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Abstract 

 

Magnetic resonance imaging (MRI) is a valuable research and clinical imaging modality 

for the non-invasive detection and characterization of cerebral ischemia. Specifically, diffu-

sion-weighted imaging (DWI), which derives image contrast based on the diffusion of en-

dogenous water molecules, is sensitive to cerebral ischemia within minutes of the onset of 

stroke. In combination with perfusion-weighted imaging (PWI) and T2-weighted imaging 

(T2WI), DWI can be used to characterize the temporal and spatial evolution of cerebral 

ischemia. The primary role of this dissertation is to outline several studies that investigate 

DWI, PWI, and T2WI changes in a rat stroke model of transient cerebral ischemia. Secondar-

ily, this dissertation will introduce the method and results of an experiment designed to elu-

cidate the relative roles of the intracellular (IC) or extracellular (EC) spaces to the water dif-

fusion coefficient changes that occur as a result of cerebral ischemia.  

The use of MRI to detect cerebral ischemia is well established; however, the ability to 

distinguish between reversibly and irreversibly damaged tissues is limited. It has been shown 

in temporary focal ischemia models that the DWI abnormality (manifested as an image hy-

perintensity in the DWI) can be resolved if reperfusion is performed soon after the onset of 

the stroke. Initial studies suggested that the renormalization of water diffusion was associated 

with permanent restoration of cellular function (i.e., infarction was prevented). However, 

subsequent studies demonstrated that the disappearance of the acute ischemic lesion follow-

ing reperfusion is not necessarily permanent and is related to the duration of the transient in-

sult. Following short occlusions [e.g., 10 minutes in a rat middle cerebral artery occlusion 
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(MCAO) model], there is complete tissue renormalization and restoration of normal neuro-

logical function. In contrast, following long periods of occlusion (e.g., 90 minutes), there are 

areas of the brain that do not recover and progress to infarction without delay. Intermediate 

durations of occlusion (e.g., 30 minutes) exhibit complete renormalization in all regions of 

ischemia; however, following several hours there is a gradual, secondary decline of the water 

diffusion coefficient values within the regions initially defined as abnormal. In this disserta-

tion, the significant temporal and spatial heterogeneity in the secondary diffusion changes 

will be described and evaluated. Ultimately, MR techniques may provide valuable informa-

tion regarding the response of tissue to transient ischemia as well as potential avenues for 

therapeutic intervention, which would have major clinical benefit.  

The significant changes in the apparent diffusion coefficient (ADC) of water that occur 

in ischemic brain are still not well understood. The leading hypothesis suggests that cellular 

swelling associated with the failure of the ionic gradient across the cell membrane results in 

an increase in EC tortuosity of the diffusion paths. Another theory suggests that the influx of 

fast-diffusing EC water, that occurs during cellular swelling, increases the proportion of wa-

ter in the IC space, which is more restricted and viscous than the EC space. The final experi-

ment presented herein demonstrates that significant cellular swelling remains in the regions 

of renormalized of ischemic ADC values that occur following reperfusion in transient ische-

mia. In short, the changes in the ADC values are not only the result of cellular swelling. 

Since conventional MR data contains the combined signals from the IC and EC spaces, it is 

difficult to determine the separate roles of these two compartments to the overall changes in 

water ADC. In the first research study, a method for separating the NMR signals is intro-

duced using a yeast-cell model. This method utilizes differences in the compartmental relaxa-
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tion properties to isolate the MR signals from IC and EC spaces, and then secondarily the 

diffusion coefficients can be calculated. Using a modified version of this method, the ex-

periment was performed in normal and ischemic rat brain. Intracerebroventricular (ICV) in-

fusion of an MR contrast reagent (CR) was used to isolate IC T1, T2, and ADC values in vivo 

in normal and middle cerebral artery occluded (MCAO) rats using volume-localized, diffu-

sion-weighted inversion-recovery spin-echo (DW-IRSE) spectroscopy and diffusion-

weighted echo-planar imaging (DW-EPI). The presence of the EC contrast reagent (CR) se-

lectively enhances the relaxation of water in the EC space and allows the IC and EC signal 

contributions to be separated based on T1-relaxation time differences between the two com-

partments. The results presented in this dissertation suggest that the IC ADC value is the ma-

jor determinant of the overall ADC value measured in the normal rat brain. Further, the data 

suggests that the ADC decline experienced during acute ischemia is dictated largely by 

changes in the IC ADC, possibly due to failure of energy-dependent IC microcirculation (cy-

toplasmic streaming). 

The complexity of these studies requires the expertise and coordination of researchers 

with MRI skills as well as animal modeling and histology experience. Due to my own sig-

nificant contributions to the research presented herein, this dissertation has been submitted in 

partial fulfillment of my doctorate. Specifically, in the transient ischemia studies (Chapters 

3−5 and 7), it was my responsibility to collaborate on experimental design, operate and main-

tain the NMR instrument, optimize pulse sequences, process and analyze the acquired data, 

and contribute to the writing of the manuscript. The study presented in Chapter 6 introduced 

a novel data analysis approach extended from the transient ischemia studies. The goal was to 

determine if acute ADC and T2 values were predictive of secondary ADC and T2 values and 



 viii 

infarction. My contributions to this study included extensive computer programming for im-

age reconstruction, analysis, and statistical evaluation and principle authorship of the manu-

script. The studies in Chapters 8 and 9 present a method and its application for measuring 

compartmental water diffusion coefficients with the aid of a contrast reagent (CR) to separate 

the intracellular (IC) and extracellular (EC) 1H2O signals via differences in their respective 

longitudinal (T1) relaxation times. First, the method was evaluated using a yeast-cell suspen-

sion model (Chapter 8). My contributions to this work were development of the NMR pulse 

sequences, performance of the NMR experiments, theoretical modeling, C and IDL pro-

gramming for spectroscopic and image data analysis and statistical evaluation of the biexpo-

nential methods, yeast-cell suspension preparation, and principle authorship on the manu-

script. Second, in Chapter 9, the application of the method is demonstrated for the measure-

ment of IC and EC ADC values in the in vivo rat brain. Intracerebroventricular infusion of an 

MR contrast reagent allowed for the separation of the IC and EC 1H2O signals as introduced 

in Chapter 8. Intracellular water T1, T2, and ADC values were measured in vivo in normal 

and middle cerebral artery occluded (MCAO) rats using volume-localized, diffusion-

weighted inversion-recovery spin-echo (DW-IRSE) spectroscopy and diffusion-weighted 

echo-planar imaging (DW-EPI). My contributions to this work were development of the 

NMR pulse sequences, performance of the NMR experiments, theoretical modeling, C and 

IDL programming for spectroscopic and image data analysis and statistical evaluation, and 

principle authorship on the manuscript. 



 

 

 

 

 

 

 

Chapter 1 

 

Introduction to NMR Theory 
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1.1 Basic Concepts in Nuclear Magnetic Resonance 

The goal of this section is to described the physics of nuclear behavior in an electromagnetic 

(EM) environment that give rise to the nuclear magnetic resonance (NMR) phenomenon. The 

explanation of NMR principles can use either classical physics or quantum mechanics to ar-

rive at descriptions of nuclear response to a static, external magnetic field and applied radio 

frequency (RF) radiation. NMR experiments include spectroscopy, where the NMR fre-

quency reflects the location of nuclei in molecules, and imaging, where the measured NMR 

frequency is proportional to the position of nuclei in space. This section will outline the ori-

gin of the NMR signal and the basic fundamentals of signal detection. 

 

1.1.1 Nuclear Magnetic Moment and Angular Momentum 

Nuclei are charged particles with rotational and magnetic properties. The motions of nuclei 

are comprised of both orbital and spin components, which together yield the total nuclear an-

gular momentum. The nucleus is viewed typically as the stationary center of an atom; how-

ever, the nucleus possesses an orbital angular momentum about its center of mass that is pro-

portional to its mass, velocity, and orbital radius. Also, from a classical physics perspective, 

the spinning of a particle (or the entire nucleus) on its rotational axis results in spin angular 

momentum. The total nuclear angular momentum, ρ , is a vector quantity that describes the 

direction and magnitude resulting from the cumulative effects of orbital and spin angular 

momenta. Further, a charged nucleus possessing spin and orbital rotational motions (angular 

momentum) will generate a local magnetic field.  The direction and magnitude of this mag-

netic field is termed the nuclear magnetic dipole moment, µ . The relationship between the 

nuclear magnetic moment, µ , and its angular momentum, ρ , is given by 
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ρµ γ= , [1.1] 

where γ is the nuclear magnetogyric (or gyromagnetic) ratio, a nucleus-specific parameter 

equal to the charge-to-mass ratio of the nucleus, mez , where z is the atomic number. In the 

sections to follow the quantum mechanics and classical physics governing µ  and ρ  in the 

presence of in a static, external magnetic field (the B0 field) and following applied RF radia-

tion (the B1 field) will be discussed. 

 

1.1.2 Quantum Mechanical Restrictions on µµµµ and ρρρρ 

Classical physics would suggest that there are no specific orientation requirements of the µ  

and ρ  vectors. However, on the atomic level, quantum mechanics indicate that these vectors 

may take only certain discrete or quantized values. This quantization is specified based on 

the structure of the nucleus and can be characterized by the nuclear spin quantum number, I. 

Nuclei with an odd number of protons and/or neutrons have a non-zero value of I, which may 

be an integer or a half-integer depending on the isotope. The most widely exploited nucleus 

in biological NMR studies is the 1H isotope due to the high concentration of water and lipids 

in biological samples. The 1H isotope is comprised of only a single proton, and I equals ½; 

hence 1H is referred to as a spin-½ nucleus. The spin angular momentum is quantized based 

on the value I, therefore the magnitude of ρ  is limited to discrete values according to  

( )[ ] 2
1

1II +=ρ h , [1.2] 

where ħ is Planck’s constant (h) divided by 2π. Another quantum number, m—termed the 

magnetic spin quantum number—defines all possible states that the nuclei can occupy, where 

m = −I, −I+1, · · ·, I−1, I. If the external magnetic field (B0) is taken to be oriented along the 
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z-axis of a cartesian coordinate frame, then the component ρz of the angular momentum (i.e., 

the component of ρ  coincident with B0) can be used to specify the orientation of ρ  and is 

related to m by 

mh=zρ . [1.3] 

For a spin-½ nucleus, I = ½ and m = ± ½, indicating only two possible orientations of ρz. The 

relationship between µ  and ρ  defined in Eq. [1.1] states that the quantization of ρ  forces the 

quantization of µ . The magnitude of the µ  and ρ  vectors for the spin-½ nucleus are 

2
3h=ρ  and 

2
3hγ=µ . 

[1.4a,b] 

The z-components of the µ  and ρ  vectors coincident with the B0 field have respective mag-

nitudes of  

2z
h±=ρ±  and 

2z
hγ±=µ± . 

[1.5a,b] 

The quantum mechanical restrictions on µ  prevent the nuclei from aligning exactly along the 

direction of the B0 field, such that the magnitude of zµ≠µ . The direction of the µ  and ρ  

vectors is defined by the offset angle, θ , with respect to the B0 axis by 

( )
( )[ ] 2

1
1II

θcos
+

= m . 
[1.6] 

For a spin-½ nucleus, θ  equals 54.7º. Figure 1.1 illustrates that the two possible orientations 

of µ  and ρ  for a spin-½ nucleus are parallel (spin-up) and anti-parallel (spin-down) relative 

to the B0 field. Figure 1.1 also shows the angle, θ , between µ  and ρ  and the B0 field (ori-

ented upward in the figure). 
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1.1.3 Nuclear Energy States 

The interaction between µ  and the B0 field give rise to a potential energy, E, given by 

0z0 µ BBµE −=⋅−= , [1.7] 

For a spin-½ nucleus there are two possible orientations of the nuclear magnetic moment and, 

consequently, two corresponding energy states. The potential energy of each state, as given 

by Eq. [1.7], is dependent on the external field strength, as illustrated in Fig. 1.2. The parallel 

orientation has a lower energy state, E1, than nuclear spins oriented anti-parallel to B0, which 

occupy a higher energy state, E2. 

Without the influence of the B0 field, the nuclear spins have no prefered orientation; 

however the interaction of the external magnetic field forces spin-½ nuclei to be distributed 

into either the lower or higher energy state. The equilibrium distribution of nuclei in a par-

ticular energy state is mathematically described by the Boltzmann Law: 

( )TE
I

IeN k−= , [1.8] 

µµµµ    

ρρρρ    

θ 

ΒΒΒΒ0    
2z
hγ=µ

2z
h=ρ

Figure 1.1  The quantum mechanical view of the µ  and ρ  vectors 
orientations for a spin-½ system. The magnitudes of the vector pro-
jections along the z-axis are shown as ρz and µz. 
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where NI is the number of nuclei in spin state I, T is temperature in degrees Kelvin (°K), and 

k is the Boltzmann constant (1.38 × 10-23 Joules/°K). The NMR signal is proportional to the 

population difference between the lower and higher energy states, which is given by 

T2
N

n 0T

k
Bhγ

=∆ , 
[1.9] 

where ∆n is the population difference between the energy states and NT is the total number of 

nuclei being considered. Equation [1.9] demonstrates the dependence of an NMR measure-

ment on the total number (concentration) of spins, the nucleus of interest, the external mag-

netic field, and the temperature.  The population difference can also be related to the total 

magnetization within the sample. In other words, the summation of all the individual mag-

netic moments equals the total magnetization, M0: 

∑
−=

µ=
I

Im
m,zm0 NM . 

[1.10] 

For a spin-½ system, the net magnetization is related to the population difference by 

 

B0 [T] 

2
hE 0

1
Bγ−=

2
hE 0

2
Bγ=  

E1, E2 

Figure 1.2  B0 field dependence of nuclear energy states, E1 and E2,
for a spin-½ system. E1 is the lower energy state, parallel to the B0

field; whereas, the higher energy state, E2, is anti-parallel to B0. 
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( )
2

nM0
∆γ= h . 

[1.11] 

Combining Eqs. [1.9] and [1.11], the dependence of M0 on the total number (concentration) 

of spins, the nucleus of interest, the external magnetic field, and the temperature is given by 

T4
N

M 0
22

T
0 k

Bhγ
= . 

[1.12] 

At the Boltzmann equilibrium, the number of nuclear spins oriented parallel to the external 

magnetic field (lower energy state) will always be greater in number than those in the higher 

energy state. Consequently, M0 is oriented parallel to B0. M0 will be described in more detail 

in the following section. 

When EM radiation with frequency that matches the energy level difference between the 

spin states (resonance condition) of the nuclei is applied to a spin system (at equilibrium in 

an external magnetic field), the nuclei will transition between energy levels (i.e., perturbing 

the Boltzmann equilibrium). The EM radiation (in the RF range of the EM spectrum) will 

cause the nuclei to absorb energy and transition from the lower to the higher energy state. 

The difference in the energy, ∆E, is function of the gyromagnetic ratio and the external mag-

netic field: 

012 EEE Bγ=−=∆ h . [1.13] 

Further, ∆E is also a function of the frequency, υ, of the applied RF radiation: 

υ=∆ hE . [1.14] 

Equating Eqs. [1.13] and [1.14] and subsequent simplification yields 

02
B

π
γ=υ , 

[1.15] 

which specifies the frequency of EM radiation that satisfies the resonance condition. 
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1.1.4 Classical Description of NMR 

The NMR experiment involves placing nuclei in a static, external magnetic field, B0. From a 

classical point of view, B0 exerts a force (torque) on the magnetic dipole moment of the nu-

clei. Since the nuclear magnetic moment is inclined at an angle with respect to B0, the inter-

action of µ  and B0 results in a precessional motion of µ  about B0. The classical physics 

equation that describes this motion is the cross product of the vector quantities µ  and B and 

is given by 

BµρL ×==
dt
d , 

[1.16] 

where L is torque and B consists of both the static, external magnetic field, B0, and the mag-

netic field of the applied RF radiation, B1. When multiplied by γ, Eq. [1.16] becomes nu-

cleus-specific: 

Bµρµ ×γ=γ=
dt
d

dt
d . 

[1.17] 

Without the applied RF energy (i.e., B1 equals zero), the nuclei respond only to the B0 field, 

and the B in Eqs. [1.16] and [1.17] is written as only B0. The precessional frequency of the 

nuclei about B0 is defined by the Larmor equation:  

0ω Bγ−= (rad/sec). [1.18] 

Notice that Eq. [1.18] yields the same result as Eq. [1.14], which is in terms of frequency 

units (Hz). Consequently, RF radiation applied at the Larmor frequency will satisfy the reso-

nance condition and perturb the system away from the Boltzmann equilibrium. 

Equations [1.10]–[1.12] define the net magnetization, M0, as the sum of the individual z-

components of µ  ( zµ ) associated with the population difference between the spin states. 

From a classical point of view, it is also convenient to move beyond the view of individual 
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magnetic moments and invoke the net magnetization vector, M. First, it is important to eluci-

date the distinction between the net magnetization, M0, and the net magnetization vector, M, 

which is the intensity of the magnetization or the magnetic moment per unit volume. Accord-

ingly, Eq. [1.17] can be rewritten to characterize the effect of the B0 and B1 magnetic fields 

on M according to classical principles: 

B×= ΜΜΜΜΜΜΜΜ γ
dt

d . 
[1.19] 

The net magnetization, M0, is the component of the M vector that is coincident with the ex-

ternal B0 field. Referring to Fig. 1.3: NMR convention defines the cartesian coordinate axis 

such that the B0 field points along the z-axis; M has the same precessional properties as the 

vector sum of the individual magnetic moments; The longitudinal component of the M vec-

tor, Mz, is equal to the net magnetization, M0, which was mathematically defined in Eqs. 

[1.10]–[1.12].  

The leftmost illustration in Fig. 1.3 shows a small number of magnetic moments oriented 

according to the Boltzmann distribution (for a spin-½ nucleus) in the presence of the B0 field. 

The precession of the nuclei about B0 is indicated by the arrow. The middle illustration dem-

onstrates that nuclei in the parallel orientation with the B0 field are in excess of nuclei in the 

anti-parallel orientation. The vector sum of the numerical difference between the two orienta-

tions is the net magnetization vector (M), which is shown in the rightmost illustration. In the 

same manner as described for the individual nuclei, the external magnetic field (subsummed 

into B in Eq. [1.19]) will cause the precession of M about B0. 
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1.1.5 Free Induction Decay 

In the NMR experiment, the sample of interest is surrounded by an RF resonant circuit and is 

placed within the external magnetic field (i.e., the B0 field of the NMR magnet). The role of 

the RF circuit is to apply alternating current at the Larmor frequency and (in the usual case) 

to detect the subsequent time-dependent changes in the NMR magnetization. For example, 

consider the RF resonant circuit to be a coil of wire (solenoid) wound about the sample. The 

current passed through the coil will generate a magnetic field within the wire coil, which is 

oriented such that the generated RF magnetic field (the B1 field) is perpendicular to the ex-

ternal (B0) field. When the resonance condition is met, the nuclei respond to the influence of 

the B1 field. As illustrated in Fig. 1.4, M0 at equilibrium is parallel to the B0 field, which is 

oriented along the positive z-axis of a cartesian coordinate frame. A second RF magnetic 

field, B1, applied at the resonance frequency in the transverse (x-y) plane causes M0 to pre-

cess or “tip” into the transverse plane. The angle of rotation, θ , is given by Eq. [1.20]. 

 B0 

B0 

M 

B0 

M0 

Figure 1.3  Left: Distribution and precession of nuclei of a spin-½ 
system in the presence of an external magnetic (B0) field. The arrows 
indicate individual magnetic moments. Middle: The excess of nuclei 
that are parallel with the B0 field. Right: The vector sum of all the 
individual magnetic moments is expressed as the net magnetization 
vector, M, which has the same precessional properties as the 
individual nuclear magnetic moments. The z-component of M (Mz) 
is the longitudinal magnetization, M0. 
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τ= 1γθ B , [1.20] 

where θ  is the tip angle and τ is the duration of the B1 field application. Typically, RF pulses 

are applied to tip the magnetization either completely into the transverse plane (θ  = 90° or a 

90° pulse) or onto the negative z-axis (θ  = 180° or a 180° pulse). 

As the relaxation processes return the spin system to the Boltzmann equilibrium, the 

NMR signal is detected in the x-y (tranverse) plane, and the signal decays exponentially by 

T2
* relaxation. T2

* relaxation is a combinations of the intrinsic T2 relaxation of the nuclei and 

contributions from magnetic susceptibilities, field inhomogeneities, and molecular diffusion. 

(T2 and T2
* relaxation will be further discussed in Section 1.2.) The precessing transverse 

magnetization induces a sinusoidally oscillating, exponentially decaying NMR signal in the 

RF coil and is termed the free induction decay (FID). The left side of Fig. 1.5 shows that the 

FID (▬) is the convolution of a sinusoid (---) and a decaying exponential (—). The Fourier 

pair of the FID is a Lorentzian function, which is shown on the right side of Fig. 1.5. T2
* is 

 

M0 

y 

B0 

B1 

z 

x 

θ  

Figure 1.4  The B1 field from the RF radiation that satisfies the 
resonance condition of the nuclei is applied perpendicular to the B0 
field. M0 precesses about the B1 field, and coherently tips the 
magnetization into the transverse plane at an angle θ, which is 
dependent on the strength and duration of the B1 field excitation. 
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the FID decay time constant, and the associated T2
* feature of the Lorentzian function is the 

full width at half maximum, υ½, which is equal to 

*
22

1 T
1

π
=υ . 

[1.21]   

 

1.1.6 The Spin Echo 

In 1950, Erwin Hahn detailed the existence of the spin echo, which is best described by refer-

ring to Fig. 1.6. Following a 90º pulse, during which the magnetization had been coherently 

tipped into the transverse plane, the FID signal decays away due to the dephasing of the x-y 

magnetization vector. The dephasing results from the inhomogeneity of precessional fre-

quencies in the ensemble of nuclei. (The processes governing spin dephasing are discussed in 

detail in Section 1.2.2). In general, due to local magnetic field differences, some nuclei pre-

cess faster than the Larmor frequency and some slower—this feature is demonstrated in the 

lower diagrams of the magnetization in Fig. 1.6. After some finite period of time, τ, a 180º 

RF pulse is applied such that the spins rotate about the y-axis and the relative positions of the 

 

 

0

0.5

1

-1

0

1

υ½ 

Figure 1.5  Left: The FID (? ) is the convolution of a sinusoid (---) 
and a decaying exponential (—). Right: The Fourier transform of the 
FID is the Lorentzian function. The width of the Lorentzian at the 
half maximum, υ½, (indicated by the arrows) is related to T2

* by Eq. 
[1.21]. 
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fast and slow spins are reversed. The NMR signal is re-established after a second τ period as 

the fast-precessing spins catch up with the slow-precessing spins and converge on the y-axis. 

This process is the formation of the spin echo. 

 

1.1.7 The Bloch Equations 

The net magnetization responds dynamically to the presence of the static, external magnetic 

field, B0, the subsequent application of RF radiation, and the effects of nuclear relaxation 

processes. This dynamic behavior is described mathematically by the Bloch equations 

(Bloch, 1946). The Bloch differential equations describe the behavior of the constituent com-

ponents {Mx, My, and Mz} of the magnetization vector, M, in the presence the B0 and B1 

fields and nuclear relaxation.  

( )
2

x
z1y0

x

T
M

tsinMM
dt

dM
−ωγ+γ= BB  

[1.22] 

 τ τ 
o
x90 o

y180

Figure 1.6  Diagram of the formation of the spin echo. Following a 
90º pulse, the FID signal decays away due to the dephasing of the 
transverse magnetization—some nuclei precess faster than the 
Larmor frequency and some slower. A 180º RF pulse reverses the 
relative positions of the fast and slow spins. The NMR signal is re-
established as the fast-precessing spins catch up with the slow-
precessing spins and converge on the y-axis. 
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( )
2

y
z1x0

y

T
M

tcosMM
dt

dM
−ωγ+γ−= BB  

[1.23] 

( ) ( )[ ]
1

0z
yz1

z

T
MM

tcosMtsinM
dt

dM −
−ω+ωγ−= B   

[1.24] 

The terms in Eqs. [1.22] and [1.23] containing a B0 term are the Larmor precession terms, as 

a result of the torque exerted by the external field on the transverse components of the mag-

netization resulting in the precessing about the field. In a frame of reference rotating at the 

Larmor frequency, the B0 terms in Eqs. [1.22] and [1.23] go to zero. The B1 terms in the 

Bloch equations describe the change in magnetization resulting from applied RF radiation. 

Figure 1.4 previously illustrated the behavior of M0 during the application of a B1 field in the 

rotating frame of reference.  

Lastly, following the termination of the B1 field, the system subsequently returns to the 

Boltzmann equilibrium. The T1 and T2 terms in Eqs. [1.22]–[1.24] are the time constants as-

sociated with the equilibration of the net magnetization and are referred to as longitudinal 

and transverse relaxation, respectively. A review of the mechanisms governing T1 and T2 re-

laxation will be covered in Section 1.2; however, the mathematics will be first introduced 

below. In the absence of the B1 field, the B1 terms in Eqs. [1.22]–[1.24] go to zero. Following 

this modification, the Bloch equations describe the change in the net magnetization towards 

the Boltzmann equilibrium. Without the effects of the B1 field and considering the system in 

a reference frame rotating at the Larmor frequency (in which case B0 is effectively equal to 

zero), Eqs. [1.22]–[1.24] can be rewritten as 

2

xyxy

T
M

dt
dM

−=  
[1.25] 

and 
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1

0zz

T
MM

dt
dM −−= . 

[1.26] 

In Eq. [1.25], the transverse components of the magnetization, Mx and My in Eqs. [1.22] and 

[1.23], are combined in. The solutions to Eqs. [1.25] and [1.26] are 

( ) 2T
0xy eMM τ−=τ   [1.27] 

and 

( ) ( )1T
0z e1MM τ−α−=τ , [1.28] 

where α in Eq. [1.28] equals 1 or 2 for a 90º or 180º pulse, respectively. 

