg/m
3
 and applied heat flux levels ranging from 8 to 75 kW/m

2
 are 

found.  For Ignition Data analysis, only time-to-ignition with respect to applied heat-flux 

data will be used.  For burning-rate data analysis, data for the entire testing time duration, 
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mass loss, and heat release during testing period with respect to applied heat flux will be 

used. 

CONDUCT IGNITION DATA ANALYSIS 

1. Estimate Tig  

Heat balance at front surface during steady burning is as follow: 

)()( 44"

∞∞ −+−= TTTThq igigccr εσε &
 

Knowing that emissivity is approximated as 0.9, critical heat flux is estimated as 9 

kW/m
2
, and heat-transfer in cone calorimeter experiment is estimated as 12.0 W/m

2
K, 

ignition temperature, Tig is calculated as: 

Tig = 293 °C
 

2. Estimate hig 

hig is the total-heat-transfer coefficient at ignition; therefore, at steady-state 

burning stage, the following can be defined: 

)("

∞−≡ TThq igigcr
&ε

 

Knowing the ignition temperature, hig can be calculated: 

hig = 30.0 W/m
2
K 

3. Calculate 
"
e

"
cr q/q &&

 versus
igt

from ignition data 

Table A(C)-10.  
"" / ecr qq &&  versus igt  

Heat Flux tig CHF/HF tig
0.5 

(kW/m²) (s)   (s0.5) 

8 NI 

  10 387 0.9000 19.67 

15 103 0.6000 10.15 

20 52 0.4500 7.21 

25 32 0.3600 5.66 

25 34 0.3600 5.83 

25 33 0.3600 5.74 

25 28 0.3600 5.29 

40 9 0.2250 3.00 

40 11 0.2250 3.32 

50 11 0.1800 3.32 

60 8 0.1500 2.83 

60 8 0.1500 2.83 

75 2 0.1200 1.41 
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4. Plot  
"
e

"
cr q/q &&

 versus
igt

to estimate the time needed to reach “steady-state” 

burning, t* and thermal inertia, kρc 

Recall 
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for piloted-ignition data, where t* is 

the time when 1/ "" =ecr qq && .  Thermal inertia can be estimated from the best-fit line through 

t = 0.  Its slope at 0 < t < t* is 
πkρc

h ig2
; therefore, 

( )2
24

slope

 h
ck

ig

⋅
=
π

ρ .  Note that in the 

analysis, few data points at lower heat-flux levels with large time-to-ignition data were 

excluded (see Figure A(C)-10, open circles) to increase fitness of the best-fit line.  This 

approach is reasonable, considering that at this region analysis assumptions of having 

inert and thermally thick conditions are less likely to be satisfied. 

 

kρc = 0.297 kJ
2
/m

4
K
2
s 
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Figure A(C)-10.  Plot of 
"" / ecr qq &&  versus igt  

 

CONDUCT BURNING-RATE DATA ANALYSIS 

1. Estimate ∆hc,eff   

There are two approaches in estimating the effective heat-of-combustion via 

calorimeter tests: by using the peak in HRR or the average heat released over the entire 

test.  In this example, ∆hc,eff will be estimated by considering the average heat-release rate 

divided by the average mass-loss rate during a test.  Cone test results ranging from 15 to 

75 kW/m
2
 are used: 

∆∆∆∆hc,eff = 13.9 kJ/g 

2. Estimate ∆hg  

Recall  
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆ ; therefore, when plotting mass-loss rates at 

different radiant-heat-flux levels during steady-burning condition, the reciprocal of the 

slope of the best-fit line should be the heat-of-gasification (see Table A(C)-11 and Figure 

A(C)-11). 

∆∆∆∆hg = 21.6 kJ/g 
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Table A(C)-11.  Estimation of effective heat-of-gasification using cone calorimeter test results 

at applied heat flux ranging between 25 and 75 kW/m
2
 

Heat Flux avgMLR 

(kW/m2) (g/m2s) 

25 6.70 

25 6.59 

40 6.93 

50 7.95 

60 8.64 

60 9.09 

75 8.30 

 

 
Figure A(C)-11.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m

2
 

 

Obtain Uncertainty for Estimated Parameters 

UNCERTAINTY FOR MEASURED PARAMETERS 

1. δT∞ 

Fluctuation in ambient temperature during testing is estimated to be less than 

±15% of reported measurement data. 

2. 
"

crq&δ
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The resolution of bracketing experiment was 2 kW/m
2
; hence, uncertainty can be 

estimated as ± 1 kW/m
2
. 

3. δhc 

Considering that the reference values sited in the Guide for different apparatuses 

and set-up have two significant figures, uncertainty for this convection coefficient can be 

estimated as ± 0.5 W/m
2
K. 

4. δε 

Based on literature review, cardboard’s emissivity should be within ± 10% of 

what has been approximated in this example. 

 

UNCERTAINTY FOR ESTIMATED PARAMETERS USING IGNITION DATA ANALYSIS 

1. δTig  

See Chapter 4 for detail.
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2. δ(kρc) 

See Chapter 4 for detail. 

The uncertainty of the slope of the best-fit line, 0.0620 s
-0.5

, can be estimated 

through calculating 2 times the standard error of the slope, which is +/- 0.00282 s
-0.5
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING BURNING-RATE DATA ANALYSIS 

1. δ∆hc,eff   

This parameter is estimated by considering the average of the heat-release rate 

divided by the average mass-loss rate during cone tests at 15 to 75 kW/m
2
 heat-flux 

levels.  Assuming the estimated ∆hc,eff at each test results in normal distribution, 

confidence interval with α = 0.05 (95%) can be predicted using student t distribution with 

a sample size of nine, which is ± 1.3 kJ/g. 



Section 5 - 278 

2. δ∆hg  

See Chapter 4 for detail.
 

The uncertainty of the slope (=1/∆hg=0.04625g/kJ) can be estimated through 

calculating 2 times the standard error of the slope of the best-fit line, which is +/- 

0.02323.  Therefore, the uncertainty in ∆hg is  
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UNCERTAINTY SUMMARY 

Table A(C)-12.  Summary of model-parameter table with estimated values with uncertainty 

Ignition 

Parameters 

∞T  23 ± 3.45 °C 

igT  293 ± 17 °C 

"
crq&

 
9 ± 1 kW/m2 

kρc
 

0.297 ± 0.101 kJ2/m4K2s 

Burning-Rate 

Parameters 

∆hc,eff   13.9 ± 1.3 kJ/g 

∆hg 21.6 ± 10.9 kJ/g 

hc 12 ± 0.5 W/m2K 

ε 0.9 ± 0.09 



Section 5 - 279 

Validation 

Analyze Simulation Quality 

DETERMINE DATA AND MODEL OUTPUT UNCERTAINTY TO MAKE COMPARISON 

1. Conduct uncertainty analysis of data 

The uncertainty in the mass-loss-rate data used for comparison between data and 

model outputs is estimated via statistical approach, taking the standard deviation (0.58 

g/sm
2
) from the mean of a steady burning of five identical PMMA tests conducted in a 

cone calorimeter.
2
  The estimated uncertainty is 1.4 g/sm

2
, which is found by calculating 

the 95% confidence interval applying student t distribution with a sample size of five.   

The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking two to four identical cone calorimeter test data at heat fluxes 

ranging from 25 to 75 kW/m
2
 of this cardboard.  95% confidence interval is calculated 

for each heat-flux level assuming student t distribution. 

2. Conduct uncertainty analysis for MLR profile modeling 

Because uncertainty information of the data is found in terms of time-to-ignition 

and mass-loss rate, mass-loss-rate profile is considered as the modeling output of interest 

for comparison purposes.  For Simple Analytical Models, time-to-ignition (tig) and 

steady-burning rate ( "m& ) are needed when simulating the mass-release-rate profile.  The 

uncertainty in MLR profile in modeling can be determined via considering the 

uncertainties in these calculation results as below: 

tig ± δtig 

"m& ± δ "m&  

To determine the uncertainty in time-to-ignition, recall: 
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Knowing that all of heat-flux levels of interest, 25, 50, and 75 kW/m
2
, are above 

the critical heat flux, time-to-ignition should be smaller than t*.  Hence, uncertainty in tig 

can be estimated from linear-regression process as below: 
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t
πkρc

h 
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q

q
ig
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cr
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The above equation can be re-written as below after conducting linear regression: 

( ) tslope =estimatey ig  

Therefore,  

��� = ����	�
����	��� �� 

Assuming that the y estimate and slope are independent and propagating the 

uncertainties in these two variables in estimating the time to ignition, the following 

calculation can be made: 

���� = �� ���������	�
����� �����	�
������� + � ������	���� ��	������ 

where  ���������	�
����� = 2 ∙ ����	�
������	�����  

������	���� = −2 ∙ ����	�
�������	�����  

with  �����	�
����� and ��	���� estimated through calculating 2 times the 

standard error of the y estimate and slope of the best-fit line. 

To determine the uncertainty in steady-heat-release rate at post-ignition stage, 

recall: 

 
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆  

Above equation can be rearranged to  

�� " = 1∆ℎ� #�$" + #�%" − #�&"∆ℎ�  

The steady-burning rate at post-ignition stage is determined by the best-fit line 

obtained when data is plotted as steady-burning rate versus applied heat flux.  The 

uncertainty in steady-burning rate can be determined by considering 2 times the standard 
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error of the y estimates, i.e.,��� ", which is obtained through linear-regression process: ± 

1.1 g/m
2
s.     

 

COMPARE DATA WITH SIMULATION RESULTS WITH CONSIDERATION OF 

UNCERTAINTIES 

Parameters in this simple analytical pyrolysis model have been estimated with cone 

calorimeter test data from 25, 50, and 75 kW/m
2
.  To check the quality of the modeling 

using the estimated parameters, three cases have been simulated and compared with 

experiment data with the consideration of their uncertainty bands as shown in Table 

A(C)-13 and figures –  

Figure A(C)-12, Figure A(C)-13 and Figure A(C)-14 – below.   

Table A(C)-13.  Comparison of time-to-ignition at different heat-flux levels from actual 

experiment and pyrolysis modeling 

Heat Flux Level 
Actual tig (s) 

tig ± δti 

Model tig (s) 

tig ± δti 

25 kW/m2 32 ± 4 34 ± 10 

50 kW/m2 18 ± 89 8 ± 5 

75 kW/m2 2 ± 5 4 ± 3 

All three cases show good overlap between the data and simulation of time-to-

ignition and the mass-loss rate during steady burning, considering the uncertainties, i.e., 

the parameter estimation was conducted successfully. 
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Figure A(C)-12.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual 

MLR from experiment (exp) and modeled MLR (sim) at 25 kW/m2.  Note that data shown 

were used to estimate model-parameter values. 
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Figure A(C)-13.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual 

MLR from experiment (exp) and modeled MLR (sim) at 50 kW/m
2
.  Note that data shown were 

used to estimate model-parameter values. 

 

Figure A(C)-14.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual 

MLR from experiment (exp) and modeled MLR (sim) at 75 kW/m
2
.  Note that data shown were 

used to estimate model-parameter values. 

 

 

Validate Simulation Quality upon Extrapolation 

In this example, cone calorimeter data at applied heat flux ranging from 8 to 75 

kW/m
2
 were used to estimate the unknown model parameters.  Assuming that the 

estimated parameters for this corrugated cardboard will be used in pyrolysis modeling at 

applied heat-flux levels that are within above range, no additional check becomes 

necessary. 

 

Commentary 

When using Simple Analytical Model to simulate pyrolysis of triple-layered 

corrugated cardboard (density 116 kg/m
3
, thickness 15 mm), test data from a bench-scale 

cone calorimeter experiment at several heat-flux levels have been utilized to estimate the 

time-to-ignition from exposure to heating and the mass-loss rate at steady-burning stage 
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burning rate) and the data from bench-scale experiment showed good agreement for both 

checking purposes, where the same heat-flux levels (25, 50, and 75 kW/m
2
) used in 

parameter estimation have been considered. 

Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical Modeling 

should be noted, which is that the model is for thermally-thick-behaving materials and 

steady burning after ignition. 

  



Section 5 - 285 

EXAMPLE 4.3 MODELING FIRE-RETARDED FRP 

COMPOSITE 

Measure Parameters  

1. Ambient Temperature 

Direct measurement of ambient temperature is made as 23°C. 

2. Surface Temperature at Ignition 

This parameter will be obtained via Ignition Data Analysis, i.e.- no direct 

measurements will be performed. 

3. Critical Heat Flux for Ignition 

Corrugated cardboard’s CHF is measured to between 28 and 30 kW/m
2
 from cone 

calorimeter testing by bracketing.  Hence, CHF is 29 ± 1 kW/m
2
.   

4. Thermal Inertia 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

5. Effective Heat-of-Combustion 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

6. Heat-of-Gasification 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

7. Convection Coefficient 

Because this is a material laid in horizontal position in a cone calorimeter, hc = 12 

W/m
2
K is used based on literature reference. 

8. Surface Emissivity/Absorptivity 

Emissivity is approximated as 0.9. 
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Summary 

Table A(C)-14.  Summary of model-parameter table with estimated values via direct 

measurements, literature search, or approximation 

Ignition 

Parameters 

∞T  23 °C 

igT  Ignition Data Analysis 

"
crq&

 
29 kW/m2 

kρc
 

Ignition Data Analysis 

Burning-Rate 

Parameters 

∆hc,eff   Burning-Rate Data Analysis 

∆hg Burning-Rate Data Analysis 

hc 12 W/m2K 

ε 0.9 
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Obtain Parameters via Data Analysis 

Run model  

SELECT MODEL: THERMALLY THICK MODEL FOR IGNITION ANALYSIS (QUINTIERE AND 

HARKLEROAD, ASTM E 1321) AND STEADY-BURNING MODEL 

UNDERSTAND EXPERIMENT AND FIRE CHARACTERISTICS OF MATERIAL 

  
 

Figure A(C)-15.  Simplified representation of a cone calorimeter test of fire-retarded fiberglass- 

reinforced polymer (FRP) composite 

A simplified representation of a cone calorimeter test of fire-retarded fiberglass-

reinforced polymer (FRP) composite is shown in Figure A(C)-15.  The sample is placed 

on top of an insulation, which sits on a metal holder.  Another metal frame is placed on 

top of the sample, insulation, and the holder.  A metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on the sample surface (large red arrow), cooling also begins 

via natural convection (blue arrows) and re-radiation.  The surface decomposes with 

charring, i.e., surface becoming black and white smoke, which typically indicates 

moisture loss with heating of the sample.  Note that the surface becomes non-uniformly 

black. As thermal decomposition of the resin with additive progresses, the blackened 
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surface becomes white, as the resin leaves a white powder-type residue (possible due to 

decomposition of the fire-retardant additive).  Shrinkage or regression during pyrolysis 

can be considered to be minimal for this material.  When ignition occurs as the fuel-vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 

flux from the flame is introduced on the surface (red arrows).       

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exists between the sample and the insulation due to 

thermal contact.  Nothing leaves through the back face with the insulation when 1D 

assumption holds for the experiment.     

 

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT AND 

MATERIAL CHARACTERISTICS  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is: 

o Iinert: non-uniform charring is considered to be evenly distributed 

o Thermally thick: heat transfer does not reach back surface 

• Post-ignition stage is: 

o Considered to have instantaneous release of volatiles from solid to 

gas phase 

o Considered to have a constant thickness 

o Steady burning: heat loss equals heat gain at front surface after 

ignition 

ACQUIRE DATA SETS  

Cone calorimeter test data of fire-retarded fiberglass-reinforced polymer (FRP) 

composite with thickness of 9.2 mm, density of 1900 kg/m
3
, and applied heat-flux levels 

ranging from 20 to 75 kW/m
2
 is found.  For Ignition Data analysis, only time-to-ignition 

with respect to applied heat-flux data will be used.  For burning-rate data analysis, data 

for the entire testing-time duration, mass loss and heat release during testing period with 

respect to applied heat flux will be used. 
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CONDUCT IGNITION DATA ANALYSIS 

1. Estimate Tig  

Heat balance at front surface during steady burning is as follow: 

)()( 44"

∞∞ −+−= TTTThq igigccr εσε &
 

Knowing that emissivity is approximated as 0.9, critical heat flux is estimated as 9 

kW/m
2
, and heat transfer coefficient in cone calorimeter experiment is estimated as 12.0 

W/m
2
K, ignition temperature, Tig is calculated as: 

Tig = 523 °C
 

2. Estimate hig 

hig is the total heat-transfer coefficient at ignition; therefore, at steady-state 

burning stage, the following can be defined: 

)("

∞−≡ TThq igigcr
&ε

 

Knowing the ignition temperature, hig can be calculated: 

hig = 52.2 W/m
2
K 
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3. Calculate 
"
e

"
cr q/q &&

 versus
igt

from ignition data 

Table A(C)-15.  
"" / ecr qq &&  versus igt  

Heat Flux tig CHF/HF tig
0.5 

(kW/m²) (s) 
 

(s0.5) 

28 NI   

30 484 0.9667 22.00 

40 269 0.7250 16.40 

40 242 0.7250 15.56 

50 143 0.5800 11.96 

50 195 0.5800 13.96 

50 178 0.5800 13.34 

50 183 0.5800 13.53 

60 132 0.4833 11.49 

75 72 0.3867 8.49 

75 83 0.3867 9.11 

75 96 0.3867 9.80 

75 98 0.3867 9.90 

 

4. Plot  
"
e

"
cr q/q &&

 versus
igt

to estimate the time needed to reach “steady-state” 

burning, t* and thermal inertia, kρc 

Recall 
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for piloted-ignition data where t* is 

the time when 1/ "" =ecr qq && .  Thermal inertia can be estimated from the best-fit line through 

t = 0.  Its slope at 0 < t < t* is 
πkρc

h ig2
; therefore, 

( )2
24

slope

 h
ck

ig

⋅
=
π

ρ .  Note that in the 

analysis, all data points at lower heat-flux levels with large time-to-ignition data were 

included, for this gave a better fitness of the best-fit line (see Figure A(C)-16).   

 

kρc = 1.834 kJ
2
/m

4
K
2
s 
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Figure A(C)-16.  Plot of 
"" / ecr qq &&  versus igt  

 

CONDUCT BURNING-RATE DATA ANALYSIS 

1. Estimate ∆hc,eff   

There are two approaches in estimating the effective heat-of-combustion via 

calorimeter tests: by using the peak in HRR or the average heat released over the entire 

test.  In this example, ∆hc,eff will be estimated by considering the average heat-release rate 

divided by the average mass-loss rate during a test.  Cone test results ranging from 30 to 

75 kW/m
2
 are used: 

 

∆∆∆∆hc,eff = 18.3 kJ/g 

2. Estimate ∆hg  

Recall  
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≡∆ ; therefore, when plotting mass-loss rates at 
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slope of the best-fit line should be the heat-of-gasification (see Table A(C)-16 and Figure 

A(C)-17). 

∆∆∆∆hg = 13.7 kJ/g 
 

Table A(C)-16.  Estimation of effective heat-of-gasification using cone calorimeter test results 

at applied heat flux ranging between 25 and 75 kW/m
2
 

Heat Flux avgMLR 

(kW/m2) (g/m2s) 

25 6.70 

25 6.59 

40 6.93 

50 7.95 

60 8.64 

60 9.09 

75 8.30 

 

 
Figure A(C)-17.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m
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Obtain Uncertainty for Estimated Parameters 

UNCERTAINTY FOR MEASURED PARAMETERS 

1. δT∞ 

Fluctuation in ambient temperature during testing is estimated to be less than 

±15% of reported measurement data. 

2. 
"

crq&δ
 

The resolution of bracketing experiment was 2 kW/m
2
; hence, uncertainty can be 

estimated as ± 1 kW/m
2
. 

3. δhc 

Considering that the reference values sited in the Guide for different apparatuses 

and set-up have two significant figures, uncertainty for this convection coefficient can be 

estimated as ± 0.5 W/m
2
K. 

4. δε 

Emissivity measurement of fire-retarded FRP composite sample (preconditioned 

in an oven to remove moisture) was conducted using a pyrometer at an optical-property-

measuring laboratory (ASTM E408).  The average value of three measurements were 

0.912 with a confidence interval of ± 0.007 (student t distribution, α = 0.05, sample size 

of 3).  This is close to what has been assumed in the analysis.  Additionally, considering 

that the surface becomes black as soon as it is exposed to heating from the cone, 

emissivity of thermally degrading plywood should be within ± 10% of what has been 

approximated in this example. 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING IGNITION DATA ANALYSIS 

1. δTig  

See Chapter 4 for detail.
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2. δ(kρc) 

See Chapter 4 for detail. 

The uncertainty of the slope of the best-fit line, 0.04349 s
-0.5

, can be estimated 

through calculating 2 times the standard error of the slope, which is +/- 0.001384 s
-0.5

. 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING BURNING-RATE DATA ANALYSIS 

1. δ∆hc,eff   

This parameter is estimated by considering the average of the heat-release rate 

divided by the average mass-loss rate during cone tests at 30 to 75 kW/m
2
 heat-flux 

levels.  Assuming the estimated ∆hc,eff at each test results in normal distribution, 

confidence interval with α = 0.05 (95%) can be predicted using student t distribution with 

a sample size of 10, which is ± 6.7 kJ/g. 
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2. δ∆hg  

See Chapter 4 for detail.
 

The uncertainty of the slope (=1/∆hg=0.07324g/kJ) can be estimated through 

calculating 2 times the standard error of the slope of the best-fit line, which is +/- 

0.01858.  Therefore, the uncertainty in ∆hg is  
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UNCERTAINTY SUMMARY 

Table A(C)-17.  Summary of model-parameter table with estimated values with uncertainty 

Ignition 

Parameters 

∞T  23 ± 3.45 °C 

igT  523 ± 5 °C 

"
crq&

 
29 ± 1 kW/m2 

kρc
 

1.834 ± 0.408 kJ2/m4K2s 

Burning-Rate 

Parameters 

∆hc,eff   18.3 ± 6.7 kJ/g 

∆hg 13.7 ± 3.5 kJ/g 

hc 12 ± 0.5 W/m2K 

ε 0.9 ± 0.09 
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Validation 

Analyze Simulation Quality 

DETERMINE DATA AND MODEL OUTPUT UNCERTAINTY TO MAKE COMPARISON 

1. Conduct uncertainty analysis of data 

The uncertainty in the mass-loss rate data used for comparison between data and 

model outputs is estimated via statistical approach, taking the standard deviation (0.58 

g/sm
2
) from the mean of a steady burning of five identical PMMA tests conducted in a 

Cone calorimeter.
2
  The estimated uncertainty is 1.4 g/sm

2
, which is found by calculating 

the 95% confidence interval applying student t distribution with a sample size of five.   

The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking four to five identical cone calorimeter test data at heat fluxes 

at 50 and 75 kW/m
2
 of this FRP composite.  95% confidence interval is calculated for 

each heat-flux level assuming student t distribution. 

2. Conduct uncertainty analysis for MLR profile modeling 

Because uncertainty information of the data is found in terms of time-to-ignition 

and mass-loss rate, mass-loss-rate profile is considered as the modeling output of interest 

for comparison purposes.  For Simple Analytical Models, time-to-ignition (tig) and 

steady-burning rate ( "m& ) are needed when simulating the mass-release-rate profile.  The 

uncertainty in MLR profile in modeling can be determined via considering the 

uncertainties in these calculation results as below: 

tig ± δtig 

"m& ± δ "m&  

To determine the uncertainty in time-to-ignition, recall: 
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Knowing that all of heat-flux levels of interest, 50 and 75 kW/m
2
, are above the 

critical heat flux, time-to-ignition should be smaller than t*.  Hence, uncertainty in tig can 

be estimated from linear-regression process as below: 
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Above equation can be re-written as below after conducting linear regression: 

( ) tslope =estimatey ig  

Therefore,  

��� = ����	�
����	��� �� 

Assuming that the y estimate and slope are independent and propagating the 

uncertainties in these two variables in estimating the time to ignition, the following 

calculation can be made: 

���� = �� ���������	�
����� �����	�
������� + � ������	���� ��	������ 

where  ���������	�
����� = 2 ∙ ����	�
������	�����  

������	���� = −2 ∙ ����	�
�������	�����  

with  �����	�
����� and ��	���� estimated through calculating 2 times the 

standard error of the y estimate and slope of the best-fit line. 

To determine the uncertainty in the steady-heat-release rate at post-ignition stage, 

recall: 

 
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆  

The above equation can be rearranged to  

�� " = 1∆ℎ� #�$" + #�%" − #�&"∆ℎ�  

The steady-burning rate at post-ignition stage is determined by the best-fit line 

obtained when data is plotted as steady-burning rate versus applied heat flux.  The 

uncertainty in steady-burning rate can be determined by considering 2 times the standard 



Section 5 - 301 

error of the y estimates, i.e.��� ", which is obtained through linear-regression process: ± 

0.9 g/m
2
s.     

 

COMPARE DATA WITH SIMULATION RESULTS WITH CONSIDERATION OF 

UNCERTAINTIES 

Parameters in this simple analytical pyrolysis model have been estimated with 

cone calorimeter test data from 50 and 75 kW/m
2
.  To check the quality of the modeling 

using the estimated parameters, three cases have been simulated and compared with 

experiment data with the consideration of their uncertainty bands as shown in Table 

A(C)-18 and figures – Figure A(C)-18 and Figure A(C)-19 – below.   

Table A(C)-18.  Comparison of time-to-ignition at different heat-flux levels from actual 

experiment and pyrolysis modeling 

Heat-Flux Level 
Actual tig (s) 

tig ± δti 

Model tig (s) 

tig ± δti 

50 kW/m2 175 ± 36 178 ± 42 

75 kW/m2 89 ± 14 79 ± 27 

 

Both cases show good overlap between the data and simulation of time-to-ignition 

and the mass-loss rate during steady burning considering the uncertainties, i.e., the 

parameter estimation was conducted successfully.  Note that when calculating the 

burnout time in pyrolysis modeling, it was assumed that only 29% of the initial weight is 

lost and 71% of polymer (resin and additive) residue with inert fiberglass mats remain.   
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Figure A(C)-18.  Mass-loss rate (MLR) comparisons for fire-retarded FRP composite between 

actual MLR from experiment (exp) and modeled MLR (sim) at 50 kW/m
2
.  Note that data 

shown were used to estimate model-parameter values. 

 

 

Figure A(C)-19.  Mass-loss rate (MLR) comparisons for fire-retarded FRP composite between 

actual MLR from experiment (exp) and modeled MLR (sim) at 75 kW/m
2
.  Note that data 

shown were used to estimate model-parameter values. 
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Validate Simulation Quality upon Extrapolation 

In this example, cone calorimeter data at applied heat flux ranging from 25 to 75 

kW/m
2
 were used to estimate the unknown model parameters.  Assuming that the 

estimated parameters for this corrugated cardboard will be used in pyrolysis modeling at 

applied heat-flux levels that are within the above range, no additional check becomes 

necessary. 

 

Commentary 

When using Simple Analytical Model to simulate pyrolysis of a fire-retarded 

fiberglass-reinforced polymer (FRP) composite (density 2100 kg/m
3
, thickness 8.9 mm, 

71 wt% of composite remains as residue), test data from a bench-scale cone calorimeter 

experiment at several heat-flux levels have been utilized to estimate the time-to-ignition 

from exposure to heating and the mass-loss rate at steady-burning stage after ignition.  

The comparison between the model outputs (time-to-ignition and steady-burning rate) 

and the data from bench-scale experiment showed good agreement for both checking 

purposes where the same heat-flux levels (50 and 75 kW/m
2
) used in parameter 

estimation have been considered. 

Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical Modeling 

should be noted, which is that the model is for thermally-thick-behaving materials and 

steady burning after ignition. 
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EXAMPLE 4.4 MODELING PLYWOOD 

Measure Parameters  

1. Ambient Temperature 

Direct measurement of ambient temperature is made as 20°C. 

2. Surface Temperature at Ignition 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

3. Critical Heat Flux for Ignition 

By bracketing to within +/- 0.5 kW/m
2
 in cone calorimeter tests, 

"
crq&

 has been 

determined to be 14.5 kW/m
2
 (see Table A(C)-26).  Ignition data is provided 

below for this plywood with thickness of 11.1 ± 0.1 mm, density of 542 ± 11 

kg/m
3
 (t-distribution, α = 0.05, sample size of 10): 

Table A(C)-19.  Ignition data from cone calorimeter tests of plywood 

Heat Flux tig 

(kW/m²) (s) 

14 NI 

15 572 

 

4. Thermal Inertia 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

5. Effective Heat of Combustion 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

6. Heat-of-Gasification 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 
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7. Convection Coefficient 

Because this is a material laid in horizontal position in a cone calorimeter, hc = 

12 W/m
2
K is used based on literature reference. 

8. Surface Emissivity/Absorptivity 

Emissivity is approximated as 0.9. 

Summary 

Table A(C)-20.  Summary of model-parameter table with estimated values via direct 

measurements, literature search, or approximation 

Ignition 

Parameters 

∞T  20 °C 

igT  Ignition Data Analysis 

"
crq&

 
14.5 kW/m2 

kρc
 

Ignition Data Analysis 

Burning-Rate 

Parameters 

∆hc,eff   Burning-Rate Data Analysis 

∆hg Burning-Rate Data Analysis 

hc 12 W/m2K 

ε 0.9 

 



Section 5 - 306 

Obtain Parameters via Data Analysis 

Run model  

SELECT MODEL: THERMALLY THICK MODEL FOR IGNITION ANALYSIS (QUINTIERE AND 

HARKLEROAD, ASTM E 1321) AND STEADY-BURNING MODEL  

UNDERSTAND EXPERIMENT AND FIRE CHARACTERISTICS OF MATERIAL 

 
Figure A(C)-20.  Simplified representation of a cone calorimeter test of plywood 

A simplified representation of a cone calorimeter test of plywood is shown in 

Figure A(C)-20.  The sample is placed on top of an insulation, which sits on a metal 

holder.  Another metal frame is placed on top of the sample, insulation, and the holder.  A 

metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with moisture 

loss at first appearing as white smoke followed by thermal decomposition of the wood 

component.  When ignition occurs as the fuel-vapor concentration above the surface 

exceeds its LFL (lower flammable limit), additional heat flux from the flame is 

introduced on the surface (red arrows).  As decomposition occurs under flaming 
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condition, relatively uniform cracks appear on the surface with some shrinkage, allowing 

easy evacuation of the pyrolyzates to the gas phase even as the pyrolysis front propagates 

toward in-depth.  Near the burn-out leaving grey residue, the center of the sample bends 

upward then quickly falls apart resulting in flameout.       

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exist between the sample and the insulation 

resulting in some thermal resistance.  Due to the insulation, nothing leaves through the 

back face when 1D assumption holds for the experiment.     

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT AND 

MATERIAL CHARACTERISTICS  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is: 

o Inert: decomposition before ignition is neglected 

o Thermally thick: heat transfer does not reach back surface 

• Post-ignition stage is: 

o Considered to have instantaneous release of volatiles from solid to 

gas phase: any mass-transportation effect on pyrolysis is 

neglected, and pyrolysis is considered as surface phenomena only 

o Considered to have a constant thickness: shrinkage, regression 

and bending at end of plywood is neglected 

o Steady burning: heat loss equals heat gain at front surface 

ACQUIRE DATA SETS  

Cone calorimeter test data of Douglas Fir plywood with thickness of 11.1 ± 0.1 

mm (student t distribution, α = 0.05, sample size of 10), density of 542 ± 11 kg/m
3
 

(student t distribution, α = 0.05, sample size of 10) and applied heat-flux levels ranging 

from 14 to 100 kW/m
2
 is found.  For ignition data analysis, only time-to-ignition with 

respect to applied heat-flux data will be used.  For burning-rate data analysis, data for the 

entire testing time duration, mass loss and heat release during testing period with respect 

to applied heat flux will be used. 
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CONDUCT IGNITION DATA ANALYSIS 

1. Estimate Tig  

Heat balance at front surface during steady burning is as follow: 

)()( 44"

∞∞ −+−= TTTThq igigccr εσε &
 

Knowing that emissivity is approximated as 0.9, critical heat flux is estimated as 

14.5 kW/m
2
, and heat transfer coefficient in cone calorimeter experiment is estimated as 

12.0 W/m
2
K, ignition temperature, Tig is calculated as: 

Tig = 377 °C
 

2. Estimate hig 

hig is the total heat-transfer coefficient at ignition; therefore, at steady-state-

burning stage, the following can be defined: 

)("

∞−≡ TThq igigcr
&ε

 

Knowing the ignition temperature, hig can be calculated: 

hig = 36.5 W/m
2
K 

3. Calculate 
"
e

"
cr q/q &&

 versus
igt

from ignition data 

Table A(C)-21.  
"" / ecr qq &&  versus igt  

Heat Flux tig CHF/HF tig
0.5 

(kW/m²) (s)   (s0.5) 

14 NI     

15 572 0.9667 23.92 

25 102 0.5800 10.08 

50 27 0.2900 5.16 

75 9 0.1933 3.06 

100 3 0.1450 1.63 

 

4. Plot  
"
e

"
cr q/q &&

 versus
igt

to estimate the time needed to reach “steady-state” 

burning, t* and thermal inertia, kρc 
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Recall 
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for piloted-ignition data, where t* is 

the time when 1/ "" =ecr qq && .  Thermal inertia can be estimated from the best-fit line through 

t = 0.  Its slope at 0 < t < t* is 
πkρc

h ig2
; therefore, 

( )2
24

slope

 h
ck

ig

⋅
=
π

ρ .  Note that in the 

analysis, few data points at lower heat-flux levels with large time-to-ignition data were 

excluded (see Figure A(C)-21, open circles) to increase fitness of the best-fit line.  This 

approach is reasonable, considering that at this region analysis assumptions of having 

inert and thermally thick conditions are less likely to be satisfied. 

kρc = 0.501 kJ
2
/m

4
K
2
s 

 

Figure A(C)-21.  Plot of 
"" / ecr qq &&  versus igt  
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CONDUCT BURNING-RATE DATA ANALYSIS 

1. Estimate ∆hc,eff   

There are two approaches in estimating the effective heat of combustion via 

calorimeter tests: by using the peak in HRR or the average heat released over the entire 

test.  In this example, ∆hc,eff will be estimated by considering the total heat released 

divided by the total amount of mass loss during a test.  Nine cone test results at 25, 50, 

and 75 kW/m
2
 are used to calculate the effective heat-of-combustion with its confidence 

interval using student t distribution and α = 0.05: 

∆∆∆∆hc,eff = 14.4 ± 1.2 kJ/g 

2. Estimate ∆hg  

Recall  
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆ ; therefore, when plotting mass-loss rates at 

different radiant heat-flux levels during steady-burning condition, the reciprocal of the 

slope of the best-fit line should be the heat-of-gasification.  Note that for this material – 

Douglas Fir plywood – a strict steady-burning phase does not exist where a constant 

MLR appears. Therefore, an average MLR value will be used to estimate heat-of-

gasification (see Table A(C)-22 and Figure A(C)-22).   

 

∆∆∆∆hg = 8.0 kJ/g 
 

Table A(C)-22.  Estimation of effective heat-of-gasification using cone calorimeter test results 

at applied heat flux ranging between 25 and 75 kW/m
2
 

Heat Flux Avg MLR 

(kW/m2) (g/m2s) 

25 7.1 

25 6.5 

25 8.0 

75 13.6 

50 11.0 

50 10.2 

75 13.6 

75 13.7 

75 12.9 
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Figure A(C)-22.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m

2
 

 

Obtain Uncertainty for Estimated Parameters 

UNCERTAINTY FOR MEASURED PARAMETERS 

1. δT∞ 

Fluctuation in ambient temperature during testing is estimated to be less than 

±10% of reported measurement data. 

2. 
"

crq&δ
 

The resolution of bracketing experiment was 1 kW/m
2
; hence, uncertainty can be 

estimated as ± 0.5 kW/m
2
.  To be conservative, ± 1 kW/m

2
 will be used in the analysis. 

3. δhc 

Considering that the reference values sited in the Guide for different apparatuses 

and set-up have two significant figures, uncertainty for this convection coefficient can be 

estimated as ± 0.5 W/m
2
K. 

4. δε 

Emissivity measurement of dry-plywood sample (preconditioned in an oven to 

remove moisture) was conducted using a pyrometer at an optical-property-measuring 

laboratory (ASTM E408).  The average value of three measurements were 0.891 with a 

confidence interval of ± 0.018 (student t distribution, α = 0.05, sample size of three).  

This is close to what has been assumed in the analysis.  Additionally, considering that the 
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surface becomes black as soon as it is exposed to heating from the cone, emissivity of 

thermally degrading plywood should be within ± 10% of what has been approximated in 

this example. 

UNCERTAINTY FOR ESTIMATED PARAMETERS USING IGNITION DATA ANALYSIS 

1. δTig  

See Chapter 4 for detail.
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Therefore, 
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2. δ(kρc) 

See Chapter 4 for detail. 

The uncertainty of the slope of the best-fit line, 0.0444 s
-0.5

, can be estimated 

through calculating 2 times the standard error of the slope, which is +/- 0.00136 s
-0.5
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING BURNING-RATE DATA ANALYSIS 

1. δ∆hc,eff   

Cone test results at 25, 50, and 75 kW/m
2
 are used to calculate the effective heat-

of-combustion.  Uncertainty of this value is estimated with its confidence interval using 

student t distribution and α = 0.05: ± 1.2 kJ/g 
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2. δ∆hg  

See Chapter 4 for detail.
 

The uncertainty of the slope (=1/∆hg=0.125g/kJ) can be estimated through 

calculating 2 times the standard error of the slope of the best-fit line, which is +/- 0.167.  

Therefore, the uncertainty in ∆hg is  
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UNCERTAINTY SUMMARY 

Table A(C)-23.  Summary of model-parameter table with estimated values with uncertainty 

Ignition 

Parameters 

∞T  20 ± 2 °C 

igT  377 ±  11 °C 

"
crq&

 
14.5 ± 1 kW/m2 

kρc
 

0.501 ± 0.138 kJ2/m4K2s 

Burning-Rate 

Parameters 

∆hc,eff   14.4 ± 1.2 kJ/g 

∆hg 8.0 ± 1.1 kJ/g 

hc 12 ± 0.5 W/m2K 

ε 0.9 ± 0.09 
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Validation 

Analyze Simulation Quality 

DETERMINE DATA AND MODEL OUTPUT UNCERTAINTY TO MAKE COMPARISON 

1. Conduct uncertainty analysis of data 

The uncertainty in the mass-loss rate data used for comparison between data and 

model outputs is estimated via statistical approach, taking the standard deviation (0.58 

g/sm
2
) from the mean of a steady burning of five identical PMMA tests conducted in a 

cone calorimeter.
2
  The estimated uncertainty is 1.4 g/sm

2
, which is found by calculating 

the 95% confidence interval applying student t distribution with a sample size of five.   

The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking three to four identical cone calorimeter test data at heat fluxes 

ranging from 25 to 75 kW/m
2
 of this plywood.  95% confidence interval is calculated for 

each heat-flux level assuming student t distribution. 

2. Conduct uncertainty analysis for MLR profile modeling 

Because uncertainty information of the data is found in terms of time-to-ignition 

and mass-loss rate, the mass-loss-rate profile is considered as the modeling output of 

interest for comparison purposes.  For Simple Analytical Models, time-to-ignition (tig) 

and steady-burning rate ( "m& ) are needed when simulating the mass-release-rate profile.  

The uncertainty in MLR profile in modeling can be determined via considering the 

uncertainties in the calculation results below: 

tig ± δtig 

"m& ± δ "m&  

To determine the uncertainty in time to ignition, recall: 
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Knowing that all of heat-flux levels of interest, 25, 50, and 75 kW/m
2
, are above 

the critical heat flux, time-to-ignition should be smaller than t*.  Hence, uncertainty in tig 

can be estimated from linear-regression process as below: 
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Above equation can be re-written as below after conducting linear regression: 

( ) tslope =estimatey ig  

Therefore,  

��� = ����	�
����	��� �� 

Assuming that the y estimate and slope are independent and propagating the 

uncertainties in these two variables in estimating the time to ignition, the following 

calculation can be made: 

���� = �� ���������	�
����� �����	�
������� + � ������	���� ��	������ 

where  ���������	�
����� = 2 ∙ ����	�
������	�����  

������	���� = −2 ∙ ����	�
�������	�����  

with  �����	�
����� and ��	���� estimated through calculating 2 times the 

standard error of the y estimate and slope of the best-fit line, which are 0.0653 and 

0.00318 s
-0.5

, respectively. 

 

To determine the uncertainty in the steady-heat-release rate at post-ignition stage, 

recall: 

 
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆  

The above equation can be rearranged to  

�� " = 1∆ℎ� #�$" + #�%" − #�&"∆ℎ�  

The steady-burning rate at post-ignition stage is determined by the best-fit line 

obtained when data is plotted as steady-burning rate versus applied heat flux.  The 
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uncertainty in steady-burning rate can be determined by considering 2 times the standard 

error of the y estimates, i.e.,��� ", which is obtained through linear-regression process: ± 

1.1 g/m
2
s.     

 

COMPARE DATA WITH SIMULATION RESULTS WITH CONSIDERATION OF 

UNCERTAINTIES 

Parameters in this simple analytical pyrolysis model have been estimated with 

cone calorimeter test data from 25, 50, and 75 kW/m
2
.  To check the quality of the 

modeling using the estimated parameters, three cases have been simulated and compared 

with experiment data with the consideration of their uncertainty bands as shown in Table 

A(C)-24 and figures below.   

Table A(C)-24.  Comparison of time-to-ignition at different heat-flux levels from actual 

experiment and pyrolysis modeling 

Heat-Flux Level 
Actual tig (s) 

tig ± δti 

Model tig (s) 

tig ± δti 

25 kW/m2 93 ± 43 99 ± 25 

50 kW/m2 15 ± 3 25 ± 12 

75 kW/m2 9 ± 4 11 ± 8 

 

All three cases show good overlap between the data and simulation of time-to-

ignition and the mass-loss rate during steady burning considering the uncertainties, i.e., 

the parameter estimation was conducted successfully (see Figure A(C)-23, Figure A(C)-

24 and Figure A(C)-25). 
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Figure A(C)-23.  Mass-loss rate (MLR) comparisons for plywood between actual MLR from 

experiment (exp) and modeled MLR (sim) at 25 kW/m
2
.  Note that data shown were used to 

estimate model-parameter values. 

 

 

Figure A(C)-24.  Mass-loss rate (MLR) comparisons for plywood between actual MLR from 

experiment (exp) and modeled MLR (sim) at 50 kW/m
2
.  Note that data shown were used to 

estimate model-parameter values. 
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Figure A(C)-25.  Mass Loss rate (MLR) comparisons for plywood between actual MLR from 

experiment (exp) and modeled MLR (sim) at 75 kW/m
2
.  Note that data shown were used to 

estimate model-parameter values. 

 

Commentary 

When using Simple Analytical Model to simulate pyrolysis of Douglas Fir 

plywood, test data from a bench-scale cone calorimeter experiment at several heat-flux 

levels have been utilized to estimate the time-to-ignition from exposure to heating and the 

mass-loss rate at steady-burning stage after ignition.  The comparison between the model 

outputs (time-to-ignition and steady-burning rate) and the data from bench-scale 

experiment showed good agreement for both checking purposes, where the same heat 

flux levels (25, 50 and 75 kW/m
2
) used in parameter estimation have been considered. 

Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical Modeling 

should be noted, which is that the model is for thermally-thick-behaving materials and 

steady burning after ignition.  
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EXAMPLE 4.5 MODELING GRP WITH BALSA WOOD 

CORE SANDWICH COMPOSITE 

This material is composed of approximately 1 mm thickness of laminated glass-

reinforced polymer (GRP) over approximately 25 mm thickness of resin-soaked balsa 

wood core as a skin layer (sandwich construction).  The resin used in the GRP and with 

balsa wood is vinyl ester (VEX).  The light-weight balsa wood core acts as an insulating 

layer for the thin GRP skin and allows the ignition data to behave thermally-thin.  This 

thermal behavior is examined by plotting 1/tig
n
 vs. applied heat flux where its best fitness 

of a linear regression occurs near n = 0.9. 

Measure Parameters  

1. Ambient Temperature 

Direct measurement of ambient temperature is made as 20°C. 

2. Surface Temperature at Ignition 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

3. Critical Heat Flux for Ignition 

By bracketing to within +/- 2.5 kW/m
2
 in cone calorimeter tests, 

"
crq&

 has been 

determined to be 12.5 kW/m
2
.  Ignition data is provided below for this sandwich 

composite with thickness of ~1 mm of GRP skin layer on surfaces out of 28 mm 

of the entire composite, density of 500 kg/m
3
 (see Table A(C)-25): 

Table A(C)-25.  Ignition data from cone calorimeter tests for GRP with balsa wood core 

sandwich composite 

Heat Flux tig 

(kW/m²) (s) 

10 NI 

15 792 
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4. Thermal Inertia 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

5. Effective Heat-of-Combustion 

This parameter will be obtained via BurningRate Data Analysis, i.e., no direct 

measurements will be performed. 

6. Heat-of-Gasification 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

7. Convection Coefficient 

Because this is a material laid in horizontal position in a cone calorimeter, hc = 

12 W/m
2
K is used based on literature reference. 

8. Surface Emissivity/Absorptivity 

Emissivity is approximated as 0.9. 

Summary 

Table A(C)-26.  Summary of model-parameter table with estimated values via direct 

measurements, literature search, or approximation 

Ignition 

Parameters 

∞T  20 °C 

igT  Ignition Data Analysis 

"
crq&

 
12.5 kW/m2 

kρc
 

Ignition Data Analysis 

Burning-Rate 

Parameters 

∆hc,eff   Burning-Rate Data Analysis 

∆hg Burning-Rate Data Analysis 

hc 12 W/m2K 

ε 0.9 
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Obtain Parameters via Data Analysis 

Run model  

SELECT MODEL: THERMALLY THIN MODEL FOR IGNITION ANALYSIS AND STEADY-

BURNING MODEL 

UNDERSTAND EXPERIMENT AND FIRE CHARACTERISTICS OF MATERIAL 

 
Figure A(C)-26.  Simplified representation of a cone calorimeter test of sandwich composite 

A simplified representation of a cone calorimeter test of this sandwich composite 

is shown in Figure A(C)-26.  The sample is placed on top of an insulation, which sits on a 

metal holder.  Another metal frame is placed on top of the sample, insulation and the 

holder.  A metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with small 

bubbles appearing on the surface and blackening.  When ignition occurs as the fuel-vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 

flux from the flame is introduced on the surface (red arrows).  The flame height and its 

intensity are the greatest when the resin in the skin layer (GRP composite) is pyrolyzing.  
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After the skin layer is consumed, the flame become shorter and scatters on the surface as 

the fuel vapor produced in the balsa wood core layer is diffusing through the inert glass 

layers left in the skin layer on the surface.  This short and scattering flame continues 

throughout flameout.     

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exist between the sample and the insulation 

resulting in some thermal resistance.  Due to the insulation, nothing leaves through the 

back face when 1D assumption holds for the experiment.     

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT AND 

MATERIAL CHARACTERISTICS  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is: 

o Inert: decomposition with bubbling and changing color on THE 

surface before ignition is neglected 

o Thermally thin GRP skin: heat transfer reaches back surface 

quickly, and the surface layer (vinylester resin GRP) is considered 

to have uniform temperature throughout 

o Control volume for ignition analysis is the thermally-thin GRP 

skin layer on the front surface facing the heating source 

• Post-ignition stage is: 

o Considered to have instantaneous release of volatiles from solid to 

gas phase: any mass-transportation effect on pyrolysis is 

neglected, and pyrolysis is considered as surface phenomenon 

only 

o Considered to have a constant thickness 

o Steady burning: heat loss equals heat gain at front surface 

o 30% of the GRP skin layer (density of 2000 kg/m
3
) is consumed 

via burning, and this information is used to calculate the model’s 

burnout-time prediction 
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ACQUIRE DATA SETS  

Cone calorimeter test data of this sandwich composite panel with thickness of 28 

mm, density of 500 and applied heat flux levels ranging from 15 to 90 kW/m
2
 is found.  

For ignition data analysis, only time to ignition with respect to applied heat flux data will 

be used.  For burning rate data analysis, data for the entire testing time duration, mass 

loss and heat release during testing period with respect to applied heat flux will be used. 

 

CONDUCT IGNITION DATA ANALYSIS 

1. Estimate Tig  

Heat balance at front surface during steady burning is as follow: 

)()( 44"

∞∞ −+−= TTTThq igigccr εσε &
 

Knowing that emissivity is approximated as 0.9, critical heat flux is estimated as 

12.5 kW/m
2
, and heat transfer coefficient in Cone calorimeter experiment is estimated as 

12.0 W/m
2
K, ignition temperature, Tig is calculated as: 

Tig = 350 °C
 

2. Estimate hig 

hig is the total heat transfer coefficient at ignition; therefore, at steady state 

burning stage, following can be defined: 

)("

∞−≡ TThq igigcr
&ε

 

Knowing the ignition temperature, hig can be calculated: 

hig = 34.1 W/m
2
K 
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3. Calculate 
"
e

"
cr q/q &&

 versus igt from ignition data 

Table A(C)-27.  
"" / ecr qq &&  versus igt  

Heat Flux tig CHF/HF Heat Flux tig CHF/HF 

(kW/m²) (s) 
 

(kW/m²) (s)  

10 NI   50 42 0.2500 

15 792 0.8333 50 50 0.2500 

15 1017 0.8333 50 43 0.2500 

15 703 0.8333 50 47 0.2500 

20 243 0.6250 50 46 0.2500 

20 297 0.6250 50 35 0.2500 

20 702 0.6250 50 45 0.2500 

20 1044 0.6250 50 44 0.2500 

20 256 0.6250 50 60 0.2500 

20 266 0.6250 50 55 0.2500 

25 139 0.5000 60 34 0.2083 

25 191 0.5000 60 38 0.2083 

30 89 0.4167 75 24 0.1667 

30 123 0.4167 75 22 0.1667 

35 93 0.3571 80 26 0.1563 

35 82 0.3571 80 21 0.1563 

35 93.0 0.3571 85 24.00 0.1471 

35 98 0.3571 85 19 0.1471 

40 55 0.3125 90 21 0.1389 

40 66 0.3125 90 21.00 0.1389 

4. Plot  
"
e

"
cr q/q &&

 versus igt to estimate the time needed to reach “steady-state” burning, 

t* and thermal capacity, ρcδ 

Recall 
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for piloted ignition data where t* is the 

time when 1/ "" =ecr qq && .  Thermal inertia can be estimated from the best fit line through t = 

0.  Its slope at 0 < t < t* is 
δρc

hig
; therefore, 

( )slope

h
c

ig=δρ .  Note that in the analysis, few 

data points at lower heat flux levels with large time to ignition data were excluded (see 

Figure A(C)-27, open circles) to increase fitness of the best-fit line.  This approach is 

reasonable considering that at this region analysis assumptions of having inert, thermally-

thin and negligible heat loss conditions are less likely to be satisfied. 
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ρcδ = 7.625 kJ/m
2
K 

 

Figure A(C)-27.  Plot of 
"" / ecr qq &&  versus igt  

 

CONDUCT BURNING RATE DATA ANALYSIS 

1. Estimate ∆hc,eff   

There are two approaches in estimating the effective heat of combustion via 

calorimeter tests: by using the peak in HRR or the average heat released over the entire 

test.  In this example, ∆hc,eff will be estimated by considering the average peak heat 

released divided by the average peak mass loss during a test.  Cone test results ranging 

from 30 to 90 kW/m
2
 are used to calculate the effective heat of combustion with its 

confidence interval using student t distribution and α = 0.05: 

∆∆∆∆hc,eff =23.5 ± 2.1 kJ/g 

2. Estimate ∆hg  

Recall  
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≡∆ ; therefore, when plotting mass loss rates at 

different radiant heat flux levels during steady burning condition, the reciprocal of the 
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slope of the best-fit line should be the heat-of-gasification.  Note that for this material – 

sandwich composite – a strict steady-burning phase does not exist where a constant MLR 

appears. The burning of the resin in the front surface-skin layer (vinyl-ester resin GRP 

composite) occurs with ignition and lasts about 1 min. or so with increasing mass-loss 

rate and heat-release rate showing up as the initial peak in the MLR and HRR curve.  

Considering that the model control volume is the first GRP skin layer and HoG is 

estimated to calculate the energy necessary for gasification of the GRP skin layer, HoG is 

calculated in the time interval where the initial peaks of the MLR and HRR curve are 

found; hence, both MLR and HRR are found from the peak averaged values at different 

heat-flux levels (see Table A(C)-28 and Figure A(C)-28).  

 

∆∆∆∆hg = 8.0 kJ/g 

 

Table A(C)-28.  Estimation of effective heat-of-gasification using cone calorimeter test results 

at applied heat flux ranging between 30 and 90 kW/m
2
 

Heat Flux peakAvgMLR 

(kW/m2) (g/m2s) 

30 10.53 

30 12.09 

35 12.53 

35 12.75 

35 12.01 

35 12.68 

40 12.69 

40 13.26 

50 12.87 

50 12.12 

50 12.27 

60 14.39 

60 16.14 

75 17.31 

75 17.85 

80 16.08 

85 17.51 

90 20.20 

90 20.18 
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Figure A(C)-28.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m

2
 

 

 

Obtain Uncertainty for Estimated Parameters 

UNCERTAINTY FOR MEASURED PARAMETERS 

1. δT∞ 

Fluctuation in ambient temperature during testing is estimated to be less than 

±25% of reported measurement data. 

2. 
"

crq&δ
 

The resolution of bracketing experiment was 5 kW/m
2
; hence, uncertainty can be 

estimated as ± 2.5 kW/m
2
.   

3. δhc 

Considering that the reference values sited in the Guide for different apparatuses 

and set-up have two significant figures, uncertainty for this convection coefficient can be 

estimated as ± 0.5 W/m
2
K. 

4. δε 

Emissivity measurement of this sample was conducted using an IR camera with 

its surface blackened – 0.92 ± 0.02.  This is close to what has been assumed in the 

analysis.  The emissivity uncertainty is considered to be ± 10% of what has been 

approximated in this example. 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING IGNITION DATA ANALYSIS 

1. δTig  

See Chapter 4 for detail.
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Therefore, 
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2. δ(ρcδ) 

See Chapter 4 for detail. 

The uncertainty of the slope of the best-fit line, 0.004475 /s, can be estimated 

through calculating 2 times the standard error of the slope, which is +/- 0.000379 /s. 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING BURNING-RATE DATA ANALYSIS 

1. δ∆hc,eff   

Cone test results ranging from 30 to 90 kW/m
2
 are used to calculate the effective 

heat-of-combustion.  Uncertainty of this value is estimated with its confidence interval 

using student t distribution and α = 0.05: ± 2.1 kJ/g 

2. δ∆hg  

See Chapter 4 for detail.
 

The uncertainty of the slope (=1/∆hg=0.129g/kJ) can be estimated through 

calculating 2 times the standard error of the slope of the best-fit line, which is +/- 0.229.  

Therefore, the uncertainty in ∆hg is  
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Therefore, 
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UNCERTAINTY SUMMARY 

Table A(C)-29.  Summary of model-parameter table with estimated values with uncertainty 

Ignition 

Parameters 

∞T  20 ± 5 °C 

igT  350 ±  36 °C 

"
crq&

 
12.5 ± 2.5 kW/m2 

ρcδ
 

7.625 ± 19.1 kJ2/m4K2s 

Burning-Rate 

Parameters 

∆hc,eff   23.5 ± 2.1 kJ/g 

∆hg 8.7 ± 1.4 kJ/g 

hc 12 ± 0.5 W/m2K 

ε 0.9 ± 0.09 
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Validation 

Analyze Simulation Quality 

DETERMINE DATA AND MODEL OUTPUT UNCERTAINTY TO MAKE COMPARISON 

1. Conduct uncertainty analysis of data 

The uncertainty in the mass-loss-rate data used for comparison between data and 

model outputs is estimated via statistical approach, taking the standard deviation (0.58 

g/sm
2
) from the mean of a steady burning of five identical PMMA tests conducted in a 

cone calorimeter.
2
  The estimated uncertainty is 1.4 g/sm

2
, which is found by calculating 

the 95% confidence interval applying student t distribution with a sample size of five.   

The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking three to four identical cone clorimeter test data at heat fluxes 

ranging from 35 to 75 kW/m
2
 of this plywood.  95% confidence interval is calculated for 

each heat-flux level assuming student t distribution. 

2. Conduct uncertainty analysis for MLR profile modeling 

Because uncertainty information of the data is found in terms of time-to-ignition 

and mass-loss rate, the mass-loss-rate profile is considered as the modeling output of 

interest for comparison purposes.  For Simple Analytical Models, time-to-ignition (tig) 

and stead- burning rate ( "m& ) are needed when simulating the mass-release-rate profile.  

The uncertainty in the MLR profile in modeling can be determined via considering the 

uncertainties in these calculation results as below: 

tig ± δtig 

"m& ± δ "m&  

To determine the uncertainty in time to ignition, recall: 
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Knowing that all heat-flux levels of interest, 35, 50, and 75 kW/m
2
, are above the 

critical heat flux, time-to-ignition should be smaller than t*.  Hence, uncertainty in tig can 

be estimated from linear-regression process as below: 
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The above equation can be re-written as below after conducting linear regression: 

( )tslope =estimatey ig  

Therefore,  

��� = ���	�
����	���  

Assuming that the y estimate and slope are independent and propagating the 

uncertainties in these two variables in estimating the time-to-ignition, the following 

calculation can be made: 

���� = �� ���������	�
����� �����	�
������� + � ������	���� ��	������ 

where  ���������	�
����� = 1�	���� ������	���� = − ����	�
������	�����  

with  �����	�
����� and ��	���� estimated through calculating 2 times the 

standard error of the y estimate and slope of the best-fit line. 

 

To determine the uncertainty in the steady-heat-release rate at post-ignition stage, 

recall: 

 
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆  

The above equation can be rearranged to  

�� " = 1∆ℎ� #�$" + #�%" − #�&"∆ℎ�  

The steady-burning rate at post-ignition stage is determined by the best-fit line 

obtained when data is plotted as steady-burning rate versus applied heat flux.  The 

uncertainty in steady-burning rate can be determined by considering 2 times the standard 
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error of the y estimates, i.e.��� ", which is obtained through linear regression process: ± 2.1 

g/m
2
s.     

 

COMPARE DATA WITH SIMULATION RESULTS WITH CONSIDERATION OF 

UNCERTAINTIES 

Parameters in this simple analytical pyrolysis model have been estimated with 

cone calorimeter test data from 35, 50 and 75 kW/m
2
.  To check the quality of the 

modeling using the estimated parameters, three cases have been simulated and compared 

with experiment data with the consideration of their uncertainty bands as shown in Table 

A(C)-30 and figures below.  Note that although the experiment data shows pyrolysis of 

the entire sandwich composite, from the front surface GRP skin layer to balsa wood core 

and through the back surface GRP skin layer (blue lines), the modeling results only 

account for pyrolysis of the front surface GRP skin layer (red lines).  The GRP skin layer 

has a thickness, density, and inert residue fraction, including glass layers, of 

approximately 1.3 mm, 2000 kg/m
3
 and 70%, respectively.  

Table A(C)-30.  Comparison of time-to-ignition at different heat-flux levels from actual 

experiment and pyrolysis modeling 

Heat-Flux Level 
Actual tig (s) 

tig ± δti 

Model tig (s) 

tig ± δti 

35 kW/m2 92 ± 11 80 ± 27 

50 kW/m2 47 ± 5 56 ± 26 

75 kW/m2 23 ± 13 37 ± 26 

 

All three cases show good overlap between the data and simulation of time-to-

ignition and the mass-loss rate during steady burning, considering the uncertainties, i.e., 

the parameter estimation was conducted successfully (see Figure A(C)-29, Figure A(C)-

30 and Figure A(C)-31). 
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Figure A(C)-29.  Mass-loss rate (MLR) comparisons for GRP with balsa wood core sandwich 

composite between actual MLR from experiment (exp) and modeled MLR (sim) at 25 kW/m
2
.  

Note that data shown were used to estimate model-parameter values. 

 

 

Figure A(C)-30.  Mass-loss rate (MLR) comparisons for GRP with balsa wood core sandwich 

composite between actual MLR from experiment (exp) and modeled MLR (sim) at 50 kW/m
2
.  

Note that data shown were used to estimate model-parameter values. 
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Figure A(C)-31.  Mass-loss rate (MLR) comparisons for GRP with balsa wood core sandwich 

composite between actual MLR from experiment (exp) and modeled MLR (sim) at 75 kW/m
2
.  

Note that data shown were used to estimate model-parameter values. 

 

Commentary 

In this example, Simple Analytical Model is used to simulate pyrolysis of the 

thermally-thin-behaving GRP skin layer of this sandwich composite (vinyl-ester GRP 

skin layers with resin-soaked balsa wood core).  Test data from a bench-scale cone 

calorimeter experiment at several heat-flux levels have been utilized to estimate the time-

to-ignition from exposure to heating and the mass-loss rate at steady-burning stage after 

ignition.  The comparison between the model outputs (time-to-ignition and steady-

burning rate) and the data from bench-scale experiment showed good agreement for both 

checking purposes where the same heat-flux levels (35, 50 and 75 kW/m
2
) used in 

parameter estimation have been considered. 

Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seems to be reasonable, limitation of this Simple Analytical Modeling 

should be noted, which is that the model is for thermally-thin-behaving materials and 

steady burning after ignition.  
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EXAMPLE 4.6 MODELING THIN FRP COMPOSITE SHEET 

The rigid FRP panel chosen for use in full-scale testing is commercially available 

and advertised for use as ceiling and wall linings in environments designed to be 

moisture- and mold-free. The panel has a Class C (ASTM E84) flame-spread rating. It is 

consisted of modified-polyester copolymer and inorganic fillers as the resin base and 

reinforced with a weave of random-chopped fiberglass. The panel’s thickness is 0.09” 

(2.3 mm) nominal, with a smooth backface and a pebbled, embossed white front surface. 

When this material is tested for ignition in a cone calorimeter test, thermally thin 

behavior is observed.  This thermal characteristic is examined by plotting 1/tig
n
 vs. 

applied heat flux, where its best fitness of a linear regression occurs near n = 1.0. 

Measure Parameters  

1. Ambient Temperature 

Direct measurement of ambient temperature is made as 23°C. 

2. Surface Temperature at Ignition 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

3. Critical Heat Flux for Ignition 

By bracketing to within +/- 1 kW/m
2
 in cone calorimeter tests, 

"
crq&

 has been 

determined to be 16 kW/m
2
.  Ignition data is provided below for this FRP 

composite with thickness of 2 mm and density of 1500 kg/m
3
 (see Table A(C)-

31): 

Table A(C)-31.  Ignition data from cone calorimeter tests for thin FRP composite sheet 

Heat Flux tig 

(kW/m²) (s) 

15 NI 

17 269 
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4. Thermal Inertia 

This parameter will be obtained via Ignition Data Analysis, i.e., no direct 

measurements will be performed. 