 

1.2 Nuclear Magnetic Relaxation 

The two main nuclear relaxation mechanisms are spin-lattice (T1) relaxation and spin-spin 

(T2) relaxation. Nuclei in various tissues often have intrinsically different relaxation time 

constants, thus allowing T1 and T2 to be used to generate contrast in MRI applications. The 

following sections describe T1 (1.2.1) and T2 (1.2.2). 

  

1.2.1 T1 Relaxation 

Spin-lattice relaxation, also called T1 or longitudinal relaxation, is the relaxation process that 

occurs due to energy dissipation between a proton and the surrounding molecular and atomic 

environment (the lattice). The most efficient T1 relaxation occurs when a molecule is rotating 

or translating at a rate close to the Larmor frequency. Free water exhibits extremely ineffi-

cient (i.e., long) T1 relaxation due to its small molecular size and fast rotational rate (or short 

correlation time). According to the Larmor equation (Eqs. [1.15] and [1.18]), the 1H reso-

nance frequency in a 2 Tesla (T) magnetic field is 85.57 MHz. The correlation of free water 

equates to a rotational frequency of approximately 100,000 MHz, which is significantly 
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higher than the Larmor frequency and accounts for the inefficient T1 relaxation. In a biologi-

cal system, water may transiently bind to larger molecules, which will slow the average rota-

tional correlation time of the water molecules closer to the Larmor frequency and thus sig-

nificantly shortening the T1 value. 

 Figure 1.7 illustrates the inversion recovery (IR) pulse sequence commonly used for the 

measurement of T1 relaxation and an illustration of the behavior of the magnetization vector, 

M. A 180° RF pulse is applied at the Larmor frequency, with the B1 field perpendicular to 

the direction of the main magnetic field, B0, and perturbs the system away from the Boltz-

mann equilibrium. After the termination of the B1 field, the protons will dissipate energy via 

thermal interaction with the lattice and return to Boltzmann equilibrium. This energy dissipa-

tion results in the return of M to the equilibrium position aligned parallel with the B0 field.  

As introduced in Eq. [1.24], the time constant associate with the return to equilibrium of the 

longitudinal (or z) magnetization is the T1 relaxation time constant. In the IR sequence shown 

in Fig. 1.7, the time interval TI is commonly referred to as the inversion time. Figure 1.8 

shows the normalized change in the measured magnetization for an example data set for a 

 TI 

RF 
 
 
M 

o
x180 o

x90

Figure 1.7  Top: IR pulse sequence for the measurement of T1
relaxation. Bottom: The changes in the magnetization, M, are
illustrated by the arrows. 
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nuclei with a 100 millisecond T1 relaxation time constant. Fitting the data in Fig. 1.8 to Eq. 

[1.28] allows the T1 relaxation time to be calculated. 

 

1.2.2 T2 Relaxation 

T2 relaxation, the relaxation time constant associated with spin dephasing in the transverse 

plane, is also called spin-spin or transverse relaxation. Following application of a 90º RF 

pulse, the net magnetization in the sample begins to precess coherently into the transverse 

plane. Transverse relaxation is facilitated by any process that results in a loss of phase coher-

ence between the individually precessing nuclear magnetic moments. The most efficient 

transverse relaxation occurs in the presence of static or slowly fluctuating local magnetic 

fields within a sample. As nuclei experience a transient change in their local magnetic field, 

the nuclei temporarily resonate at the frequency of the local field, which may be slightly 

slower or faster than the Larmor frequency. This transient field alteration results in a phase 

shift and an overall decrease in the phase field coherence of the transverse magnetization. 
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Figure 1.8  Normalized signal intensity change as a function of 
inversion time (TI) for nuclei with a 100 millisecond T1 relaxation 
time constant. 
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Large, rigid molecules (e.g., proteins, phospholipids, and polysaccharides) have exceedingly 

slow molecular mobility and motion, which results in very short T2 relaxation times. In fact, 

as molecular motions become truly static as in a solid (e.g., ice), the molecular motions are 

extraordinarily limited and T2 relaxation is extremely efficient and reduces the NMR “visibil-

ity” of these nuclei. Conversely, spins with high molecular mobility and fast correlation 

times effectively average out the local field inhomogeneities resulting in long T2 relaxation 

times. Free (unbound) water exhibits inefficient T2 relaxation due to the small molecular size 

and fast tumbling rate. In biological systems, water molecules transiently bind with large 

molecules. As described above, these large molecules have slow molecular mobility, and 

while the water is associated with these molecules, the measured 1H2O T2 time constant be-

comes shorter. Therefore, T2 relaxation is in direct correlation with the average molecular 

mobility in a sample.  

Figure 1.9 shows a Hahn spin-echo pulse sequence used for the measurement of T2 re-

laxation and an illustration of the behavior of the magnetization vector, M. Following the ap-

plication of a 90° RF pulse, with the B1 field perpendicular to the direction of the external 

magnetic field in the rotating frame of reference, the magnetization coherently tips into the 

transverse plane. When the B1 field is removed, the nuclei precess about the B0 field. The 

protons also experience the minute magnetic field produced by neighboring protons and 

magnetic field distortions locally caused by B0 field inhomogeneities and sample susceptibil-

ity. The heterogeneity within the sample and the spin-spin interactions causes the nuclei to 

precess at different frequencies about the B0 field. Some nuclei precess faster than the Lar-

mor frequency, some slower than the Larmor frequency, and some at the Larmor frequency 

(i.e., there is a distribution of precessional frequencies). As shown in Fig. 1.9 (in the rotating 
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frame of reference), the loss of phase coherence is depicted as a fanning out of the transverse 

magnetization. After some period of time, the composite vector of magnetization in the 

transverse plane is completely dephased. The time constant associated with the dephasing of 

spins in the transverse plane is the T2
* relaxation, which was introduced in Section 1.1.4 as 

the decay constant of the FID. T2
* relaxation is related to the T2 relaxation by 

)diff(2hom)in(2)sus(22
*
2 T

1
T

1
T

1
T
1

T
1 +++= , 

[1.29] 

where T2(sus) is the transverse relaxation due to susceptibility, T2(inhom) is the transverse relaxa-

tion due to B0 field inhomogeneities, and T2(diff) is the transverse relaxation due to molecule 

diffusion. If a 180º RF pulse is applied, the relative positions of the individual magnetic mo-

ments are reversed. After a period of time equal to the time allowed for dephasing, the pre-

cessing nuclei will converge and the net magnetization will be reformed to give a spin echo. 

The spin echo removes the confounding static susceptibility and inhomogeneity effects, and 

the decay in the measured magnetization results exclusively from T2. Referring to Eq. [1.25], 

the time interval τ is commonly referred to as the echo time (TE). A plot of signal intensity 

TE/2 TE/2 

RF 
 
 
 
M 

o
x90 o

y180

Figure 1.9  Top: Spin-echo pulse sequence for the measurement of 
T2 relaxation. Bottom: The changes in the magnetization, M, are
illustrated by the arrows. The thin arrows in the magnetization
diagram around the 180° RF pulse indicate the dephasing and
rephasing of the signal. 
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versus time for a sample with a 100 millisecond T2 relaxation time constant is shown in Fig. 

1.10. Fitting the data in Fig. 1.10 to Eq. [1.27] allows the T2 relaxation time to be calculated. 

 

1.3 Principles of Molecular Diffusion in NMR 

1.3.1 Self-diffusion of Molecules 

The random translational motion of molecules or ions is driven by internal kinetic (thermal) 

energy, known as Brownian motion. The rate of translation is the diffusion coefficient, D, is 

described by the Stokes-Einstein equation: 

sr6
TTD

πη
== k

f
k , 

[1.30] 

where k is the Boltzmann constant, T is the temperature, f is the friction coefficient (which is 

proportional to the Stokes radius of the molecule, rs), and η is the viscosity of the solution. In 

reality, molecular size and shape is far more complex and is affected by factors such as hy-

dration, which also may contribute to the diffusion coefficient. Despite these deviations, the 

 

Figure 1.10  Normalized signal intensity change as a funtion of echo 
time (TE) for a species with a 100 millisecond T2 relaxation time 
constant. 
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Stokes-Einstein relation is a convenient simplification. The quantification of the diffusion 

coefficient in NMR is related to the self diffusion of the molecule and mathematically can be 

described using theory based on the change in molecular concentration along a diffusion gra-

dient as described by Fick’s Laws. 

According to Fick’s 1st Law, the flux (or movement) of a particle within a sample region 

is in an attempt to equilibrate a concentration gradient within the sample, and the flux is de-

fined as 

( ) ( )t,cDt, rrJ ∇−= . [1.31] 

The flux, J(r,t), is equal to the gradient of concentration, c(r,t), at some diffusion coefficient, 

D, in the direction of larger to smaller concentration (indicated by the negative sign). Within 

the sample space, the number of molecules is conserved as stated by the law of conservation 

of mass. The continuity theorem states that the change in concentration is the difference be-

tween the influx and efflux of particles from a given point and is mathematically represented 

as 

( ) ( )t,
t

t,c rJr ⋅−∇=
∂

∂ . 
[1.32] 

Fick’s 2nd Law of diffusion is the combination of Equations [1.31] and [1.32]: 

( ) ( )( )t,cD
t

t,c rr ∇⋅∇=
∂

∂ , 
[1.33] 

which states that the change in concentration, c(r,t), is equal to the dot product of divergence 

of the concentration and the diffusion coefficient. The solution to Fick’s 2nd Law in an iso-

tropic, homogeneous medium can be shown as a Gaussian probability function: 

( ) ( ) ( )










 −
−π= −

Dt4
rr

expDt4t,r,rP
2

012
3

10 . 
[1.34] 
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where r0 and r1 are the initial and final spatial positions of a diffusing molecule, respectively. 

Equation [1.34] states that the probability that a molecule will diffuse a given distance is not 

dependent on the starting position (r0) but rather on the net displacement (r1-r0) of the mole-

cules during the diffusion time (t). Thus diffusion can be measured as a function of the net 

displacements of a large number of molecules. In the case of free diffusion, the Einstein 

equation describes the relationship between the molecular displacement and the diffusion co-

efficient: 

( ) nDtrr 2
01 =− , [1.35] 

where n is 2, 4, or 6 for one-, two-, or three-dimensional diffusion, respectively. The Einstein 

equation states that the mean-squared displacement of a molecule is linear with time for free 

(i.e., unrestricted) diffusion. Using NMR, the displacement of molecules is measured, which 

is proportional to the diffusion coefficient. 

 

1.3.2 Restricted Molecular Diffusion 

The Einstein equation assumes no interference to diffusion that may be introduced due to the 

environment. However, biological tissue contains structures and complex geometries that 

impede free diffusion. Due to the environmental effects, the diffusion coefficient measured 

by NMR is usually smaller than the bulk value and is thus termed the apparent diffusion co-

efficient (ADC). Specifically, the “apparent” nature refers to the fact that the diffusion coef-

ficient is measured in the presence of structural barriers that interfere with the free translation 

of molecules. (It is important to note that additional factors such as bulk or micromotion and 

background magnetic susceptibility also affect the measured ADC value.) Restricted diffu-
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sion alters the linearity of the Einstein equation, and the measured ADC value is often a func-

tion of the diffusion time, the diffusion coefficient, and the geometry of the restrictive space. 

A simple model of restricted diffusion is the Crick model (1970), which describes mo-

lecular diffusion in the space between two parallel barriers as illustrated in Fig. 1.11. In this 

one dimensional model, molecules are diffusing perpendicular to the orientation of the re-

stricting barriers with permeability κ and separation a. At very short diffusion times (i.e., t 

<< κa), the majority of the diffusing molecules do not experience the effects of the barriers; 

thus the measured diffusion coefficient nearly is equal to the bulk value, D. At longer diffu-

sion times, the molecules are allowed to randomly translate throughout the space during 

which they may reflect from or diffuse through the barriers, in both cases experiencing some 

change in the free translational displacement that could have occurred in the absence of the 

barriers. In this case, the measure diffusion coefficient is the effective diffusion coefficient, 

Deff, given by: 








κ
+=

a
1

D
1

D
1

eff

. 
[1.36] 

D D D 

κ a κ 

Figure 1.11  Crick model of restricted diffusion: molecules diffusing 
at rate D experience restricting barriers of permeability κ and 
separation a that inhibit the free diffusion of water. 
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Deff includes the contributions of D and the restrictions to diffusion, which reduce the dis-

placement of the diffusing molecules as predicted by the Einstein equation. The measured 

diffusion coefficient (Deff) is an apparent value of the self-diffusion value and, hence is syn-

onymous with the ADC. Similar models have also been developed for 2- and 3-dimensional 

geometries, as well as for special cases, such as anisotropic diffusion. 

 

1.3.3 Anisotropic Diffusion 

Anisotropy is a specific case of restricted diffusion that states that the molecular ADC value 

may differ depending upon the direction in which diffusion is measured (Moseley et al., 

1991; Sotak and Li, 1992). Nerves, for example, are anisotropic structures, which could be 

visualized as an array of cylinders. Molecules diffusing along the long axis of the nerve (or 

cylinder) will experience relatively fewer restrictions than molecules diffusing perpendicular 

to the direction of the long axis. Thereby, diffusion measurements made along each inde-

pendent axis will yield different ADC values. To characterize the directional dependence of 

diffusion, the isotropic case introduced previously must be expressed in tensor form with 

nine diffusion coefficients grouped in a second-rank tensor, ADC (Basser et al., 1994). 


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


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


=

zzzyzx

yzyyyx

xzxyxx
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ADC . 

[1.37] 

For isotropic diffusion, all elements of the diffusion tensor will be equal; however, this is not 

the case for anisotropic diffusion. In many cases, the effects of anisotropy can be minimized 

by measuring the average diffusivity, ADC , which can be calculated from the trace of the 

diffusion tensor (van Gelderen et al., 1994): 
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3
ADCADCADC

ADC zzyyxx ++
= . 

[1.38] 

Lastly, an anisotropic sample can be characterized by its degree of directionality termed the 

fractional anisotropy (FA) (Basser and Pierpaoli, 1996). The FA is a measure of the deviation 

of a sample from isotropic diffusion, and is defined mathematically as 

( ) ( ) ( )
2

zz
2

yy
2

xx

2
zz

2
yy

2
xx

ADCADCADC

ADCADCADCADCADCADC
2
3FA

++

−+−+−
= . 

[1.39] 

 

1.3.4 Spin Labeling with Magnetic Field Gradients 

The Larmor equation describes the relationship between the precession frequency of the nu-

clei and the gyromagnetic ratio and the static, external magnetic field (Eqs. [1.15] and 

[1.18]). Since B0 is usually spatially homogeneous, a spatially-varying, linear magnetic field 

gradient, g, can be superimposed on B0 such that the precessional frequency, ω, becomes 

spatially dependent: 

( )rg ⋅γ+ω=ωeff , [1.40] 

where r is the spatial position of a molecule relative to the applied gradient. The change in 

local magnetic field induces a spatially-dependent phase shift of the nuclear spins that is cu-

mulatively defined by: 

( ) ( ) ( )∫ ′′⋅′γ+γ=
t

0
0 tdtttt rgBΦ . 

[1.41] 

In the rotating frame of reference, the static term of Eq. [1.41] (containing the B0 term) goes 

to zero. The accumulated phase, ΦΦΦΦ(t), during the application of a magnetic field gradient can 

be used to spatially label the position of nuclei. Equation [1.34] however introduced the con-
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cept that the diffusion process is random and is described by a Gaussian probability function; 

therefore, a nucleus is equally likely to accumulate positive or negative phase during the dif-

fusion period. The ensemble average of a large number of nuclei in the sample will result in 

phase cancellations due to the summation of positive and negative phase shifts accumulated 

during the diffusion process. The cumulative phase cancellations will result in an attenuation 

of the NMR signal that is proportional to the diffusion coefficient, the area under the curve of 

the diffusion-sensitive gradient pulse, and the diffusion time. 

The pulsed-field gradient (PFG) pulse sequence first described by Stejskal and Tanner 

(1956) is a simple modification of the spin-echo pulse sequence (Hahn, 1950). The PFG se-

quence, shown in Fig. 1.12, uses diffusion-sensitizing magnetic field gradients to spatially 

label and unlabel molecules after some diffusion period. Figure 1.12 introduces some com-

mon NMR nomenclature: The duration of the magnetic field gradient pulses is denoted δ; the 

separation of the magnetic field gradients is ∆; and the diffusion time, tdiff (t in Eq. [1.35]), is 

proportional to the δ and ∆ intervals and the shape of the gradients pulses.  

TE/2 TE/2 
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o
y180o
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Figure 1.12 Pulsed-field gradient (PFG) NMR pulse sequence 
described by Stejskal and Tanner for the measurement of molecular 
diffusion. The duration of the magnetic field gradients is denoted δ; 
the separation of the magnetic field gradients is ∆; the strength of the 
magnetic field gradients is g. 
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During the first diffusion-gradient pulse, the spins accumulate phase according to 

δγ=γ=Φ ∫
δ

gzgdtz 1
0

11 . 
[1.42] 

Equation [1.41] is derived from the generic form shown in Eq. [1.41] for a rectangular pulse 

with the following modifications: (1) the B0 term is removed for the rotating-frame case; and 

(2) diffusion is measured along a single direction, which is the z-axis in this case. Similarly, 

during application of the second diffusion gradient pulse, the spins again accumulate phase; 

however, the polarity of the gradient pulse is effectively reversed due to the 180º RF pulse. In 

other words, the second gradient pulse attempts to restore the phase imparted by the first gra-

dient pulse. If a molecule is stationary, the net phase shift imposed by the two gradient pulses 

will be zero and there will be no attenuation of the NMR signal. If, however, the nuclei have 

diffused during ∆, the nuclei will experience a different magnetic field during the second pe-

riod, resulting in a residual net phase shift and attenuation of the resulting spin-echo signal. 

The expression for the phase accumulation during the second diffusion-gradient pulse is 

δγ=γ=Φ ∫
δ+∆

∆

gzgdtz 222 , 
[1.43] 

and the net phase shift during the entire experiment is equal to the difference between the 

phase shifts imparted by the first and second diffusion-gradient pulses, 

( )1212 zzg −δγ=Φ−Φ=Φ . [1.44] 

The final NMR signal attenuation resulting from molecular diffusion must include the 

cumulative residual phase shifts and the probability function derived from Fick’s 2nd Law, 

which describes the random diffusion process. For unrestricted diffusion, the resulting ex-

pression for the NMR signal is 
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










 δ−∆δγ−=

3
Dgexp

M
M 2

0

, 
[1.45] 

where the diffusion coefficient, D, may also be expressed as the ADC (in the presence of re-

strictions). Futher, 




 δ−∆

3
 is the diffusion time for rectangular diffusion gradient pulses of 

finite duration (i.e., non-delta functions). Using the PFG sequence, the diffusion coefficient 

can be calculated by varying either g or δ, and calculating the change in M as a function of 

the term ( ) 




 δ−∆δγ

3
g 2 , which is commonly called the b-value (Le Bihan et al., 1986; Le 

Bihan, 1991). 

 

1.4 Principles of Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) encodes spatial information into the frequency and phase 

of the NMR signal. In the following sections, the components of two-dimensional (2D) Fou-

rier transform (FT) MRI will be described. Figure 1.13 illustrates the fundamental aspects of 

 

Frequency Dimension 

Phase 
Dimension 

Image 
Slice 

Figure 1.13  Magnetic field gradients are used to isolate a slice of a
sample, which is encoded spatially in 2D using the frequency and
phase components of the NMR signal. 
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this procedure. From a sample (dotted box), a slice of interest is selected (solid cross-

section), and the spatial information in the imaging slice is encoded into the phase and fre-

quency of the NMR signal using magnetic field gradients. 

 

1.4.1 Slice Selection 

Two-dimensional (planar) MRI requires spatial encoding in a third dimension to select a vol-

ume of interest for imaging. In other words, each pixel of a 2-dimensional image contains 

signal acquired over the thickness of the imaging slice. The selective excitation of a slice of 

the sample is accomplished by imposing a linear magnetic field gradient perpendicular to the 

chosen slice plane. The imposed gradient causes a linear variation of the local magnetic field, 

which is alters the resonance frequencies of the nuclei along that axis. Figure 1.14 diagrams 

how a linear magnetic field gradient can be used to correlate spatial position with frequency. 

For slice selection, a narrow bandwidth of frequencies, corresponding to a narrow spatial dis-

RF bandwidth 

Resonance 
Frequency 

(ω0) 

Position in slice plane 

Resonating 
protons 

0 + cm – cm 

> ω0  

< ω0  

Figure 1.14  Slice-selective excitation is performed using a narrow 
bandwidth RF pulse in combination with a linear magnetic field 
gradient. 
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tribution of nuclei with the sample, must be excited. Restricting the bandwidth of the RF 

pulse is most easily achieved using a ( )
x

xsin -shaped RF pulse [a ( )xcsin  function], which 

yields a rectangular RF power spectrum. As illustrated in Fig. 1.15, the Fourier pair of the 

sinc function (left) is a rectangle (right). 

For the sections to follow, a standard spin-echo imaging sequence will be introduced and 

expanded to describe image acquistion. Figure 1.16 illustrates the spin-echo pulse sequence 

showing only the slice-selective RF pulses, slice-selection gradients, and receiver portions of 

τ τ τ 

τ
=∆

2
1F  

FT 

Figure 1.15  The sinc pulse (left) and its rectangular Fourier 
counterpart (right). 

 TE/2 TE/2 

RF 

Gslice 

Receiver 

90°                 180° 

Figure 1.16  Spin-echo pulse sequence with 90º and 180º RF pulses, 
slice-selection magnetic field gradients, and receiver channels. 
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the pulse sequence. 

The thickness of the imaging slice, dsl, achieved using the above pulse sequence is de-

termined by the gradient strength (g) and the RF bandwidth (∆F) according to: 

g
Fdsl γ

∆= . 
[1.46] 

For example, if a RF pulse with a 1064.5 Hz bandwidth is applied in conjunction with a gra-

dient amplitude of 1 G/cm for a sample of 1H protons (γ/2π = 4258 Hz/G), the slice thickness 

(dsl) is 0.25 cm. The thickness of the slice can be altered either by changing the bandwidth of 

the RF pulse or the amplitude of the gradient. This example describes the parameters for an 

imaging slice at the isocenter of the magnetic, which corresponds to the zero position in the 

slice plane on Fig. 1.14; however, Fig. 1.14 also implies that the imaging slice can be offset 

in the slice plane. The slice offset can be altered by changing the center frequency of the RF 

pulse. Continuing with the previous example, if the desired offset of a 0.25 cm slice thickness 

is 1 cm (doff), the change in the center frequency of the RF pulse is given by 

sl

off
0 d

Fd
F

∆
=∆ , 

[1.47] 

and ∆F0 equals 4258 Hz. 

 

1.4.2 Frequency Encoding 

Spatial information in one of the two in-plane dimensions is encoded in the frequency of the 

acquired NMR signal. Frequency encoding is performed via application of a linear magnetic 

field gradient along one of the imaging axes during acquisition of the NMR signal. As de-

scribed for slice selection, the imposition of the gradient results in a linear variation in the 

precessional frequencies of the nuclei that is proportional to the relationship between the gra-
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dient strength and the spatial position of the nuclei. Figure 1.17 diagrams the spin-echo imag-

ing pulse sequence with both slice-selection and frequency-encoding gradients. Further, Fig. 

1.18 illustrates that the application of this sequence on a sample (A) will have a frequency 

profile represented in B. Following 1-D FT, the frequency encoded information yields a pro-

jection of the sample (C). 

 

      

Frequency 
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A B C 

 

Figure 1.18  A sample, shown in panel A, will have a NMR signal 
amplitude frequency profile represented in panel B. Following 1-D 
FT, the frequency encoded information yields a projection of the 
sample (panel C). 

 

 TE/2 TE/2 

RF 

Gslice 

Gfrequency 

Receiver 

90°                 180° 

Figure 1.17  Spin-echo pulse sequence with 90º and 180º RF pulses, 
slice-selection magnetic field gradients, freqency-encoding magnetic 
field gradients, and the receiver channel. 
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The field-of-view along the frequency encoding dimension (FOVf) is defined by the ampli-

tude of the gradient (Gf) and the bandwidth of the receiver (BW): 

f
f G

BWFOV
γ

= . 
[1.48] 

The receiver bandwidth is  

t
NBW f= , 

[1.49] 

where Nf is the number of data points used to digitize the NMR signal during the acquisition 

time, t. For example, 256 complex points acquired in 8 msec would equate to a total BW of 

25,600 Hz (±12,800 Hz). If the sample in Figure 1.20A is a sphere with diameter of 1 cm and 

a FOVf of 2 cm is used, the required gradient amplitude, Gf, is  

( )( ) cm
G5.1

cm2GHz4258
Hz800,12

FOV
BWG

f
f =±=

γ
=  

 

1.4.3 Phase Encoding 

The second dimension of the image is spatially encoded in the phase of the NMR signal us-

ing magnetic field gradients. The spin-echo imaging sequence illustrated in Figs. 1.16 and 

1.17, is expanded in Fig. 1.19 to include the phase-encoding gradient. 

In application, the phase-encoding gradient is incremented in successive steps in the 

MRI pulse sequence to vary the phase inparted to the NMR signal between –180° and +180°. 

As introduced in Eq. [1.41] (Section 1.3), the phase imparted to the transverse magnetization 

by a gradient is mathematically expressed as 

( ) ∫ 






π
γ=Φ

t

0
p xdtG

2
t , 

[1.50] 
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where Φ(t) is the imparted phase, Gp is the strength of the gradient, x is the spatial position, 

and t is the duration of the gradient pulse. For the square-shaped pulse shown in Fig. 1.19, 

Eq. [1.50] simplifies to 

( ) xtG
2

t p






π
γ=Φ . 

[1.51] 

The incrementation of the phase-encoding gradient is dependent on the desired FOV in the 

phase-encoding direction (FOVp), which is equal to 

tG
1FOV

min,p
p γ

= , 
[1.52] 

where Gp,min is the minimum gradient increment required for the desired FOVp and the dura-

tion of gradient application (t). Further, from FOVp and the number of phase-encoding steps 

(Np), the minimum and maximum gradient values can be determined by: 

 TE/2 TE/2 

RF 

Gslice 

Gfrequency 

Receiver 

Gphase 

90°                 180° 

Figure 1.19  Spin-echo imaging pulse sequence with 90º and 180º 
RF pulses; slice-selection, frequency-encoding and phase-encoding 
magnetic field gradients; and the receiver channel. 
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min,p
p

range,p G
2

1N
G 




 −
±= . 

[1.53] 

If, as in the example above, a 2 cm FOVp is desired and 128 phase-encoding gradient pulses 

of 5.0 ms duration are used, Gp,min and Gp,range are 

( )( ) cm
G0235.0

s005.0cm2
1G min,p =

γ
=  

and 

( ) cm
G49.1cm

G0235.0
2

1128G range,p ±=




 −±= . 

In other words, incrementing the phase-encoding gradient in 0.0235 G/cm steps from –1.49 

G/cm to +1.49 G/cm, will provide the desired spatial information for the second dimension 

of the 2D MR image. 

 

1.4.4 Mapping k-Space 

The 2D frequency-phase space is commonly referred to as k-space. Figure 1.20 illustrates 

two schemes for mapping phase and frequency information. Figure 1.20a (left) demonstrates 

the spin-warp method previously described, where the phase-encoding gradient is incre-

mented in separate steps (i.e., in separate, sequential acquisitions). Another scheme, dia-

grammed in Fig. 1.20b (right), shows all the frequency and phase information being collected 

in a single shot. This method is called echo-planar imaging (EPI). 

 In the case of spin-warp imaging, the final image is reconstructed by 2D FT of the dis-

crete frequency and phase information. In light of previous examples, if 128 complex data 

points are acquired in the frequency-encoding (υ) direction and 128 phase-encoding (Φ) 

steps are used, the final image matrix will be 128 pixels × 128 pixels. Further if FOVp and 
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FOVf equal 2 cm, the in-plane pixel resolution will be 0.0156 cm × 0.0156 cm (156 µm × 

156 µm). 

 As mentioned, the benefit of the EPI pulse sequence (illustrate in Fig. 1.21) is fast image 

acquisition; however, special gradient coils is required to oscillate the frequency-encoding 

gradient and ramp the phase-encoding gradient fast enough to sample the entire k-space in a 

short amount of time. Otherwise, without the correct hardware, the EPI scheme cannot be 

properly implemented, and the NMR signal will experience significant decay by T2*. Simi-

larly, the center of k-space is typically reached after half of the frequency-encoding gradient 

oscillations, thus the TE of the pulse sequence must be sufficiently long to coincide the for-

mation of the spin echo at the center (or near center) of the acquisition window. Further, the 

scheme illustrated in Figure 1.20b (only one of many k-space mapping techniques), requires 

some interpolation of the acquired data points from the off-rectangular to the rectangular k-

space grid, which may introduce an additional factor to degrade the image. 

 

υ 

Φ 

Figure 1.20  Spin-warp (a) and echo-planar (b) k-space mapping 
schemes. The spin-warp technique involves incrementing the phase-
encoding gradient in separate acquistions. In contrast, the echo-
planar technique utilizes an oscillating frequency-encoding gradient 
simultaneously with a constant phase-encoding gradient. The 
frequency-encoding gradient serves to refocus the echo train while 
the phase-encoding gradient linearly advances the phase of the NMR
signal. 

a b 
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Figure 1.21  Echo-planar imaging (EPI) pulse sequence. The oscil-
lating frequency-encoding gradient (also illustrated in Fig. 1.20b) re-
focuses a train of gradient-recalled echoes during the data acquisition 
(i.e., receiver) period. Simultaneously, a constant gradient is applied 
to linearly advance the phase of the signal during the same acquistion 
period. 
 

1.4.5 Diffusion-weighted EPI 

The spin-warp imaging method, whereby each line of k-space is sampled in separate acquisi-

tions, may require several minutes to obtain the full set of data required to reconstruct the 

image. Diffusion-weighted imaging (DWI) can add further time contraints given: (1) that the 

separation time between diffusion-gradient pulses (defined as ∆ in Section 1.3) must be ac-

counted for; (2) that several gradient values (b-values) must be acquired to accurately calcu-

late apparent diffusion coefficient (ADC) maps of the sample; (3) diffusion-weighting may 

be performed along three or more different diffusion-gradient directions to account for the 

sample microstructure. For these reasons high-speed acquisitions methods, such as the 

aforementioned EPI scheme, are advantageous when performing DWI. Turner and Le Bihan 
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(1990) demonstrated the adaptations to the standard EPI pulse sequence required to add dif-

fusion-weighting, and the DW-EPI NMR pulse sequence is shown in Fig. 1.22. As described 

in Section 1.3, the ADC value is calculated from the signal attenuation as a function of the b-

value (see Section 1.3 and Eq. [1.45]). Calculated ADC images (commonly called maps) are 

produced by fitting the natural logarithm of the signal attenuation as a function of b-value on 

a pixel-by-pixel basis using linear least-squares regression. 
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Figure 1.22  Diffusion-weighted, spin-echo echo-planar (DW-EPI) 
NMR imaging pulse sequence. The receiver channel in Figs. 1.16, 
1.17, 1.19, 1.21 has been replaced with an illustration of the 
formation of the spin echo. Diffusion-weighting is accomplished
with the diffusion-sensitizing gradients (shown along the frequency-
encoding direction), where g is the diffusion-gradient pulse strength, 
δ is the duration of the diffusion-gradient pulse, and ∆ is the
separation between the two diffusion-gradient pulses. 



 

 

 

 

 

 

 

 

 

Chapter 2 

 

MRI of Cerebral Ischemia 
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2.1 Introduction 

Stroke is caused by a reduction or termination in cerebral blood flow (perfusion) that starves 

tissue of essential nutrients and oxygen, inhibiting normal physiological function of cells and 

ultimately resulting in tissue death. Stroke is the third leading cause of death and the leading 

cause of disability in the United States. According to the American Heart Association (AHA) 

and National Stroke Association (NSA), about 600,000 people suffer a new or recurrent 

stoke each year, resulting in nearly 160,000 deaths (statistic from 1998). It is also estimated 

that approximately 3.5 million stroke survivors currently live in the United States. At this 

point, the only FDA approved stroke treatment is the administration of tissue plasminogen 

activator (tPA). tPA is a thrombolytic drug that attempts to restore blood flow via dissolution 

of the clot; however, its use is limited to specific cases due to possible hemorrhagic compli-

cations. In this section, the physiology of normal and ischemic cerebral tissue will be dis-

cussed, and the following sections will address some specific MR stroke studies. 

 

2.2 Normal Cerebral Cellular Physiology 

For all tissues, blood supplies the essential nutrients and oxygen to maintain normal cell 

function. Homeostatic conditions in cerebral tissue are highly regulated and extremely sensi-

tive to changes in nutrient supply. The cerebral circulation supplies the neural and supporting 

tissues with oxygen and glucose. The glucose reserve in the brain is negligible; therefore, 

maintenance of normal perfusion is crucial. In normal cells, mitochondria use the rich supply 

of oxygen to create adenosine triphosphate (ATP) via aerobic respiration. To support cell 

functions, the ATP is metabolized, releasing energy by breaking the phosphate bonds. Along 

with other functions, energy is required to maintain the sodium-potassium pump (Na+–K+–



 

 41 

ATPase), which maintains the normal ion gradient across the cellular membrane. Specifi-

cally, under homeostatic conditions, the intracellular level of K+ far exceeds the extracellular 

concentration, and Na+ and calcium (Ca2+) dominate the extracellular space. 

 

2.3 Etiology and Pathophysiology of Ischemic Stroke 

Stroke is a cerebrovascular disease caused by a disruption in normal cerebral perfusion due to 

either occlusion of a blood vessel (ischemic stroke) or vessel rupture (hemorrhagic stroke). 

Ischemic stroke is caused by cerebral thrombosis or embolic clot and is the most common 

type, accounting for 80% of stroke cases. Cerebral thrombi are blood clots that form within 

the cerebrovasculature created by the aggregation of platelets and fibrin in response to an 

atherosclerotic lesion or vessel injury. Continued irritation of the atherosclerotic lesion re-

sults in increased growth of the thrombus, which eventually disrupts blood flow causing a 

stroke. In contrast, embolic clots are formed outside the brain, typically in the heart or carotid 

artery, by platelet aggregation and fibrin activation. If dislodged, the embolus is transported 

in the bloodstream, into the cerebrovasculature until the embolus is too large to pass through 

the arterial vessel. 

The interruption of normal cerebral perfusion initiates a cascade of biochemical events 

detrimental to the normal function of cells. First, the reduction in blood flow quickly reduces 

the available oxygen supply and normal aerobic respiration cannot continue. In an attempt to 

maintain the required supply of ATP, the anaerobic (glycolitic) cycle begins the metabolism 

of glucose. The limited reserve supply of glucose in the brain is quickly depleted, and the an-

aerobic metabolism results in an accumulation of lactic acid, which compromises neuronal 

integrity. In ischemic tissue, the lack of energy prohibits cells from maintaining the cell 
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membrane ion gradient. In response to the anoxic depolarization of the cellular membrane, 

K+ leaves the cell and Na+, Ca2+, and chloride move into the cell. The change in the ionic dis-

tribution disrupts the tissue water equilibrium, causing an influx of extracellular water to the 

intracellular space, which results in cellular swelling (cytotoxic edema). The release of exci-

tatory amino acids (neurotransmitters) is also stimulated, which further activates Ca2+ and 

Na+ ion channels in the cellular membrane (Hossmann K-A, 1985). Activation of the N-

methyl-D-aspartate (NMDA) Ca2+ channel results in excessive levels of intracellular Ca2+, 

which in turn activates enzyme systems (e.g., proteases, lipases, and nucleases). These en-

zymes begin the destruction of cellular structures and materials. The metabolic products of 

the enzyme activity, including nitrogen and oxygen free radicals, eicosanoids, and leukotrie-

nes, increase the rate of cellular breakdown. The increased presence of free radicals and other 

reactive chemical species and decreased activity of enzymes that typically inactivate free 

radicals mediate cellular destruction. Ironically, free radical damage of cellular components, 

such as DNA, activates repair proteins that further deplete the energy supplies of the cell 

(specifically NAD+). 

Coupled with the oxidative stresses on ischemic tissue, it is widely theorized that cells 

initiate defensive mechanisms in an attempt to survive the ischemic incident. Also, it is pos-

sible that a cell might respond to ischemia by activating intracellular mechanisms resulting in 

the autodeletion or suicide of the cell, which may aide the survival of neighboring cells. In 

general, the ability of the cell to ward off death is directly dependent on the duration and se-

verity of the ischemic insult. The mechanisms initiated by the cells in response to ischemic 

conditions may include the up-regulation of defensive genes and proteins during the proc-

esses of programmed cell death (PCD) and/or apoptosis. PCD refers to the physiological de-
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letion of cells during normal development. Apoptosis is an active, complex set of events clas-

sified by morphological cell changes that occur following PCD in response to ischemia or 

injury. Apoptotic death is distinct from necrosis, which is an abrupt and uncontrolled cell 

death. Recent research has suggested that ischemia may activate genes that regulate PCD, 

which may eventually lead to apoptosis. However, the true mechanism(s) of cellular death 

during ischemia are still the subject of debate. 

 

2.4 Diffusion-weighted MRI of Cerebral Ischemia 

Le Bihan et al. in 1986 demonstrated that diffusion-sensitization can be incorporated into im-

aging sequences to probe the spatial heterogeneity of diffusion in a biological sample. This 

application was further advanced into the study of cerebral ischemia by Moseley et al. in 

1990, who demonstrated in a cat stroke model that diffusion-weighted magnetic resonance 

imaging (DWI) is a better indicator of injury in the acute ischemic phase of stroke than con-

ventional T1-, T2-, or M0-weighted (proton density) imaging. Subsequent animal studies con-

firmed Moseley’s initial findings (Mintorovich et al., 1991; Benveniste et al., 1992; Mine-

matsu et al., 1992; van Gelderen et al., 1994). In 1992, Warach et al. demonstrated that DWI 

could also be used to identify acute ischemic lesions in humans.  

 The reduction of the cerebral blood flow during stroke results in metabolic energy failure, 

which, as aforesaid, results in cessation of the energy dependent cellular processes (Busza et 

al., 1992). These disruptions ultimately result in cytotoxic edema (Hossmann K-A, 1985), 

which has been shown to coincide and correlate with ADC changes in the acute ischemic re-

gions (Busza et al., 1992; Mancuso et al., 1995; Verhuel et al., 1994; van Lookeren Cam-

pagne et al., 1994; van der Toorn et al., 1996). However, the mechanisms governing the 
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changes in diffusion properties in ischemic tissue are not well understood. If the characteris-

tics and mechanisms of the water ADC decline were better understood it might allow for the 

information obtained using DWI to be more useful than only as a tool for the visualization of 

the ischemic lesion. One current area of research is focused on the finding that the region of 

abnormality detectible using DWI is sometimes smaller than the abnormality defined by 

cerebral perfusion deficit detected using perfusion-weighted MRI (PWI) during the early pe-

riods following stroke onset (Mancuso et al., 1995). This so-called diffusion/perfusion mis-

match is typically resolved in rat stroke models 2–3 hours following the initiation of the 

stroke (Roussel et al., 1994); however, it is hypothesized that the region of mismatch, often 

referred to as the “penumbra”, represents potentially salvageable tissue. The tissues in the 

penumbral region have only moderately reduced perfusion and ADC values due to the pres-

ence of collateral cerebral circulation, and the water ADC values in the ischemic core and 

penumbra have been described previously (Mancuso et al., 1995; Carano et al., 2000). Diffu-

sion/perfusion mismatch has also been observed in human studies of acute cerebral ischemia, 

and remains a target for potential clinical treatment and evaluation (Warach et al., 1996). Be-

yond the classification of mismatch, several research efforts have attempted to evaluate the 

use of DWI [in some case combined with perfusion-weighted imaging (PWI) and T2-

weighted imaging (T2WI)] to identify potentially salvageable tissues in cases of rat (Hase-

gawa et al., 1994; Mancuso et al., 1995; Mancuso et al., 1997; van Dorsten et al., 2002), pig 

(Sakoh et al., 2001), and human stroke (Oppenheim et al., 2000; Baird et al., 2001; Desmond 

et al., 2001). 
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2.4.1 DWI of Transient Cerebral Ischemia 

During focal cerebral ischemia, a perfusion deficit is localized to a particular region of the 

brain. For example, a widely used rat stroke model is the middle cerebral artery occlusion 

(MCAO) model, typically performed using the intraluminal suture technique (Koizumi et al., 

1986), which blocks blood flow to brain areas supplied by the MCA. Many original studies 

utilized this animal model to create a permanent MCAO. In later studies, the suture was re-

moved after a finite occlusion time, and it was demonstrated that an initially decreased ADC 

could revert to normal, if interrupted cerebral blood flow is restored quickly after the onset of 

ischemia (Mintorovitch et al., 1991; Minematsu et al., 1992; Davis et al., 1994; Li et al., 

1999). Recent studies (some included in this dissertation), further showed that renormaliza-

tion of ADC values after reperfusion might be transient and a secondary decline in ADC val-

ues could be detected when DWI was repeated at 12 hours following 30 minutes of transient 

focal ischemia via MCAO (Chapter 3, Li et al., 2000a) or at 24 hours following 20 minutes 

of unilateral hypoxia-ischemia (Dijkhuizen et al., 1998). In fact, Chapter 5 contains a more 

detailed study by Li et al. (2000c) that demonstrated that secondary ADC reduction may be-

gin as early as 2.5 hours after reperfusion and are not associated with secondary changes in 

cerebral perfusion (i.e., following reperfusion, the blood flow to the tissue returned to normal 

and remained normal). The research papers contained in this dissertation describe several ex-

periments designed to characterize MR and histological changes in the rat brain following 

transient periods of ischemia. 

 The reversibility of abnormalities on DWIs following reperfusion, although noted in 

early studies (Mintorovitch et al., 1991; Minematsu et al., 1992; Davis et al., 1994; Pierpaoli 

et al., 1996), was not clearly examined during chronic time points (i.e., several hours to days 
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following reperfusion). To elucidate the tissue changes following reperfusion, we studied 

eight rats that were subjected to 30 minutes of MCAO, and this study is presented in Chapter 

3. DWI, PWI, and T2-weighted MRI (T2WI) were performed during occlusion, immediately 

after reperfusion, 30, 60, 90 minutes, and 12, 24, 48 and 72 hours after reperfusion. The pur-

poses of this study were (1) to determine whether secondary ADC declines occur after recov-

ery of initially decreased ADC values, (2) to characterize the temporal and spatial evolution 

of the in vivo ischemic lesions, and (3) to determine if secondary cerebral hypoperfusion con-

tributes to the secondary ADC declines. Both the cerebral blood flow index (CBFi) ratio 

(measured from PWIs) and ADC values declined significantly in the two regions-of-interest 

examined during occlusion. The CBFi ratio recovered immediately after reperfusion and re-

mained unchanged over 72 hours. However, ADC values returned to normal at 60 to 90 min-

utes and secondarily decreased at 12 hours after reperfusion as compared with those in the 

contralateral hemisphere. The extent of the in vivo ischemic lesions as determined by T2WI 

maximized at 48 hours and was highly correlated with histologically-derived lesion size [via 

postmortem triphenyltetrazolium chloride (TTC) staining]. The results of this study further 

demonstrated that ADC recovery following 30 minutes of arterial occlusion is transient and 

that secondary ADC reduction may occur following reperfusion, a finding consistent with 

other recent studies (Dijkhuizen et al., 1998; Thornton et al., 1998; van Bruggen et al., 

1998). The renormalization of ADC values is suggestive of the restoration of energy metabo-

lism. First, it has previously been shown that 30 minutes of transient ischemia does not im-

pair mitochondrial function, which remains normal (Schutz et al., 1973; Rehncrona et al., 

1979). Second, other studies have shown that Na+-K+ ATPase is reactivated after reperfusion 

and the water and ionic homeostasis is restored (Hossmann et al., 1977; Eleff et al., 1991). 
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Third, Hossmann et al. (1994) further demonstrated that brain regions with renormalized 

ADC values after reperfusion had complete recovery of ATP production; in contrast, tissues 

without recovery of ADC values (following reperfusion) exhibited depletion of ATP. 

Along with contributing to the available MR data on transient ischemia in rats, the find-

ings of the study in Chapter 3 have clinical relevance to human stroke. First, an early reduc-

tion or resolution of the DWI hyperintensity after thrombolytic therapy in stroke patients may 

not indicate ultimate brain tissue salvage from chronic ischemic injury. Therefore, classifica-

tion of early reversibility by DWI in human cases of stroke treated with thrombolytics should 

be interpreted judiciously and cautiously (i.e., follow-up imaging studies should be per-

formed for confirmation). Second, thrombolytic treatment alone may not entirely salvage 

ischemic brain tissue, as delayed ischemic injury may occur. Accordingly, other therapeutic 

strategies directed against delayed ischemic injury may be desirable in combination with 

thrombolytic therapy. These strategies might include scavenging free radicals, inhibiting ex-

citotoxicity and calcium accumulation, targeting the apoptosis-inducing genes, preventing 

release of the mitochondrial apoptogens, blocking mitochondrial permeability transition pore 

(Fiskum et al., 1999), and restoring function of the endoplasmic reticulum (Paschen and 

Doutheil, 1999). 

In a follow-up study (Chapter 4), our previous experiments [Li et al., 2000a (Chapter 3); 

Li et al., 1999] were extended to evaluate ischemic progression following different durations 

of transient ischemia using MRI (i.e., DWI, PWI, and T2WI) and histological analysis. Six-

teen rats were subjected to 10 minutes (n=7) or 30 minutes (n=7) of temporary MCAO. Im-

aging was performed during occlusion, immediately after reperfusion, 0.5, 1.0, 1.5, 12, 24, 

48 and 72 hours after reperfusion. Following the last MRI time point, the brains were fixed, 
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sectioned, stained with hematoxylin & eosin staining, and evaluated for neuronal necrosis. 

The novel findings in this study are (1) the resolution of initial DWI lesions is permanent fol-

lowing 10 minutes of transient ischemia, while the resolution of initial DWI lesions is tran-

sient following 30 minutes of transient ischemia, and secondary DWI lesions develops later 

on, and (2) permanent reversibility of initial DWI lesions does not indicate a normal histo-

logical outcome. Conversely, selective neuronal necrosis is seen in regions where the initial 

DWI lesions disappear permanently after reperfusion in both the 10- and 30-minute animal 

groups. As in the previous study (Chapter 3), it was concluded that renormalization of DWI 

hyperintensity is not necessarily permanent and does not necessarily correlate with complete 

tissue recovery. In addition, this study suggests that DWI may not be sensitive enough to de-

tect slight necrosis exhibited following short periods of transient ischemia, which may be due 

to volume averaging of many abnormal and normal neurons in the image voxel. This finding 

may help to explain neurological deficits in some patients who have normal DWI after cere-

bral ischemia (Ay et al., 1999) and cognitive deficit in some patients who experience tran-

sient ischemic attacks (TIA) (Hénon et al., 1999). 

 The data presented in Chapters 3 and 4 lacks the temporal resolution to accurately de-

scribe secondary ADC changes following 30 minutes of transient MCAO. In Chapter 5 of 

this dissertation, a study is described wherein DWI, PWI, and T2WI were performed during 

MCAO and every 30 minutes for a total of 12 hours after reperfusion (n=6). In another ani-

mal group, neurological outcomes were evaluated during MCAO, every 30 minutes for a to-

tal of 6 hours, and at 24 hours after reperfusion (n=8). The goal of this experiment was to 

provide detailed information regarding both the temporal and spatial evolution of ADC 

changes. As noted in previous studies, PWI abnormality was resolved immediately following 
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reperfusion and remained normal. Given the increased temporal resolution, we could isolate 

the complete recovery of the ADC values (of regions with ADC value reduction during oc-

clusion) to approximately 1 hour after reperfusion. Further, the renormalized ADC values 

started to decrease secondarily at approximately 2.5 hours, accompanied by a delayed in-

crease in T2 values by about 5 hours. The ADC-defined secondary lesion grew over time, and 

at 12 hours the lesion size was 52% of the initial lesion (i.e., during occlusion). Further, as in 

Chapter 4, histological evaluation demonstrated neuronal damage in the regions of secondary 

ADC decline. Interestingly, complete resolution of neurological deficits was seen in one rat 

at 1 hour, 6 rats between 2.5 and 6 hours after reperfusion, and no secondary neurological 

deficits were observed at 24 hours. These data suggest that (1) a secondary ADC reduction 

occurs as early as 2.5 hours after reperfusion, evolves in a slow fashion, and is associated 

with neuronal injury; and (2) renormalization and secondary decline in ADC are not associ-

ated with neurological recovery and worsening, respectively. 

The results presented in Chapters 3–5, as previously mentioned, suggest that recovery 

following transient ischemia in rats and humans may not be permanent and may not represent 

damage-free brain tissue. It is not clear why the neurological deficits improved or resolved at 

the time when secondary injury, demonstrated by secondary ADC reduction, continued to 

evolve. Possible explanations for this discrepancy are gradual hyperactivation of remaining 

intact neurons in the ischemic region or functional substitution by other neurons in the 

neighboring normal brain regions as demonstrated by functional MRI in stroke patients 

(Cramer et al., 1997; Cramer et al., 2000). Our results, along with others (Nakano et al., 

1990; Garcia et al., 1995; Persson et al., 1989), also show that all rats that experienced com-

plete resolution of their neurological deficits had some degree of neuronal injury. This sug-
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gests that patients with prolonged TIA may have neuronal injury, as was recently docu-

mented by DWI (Kidwell et al., 1999), which may underlie the pathogenesis of gradual cog-

nitive deficits that occurred after TIA, although the patients recovered from their neurologi-

cal deficits after TIA (Hénon et al., 1999). 

The ADC and T2 data acquired in the study presented in Chapter 5 were further explored 

to determine if the temporal and spatial evolution of acute ADC and T2 values could be em-

ployed to predict secondary tissue changes following reperfusion. In the analysis described in 

Chapter 6, the ADC and T2 data (acquired at 26 time points over a 12-hour period) was used 

to generate novel, composite maps of the tissue characteristics. Using the composite maps, 

statistical analysis was performed to determine if the changes in tissue ADC and T2 values 

were predictive of the tissue condition at the end of the experiment. Briefly, the region origi-

nally defined as abnormal during MCAO was be divided into three groups based on the ADC 

and T2 characteristics at 12 hours: no secondary ADC decline and no T2 increase, secondary 

ADC decline and no T2 increase, secondary ADC decline and T2 increase. This data was used 

to create the first composite map. The second composite map was comprised of pixels with 

values equal to the time point (i.e., time in hours after reperfusion) at which the secondary 

ADC decline became apparent. To perform statistical analysis on this data it was subdivided 

into three groups: no secondary ADC decline, secondary ADC decline before 5 hours after 

reperfusion, and secondary ADC decline after 10 hours after reperfusion. Each group was 

compared to determine if any statistical difference in their acute ADC value could be gleaned 

to predict their secondary characteristic. Ultimately, no statistical measure could be found to 

accurately predict the tissue characteristics at 12 hours, and it was concluded that acute ADC 

and T2 data may be limited for the prediction of infarction. 
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2.4.2 MR Changes of Intra- and Extracellular Water 

The mechanisms regulating diffusion changes during cerebral ischemia are not well under-

stood. In the brain, water diffusion is a complex process that involves passive Brownian mo-

tion and active processes (e.g., water transport, cerebral spinal fluid (CSF) pulsation, and 

bulk motion). Restrictions to water diffusion (e.g., cellular membranes and intracellular 

structures), macromolecular binding, and exchange between different environments further 

complicate the water diffusion characteristics. Furthermore, biological tissue environments 

include the intracellular (IC) and extracellular (EC) spaces as well as the relatively smaller IC 

organelles, microtubules, and periplasmic spaces. It is presumed that the apparent diffusion 

coefficient (ADC) of the water in the EC space is faster than the IC space, a crowded milieu 

that contains many structures to restrict diffusion. 