5. Effective Heat-of-Combustion 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

6. Heat-of-Gasification 

This parameter will be obtained via Burning-Rate Data Analysis, i.e., no direct 

measurements will be performed. 

7. Convection Coefficient 

Because this is a material laid in horizontal position in a cone calorimeter, hc = 

12 W/m
2
K is used based on literature reference. 

8. Surface Emissivity/Absorptivity 

Emissivity is approximated as 0.9. 

Summary 

Table A(C)-32.  Summary of model-parameter table with estimated values via direct 

measurements, literature search, or approximation 

Ignition 

Parameters 

∞T  23 °C 

igT  Ignition Data Analysis 

"
crq&

 
16 kW/m2 

kρc
 

Ignition Data Analysis 

Burning-Rate 

Parameters 

∆hc,eff   Burning-Rate Data Analysis 

∆hg Burning-Rate Data Analysis 

hc 12 W/m2K 

ε 0.9 
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Obtain Parameters via Data Analysis 

Run model  

SELECT MODEL: THERMALLY-THIN MODEL FOR IGNITION ANALYSIS AND STEADY-

BURNING MODEL 

UNDERSTAND EXPERIMENT AND FIRE CHARACTERISTICS OF MATERIAL 

 
Figure A(C)-32.  Simplified representation of a cone calorimeter test of FRP composite sheet 

A simplified representation of a cone calorimeter test of this FRP composite sheet 

is shown in Figure A(C)-32.  The sample is placed on top of an insulation, which sits on a 

metal holder.  Another metal frame is placed on top of the sample, insulation and the 

holder.  A metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with a small 

crackling sound and the surface becomes black.  When ignition occurs as the fuel-vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 

flux from the flame is introduced on the surface (red arrows).   
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Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exists between the sample and the insulation, 

resulting in some thermal resistance.  Due to the insulation, nothing leaves through the 

back face when 1D assumption holds for the experiment.     

CONFIGURE MODEL CONDITIONS BASED ON UNDERSTANDING OF EXPERIMENT AND 

MATERIAL CHARACTERISTICS  

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

• Pre-ignition stage is: 

o Inert: decomposition with crackling sound and changing color on 

the surface before ignition are neglected 

o Thermally thin: heat transfer reaches back surface quickly, and 

the entire layer is considered to have uniform temperature 

throughout 

• Post-ignition stage is: 

o Considered to have instantaneous release of volatiles from solid to 

gas phase: any mass-transportation effect on pyrolysis is 

neglected, and pyrolysis is considered as surface phenomenaon 

only 

o Considered to have a constant thickness 

o Steady burning: heat loss equals heat gain at front surface 

o 40% of the FRP composite sheet (density of 1500 kg/m
3
) is 

consumed via burning, and this information is used to calculate 

the model’s burnout time prediction 

ACQUIRE DATA SETS  

A cone calorimeter test data of this FRP composite sheet with thickness of 2 mm, 

density of 1500 and applied heat-flux levels ranging from 15 to 75 kW/m
2
 is found.  For 

ignition data analysis, only time-to-ignition with respect to applied heat-flux data will be 

used.  For burning-rate data analysis, data for the entire testing time duration, mass loss 

and heat release during testing period with respect to applied heat flux will be used. 
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CONDUCT IGNITION DATA ANALYSIS 

1. Estimate Tig  

Heat balance at front surface during steady burning is as follow: 

)()( 44"

∞∞ −+−= TTTThq igigccr εσε &
 

Knowing that emissivity is approximated as 0.9, critical heat flux is estimated as 

16 kW/m
2
, and heat transfer coefficient in cone calorimeter experiment is estimated as 

12.0 W/m
2
K, ignition temperature, Tig is calculated as: 

Tig = 397 °C
 

2. Estimate hig 

hig is the total heat-transfer coefficient at ignition; therefore, at steady-state-

burning stage, the following can be defined: 

)("

∞−≡ TThq igigcr
&ε

 

Knowing the ignition temperature, hig can be calculated: 

hig = 38.5 W/m
2
K 

3. Calculate 
"
e

"
cr q/q &&

 versus igt from ignition data 

Table A(C)-33.  
"" / ecr qq &&  versus igt  

Heat Flux tig CHF/HF 

(kW/m²) (s) 
 

15 NI  

17 269 0.9412 

20 207 0.8000 

25 106 0.6400 

25 117 0.6400 

40 42 0.4000 

40 52 0.4000 

50 37 0.3200 

50 39 0.3200 

50 37 0.3200 

60 26 0.2667 

60 26 0.2667 

75 24 0.2133 

75 25 0.2133 
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4. Plot  "" / ecr qq &&  versus igt to estimate the time needed to reach “steady-state” burning, 

t* and thermal capacity, ρcδ 

Recall 
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&
for piloted-ignition data, where t* is the 

time when 1/ "" =ecr qq && .  Thermal inertia can be estimated from the best-fit line through t = 

0.  Its slope at 0 < t < t* is 
δρc

hig
; therefore, 

( )slope

h
c

ig=δρ .  Note that in the analysis, few 

data points at lower heat-flux levels with large time-to-ignition data were excluded (see 

Figure A(C)-33, open circles) to increase fitness of the best-fit line.  This approach is 

reasonable, considering that at this region analysis assumptions of having inert, 

thermally-thin and negligible heat-loss conditions are less likely to be satisfied. 

 

ρcδ = 4.333 kJ/m
2
K 

 

Figure A(C)-33.  Plot of 
"" / ecr qq &&  versus igt  
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CONDUCT BURNING-RATE DATA ANALYSIS 

1. Estimate ∆hc,eff   

There are two approaches in estimating the effective heat-of-combustion via 

calorimeter tests: by using the peak in HRR or the average heat released over the entire 

test.  In this example, ∆hc,eff will be estimated by considering the average peak heat 

released divided by the average peak mass loss during a test.  Cone test results ranging 

from 30 to 90 kW/m
2
 are used to calculate the effective heat-of-combustion with its 

confidence interval using student t distribution and α = 0.05: 

∆∆∆∆hc,eff =25.5 ± 1.8 kJ/g 

2. Estimate ∆hg  

Recall  
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆ ; therefore, when plotting mass-loss rates at 

different radiant heat flux-levels during steady-burning condition, the reciprocal of the 

slope of the best-fit line should be the heat-of-gasification.  In this example, average 

MLR and HRR will be used to estimate heat of gasification (see  

Table A(C)-34 and Figure A(C)-34).   

∆∆∆∆hg = 16.3 kJ/g 
 

Table A(C)-34.  Estimation of effective heat-of-gasification using cone calorimeter test results 

at applied heat flux ranging between 17 and 75 kW/m
2
 

Heat Flux AvgMLR 

(kW/m2) (g/m2s) 

17 2.23 

20 2.64 

25 2.61 

25 2.85 

40 3.80 

50 3.84 

50 4.72 

50 4.58 

60 4.69 

60 3.34 

75 6.44 

75 6.16 
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Figure A(C)-34.  Plot of steady MLR versus different applied heat-flux levels – 25 to 75 kW/m

2
 

 

Obtain Uncertainty for Estimated Parameters 

UNCERTAINTY FOR MEASURED PARAMETERS 

1. δT∞ 

Fluctuation in ambient temperature during testing is estimated to be less than 

±15% of reported measurement data. 

2. 
"

crq&δ
 

The resolution of the bracketing experiment was 2 kW/m
2
; hence, uncertainty can 

be estimated as ± 1 kW/m
2
.   

3. δhc 

Considering that the reference values sited in the Guide for different apparatuses 

and set-up have two significant figures, uncertainty for this convection coefficient can be 

estimated as ± 0.5 W/m
2
K. 

4. δε 

The emissivity uncertainty is considered to be ± 10% of what has been 

approximated in this example. 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING IGNITION DATA ANALYSIS 

1. δTig  

See Chapter 4 for detail.
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Therefore, 
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2. δ(ρcδ) 

See Chapter 4 for detail. 

The uncertainty of the slope of the best-fit line, 0.008878 /s, can be estimated 

through calculating 2 times the standard error of the slope, which is +/- 0.000583 /s. 
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UNCERTAINTY FOR ESTIMATED PARAMETERS USING BURNING-RATE DATA ANALYSIS 

1. δ∆hc,eff   

Cone test results ranging from 30 to 75 kW/m
2
 are used to calculate the effective 

heat-of-combustion.  Uncertainty of this value is estimated with its confidence interval 

using student t distribution and α = 0.05: ± 1.8 kJ/g 

2. δ∆hg  

See Chapter 4 for detail.
 

The uncertainty of the slope (=1/∆hg=0.06136 g/kJ) can be estimated through 

calculating 2 times the standard error of the slope of the best-fit line, which is +/- 

0.01756.  Therefore, the uncertainty in ∆hg is  
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UNCERTAINTY SUMMARY 

Table A(C)-35.  Summary of model-parameter table with estimated values with uncertainty 

Ignition 

Parameters 

∞T  23 ± 3.45 °C 

igT  397 ±  10 °C 

"
crq&

 
16 ± 1 kW/m2 

ρcδ
 

4.333 ± 4.369 kJ2/m4K2s 

Burning-Rate 

Parameters 

∆hc,eff   25.5 ± 1.8 kJ/g 

∆hg 16.3 ± 4.7 kJ/g 

hc 12 ± 0.5 W/m2K 

ε 0.9 ± 0.09 

 

Validation 

Analyze Simulation Quality 

DETERMINE DATA AND MODEL OUTPUT UNCERTAINTY TO MAKE COMPARISON 

1. Conduct uncertainty analysis of data 

The uncertainty in the mass-loss-rate data used for comparison between data and 

model outputs is estimated via statistical approach, taking the standard deviation (0.58 

g/sm
2
) from the mean of a steady burning of five identical PMMA tests conducted in a 

cone calorimeter.
2
  The estimated uncertainty is 1.4 g/sm

2
, which is found by calculating 

the 95% confidence interval applying student t distribution with a sample size of five   

The uncertainty in time-to-ignition data used for comparison is estimated via 

statistical approach, taking two to three identical cone calorimeter test data at heat fluxes 

ranging from 25 to 75 kW/m
2
 of this FRP composite sheet.  95% confidence interval is 

calculated for each heat-flux level assuming student t distribution. 

2. Conduct uncertainty analysis for MLR profile modeling 

Because uncertainty information of the data is found in terms of time-to-ignition 

and mass-loss rate, the mass-loss-rate profile is considered as the modeling output of 

interest for comparison purposes.  For Simple Analytical Models, time-to-ignition (tig) 

and steady-burning rate ( "m& ) are needed when simulating the mass-release-rate profile.  
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The uncertainty in MLR profile in modeling can be determined via considering the 

uncertainties in these calculation results as below: 

tig ± δtig 

"m& ± δ "m&  

To determine the uncertainty in time to ignition, recall: 
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Knowing that all of heat flux levels of interest, 25, 50, and 75 kW/m
2
, are above 

the critical heat flux, time-to-ignition should be smaller than t*.  Hence, uncertainty in tig 

can be estimated from linear-regression process as below: 

t
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The above equation can be re-written as below after conducting linear regression: 

( )tslope =estimatey ig  

Therefore,  

��� = ���	�
����	���  

Assuming that the y estimate and slope are independent and propagating the 

uncertainties in these two variables in estimating the time-to-ignition, the following 

calculation can be made: 

���� = �� ���������	�
����� �����	�
������� + � ������	���� ��	������ 

where  ���������	�
����� = 1�	���� ������	���� = − ����	�
������	�����  

with  �����	�
����� and ��	���� estimated through calculating 2 times the 

standard error of the y estimate and slope of the best-fit line. 
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To determine the uncertainty in steady heat release rate at post ignition stage, 

recall: 

 
"m

"q - "q + "q
 = 

"m

q 
 h

lfenet
g

&

&&&

&

&
"

≡∆  

The above equation can be rearranged to  

�� " = 1∆ℎ� #�$" + #�%" − #�&"∆ℎ�  

The steady burning rate at post-ignition stage is determined by the best-fit line 

obtained when data is plotted as steady-burning rate versus applied heat flux.  The 

uncertainty in steady-burning rate can be determined by considering 2 times the standard 

error of the y estimates, i.e.,��� ", which is obtained through linear-regression process: ± 

1.2 g/m
2
s.     

 

COMPARE DATA WITH SIMULATION RESULTS WITH CONSIDERATION OF 

UNCERTAINTIES 

Parameters in this simple analytical pyrolysis model have been estimated with 

cone calorimeter test data from 25, 50, and 75 kW/m
2
.  To check the quality of the 

modeling using the estimated parameters, three cases have been simulated and compared 

with experiment data, with the consideration of their uncertainty bands as shown in Table 

A(C)-36 and figures below.  Note the inert residue fraction, including glass layers, of 

approximately 60% by weight.  

Table A(C)-36.  Comparison of time-to-ignition at different heat-flux levels from actual 

experiment and pyrolysis modeling 

Heat-Flux Level 
Actual tig (s) 

tig ± δti 

Model tig (s) 

tig ± δti 

25 kW/m2 112 ± 70 72 ± 7 

50 kW/m2 38 ± 3 36 ± 6 

75 kW/m2 25 ± 6 24 ± 6 

All three cases show good overlap between the data and simulation of time-to-

ignition and the mass-loss rate during steady burning considering the uncertainties, i.e., 
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the parameter estimation was conducted successfully (see Figure A(C)-35, Figure A(C)-

36 and Figure A(C)-37). 

 

Figure A(C)-35.  Mass-loss rate (MLR) comparisons for thin FRP composite sheet between 

actual MLR from experiment (exp) and modeled MLR (sim) at 25 kW/m
2
.  Note that data 

shown were used to estimate model-parameter values. 

 

 

Figure A(C)-36.  Mass-loss rate (MLR) comparisons for thin FRP composite sheet between 

actual MLR from experiment (exp) and modeled MLR (sim) at 50 kW/m
2
.  Note that data 

shown were used to estimate model-parameter values. 
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Figure A(C)-37.  Mass-loss rate (MLR) comparisons for thin FRP composite sheet between 

actual MLR from experiment (exp) and modeled MLR (sim) at 75 kW/m
2
.  Note that data 

shown were used to estimate model-parameter values. 

 

Commentary 

In this example, Simple Analytical Model is used to simulate pyrolysis of 

thermally-thin-behaving FRP composite sheet.  Test data from a bench-scale cone 

calorimeter experiment at several heat-flux levels have been utilized to estimate the time-

to-ignition from exposure to heating and the mass-loss rate at steady burning stage after 

ignition.  The comparison between the model outputs (time-to-ignition and steady-

burning rate) and the data from bench-scale experiment showed good agreement for both 

checking purposes, where the same heat-flux levels (25, 50, and 75 kW/m
2
) used in 

parameter estimation have been considered.  To improve modeling results, one may 

consider taking the peak average of the mass-loss rate and the heat-release rates to 

estimate heat-of-gasification, for most of the burning occurs near the peak.  The tail 

following the peak (MLR or HRR curve) extends for a longer period of time until 

flameout, where a smaller percentage of the combustible resin between fiberglass layers 

is burning off at in-depth. 

Although the modeling predictions of time-to-ignition and steady-burning rate in 

this example seem to be reasonable, limitation of this Simple Analytical Modeling should 
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be noted, which is that the model is for thermally-thin-behaving materials and steady 

burning after ignition.  
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Appendix D - Example Solutions for Chapter 5 

EXAMPLE 5.1 MODELING PMMA 

An example case is shown for a poly(methylmethacrylate), PMMA.  Most of the 

approach and reference values of the input parameters for this simulation were obtained 

from Stoliarov’s work.1  Note that for this example, three approaches will be used to 

estimate model parameters: (1) direct measurement, literature search or approximation 

denoted as Approach A; (2) combination of non-optimization and optimization method 

denoted as Approach B-GA, B-SCE or B-SHC; and (3) mostly optimization method 

denoted as Approach C-GA, C-SCE or C-SHC.  For optimization routines, Genetic 

Algorithm (GA), Shuffled Complex Evolution (SCE), or Stochastic Hill-climber (SHC) is 

applied. 

 

Measure Parameters 

When conducting parameter estimation via independent experiments, consider the 

following: 

 Check consistency between model used in experiment analysis and pyrolysis 

model 

 Use statistical approach for determining uncertainty, otherwise, meet equivalency 

to this requirement 

 

1. Density 

Bulk density is measured by the cone calorimeter experiment conducted at room 

temperature (≈298K), weighing sample’s mass, and dividing mass with sample volume, 

which was 1200 kg/m3. 

ρ = 1200 kg/m3 

2. Thermal Conductivity 

This was measured using a Thermoflixer apparatus (SWO Polymertechnik 

GmbH), which is based on the transient line source method.2  The author had mentioned 

in this work1 that the values determined from this experiment were significantly lower 

than the values from the literature, which were ranging from 0.19 to 0.25 W/m-K3.  The 

difference in the measurements from different laboratories was explained by the 
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sensitivity of the thermal conductivity to subtle variations in the polymer structure.  See 

Figure A(D)-1 for comparison. 

 

Figure A(D)-1.  Thermal conductivity of PMMA 

3. Specific-heat Capacity 

This was measured using Differential Scanning Calorimetry (DSC).  Details of 

this work are reported in ref4.  From ref4, a figure that compares Stoliarov’s 

measurements to other reference5 is reproduced (see Figure A(D)-2).  In the simulation in 

this example, for consistency, Stoliarov’s measurements will be used. 

 

Figure A(D)-2.  Heat capacity of PMMA 
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4. Absorption Coefficient 

An expression (based on the assumption of exponential attenuation) that relates 

the transmissivity (τ) and absorption coefficient (α), where l is the polymer film thickness 

can be given as below: 

   
   (   )     

 
 

Ks = 2700 /m 

5. Emissivity 

To estimate emissivity of PMMA, average reflectivity was found by averaging the 

wavelength-dependent reflectivities measured over emissive-power distributions of a 

blackbody at 1000K, knowing that this temperature is the closest match to radiant-heater 

temperatures used in the burning-rate measurements.  Emissivity of PMMA was 

estimated to be 1 – reflectivity.   

ɛ = 0.85 

 

6. Reaction Order, Pre-exponential Factor and Activation Energy 

For this example case, where decomposition kinetics type is 2 (single peak in 

DTG over entire mass loss temperature range), the following approach is applicable: 

Conduct dynamic Thermogravimetric Analysis (TGA) experiments in nitrogen 

Thermogravimetic Analysis (TGA) experiments are conducted at various heating 

rates – 0.05, 0.17 and 0.5 K/s – with samples sizes ranging from 2 to 5 mg.  Temperature 

range used in the tests is from 373 to 1003 K with nitrogen as purging gas.  Considering 

that the decomposition-reaction rate can be written as weight-loss rate measured from 

TGA tests, reaction rates were calculated by numerical differentiation of mass loss data 

as: 

  

  
  
⁄

  
 

Conduct kinetic modeling to obtain kinetic parameters 

1. Applying Arrhenius expression and assuming one-step decomposition-reaction 

mechanism, where virgin material decomposes to fuel vapor leaving no residue 

with first-order reaction-kinetic model, the reaction rate can be expressed in terms 
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of weight loss and temperature.  Note that n value is pre-determined as 1.  This 

expression is consistent with FDS pyrolysis model. 

      ( 
 

   
) (
   

  

)
 

 

2. Plot   (
 

(
   

  
)
 ) vs. 

 

 
 for all data obtained from different heating-rate experiments. 

Applying log to each side of the equation and rearranging it gives the following: 

  (
 

(
   
  

)
 
)    ( )  

 

  
 

Therefore, plotting LHS term versus 1/Ts allows determination of activation 

energy (slope) and the pre-exponential coefficient (intercept) as shown in Figure 

A(D)-3 (reproduced from reference1).   

 

Figure A(D)-3.  Kinetic modeling for decomposition of PMMA under nitrogen atmosphere: 

Arrhenius equation with n = 1 reaction model is used. 

3. According to the good fitness of the linear trendline to the overall data with 

different heating rates, first-order approximation utilized in this kinetic modeling 

seems to be appropriate.  The final estimated kinetic parameter values are: 

A = 8.5 x 1012 (/s); E = 1.88 x 105 (J/mol) 
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7. Heat of Reaction 

Heat-of-decomposition reaction was measured by Stoliarov in his previous work 

using Differential Scanning Calorimetry (DSC) with nitrogen as purging gas.4  Heat is 

normalized by its initial sample weight.  

ΔHr = 870 kJ/kg 

 

Summary 

The uncertainties in the estimated properties are as follows (see Table A(D)-1) for 

measured values.  Note that these are determined from the data scatter and expressed as 

±2 normalized standard errors.  The standard errors are normalized by their mean.  

Exceptions are the uncertainties in emissivity and absorption coefficient, where crude 

estimates are given by the author due to lack of information.  Note that although 

modeling PMMA can be done by direct mode, i.e., model parameters are estimated via 

direct measurements, literature search, and/or approximations, for comparison purposes 

two other approaches are considered in this example – using some or mostly optimization 

to estimate unknowns. 

Table A(D)-1.  Summary of estimated uncertainty for each model parameter 

 No Condense Phase (i=1) Uncertainty (%) 

Material Property 

1  Density ± 5 

2  Thermal conductivity ± 15 

3  Specific-heat capacity ± 15 

4  Absorption coefficient ± 50 

Parameters for 
Specifying Conditions 

5  Emissivity ± 20 

  Heterogeneous RxN (k=1)  

Kinetic Parameters and 
Heats assuming nth 
order model and 
Arrhenius-type 

expression 

6 

 Reaction order N/A 

 Pre-exponential factor ± 50 

 Activation energy ± 3 

7  heat ± 15 
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Obtain Parameters via Numerical Optimization 

Run model or Run Model in Pair with Numerical Optimization 

Select model: GPYRO 

Understand bench-scale experiment set-up for modeling simple cases  

 
Figure A(D)-4.  Simplified representation of a cone calorimeter test of PMMA 

A simplified representation of a cone calorimeter test of PMMA is shown in 

Figure A(D)-4.  The sample is placed on top of an insulation, which sits on a metal 

holder.  Another metal frame is placed on top of the sample, insulation and the holder.  A 

metal edge frame is used as well to allow the sample to be stationary with good contact 

between underlying insulation during decomposition with surface regression. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to heat the sample surface (large red arrow), cooling also begins via 

natural convection (blue arrows) and re-radiation.  The surface decomposes with 

bubbling with respect to temperature increase occurring through heat conduction and/or 

in-depth radiative transport.  The pyrolyzates leave through the surface until complete 

burn-off, because this material leaves no residue.  When ignition occurs as the fuel-vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 

CONE HEATER 

 

M
E

T
A

L
 E

D
G

E
 F

R
A

M
E

 
 

INSULATION 

METAL HOLDER 

PMMA 



Section 5 - 368 

flux from the flame is introduced on the surface (red arrows).  Regression of the sample 

surface with respect to consumption of PMMA in pyrolysis occurs.     

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exist between the sample and the insulation due to 

thermal contact.  Due to the insulation, nothing leaves through the back face when 1D 

assumption holds for the experiment.     

Configure model conditions based on understanding of experiment set-up 

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

 Instantaneous release of volatiles from solid to the gas phase 

 Local thermal equilibrium between the solid and the volatiles 

 No condensation of gaseous products 

 No porosity effects 

Further details can be found from the Technical Reference 6 and User’s Guide7 of 

FDS (http://www.fire.nist.gov/fds/documentation.html). 

When conducting the FDS simulation for the cone calorimeter set-up, the metal 

edge frame will be ignored and backing is insulated.  Gas-phase combustion will be 

turned off by assuming that the ambient oxygen concentration is less than 10% (Yo2 = 

0).  Heat flux from the cone is set by using EXTERNAL_FLUX at the sample surface.  

The ignition phenomenon is interpreted as the following in the simulations: when mass-

burning rate is above 10 kW/m2/ΔHc,(criteria based on experiment observations1), 

additional heat flux of 20 kW/m2 is added to EXTERNAL_FLUX to include the heating 

from the flame, assuming that the flame is transparent.  This is the reference value found 

from the work of Beaulieu8, where actual measurement of the flame heat flux of a black 

PMMA was conducted.  The heat-of-combustion was determined using a microscale 

combustion calorimeter9 operating in the following condition: pyrolysis in nitrogen 

atmosphere by heating samples (2 to 4 mg) at a fixed rate of 1 K/s from 373 to 1173 K.  

The value is normalized by initial sample weight: ΔHc = 24100 kJ/kg  

 

http://www.fire.nist.gov/fds/documentation.html
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Acquire data sets that can represent burning behavior of interesti or that can be 

used in numerical optimization process in pair with pyrolysis modeling for 

obtaining unknown model parameter values i i 

1. Maximum heat-flux level of interest for this parameter estimation is 

approximately 100kW/m2. 

2. Cone alorimeter test data of thick PMMA (thickness, δ ranging from 24 ~ 29 mm) 

impinged with effective heat fluxes (EHF) of 23, 46, and 69 kW/m2 is found to 

show the burning behavior under various heat flux levels that are less than 100 

kW/m2.  Data were reproduced from Stoliarov’s paper,1 which are shown in 

Figure A(D)-5: 

 

Figure A(D)-5.  Cone experiment results of PMMA with effective heat flux and thickness 

ranging from 23 to 69 kW/m2 and 24 to 29 mm, respectively 

Select numerical optimization routine 

 Genetic Algorithm (GA) 

 Shuffled Complex Evolution (SCE) 

 Stochastic Hill-climber (SHC) 

 See Chapter 5 for more description of each optimization routine. 

 

                                                 
i
 The simulations are conducted in a direct mode (i.e., all  input values are obtained through other sources, 

such as references or independent measurements); hence, no data will  be used to optimize the final 
results.  However, cone calorimeter test data will  be used to make the comparison between the 
simulation results and experiment data.   
ii
To conduct simulations, unknown parameters need to be obtained via numerical optimization for 

independent measurements of those parameters are cumbersome and impossible in most cases.   
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Conduct simulations for these cases to compare simulation output to experiment 

data, or conduct numerical optimization in pair with simulations using experiment 

data as targets 

Simulations with GPYRO for the above three cases with EHF = 23 kW/m2, EHF 

= 46 kW/m2, and EHF = 69 kW/m2 with sample thickness, δ = 26 mm are conducted.   

 

Obtain Confidence Intervals for Optimized Parameters* 

 Baseline case: HF = 46 kW/m2, thickness = 29 mm 

 Sensitive parameters varied one at a time from baseline to its max and min by 

considering uncertainty; however, due to compensation effect, pre-exponential 

factor and activation energy will be considered in pair to have max and min 

decomposition temperature 

 Uncertainty is considered for GA optimization cases (B-GA, C-GA) only using 50 

near-optimal parameter sets 

 Integration of uncertainty is calculated by the Law of Propagation of Uncertainty 
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Parameter Estimation Results 

ID A B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Parameter Unit 
Measurement, 
Literature, or 

Approximation 

Comparable Non-
optimization and 

Optimization 
Mostly Optimization 

Th
er

m
o

-p
h

ys
ic

al
 

P
ro

p
er

ty
 

 kg/m3

 
1200 ± 60  1200 ± 60  1200 ± 60  

Measurement Measurement Measurement 

 W/m-
K 

0.18 ± 0.01 
0.30 ± 
0.01  

0.21 0.33 
0.29 ± 
0.01  

0.29 0.19 

Literature10 GA SCE SHC GA SCE SHC 

 J/kg-K 
2.2 ± 0.1  

1.8 ± 
0.1  

0.7 1.7 
2.0 ± 
0.1  

1.1 1.7 

Literature4,10 GA SCE SHC GA SCE SHC 

O
p

ti
ca

l P
ro

p
er

ty
 

 /m 
2700 ± 1400  

150000 
± 

86000  
1000000 3600000 

2200 
± 500  

790000 350000 

Literature10 GA SCE SHC GA SCE SHC 

 - 
0.85 ± 0.16  

0.91 ± 
0.01  

0.66 0.89 
0.66 ± 
0.01  

0.99 0.54 

Literature1 GA SCE SHC GA SCE SHC 

Th
er

m
al

 D
ec

o
m

p
o

si
ti

o
n

 K
in

et
ic

s 
an

d
 H

ea
ts

 

 - 
1 1 

0.5 ± 
0.1  

0.5 1.5 

Approximated Approximated GA SCE SHC 

 /s 

(8.5 ± 4.3) x 
1012  

(8.5 ± 4.3) x 1012  
(1.3 ± 
0.6) x 
1016 

3.3 x 
1015 

5.3 x 
1019 

Model Fitting 
with multiple 
heating rate 

TGA data 

Model Fitting with multiple 
heating-rate TGA data 

GA SCE SHC 

 J/mol 

(1.88 ± 0.06) x 
105  

(1.88 ± 0.06) x 105  

(1.77 
± 

0.01) 
x 105 

2.27 x 
105 

2.43 x 
105 

Model Fitting 
with multiple 
heating rate 

TGA data 

Model Fitting with multiple 
heating-rate TGA data 

GA SCE SHC 

 kJ/kg 
870 ± 130  870 ± 130  

1100 
± 21  

1300  520 

Literature4 Literature4 GA SCE SHC 

M
o

d
el

 
D

ep
en

d
en
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P
ar

am
et

er
 

hcrz 
W/m2-

K 

0 12 ± 3  2 14 38 ± 4  3 -32 
Approximated 

adiabatic 
condition at 
back surface 

GA SCE SHC GA SCE SHC 

i

ik
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i

i

kn

kZ
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Validation 

Analyze Simulation Quality 

Identify sensitive parameters for model inputs 

 , , , ,  

 See Chapter 5 for detail 

 

Determine data and model output uncertainty 

1. Check data reproducibility by repeating identical experimentsiii 

Data is acquired from five repeating PMMA tests under 49 kW/m2 heat-flux level 

with medium-thickness samples (thickness, δ ranging from 7.7 ~ 9.4 mm).   

2. Conduct uncertainty analysis of data 

Uncertainty in PMMA cone calorimeter experiment is estimated based on five 

repeating PMMA tests under 49 kW/m2 heat-flux level with medium-thickness samples 

(thickness, δ ranging from 7.7 ~ 9.4 mm).  The surface temperatures measured from these 

tests showed that the values ranged from 260 to 370°C.  The uncertainty of peak HRR, 

average HRR, time-to-ignition, and-time-to peak HRR are estimated by the five repeating 

PMMA tests via, taking two standard deviation of the difference and normalizing them 

by the mean of this parameter.  Table A(D)-2 shows the analysis results from the tests, 

which were reproduced from Stoliarov’s paper.1  Assume that the uncertainty values 

estimated for five repeating PMMA tests conducted at 49 kW/m2 heat flux level with 

medium-thickness samples are comparable to those of tests conducted under various 

heating rates, ranging from 23 to 69 kW/m2 using thick PMMA samples.  

  

                                                 
iii

 In general, data uncertainty is used to analyze the sensitivity of the input parameters; in numerical 
optimization to estimate unknown parameters; or to evaluate simulation quality later in the process.   In 
this example, data uncertainty will  be accounted for here, where simulation results with its uncertainty 
band are compared with data with its uncertainty band. 

 

i kn kZ kE kH
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Table A(D)-2.  Summary of estimated uncertainty in PMMA cone calorimeter experiments 
based on 5 repeating tests under 49 kW/m2 heat-flux level with medium-thickness sample (7.7 

~ 9.4 mm) 

 
peakHRR 
(kW/m2) 

avgHRR 
(kW/m2) 

tig 
(s) 

t-peakHRR 
(s) 

Average case 990 560 44 430 

Uncertainty (%) 17 7 12 17 

 

3. Conduct uncertainty analysis of model outputs of interest 

The baseline case was selected at simulation with EHF = 46 kW/m2, thickness = 

26 mm.  Sensitive parameters – , , , ,  – are varied in the simulations one 

at a time from baseline case.   

 The effect of variation is calculated by considering the peak HRR (peakHRR), 

average HRR (avgHRR), time to peak HRR (t-peakHRR), and surface 

temperature (Ts).  Results are shown in Table A(D)-3. 

 Uncertainty for those modeling outputs is calculated using the Law of 

Propagation of Uncertainty.  Note that when inputs are varied to its uncertainty 

boundary values – minimum or maximum – the maximum effect was selected in 

the analysis to estimate the maximum uncertainty. 

Table A(D)-3.  Comparison between experiment data from cone calorimeter test and modeling 
outputs using estimated parameter values via either direct measurement, literature search, or 
approximation (a); measurements and numerical optimization (B-GA, B-SCE, B-SHC); or mostly 

numerical optimization (C-GA, C-SCE, C-SHC) 

 Data A B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Peak MLR (g/m2s) 
36.9 
±6.3 

45.1 
±10.6 

40.9 
±5.3 

32.6 39.3 
27.5 
±0.7 

34.4 67.0 

Avg MLR (g/m2s) 
24.9 
±1.7 

24.2 
±5.2 

26.7 
±2.7 

25.9 26.6 
24.0 
±0.5 

26.4 28.0 

t to pMLR (s) 
1310 
±223 

1408 
±252 

1285 
±123 

1317 1284 
1391 
±32 

1297 1233 

Ts (°c) 
350 
±50 

413 
±21 

433 
±20 

407 409 
244 
±3 

419 343 

 

 

  

i kn kZ kE kH
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Compare data with simulation results  

1. TG / DTG Predictions at 10 °C/min Heating Rate Using Estimated Kinetic 

Parameters 

 

Figure A(D)-6.  TG/DTG curves at 10°C/min heating rate with different estimation results for 

kinetic parameters for thermal decomposition of PMMA 

 

2. Modeling Output: Mass-Loss Rate (MLR) 

 

 
Figure A(D)-7.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (data) and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied 
heat flux of 46 kW/m2.  Note that data shown were used to estimate model parameter values 

via numerical optimization using GA, SCE, or SHC routines. 
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3. Modeling Output: Surface Temperature (Tsurf) 

 
Figure A(D)-8.  Surface temperature (Tsurf) comparisons for PMMA modeling using parameters 

estimated from different approaches – direct measurement, literature search, or 
approximation (A); measurement and numerical optimization (B-GA, B-SCE, B-SHC); mostly 

numerical optimization (C-GA, C-SCE, C-SHC) at applied heat flux of 46 kW/m2.  Note that data 
shown were used to estimate model-parameter values via numerical optimization using GA, 

SCE, or SHC routines. 
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Validate simulation quality upon extrapolation 

1. Modeling Output: Mass Loss Rate (MLR) 

 

 
Figure A(D)-9.  Mass-loss rate (MLR) comparisons for PMMA between actual MLR from 

experiment (data) and modeled MLR (A, B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at applied 
heat flux of (a) 23 and (b) 64 kW/m2.  Note that data shown were not included in the model- 

parameter-estimation process; hence, these two cases are considered as extrapolation cases. 
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2. Modeling Output: Surface Temperature (Tsurf) 

 

 
Figure A(D)-10.  Surface temperature (Tsurf) comparisons for PMMA modeling using 

parameters estimated from different approaches – direct measurement, literature search, or 
approximation (A); measurement and numerical optimization (B-GA, B-SCE, B-SHC); mostly 
numerical optimization (C-GA, C-SCE, C-SHC) at applied heat flux of (a) 23 and (b) 64 kW/m2.  

Note that data shown were not included in the model-parameter-estimation process; hence, 
these two cases are considered as extrapolation cases.  
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Commentary 

General Comments  

 TG/DTG 

o Whether kinetic modeling is conducted independently using TGA data (A, B-

GA, B-BSE, B-SHC) or as a part of numerical optimization (C-GA, C-SCE, C-

SHC), decomposition of PMMA is considered to occur within the temperature 

range of 200°C to 400°C. 

o Among GA, SCE, and SHC, estimation of SCE was closest, followed by SHC 

and GA to TGA data. 

o Having surface-temperature data as additional optimization target should have 

provided constraints to the optimization problem, for kinetic parameters directly 

determine the surface temperature.  However, this approach was not utilized, for 

uncertainty in surface-temperature measurements was too high – 350 ± 50°C 

 Comparison between Data and Computed Modeling Outputs 

o Better agreement between data and modeling outputs for the peak MLR is found 

when kinetic parameters are estimated through a separate process using TGA 

data (A, B-GA, B-BSE, B-SHC) than numerical optimization along with 

estimating other unknowns together (C-GA, C-SCE, C-SHC). 

o Avg MLR and time to peak MLR from all modeling cases show good agreement 

with data. 

o Simulated surface temperature at steady burning of PMMA is greater (less than 

10 s) than that of measurement for cases B-GA, B-SCE, B-SHC, and C-SCE, 

while simulated surface temperature is lower (greater than 50 s) than that of 

measurement for case C-GA.  Results from cases A and C-SHC are in good 

agreement. 
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 MLR 

o Direct Measurement or Optimization at HF = 46 kW/m
2
: Good agreement exists 

between experiment data and all modeling results, whether modeled with 

measured parameters or optimized in the time frame of exposure to heating 

source up to steady burning.  However, in the later time, where the peak occurs, 

result from C-SHC becomes unsatisfying, considering the data with its 

uncertainty, while others can be considered as satisfying.   

o Direct Measurement or Extrapolation at HF = 23 kW/m
2
: Good agreement exists 

between experiment data and all modeling results, except for the C-SHC case. 

o Direct Measurement or Extrapolation at HF = 64 kW/m
2
: Good agreement exists 

between experiment data and all modeling results, except for C-GA and C-SHC 

cases.  

 Surface Temperature 

o See above. 

Limitation in Modeling 

 When considering limitation of the parameters in simulating PMMA, the modeler should 

take into account the applicability of the parameters and their associated uncertainties.  

For example, any assumptions used when determining a parameter value via experiment 

direct or indirect measurements can be utilized to understand when the parameter value 

becomes inappropriate.  For this example of pyrolysis modeling of PMMA, most 

consideration can be given to the parameters related to decomposition kinetics. 

 In this example, kinetic modeling for this example was conducted with TGA data 

obtained from a nitrogen environment.  However, studies
8,11,12

 have suggested that 

PMMA decomposes differently with respect to heating rates and availability of oxygen.  

The decomposition rate of PMMA increases with respect to oxygen concentration, 

because oxygen aids unzipping of the polymer by being involved in the depolymerization 

process of the polymer.  Also, the oxygen dependency increases at lower heating rates 

than at higher heating rates.  A possible explanation for this can be given by considering 

the diffusion of oxygen from the nearby gas phase to the condense phase.  At lower 
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heating rates, the decomposition rate is relatively slow; therefore, the time allowed for 

oxygen to diffuse to the polymer layer and be involved in the decomposition process is 

relatively longer. However, at higher heating rates, the decomposition rate is relatively 

higher even without the involvement of oxygen in the decomposition process.  This 

results in shorter time scale for transportation of oxygen via diffusion to the condense 

phase.  In other words, the positive effect of enhancing decomposition by having oxygen 

involved in the process, compared to decomposition in non-oxidative condition, is 

compensated by the time necessary for oxygen diffusion to occur from the gas phase to 

the condense phase.  Hence, the increase in decomposition rate of PMMA due to the 

presence of oxygen in the gas phase is more profound in conditions with lower heating 

rates than in higher heating rates.  Visual observations of the surface phenomena during 

PMMA decomposition also provide evidence that the above explanation is reasonable.  

Based on experimental work conducted by Beaulieu,
8
 during decomposition of PMMA, 

“bubbling” occurs on the surface.  The bubbles are relatively large, forming a thick layer 

of bubbles when irradiated at lower heat-flux levels; and they are smaller, forming a thin 

bubbling layer, when irradiated at higher heat-flux levels.  Considering that bubbling is 

an effective way for the polymer to enhance oxygen diffusion and larger bubbles entrains 

more oxygen, reduction in the decomposition rate due to the increasing time necessary 

for oxygen diffusion at higher heat-flux levels seems plausible with bubbles becoming 

smaller as increasing from a lower heat flux to a higher heat flux. 

 Figure A(D)-11 is TGA a thermogram of PMMA decomposition conducted under 

constant heating rates – 2, 5, 10, and 20 K/min – and two different environments – 

nitrogen and air (data obtained from work conducted by Matala
13

).  As shown below and 

discussed earlier, there is significant difference between the curves produced from 

nitrogen and air tests.  This indicates that decomposition kinetics are different in the two 

cases, and the difference is due to oxygen diffusion from the gas phase surrounding the 

solid sample surface with respect to the “bubbling” phenomenon.    
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Figure A(D)-11.  TGA thermograms of PMMA decomposition conducted under constant 

heating rates – 2, 5, 10 and 20K/min – and two different environments – (a) nitrogen and (b) 
air 
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EXAMPLE 5.2 MODELING CORRUGATED CARDBOARD 

An example case is shown for triple-layered corrugated cardboard.  Most of the 

approach and reference values of the input parameters for this simulation were obtained 

from Chaos’ work.14,15  Note that for this example, two approaches will be used to 

estimate model parameters – (1) combination of non-optimization and optimization 

method denoted as Approach B-GA, B-SCE or B-SHC; and (2) mostly optimization 

method denoted as Approach C-GA, C-SCE or C-SHC.  For optimization routines, 

Genetic Algorithm (GA), Shuffled Complex Evolution (SCE), or Stochastic Hill-climber 

(SHC) is applied. 

 

Measure Parameters 

When conducting parameter estimation via independent experiments, consider the 

followings: 

 Check consistency between model used in experiment analysis to 

determine parameter in measurement process and pyrolysis model to 

mathematically describe the parameter of interest. 

 Use statistical approach for determining uncertainty, otherwise meet 

equivalency to this requirement. 

 

1. Density 

Although corrugated cardboard is porous and the cross-section is not 

homogeneous, it is considered a homogeneous single- layer material with relatively low 

bulk density to account for its porous nature.  Bulk density of the virgin fuel material is 

measured by experiment conducted at room temperature (≈298K), weighing sample’s 

mass and dividing mass with sample volume, which is 110 kg/m3 for this type of 

corrugated cardboard. 

ρ = 110 kg/m3 

2. Thermal Conductivity 

Not measured; will be obtained via numerical optimization. 

3. Specific-heat Capacity 

Not measured; will be obtained via numerical optimization. 
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4. Absorption Coefficient 

Both virgin fuel and residue solid-phase materials involved in modeling are 

considered as an opaque material.  Therefore, the absorption coefficient is essentially 

infinity. 

 

5. Emissivity 

Not measured; will be obtained via numerical optimization. 

6. Reaction Order, Pre-exponential Factor and Activation Energy 

This example case is determined to have decomposition kinetics type 2 (single 

peak in DTG over entire mass-loss temperature range) according to TGA experiment 

conducted in nitrogen atmosphere (see Figure A(D)-12).  Based on this information, 

kinetic parameters will be obtained via a model fitting method using single heating rate 

TGA data or numerical optimization.  Actual TGA data of a generic corrugated cardboard 

tested in nitrogen environment is shown below.  There is less than 10% of moisture loss 

near 100°C, which has been excluded from the thermogram to only account for the major 

DTG peak occurring after 200°C.  Therefore, kinetic modeling is conducted for a dry-

state corrugated cardboard. 

 

Figure A(D)-12.  TGA thermogram (TG and DTG) of corrugated cardboard decomposition 

conducted under 20K/min heating rate and nitrogen environment 

 

7. Heat of Reaction 

Not measured; will be obtained via numerical optimization.  
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Summary 

Among seven categories of parameters, only two have been obtained via direct 

measurement – fuel virgin bulk density and absorption coefficients of fuel and residue, 

which are shaded in the table below (see Table A(D)-4).  The rest of the unknown 

parameters, total of 11 parameters, should be obtained via numerical optimization in 

pair with pyrolysis modeling using bench-scale experiment data or equivalent.   

Table A(D)-4.  Summary of necessary model parameters for simulating pyrolysis of corrugated 
cardboard 

 No 
Condense Phase 

(i=1, fuel) (i=2, residue) 

Material Property 

1   

2   

3   

4 
  

Parameters for 
Specifying Conditions 

5 
  

  Heterogeneous RxN (k=1) 

Kinetic Parameters 
and Heats assuming 
n

th
 order model and 
Arrhenius-type 

expression 

6 

 

 

 

7  

 

1 2

1k 2k

1c 2c

1 2

1 2

1n

1Z

1E

1H
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Obtain Parameters via Numerical Optimization 

Run Model in Pair with Numerical Optimization 

 

 

Figure A(D)-13.  Schematic of the FPA 

 

Select model: Simplified 1D model based on GPYRO 

Understand bench-scale experiment set-up for modeling simple cases: Description 

reproduced from Chaos’ paper1 

A schematic of the FPA used in this study is shown in Figure A(D)-13.  The 

present apparatus differs from that described in the ASTM standard16 in that high-power 

high-density infrared heaters (Research Inc., Model 5209) are used, which can yield heat 

fluxes approaching 120 kW/m2.  In addition, a humidity control and delivery system17 

can control the relative humidity of the gas supply to the FPA.  A flow of 100 SLM of 

pure nitrogen was used for all experiments (i.e., pyrolytic conditions).  In the 

experiments, insulated circular samples18 9.6 cm in diameter were placed on a load cell 

(0-1000 g range, 0.1 g accuracy, 20 mg peak-to-peak noise), which provided a continuous 

record of their weight during the pyrolysis process.  A water-cooled shield was used to 

protect the sample from exposure while the heaters stabilized at a specific heat-flux 

setting.  A quartz tube (162 mm inner diameter) shielded the sample and gasification 

products from room-air entrainment.  An infrared pyrometer (Heitronics KT19.81-11) 

was used to measure surface temperature.  The wavelength range of the pyrometer is 8-10 

μm, which required modification of the quartz tube used, as quartz is not transparent at 

these wavelengths. The pyrolysis tests performed in this study cover a heat-flux range of 

20-110 kW/m2.  This ensures that both thermally thin and thick regimes are treated so 
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that properties determined with the present approach can be applicable to practical fire 

conditions. 

Configure model conditions based on understanding of experiment set-up 

Basic assumptions are as follows: 

 Instantaneous release of volatiles from solid to the gas phase 

 Local thermal equilibrium between the solid and the volatiles 

 No condensation of gaseous products 

 No porosity effects 

Further details can be found from Reference 15. 

When conducting the 1D simulation for the FPA set-up, insulation at back surface 

is not modeled explicitly, but is included as some heat loss to the back surface.  In this 

example case, only FPA experiment with nitrogen as purge gas will be considered; hence, 

there is no ignition phenomenon to be modeled.   

Acquire data sets that can be used in numerical optimization process in pair with 

pyrolysis modeling for obtaining unknown model parameter values iv 

1. The maximum heat-flux level of interest for this parameter estimation is 20 to 

110kW/m2, considering that estimated parameters will be used in modeling of 

parallel panel experiment of corrugated cardboard. Fire Propagation Apparatus 

(FPA) test data of triple-wall corrugated cardboard, i.e., two layers of corrugated 

cardboard (thickness, δ is 30 mm) impinged with effective heat fluxes (EHF) of 

20 to 110 kW/m2 is found as shown in Figure A(D)-14.  Data were reproduced 

from Chaos’ paper,1, which are shown below for 20, 60, and 110 kW/m2 cases for 

mass-loss rate (MLR) and surface temperature measurements: 

                                                 
iv

To conduct simulations, unknown parameters need to be obtained via numerical optimization, for 

independent measurements of those parameters are cumbersome and impossible in most cases.   
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Figure A(D)-14.  FPA experiment results of corrugated cardboard with applied heat flux 

ranging from 20 to 110 kW/m2: (a) Mass-loss rate and (b) surface-temperature measurements 

using pyrometer 

2. Check data reproducibility by repeating identical experiments  

Data is acquired from two repeating FPA tests of triple-wall corrugated cardboard 

under 60 kW/m2 heat-flux level with nitrogen atmosphere.  Uncertainty analysis will be 

performed later. 

 

Select numerical optimization routine 

 Genetic Algorithm (GA) 

 Shuffled Complex Evolution (SCE) 

 Stochastic Hill-climber (SHC) 

 See Chapter 5 for more description of each optimization routine. 
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Conduct numerical optimization in pair with simulations using experiment data as 

targets 

Numerous simulations with a simplified version of GPYRO have been used in 

pair with SCE algorithm to conduct numerical optimization to obtain unknown 

parameters.  Experiment data of mass-loss rate (MLR), cumulative mass loss (CML), and 

surface-temperature measurements (Ts) generated with various applied heat-flux levels 

between 20 and 110 kW/m2 have been used in the optimization process as targets (i.e., 

optimization is conducted for unknown parameters to match modeling outputs of interest 

to certain experiment data). 

 

Obtain Confidence Intervals for Optimized Parameters* 

*Description reproduced from Chaos’ paper.1 

As part of the optimization procedure, confidence intervals (CI) were estimated 

for the material properties obtained.  In the literature, optimization results are often 

reported with no CI estimates due to complexity and problem nonlinearity.  This is 

especially the case for results obtained using evolutionary algorithms, as they lack 

information available through gradient-optimization methods. In this study, CIs were 

evaluated using asymptotic methods.19  These are conceptually appealing and easy to 

implement, although they may be a poor representation of the actual CIs for highly 

nonlinear problems.  Nevertheless, the computed CIs are useful indications of the 

reliability of the optimized parameters.  Confidence intervals were computed locally, that 

is, at the optimum point found by the optimization scheme.  At this optimum point, the 

standard error of the parameter estimates is approximated by a variance-covariance 

matrix based on the Jacobian of the model response.  This matrix is then used along with 

the t-distribution at some desired confidence level to derive the CI. The set of equations 

shown below summarizes this approach: 

    
‖ ( ̂)‖ 

 

     
(   )     ( ̂)            ( ̂)           
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Where  ̂ is the optimum parameter vector (i.e., set of material properties), nd is 

the number of data points used for optimization, np is the number of parameters (i.e., 

material properties), COV and J are the covariance and Jacobian matrices, respectively, f 

is the vector of differences between model results (ymod) and experimental data (yexp), and 

t-1 is the value of the inverse t-distribution at a given confidence level (CL) and degrees 

of freedom (nd–np).  The availability of the Jacobian matrix further allows for the 

computation of the sensitivity of model responses to changes in input parameters (see 

Table A(D)-5). 

Table A(D)-5.  Summary of estimated optimum with confidence interval (CI) for each model 

parameter 

 No 

Condense Phase 

i=1 
fuel 

Optimum ± C.I. 
i=2 

residue 
Optimum ± C.I. 

Material Property 

1  110 kg/m
3
  10.0 ± 6.9 kg/m

3
 

2  0.65 ± 0.15 W/m
2
-K  0.27 ± 0.14 W/m

2
-K 

3  500 ± 40 J/kg-K  1750 ± 1240 J/kg-K 

4  ∞
  ∞

 
Parameters for 

Specifying Conditions 
5 

 
0.29 ± 0.02

  
0.98 ± 0.13

 

  Heterogeneous RxN (k=1) Optimum ± C.I. 

Kinetic Parameters and 
Heats Assuming n

th
 

order model and 
Arrhenius-type 

expression 

6 

 6.51 ± 2.9 

 19.1 ± 7.9 Log(/s) 

 242 ± 72 kJ/mol  

7  5.95 ± 0.36 Log(J/kg) 

 

  

1 2

1k 2k

1c 2c

1 2

1 2

1n

 1log Z

1E

 1log H
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Parameter Estimation Results 

ID B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Parameter Unit 
Comparable Non-optimization 

and Optimization 
Mostly Optimization 

Th
er

m
o

-p
h

ys
ic

al
 P

ro
p

er
ty

 

i =
 1

 
(f

u
el

) 

 kg/m3

 
110 110 

Measurement Measurement 

 W/m-
K 

0.08 ± 0.01 0.13 0.21 0.21 

Measurement GA SCE SHC 

 J/kg-K 
2.8 2.3 0.6 2.0 2.4 1.7 
GA SCE SHC GA SCE SHC 

i =
 2

 
(r

es
id

u
e)

  kg/m3

 
25 20 11 26 10 43 
GA SCE SHC GA SCE SHC 

 
W/m-

K 
0.29 0.32 0.32 0.20 0.35 0.20 
GA SCE SHC GA SCE SHC 

 J/kg-K 
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GA SCE SHC GA SCE SHC 
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l P
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p
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ty
 

i =
 1

 
(f

u
el

)  /m 
106 106 

Approximated as opaque Approximated as opaque 

 - 
0.88 ± 0.01 0.72 0.50 0.65 

Measurement GA SCE SHC 

i =
 2
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u
e)

 

 /m 
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Approximated as opaque  Approximated as opaque  

 - 
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 /s 
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Model Fitting with single-
heating-rate TGA data 
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 J/mol 
2.49 x 105 7.0 x 104 

2.47 x 
105 

3.02 x 
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Model Fitting with single-
heating-rate TGA data 

GA SCE SHC 

 kJ/kg 
123 512 809 88 54 0.7 
GA SCE SHC GA SCE SHC 
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Validation 

Analyze Simulation Quality 

Identify sensitive parameters for model inputs 

For this case, total of 14 parameters are necessary due to the single-step thermal-

decomposition kinetic modeling applied in this problem.  Therefore, extensive sensitivity 

analysis is not necessary to determine sensitive parameters on model output of ineterest.  

However, there by Stoliarov20 and Chaos21 is conducted for similar cases on considering 

the effect of variation in material properties on the rate of burning.  According to these 

works, it was recognized that the knowledge of parameters related to emissivity of virgin 

and char material and the decomposition reaction – Arrhenius pre-exponential factor, 

activation energy, heats, char yield – are significantly important for predicting the peak, 

average burning rates and surface temperatures.  Based on this result, when determining 

the uncertainty of the model output, only these parameters will be considered for Case 2 

problems, where simulation quality is analyzed by comparing the model output with its 

uncertainty and the experiment data with its uncertainty.  Further details on sensitivity of 

each parameter can be found in this referenceError! Bookmark not defined.,21. 

 

Determine data and model output uncertainty to make comparisonv 

1. Conduct uncertainty analysis of data: Data is acquired from two repeating FPA 

tests of triple-wall corrugated cardboard under 60 kW/m2 heat-flux level with 

nitrogen atmosphere.  

2. Uncertainty analysis is conducted based on these two data sets.  The uncertainty 

of MLR and surface temperature are estimated by first calculating the standard 

deviation of the MLR and temperature measurement of the 2 data sets at each 

time step.  Then an average standard deviation is calculated for the time interval 

of interest (0 < t < 500s).  The uncertainty is estimated as ± 2 average standard 

deviation.  Table A(D)-6 shows the analysis results from the tests.  Data were 

provided by FM Global.  Note that these estimated uncertainties will be used for 

                                                 
v
Data uncertainty is accounted for here because this is required to determine the goodness of near-

optimal parameter sets.  Optimization targets (experiment data) should be considered with its uncertainty 
bounds to decide how good the match is between the targets and optimum simulations with its 

uncertainty. 
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all other cases with different applied heat-flux levels assuming that these values 

are comparable to each other. 

Table A(D)-6.  Summary of estimated uncertainty in triple-wall (2 layers) corrugated cardboard 

FPA experiments based on 2 repeating tests at 60 kW/m2 heat-flux level 

 
MLR 

(g/s-m2) 

Ts 

(K) 

± 2 avg standard deviation ± 1.5 ± 28 

 

3. Conduct uncertainty analysis of model outputs of interest – MLR and Ts 

 Baseline case was selected at simulation with EHF = 60 kW/m2, thickness 

= 30 mm, and the optimum parameter set.   

 Six parameters are varied in the simulations one at a time from baseline 

casevi.  See Table A(D)-7. 

Table A(D)-7.  Outline of 5 parameter groups – kinetic parameters, heat-of-decomposition 
reaction and combustion, and emissivity-of-fuel and residue – varied in uncertainty analysis 

using one-at-a-time method 

 E1, A1 ΔH1 ρ2 ɛ1 ɛ2 

Kinetic parameters 
+, – 

–, + 
    

Heat of decomposition 
reaction 

 
+ 

– 
   

Density of residue   
+ 

– 
  

Emissivity of fuel     
+ 

– 

 

 

Emissivity of residue     
+ 

– 

 

 The effect of variation is calculated by considering the change in MLR 

and surface-temperature profiles from the baseline case.  By varying 

certain parameters at one-at-a-time, average standard deviation of the two 

                                                 
vi

 Parameter selection is based on known parameter sensitivity.  Kinetic parameters are not independent; 

therefore, activation energy and pre-exponential factor will  be considered in pair to give decomposition 
temperature to be at minimum and maximum in simulation.  Although n

th
 order is a kinetic parameter, 

this is not included in the analysis, because changing this value majorly affects the shape of the DTG peak 
– increase/decrease in n value results in higher/lower DTG peak and wider/narrower temperature range 

of decomposition, respectively. 
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cases (altered and baseline case) are calculated as effects.  Results are 

shown in Table A(D)-8. 

 Uncertainty in these modeling outputs (MLR and Ts) is calculated using 

the Law of Propagation of Uncertainty.  Note that when inputs are varied 

to its uncertainty boundary values – minimum or maximum – the 

maximum effect was selected in the analysis to estimate the maximum 

uncertainty. 

Table A(D)-8.  Comparison between experiment data from fire propagation apparatus test and 
modeling outputs using estimated parameter values via either measurements and numerical 

optimization (B-GA, B-SCE, B-SHC) or mostly numerical optimization (C-GA, C-SCE, C-SHC) 

 Data B-GA B-SCE B-SHC C-GA C-SCE C-SHC 

Peak MLR (g/m2s) 35 ± 4 28 24 53 23 29 N/A 

Avg MLR (g/m2s) 
5.7 ± 
0.6 

4.6 5.4 5.9 4.8 6.0 N/A 

t to pMLR (s) 27 ± 1 19 13 19 4 12 N/A 

Ts at 300 s (°c) 
696 ± 

16 
685 682 684 679 679 685 
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Compare data with simulation results with consideration of uncertainties 

1. TG / DTG Predictions at 10 °C/min Heating Rate Using Estimated Kinetic 

Parameters 

 
Figure A(D)-15.  TG/DTG Curves at 10°C/min heating rate with different estimation results for 

kinetic parameters for thermal decomposition of corrugated cardboard: For better 

comparison, TG and DTG thermograms have been scaled to result in 100% conversion. 

 

2. Modeling Output: Mass Loss Rate (MLR) 

 

 
Figure A(D)-16.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual 
MLR from experiment (data) and modeled MLR (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at 

applied heat flux of 60 kW/m2.  Note that data shown were used to estimate model-

parameter values via numerical optimization using GA, SCE or SHC routines. 
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3. Modeling Output: Surface Temperature (Tsurf) 

 
Figure A(D)-17.  Surface temperature (Tsurf) comparisons for corrugated cardboard between 

actual Tsurf from experiment (data) and modeled Tsurf (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) 
at applied heat flux of 60 kW/m2.  Note that data shown were used to estimate model-

parameter values via numerical optimization using GA, SCE or SHC routines. 
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Validate simulation quality upon extrapolation 

1. Modeling Output: Mass Loss Rate (MLR) 

 

 
Figure A(D)-18.  Mass-loss rate (MLR) comparisons for corrugated cardboard between actual 
MLR from experiment (data) and modeled MLR (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) at 

applied heat flux of (a) 20 and (b) 110 kW/m2.  Note that data shown were not included in the 
model-parameter-estimation process; hence, these two cases are considered as extrapolation 

cases. 
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2. Modeling Output: Surface Temperature (Tsurf) 

 

 
Figure A(D)-19.  Surface temperature (Tsurf) comparisons for corrugated cardboard between 

actual Tsurf from experiment (data) and modeled Tsurf (B-GA, B-SCE, B-SHC, C-GA, C-SCE, C-SHC) 
at applied heat flux of (a) 20 and (b) 110 kW/m2.  Note that data shown were not included in 

the model-parameter-estimation process; hence, these two cases are considered as 

extrapolation cases. 
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Commentary 

General Comments  

 TG/DTG 

o When kinetic modeling is conducted independently using TGA data (B-

GA, B-BSE, B-SHC), the DTG peak exist near 300°C.   

o Among GA, SCE and SHC, optimization of SCE of kinetic parameters as 

part of other unknown parameter estimation is closest to actual TGA data 

(B-GA, B-SCE, B-SHC), followed by GA and SHC. 

o Optimization of SHC of kinetic parameters along with other unknown 

parameter estimation is considered as unsuccessful, for decomposition 

temperature is excessively high (see mass-loss rate optimization and 

extrapolation results) 

 Comparison between Data and Computed Modeling Outputs 

o Generally, better agreement between data and modeling outputs is found 

when kinetic parameters are estimated through a separate process using 

TGA data (B-GA, B-BSE, B-SHC) than numerical optimization along 

with estimating other unknowns together (C-GA, C-SCE, C-SHC). 

o None of the modeled peak MLRs are in quantitative agreement with data.  

o Avg MLR of B-SCE, B-SHC and C-SCE are in good agreement with data. 

o None of the modeled time-to-peak MLRs are in quantitative agreement 

with data. 

o Surface temperatures at 300 s of B-GA, B-SCE, B-SHC and C-SHC are in 

good agreement with data. 

 MLR 

o Optimization at HF = 60 kW/m2: Although the peak may be off for some 

cases, generally good agreement exists between experiment data and all 

modeling results, considering the trend, except for that of C-SHC, 

indicating that optimization of C-SHC – optimizing for all unknowns 

using SHC – was unsuccessful.  Oscillation in the MLR curve is due to the 

inhomogeneity of sample, corrugated cardboard, which is not captured in 
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modeling due to the homogeneous assumption made when solving the 

problem. 

o Extrapolation at HF = 20 kW/m2: Poor agreement exists between 

experiment data and all modeling results.  None of the modeling cases is 

able to capture the slow increase in mass-loss rate in the earlier times after 

exposure to heating source. 

o Extrapolation at HF = 110 kW/m2: Good agreement exists between 

experiment data and all modeling results, except for C-SHC case.  

 Surface Temperature 

o Optimization at HF = 60 kW/m2: Generally good agreement exists 

between experiment data and all modeling results considering the trend, 

even for that of C-SHC.  Also, when thermal conductivity of the sample at 

its virgin state was independently measured and that value was used, 

modeling was able to capture the slow increase in surface temperature up 

until 400°C followed by a jump up to ~550°C. 

o Extrapolation at HF = 20 kW/m2: Poor agreement exists between 

experiment data and all modeling results.  None of the modeling cases is 

able to capture the slow increase in surface temperature in the earlier times 

after exposure to heating source. 

o Extrapolation at HF = 110 kW/m2: Good agreement exists between 

experiment data and all modeling results, including C-SHC case. 

 

Limitation in Modeling 

 

 When considering limitation of the parameters in modeling corrugated cardboard, 

the modeler should take into account the applicability of the parameters and their 

associated uncertainties.  For example, any assumptions used when determining a 

parameter value via experiment direct or indirect measurements can be utilized to 

understand when the parameter value becomes inappropriate.  For this example of 

pyrolysis modeling of corrugated cardboard, most consideration can be given to 

the parameters related to decomposition kinetics. 
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 As shown in the below figure of corrugated cardboard decomposed in TGA at 20 

K/min under nitrogen and air atmosphere, the simplified kinetic modeling using 

one-step decomposition mechanism is only true for a “dry” sample tested in 

nitrogen.  Clearly, for decomposition of a “dry” sample in air results in two 

distinct DTG peaks.  Therefore, the effect of the simplification (one-step) made to 

kinetic modeling should be addressed when discussing large-scale simulation 

quality of parallel panel experiment using the optimized parameter set from this 

exercise. 