A few hypotheses regarding the mechanisms of water ADC decline in ischemic tissue 

have been proposed and focus on the relative roles of water diffusion in the IC and EC 

spaces. The initial hypothesis suggested that cytotoxic edema caused by disruption of the en-

ergy-dependent ionic equilibrium pumps results in an influx of fast-diffusing EC water to the 

slow-diffusing IC space (Moseley et al., 1990; Benveniste et al., 1992; van Gelderen et al., 

1994; Zhong et al., 1993; Anderson et al., 1996). A second hypothesis proposed that the in-

flux of EC water to the IC space causes a volume reduction in the EC space and a propor-

tional increase in the restrictions to diffusion imposed by the cellular membranes (i.e., in-

creased tortuosity) in the EC space (Sykova et al., 1994; Latour et al., 1994; Norris et al., 

1994; van der Toorn et al., 1996). More recently, it has been hypothesized that in ischemic 

conditions energy-dependent IC microcirculation (cytoplasmic streaming) is halted, resulting 

in a reduction in the IC water ADC (Neil et al., 1996; Wick et al., 1995; van der Toorn et al., 
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1996; Duong et al., 1998). Although one mechanism may dominate the ADC reduction ob-

served during ischemia, it is more likely, given the complex processes affecting the NMR 

measurement diffusion, that the ADC change results from a combination of all these mecha-

nisms (Szafer et al., 1995a).  

The bridge between experiments conducted for the purpose of describing ADC changes 

during transient ischemia and those conducted to explore the mechanisms governing the 

ADC changes are performed in the study in Chapter 7. We performed experiments designed 

to determine if reperfusion-induced renormalization of initially abnormal ADC values indi-

cates reversal of cellular, morphological changes that occur during acute ischemia. Rats were 

subjected to 30 minutes of middle cerebral artery occlusion without reperfusion (group A, 

n=6), with 1.5 hours of reperfusion (group B, n=6), or with 12 hours of reperfusion (group C, 

n=6). DWI and PWI were obtained at the end of occlusion (groups A, B, and C), 1.5 hours 

(groups A, B, and C) and 12 hours after reperfusion (groups A and C). Immediately after the 

final MRI study, the brains were fixed by cardiac perfusion with 4% paraformaldehyde. Neu-

ronal injury was evaluated on hematoxylin-eosin stained sections, and astrocytic size was 

determined by the area of glial fibrillary acidic protein (GFAP) plus S-100 expression. In 

group A where ADC values decreased significantly, 47% (±12%) of the neurons were 

slightly shrunken; astrocytes were moderately swollen, and the area expressing GFAP plus S-

100 was larger than that in the contralateral hemisphere (117±6 µm2 vs. 89±2 µm2; p<0.001). 

In group B where the ADC had renormalized, most neurons were moderately shrunken, and 

the frequency of such neurons was greater in group B (92%±2%) than in group A; astrocytes 

were markedly swollen, and the area was larger than that in the contralateral hemisphere 

(123±8 vs. 85±4 µm2). In group C where a secondary ADC decline occurred, most neurons 
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(94±3%) were severely shrunken, and some had eosinophilic cytoplasm; astrocytes were dis-

integrated, and the area of GFAP plus S-100 expression was reduced (78±4 vs. 90±5 µm2). 

These results lead to the conclusion that reperfusion-induced acute renormalization of ADC 

values is not associated with the complete reversal of neuronal shrinkage and astrocytic 

swelling that occurs during ischemia. Conversely, the morphological changes of astrocytes 

and neurons progressively worsened over time, although ADC values showed a biphasic 

change. 

The results of the study presented in Chapter 7 support the hypothesis that ischemia-

related ADC declines could be the result of the reduction of energy-dependent cytoplasmic 

motion (Neil et al., 1996; Wick et al., 1995; van der Toorn et al., 1996; Duong et al., 1998; 

Dijkhuizen et al., 1999). Thereby, following reperfusion, the restoration of energy production 

is able to restore cytoplasmic movement results in a renormalization of ADC values. Using 

phosphorus magnetic resonance spectroscopy, Lorek et al. (1994) and Blumberg et al. (1997) 

have demonstrated that energy metabolism can recover to normal after initial declines in 

transient hypoxia-ischemia models, and such energy restoration was associated with ADC 

renormalization (Thornton et al., 1998). It is reasonable to assume that the reperfusion-

induced ADC renormalization in this study is likely due to energy recovery. Further study 

will be needed to demonstrate (1) if morphologically abnormal neurons and astrocytes are 

able to restore energy production when blood flow is restored and (2) the dominant mecha-

nism(s) responsible for the ADC decline during ischemia. 

In Chapter 8, this dissertation demonstrates a method of NMR signal separation that was 

utilized to isolate IC and EC compartmental diffusion coefficients in yeast-cell suspensions. 

In this study, the goal was to develop a method that could be extended into the study of com-
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partmental diffusion in the normal and ischemic rat brain. The method presented in Chapter 8 

is based on the use of an MR contrast reagent (CR) to separate the IC and EC water proton 

signals via differences in their respective longitudinal (T1) relaxation times. Discrete biexpo-

nential analysis of the NMR data using a constrained nonlinear least-squares algorithm was 

used to separate the NMR signal into the respective IC and EC signal contributions (Han et 

al., 1998; Silva et al., 1998). These results were comparable to previous experiments in 

which T1 relaxation was used to separate the compartmental signal contributions using re-

laxography (Labadie et al., 1994; Han et al., 1998), which utilizes a numerical inverse 

Laplace transform (ILT) (Provencher, 1982a; Provencher, 1982b; Provencher and Dovi, 

1979). The biexponential model is easier to employ and can accurately find the distribution 

means in the continuous relaxation time spectrum. Using CR in a yeast-cell suspension, we 

successfully demonstrated that this method can be used, first, to separate the NMR signal 

from IC and EC compartments based on differences in the compartmental relaxation times 

and, second, to calculated the compartment ADC values of the IC and EC water. The paper 

presented in Chapter 8 describes this method in great detail such that future experiments in 

more complex systems (e.g., the rat brain) can be performed with clear understanding of the 

experimental considerations and issues. 

Since conventional MR data contain the combined signals from the IC and EC spaces, it 

is difficult to determine the separate roles of these two compartments to the overall changes 

in water ADC during cerebral ischemia. At the time of this dissertation, no direct MR meas-

urements of IC and EC water diffusion have been performed in vivo. Previous attempts to 

separate the IC and EC properties in normal and ischemic cerebral tissue have focused on the 

use of exogenous and metabolic surrogates to gain insights about biological water diffusion 
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(Neil et al., 1996; Wick et al., 1995; van der Toorn et al., 1996; Duong et al., 1998; Duong et 

al., 2001). The conclusions of these studies support the hypothesis that diffusion changes in 

the IC space may dominate the reduction in ADC; however, water ADC is being inferred 

from the behavior of an exogenous molecular tracer. Consequently, the interpretation of these 

data must be tempered by the fact that the exogenous tracer (or metabolite) and water may 

have different molecular size, diffusion coefficient temperature dependence, macromolecular 

binding properties, and exchange properties both in normal and ischemic tissue.  

 Other attempts to isolate the IC and EC diffusion properties have employed fitting the dif-

fusion signal attenuation curve to a sum of two decaying exponentials (biexponential model) 

(Neindorf et al., 1996; Mulkern et al., 1999; Mulkern et al., 2000). The results reported in 

these experiments do not agree with the known IC : EC fraction (ca 0.8 : 0.2 ), which could 

be attributed to T2 relaxation time differences between IC and EC water and diffusion anisot-

ropy (Clark and Le Bihan, 2000). Further, Mulkern et al. (2000) state that although it may be 

appealing to assign non-monoexponential behavior to two independently diffusing compart-

ments, namely IC and EC, there was not enough experimental evidence to draw such a con-

clusion. Also, It is important to note that non-monoexponential diffusion signal attenuation 

does not necessarily imply multiple compartments (Helmer et al., 1995). In fact, the complex 

diffusion process can result in non-monoexponential signal decay due to restrictions, ex-

change, relaxation time effects, and diffusion time selection as well as compartmental ADC 

differences. 

In Chapter 9, we demonstrate a method of intracerebroventricular (ICV) CR infusion to 

isolate IC T1, T2, and ADC values in vivo in normal and middle cerebral artery occluded 

(MCAO) rats via volume-localized, diffusion-weighted inversion-recovery spin-echo (DW-
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IRSE) spectroscopy and diffusion-weighted echo-planar imaging (DW-EPI). This method is 

derived from the experiments performed on yeast-cell suspensions and employs the use of 

CR to selectively enhance relaxation of water in the EC space in order to separate the respec-

tive IC and EC signal contributions based on T1-relaxation time differences. DW-IRSE and 

DW-EPI was performed in four groups (of five animals each) to study normal and ischemic 

brain tissue (both with and without the infused CR). Measurements of the apparent T1, T2, 

diffusion, and volume fraction of the IC space were performed; and in subsequent analysis, 

the apparent T1, T2, diffusion, and volume fraction of the EC space was calculated indirectly 

from the IC data. A promising result from the analysis was the calculation of the IC signal 

fraction of approximately 80%, which matches the physiologically known IC fraction. The 

apparent T1 and T2 values of the IC space were measured as 235 ± 10 ms and 46 ± 2 ms, re-

spectively. The apparent T1 and T2 values of the EC water were 48 ± 8 ms and 6 ± 2 ms, re-

spectively, in the presence of the CR.  

In subsequent experiments, the echo time of the NMR pulse sequences was set to >5T2 

of the EC space in order to filter the EC signal contribution and thus allow selective ADC 

measurements of the IC water. In Chapter 9, the spectroscopically- and imaging-derived 

ADC values of each group are described in detail. In short, the ADC value measured in nor-

mal brain (comprised of IC and EC water) and the ADC value of the CR-infused brain (com-

prised of only IC water) were statistically similar, suggesting that the major determinant of 

the equilibrium ADC value in rat cerebral tissue is the ADC of the IC space. Furthermore, 

during acute focal cerebral ischemia, the reduction of ADC measured in the CR-free brain 

statistically matched the ADC value measured in the CR-infused brain. This result suggests 

that diffusion-weighted contrast during acute cerebral ischemia is primarily a result of a re-
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duction of the ADC in the IC space. This finding is consistent with previously published re-

sults using the ADC of exogenous and metabolic surrogates to model water diffusion (Neil et 

al., 1996; Wick et al., 1995; van der Toorn et al., 1996; Duong et al., 1998; Duong et al., 

2001). Although it is theoretically possible for significant EC ADC reductions to occur as a 

result of water loss and restriction increases (as suggested by the other noted hypotheses), 

this study suggests that the larger IC volume is more likely the major determinant of acute 

water ADC changes in ischemic brain tissue. 
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Chapter 3 

 
Temporal Evolution of Ischemic Injury Evaluated with Diffusion-, 

Perfusion- and T2-weighted MRI 
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3.1 Preface 

Ischemic lesions seen on diffuison-weighted imaging (DWI) are reversible if reperfusion is 

performed within minutes after the onset of ischemia. This study was designed to determine 

if acute reversibility of DWI abnormalities is transient following brief temporary focal brain 

ischemia and to characterize the temporal evolution of in vivo ischemic lesions. My contribu-

tions to this work were collection of the NMR data, C and IDL programming for image re-

construction and analysis, and participation in the writing of the manuscript. 
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3.2 Abstract 

Objective and background: Ischemic lesions seen on diffuison-weighted imaging (DWI) are 

reversible if reperfusion is performed within minutes after the onset of ischemia. This study 

was designed to determine if acute reversibility of DWI abnormalities is transient following 

brief temporary focal brain ischemia and to characterize the temporal evolution of in vivo 

ischemic lesions. Methods: Eight rats were subjected to 30 minutes of temporary middle 

cerebral artery occlusion and underwent diffusion-, perfusion-, and T2-weighted MRI during 

occlusion, immediately after reperfusion, 30, 60, 90 minutes, and 12, 24, 48 and 72 hours af-

ter reperfusion. Average apparent diffusion coefficient (ADCav) values and the cerebral blood 

flow index (CBFi) ratio were calculated in both the lateral caudoputamen and overlying cor-

tex at each time point. The size of the in vivo ischemic abnormalities was calculated from the 

ADCav and the T2 maps. Postmortem triphenyltetrazolium chloride (TTC) staining was used 

to verify ischemic injury. Results: Both the CBFi ratio and ADCav values declined signifi-

cantly in the two regions during occlusion. The CBFi ratio recovered immediately after reper-

fusion and remained unchanged over 72 hours. However, ADCav values returned to normal at 

60 to 90 minutes and secondarily decreased at 12 hours after reperfusion as compared with 

those in the contralateral hemisphere. The extent of the in vivo ischemic lesions maximized at 

48 hours and was highly correlated with TTC-derived lesion size. Conclusions: Acute recov-

ery of initial ADCav-defined lesions after reperfusion is transient, and secondary ADCav-

defined lesions develop in a slow and delayed fashion.  
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3.3 Introduction 

Diffusion-weighted magnetic resonance imaging (DWI) is widely used to investigate hy-

peracute and acute ischemia in both experimental stroke and stroke patients (Baird and 

Warach, 1998) because of its ability to detect early ischemic hyperintense abnormalities that 

are related to a reduction of the apparent diffusion coefficient (ADC) of water (Moseley et 

al., 1990; Moseley et al., 1990; Minematsu et al., 1992). ADC decline is a reliable marker of 

ischemic injury at the early stages of stroke, likely attributable to cytotoxic edema formation 

caused by energy failure after the cessation of blood flow (Busza et al., 1992; Benveniste et 

al., 1992; Mintorovitch et al., 1994). Although the precise mechanisms of ADC declines are 

not fully understood, many studies have demonstrated that the regions with ADC reduction 

eventually become infarcted without therapeutic intervention, while those with normal ADC 

values over time do not develop infarction. Further experimental studies demonstrated that 

the initial ADC declines recovered completely if the interrupted cerebral blood flow is re-

stored within minutes after the onset of ischemia (Mintorovitch et al., 1991; Minematsu et 

al., 1992; Davis et al., 1994; Pierpaoli et al., 1996), indicating that initial ischemic abnor-

malities demonstrated on DWI are reversible. However, little is known about whether the 

reversibility of the initial ischemic lesions on DWI induced by acute reperfusion is transient 

or permanent following temporary focal ischemia and how much, if any, of the region with 

initial ADC decrease develops secondary ADC reduction. The purposes of the present study 

were (a) to determine whether secondary ADC declines occur after recovery of initially de-

creased ADC values, (b) to characterize the temporal and spatial evolution of the in vivo 

ischemic lesions, and (c) to determine if secondary cerebral hypoperfusion contributes to the 

secondary ADC declines. We evaluated the in vivo temporal and spatial evolution of 
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ischemic changes from acute to subacute stages (72 hours) with diffusion-, perfusion- and T2-

weighted imaging following 30 minutes of transient middle cerebral artery occlusion 

(MCAO) in the rat.  

 

3.4 Materials and Methods 

3.4.1 Animal preparation 

All procedures used in this study were in accordance with our institutional guidelines (proto-

col A-643). Eight male Sprague-Dawley rats weighing 310 to 330 g were anesthetized with 

an intraperitoneal injection of 400 mg/kg chloral hydrate. PE-50 polyethylene tubing was in-

serted into the left femoral artery for continuous monitoring of mean arterial blood pressure 

throughout the study and for obtaining blood samples to measure pH, PaCO2, and PaO2 be-

fore occlusion, 25 minutes after occlusion and 60 minutes after reperfusion. Another silicone 

rubber tube was inserted into the left femoral vein for injection of gadopentate dimeglumine 

for perfusion-weighted imaging (PWI). During the surgical procedure, temperature was con-

tinuously monitored with a rectal probe and maintained at 37oC with a thermostatically-

controlled heating lamp.  

 

3.4.2 Focal ischemia induction 

Focal brain ischemia was induced with the intraluminal suture MCAO method as initially 

described by Koizumi et al. (1986) Briefly, the right common carotid artery, internal carotid 

artery and external carotid artery were exposed through a midline incision of the neck. The 

proximal portions of the right common carotid artery and external carotid artery were ligated 

with 5-0 surgical sutures. A 4-0 monofilament nylon suture, its tip rounded by flame and 
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coated by silicone, was inserted through an arteriotomy of the right common carotid artery 3 

mm below the carotid bifurcation and advanced into the internal carotid artery until a mild 

resistance was felt, indicating that the occluder had entered the anterior cerebral artery and 

thus blocked the blood flow from the anterior cerebral artery and the posterior cerebral artery 

to the middle cerebral artery. The animals were then fixed to a head holder with a tooth-bar 

and ear-bars, and quickly placed into the MRI magnet bore. Inside the magnet, anesthesia 

was maintained with 1.0% isoflurane delivered in air at 1.0 L/min. Body temperature was 

continuously monitored using a rectal probe and was maintained at 37o C by means of a 

thermostatically-regulated heated-air flow system. The rats were reperfused in the magnet 

bore by withdrawing the occluder 30 minutes after MCAO. 

 

3.4.3 MRI measurements 

The MRI studies were performed in a GE CSI-II 2.0T/45 cm imaging spectrometer (GE 

NMR Instruments, Fremont, CA) operating at 85.56 MHz for 1H and equipped with ±20 

G/cm self-shielding gradients. Multislice, diffusion-weighted spin-echo echo-planar imaging 

(EPI) (Turner and Le Bihan, 1990) was used to map the ADC of brain water. Eight contigu-

ous, coronal, 2-mm-thick slices, were acquired with a field of view (FOV) = 25.6×25.6 mm2, 

pixel resolution = 64×64, repetition time (TR) = 5 s, echo time (TE) = 74 ms, EPI data acqui-

sition time = 65 ms, number of excitations (NEX) = 2, diffusion-sensitive-gradient pulse 

width (δ) = 7 ms, and diffusion-gradient separation time (∆) = 35 ms. The first slice was a 

scout image and was then used to adjust the brain position so that the second slice started 

from the frontal pole of the brain. Half-sine-shaped diffusion-sensitive gradient pulses were 

applied along one of the three orthogonal gradient axes (x, y, or z).  In separate experiments, 
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nine b values, ranging from 18 to 1552 s/mm2, were used to measure the ADC of water along 

each of the three diffusion-gradient directions. Using a linear least-squares regression, the 

natural logarithm of the signal intensity was fitted to the b values, where the slope of the fit-

ted line is proportional to the ADC.  The average ADC (ADCav) map was calculated by aver-

aging the three orthogonal ADC values on a pixel-by-pixel basis (van Gelderen et al., 1994). 

The center four slices of the diffusion data (at levels from 2 to 10 mm from the frontal pole) 

were used for lesion volume calculation. 

T2-weighted EPI was employed to perform dynamic contrast-enhanced perfusion imag-

ing (Wendland et al., 1991) for documenting successful occlusion and reperfusion at acute 

stage and demonstrating microcirculatory perfusion at subacute stages. Four contiguous, cor-

onal, 2-mm-thick slices, which correspond to the center four DWI slices, were acquired with 

FOV = 25.6×25.6 mm2 and pixel resolution =  64×64. A total of 40 spin-echo EPIs (TR = 

900 ms, TE = 74 ms, EPI data acquisition time = 65 ms, NEX = 1) was obtained for each 

slice.  A bolus injection of 0.25 ml of gadopentate dimeglumine was administered following 

acquisition of the 15th image.  The PWI data were processed to obtain an estimate of the 

cerebral blood flow index (CBFi) as previously described (Hamberg et al., 1993). The change 

in the T2 rate, ∆R2(t), was obtained from the change in signal intensity based on the following 

relationship: 
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where S(t) is the signal intensity at time t during bolus passage of the contrast agent, S0 is the 

baseline value of the precontrast signal intensity.  For this study, only relative changes in 

cerebral blood volume were evaluated, and thus knowledge of the tissue contrast agent con-

centration and the arterial input function were not required. The relative cerebral blood vol-
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ume (rCBV) was determined by numerical integration of the ∆R2(t) versus time curve.  An 

estimate of the vascular transit time (VTT) was obtained from the first moment of the ∆R2(t) 

versus time curve. The estimate of VTT was used in conjunction with the value for rCBV to 

calculate CBFi based on the central volume principle (Meier et al., 1954): 

                                            CBFi =rCBV/VTT         [3.2] 

where CBFi was determined for each pixel. The accuracy of the CBFi calculation was chal-

lenged as the VTT derived from the first moment of the residue curve is not the true mean 

transit time (MTT) and actually overestimates the MTT, thus giving rise to an underestimate 

of CBF changes (Hamberg et al., 1993; Weisskoff et al., 1993). However, studies have dem-

onstrated that the VTT can be used as a relative estimate of regional flow (Weisskoff et al., 

1993) and the CBFi measurement is able to reflect regional flow changes during ischemia and 

after reperfusion(Hamberg et al., 1993; Wittlich et al., 1995). Moreover, the CBFi ratio cal-

culated from the two regions with relatively similar vascular physiology as we used in this 

study is likely to better estimate the relative flows (Weisskoff et al., 1993).        

A multislice, double spin-echo EPI pulse sequence was used to map the transverse re-

laxation time, T2, of the brain.  T2-weighting imaging (T2WI) was achieved by varying the 

echo time for the first echo. T2 maps were constructed from nine T2-weighted EPIs with TR 

= 5s, NEX = 4, and TE1 values between 20 and 110 ms. The echo time for the second echo 

was the same as the echo time for the DWI and PWI sequences (TE2 = 74 ms).  This ensured 

that the diffusion, perfusion, and T2 maps all contained the same EPI spatial distortions. 

Eight contiguous, coronal, 2-mm-thick slices, which correspond to the eight DWI slices, 

were acquired with FOV = 25.6×25.6 mm2 and pixel resolution=64×64.  Using a linear least-

squares regression, the natural logarithm of the signal intensity was fitted to the TE values, 
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where the slope of the fitted line is proportional to the T2 value. 

PWI, T2WI and DWI were acquired during occlusion (just before reperfusion), immedi-

ately after reperfusion, and 30, 60, 90 minutes, and 12, 24, 48, and 72 hours after reperfusion. 

For the subacute time points, a scout image was taken to position the rat brain so that the 

second slice started from the frontal pole of the brain. By doing this, the brain slices obtained 

at different time points were well-matched. 

 

3.4.4 Data Analysis 

Two ROIs (3×3 pixels each in size), one in the lateral caudoputamen and the other in the 

frontoparietal cortex (Fig. 3.1, A1 and B1) in the optic chiasm slice, were chosen to measure 

 

A2 

B2 

C1 C2 

A1 

B1 

Figure 3.1.  A schematic diagram showing regions of interest (3×3
pixels in size) chosen for data analysis. CBF index, average ADC
and T2 values were measured in the lateral caudoputamen (A1 and
A2) and overlying frontoparietal cortex (B1 and B2) of both
hemispheres. CBF index was also measured in the cortex of anterior
cerebral artery territory of both hemispheres (C1 and C2). 
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ADCav, CBFi and T2 values on the corresponding maps. These three parameters were also 

measured in the homologous regions of the contralateral hemisphere (Fig. 3.1, A2 and B2). 

In addition, CBFi values were measured in the normal region of the anterior cerebral artery 

territory of the ipsilateral hemisphere and in the homologous region of the contralateral hemi-

sphere (Fig. 3.1, C1 and C2). A CBFi ratio was calculated by dividing the ipsilateral CBFi 

values by the contralateral CBFi values. The ADCav and T2 values in the contralateral hemi-

sphere and the CBFi ratio in the anterior cerebral artery territory were used as controls.  

 

3.4.5 In vivo lesion size calculation and post mortem evaluation 

Using a computer software program (Interactive Data Language, Research Systems, Boulder, 

Colorado), the brain pixels were classified into normal and abnormal clusters based on visual 

abnormalities on the ADCav and T2 maps. The total number of the pixels defined as abnormal 

during acute time points was determined by the ADCav maps alone since the T2 maps were 

normal. At subacute time points, however, the pixels having abnormal ADCav values or ab-

normal T2 values were classified as abnormal. Therefore, composite maps were then devel-

oped to define the total number of pixels that were abnormal on the ADCav maps or on the T2 

maps. The number of abnormal pixels was divided by the total number of pixels in the ipsi-

lateral hemisphere from the center four slices to yield percent hemisphere lesion volume 

(%HLV) to compensate for brain edema at each time point. In order to evaluate the spatial 

evolution of individual ischemic lesion sizes, up to a ±15% difference was allowed (Sorensen 

et al., 1999) when the comparison was made between pre- and post-reperfusion size, namely, 

post-reperfusion size was considered to be identical with pre-reperfusion size when it was 

85%–115% of the pre-reperfusion size. This consideration takes into account calculation er-
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rors and slight difference in the position of brain slices at different time points.  

Following the last MRI protocol, the rats were anesthetized with an intraperitoneal injec-

tion of 400mg/kg chloral hydrate, and one PE-50 tubing was cannulated into right femoral 

artery for measuring mean arterial blood pressure and for obtaining blood sample to analyze 

pH, PaCO2, and PaO2. The rats were then decapitated. The brains were removed and coron-

ally sectioned into six, 2-mm-thick slices starting from the frontal pole. The brain slices were 

incubated for 30 minutes in a 2% solution of triphenyltetrazolium chloride (TTC) at 37o C 

and fixed by immersion in a 10% buffered formalin solution (Bederson et al., 1986). Then 

the brain slices were photographed using a CCD camera. Using an imaging analysis program 

(Bio Scan OPTIMAS, Edmonds, WA), the volumes of the infarcted region and the ipsilateral 

hemisphere were calculated (Li et al., 1997) for each of the center four brain slices (at levels 

from 2 to 10 mm from the frontal pole). The TTC-derived %HLV was calculated by dividing 

the volume of the infarcted region by the total volume of the ipsilateral hemisphere. The cen-

ter four TTC slices corresponded to the center four DWI slices. An exact match is, however, 

not likely as TTC stains the surface of brain slices, while DWI provides overlap with 2-mm-

thick slice.   