 

 

 
Figure A(D)-20.  TGA thermograms of corrugated cardboard decomposition conducted under 

constant heating rate of 20 °C/min and 2 different environments – nitrogen and air 
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EXAMPLE 5.3 MODELING MODIFIED ACRYLIC FRP COMPOSITE 

An example case is shown for a fiberglass-reinforced polymer (FRP) composite 

with modified acrylic resin with high-charring inorganic fire-retardant additive.  Most of 

the approach and reference values of the input parameters for this simulation were 

obtained from Kim and Dembsey’s work.22   

Modified acrylic resin (MA) is essentially unsaturated polyester (UPE) with 

Methacrylic Acid (MMA) replacing most of the styrene monomers.  Flame-retarded resin 

with MA is manufactured by adding a filler-type inorganic additive (A) as an additive, 

where its loading versus resin is MA:A = 0.38:0.62 by weight.  Typical inorganic 

additives are hydrates such as alumina trihydroxide (ATH) or magnesium hydroxide, 

antimony trioxide, borax, chalk, silica, etc.23  Because this additive was known to give a 

high-charring effect, A was categorized with typical hydroxides used as flame-retardant 

fillers.  These hydroxides works as a flame retardant by resulting in an endothermic 

dehydration reaction that produces oxides and water.24,25  The water produced by this 

reaction vaporizes, which is an endothermic reaction, and the vapor dilutes the gaseous 

phase.  The oxides remain in the char layer, which adds an insulative effect.  This flame 

retardant is added with a relatively large amount (50 to 65%) comparing to other types of 

additives.  By adding a significant amount of an inorganic flame retardant, the polymer 

becomes more brittle.  Because this is an inorganic additive, inserting this material into 

the polymer system by 50 to 65 wt% of its original polymer reduces the available fuel 

within the condensed phase.  In addition to this effect, usually the additive has a higher 

heat capacity compared to the base polymer; hence, the flame retarded polymers with 

these types of hydroxides require more energy to increase the body temperature to its 

pyrolysis level. According to the product description, this resin with the flame-retardant 

additive is formulated to be Class I per ASTM E 8426 (flame spread index < 20 and 

smoke developed < 225). Propose two parallel reactions for MA and A thermal 

decomposition. 
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Figure A(D)-21.  Cross-section of FRP composite with modified-acrylic resin with high-charring 

inorganic additive 

Composite panels were fabricated by vacuum bagging for a relatively high-glass-

content composite (31 ± 2 wt% of glass, thickness of 8.8 ± 0.6 mm) using two different 

types of fiberglass mats that were wetted with resin (see Figure A(D)-21 for cross-section 

of composite).  The two types of fiberglass (E-glass) used in the composite are a 

chopped-strand mat and a glass-roving woven mat with an area density of 25 g/m2 and 

880 g/m2, respectively.  The chopped-strand mat is thinner and more porous than the 

woven mat.  The laminate schedule (provided by the manufacturer) is chopped-strand 

mat and roving alternating three times with another chopped-strand mat layer at the end.  

Visual inspection of a polished cross-section of the composite slab is consistent with this 

laminate schedule, but with polymer-resin layers between each fiberglass layer.  The 

chopped-strand mat layer is difficult to identify in the cross section, perhaps because 

more resin is soaked into this layer than the roving layer.  The roving layer is observed as 

a prominent glass layer possibly because the resin is absorbed only at the fiberglass layer 

surfaces, leaving the interior with primarily glass.  Apply effective homogeneous 

single layer of resin, additive. and fiberglass mixture.  

Note that for this example, one approach will be used to estimate model 

parameters – mostly optimization method denoted as Approach GA, SCE, or SHC.  For 

optimization routines, Genetic Algorithm (GA), Shuffled Complex Evolution (SCE) or 

Stochastic Hill-climber (SHC) is applied. 
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Measure Parameters 

When conducting parameter estimation via independent experiments, consider the 

following: 

 Check consistency between model used in experiment analysis and 

pyrolysis model. 

 Use statistical approach for determining uncertainty; otherwise, meet 

equivalency to this requirement. 

 

1. Density 

Although this FRP composite is porous, due to the nature of the fiberglass and 

lamination, and therefore the cross-section is not homogeneous, it is considered as an 

effective homogeneous single- layer material with relatively low bulk density to account 

for its porous nature.  Bulk density of the composite is measured by experiment 

conducted at room temperature (≈298K), weighing the sample’s mass and dividing mass 

with sample volume, which is 1900 kg/m3.  This density is a mixture of resin (MA), 

additive (A), and fiberglass (G).   

ρbulk = 1900 kg/m3 

Also, the resin-with-additive and resin-only sample cured free of fiberglass has 

been provided by the fabricator.  Using this material, the density of resin and additive has 

been obtained using measurements (ρMA+A and ρMA) and the following correlation (ρMA): 

 ̅  (∑
  
  
)
  

 

ρMA+A = 1700 kg/m3 

ρMA = 1200 kg/m3 

ρA = 2300 kg/m3 

The density of residue can be found from kinetic modeling, where the weight- loss 

fraction is estimated for each decomposition reaction.   

Density of the fiberglass has been provided by the manufacturer as below: 

ρG  = 2600 kg/m3 
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2. Thermal Conductivity 

Not measured; will be obtained via numerical optimization.  However, from 

literature research, adding inorganic high-charring additives such as hydroxides is known 

to increase the overall thermal conductivity of the cured resin with additive.  Therefore, 

one can note that the estimated thermal conductivity of the additive, A, should be greater 

than that of the resin, MA.  

3. Specific-heat Capacity 

Not measured; will be obtained via numerical optimization. 

4. Absorption Coefficient 

Based on visual observation of the composite, every condense-phase material 

involved in modeling is considered as an opaque material.  Therefore, the absorption 

coefficient is essentially infinity. 

  

5. Emissivity 

Not measured; will be obtained via numerical optimization. 

6. Reaction Order, Pre-exponential Factor and Activation Energy 

This example case is determined to have decomposition kinetics type 3 (two 

major peaks – decomposition of resin and additive, respectively – overlapping in DTG 

over entire mass-loss temperature range) according to TGA and DSC experiments 

conducted in nitrogen atmosphere.  Based on this information, kinetic parameters when 

using Arrhenius expression and nth order kinetic model – pre-exponential factor, 

activation energy and n – will be obtained via Iso-conversional Method (activation 

energy) and model-fitting method (pre-exponential factor and n).  For modeling 

fitting method, numerical optimization is conducted with least square method to estimate 

optimum values for pre-exponential factor and n for each reaction.   

Conduct Dynamic Thermogravimetric Analysis (TGA) and Differential Scanning 

Calorimeter (DSC) Experiments in Nitrogen 

Thermogravimetic Analysis (TGA) experiments are conducted at various heating 

rates – 5, 20, 40, and 60°C/min – with samples sizes near 10 mg for minimal thermal 

resistance during heating.  Temperature range used in the tests is from ambient to 800°C 

with nitrogen as purging gas.   

κ
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TGA and DSC data of the decomposable component of the FRP composite, resin 

and additive cured together (MA+A), and resin only (MA) tested in nitrogen environment 

with a heating rate of 20°C/min are shown in Figure A(D)-22.  Note that DSC data is 

shown with baseline correction.  In the DSC thermogram, a significant endothermic peak 

is observed for the MA+A sample in 250 to 400°C temperature range, where this is not 

shown in the MA’s thermogram (see green arrow in  (b) in Figure A(D)-22).  Based on 

this comparison, the modeler can assume decomposition reaction for the fire-retardant 

additive, A, in this temperature range followed by that of resin itself, MA, knowing that 

decomposition of A results in large endothermic reaction.   

 

 

Figure A(D)-22.  TGA (a) and DSC (b) thermograms of decomposition of modified-acrylic resin 

with high-charring additive conducted under 20K/min heating rate and nitrogen environment 
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Conduct kinetic modeling to obtain kinetic parameters 

1. Conduct Iso-conversional Method 

Based on this method, activation energy of MA+A and MA are found for 0 < 1-α 

< 0.2 (additive decomposition) and 0.1 < 1-α < 0.7 (resin decomposition) range, 

respectively (see Figure A(D)-23).  According to Iso-conversional Method, two-step 

reaction mechanism can be proposed as below: 

 (+A-R) 

 (R) 

Estimated activation energy for these reactions are 160 ± 3 kJ/mol for 

decomposition of A and 183 ± 2 kJ/mol for that of MA.  Note that slopes, Ea/R, are found 

via the least-square method.  Additionally, considering the uncertainty of ±6% 

(magnitude of |±6% |=12%) in TG data from decomposing MA+A samples, initial 

weight-loss and char-oxidation reactions that are less than 5% of weight loss are ignored.  

They can be determined as insignificant changes.   

 

Figure A(D)-23.  Estimated activation energy, Ea, with respect to conversion (1-α) based on Iso-
conversional Method for decomposition of modified-acrylic resin with (a) and without (b) 

inorganic high-charring additive 

2. Conduct model-fitting method using nth order reaction kinetic model (f(α)) 

Once the minimum number of reactions and their activation energies are 

estimated by conducting Iso-conversional Method, other kinetic parameters to fully 

mathematically describe decomposition of MA+A need to be estimated as well.  This is 

done by conducting the model-fitting method with a kinetic model assumed.  Typically a 
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nth order reaction model is used due to its flexibility in providing good fitness between 

the data and the model.  Therefore, nth order will be utilized in this example.  Based on 

the model-fitting method, estimation of total-weight- loss fraction, pre-exponential 

constant, and n are conducted for each reaction (see Table A(D)-9).   

Table A(D)-9.  Kinetic parameters for 2-step model – decomposition of additive (+A-R) and 

resin (R) – for modeling modified-acrylic resin with inorganic high-charring additive 

 

 

 

 

Note that estimation has been done with least-square method by comparing TGA 

data (TG and DTG from iso-heating rate tests (see Figure A(D)-24) with kinetic 

modeling’s output.  The kinetic modeling’s output is calculated by applying the Runge-

Kutta 4th order method (ODE solving method) to the decomposition ODE equation. 

 

Figure A(D)-24.  Comparison of TGA experiment data (TG and DTG) at 20°C/min under 
nitrogen atmosphere with kinetic modeling results based on model-fitting method for 

modified-acrylic resin with inorganic high-charring additive 
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7. Heat of Reaction 

For decomposition reaction of the additive, A, three identical DSC experiments 

are conducted to determine heat-of-reaction: (3.42 ± 0.34) x 106.  However, in DSC 

scans, when the sample is losing mass during the experiment, baseline required to sum 

energy over temperature range of interest is not stable; therefore, uncertainty should be 

higher than estimated. 

ΔH1 = 3420 ± 340 kJ/kg 

 For decomposition reaction of the resin, MA, heat of reaction is not measured; 

will be obtained via numerical optimization. 

Summary 

Among seven categories of parameters, parameters that have been estimated via 

direct measurement are shaded in Table A(D)-10.  The rest of the unknown parameters, a 

total of 16 parameters, should be obtained via numerical optimization in pair with 

pyrolysis modeling using bench-scale experiment data or equivalent.   

 

Table A(D)-10.  Summary of necessary model parameters for simulating pyrolysis of modified-

arylic resin with high-charring additive (MA+A) FRP composite 

 No 

Condense Phase 

i=1, A 
i=2, 

A_residue 
i=3, MA i=4, MA_residue i=5, G 

Material 

Property 

1      

2      

3      

4 
     

Parameters for 
Specifying 
Conditions 

5 
     

  
Heterogeneous RxN 

k = 1, +A-R k = 2, R 

Kinetic 
Parameters and 
Heats assuming 

n
th

 order model 
and Arrhenius- 
type expression 

6 

  

  

  

7   

1 2 3 4 5

1k 2k 3k
4k 5k

1c 2c 3c
4c 5c

1 2 3 4 5

1 2 3 4 5

1n 2n

1Z 2Z

1E 2E

1H 2H
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Obtain Parameters via Numerical Optimization 

Run Model in Pair with Numerical Optimization 

 

 
Figure A(D)-25.  Simplified representation of a cone calorimeter test of FRP composite 

 

Select model: GPYRO 

Understand bench-scale experiment set-up for modeling simple cases 

A simplified representation of a cone calorimeter test of FRP composite is shown 

in Figure A(D)-25.  The sample is placed on top of an insulation, which sits on a metal 

holder.  Another metal frame is placed on top of the sample, insulation, and the holder.  A 

metal edge frame is used as well. 

Front Surface:  As heating starts by opening the shutter to allow radiation from 

the cone heater to impinge on the sample surface (large red arrow), cooling also begins 

via natural convection (blue arrows) and re-radiation.  The surface decomposes with 

bubbling with respect to temperature increase occurring through heat conduction and/or 

in-depth radiative transport.  The pyrolyzates leave through the surface until complete 

burnoff, because this material leaves no residue.  When ignition occurs as the fuel-vapor 

concentration above the surface exceeds its LFL (lower flammable limit), additional heat 
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flux from the flame is introduced on the surface (red arrows).  Regression of the sample 

surface with respect to consumption of the resin layers in pyrolysis is negligible due to 

limited expanding of the fiberglass layers upon heating.     

Back surface:  The sample is placed on top of insulation.  In the experiment, an 

air gap of a few millimeters thickness exists between the sample and the insulation due to 

thermal contact.  Due to the insulation, nothing leaves through the back face when 1D 

assumption holds for the experiment.     

Configure model conditions based on understanding of experiment set-up 

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

 Instantaneous release of volatiles from solid to the gas phase 

 Local thermal equilibrium between the solid and the volatiles 

 No condensation of gaseous products 

 No porosity effects 

Further details can be found from the Technical Reference6 and User’s Guide7 of 

GPYRO (http://code.google.com/p/gpyro). 

When conducting the GPYRO simulation for the cone calorimeter set-up, the 

metal edge frame will be ignored, and backing is insulated.  The ignition phenomenon is 

interpreted as the following in the simulations: at a known time-of-ignition (from 

experiment data), additional heat flux of 20 kW/m2 is applied to the surface to simulate 

heat flux from the flame.  This value is estimated from a measurement from this material 

pyrolyzing in the cone with a total-heat-flux gauge measuring heat flux impinging on the 

sample surface (see Figure A(D)-26 – test conducted at 50 kW/m2 applied heat flux; 

from time-of-ignition an increase in measured heat flux is observed due to flame). 

http://code.google.com/p/gpyro
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Figure A(D)-26.  Heat flux measured during cone calorimeter test of modified-acrylic resin with 
high-charring additive (MA+A) FRP composite at external-heat-flux level of 50kW/m2: ignition 
occurs near τ = 3 s/mm2, and from this point additional heat flux impinges on the surface due 

to the flame. 

In addition to the parameters introduced in a previous section (see Parameter 

Estimation Results), the model (GPYRO) has a coefficient (γ, GAMMA) that is used to 

model radiative heat transfer through the pores.  This parameter with T3 is a model-

dependent parameter that is added as another term in the effective thermal conductivity.  

γ is used for porous fiberglass and decomposed solid species, which results in a more 

porous state due to the weight loss; therefore, more radiative heat transfer through the gas 

phase pores, i.e., for condense phase specie i = 2 (A_residue), 4 (MA_residue) and 5 (G).   

Another set of parameters included as unknowns is the temperature-dependent 

terms used to describe the variation of thermal conductivity and specific-heat capacity 

with respect to temperature increase:  and , respectively, 

where Tr is a reference temperature.  Only properties of fiberglass are allowed to vary 

with respect to temperature, knowing that for high-glass-content FRP composite, glass 

may be a controlling factor for its fire behavior.  This approach is utilized to give much 

flexibility during parameter estimation for fiberglass. 

Therefore, the total unknown parameters of 16 now becomes 21, including γ, 

nk, and nc. 
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Acquire data sets that can be used in numerical optimization process in pair with 

pyrolysis modeling for obtaining unknown model-parameter valuesvii 

1. The maximum heat-flux level of interest for this parameter estimation is 25 to 75 

kW/m2.  

2. Cone calorimeter (cone) test data of modified-acrylic resin with high-charring 

additive FRP composite (thickness, δ is 8.8 ± 0.6 mm) impinged with effective 

heat fluxes (EHF) of 25 to 75 kW/m2 is obtained and are shown in Figure A(D)-

27 for mass-loss rate (MLR), surface, and back face temperature measurements: 

3. Check data reproducibility by repeating identical experiments: Data is acquired 

from three repeating cone tests of MA+A FRP composite under 50 kW/m2 heat 

flux level.  Uncertainty analysis will be performed later. 

 

 

                                                 
vii

To conduct simulations, unknown parameters need to be obtained via numerical optimization, for 

independent measurements of those parameters are cumbersome and impossible in most cases.   
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Figure A(D)-27.  Cone calorimeter experiment results of modified-arylic resin with high-

charring additive (MA+A) FRP composite with applied heat flux ranging from 25 to 75 kW/m2: 
(a) mass-loss rate and (b) surface temperature, and (c) back-surface temperature 

measurements 

Select numerical optimization routine 

The property estimation for the modified-acrylic composite is conducted by 

coupling a generalized pyrolysis model for slab experiments developed by Lautenberger 

and the Genetic Algorithms (GA) for optimization routine.27,7  GA was developed based 

on the mechanics of the Darwinian survival-of-the-fittest theory.   

 

Conduct numerical optimization in pair with simulations using experiment data as 

targets 

Numerous simulations with GPYRO have been used in pair with GA algorithm to 

conduct numerical optimization to obtain unknown parameters.  Experiment data of 

mass-loss rate (MLR), cumulative mass loss (CML), and surface and back-face 

temperature measurements (Ts and Tb) generated with a heat-flux level of 50 kW/m2 have 

been used in the optimization process as targets (i.e., optimization is conducted for 

unknown parameters to match modeling outputs of interest to certain experiment data). 

 

Obtain Confidence Intervals for Optimized Parameters 

One possible approach for addressing the uncertainty of a numerically optimized 

parameter when using GA optimization is to use the near-optimal parameter sets or “best 

solutions” to generate a relatively large population of parameter sets (see parameter set 
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fitness after ~ 80 generations in Figure A(D)-28).  A multi-objective optimization 

algorithm, such as the GA applied to pyrolysis modeling, typically produces many near-

optimal sets or “best solutions,” which are a set of solutions that represent tradeoffs 

between many objective functions.  Each parameter in each set can be evaluated 

individually to determine whether the near-optimal value of one parameter changes 

significantly from one set to another.  Also, comparing the model outputs, such as the 

mass-loss rate and temperature predictions simulated with different near-optimal 

parameter sets, will allow the user to determine how much the simulation results vary 

from one set to another within the collection of optimized parameter sets.  This numerical 

experiment may provide insight to the sensitivity of the optimization routine to any 

changes in the inputs as well as to the uncertainties in the model outputs associated with 

the optimized parameter values. 

 

Figure A(D)-28.  Increase in model output fitness to targets – mass-loss rate, cumulative mass 
loss, surface and back-surface temperatures – from genetic algorithm (GA) optimization for 

estimating unknown parameters from simulating pyrolysis of modified-acrylic resin with high-

charring additive (MA+A) FRP composite 
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Parameter Estimation Results 
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Validation 

Analyze simulation quality 

Identify sensitive parameters for model inputs1 

Global Sensitivity Analysis (Morris Method):  For this case, a total of 21 

parameters are necessary.  In this example case, a structured global sensitivity analysis 

technique is used to determine the sensitivity of input parameters used in the model.  

Among various global-analysis techniques, screening design is one of the simplest 

methods to identify important parameters.28,29,30  Typical screening designs are one-at-a-
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time (OAT) experiments, where a value is changed and its impact is evaluated in turn.  It 

is known that classical OAT experiments are less meaningful if the model of interest is 

affected by nonlinearities, which causes a drastically different “sensitivities” when 

parameter changes around the “control” scenario, depending on the chosen “control” 

scenarios.  To address this limitation, Morris (1991) has proposed a global OAT design 

method, by covering the entire space in which the parameters may vary independently of 

the specific initial “control” scenario one may commence the experiment with.  A global 

OAT design assumes that the model is characterized by a large number of parameters 

and/or is computationally expensive (regarding computational time and computational 

resources) to run. 

Although originally the Morris Method was used for unit-less parameters, for this 

problem it was used for parameters with units.  Because the Method allowed the user to 

interpret the effect of changes made in the inputs to the model outputs in terms of 

simulation variation observed in dimensional units (i.e., seconds for time, °C for 

temperature, and g/m2-s for mass-loss rate), one was able to apply the significance level 

(see below) directly.  This allows the user to rank the sensitivity of each parameter with a 

quantifiable variation. 

Significance level:  To identify the sensitive parameters of a model via a 

sensitivity analysis, there needs to be a measure to determine the sensitivity.  This 

measure, defined as the level of significance, should be able to distinguish which effects 

shown in the simulation results due to changes made in the inputs are significant and 

which are not.  A typical sensitivity analysis allows the user to rank the input parameters 

in terms of its sensitivity to model outputs.  Defining the level of significance allows the 

user also to determine how many of the parameters from the top ranking should be set 

with caution, because those significantly affect the simulation results.  The level of 

significance that defines the sensitivity of an input parameter should be predetermined by 

the user based on one’s goal of conducting the simulation.  When the best simulation 

accuracy is desired, the level of significance should be determined by the experimental 

uncertainty obtained by tests identical to the simulation set-up, such as the cone 

calorimeter tests.  For example, if the ignition time has an uncertainty of +/- 20 sec. in the 

cone calorimeter tests, any changes in the model input that allows more than +/- 20 sec. 
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in the model output should be considered as a “significant change.”  However, there are 

situations where low simulation accuracy is acceptable for one’s simulation purposes.  In 

these cases, the level of significance can be set by the modeler to be greater than the 

experimental uncertainty, and this approach results in less parameter being considered as 

sensitive to model outputs. 

 In this example case, the significance level is set equal to experiment 

uncertainty for best simulation accuracy. 

Application:  After identifying the necessary parameters for pyrolysis modeling 

with a model of choice and selecting the significance level, a sensitivity analysis is 

performed to identify sensitive input parameters to model output.  To determine the 

region of experimentation for Morris’ Method, the minimum and maximum range for 

each parameter is selected by the user using common sense.  Four levels, P1 through P4, 

are used (p = {0,1/3,2/3,1}) with an increment of Δ = p/[2(p-1)] = 2/3 following the guide 

presented by Morris.  Four cases are simulated, resulting in four elementary effects for 

each parameter.  See Table A(D)-11. 
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Table A(D)-11.  Summary of unknown model parameters included in sensitivity analysis with 
searchable space defined with SA min and max: 4 levels (P1 though P4) and an increment of Δ 

are shown. 

 
No.  SA Min SA Max p1 p2 p3 p4 Δ 

MA 

1 k1 0.05 0.50 0.05 0.20 0.35 0.50 0.30 

2 c1 500 3500 500 1500 2500 3500 2000 

3 ɛ1 0.01 1.00 0.01 0.34 0.67 1.00 0.66 

MA_residu
e 

4 k2 0.05 0.50 0.05 0.20 0.35 0.50 0.30 

5 c2 500 3500 500 1500 2500 3500 2000 

6 ɛ2 0.01 1.00 0.01 0.34 0.67 1.00 0.66 
7 γ2 0.001 0.100 0.001 0.034 0.067 0.100 0.066 

A 

8 k3 0.50 5.00 0.50 2.00 3.50 5.00 3.00 

9 c3 500 3500 500 1500 2500 3500 2000 

10 ɛ3 0.01 1.00 0.01 0.34 0.67 1.00 0.66 

A_residue 

11 k4 0.10 5.00 0.10 1.73 3.37 5.00 3.27 

12 c4 500 3500 500 1500 2500 3500 2000 

13 ɛ4 0.01 1.00 0.01 0.34 0.67 1.00 0.66 
14 γ4 0.001 0.100 0.001 0.034 0.067 0.100 0.066 

Fiberglass 

15 k5 0.05 0.50 0.05 0.20 0.35 0.50 0.30 

16 nk 0.00 1.00 0.00 0.33 0.67 1.00 0.67 

17 c5 500 3500 500 1500 2500 3500 2000 

18 nc 0.00 1.00 0.00 0.33 0.67 1.00 0.67 

19 ɛ5 0.01 1.00 0.01 0.34 0.67 1.00 0.66 
20 γ5 0.001 0.100 0.001 0.034 0.067 0.100 0.066 

HoR 
21 ΔH2 

1.0E+0
5 

1.0E+0
7 

1.0E+0
5 

3.4E+0
6 

6.7E+0
6 

1.0E+0
7 

6.6E+0
6 

 

To calculate an elementary effect, first a baseline case needs to be constructed.  

The baseline is a group of the entire parameters with their values randomly chosen from 

P1 or P2.  This is because there are four levels in this analysis, and when conducting the 

analysis adding Δ should not exceed the region of experiment.  Next, a random order 

should be created for each case, where this order is used to change the parameter value 

from its baseline by Δ one at a time.  The effect of changing a parameter by Δ is 

evaluated by running the model and evaluating the changes made in the model output of 

interest.  Using these four effects found from four cases for each parameter, the modeler 

now can calculate the mean and its standard deviation or variance of changes that 

occurred due to an increase/decrease made to a single parameter value by Δ.  Any 

parameter resulting in a significant change in model outputs when changed by Δ (i.e., a 
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large mean and/or standard deviation/variance for changes made in the modeling outputs) 

are considered to be “sensitive.” 

The modeling outputs of interest are as follows for this example case: 

 Ts at τ = 1 s/mm2 

 Ts at τ = 3 s/mm2 

 Tb at τ = 1 s/mm2 

 Tb at τ = 3 s/mm2 

 Tsurf-ig where tig obtained from experiment data 

 MLR-ig where tig obtained from experiment data 

 MLRpeak 

Note that kinetic parameters are not included in the sensitivity analysis because 

when a model-fitting method is used to determine kinetic parameters, any uncertainty in 

activation energy can be compensated by adjusting the pre-exponential coefficient and 

vice versa.  Therefore, knowing the compensation effect between the estimated activation 

energy and pre-exponential factor, which is always accounted for in the model-fitting 

method, the effect of uncertainties in kinetic parameters on modeling outputs of interest is 

considered to be negligible.  

Results:  The results are shown with a sensitivity coefficient for each parameter 

defined as below: 
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Figure A(D)-29.  Sensitivity coefficient (SC) for 21 parameters included in sensitivity analysis 

Based on this analysis, Δ changes made in input parameters, 6, 11, 14, 16 and 

18 results in significant changes in the modeling outputs of interest (SC ≥ 1).  See Figure 

A(D)-29.  Therefore, when conducting uncertainty analysis, these parameters will be 

considered to estimate the uncertainty band of modeling outputs.  As noted before, the 

confidence interval for these parameters will be estimated from near-optimal parameter 

sets found from numerical optimization using GA.  Note that the significance- level set as 

experiment uncertainty is estimated in the following section; however, it is used to 

calculate SC in this step. 

 

Determine data and model output uncertainty to make comparisonviii 

1. Conduct uncertainty analysis of data 

Data is acquired from three repeating cone tests of modified-acrylic resin with 

inorganic high-charring additive FRP composite with relatively high glass content under 

50 kW/m2 heat flux level.  

The uncertainties in the MLR and thermocouple measurements at surfaces (front 

and back) were quantified by comparing data from these three identical FRP composite 

                                                 
viii

Data uncertainty is accounted for here because this is required to determine the goodness of near-
optimal parameter sets.  Optimization targets (experiment data) should be considered with their 
uncertainty bounds to decide how good the match is between the targets and optimum simulations with 

their uncertainty. 
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tests.  Note that normalized time, time divided by sample thickness square, i.e.,  = 

time/2, is used to remove the effect of different sample thicknesses when comparing.  

Because the data is transient, values at different times ( = 1, 3, 5, and 7 s/mm2) from 

each test have been used to calculate the standard deviation at each time.  Then these are 

averaged and used to estimate uncertainty by applying student t distribution with a 

sample size of three and calculating the 95% confidence interval.  See Table A(D)-12. 

Table A(D)-12.  Summary of estimated uncertainty in modified-acrylic resin with high-charring 
additive (MA+A) FRP composite cone calorimeter experiments based on 3 repeating tests at 

50 kW/m2 heat flux level 

 
MLR 

(g/s-m2) 

Ts 

(°C) 

Tb 

(°C) 

± uncertainty ± 2.2 ± 67 ± 14 

 
2. Conduct uncertainty analysis of model outputs of interest – MLR, Ts and Tb 

 Baseline case was selected at simulation with EHF = 50 kW/m2, thickness 

= 8.7 mm, and the best optimum-parameter set.   

 Five parameters that were determined to be sensitive to modeling outputs 

of interest are varied in the simulations one at a time from the baseline 

case.  See Table A(D)-13 for summary. 

Table A(D)-13.  Outline of 5 parameters – MA_residue emissivity, A_residue thermal 
conductivity and GAMMA, fiberglass thermal conductivity, and specific heat capacity T 

dependent terms – varied in uncertainty analysis using one-at-a-time method 

No. Parameter 
Optimum±C.I. 

(α=0.05, t-distribution) 
ɛ2 k4 γ4 nk nc 

6 MA_residue Emissivity 0.60 ± 0.04 
+ 

– 
    

11 
A_residue Thermal 

Conductivity 
0.33 ± 0.11  

+ 

– 
   

14 A_residue GAMMA 0.0095 ± 0.0042   
+ 

– 
  

16 
Fiberglass Thermal 

Conductivity T 
Dependent Term 

0.30 ± 0.08    
+ 

– 

 

 

18 
Fiberglass Specific-Heat 

Capacity T Dependent 
Term 

0.57 ± 0.11     
+ 

– 
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 The effect of variation is calculated by considering the change in MLR, 

front and back-surface temperature profiles from baseline case.  By 

varying certain parameters one at a time, standard deviation of the two 

cases (altered and baseline case) are calculated at each time step and 2 x 

the maximum standard deviation found from time interval of interest is 

used as effects.  Results are shown in Table A(D)-14. 

 Uncertainty in these modeling outputs (MLR and Ts) is calculated using 

the Law of Propagation of Uncertainty.  Note that when inputs are varied 

to its uncertainty boundary values – minimum or maximum – the 

maximum effect was selected in the analysis to estimate the maximum 

uncertainty. 

Table A(D)-14.  Comparison between experiment data from cone calorimeter test and 
modeling outputs using estimated parameter values using numerical optimization (GA, SCE, 

SHC) 

 Data GA(avg) GA(best) SCE SHC 

Peak MLR (g/m2s) 27 ± 31 10.7 ± 1.2 11.4 10.6 12.4 

Avg MLR (g/m2s) 5.8 ± 1.6 6.3 ± 1.2 6.1 6.2 8.1 

t to pMLR (s) 200 ± 70 196 189 189 196 

Ts at τ = 1 s/mm2 (°c) 341 ± 54 336 ± 6 327 339 326 

Ts at τ = 3 s/mm2 (°c) 541 ± 100 496 ± 6 515 519 450 

Ts at τ = 5 s/mm2 (°c) 632 ± 9 583 ± 6 607 611 517 

Tb at τ = 1 s/mm2 (°c) 101 ± 14 111 ± 43 117 91 133 

Tb at τ = 3 s/mm2 (°c) 240 ± 23 274 ± 43 276 265 289 

Tb at τ = 5 s/mm2 (°c) 299 ± 25 302 ± 43 302 302 330 

 

Compare data with simulation results with consideration of uncertainties  

1. TG / DTG Predictions at 10°C/min Heating Rate Using Estimated Kinetic 

Parameters 
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Figure A(D)-30.  TG/DTG curves at 10°C/min heating rate with different estimation results for 
kinetic parameters for thermal decomposition of fire-retarded FRP composite: Testing of resin 

with additive sample (~10mg) with nitrogen purge 

 

2. Modeling Output: Mass Loss Rate (MLR) 

 

 
Figure A(D)-31.  Mass-loss rate (MLR) comparisons for FRP composite with modified-acrylic 
resin with high-charring inorganic additive between actual MLR from experiment (data) and 
modeled MLR (GA, SCE, SHC) at applied heat flux of 50 kW/m2.  Note that data shown were 
used to estimate model-parameter values via numerical optimization using GA, SCE, or SHC 

routines. 
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3. Modeling Output: Surface Temperature (Tsurf) 

 
Figure A(D)-32.  Surface temperature (Tsurf) comparisons for FRP Composite with modified-

acrylic resin with high-charring inorganic additive between actual Tsurf from experiment (data) 
and modeled Tsurf (GA, SCE, SHC) at applied heat flux of 50 kW/m2.  Note that data shown 

were used to estimate model-parameter values via numerical optimization using GA, SCE or 

SHC routines. 
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Validate simulation quality upon extrapolation 

1. Modeling Output: Mass-Loss Rate (MLR) 

 

 
Figure A(D)-33.  Mass-loss rate (MLR) comparisons for FRP composite with modified-acrylic 
resin with high-charring inorganic additive between actual MLR from experiment (data) and 
modeled MLR (GA, SCE, SHC) at applied heat flux of (a) 25 and (b) 75 kW/m2.  Note that data 

shown were not included in the model-parameter-estimation process; hence, these two cases 

are considered as extrapolation cases. 
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2. Modeling Output: Surface Temperature (Tsurf) 

 

 
Figure A(D)-34.  Surface temperature (Tsurf) comparisons for FRP composite with modified-

acrylic resin with high-charring inorganic additive between actual Tsurf from experiment (data) 
and modeled Tsurf (GA, SCE, SHC) at applied heat flux of (a) 25 and (b) 75 kW/m2.  Note that 

data shown were not included in the model-parameter-estimation process; hence, these two 

cases are considered as extrapolation cases. 
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Commentary 

General Comments  

 TG/DTG 

o Good agreement between simulated TG/DTG thermograms and those of 

actual from TGA experiment is shown when thermal decomposition 

kinetics is modeled using multiple heating-rate data.  

o The proposed kinetic model does not account for minor mass loss at 

relatively lower and higher temperature range. 

 Comparison Between Data and Computed-Modeling Outputs 

o Modeled peak MLRs are all in quantitative agreement with data, 

considering its uncertainty. 

o Avg MLRs of modeling  are in good agreement with data, except for that 

of SHC. 

o Modeled time-to-peak MLRs are all in quantitative agreement with data. 

o Modeled surface temperatures at earlier time (τ = 1 s/mm2) show good 

agreement with data, while at later times (τ = 3 and 5 s/mm2) modeling 

results deviate from experiment results; however, considering that there is 

flame interfering with data collection from surface thermocouple, 

uncertainty in data should probably be larger.   

o Modeled back-surface temperatures at different times from GA(avg) show 

good agreement with data, considering the modeling uncertainty.  Those 

from GA(best), SCE, and SHC are off by ~ 10 °C from experiment results.  

 MLR 

o Optimization at HF = 50 kW/m2: Generally good agreement exists 

between experiment data and all modeling results, considering the trend, 

except for that of SHC, indicating that optimization of SHC was close to 

being unsuccessful.   

o Extrapolation at HF = 25 kW/m2: Good agreement exists between 

experiment data and all modeling results.  All of the modeling cases are 

able to capture the slow increase in mass-loss rate in the earlier times after 

exposure to heating source and a jump near 1000 s due to ignition. 
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o Extrapolation at HF = 75 kW/m2: Good agreement exists between 

experiment data and all modeling results, except for SHC case.  SHC’s 

prediction is slightly higher than data and predictions from other cases; 

however, considering the uncertainty in the data, this falls within the 

acceptable bounds.  

 Surface Temperature 

o Optimization at HF = 50 kW/m2: Generally good agreement exists 

between experiment data and all modeling results, considering the trend, 

even for that of SHC.  Note that after ignition (post-ignition stage) the 

flame interferes with data reading of thermocouple on the surface. 

o Extrapolation at HF = 25 kW/m2: Good agreement exists between 

experiment data and all modeling results.   

o Extrapolation at HF = 75 kW/m2: Good agreement exists between 

experiment data and all modeling results, except for the SHC case. 

 

Limitation in Modeling 

 

 When considering limitation of the parameters in modeling this fire-retarded FRP 

composite, the modeler should take into account the applicability of the 

parameters and their associated uncertainties.  For example, any assumptions used 

when determining a parameter value via experiment direct or indirect 

measurements can be utilized to understand when the parameter value becomes 

inappropriate.  For this example, most consideration can be given to the 

parameters related to decomposition kinetics.  One should be cautious that these 

findings can cause this FRP composite to behave differently under changing 

conditions, which were not included in the parameter estimation process. 

 First, the reaction-order-type kinetic model can be used to fit the DTG data with 

some degree of satisfaction for all reactions (see +A-R and R).  However, the 

estimated reaction order is high as 5 for +A-R reaction.  This indicates that the 

model is forced to fit the data, knowing that the reaction order of this magnitude is 

rare to find in the literature.  Also, the DSC data confirms that the reaction-order-
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type model was inappropriate for +A-R as well.  Although the model is giving 

high correlation coefficients between the data and modeling for +A-R reaction, 

the DSC data show that +A-R should exist from 200°C and end before 400°C, 

where a strong endotherm is observed.  When the data is fit with a reaction-order-

type kinetic model, the additive decomposition temperature range extends beyond 

400°C, ending near 600°C.  

 Second, the decomposition of the additive reaction is best described by a kinetic 

model that describes a diffusion controlled reaction (Jander’s type model).  The 

model type is reasonable, considering that the model simulates the weight loss to 

be slow initially with respect to temperature increase and decays relatively fast 

after the weight-loss rate peak. This modeling becomes suitable for an additive 

decomposing within a resin-polymer system resulting in a time delay due to the 

time necessary to degrade the polymer near the additive.  Consider the additive 

being mixed within the resin polymer.  For the additive to undergo a 

decomposition reaction, the degradation of the resin polymer should occur 

simultaneously, because the additive is aggregated within the resin.  Having the 

additive decomposition temperature lower than that of the resin, the 

decomposition of the additive is delayed until the temperature is higher to allow 

the resin to decompose.  When this model is actually applied, it provides a good 

estimate of the slow weight loss at the initial stage near 200°C and the 

temperature range for the entire reaction. Additionally, when this model is used, 

the modeling results for weight- loss rate after 300°C matches well with the actual 

DTG data together with R reaction described with a reaction-order-type kinetic 

model. 

 Third, although kinetic modeling has been conducted to give best fitness between 

the modeling and the DTG data obtained over various heating rates (5 to 

60°C/min), assuming that the kinetics are identical irrespective of heating rates, 

changes in the kinetic over four heating rates have been noticed.  At lower heating 

rates, the portion of the sample weight consumed via MA_residue oxidation 

increases, where at higher heating rates it decreases.  This can be explained by 

understanding that the MA_residue oxidation reaction is controlled by oxygen 
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diffusion from the ambient to the condense phase.  At a low heating rate, more 

time is available for oxygen diffusion with respect to temperature change, 

allowing an increase in the weight loss due to oxidation.  However, when the 

heating rate is higher, the conditions become the opposite, and pyrolysis reaction 

(R) dominates. The fitness of the model to DTG data increases when this effect is 

accounted for in the modeling. 
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EXAMPLE 5.4 MODELING PLYWOOD 

An example case is shown for a non-fire retarded Douglas Fir plywood.  Thermal 

decomposition is modeled with two-step reactions – water loss and decomposition of dry 

plywood to char.  Note that for this example, one approach will be used to estimate model 

parameters – a combination of non-optimization and manual optimization methods.   

 

Measure Parameters 

When conducting parameter estimation via independent experiments, consider the 

following: 

 Check consistency between model used in experiment analysis to 

determine parameter in measurement process and pyrolysis model to 

mathematically describe the parameter of interest. 

 Use statistical approach for determining uncertainty; otherwise, meet 

equivalency to this requirement. 

 

1. Density 

Although plywood has a laminate structure, this material is considered as a 

homogeneous single- layer material.  Bulk density of the virgin fuel material is measured 

by experiment conducted at room temperature (≈298K), weighing sample’s mass, and 

dividing mass with sample volume, which is 540 ± 10 kg/m3. 

ρwet plywood = 540 kg/m3 

Density of water was found from literature:31 

ρwater = 1000 kg/m3 

Based on TGA experiment, moisture content of wet plywood is estimated as 7% by 

weight.  This information is used to estimate density of dry plywood, which is 504 kg/m3. 

ρdry plywood = 504 kg/m3 

Also estimated based on TGA experiment, the weight loss due to thermal decomposition 

of dry plywood to char is 67%, resulting in: 

ρchar = 173 kg/m3 
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2. Thermal Conductivity 

 Thermal conductivity of water was found from literature:31 

kwater = 0.6 W/m-K 

Thermal conductivity of dry plywood and char were estimated via manual optimization, 

but with its initial guess based on measurement at 20°C (ASTM C518/E1225): 

k initial guess = 0.122 W/m-K 

3. Specific-heat Capacity 

Specific-heat capacity of water was found from literature31: 

cp water = 4200 J/kg-K 

Specific-heat capacity of dry plywood and char were estimated via manual optimization, 

but with its initial guess based on measurement at 20°C (ASTM E1269): 

cp  initial guess = 1200 J/kg-K 

4. Absorption Coefficient 

For simplification, solid-phase species involved in modeling are considered as an 

opaque material.  Therefore, the absorption coefficient is essentially infinity. 

 

5. Emissivity 

Emissivity of water and char are approximated as 1.  Emissivity of dry plywood is 

measured using ASTM E903: 

ε dry wood = 0.891 ± 0.018 

6. Reaction Order, Pre-exponential Factor, and Activation Energy 

This example case is determined to have decomposition kinetics type 3 (two 

major peaks in DTG over entire mass-loss temperature range) according to TGA 

experiment conducted in nitrogen atmosphere.  Based on this information, kinetic 

parameters will be obtained via the model-fitting method with four iso-heating rate TGA 

data conducted in air atmosphere.   

 

7. Heat of Reaction 

Heat-of-reaction for water loss is measured using DSC: 

ΔHwater loss = 2500 ± 800 

K
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Heat-of-reaction for decomposition of dry plywood to char is not measured; will be 

obtained via manual optimization. 

 

Summary 

Among seven categories of parameters, most have been obtained via direct 

measurement, which are shaded in Table A(D)-15.  The rest of the unknown parameters, 

a total of five parameters, should be obtained via numerical optimization in pair with 

pyrolysis modeling using bench-scale experiment data or equivalent.   

Table A(D)-15.  Summary of necessary model parameters for simulating pyrolysis of plywood 

 

 No 
Condense Phase 

i=1, water i=2, dry_plywood i=3,  char 

Material Property 

1    

2    

3    

4 
   

Parameters for 
Specifying 
Conditions 

5 
   

  
Heterogeneous RxN 

k = 1, water loss k = 2, wood decomposition 

Kinetic Parameters 

and Heats assuming 
n

th
 order model and 
Arrhenius-type 

expression 

6 

  

  

  

7   

1 2 3

1k 2k 3k

1c 2c 3c

1 2 3

1 2 3

1n 2n

1Z 2Z

1E 2E

1H 2H



Section 5 - 435 

Obtain Parameters via Numerical Optimization 

Run Model in Pair with Numerical Optimization 

 

 
Figure A(D)-35.  Simplified representation of a cone calorimeter test of plywood 

 

Select model: GPYRO 

Understand bench-scale experiment set-up for modeling simple cases 

A simplified representation of a cone calorimeter test of FRP composite is shown 

in Figure A(D)-35.  The sample is placed on top of an insulation, which sits on a metal 

holder.  Another metal frame is placed on top of the sample, insulation, and the holder.  A 

metal edge frame is used as well. 

Configure model conditions based on understanding of experiment set-up 

In the model, the phenomena discussed above are simulated as below.  Basic 

assumptions are as follows: 

 Instantaneous release of volatiles from solid to the gas phase 

 Local thermal equilibrium between the solid and the volatiles 

 No condensation of gaseous products 

 No porosity effects 
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Further details can be found from the Technical Reference6 and User’s Guide7 of 

GPYRO (http://code.google.com/p/gpyro). 

When conducting the GPYRO simulation for the cone calorimeter set-up, the 

metal edge frame will be ignored and backing is insulated.  The ignition phenomenon is 

interpreted as the following in the simulations: at a known time-of-ignition (from 

experiment data), additional heat flux of 20 kW/m2 is applied to the surface to simulate 

heat flux from the flame.  This value is estimated from a measurement from this material 

pyrolyzing in the cone with a total-heat-flux gauge measuring heat flux impinging on the 

sample surface.  Figure A(D)-36 shows the total-heat-flux measurement from sample 

surface (test conducted at 50 kW/m2 applied heat flux).  From the time-of-ignition (τ ~ 

0.1 s/mm2) an increase above the 50 kW/m2 line in measured heat flux is observed due 

to flame.  The oscillation in data in the time interval of ignition to τ = 1 s/mm2 is an 

artifact due to water evaporation, which had condensed near the water-cooled heat-flux 

gauge. 

 

Figure A(D)-36.  Total heat flux measured from plywood surface during cone calorimeter test 
at external-heat-flux level of 50kW/m2: Ignition occurs before τ = 1 s/mm2 and from this point 

additional heat flux impinges on the surface due to the flame 

For the back surface, an additional layer of insulation with known properties is 

modeled to simulate some heat loss through the back.  The contact resistance (hcrz) 

between the FRP composite and the insulation is estimated as roughly 10 W/m2K and 

that of insulation layer and ambient as 1 W/m2K. 
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In addition to the parameters introduced in previous section (see Parameter 

Estimation Results), the model (GPYRO) has a coefficient (γ, GAMMA) that is used to 

model radiative heat transfer through the pores.  This parameter with T3 is a model-

dependent parameter that is added as another term in the effective thermal conductivity.  

γ is used for porous fiberglass and decomposed solid species, which results in a more 

porous state due to the weight loss; therefore, more radiative heat transfer through the 

gas-phase pores, i.e., for condense phase specie i = 2 (char). 

Therefore, the total unknown parameters of five now becomes six including γ. 
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Figure A(D)-37.  Cone calorimeter (cone) test data of plywood (thickness, δ is 11.1 ± 0.1 mm, 

density, ρ is 540 ± 10 kg/m3) impinged with effective heat fluxes (EHF) of 25 to 75 kW/m2 

3. Check data reproducibility by repeating identical experiments  

Data is acquired from two repeating cone tests of plywood under 50 kW/m2 heat-

flux level.  Uncertainty analysis will be performed later. 

 

Select numerical optimization routine 

 Manual optimization 

 See Chapter 5 for more description of each optimization routine. 
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Conduct numerical optimization in pair with simulations using experiment data as 

targets 

Numerous simulations with a simplified version of GPYRO have been used in 

pair with manual optimization to obtain unknown parameters.  Experiment data of mass-

loss rate (MLR), surface-temperature measurements (Ts), and back-surface temperature 

measurements (Tb) generated with various applied heat-flux levels between 25 and 75 

kW/m2 have been used in the optimization process as targets (i.e., optimization is 

conducted for unknown parameters to match modeling outputs of interest to certain 

experiment data). 

 

Obtain Confidence Intervals for Optimized Parameters 

For this example case, where manual optimization is used, confidence intervals 

are approximated as ±10% for each optimized parameter. 
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Parameter Estimation Results 

Parameter Unit 
Comparable Non-optimization and 

Manual Optimization 
Th

er
m
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-p

h
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ic
al
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ro
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ty
 

i = 1 
(water) 

 kg/m3

 
1000 

Reference31 

 W/m-K 
0.6 

Reference31 

 J/kg-K 
4200 

Reference31 

i = 2 
(dry_wood) 

 kg/m3

 
504 ± 10 

Measurement 

 W/m-K 

0.26 

Manual Optimization with Initial Guess 
of 0.122 measured at 20 °C (dry_wood, 

ASTM C518/E1225) 

 J/kg-K 

2400 

Manual Optimization with Initial Guess 
of 1200 measured at 20 °C (dry_wood, 

ASTM E1269) 

i = 3 
(char) 

 kg/m3

 
173 

Measurement 

 W/m-K 

0.12 

Manual Optimization with Initial Guess 
of 0.122 measured at 20 °C (dry_wood, 

ASTM C518/E1225) 

 J/kg-K 

3700 

Manual Optimization with Initial Guess 
of 1200 measured at 20 °C (dry_wood, 

ASTM E1269) 
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water  vap↑ 
 /s 2.5 x 1012 Multiple Heating 

Rate TGA Data 
 J/mol 83 x 104 

 kJ/kg 
2500 ± 800 (30%) 

Measurement, DSC 

k = 2 
dry_wood  
char + vap↑ 

 - 1.7 Model Fitting with 
Multiple Heating 

Rate TGA Data 
 /s 5.0 x 1016 

 J/mol 2.10 x 105 

 kJ/kg 
631 

Manual Optimization 

Model Dependent 
Parameter 

ϒ 
(i=3) 

m 
0.0036 

Manual Optimization 

 

Validation 

Analyze Simulation Quality 

Identify sensitive parameters for model inputs 

 
, , 

 

 
Kinetic parameters are considered to be certain in this example case

 

 

Determine data and model output uncertainty to make comparisonix 

1. Conduct uncertainty analysis of data: Data is acquired from two repeating cone 

tests of plywood under 50 kW/m2 heat-flux level.  

2. The uncertainties in the MLR and thermocouple measurements on the front 

surface were quantified by comparing data from these two identical FRP 

composite tests.  Note that the effect of different sample thicknesses was 

considered to be negligible, for sample thicknesses in two tests were 11.1 and 

11.2 mm.  Because the data is transient, the standard deviation at each time step 

was calculated.  Then these are averaged and multiplied by 2 to estimate 

uncertainty: uncertainty in MLR, Ts and Tb are ± 3.4g/sm2, ± 54 °C and ± 27 °C, 

respectively. 

3. Assume:  

                                                 
ix

Data uncertainty is accounted for here because this is required to determine the goodness of near-
optimal parameter sets.  Optimization targets (experiment data) should be considered with its uncertainty 
bounds to decide how good the match is between the targets and optimum simulations with its 

uncertainty. 
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a. Uncertainties are comparable to the same sample tested at various heat 

flux levels 

b. Data set found above is close to the averaged curves from multiple 

identical tests under same conditions 

4. Conduct uncertainty analysis of model outputs of interest – MLR and Ts 

 Baseline case: HF = 50 kW/m2, thickness = 8.7 mm. 

 Sensitive parameters – density of dry_wood and char, emissivity of water, 

dry_wood and char, heat-of-reaction for drying process and thermal 

decomposition of dry_wood to char – varied one at a time from baseline to 

its max and min: ±10% of estimated value or uncertainty limits found 

from measurement experiment.  Results are shown in Table A(D)-16. 

 Kinetic parameters are considered to be certain in this example. 

 Integration of uncertainty is calculated by the Law of Propagation of 

Uncertainty: uncertainty in model’s MLR, Ts and Tb are ± 7.2g/sm2, ± 

57 °C and ± 157 °C respectively. 

Table A(D)-16.  Comparison between experiment data from cone calorimeter test and 
modeling outputs using estimated parameter values via measurements and manual 

optimization 

 
Data 

(Based on 2 tests, uncertainty as 
2 times standard deviation) 

Measurements and Manual 
Optimization 

Peak MLR (g/m2s) 19.9 ± 4.8 18.1 ± 7.2 

Avg MLR (g/m2s) 6.8 ± 0.5 6.6 ± 7.2 

t to pMLR (s) 81 ± 113 23 

Ts at 100 s (°c) 604 ± 112 628 ± 57 

Ts at 200 s (°c) 734 ± 10 670 ± 57 

Ts at 300 s (°c) 732 ± 45 689 ± 57 

Tb at 100 s (°c) 68 ± 20 56 ± 157 

Tb at 200 s (°c) 118 ± 1 185 ± 157 

Tb at 300 s (°c) 196 ± 10 291 ± 157 
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Compare data with simulation results with consideration of uncertainties  

1. TG / DTG Predictions at 20 °C/min Heating Rate Using Estimated Kinetic 

Parameters 

 

 
Figure A(D)-38.  TG/DTG curves at 20°C/min heating rate with different estimation results for 
kinetic parameters for thermal decomposition of plywood: testing of plywood sample (~10mg) 

with air purge 

 

2. Modeling Output: Mass Loss Rate (MLR) 

 

 

Figure A(D)-39.  Mass-loss rate (MLR) comparisons for FRP composite with plywood between 
actual MLR from experiment (data) and modeled MLR (M&M) at applied heat flux of 50 

kW/m2.  Note that data shown were used to estimate model parameter values via manual 

optimization. 
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3. Modeling Output: Surface Temperature (Tsurf) 

 

Figure A(D)-40.  Surface-temperature (Tsurf) comparisons for plywood between actual Tsurf from 
experiment (data) and modeled Tsurf (M&M) at applied heat flux of 50 kW/m2.  Note that data 

shown were used to estimate model-parameter values via manual optimization. 

4. Modeling Output: Back-surface Temperature (Tback) 

 
 

Figure A(D)- 41.  Back-surface temperature (Tback) comparisons for plywood between actual 
Tback from experiment (data) and modeled Tback (M&M) at applied heat flux of 50 kW/m2.  Note 

that data shown were used to estimate model-parameter values via manual optimization. 
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Figure A(D)-42.  Mass-loss rate (MLR) comparisons for FRP composite with plywood between 

actual MLR from experiment (data) and modeled MLR (M&M) at applied heat flux of (a) 25 
and (b) 75 kW/m2.  Note that data shown were not included in the model-parameter-

estimation process; hence, these two cases are considered as extrapolation cases. 
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2. Modeling Output: Surface Temperature (Tsurf) 

 

 
Figure A(D)-43.  Surface-temperature (Tsurf) comparisons for FRP composite with plywood 

between actual Tsurf from experiment (data) and modeled Tsurf (M&M) at applied heat flux of 
(a) 25 and (b) 75 kW/m2.  Note that data shown were not included in the model-parameter-

estimation process; hence, these two cases are considered as extrapolation cases. 

3. Modeling Output: Back-surface Temperature (Tback) 
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Figure A(D)-44.  Back-surface temperature (Tback) comparisons for plywood between actual 

Tback from experiment (data) and modeled Tback (M&M) at applied heat flux of (a) 25 and (b) 75 
kW/m2.  Note that data shown were not included in the model-parameter-estimation process; 

hence, these two cases are considered as extrapolation cases. 
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Commentary 

General Comments  

 TG/DTG 

o Good agreement between simulated TG/DTG thermograms and those of 

actual from TGA experiment is shown when thermal decomposition 

kinetics is modeled using multiple heating rate data.  

o Proposed kinetic model does not account for mass loss due to char 

oxidation at relatively higher temperature range (T > 400°C). 

 Comparison Between Data and Computed Modeling Outputs 

o Modeled peak MLR, Avg MLR, time-to-peak MLR, and Ts, and Tb at 

various times are all in quantitative agreement with data, considering its 

uncertainty. 

 MLR 

o Optimization at HF = 50 kW/m2: Generally good agreement exists 

between experiment data and all modeling results, considering the trend.  

Some deviation of modeling results from data is shown at later times, 

where the second peak is observed in the MLR curve.  Near this region, 

bending of the sample toward the front surface occurs with respect to a 

rapid temperature increase throughout the back surface.  This phenomenon 

is strictly a 3D behavior, which is not explicitly accounted for in current 

1D model.  Additionally, mass loss due to minor char oxidation at this 

region is speculated, for flame height becomes smaller and bending of 

sample may allow more oxygen to diffuse to the solid phase. 

o Extrapolation at HF = 25 kW/m2: Good agreement exists between 

experiment data and modeling results.  Modeling is able to capture the 

initial mass-loss-rate peak followed by a decrease qualitatively and 

quantitatively. A qualitative agreement between data and modeling results 

exists for the second mass-loss-rate peak; however, actual sample in cone 

testing extends for a longer period of time (~100 s), while in modeling 

burnout time occurs earlier.  This is probably due to excluding char 

oxidation in kinetic modeling.   
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o Extrapolation at HF = 75 kW/m2: Good agreement exists between 

experiment data and modeling results, except for the second peak in mass-

loss-rate curve.  See above for discussion. 

 Surface Temperature 

o Optimization at HF = 50 kW/m2: Generally good agreement exists 

between experiment data and modeling results, considering the trend.  

Note that after ignition (post-ignition stage) the flame interferes with data 

reading of the thermocouple on surface. 

o Extrapolation at HF = 25 kW/m2: Good agreement exists between 

experiment data and modeling results.   

o Extrapolation at HF = 75 kW/m2: Good agreement exists between 

experiment data and modeling results. 

 

Limitation in Modeling 

 

 When considering limitation of the parameters in modeling this plywood, the 

modeler should take into account the applicability of the parameters and their 

associated uncertainties.  For example, any assumptions used when determining a 

parameter value via experiment direct or indirect measurements can be utilized to 

understand when the parameter value becomes inappropriate.  For this example, 

most consideration can be given to the parameters related to decomposition 

kinetics.  One should be cautious that these findings can cause this FRP composite 

to behave differently under changing conditions, which were not included in the 

parameter estimation process. 

 In this example, drying is simplified as a heterogeneous reaction (i.e., an 

Arrhenius Law temperature dependence evaporation rate), which occurs near 

100°C, based on TGA experiment results.  However, water evaporation from a 

wet wood is governed by transport phenomena of liquid-phase water and vapor 

diffusion.  Additionally, typically the water travels toward the back surface during 

heating and re-condensation may occur, allowing the back surface to be colder.  

This phenomenon will not be captured in this modeling. 
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 Any char oxidation has been considered to be minimal in this example, 

considering that with a flame sheet on the material surface oxygen diffusion 

becomes limited.  However, when analyzing the cone calorimeter results, some 

oxidation is speculated, for the sample loses ~4 to 6% more of the initial sample 

weight comparing to TGA experiment. 
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Appendix E - Chapter 5 Supplement: Morris’ OAT 

Method 

Morris’ one-at-a-time (OAT) Method, also known as the Elementary Effect 

Method,1 is one of the simplest types of a global sensitivity analysis. This method was 

developed for a computationally expensive model where a large number of factors are 

involved in the model calculations. This method is used to rank the factors from factors 

that have significant influence to model output to those that have negligible effect. The 

results from applying Morris’ method allow the user to categorize the input factors into 

three groups – factors that have (1) negligible effect, (2) additive effects, or (3) non-linear 

or interaction effects on the simulation output.  

A limitation of this method is that it may identify possible higher-order effects, 

but it only estimates for the first order effects, i.e., the method does not provide 

estimations for factor-interactions. Although not discussed further, there is a revised 

version called the new Morris method that does provide means to estimate the sensitivity 

of a model due to interactions between two factors known as the second order effect.2 

The basic principles of the original Morris’ OAT method are discussed below. 

The range of variation of each component of the vector α of parameters is 

standardized to the unit interval, and each component is then considered to take on p 

values in the set       1,,13,12,11,0  ppp , so that the region of 

experimentation becomes an i-dimensional p-level grid. Selecting this region of 

experiment reasonably for each parameter is an important factor for a successful analysis. 

An elementary effect of the ith-parameter at a point α is then defined as 

          RRd Iiiii ,,,,,, 111  , where  is a predetermined 

multiple of  11 p , such that i is still within the region of experimentation. Note 

that the base vector α is randomly chosen, and the model is not evaluated at this base 

vector. A finite distribution iF of elementary effects for the ith parameter is obtained by 

sampling α from within the region of experimentation. The number of elements for each 

iF  is   11  pppk
. For the best economy of design, p is selected as an even number 
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and   is calculated by   12 pp . Morris showed that applying this selection approach 

allows the individual input factors to have an equal probability of being selected. 

The distribution iF  is then characterized by its mean and standard deviation or 

variance and is graphically shown in two-dimension, where the mean is the x-axis, and 

the standard deviation or variance is the y-axis. A high mean indicates a parameter with 

an important overall influence on the response; a high standard deviation or variance 

indicates either a parameter interacting with other parameters or a parameter whose effect 

is nonlinear. 

Graphical representation of calculating an elementary effect for each parameter is 

shown in Figure A(E)-1: 
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Figure A(E)-1.  Schematic of Morris’ OAT Method 
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CONCLUSIONS 
 

This dissertation consists the following four sections, which covers various aspects of parameter estimation problem 

for pyrolysis modeling: 

Section 2: Evaluating Effects of Applying Different Kinetic Models to Pyrolysis Modeling of Fiberglass 

Reinforced Polymer Composites 

This research evaluates the effects of applying different kinetic models (KMs), developed based on thermal analysis 

using TGA data, when used in typical 1D pyrolysis models of fiberglass reinforced polymer (FRP) composites. The 

effect of different KMs is isolated from the FRP heating by conducting pyrolysis modeling based on measured 

temperature gradients. Mass loss rate (MLR) simulations from this pyrolysis modeling with various KMs show 

changes in the simulations due to applying different KM approaches are minimal in general. Pyrolysis simulations 

with the most complex KM are conducted at several heat flux levels. MLR comparison shows there is good overlap 

between simulations and the experimental data at low incident heat fluxes. Comparison shows there is poor overlap 

at high incident heat fluxes.  These results indicate that increasing complexity of KMs to be used in pyrolysis 

modeling is unnecessary for these FRP samples; and that the basic assumption of considering thermal decomposition 

of each computational cell in comprehensive pyrolysis modeling as equivalent to that in a TGA experiment becomes 

inapplicable at depth and higher heating rates. 

Section 3: Evaluation of Pyrolysis Parameters for Fiberglass Reinforced Polymer Composites based on Multi-

objective Optimization 

This study was conducted to investigate the ability of global, multi-objective and multi-variable optimization 

methods to estimate material parameters for comprehensive pyrolysis models – thermo-physical and optical 

properties of two Fiberglass Reinforced Polymer (FRP) composites that share the same fiberglass. With these 

optimization methods used in pair with a comprehensive pyrolysis model (GPYRO), parameter estimation was 

carefully conducted with considerations given to applying appropriate thermal decomposition kinetic models and 

optimization targets.  

Suitable kinetic models with different levels of complexity are proposed using independent thermal analysis and 

their effect on 1D FRP pyrolysis modeling. This procedure shows that changes in the simulations of mass loss rates 

integrated over the cross-section of FRPs at each time step during 1D FRP pyrolysis are minor when different 

kinetic models are applied.  Applicable optimization targets – bench-scale experiment data of mass loss rate and 

temperature profiles – are found by utilizing the same screening process.  

Parameter estimation exercises were conducted with three different kinetic models, from simple to complex. 

Optimization targets were data from Cone Calorimeter experiments irradiated at a moderate heat flux level of 

50kW/m
2
. Estimation results are compared with the following independently measured effective properties – 

thermal conductivity, specific heat capacity and emissivity of polymer resins and FRPs. Additionally, fiberglass 
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properties estimated from the parameter estimation exercises conducted for the two FRPs are compared to analyze 

for consistency in optimized values. The results show that for a well-configured parameter estimation exercise using 

the optimization method described above, (1) estimated results are within ± 100% of the measurements in general; 

(2) increasing complexity of the kinetic modeling for a single component system has insignificant effect on 

estimated values; (3) increasing complexity of the kinetic modeling for a multiple component system with each 

element having different thermal characteristics has positive effect on estimated values; and (4) parameter 

estimation using an optimization method with appropriate level of complexity in kinetic model and optimization 

targets can find estimations that can be considered as effective material property values. Overall, a good practice for 

kinetic modeling for pyrolysis models is to apply a simpler approach for kinetic modeling unless more complex 

approaches are considered to be necessary. 