 

3.4.6 Statistical analysis 

Data are presented as mean ± SD. Statistical analyses of physiological variables were 

performed using one-way analysis of variance. An unpaired t test was used to compare the 

parametric variables. A linear regression analysis was used to correlate the in vivo %HLV at 

48 and 72 hours with TTC-derived %HLV. A two-tailed value of p<0.05 was considered 

significant. 
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3.5 Results 

The physiological variables such as body temperature, mean arterial blood pressure, pH, 

PaCO2 and PaO2 were within the normal range and did not significantly change throughout 

experiment (data not shown). 

Perfusion deficits documented by PWI were seen in the entire right MCA territory dur-

ing occlusion and disappeared after reperfusion. Fig. 3.2 shows the changes of the CBFi ratio 

over time in the subcortical and cortical ROIs. The CBFi ratio in normal regions of the ante-

rior cerebral artery territory was constant (~1) throughout the observation period. The CBFi 

ratio declined in both the lateral caudoputamen (0.51±0.12, p<0.01) and the frontoparietal 

cortex (0.59±0.13, p<0.01) during occlusion as compared with that in the normal region, then 

recovered to normal values immediately after reperfusion (1.04±0.11 in the caudoputamen 
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Figure 3.2.  The changes of CBF index (CBFi) ratio (ipsilateral 
CBFi/contralateral CBFi) over time. The CBFi ratio in the normal 
cortex of the anterior cerebral artery territory (ACA) was normal 
throughout observation. However, the CBFi ratio in both lateral 
caudoputamen and frontoparietal cortex decreased during occlusion 
(p<0.001), recovered to normal level immediately after reperfusion, 
and remained unchanged up to 72 hours after reperfusion. 
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and 1.07±0.21 in the cortex), and remains unchanged until 72 hours after reperfusion.  

DWI hyperintensity was observed in the right MCA region during occlusion, mainly in-

volving the lateral caudoputamen and overlying cortex. DWI abnormalities gradually disap-

peared between 60 to 90 minutes after reperfusion, and reappeared at the 12-hour observation 

point. The temporal evolution of ADCav changes in both the lateral caudoputamen and fron-

toparietal cortex is shown in Fig. 3.3. In the contralateral nonischemic hemisphere, the AD-

Cav values in the two ROIs were stable over time (62-65×10-5 mm2/s). However, in the ipsi-

lateral ischemic hemisphere, the ADCav values decreased during occlusion in both the lateral 

caudoputamen (43±3×10-5 mm2/s, p<0.001) and the frontoparietal cortex (46±5×10-5 mm2/s, 

p<0.001), compared with those in the contralateral regions (62±3×10-5 mm2/s in the caudopu-
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Figure 3.3.   Temporal evolution of average ADC (ADCav) values in
the ischemic and nonischemic hemispheres following 30 minutes of
transient middle cerebral artery occlusion. In the caudoputamen and
cortex of the nonischemic hemisphere, the ADCav values were stable.
However, in both the caudoputamen and cortex of the ischemic
hemisphere, the ADCav values decreased during occlusion (p<0.001),
recovered completely at 60 to 90 minutes after reperfusion, declined
secondarily at 12 hours (p<0.001), and started to pseudonormalize at
24 to 48 hours after reperfusion. 
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tamen and 64±3×10-5 mm2/s in the cortex). The ADCav values fully recovered between 60 to 

90 minutes in both regions (64±3 ×10-5 mm2/s in the caudoputamen and 65±3×10-5 mm2/s in 

the cortex), secondarily declined at 12 hours (44±6×10-5 mm2/s in the caudoputamen and 

47±8×10-5 mm2/s in the cortex, p<0.001, compared with homologous contralateral values), 

and began to increase (50±5×10-5 mm2/s in the caudoputamen and 49±8×10-5 mm2/s in the 

cortex) at 48 hours after reperfusion. 

The T2 changes over time are shown in Fig. 3.4. During the acute time periods, the T2 

values were within normal ranges in both hemispheres. However, the T2 values in the two 

ROIs of the ischemic hemisphere significantly increased (98±11 vs 69±3 ms in the caudopu-

tamen and 90±19 vs 70±5 ms in the cortex) at 12 hours after reperfusion as compared with 

those of the contralateral hemisphere, and peaked at 48 hours after reperfusion.  
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Figure 3.4.  The T2 changes over time in the two ROIs of both the 
ischemic and normal hemispheres. The T2 values in the normal 
hemisphere were stable throughout the experiment, while the T2 val-
ues in the ischemic hemisphere were within normal ranges during 
acute time points, significantly elevated at 12 hours after reperfusion 
and peaked at 48 hours after reperfusion (p<0.005). 
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The extent of normalized ischemic lesions defined by ADCav and T2 abnormalities is shown 

in Fig. 3.5, demonstrating that the in vivo lesions during arterial occlusion almost disappeared 

within 60 to 90 minutes after reperfusion, secondarily occurred at 12 hours, and maximized 

at 48 hours after reperfusion. Compared with the initial ADCav-defined lesions, the extent of 

the lesions determined by secondary ADCav decline and T2 abnormalities was smaller in two 

rats, identical in four rats, and larger in two rats (Table 3.1). Further spatial comparison be-

tween the initial ADCav-defined lesions and secondary ADCav-defined lesions demonstrated 

that the secondary ADCav-defined lesions may in part spare in regions with initial ADCav-

defined lesions (Fig. 3.6A), can closely match the initial ADCav-defined lesions in size and 

location (Fig. 3.6B), or can even develop in regions where the ADCav values were normal 

before reperfusion (Fig. 3.6C). The ischemic injury was verified by postmortem TTC stain-

 

Figure 3.5.  Temporal evolution of normalized lesion volume. The 
ischemic lesions defined by visual abnormalities on the ADCav and 
T2 maps decreased to almost zero at 90 minutes after reperfusion, 
secondarily occurred at 12 hours and maximized at 48 hours after 
reperfusion. Note that the lesion volume is normalized by the 
prereperfusion percent hemisphere lesion volume. 
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ing, and the in vivo lesion size at 48 and 72 hours after reperfusion was comparable to TTC-

defined lesion size (Fig. 3.6). A significant correlation was achieved between the in vivo (48 

and 72 hours after reperfusion) and postmortem ischemic lesion size (r=0.96, p=0.0001). 

 

Rat No. Initial %HLV Secondary %HLV Changes (%) TTC (%HLV) 
1 25.8 17.4 -32.6 15.0 
2 37.1 21.8 -41.8 17.7 
3 8.2 8.7 +6.1 10.5 
4 26.6 24.6 -7.5 24.1 
5 49.5 48.4 -2.2 49.7 
6 26.6 27.0 +1.5 23.6 
7 25.6 34.3 +34.0 29.5 
8 39.0 49.5 +26.9 45.2 

Mean±SD 29.8±12.2 29.0±14.4  26.9±14.0 
Table 3.1.  Comparison between the initial ADCav-defined lesions 
during ischemia and secondary ADCav-defined lesions at 48 hours af-
ter reperfusion. The ischemic lesions are expressed as percent hemi-
sphere lesion volume (%HLV). Secondary ADCav-defined lesions are 
considered to be identical with initial ADCav-defined lesions when 
changes are within ±15%, smaller when changes < -15%, and larger 
when changes > +15%.  

 

3.6 Discussion 

Prior experiments demonstrated that initially decreased ADC values can revert to normal if 

successful reperfusion is performed within minutes of stroke onset in both the global and fo-

cal ischemia animal models (Mintorovitch et al., 1991; Minematsu et al., 1992; Davis et al., 

1994; Pierpaoli et al., 1996). Complete recovery of initially decreased ADC values in a pa-

tient with transient ischemic attack was also documented recently (Lecouvet et al., 1999). A 

recent study showed that delayed neuronal death or pannecrosis might develop in the regions 

with complete reversal of the initially decreased ADC values (Li et al., 1998). The present 

study further demonstrates that ADC recovery following 30 minutes of arterial occlusion is 

transient, and secondary ADC reduction occurs later on, which is consistent with recent 
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studies (Dijkhuizen et al., 1998; Thornton et al., 1998; van Bruggen et al., 1998). This find-

ing may help to explain the dissociation between the early reversal of ADC values and de-

layed neuronal abnormalities documented by histology. 

In this study, we classify the ischemic hyperintensities on DWI during ischemia as initial 

ADC-defined lesions. The initial ADC-defined lesions following 30 minutes of ischemia 

were reversible after reperfusion and the recurrence of ischemic changes identified by the 

secondary reduction of the ADC values in this study is therefore classified as secondary 

ADC-defined lesions or delayed ischemic lesions. Prior studies demonstrated that the patho-

physiological processes occurring during ischemia, such as an increase in calcium and glu-

tamate, inhibition of protein synthesis, disturbance of metabolites, depolarization, and mito-

chondrial dysfunction, might be reversible if reperfusion occurred rapidly (Lorek et al., 1994; 
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Figure 3.6.  Representative ADCav maps showing that initial ADCav-
defined lesions occurring during occlusion gradually disappear after 
reperfusion and secondary ADCav-defined lesions develop later on. 
The secondary ADCav-defined lesions may be smaller (A), identical 
(B), or larger (C) as compared with initial ADCav-defined lesions. 
Secondary ADCav-defined lesions (arrowheads) even develop in the 
prereperfusion normal regions (arrow). The TTC-determined 
ischemic injury is comparable to the in vivo lesion size at 48 and 72 
hours. Note that ADCav values pseudonormalize in some regions at 
48 and 72 hours after reperfusion. 
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Siesjö et al., 1995; Abe et al., 1995; Kristián and Siesjö, 1998; Fiskum et al., 1999). The 

acute normalization of ADC values after reperfusion in this study may indicate full restora-

tion of energy metabolism and secondary ADC declines suggest secondary energy failure, as 

ADC values are closely related to energy metabolism (Busza et al., 1992; Benveniste et al., 

1992; Mintorovitch et al., 1994).  It is less likely that acute ADC normalization is an epiphe-

nomenon related to reperfusion in an irreversibly damaged region, since delayed (>45 min-

utes) complete restoration of the cerebral blood flow does not normalize the initially de-

pressed ADC values (Minematsu et al., 1992; Hasegawa et al., 1994). Further studies are 

needed to determine whether the reperfusion-induced normalization of the ADC values indi-

cates complete recovery of the cellular and biochemical cascades induced by ischemia and 

what the secondary ADC abnormalities actually mean. 

Previous studies demonstrated that the ischemic lesions on DWI are fully developed ap-

proximately 2 to 3 hours after permanent MCAO (Dardzinski et al., 1993; Li et al., 1997). 

The present study shows that secondary ADCav-defined lesions occur as early as 12 hours 

after reperfusion, then gradually increase in size, and maximize 48 hours after reperfusion, 

indicating that the ischemic lesions defined by secondary ADCav reduction develop in a slow 

and delayed fashion, consistent with a previous report (Du et al., 1996). The extent of secon-

dary ADCav-defined lesions is variable from animal to animal, and it may be identical, 

smaller or larger, when compared with the initial ADCav-defined lesions. This suggests that 

reperfusion may reduce initial ADCav-defined lesions in some animals (Fig. 3.6A). However, 

reperfusion after 30 minutes of temporary focal ischemia fails to salvage brain tissue from 

ischemic injury in most cases (Fig. 3.6B). Interestingly, secondary ADCav-defined lesions 

can even develop in the prereperfusion ADCav-defined normal regions and lead to delayed 
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ischemic lesions larger than the initial ischemic lesions (Fig. 3.6C). Although it is not known 

why secondary ADCav-defined lesions are variable, the present study clearly demonstrates 

that reperfusion alone can not fully salvage brain tissue from ischemic injury and can only 

reduce initial ADCav-defined lesions in a few cases (2/8) following 30 minutes of ischemia in 

this rat model. A recent study demonstrated that 28% (57/206) of stroke patients who re-

ceived recombinant tissue plasminagen activator (r-tPA) within 6 hours after the onset of 

stroke had a significant increase in ischemic abnormalities defined by CT at day 7 when 

compared to day 1 (24 to 36 hours) (Pantano et al., 1999). The delayed increase in CT ab-

normalities might be due to that r-tPA administration failed to fibrinolyse clots or initiation 

of the treatment was beyond the therapeutic time windows, but delayed ischemic lesions 

shown in this study may be another factor to compromise the ischemic injury in some pa-

tients whose occluded arteries were successfully recanalized by r-tPA.  

The mechanisms responsible for the delayed ischemic lesions observed in this study are 

still unclear. The first possible explanation is that secondary energy failure gives rise to the 

delayed ischemic injury and subsequent necrosis (Kristián and Siesjö, 1998; Siesjö et al., 

1999; Murphy et al., 1999). The secondary ADC reductions seen in the present study suggest 

a delayed failure of energy metabolism. Secondary energy failure was also documented re-

cently following transient hypoxia-ischemia (Dijkhuizen et al., 1998; van Bruggen et al., 

1998; Blumberg et al., 1997). It is unlikely that secondary energy failure is due to depressed 

arterial blood pressure or decreased arterial oxygen tension, since these physiological vari-

ables remained normal throughout the observation period. Although postischemic hypoperfu-

sion may result in secondary energy disruption (Levy et al., 1979), the present study did not 

document microcirculatory hypoperfusion by perfusion imaging. Secondary mitochondrial 
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injury that may be triggered by disturbance of mitochondrial gene expression (Abe et al., 

1995), secondary overload of calcium (Kristián and Siesjö, 1998; Fiskum et al., 1999), lactic 

acidosis (Fiskum et al., 1999), mitochondrial permeability transition pore opening (Siesjö et 

al., 1999), excitotoxicity (Murphy et al., 1999), or reperfusion-induced free radical produc-

tion (Siesjö et al., 1989), is potentially responsible for the secondary energy failure and de-

layed necrosis. In addition, calcium accumulation (Kristián and Siesjö, 1998), free radical 

formation (Siesjö et al., 1989; Kitagawa et al., 1990), and glutamate release (Choi, 1992) can 

also lead to late degradation of cytoskeleton and ensuing necrosis. The second possible ex-

planation is that apoptosis may play a role in the delayed ischemic injury. Several studies 

demonstrated that apoptotic cells and DNA fragmentation occur early in ischemic brain tis-

sues and persist for days after permanent (Linnik et al., 1993; Tominaga et al., 1993) or tran-

sient focal brain ischemia (Charriaut-Marlangue et al., 1996; Li et al., 1995a; Li et al., 

1995b). Du et al. (1996) further demonstrated that infarction develops in a delayed pattern 

following mild focal ischemia as compared to severe focal brain ischemia and that positive 

TUNEL staining and a ladder pattern of DNA fragmentation by agarose gel electrophoresis 

occur at the margin of the infarct. Moreover, the protein synthesis inhibitor, cycloheximide, 

significantly reduced the ischemic infarct volume (Du et al., 1996; Linnik et al., 1993). 

These experimental findings suggest that apoptosis likely contributes to the delayed devel-

opment and expansion of the ischemic infarct in our study. It is still uncertain what induces 

apoptosis although glutamate exposure (Siesjö et al., 1999; Choi, 1992), calcium accumula-

tion (Murphy et al., 1999), gene expression (MacManus and Linnik, 1997), oxidative stress 

(MacManus and Linnik, 1997), mitochondrial dysfunction (release of cytochrome c and other 

apoptogenic factors) (Siesjö et al., 1999; Murphy et al., 1999; Green and Reed, 1998), or en-
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doplasmic reticulum dysfunction (Paschen and Doutheil, 1999) are potential factors. How-

ever, secondary energy failure and accompanying cellular swelling reflected by the secon-

dary ADC declines cast some doubt on the role apoptosis plays in this delayed ischemic in-

jury, since apoptotic cells do not have failure of energy metabolism and subsequent cellular 

swelling (Abe et al., 1995; Murphy et al., 1999). It is likely that there is a coexistence of ne-

crotic and apoptotic processes causing the delayed injury or that some cells undergo apop-

tosis followed by necrosis in an appropriate environment. Evidence has shown that factors 

that trigger apoptosis can also induce necrosis (Siesjö et al., 1999; Murphy et al., 1999), and 

there is a continuum between apoptosis and necrosis (Fiskum et al., 1999; Murphy et al., 

1999). Further studies are needed to elucidate the potential mechanisms underlying the de-

layed ischemic lesions seen in the present study.   

The findings in the present study are clinically relevant. Firstly, an early reduction or 

resolution of DWI hyperintensity after thrombolytic therapy in stroke patients may not, at 

least in some cases, indicate ultimate brain tissue salvage from ischemic injury, since re-

versibility of initial ADCav-defined lesions may be transient and secondary ADCav-defined 

lesions may develop in a delayed fashion. Therefore, caution should be taken in interpreting 

the early reversibility of DWI lesions induced by reperfusion, and a follow-up DWI study 

may be required. Secondly, thrombolytic treatment alone even instituted at an early time may 

not entirely salvage ischemic brain tissue, as delayed ischemic injury may occur. Accord-

ingly, therapeutic strategies directed against delayed ischemic injury may be desirable in 

combination with thrombolytic therapy. Based on the aforementioned potential mechanisms, 

these strategies might include scavenging free radicals, inhibiting excitotoxicity and calcium 

accumulation, targeting the apoptosis-inducing genes, preventing release of the mitochon-
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drial apoptogens, blocking mitochondrial permeability transition pore (Fiskum et al., 1999), 

and restoring function of the endoplasmic reticulum (Paschen and Doutheil, 1999). 
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4.1 Preface 

The early ischemic lesions demonstrated by diffusion-weighted imaging (DWI) are poten-

tially reversible. The purposes of this study were to determine whether resolution of initial 

DWI lesions is transient or permanent following different brief periods of focal brain ische-

mia and to evaluate histological outcomes. My contributions to this work were collection of 

the NMR data, C and IDL programming for image reconstruction and analysis, and participa-

tion in the writing of the manuscript. 
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4.2 Abstract 

Background and Purpose: The early ischemic lesions demonstrated by diffusion-weighted 

imaging (DWI) are potentially reversible. The purposes of this study were to determine 

whether resolution of initial DWI lesions is transient or permanent following different brief 

periods of focal brain ischemia and to evaluate histological outcomes. Methods: Sixteen rats 

were subjected to 10 minutes (n=7) or 30 minutes (n=7) of temporary middle cerebral artery 

occlusion or sham operation (n=2). DWI, perfusion-weighted imaging (PWI), and T2-

weighted imaging (T2WI) were obtained during occlusion, immediately after reperfusion, 0.5, 

1.0, 1.5, 12, 24, 48 and 72 hours after reperfusion. After the last MRI study, the brains were 

fixed, sectioned, stained with hematoxylin & eosin staining, and evaluated for neuronal ne-

crosis. Results: No MRI or histological abnormalities were observed in the sham rats. In both 

the 10-min and 30-min groups, the perfusion deficits and DWI hyperintensities occurring 

during occlusion disappeared shortly after reperfusion. The DWI, PWI and T2WI remained 

normal thereafter in the 10-min group, while secondary DWI hyperintensity and T2 abnor-

malities developed at the 12-hour observation point in the 30-min group. Histological exami-

nations demonstrated neuronal necrosis in both groups, but the number of the necrotic 

neurons was significantly higher in the 30-min group (95±4%) than in the 10-min group 

(17±10%, p<0.0001). Conclusions: Transient or permanent resolution of initial DWI lesions 

depends on the duration of ischemia. Transient resolution of DWI lesions is associated with 

widespread neuronal necrosis; moreover, permanent resolution of DWI lesions does not nec-

essarily indicate complete salvage of brain tissue from ischemic injury.  
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4.3 Introduction 

Studies in both experimental stroke models (Moseley et al., 1990a; Moseley et al., 1990b; 

Minematsu et al., 1992) and stroke patients (Rordorf et al., 1998; Marks et al., 1996; Lutsep 

et al., 1997; van Everdingen et al., 1998; González et al., 1999) have demonstrated that dif-

fusion-weighted imaging (DWI) is superior to conventional magnetic resonance imaging 

(MRI) in detecting early ischemic changes. The ischemic hyperintensity on DWI can be de-

tected as early as 3 minutes (Davis et al., 1994; Pierpaoli et al., 1996; Li et al., 1998) after the 

onset of ischemia and is due to a reduction of the apparent diffusion coefficient (ADC) of wa-

ter, presumably related to water movement from the extracellular space to the intracellular 

spaces caused by energy failure after disturbance of blood flow (Busza et al., 1992; Ben-

veniste et al., 1992; Mintorovitch et al., 1994). The ischemic hyperintensity demonstrated by 

DWI is reversible, if the interrupted blood flow is restored rapidly (Davis et al., 1994; Pier-

paoli et al., 1996; Mintorovitch et al., 1991; Minematsu et al., 1992). A recent study showed 

that resolution of DWI lesions is transient after 30 minutes of transient focal ischemia (Li et 

al., 2000). However, it has not been reported whether transient or permanent resolution of 

DWI lesions after reperfusion depends on the duration of ischemia, and whether these two 

events, if any, reflect different histopathological changes within tissue. Repeated measure-

ments of DWI following brief periods of focal ischemia could, thus, provide useful informa-

tion about neurological outcome and treatment strategies for stroke patients.  

The goals of the present study were to investigate the time course of ischemic changes on 

DWI following different periods of transient focal brain ischemia and to determine the histo-

pathological outcomes in the regions where DWI abnormalities are permanently or transiently 

reversible. To accomplish this, diffusion-, perfusion- and T2-weighted MRI were repeatedly 
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measured in the rat from acute to subacute (72 hours) time points following either 10 or 30 

minutes of transient middle cerebral artery (MCA) occlusion, and histological brain tissue 

damage was assessed after 72 hours of reperfusion.  

 
4.4 Materials and Methods 

4.4.1 Animal preparation 

All procedures used in this study were performed in accordance with our institutional guide-

lines (Protocol A-643). Sixteen male Sprague-Dawley rats weighing 300 to 340 g were anes-

thetized with an intraperitoneal injection of 400 mg/kg chloral hydrate. PE-50 polyethylene 

tubing was inserted into the left femoral artery for continuous monitoring of mean arterial 

blood pressure and for obtaining blood samples for the determination of pH, PaCO2, and 

PaO2 before occlusion, 90 minutes and 72 hours after reperfusion. Another silicone rubber 

tube was inserted into the left femoral vein for injection of gadopentetate-dimeglumine for 

perfusion-weighted imaging (PWI) to estimate blood flow. During the surgical procedure, 

temperature was continuously monitored with a rectal probe and maintained at 37oC with a 

thermostatically controlled heating lamp.   

 
4.4.2 Focal cerebral ischemia 

The intraluminal MCA suture model (Koizumi et al., 1986) was used to produce focal cere-

bral ischemia. Fourteen rats were subjected to either 10 or 30 minutes of transient MCA oc-

clusion (n=7 per group), and two other rats underwent sham operation. In all animals, the 

right common carotid artery (CCA), internal carotid artery (ICA), and external carotid artery 

(ECA) were exposed through a midline incision of the neck. The proximal portions of the 

right CCA and ECA were ligated with 5-0 surgical sutures. The animal’s head was then fixed 
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in a holder with a tooth-bar and ear-bars.   

In the 10-min group, the rats were occluded within the magnet unit using an in-bore su-

ture MCA occlusion method described by Li and his colleagues (Li et al., 1998) because of 

time limitations. After the occluding device consisting of supporting tubing, intra-arterial tub-

ing, a driving line, and a piece of 4-0 silicone-coated nylon suture was set up, the rats were 

then placed into the bore of the magnet. Inside the magnet, anesthesia was maintained with 

1.0% isoflurane delivered in air at 1.0 L/min. Body temperature was maintained at 37o C with 

a thermostatically-regulated, heated-air flow system. Arterial occlusion was achieved within 

the bore of the magnet by advancing the end of the driving line until resistance was felt, indi-

cating that the occluding filament was properly positioned in the right anterior cerebral artery 

and thus blocked the flow of blood into the root of the MCA. In the 30-min group, a 4-0 sili-

cone-coated nylon suture attached to a driving line within a support tubing was inserted 

through a small incision in the right CCA 3 mm below the carotid bifurcation and advanced 

into the ICA until resistance was felt. The rats were then quickly placed into magnet bore. In 

the sham-operated rats, the occluding filament was inserted only 7 mm above the carotid bi-

furcation. Reperfusion was accomplished by gently withdrawing the occluding filament about 

10 mm while the animal was still within the magnet. 

 
4.4.3 MRI measurements 

The MRI measurements were performed in a GE CSI-II 2.0T/45 cm imaging spectrometer 

(GE NMR Instruments, Fremont, CA) operating at 85.56 MHz for 1H and equipped with ±20 

G/cm self-shielding gradients.  Multislice, diffusion-weighted spin-echo echo-planar imaging 

(EPI) was used to map the ADC of brain water (Turner and Le Bihan, 1990). Eight contigu-
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ous, coronal, 2-mm-thick slices were acquired with a field-of-view (FOV) = 25.6×25.6 mm2, 

pixel resolution = 64×64, repetition time (TR) = 5 sec, echo time (TE) =74 ms, EPI data ac-

quisition time = 65 ms, number of excitations (NEX) = 2, diffusion-sensitive-gradient pulse 

width (δ) = 7 ms, and diffusion-gradient separation time (∆) = 35 ms. The first slice was a 

scout image and was used to adjust the brain such that the second slice started from the fron-

tal pole of the brain. Half-sine-shaped diffusion-sensitive gradient pulses were applied along 

one of the three orthogonal gradient axes (x, y, or z). In separate experiments, nine b values 

ranging from 18 to 1552 s/mm2 were used to measure the ADC of water along each of the 

three diffusion-gradient directions. Using a linear least-squares regression, the natural loga-

rithm of the signal intensity was fit to the b values; the slope of this regression line is propor-

tional to ADC. The mean ADC (ADCav) was calculated by averaging the three orthogonal 

ADC values on a pixel-by-pixel basis (van Gelderen et al., 1994), and was used to generate 

ADC maps. 

T2-weighted EPI was employed to perform dynamic contrast-enhanced PWI for deter-

mining cerebral perfusion (Wendland et al., 1991). Four contiguous, coronal, 2-mm-thick 

slices, which corresponded to the four center diffusion slices, were acquired with FOV = 

25.6×25.6 mm2 and pixel resolution = 64×64. A total of 40 spin-echo EPIs (TR = 900 ms, TE 

= 74 ms, EPI data acquisition time = 65 ms, NEX = 1) was obtained for each slice. A bolus 

injection of 0.25 ml of gadopentetate-dimeglumine was administered following acquisition of 

the 15th image. The PWI data were processed to obtain an estimate of the cerebral blood flow 

index (CBFi) as previously described (Hamberg et al., 1993). The change in the T2 rate, 

∆R2(t), was obtained from the change in signal intensity based on the following relationship: 
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where S(t) is the signal intensity at time t during passage of the contrast agent, S0 is the base-

line value of the pre-contrast signal intensity. For this study, only relative changes in cerebral 

blood volume were evaluated, and thus knowledge of the tissue contrast agent concentration 

and the arterial input function were not required. The relative cerebral blood volume (rCBV) 

was determined by numerical integration of the ∆R2(t) versus time curve. An estimate of the 

vascular transit time (VTT) was obtained from the first moment of the ∆R2(t) versus time 

curve. The estimates of VTT and rCBV were used to calculate CBFi with the equation of the 

central volume principle:  

                                            CBFi =rCBV/VTT         [4.2] 

where CBFi was determined for each pixel. Studies have demonstrated that CBFi measure-

ment is able to reflect regional blood flow changes during ischemia and after reperfusion 

(Hamberg et al., 1993; Wittlich et al., 1995). Moreover, the CBFi ratio calculated from the 

two regions with relatively similar vascular physiology as we used in this study is likely to 

better estimate the relative blood flow (Weisskoff et al., 1993).  

A multislice, double spin-echo EPI pulse sequence was used to map the transverse re-

laxation time (T2) of the brain. T2-weighting imaging (T2WI) was achieved by varying the 

echo time for the first echo. T2 maps were constructed from nine T2-weighted EPIs with TR = 

5s, NEX = 4, and TE1 values between 20 and 110 ms. The echo time for the second echo was 

the same as the echo time for the DWI and PWI sequences (TE2 = 74 ms). This ensured that 

the diffusion, perfusion, and T2 maps all contained the same EPI spatial distortions. Eight 

contiguous, coronal, 2-mm-thick slices, which corresponded to the eight DWI slices, were 
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acquired with FOV = 25.6×25.6 mm2 and pixel resolution = 64×64. Using a linear least-

squares regression, the natural logarithm of the signal intensity was fit to the TE values; the 

slope of the best-fit line is proportional to the T2 value. 

PWI, T2WI and DWI were acquired before occlusion (only in the 10-min group), during 

occlusion (no T2WI in the 10-min group because of time limitations), immediately after 

reperfusion, 0.5, 1.0, 1.5, 12, 24, 48, and 72 hours after reperfusion. For the 12-72 hour 

measurements, a scout image was taken to position the rat brain such that the second slice 

started from the frontal pole of the brain. This ensured that the brain slices obtained at differ-

ent time points were well-matched. 

 
4.4.4. Analysis of the region of interest 

One region of interest (ROI), 4×4 pixels in size, located in the center of the ischemic lesion 

(lateral caudoputamen) at the level of the anterior commissure (slice 4), was chosen to meas-

ure ADCav, CBFi and T2 values on corresponding maps. These three parameters were also 

measured in the homologous region of the contralateral hemisphere. In addition, CBFi values 

were measured in the frontoparietal cortex perfused by the anterior cerebral artery and pre-

sumed to be normal in both the ipsilateral and contralateral hemispheres. A CBFi ratio was 

calculated by dividing the ipsilateral CBFi values by the contralateral CBFi values. The AD-

Cav and T2 values in the lateral caudoputamen of the contralateral hemisphere and the CBFi 

ratio in the normal frontoparietal cortex were used as controls. 

 4.4.5 Histopathological evaluation 

Seventy-two hours after MCA occlusion, the rats were re-anesthetized by an intraperitoneal 

injection of chloral hydrate (400 mg/kg) and transcardially perfused with 250 ml of 

heparinized saline followed by 250 ml of phosphate buffered 4% paraformaldehyde (Garcia 
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et al., 1995). The rats were decapitated, and the severed heads were allowed to fix overnight 

in 4o C in the same paraformaldehyde solution. The next day, the brains were removed from 

the skull and cut into seven 2 mm thick coronal slices starting from the frontal pole of the 

brain. The slices were labeled A (frontal) through G (occipital) and embedded in paraffin. 

Histological sections, 6 µm in thickness, were obtained from each paraffin block and stained 

with hematoxylin-eosin. One section from slice C at the level of the anterior commissure, 

matching slice 4 of the ADCav maps, was used for histological evaluation. A co-registration 

method was used to localize the same region on the histology section as on the ADC maps by 

using a previously described method (Li et al., 1999). Briefly, a grid consisting of 5×5 

squares (1.5×1.5 mm2 in each square) was overlaid on the ADCav maps to localize the labeled 

ROI. In the same manner, the grid was then used to pinpoint the corresponding site of the la-

beled ROI on the histological section. Histological images were electronically collected via a 

Global Lab image analysis system (Data Translation Incorporated, Marlboro, MA) connected 

to a Sony video camera interfaced with an Olympus microscope system. At high (600×) mag-

nification, the intact and necrotic neurons were counted in five non-overlapping fields in each 

ROI by an investigator (K-F. L.) blinded to the MRI data. As previously described (Garcia et 

al., 1995; Garcia et al., 1997), neurons were classified as necrotic if they exhibited either 

pyknosis, karyorrhexis, karyolysis, cytoplasmic eosinophilia (“red neuron”) or loss of affinity 

for hematoxylin (“ghost neuron”). The number of necrotic neurons was divided by the total 

number of intact plus necrotic neurons to derive a percentage. The percentage of necrotic 

neurons was recorded as 100% when pannecrosis (death of all types of cells including glia 

and microvessel) was observed.  
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4.4.6 Statistical analysis 

All data are presented as the mean±SD. Statistical analyses of the physiological variables 

were performed using two-way repeated measure analysis of variance. An unpaired t test was 

used to compare the parametric variables. A two-tailed value of p<0.05 was considered 

significant. 

 
4.5 Results 

4.5.1 Physiological variables 

The weights of the rats in the two ischemic groups were not significantly different (329±7 vs. 

320±10 g). Body temperature, mean arterial blood pressure, pH, PaCO2, and PaO2 were nor-

mal before ischemia and throughout the reperfusion period and were not significantly differ-

ent between the two ischemic groups (Table 4.1). 

 
4.5.2 MRI findings 

In the two sham-operated rats, the PWI, DWI and T2WI data were normal in both hemi-

spheres throughout the period of observation. In both 10-min and 30-min groups, perfusion 

deficits demonstrated by PWI were seen in the right MCA territory during occlusion and 

completely disappeared after reperfusion. Blood flow as reflected by CBFi in the ipsilateral 

caudoputamen dropped to about 50% to 60% of the contralateral flow during occlusion (Fig. 

4.1) but returned to control (specifically, equality with the contralateral side) upon reperfu-

sion and remained normal thereafter. The drop in the CBFi ratio in the ischemic region during 

occlusion was significant (p<0.01) when compared with that in the normal region. Although 

it rose slightly upon reperfusion suggesting some increase in blood flow, the CBFi ratio in the 
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frontoparietal cortex perfused by the anterior cerebral artery, the internal control region, was 

approximately 1.0 during the entire experimental observation period (Fig. 4.1). 

DWI hyperintensity was observed in the right MCA region during occlusion, mainly in-

volving the lateral caudoputamen and overlying cortex (Fig. 4.2). In the 10-min group, DWI 

abnormalities in all rats gradually disappeared between 30 to 60 minutes after reperfusion and 

no rats developed secondary DWI abnormalities during the 72-hour observation period after 

reperfusion (Fig. 4.2). In the 30-min group, DWI abnormalities gradually reverted to normal 

between 60 to 90 minutes after reperfusion, while secondary DWI hyperintensities appeared 

at the 12-hour observation point in all rats (Fig. 4.2). The temporal evolution of ADCav 

changes in both groups is shown in Fig. 4.3. In the contralateral nonischemic hemisphere, the 

ADCav values in both groups were in the normal range over time (62-65×10-5 mm2/s). In the 

 

  10-min group 30-min group 
Baseline 37.0±0.0 37.0±0.0 

90 minutes 37.0±0.1 37.0±0.1 Temperature, oC 
72 hours 37.2±0.3 36.9±0.1 
Baseline 96±13 95±22 

90 minutes 105±17 96±15 MABP, mmHg 
72 hours 107±13 102±17 
Baseline 7.36±0.03 7.38±0.03 

90 minutes 7.35±0.03 7.38±0.03 pH 
72 hours 7.37±0.04 7.40±0.06 
Baseline 40±5 40±4 

90 minutes 36±6 38±3 PCO2, mmHg 
72 hours 41±6 38±4 
Baseline 90±7 85±5 

90 minutes 85±5 94±11 PO2, mmHg 
72 hours 87±7 98±15 

Table 4.1.  Physiological Variables: MABP indicates mean arterial
blood pressure. Values are mean ± SD (n=7 per group). There was no
significant difference between two groups for all parameters. 
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ipsilateral ischemic hemisphere, the ADCav values decreased significantly during occlusion 

(p<0.001) as compared with those in the contralateral regions and fully recovered after reper-

fusion in both groups. The ADCav values remained normal thereafter in the 10-min group, but 

secondarily declined at 12 hours after reperfusion in the 30-min group. 

No abnormal signals on T2WI were seen in the 10-min group, while hyperintensity on 

T2WI occurred in the 30-min group at the 12-hour observation point (Fig. 4.2). The changes 

of T2 values over time are shown in Fig. 4.4. The T2 values were within the normal range in 

both hemispheres in the 10-min group, but significantly increased (p<0.005) in the ipsilateral 

caudoputamen at 12 hours after reperfusion in the 30-min group as compared with those of 

the contralateral hemisphere, and peaked at 48 hours after reperfusion.  

 
4.5.3 Histological outcomes 

Figure 4.1.  Time course of the ipsilateral CBFi/contralateral CBFi (CBFi 
ratio) in the 10-min and 30-min occlusion groups. Blood flow in the 
lateral caudoputamen dropped during occlusion but fully recovered after 
reperfusion and remained normal up to 72 hours thereafter in both 
groups. Blood flow in ipsilateral normal cortex perfused by the anterior 
cerebral artery territory was stable throughout reperfusion in both groups. 
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No histological abnormalities were demonstrated in the contralateral caudoputaminal regions 

of the ischemic rats and in the two hemispheres of the sham rats. Individual or isolated ne-

crotic neurons surrounded by a microgliosis (selective neuronal necrosis) was seen in the se-

lected ROI of lateral caudoputamen of the seven rats undergoing 10 minutes of transient 

MCA occlusion; the percentage of necrotic neurons in this ROI was 17±10% (4-28%). Wide-

spread neuronal necrosis was seen in the selected ROI of lateral caudoputamen in four of the 

seven rats undergoing 30 minutes of transient arterial occlusion and pannecrosis was found in 

the remaining three. The percentage of necrotic neurons was 95±4% (88-100%) in the 30-min 

group and was significantly higher than in the 10-min group (p<0.0001). Representative pho-

tomicrographs are shown in Fig. 4.5.  

   Occ           90 min            12 hr            24 hr            48 hr            72 hr  

DWI 

T2WI 

DWI 

10 min 

30 min 

Figure 4.2.  Representative diffusion-weighted images (DWI) and T2-weighted
images (T2WI) in both 10-min and 30-min occlusion groups at different time
points. DWI hyperintensity is seen during occlusion in the lateral caudoputamen
and overlying cortex and completely disappears 1.5 hours after reperfusion in both
groups. The DWI and T2WI were normal thereafter in the 10-min group, but
secondary DWI lesions (arrow), accompanied by hyperintensity on T2WI
(arrowhead), occurred in the 30-min group at 12 hours after reperfusion. Note the
secondary DWI lesions first developed in the caudoputamen and then gradually
spread to the cortex (Occ indicates during occlusion).  

T2WI 
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Figure 4.3.  The time course of ADCav values in the ischemic and nonischemic 
hemispheres following 10 and 30 minutes of transient middle cerebral artery occlu-
sion. In the contralateral (normal) caudoputamen, the ADCav values were normal. In 
the ipsilateral (ischemic) caudoputamen, however, the ADCav values decreased sig-
nificantly (p<0.001) during occlusion, recovered completely at 60 minutes after 
reperfusion in both groups, but declined secondarily in the 30-min group at 12 hrs af-
ter reperfusion. Pseudonormalization of the ADCav values started at 24 to 48 hrs. 
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Figure 4.4.  The T2 changes over time in both normal and ischemic hemispheres. In 
the 10-min occlusion group, T2 values were stable in both normal and ischemic hemi-
sphere throughout the experiment, while in the 30-min group, T2 values in the 
ischemic hemisphere were significantly elevated at 12 hrs and peaked at 48 hrs after 
reperfusion. 
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Figure 4.5.  Histological photomicrographs (H&E stain, original magnification 200×). A: 
normal appearance of brain tissue; B: individual or isolated necrotic neurons showing 
pyknosis of nuclei and eosinophilia of cytoplasm (arrows) are nearby normal neurons (N) 
following 10 minutes of transient ischemia (from the same rat as in Fig. 4.2-10 min); C: 
Most neurons undergo necrosis (arrows) following 30 minutes of transient ischemia (from 
the same rat as in Fig. 4.2-30 min). Note one normal neuron exists in the lesion region; 
and D: All neurons are necrotic (arrows), and only the inflammatory cells (arrowhead) 
preserve normal stainability to hematoxylin following 30 minutes of transient ischemia. 
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4.6 Discussion 

We have previously demonstrated that delayed neuronal damage develops in regions where 

complete acute reversal of initially decreased ADC values occurs after short periods of focal 

ischemia (8 to 30 minutes) (Li et al., 1999) and that acute normalization of ADC values in-

duced by reperfusion is transient and secondary ADC declines occur later on after 30 minutes 

of transient focal ischemia (Li et al., 2000). The present study extended our previous experi-

ments (Li et al., 2000a; Li et al., 1999) by evaluating the longer time course of DWI lesions 

after different short periods of ischemia and the histological status in the same regions. The 

novel findings in this study are (1) the resolution of initial DWI lesions is permanent follow-

ing 10 minutes of transient ischemia, while the resolution of initial DWI lesions is transient 

following 30 minutes of transient ischemia, and secondary DWI lesions develops later on, 

and (2) permanent reversibility of initial DWI lesions does not indicate a normal histological 

outcome. Conversely, selective neuronal necrosis is seen in regions where the initial DWI 

lesions disappear permanently after reperfusion.  

 

4.6.1 Ischemic and post-ischemic changes on PWI and DWI  

PWI has been widely used to demonstrate cerebral perfusion during and after ischemia (Baird 

et al., 1998). The CBFi calculated from PWI data reflect relative CBF changes during ische-

mia and after reperfusion (Hamberg et al., 1993; Wittlich et al., 1995). However, it may not 

be sensitive to quantitatively estimate CBF reductions during ischemia, as one study demon-

strated (Wittlich et al., 1995). This observation was further confirmed by the present study, 

since the CBFi ratio demonstrated only a 40-50% reduction, a value that is unlikely to induce 

substantial ischemic injury. The normalization and maintenance of a normal CBF following 
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short periods of ischemia is in agreement with previous studies (Li et al., 2000; Li et al., 

1999; Dijkhuizen et al., 1998), suggesting that post-ischemic injury may not be due to secon-

dary compromise of CBF.      

DWI is able to detect ischemic changes within minutes after the onset of ischemia and 

the hyperintense regions demonstrated by DWI eventually become infarcted without thera-

peutic intervention (Moseley et al., 1990a; Moseley et al., 1990b; Minematsu et al., 1992). 

Evidence has shown that the ischemic hyperintensity is potentially reversible if reperfusion is 

performed quickly after ischemia (Davis et al., 1994; Pierpaoli et al., 1996; Mintorovitch et 

al., 1991; Minematsu et al., 1992). Studies with rat stroke models indicate the dependency of 

this reversal on the duration of ischemia or, conversely, the time of reperfusion. Reperfusion 

does not reduce the extent of initial DWI hyperintensity when it is performed two hours after 

focal ischemia in rats (Minematsu et al., 1992; Müller et al., 1995), can partially reduce ini-

tial DWI lesions after 45 to 60 minutes of transient ischemia (Minematsu et al., 1992; Müller 

et al., 1995; Hasegawa et al., 1994), and can fully revert the DWI lesions within 30 minutes 

after the onset of ischemia (Mintorovitch et al., 1991; Li et al., 2000; Li et al., 1999). The 

present study further demonstrates that the complete resolution of initial DWI lesions after 

reperfusion may be transient or permanent, depending on the duration of ischemia, and sec-

ondary DWI lesions may develop thereafter, accompanied by T2 abnormalities (Fig. 4.2). Sec-

ondary DWI lesions have also been reported recently in a hypoxia-ischemia model 

(Dijkhuizen et al., 1998). Such secondary changes on DWI were thought to be caused by a 

delayed or secondary energy failure resulting from mitochondrial damage (Abe et al., 1995; 

Siesjö and Kristián, 1999) since ADC reduction has been shown to be closely related to re-

duced energy metabolism (Busza et al., 1992; Benveniste et al., 1992; Mintorovitch et al., 
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1994). 

 

4.6.2 Tissue damage 

In the ipsilateral lateral caudoputamen three days after 30 minutes of transient focal ischemia, 

widespread neuronal necrosis was seen in four rats, and pannecrosis was found in the remain-

ing three rats. Clearly, the secondary DWI lesions seen in this study are associated with se-

vere brain tissue damage, and the short-term resolution of DWI lesions does not necessarily 

indicate tissue salvage from ischemia. This argues for follow-up MRI measurements after 

resolution of DWI lesions in stroke patient to more completely assess tissue damage.  

After 10 minutes of transient focal ischemia, selective neuronal necrosis was consistently 

observed in regions where blood flow, ADC and T2 remained normal throughout the reperfu-

sion period. Accordingly, normal blood flow, ADC, and T2 detected by MRI following a brief 

period of focal ischemia may be misleading and miss evolving tissue damage including neu-

ronal death. To be more specific about the latter point, the degree of selective neuronal necro-

sis seen on day 3 ranged from 4% to 28% of the neurons in the lateral caudoputamen, 

seemingly a level of tissue damage not severe enough to cause DWI and T2WI signal abnor-

malities. Obviously some subtle changes that are not detectable by current MRI measure-

ments but lead to neuronal death are initiated after only a few minutes of markedly reduced 

blood flow and quick reperfusion cannot stop or can not completely reverse such processes.   

Selective neuronal necrosis following a short period of focal ischemia has been docu-

mented in a previous study (Garcia et al., 1997) and been referred to as “incomplete infarc-

tion” because glial cells, microvessels, and tissue architecture were preserved (Garcia et al., 

1997; Lassen et al., 1982; Garcia et al., 1996). Garcia and colleagues have demonstrated that 
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the number of necrotic neurons increases as the duration of ischemia is prolonged (Garcia et 

al., 1995). Early reperfusion, thus seems to shift ischemic damage from pannecrosis to in-

complete infarction.  

It is possible that the difference in the ability of MRI to detect tissue damage is a matter 

of extent of injury and not difference in the pathological processes between the 10-min and 

30-min occlusion groups. The MRI data are gathered over a 2-mm-thick slice of brain tissue. 

The amount of tissue injury engendered by 10 minutes of transient focal ischemia may be 

small and be lost among the “normal” cells in that slice but become prominent enough to be 

detectable by MRI after 30 minutes of reduced blood flow.  

 

4.6.3 Detection of incomplete infarction by other imaging techniques 

There are some imaging techniques that have potential to detect incomplete infarction. Inves-

tigations in baboons and cats in which benzodiazepine receptors were mapped by positron 

emission tomography have shown that an increase in peripheral-type receptor activity and a 

decrease in the central-type receptor activity suggest selective neuronal loss indirectly and 

directly, respectively (Sette et al., 1993; Heiss et al., 1997). In a study of stroke patients, Na-

kagawara and his colleagues (1997) found a decrease in the central-type benzodiazepine re-

ceptor concentration in reperfused cortex that was structurally normal and suggested that 

incomplete infarction can be detected by quantifying benzodiazepine receptor activity. Be-

cause of the relatively low resolution of positron emission tomography or single photon emis-

sion computed tomography and the low concentration of benzodiazepine receptors in the 

caudoputamen, the use of these imaging modalities may be limited. 

Recently, Fujioka and his colleagues demonstrated that incomplete infarction caused by a 
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short period of ischemia is detectable by conventional MRI after one week (Fujioka et al., 

1999a; Fujioka et al., 1999b). In patients with transient hemispheric ischemia caused by car-

diogenic emboli (Fujioka et al., 1999a) and in rats undergoing 15 minutes of transient MCA 

occlusion (Fujioka et al., 1999b), T1-weighted (T1WI) hyperintensity and T2WI hypointensity 

were observed seven days after the onset of ischemia. Selective neuronal death and gliosis 

with preservation of tissue structure (incomplete infarction) was seen in histological sections 

of rat brain from the regions that showed this combination of delayed hyper- and hypo-

intensity. Since delayed T1WI hyperintensity and T2WI hypointensity did not occur in the 

ischemic regions where pannecrosis was seen (Fujioka et al., 1999b), such novel signal 

changes on conventional MRI at delayed time points may prove to be important diagnostic 

signs of incomplete infarction.  

 

4.6.4 Clinical implications 

The experimental findings in this study may provide clinicians with at least two pieces of im-

portant information. First, complete resolution of DWI lesions has recently been reported in 

patients with transient ischemic attacks (Lecouvet et al., 1999; Kidwell et al., 1999), but the 

resolution of DWI lesion in some patients may be transient as our study suggests. A series of 

follow-up MRI measurements may, thus, be required to monitor the time course of ischemic 

changes. Second, negative MRI (DWI and T2WI) after an ischemia episode may not indicate 

normal tissue status, since the region with the permanent resolution of DWI ischemic lesions 

may suffer from incomplete infarction as demonstrated by this study. This may help to ex-

plain neurological deficits in some patients who have normal DWI after cerebral ischemia 

(Ay et al., 1999) and cognitive deficit in some patients who experience transient ischemic 
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attacks (Hénon et al., 1999).   

In conclusion, the present study demonstrates that transient or permanent resolution of 

initial lesions documented by DWI depends on the duration of ischemia and that normal MRI 

(DWI and T2WI) following short periods of focal ischemia does not necessarily indicate full 

tissue recovery from ischemic injury.  
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5.1 Preface 

Ischemic lesions seen on diffuison-weighted imaging (DWI) are reversible if reperfusion is 

performed within minutes after the onset of ischemia. This study was designed to character-

ize the initial and secondary changes of the apparent diffusion coefficient (ADC) of water 

with high temporal-resolution measurements of ADC values and to correlate ADC changes 

with functional outcomes. My contributions to this work were collection of the NMR data, C 

and IDL programming for image reconstruction and analysis, and participation in the writing 

of the manuscript. 
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5.2 Abstract 

This study was designed to characterize the initial and secondary changes of the apparent dif-

fusion coefficient (ADC) of water with high temporal-resolution measurements of ADC val-

ues and to correlate ADC changes with functional outcomes. Fourteen rats underwent 30 

minutes of temporary middle cerebral artery occlusion (MCAO). Diffusion-, perfusion-, and 

T2-weighted images were performed during MCAO and every 30 minutes for a total of 12 

hours after reperfusion (n=6). Neurological outcomes were evaluated during MCAO, every 

30 minutes for a total of 6 hours, and at 24 hours after reperfusion (n=8). The decreased cere-

bral blood flow during MCAO returned to normal after reperfusion and remained unchanged 

thereafter. The decreased ADC values during occlusion completely recovered at 1 hour after 

reperfusion. The renormalized ADC values started to decrease secondarily at 2.5 hours, ac-

companied by a delayed increase in T2 values. The ADC-defined secondary lesion grew over 

time and was 52% of the ADC-defined initial lesion at 12 hours. Histological evaluation 

demonstrated neuronal damage in the regions of secondary ADC decline. Complete resolu-

tion of neurological deficits was seen in one rat at 1 hour, 6 rats between 2.5 and 6 hours after 

reperfusion, and no secondary neurological deficits were observed at 24 hours. These data 

suggest that (1) a secondary ADC reduction occurs as early as 2.5 hours after reperfusion, 

evolves in a slow fashion, and is associated with neuronal injury; and (2) renormalization and 

secondary decline in ADC are not associated with neurological recovery and worsening, re-

spectively. 
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5.3 Introduction 

A reduction of the apparent diffusion coefficient (ADC) of water in ischemic brain can be 

detected by diffusion-weighted magnetic resonance imaging (DWI) early after the onset of 

ischemia (Moseley et al., 1990a; Moseley et al., 1990b; Minematsu et al., 1992) and is pre-

sumably related to water shifts from the extracellular to the intracellular space (cytotoxic 

edema) because of ATP pump failure (Buzsa et al., 1992; Benveniste et al., 1992). It was 

demonstrated that an initially decreased ADC could revert to normal, if interrupted cerebral 

blood flow is restored quickly after the onset of ischemia (Mintorovitch et al., 1991; Mine-

matsu et al., 1992; Davis et al., 1994; Li et al., 1999). Recent studies further showed that re-

normalization of ADC values after reperfusion might be transient and a secondary decline in 

ADC values could be detected when DWI was repeated at 12 hours following 30 minutes of 

transient focal ischemia (Li et al., 2000a) or at 24 hours following 20 minutes of unilateral 

hypoxia-ischemia (Dijkhuizen et al., 1998). However, it is not known when the secondary 

ADC reduction starts and how the ADC-defined secondary lesion evolves. Furthermore, it 

has not been determined if acute renormalization of ADC values after reperfusion is accom-

panied by recovery of functional deficits occurring during ischemia and if secondary ADC 

decline is associated with secondary neurological deficits.  