Section 4: Parameter Estimation for Comprehensive Pyrolysis Modeling: Guidance and Critical 

Observations 

A process for conducting parameter estimation for comprehensive pyrolysis models is proposed in this study. This 

estimation process was developed based on the following: (1) parameter estimation is about being consistent, 

applying engineering common-sense and correctly following the steps in this guide; (2) parameter estimation is 

conducted by breaking down the problem into groups of unknowns of similar character and considering them 

separately; (3) parameter estimation is conducted in consideration of an appropriate complexity in model set-up 

using certain approximations for simplifications; and (4) parameter estimation is conducted with direct 

measurements of parameters from independent experiments, literature search and/or numerical optimization paired 

with certain pyrolysis models. Additionally, limitations in parameter estimation are discussed by considering 

example cases. They are shown to demonstrate how simplifying the microstructure, modeling thermal 

decomposition kinetics and applying numerical optimization method affect the estimation results. The process 

developed is applied to modeling of real-world materials: thermoplastics (PMMA), corrugated cardboard, fiberglass 

reinforced polymer composites and plywood. Understanding the limitations in parameter estimation, it was noted 

that (1) the estimated parameter values are compensated by other parameter values in a parameter set allowing 

optimization method to optimize for multiple optimal, linked parameter sets; however, (2) when modeling is well-

configured with optimum complexity, the optimized parameter values may become closer to those of independent 

measurements, highlighting the possibility of utilizing the optimization method to estimate for effective material 

properties. 

Section 5: Engineering Guide for Estimating Material Pyrolysis Properties for Fire Modeling 

With this Guide, standardized procedures for obtaining material parameters for input into fire-pyrolysis models are 

presented, such as empirical, simple analytical and comprehensive pyrolysis models. The different chapters offer 

guidance to show what pyrolysis models are available for modelers and what may be appropriate for their modeling 

needs.  To provide standardized procedures for obtaining material-pyrolysis parameters for input into fire models, 

pyrolysis models are grouped into three categories based on their modeling characteristics, understanding that most 

of the model-input unknowns are related to the solid phase during thermal decomposition.  The three categories are 
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Empirical Models, Simple Analytical Models and Comprehensive Models.  For each model category the following 

information is provided:  

 A brief description of its modeling approach and assumptions applied to simplify the problem. 

 A typical mathematical formulation with identification of model parameters in the equations. 

 Methods of estimating the unknown parameters either by independent measurements or numerical 

optimization in pair with the model.   

 

Using this information, example cases are introduced for better understanding of the parameter-estimation procedure 

described for each model category.  Additionally, the Appendix provides thorough explanation of example solutions 

from different chapters. 

FUTURE WORKS 
 

In this dissertation, first effort was given to understand thermal decomposition kinetics occurring in a one-

dimensional slab using zero-dimensional thermal analysis. The results showed that although comprehensive 

pyrolysis models have the capability of accommodating highly complex kinetic models, the effect of increasing the 

complexity in kinetic models have less impact on overall modeling of pyrolysis of a slab. Independent of the level of 

complexity applied in kinetic models for comprehensive pyrolysis modeling, poor agreement has been reported 

when modeling pyrolysis at depth and higher heating rates for the FRP composites investigated in this research. 

Based on this, further research can be proposed for studying the actual changes that occur in the thermal 

decomposition kinetics with respect to increasing depth and/or heating rates.  Author’s speculation is that the 

polymer chain decomposes to monomers and freely leaves the condense-phase to the gas phase at the surface, which 

can be correlated well with the zero-dimensional thermal analysis (i.e. decomposition conditions are similar for both 

cases). However, as the pyrolysis front propagates toward the back surface and/or the applied heating rate increases 

the polymers decompose to higher molecular chains than monomers (production of oligomers, i.e. secondary 

reactions), which results in reduction in the rate of formation of fuel vapors that travels towards the surface to the 

gas phase. This would mainly be due to the changes in the thermal decomposition environments (e.g. more high 

temperature decomposition products are partially encapsulated nearby the new reactants). Initial effort was given to 

recreate the pyrolysis condition at depth and/or higher heating rates using zero-dimensional thermal analysis – TGA 

experiment using sample holders with hermetic lids, pin-holed lids, etc. and pressurized TGA experiment. However, 

the effect of the change in the decomposition environment was minimal in the small-scale experiments. Hence, other 

methods should be considered such as using pressurized batch reactor, studying as is in the slab set-up, or more.  

In the second part of the dissertation, applying multi-variable/objective optimization methods to estimate model 

parameters for some FRP composites has been investigated. The results showed that although there is a 

compensation effect between the parameters, when conducted with carefulness in terms of selecting the appropriate 
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kinetic model and optimization targets, estimated results can be significantly close to their independently measured 

values. Based on this work, further investigation of “careful” estimation for different materials using multi-

variable/objective optimization methods can be proposed to confirm the possibility of accepting the estimated values 

as effective properties. This can set the basis for developing a future database for model parameters, which can be 

useful to practitioners. Additionally, knowing that eventually the comprehensive pyrolysis modeling will be used as 

a sub-model of a computational fluid dynamics simulation in many cases, the parameters estimated from 

optimization method can be used to conduct multi-dimensional numerical analysis such as flame spread modeling to 

assess their modeling limitations. 

In the last two parts of the dissertation, parameter estimation process for pyrolysis modeling has been proposed and 

evaluated. Based on this work, the process would need to be further developed by applying the process to different 

modeling cases. This would require following and understanding the procedure but also documenting well what has 

been learned throughout the practice. 
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ABSTRACT 

This research evaluates the effects of applying different kinetic models, developed based on thermal 

analysis using TGA data, when used in typical 1D pyrolysis models of FRP composites. The effect of 

different kinetic models is isolated from the heating of the FRPs by conducting pyrolysis modeling based on 

measured temperature gradients. Mass loss rate simulations from this pyrolysis modeling with various 

kinetic models at moderate applied heat flux (50kW/m2) show that changes in the simulation due to 

applying different kinetic modeling approaches were minimal. Pyrolysis simulations with the most complex 

kinetic model that gave the best fitness to TGA data were also conducted at several heat flux levels and the 

results were compared to those of experiment. Results have shown that although at relatively low incident 

heat fluxes there is good overlap between simulations and the experimental data, at higher heat flux levels 

(> 70kW/m2), simulated mass loss rates diverges from the data. These findings are suggestive of the 

following: (1) increasing complexity of kinetic models to be used in pyrolysis modeling is unnecessary for 

the FRP samples used in this work; and (2) mass transfer effects are significant for higher incident heat flux 

levels for FRPs and therefore the typical assumption of negligible mass transfer effects cannot be generally 

assumed. 

 

KEYWORDS: kinetic modeling, thermal decomposition, thermal analysis, pyrolysis modeling 

NOMENCLATURE 

a zero order rxn model slope (/K) 

b zero order rxn model intercept (-) 

e Euler’s number (-) 

E activation energy (kJ/mol) 

f function 

k rate constant (/s) 

r rate (%/min) 

R gas constant (J/mol-K) 

T temperature (K) 

t time (s) 

Greek 

α conversion (-) 

β heating rate (°C/min) 

Subscripts 

p DTG peak 

0 initial condition

INTRODUCTION 

For the composites industry designing fiberglass reinforced polymers (FRPs) that have good 

reaction to fire characteristics is a guess and check operation in many cases.  Changes made to 

the components of the FRP – resin, additives and/or glass – or the microstructure of the FRP 

affect the overall fire behavior.  Traditionally, the effect of the changes made in the FRP are 

checked via standard fire tests, which can be time consuming and expensive.  Therefore, 

providing an understanding of how typical FRPs decompose under fire conditions and using this 

information to develop appropriate guidelines for the composite industry to produce fire-safe 

composites has been a long-term goal for this research. 
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Towards achieving this goal, virtual materials have been created that can simulate fire behavior 

of FRPs under different conditions by use of comprehensive pyrolysis models [1,2,3].  To 

develop accurate virtual materials, the first step is to model the thermal decomposition kinetics of 

FRPs as this determines the number of solid phase species involved in pyrolysis simulation.  

Then for every solid phase species, parameters related to their thermo-physical (density, thermal 

conductivity and specific heat capacity) and optical (emissivity and absorption coefficient) 

properties need to be determined to create a virtual material that can be used for pyrolysis 

simulation.  Depending on the complexity of the kinetic modeling, virtual material model 

parameters that need to be estimated may range from less than 10 up to 100 or more. 

Kinetic modeling of Thermogravimetric Analysis (TGA) mass loss rate (DTG) data provides the 

basis of creating virtual materials based on comprehensive pyrolysis modeling of FRPs. Six 

different kinetic models were investigated as shown in Table 1 where model assumptions applied 

to estimate kinetic parameters are shown with constant heating rate TGA data used in the 

modeling.  

Table 1. Different kinetic models considered in this study 

Model Model Assumptions / Data Model Model Assumptions / Data 

A 1 zero order rxn/constant DTG D 1 or 2 nth order rxn/multi-heating rate 

B 1 first order rxn/ peak DTG E 3 or 4 first order rxn/multi-heating rate 

C 1 or 2 first order rxn/multi-heating rate F 3 or 4 nth order rxn/multi-heating rate 

MATERIAL AND EXPERIMENTS 

Sample Materials 

FRP composite panels were fabricated by vacuum bagging for relatively high glass content 

composites, using two different types of fiberglass (E-glass) mats – chopped strand mat and a 

glass roving woven mat – that were wetted with resin.  The chopped strand mat is thinner and 

more porous than the woven mat. The laminate schedule is chopped strand mat and roving 

alternating 8 and 6 times with another chopped strand mat layer at the end for the brominated 

unsaturated polyester (BrUPE) and modified acrylic with inorganic additive (MA+A) FRP 

composites, respectively. Visual inspection (see Figure 1) is made of a polished cross-section of 

the composite slab to confirm consistency with the provided laminate schedule. BrUPE is an 

unsaturated polyester resin with bromination for flame retardancy. The bromination is built in to 

the carbon back bone with 20% by weight, which is typically substituted by replacing the 

hydrogens. Along with the bromination, antimony trioxide is added as an additive as a synergist 

that assists the flame retardancy of the polymer resin. MA is a modified acrylic resin. This resin 

is essentially unsaturated polyester (UPE) with Methacrylic Acid (MMA) replacing most of the 

styrene monomers. MA+A is a modified acrylic resin (MA) with an inorganic additive (A) as an 

additive for fire retardancy. Typical inorganic additives are hydrates such as alumina 

trihydroxide (ATH) or magnesium hydroxide, antimony trioxide, borax, chalk, silica, etc. [4] 

Because this additive was known to give a high-charring effect with a strong endotherm, A was 

categorized with typical hydroxides used as flame retardant fillers.  These hydroxides works as a 

flame retardant by resulting in an endothermic dehydration reaction that produces oxides and 

water [4,5]. The water produced by this reaction vaporizes, which is an endothermic reaction, and 

the vapor dilutes the gaseous phase. This flame retardant is added with a relatively large amount 

(50 to 65%) comparing to other types of additives.   
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Figure 1. Cross-section of FRP fabricated via vacuum bagging with average glass content of 60 wt%, 

respectively: two types of fiberglass (E-glass) used in the composite – chopped strand mat (porous) and 

glass roving woven mat (prominent glass layers in white) 

Small-scale TGA/DSC 

The instruments used in this study were manufactured from TA Instruments: Thermogravimetric 

Analysis Q50 (TGA) and the Differential Scanning Calorimetry Q20 (DSC).  Throughout this 

study, TGA and DSC were used for a non-isothermal test purposes and the tests were conducted 

in nitrogen and air environments to study pyrolysis and oxidation, respectively.  Using the TGA, 

4 different heating rates of 5, 20, 40 and 60°C/min. were applied to measure the mass loss history 

of each resin sample up to 800°C.  For the DSC, a constant heating rate of 20°C/min. was used to 

measure the heat flow through the sample during the thermal decomposition of resins up to 

500°C using a sample amount of ~ 10 mg in a standard aluminium pan with a punctured lid so 

that gases may evolve freely away from the pan.  The uncertainty in the TG measurements was 

quantified by plotting 3 or 4 weight loss curves from different tests (TG) with respect to 

temperature and finding the maximum standard deviation at each temperature ranging from 

ambient to 750 °C.  The maximum standard deviation is then used to calculate 95% confidence 

intervals for each material by applying the student t distribution with a sample size of 3 or 4.  

Uncertainties in TG for BrUPE and MA+A resins are estimated to be ± 7 and ± 6 %, 

respectively. 

Bench-scale Cone Calorimeter 

Cone Calorimeter (Cone, ASTM E 1354 [6]) is a bench-scale fire test apparatus in which the 

sample is heated by an electrically powered rod in the shape of a cone.  The sample is tested by 

applying a constant radiative heat flux set via temperature controll of the rod.  The Cone exposes 

the sample in an ambient environment which results in a natural flow field as the sample 

temperature increases allowing convective cooling above the sample surface. The ignition source 

is an intermittent sparker. Several modifications were made to the standard testing procedure.  

First, when testing these FRPs, two different types of sample holders were used to produce 

nominal one-dimensional data: the standard non-insulated square holder with a metal edge frame 

and a round insulated holder [7]. Second, typically 4 thermocouples were installed to measure 

temperature change of the sample at various depths: exposed surface, 1/3, 2/3 and back surface. 

The uncertainties in experimental mass loss rate (MLR) and thermocouple measurements at 

surfaces (exposed, Ts and back, Tb) were quantified by comparing data from these 3 or 4 identical 

FRP composite tests tested at 50 and 75kW/m2 applied heat flux levels for BrUPE and MA+A 

composites, respectively. Note that normalized time, time divided by sample thickness square, 

i.e., τ = time/δ2
 is used to remove the effect of different sample thicknesses when comparing.  

Because the data is transient, values at different times (τ = 1, 3, 5 s/mm
2
 for BrUPE and 1, 3, 5, 7 

s/mm
2
 for MA+A composites) from each test have been used to calculate the standard deviation 

at each time.  Then these are averaged and used to estimate uncertainty by applying student t 

distribution with a sample size of 3 or 4 and calculating the 95% confidence interval. 

Uncertainties in MLR, Ts and Tb are ± 2.2 or 2.3 g/s-m
2
, ± 67 or 30 °C, ± 14 or 22 °C for BrUPE 

or MA+A composite. The uncertainty in TC bead location at depth is typically ± 1 mm.  These 

uncertainty values were used to evaluate significant differences between the modeling results and 

experiment data. 



7th International Seminar on Fire and Explosion Hazards (ISFEH 2013) 

 

 

 

 

 

4

RESULTS AND DISCUSSION 

Thermal Decomposition of Resins 

To understand thermal decomposition behavior, the iso-conversional method was conducted with 

iso-heating rate (5, 20, 40 and 60°C/min) TGA data. Typically in kinetic studies, the isothermal 

rate of degradation or conversion, dα/dt, is assumed to be a linear function of the temperature 

dependent rate constant, k(T), and a temperature independent function of the conversion, f(α), 

where α indicates the conversion.  This equation can be further expanded by using the Arrhenius 

expression for the rate constant. Within the Arrhenius expression, two more reaction dependent 

constants are introduced: the pre-exponential constant, A, and the activation energy, Ea (see Eq. 

1). The temperature independent function of the conversion, f(α) is dependent upon the 

mechanism of the chemical reactions.   

( ) ( ) ( )αα
α

f
RT

E
AfTk

dt

d a
















−== exp   (1) 

The iso-conversional method, also known as the “model-free method”, is the method applied in 

this step to identify the minimum number of reactions necessary in the kinetic model.  This 

method requires data from multiple non-isothermal (or dynamic) experiments, i.e. data tested 

with at least 4 different heating rates.  The basis for this method is that at a constant conversion, 

α, dα/dt and f(α) become constants and therefore, Ea at each conversion is found without the pre-

knowledge of the reaction mechanisms.  When the Ea is found for the entire degradation process, 

the results provide insight for the minimum number of steps of elementary reactions needed to 

address the global reaction [8]. A global reaction composed of a single stage process will show 

no dependence of Ea on conversion, α.  When the global reaction is a complex process, the Ea 

changes with respect to conversion, α.  An increase in Ea with α typically indicates parallel 

reactions.  A decrease in Ea with α suggests that either the process is reversible (concave shape) 

or there is a change in the rate determining step (convex shape).  Therefore, from the iso-

conversional method, a minimum number of elementary reactions are indicated. There are two 

types of iso-conversional methods used in this study to check consistency –Ozawa, Flynn and 

Wall (OFW) [9,10] and Friedmen [11,12]. Using these methods, activation energy with respect to 

conversion, α is calculated and plotted for both resin systems – BrUPE (see (a) in Figure 2) and 

MA+A (see (b) in Figure 2).   

 

 

Figure 2. Results from iso-conversional method conducted on BrUPE (a) and MA+A (b) resins: (a) and (b) 

shows the estimated activation energy of thermal decomposition with respect to conversion (α) 
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Brominated Unsaturated Polyester Resin: BrUPE 

Based on the iso-conversional method, thermal decomposition of BrUPE can be grouped into 

three stages.  The first stage is the initial mass loss where the activation energy increases with 

respect to α.  The changes in the activation energies calculated for each conversion indicate that 

there is more than one reaction resulting in weight loss.  The second stage is the region where 

most of the mass loss is occurring and is identified with a profound, maximum peak in the DTG 

thermogram obtained from TGA experiments.  As shown in (a) in Figure 2, the activation 

energies calculated for conversion of BrUPE are relatively constant for both nitrogen and air.  

This result indicates that a single step reaction can describe the degradation process within this 

stage.  For BrUPE resin decomposing in nitrogen and air, a significant mass loss leaving residue 

less than 10% of its initial mass is observed at this stage. The third stage is the region where final 

mass loss is observed at temperatures above 400-500°C leaving almost no mass behind.  In this 

stage, the increase in the activation energy with respect to α occurs for decomposition of BrUPE 

resin and it occurs earlier for decomposition in air than in nitrogen.  This increase in estimated 

activation energy can be explained by the following: based on the weight loss (TG) and mass loss 

rate (DTG) thermogram shapes from TGA experiments and the residue yield – 4-5% in nitrogen 

and less than 2% in air at 800°C, one can speculate that BrUPE decomposition in nitrogen results 

in a constant increase in activation energy because the weight loss is minimal in this stage, but 

for BrUPE decomposing in air, it occurs because a parallel, oxidative reaction exists.  The 

oxygen diffusion through the sample seems to delay the decomposition process only slightly, 

probably because the sample sizes used in this experiment are small.   

The results found from conducting the iso-conversional method are consistent with previous 

research [13,14,15,16] conducted for unsaturated polyester thermoset resins. One thing to note is 

that BrUPE is identified as thermally less stable than the typical UPE knowing that the initial 

weight loss occurs up to 10-20% rather than a minor weight loss of less than 10%.  This 

discrepancy is probably due to the antimony trioxide added in BrUPE as a flame retardant 

additive or other things that may have been added inadvertently acting as an impurity.  Even a 

small amount of impurities are known to affect the integrity or the stability of the polymer 

performance [17].  Additionally, adding antimony trioxide to a halogenated compound such as 

UPE is known to have an effect on lowering the charring temperature.  After the initial weight 

loss region follows the major decomposition step. Studies have discovered that the 

decomposition occurs on the ester chain (-CO-C-) and the unsaturated chain (-C=C-) where the 

weakest chemical bonding exists [15].  This region exists up to 400°C to 500°C depending on the 

heating rate and is observed in thermal degradations of BrUPE.  In addition to this major 

decomposition step, weight loss up to 10% of the UPE samples’ initial weight is noticed from the 

tests conducted in air.  Considering that this only occurs in oxidative environment, the weight 

loss is understood as an oxidative degradation reaction that starts around 500°C and above.  

Modified Acrylic with Inorganic Additive: MA+A 

Based on the iso-conversional method, thermal decomposition of MA+A can be grouped into 

four stages – three similar to those of BrUPE and one additional stage where decomposition of 

the additive (A) is observed (see (b) in Figure 2).  Although the detailed composition of the 

additive is unknown, additive (A) decomposition reaction for this conversion region can be 

assumed due to the following: (1) a strong endothermic peak observed from DSC heat flow 

measurement at the temperature range (~ 390°C) of this stage; (2) the amount of weight loss at 
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this stage (~20%) is comparable to that of additive decomposition reaction; and (3) the estimated 

activation energies, Ea from iso-conversional method in this stage (160 ± 3 kJ/mol with normal 

distribution, 95% confidence interval) are similar to the reference values found for additive 

decomposition reaction.  

The results found from the iso-conversional method and heat flow measurements show that the 

decomposition of the inorganic additive used in MA+A that gives high-charring effect is similar 

to the decomposition of polymers with typical hydroxides used as flame retardant fillers.  Among 

various hydroxides, possibly alumina trihydroxide (ATH, Al2(OH)3) is used as the unknown 

additive in the resin and additive mixture considering that (1) the decomposition temperature of 

the additive is below 250°C; and (2) the weight loss of the additive after its decomposition 

reaction is approximately 30% of its initial mass.  The decomposition temperature of ATH is 

240°C and complete weight loss when decomposing to aluminium oxide (Al2O3), 35% of weight 

loss should occur [18,19]. 

Various Kinetic Modeling Approaches 

In this study, 6 different kinetic models are investigated: Model A and B applies single step 

reaction for BrUPE or MA+A polymer decomposition. Model C and D applies single step for 

BrUPE and two step for MA+A case where resin and additive decomposition is considered 

separately. Model E and F are most complex cases proposed from thermal analyses where three 

step is applied for the additive-free resin case (BrUPE and MA) – decomposition reactions of 

resin to resin’ (R1) and resin’ to char (R2) and oxidation reaction of char to residue (R3) – and 

one step is applied for modeling the additive decomposition (A). See Table 1 for kinetic model 

summary. 

 

Figure 3. Mass loss rates from TGA experiments (exp) and kinetic modeling (A-F) and are shown for 

BrUPE (a) and MA+A (b) with 60 °C/min heating rate case. Applying various approaches in kinetic 

modeling results in minor changes in modeled mass loss rate.  

 

With the number of reactions known, reaction order models (f(α) = (1- α )
n
) are investigated in 

this research with n = 0, 1 or n. Zero order reaction is assuming that decomposition is a linear 

function of temperature (see Eq. (2) and estimation of kinetic parameters are undertaken by data 

fitting (model fitting method [20,21]) to a single heating rate TGA data (60 °C/min). Note that the 

slope, a, is estimated as approximately 80% of the DTG peak. When a first or nth order reaction 

model is applied, kinetic parameters other than activation energy are (1) calculated analytically 

by assuming at each DTG peak, the second derivative of conversion, α with respect to time is 

zero and activation energy of each reaction is significantly greater than 2RTp (i.e. Ea >> 2RTp) 
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where Tp is the temperature at DTG peak [22] (see (3 and (4); or (2) estimated using a model 

fitting method with primarily reaction order kinetic models – f(α) = 1- α or (1- α )
n
 and other 

models to investigate the reaction controlling factor.  Activation energies for each reaction are 

estimated from the iso-conversional method.  Fitness of each kinetic model to TGA data is 

calculated by least square method. Estimated kinetic parameter values for most complex 

approach (F in Table 1) are summarized in Table 2 for decomposition of BrUPE and MA+A 

resins. Note that all cases provide good fitness (minimum r-square value of 0.98 and mostly 

greater than 0.99) to TGA data (see Figure 3).  

baT +−=α  (2) 

( )0

2

1 αβ −
≈

pp

a

erRT
E  (3) 

( ) 







−

≈
RT

Eer
A ap

exp
1 0α  

(4) 

Table 2. . Estimation of kinetic parameters with most complex kinetic modeling approach (F) for BrUPE 

and MA+A decomposition.  Parameters with * and ** are assumed values and estimated values from iso-

conversional method, respectively. 

 
Parameters 

Reactions Fitness 

R1 R2 R3 A 
β  

(°C/min) 

r-square 

(N2) 

r-square 

(Air) 

B
rU

P
E

 

weight frac. 0.10 0.83 0.05  5 0.9986 0.9980 

log A (log(/s)) 13.9 10.1 7.5  20 0.9992 0.9992 

Ea (kJ/mol) 155** 155** 155**  40 0.9993 0.9998 

n (/) 5 0.7 1*  60 0.9966 0.9997 

     avg 0.9984 0.9992 

M
A

+
A

 

weight frac. 0.05 0.30 0.02 0.20 5 0.9981 0.9935 

log A (log(/s)) 16.5 12.5 10.5 12.2 20 0.9978 0.9982 

Ea (kJ/mol) 183** 183** 183** 160** 40 0.9991 0.9985 

n (/) 5.0 1.3 1* 5.0 60 0.9992 0.9977 

     avg 0.9985 0.9970 

Simplified Comprehensive Pyrolysis Modeling 

Assuming mass transport effects during pyrolysis are negligible, a typical assumption in 

comprehensive pyrolysis models; simulating pyrolysis requires an understanding of the heating 

of a material and the mass loss due to thermal decomposition. These two aspects of pyrolysis can 

be captured by considering conservation of energy and mass. To evaluate the effect of kinetic 

modeling on the thermal decomposition of FRPs, the effect of applying different kinetic 

modeling approaches must be isolated from the heating of the FRPs. By exposing FRPs to 

various thermal insults and measuring the resultant temperature profiles from the exposed surface 

to the back surface of the solid, a representation of conservation of energy on the FRPs can be 

acquired. The changes in temperature measured in the tests account for the heat transport 

phenomena within the material as well as the heat addition or loss from decomposition reactions. 

Therefore, to determine mass loss of an FRP, only conservation of mass needs to be considered 

which is represented by the decomposition kinetics. Decomposition simulations based on the 

temperature profiles then can be conducted by solving the rate of decomposition (dα/dt) 

computed from a given assumed kinetic model.   

To conduct this 1D simplified comprehensive pyrolysis modeling, the solid material is 

discretized into n+1 number of cells in the z-direction (depth) with equal length of ∆z except for 
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the two cells at the surfaces (front and back) where a half-length (1/2∆z) is used.  In this work, 

temperature profiles at 4 different locations were obtained via experiments – front and back 

surfaces, 1/3 and 2/3 depths. With these temperatures known, temperatures at intermediate 

locations which are unknown are found using 3
rd

 order polynomial at each time step. Note that 

due to uncertainty in TC bead location at depth (1/3 and 2/3), modeling was repeated with 

boundary values found from considering the uncertainty in thermocouple bead location.  

Knowing the temperature of cells at each time step, weight loss of each cell is calculated by 

solving the rate of decomposition (dα/dt) using an ODE solver (Runge-Kutta 4
th

 order).  The 

material’s cross-section is considered as an effective homogeneous mixture of resin and 

fiberglass mats.  This approach was utilized because although FRP composites are composed of 

layers of resin-wetted fiberglass mats stacked one after another, a clear distinction between resin 

or fiberglass layers was difficult to resolve based on visual inspection of the cross-section for the 

relatively high glass content FRPs consider.  

Simplified pyrolysis modeling of both composites irradiated at 50 kW/m
2
 applied heat flux is 

conducted with different kinetic modeling approaches (A through F) to examine appropriateness 

of each case.  As shown in Figure 4, changes in modeled mass loss rate due to applying different 

kinetic modeling approaches are minimal except for case A where larger scatter of simulation 

points occur near the peak and the beginning stage of the final decay. There is some benefit in 

applying more complex 3 and 4 step decomposition model for modeling BrUPE and MA+A 

composite (Case E and F), respectively, for they allow the pyrolysis model to capture the small 

amount of mass loss prior to ignition (shoulder before initial mass loss rate peak) and near mass 

loss end time .  Other than these two advantages, applying more complex kinetic model becomes 

unnecessary in terms of conducting pyrolysis modeling to calculate mass loss rate. 

  
Figure 4. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive pyrolysis 

modeling (A-F) and are shown for BrUPE (a) and MA+A (b) FRP composites irradiated at 50 kW/m2. 

Applying various approaches in kinetic modeling results in minor changes in modeled mass loss rate.  
 

Following this work, mass loss rate simulations of BrUPE and MA+A composites with Kinetic 

Model F were conducted at various incident heat flux levels – applied heat flux levels of 50, 70 

and 100 kW/m
2
 and 25, 50 and 75 kW/m

2
, respectively. Kinetic Model F was chosen because it 

had the best fitness to the TGA data as compared to the other models. For modeling of both 

composites, good agreement with experiment data is shown for cases with relatively low applied 

heat flux of less than 50 kW/m
2
. At higher heat flux levels, modeling deviates from experiment 

data for both FRP composites (see Figure 5). For modeling of BrUPE composite at or above 

70kW/m
2
, a secondary peak in mass loss rate, which is comparable to the initial peak 

immediately after ignition is observed and results in a shorter end time of the simulated mass loss 

(i.e. time when all decomposable mass is lost due to pyrolysis) than that of experiment. In the 

experiments, an extended mass loss rate tail exists.  Similar to that of BrUPE composite at higher 
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applied heat flux, modeling results of MA+A FRP composite decomposing at 75 kW/m
2
 show a 

significantly higher mass loss rate peak following ignition than that of experiment  resulting in 

shorter end time of mass loss than that of experiment. This finding indicates that although the 

temperatures are high enough to result in greater mass loss of the resin system based on TGA 

data, mass loss is reduced and/or delayed when the FRP is decomposing.  This deviation is 

suggestive that mass transfer effects are significant for higher incident heat flux levels for FRPs 

likely due to effects of the fiberglass mats and indicate that the typical assumption of negligible 

mass transfer effects cannot be generally assumed. 

  
Figure 5. Mass loss rates from Cone Calorimeter experiments (exp) and simplified comprehensive pyrolysis 

modeling (mod) and are shown for BrUPE (a) and MA+A (b) FRP composites at applied heat flux levels of 

100 and 75kW/m2, respectively.  

CONCLUSIONS 

In this research, effects of applying different kinetic models is evaluated when used in typical 1D 

pyrolysis modeling where mass transport effects during pyrolysis are assumed to be negligible. 

The kinetic models are developed based on thermal analysis using TGA data and two FRP 

composites are used as sample materials – BrUPE and MA+A composites. To examine the effect 

of kinetic modeling on the thermal decomposition of FRPs, the kinetic modeling approaches are 

isolated from the heating of the FRPs by conducting pyrolysis modeling which utilizes 

temperature measurement data from bench-scale experiments of FRP composites as a proxy for 

conservation of energy.  Conservation of mass of the material is represented by decomposition 

simulation with different kinetic models. Mass loss rate simulations with kinetic models A 

through F for both materials at moderate applied heat flux (50kW/m
2
) show that changes in the 

simulation due to applying different kinetic modeling approaches are minimal except for case A. 

In addition, simulations with the most complex kinetic model (F) that gave best fitness to TGA 

data are conducted and the mass loss rate results are compared to those of experiment at various 

heat flux levels. Results show that although at relatively low incident heat fluxes there is good 

overlap between simulations and the experimental data, at higher heat flux levels (> 70kW/m
2
), 

simulated mass loss rates significantly deviate from the experimental data. These findings 

indicate that (1) increasing complexity of kinetic models to be used in pyrolysis modeling is 

unnecessary for modeling of the FRP samples used in this research; and (2) mass transfer effects 

are significant for higher incident heat flux levels for FRPs and therefore the typical assumption 

of negligible mass transfer effects cannot be generally assumed. 
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Abstract 
 

To explore the potential use of modeling for the 

development of fiberglass reinforced polymers (FRPs) 

with good fire characteristics, parameter estimation based 

on comprehensive pyrolysis modeling of an FRP 

composite is conducted.  Kinetic modeling is performed 

using data from TGA and DSC experiments.  Different 

kinetic models are proposed and their effect on pyrolysis 

modeling is evaluated using a screening process that 

involves simulation of 1D FRP pyrolysis.  This procedure 

shows that changes in simulation results (mass loss rate) 

are minor when different kinetic models are applied.  

Following this work, a sub-set of these kinetic models are 

used in a parameter estimation process to examine their 

effect on the estimated parameters.  The results show that 

different kinetic models affect the successful completion 

of the estimation process.  When completed successfully 

the estimation process demonstrates the possibility of 

applying numerical optimization to estimate model 

parameters that can be reproduced from independent 

standard measurements. 

 

Introduction 
 

For the composites industry, designing fiberglass 

reinforced polymers (FRPs) that have good reaction to fire 

characteristics is a guess and check operation in many 

cases. Changes made to components of the FRP – resin, 

additives and/or glass – or the microstructure of the FRP 

affect the overall fire behavior of the FRP.  Traditionally, 

the effect of the changes made in the FRP are checked via 

standard fire tests, which can be time consuming and 

expensive.  Therefore, providing an understanding of how 

typical FRPs decompose under fire conditions and using 

this information to develop appropriate guidelines for the 

composite industry to produce fire-safe composites has 

been a long-term goal for this research.   

 

Towards achieving this goal, virtual materials have 

been created that can simulate fire behavior of FRPs under 

different conditions by use of 1D comprehensive pyrolysis 

models [
1
,
2
,
3
].  To develop accurate virtual materials, the 

first step is to model the thermal decomposition kinetics 

of FRPs as this determines the number of solid phase 

species involved in pyrolysis simulation.  Then for every 

solid phase species, parameters related to their thermo-

physical (density, thermal conductivity and specific heat 

capacity) and optical (emissivity and absorption 

coefficient) parameters need to be determined to create a 

virtual material that can be used for pyrolysis simulation.  

Depending on the complexity of the kinetic modeling, 

virtual material model parameters that need to be 

estimated may range from less than 10 up to 100 or more.   

 

Traditionally, estimating unknown model parameters 

was conducted by making independent measurements for 

each parameter using standard tests.  However, standard 

tests are typically developed for testing on inert samples 

(non-decomposing).  However many parameters of 

interest in comprehensive pyrolysis modeling are the 

result of thermal decomposition.  To overcome this 

current lack of independent measurements of 

decomposition species, an approach of estimating model 

parameters by incorporating numerical optimization (e.g. 

Genetic Algorithm, Shuffled Complex Evolution, etc.) is 

used [4,5].  This approach has become more appealing 

recently due to the inexpensive and accessible nature of 

“high speed” computer resources. 

 

This optimization approach pairs a 1D comprehensive 

pyrolysis model with a numerical optimization routine to 

determine the un-measurable parameters for the 

decomposition species by iteratively comparing model 

outputs with bench-scale experimental data from the Cone 

Calorimeter (ASTM E 1354 [6]) such as mass loss rate 

and temperature profiles .  In general, these optimizations 

incur significant computational expense, i.e. using 

multiple processors with long duration optimization runs.  

The level of computational expense is directly related to 

the complexity of the thermal decomposition kinetics 

assumed which defines the total number of parameters 

that need to be optimized.  When a numerical 

optimization method is used to estimate unknown model 

parameters, generally a unique solution that results in best 

fitness to the optimization targets is not found.  Rather, 

many near optimum parameter sets can be identified.  

This indicates that there are compensating effects between 

optimized model parameter values and there is no unique 

solution to this optimization problem. 

 

Understanding the above characteristics of utilizing 

numerical optimization in pyrolysis model parameter 

estimation processes, a careful parameter estimation 
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exercise is conducted in this study for a fiberglass 

reinforced polymer (FRP) composite.  The goal of this 

work is to examine whether parameter estimation via 

numerical optimization is capable of estimating values 

that are physically sensible rather than optimizing to non-

physical fitting values.  When the estimated values from 

numerical optimization can be considered to present 

physically meaningful estimation results, which may be 

reproduced through independent measurements, the 

compilation of estimated results for different materials 

may become a starting point of a possible material 

database for future pyrolysis modeling use.  

 

Sample Material 
 

FRP composite panels were fabricated by vacuum 

bagging for relatively high glass content composites, 

using two different types of fiberglass (E-glass) mats – 

chopped strand mat and a glass roving woven mat – that 

were wetted with resin.  The chopped strand mat is thinner 

and more porous than the woven mat.  The laminate 

schedule is chopped strand mat and roving alternating 6 

times with another chopped strand mat layer at the end.  

Modified acrylic resin (MA) is used in the composite, 

which is essentially unsaturated polyester with 

Methacrylic Acid replacing most of the styrene 

monomers.  An inorganic additive (A) is used for fire 

retardancy.  Typical inorganic additives are hydrates such 

as alumina trihydroxide (ATH) or magnesium hydroxide, 

antimony trioxide, borax, chalk, silica, etc. [7]  Additive 

A was known to give a high-charring effect with a strong 

endotherm and  was categorized as a typical hydroxide.  

These hydroxides work as a flame retardant by an 

endothermic dehydration reaction that produces oxides 

and water [8,9].  The water produced by this reaction 

vaporizes, which is an additional endothermic reaction, 

and the vapor dilutes the gaseous phase.  When these 

hydroxides decompose it is without re-crystallization or 

disintegration because they are typically stable crystalline 

materials.  Only some modification of lattice parameter is 

observed allowing the loss of small stable molecules from 

the reactant phase, such as H2O.  These molecules travel 

outward to the interface between the solid and gas phase 

via diffusion [10,11] in the solid phase.  The oxides 

remain in the char layer, which adds an insulating effect.  

These flame retardants are added in a relatively large 

amount (50 to 65% by weight of resin) compared to other 

types of additives.  By adding a significant amount of an 

inorganic flame retardant, the polymer becomes more 

brittle.  Because this is an inorganic additive, inserting this 

material into the polymer system by 50 to 65 wt% of the 

original polymer resin reduces the available fuel within 

the condensed phase.  In addition to this effect, usually the 

additive has a higher heat capacity compared to the base 

polymer and hence, the flame retarded polymers with 

these types of hydroxides require more energy to increase 

the condensed phase temperature to its pyrolysis level. 

Experiments 
The ”micro-scale” instruments used in this study 

were manufactured by TA Instruments: 

Thermogravimetric Analysis Q50 (TGA) and the 

Differential Scanning Calorimetry Q20 (DSC).  

Throughout this study, TGA and DSC were used for non-

isothermal test purposes and the tests were conducted in 

nitrogen and air environments to study pyrolysis and 

oxidation, respectively.  In the TGA, 4 different heating 

rates of 5°C/min., 20°C/min., 40°C/min. and 60°C/min. 

were applied to measure the mass loss history of the resin 

and additive sample from 40°C to 800°C.  In the DSC, a 

constant heating rate of 20°C/min. was used to measure 

the heat flow through the sample during the thermal 

decomposition of the resin and additive.  Tests conducted 

with the DSC were from 40°C to 500°C where the 

maximum temperature is lower than that of TGA due to 

the limitation of the instrument.  A sample size of 

approximately 10 mg was used for each test in a standard 

aluminium pan with a punctured lid so that gases may 

evolve freely away from the pan.   

 

Cone Calorimeter (Cone, ASTM E 1354 [6]) is a 

bench-scale fire test apparatus in which a 1D flat sample 

is radiatively heated by an electrically powered rod in the 

shape of a cone.    The Cone exposes the sample to a 

uniform heat flux in an ambient environment which 

results in a natural convection flow field as the sample 

temperature increases allowing cooling above the sample 

surface. The ignition source is an intermittent sparker. The 

Cone can be used to calculate useful engineering data 

such as oxygen consumption based heat release rate, mass 

loss rate, smoke yield and smoke extinction coefficient. 

 

The purpose of the bench-scale testing was to 

generate 1D pyrolysis data sets appropriate for modeling 

and parameter estimation.  Therefore in addition to the 

standard Cone measurements thermocouples were added 

to the 1D sample.  Typically 4 thermocouples were 

installed to measure temperature change of the sample at 

various depths: exposed front surface, 1/3 and 2/3 in-

depths, and unexposed back surface of the sample. 

 

The uncertainties in the mass loss rate (MLR) and 

thermocouple measurements at surfaces (exposed, Ts and 

unexposed, Tb) were quantified by comparing data from 

three identical tests in the Cone Calorimeter with applied 

heat flux level of 50 kW/m
2
.  Note that normalized time, 

time divided by sample thickness square, i.e., τ = time/δ2
 

is used to remove the effect of different sample 

thicknesses when comparing.  Because the data is 

transient, values at different times (τ = 1, 3, 5 and 7 

s/mm
2
) from each test have been used to calculate the 

standard deviation at each time.  Then these are averaged 

and used to estimate uncertainty by applying student t 

distribution with a sample size of 3 and calculating the 
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95% confidence interval – ± 2.2 g/s-m
2
, ± 67 °C and 

±14°C for MLR, Ts and Tb.  

 

Thermal Decomposition Kinetic Modeling 
 

The first step to create a given virtual material is to 

determine the level of complexity needed for the thermal 

decomposition kinetics of the resin and any additives.  

Candidate kinetics models are developed based on thermal 

analysis [12,13,14,15] using TGA and DSC data (see 

Figure 1).  In a reduced form, thermal decomposition of 

MA+A can be grouped into a maximum of four stages – 

three for initial (ambient temperature to ~200°C), major 

(200°C to ~ 500°C), and final (500°C to ~ 700°C) resin 

(MA) decomposition and one additional stage where 

decomposition of the additive (A) is observed at relatively 

lower temperatures (200°C to ~ 400°C). 

 

The final kinetic model for the FRP is chosen based 

on a screening procedure that simulates mass loss during 

1D FRP pyrolysis by using bench scale temperature data 

from the Cone Calorimeter as a proxy for conservation of 

energy on the FRP.  This approach assumes that thermal 

decomposition is a function of temperature only and 

products are instantaneously released to the gas phase 

without interruption, which is typically used in general 

comprehensive pyrolysis modeling in the fire community 

[1].  The screening process is capable of decoupling the 

kinetic simulation from the overall pyrolysis simulation 

and evaluating the appropriateness of each kinetic model 

proposed. 

 

 

 
Figure 1.  (Top) DSC experiments conducted in N2 at 

20°C/min: strong endothermic peak (→) is only found in 

heat flow measurement of decomposition of resin with 

additive (red).  (Bottom) DTG from TGA experiments 

conducted in N2 and air at 20°C/min. 

 

Six different kinetic models were tested which utilize 

empirical (Eq.1) or Arrhenius form (Eq.2); n = 1 or nth 

order reaction models, ( ) ( )nf αα −= 1  with Arrhenius 

form; single or multiple reactions, and applying single or 

multiple iso-heating rate TGA data to estimate kinetic 

parameter values (see Error! Reference source not 

found.).  Note that the fitness of the kinetic models to 

TGA data increases from approach A to F.  The results of 

the screening procedure for 1D pyrolysis simulation 

showed the effects of applying these different models on 

the simulation of mass loss rate should be considered as 

insignificant (i.e. changes in mass loss rates (MLRs) are 

less than uncertainty in MLR data).  

 

.baT +=α  Eq.1 

( )αα
f

RT

E
A

dt

d a









−= exp  Eq.2 

 

Table 1. Different kinetic models with estimated kinetic 

parameter values: Parameters with *, ** and *** are 

assumed values, estimated values from thermal analysis 

and calculated values from analytical solution, 

respectively. A and B utilizes single iso-heating rate TGA 

data and C through F applies multiple rate TGA data.   

 
Parameters 

Reactions 

R1 R2 R3 A 

A 

weight frac. 
 

0.55 
 

 

a (/K) 
 

0.009 
 

 

b 
 

6.6 
 

 

B 

weight frac. 
 

0.55 
 

 

log A (log(/s)) 
 

7.8*** 
 

 

E (kJ/mol) 
 

126*** 
 

 

n (/) 
 

1* 
 

 

C 

weight frac. 
 

0.35 
 

0.20 

log A (log(/s)) 
 

12 
 

11.9 

E (kJ/mol) 
 

183 
 

160 

n (/) 
 

1* 
 

1* 

D 

weight frac.  0.35  0.20 

log A (log(/s))  12.3  12.6 

E (kJ/mol)  183**  160** 

n (/)  0.9  5 

E 

weight frac. 0.05 0.30 0.02 0.20 

log A (log(/s)) 16.3 12.2 10.2 11.4 

E (kJ/mol) 183** 183** 183** 160** 

n (/) 1* 1* 1* 1* 

F 

weight frac. 0.05 0.30 0.02 0.20 

log A (log(/s)) 16.5 12.5 10.5 12.2 

E (kJ/mol) 183** 183** 183** 160** 

n (/) 5.0 1.3 1* 5.0 
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Figure 2.  Mass loss rates from Cone Calorimeter 

experiments (exp) and screening procedure pyrolysis 

simulations (sim) are shown for MA+A FRP composite.  

Applied heat flux levels are 25 (top), 50 (middle) and 75 

(bottom) kW/m
2
.  Simulation results are within the 

averaged uncertainty bounds of experiment data (± 2.2 

g/s-m
2
) for top and middle cases.   

 

In Figure 2, screening simulations with kinetic model 

F (best fitness to TGA data) of mass loss rates are shown 

for cases with different applied heat flux levels – 25, 50 

and 75 kW/m
2
.  The results show that at lower heat flux 

levels good agreement between experiment data and 

simulations are found where the averaged difference 

between data and simulations is less than the average 

uncertainty of mass loss rate data, ± 2.2 g/s-m
2
.  However, 

at higher heat flux levels, there is a significant deviation in 

simulation results from measured MLR at earlier times.  

This is suggestive that at higher heat flux levels, applying 

assumptions of thermal decomposition being only a 

function of temperature and having no interruption during 

release of pyrolysis products becomes inappropriate.   

 

Parameter Estimation via Optimization 
 

The comprehensive pyrolysis modeling and 

parameter estimation via numerical optimization reported 

here are conducted with a generalized pyrolysis model 

[3,4] that can be applied to a wide variety of condensed 

phase fuels.  The model simultaneously calculates the 

condensed phase mass conservation, gas phase mass 

conservation, condensed phase species conservation, and 

condensed phase energy conservation equations.  This 

model can be applied to 1D systems and is therefore 

capable of simulating “slab” (Cone Calorimeter) 

experiments.  Extensive details are given in Ref. [3].  In 

this study, among various optimization routines available 

in this model, genetic algorithm (GA) is used where 

multiple near optimal sets that generate similar modeling 

outputs are found. 

 

Although insignificant changes were observed for 

simulation of mass loss rate with different kinetic models, 

three kinetic models (B, C and E) with various 

complexities are chosen to be used in a parameter 

estimation process using numerical optimization to 

examine the effect of kinetic model complexity on the 

process.  With the complexity of the kinetic model 

determined the number of parameters needed to define the 

virtual material based on a comprehensive pyrolysis 

model, GPYRO [Error! Bookmark not defined.] is 

determined, which are 18, 30 and 38 for B, C and E 

kinetic model, respectively.  Bench-scale experiment data 

from the Cone is used as optimization targets in parameter 

estimation – mass loss rate, front and back surface 

temperaturehistories.  The target data are from a single 

test with applied heat flux level of 50 kW/m
2
 instead of 

utilizing multiple data sets with different heating rates.  

This approach was used to ensure that parameter 

estimation is performed within the bounds of pyrolysis 

modeling limitation set by the assumptions applied, i.e. 

assuming thermal decomposition is a function of 

temperature only and products are instantaneously 

released to the gas phase without interruption.  Otherwise, 

the effect of modeling results deviating from experimental 

data at earlier times with higher heat flux levels (see 

bottom of Figure 2) will be accounted for in the estimated 

parameter values to compensate for this undesirable 

deviation.  Note that fairly wide searchable range, 

typically 2-3 orders of magnitude between minimum and 

maximum value, was applied for each unknown parameter 

when conducting optimization. 

 

The parameter estimation process was successful for 

kinetic models B and C (1 and 2 step KM); however, 

parameter estimation with the most complex kinetic 

model among the three cases, kinetic model E was 

unsuccessful.  For 1 and 2 step KMs, near optimal 

parameter sets of 50 and 20 are used, respectively, to 

estimate the average and uncertainty using 95% 

confidence intervals  applying a student t-distribution of 

the estimated values.  The best-fit cases from parameter 

estimation with 1 and 2 step KM are shown with 

experiment data in Figure 3.  Both cases are in a good 
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agreement with the data where modeling outputs are 

mostly within the uncertainty bands of the experiment 

data.   

 

 

 
Figure 3.  Mass loss rate, front and back surface 

temperature histories from Cone Calorimeter experiments 

(exp) and comprehensive pyrolysis modeling results with 

parameters estimated from numerical optimization using 

two different kinetic models (1and 2 step KM) are shown 

for MA+A FRP composite.  Applied heat flux level is 50 

kW/m
2
.  Modeling outputs are mostly within the 

uncertainty bands of the experiment data. 

 

The results of the successful optimization strategies –

estimation with different kinetic models (1 or 2 step KM) 

– are evaluated by comparison to independent 

measurements made with standard tests [16,17,18,19] at 

temperatures below the FRP’s decomposition temperature 

– thermal conductivity (k) of resin with additive (MA+A) 

and the FRP, specific heat capacity (cp) of MA+A and the 

FRP, and emissivity (ε) of resin with additive and the FRP 

composite (see  

Table 2 and Figure 4).  The results show that 

estimated values with 2 step KM are significantly closer 

to measured values than those with 1 step KM. 
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Table 2. Comparison between measured parameter values 

for thermal conductivity and emissivity of MA+A and 

FRP composite and estimated values from numerical 

optimization: Last column shows the percentage 

difference between measured and estimated values for two 

kinetic models where a significant reduction of difference 

occurs when more complicated kinetic model is used in 

the estimation process. 

 

Meas.

Val-

ue 

Estimated Value 

% 

Diff KM 

Type 
Avg 

± 95% 

C.I. 

(t-dis) 

k (MA+A) 

[W/mK] 
1.060 

1 step 0.349 0.017 67 

2 step 1.018 0.158 4 

k (FRP) 

[W/mK] 
0.573 

1 step 0.320 0.011 44 

2 step 0.733 0.109 28 

ε (MA+A) 

[-] 
0.868 

1 step 0.790 0.027 9 

2 step 0.849 0.040 2 

ε (FRP) 

[-] 
0.912 

1 step 0.809 0.019 11 

2 step 0.857 0.031 6 

 

 

 
Figure 4.  Comparison between measured specific heat 

values and and estimated values from numerical 

optimization with different kinetic models – 1 Step KM 

(top) and 2 Step KM (bottom): Results show that when a 

more complicated kinetic model is used in the estimation 

process the estimated values become closer to measured 

values. 

 

Discussion 
 

These findings are suggestive of the following: (1) 

An optimum level of complexity in kinetic modeling 

exists where more complex kinetic models that can 

reproduce TGA data with higher precision may result in 

too many unknowns resulting in unsuccessful numerical 

optimization finding no solution for the given problem (4 

step kinetic model case) and where more simple kinetic 

models may result in estimating parameter values that are 

inconsistent with values obtained from standard 

measurements (1 step kinetic model case); (2) With a 

proper kinetic model with optimum complexity and 

appropriate experiment data used as optimization targets, 

parameter estimation via numerical optimization is 

capable to estimate parameter values that are consistent 

with values obtained from standard measurements, 

indicating the possibility of considering certain estimated 

values as material properties.   

 

Conclusions 
 

In this study, parameter estimation for comprehensive 

pyrolysis modeling [3,4]] of a FRP composite is 

conducted to explore the potential to use modeling during 

the development stage of FRPs with good fire 

characteristics.  To create virtual materials using pyrolysis 

modeling, first kinetic modeling is conducted with 

independent thermal analyses using TGA and DSC 

experimental data.  Several kinetic models with different 

complexity have been proposed and their effect on 

modeling is evaluated using a screening process that 

involves mass loss rate simulation of 1D FRP pyrolysis 

using bench-scale temperature data as a proxy for 

conservation of energy on the FRP.  Through this 

procedure, it has been shown that insignificant changes 

occur with respect to changes made in the kinetic model.  

Knowing this, different kinetic models – 1, 2 or 4 step 

models – are applied to parameter estimation process to 

examine their effect on the estimation.  The results have 

shown that estimation based on the 2 step kinetic model is 

better than that of 1 step kinetic model in terms of having 

estimated values be more consistent with the 

independently measured values.  The estimation of 4 step 

model was unsuccessful due to the limitation of the 

numerical optimization routine.  This work presents a 

possibility of utilizing numerical optimization for 

parameter estimation to estimate model parameters that 

can be reproduced from standard measurements when 

proper kinetic model with optimum complexity is applied 

and appropriate experiment data are used as optimization 

targets. 
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ABSTRACT 

 

For the composites industry to “design for fire” more thorough understanding of how typical 

FRPs decompose under fire conditions is needed.  The role played by the glass and the resin for FRPs 

are keys to understanding their fire behavior.  The goal of this work is to evaluate the ability of a 

pyrolysis model and optimization routine pairing to estimate properties of each component of the 

composite, resin and glass. The composite pyrolysis experimental data used in this work was obtained 

from tests conducted on a bench scale fire test apparatus, Cone Calorimeter, at various applied heat 

flux levels with additional instrumentation to measure surface and internal temperatures of the sample 

and the flame heat flux.  Mass loss data, temperature profiles with respect to time at different in-depth 

locations and heat flux from the flame to sample surface after ignition for boundary condition 

specification are used in the optimization process.  The decomposition kinetics for the resin is modeled 

using thermal analysis where a series of dynamic experiments of the resin is conducted using 

thermogravimetric analysis and differential scanning calorimetry.  With the approximated 

decomposition kinetics for the resin determined, simulation of pyrolysis tests of the composite slab in 

air was performed to estimate the unknown thermophysical properties by Genetic Algorithm (GA) and 

Shuffled Complex Evolution (SCE) optimization routines.  As a part of the property estimation 

exercise, emphasis was given to evaluating different approaches for estimating properties when 

applying the optimization technique.  This evaluation is achieved by conducting property estimation for 

the same material with 2 different procedures: running the optimization with Cone data from time of 

sample exposure to 1) pre-decomposition, or 2) post-decomposition.  These numerical experiments are 

designed to demonstrate the effectiveness of solid phase property estimation when applying partial data 

from certain times during Cone testing.  The estimated properties from these different approaches will 

be compared and the quality of the estimations will be assessed. 

 

INTRODUCTION 

 

For the composites industry, designing for a FRP that provides good fire characteristics becomes a 

guess and check operation in many cases.  Any changes made to the resin, glass, or the microstructure of 

the FRP affect the overall fire behavior of the FRP.  Traditionally, the effect of the changes made in the 

FRP is checked by conducting tests via standard fire tests, which can be time consuming and expensive.  

Therefore, providing an understanding of how typical FRPs decompose under fire conditions and using this 

information to find an appropriate guideline for the composite industry to produce better fire-safe 

composites have been a long-term goal for this research.  

In this study, an emphasis is given to evaluating the different approaches for estimating the unknown 

parameters for pyrolysis modeling of the FRP.  The parameter estimation process is generally grouped into 

two parts.  The first part is conducted to estimate the parameters related to decomposition kinetics of the 

resin knowing that the resin is the decomposable component of the system, FRP.  The decomposition 



2 

 

kinetics for the resin is modeled using thermal analysis where a series of dynamic experiments of the resin 

is conducted using thermogravimetric analysis and differential scanning calorimetry.  The second part is 

conducted to estimate the parameters representing the thermophysical properties of the FRP with the 

estimated kinetic parameters from previous work.  When estimating these parameters in this second part, 

typically a numerical optimization routine is used, along with a pyrolysis model.  This study focuses on the 

second part of the work by evaluating different approaches to estimate thermophysical parameters using a 

numerical optimization process.  Numerical experiments are designed to conduct property estimation for 

the same FRP material with 2 different procedures and 2 different optimization routines.  Estimation is 

conducted by running the optimization with Cone data from time of sample exposure to the heat source to 

1) pre-decomposition, or 2) to post-decomposition. 

To conduct property estimation and modeling, complete data sets of decomposition of neat phenolic resin 

and its FRP composites are presented. Careful experiments were conducted using Thermogravimetric 

Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to study the thermal decomposition 

kinetics.  Also, the neat phenolic FRPs were tested under a bench-scale fire test apparatus known as the 

Cone Calorimeter (ASTM E 1354
1
) with additional instrumentation such as thermocouples at various 

depths and a total heat flux gauge to measure additional heat flux from the flame after ignition.  These tests 

were designed to generate data specifically useful for computer modeling purposes.   

The model used in this study is a generalized pyrolysis model developed by Lautenberger
2,3

, which 

simulates the heating and decomposition of a chosen material.  Like with any other pyrolysis model, this 

model requires many input parameters found from material properties, which include the pyrolysis kinetics, 

thermal properties (specific heat capacity, thermal conductivity), and radiative characteristics (surface 

emissivity, in-depth radiation absorption coefficient).  Unfortunately, there are no standardized techniques 

to determine all of these properties via laboratory tests.  Another way of estimating parameters is to use an 

optimization routine with a pyrolysis model in pair.  The current work applies Genetic Algorithm (GA) and 

Shuffled Complex Evolution (SCE) methodology as an optimizing method coupled with Lautenberger’s 

pyrolysis model
2,3

 to perform parameter estimation. 

Using the experimental data of the neat phenolic FRP, an estimation exercise is conducted to find 

properties of the individual components of the composite, i.e., resin and glass, which are decomposable and 

inert, respectively.   

The property estimation exercise is conducted on a neat phenolic FRP composite tested in a Cone 

Calorimeter.  First, thermal analysis is conducted using thermogravimetric analysis (TGA) and differential 

scanning (DSC) calorimetry experiment results of the resin to model the decomposition kinetics of the 

decomposable element of the FRP.  With the approximated decomposition kinetics for the resin, simulation 

of pyrolysis tests of the composite slab in air was performed to estimate the unknown thermophysical 

properties by optimization.   A comparison is done with estimated parameter values using different 

approaches to evaluate any consistencies in the estimated results. 

 

TESTING MATERIAL 

 
Neat Phenolic Resin 

 
Neat phenolic resin (NP) is a low viscosity, unmodified phenolic resole resin where a flame retardant 

plasticizer and an acid are used as a catalyst.  Phenolic polymers are obtained by polymerizing phenol and 

formaldehyde
4
.  Due to benzene rings built into the chemical chain, this resin has good thermal stability.  

According to the product description, this resin with the flame retardant additive is formulated to be Class I 

per ASTM E 84
5
 (flame spread index < 25 and smoke developed index < 450).  
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FRP Composite Description 

 
Composite panels were fabricated by vacuum bagging for relatively high (60 wt% of glass, average 

thickness of 9.8 mm) glass content composites, using two different types of fiberglass mats that were 

wetted with resin (see Figure 1).  The two types of fiberglass (E-glass) used in the composite are a chopped 

strand mat and a glass roving woven mat with an area density of 25 g/m
2
 and 880 g/m

2
, respectively. The 

chopped strand mat is thinner and more porous than the woven mat.  The laminate schedule (provided by 

the manufacturer) is chopped strand mat and roving alternating eight times for FRP with high glass content 

(HG) with another chopped strand mat layer at the end.  Visual inspection of a polished cross-section of the 

composite slab is consistent with this laminate schedule, but with polymer resin layers between each 

fiberglass layer.  The chopped strand mat layer is difficult to identify in the cross section, perhaps because 

more resin is soaked into this layer than the roving layer. The roving layer is observed as a prominent glass 

layer possibly because the resin is absorbed only at the fiberglass layer surfaces leaving the interior with 

primarily glass fibers. 

 

Figure 1. Cross-section of Neat Phenolic (NP) FRP fabricated via vacuum bagging with average 

glass content of 60 wt% and average thickness of 9.8 mm: two types of fiberglass (E-glass) used 

in the composite – chopped strand mat (25 g/m
2
, highly porous) and glass roving woven mat 

(880 g/m
2
, prominent glass layers in white) 

 

 
 

The layered microstructure is determined to a resolution of 0.3 mm by inspecting a polished cross-section 

of the composite.  Based on visual observation and comparison to global density of the composite sample, 

approximations of three distinct layers are proposed accounting for the density, ρ of each component of the 

composite at its non-porous stage – ρresin = 1300 kg/m
3
, ρglass = 2600 kg/m

3
: porous layer with chopped 

strand mat with resin (CSM+R), porous layer with some glass roving woven mat (RW+R), and a less-

porous layer with glass roving woven mat only (RW).  The microstructure of the virtual Neat Phenolic FRP 

composite is, from the surface, (CSM+R) – (RW+R) – (RW) – (RW+R) repeating 8 times and another 

(CSM+R) layer at the back face, which resulted in 33 layers.       

 

 

EXPERIMENT APPARATUSES 

 
Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) 

 
The instruments used in this study were manufactured from TA Instruments: Thermogravimetric Analysis 

Q50 (TGA) and the Differential Scanning Calorimetry Q20 (DSC).  Throughout this study, TGA and DSC 

were used for non-isothermal test purposes and the tests were conducted in nitrogen to study pyrolysis.  

Using the TGA, 4 different heating rates of 5°C/min., 20°C/min., 40°C/min. and 60°C/min. were applied to 

measure the mass loss history of each resin sample from 40°C to 800°C.  For the DSC, a constant heating 

rate of 20°C/min. was used to measure the heat flow through the sample during the thermal decomposition 

of resins.  Tests conducted with the DSC were from 40°C to 500°C where the maximum temperature is 

lower than that of TGA due to the limitation of the instrument.  A sample amount of approximately 10 mg 

was used for each test in a standard aluminium pan with a punctured lid so that gases may evolve freely 

away from the pan. 
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Cone Calorimeter 

 
Cone Calorimeter (Cone, ASTM E 1354

1
) is a bench-scale fire test apparatus in which the sample is heated 

by an electrically heated rod in the shape of a cone.  The sample is tested by applying a constant radiative 

heat flux set via temperature controller of the rod.  The Cone exposes the sample in an ambient 

environment which results in a natural flow field as the sample temperature increases allowing convective 

cooling above the sample surface. The ignition source is an intermittent sparker. The Cone can be used to 

calculate useful engineering data such as oxygen consumption based heat release rate (based on the 

standard), mass loss rate, smoke yield and smoke extinction coefficient. 

 

The purpose of Cone testing was to generate good data sets appropriate for pyrolysis modeling and 

parameter estimation, and therefore several modifications were made to the standard testing procedure. 

First, when testing this FRP, three different types of sample holders were used to produce quality one-

dimensional data (see Figure 2).  Experimental challenges with these FRPs were that significant edge 

burning, which is a three-dimensional problem, occurs during each test.  Because the pyrolysis model of 

interest in this study has a numerical structure of one-dimension, data that can be considered as one-

dimension should be utilized in this parameter estimation exercise using numerical optimization.  Hence, 

caution was given to reduce the edge effect by testing with different sample holders.  Sample holder type 1 

is a standard specified, non-insulated cone holder that holds a 102 mm x 102 mm (4” x 4”) square sample 

with a metal edge frame.  Sample holder type 2 is a round insulated sample dish purposed by de Ris and 

Khan
6
 that holds a 102 mm (4”) diameter circle sample.  In this sample dish, the sample is surrounded by 

Cotronics® paper insulation on the back and sides to limit heat loss, which simplifies the pyrolysis 

modeling.  Sample holder type 3 is composed of ceramic fiberboard (Thermal Ceramics Inc.) that holds a 

152 mm (6”) diameter circle sample.  On top of the sample, a layer of ceramic fiberboard with a hole in the 

center was placed to limit the sample surface exposure to the cone heater. 