The objectives of the present study were to characterize the temporal and spatial evolu-

tion of secondary ADC decline by means of high temporal-resolution measurements of ADC 

values after 30 minutes of transient middle cerebral artery occlusion (MCAO), and to deter-

mine whether the temporal profile of neurological function is reflected by ADC changes. 
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5.4 Materials and Methods 

5.4.1 Surgical preparation and focal brain ischemia 

All procedures used in this study were approved by our institutional Animal Research Com-

mittee and were conducted in accordance with the United States Public Health Service’s Pol-

icy on Human Care and Use of Laboratory Animals. Fourteen male Sprague-Dawley rats 

weighing 300 to 350 g were anesthetized with 2.5% isoflurane delivered in air at 1.0 L/min. 

PE-50 polyethylene tubing was inserted into the left femoral artery for continuous monitoring 

of mean arterial blood pressure throughout the study and for obtaining blood samples to 

measure pH, PaCO2, and PaO2. Another PE-50 polyethylene tubing was inserted into the left 

femoral vein for injection of gadopentetate dimeglumine for perfusion-weighted imaging 

(PWI). During the surgical procedure, rectal temperature was maintained at 37oC with a 

thermostatically-controlled heating lamp.  

Focal brain ischemia was induced with the intraluminal suture MCAO method as ini-

tially described by Koizumi et al. (1986). Briefly, the proximal portions of the right common 

carotid artery and external carotid artery were ligated with 5-0 surgical sutures. A 4-0 mono-

filament nylon suture, its tip rounded by flame and coated by silicone, was inserted through 

an arteriotomy of the right common carotid artery below the carotid bifurcation and advanced 

into the internal carotid artery until a mild resistance was felt, indicating that the occluder had 

entered the anterior cerebral artery and thus blocked the blood flow to the middle cerebral 

artery. Thirty minutes after MCAO, the rats were reperfused by withdrawing the occluder un-

der anesthesia with 1-2% isoflurane delivered in air at 1.0 L/min. 
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5.4.2 MRI measurements 

Animals (n=6) were fixed to a head holder with a tooth-bar and ear-bars and quickly placed 

into the MRI magnet bore after MCAO. Inside the magnet, anesthesia was maintained with 

1.0% isoflurane delivered in air at 1.0 L/min. Rectal temperature was maintained at 37oC by 

means of a thermostatically-regulated heated-air flow system. 

The MRI studies were performed using a GE CSI-II 2.0T/45 cm imaging spectrometer 

(GE NMR Instruments, Fremont, CA) operating at 85.56 MHz for 1H and equipped with ±20 

G/cm self-shielding gradients. Half-sine-shaped diffusion-sensitive gradient pulses were ap-

plied along each of the three orthogonal gradient axes (x, y, or z). Eight contiguous, coronal, 

2-mm-thick slices, were acquired with diffusion-weighted spin-echo echo-planar imaging 

(EPI) (Turner and Le Bihan, 1990). The imaging offset in the coronal plane was adjusted 

such that the second slice started from the frontal pole of the brain. For each slice, nine b-

values, ranging from 18 to 1552 s/mm2, were used to measure the ADC of water along each 

of the three diffusion-gradient directions. The MRI parameters are: field of view (FOV) = 

25.6×25.6 mm2, pixel resolution=64×64, repetition time (TR) = 5 s, echo time (TE) = 74 ms, 

EPI data acquisition time = 65 ms, number of excitations (NEX)  = 2, diffusion-sensitive-

gradient pulse width= 7 ms, and diffusion-sensitive-gradient separation time = 35 ms. Using 

a linear least-squares regression, the natural logarithm of the signal intensity was fitted to the 

b-values, where the slope of the fitted line is proportional to the ADC.  The trace ADC map 

was calculated by averaging the three orthogonal ADC values on a pixel-by-pixel basis (van 

Gelderen et al., 1994). 

T2-weighted EPI was employed to perform dynamic contrast-enhanced PWI for demon-

strating arterial occlusion and reperfusion (Wendland et al., 1991). Four contiguous, coronal, 
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2-mm-thick slices, which corresponded to the center four diffusion slices, were acquired with 

FOV = 25.6×25.6 mm2 and pixel resolution = 64×64. A total of 40 spin-echo EPIs (TR = 900 

ms, TE = 74 ms, EPI data acquisition time = 65 ms, NEX = 1) was obtained for each slice. A 

bolus injection of 0.25 ml of gadopentetate dimeglumine was administered following acquisi-

tion of the 15th image. The CBF index (CBFi) was calculated from the PWI data to reflect 

successful occlusion and reperfusion as described by Hamberg and colleagues (Hamberg et 

al., 1993). 

A multislice, double spin-echo EPI pulse sequence that contains a Hahn spin-echo prepa-

ration pulse sequence followed by a spin-echo echo-planar acquisition sequence was used to 

acquire T2-weighted imaging (T2WI). Eight contiguous, coronal, 2-mm-thick slices, which 

corresponded to the eight DWI slices, were acquired with a FOV = 25.6×25.6 mm2, pixel 

resolution = 64×64, TR = 5 s, TE1 (first echo) = 20-110 ms, TE2 (second echo) = 74 ms, and 

NEX = 4. T2 maps were constructed from nine T2-weighted EPIs. Using a linear least-squares 

regression, the natural logarithm of the signal intensity was fitted to the TE values, where the 

slope of the fitted line is inversely proportional to the T2 value. 

DWI, T2WI and PWI were acquired during occlusion (just before reperfusion), immedi-

ately after reperfusion, and then every half an hour (T2WI and DWI) or every two hours 

(PWI) for a total of 12 hours after reperfusion. The effect of repeated injection of contrast 

agent on T2 is likely minimal, because contrast agent washes out within seconds after a bolus 

injection (Rosen et al., 1990; Warach et al., 1992; Tzika et al., 1993; Moseley et al., 1991). 
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5.4.3 Region-of-interest analysis and in vivo lesion size calculation 

Two regions of interest (ROI), 4×4 pixels each in size, one in the lateral caudoputamen la-

beled (+) and the other in the frontoparietal cortex labeled (-) at the level of the optic chiasm 

(slice 4), were chosen to measure ADC, CBFi, and T2 values on the corresponding maps. 

These three parameters were also measured in the homologous regions of the contralateral 

hemisphere. CBFi was also measured in the frontoparietal cortex perfused by the anterior 

cerebral artery (assumed to be normal) in both hemispheres. A CBFi ratio was calculated by 

dividing the ipsilateral CBFi by the contralateral CBFi. The ADC and T2 values in the contra-

lateral hemisphere and CBFi ratio in the normal territory of the anterior cerebral artery were 

used as controls.  

In vivo lesion size was calculated by tracing the boundary of visual abnormalities on the 

ADC maps using a NIH image program (NIH IMAGE 1.55, National Institutes of Health, 

Bethesda, MD). The lesion volume was calculated by multiplying the total lesion area from 

the center four slices by the slice thickness. The ischemic lesion volume at each time point 

was normalized by the initial ischemic lesion volume acquired during occlusion and ex-

pressed as a percentage of the initial lesion volume. 

 

5.4.4 Evaluation of neurological outcomes 

In order to investigate if changes in ADC values are associated with changes in neurological 

function, rats (n=8) were subjected to 30 minutes of transient MCAO and were neurologi-

cally evaluated by an investigator (T.O.) who was blinded to the experimental protocol (i.e., 

duration of ischemia, MCAO time, and reperfusion time). Animals were allowed to recover 

from anesthesia and neurological evaluation was performed during MCAO (20-25 minutes 
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after MCAO), every half an hour for a total of 6 hours, and at 24 hours after reperfusion with 

the use of following scoring scale (Longa et al., 1989): 0, full extension of both forepaws; 1, 

failure to extend the left forepaw or abduction of the left forepaw; 2, circling to left side; 3, 

falling to left side; and 4, without spontaneous walk.  

 

5.4.5 Evaluation of tissue injury 

Hematoxylin-eosin (H&E) staining was used to determine whether a secondary ADC decline 

was associated with tissue damage. After the MRI protocol was completed, the rats were im-

mediately subjected to cardiac perfusion-fixation with 200 ml of phosphate buffered 4% 

paraformaldehyde (Garcia et al., 1997), and the heads were fixed overnight in the same para-

formaldehyde solution. Each brain was cut into seven 2-mm-thick coronal slices starting from 

the frontal pole of the brain, and labeled A (frontal) through G (occipital). One section (6 µm 

in thickness) obtained from slice C at the level of the optic chiasm that precisely matched 

slice 4 of the ADC maps, was stained with H&E and used for histological evaluation. A co-

registration method was used to localize the same ROIs on the histology section as labeled 

(+) and (–) on the ADC maps using a previously described method (Li et al., 1999). A global 

Lab image analysis system (Data Translation Incorporated, Marlboro, MA) was used for 

quantitation by collecting images through a Sony video camera interfaced with an Olympus 

microscope system. Under a light microscope at ×600 magnification, 5 non-overlapping 

fields in each selected ROI were examined, and following four-point histological score was 

used to semiquantitatively evaluate the astrocytic swelling, neuronal shrinkage and necrosis, 

and sponginess of neuropil by one investigator (K-F. L.) who was blinded to the MRI data: 
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1. Swollen astrocyte: 0, normal; 1, <2 swollen astrocytes per field; 2, 2-5 swollen astrocytes 

per field; and 3, >5 swollen astrocytes per field.  

2. Shrunken or necrotic (red) neurons: 0, normal; 1, <10% per field; 2, 10-50% per field; 

and 3, >50% per field. The shrunken and necrotic neurons were identified as previously 

described (Garcia et al., 1999). 

3. Spongy neuropil: 0, normal; 1, focal sponginess; 2, moderately diffuse sponginess; and 3, 

severely diffuse sponginess.  

 

TTC staining was used to determine tissue injury in the eight animals undergoing the neuro-

logical function assessment. The rats were reanesthetized with intraperitoneal injection of 

chloral hydrate (400mg/kg) and decapitated. The brains were removed, cut into six coronal, 

2-mm-thick slices and stained with a 2% of TTC solution at 37oC for 30 minutes (Bederson 

et al., 1986). The brain slices were then photographed using a couple-charged device camera. 

Using an image analysis program (Bio Scan OPTIMAS, Edmonds, WA), the direct volumes 

of the injured region were calculated for each of the center four brain slices (Li et al., 1997).      

 

5.4.6 Statistical analysis 

Data are presented as mean ± standard error of mean (SEM). The parametric variables were 

analyzed by using one-way analysis of variance (ANOVA), two-way repeated ANOVA, an 

unpaired or paired t-test. Wilcoxon signed rank test was used to compare nonparametric vari-

ables such as neurological score and histology score. A two-tailed value of p<0.05 was con-

sidered significant. 
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5.5 Results 

The physiological variables such as body temperature, mean arterial blood pressure, pH, 

PaCO2 and PaO2 were within the normal range throughout the experiment and did not differ 

at the different time points (Table 5.1).  

 

Variables Baseline 0.5 hr 6 hr 10 hr 
Temperature (oC) 37.0±0.03 37.0±0.03 37.0±0.03 36.9±0.06 
MABP (mmHg) 99±6 99±7 111±10 107±7 
pH 7.34±0.01 7.33±0.01 7.35±0.01 7.36±0.01 
PCO2 (mmHg) 40±1 37±2 41±1 39±1 
PO2 (mmHg) 86±3 88±5 92±4 87±2 

Table 5.1.  Physiological Variables: Data are expressed as mean±SE 
(n=6). There is no significant difference at different time points for each 
parameter (p>0.19, one-way analysis of variance). MABP = mean arte-
rial blood pressure. 

 

5.5.1 MRI study 

Perfusion deficits documented by PWI were seen in the right middle cerebral artery territory 

during occlusion and disappeared in all animals after reperfusion. The CBF values repre-

sented by the CBFi ratio between the ischemic and normal hemispheres in both the lateral 

caudoputamen and frontoparietal cortex reverted to normal after reperfusion and remained 

unchanged during the 12-hour reperfusion period.  

Figure 5.1 shows the ADC changes over time. Overall analysis shows that ADC values 

were significantly different between the ipsilateral and contralateral homologous ROIs 

(p<0.0001, two-way repeated ANOVA). In the contralateral non-ischemic hemisphere, the 

ADC values in both the caudoputamen and cortex were normal throughout the observation 

period, and no difference was seen between the caudoputamen and cortex at each time point 

(p>0.18, unpaired t-test). In the ipsilateral ischemic hemisphere, however, the ADC values in 
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the two ROIs decreased significantly during occlusion (p<0.0001, unpaired t-test) as com-

pared with those in the contralateral homologous regions. The decreased ADC values recov-

ered fully at 60 minutes after reperfusion (p>0.11, unpaired t-test). The renormalized ADC 

values started to decrease secondarily at 2.5 hours after reperfusion, and a significant reduc-

tion occurred in the lateral caudoputamen at 3 hours (p<0.007, unpaired t-test) and in the 

frontoparietal cortex at 4 hours (p<0.02, unpaired t-test) when compared with values in con-
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Figure 5.1.  Changes of apparent diffusion coefficient (ADC) values
over time in the ischemic and non-ischemic hemispheres following
30 minutes of transient middle cerebral artery occlusion
(mean±SEM, n=6). In the lateral caudoputamen and frontoparietal
cortex of the non-ischemic hemisphere, the ADC values were
constant. However, in both caudoputamen and cortex of the ischemic
hemisphere, the ADC values decreased significantly (p<0.001,
unpaired t-test) during occlusion, recovered completely at 60 minutes
after reperfusion, and started to decrease secondarily at 2.5 hours
after reperfusion. Significant secondary reduction in ADC values
occurred in the lateral caudoputamen at 3 hours (p<0.007, unpaired t-
test) and in the frontoparietal cortex at 4 hours after reperfusion
(p<0.02, unpaired t-test). 
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tralateral homologous regions. At 12 hours, the secondarily decreased ADC values were al-

most the same as the initially reduced ADC values during occlusion in both the lateral cau-

doputamen (46.3±0.7×10-5mm2/s vs 44.9±0.9×10-5mm2/s, p=0.31, paired t-test) and the fron-

toparietal cortex (51.9±1.9×10-5mm2/s vs 47.0±2.5×10-5mm2/s, p=0.17, paired t-test). How-

ever, the secondary ADC reduction was more severe in the lateral caudoputamen than in the 

frontoparietal cortex at 12 hours after reperfusion (46.3±0.7×10-5mm2/s vs 51.9±1.9×10-5 

mm2/s, p=0.034, unpaired t-test). 

The temporal evolution of T2 values is shown in Fig. 5.2. The T2 values in the contralat-

eral non-ischemic hemisphere remained constant over time. A significant increase in T2 val-

Figure 5.2.  The T2 changes over time in both the normal and 
ischemic hemispheres (mean±SEM, n=6). In the normal hemisphere, 
the T2 values were stable throughout the experiment. In the ischemic
hemisphere, the T2 values significantly increased in the lateral 
caudoputamen at 4 hours (p=0.044, unpaired t-test) and in the
frontoparietal cortex at 5 hours (p=0.017, unpaired t-test) after 
reperfusion. 
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ues was detected in the lateral caudoputamen at 4 hours (p=0.044, unpaired t-test) and in the 

frontoparietal cortex at 5 hours (p=0.017, unpaired t-test) as compared with contralateral ho-

mologous regions.   

The volume of the ADC-defined initial lesion was 139±24 mm3 during occlusion. The 

ADC-defined secondary lesion was first seen in the lateral caudoputamen at 2.5 hours after 
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Figure 5.3.  Representative apparent diffusion co-
efficient (ADC) maps and the photomicrograph
from the same rat undergoing 30 minutes of tran-
sient focal ischemia. A: ADC maps show that the
ADC-defined initial lesion occurred in both the
caudoputamen and overlying frontoparietal cortex
during occlusion and disappeared completely at 1
hour after reperfusion. The ADC-defined secon-
dary lesion developed first in the lateral caudopu-
tamen at 2.5 hours after reperfusion (arrowheads),
then gradually grew, and spread to the frontoparie-
tal cortex. B: A photomicrograph shows astrocytic
swelling (a), neuronal shrinkage and necrosis (ar-
row), and neuropil sponginess (*) in the caudopu-
tamen at 12 hours after reperfusion. 

A 
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reperfusion, gradually grew over time, and then spread to the frontoparietal cortex (Fig. 

5.3A). The volume of the ADC-defined secondary lesion was 69±12 mm3 at 12 hours after 

reperfusion. The growth rate (volume divided by time elapsed) of the ADC-defined secon-

dary lesion was significantly smaller than that of the ADC-defined initial lesion (0.12±0.02 

mm3/min vs 4.62±0.79 mm3/min, p<0.0002, paired t-test). Figure 5.4 shows the temporal 

evolution of the normalized ischemic lesion. The ADC-defined secondary lesion at 12 hours 

after reperfusion was 52±7 % of the ADC-defined initial lesion occurring during occlusion.  
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Figure 5.4.  Temporal evolution of lesion volume determined by
visual abnormalities on apparent diffusion coefficient (ADC) maps is 
shown (mean±SEM, n=6). The ADC-defined initial lesion decreased 
to almost zero at 60 minutes after reperfusion. The ADC-defined 
secondary lesion grew in a slow fashion and reached 52% of the 
ADC-defined initial lesion at 12 hours after reperfusion. The lesion 
volume at each time point is normalized by intra-ischemic lesion 
volume. 
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5.5.2 Neurological function 

After discontinuation of isoflurane, the rats fully recovered from anesthesia over 5 to 10 min-

utes. All rats presented appropriate paresis of the left forepaw during MCAO. A significant 

improvement of neurological score was seen at 60 minutes after reperfusion when compared 

with the neurological score during occlusion (0.9±0.4 vs 1.6±0.2, p<0.004). One of the eight 

rats completely recovered from the left forepaw paresis at 1 hour after reperfusion, and six 

rats recovered from the paresis between 2.5 to 6 hours after reperfusion. No secondary neuro-

logical deficits were found in these seven rats at the 24-hour examination time point. The re-

maining one rat did not recover from the initial neurological deficit during the 24-hour reper-

fusion period. 

 

5.5.3 Histological outcomes 

All rats undergoing the MRI study showed varying degrees of astrocytic swelling, neuronal 

shrinkage and necrosis, and neuropil sponginess in both the lateral caudoputamen and the 

frontoparietal cortex (Fig. 5.3B). The neuronal necrosis was more severe in the caudoputa-

men than in the cortex (Fig. 5.5, p<0.03). The astrocytic swelling, neuronal shrinkage, and 

neuropil sponginess tended to be milder in the cortex than in the caudoputamen although not 

different statistically (Fig. 5.5).   

For rats undergoing neurological evaluation, ischemic injury demonstrated as pink re-

gions on TTC staining was seen in the lateral caudoputamen of all eight rats and in the over-

lying frontoparietal cortex of four rats. The lesion volume was 77±11 mm3.          
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Figure 5.5.  Histology scores for 
astrocytic swelling, neuronal 
shrinkage and necrosis, and neu-
ropil sponginess in both the lateral 
caudoputamen (black) and the 
frontoparietal cortex (white) at 12 
hours after 30 minutes of transient 
focal ischemia (mean±SD, n=6). 
The neuronal necrosis is more se-
vere in the caudoputamen than in 
the cortex (*p<0.03, Wilcoxon 
signed rank test). 

 

 

5.6 Discussion 

The novel findings in the present study are (1) ADC-defined secondary lesions occur as early 

as 2.5 hours after reperfusion and evolve in a slow fashion, and (2) ADC changes are not 

concordant with functional outcomes after a short period of focal ischemia. Like other anes-

thetics, isoflurane was shown to have neuroprotective effects (Kirsch and Traystman, 1998). 

However, whether and how the prolonged use of isoflurane in this study affects the ADC 

changes and histopathological outcomes is not known.  

  

5.6.1 ADC changes over time 

Although the precise mechanisms of the ADC decline are not fully understood, studies have 

shown that a decrease in ADC values is coincident with the development of cytotoxic edema 

caused by ischemia (Busza et al., 1992; Benveniste et al., 1992; Mintorovitch et al., 1994) or 

by non-ischemic events such as inhibiting ATPase (Benveniste et al., 1992), injection of ex-

citotoxic neurotransmitter (Benveniste et al., 1992; Verheul et al., 1993), hyponatremia 
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(Sevick et al., 1992), and hypoglycemia (Hasegawa et al., 1996). ADC declines may also be 

related to a reduction of intracellular water movement (Wick et al., 1995; Dijkhuizen et al., 

1999), and/or extracellular water movement (Duong et al., 1998). The cellular edema after 

focal ischemia is due to energy failure, and thus the ADC decline after ischemia may indi-

rectly reflect energy failure (Busza et al., 1992; Back et al., 1994). It is believed that the en-

ergy failure occurring during ischemia is caused by an insufficient supply of oxygen and   

glucose.  

Decreased ADC values can recover to normal if reperfusion occurs within 30 minutes 

after ischemia (Mintorovitch et al., 1991; Minematsu et al., 1992; Davis et al., 1994; Li et 

al., 1999; Li et al., 2000a). In this study, complete renormalization of ADC values occurred 

at 1 hour after reperfusion, and was then maintained for 1.5–2 hours. The renormalization of 

ADC values after reperfusion likely indicates restoration of energy metabolism. This 

hypothesis can be supported by several observations. First, complete recovery of energy 

metabolism is possible since mitochondrial function is still normal after 30 minutes of 

transient ischemia (Schutz et al., 1973; Rehncrona et al., 1979). Second, studies have shown 

that Na+-K+ ATPase is reactivated after reperfusion and disturbance of water and ion 

homeostasis is subsequently restored (Hossmann et al., 1977; Eleff et al., 1991). Third, one 

study (Hossmann et al., 1994) demonstrated that animals with renormalized ADC values 

after reperfusion had complete recovery of ATP production, while animals without recovery 

of ADC values exhibited depletion of ATP. It can therefore be presumed that acute ADC 

renormalization after reperfusion suggests resolution of cellular swelling and restoration of 

the shrunken extracellular space. However, further studies will be needed to confirm this 

assumption.  



 
 

 118 

Acute renormalization of ADC values induced by reperfusion may be transient, and a 

secondary ADC drop may develop later on. Zarow et al. (1995) observed that the decreased 

signal intensity ratio after reperfusion could increase again at 24 hours. Studies showed that 

secondary ADC decline was detected at 24 hours following 20 minutes of unilateral cerebral 

hypoxia ischemia (Dijkhuizen et al., 1998) or following 30 to 45 minutes of focal ischemia 

induced by clipping the middle cerebral artery (van Lookeren Campagne et al., 1999). We 

recently demonstrated that a secondary ADC decline occurs in all rats at 12 hours after 30 

minutes of transient MCAO induced by the intraluminal suture method (Li et al., 2000a). The 

present study further confirms that a secondary ADC reduction following 30 minutes of focal 

ischemia induced by the intraluminal suture method can be seen as early as 2.5 hours after 

reperfusion, accompanied by a delayed T2 elevation. The occurrence of a secondary ADC re-

duction was shown to be related to the duration of ischemia in rat (van Lookeren Campagne 

et al., 1999; Li et al., 2000b) and was also documented recently in stroke patients (Kidwell et 

al., 2000). However, the time course of ADC changes may be different in different species.  

The secondary ADC decline likely indicates secondary energy failure. Using phosphorus 

magnetic resonance spectroscopy, Lorek et al. (1994) and Blumberg et al. (1997) demon-

strated secondary energy failure after recovery of energy metabolism in transient hypoxia-

ischemia models. Furthermore, the secondary energy failure was accompanied by a secondary 

ADC decline (Thornton et al., 1998). It seems that the mechanism of secondary energy fail-

ure is different from that of initial energy failure during ischemia because cerebral blood flow 

demonstrated by perfusion imaging remained normal after reperfusion, and the arterial blood 

pressure and arterial oxygen tension were also within the normal range. Although we did not 

measure blood glucose levels, it is not likely that glucose significantly decreased after reper-
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fusion in this study as blood glucose did not change in previous studies where the same 

stroke model was used (Memezawa et al., 1992; Tsuchidate et al., 1997). Studies have shown 

that secondary energy failure may result from delayed mitochondrial dysfunction (Abe et al., 

1995; Kuroda et al., 1996; Siesjö et al., 1999). Possible factors that trigger mitochondrial 

dysfunction include calcium overload, free radical formation, and lactic acidosis (Fiskum et 

al., 1999; Murphy et al., 1999). 

In this study, the secondary ADC reduction was first seen in the caudoputamen and then 

spread to the cortex. Compared with the initial ADC decline during occlusion, this secondary 

ADC decline occurred in a much slower fashion both temporally and spatially. For example, 

it took about 10 hours for the magnitude of the ADC values during the secondary ADC de-

cline to reach almost the same values as occurred initially (Fig. 5.1), and the extent of secon-

dary ADC decline that developed in 10 hours was just half of that occurred initially over 30 

minutes (Fig. 5.4). In addition, our study also showed that the more severe the secondary 

ADC decline, the more severe the neuronal injury, indicating that ADC-defined secondary 

lesions are likely in vivo signs representing post-ischemic secondary injury. Therefore, pre-

venting secondary ADC decline could be an effective therapeutic approach to reduce neu-

ronal injury, which may be achieved by improving mitochondrial metabolism (Fiskum et al., 

1999). The slow evolution of the secondary ADC decline may provide clinicians with more 

opportunity to treat such post-ischemic secondary lesions. 

 

5.6.2 Recovery of neurological deficits 

Only one of the eight rats had complete resolution of the neurological deficits between 1 to 2 

hours after reperfusion during which time complete renormalization of previously decreased 
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ADC values was seen, indicating that renormalization of ADC values does not necessarily 

correlate with full recovery of neuronal function. Furthermore, six rats had complete resolu-

tion of their neurological deficits between 2.5 to 6 hours after reperfusion when secondary 

decline in ADC values was ongoing as demonstrated by MRI. This implies that the secondary 

ADC decline does not exacerbate neurological function. Complete resolution of the neuro-

logical deficits was also reported in previous studies after 30 minutes of transient focal 

ischemia (Nakano et al., 1990; Garcia et al., 1995). It is not clear why the neurological defi-

cits improved or resolved at the time when secondary injury, demonstrated by secondary 

ADC reduction, was worsening. Possible explanations for this discrepancy are gradual hyper-

activation of remaining intact neurons in the ischemic region or functional substitution by 

other neurons in the neighboring normal brain regions as demonstrated by functional MRI in 

stroke patients (Cramer et al., 1997; Cramer et al., 2000). Our results, along with others (Na-

kano et al., 1990; Garcia et al., 1995; Persson et al., 1989), also show that all rats that experi-

enced complete resolution of their neurological deficits had some degree of neuronal injury. 