 

Figure 2. Three types of sample holders used in Cone Calorimeter experiment: first and second 

rows show the top and side view, respectively.  Sample is shown in pink, metal edge frame in 

gray, metal holder in black, and insulation in area with pattern. 

 

 
 

Second, 2 thermocouples were installed to measure temperature change of the sample at surface and back 

face of the sample.  The surface thermocouples were affixed via two types of methods: One method was to 

drill a thermocouple hole from the sample side and allow the hole to reach the surface.  A thermocouple 

 
top 

 

top 

 

top 
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Sample 
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Holder 

Type 3 
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insulated wire was inserted through the side and the bead was able to locate near the surface; hence, from 

the surface only the bead was visible.  Using this method, the center of the bead was located at the surface 

allowing top half to be exposed to ambient air and the lower half to sit within the sample.  A drop of 

thermal grease or a high temperature adhesive (Resbond 907 Industrial Strength Fireproof Adhesive from 

Cotronics Corp.) was applied to the bead to ensure good contact between the sample and the bead.  

Another method was to crimp the thermocouple wire to allow the thermocouple bead to sit on the surface 

with a minimal amount of thermal grease applied at the bead.  The back face thermocouples were affixed 

with a high temperature adhesive (Resbond 907 Industrial Strength Fireproof Adhesive from Cotronics 

Corp.).   

 

To evaluate which of the three sample holder types are most appropriate for testing this Neat Phenolic FRP 

composite with high glass (~60wt%), several Cone tests were conducted at different heat flux levels 

ranging from 30 to 90 kW/m
2
.  Analyzing the results, data from applying type 1 sample holder was utilized 

in this study for the following reasons: First, considering the temperature increase with respect to one-

dimensional heating, although type 3 provides the best condition for one-dimensional approximation, 

difference between the data from type 3 and type 1 or 2 are about 50°C or less assuming that measurements 

are made near the centerline of sample.  This concurs with Choi’s work
7
 on inert materials. Larger size 

sample has shown to provide the best one-dimensional heat conduction condition comparing to other 

sample set-ups where regular size (102 mm x 102 mm (4” x 4”)) sample is prepared with a metal edge 

frame, edges exposed, or insulation on the sides and bottom.  It was noted that at 80kW/m
2
 of incident heat 

flux, the centerline temperature difference between that of the larger sample’s and centerline temperatures 

of the regular samples with metal edge frame or insulation on the sides and bottom are approximately 20°C 

or less within 5 hr period.  Second, type 3 results in uncertain burn area due to some decomposition at the 

sides even with a layer of insulation protecting the sample.  This increases the uncertainty in data 

considered per unit area.  However, type 3 allowed visual inspection of the edge burning: when the neat 

phenolic resin on the back face temperature increased beyond its major decomposition temperature, 

pyrolyzates traveled around the sample sides and caught fire instead of moving through the composite 

layers vertically.  Even with the resin decomposing in-depth, because the amount of resin residue is 

sufficient in the composite, the sample was impermeable to pyrolyzates produced from back face resin 

decomposition.  Third, having the edges not exposed as in type 1 and 3 allowed less pyrolyzates to travel 

horizontally towards the edges, i.e. because the edges are preserved from burning, edges are more 

impermeable to pyrolyzates.  One of the influences from having less pyrolyzates traveling towards the 

edges is resulting in increased time to ignition. 

 

The uncertainty in the mass loss rate data is estimated via statistical approach, taking the standard deviation 

(0.58 g/sm
2
) from the mean of a steady burning of 5 identical PMMA tests conducted in a Cone 

Calorimeter
8
.  The estimated uncertainty is 1.4 g/sm

2
, which is found by calculating the 95% confidence 

interval applying student t distribution with a sample size of 5.  The uncertainty in the thermocouple 

measurements was quantified by comparing surface and back face temperature data from 3 and 4 identical 

FRP composite tests with the Neat Phenolic FRP composite with high glass content in the Cone at 

70kW/m
2
 and 50kW/m

2
, respectively.  Using the normalized time, time divided by sample thickness 

square, i.e., τ = time/δ2
 to remove the effect of different sample thicknesses when comparing, the maximum 

standard deviation at various normalized times, up to the critical time, τc, was 20°C for the surface and 

27°C for the back face.  Assuming this is approximately equal to one standard deviation, applying student t 

distribution and calculating the 95% confidence interval becomes ±49°C and ±83°C from the sample mean 

for surface and back face, respectively.  The critical time, τc, corresponds to the time of ignition for surface 

temperature measurements and time when evenly spread flame on sample surface disappearing for back 

face temperature measurements.  For the back face, this time corresponds well with the time when the back 

face temperature becomes close to the major decomposition temperature of the Neat Phenolic resin.  As 

noted above, after this temperature, edge burning occurs, which is a non-1D phenomenon.  These 

uncertainty values will be used to evaluate significant differences in the modeling results. 
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KINETIC MODELING OF RESIN DEGRADATION FOR PYROLYSIS MODELING 

 

A series of thermal analyses are conducted on commercial thermoset polymers used in fiberglass 

reinforced polymer (FRP) composite material.  Experiments for thermal analysis are conducted using 

Thermogravimetric Analysis (TGA) at various heating rates (5, 20, 40 and 60°C/min) and Differential 

Scanning Calorimetry (DSC) at 20°C/min.  These non-isothermal TGA experimental results are used to 

conduct iso-conversional estimates of activation energy with respect to conversion without pre-determining 

the kinetic model using an Arrhenius type expression for thermal degradation.  Results are also used to 

determine the minimum number of reactions required in the kinetic model to describe the thermal 

degradation reactions based on actual weight loss.  Then a model fitting method is used where various 

kinetic models are used to fit the TGA data to the model.  The DSC experiments are conducted to use the 

heat flow information to compare against the analysis results conducted by the TGA.  Kinetic modeling is 

conducted following the steps introduced in this Reference
9
.   

 

 

PYROLYSIS MODELING FOR LUMPED (TGA) AND SLAB (CONE) EXPERIMENTS 

 

The calculations reported here are conducted with a generalized pyrolysis model
2,3

 that can be 

applied to a wide variety of condensed phase fuels.  The model simultaneously calculates the condensed 

phase mass conservation, gas phase mass conservation, condensed phase species conservation, and 

condensed phase energy conservation equations.  This model can be applied to both 0D and 1D systems 

and is therefore capable simulating both “lumped” (thermogravimetric) and “slab” (Cone 

Calorimeter/FPA) experiments. Extensive details are given in Ref.
2,3

 so only a brief overview is given here. 

Assumptions inherent in the model, as applied in this paper, include: 

 

• Porosity can either be solved as a property of a species (default) or directly.  When porosity is 

solved directly, it is derived from the condensed-phase mass conservation equation assuming no 

volume change (shrinkage or swelling).   

• When porosity is directly solved, the user-specified thermal conductivity and density are 

interpreted as those of a nonporous solid.  Therefore, the thermal conductivity that appears in the 

condensed-phase energy conservation equation is 
( ) skk ψ−= 1

where ψ is porosity and sk is the 

weighted thermal conductivity of the solid assuming it is nonporous. Similarly, with this formulation, 

the bulk density is calculated as 
( ) sρψρ −= 1

 where sρ is the weighted density of the solid assuming it 

is nonporous. 

• Bulk thermal conductivity k  has a cut-off value of 0.03W/mK which corresponds to air at 300 to 

400K.  

• Specific heat is calculated with a weighted or averaged quantity, i.e. ∑= ipip cXc
as other solid 

properties – enthalpy, emissivity, radiation absorption coefficient, permeability, etc. 

• Specific heat capacity and effective thermal conductivity vary by as 
( ) ( ) kn

rTTkTk 0=
 

and
( ) ( ) cn

rTTcTc 0=
, respectively, where Tr is a reference temperature. 

• Radiation heat transfer across pores is accounted for by adding a contribution to the effective 

thermal conductivity that varies as γT
3
, where γ is a fitting parameter 

• Averaged properties in conservation equations are calculated by appropriate mass or volume 

fraction weighting 

• Gas-phase and condensed-phase are in thermal equilibrium
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RESULTS AND DISCUSSION 

 

Property estimation exercise for pyrolysis modeling of neat phenolic (NP) FRP composite which 

contains flame retardant additive is conducted in three parts: First, the kinetic parameters for thermally 

degrading resin are obtained via kinetic modeling using thermal analysis with non-isothermal experiment 

data from TGA and DSC tests.  Second, parameters other than those related to resin decomposition kinetics 

are obtained by utilizing optimization routine with a pyrolysis model in pair.  Third, a comparison is done 

with estimated parameter values using different approaches to evaluate any consistencies in the estimated 

results. 

Kinetic modeling for resin degradation 

 

Step 1: Preliminary Experiments with Analysis 

Based on preliminary tests on this resin, it was found that when the area to volume (A/V) ratio is changed 

thermal behavior change as well.  Typically, when a polymer sample is cut from a larger sample, the 

number of mechanically broken polymer bonds increase as the A/V ratio increases.  The sample prepared 

with above method that have high A/V ratio consists polymer chains which are relatively shorter than those 

found in a larger sample with lower A/V ratio and increased concentration of radicals on the sample 

surface due to the broken bonds.  Polymer samples meeting these conditions can result in changes in their 

thermogram comparing to those from samples that have lower A/V ratio.   In general, the samples appear to 

be less thermally stable, e.g. increase in initial weight loss at lower temperatures, lower thermal 

decomposition temperature, higher DTG (weight loss rate) peaks, etc.  Considering this effect, relatively 

larger sample sizes that have low A/V ratio in thermal analysis is recommended.   

 

Step 2: Iso-conversional (Model-free) Method 

In Figure 3, the results from two iso-conversional methods introduced by Ozawa, Flynn and Wall
10,11

 

(OFW, estimates–Ea/R by plotting ln(β) versus 1/T) and Friedmen
12,13

 (plotting ln(dα/dT) versus 1/T to 

find –Ea/R) conducted on the neat phenolic resin are shown.  Both methods are used for comparison 

purposes.  The R
2
 values for each activation energy value are plotted as well using the least square method. 

 The activation energy becomes more reliable as the R
2
 values become closer to 1 where 01 mm−=α .   

 

Figure 3. TG and DTG thermograms from TGA experiments conducted in nitrogen with Neat 

Phenolic Resin (NP) at 5°C/min (a) and results from iso-conversional method conducted on NP 

resin (b) where the estimated activation energy of thermal decomposition with respect to 

conversion (1-α) is shown    
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Step 3: Model Fitting Method 

Based on iso-conversional method, 2-step mechanism is proposed as below: 

 

( )gas1nresiresin rp,rp, ′′ −+′→ νν
 

(R1) 

( )gas1charnresi cp,cp, νν −+→′
 

(R2) 

 

Applying an nth order reaction model, kinetic parameters of the pre-exponential factor (Z), activation 

energy (Ea), and reaction order (n) are estimated manually as follow: 

 

1. Estimated kinetic parameters using nth order reaction model 

 Z (/s) Ea (kJ/mol) n (/) 
Consumption (%) from 

Initial Mass 

R1 10
8
 130 1 14.1 

R2 10
10

 
236 1 35.2 

 

Note that these estimated results are simplified and does not represent the actual decomposition kinetics of 

the given material, i.e. they are empirical values which can only be utilized with this modeling set-up.  

However, the activation energy for R2 was estimated from iso-conversional method; therefore, the value 

should be able to represent the actual decomposition kinetics in nitrogen. 
 

Property estimation for Neat Phenolic FRP composite using different approaches 

 

When conducting the Cone simulation for the FRP composite, char oxidation was neglected for modeling 

simplification.  Therefore, decomposition of the neat phenolic resin in nitrogen was used to estimate kinetic 

parameters and these were used in the cone simulation.  Four property estimation cases were built based on 

the approach of estimation and available optimization routines (GA or SCE).  They are summarized as 

below: 

 

2. Summary of property estimation cases examined in this study constructed using different 

approaches and optimization routines in pair with pyrolysis model (GPYRO) 

Case Approach Optimization Routine 

1 

One step approach: 

• Estimate entire property set at pre- decomposition and 

post decomposition stages using Cone data from 

70kW/m
2
 

GA 

2 

One step approach: 

• Estimate entire property set at pre- decomposition and 

post decomposition stages using Cone data from 

70kW/m
2
 

SCE 

3 

Two step approach: 

• Estimate properties at pre- decomposition stage using 

Cone data from 30kW/m
2
 

• Having above properties fixed, estimate rest using Cone 

data from 70kW/m
2
 

GA 

4 

Two step approach: 

• Estimate properties at pre- decomposition stage using 

Cone data from 30kW/m
2
 

• Having above properties fixed, estimate rest using Cone 

data from 70kW/m
2
 

SCE 

 

The entire property set used in the simulation are shown in the following table: 
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3. Parameter set for Cone simulation 

Parameter Keyword Resin Resin’ Char Fiber Glass 

thermal conductivity at Tr KOZ Y Y Y 

thermal conductivity exponent
 

NKZ Set as 0.0
 

Set as 0.0 Y 

specific heat capacity at Tr CO Y Y Y 

specific heat capacity exponent NC Set as 0.0
 

Set as 0.0 Y 

emissivity EMIS Y Set as 1.0 Y Y 

gamma GAMMA Set as 0.0 Y Y Y 

Heat of Reaction for R1 DHV
 

Y 

Heat of Reaction for R2 DHV
 

Y 

 

To simplify the problem, the exponents of thermal conductivities and specific heat capacities of resin, 

resin’ and char were considered as 0. Only those of fiber glass were expressed as a function of temperature 

as noted in the previous section on pyrolysis modeling.  Considering that the resin quickly becomes black 

after exposure to the Cone heater, emissivity of the resin’ was set as 1.0.  Because resin’ and char becomes 

porous as resin decomposes without much shrinkage and fiber glass is porous in nature, a fitting parameter 

gamma was utilized to account for radiative heat transfer through pores.  Additionally, it is assumed that 

the thermal conductivity and specific heat capacity are the same for resin and resin’.  As a boundary 

condition at the surface, additional constant flame heat flux of 20kW/m2 was added to the applied heat flux 

from the Cone starting at user-specified time of ignition.  This value corresponds well with a measured 

value from actual test.  For the back face, actual temperature measurements with respect to time were 

preferred as a specified boundary condition.  However, for cases where this approach proposes heating 

from the back face, heat loss through the back face was specified instead.  In the numerical optimization 

process, mass loss rate, surface and/or back face temperature measurements were used. 

 

The simulation results with the estimated parameter sets from each case are shown in Figure 4.  The first 

figure (a) is at 30kW/m
2
 and the rest (b, c and d) are at 70kW/m

2
.  Note that at 30kW/m

2
 applied heat flux, 

mass loss rate is negligible (i.e. below uncertainty level) and the back face temperature is at its initial 

temperature; therefore, they are not shown.  Considering the uncertainty of ±49°C, surface temperature 

simulation is in good agreement with the experiment data (a, b) for all cases.  For mass loss rate simulation 

in (c), the results from optimized parameter sets are lower than the actual data even with the consideration 

of its experiment uncertainty (1.4 g/sm
2
).  This is probably due to the assumption made in the simulation 

about neglecting char oxidation.  Although the magnitude of the mass loss rate may be lower than the 

actual, note that the trend in changes occurring in the mass loss rate with respect to time is similar.  This 

provides evidence that the microstructure specified in the simulation was well resolved in the simulation.  

The back face temperature simulations in (d) from all cases are in good agreement with the data 

considering the uncertainty of ±83°C.  Simulations from Case 1 and 2 are relatively closer to the data than 

those from Case 3 and 4, where these are at the outer bounds of the uncertainty band.   
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Figure 4. Comparison between simulation results and experiment data: (a) surface temperature 

at applied heat flux of 30kW/m
2
; (b) surface temperature, (c) mass loss rate, and  (d) back face 

temperature at applied heat flux of 70kW/m
2
 

  

  

 
Comparison of estimated properties from 4 Cases 

 
The estimated properties of thermal conductivity (Figure 5) and specific heat capacity (Figure 6) from 4 

different cases are compared in the figures below.  For thermal conductivity of resin and its decomposition 

products (resin’ and char), consistent trend is found for all cases, except for Case 4’s resin’, which is an 

outlier.  However, it is noteworthy that estimations from Case 3 and 4 are lower at temperatures near 

ambient (less than 0.5 W/mK) than the others and these values are closer to the reference values of the neat 

phenolic resin – 0.1 ~ 0.2 W/mK
14

.  Estimated thermal conductivities of fiber glass from Case 1 and 2 are 

much higher than those from Case 3 and 4 in general.  Considering that the reference value for fiber glass 

is 0.04 W/mK
15

 at temperatures near ambient, estimations from Case 3 and 4 are showing to be closer to 

the reference values at lower temperatures.   
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Figure 5. Estimated thermal conductivity for 4 species: resin, resin’, char and fiber glass 

  
 

Estimated specific heat capacities of resin and its decomposition products start at higher values at lower 

temperatures and decreases at higher temperature for Case 1, 3 and 4.  For estimation of Case 2, it is the 

opposite; however, the magnitude of the change is small compared to other cases.  Considering that the 

reference value for neat phenolic resin is near 1700 J/kgK
16

, estimations from Case 1 and 2 are showing to 

be closer to the reference values at lower temperatures.  Estimated specific heat capacity of fiber glass from 

each case show consistency, except for that of Case 2 where steep increase is shown with respect to 

temperature increase.  Reference values for glass and air are 840 J/kgK
17

 and near 1000 J/kgK
18

, therefore, 

fiber glass heat capacity should be within this range at ambient temperature.  Having this in mind, results 

from Case 2 and 4 are closer to the reference values.   

 

Parameter estimation of emissivity and heat of reactions were similar for all 4 cases, which are summarized 

in the following table: 

 

4. Estimated emissivity for 4 species (resin, resin’, char and fiber glass) and HoRs for R1 and R2 

 
Emissivity Heat of Reaction 

 
resin resin' char fiberglass R1 R2 

Case1 1.0 1.0 0.8 0.9 3.0E+04 2.7E+04 

Case2 1.0 1.0 0.9 0.7 5.6E+05 1.3E+04 

Case3 0.7 1.0 0.9 0.9 3.1E+05 2.5E+05 

Case4 0.6 1.0 1.0 0.9 1.0E+06 7.6E+03 
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Figure 6. Estimated specific heat capacity for 4 species: resin, resin’, char and fiber glass 

  
 

 

CONCLUSIONS  

 

In this study, parameter estimation for neat phenolic fiberglass reinforced polymer (FRP) 

composite has been conducted using different approaches and optimization routines in pair with one-

dimensional pyrolysis model (GPYRO).  With the decomposition kinetics for the resin modeled 

independently, simulations of Cone tests of the composite at heat flux levels of 30kW/m
2
 and 70kW/m

2
 

were performed to estimate the unknown thermophysical properties via numerical optimization using 

Genetic Algorithm (GA) or Shuffled Complex Evolution (SCE) optimization routines.  Four cases has been 

explored – Case 1: estimate entire property set using Cone data at 70kW/m
2
 up to post-decomposition stage 

with GA; Case 2: estimate entire property set using Cone data at 70kW/m
2
 up to post-decomposition stage 

with SCE; Case 3: estimate properties at pre-decomposition stage using Cone data at 30kW/m
2
 and with 

those fixed, estimate rest using Cone data at 70kW/m
2
 with GA; Case 4: estimate properties at pre- 

decomposition stage using Cone data at 30kW/m
2
 and with those fixed, estimate rest using Cone data at 

70kW/m
2
 with SCE.   

Analyzing the estimation results from 4 cases has presented the following conclusions:  First, the two 

approaches – (1) estimating the entire property set at once or (2) estimating properties in pre-decomposition 

stage then with those estimated values fixed estimating the rest – generate estimations that are both in good 

agreement with experiment data.  In terms of their estimations compared to reference values, the exercise 

have shown that approach (2) finds values closer to reference values for thermal conductivity only than 

approach (1).  Considering the computer time and power necessary in the optimization process, approach 

(1) requires more than approach (2) knowing that the entire parameter set is grouped into two sets for 

approach (2) and less parameters to optimize in one run means less computation work.  For example, when 

using SCE, the number of processors involved in one optimization run should be similar to the number of 

unknown parameters to be optimized.  Hence, benefit of utilizing approach (2) instead of approach (1) 

comes from saving computational time and power.   

 

Second, the two optimization routines – GA or SCE – generate estimations that are both in good agreement 

with experiment data.  The major difference between the two routines is GA finds many near optimal 

solutions (parameter sets) while SCE always converges to one set.  However, caution should be given that 

resulting in one optimized parameter set from SCE does not mean those values are absolute, global 



13 

 

solutions considering GA can develop many near optimal parameter sets using the same experiment data in 

the optimization process and resulting in similar simulation output quality as in those from SCE.   

 

Third, analyzing 4 cases in this study clearly shows that when numerical optimization is used in the 

parameter estimation process, the optimized parameter set generated from the exercise should be 

considered as a linked parameter set along with the pyrolysis model of choice.  The different approaches 

and optimization routines are resulting in different parameter values but the parameter set from each case 

shows similar simulation output quality.  However, determining which values are more physical are 

significantly limited at this point.  This assures the users to be more cautious in extrapolating the 

information obtained from parameter estimation using numerical optimization. 
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Abstract  

For the composites industry to “design for fire” more 

thorough understanding of how typical FRPs decom-

pose under fire conditions is needed.  The role played 

by the glass and the resin for FRPs are keys to under-

standing their fire behavior.  To that end, this study con-

tinues work presented at Composites 2010.  The goal of 

this work is to evaluate the ability of a pyrolysis model 

and optimization routine pairing to estimate properties 

of each component of the composite, resin and glass. 

The composite pyrolysis experimental data used in this 

work was obtained from tests conducted on a bench 

scale fire test apparatus, Cone Calorimeter, at various 

applied heat flux levels with additional instrumentation 

to measure surface and internal temperatures of the 

sample and the flame heat flux.  Mass loss data, tem-

perature profiles with respect to time at different in-

depth locations and heat flux from the flame to sample 

surface after ignition for boundary condition specifica-

tion are used in the optimization process.  The decom-

position kinetics for the resin is modeled using thermal 

analysis where a series of dynamic experiments of the 

resin is conducted using thermogravimetric analysis and 

differential scanning calorimetry.  With the approximat-

ed decomposition kinetics for the resin determined, 

simulation of pyrolysis tests of the composite slab in air 

was performed to estimate the unknown thermophysical 

properties by Genetic Algorithm (GA) and Shuffled 

Complex Evolution (SCE) optimization routines.  As a 

part of the property estimation exercise, emphasis was 

given to evaluating different approaches for estimating 

properties when applying the optimization technique.  

This evaluation is achieved by conducting property es-

timation for the same material with 2 different proce-

dures: running the optimization with Cone data from 

time of sample exposure to 1) pre-decomposition, or 2) 

post-decomposition.  These numerical experiments are 

designed to demonstrate the effectiveness of solid phase 

property estimation when applying partial data from cer-

tain times during Cone testing.  The estimated properties 

from these different approaches will be compared and 

the quality of the estimations will be assessed. 

 

1. Introduction 

For the composites industry, designing for a FRP that 

provides good fire characteristics becomes a guess and 

check operation in many cases.  Any changes made to 

the resin, glass, or the microstructure of the FRP affect 

the overall fire behavior of the FRP.  Traditionally, the 

effect of the changes made in the FRP is checked by 

conducting tests via standard fire tests, which can be 

time consuming and expensive.  Therefore, providing an 

understanding of how typical FRPs decompose under fire 

conditions and using this information to find an appro-

priate guideline for the composite industry to produce 

better fire-safe composites have been a long-term goal 

for this research.  To that end, this work follows the work 

presented at Composites 2010.   

In this study, an emphasis is given to evaluating the 

different approaches for estimating the unknown parame-

ters for pyrolysis modeling of the FRP.  The parameter 

estimation process is generally grouped into two parts.  

The first part is conducted to estimate the parameters re-

lated to decomposition kinetics of the resin knowing that 

the resin is the decomposable component of the system, 

FRP.  The decomposition kinetics for the resin is mod-

eled using thermal analysis where a series of dynamic 

experiments of the resin is conducted using thermograv-

imetric analysis and differential scanning calorimetry.  

The second part is conducted to estimate the parameters 

representing the thermophysical properties of the FRP 

with the estimated kinetic parameters from previous 

work.  When estimating these parameters in this second 

part, typically a numerical optimization routine is used, 

along with a pyrolysis model.  This study focuses on the 

second part of the work by evaluating different ap-

proaches to estimate thermophysical parameters using a 

numerical optimization process.  Numerical experiments 

are designed to conduct property estimation for the same 

FRP material with 2 different procedures and 2 different 

optimization routines.  Estimation is conducted by run-

ning the optimization with Cone data from time of sam-

ple exposure to the heat source to 1) pre-decomposition, 

or 2) to post-decomposition. 

To conduct property estimation and modeling, com-

plete data sets of decomposition of neat phenolic resin 

and its FRP composites are presented. Careful experi-

ments were conducted using Thermogravimetric Analy-

sis (TGA) and Differential Scanning Calorimetry (DSC) 
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in order to study the thermal decomposition kinetics.  

Also, the neat phenolic FRPs were tested under a 

bench-scale fire test apparatus known as the Cone Calo-

rimeter (ASTM E 1354
1
) with additional instrumenta-

tion such as thermocouples at various depths and a total 

heat flux gauge to measure additional heat flux from the 

flame after ignition.  These tests were designed to gen-

erate data specifically useful for computer modeling 

purposes.   

The model used in this study is a generalized py-

rolysis model developed by Lautenberger
2,3

, which sim-

ulates the heating and decomposition of a chosen mate-

rial.  Like with any other pyrolysis model, this model 

requires many input parameters found from material 

properties, which include the pyrolysis kinetics, thermal 

properties (specific heat capacity, thermal conductivity), 

and radiative characteristics (surface emissivity, in-

depth radiation absorption coefficient).  Unfortunately, 

there are no standardized techniques to determine all of 

these properties via laboratory tests.  Another way of 

estimating parameters is to use an optimization routine 

with a pyrolysis model in pair.  The current work ap-

plies Genetic Algorithm (GA) and Shuffled Complex 

Evolution (SCE) methodology as an optimizing method 

coupled with Lautenberger’s pyrolysis model
2,3

 to per-

form parameter estimation. 

Using the experimental data of the neat phenolic 

FRP, an estimation exercise is conducted to find proper-

ties of the individual components of the composite, i.e., 

resin and glass, which are decomposable and inert, re-

spectively.   

The property estimation exercise is conducted on a 

neat phenolic FRP composite tested in a Cone Calorim-

eter.  First, thermal analysis is conducted using thermo-

gravimetric analysis (TGA) and differential scanning 

(DSC) calorimetry experiment results of the resin to 

model the decomposition kinetics of the decomposable 

element of the FRP.  With the approximated decompo-

sition kinetics for the resin, simulation of pyrolysis tests 

of the composite slab in air was performed to estimate 

the unknown thermophysical properties by optimiza-

tion.   A comparison is done with estimated parameter 

values using different approaches to evaluate any con-

sistencies in the estimated results. 

 

2. Neat Phenolic FRP Composite 

2.1. Neat phenolic resin  

Neat phenolic resin (NP) is a low viscosity, unmod-

ified phenolic resole resin where a flame retardant plas-

ticizer and an acid are used as a catalyst.  Phenolic pol-

ymers are obtained by polymerizing phenol and formal-

dehyde
4
.  Due to benzene rings built into the chemical 

chain, this resin has good thermal stability.  According 

to the product description, this resin with the flame re-

tardant additive is formulated to be Class I per ASTM E 

84
5
 (flame spread index < 25 and smoke developed index 

< 450).  

2.2. FRP composite description 

Composite panels were fabricated by vacuum bag-

ging for relatively high (60 wt% of glass, average thick-

ness of 9.8 mm) glass content composites, using two dif-

ferent types of fiberglass mats that were wetted with res-

in (see Figure 1).  The two types of fiberglass (E-glass) 

used in the composite are a chopped strand mat and a 

glass roving woven mat with an area density of 25 g/m
2
 

and 880 g/m
2
, respectively. The chopped strand mat is 

thinner and more porous than the woven mat.  The lami-

nate schedule (provided by the manufacturer) is chopped 

strand mat and roving alternating eight times for FRP 

with high glass content (HG) with another chopped 

strand mat layer at the end.  Visual inspection of a pol-

ished cross-section of the composite slab is consistent 

with this laminate schedule, but with polymer resin lay-

ers between each fiberglass layer.  The chopped strand 

mat layer is difficult to identify in the cross section, per-

haps because more resin is soaked into this layer than the 

roving layer. The roving layer is observed as a prominent 

glass layer possibly because the resin is absorbed only at 

the fiberglass layer surfaces leaving the interior with 

primarily glass fibers.     

The layered microstructure is determined to a resolu-

tion of 0.3 mm by inspecting a polished cross-section of 

the composite.  Based on visual observation and compar-

ison to global density of the composite sample, approxi-

mations of three distinct layers are proposed accounting 

for the density, ρ of each component of the composite at 

its non-porous stage – ρresin = 1300 kg/m
3
, ρglass = 2600 

kg/m
3
: porous layer with chopped strand mat with resin 

(CSM+R), porous layer with some glass roving woven 

mat (RW+R), and a less-porous layer with glass roving 

woven mat only (RW).  The microstructure of the virtual 

Neat Phenolic FRP composite is, from the surface, 

(CSM+R) – (RW+R) – (RW) – (RW+R) repeating 8 

times and another (CSM+R) layer at the back face, 

which resulted in 33 layers.       

 

3. Experiment Apparatuses 

3.1. Thermogravimetric Analysis (TGA) and 

Differential Scanning Calorimetry (DSC) 

The instruments used in this study were manufac-

tured from TA Instruments: Thermogravimetric Analysis 

Q50 (TGA) and the Differential Scanning Calorimetry 

Q20 (DSC).  Throughout this study, TGA and DSC were 

used for non-isothermal test purposes and the tests were 

conducted in nitrogen to study pyrolysis.  Using the 

TGA, 4 different heating rates of 5°C/min., 20°C/min., 
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40°C/min. and 60°C/min. were applied to measure the 

mass loss history of each resin sample from 40°C to 

800°C.  For the DSC, a constant heating rate of 

20°C/min. was used to measure the heat flow through 

the sample during the thermal decomposition of resins.  

Tests conducted with the DSC were from 40°C to 

500°C where the maximum temperature is lower than 

that of TGA due to the limitation of the instrument.  A 

sample amount of approximately 10 mg was used for 

each test in a standard aluminium pan with a punctured 

lid so that gases may evolve freely away from the pan. 

3.2. Cone Calorimeter 

Cone Calorimeter (Cone, ASTM E 1354
1
) is a 

bench-scale fire test apparatus in which the sample is 

heated by an electrically heated rod in the shape of a 

cone.  The sample is tested by applying a constant ra-

diative heat flux set via temperature controller of the 

rod.  The Cone exposes the sample in an ambient envi-

ronment which results in a natural flow field as the 

sample temperature increases allowing convective cool-

ing above the sample surface. The ignition source is an 

intermittent sparker. The Cone can be used to calculate 

useful engineering data such as oxygen consumption 

based heat release rate (based on the standard), mass 

loss rate, smoke yield and smoke extinction coefficient. 

The purpose of Cone testing was to generate good 

data sets appropriate for pyrolysis modeling and param-

eter estimation, and therefore several modifications 

were made to the standard testing procedure. First, 

when testing this FRP, three different types of sample 

holders were used to produce quality one-dimensional 

data (see Figure 2).  Experimental challenges with these 

FRPs were that significant edge burning, which is a 

three-dimensional problem, occurs during each test.  

Because the pyrolysis model of interest in this study has 

a numerical structure of one-dimension, data that can be 

considered as one-dimension should be utilized in this 

parameter estimation exercise using numerical optimi-

zation.  Hence, caution was given to reduce the edge 

effect by testing with different sample holders.  Sample 

holder type 1 is a standard specified, non-insulated cone 

holder that holds a 102 mm x 102 mm (4” x 4”) square 

sample with a metal edge frame.  Sample holder type 2 

is a round insulated sample dish purposed by de Ris and 

Khan
6
 that holds a 102 mm (4”) diameter circle sample.  

In this sample dish, the sample is surrounded by Co-

tronics® paper insulation on the back and sides to limit 

heat loss, which simplifies the pyrolysis modeling.  

Sample holder type 3 is composed of ceramic fiber-

board (Thermal Ceramics Inc.) that holds a 152 mm (6”) 

diameter circle sample.  On top of the sample, a layer of 

ceramic fiberboard with a hole in the center was placed 

to limit the sample surface exposure to the cone heater. 

Second, 2 thermocouples were installed to measure 

temperature change of the sample at surface and back 

face of the sample.  The surface thermocouples were af-

fixed via two types of methods: One method was to drill 

a thermocouple hole from the sample side and allow the 

hole to reach the surface.  A thermocouple insulated wire 

was inserted through the side and the bead was able to 

locate near the surface; hence, from the surface only the 

bead was visible.  Using this method, the center of the 

bead was located at the surface allowing top half to be 

exposed to ambient air and the lower half to sit within 

the sample.  A drop of thermal grease or a high tempera-

ture adhesive (Resbond 907 Industrial Strength Fireproof 

Adhesive from Cotronics Corp.) was applied to the bead 

to ensure good contact between the sample and the bead.  

Another method was to crimp the thermocouple wire to 

allow the thermocouple bead to sit on the surface with a 

minimal amount of thermal grease applied at the bead.  

The back face thermocouples were affixed with a high 

temperature adhesive (Resbond 907 Industrial Strength 

Fireproof Adhesive from Cotronics Corp.).   

To evaluate which of the three sample holder types 

are most appropriate for testing this Neat Phenolic FRP 

composite with high glass (~60wt%), several Cone tests 

were conducted at different heat flux levels ranging from 

30 to 90 kW/m
2
.  Analyzing the results, data from apply-

ing type 1 sample holder was utilized in this study for the 

following reasons: First, considering the temperature in-

crease with respect to one-dimensional heating, although 

type 3 provides the best condition for one-dimensional 

approximation, difference between the data from type 3 

and type 1 or 2 are about 50°C or less assuming that 

measurements are made near the centerline of sample.  

This concurs with Choi’s work
7
 on inert materials. Larg-

er size sample has shown to provide the best one-

dimensional heat conduction condition comparing to 

other sample set-ups where regular size (102 mm x 102 

mm (4” x 4”)) sample is prepared with a metal edge 

frame, edges exposed, or insulation on the sides and bot-

tom.  It was noted that at 80kW/m
2
 of incident heat flux, 

the centerline temperature difference between that of the 

larger sample’s and centerline temperatures of the regu-

lar samples with metal edge frame or insulation on the 

sides and bottom are approximately 20°C or less within 5 

hrs. period.  Second, type 3 results in uncertain burn area 

due to some decomposition at the sides even with a layer 

of insulation protecting the sample.  This increases the 

uncertainty in data considered per unit area.  However, 

type 3 allowed visual inspection of the edge burning: 

when the neat phenolic resin on the back face tempera-

ture increased beyond its major decomposition tempera-

ture, pyrolyzates traveled around the sample sides and 

caught fire instead of moving through the composite lay-

ers vertically.  Even with the resin decomposing in-depth, 

because the amount of resin residue is sufficient in the 

composite, the sample was impermeable to pyrolyzates 

produced from back face resin decomposition.  Third, 

having the edges not exposed as in type 1 or 3 allowed 

less pyrolyzates to travel horizontally towards the edges, 
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i.e. because the edges are preserved from burning, edges 

are more impermeable to pyrolyzates.  One of the influ-

ences from having less pyrolyzates traveling towards 

the edges is resulting in increased time to ignition. 

The uncertainty in the mass loss rate data is esti-

mated via statistical approach, taking the standard devi-

ation (0.58 g/sm
2
) from the mean of a steady burning of 

5 identical PMMA tests conducted in a Cone Calorime-

ter
8
.  The estimated uncertainty is 1.4 g/sm

2
, which is 

found by calculating the 95% confidence interval apply-

ing student t distribution with a sample size of 5.  The 

uncertainty in the thermocouple measurements was 

quantified by comparing surface and back face tempera-

ture data from 3 and 4 identical FRP composite tests 

with the Neat Phenolic FRP composite with high glass 

content in the Cone at 70kW/m
2
 and 50kW/m

2
, respec-

tively.  Using the normalized time, time divided by 

sample thickness square, i.e., τ = time/δ2
 to remove the 

effect of different sample thicknesses when comparing, 

the maximum standard deviation at various normalized 

times, up to the critical time, τc, was 20°C for the sur-

face and 27°C for the back face.  Assuming this is ap-

proximately equal to one standard deviation, applying 

student t distribution and calculating the 95% confi-

dence interval becomes ±49°C and ±83°C from the 

sample mean for surface and back face, respectively.  

The critical time, τc, corresponds to the time of ignition 

for surface temperature measurements and time when 

evenly spread flame on sample surface disappearing for 

back face temperature measurements.  For the back face, 

this time corresponds well with the time when the back 

face temperature becomes close to the major decompo-

sition temperature of the Neat Phenolic resin.  As noted 

above, after this temperature, edge burning occurs, 

which is a non-1D phenomenon.  These uncertainty 

values will be used to evaluate significant differences in 

the modeling results. 

 

4. Kinetic Modeling of Resin Degradation for 

Pyrolysis Modeling 

A series of thermal analyses are conducted on commer-

cial thermoset polymers used in fiberglass reinforced 

polymer (FRP) composite material.  Experiments for 

thermal analysis are conducted using Thermogravimet-

ric Analysis (TGA) at various heating rates (5, 20, 40 

and 60°C/min) and Differential Scanning Calorimetry 

(DSC) at 20°C/min.  These non-isothermal TGA exper-

imental results are used to conduct iso-conversional es-

timates of activation energy with respect to conversion 

without pre-determining the kinetic model using an Ar-

rhenius type expression for thermal degradation.  Re-

sults are also used to determine the minimum number of 

reactions required in the kinetic model to describe the 

thermal degradation reactions based on actual weight 

loss.  Then a model fitting method is used where vari-

ous kinetic models are used to fit the TGA data to the 

model.  The DSC experiments are conducted to use the 

heat flow information to compare against the analysis 

results conducted by the TGA.  Kinetic modeling is con-

ducted following the steps introduced in this Reference
9
.   

 

5. Pyrolysis Modeling for Lumped (TGA) and 

Slab (Cone) Experiments 

The calculations reported here are conducted with a gen-

eralized pyrolysis model
2,3

 that can be applied to a wide 

variety of condensed phase fuels.  The model simultane-

ously calculates the condensed phase mass conservation, 

gas phase mass conservation, condensed phase species 

conservation, and condensed phase energy conservation 

equations.  This model can be applied to both 0D and 1D 

systems and is therefore capable simulating both 

“lumped” (thermogravimetric) and “slab” (Cone Calo-

rimeter/FPA) experiments. Extensive details are given in 

Ref.
2,3

 so only a brief overview is given here. Assump-

tions inherent in the model, as applied in this paper, in-

clude: 

• Porosity can either be solved as a property of a spe-

cies (default) or directly.  When porosity is solved direct-

ly, it is derived from the condensed-phase mass conser-

vation equation assuming no volume change (shrinkage 

or swelling).   

• When porosity is directly solved, the user-specified 

thermal conductivity and density are interpreted as those 

of a nonporous solid.  Therefore, the thermal conductivi-

ty that appears in the condensed-phase energy conserva-

tion equation is 
( ) skk ψ−= 1

where ψ is porosity and sk

is the weighted thermal conductivity of the solid assum-

ing it is nonporous. Similarly, with this formulation, the 

bulk density is calculated as 
( ) sρψρ −= 1

 where sρ is 

the weighted density of the solid assuming it is nonpo-

rous. 

• Bulk thermal conductivity k  has a cut-off value of 

0.03W/mK which corresponds to air at 300 to 400K.  

• Specific heat is calculated with a weighted or aver-

aged quantity, i.e. ∑= ipip cXc
as other solid properties 

– enthalpy, emissivity, radiation absorption coefficient, 

permeability, etc. 

• Specific heat capacity and effective thermal conduc-

tivity vary by as 
( ) ( ) kn

rTTkTk 0=
 and

( ) ( ) cn

rTTcTc 0=

, respectively, where Tr is a reference temperature. 

• Radiation heat transfer across pores is accounted for 

by adding a contribution to the effective thermal conduc-

tivity that varies as γT
3
, where γ is a fitting parameter; 
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hence, 

• Averaged properties in conservation equations are 

calculated by appropriate mass or volume fraction 

weighting 

Gas-phase and condensed-phase are in thermal equilib-

rium 

 

6. Results and Discussion 

Property estimation exercise for pyrolysis modeling of 

neat phenolic (NP) FRP composite which contains 

flame retardant additive is conducted in three parts: 

First, the kinetic parameters for thermally degrading 

resin are obtained via kinetic modeling using thermal 

analysis with non-isothermal experiment data from 

TGA and DSC tests.  Second, parameters other than 

those related to resin decomposition kinetics are ob-

tained by utilizing optimization routine with a pyrolysis 

model in pair.  Third, a comparison is done with esti-

mated parameter values using different approaches to 

evaluate any consistencies in the estimated results. 

6.1. Kinetic modeling for resin degradation 

Step 1: Preliminary Experiments with Analysis 

Based on preliminary tests on this resin, it was 

found that when the area to volume (A/V) ratio is 

changed thermal behavior change as well.  Typically, 

when a polymer sample is cut from a larger sample, the 

number of mechanically broken polymer bonds increase 

as the A/V ratio increases.  The sample prepared with 

above method that have high A/V ratio consists poly-

mer chains which are relatively shorter than those found 

in a larger sample with lower A/V ratio and increased 

concentration of radicals on the sample surface due to 

the broken bonds.  Polymer samples meeting these con-

ditions can result in changes in their thermogram com-

paring to those from samples that have lower A/V ratio.   

In general, the samples appear to be less thermally sta-

ble, e.g. increase in initial weight loss at lower tempera-

tures, lower thermal decomposition temperature, higher 

DTG (weight loss rate) peaks, etc.  Considering this ef-

fect, relatively larger sample sizes that have low A/V 

ratio in thermal analysis is recommended. 

Step 2: Iso-conversional (Model-free) Method 

In Figure 3, the results from two iso-conversional 

methods introduced by Ozawa, Flynn and Wall
10 , 11

 

(OFW, estimates–Ea/R by plotting ln(β) versus 1/T) and 

Friedmen
12,13

 (plotting ln(dα/dT) versus 1/T to find –

Ea/R) conducted on the neat phenolic resin are shown.  

Both methods are used for comparison purposes.  The 

R
2
 values for each activation energy value are plotted as 

well using the least square method.  The activation en-

ergy becomes more reliable as the R
2
 values become 

closer to 1 where 01 mm−=α
.   

Step 3: Model Fitting Method 

Based on iso-conversional method, 2-step mecha-

nism is proposed as below: 

 

( )gas1nresiresin rp,rp, ′′ −+′→ νν
 

 

(R1) 

( )gas1charnresi cp,cp, νν −+→′
 

 

(R2) 

 

Applying an nth order reaction model, kinetic parameters 

of the pre-exponential factor (Z), activation energy (Ea), 

and reaction order (n) are estimated manually (see Table 

1).  

Note that these estimated results are simplified and 

does not represent the actual decomposition kinetics of 

the given material, i.e. they are empirical values which 

can only be utilized with this modeling set-up.  However, 

the activation energy for R2 was estimated from iso-

conversional method; therefore, the value should be able 

to represent the actual decomposition kinetics in nitro-

gen. 

6.2. Property estimation for Neat Phenolic 

FRP composite using different approach-

es 

When conducting the Cone simulation for the FRP 

composite, char oxidation was neglected for modeling 

simplification.  Therefore, decomposition of the neat 

phenolic resin in nitrogen was used to estimate kinetic 

parameters and these were used in the cone simulation.  

Four property estimation cases were built based on the 

approach of estimation and available optimization rou-

tines (GA or SCE).  They are summarized in Table 2.  

The entire property set used in the simulation are shown 

in Table 3.   

To simplify the problem, the exponents of thermal 

conductivities and specific heat capacities of resin, resin’ 

and char were considered as 0. Only those of fiber glass 

were expressed as a function of temperature as noted in 

the previous section on pyrolysis modeling.  Considering 

that the resin quickly becomes black after exposure to the 

Cone heater, emissivity of the resin’ was set as 1.0.  Be-

cause resin’ and char becomes porous as resin decom-

poses without much shrinkage and fiber glass is porous 

in nature, a fitting parameter gamma was utilized to ac-

count for radiative heat transfer through pores.  Addi-

tionally, it is assumed that the thermal conductivity and 

specific heat capacity are the same for resin and resin’.  

As a boundary condition at the surface, additional con-

stant flame heat flux of 20kW/m
2
 was added to the ap-

plied heat flux from the Cone starting at user-specified 

time of ignition.  This value corresponds well with a 

measured value from actual test.  For the back face, actu-
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al temperature measurements with respect to time were 

preferred as a specified boundary condition.  However, 

for cases where this approach proposes heating from the 

back face, heat loss through the back face was specified 

instead.  In the numerical optimization process, mass 

loss rate, surface and/or back face temperature meas-

urements were used. 

The simulation results with the estimated parameter 

sets from each case are shown in Figure 4.  The first 

figure (a) is at 30kW/m
2
 and the rest (b, c and d) are at 

70kW/m
2
.  Note that at 30kW/m

2
 applied heat flux, 

mass loss rate is negligible (i.e. below uncertainty level) 

and the back face temperature remains at its initial tem-

perature; therefore, they are not shown.  Considering 

the uncertainty of ±49°C, surface temperature simula-

tion is in good agreement with the experiment data (a, 

b) for all cases.  For mass loss rate simulation in (c), the 

results from optimized parameter sets are lower than the 

actual data even with the consideration of its experi-

ment uncertainty (1.4 g/sm
2
).  This is probably due to 

the assumption made in the simulation about neglecting 

char oxidation.  Although the magnitude of the mass 

loss rate may be lower than the actual, note that the 

trend in changes occurring in the mass loss rate with 

respect to time is similar.  This provides evidence that 

the microstructure specified in the simulation was well 

resolved in the simulation.  The back face temperature 

simulations in (d) from all cases are in good agreement 

with the data considering the uncertainty of ±83°C.  

These simulations from Case 1 and 2 are relatively 

closer to the data than those from Case 3 and 4, where 

these are at the outer bounds of the uncertainty band.   

6.3. Comparison of estimated properties from 

4 Cases 

The estimated properties of thermal conductivity 

(Figure 5) and specific heat capacity (Figure 6) from 4 

different cases are compared in the figures.  Consistent 

trend is found for all cases for estimated thermal con-

ductivity of resin and its decomposition products (resin’ 

and char) – thermal conductivity of char is higher than 

that of resin.  The estimations from Case 2, 3 and 4 are 

lower at temperatures near ambient (less than 0.5 

W/mK) than the that of Case 1 and these values are 

closer to the reference values of the neat phenolic resin 

– 0.1 ~ 0.2 W/mK
14

.  Estimated thermal conductivities 

of fiber glass from Case 1 and 2 are higher than those 

from Case 3 and 4 in general.  Considering that the ref-

erence value for fiber glass is 0.04 W/mK
15

 at tempera-

tures near ambient, estimations from Case 3 and 4 are 

showing to be closer to the reference values at lower 

temperatures.   

Estimated specific heat capacities of resin and its 

decomposition products start at higher values at lower 

temperatures and decreases at higher temperature for all 

cases.  Considering that the reference value for neat 

phenolic resin is near 1700 J/kgK
16

, estimations from 

Case 1 and 4 are showing to be closer to the reference 

values at lower temperatures.  Estimated specific heat 

capacity of fiber glass from each case show consistency.  

Reference values for glass and air are 840 J/kgK
17

 and 

near 1000 J/kgK
18

, therefore, fiber glass heat capacity 

should be within this range at ambient temperature.  

Having this in mind, results from Case 2 and 4 are closer 

to the reference values.   

Parameter estimation of emissivity and heat of reac-

tions were similar for all 4 cases, which are summarized 

in the table (see Table 4). 

 

7. Conclusions  

In this study, parameter estimation for neat phenolic 

fiberglass reinforced polymer (FRP) composite has been 

conducted using different approaches and optimization 

routines in pair with one-dimensional pyrolysis model 

(GPYRO).  With the decomposition kinetics for the resin 

modeled independently, simulations of Cone tests of the 

composite at heat flux levels of 30kW/m
2
 and 70kW/m

2
 

were performed to estimate the unknown thermophysical 

properties via numerical optimization using Genetic Al-

gorithm (GA) or Shuffled Complex Evolution (SCE) op-

timization routines.  Four cases has been explored – Case 

1: estimate entire property set using Cone data at 

70kW/m
2
 up to post-decomposition stage with GA; Case 

2: estimate entire property set using Cone data at 

70kW/m
2
 up to post-decomposition stage with SCE; 

Case 3: estimate properties at pre-decomposition stage 

using Cone data at 30kW/m
2
 and with those fixed, esti-

mate rest using Cone data at 70kW/m
2
 with GA; Case 4: 

estimate properties at pre- decomposition stage using 

Cone data at 30kW/m
2
 and with those fixed, estimate rest 

using Cone data at 70kW/m
2
 with SCE.   

Analyzing the estimation results from 4 cases has 

presented the following conclusions:  First, the two ap-

proaches – (1) estimating the entire property set at once, 

Cases 1 and 2 or (2) estimating properties in pre-

decomposition stage then with those estimated values 

fixed estimating the rest, Cases 3 and 4 – generate esti-

mations that are both in good agreement with experiment 

data.  In terms of their estimations compared to reference 

values, the exercise have shown that approach (2) finds 

values closer to reference values for thermal conductivity 

of the fiberglass only than approach (1).  Considering the 

computer time and power necessary in the optimization 

process, approach (1) requires more than approach (2) 

knowing that the entire parameter set is grouped into two 

sets for approach (2) and less parameters to optimize in 

one run means less computation work.  For example, 

when using SCE, the number of processors involved in 

one optimization run should be similar to the number of 

unknown parameters to be optimized.  Hence, benefit of 
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utilizing approach (2) instead of approach (1) comes 

from saving computational time and power.   

Second, the two optimization routines – GA, Cases 

1 and 3 or SCE, Cases 2 and 4 – generate estimations 

that are both in good agreement with experiment data.  

The major difference between the two routines is GA 

finds many near optimal solutions (parameter sets) 

while SCE always converges to one set.  However, cau-

tion should be given that resulting in one optimized pa-

rameter set from SCE does not mean those values are 

absolute, global solutions considering GA can develop 

many near optimal parameter sets using the same exper-

iment data in the optimization process and resulting in 

similar simulation output quality as in those from SCE.   

Third, analyzing 4 cases in this study clearly shows 

that when numerical optimization is used in the parame-

ter estimation process, the optimized parameter set gen-

erated from the exercise should be considered as a 

linked parameter set along with the pyrolysis model of 

choice.  The different approaches and optimization rou-

tines are resulting in different parameter values but the 

parameter set from each case shows similar simulation 

output quality.  However, methods of determining 

which values are more physical are significantly limited 

at this point.  This assures the users to be more cautious 

in extrapolating the information obtained from one pa-

rameter estimation case to another using numerical op-

timization. 
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Figures: 

Figure 1. Cross-section of Neat Phenolic (NP) FRP fabricated via vacuum bagging with average glass content of 60 

wt% and average thickness of 9.8 mm: two types of fiberglass (E-glass) used in the composite – chopped strand mat 

(25 g/m
2
, highly porous) and glass roving woven mat (880 g/m

2
, prominent glass layers in white) 

 

 

Figure 2. Three types of sample holders used in Cone Calorimeter experiment: first and second rows show the top 

and side view, respectively.  Sample is shown in pink, metal edge frame in gray, metal holder in black, and insula-

tion in area with pattern. 

 

 

Figure 3. TG and DTG thermograms from TGA experiments conducted in nitrogen with Neat Phenolic Resin (NP) 

at 5°C/min (a) and results from iso-conversional method conducted on NP resin (b) where the estimated activation 

energy of thermal decomposition with respect to conversion (1-α) is shown    
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Figure 4. Comparison between simulation results and experiment data: (a) surface temperature at applied heat flux 

of 30kW/m
2
; (b) surface temperature, (c) mass loss rate, and  (d) back face temperature at applied heat flux of 

70kW/m
2
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Figure 5. Estimated thermal conductivity for 4 species -- resin, resin’, char and fiber glass: values shown below ac-

count for the solid component only and exclude the effect of heat transfer through pores modeled via γT
3
 

 

 

Figure 6. Estimated specific heat capacity for 4 species: resin, resin’, char and fiber glass 
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Tables: 

Table 1. Estimated kinetic parameters using nth order reaction model 

 Z (/s) Ea (kJ/mol) n (/) 
Consumption (%) from 

Initial Mass 

R1 10
8
 130 1 14.1 

R2 10
10

 
236 1 35.2 

 

Table 2. Summary of property estimation cases examined in this study constructed using different approaches and 

optimization routines in pair with pyrolysis model (GPYRO) 

Case Approach Optimization Routine 

1 

One step approach: 

• Estimate entire property set at pre- decomposition and post 

decomposition stages using Cone data from 70kW/m
2
 

GA 

2 

One step approach: 

• Estimate entire property set at pre- decomposition and post 

decomposition stages using Cone data from 70kW/m
2
 

SCE 

3 

Two step approach: 

• Estimate properties at pre- decomposition stage using Cone 

data from 30kW/m
2
 

• Having above properties fixed, estimate rest using Cone data 

from 70kW/m
2
 

GA 

4 

Two step approach: 

• Estimate properties at pre- decomposition stage using Cone 

data from 30kW/m
2
 

• Having above properties fixed, estimate rest using Cone data 

from 70kW/m
2
 

SCE 

 

Table 3. Parameter set for Cone simulation 

Parameter Keyword Resin Resin’ Char Fiber Glass 

thermal conductivity at Tr KOZ Y Y Y 

thermal conductivity exponent
 

NKZ Set as 0.0
 

Set as 0.0 Y 

specific heat capacity at Tr CO Y Y Y 

specific heat capacity exponent NC Set as 0.0
 

Set as 0.0 Y 

emissivity EMIS Y Set as 1.0 Y Y 

gamma GAMMA Set as 0.0 Y Y Y 

Heat of Reaction for R1 DHV
 

Y 

Heat of Reaction for R2 DHV
 

Y 

 

Table 4. Estimated emissivity for 4 species (resin, resin’, char and fiber glass) and HoRs for R1 and R2 

 
Emissivity Heat of Reaction 

 
resin resin' char fiberglass R1 R2 

Case1 1.0 1.0 0.8 0.9 3.0E+04 2.7E+04 

Case2 1.0 1.0 0.9 0.7 5.6E+05 1.3E+04 

Case3 0.7 1.0 0.9 0.9 3.1E+05 2.5E+05 

Case4 0.6 1.0 1.0 0.9 1.0E+06 7.6E+03 
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ABSTRACT 

 

In this study, a series of thermal analyses is conducted to estimate thermal degradation 

kinetics of two types of thermoset polymer resins, modified acrylic and modified acrylic with 

inorganic flame retardant additive, which are typically used in fiber reinforced polymer (FRP) 

composites.  As part of parameter estimation for pyrolysis modeling, a simple kinetic modeling 

method is introduced and applied to construct a set of minimum number of elementary reactions that 

involves weight loss and to estimate the kinetic parameters. For thermal analysis, Thermogravimetric 

Analysis (TGA) and Differential Scanning Calorimetry (DSC) experiments are used.   

 
 

INTRODUCTION 

 
Over the years, an interest towards pyrolysis modeling of real world solid materials in the 

fire community has been increasing with the development of advanced computer models such as Fire 

Dynamics Simulator (FDS) from NIST, which is a well-known computational fluid dynamics (CFD) 

model commonly used by practitioners.  When a general comprehensive pyrolysis model – a model 

that utilizes governing equations for mass, momentum, and energy conservation to capture the thermal 

behavior of a pyrolyzing material – is used, typically the following parameters are required as input: 

thermal degradation kinetics related parameters; thermal parameters such as specific heat capacity, 

thermal conductivity; and radiative characteristics like surface emissivity, in-depth radiation 

absorption coefficient.  Among these various parameters, this study focuses on estimating kinetic 
parameters because the current practice for kinetic modeling remains at a very simplified stage.  

 

Generally, thermal degradation kinetics is a very complicated problem.  Many times there are various 

reactions occurring simultaneously and the kinetic behaviors change for different conditions such as 

the particle-size, abrasion or other damage to crystal surfaces, surface impurities and irradiation, local 

environment, a precursor step, etc.  Therefore, modeling the degradation kinetics becomes a highly 

challenging problem when considerations are given to these test conditions in the modeling process.   

Kinetic modeling generally is defined as a description of the sequence of chemical steps through 

which reactants are transformed into products.  Although when a material is thermally degrading 

with numerous reactions, most times there are rate determining steps. Kinetic modeling is conducted 
to simulate these rate determining steps.  To find the rate determining steps for thermally degrading 

material, one should consider the reaction rate controlling factor(s).  There are three factors to 

consider in reactions of solids where one or a combination of the factors controls the reaction rate.  
One is the chemical reaction factor that considers a bond redistribution step. This step usually occurs 

at a reaction interface and is the chemical control of reactivity.  Another factor is the reaction 
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geometry.  A systematic variation in the reaction interface area with respect to the changes in the 
geometry of the reaction interface as the reaction proceeds exerts an important influence on the kinetic 

behavior.  Last is the rate of diffusion of reaction participants.  This factor can influence the rate of 

product formation.  Based on the understanding of the reaction rate controlling factors, kinetic 

models can be developed to describe the thermal degradation of a material.   

 

The purpose of conducting this kinetic modeling is to address the thermal degradation kinetic 

behavior of a resin sample in milligram scale and extrapolate that information to be used in modeling 

pyrolysis of real world materials such as the FRPs used in this study in larger scales such as those 

found in bench-scale or even full-scale tests.  One of the major foci of the paper is constructing 
kinetic models in a consistent manner with minimal information about the resins because for most of 

the real world materials that are commercially available details regarding the chemical structure of the 

base polymer, the fire retardant additives, etc. are rarely accessible to the modelers due to the 
information being proprietary to the manufacturer. The models are intended to be simplified but 

sophisticated enough to capture the characteristics of the materials such as the fire retardancy via 

additives within a polymer matrix, environmental effect, etc.  To achieve this goal, thermal analyses 
is conducted on a commercial thermoset polymer used in fiber reinforced polymer (FRP) composites 

– modified acrylic – with and without fire retardant additive.  

 

 

KINETIC MODELING METHODOLOGY 

 

There are numerous ways of conducting kinetic modeling for thermal degradation of materials.  

In this study, the most generalized approach of kinetic modeling is introduced to allow practitioners to 

follow guidelines to estimate kinetic parameters for pyrolysis modeling.  Therefore, the kinetic 
modeling procedure is developed with minimum number of experiments (TGA/DSC) and thermal 

analyses (iso-conversional and model fitting methods).  The final outcome of kinetic modeling is 

assembling the minimum number of elementary reactions for thermal degradation of a given material 

which results in weight loss, identifying the kinetic models for those reactions, and obtaining the 

kinetic parameters associated with each reaction.  A detailed procedure for conducting kinetic 

modeling (steps 1 through 3) is discussed below: 

 

Step 1: Preliminary Experiments with Analysis 

Non-isothermal (dynamic) or isothermal TGA/DSC experiments with various heating rates or 

temperatures, respectively, should be conducted to study the decomposition of each material in 
general.  The results from TGA experiments – TG (plot of mass loss with respect to temperature) and 

DTG (plot of mass loss rate with respect to temperature) – and DSC experiments – plot of heat flow 

with respect to temperature – should be compared in parallel.  In this step, factors that can contribute 
to kinetic behaviors of materials are considered, which are not included in the reaction rate controlling 

factors discussed earlier – chemical reaction factor, reaction geometry factor, and diffusion rate of 

reaction participants.  Examples of these factors are particle size effects, local environment effects, 

heating rate effects, effects due to limitations of the experimental set-up, and more1.  These factors 

are considered to be isolated and controlled when conducting thermal experiments to understand the 

kinetics which best describe the thermal degradation of the materials’ final product stage.  After 

these factors are considered, the most appropriate set of non-isothermal (dynamic) experiments with 

TGA and DSC should be used in the next step for further analysis.  

 

Step 2: Iso-conversional (Model-free) Method 

In this step, more detailed thermal analysis is performed with the data set found from Step 1.  

Typically in kinetic studies, the isothermal rate of degradation or conversion, dα/dt, is assumed to be a 
linear function of the temperature dependent rate constant, k(T), and a temperature independent 

function of the conversion, f(α), where α indicates the conversion.  This equation can be further 

expanded by using the Arrhenius expression for the rate constant.  Within the Arrhenius expression, 

two more reaction dependent constants are introduced: the pre-exponential constant, A, and the 
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activation energy, Ea. (See Eq. 1.)  The temperature independent function of the conversion, f(α) is 
dependent upon the mechanism of chemical reactions.   

( ) ( ) ( )αα
α

f
RT

E
AfTk

dt

d a

















−== exp

 
Eq. 1 

The iso-conversional method, also known as the “model-free method”, is the method applied in this 

step to identify the minimum number of reactions necessary in the kinetic model.  This method 

requires data from multiple non-isothermal (or dynamic) experiments, i.e. data tested with at least 4 
different heating rates.  The basis for this method is that at a constant conversion, α, dα/dt and f(α) 

become constants.  With these terms in Eq. 1 staying as constants, the Ea is found without the pre-

knowledge of the reaction mechanisms.  When the Ea is found for the entire degradation process, the 
results provide insight for the minimum number of steps of elementary reactions needed to address the 

global reaction2. A global reaction composed of a single stage process will show no dependence of Ea 

on conversion, α.  When the global reaction is a complex process, the Ea changes with respect to 

conversion, α.  An increase in Ea with α typically indicates parallel reactions.  A decrease in Ea with 

α suggests that either the process is reversible (concave shape) or there is a change in the rate 

determining step (convex shape).  Therefore, by analyzing the shape of the curve plotted with Ea 

with respect to conversion, α, a minimum number of elementary reactions are suggested.   

 

There are two types of iso-conversional method which will be used in this study to check consistency 
in the estimation of both analyses.  The first method used was introduced by Ozawa, Flynn and 

Wall3,4 (OFW) where the conversion function, f(α) is assumed  to be independent of the heating rate. 

Applying a constant heating rate, dT/dt = β, Eq. 1 can be re-written as Eq. 2.  Hence, ln(β) should 

have a linear relationship between 1/T.   By plotting ln(β) versus 1/T should give a constant slope of 

–Ea/R for a wide range of conversion.   
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Another iso-conversional method is based on Friedmen5,6, which is very similar to the OFW method.  

This method was used to calculate the activation energy, Ea, using a different method for comparison.  
Instead of plotting ln(β) versus 1/T, ln(dα/dt) versus 1/T is used to find the slope of –Ea/R (see Eq. 3). 
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Step 3: Model Fitting Method 

After conducting the iso-conversional method to identify the minimum number of reactions required 

when describing the entire process of a thermally degrading material, the model fitting method should 

be applied for the following purposes: 1) Identify the rate determining factor to understand more 

about the thermal degradation kinetics; 2) Estimate kinetic parameters used in the temperature 

dependent rate constant, k(T), and temperature independent function of conversion, f(α) (see Eq. 1).   

 

The model fitting method is one of various thermal analysis methods that fits the experimental data to 

a predetermined kinetic model for a single reaction – f(α) or g(α), the integral form of f(α) – expressed 

in terms of conversion, α.  Examples of these models are given in the literature
7,8

 where the models 
are organized in terms of the most applicable solid state kinetics responsible for a given reaction.  

The fitness of the data to the model reveals the possible rate determining solid state kinetics for 

thermal degradation.  When using this method, fitting multiple experiment data at once to calculate 
the kinetic parameters is important to increase the reliability of the results9.  In the past, a general 

exercise in pyrolysis modeling was to apply reaction order type models to any kind of solid state 

degradation kinetics, in most cases a first order reaction model.  For many cases, an nth order 
reaction model (f(α) = (1- α)n) can be used to fit a range of different kinetics by adjusting the n value .  
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Therefore, applying this approach is generally accepted.  However, one downside for using the nth 
order reaction model for any kind of kinetics is that the n value may vary significantly and therefore 

the kinetic modeling becomes merely a data fitting exercise.  Another limitation is due to the actual 

kinetics not being considered when conducting the modeling.  There is a high possibility that the 

kinetic model will misinterpret the material degradation in the conditions which were not considered 

when obtaining the kinetic parameters for the nth order reaction model.  In other words, when kinetic 

modeling is conducted with TGA non-isothermal experiment data with heating rates of 5 to 60°C/min, 

the kinetic model may only be good for simulating those heating rates.  In this study, the nth order 

reaction order model was used as a default kinetic model and other various models were also 

investigated to understand more about degradation kinetics. 
 

 

MATERIALS AND EXPERIMENTS  
 

There are two different thermoset polymers that are tested in this study.  The tested samples 

are manufactured through the same process as the ones that are used to produce the FRP composites.  
The samples are fully cured resins which do not contain fiber glass reinforcements.  The resins are 

formulated to be used for FRPs to meet International Building Code Interior Finish requirements10 for 

Class I per ASTM E 84
11

. 

 

Materials tested in this study are the following: The first material is a modified acrylic resin (MA).  

This resin is essentially unsaturated polyester (UPE) with Methacrylic Acid (MMA) replacing most of 

the styrene monomers for crosslinking.  The second material is a modified acrylic resin with an 

inorganic additive (A) for fire retardancy.  Typical inorganic additives are hydrates such as alumina 

trihydroxide (ATH) or magnesium hydroxide, antimony trioxide, borax, chalk, silica, etc
12

.  Because 
this additive was known to give a high-charring effect with a strong endotherm, α was categorized 

with typical hydroxides used as flame retardant fillers.  These hydroxides works as a flame retardant 

by resulting in an endothermic dehydration reaction that produces oxides and water
13,14

.  The water 

produced by this reaction vaporizes, which is an endothermic reaction, and the vapor dilutes the 

gaseous phase.  Note that when these hydroxides decompose without re-crystallization or 

disintegration they are typically stable crystalline materials.  Only some modification of lattice 

parameter is observed allowing the loss of small stable molecules from the reactant phase, such as 

H2O.  These molecules travel outward to the interface between the solid and gas phase via 

diffusion
15,16

.  The oxides remain in the char layer, which adds an insulative effect.  This flame 

retardant is added in a relatively large amount (50 to 65%) compared to other types of additives.  By 
adding a significant amount of an inorganic flame retardant, the polymer becomes more brittle.  

Because this is an inorganic additive, inserting this material into the polymer system by 50 to 65 wt% 

of its original polymer reduces the available fuel within the condensed phase.  In addition to this 
effect, usually the additive has a higher heat capacity comparing to the base polymer and hence, the 

flame retarded polymers with these types of hydroxides require more energy to increase the 

temperature to its pyrolysis level. 

 

The experimental instruments used in this study were manufactured from TA Instruments: 

Thermogravimetric Analysis Q50 (TGA) and the Differential Scanning Calorimetry Q20 (DSC).  

Throughout this study, TGA and DSC were used for a non-isothermal test purposes and the tests were 

conducted in nitrogen and air environments to study pyrolysis and oxidation, respectively. Using the 

TGA, 4 different heating rates of 5°C/min., 20°C/min., 40°C/min. and 60°C/min. were applied to 
measure the mass loss history of each resin sample from 40°C to 800°C. For the DSC, a constant 

heating rate of 20°C/min. was used to measure the heat flow through the sample during the thermal 

decomposition of resins. Tests conducted with the DSC were from 40°C to 500°C where the 

maximum temperature is lower than that of TGA due to the limitation of the instrument.  A sample 

size of approximately 10 mg was used for each test in a standard aluminium pan with a punctured lid 

so that gases may evolve freely away from the pan. 



5 

 

RESULTS AND DISCUSSION 

 

To apply the kinetic modeling methodology discussed in the previous section, two types of 

thermoset resins used in fiber glass polymer (FRP) composites are selected, which are the modified 

acrylic resin (MA) without and with additives (α).  When modeling the thermal behavior of these 

resins, the unknown flame retardant additive (α) is considered to be a filler-type, inorganic, providing 

high-charring effect to the base polymer.  The additive percentage within the resin mixture is 61.9% 

by weight and it is assumed that the additive is well-mixed within the polymer allowing a uniform 

concentration of the additive in the samples.  The additive effect is modeled by comparing results 

from these two samples. 
 

Preliminary experiments are conducted as the first step in kinetic modeling and these are done to 

understand the factors that can contribute to kinetic behaviors of a material. Among various factors, 
the most consideration was given to the particle size effects because the particle size with respect to 

the sample mass is proportional to its surface area. Generally in most solid degradations the interface 

between the solid and the gas phase (i.e. sample surface) becomes important knowing that it provides 
active sites for degradation reactions to occur. The effect of different sample particle sizes on the TGA 

test results were determined by changing the surface area to mass ratio in each test.  In general, the 

modified acrylic resin (MA) showed insignificant changes with respect to changes made in the sample 

size.  However, when the resin with additive (MA+α) size was varied from 1 to 10 mg, the onset 

temperature for decomposition increased from 280⁰C to 310⁰C. Note that separate analysis was 

performed to ensure that sample mass in this range is small enough to eliminate any temperature 

gradient within the sample during each TGA test.  To account for this effect, the information 

regarding the sample size for MA+α was closely monitored and controlled so that the ratio of the 
interface area between the solid and gas phase to sample volume were similar for all other TGA tests.  

The effect of sample size to degradation kinetics observed in thermal decomposition of MA+α resin 

should be considered when conducting pyrolysis modeling with the kinetic information obtained from 
this study. 

 

The next step is to conduct the iso-conversional method to construct a set of elementary reactions for 

thermal decomposition that involves weight loss.  As shown in Figure 1, the activation energies 

calculated for the entire range of conversion (0.0 ≤ α ≤ 1.0) of modified acrylic resin with additive can 

be categorized into three sets: In the initial weight loss region where conversion ranges from 0.0 to 0.2, 

the estimated activation energy is relatively steady with respect to conversion.  Using a 95% 

confidence level, the estimated activation energy for this range is 155.5 ± 6.9 or 151.3 ± 3.8 kJ/mol 

when OFW’s or Friedmen’s methods are used, respectively.  By comparing the results from TGA and 

DSC tests of both samples – without and with additive in modified acrylic resin – this weight loss 
reaction is considered as additive degradation (see Figure 2 and Figure 3).  The test conducted in the 

TGA with a heating rate of 20 ⁰C/min shows that the onset temperature for the major thermal 

decomposition of the resin only sample is 341⁰C, which is 26⁰C higher than that of the resin with 

additive sample (315⁰C).  Before this onset temperature, there is less than 10% weight loss most 

likely due to the escape of impurities, unreacted monomers and non-fully cross-linked oligomers 

within the polymer resin.  The test conducted in the DSC with a heating rate of 20⁰C/min shows that 

the weight loss of resin with additive sample within this conversion region incorporates a significant 
endothermic heat flow, which is speculated to result from the degradation of a flame retardant additive 

knowing that typically this type of strong endotherm is a desired effect of a fire retardant additive.  

Therefore, in 0.0 ≤ α < 0.2 region, decomposition reaction for mostly additive is assumed, considering 

that the resin decomposition is minimal at this stage.  
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Figure 1: Estimated activation energy (left) and R
2
 values for the estimation (right) of modified 

acrylic resin with an inorganic high charring additive calculated via “iso-conversional” (model 

free) method 

 

 

 

Figure 2. TGA Non-isothermal experiment results with a constant heating rate of 20°C/min for 

temperatures ranging from ambient to 800°C: TGA and DTG of resin without and with 

additive tested in air (oxidative) and nitrogen (inert) environments.  Note that the results from 

testing resin only sample is scaled down to a maximum of 38.1% from 100% which is the weight 

percentage mixed within the resin with additive sample. 
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Figure 3.  DSC Non-isothermal experiment results with a constant heating rate of 20°C/min for 

temperatures ranging from ambient to 500°C: Heat flow results of resin without and with 

additive tested in air (oxidative) and nitrogen (inert) environments.  Note that baseline 

correction has not been applied to the results shown below. 

 

 
For 0.2 ≤ α < 0.4, the estimation for the activation energy increases as α increases meaning that the 

kinetics of decomposition are changing.  This can be an indication that there is an additional parallel 

reaction occurring
17

.  The results from TGA and DSC experiments conducted for samples without 
and with additive in modified acrylic resin allow one to consider the resin decomposition being 

responsible for the weight loss.  The temperature range of decomposition and the DTG maximum 

height (i.e. peak mass loss rate) observed in TGA tests on resin with additive sample are similar to 
those found from tests on the resin only sample.  Based on this comparison and assuming that the 

additive does not interfere with the polymerization process, the degradation reaction that allows the 

weight loss in this conversion region is modeled as the weight loss due to the modified acrylic resin 

degradation reaction only.  

 

As conversion increases above 0.4, the activation energy increases with a higher slope than the slope 

found in the previous region.  The change in the slope also suggests that the kinetics is changing in 

this region. Then the modified acrylic resin with additive sample stops losing its mass resulting in a 

residue of approximately 40 to 45% of its initial weight.  The TGA and DSC tests for the resin 
samples without and with additive in nitrogen and air environments suggest that the weight loss 

observed within this region is due to the resin char oxidation.  The resin only sample looses about 

15% or 25% of its initial weight in the temperature range found in this conversion region when tested 

in nitrogen (pyrolysis) or air (pyrolysis and oxidation), respectively.  Hence, it can be assumed that 

for this temperature range, resin only sample is involved in a minimum of two reactions – a pyrolysis 

reaction resulting in a 15% weight loss, which is the later part of the major decomposition step for the 

resin only sample discussed in the previous stage and oxidation reaction resulting in 10% more.  
Applying the weight percentage of the resin within the resin with additive sample, 38.1%, the resin 

with additive sample should lose roughly 6% and 4% of its mass from pyrolysis and oxidation of the 

resin, respectively.  Therefore, a total of 10% of resin with additive sample is due to the resin 
decomposition assuming that the thermal degradation behavior of the resin is similar whether the 

additive is mixed with the resin or not.  The resin with additive sample looses about 15% or 20% of 
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its initial weight in the same temperature range when tested in nitrogen (pyrolysis) and air (pyrolysis 
and oxidation), respectively.  Considering that the difference of 5% weight loss between the nitrogen 

and air test results is comparable to the 4% weight loss due to resin oxidation discussed earlier, no 

additional oxidation reaction is presumed for this conversion region.  The 15% weight loss observed 

in resin with additive sample tested in nitrogen (pyrolysis) indicate that in addition to the resin’s 

pyrolysis reaction resulting in 6% weight loss, there is approximately 9% decrease in sample mass.  

This 9% of mass loss can be described by analyzing the TGA and DTG graphs shown in Figure 2.  

As shown here, the peak temperature for the major decomposition DTG peak of the resin with 

additive sample is slightly greater than that of the resin only sample which suggests that the 9% of 

mass loss is due to the major decomposition of the resin from the previous stage extending to this 
conversion range.  Based on this analysis, a total of two reactions are modeled: pyrolysis (15% 

weight loss) and oxidation (4~5% weight loss) of the modified acrylic resin.  Therefore, the full 

degradation of the resin with additive is: 
 

( )gas1charresin cp,cp, νν −+→  (R1) 

( )gas1residueO char ro,ro,2 νν −+→+  (R2) 

( )gas1eadditivadditive ap,ap, ′′ −+′→ νν  (R3) 

 
Applying this degradation mechanism, the final step of conducting the model fitting method9 is shown 

where a kinetic model, f(α) (or g(α) in integrated form) is preselected to fit the TGA experiment data 

to find the kinetic parameters with the best fitness.  In this study, a model for a reaction order type 
kinetics, f(α) = (1- α)n is used primarily, considering that this model is typically used for many solid 

thermal degradations, as well as other types of models available for various solid state reactions7,8  

The weight loss with respect to each reaction is optimized based on the findings from conducting the 
iso-conversional method discussed above. The fitness of the model is compared by considering two 

factors: (1) the weight loss rate vs. temperature (DTG) shape and (2) the square of the Pearson 

product moment correlation coefficient, R
2
.  Applying a reaction order type kinetic model to conduct 

model fitting method, the estimation results of the kinetic parameters are summarized in Table 1 and 

the fitness between the actual DTG and the kinetic modeling is shown in Figure 4.   

 

Table 1: Kinetic parameters estimated from model fitting exercise using Genetic Algorithm 

(GA): Three steps nth order kinetic model 
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Figure 4. Kinetic modeling conducted for modified acrylic resin with inorganic additive: Kinetic 

Model 1 (KM1) – 3 step mechanism with nth order kinetic model; Kinetic Model 2 (KM2) – 3 

step mechanism with 2 nth order kinetic model for R1 and R2, and diffusion controlled model 

for R3.  For KM2 cases, the kinetic parameters and mass fractions for R1 and R2 have been 

adjusted differently for each heating rate case to give best-fit between the TGA experiment data 

and kinetic modeling results. 

 

 

 

 

Several findings are summarized as follows based on this model fitting exercise.  First, the reaction 

order type kinetic model can be used to fit the DTG data with some degree of satisfaction for all 

reactions (see R1, R2 and R3).  However, the estimated reaction order is high as 4.9 for R3 reaction.  

This indicates that the model is forced to fit the data knowing that the reaction order in this magnitude 

is rare to find in the literature.  Also, the DSC data confirms that the reaction order type model was 

inappropriate for R3 as well (see KM2 cases in Figure 3).  Although the model is giving high 
correlation coefficients between the data and modeling for R3 reaction, the DSC data show that R3 
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should exist from 200°C and end before 400°C where a strong endotherm is observed.  When the 
data is fit with a reaction order type kinetic model, the additive decomposition temperature range 

extends beyond 400°C, ending near 600°C.  

 

Second, the decomposition of the additive reaction is best described by a kinetic model that describes 

a diffusion controlled reaction (see Figure 4) among various other types of models investigated in this 

paper.  The model type is reasonable considering that the model simulates the weight loss to be slow 

initially with respect to temperature increase and decays relatively fast after the weight loss rate peak. 

This modeling becomes suitable for an additive decomposing within a resin polymer system resulting 

in a time delay due to the time necessary to degrade the polymer near the additive.  Consider the 
additive being mixed within the resin polymer.  For the additive to undergo a decomposition reaction, 

the degradation of the resin polymer should occur simultaneously because the additive is aggregated 

within the resin.  Having the additive decomposition temperature lower than that of the resin, the 
decomposition of the additive is delayed until the temperature is higher to allow the resin to 

decompose.  When this model is actually applied, it provides good estimate of the slow weight loss at 

the initial stage near 200°C and the temperature range for the entire reaction. Additionally, when this 
model is used, the modeling results for weight loss rate after 300°C matches well with the actual DTG 

data together with R1 reaction described with a reaction order type kinetic model. 

 

Third, although kinetic modeling has been conducted to give best fitness between the modeling and 

the DTG data obtained over various heating rates (5 to 60°C/min) assuming that the kinetics are 

identical irrespective of heating rates, changes in the kinetics over 4 heating rates have been noticed.  

At lower heating rates, the portion of the sample weight consumed via R2 (char oxidation) increases 

where at higher heating rates it decreases.  The ratio of weight loss due to R1 (resin pyrolysis) to R2 

(char oxidation) is 25:13 for 5°C/min DTG data and 30:8 for that of 60°C/min.  This can be 
explained by understanding that the resin pyrolysis and char oxidation reactions compete and the char 

oxidation reaction is controlled by oxygen diffusion from the ambient to the condense phase.  At a 

low heating rate, more time is available for oxygen diffusion with respect to temperature change 

allowing an increase in the weight loss due to oxidation (R2).  However, when the heating rate is 

higher, the conditions become the opposite and the pyrolysis reaction (R1) dominates. The fitness of 

the model to DTG data significantly increases when this effect is accounted for in the modeling (see 

Figure 4).  

 

 

CONCLUSION AND FUTURE WORK 

 

As a part of a property estimation exercise for pyrolysis modeling, a three step kinetic 

modeling methodology was introduced.  The first step is to conduct preliminary experiments to 
understand factors that contribute to a material’s kinetic behavior.  The second step is to apply the 

iso-conversional method to construct sets of elementary reactions which result in weight loss.  The 

last step is conducting a model fitting method to estimate the appropriate kinetic model as well as its 

kinetic parameters.  Two types of thermoset resins, modified acrylic resin (MA) degradation without 

and with additive (α), were considered as example materials for kinetic modeling.   

 

To conduct kinetic modeling, TGA and DSC experiments were performed on the resins at various 

heating rates ranging from 5 to 60°C/min.  Preliminary experiments on these resins showed that 
changes made in the sample sizes have an insignificant effect on the overall degradation of MA; 

however, the onset temperature of thermal decomposition of MA+α was influenced.  Using an iso-

conversional method, a three step mechanism was developed as a set of minimum number of 

elementary reactions required to describe the full degradation of MA+α – two reactions for polymer 

resin decomposition (R1 and R2) and one for decomposition of the additive (R3).  With a pre-

determined three step reaction mechanism, a model fitting method was use to find the kinetic 

parameters for each reactions.   
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By conducting the kinetic modeling exercise, the following observations were made: First, although 
the reaction order type kinetic model can be used to fit the three reactions of DTG with some degree 

of satisfaction, evidence (high reaction order value and the temperature range where a strong 

endotherm is observed in the DSC data) exists that the additive degradation reaction was forced to fit 

this kinetic model.  Second, the decomposition of the additive reaction is best described by a kinetic 

model that describes a diffusion controlled reaction.  Third, changes in the kinetics over 4 heating 

rates have been noticed where at lower heating rates, the portion of the sample weight consumed via 

R2 (char oxidation) increases and at higher heating rates it decreases.   

 

In this study, a simple method of conducting kinetic modeling for pyrolysis modeling is introduced 
and is applied to two types of thermoset polymer resins – modified acrylic resin without and with fire 

retardant additive.  In the future, this information will be used in pyrolysis modeling of FRPs and 

many challenging non-trivial questions regarding the extrapolation of non-dimensional kinetic 
analysis results to dimensional pyrolysis modeling will need to be answered.  Some of these 

questions are:  

� How should the effect of having different thermal decomposition temperatures with respect 
to TGA sample sizes be handled when conducting pyrolysis modeling?   

� What are the physics that are necessary in pyrolysis modeling to properly apply this kinetic 

information?   

� Should there be any modification to the kinetics when pyrolysis modeling is conducted 

considering that there is a significant change in the testing conditions from kinetic modeling 

where a sample is decomposing in a milligram scale to pyrolysis modeling where a sample is 

decomposing in a kilogram scale?  
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Abstract  

For the composites industry to “design for fire” 

more thorough understanding of how typical FRPs de-

compose under fire conditions is needed. The role 

played by the glass and the resin (and additives) for 

FRPs are keys to understanding their fire behavior. To 

that end, this study continues work presented at Compo-

sites 2009. The goal of this work is to evaluate the abil-

ity of a pyrolysis model and genetic algorithm (optimi-

zation routine) pairing to estimate properties of each 

component of the composite, resin and glass. As a part 

of the property estimation exercise, emphasis was given 

to estimating the thermal decomposition kinetic pa-

rameters of the modified acrylic resin in a simplified 

manner when an “unknown” flame retardant is included 

as an additive. When conducting the kinetic modeling, 

focus was on creating a procedure that only requires 

general information about the resin and its additive.  

The reason for this is that typically due to intellectual 

property concerns exact information on the resin and 

additive are unavailable. The composite pyrolysis ex-

perimental data used in this work was obtained from 

tests conducted on a bench scale fire test apparatus, 

Cone Calorimeter, with additional instrumentation to 

measure surface and internal temperatures of the sample 

and the flame heat flux. Mass loss data, temperature 

profiles with respect to time at different in-depth loca-

tions and heat flux from the flame to sample surface af-

ter ignition for boundary condition specification are 

used in the optimization process. The property estimation 

exercise is conducted on a flame retarded modified acryl-

ic FRP composite.  Thermal analysis data from thermo-

gravimetric analysis (TGA) and differential scanning 

(DSC) calorimetry of the resin with a high-charring 

flame retardant additive was used to model the decompo-

sition kinetics. With the approximated decomposition 

kinetics for the resin, simulation of pyrolysis tests of the 

composite slab in air was performed to estimate the un-

known thermophysical properties by genetic algorithm 

optimization.  A validation exercise using the estimated 

properties is then conducted on composites tested under 

different external heat fluxes impinging on the sample 

surface. The quality of the estimated properties is as-

sessed by comparing simulated results to experimental 

results from tests with different heat fluxes.  

1. Introduction 

For the composites industry, designing for a FRP 

that provides good fire characteristics becomes a guess 

and check operation in many cases.  Any changes made 

to the resin, glass, or the microstructure of the FRP affect 

the overall fire behavior of the FRP.  Traditionally, the 

effect of the changes made in the FRP is checked by 

conducting tests via standard fire tests, which can be 

time consuming and expensive.  Therefore, providing an 

understanding of how typical FRPs decompose under fire 

conditions and using this information to find an appro-

priate guideline for the composite industry to produce 

better fire-safe composites have been a long-term goal 

for this research.  To that end, this work follows the work 

presented at Composites 2009.   

In this study, an emphasis was given to estimating 

the thermal decomposition kinetic parameters of the 

modified acrylic resin in a simplified manner when an 

“unknown” flame retardant is included as an additive. 

When conducting the kinetic modeling, focus was on 

creating a procedure that only requires basic information 

about the resin and its additive such as the weight per-

centage of the additive within the polymer base, general 

description of the flame retardant effect of the additive 

on the overall fire performance of the polymer, existing 

content of a potential fuel within the additive, etc.  The 

reason for this is that typically due to intellectual proper-

ty concerns exact information on the resin and additive 

are unavailable for real world materials. 

To conduct property estimation and modeling, 

complete data sets of decomposition of flame retarded 

modified acrylic resin and its FRP composites are pre-

sented. Careful experiments were conducted using 

Thermogravimetric Analysis (TGA) and Differential 

Scanning Calorimetry (DSC) in order to study the ther-

mal decomposition kinetics of the modified acrylic resin 

with an inorganic high-charring additive.  Also, the FRP 

composites with a glass content of 41.6 wt% were tested 
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under a bench-scale fire test apparatus known as the 

Cone Calorimeter (ASTM E 1354 [1]) with additional 

instrumentations – thermocouples at various depths and 

total heat flux gauge to measure additional heat flux 

from the flame after ignition.  These were designed to 

generate data useful for computer modeling purposes.   

The model used in this study is a generalized py-

rolysis model developed by Lautenberger [2,3], which 

simulates the heating and decomposition of a chosen 

material.  Like with any other pyrolysis models, this 

model requires many input parameters found from ma-

terial properties, which include the pyrolysis kinetics 

(pre-exponential factor, activation energy, reaction or-

der), thermal properties (specific heat capacity, thermal 

conductivity), and radiative characteristics (surface 

emissivity, in-depth radiation absorption coefficient).  

Unfortunately, there are no standardized techniques to 

determine all of these properties via laboratory tests.  

Another way of estimating parameters is to use an op-

timization routine with a pyrolysis model in pair.  The 

current work applies Genetic Algorithm (GA) as an op-

timizing method coupled with Lautenberger’s pyrolysis 

model [2,3] to perform parameter estimation. 

In this paper, the following work is presented:  

Thermal analysis is conducted for kinetic modeling of 

the resin without and with the flame retardant additive, 

the decomposable element of the FRP. With the approx-

imated decomposition kinetics for the flame retarded 

resin, simulation of pyrolysis tests of the composite slab 

in air is performed to estimate the unknown thermo-

physical properties by GA optimization.  A validation 

exercise using the estimated properties is then conduct-

ed on composites tested under different external heat 

fluxes. The quality of the estimated properties is as-

sessed by comparing the simulated results to experi-

mental results.  

2. Modified Acrylic FRP Composite 

2.1. Modified acrylic thermoset resin and 

high-charring additive 

Modified acrylic resin (MA) is essentially unsatu-

rated polyester (UPE) with Methacrylic Acid (MMA) 

replacing most of the styrene monomers. Flame retard-

ed resin with MA is manufactured by adding a filler 

type inorganic additive (α) as an additive.  Typical inor-

ganic additives are hydrates such as alumina trihydrox-

ide (ATH) or magnesium hydroxide, antimony trioxide, 

borax, chalk, silica, etc [4].  Because this additive was 

known to give a high-charring effect, α was categorized 

with typical hydroxides used as flame retardant fillers.  

These hydroxides works as a flame retardant by result-

ing in an endothermic dehydration reaction that produc-

es oxides and water [5,6].  The water produced by this 

reaction vaporizes, which is an endothermic reaction, 

and the vapor dilutes the gaseous phase.  The oxides re-

main in the char layer, which adds an insulative effect.  

This flame retardant is added with a relatively large 

amount (50 to 65%) comparing to other types of addi-

tives.  By adding a significant amount of an inorganic 

flame retardant, the polymer becomes more brittle.  Be-

cause this is an inorganic additive, inserting this material 

into the polymer system by 50 to 65 wt% of its original 

polymer reduces the available fuel within the condensed 

phase.  In addition to this effect, usually the additive has 

a higher heat capacity comparing to the base polymer 

and hence, the flame retarded polymers with these types 

of hydroxides require more energy to increase the body 

temperature to its pyrolysis level. According to the prod-

uct description, this resin with the flame retardant addi-

tive is formulated to be Class I per ASTM E 84 [7] 

(flame spread index < 20 and smoke developed < 225).  

2.2. FRP composite description 

Composite panels were fabricated by hand lay-up 

for a relatively low glass content composite (41.6 wt% of 

glass, average thickness of 7~9 mm) using two different 

types of fiberglass mats that were wetted with resin.  The 

two types of fiberglass (E-glass) used in the composite 

are a chopped strand mat and a glass roving woven mat 

with an area density of 25 g/m
2
 and 880 g/m

2
, respective-

ly. The chopped strand mat is thinner and more porous 

than the woven mat. The laminate schedule (provided by 

the manufacturer) is chopped strand mat and roving al-

ternating three times with another chopped strand mat 

layer at the end. Visual inspection of a polished cross-

section of the composite slab is consistent with this lami-

nate schedule, but with polymer resin layers between 

each fiberglass layer. The chopped strand mat layer is 

difficult to identify in the cross section, perhaps because 

more resin is soaked into this layer than the roving layer. 

The roving layer is observed as a prominent glass layer 

possibly because the resin is absorbed only at the fiber-

glass layer surfaces leaving the interior with primarily 

glass.  The layered microstructure is determined to a res-

olution of 0.10 mm by inspecting a polished cross-

section of the composite under a microscope. Based on 

visual observation and comparison to global density of 

the composite sample, approximations of three distinct 

layers are proposed:  100% resin, 100% glass, and 50% 

resin/50% glass (see Figure 1). 

3. Experiment Apparatuses 

3.1. Thermogravimetric Analysis (TGA) and 

Differential Scanning Calorimetry (DSC) 

The instruments used in this study were manufac-

tured from TA Instruments: Thermogravimetric Analysis 

Q50 (TGA) and the Differential Scanning Calorimetry 

Q20 (DSC).  In this study, TGA and DSC were used for 

a non-isothermal test purposes and the tests were con-

ducted in nitrogen and air environments to study pyroly-
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sis and oxidation, respectively. Using the TGA, 4 dif-

ferent heating rates of 5, 20, 40 and 60°C/min were ap-

plied to measure the mass loss history of each resin 

sample from 40 to 800°C. For the DSC, a constant heat-

ing rate of 20°C/min was used to measure the heat flow 

through the sample during the thermal decomposition of 

resins. Tests conducted with the DSC were from 40 to 

500°C where the maximum temperature is lower than 

that of TGA due to the limitation of the instrument.  A 

sample amount of approximately 10 mg was used for 

each test in a standard aluminium pan with a punctured 

lid so that gases may evolve freely away from the pan. 

3.2. Cone Calorimeter 

Cone Calorimeter (Cone, ASTM E 1354 [1]) is a 

bench-scale fire test apparatus in which the sample is 

heated by an electrically heated rod in the shape of a 

cone.  The sample is tested by applying a constant ra-

diative heat flux set via temperature controller of the 

rod. The Cone exposes the sample in an ambient envi-

ronment which results in a natural flow field as the 

sample temperature increases allowing convective cool-

ing above the sample surface. The ignition source is an 

intermittent sparker. The Cone can be used to calculate 

useful engineering data such as oxygen consumption 

based heat release rate (based on the standard), mass 

loss rate, smoke yield and smoke extinction coefficient. 

The purpose of Cone testing was to generate good 

data sets appropriate for pyrolysis modeling and param-

eter estimation, and therefore several modifications 

were made to the standard testing procedure.  First, 

when testing the FRPs, a round insulated sample dish 

purposed by de Ris and Khan [8] was used instead of 

the standard specified, non-insulated square sample 

holder (see Figure 2). In this sample dish, the sample is 

surrounded by Cotronics® paper insulation on the back 

and sides to limit heat loss, which simplifies the pyroly-

sis modeling.  Second, 4 thermocouples were installed 

to measure temperature change of the sample at various 

depths: surface, 1/3, 2/3 and back face of the sample.  

The installation of thermocouples on the sample was 

consistent with the method introduced in Composites 

2009 paper [9]. Thermocouple holes were drilled at 1/3 

and 2/3 of the sample thickness with a 1.25 mm diame-

ter drill bits. Thermal grease (OmegaTherm Thermally 

Conductive Silicone Paste, Model OT-201, Omega En-

gineering) was inserted along with the thermocouples 

(Omega Precision Fine Wire Thermocouples, Model 

5TC-GG-K-30-36, Omega Engineering) to reduce the 

air gaps within the thermocouple holes.  The surface 

thermocouples were affixed via two types of methods: 

One method was to drill a thermocouple hole from the 

sample side and allow the hole to reach the surface.  A 

thermocouple insulated wire was inserted through the 

side and the bead was able to locate near the surface; 

hence, from the surface only the bead was visible.  Us-

ing this method, the center of the bead was located at 

the surface allowing top half to be exposed to ambient air 

and the lower half to sit within the sample.  A drop of 

thermal grease was applied to the bead to ensure good 

contact between the sample and the bead.  Another 

method was to crimp the thermocouple wire to allow the 

thermocouple bead to sit on the surface with a minimal 

amount of thermal grease applied at the bead.  These two 

methods were used due to the sample pyrolyzing from a 

relatively lower temperature around 200°C generating a 

significant amount of white smoke possibly due to addi-

tive degradation.  A conventional method of applying a 

high temperature adhesive (Resbond 907 Industrial 

Strength Fireproof Adhesive from Cotronics Corp.) was 

not utilized due to detach of thermocouple bead from the 

sample surface at an earlier times in the experiment.  The 

back face thermocouples were affixed with Krazy glue.   

The uncertainty in the mass loss rate data is esti-

mated via statistical approach, taking the standard devia-

tion (0.58 g/sm
2
) from the mean of a steady burning of 5 

identical PMMA tests conducted in a Cone Calorimeter
10

.  

The estimated uncertainty is 1.4 g/sm
2
, which is found by 

calculating the 95% confidence interval applying student 

t distribution with a sample size of 5.  The uncertainty in 

the thermocouple measurements was quantified by com-

paring back face temperature data from four identical 

FRP composite tests with unsaturated polyester resin 

conducted in the Fire Propagation Apparatus (FPA, 

ASTM E 2058 [11]), a bench-scale test apparatus similar 

to the Cone Calorimeter assuming that the polyester 

composites and the modified acrylic composites have 

similar characteristics.  Temperature measurement at the 

back face of the sample surface was chosen because the 

exact measurement location is known, i.e. the sample 

thickness.  Other temperature measurements made in 

various depths have a positional uncertainty of ± 0.625 

mm associated with the data.  This uncertainty is from 

the drill bit used to make holes for thermocouple installa-

tions, which had a thickness of 1.25 mm diameter.  Using 

the normalized time, time divided by sample thickness 

square, i.e., τ = time/δ2
 to remove the effect of different 

sample thicknesses when comparing, the maximum devi-

ation at various normalized times, up to the critical time, 

τc, was 16°C.  Assuming this is approximately equal to 

one standard deviation, applying student t distribution 

with a sample size of 4 and calculating the 95% confi-

dence interval becomes ±25.5°C, hence the magnitude 

becomes 51°C.  The critical time, τc, corresponds to the 

time when evenly spread flame on sample surface disap-

pearing when tested under air.  Test data presented in this 

parameter estimation exercise study is truncated at this 

critical time of 4 s/mm
2
 because the pyrolysis model is 

set up with a one-dimensional assumption, which may 

not be used when flames on the sample surface is not 

evenly distributed, typically where edge burning is dom-

inant.  These uncertainty values will be used to evaluate 

significant differences in the modeling results 
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4. Kinetic Modeling of Resin Degradation for 

Pyrolysis Modeling 

The purpose of conducting kinetic modeling in 

this study is to consider the thermal degradation kinetic 

behavior of a resin sample in milligram scale and ex-

trapolate that information to be used in modeling pyrol-

ysis of real world materials such as the FRPs in larger 

scales, i.e. those found in bench-scale or even full-scale 

tests.  One of the major focuses of the paper is at con-

structing kinetic models in a consistent manner with 

minimal information about the resins because for most 

of the real world materials that are commercially avail-

able details regarding the chemical structure of the base 

polymer, the fire retardant additives, etc. are rarely ac-

cessible to the modelers due to the information being 

proprietary to the manufacturer. The models are intend-

ed to be simplified but sophisticated enough to capture 

the characteristics of the materials such as the fire re-

tardancy via additives within a polymer matrix, envi-

ronmental effect, etc.   

To achieve this goal, a series of thermal analyses 

are conducted on commercial modified acrylic thermo-

set polymers with flame retardant additives used in fiber 

reinforced polymer (FRP) composites.  Experiments for 

thermal analysis are conducted using Thermogravimet-

ric Analysis (TGA) at various heating rates (5, 20, 40 

and 60°C/min) and Differential Scanning Calorimetry 

(DSC) at 20°C/min. These non-isothermal TGA exper-

imental results are used to conduct iso-conversional es-

timates of activation energy with respect to conversion 

without pre-determining the kinetic model using an Ar-

rhenius type expression for thermal degradation. Results 

are also used to determine the minimum number of re-

actions required in the kinetic model to describe the 

thermal degradation reactions based on actual weight 

loss. Then a model fitting method is used where various 

kinetic models are used to fit the TGA data to the model. 

Kinetic model with the best fitness provides insight to 

the mechanism of degradation and kinetic parameters 

other than the activation energy are estimated based on 

the model of choice.  The DSC experiments are con-

ducted to use the heat flow information to compare 

against the analysis results conducted by the TGA and 

to determine the heat of reaction for each reaction in-

volved in the thermal degradation process. 

5. Pyrolysis Modeling for Lumped (TGA) and 

Slab (Cone) Experiments 

The calculations reported here are conducted with 

a generalized pyrolysis model [2,3] that can be applied 

to a wide variety of condensed phase fuels.  The model 

simultaneously calculates the condensed phase mass 

conservation, gas phase mass conservation, condensed 

phase species conservation, and condensed phase ener-

gy conservation equations.  This model can be applied 

to both 0D and 1D systems and is therefore capable sim-

ulating both “lumped” (TGA) and “slab” (Cone Calorim-

eter/FPA) experiments. Extensive details are given in 

Ref. [2,3] so only a brief overview is given here. As-

sumptions inherent in the model, as applied in this paper, 

include: 

� Porosity can either be solved as a property of a spe-

cies (default) or directly.  When porosity is solved 

directly, it is derived from the condensed-phase 

mass conservation equation assuming no volume 

change (shrinkage or swelling)   

� When porosity is directly solved, the user-specified 

thermal conductivity and density are interpreted as 

those of a nonporous solid.  Therefore, the thermal 

conductivity and bulk density that appear in the 

condensed-phase energy conservation equation are 

( ) skk ψ−= 1 and
 

( ) sρψρ −= 1  respectively, where 

ψ is porosity and 
sk and 

sρ  
are the weighted ther-

mal conductivity and density of the solid assuming 

it is nonporous  

� Bulk thermal conductivity k  has a cut-off value of 

0.03W/mK which corresponds to air at 300 to 

400K  

� Specific heat is calculated with a weighted or aver-

aged quantity, i.e. ∑= ipip cXc as other solid 

properties – enthalpy, emissivity, radiation absorp-

tion coefficient, permeability, etc. 

� Specific heat capacity and effective thermal con-

ductivity vary by as ( ) ( ) kn

rTTkTk 0=  and

( ) ( ) cn

rTTcTc 0= , respectively, where Tr is a refer-

ence temperature 

� Radiation heat transfer across pores is accounted 

for by adding a contribution to the effective thermal 

conductivity that varies as γT
 3
, where γ is a fitting 

parameter 

� Averaged properties in conservation equations are 

calculated by appropriate mass or volume fraction 

weighting 

6. Results and Discussion 

6.1. Kinetic modeling for resin degradation 

To model the thermal behavior of the resin with an 

unknown flame retardant additive, two types of samples 

are prepared for thermal analysis – thermoset modified 

acrylic polymer resin without and with additives where 

the additive is known to be a filler-type, inorganic, and 
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providing high-charring effect to the base polymer.  The 

additive percentage within the resin mixture is 61.9% 

by weight and it is assumed that the additive is well-

mixed within the polymer allowing a uniform concen-

tration of the additive in the samples.  The additive ef-

fect is modeled by comparing results from these two 

samples. 

Typically in kinetic studies, the isothermal rate of 

degradation or conversion, dα/dt, is assumed to be a lin-

ear function of the temperature dependent rate constant, 

k(T), and a temperature independent function of the 

conversion, f(α), where α indicates the conversion.  This 

equation can be further expanded by using the Arrheni-

us expression for the rate constant.  Within the Arrheni-

us expression, two more reaction dependent constants 

are introduced: the pre-exponential constant, Z, and the 

activation energy, Ea.  The temperature independent 

function of the conversion, f(α) is dependent upon the 

mechanism of chemical reactions. 

( ) 







−=

RT

E
Zf

t

aexp
d

d
α

α  
(1) 

Substituting the linear heating rate tT dd=β  into 

Eq. (1) and taking the natural logarithm of both sides 

gives the following: 

( )
RT

EZf

T

a−







=

β
αα

ln
d

d
ln  

(2) 

The iso-conversional method, also known as the 

model-free method is used to find the minimum number 

of elementary reactions necessary to describe the global 

degradation kinetics of the resin.  This method uses data 

tested from different heating rates.  Knowing that at a 

constant conversion, α, dα/dt and f(α) become constants 

(see  Eq.(2)), the Ea is found without the pre-knowledge 

of the reaction mechanisms. The iso-conversional 

method will give constant activation energies, Ea, over 

the range of conversion of interest if the reaction is a 

single-step chemical reaction. If the activation energies, 

Ea, changes significantly with respect to different con-

versions, this is an indication for a more complex reac-

tion mechanism. 

In  

Figure 3, the results from two iso-conversional 

methods introduced by Ozawa, Flynn and Wall [12,13] 

(OFW, estimates–Ea/R by plotting ln(β) versus 1/T) and 

Friedmen [14,15] (plotting ln(dα/dT) versus 1/T to find 

–Ea/R) conducted on the modified acrylic resin with ad-

ditive are shown.  Both methods are used for compari-

son purposes.  The R
2
 values for each activation energy 

value are plotted as well using the least square method.  

The activation energy becomes more reliable as the r-

square values become closer to 1 where 
01 mm−=α .   

As shown in  

Figure 3, the activation energies calculated for the 

entire range of conversion (0.0 ≤ α ≤ 1.0) of modified 

acrylic resin with additive can be categorized into three 

sets: In the initial weight loss region where conversion 

ranges from 0.0 to 0.2, the estimated activation energy is 

relatively steady with respect to conversion.  Using a 95% 

confidence level, the estimated activation energy for this 

range is 155.5 ± 6.9 or 151.3 ± 3.8 kJ/mol when OFW’s 

or Friedmen’s method is used, respectively.  By compar-

ing the results from TGA and DSC tests of both samples 

– without and with additive in modified acrylic resin – 

this weight loss reaction is considered as the additive 

degradation (see Figure 4 and Figure 5).  The test con-

ducted in the TGA with a heating rate of 20 ⁰C/min 

shows that the onset temperature for the major thermal 

decomposition of the resin only sample is 341⁰C, which 

is 26⁰C higher than that of the resin with additive sample 

(315⁰C).  Before this onset temperature, there is less than 

10% weight loss most likely due to the escape of impuri-

ties, unreacted monomers and non-fully cross-linked oli-

gomers within the polymer resin.  The test conducted in 

the DSC with a heating rate of 20⁰C/min shows that the 

weight loss of resin with additive sample within this 

conversion region incorporates a significant endothermic 

heat flow, which is speculated as a result of a degrada-

tion of a flame retardant additive knowing that typically 

this type of strong endotherm is a desired effect of a fire 

retardant additive.  Therefore, in 0.0 ≤ α < 0.2 region, 

decomposition reaction for mostly additive is assumed, 

considering that the resin decomposition is minimal at 

this stage.  

For 0.2 ≤ α < 0.4, the estimation for the activation 

energy increases as α increases meaning that the kinetics 

of decomposition are changing.  This can be an indica-

tion that there is an additional parallel reaction occurring 

[16].  The results from TGA and DSC experiments con-

ducted for samples without and with additive in modified 

acrylic resin allow one to consider the resin decomposi-

tion being responsible for the weight loss.  The tempera-

ture range of decomposition and the DTG maximum 

height (i.e. peak mass loss rate) observed in TGA tests 

on resin with additive sample are similar to those found 

from tests on the resin only sample.  Based on this com-

parison and assuming that the additive does not interfere 

with the polymerization process, the degradation reaction 

that allows the weight loss in this conversion region is 

modeled as the weight loss due to the modified acrylic 

resin degradation reaction only.  

As conversion increases above 0.4, the activation 

energy increases with a higher slope than the slope found 

in the previous region.  The change in the slope also sug-

gests that the kinetics is changing in this region. Then the 

modified acrylic resin with additive sample stops losing 

its mass resulting in a residue of approximately 40 to 45% 
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of its initial weight.  The TGA and DSC tests for the 

resin samples without and with additive in nitrogen and 

air environments suggest that the weight loss observed 

within this region is due to the resin char oxidation.  

The resin only sample looses about 15% or 25% of its 

initial weight in the temperature range found in this 

conversion region when tested in nitrogen (pyrolysis) or 

air (pyrolysis and oxidation), respectively.  Hence, it 

can be assumed that for this temperature range, resin 

only sample is involved in a minimum of two reactions 

– a pyrolysis reaction resulting in a 15% weight loss, 

which is the later part of the major decomposition step 

for the resin only sample discussed in the previous stage 

and oxidation reaction resulting in 10% more.  Apply-

ing the weight percentage of the resin within the resin 

with additive sample, 38.1%, the resin with additive 

sample should lose roughly 6% and 4% of its mass from 

pyrolysis and oxidation of the resin, respectively.  

Therefore, a total of 10% of resin with additive sample 

is due to the resin decomposition assuming that the 

thermal degradation behavior of the resin is similar 

whether the additive is mixed with the resin or not.  The 

resin with additive sample looses about 15% or 20% of 

its initial weight in the same temperature range when 

tested in nitrogen (pyrolysis) and air (pyrolysis and oxi-

dation), respectively.  Considering that the difference of 

5% weight loss between the nitrogen and air test results 

is comparable to the 4% weight loss due to resin oxida-

tion discussed earlier, no additional oxidation reaction 

is presumed for this conversion region.  The 15% 

weight loss observed in resin with additive sample test-

ed in nitrogen (pyrolysis) indicate that in addition to the 

resin’s pyrolysis reaction resulting in 6% weight loss, 

there is approximately 9% decrease in sample mass.  

This 9% of mass loss can be described by analyzing the 

TGA and DTG graphs shown in Figure 4.  As shown 

here, the peak temperature for the major decomposition 

DTG peak of the resin with additive sample is slightly 

greater than that of the resin only sample which sug-

gests that the 9% of mass loss is due to the major de-

composition of the resin from the previous stage ex-

tending to this conversion range.  Based on this analysis, 

a total of two reactions are modeled: pyrolysis (15% 

weight loss) and oxidation (4~5% weight loss) of the 

modified acrylic resin.  Therefore, the full degradation 

of the resin with additive is: 

( )gas1charresin cp,cp, νν −+→  (R1) 

( )gas1residueO char ro,ro,2 νν −+→+  (R2) 

( )gas1eadditivadditive ap,ap, ′′ −+′→ νν
 (R3) 

Applying this degradation mechanism, a model fit-

ting method [17] is used where a kinetic model, f(α) (or 

g(α) in integrated form) is preselected to fit the TGA 

experiment data to find the kinetic parameters with the 

best fitness.  In this study, a model for a reaction order 

type kinetics, f(α) = (1- α)
n
 is used primarily, considering 

that this model is typically used for many solid thermal 

degradations, as well as other types of models available 

for various solid state reactions [18,19] (see Table 1).  

The weight loss with respect to each reaction is opti-

mized based on the findings from conducting the iso-

conversional method discussed above. The fitness of the 

model is compared by considering two factors: (1) the 

weight loss rate vs. temperature (DTG) shape and (2) the 

square of the Pearson product moment correlation coeffi-

cient, R
2
.  Applying a reaction order type kinetic model 

to conduct model fitting method, the estimation results of 

the kinetic parameters are summarized in Table 2 and the 

fitness between the actual DTG and the kinetic modeling 

is shown in Figure 6.   

Several findings are summarized as follows based 

on this model fitting exercise.  First, the reaction order 

type kinetic model can be used to fit the DTG data with 

some degree of satisfaction for all reactions (see R1, R2 

and R3).  However, the estimated reaction order is high 

as 4.9 for R3 reaction.  This indicates that the model is 

forced to fit the data knowing that the reaction order in 

this magnitude is rare to find in the literatures.  Also, the 

DSC data confirms that the reaction order type model 

was inappropriate for R3 as well (see Figure 5).  Alt-

hough the model is giving high correlation coefficients 

between the data and modeling for R3 reaction, the DSC 

data show that R3 should exist from 200°C and end be-

fore 400°C where a strong endotherm is observed.  When 

the data is fit with a reaction order type kinetic model, 

the additive decomposition temperature range extends 

beyond 400°C, ending near 600°C.  

Second, the decomposition of the additive reaction 

is best described by a kinetic model that describes a dif-

fusion controlled reaction (see Table 1, Jander’s type 

model and Figure 6) among various other types of model 

investigated in this paper.  The model type is reasonable 

considering that the model simulates the weight loss to 

be slow initially with respect to temperature increase and 

decays relatively fast after the weight loss rate peak. This 

modeling becomes suitable for an additive decomposing 

within a resin polymer system resulting in a time delay 

due to the time necessary to degrade the polymer near 

the additive.  Consider the additive being mixed within 

the resin polymer.  For the additive to undergo a decom-

position reaction, the degradation of the resin polymer 

should occur simultaneously because the additive is ag-

gregated within the resin.  Having the additive decompo-

sition temperature lower than that of the resin, the de-

composition of the additive is delayed until the tempera-

ture is higher to allow the resin to decompose.  When 

this model is actually applied, it provides good estimate 

of the slow weight loss at the initial stage near 200°C and 

the temperature range for the entire reaction. Additional-

ly, when this model is used, the modeling results for 

weight loss rate after 300°C matches well with the actual 
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DTG data together with R1 reaction described with a 

reaction order type kinetic model. 

Third, although kinetic modeling has been con-

ducted to give best fitness between the modeling and 

the DTG data obtained over various heating rates (5 to 

60°C/min) assuming that the kinetics are identical irre-

spective of heating rates, changes in the kinetic over 4 

heating rates have been noticed.  At lower heating rates, 

the portion of the sample weight consumed via R2 (char 

oxidation) increases where at higher heating rates it de-

creases.  The ratio of weight loss due to R1 (resin py-

rolysis) to R2 (char oxidation) is 25:13 for 5°C/min 

DTG data and 30:8 for that of 60°C/min.  This can be 

explained by understanding that the char oxidation reac-

tion is controlled by oxygen diffusion from the ambient 

to the condense phase.  At a low heating rate, more time 

is available for oxygen diffusion with respect to tem-

perature change allowing an increase in the weight loss 

due to oxidation (R2).  However, when the heating rate 

is higher, the conditions become the opposite and py-

rolysis reaction (R1) dominates. The fitness of the mod-

el to DTG data significantly increases when this effect 

is accounted for in the modeling (see Figure 6).  

6.2. Property estimation for modified acrylic 

FRP composite  

The property estimation for the modified acrylic 

composite is conducted by coupling a generalized py-

rolysis model for slab experiments developed by 

Lautenberger and the Genetic Algorithms (GA) for op-

timization routine [2,3].  GA was developed based on 

the mechanics of the Darwinian survival-of-the-fittest 

theory.  To ensure consistency between the conditions 

applied in the modeling and the Cone Calorimeter ex-

periments when conducting the parameter estimation, 

the data from the modified acrylic composite test (ex-

ternal heat flux level of 50kW/m
2
) was truncated when 

normalized time, time divided by sample thickness 

square, i.e., τ = time/δ2
 became approximately 4 s/mm

2
 

to account for the one-dimensional assumption used in 

the model (see section 3.2). 

Before conducting the optimization to estimate pa-

rameters required in the modeling, a global sensitivity 

analysis called Morris’ method, also known as the Ele-

mentary Effect method [20], has been applied to the 

given problem to identify the input parameters which 

are sensitive to model outputs – mass loss rate and tem-

perature measurement data.  Morris’ method is a simple 

OAT (one-at-a-time) sensitivity analysis that allows the 

model user to rank the factors from factors which have 

significant influence to model output to those that have 

negligible effect.  When conducting the analysis, the 

user must first decide the analysis domain for each input 

parameter by determining the minimum and maximum 

values for each input based on the user’s common sense.  

Then following a randomly selected sequence, each input 

is changed with some equal percentage of the entire 

range, i.e. the difference between the maximum and min-

imum, until the entire set of input parameters has been 

changed once.  Whenever an input is changed, the effect 

on the model output is determined by calculating the 

magnitude changes made in the output of interest such as 

the mass loss rate or the in-depth temperature at a certain 

time.  Evaluating the elementary effects for an input is 

conducted multiple times using multiple random se-

quences of input parameters for a given set.  At the end, 

the average and standard deviation of the effects are cal-

culated to categorize the input factors into three groups – 

factors that have 1) negligible effect (low average and 

standard deviation); 2) additive effects (high average) or; 

3) non-linear or interaction effects (high standard devia-

tion) on the simulation output. 

After identifying the necessary parameters for py-

rolysis modeling with a model of choice and selecting 

the significance level, Morris’ one-at-a-time (OAT) 

global sensitivity analysis is performed to identify the 

sensitive input parameters to model output of interest – 

surface temperatures at various times (τ = 1, 2, 3, 4 

s/mm
2
 and ignition) and mass loss rate at ignition, mass 

loss rate peak, time to mass loss rate peak, and the peak 

mass loss rate.  When conducting the analysis, the kinetic 

parameters were not included in this analysis, only the 

heats of reactions were.  4 difference randomized se-

quences were used (p = {0,1/3,2/3,1}) with an increment 

of 2/3 (Δ = p/[2(p-1)]) following the guide presented by 

Morris.  Therefore, 4 cases are simulated for each pa-

rameter (total of 32 parameters) which results in 4 ele-

mentary effects.  In Table 3, the domain of each variable 

is shown where KOZ is thermal conductivity, NKZ is 

temperature dependent term in the thermal conductivity, 

C0 is specific heat capacity, NC is temperature depend-

ent term in the specific heat capacity, EMIS is emissivity, 

GAMMA is the fitting parameter to address the effective 

thermal conductivity that varies with T
3
 to account for 

radiation heat transfer through pores, and DHV is heat of 

reaction. 

Examples of the results found from Morris’ method 

are shown in Figure 7.  The points in the figure stand for 

each input parameter tested in this sensitivity analysis.  

The points that are farther away from the origin in Figure 

7, whether due to higher average or standard deviation, 

are the inputs that are sensitive to input changes where 

the sensitivity is determined based on changes observed 

in the model outputs of interest listed above.  When con-

ducting the optimization to estimate input parameter val-

ues using GA routine, an effort was given to determine 

the minimum number of inputs required in the optimiza-

tion process to ensure a good match between the experi-

ment data (mass loss rate and temperature measurements) 

and the model simulation.  To determine the minimum 

number of input parameter set for good optimization, the 
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number of inputs involved in the optimization was in-

creased, starting from the most sensitive to the insensi-

tive, based on the sensitivity ranking found by Morris’ 

method.  According to this exercise, GA requires hav-

ing at least 19 parameters out of 32 to optimize, which 

were the following: KOZ (thermal conductivity) of res-

in, char and glass; NKZ (temperature dependent term in 

the thermal conductivity) of resin, additive and glass; 

C0 (specific heat capacity) of resin, additive and glass; 

NC (temperature dependent term in the specific heat 

capacity) of additive’ and glass; EMIS (emissivity) of 

char, additive’ and glass; GAMMA (fitting parameter 

for modeling radiation heat transfer through pores) of 

char, additive and additive’; and DHV (heat of reaction) 

of reactions R1 and R2.  The estimated values are re-

ported in Table 3.  This exercise demonstrated that a 

powerful optimization tool such as GA still do require 

some degree of freedom during optimization by allow-

ing at least 19 parameters to vary out of 32.  Additional-

ly, the optimization results improved significantly when 

most of the parameters related to fiberglass (thermal 

conductivity, temperature dependent term in the thermal 

conductivity, specific heat capacity, temperature de-

pendent term in the specific heat capacity, and emissivi-

ty) were included in the optimization process, but based 

on the sensitivity ranking, allowing GA to optimize for 

these values.  This can be an indication that glass prop-

erties used in the model are important in terms of 

providing good simulation for pyrolysis modeling this 

FRP composite.  Another finding was in general, 

matching all three stages of the mass loss rate and tem-

perature measurements at surfaces and in-depth – pre-

ignition, ignition and post-ignition stage – was chal-

lenging without allowing the temperature dependent 

terms in the thermal conductivity, NKZ and specific 

heat capacity, NC to be involved in the optimization 

process, allowing GA to vary those values to find the 

optimum   

Based on the GA parameter estimation, the opti-

mal simulations of mass loss rate and temperatures at 

various locations are shown in Figure 8.  This is for a 

Cone test of modified acrylic FRP composite conducted 

under 50kW/m
2
 heat flux.  As shown in the figure, the 

optimized parameter set allows the mass loss rate simu-

lation to predict the actual behavior with satisfaction in 

general, knowing that the uncertainty of the mass loss 

rate data is 1.4 g/s-m
2
.  The difference between the sim-

ulation and the experiment data becomes significant 

near the mass loss rate peak where the maximum differ-

ence is approximately 2 times the uncertainty.  This is 

possibly due to the uncertainty associated with the mi-

crostructure used in the model.  Comparing the model 

microstructure to that of the actual sample tested in the 

Cone, the simplified microstructure may have placed 

more resin near the surface where less is present in the 

actual sample.  By doing so, more resin is decomposed 

in the model near ignition time creating a greater mass 

loss rate peak than that found from the experiment. 

The surface temperature profile simulation with the 

same optimal parameters has a good agreement with the 

experiment data considering the uncertainty of the data, 

which is 51°C.  At later times (τ � 4 s/mm
2
), the back 

face temperature simulation diverges from the actual test 

data used in the optimization process and the difference 

becomes about 60°C increase which is 18% more than 

the experimental uncertainty of 51°C.  A possible expla-

nation for this difference is that in the actual experiment, 

there are more heat losses to the sides as time progresses 

although insulation was applied to minimize this effect. 

When modeling, these heat losses are not captured allow-

ing more heat energy to be conducted through the sample 

towards the back face and therefore resulting in higher 

back face temperatures at later times. 

6.3. Evaluation for estimated properties  

To evaluate the appropriateness of the property es-

timation, modeling of the same modified acrylic FRP 

composite tested at different heat flux levels – 25 and 75 

kW/m
2
 – are conducted.  The parameter estimation using 

the FRP composite Cone test data at an external heat flux 

of 50 kW/m
2
 is performed for the resin (i.e. a mixture of 

modified acrylic resin and flame retardant additive) and 

fiberglass in the previous section.  In theory, if the pa-

rameter estimation was conducted properly, one should 

be able to model a composite that is tested under differ-

ent heat flux levels using the estimation as an input to the 

pyrolysis model with degrees of satisfaction.  

In Figure 9, simulation results of mass loss rate and 

temperature profiles at surface and back face for pyroly-

sis modeilng of modified acrylic composite with inorgan-

ic additive irradiated at 25kW/m
2
 is compared with the 

experiment data.  The optimized parameter set provides 

good simulation results for modeling the mass loss rate.  

Note that the significant oscillations observed in the ear-

lier times of the mass loss rate data is an artifact caused 

by the Cone igniter. an electrical sparker, touching the 

sample holder which had affected the load cell reading 

when inserting the sparker in place before starting the 

experiment.  Additionally, there were numerous flash 

fires occurring in the test with the igniter in place before 

a “sustained” ignition of the sample was observed.  

These flash fires resulted in steady oscillations in the 

mass loss rate data with similar magnitude and frequency.  

When conducting the modeling, an additional heat flux 

from the flame of 20kW/m
2
 was added after the sus-

tained ignition time to model flaming condition, neglect-

ing the flash fires observed in pre-ignition time.  Consid-

ering these two factors, the simulated mass loss rate not 

being able to model the pre-ignition oscillations is ade-

quate and therefore the mass loss rate simulation is in a 

good agreement with the actual experiment data.   
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The surface temperature profile simulation is mod-

modeled with satisfaction in the pre-ignition times.  For 

the post-ignition times, the simulated surface tempera-

ture becomes significantly lower than the measurement 

considering the uncertainty of 51°C.  The maximum dif-

ference is about 70°C, which is 37% greater than the 

uncertainty.  A reasonable explanation for this differ-

ence can be given when considering the following: First, 

based on direct measurement of the flame heat flux to 

the sample surface and observation of the flame devel-

oping after ignition, it is known that nominally the 

flame requires several minutes to be fully developed for 

the FRP composite tested in this paper.  Second, the 

surface temperature is sensitive to the flame heat flux 

and follows the trend of the flame heat flux because the 

flame and the sample surface are in direct contact.  The 

surface temperature measurement showing an increase 

after ignition is due to the increasing flame heat flux.  

This is not resolved in the model where a constant heat 

flux of 20kW/m
2
 is applied additionally after ignition; 

hence, while the simulated temperature remains rela-

tively constant after ignition, the actual data shows an 

increase resulting in a difference greater than the uncer-

tainty at later times (τ � 10 s/mm
2
).  The back face 

temperature simulation is in a good agreement with the 

experiment data. 

 The simulation results of mass loss rate and tem-

perature profiles at surface and back face for pyrolysis 

modelng of modified acrylic composite with inorganic 

additive irradiated at 75kW/m
2
 is compared with the 

experiment data in Figure 10.  The mass loss rate simu-

lation using the optimized parameter set based on 

50kW/m
2
 test provided poor agreement (see baseline 

case in Figure 10).  However, it was found that im-

provements can be made to the mass loss rate simula-

tions based on numerical experiments which were con-

ducted with different microstructures where a slight var-

iation was given for the layers near the surface by re-

moving the resin with additive layers for a better repre-

sentation of the actual microstructure of the sample 

tested (see Modeling 1 and 2 cases in Figure 10). This 

approach was reasonable because the composites tested 

under 75 kW/m
2
 heat flux level had a sample thickness 

of 7.7 mm while the sample used for optimization had a 

thickness of 8.5 mm.  Note that because the samples 

were fabricated via hand layup method, variations in the 

order of a millimeter may be typical.   

The surface temperature simulation is significantly 

different from the experimental data.  Improvements 

were made to simulated surface temperature profiles 

when more fiberglass and less resin with additive layers 

were present.  This is because GA optimized conductiv-

ity of the fiberglass layer is much smaller than other 

solid phase species’ conductivities resulting in a steep 

temperature gradient near the surface as the glass con-

centration increases.  Considering this steep temperature 

gradient with the positional uncertainty of the surface 

thermocouple bead location, a maximum difference be-

tween modeling and experiment less than 150°C can be 

reasonable.  The back face temperature simulation result-

ed in a similar trend observed for modeling 50 kW/m
2
 

test case as discussed in the previous section.  As τ 

reaches 4 s/mm
2
, the back face temperature simulation 

diverges from the experiment data used for comparison.  

The difference becomes about 70°C increase which is 37% 

more than the temperature measurement uncertainty of 

51°C.  A possible reasoning for this difference can be 

found by considering the model not being able to capture 

heat losses to the sides because the model uses one-

dimensional setup and therefore resulting in more energy 

being transferred via conduction to the back face of the 

sample.  

7. Conclusions  

A property estimation exercise for pyrolysis model-

ing is conducted on modified acrylic with inorganic 

high-charring additive FRP composites.  To properly 

model the pyrolysis of the composite, kinetic modeling 

of the resin degradation, without and with additive, was 

performed using TGA and DSC experiment data on the 

resin.  Using an iso-conversional method (also known as 

model-free method), the minimum number of elementary 

reactions required to describe the full degradation mech-

anism was proposed – three step mechanism.  With a 

pre-known reaction mechanism, a model fitting method 

was use to find the kinetic parameters for each reactions.   

By conducting the kinetic modeling exercise, the 

following observations were made: First, although the 

reaction order type kinetic model can be used to fit the 

three reactions of DTG with some degree of satisfaction, 

evidence (high reaction order value and the temperature 

range where a strong endotherm is observed in the DSC 

data) exists that the additive degradation reaction was 

forced to fit this kinetic model.  Second, the decomposi-

tion of the additive reaction is best described by a kinetic 

model that describes a diffusion controlled reaction (see 

Table 1, Jander’s type model and Figure 6).  Third, 

changes in the kinetic over 4 heating rates have been no-

ticed where at lower heating rates, the portion of the 

sample weight consumed via R2 (char oxidation) in-

creases and at higher heating rates it decreases.   

The property estimation for the modified acrylic 

composite is conducted by coupling a generalized pyrol-

ysis model for slab experiments and the Genetic Algo-

rithms (GA) for optimization routine [2,3].  The data 

used for parameter optimization was from a Cone exper-

iment irradiated at 50kW/m
2
.  Before conducting the op-

timization to estimate parameters required in the model-

ing, a global sensitivity analysis called Morris’ method 

[20], was applied to identify input parameters which are 

sensitive to the model outputs of interest – mass loss rate 
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and temperature measurement data.  To determine the 

minimum number of input parameter set for good opti-

mization, inputs that were identified as sensitive based 

on the Morris’ method were allowed to vary to find an 

optimum value while the rest set as a constant.  From 

this exercise it was understood that a powerful optimi-

zation tool such as GA still do require a degree of free-

dom during its optimization by allowing at least 19 pa-

rameters to vary out of 32.  Additionally, the optimiza-

tion results improved significantly when most of the 

parameters related to fiberglass are included in the op-

timization process possibly indicating that the glass 

properties used in the model are important in terms of 

providing good simulation for pyrolysis modeling the 

FRP composite with modified acrylic resin with addi-

tive.  Another finding was that matching all three stages 

of the mass loss rate and temperature measurements at 

surfaces and in-depth – pre-ignition, ignition and post-

ignition stage – was challenging without allowing the 

temperature dependent terms (NKZ and NC) in the 

thermal conductivity and specific heat capacity vary 

during optimization process allowing GA to find the 

optimal values for those parameters.  When using the 

optimized parameter set found via GA optimization, the 

modeling of mass loss rate and temperature profiles at 

surface and back face locations were generally in a 

good agreement with the experiment data considering 

the uncertainties associated with the data.   

The estimated optimized parameter set was used to 

model Cone tests of the FRP composite with modified 

acrylic resin with additive conducted under 25 and 75 

kW/m
2
 heat fluxes.   In general, the simulated mass loss 

rate and temperature profiles at surface and back face in 

a good agreement for 25 kW/m
2
 test case but not for 75 

kW/m
2
 test case.  By conducting additional numerical 

experiments, it was concluded that the microstructure 

used in the simulation had a significant impact over de-

termining the quality of the modeling and therefore es-

timating a good representation of the microstructure of 

the sample should be accepted as an important task 

when conducting the parameter estimation for pyrolysis 

modeling.  

In this study, the work demonstrates the possibility 

of constructing a virtual experiment for composites us-

ing a bench-scale pyrolysis test and thermal analysis 

experiment data.  Kinetic modeling of modified acrylic 

with a fire retardant additive was conducted separately 

to estimate kinetic parameters.  Using a composite test-

ed at one heat flux level (50 kW/m
2
) and applying the 

kinetic modeling results for the decomposing resin with 

additive, an optimization of parameters was conducted 

and those estimations were used to model the same 

composite irradiated at different heat flux levels (25 and 

75 kW/m
2
).  The parameter estimation and modeling 

were in a good agreement with the experiment data rela-

tively.  However, it was understood that without a good 

representation of the microstructure, the simulation 

quality can become significantly poor.  Therefore, the 

importance of the sample microstructure used in the 

modeling was recognized.   
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Figures: 

 

Figure 1: Approximation of three distinct layers – 100 wt% resin (yellow), 50-50 wt% resin and glass 

(red), and 100 wt% glass – in composite microstructure: Modified acrylic FRP with inorganic high-

charring flame retardant additive 

 

 

Figure 2: Insulated Sample Holder Designed by de Ris and Khan [8] 

 

 

Figure 3: Estimated activation energy (left) and R
2
 values for the estimation (right) of modified acrylic 

resin with an inorganic high charring additive calculated via “iso-conversional” (model free) method 
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Figure 4. TGA Non-isothermal experiment results with a constant heating rate of 20°C/min for tempera-

tures ranging from ambient to 800°C: TGA and DTG of resin without and with additive tested in air (ox-

idative) and nitrogen (inert) environments.  Note that the results from testing resin only sample is scaled 

down to a maximum of 38.1% from 100% which is the weight percentage mixed within the resin with ad-

ditive sample. 

 

 

Figure 5.  DSC Non-isothermal experiment results with a constant heating rate of 20°C/min for tempera-

tures ranging from ambient to 500°C: Heat flow results of resin without and with additive tested in air 

(oxidative) and nitrogen (inert) environments.  Note that baseline correction has not been applied to the 

results shown above. 
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Figure 6. Kinetic modeling conducted for modified acrylic resin with inorganic additive: Kinetic Model 1 

(KM1) – 3 step mechanism with nth order kinetic model; Kinetic Model 2 (KM2) – 3 step mechanism with 

2 nth order kinetic model for R1 and R2, and diffusion controlled model for R3.  For KM2 cases, the ki-

netic parameters and mass fractions for R1 and R2 have been adjusted differently for each heating rate 

case to give best-fit between the TGA experiment data and kinetic modeling results. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800

M
LR

 (
%

/m
in

)

temp (⁰C)

KM1 - 5°C/min

5°C/min Data R1 KM R2 KM R3 KM Total KM

0

5

10

15

20

25

30

35

40

0 200 400 600 800

M
LR

 (
%

/m
in

)

temp (⁰C)

KM1 - 60 C/min

60°C/min Data R1 KM R2 KM R3 KM Total KM



COMPOSITES & POLYCON 2010 

4  

 

 

Figure 7. Morris sensitivity analysis applied to modeling of fiber reinforced polymer (FRP) composite:  

results are analyzed in terms of surface temperature at τ = 1 and 3 s/mm
2
 (top left and right) and mass 

loss rate at ignition and the peak mass loss rate (lower left and right). 
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Figure 8. Parameter estimation results via GA optimization for modified acrylic composite with inorganic 

additive irradiated at a heat flux level of 50kW/m
2
 – Comparison of experimental data and simulation are 

given for mass loss rate (left) and temperature profiles at sample surface and back face (right).  The thick 

lines are used to show modeling results and the points for experiment data. 

 

 

Figure 9. Pyrolysis modeling results of modified acrylic composite with inorganic additive irradiated at a 

heat flux level of 25kW/m
2
 using parameters estimated via GA optimization using experiment data con-

ducted at 50kW/m
2
 – Comparison of experimental data and simulation are given for mass loss rate (left) 

and temperature profiles at sample surface and back face (right).  The thick lines are used to show model-

ing results and the points for experiment data.  For simplification in the modeling, additional heat flux 

due to the flame was applied after ignition.  However, numerous flash fires had existed before a “sus-

tained” ignition, which explains significant oscillations observed in the earlier time in the mass loss rate 

data. 
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Figure 10. Pyrolysis modeling results of modified acrylic composite with inorganic additive irradiated at a 

heat flux level of 75kW/m
2
 using parameters estimated via GA optimization using experiment data con-

ducted at 50kW/m
2
 – Comparison of experimental data and simulation are given for mass loss rate (top) 

and temperature profiles at sample surface and back face (bottom).  The thick lines are used to show 

modeling results and the points for experiment data.  There are three cases for modeling – baseline, mod-

eling 1 and 2 – because a numerical experiment was conducted to show that removal of some resin layers 

near the surface in the microstructure can significantly improve mass loss rate simulations.  However, the 

changes made in the microstructure have insignificant effect on the temperature simulations. 
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Tables: 

Table 1. Kinetic Degradation Functions
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Table 2: Kinetic parameters estimated from model fitting exercise using Genetic Algorithm (GA): Three 

steps nth order kinetic model  

Reaction 
Z 

(s-1) 

Ea 

(kJ/mol) 

n 

(-) 

nO 

(-) 

R1 1.80E+14 207 1.30  

R2 7.20E+12 207 1.80 1.0 

R3 2.80E+11 152 4.90  
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Table 3: List of parameters necessary for simulating the FRP composite with their region of experimenta-

tion for Morris’ OAT sensitivity analysis bounded by the minimum and maximum of each parameter ex-

plored and their Genetic Algorithm (GA) optimized values.  There are 5 solid phase species and each have 

4 levels selected by the user and ∆ set as p/[2(p-1)] = 2/3.  The parameter values found via GA optimiza-

tion are noted in blue and the ones kept as constants are in black. 

No Var 

Species & 

HoRs SA Min SA Max Δ GA Optimized 

1 K0Z resin 0.05 0.35 0.20 0.27 

2 NKZ  0.00 1.00 0.67 0.65 

3 C0  500.00 2500.00 1333.33 695 

4 NC  0.00 1.00 0.67 0.00 

5 EMIS  0.60 1.00 0.27 0.80 

6 K0Z char 0.05 0.35 0.20 0.30 

7 NKZ  0.00 1.00 0.67 0.00 

8 C0  500.00 2500.00 1333.33 1500 

9 NC  0.00 1.00 0.67 0.0 

10 EMIS  0.60 1.00 0.27 0.87 

11 GAMMA  0.0001 0.0100 0.01 0.060 

12 K0Z additive 10.00 70.00 40.00 40.00 

13 NKZ  0.00 1.00 0.67 -0.48 

14 C0  500.00 2500.00 1333.33 846 

15 NC  0.00 1.00 0.67 0.00 

16 EMIS  0.60 1.00 0.27 0.80 

17 GAMMA  0.0001 0.0100 0.01 0.057 

18 K0Z additive’ 1.00 61.00 40.00 31.00 

19 NKZ  0.00 1.00 0.67 0.00 

20 C0  500.00 2500.00 1333.33 1500 

21 NC  0.00 1.00 0.67 -0.047 

22 EMIS  0.60 1.00 0.27 0.799 

23 GAMMA  0.0001 0.0100 0.01 0.047 

24 K0Z glass 0.10 1.00 0.60 0.09 

25 NKZ  0.00 1.00 0.67 -0.41 

26 C0  500.00 2500.00 1333.33 920 

27 NC  0.00 1.00 0.67 -0.27 

28 EMIS  0.60 1.00 0.27 0.75 

29 GAMMA  0.0001 0.0100 0.01 0.001 

30 DHV HoR1 100000 10000000 6600000 1.38 x 10
6
 

31 DHV HoR2 -10000000 -100000 6600000 3.67 x 10
5
 

32 DHV HoR1 3078900 3763100 456133 3.42 x 10
6
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ABSTRACT 

 

For the composites industry to “design for fire” more thorough understanding of how typical FRPs de-

compose under fire conditions is needed.  The role played by the glass and the resin (and additives) for 

FRPs are keys to understanding the fire behavior.  The goal of this work is to evaluate the ability of a py-

rolysis model and genetic algorithm (optimization routine) pairing to estimate properties of each compo-

nent of the composite, resin and glass.  The composite pyrolysis experimental data used in this work was 

obtained from tests conducted on a bench scale fire test apparatus, Fire Propagation Apparatus, with addi-

tional instrumentation to measure surface and internal temperatures of the sample.  Mass loss data and 

temperature profiles with respect to time at different in-depth locations are used in the optimization pro-

cess.  The property estimation exercise is conducted on a brominated, unsaturated polyester FRP compo-

site with low glass content.  Thermal analysis data from thermogravimetric analysis and differential scan-

ning calorimetry of the polyester resin in the composite was used to model the decomposition kinetics.  

With the approximated decomposition kinetics for the resin, simulation of pyrolysis tests (nitrogen envi-

ronment) of the composite slab was performed to estimate the unknown thermophysical properties by ge-

netic algorithm optimization.  A validation exercise using the estimated properties is then conducted on a 

composite with high glass content.  The quality of the estimated properties is assessed by comparing sim-

ulated results to experimental results for the high glass content sample. 

1. INTRODUCTION 

 

For the composites industry, designing for a FRP that provides good fire characteristics becomes 

a guess and check operation in many cases.  Any changes made to the resin, glass, or the microstructure 

of the FRP affect the overall fire behavior of the FRP.  Traditionally, the effect of the changes made in the 

FRP is checked by conducting tests via standard fire tests, which can be time consuming and expensive.  

Therefore, providing an understanding of how typical FRPs decompose under fire conditions and using 
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this information to find an appropriate guideline for the composite industry to produce better fire-safe 

composites have been a long-term goal for this research.   

In this study, complete data sets of decomposition of brominated, unsaturated polyester resin and its FRP 

composites with different glass contents are presented. Careful experiments were conducted using Ther-

mogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to study the ther-

mal decomposition kinetics of the polyester resin.  Also, the polyester FRPs with different glass contents 

– 33 wt% (1A) and 60 wt% (1C) – were tested under a modern bench-scale fire test apparatus known as 

Fire Propagation Apparatus (FPA, ASTM E 2058[1]) with additional instrumentation such as thermocou-

ples at various depths.  These tests were designed to generate data specifically useful for computer model-

ing purposes.   

The model used in this study is a generalized pyrolysis model developed by Lautenberger [2,3], which 

simulates the heating and decomposition of a chosen material.  Like with any other pyrolysis models, this 

model requires many input parameters found from material properties, which include the pyrolysis kinet-

ics (pre-exponential factor, activation energy, reaction order), thermal properties (specific heat capacity, 

thermal conductivity), and radiative characteristics (surface emissivity, in-depth radiation absorption coef-

ficient).  Unfortunately, there are no standardized techniques to determine all of these properties via la-

boratory tests.  Another way of estimating parameters is to use an optimization routine with a pyrolysis 

model in pair.   

The current work applies Genetic Algorithm as an optimizing method coupled with Lautenberger’s pyrol-

ysis model [2,3] to perform parameter estimation.  Using the experimental data of the polyester FRP with 

lower glass content (1A), an estimation exercise is conducted to find properties of the individual compo-

nents of the composite, i.e., resin and glass, where one is decomposable while the other is inert, respec-

tively.  The estimated parameters for these components are used to model the pyrolysis of the same poly-

ester FRP but with higher glass content (1C).  The simulated 1C mass loss rate (MLR) and temperatures 

(TC) will be compared to those of actual experiments to evaluate the appropriateness of the estimation.  

Additionally, the estimated properties will be compared to those found from the literature [4,5] to check 

how consistent the estimations are. 

2. PYROLYSIS OF FRP COMPOSITE 

 

2.1. FRP composite description 

The resin in this study is a commercially prepared unsaturated polyester resin with 20 wt% bromination 

for its fire retardancy built in to the carbon backbone.  Antimony trioxide is added, which acts as a syner-

gist that assists the flame retardancy of the polymer resin.  Among the various effects of adding antimony 

trioxide, the major role of this additive is reacting with the halogen such as bromine and removing the 

radicals that are essential for combustion chemical reactions to proceed.  This additive is also known to 

delay the escape of halogen from the flame, which increases its concentration and diluting effect [6].  The 

resin was catalyzed with methyl ethyl ketone peroxide (MEKP).  According to the product description, 

this resin is a low viscosity, thixed polyester resin formulated to be Class I per ASTM E 84 [7] (flame 

spread index < 25 and smoke developed < 450).  

Composite panels were fabricated by hand lay-up and vacuum bagging for low (33 wt% of glass, average 

thickness of 10 mm) and high (60 wt% of glass, average thickness of 6 ~7 mm) glass content composites, 

respectively, using two different types of fiberglass mats that were wetted with resin.  The two types of 

fiberglass (E-glass) used in the composite are a chopped strand mat and a glass roving woven mat with an 

area density of 25 g/m
2
 and 880 g/m

2
, respectively.  The chopped strand mat is thinner and more porous 

than the woven mat. The laminate schedule (provided by the manufacturer) is chopped strand mat and 

roving alternating five times for 1A and eight times for 1C with another chopped strand mat layer at the 
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end.  Visual inspection of a polished cross-section of the composite slab is consistent with this laminate 

schedule, but with polymer resin layers between each fiberglass layer.  The chopped strand mat layer is 

difficult to identify in the cross section, perhaps because more resin is soaked into this layer than the rov-

ing layer.  The roving layer is observed as a prominent glass layer possibly because the resin is absorbed 

only at the fiberglass layer surfaces leaving the interior with primarily glass. 

The layered microstructure is determined to a resolution of 0.10 mm and 0.06 ~ 0.07 mm for 1A and 1C, 

respectively by inspecting a polished cross-section of the composite under a microscope.  Based on visual 

observation and comparison to global density of the composite sample, approximations of three distinct 

layers are proposed:  100% resin, 100% glass, and 50% resin/50% glass. The microstructure is shown 

schematically in Figure 1.  The lightest “box” represents 100% resin, the medium darkness box represents 

50% resin/50% glass, and the darkest box represents 100% glass.  Each box has a thickness of 1% of each 

sample’s average thickness. 

Figure 1: Approximation of three distinct layers – 100 wt% resin (yellow), 50-50 wt% resin and 

glass (red), and 100 wt% glass – in composite microstructure: Unsaturated polyester FRP with low 

glass content (1A, 33 wt% of glass, top) and with high glass content (1C, 60 wt% of glass, bottom)  

 

 
 

 
2.2. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) 

The instruments used in this study were manufactured from PerkinElmer: Thermogravimetric Analysis 7 

(TGA7) and the Differential Scanning Calorimetry 7 (DSC7).  Throughout this study, TGA and DSC 

were used for a non-isothermal test purposes and the tests were conducted in a nitrogen environment.  Us-

ing TGA7, 4 different heating rates of 5°C/min., 10°C/min., 30°C/min. and 50°C/min. were applied to 

measure the mass loss history of each resin sample.  For each test, a sample amount of 7.5 mg ~ 10.5 mg 

was used.  TGA7 was calibrated using 4 different standard reference materials over the temperature range 

of ambient to 850°C: Alumel, Nickel, Perkalloy and Iron.  Each reference was checked for its magnetic 

transition temperatures, which should be within +/- 5°C of its reported values.  For DSC7, constant heat-

ing rates of 10°C/min., 30°C/min., 50°C/min. and 70°C/min. were used to measure the heat flow through 

the sample during its thermal decomposition.  A sample amount of 7.5 ~ 9.5 mg was used for each test.  

This instrument was calibrated using the standard indium and zinc references for a temperature range of 

ambient to the maximum temperature available from the instrument, 500°C.  The melting points of these 

references were checked to be within +/- 10% of its reported values.  The enthalpy check was performed 

using indium.  The heat of fusion for indium was calibrated to be within 10% of its reference value.  A 

simple baseline subtraction was conducted to eliminate the unnecessary curvatures within the heat flow 

curve. 

2.3. Fire Propagation Apparatus (FPA) 

The Fire Propagation Apparatus (FPA, ASTM E 2058[1]) is a bench-scale fire test apparatus where four 

radiant lamps are used to heat the samples.  In the FPA the samples can be tested in a controlled atmos-

phere (from nitrogen to 40% enhanced oxygen condition) using a long quartz tube.  Performing tests on 

the FPA can deliver useful engineering data such as carbon dioxide generation based heat release rate 

(based on the standard), mass loss rate, smoke yield and smoke extinction coefficient.  The purpose of 

FPA testing was to generate good data sets appropriate for pyrolysis modelling and parameter estimation, 

and therefore several modifications were made to the standard testing procedure.  First, when testing the 

polyester FRPs, an insulated sample dish proposed by de Ris and Khan [8] was used instead of the stand-
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ard specified, non-insulated aluminium dish.  Second, 4 thermocouples were installed to measure temper-

ature change of the sample at various depths: surface, 1/3, 2/3 and back face of the sample.  The installa-

tion of thermocouples on the sample was consistent with the method introduced in Avila’s work [4].  

Third, carbon black was applied on the sample surface to allow radiation to be absorbed on the surface of 

the sample.  This approach was taken because the samples (1A and 1C) were somewhat transparent and 

when tested in the FPA, in-depth absorption of radiation occurred. To incorporate in-depth absorption of 

radiation into the model requires more parameters than assuming only surface absorption.  Therefore, to 

minimize the number of parameters that need to be optimized, carbon black was used which, should allow 

surface radiation absorption only.  All of the tests were conducted under nitrogen to eliminate the effect of 

oxidation in the resin degradation kinetics and flame.  Limiting the environment to only nitrogen allowed 

for more simplified kinetics modeling for the resin degradation as well as the pyrolysis modeling of the 

composite. 

The uncertainty for the mass loss rate (MLR) and thermocouple measurements were determined via statis-

tical analysis performed on data from tests with identical conditions.  All uncertainties listed in this study 

are full scale (as opposed to ± half scale).  The uncertainty of MLR for the FPA was determined as 

17mg/s (2.4g/sm
2
) by comparing three PMMA tests performed at 50kW/m

2
 based on the standard which 

calls for three identical tests to be performed to correctly determine other properties [9]. The uncertainty 

in the thermocouple measurements was quantified by comparing back face temperature data from four 

identical 1C tests in the FPA.  Temperature measurement at the back face of the sample surface was cho-

sen because the exact measurement location is known, i.e. the sample thickness.  Other temperature 

measurements made in various depths have a positional uncertainty of ± 0.625 mm associated with the 

data.  This uncertainty is from the drill bit used to make holes for thermocouple installations, which had a 

thickness of 1.25mm diameter.  Using the normalized time, time divided by sample thickness square, i.e., 

τ = time/δ2
 to remove the effect of different sample thicknesses when comparing, the maximum deviation 

at various normalized times, up to the critical time, τc, was 16°C.  The critical time, τc, corresponds to the 

time when evenly spread flames on the sample surface disappear when tested under air.  Test data pre-

sented in this parameter estimation exercise study is truncated at this critical time of 4 s/mm
2
 because the 

pyrolysis model is set up with a one-dimensional assumption, which may not be used when flames on the 

sample surface are not evenly distributed, typically where edge burning is dominant.  These uncertainty 

values will be used to evaluate significant differences in the modeling results. 

3. PYROLYSIS MODELING FOR LUMPED (TGA) AND SLAB (CONE/ FPA) EXPERIMENTS 

 

The calculations reported here are conducted with a generalized pyrolysis model [2,3] that can be 

applied to a wide variety of condensed phase fuels.  The model simultaneously calculates the condensed 

phase mass conservation, gas phase mass conservation, condensed phase species conservation, and con-

densed phase energy conservation equations.  This model can be applied to both 0D and 1D systems and 

is therefore capable simulating both “lumped” (thermogravimetric) and “slab” (Cone Calorimeter/FPA) 

experiments. Extensive details are given in the following references – 2,3 – so only a brief overview is 

given here. Assumptions inherent in the model, as applied in this paper, include: 

� Porosity can either be solved as a property of a species (default) or directly.  When porosity is 

solved directly, it is derived from the condensed-phase mass conservation equation assuming no 

volume change (shrinkage or swelling).   

� When porosity is directly solved, the user-specified thermal conductivity and density are inter-

preted as those of a nonporous solid.  Therefore, the thermal conductivity that appears in the con-

densed-phase energy conservation equation is ( ) skk ψ−= 1 where ψ is porosity and 
sk is the 

weighted thermal conductivity of the solid assuming it is nonporous. Similarly, with this formula-
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tion, the bulk density is calculated as ( ) sρψρ −= 1  where 
sρ is the weighted density of the solid as-

suming it is nonporous. 

� Bulk thermal conductivity k  has a cut-off value of 0.03W/mK which corresponds to air at 300 

to 400K.  

� Specific heat is calculated with a weighted or averaged quantity, i.e. ∑= ipip cXc as other solid 

properties – enthalpy, emissivity, radiation absorption coefficient, permeability, etc. 

� Specific heat capacity and effective thermal conductivity vary by as ( ) ( ) kn

rTTkTk 0=  

and ( ) ( ) cn

rTTcTc 0= , respectively, where Tr is a reference temperature. 

� Radiation heat transfer across pores is accounted for by adding a contribution to the effective 

thermal conductivity that varies as γT
 3
, where γ is a fitting parameter 

� Averaged properties in conservation equations are calculated by appropriate mass or volume 

fraction weighting 

� All gases escape to the exterior ambient with no resistance to heat or mass transfer 

� Negligible heat transfer between the gas phase and the condensed phase inside the decomposing 

solid  

� There is no net shrinkage (volume change) due to reactions or bulk density changes 

 

4. RESULTS AND DISCUSSION 

 

4.1. Kinetics of resin degradation 

Typically in kinetic studies, the isothermal rate of degradation or conversion, dα/dt, is assumed to be a 

linear function of the temperature dependent rate constant, k(T), and a temperature independent function 

of the conversion, f(α), where α indicates the conversion.  This equation can be further expanded by using 

the Arrhenius expression for the rate constant.  Within the Arrhenius expression, two more reaction de-

pendent constants are introduced: the pre-exponential constant, Z, and the activation energy, Ea.  The 

temperature independent function of the conversion, f(α) is dependent upon the mechanism of chemical 

reactions. 

( ) 






−=

RT

aE
Zf

t
exp

d

d
α

α

 
(1) 

 
The iso-conversional method, also known as the model-free method is used to find the minimum number 

of elementary reactions necessary to describe the global degradation kinetics of the resin.  This method 

uses data tested from different heating rates.  Knowing that at a constant conversion, α, dα/dt and f(α) be-

come constants.  With these terms remaining as constants, the Ea is found without the pre-knowledge of 

the reaction mechanisms. The iso-conversional method will give constant activation energies, Ea, over the 

range of conversion of interest if the reaction is a single-step chemical reaction. If the activation energies, 

Ea, changes significantly with respect to different conversions, this is an indication for a more complex 

reaction mechanism.  
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Figure 2: Estimated activation energy of unsaturated brominated polyester resin calculated via 

“isoconversional” (model free) method 
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In Figure 2, the results from two iso-conversional methods introduced by Ozawa, Flynn and Wall [10,11] 

(OFW, finding a constant slope of –Ea/R by plotting ln(β) versus 1/T) and Friedmen [12,13] (plotting 

ln(dα/dT) versus 1/T to find the slope of –Ea/R) conducted on the polyester resin are shown.  Both meth-

ods are used for comparison purposes.  The r-square values for each activation energy value are plotted as 

well using least square method.  The activation energy becomes more reliable as the r-square values be-

come closer to 1.  The conversion is calculated as α =1-m/m0.  As shown in Figure 2, the estimated activa-

tion energy ranges from 70 ~ 145 kJ/mol in 0 < α < 0.20, relatively steady around 120 ~ 145 kJ/mol in 

0.20 < α < 0.93 and 145 kJ/mol and above in 0.93 < α < 1.0.  Based on this result, one can approximate a 

minimum of three elementary reactions to model the full degradation over 0 < α < 0.97 range. 

 

( )gas1beta_resinresin brbr νν −+→  (2) 

( )gas1charbeta_resin cc νν −+→  (3) 

( )gas1residuechar rr νν −+→  (4) 

 
The proposed mechanism is consistent with previous research [14,15,16] conducted for unsaturated poly-

ester thermoset resins. In addition to this three step mechanism, a single step degradation mechanism of 

resin becoming char and releasing fuel gas (93% weight loss) is modeled and compared to evaluate the 

necessity of multiple reaction steps.  Applying these degradation mechanisms, a model fitting method 

[17] is used where f(α) is preselected to fit the TGA experiment data to find the kinetic parameters with 

the best fitness.  In this study, a conversion function f(α) = (1- α)
n
 is used, which is typically applied for 

phase boundary reactions.  The data fitting software used in this study is Genetic Algorithm (GA) coupled 

with the pyrolysis model for lumped experiments explained in the previous section.  The GA was devel-

oped based on the mechanics of the Darwinian survival-of-the-fittest theory [2,3,18].   
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Table 1: Kinetic parameters estimated from model fitting exercise using Genetic Algorithm (GA): 

Three step nth order kinetic model and single step nth order kinetic model 

Kinetics 
Z1 
(/s) 

Ea1 
(kJ/mol) 

n1 
(-) 

Z2 
(/s) 

Ea2 
(kJ/mol) 

n2 
(-) 

Z3 
(/s) 

Ea3 
(kJ/mol) 

n3 
(-) 

3 step n
th
 

order 
3.42×10

2
 56.1 1.03 3.55×10

11
 174.1 0.80 1.75×10

6
 127.6 2.64 

Single step 
n

th
 order 

   4.92×10
9
 151.4 0.90    

 

The results found from the model fitting exercise are summarized in Table 1 and plotted in Figure 3.  As 

shown in Figure 3, using three steps when modeling the resin degradation gives better fitness of the esti-

mated mass loss rate to the actual TGA experiment data.  When three steps are used instead of one, the 

initial mass loss that starts from 200°C is captured while the temperature needs to increase up to 300°C to 

initiate any mass loss when using one step reaction (see Figure 3).  In addition to the earlier stage of deg-

radation, better fitness is shown after 400 °C for the three step reaction case than that of one step where 

mass loss rate is expected to rapidly decrease.  The total mass loss rate peak observed in ~400°C range 

spreads over a wider temperature range when a single step reaction is used for resin degradation.  This is 

due to the unresolved initial mass loss when using the single step reaction.  An additional mass loss is 

given at the end of the major mass loss peak after 400°C to compensate for the initial mass loss which 

should have existed before 200°C.  However, these differences in mass loss rate found from applying two 

resin decomposition mechanisms – three steps vs. single – are subtle.  

Figure 3: Kinetic parameters estimated for brominated, unsaturated polyester resin: 3 step mecha-

nism with n
th
 order kinetic model (a) and one step mechanism with n

th
 order kinetic model (b) 

            
 

 
4.2. Property estimation for FRP composite: Polyester composite with low glass content (1A) 

The property estimation for the polyester composite is conducted by coupling a generalized pyrolysis 

model for slab experiments developed by Lautenberger and the Genetic Algorithms (GA) for optimization 

routine [2,3,18].  To reduce the number of parameters to estimate, the FPA experiments for the polyester 

composite with low glass content, 1A were conducted with certain approaches.  For example, carbon 

black powder was applied on top of the sample surface to eliminate in-depth absorption of radiation.  FPA 

tests were conducted under nitrogen environment to exclude the effect of oxidative decomposition of the 

resin and flame.  Experimental data used in the estimation exercise was truncated when normalized time, 

time divided by sample thickness square, i.e., τ = time/δ2
 became approximately 4 s/mm

2
.  This time is 

noted as the critical time, τc, for a typical 1A sample when the pyrolysis can no longer be simplified as a 

one-dimensional problem.  The critical time, τc, is identified as time of evenly spread flame on the sample 
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surface disappearing when tested under air, where edge burning is dominant.  Additionally, for further 

simplification of the problem when modeling, the backface temperature measurement was used as a 

boundary condition for the condensed phase.   

The parameter estimation exercise was conducted for the following two cases: (1) GA1 where the hetero-

geneous microstructure was incorporated and the three step mechanism for resin decomposition was used; 

(2) GA2 where a single layer was constructed as a homogeneous structure based on resin and glass weight 

proportion within the composite and the three step mechanism for resin decomposition was used. For both 

cases, the same set of parameters is optimized, which are listed in Table 2 along with the estimation re-

sults.  These parameters were introduced in Section 3 where a brief description of the pyrolysis model 

used in this study [2,3] is given.  The kinetic parameters for resin degradation were pre-determined as de-

scribed in the previous section.  However, the heats of reaction for the three elementary reactions were 

estimated through parameter estimation exercise as other thermophysical properties, but with its searcha-

ble range for optimization set based on Differential Scanning Calorimeter (DSC) experiment results on 

the polyester resin.  Note that the heat of reactions were proportioned to reflect the kinetic modeling, i.e. 

the first, second and third reactions consumes 20%, 73% and 8% of the total enthalpy, respectively, which 

is identical to the resin weight loss percentages in each reaction step.  The total number of parameters 

found via optimization was 29 including the heat of reactions.   

Table 2: Optimized thermophysical properties from 1A with heterogeneous assumption.  For each 

material (resin, beta-resin, char, residue and glass) conductivity (k0), conductivity temperature de-

pendency (nk), heat capacity (c0), heat capacity temperature dependency (nc), emissivity (εεεε) and the 
fitting parameter for radiation heat transfer across pores (γγγγ) are estimated.  Additionally, heat of 

reaction (∆H) for three resin decomposition kinetic is estimated. 

 

Species 
ρ0 k0 nk c0 nc ε γ 

(kg/m
3
) (W/m-K) (-) (J/kg-K) (-) (-) (m) 

Resin 

GA1 

1350 

0.304 0.082 1185 0.093 0.964 0.0000 

GA2 0.261 0.099 1237 0.206 0.969 0.0000 

GA1-GA2/GA1 14.1% 19.9% 4.4% 120.6% 0.6% 0.0% 

Beta 
resin 

GA1 

1080 

0.317 0.080 1260 0.094 0.973 0.0000 

GA2 0.274 0.087 1318 0.207 0.965 0.0000 

GA1-GA2/GA1 13.5% 9.1% 4.6% 119.5% 0.8% 0.0% 

Char 

GA1 

95 

0.163 0.326 1111 0.464 0.990 0.0046 

GA2 0.169 0.237 1029 0.246 0.991 0.0034 

GA1-GA2/GA1 3.4% 27.4% 7.4% 46.9% 0.1% 0.0% 

Resi-
due 

GA1 

41 

0.168 0.333 1061 0.481 0.985 0.0046 

GA2 0.176 0.236 956 0.247 0.980 0.0036 

GA1-GA2/GA1 4.6% 29.1% 9.9% 48.7% 0.4% 0.0% 

Glass 

GA1 

2600 

0.064 0.328 1069 0.249 0.981 0.0034 

GA2 0.113 0.218 1072 0.194 0.982 0.0050 

GA1-GA2/GA1 74.9% 33.4% 0.2% 22.3% 0.1% 0.0% 

Heat of reaction ∆H (J/kg) 

Degradation Reactions GA1 GA2 
GA1-

GA2/GA1 

( )gas1beta_resinresin brbr νν −+→  3.1E+04 2.2E+04 29.9% 

( )gas1charbeta_resin cc νν −+→  1.1E+05 8.0E+04 29.9% 

( )gas1residuechar rr νν −+→  1.1E+04 8.0E+03 29.9% 
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In Table 2, the estimation of GA1 and GA2 are compared to show how consistent the estimations are.  It 

shows that most of the estimated values of GA2 have a difference of less than 30% when compared to 

those of GA1, which allows constructing some level of confidence in the optimizing capability of the Ge-

netic Algorithms.  Although the comparison has been made for individual parameter estimations and 

shows results from GA1 and GA2 are somewhat consistent, one should take into account that the Genetic 

Algorithm optimizes for a group of these individual estimations that gives the best fit to the mass loss rate 

and temperature data measured at four locations.  When compared in groups, typically it shows that a 

change occurring in one parameter is compensated by a change found from the other.  Hence, comparing 

the pyrolysis modeling results using the estimations from two different set-ups (GA1 and GA2) in groups 

should present a better sense of optimization consistency.  Accounting for the uncertainties associated 

with the experiments (17mg/s and 16°C for mass loss rate and temperature measurements, respectively), 

the property estimations with GA1 and GA2 baselines were nominally equivalent.  This demonstrates that 

there is consistency in the estimation for both baselines.  Because the two baselines produce similar re-

sults, only GA1 is used as a baseline for the pyrolysis modeling study discussed in the next section.  

Using the estimated properties found from this study, four cases (as summarized in Table 3) for 1A (sam-

ple with low glass content) are modeled to check the fitness of the optimization and compare cases with 

various modeling conditions.  Note that only the results from GA1 are plotted (see Figure 4) in this paper 

considering that those from GA1 and GA2 are significantly similar.  These cases are constructed based on 

applying different assumptions for the microstructure of the composite (heterogeneous or homogeneous) 

and degradation mechanism (3 step or single).  For every case, the pyrolysis modeling results of mass loss 

rate and temperatures from surface, 1/3, 2/3 of sample thickness from surface, and backface are plotted 

with the actual experimental data.  The parameter estimations from GA1 set-up should give the best fit for 

case 1 because the optimization was performed based on the corresponding condition.   

Table 3: Testing matrix for parameter estimation of 1A and pyrolysis modeling of 1C – GA1 (case 

1: heterogeneous structure and three step degradation kinetic model) is used to optimize the pa-

rameter estimation.  Using the estimated values, cases 1 through 4 are simulated using a pyrolysis 

model [2,3]. 

Parameter  
Estimation 

Pyrolysis  
Modeling 

Microstructure 
Resin Degradation  

Kinetics 
f(α) = (1- α)

n
 

GA1 
 

Case 1 Heterogeneous 3 steps 

Case 2 Homogeneous 3 steps 

Case 3 Heterogeneous Single step 

Case 4 Homogeneous Single step 

 
In general, one can conclude that the parameter estimations for 1A with GA1 set-up(see Figure 4) was 

conducted properly and that the modeling results are in a good agreement with the actual experiment data 

within the uncertainty stated for the experiment (17mg/s and 16°C for mass loss rate and temperature 

measurements, respectively).  In the figure, (a) shows that modeling the mass loss rate had improved 

qualitatively when microstructure of composite was incorporated as an input (case1 and case3) as oppose 

to simply assuming as a homogeneous material (case 2 and case 4).  However, note that quantitatively the 

changes should be considered as insignificant taking into account for the uncertainty of 17mg/s.  The 

mass loss rate data shown in the figures were applied with Fast Fourier Transform (FFT) smoothing, 

which resulted in artificial oscillations with magnitude in the order of 0.01g/s.  Therefore, the actual mass 

loss rate has an initial peak before τ = 1, another smaller peak following around τ = 1.4 with a decreasing 

trend up until τ = 1.8, and a slowly increasing trend from that point to τ = 4.  The minimal point in the 

mass loss rate data near τ = 1.8 is possibly due to pyrolysis proceeding through the prominent glass layer 

after decomposing through the resin rich layers.  The model was able to capture the large oscillations in 

the beginning and the decreasing trend followed by an increasing trend near τ = 1.8 in the mass loss rate  
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Figure 4. Parameter estimation GA1 results for brominated, unsaturated polyester composite with 

low glass content (1A) – heterogeneous microstructure and 3 step degradation mechanism (case1, * 

indicates this condition is identical to that of GA1); homogeneous structure and 3 step degradation 

mechanism (case2); heterogeneous microstructure and a single step degradation mechanism 

(case3); homogeneous structure and a single step degradation mechanism (case4) – (a) Mass loss 

rate; (b) Surface temperature; (c) 1/3 of sample thickness in-depth temperature from the surface; 

(d) 2/3 of sample thickness in-depth temperature from the surface; (e) Backface temperature 
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generated by pyrolyzing through different layers composed of an alternating decomposable resin and inert 

glass layers.  The simulated temperature results follow well with the actual tests data for all four cases.  

Note that even with this comparison made without incorporating the positional uncertainty of ±0.625 mm 
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for the in-depth thermocouple installation to the temperature measurement uncertainty band, the simula-

tion and actual test data show a good agreement (see (c) and (d) in Figure 4).  The simulation and actual 

data for backface temperature is shown in (e) in Figure 4 as a check to confirm they match perfectly 

knowing that this was used as a boundary condition in the simulation.  Changing the resin decomposition 

mechanism from 3 step to a single step had an insignificant effect on the simulation results, which is con-

sistent with the results found from kinetic modeling analyses performed in the previous section.  

Based on the findings from above analyses, one can conclude the following:  (1)  Quantitatively, the two 

baselines – GA1 or GA2 – are nominally equivalent considering the uncertainty associated with the ex-

perimental data.  There is consistency in the estimation with both baselines.  (2) Optimization for parame-

ter estimation using pyrolysis model with GA was conducted with satisfaction in terms of mass loss rate 

and temperatures at various depths (surface, 1/3 and 2/3 in-depth from surface, and backface)  (3) Incor-

porating the microstructure of the composite improves the mass loss rate simulations in terms of resolving 

the detailed oscillations and following the trend qualitatively but has less impact on sample temperature 

predictions.  (4) Applying 3 step resin decomposition mechanism instead of a single step has subtle influ-

ence in the modeling results. 

4.3. Evaluation for estimated properties  

To evaluate the correctness of the property estimation, modeling of the same composite as 1A but with 

higher glass content designated as 1C is conducted.  The parameter estimation using 1A pyrolysis FPA 

test data was for the resin and glass.  In theory if the parameter estimation was conducted properly, one 

should be able to model a composite that is produced with the same type of resin and glass using the es-

timation as an input to the pyrolysis model with the degrees of satisfaction which was found from com-

paring the modeling results for 1A as shown in Figure 4.  

Four cases as in Table 3 for 1C with GA1 baseline (see Figure 5) are simulated using the estimated prop-

erties found from 1A.  The results are shown in Figure 5 for GA1 where mass loss rate and temperature 

measurements from surface, 1/3 and 2/3 of sample thickness from surface, and backface are plotted with 

experimental data.  In Figure 5, (a) shows that the simulation results of case 2 and 4 (homogeneous struc-

ture with 3 step or single step resin decomposition mechanism assumptions) have the better fit to the ac-

tual test data considering the uncertainty of 17mg/s than those of case 1 and 3 (heterogeneous structure 

with 3 step or single step resin decomposition mechanism assumptions). Although incorporating the mi-

crostructure of the composite (assuming heterogeneous) does allow the model to resolve the oscillations 

in the mass loss rate curve due to pyrolysis through resin and glass alternating layers (case 1 and case 3), 

this phenomenon is not observed from the experiment.  The difference of modeled temperatures at vari-

ous depths and those from the actual experiment are within the measurement uncertainty and the position-

al uncertainty of ±0.625 mm for the 1/3 and 2/3 in-depth thermocouple bead where temperature is actual-

ly measured (see (b) through (d) in Figure 5).  The positional uncertainty associated with the 1/3 and 2/3 

in-depth thermocouple location is interpreted in the context of the simulation results.  This is conducted 

by comparing the simulated temperatures from the exact 1/3 and 2/3 locations as well as temperatures at 

±0.625 mm from the exact locations.  The simulation and actual data for backface temperature is shown 

in (e) in Figure 5 as a check to confirm they are identical knowing that this was used as a boundary condi-

tion in the simulation.  Similar to 1A simulation results, using either 3 step or a single step for the polyes-

ter resin decomposition mechanism was irrelevant in terms of simulating mass loss or temperature chang-

es of 1C. 
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Figure 5. Pyrolysis modeling results for brominated, unsaturated polyester composite with higher 

glass content (1C) using estimations based on 1A (GA1) – heterogeneous microstructure and 3 step 

degradation mechanism (case1, * indicates this condition is identical to that of GA1); homogeneous 

structure and 3 step degradation mechanism (case2); heterogeneous microstructure and a single 

step degradation mechanism (case3); homogeneous structure and a single step degradation mecha-

nism (case4) – (a) Mass loss rate; (b) Surface temperature; (c) 1/3 of sample thickness in-depth 

temperature from the surface; (d) 2/3 of sample thickness in-depth temperature from the surface; 

(e) Backface temperature 
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Comparing the results from pyrolysis modeling of 1C (see Figure 5) to those of 1A (see Figure 4), one 

can find that the major difference is observed from the mass loss rate simulations.  In 1C simulations, in-

corporating the microstructure of the composite has a negative effect on the mass loss rate simulation 

while it has a positive effect qualitatively when simulating 1A.  To find a plausible explanation for this 

difference, additional pyrolysis modeling numerical experiments were conducted for 1C.  For these nu-

merical experiments, minor adjustments to the 1C microstructure were made for the following reason.  

More uncertainty is introduced when 1C microstructure is estimated visually than for 1A because in 1C 

(average thickness of 6 ~ 7 mm) more layers are added to a thinner sample comparing to 1A (average 

thickness of 10 mm).  As shown in (a) of Figure 5, the simulation with heterogeneous structure allows an 

over-prediction of the mass loss rate between τ = 1 and 2 and under-prediction between τ = 2 and 3.  This 

indicated that the proposed microstructure (see Figure 1) for 1C used in the model had more resin on sur-

face than actual followed by layers with more glass than actual. Therefore, when running the model, 

slight modification was made to the 1C microstructure near the surface within 0.5 mm to resolve the iden-

tified problem but the global density was maintained to 40 wt% resin and 60 wt% glass.  The simulation 

results are shown in Figure 6.  As shown in this figure, using the same estimated parameters the mass loss 

rate simulation can be improved without negatively affecting the temperature agreement by simply adjust-

ing the microstructure only to a minimal degree.  Therefore, it shows that the simulation agreement with 

the actual data is sensitive to the microstructure as oppose to poorly conducted parameter estimation. 

Figure 6. Pyrolysis modeling results for brominated, unsaturated polyester composite with higher 

glass content (1C) using estimations based on 1A (GA1) but with 1C microstructure near surface 

slightly adjusted to account for less resin  – heterogeneous microstructure and 3 step degradation 

mechanism (case1, * indicates this condition is identical to that of GA1) – (a) Mass loss rate; (b) 

Temperature comparisons at various depths (surface, 1/3 and 2/3 of sample thickness in-depth from 

the surface,  and backface temperatures) 

           
 

To check whether the estimated parameter values from this study are consistent with other references 

[4,5], a comparison is made for the conductivities and the specific heat capacities of the virgin composite 

(resin and glass), decomposed composite (char and glass) and fully decomposed composite (glass only).  

An artificial composite is made with 30 wt% of resin and 70 wt% of glass with the estimated parameters 

from 1A FPA pyrolysis tests to directly compare the values found from Lattimer‘s paper [5] where con-

ductivities and heat capacities are experimentally evaluated for a glass reinforced vinyl ester composite 

found from different stages of pyrolysis.  The method used to determine the thermal properties found 

from Lattimer’s work incorporates the effects of voids and cracks generated during pyrolysis.  Therefore, 

effective thermal conductivity and heat capacity are used to compare with Lattimer’s data, which are cal-

culated based on volume fraction including the properties of the voids as gas.  In addition to Lattimer’s 
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data, thermal properties estimated for 1A and 1C by Avila [4] are plotted for more comparison.  As 

shown in Error! Not a valid bookmark self-reference., the effective thermal properties calculated from 

estimated parameters using 1A test data for GA1 conditionis consistent with other reference values.  The 

average deviation of the estimations found from this study is within 50% of those of Lattimer and Avila 

for conductivity and heat capacity. 

Figure 7: Estimated parameters with GA1 (heterogeneous structure with three steps of degradation 

kinetic model) estimations – from current study (CS), conductivity, k and specific heat capacity, c 

for resin and glass (r+g), char and glass (c+g) and glass only (g) assuming constant volume com-

pared with those from the work of Lattimer (L, estimation for virgin composite (v), decomposed 

composite (d) and woven glass only composite after fully degrading resin (wg)) and Avila (A, esti-

mation for 1A and 1C composites, same samples used in this study). 
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5. CONCLUSIONS AND FUTURE WORK 

 

A property estimation exercise for pyrolysis modeling is conducted on unsaturated polyester FRP 

composites with low glass content (1A).  To properly model the pyrolysis of the composite, kinetic mod-

eling of the resin degradation was performed using TGA and DSC experiment data on the resin.  Using an 

iso-conversional method (also known as model-free method), the minimum number of elementary reac-

tions required to describe the full degradation mechanism was proposed.  Based on this analysis, three 

step mechanism was constructed.  In addition to this three step mechanism, a single step case was also in-

vestigated to compare the effect of using a more complicated approach than a simple one step on the 

overall pyrolysis modeling and property estimation. With a pre-known reaction mechanism, a model fit-

ting method was use to find the kinetic parameters for each reactions.   

Property estimation for unsaturated polyester FRP composite was conducted using the 1A FPA pyrolysis 

test data with a generalized pyrolysis model, Gpyro paired with an optimization routine known as Genetic 

Algorithm (GA). Two conditions were used to construct a baseline – (1) GA1 where the heterogeneous 

microstructure was incorporated and the three step mechanism for resin decomposition was used; (2) 

GA2 where a single layer was constructed as a homogeneous structure based on resin and glass weight 

proportion within the composite and the three step mechanism for resin decomposition was used.  Inde-

pendent of applying one of these conditions, the estimation was conducted for the same set of parameters 

for resin and glass as summarized in Table 2.  The results demonstrated that whether applying GA1 or 

GA2 conditions as a baseline, the estimations are nominally identical quantitatively considering the un-

certainty of the experiment data; however, this provides evidence that independent of the baselines, the 

estimation results are consistent.The estimated values were used to model 1A to verify the fitness of the 
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optimization and compare cases with different microstructures (heterogeneous or homogeneous) and ki-

netic mechanisms (3 step or single step), which are designated as case 1 through 4.  The parameter opti-

mization results showed that the pyrolysis modeling was conducted with satisfaction in terms of mass loss 

rate and temperatures at various depths (surface, 1/3 and 2/3 in-depth from surface, and backface).  The 

pyrolysis modeling results qualitatively showed that incorporating microstructure of the composite when 

modeling allows the model to resolve oscillations in the mass loss rate.  Changing the kinetics mechanism 

had a subtle influence for modeling this composite.   

To evaluate whether the estimation can represent the components of the composite, resin and glass, a py-

rolysis modeling is conducted for a polyester FRP composite with higher glass content (1C) than 1A.  The 

results show a relatively good agreement to the actual test data except for the mass loss rate.  Although 

for 1A applying the heterogeneous microstructure to the modeling did improve the simulation results, it 

did not for 1C modeling.  A reasonable explanation for this poor estimation is due to the uncertainty in 

the microstructure of 1C near the surface rather than poorly conducted parameter estimation.  In addition 

to 1C modeling, estimated conductivity and heat capacity values are compared with those of other refer-

ences and confirmed that it was consistent within 50%.  

In this study, the work demonstrates the possibility of constructing a virtual experiment for composites 

using a bench-scale pyrolysis test and thermal analysis experiment data.  Using one type of composite 

(1A), an optimization of parameters was conducted and those estimations were used to model a different 

type of composite (1C).  In the future, the work will be expanded to cases where fire retardant additives 

have an effect to the degradation kinetics of the composite and composites are decomposing in an oxida-

tive condition such as air.  The goal of the work will be to develop an approach that is consistent and sim-

ple when performing parameter estimation and modeling for different types of composites in various con-

ditions. 
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Abstract  
For the composites industry to “design for fire” 

more thorough understanding of how typical FRPs de-

compose under fire conditions is needed.  The role 

played by the glass and the resin (and additives) for 

FRPs are keys to understanding the fire behavior.  To 

that end, this study continues work presented at Compo-

sites 2007 [1].  The goal of this work is to evaluate the 

ability of a pyrolysis model and genetic algorithm (opti-

mization routine) pairing to estimate properties of each 

component of the composite, resin and glass.  The com-

posite pyrolysis experimental data used in this work was 

obtained from tests conducted on a bench scale fire test 

apparatus, Fire Propagation Apparatus, with additional 

instrumentation to measure surface and internal tempera-

tures of the sample.  Mass loss data and temperature pro-

files with respect to time at different in-depth locations 

are used in the optimization process.  The property esti-

mation exercise is conducted on a brominated, unsaturat-

ed polyester FRP composite with low glass content.  

Thermal analysis data from thermogravimetric analysis 

and differential scanning calorimetry of the polyester res-

in in the composite was used to model the decomposition 

kinetics.  With the approximated decomposition kinetics 

for the resin, simulation of pyrolysis tests (nitrogen envi-

ronment) of the composite slab was performed to esti-

mate the unknown thermophysical properties by genetic 

algorithm optimization.  A validation exercise using the 

estimated properties is then conducted on a composite 

with high glass content.  The quality of the estimated 

properties is assessed by comparing simulated results to 

experimental results for the high glass content sample. 

 

1. Introduction 
For the composites industry, designing for a FRP 

that provides good fire characteristics becomes a guess 

and check operation in many cases.  Any changes made 

to the resin, glass, or the microstructure of the FRP affect 

the overall fire behavior of the FRP.  Traditionally, the 

effect of the changes made in the FRP is checked by 

conducting tests via standard fire tests, which can be 

time consuming and expensive.  Therefore, providing an 

understanding of how typical FRPs decompose under fire 

conditions and using this information to find an appro-

priate guideline for the composite industry to produce 

better fire-safe composites have been a long-term goal 

for this research.  To that end, this work follows the work 

presented at Composites 2007.   

In this study, complete data sets of decomposition 

of brominated, unsaturated polyester resin and its FRP 

composites with different glass contents are presented. 

Careful experiments were conducted using Thermograv-

imetric Analysis (TGA) and Differential Scanning Calo-

rimetry (DSC) in order to study the thermal decomposi-

tion kinetics of the polyester resin.  Also, the polyester 

FRPs with different glass contents – 33 wt% (1A) and 60 

wt% (1C) – were tested under a modern bench-scale fire 

test apparatus known as Fire Propagation Apparatus 

(FPA, ASTM E 2058[2]) with additional instrumenta-

tions such as thermocouples at various depths.  These 

tests were designed to generate data specifically useful 

for computer modeling purposes.   

The model used in this study is a generalized pyrol-

ysis model developed by Lautenberger [3,4], which sim-

ulates the heating and decomposition of a chosen materi-

al.  Like with any other pyrolysis models, this model re-

quires many input parameters found from material prop-

erties, which include the pyrolysis kinetics (pre-

exponential factor, activation energy, reaction order), 

thermal properties (specific heat capacity, thermal con-

ductivity), and radiative characteristics (surface emissivi-

ty, in-depth radiation absorption coefficient).  Unfortu-

nately, there are no standardized techniques to determine 

all of these properties via laboratory tests.  Another way 

of estimating parameters is to use an optimization routine 

with a pyrolysis model in pair.   

The current work applies Genetic Algorithm as an 

optimizing method coupled with Lautenberger’s pyroly-

sis model [3,4] to perform parameter estimation.  Using 

the experimental data of the polyester FRP with lower 

glass content (1A), an estimation exercise is conducted to 
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find properties of the individual components of the com-

posite, i.e., resin and glass, where one is decomposable 

while the other is inert, respectively.  The estimated pa-

rameters for these components are used to model the py-

rolysis of the same polyester FRP but with higher glass 

content (1C).  The simulated 1C mass loss rate (MLR) 

and temperatures (TC) will be compared to those of ac-

tual experiments to evaluate the appropriateness of the 

estimation.  Additionally, the estimated properties will be 

compared to those found from the literature [1,5 ] to 

check how consistent the estimations are. 

 

2. Pyrolysis of FRP Composite 

 
2.1. FRP composite description 

The resin in this study is a commercially prepared 

unsaturated polyester resin with 20 wt% bromination for 

its fire retardancy built in to the carbon backbone.  Anti-

mony trioxide is added, which acts as a synergist that as-

sists the flame retardancy of the polymer resin.  Among 

the various effects of adding antimony trioxide, the ma-

jor role of this additive is reacting with the halogen such 

as bromine and removing the radicals that are essential 

for combustion chemical reactions to proceed.  This ad-

ditive is also known to delay the escape of halogen from 

the flame, which increases its concentration and diluting 

effect [6].  The resin was catalyzed with methyl ethyl ke-

tone peroxide (MEKP).  According to the product de-

scription, this resin is a low viscosity, thixed polyester 

resin formulated to be Class I per ASTM E 84 [7] (flame 

spread index < 25 and smoke developed < 450).  

Composite panels were fabricated by hand lay-up 

and vacuum bagging for low (33 wt% of glass, average 

thickness of 10 mm) and high (60 wt% of glass, average 

thickness of 6 ~7 mm) glass content composites, respec-

tively, using two different types of fiberglass mats that 

were wetted with resin.  The two types of fiberglass (E-

glass) used in the composite are a chopped strand mat 

and a glass roving woven mat with an area density of 25 

g/m
2
 and 880 g/m

2
, respectively. The chopped strand mat 

is thinner and more porous than the woven mat. The lam-

inate schedule (provided by the manufacturer) is chopped 

strand mat and roving alternating five times for 1A and 

eight times for 1C with another chopped strand mat layer 

at the end. Visual inspection of a polished cross-section 

of the composite slab is consistent with this laminate 

schedule, but with polymer resin layers between each 

fiberglass layer. The chopped strand mat layer is difficult 

to identify in the cross section, perhaps because more 

resin is soaked into this layer than the roving layer. The 

roving layer is observed as a prominent glass layer pos-

sibly because the resin is absorbed only at the fiberglass 

layer surfaces leaving the interior with primarily glass. 

The layered microstructure is determined to a reso-

lution of 0.10 mm and 0.06 ~ 0.07 mm for 1A and 1C, 

respectively by inspecting a polished cross-section of the 

composite under a microscope. Based on visual observa-

tion and comparison to global density of the composite 

sample, approximations of three distinct layers are pro-

posed:  100% resin, 100% glass, and 50% resin/50% 

glass. The microstructure is shown schematically in Fig-

ure 1. The lightest “box” represents 100% resin, the me-

dium darkness box represents 50% resin/50% glass, and 

the darkest box represents 100% glass. Each box has a 

thickness of 1% of each sample’s average thickness. 

 

2.2. Thermogravimetric Analysis (TGA) and 

Differential Scanning Calorimetry (DSC) 
The instruments used in this study were manufac-

tured from PerkinElmer: Thermogravimetric Analysis 7 

(TGA7) and the Differential Scanning Calorimetry 7 

(DSC7).  Throughout this study, TGA and DSC were 

used for a non-isothermal test purposes and the tests 

were conducted in a nitrogen environment. Using TGA7, 

4 different heating rates of 5°C/min., 10°C/min., 

30°C/min. and 50°C/min. were applied to measure the 

mass loss history of each resin sample. For each test, a 

sample amount of 7.5 mg ~ 10.5 mg was used. TGA7 

was calibrated using 4 different standard reference mate-

rials over the temperature range of ambient to 850°C: 

Alumel, Nickel, Perkalloy and Iron. Each reference was 

checked for its magnetic transition temperatures, which 

should be within +/- 5°C of its reported values.  For 

DSC7, constant heating rates of 10°C/min., 30°C/min., 

50°C/min. and 70°C/min. were used to measure the heat 

flow through the sample during its thermal decomposi-

tion.  A sample amount of 7.5 ~ 9.5 mg was used for 

each test.  This instrument was calibrated using the 

standard indium and zinc references for a temperature 

range of ambient to the maximum temperature available 

from the instrument, 500°C. The melting points of these 

references were checked to be within +/- 10% of its re-

ported values.  The enthalpy check was performed using 

indium. The heat of fusion for indium was calibrated to 

be within 10% of its reference value.  A simple baseline 

subtraction was conducted to eliminate the unnecessary 

curvatures within the heat flow curve. 

2.3. Fire Propagation Apparatus (FPA) 
Similar to the Cone Calorimeter (Cone, ASTM E 

1354[8]), the Fire Propagation Apparatus (FPA, ASTM 

E 2058[9]) is a bench-scale fire test apparatus in which 

the sample is heated by four radiant lamps as opposed to 

using an electrically heated coil as a radiant source as in 

the Cone.  There are 6 bulbs within one IR lamp that 

consist a tungsten wire in argon gas.  These bulbs emit 

with a narrow energy spectrum where the peaks are 1.15 

and 0.89 microns [10].  Based on experimental analysis, 

the lamps are known to provide a uniform heat flux that 
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is steady within 5kW/m
2
 over the specimen surface of up 

to 60kW/m
2
. A long quartz tube is used to create a de-

sired atmosphere.  The atmosphere may be controlled 

from nitrogen to 40% enhanced oxygen condition.  A 

flow rate of 100 or 200 lpm is run through the bottom of 

the air chamber depending on the purging gas and there-

fore the sample is in a flow field during the test.  The 

FPA can be used to calculate useful engineering data 

such as carbon dioxide generation based heat release rate 

(based on the standard), mass loss rate, smoke yield and 

smoke extinction coefficient.  

The purpose of FPA testing was to generate good 

data sets appropriate for pyrolysis modelling and pa-

rameter estimation, and therefore several modifications 

were made to the standard testing procedure.  First, when 

testing the polyester FRPs, an insulated sample dish pur-

posed by de Ris and Khan [11] was used instead of the 

standard specified, non-insulated aluminium dish (see 

Figure 2). In this sample dish, the sample is surrounded 

by Cotronics® paper insulation on the back and sides to 

limit heat loss, which simplifies the pyrolysis modeling.  

Second, 4 thermocouples were installed to measure tem-

perature change of the sample at various depths: surface, 

1/3, 2/3 and back face of the sample.  The installation of 

thermocouples on the sample was consistent with the 

method introduced in Composites 2007 paper [1]. Based 

on experimental analysis, a zone of uniformity with re-

gards to temperature and heat flux was found to be with-

in 32 mm (1.25 in.) radius from the center of the speci-

men and therefore, all four thermocouple beads were lo-

cated within this zone.  Thermocouple holes were drilled 

at 1/3 and 2/3 of the sample thickness with a 1.25 mm 

diameter drill bits. Thermal grease (OmegaTherm Ther-

mally Conductive Silicone Paste, Model OT-201 from 

Omega Engineering) was inserted along with the ther-

mocouples (Omega Precision Fine Wire Thermocouples, 

Model 5TC-GG-K-30-36 from Omega Engineering) to 

reduce the air gaps within the thermocouple holes.  The 

surface and back face thermocouples were affixed with a 

high temperature adhesive (Resbond 907 Industrial 

Strength Fireproof Adhesive from Cotronics Corp.) and 

Krazy glue, respectively.  Third, carbon black was ap-

plied on the sample surface to allow radiation to be ab-

sorbed on the surface of the sample.  This approach was 

taken because the samples (1A and 1C) were somewhat 

transparent and when tested in the FPA, in-depth absorp-

tion of radiation occurred. To incorporate in-depth ab-

sorption of radiation into the model requires more pa-

rameters than assuming only surface absorption.  There-

fore, to minimize the number of parameters that need to 

be optimized, carbon black was used which, should al-

low surface radiation absorption only.  All of the tests 

were conducted under nitrogen to eliminate the effect of 

oxidation in the resin degradation kinetics and flame.  

Limiting the environment to only nitrogen allowed for 

more simplified kinetics modeling for the resin degrada-

tion as well as the pyrolysis modeling of the composite. 

The uncertainty for the mass loss rate (MLR) and 

thermocouple measurements were determined via statis-

tical analysis performed on data from tests with identical 

conditions.  All uncertainties listed in this study are full 

scale (as opposed to ± half scale).  The uncertainty of 

MLR for the FPA was determined as 17mg/s (2.4g/sm
2
) 

by comparing three PMMA tests performed at 50kW/m
2
 

based on the standard which calls for three identical tests 

to be performed to correctly determine other properties 

[10]. The uncertainty in the thermocouple measurements 

was quantified by comparing back face temperature data 

from four identical 1C tests in the FPA.  Temperature 

measurement at the back face of the sample surface was 

chosen because the exact measurement location is known, 

i.e. the sample thickness.  Other temperature measure-

ments made in various depths have a positional uncer-

tainty of ± 0.625 mm associated with the data.  This un-

certainty is from the drill bit used to make holes for 

thermocouple installations, which had a thickness of 

1.25mm diameter.  Using the normalized time, time di-

vided by sample thickness square, i.e., τ = time/δ2
 to re-

move the effect of different sample thicknesses when 

comparing, the maximum deviation at various normal-

ized times, up to the critical time, τc, was 16°C.  The crit-

ical time, τc, corresponds to the time when evenly spread 

flame on sample surface disappearing when tested under 

air.  Test data presented in this parameter estimation ex-

ercise study is truncated at this critical time of 4 s/mm
2
 

because the pyrolysis model is set up with a one-

dimensional assumption, which may not be used when 

flames on the sample surface is not evenly distributed, 

typically where edge burning is dominant.  These uncer-

tainty values will be used to evaluate significant differ-

ences in the modeling results 

 

3. Pyrolysis Modeling for Lumped (TGA) and 

Slab (Cone or FPA) Experiments 
The calculations reported here are conducted with a 

generalized pyrolysis model [3,4] that can be applied to a 

wide variety of condensed phase fuels.  The model sim-

ultaneously calculates the condensed phase mass conser-

vation, gas phase mass conservation, condensed phase 

species conservation, and condensed phase energy con-

servation equations.  This model can be applied to both 

0D and 1D systems and is therefore capable simulating 

both “lumped” (thermogravimetric) and “slab” (Cone 

Calorimeter/FPA) experiments. Extensive details are 

given in Ref. [3,4] so only a brief overview is given here. 

Assumptions inherent in the model, as applied in this pa-

per, include: 

� Porosity can either be solved as a property of a 

species (default) or directly.  When porosity is solved 

directly, it is derived from the condensed-phase mass 

conservation equation assuming no volume change 

(shrinkage or swelling).   
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� When porosity is directly solved, the user-

specified thermal conductivity and density are inter-

preted as those of a nonporous solid.  Therefore, the 

thermal conductivity that appears in the condensed-

phase energy conservation equation is 

( ) skk ψ−= 1 where ψ is porosity and 
sk is the 

weighted thermal conductivity of the solid assuming it 

is nonporous. Similarly, with this formulation, the bulk 

density is calculated as ( ) sρψρ −= 1  where 
sρ is the 

weighted density of the solid assuming it is nonporous. 

� Bulk thermal conductivity k  has a cut-off val-

ue of 0.03W/mK which corresponds to air at 300 to 

400K.  

� Specific heat is calculated with a weighted or 

averaged quantity, i.e. ∑= ipip cXc as other solid 

properties – enthalpy, emissivity, radiation absorption 

coefficient, permeability, etc. 

� Specific heat capacity and effective thermal 

conductivity vary by as ( ) ( ) kn

rTTkTk 0=  

and ( ) ( ) cn

rTTcTc 0= , respectively, where Tr is a refer-

ence temperature. 

� Radiation heat transfer across pores is account-

ed for by adding a contribution to the effective thermal 

conductivity that varies as γT 3
, where γ is a fitting pa-

rameter 

� Averaged properties in conservation equations 

are calculated by appropriate mass or volume fraction 

weighting 

� All gases escape to the exterior ambient with 

no resistance to heat or mass transfer 

� Negligible heat transfer between the gas phase 

and the condensed phase inside the decomposing solid  

� There is no net shrinkage (volume change) due 

to reactions or bulk density changes 

�  

4. Results and Discussion 

 
4.1. Kinetics of resin degradation 

Typically in kinetic studies, the isothermal rate of 

degradation or conversion, dα/dt, is assumed to be a line-

ar function of the temperature dependent rate constant, 

k(T), and a temperature independent function of the con-

version, f(α), where α indicates the conversion.  This 

equation can be further expanded by using the Arrhenius 

expression for the rate constant.  Within the Arrhenius 

expression, two more reaction dependent constants are 

introduced: the pre-exponential constant, Z, and the acti-

vation energy, Ea.  The temperature independent function 

of the conversion, f(α) is dependent upon the mechanism 

of chemical reactions. 

( ) 





−=

RT

E
Zf

t

aexp
d

d αα  
(1) 

Substituting the linear heating rate tT dd=β  into 

Eq. (1) and taking the natural logarithm of both sides 

gives the following: 

( )

( )
RT

EZf

RT

E
Z

f

T

a

a

−







=

















−=

β
α

β
αα

ln

expln
d

d
ln

 
(2) 

 

The iso-conversional method, also known as the 

model-free method is used to find the minimum number 

of elementary reactions necessary to describe the global 

degradation kinetics of the resin.  This method uses data 

tested from different heating rates.  Knowing that at a 

constant conversion, α, dα/dt and f(α) become constants.  

With these terms in Eq.(2) remaining as constants, the Ea 

is found without the pre-knowledge of the reaction 

mechanisms. The iso-conversional method will give con-

stant activation energies, Ea, over the range of conversion 

of interest if the reaction is a single-step chemical reac-

tion. If the activation energies, Ea, changes significantly 

with respect to different conversions, this is an indication 

for a more complex reaction mechanism. 

In Figure 3, the results from two iso-conversional 

methods introduced by Ozawa, Flynn and Wall [12,13] 

(OFW, finding a constant slope of –Ea/R by plotting 

ln(β) versus 1/T) and Friedmen [ 14 , 15 ] (plotting 

ln(dα/dT) versus 1/T to find the slope of –Ea/R) conduct-

ed on the polyester resin are shown.  Both methods are 

used for comparison purposes.  The r-square values for 

each activation energy value are plotted as well using 

least square method.  The activation energy becomes 

more reliable as the r-square values become closer to 1.  

The conversion is calculated as 
01 mm−=α .  As 

shown in Figure 3, the estimated activation energy rang-

es from 70 ~ 145 kJ/mol in 0 < α < 0.20, relatively 

steady around 120 ~ 145 kJ/mol in 0.20 < α < 0.93 and 

145 kJ/mol and above in 0.93 < α < 1.0.  Based on this 

result, one can approximate a minimum of three elemen-

tary reactions to model the full degradation over 0 < α < 

0.97 range. 

( )gas1beta_resinresin brbr νν −+→  (3) 
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( )gas1charbeta_resin cc νν −+→  (4) 

( )gas1residuechar rr νν −+→  (5) 

The proposed mechanism is consistent with previ-

ous research [16,17,18] conducted for unsaturated poly-

ester thermoset resins. In addition to this three steps 

mechanism, a single step degradation mechanism of res-

in becoming char and releasing fuel gas (93% weight 

loss) is modeled and compared to evaluate the necessity 

of multiple reaction steps.  Applying these degradation 

mechanisms, a model fitting method [19] is used where 

f(α) is preselected to fit the TGA experiment data to find 

the kinetic parameters with the best fitness.  In this study, 

a conversion function f(α) = (1- α)
n
 is used, which is typ-

ically applied for phase boundary reactions.  The data 

fitting software used in this study is Genetic Algorithm 

(GA) coupled with the pyrolysis model for lumped ex-

periments explained in the previous section.  The GA 

was developed based on the mechanics of the Darwinian 

survival-of-the-fittest theory [3,4,20].   

The results found from model fitting exercise are 

summarized in Table 1 and plotted in Figure 4. As shown 

in Figure 4, using three steps when modeling the resin 

degradation gives better fitness of the estimated mass 

loss rate to the actual TGA experiment data.  When three 

steps are used instead of one, the initial mass loss that 

starts from 200°C is captured while the temperature 

needs to increase up to 300°C to initiate any mass loss 

when using one step reaction (see total mass loss rate in 

(a) and (c) of Figure 4).  In addition to the earlier stage of 

degradation, better fitness is shown after 400 °C for the 

three steps reactions case than that of one step where 

mass loss rate is expected to rapidly decrease.  The total 

mass loss rate peak observed in ~400°C range spreads 

over a wider temperature range when a single step reac-

tion is used for resin degradation.  This is due to the un-

resolved initial mass loss when using single step reaction.  

An additional mass loss is given at the end of the major 

mass loss peak after 400°C to compensate for the initial 

mass loss which should have existed before 200°C.  

However, these differences in mass loss rate found from 

applying two resin decomposition mechanisms – three 

steps vs. single – are subtle.  Comparing the difference at 

various heating rates emphasizes more that the effect of 

changing resin degradation mechanism from 3 steps to 

single is insignificant (see (b) and (d) of Figure 4).  

 

4.2. Property estimation for FRP composite us-

ing polyester composite with low glass con-

tent (1A) 
The property estimation for the polyester composite 

is conducted by coupling a generalized pyrolysis model 

for slab experiments developed by Lautenberger and the 

Genetic Algorithms (GA) for optimization routine 

[3,4,20].  To reduce the number of parameters to esti-

mate, the FPA experiments for the polyester composite 

with low glass content, 1A were conducted with certain 

approaches.  For example, carbon black powder was ap-

plied on top of the sample surface to eliminate in-depth 

absorption of radiation.  FPA tests were conducted under 

nitrogen environment to exclude the effect of oxidative 

decomposition of the resin and flame.  Experimental data 

used in the estimation exercise was truncated when nor-

malized time, time divided by sample thickness square, 

i.e., τ = time/δ2
 became approximately 4 s/mm

2
.  This 

time is noted as the critical time, τc, for a typical 1A 

sample when the pyrolysis can no longer be simplified as 

a one-dimensional problem.  The critical time, τc, is iden-

tified as time of evenly spread flame on sample surface 

disappearing when tested under air, where edge burning 

is dominant.  Additionally, for further simplification of 

the problem when modeling, the backface temperature 

measurement was used as a boundary condition for the 

condensed phase.   

The parameter estimation exercise was conducted 

for the following two cases: (1) GA1 where the hetero-

geneous microstructure was incorporated and three steps 

mechanism for resin decomposition was used; (2) GA2 

where a single layer was constructed as a homogeneous 

structure based on resin and glass weight proportion 

within the composite and three steps mechanism for resin 

decomposition was used. For both cases, the same set of 

parameters is optimized, which are listed in Table 2 

along with the estimation results.  These parameters were 

introduced in Section 3 where a brief description of the 

pyrolysis model used in this study [3,4] is given.  The 

kinetic parameters for resin degradation were pre-

determined as described in the previous section.  Howev-

er, the heats of reaction for the three elementary reac-

tions were estimated through parameter estimation exer-

cise as other thermophysical properties, but with its 

searchable range for optimization set based on Differen-

tial Scanning Calorimeter (DSC) experiment results on 

the polyester resin.  Note that the heat of reactions were 

proportioned to reflect the kinetic modeling, i.e. the first, 

second and third reactions consumes 20%, 73% and 8% 

of the total enthalpy, respectively, which is identical to 

the resin weight loss percentages in each reaction step.  

The total number of parameters that was found via opti-

mization was 29 including the heat of reactions.  These 

estimations are used as two different baselines – GA1 

and GA2 – for pyrolysis modeling study discussed in the 

next section.  In Table 2, the estimation of GA1 and GA2 

are compared to show how consistent the estimations are.  

It shows that most of the estimated values of GA2 have a 

difference of less than 30% when compared to those of 

GA1, which allows constructing some level of confi-

dence in the optimizing capability of the Genetic Algo-

rithms.  Although the comparison has been made for in-

dividual parameter estimations and shown that results 
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from GA1 and GA2 are somewhat consistent, one should 

take into account that the Genetic Algorithm optimizes 

for a group of these individual estimations that gives the 

best fit to the mass loss rate and temperature data meas-

ured at four locations.  When compared in groups, typi-

cally it shows that a change occurred in one parameter is 

compensated by a change found from the other.  Hence, 

comparing the pyrolysis modeling results using the esti-

mations from two different set-ups (GA1 and GA2) in 

groups should present a better sense of optimization con-

sistency. 

Using the estimated properties found from GA1 and 

GA2 conditions, four cases (as summarized in Table 3) 

for 1A (sample with low glass content) are modeled to 

check the fitness of the optimization and compare cases 

with various modeling conditions (see Figure 5 and Fig-

ure 6).  These cases are constructed based on applying 

different assumptions for the microstructure of the com-

posite (heterogeneous or homogeneous) and degradation 

mechanism (3 steps or single).  For every case, the py-

rolysis modeling results of mass loss rate and tempera-

tures from surface, 1/3, 2/3 of sample thickness from sur-

face, and backface are plotted with the actual experi-

mental data.  The parameter estimations from GA1 and 

GA2 set-ups should give the best fit for case 1 and case 2, 

respectively because the optimization was performed 

based on the corresponding conditions.   

In general, from Figure 5 and Figure 6 one can con-

clude that the parameter estimations for 1A with two set-

ups – GA1 and GA2 – were conducted properly and that 

the two baselines are nominally equivalent knowing that 

both modeling results are in a good agreement with the 

actual experiment data within the uncertainty stated for 

the experiment (17mg/s and 16°C for mass loss rate and 

temperature measurements, respectively).  This also 

demonstrates that the parameter estimations for GA1 and 

GA2 conditions are consistent.  In both figures, (a) 

shows that modeling the mass loss rate had improved 

qualitatively when microstructure of composite was in-

corporated as an input (case1 and case3) as oppose to 

simply assuming as a homogeneous material (case 2 and 

case 4).  However, note that quantitatively the changes 

should be considered as insignificant taking into account 

for the uncertainty of 17mg/s.  The mass loss rate data 

shown in the figures were applied with Fast Fourier 

Transform (FFT) smoothing, which resulted in artificial 

oscillations with magnitude in the order of 0.01g/s.  

Therefore, the actual mass loss rate has an initial peak 

before τ = 1, another smaller peak following around τ = 

1.4 with a decreasing trend up until τ = 1.8, and a slowly 

increasing trend from that point to τ = 4.  The minimal 

point in the mass loss rate data near τ = 1.8 is possibly 

due to pyrolysis proceeding through the prominent glass 

layer after decomposing through the resin rich layers.  

The model was able to capture the large oscillations in 

the beginning and the decreasing trend followed by an 

increasing trend near τ = 1.8 in the mass loss rate gener-

ated by pyrolyzing through different layers composed of 

an alternating decomposable resin and inert glass layers.  

The simulated temperature results follow well with the 

actual tests data for all four cases.  Note that even with 

this comparison made without incorporating the posi-

tional uncertainty of ±0.625 mm for the in-depth thermo-

couple installation to the temperature measurement un-

certainty band, the simulation and actual test data show a 

good agreement (see (c) and (d) in Figure 5 and Figure 6).  

The simulation and actual data for backface temperature 

is shown in (e) in Figure 5 and Figure 6 as a check to 

confirm they match perfectly knowing that this was used 

as a boundary condition in the simulation.  Changing the 

resin decomposition mechanism from 3 steps to a single 

step had an insignificant effect on the simulation results, 

which is consistent with the results found from kinetic 

modeling analyses performed in the previous section.  

Based on the findings from above analyses, one can 

conclude the following:  (1) Optimization for parameter 

estimation using pyrolysis model with GA was conduct-

ed with satisfaction in terms of mass loss rate and tem-

peratures at various depths (surface, 1/3 and 2/3 in-depth 

from surface, and backface) for both conditions with 

consistency – GA1 and GA2.  Quantitatively, the two 

baselines are nominally equivalent considering the un-

certainty associated with the experimental data.  (2) In-

corporating the microstructure of the composite im-

proves the mass loss rate simulations in terms of resolv-

ing the detailed oscillations and following the trend qual-

itatively but has less impact on sample temperature pre-

dictions.  (3) Applying 3 steps resin decomposition 

mechanism than a single step has subtle influence in the 

modeling results. 

 

4.3. Evaluation for estimated properties  
To evaluate the correctness of the property estima-

tion, modeling of the same composite as 1A but with 

higher glass content designated as 1C is conducted.   The 

parameter estimation using 1A pyrolysis FPA test data 

was for the resin and glass.  In theory if the parameter 

estimation was conducted properly, one should be able to 

model a composite that is produced with the same type 

of resin and glass using the estimation as an input to the 

pyrolysis model with the degrees of satisfaction which 

was found from comparing the modeling results for 1A 

as shown in Figure 5 and Figure 6.  

Four cases as in Table 3 for 1C with two baselines 

– GA1 and GA2 – are simulated using the estimated 

properties found from 1A.  The results are shown in Fig-

ure 7 and Figure 8 where mass loss rate and temperature 

measurements from surface, 1/3 and 2/3 of sample thick-

ness from surface, and backface are plotted with experi-

mental data.  As it was with 1A simulations, applying 
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GA1 or GA2 as a baseline have an insignificant effect on 

the 1C modeling results.  In both Figure 7 and Figure 8, 

(a) shows that the simulation results of case 2 and 4 (ho-

mogeneous structure with 3 steps or single step resin de-

composition mechanism assumptions) have the better fit 

to the actual test data considering the uncertainty of 

17mg/s than those of case 1 and 3 (heterogeneous struc-

ture with 3 steps or single step resin decomposition 

mechanism assumptions). Although incorporating the 

microstructure of the composite (assuming heterogene-

ous) does allow the model to resolve the oscillations in 

the mass loss rate curve due to pyrolysis through resin 

and glass alternating layers (case 1 and case 3), this phe-

nomenon is not observed from the experiment.  The dif-

ference of modeled temperatures at various depths and 

those from the actual experiment are within the meas-

urement uncertainty and the positional uncertainty of 

±0.625 mm for the 1/3 and 2/3 in-depth thermocouple 

bead where temperature is actually measured (see (b) 

through (d) in Figure 7 and Figure 8).  The positional un-

certainty associated with the 1/3 and 2/3 in-depth ther-

mocouple location is interpreted in the context of the 

simulation results.  This is conducted by comparing the 

simulated temperatures from the exact 1/3 and 2/3 loca-

tions as well as temperatures at ±0.625 mm from the ex-

act locations.  The simulation and actual data for back-

face temperature is shown in (e) in Figure 7 and Figure 8 

as a check to confirm they are identical knowing that this 

was used as a boundary condition in the simulation.  

Similar to 1A simulation results, using either 3 steps or a 

single step for the polyester resin decomposition mecha-

nism was irrelevant in terms of simulating mass loss or 

temperature changes of 1C. 

Comparing the results from pyrolysis modeling of 

1C (see Figure 7 and Figure 8) to those of 1A (see Figure 

5 and Figure 6), one can find that the major difference is 

observed from the mass loss rate simulations.  In 1C 

simulations, for both GA1 and GA2 conditions, incorpo-

rating the microstructure of the composite have a nega-

tive effect on the mass loss rate simulation while it has a 

positive effect qualitatively when simulating 1A.  To find 

a plausible explanation for this difference, additional py-

rolysis modeling numerical experiments were conducted 

for 1C.  For these numerical experiments, minor adjust-

ments to the 1C microstructure were made for the fol-

lowing reason.  More uncertainty is introduced when 1C 

microstructure is estimated visually than for 1A because 

in 1C (average thickness of 6 ~ 7 mm) more layers are 

added to a thinner sample comparing to 1A (average 

thickness of 10 mm).  As shown in (a) of Figure 7 and 

Figure 8, the simulation with heterogeneous structure 

allows an over-prediction of the mass loss rate between τ 
= 1 and 2 and under-prediction between τ = 2 and 3.  

This indicated that the proposed microstructure (see Fig-

ure 1) for 1C used in the model had more resin on sur-

face than actual followed by layers with more glass than 

actual. Therefore, when running the model, slight modi-

fication was made to the 1C microstructure near the sur-

face within 0.5 mm to resolve the identified problem but 

the global density was maintained to 40 wt% resin and 

60 wt% glass.  The simulation results are shown in Fig-

ure 9.  As shown in this figure, using the same estimated 

parameters the mass loss rate simulation can be im-

proved without negatively affecting the temperature 

agreement by simply adjusting the microstructure only to 

a minimal degree.  Therefore, it shows that the simula-

tion agreement with the actual data is sensitive to the mi-

crostructure as oppose to the parameter estimation was 

poorly conducted.  

To check whether the estimated parameter values 

from this study are consistent with other references [1,5], 

a comparison is made for the conductivities and the spe-

cific heat capacities of the virgin composite (resin and 

glass), decomposed composite (char and glass) and fully 

decomposed composite (glass only).  An artificial com-

posite is made with 30 wt% of resin and 70 wt% of glass 

with the estimated parameters from 1A FPA pyrolysis 

tests to directly compare the values found from Lat-

timer‘s paper [5] where conductivities and heat capaci-

ties are experimentally evaluated for a glass reinforced 

vinyl ester composite found from different stages of py-

rolysis.  The method used to determine the thermal prop-

erties found from Lattimer’s work incorporates the ef-

fects of voids and cracks generated during pyrolysis.  

Therefore, effective thermal conductivity and heat capac-

ity are used to compare with Lattimer’s data, which are 

calculated based on volume fraction including the prop-

erties of the voids as gas.  In addition to Lattimer’s data, 

thermal properties estimated for 1A and 1Cs by Avila [1] 

are plotted for more comparison.  As shown in Figure 10, 

the effective thermal properties calculated from estimat-

ed parameters using 1A test data for both GA1 and GA2 

conditions are consistent with other reference values.  

The average deviation of the estimations found from this 

study is within 50% of those of Lattimer and Avila for 

conductivity and heat capacity. 

 

5. Conclusions and Future Work 
A property estimation exercise for pyrolysis model-

ing is conducted on unsaturated polyester FRP compo-

sites with low glass content (1A).  To properly model the 

pyrolysis of the composite, kinetic modeling of the resin 

degradation was performed using TGA and DSC exper-

iment data on the resin.  Using an iso-conversional 

method (also known as model-free method), the mini-

mum number of elementary reactions required to de-

scribe the full degradation mechanism was proposed.  

Based on this analysis, three steps mechanism was con-

structed.  In addition to this three steps mechanism, a 

single step case was also investigated to compare the ef-

fect of using a more complicated approach than a simple 

one step on the overall pyrolysis modeling and property 
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estimation. With a pre-known reaction mechanism, a 

model fitting method was use to find the kinetic parame-

ters for each reactions.   

Property estimation for unsaturated polyester FRP 

composite was conducted using the 1A FPA pyrolysis 

test data with a generalized pyrolysis model, Gpyro 

paired with an optimization routine known as Genetic 

Algorithm (GA). Two conditions were used to construct 

a baseline – (1) GA1 where the heterogeneous micro-

structure was incorporated and three steps mechanism for 

resin decomposition was used; (2) GA2 where a single 

layer was constructed as a homogeneous structure based 

on resin and glass weight proportion within the compo-

site and three steps mechanism for resin decomposition 

was used.  Independent of applying one of these condi-

tions, the estimation was conducted for the same set of 

parameters for resin and glass as summarized in Table 2. 

The estimated values were used to model 1A to ver-

ify the fitness of the optimization and compare cases 

with different microstructures (heterogeneous or homo-

geneous) and kinetic mechanisms (3 steps or single step), 

which are designated as case 1 through 4.  For both GA1 

and GA2 conditions, the parameter optimization results 

showed that the pyrolysis modeling was conducted with 

satisfaction in terms of mass loss rate and temperatures at 

various depths (surface, 1/3 and 2/3 in-depth from sur-

face, and backface).  It also demonstrated that whether 

applying GA1 or GA2 conditions as a baseline, the simu-

lation results are nominally identical quantitatively con-

sidering the uncertainty of the experiment data, however, 

estimation based on GA1 and GA2 conditions are con-

sistent.  The pyrolysis modeling results qualitatively 

showed that incorporating microstructure of the compo-

site when modeling allows the model to resolve oscilla-

tions in the mass loss rate.  Changing the kinetics mech-

anism had a subtle influence for modeling this composite.   

To evaluate whether the estimation can represent 

the components of the composite, resin and glass, a py-

rolysis modeling is conducted for a polyester FRP com-

posite with higher glass content (1C) than 1A.  The re-

sults show a relatively good agreement to the actual test 

data except for the mass loss rate.  Although for 1A ap-

plying the heterogeneous microstructure to the modeling 

did improve the simulation results, it did not for 1C 

modeling.  A reasonable explanation for this poor esti-

mation is due to the uncertainty in the microstructure of 

1C near the surface rather than poorly conducted pa-

rameter estimation.  In addition to 1C modeling, estimat-

ed conductivity and heat capacity values are compared 

with those of other references and confirmed that it was 

consistent within 50%.  

In this study, the work demonstrates the possibility 

of constructing a virtual experiment for composites using 

a bench-scale pyrolysis test and thermal analysis experi-

ment data.  Using one type of composite (1A), an opti-

mization of parameters was conducted and those estima-

tions were used to model a different type of composite 

(1C).  In the future, the work will be expanded to cases 

where fire retardant additives have an effect to the deg-

radation kinetics of the composite and composites are 

decomposing in an oxidative condition such as air.  The 

goal of the work will be to develop an approach that is 

consistent and simple when performing parameter esti-

mation and modeling for different types of composites in 

various conditions. 
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Figures: 

 

 
Figure 1: Approximation of three distinct layers – 100 wt% resin (yellow), 50-50 wt% resin and glass 

(red), and 100 wt% glass – in composite microstructure: Unsaturated polyester FRP with low glass con-

tent (1A, 33 wt% of glass, top) and with high glass content (1C, 60 wt% of glass, bottom)  

 

 

 

 
Figure 2: Insulated Sample Holder Designed by de Ris and Khan [11] 
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Figure 3: Estimated activation energy of unsaturated brominated polyester resin calculated via “isocon-

versional” (model free) method 
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Figure 4: Kinetic parameters estimated for brominated, unsaturated polyester resin: 3 steps mechanism 

with nth order kinetic model (a,b) and one step mechanism with nth order kinetic model (c,d) 
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Figure 5. Parameter estimation GA1 results for brominated, unsaturated polyester composite with low 

glass content (1A) – heterogeneous microstructure and 3 steps degradation mechanism (case1, * indicates 

this condition is identical to that of GA1); homogeneous structure and 3 steps degradation mechanism 

(case2); heterogeneous microstructure and a single step degradation mechanism (case3); homogeneous 

structure and a single step degradation mechanism (case4) – (a) Mass loss rate; (b) Surface temperature; 

(c) 1/3 of sample thickness in-depth temperature from the surface; (d) 2/3 of sample thickness in-depth 

temperature from the surface; (e) Backface temperature 
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Figure 6. Parameter estimation GA2 results for brominated, unsaturated polyester composite with low 

glass content (1A) – heterogeneous microstructure and 3 steps degradation mechanism (case1); homoge-

neous structure and 3 steps degradation mechanism (case2, * indicates this condition is identical to that of 

GA2); heterogeneous microstructure and a single step degradation mechanism (case3); homogeneous 

structure and a single step degradation mechanism (case4) – (a) Mass loss rate; (b) Surface temperature; 

(c) 1/3 of sample thickness in-depth temperature from the surface; (d) 2/3 of sample thickness in-depth 

temperature from the surface; (e) Backface temperature 
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Figure 7. Pyrolysis modeling results for brominated, unsaturated polyester composite with higher glass 

content (1C) using estimations based on 1A (GA1) – heterogeneous microstructure and 3 steps degrada-

tion mechanism (case1, * indicates this condition is identical to that of GA1); homogeneous structure and 

3 steps degradation mechanism (case2); heterogeneous microstructure and a single step degradation 

mechanism (case3); homogeneous structure and a single step degradation mechanism (case4) – (a) Mass 

loss rate; (b) Surface temperature; (c) 1/3 of sample thickness in-depth temperature from the surface; (d) 

2/3 of sample thickness in-depth temperature from the surface; (e) Backface temperature 
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Figure 8: Pyrolysis modeling results for brominated, unsaturated polyester composite with higher glass 

content (1C) using estimations based on 1A (GA2) – heterogeneous microstructure and 3 steps degrada-

tion mechanism (case1); homogeneous structure and 3 steps degradation mechanism (case2, * indicates 

this condition is identical to that of GA2); heterogeneous microstructure and a single step degradation 

mechanism (case3); homogeneous structure and a single step degradation mechanism (case4) – (a) Mass 

loss rate; (b) Surface temperature; (c) 1/3 of sample thickness in-depth temperature from the surface; (d) 

2/3 of sample thickness in-depth temperature from the surface; (e) Backface temperature 
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Figure 9. Pyrolysis modeling results for brominated, unsaturated polyester composite with higher glass 

content (1C) using estimations based on 1A (GA1) but with 1C microstructure near surface slightly ad-

justed to account for less resin  – heterogeneous microstructure and 3 steps degradation mechanism 

(case1, * indicates this condition is identical to that of GA1) – (a) Mass loss rate; (b) Temperature com-

parisons at various depths (surface, 1/3 and 2/3 of sample thickness in-depth from the surface,  and back-

face temperatures) 
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Figure 10: Estimated parameters with two different baselines – GA1 (heterogeneous structure with three 

steps of degradation kinetic model) and GA2 (homogeneous structure with three steps of degradation ki-

netic model) estimations – from current study (CS), conductivity, k and specific heat capacity, c for resin 

and glass (r+g), char and glass (c+g) and glass only (g) assuming constant volume compared with those 

from the work of Lattimer (L, estimation for virgin composite (v), decomposed composite (d) and woven 

glass only composite after fully degrading resin (wg)) and Avila (A, estimation for 1A and 1C composites, 

same samples used in this study). 

 

 

 

 
Tables: 

 
Table 1: Kinetic parameters estimated from model fitting exercise using Genetic Algorithm (GA): Three 

steps nth order kinetic model and single step nth order kinetic model 

Kinetics 
Z1 

(s-1) 
Ea1 

(kJ/mol) 
n1 
(-) 

Z2 
(s-1) 

Ea2 
(kJ/mol) 

n2 
(-) 

Z3 
(s-1) 

Ea3 
(kJ/mol) 

n3 
(-) 

3 steps nth 
order 

3.42×10
2
 56.1 1.03 3.55×10

11
 174.1 0.80 1.75×10

6
 127.6 2.64 

Single step 
nth order 

   4.92×10
9
 151.4 0.90    
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Table 2: Optimized thermophysical properties from 1A with heterogeneous assumption.  For each mate-

rial (resin, beta-resin, char, residue and glass) conductivity (k0), conductivity temperature dependency (nk), 

heat capacity (c0), heat capacity temperature dependency (nc), emissivity (εεεε) and the fitting parameter for 

radiation heat transfer across pores (γγγγ) are estimated.  Additionally, heat of reaction (∆H) for three resin 

decomposition kinetic is estimated. 

Species 

ρ0 k0 nk c0 nc ε γ 

(kg/m
3
) (W/m-K) (-) (J/kg-K) (-) (-) (m) 

Resin 

GA1 

1350 

0.304 0.082 1185 0.093 0.964 0.0000 

GA2 0.261 0.099 1237 0.206 0.969 0.0000 

GA1-GA2/GA1 (%) 14.1 19.9 4.4 120.6 0.6 0.0 

Beta 
resin 

GA1 

1080 

0.317 0.080 1260 0.094 0.973 0.0000 

GA2 0.274 0.087 1318 0.207 0.965 0.0000 

GA1-GA2/GA1 (%) 13.5 9.1 4.6 119.5 0.8 0.0 

Char 

GA1 

95 

0.163 0.326 1111 0.464 0.990 0.0046 

GA2 0.169 0.237 1029 0.246 0.991 0.0034 

GA1-GA2/GA1 (%) 3.4 27.4 7.4 46.9 0.1 0.0 

Resi-
due 

GA1 

41 

0.168 0.333 1061 0.481 0.985 0.0046 

GA2 0.176 0.236 956 0.247 0.980 0.0036 

GA1-GA2/GA1 (%) 4.6 29.1 9.9 48.7 0.4 0.0 

Glass 

GA1 

2600 

0.064 0.328 1069 0.249 0.981 0.0034 

GA2 0.113 0.218 1072 0.194 0.982 0.0050 

GA1-GA2/GA1 (%) 74.9 33.4 0.2 22.3 0.1 0.0 

Heat of reaction ∆H (J/kg) 

Degradation Reactions GA1 GA2 
GA1-

GA2/GA1 
(%) 

( )gas1beta_resinresin brbr νν −+→  3.1E+04 2.2E+04 29.9 

( )gas1charbeta_resin cc νν −+→  1.1E+05 8.0E+04 29.9 

( )gas1residuechar rr νν −+→  1.1E+04 8.0E+03 29.9 
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Table 3: Testing matrix for parameter estimation of 1A and pyrolysis modeling of 1C – GA1 (case 1: het-

erogeneous structure and three steps degradation kinetic model) and GA2 (case 2: homogeneous struc-

ture and three steps degradation kinetic model) are used to optimize the parameter estimation.  Using the 

estimated values, cases 1 through 4 are simulated using a pyrolysis model [3,4]. 

Parameter Estimation Pyrolysis Modeling Microstructure 
Resin Degradation Kinetics 

f(α) = (1- α)
n
 

GA1 

Case 1 Heterogeneous 3 steps 

Case 2 Homogeneous 3 steps 

Case 3 Heterogeneous Single step 

Case 4 Homogeneous Single step 

GA2 

Case 1 Heterogeneous 3 steps 

Case 2 Homogeneous 3 steps 

Case 3 Heterogeneous Single step 

Case 4 Homogeneous Single step 
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ABSTRACT 

This work assesses the effect of decomposition kinetics on overall pyrolysis behavior using experimental 
data from thermogravimetric analysis (TGA) and Fire Propagation Apparatus (FPA) experiments. TGA 
data are presented for an unsaturated brominated polyester resin (reinforcement free), and the FPA is used 
to investigate the pyrolysis behavior of a fiber reinforced polymer (FRP) composite slab with matrix 
comprised of the same resin tested via TGA. Three different kinetic models are fit to the TGA data: single-
step nth order, 3-step nth order, and 3-step nth order with one autocatalytic step. These kinetics models are 
then used to simulate the pyrolysis of a composite slab in the FPA, with thermophysical properties 
estimated by genetic algorithm optimization. It is shown that the two 3-step mechanisms provide nearly 
identical calculations of total mass loss rate (MLR) in the FPA, while the single-step mechanism provides 
similar, but quantitatively different, MLR predictions. Although no broad conclusions regarding the 
importance of multi-step thermal decomposition kinetics can be drawn on the basis of a single study, 
detailed reaction mechanisms may be superfluous unless TGA curves show multiple distinct reaction peaks 
and/or all thermophysical properties/model input parameters are precisely known.  

KEYWORDS: modeling, heat transfer, pyrolysis, composites  

NOMENCLATURE LISTING 

c specific heat capacity (J/kg-K) β heating rate (K/min) 
E activation energy (J/mole) γ radiant conductivity length (m)  
h specific enthalpy (J/kg) δ thickness (m) 
hc convective heat transfer coefficient (W/m2-K) ε emissivity (-)  
ΔH change in enthalpy (J/kg) κ radiant absorption coefficient (m-1) 
k thermal conductivity (W/m-K) ρ density (kg/m3) 
K # of condensed phase reactions σ Stefan–Boltzmann constant (W/m2–K4) 
m mass (kg), autocatalytic exponent (-) φ generic variable 
m ′′  mass per unit area (kg/m2) ψ porosity 
m ′′  mass flux (kg/m2s) ω ′′′  volumetric reaction rate (kg/m3–s) 
M # of condensed phase species Subscripts
n reaction order (-), property exponent (-) d destruction 
N # of gas phase species f formation 
q ′′  heat flux (W/m2) g gaseous 
Q ′′′  volumetric heat release rate (W/m3) i condensed phase species i 
t time (s) j gas phase species j 
T temperature (K) k reaction k 
X volume fraction (-) r  reference or radiative 
Y mass fraction (-) s solid 
z distance (m) vol volatilization 
Z pre-exponential factor (s-1) 0 at t = 0 or z = 0 
Greek ∞ ambient, or at the end of an experiment 
α conversion δ At z = δ 



  

INTRODUCTION 

Bench-scale flammability tests such as the Cone Calorimeter and Fire Propagation Apparatus (FPA) 
provide a mechanism to assess a material’s reaction to fire. From these laboratory tests, a material’s overall 
flammability can be evaluated on the basis of measured quantities such as heat release rate or mass loss rate 
(MLR) history, species yields, smoke production rate, heat of combustion, etc. Furthermore, by conducting 
experiments at multiple heat flux levels, apparent material fire properties such as thermal inertia, ignition 
temperature, and heat of gasification can be determined. These quantities are useful for establishing relative 
rankings of material flammability or as input to semi-empirical fire growth models.  

In recent years, detailed physics-based pyrolysis models have seen increased usage in the fire community. 
For example, Fire Dynamics Simulator Version 5 (FDS5) contains a comprehensive pyrolysis model 
capable of simulating the thermal decomposition of both charring and noncharring solids. This pyrolysis 
model can accommodate multi-step decomposition kinetics, layered composition, and in-depth absorption 
of radiation. However, inclusion of these physical phenomena comes at a price: a large number of 
adjustable parameters (“material properties”) must be specified to characterize a particular material. These 
properties include pyrolysis kinetics (pre-exponential factor, activation energy, reaction order), thermal 
properties (specific heat capacity, thermal conductivity), and radiative characteristics (surface emissivity, 
in-depth radiation absorption coefficient). For many of these material properties, there are no standardized 
and widely accepted techniques to determine these properties from laboratory tests. The number of 
adjustable parameters becomes onerous when multi-step reactions with multiple condensed phase species 
having temperature-dependent thermal properties are considered.  

An optimal pyrolysis modeling strategy balances complexity with minimizing the number of adjustable 
input parameters. This can be accomplished by including only essential physics or reactions in a simulation, 
and omitting all extraneous physics and reactions. However, it is not always obvious what constitutes 
“essential” or “extraneous” physics and reactions. This multifaceted and complex issue cannot be 
completely resolved in a single paper, so here we focus on one particular aspect: decomposition kinetics. 
Using a fire retardant polyester composite as an example, we investigate whether a multi-step kinetic 
mechanism extracted from thermogravimetric analysis (TGA) provides a more “accurate” description of 
solid fuel slab pyrolysis (e.g. in an FPA experiment) than a single-step global nth order Arrhenius reaction 
(the conventional pyrolysis modeling paradigm in the fire community). This fiber reinforced polymer 
(FRP) composite is considered a representative “practical” heterogeneous material. 

Below, a methodology is presented that can be used to assess the minimum number of reaction steps that 
must be included in a decomposition mechanism to capture the major features of differential 
thermogravimetric (DTG) curves. First, two different three-step decomposition mechanisms and a single-
step global mechanism are fit to DTG curves obtained at four heating rates between 5 K/min and 50 K/min 
under nitrogen. Next, holding these kinetic parameters fixed, an FPA experiment of a 1 cm thick FRP 
composite (with matrix comprised of the same resin tested via TGA) irradiated at 50 kW/m2 under nitrogen 
is simulated with the three different decomposition mechanisms.  

CONDENSED PHASE PYROLYSIS MODEL  

The calculations reported here are conducted with a generalized pyrolysis model [1], similar to that used in 
FDS5, that can be applied to a wide variety of condensed phase fuels. This model can be applied to both 0D 
and 1D systems and is therefore capable simulating both “lumped” (thermogravimetric) and “slab” (Cone 
Calorimeter/FPA) experiments. Extensive details are given in Ref. [1] so only a brief overview is given 
here. Assumptions inherent in the model, as applied in this paper, include: 

• Each condensed phase species has well-defined “properties”: bulk density, specific heat capacity, 
effective thermal conductivity, and porosity. An overbar denotes a weighted or averaged quantity, i.e. 

∑= iikXk .  

• Specific heat capacity and effective thermal conductivity vary by as ( ) ( ) φφφ n
rTTT 0=  where Tr is a 

reference temperature, φ0 is the value of k or c at Tr, and nφ specifies the temperature dependency of  φ  



  

• Radiation heat transfer across pores is accounted for by adding a contribution to the effective thermal 
conductivity that varies as γT 3, where γ is a fitting parameter 

• Averaged properties in conservation equations are calculated by appropriate mass or volume fraction 
weighting 

• All gases escape to the exterior ambient with no resistance to heat or mass transfer 

• Negligible heat transfer between the gas phase and the condensed phase inside the decomposing solid  

• There is no net shrinkage (volume change) due to reactions or bulk density changes 

The one-dimensional (slab) transient conservation equations are given as Eqs. 1-4: 

Condensed phase mass conservation: 

fgt
ω
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∂  (1) 

Gas phase mass conservation: 
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The gaseous mass flux at any point in the decomposing solid is calculated by integrating Eq. 2 from the 
back face to the front face: 

( ) ( )
∫ ⎟⎟
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mzm
 

 δ
δ

ψρ
ω  (5) 

where, since the back face is assumed impermeable, 0=′′δm . When discretized, the above equations yield a 
system of coupled algebraic equations that are solved numerically. The recommendations of Patankar [2] 
are followed closely. Due to the nonlinearity introduced by the source terms and temperature-dependent 
thermophysical properties, a fully-implicit formulation is adopted for solution of all equations. The 
condensed phase energy conservation equation is solved using a computationally efficient tridiagonal 
matrix algorithm (TDMA). The condensed phase mass and condensed phase species conservation equations 
are solved with a customized fully implicit solver that uses overrelaxation to prevent divergence. Source 
terms are split into positive and negative components to ensure physically realistic results and prevent 
negative mass fractions or densities from occurring [2]. Newton iteration is used to extract the temperature 
from the weighted enthalpy and the condensed phase species mass fractions [1].  

The initial conditions describe the state of the solid (density, species mass fractions) at t=0. The “front-
face” boundary condition (where radiation from the FPA heaters is incident) is a convective-radiative 
balance. Following de Ris and Khan [3], the back-face of the FRP composite loses heat to the underlying 
sample holder (3 mm Cotronics ceramic paper thermal insulation) proportional to an inverse contact 
resistance. The sample holder is treated in the model as a separate layer, with its temperature-dependent 
thermal properties estimated from de Ris and Khan [3]. 

The above governing equations can also be used to simulate thermogravimetric experiments. Since this 
involves only a single 0D lumped particle (Bi << 1), the preceding coupled partial differential equations 



  

become coupled (transient) ordinary differential equations, i.e. only a single control volume (representing a 
thermogravimetric sample) is considered. Since the particle temperature is assumed equal to the 
atmosphere temperature (which increases linearly with time) the condensed phase energy conservation (Eq. 
4) is replaced with the following relation: 

tTT β+= 0  (6) 

The condensed phase mass and species conservation equations (Eqs. 1 and 3) remain unchanged, with the 
exception that the partial time derivative becomes a total time derivative since there is no spatial variation 
in mass or species (homogeneous particle). Differential thermogravimetric curves are calculated from the 
formation rate of gases normalized by the initial particle bulk density: 
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Thermogravimetric curves are then calculated by integrating Eq. 7: 
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The governing equations presented earlier contain several source terms attributed to chemical reactions 
( fgω ′′′ , fiω ′′′ , diω ′′′ , and ksQ ,′′′ ) that must be quantified. Heterogeneous reaction stoichiometry can be written in 
general form as:  

jBjA
N

j
kjkkB

N

j
kjk  gas kg  kg  gas kg  kg 1

1
,,

1
, ∑∑

==

′′+→′+ ννν      where 
k

k

A

B
kB ρ

ρ
ν =,  (9) 

Each reaction k converts a condensed phase species having index Ak to a condensed phase species having 
index Bk. Gases may be consumed or produced in the process, but it is assumed here for simplicity that 

0, =′ kjν  and N = 1. The destruction rate of condensed phase species Ak by reaction k is calculated as: 
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The term ( )0=tAk
Yf ρρ  on the RHS of Eq. 10 is the kinetic model, described in greater detail below. The 

formation rate of condensed phase species Bk by reaction k is related to bulk density ratios:  

k
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k
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B
dAkBfB ω
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The formation rate of all gases (conversion rate of condensed phase mass to gas phase mass) by reaction k 
is: 
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Associated with each reaction k is a heat of reaction ΔHvol,k and the source term appearing in Eq. 4 is 
calculated as the volumetric formation rate of gases multiplied by ΔHvol,k: 

kvolfgks HQ
k ,, Δ′′′−=′′′ ω  (13) 

The total source terms appearing in the conservation equations are obtained by summing over all reactions:  
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DESCRIPTION OF RESIN AND COMPOSITE SLAB 

The resin in this study is a commercially prepared brominated unsaturated polyester resin with 20% 
bromination by mass built in to the carbon back bone. Antimony trioxide is added to enhance flame 
retardancy. The resin was catalyzed with methyl ethyl ketone peroxide (MEKP). According to the product 
description, this resin is a low viscosity, thixed polyester resin formulated to be Class I per ASTM E84 
(flame spread index < 25 and smoke developed < 450).  

Composite panels (33% glass by mass and approximately 10 mm in thickness) were fabricated by hand lay-
up using two different types of fiberglass mats that were fully wetted with resin. The two types of fiberglass 
(E-glass) used in the composite are a chopped strand mat and a glass roving with an area density of 25 g/m2 
and 880 g/m2, respectively. The chopped strand mat is thinner and more porous than the roving. The 
laminate schedule (provided by the manufacturer) is chopped strand mat and roving alternating five times 
with another chopped strand mat layer at the end. Visual inspection of a polished cross-section of the 
composite slab is consistent with this laminate schedule, but with polymer resin layers between each 
fiberglass layer. The chopped strand mat layer is difficult to identify in the cross section, perhaps because 
more resin is soaked into this layer than the roving layer. The roving layer is observed as a prominent glass 
layer possibly because the resin is absorbed only at the fiberglass layer surfaces leaving the interior with 
primarily glass.  

The layered microstructure is determined to a resolution of ~0.07 mm by inspecting a polished cross-
section of the composite under a microscope. Based on visual observation and comparison to global density 
of the composite sample, approximations of three distinct layers are proposed:  100% resin, 100% glass, 
and 50% resin/50% glass. The microstructure is shown schematically in Fig. 1. The lightest “box” 
represents 100% resin, the medium darkness box represents 50% resin/50% glass, and the darkest box 
represents 100% glass. Each box has a thickness of ~0.07 mm. 

 
Fig. 1. Approximation of three distinct layers in composite microstructure.  

THERMAL DECOMPOSITION OF RESIN POLYMER  

The resin’s thermal stability is investigated via TGA using a PerkinElmer Thermogravimetric Analysis 7 
(TGA7) instrument. Experiments are conducted under nitrogen at heating rates of 5 K/min, 10 K/min, 30 
K/min, and 50 K/min. The initial mass of each sample ranges from ~7.5 mg to ~10.5 mg.  

Apparent number of reaction steps – isoconversional method 

Thermogravimetric experiments are often analyzed using a kinetic model of the form:  
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Eq. 17 can also be obtained after dividing Eq. 10 by 0=tρ , considering only a single condensed phase 

species, and defining the conversion 01
=

−= tρρα . Substituting the linear heating rate tT dd=β  into 
Eq. 17 and taking the natural logarithm of both sides gives:  
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Eq. 18 can be used to determine the activation energy E as a function of α by plotting ( )Tddln α  against 
1/T. The slope of the line is –E/R [4]. If the activation energy determined via this so-called 
“isoconversional” (or “model free”) method is not a function of α, this is indicative of a single step 
reaction. If however the activation energy varies significantly with conversion, then multiple reactions 
having different activation energies likely occur.  

As an example, Fig. 2 shows the apparent activation energy as a function of conversion determined with the 
above method for the brominated polyester resin described earlier. It can be seen from Fig. 2 that the 
apparent activation energy increases from ~70 kJ/mol to ~145 kJ/mol in the range 0 < α < 0.2. Over the 
range 0.2 < α < 0.9, the activation energy is relatively constant, varying between ~125 kJ/mol and ~140 
kJ/mol. For α > 0.9, the apparent activation energy increases, approaching 200 kJ/mol. The activation 
energy calculated in this way should be viewed as an estimate, rather than an exact value. What is more 
important than the specific value of activation energy at a particular conversion is the number of 
fundamental steps that this type of plot elucidates. 
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Fig. 2. Apparent activation energy of unsaturated brominated polyester resin calculated via 

“isoconversional” (model free) method [4]. 

Based on Fig. 2 and the above discussion, it can be concluded that at least three primary reactions occur. 
Reaction 1 is dominant over 0 < α < 0.2, reaction 2 is dominant over 0.2 < α < 0.9, and reaction 3 is 
dominant for α > 0.9. On this basis, a 3-step mechanism is postulated: 

( )gas1beta_resinresin brbr νν −+→  (19.1) 

( )gas1charbeta_resin cc νν −+→  (19.2) 

gaschar →                  (19.3) 

In Eq. 19, the species beta_resin is an intermediate species that is formed in the early stages of pyrolysis; 
referring to Fig. 2 above, beta_resin is fully formed when the conversion value has reached approximately 
0.2. This beta_resin species is analogous to the β-foam species used in previous work [5]. Similarly, char is 
an intermediate species that is formed when the conversion value has reached approximately 0.93. 
Although approximately 97% conversion was observed at the end of each TGA experiments, complete 
mass loss (100% conversion) was assumed in the modeling for simplicity. 



  

For the reaction mechanism in Eq. 19, it follows from Eqs. 9, 11, and 12 that 80.0/ resinbeta_resinbr == ρρν  

and 088.080.007.0/ resinresinbeta_resincharc === ρρρρν . The single-step approximation to the above 

reaction mechanism used here is: ( )gas1charresin ssc,ssc, νν −+→ , where 07.0/ resincharssc, == ρρν .  

Kinetic models 

In the three-step reaction mechanism, two different forms of f(α) are contemplated for the second step (Eq. 
19.2):   

( ) ( )nf αα −= 1                standard nth order reaction  (20a) 

( ) ( )nmf ααα −= 1           autocatalytic reaction (20b) 

Eq. 20a represents current “standard” practice for condensed phase kinetic modeling in the fire community, 
and Eq. 20b is an autocatalytic reaction, which arises from chemical considerations because polyester 
thermoset resin thermal decomposition is probably caused by free radical depolymerization. 
Depolymerization is the same process as polymerization except the chain length becomes shorter rather 
than longer. An autocatalytic reaction means that the reaction product (here, free radicals) is the catalyst for 
the reaction itself. A thermal insult on the polymer generates free-radicals that start to attack other parts of 
the polymer. Essentially, free radicals attack on the polymer breaks chemical bonds, promoting further 
degradation of the unreacted polymer. The αm part of the kinetic model in Eq. 20b is attributed to attack by 
free radicals and the (1-α)n part of the kinetic model in Eq. 20b is because the absolute reaction rate drops 
as the sample mass decreases since there is less polymer to pyrolyze. Thus, Eq. 20b is considered a more 
“fundamental” kinetic decomposition model than Eq. 20a because it attempts to simulate the postulated 
chemical decomposition mechanism (free radical depolymerization). 

Numerical simulation of TGA experiments 

First, the model described earlier is used to simulate the thermogravimetric experiments. Kinetic 
parameters are estimated via genetic algorithm optimization [1] for three separate reaction 
mechanisms/kinetic models which are labeled as:  a) Three-step autocatalytic, b) Three-step nth order, c) 
Single-step nth order. The three-step autocatalytic assumes that steps 1 and 3 are nth order, and that step 2 is 
autocatalytic.  The three-step nth order and the single-step nth order assume that all steps are nth order.  The 
best-fit results are shown in Fig. 3, with best-fit kinetic parameters listed in Table 1.  

It can be seen from Fig. 3 that the two 3-step mechanisms (nth order and autocatalytic) capture better the 
early and late stages of mass loss than the single-step reaction. The 3-step mechanisms approach zero 
remaining mass at long times, whereas 7% of the sample’s mass remains at the end of the simulation with 
the single-step mechanism. Experimentally, less than 3% of the sample mass remained at the end of a TGA 
run as residue. There is little difference between the three-step autocatalytic mechanism (case a) and the 
three-step nth order mechanism (case b), suggesting that the additional parameter (m) introduced for the 
autocatalytic reaction may be extraneous. On balance, the autocatalytic reaction mechanism does provide a 
slightly better fit to the 5 K/min TG data between 4000 and 4800 s. It appears from Fig. 3 that the models 
provide a better fit to the experimental data at higher heating rates; however, this is a nuance of plotting the 
results as a function of time rather than temperature because the data from the lower heating rates appear 
stretched on the plots, and the data from the higher heating rates appear compressed.  

Table 1. Optimized kinetics parameters for three different kinetic models. (a) Three-step autocatalytic; (b) 
Three-step nth order; (c) Single-step nth order.  

 Z1 
(s-1) 

E1 
 (kJ/mol) 

n1 
(-) 

Z2 
(s-1) 

E2 
 (kJ/mol) 

n2 
(-) m2 

Z3 
(s-1) 

E3 
(kJ/mol) 

n3 
(-) 

a 4.39×102 55.8 1.09 2.19×1011 170.1 0.87 0.61 5.66×106 139.0 2.47 
b 3.42×102 56.1 1.03 3.55×1011 174.1 0.80 0 1.75×106 127.6 2.64 
c - - - 4.92×109 151.4 0.90 0 - - - 
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Fig. 3. Comparison of experimental and modeled thermogravimetric curves for three different kinetic 
models. (a) three-step autocatalytic; (b) three-step nth order; (c) Single-step nth order.   



  

SIMULATION OF FPA EXPERIMENTS  

The preceding TGA experiments were conducted with polyester resin that contained no glass 
reinforcements. This same resin forms the matrix of the FRP composite slab (having woven glass 
reinforcements) that is tested in the FPA. It was shown in Fig. 1 that the composite slab is far from 
homogeneous, with distinct layers of 100% glass, 100% resin, and a 50%/50% mixture of resin and glass. 
However, as a first approximation and to focus on decomposition kinetics, the heterogeneous FRP 
composite slab is modeled here as an equivalent homogeneous slab having the same global glass content as 
the FRP composite (33% by mass). It is assumed here that the glass is inert and that only the resin reacts. 
We plan to address the effect of layered structure on slab pyrolysis behavior in future work.  

The FPA experiments involve irradiating (under nitrogen) circular FRP composite samples with a radius of 
9.7 cm (area of 74 cm2) at 50 kW/m2 and measuring the resultant mass loss. To facilitate temperature 
measurements, thermocouples are positioned at the sample surface, 1/3 and 2/3 of its thickness, and at its 
back face. The sample holder consists of 3 mm Cotronics ceramic paper thermal insulation [3]. To ensure 
that most of the incident radiation is absorbed at the irradiated surface, samples are coated with a thin layer 
of carbon black in accordance with ASTM E2058. The composite tested here (referred to as material “1a”) 
has a thickness of 10.2 mm and a glass content of 33% by mass.  

In the numerical simulations of the FPA experiments, the kinetics coefficients extracted earlier from TGA 
are held fixed. Three separate cases (corresponding to each kinetic model) are considered: 3-step 
autocatalytic, 3-step nth order, and single step. First, the unknown model input parameters (thermophysical 
properties, reaction enthalpies, and surface emissivities) are estimated by genetic algorithm optimization 
[1] from the FPA data for the nth order case since it is the standard model in the fire community and was 
shown to provide a very good fit to the TGA data in Fig 3. Next, the 3-step autocatalytic mechanism is 
assessed by holding fixed all input parameters and swapping the 3-step nth order mechanism for the 3-step 
autocatalytic mechanism. The final simulation involves replacing the three-step reaction mechanism with 
the single-step reaction mechanism. The calculated MLR for each case is compared to the available 
experimental data to assess how the complexity of the reaction mechanism affects global decomposition 
behavior of a composite slab.  

In the simulations, four condensed phase “pseudo” species are tracked: resin_glass (33% glass by mass 
bonded to 67% resin by mass), betaresin_glass (a mixture of beta resin and glass), char_glass (a mixture of 
char and glass), and porous_glass (the glass reinforcements that remain after all resin has pyrolyzed, 
leaving behind a porous glass structure consisting primarily of woven glass reinforcements).  

As explained in Ref. [1], the bulk density of condensed phase species mixtures can be calculated as 
( ) ∑∑ == −

iiii XY ρρρ 1 . Here, the bulk density of species resin_glass is calculated from the density of 

the resin (1350 kg/m3) and the glass (2600 kg/m3) as ( ) 31
sresin_glas kg/m 1605== ∑ −

iiY ρρ . Using the 

relation glassglassresinresinsresin_glas ρρρρ XXX ii +== ∑ , the volume fraction of glass in species 
resin_glass is calculated to be 0.20. The bulk density of species betaresin_glass is calculated as: 

3
glassglassbeta_resinbeta_resinglassbetaresin_ kg/m 138426002.013508.08.0 =×+××=+== ∑ ρρρρ XXX ii  

where use has been made of the relation 80.0/ resinbeta_resinbr == ρρν . Finally, the bulk densities of species 

char_glass and porous_glass are 3
char_glass kg/m 59626002.0135007.08.0 =×+××== ∑ iiX ρρ  and 

3
ssporous_gla kg/m 52026002.0 =×=ρ . 

The above bulk density calculations (and the governing equations presented earlier) assume that there is no 
net volume change in the unpyrolyzed vs. pyrolyzed sample. The kinetic mechanism from the TGA 
experiments (involving resin with no reinforcements) must be adapted to fit into the above framework. 
Specifically, Eq. 19 becomes: 

 



  

( )gas1glassbetaresin_sresin_glas brgbrg νν −+→  (21.1) 

( )gas1char_glassglassbetaresin_ cgcg νν −+→  (21.2) 

( )gas1ssporous_glachar_glass pgpg νν −+→  (21.3) 

For the reaction mechanism in Eq. 21, it follows from Eqs. 9, 11, and 12: 

86.0/ sresin_glasglassbetaresin_brg == ρρν , 43.0/ glassbetaresin_char_glasscg == ρρν , and 

87.0/ char_glassssporous_glapg == ρρν . 

The kinetics coefficients in Eq. 21 (resin/glass reaction mechanism) are the same as in Eq. 19 (reaction 
mechanism for 100% resin) except that the pre-exponential factors determined by thermogravimetric 
analysis are multiplied by the pyrolyzable volume fraction (0.8, as calculated above). An alternative is to 
multiply the pre-exponential factors by the pyrolyzable mass fraction, but this is not investigated here.   

A comparison of the optimized model calculations and the experimental data is shown in Fig. 4 for the 3-
step nth order mechanism. The thermophysical properties used in these calculations are listed in Table 2 
(ΔHvol is 1.3 × 105 J/kg, 2.3 × 105 J/kg, and 1.4 × 106 J/kg respectively for reactions 1, 2, and 3). Fig. 4a-4c 
compare the measured and modeled temperatures. The maximum deviation from the experimental data is 
~60 K, approximately consistent with the global measurement uncertainty of 50 K [6] indicating that the 
calculated temperature traces match the experimental data. The measured and calculated MLR is shown in 
Fig. 4d. The model correctly captures the general “dual peak” shape of the MLR curve. However, the 
second peak is over-calculated compared to the experimental data.  

The reason for the over-calculation of the second MLR peak may be due to different pyrolyzable mass 
fractions of resin (i.e., different resin conversions) in the TGA and FPA experiments. From the TGA 
kinetic modeling above, 93% of the resin’s mass pyrolyzes in the first two steps of the reaction mechanism 
to form “char”. Assuming that in the FPA experiments the resin reacts to form char, but that this char does 
not further react, the total mass loss per unit area is:  0.67 × 0.93 × 1605 kg/m3 × 10.2 mm  = 10.2 kg/m2 
(where 0.67 is the pyrolyzable mass fraction and the 0.93 factor assumes that the char does not further 
react, i.e. the final resin conversion is 0.93). The cumulative mass loss calculated by the model after 900 s 
is 10.5 kg/m2 (resin conversion of 0.96) because in the model some of the char has reacted, i.e. char_glass 
has started reacting to form porous_glass. In comparison, the experimental data show a cumulative mass 
loss of only 7.6 kg/m2 (resin conversion of 0.69) after 900 s. It appears that the resin conversion is different 
in the TGA and FPA experiments. Although this finding has practical ramifications, the main focus of this 
paper is relative changes in slab pyrolysis behavior caused by decomposition kinetics. The differences 
encountered here may be caused (indirectly) by experimental error in the temperature measurements. If the 
measured temperature is hotter than the actual temperature of the condensed phase, the optimized model 
would over-predict the MLR since its thermophysical properties are optimized to make the calculated 
temperatures match the experimental data. Another contributing effect may be the heterogeneous nature of 
the composite, which is approximated here as a homogeneous equivalent. The woven glass layers could act 
as a thermal barrier (thereby limiting resin pyrolysis) or a physical barrier (thereby preventing pyrolyzed 
resin from escaping). A model that explicitly considers the laminated microstructure would be required to 
capture this effect.  

Table 2. Optimized thermophysical properties used in slab pyrolysis simulations. 

Species ρ0 
(kg/m3) 

k0 
(W/m-K) 

nk 
(-) 

c0 
(J/kg-K) 

nc 
(-) 

ε 
(-) 

γ 
(m) 

resin_glass 1600 0.240 0.116 1465 0.180 0.98 0 
betaresin_glass 1384 0.278 0.239 1331 0.184 0.98 0 
char_glass 596 0.130 0.165 938 0.026 1.00 2.5×10-3 
porous_glass 520 0.130 0.173 924 0.025 1.00 3.7×10-3 
Cotronics 168 0.028 1.270 800 0.190 1.00 0 
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   (c)      (d) 
Fig. 4. Comparison of calculations (3-step nth order) and experimental data for pyrolysis of FRP polyester 

composite in FPA at 50 kW/m2 under N2. (a) Surface T; (b) 2/3 thickness T; (c) Back face T; (d) MLR.   
 
Next, the thermophysical properties determined above (Table 2) are held constant, and the two additional 
kinetic models are investigated. Their effect on the calculated MLR is shown in Fig. 5. There are minor 
differences between the calculated MLR curve for the two 3-step mechanisms (nth order and autocatalytic). 
This is expected since these mechanisms provide similar fits to the TGA data (Fig. 3). However, the MLR 
calculated with the single-step mechanism is quantitatively different from the 3-step mechanisms. The early 
MLR is suppressed, with greater MLR at later times. This is consistent with Fig. 3, which shows that for 
the single step reaction mechanism the initial mass loss is not captured, but the later stages are. 
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Fig. 5. Comparison of measured and modeled MLR in FPA for three different kinetic models.  



  

CONCLUDING REMARKS 

In the example presented in this paper, a 3-step nth order reaction mechanism and a 3-step reaction 
mechanism with a main autocatalytic step provided nearly identical calculations of thermogravimetric 
curves and slab pyrolysis in the Fire Propagation Apparatus (FPA) under nitrogen. Compared to the 3-step 
mechanisms, a single-step decomposition mechanism provides quantitatively different, but similar, MLR 
predictions of the FPA data. The 3-step nth order mechanism requires specification of 19 additional model 
input parameters (two values each of Z, E, n, and ΔHvol, two values each of k0, nk, c0, nc, ε, and one value of 
γ) over the single step reaction case. In view of the marginal difference between the single-step and the 3-
step calculations shown in Fig. 5, it is apparent that for this particular case introducing additional 
complexity (and degrees of freedom) is superfluous. Essentially, uncertainties in microstructure/anisotropy, 
material properties, heats of reaction, boundary conditions, experimental measurements, and inter-
batch/inter-manufacturer variations dwarf any uncertainty in the decomposition kinetics as determined from 
TGA.  

Although it is difficult to justify use of a multi-step for the material modeled here, no broad conclusions 
regarding the importance of multi-step thermal decomposition kinetics can be drawn on the basis of a 
single study. Multi-step reaction mechanisms may be justified for materials with DTG curves that show 
multiple reaction peaks. If a material’s DTG curve can’t be fit using an nth order reaction, one of the more 
fundamental kinetic models (e.g., autocatalytic) may be appropriate. If a material shows endothermic 
behavior in inert environments but exothermic behavior in oxidative environments, a reaction mechanism 
that includes an endothermic pyrolysis step and an exothermic oxidative step may be warranted. Finally, 
the additional complexity introduced by multi-step reaction mechanisms may be justified if all other model 
input parameters (thermophysical properties, radiation characteristics) are accurately known.  
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