This suggests that patients with prolonged transient ischemic attacks (TIA) may have neu-

ronal injury, as was recently documented by DWI (Kidwell et al., 1999), which may underlie 

the pathogenesis of gradual cognitive deficits that occurred after TIA, although the patients 

recovered from their neurological deficits after TIA (Hénon et al., 1999).     
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6.1 Preface 

Ischemic lesions as seen on diffusion–weighted imaging (DWI) are reversible if reperfusion 

is performed within minutes after the onset of ischemia. This study was designed to charac-

terize the initial and secondary changes of the apparent diffusion coefficient (ADC) of water 

and T2 with high temporal–resolution measurements and to correlate ADC and T2 changes at 

different experimental time points to assess the predictability of acute data on chronic out-

comes. My contributions to this work were collection of the NMR data, C and IDL program-

ming for image reconstruction, additional IDL programming for image analysis and statistical 

evaluation, and principle authorship of the manuscript. 
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6.2 Abstract 

Acute changes in the water diffusion properties within ischemic brain can be visualized using 

diffusion-weighted magnetic resonance imaging (DWI). It has been shown in temporary, fo-

cal ischemia models that the DWI hyperintensity can be resolved if reperfusion is performed 

soon after the onset of the stroke. Complete reperfusion after 30 minutes of occlusion results 

in a renormalization of the apparent diffusion coefficient (ADC) values by 1–2 hours after 

reperfusion, however, this effect may not be permanent. Shortly following the ADC renor-

malization, a secondary reduction in the ADC values occurs that is not associated with a re-

duction in tissue perfusion. The temporal and spatial evolution of ADC and T2 values in a 30-

minute, transient MCAO rat stroke model was studiedwith the goal of assessing the reliability 

of ADC and T2 to predict secondary tissue changes following reperfusion was addressed. 

ADC and T2 data acquired at 26 time points over a 12-hour period was used to generate com-

posite maps of the tissue characteristics. Statistical analysis was performed to determine if the 

changes in tissue ADC and T2 values were predictive of the tissue condition at 12 hours. In 

general, regions with early secondary ADC decline experience an increase in T2 before 12 

hours. In contrast, regions exhibiting a late secondary ADC change did not have an increase 

in T2. Secondary ADC characteristics were subdivided into three groups: no secondary ADC 

decline, secondary ADC decline before 5 hours after reperfusion, and secondary ADC decline 

at 10 or more hours after reperfusion. The groups were compared to determine if their acute 

ADC values were predictive of their secondary ADC behavior. It was concluded that no sta-

tistical measure could be found to accurately predict the tissue characteristics at 12 hours; 

and, further, the data suggests that acute ADC and T2 data may be limited for the prediction 

of infarction.
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6.3 Introduction 

Acute changes in perfusion associated with ischemic stroke illicit a cascade of cellular events 

that result in changes in the water diffusion properties within the diseased regions that can be 

visualized using magnetic resonance imaging (MRI). The decline in the apparent diffusion 

coefficient (ADC) of water in ischemic cerebral tissue results in a significant hyperintensity 

on diffusion–weighted images (DWI), making DWI techniques an important research and 

clinical tool for the detection of stroke (Moseley et al., 1990; Mintorovich et al., 1991; Ben-

veniste et al., 1992; Minematsu et al., 1992; van Gelderen et al., 1994; Warach et al., 1996). 

Although the pathophysiology of stroke is largely known, the driving mechanism(s) causing 

the ADC decline are still under investigation. Despite the controversies regarding these 

mechanisms, the temporal and spatial changes of the water ADC values in ischemic tissue 

have been described in detail. In fact, studies have delineated two main regions of ischemic 

tissue: the core region representing severely compromised tissue and the penumbra, which 

surrounds the core and may represent potentially salvageable tissue (Memezawa et al., 1992). 

It is commonly hypothesized that tissues with only moderately reduced ADC values may rep-

resent regions with a moderate amount of blood flow that may sustain the tissue for longer 

than the severely compromised tissues (Warach et al., 1996); however, this conclusion has 

not been unambiguously validated. 

In early experiments, animals (typically rats or cats) were subjected to permanent occlu-

sion to induce stroke. Moseley et al. (1990) demonstrated that the DWI contrast occurred al-

most immediately after occlusion and ultimately matched the area of infarct as compared to 

post-mortem histological staining. In rats, the most common stroke model is the permanent 

middle cerebral artery occlusion (MCAO) model induced via the introduction of an intralu-
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minal suture (occluder) into the cerebral vasculature (Koizumi et al., 1986). In this model, the 

hyperintense region on a DWI acquired approximately 2–3 hours after the initiation of the 

occlusion is highly correlated with the histologically-defined region of infarct. It also has 

been shown in temporary MCAO models that the DWI hyperintensity can be resolved if 

reperfusion is performed soon after the onset of the stroke (Mintorovitch et al., 1991; Mine-

matsu et al., 1992; Davis et al., 1994; Li et al., 1999). Li et al. (2000b) reported from tran-

sient MCAO experiments that if complete reperfusion is performed 10 minutes after the ini-

tial stroke, the ADC values completely renormalize and the tissue is saved from infarction (as 

confirmed by post-mortem histological analysis). Interestingly, if reperfusion is performed 30 

minutes after occlusion, the renormalization of the ADC values, which was observed by 1–2 

hours after reperfusion, was not permanent (van Bruggen et al., 1998; Li et al., 2000a; Li et 

al., 2000b; Li et al., 2000c). Shortly following the ADC renormalization, a gradual, secon-

dary reduction in the ADC values, that is not associated with a reduction in tissue perfusion, 

occurs (i.e., following reperfusion, the blood flow to the tissue is normal and remains nor-

mal). With the secondary ADC decline the hyperintensity on the DWIs returns, and the tis-

sues progress towards infarction. 

The ability to correlate ischemic ADC values (and other MR parameters) with the prob-

ability that a region (or pixel) will go to infarction may have major clinical significance. Spe-

cifically, if the noninvasive evaluation of pathophysiology by MRI can lead to reliable predic-

tors of disease progression, MRI could potentially be used to dictate treatment approaches. In 

fact, several groups have attempted to evaluate the use of DWI [in some case combined with 

perfusion–weighted imaging (PWI)] to identify potentially salvageable tissues in cases of rat 

(Hasegawa et al., 1994; Mancuso et al., 1995; Mancuso et al., 1997; van Dorsten et al., 
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2002), pig (Sakoh et al., 2001), and human stroke (Oppenheim et al., 2000; Baird et al., 

2001; Desmond et al., 2001). In this paper, we will further the study of the temporal and spa-

tial evolution of ADC and T2 in a 30-minute, transient MCAO rat stroke model and address 

the reliability of ADC and T2 to predict secondary tissue changes following reperfusion. ADC 

and T2 data acquired at 26 time points over a 12-hour period were used to generate composite 

maps of the tissue characteristics. Lastly, statistical analysis was performed to determine if 

the changes in tissue ADC and T2 values are predictive of the tissue condition at the end of 

the experiment. 

 

6.4 Methods 

6.4.1 Transient Middle Cerebral Artery Occlusion 

All procedures used in this study were approved by our institutional Animal Research Com-

mittee and were conducted in accordance with the United States Public Health Service’s Pol-

icy on Human Care and Use of Laboratory Animals. Fourteen male Sprague–Dawley rats 

weighing 300 to 350 g were anesthetized with 2.5% isoflurane delivered in air at 1.0 L/min. 

PE–50 polyethylene tubing was inserted into the left femoral artery for continuous monitor-

ing of mean arterial blood pressure throughout the study and for obtaining blood samples to 

measure pH, PaCO2, and PaO2. Another PE-50 polyethylene tubing was inserted into the left 

femoral vein for injection of gadopentetate dimeglumine for perfusion–weighted imaging 

(PWI). During the surgical procedure, rectal temperature was maintained at 37oC with a ther-

mostatically–controlled heating lamp.  

Focal brain ischemia was induced with the intraluminal suture MCAO method as ini-

tially described by Koizumi et al. (1986). Briefly, the proximal portions of the right common 
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carotid artery and external carotid artery were ligated with 5-0 surgical sutures. A 4-0 mono-

filament nylon suture, its tip thermally-rounded and silicone-coated, was inserted through an 

arteriotomy of the right common carotid artery below the carotid bifurcation and advanced 

into the internal carotid artery until a mild resistance was felt. The resistance indicated that 

the occluder had entered the anterior cerebral artery and thus blocked the blood flow to the 

middle cerebral artery. Thirty minutes after MCAO, the rats were reperfused in the magnet by 

withdrawing the occluder. 

 
6.4.2 MRI Methods 

Immediately following surgery, the animals were secured in a head holder with tooth– and 

ear–bar restraints and placed into the magnet. Inside the magnet, anesthesia was maintained 

with 1.0% isoflurane delivered in air at 1.0 L/min. Rectal temperature was maintained at 

37oC by means of a thermostatically-regulated heated-air flow system. 

The MRI studies were performed using a GE CSI–II 2.0T/45 cm imaging spectrometer 

(GE NMR Instruments, Fremont, CA) operating at 85.56 MHz for 1H and equipped with ±20 

G/cm self-shielding gradients. Half-sine-shaped diffusion-sensitive gradient pulses were ap-

plied along each of the three orthogonal gradient axes (x, y, or z). Eight contiguous, coronal, 

2-mm-thick slices, were acquired with diffusion-weighted, spin-echo echo-planar imaging 

(EPI). The imaging offset in the coronal plane was adjusted such that the second slice started 

from the frontal pole of the brain. For each slice, nine b-values, ranging from 18 to 1552 

s/mm2, were used to measure the ADC of water along each of the three diffusion-gradient 

directions. The MRI parameters were: field of view (FOV) = 25.6 mm × 25.6 mm, pixel reso-

lution = 64 × 64, repetition time (TR) = 5 s, echo time (TE) = 74 ms, EPI data acquisition 
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time = 65 ms, number of excitations (NEX) = 2, diffusion-sensitive-gradient pulse width (δ) 

= 7 ms, and diffusion-sensitive-gradient separation time (∆) = 35 ms. Using a linear least-

squares regression, the natural logarithm of the signal intensity was fitted to the b-values, 

where the slope of the fitted line is proportional to the ADC. The trace ADC map was calcu-

lated by averaging the three orthogonal ADC values on a pixel-by-pixel basis.  

A multislice, double spin-echo EPI pulse sequence that contained a spin-echo prepara-

tion pulse sequence for T2-weighting followed by a spin-echo echo-planar acquisition se-

quence was used for T2-weighted imaging (T2WI).  Eight contiguous, coronal, 2-mm-thick 

slices, which corresponded to the positions of the eight DWI slices, were acquired with a 

FOV = 25.6 mm × 25.6 mm, pixel resolution = 64 × 64, TR = 5 s, TE1 (first echo) = 20−110 

ms, TE2 (second echo) = 74 ms, and NEX = 4. T2 maps were constructed from nine T2-

weighted EPIs. Using a linear least-squares regression, the natural logarithm of the signal in-

tensity was fitted to the TE values, where the slope of the line is inversely proportional to the 

T2 value. 

T2-weighted EPI was employed to perform dynamic contrast-enhanced PWI for demon-

strating arterial occlusion and reperfusion. Four contiguous, coronal, 2-mm-thick slices, 

which corresponded to the positions of the center four DWI slices, were acquired with FOV = 

25.6 mm × 25.6 mm and pixel resolution = 64 × 64.  A total of 40 spin–echo EPIs (TR = 900 

ms, TE = 74 ms, EPI data acquisition time = 65 ms, NEX = 1) was obtained for each slice. A 

bolus injection of 0.25 ml of gadopentetate dimeglumine (Gd-DTPA2-) was administered fol-

lowing acquisition of the 15th image. The CBF index (CBFi) was calculated from the PWI 

data to reflect successful occlusion and reperfusion as described by Hamberg and colleagues 

(1993). Seven male Sprague-Dawley rats were subjected to 30 minutes of transient MCAO as 
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described above. DWI, T2WI, and PWI were acquired during occlusion (just before reperfu-

sion), immediately after reperfusion, and then every half hour (T2WI and DWI) or every two 

hours (PWI) for a total of 12 hours after reperfusion. The effect of repeated injection of con-

trast agent on T2 is likely minimal, because the contrast agent washes out within seconds after 

injection (Rosen et al., 1990; Warach et al., 1992; Tzika et al., 1993; Moseley et al., 1991). 

 
6.4.3 Data Analysis 

The time course of ADC, perfusion, and T2 changes in the MCA region following 30 minutes 

of transient occlusion has been detailed by Li et al. (2000a, 2000b, 2000c). From the seven 

animals observed in this study, the ischemic lesion as defined by ADC maps was visible be-

fore reperfusion and was renormalized by 1.5 hours after occlusion (1 hour after reperfusion). 

Because ADC values change over the temporal evolution of an ischemic lesion in the acute 

phase, there is no absolute or percent-change threshold that defines the ischemic territory and 

also corresponds to the region of infarct on TTC histology at 24 hours. In this paper, abnor-

mality on the ADC maps acquired during the occlusion period was defined empirically as a 

15% reduction in a pixel ADC value in the ischemic region as compared to the spatially cor-

responding contralateral, normal pixel. The 15% threshold was chosen because it is suffi-

ciently strict to avoid the normal fluctuations (ca 3% for these methods) and sensitive enough 

to detect primary ADC declines and secondary changes in the ADC. Secondary changes on 

the ADC and T2 maps were defined on a pixel–by–pixel basis to determine the time point at 

which the pixel value changed by 15% relative to the contralateral pixel. For this analysis, 

PWI was only used to confirm occlusion and subsequent reperfusion.  
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Each pixel that was initially defined as abnormal (i.e., exhibited a 15% ADC decline) 

was examined at all time points following ADC renormalization for the time point at which 

the ADC value secondarily declined by 15% and the T2 increased by 15%. The time point 

corresponding to the 15% change was noted, and the pixel was classified into one of three 

groups: (i) no secondary ADC decline and no T2 increase (–SADC/–T2); (ii) secondary ADC 

decline and no T2 increase (+SADC/–T2); (iii) secondary ADC decline and T2 increase 

(+SADC/+T2). (In no case was it observed that the T2 increased without a secondary ADC 

decline.) From these data, two descriptive maps were generated. The first is a map of the sec-

ondary ADC and T2 characteristics at 12 hours. Specifically, the map delineates cerebral spi-

nal fluid (CSF) regions, normal tissue, and abnormal tissues subdivided into –SADC/–T2, 

+SADC/–T2, and +SADC/+T2 regions. The second map is a time-to-secondary-ADC map, 

where the value of a pixel is equal to the time point at which the ADC declined below the 

15% threshold. 

Statistical analysis was performed on the data to determine if the ADC characteristics 

during the acute ischemic phase were predictive of the secondary ADC characteristics. Spe-

cifically, pixels exhibiting no secondary ADC decline (–SADC) were compared to pixels ex-

periencing secondary ADC decline. Further, the secondary ADC group was further subdi-

vided into pixels experiencing the secondary change before 5 hours post reperfusion 

[+SADC(<5hr)] or after 10 hours post reperfusion [+SADC(>10hr)]. The following questions 

were addressed based on t-test statistical analysis: 1) Does the absolute change in the ADC 

value during the initial ischemic period, relative to the contralateral normal ADC value, pre-

dict if the pixel will have a secondary decline in ADC? 2) Does the percent change (relative 

to normal) in ADC value during ischemia predict the secondary changes? 3) Is there a statis-
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tical difference in the absolute or percent change (relative to normal) in ADC values of 

ischemic pixels as compared to pixels that exhibit a secondary reduction in ADC before 5 

hours and pixels that decline later than 10 hours after occlusion? 4) Is there a statistically sig-

nificant difference in the absolute or percent change (relative to normal) in ADC values dur-

ing the acute ischemic period between pixels that demonstrate a secondary decline in ADC 

from pixels that do not have a secondary decline in ADC? 

 

6.5 Results 

During MCAO as demonstrated by Li et al. (2000c), the water ADC values within the MCA 

territory declined appreciably; however, following complete reperfusion, the ADC values 

within this same region renormalize. After several hours, the ADC values begin to exhibit 

secondary decline. This decrease, however, is not in response to a perfusion deficit. The oc-

clusion and reperfusion was verified using PWI (results not shown). During occlusion the 

hyperintensity on the PWIs matched the region of abnormality on the DWIs. Following reper-

fusion, there was no detectable region of low perfusion (i.e., normal perfusion was re–

established in all brain areas). There was no significant heterogeneity on the PWIs that com-

pelled further analysis of this data.  

The characteristics of each pixel at 12 hours are shown in Fig. 6.1. The orange regions 

correspond to normal brain tissue and the yellow to CSF spaces. The inner purple region cor-

responds to pixels that were initially defined as abnormal during the acute phase and then ex-

hibited a secondary 15% change in ADC and T2 values by the 12 hour time point 

(+SADC/+T2). The mid region of blue pixels define the region initially abnormal that experi-

ence a secondary 15% decline in their ADC values and no 15% increase in T2 by 12 hours 
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(+SADC/–T2). The outer green pixels correspond to the pixels that do not have a secondary 

change in ADC or in T2 by 12 hours (–SADC/–T2). Every pixel initially defined as abnormal 

during the acute ischemic phase was included in this analysis, therefore, the total area defined 

by the purple (+SADC/+T2), blue (+SADC/–T2), and green (–SADC/–T2) pixels equals the 

size of the initial acute abnormality. 

The time-to-secondary-ADC map is shown in Fig. 6.2. The value of each pixel corre-

sponds to the time point at which the ADC pixel-value declined below the 15% ADC thresh-

old. As in Fig. 6.1, the orange and yellow pixels in Fig. 6.2 correspond to normal tissue and 

CSF regions, respectively. Pixels assigned to the +SADC/+T2 and +SADC/–T2 groups (pur-

ple and blue, respectively, in Fig. 6.1) have values in Fig. 6.2 equal to the time point of sec-

ondary ADC decline mapped to an arbitrary color scale with earlier time points shown as 

dark colors (blues). The inset of Fig. 6.2 shows a magnified region of the subcortical tissues 

central to the initial insult (also where the secondary ADC declines first appear); however, 

the magnification was also chosen to show both +SADC/+T2 and +SADC/–T2 groups.  

Figures 6.3–6.5 plot the temporal evolution of pixels initially defined as abnormal during 

the acute phase based on their ADC characteristic at 12 hours: no secondary ADC decline    

(–SADC); secondary ADC decline before 5 hours [+SADC(<5hr)]; secondary ADC decline 

after 10 hours [+SADC(>10hr)]. In Fig. 6.3, the mean and standard deviation (σ) of the abso-

lute ADC values over the time course of the experiment are shown. In Fig. 6.4, the mean and 

σ of the percent-of-normal ADC value relative to the contralateral normal value over the time 

course of the experiment are shown. In Fig. 6.5, the mean and σ of the percent ADC change 

relative to the average renormalized ADC value over the time course of the experiment are 

shown. Statistical analysis was performed on the data groups using two-tailed t-test (p < 0.05 
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for significance). There was no statistically significant change in T2 values during the 

ischemic period. The Table lists the mean and standard deviation (σ) of the different pixel 

groups, highlighting the important data shown in Figs. 6.3–6.5, where the superscript letters 

indicate significant differences (described in the Table caption). 

 

Figure 6.1.  ADC and T2 characteristics in a representative slice at 12 
hours. Orange = normal tissue; Yellow = CSF; Purple = +SADC/+T2; 
Blue = +SADC/–T2; Green = –SADC/–T2. 
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Figure 6.2. Time–to–secondary ADC map (left) and an expansion of a region 
of the map. Pixel values equal the time point at which the ADC value 
secondarily declined by 15% relative to its contralateral, homologous pixel. 
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time course of the experiment. (O = occlusion, R = reperfusion) 
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Figure 6.5.  The mean and σ of the percent ADC change relative to 
the average renormalized ADC time point over the time course of the 
experiment (1 hour after reperfusion, indicated by the star). (O = 
occlusion, R = reperfusion) 

 

 

Time point Pixel Group Absolute ADC % Normal ADC % Decline from 
Renormalized ADC 

–SADC 70 ± 4a — — 
+SADC(<5hr) 65 ± 3a — — Normal ADC 
+SADC(>10hr) 67 ± 6 — — 
–SADC 49 ± 4a 70 ± 7a,b -29 ± 5a 
+SADC(<5hr) 52 ± 5a,c 81 ± 7a,c -23 ± 7a,c MCAO ADC 
+SADC(>10hr) 49 ± 4c 74 ± 6b,c -28 ± 7c 
–SADC 70 ± 6 100 ± 7a — 
+SADC(<5hr) 68 ± 5 105 ± 9a — Renormalization 

ADC +SADC(>10hr) 69 ± 6 102 ± 6 — 
 
Table 6.1.  Highlights features of Figs. 6.3–6.5. The normal (contra-
lateral), MCAO, and renormalized ADC values are shown in abso-
lute (×10-3 mm2/s), percent of normal, and percent declined from the 
renormalized ADC units. The ‘—‘ indicates incomparable parame-
ters. Statistically significance (2-tailed t-test, p < 0.05) between the 
groups is indicated by the superscript letters, where a compares –
SADC to +SADC(<5hr), b compares –SADC to +SADC(>10hr), and 
c compares +SADC(<5hr) to +SADC(>10hr). 
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6.6 Discussion 

Transient MCAO was performed in a rat stroke model to study the temporal and spatial 

evolution of secondary lesion development. In this study, the ADC decline during the occlu-

sion is resolved by 1 hour after complete reperfusion. After 6 hours, a secondary ADC de-

cline is noted in the regions of the initial ischemic insult, and the secondary lesion develop-

ment is more pronounced by 12 hours. Although no T2 changes are apparent during the acute 

ischemic phase, increases in the T2 values begin 5–6 hours after reperfusion in the tissue re-

gions that experience a secondary decline in the ADC value. In Fig. 6.1, it can be seen that at 

12 hours the region once defined as lesion during the ischemic phase can be characterized in 

three ways in terms of ADC and T2 values. First, there is a region in the subcortical space that 

experiences a secondary decrease in ADC values and an increase in T2 values by 12 hours 

(+SADC/+T2, purple in Fig. 6.1). Second, an intermediate region exhibited a secondary ADC 

decline but no change in T2 by 12 hours (+SADC/–T2, blue in Fig. 6.1). Third, a cortical re-

gion of pixels experienced no ADC decrease or T2 increase by 12 hours despite being classi-

fied as abnormal during the acute ischemic phase (–SADC/–T2, green in Fig. 6.1). Each pixel 

exhibiting a secondary ADC change was classified by the time point at which the change be-

came significant (15% decline from normal). In Fig. 6.2, each pixel classified as +SADC 

(purple and blue in Fig. 6.1) has the value of the time point at which the significant change 

was established. In the figure insert, a magnification of map demonstrates that a central re-

gion of secondary ADC decline time points (e.g., 4–6 hours after reperfusion) are surrounded 

by regions that experienced a secondary ADC decline at later time points (e.g., 9–11 hours 

after reperfusion).  
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Figures 6.1 and 6.2 serve to describe the spatial evolution of ADC and T2 changes fol-

lowing transient cerebral ischemia with respect to time. This data is most efficiently exam-

ined with the temporal profile of the ADC changes, which are plotted in Figs. 6.3–6.5. These 

plots illustrate that there is a significant ADC decline during ischemia, a renormalization of 

ADC values following reperfusion, and a dispersion of secondary characteristics, which Figs. 

6.1 and 6.2 suggest is somehow related to the spatial location of the initial lesion in the rat 

brain. Specifically, in the subcortical regions—the core of the MCAO lesion—there is a rela-

tively rapid secondary development of the lesion. In tissues of the cortical rat brain, the oc-

currence of secondary ADC changes at 12 hours are less prominent. Between these two re-

gions, the secondary ADC decline is delayed (relative to the central region). Using statistical 

analysis, the significant differences between the three groups were examined, and are summa-

rized in the Table. Interestingly, the regions not experiencing a secondary ADC decline by 12 

hours after reperfusion (–SADC) exhibited a greater absolute and percent decline during 

ischemia than the regions experiencing secondary ADC decline before 5 hours after reperfu-

sion [+SADC(<5hr)].  This finding is thought to be due to the intrinsic heterogeneity of ADC 

values in the rat brain, which is illustrated in Fig. 6.6. 

In the normal hemisphere (Fig. 6.6, left), the water ADC values range from 0.61 – 0.75 × 

10-3 mm2/s, and different regions of the rat brain possess different ADC values with small 

deviation within each region. In contrast, although there is a significant decline in ADC val-

ues in all regions of the brain (Fig. 6.6, right), there is less heterogeneity as compared to the 

normal hemisphere. Interestingly, the absolute and percent change in the water ADC value of 

the subcortical region (-0.13 × 10-3 mm2/s and -21%) is substantially less than the change in 

the cortical region (-0.22 × 10-3 mm2/s and -31%) after 30 minutes of MCAO. (It is important 
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to note that the regions selected in Fig. 6.6 do not correspond to regions of secondary ADC 

decline or T2 increase; they were chosen arbitrarily and serve to highlight regional ADC dif-

ferences.) Given that the regions exhibiting secondary ADC changes following transient oc-

clusion typically reside in the subcortical regions, the data presented herein suggests that re-

gions of the rat brain with the larger change in ADC value are less likely to experience a sec-

ondary decline in ADC value by 12 hours post reperfusion, which is entirely contrary to intui-

tion. In fact, there was no combination of ADC and T2 data that could serve as a predictor of 

secondary lesion development. 

 Previous attempts to describe the value of diffusion characteristics during acute cerebral 
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Figure 6.6  ADC mean and σ values (× 10-3 mm2/s) in selected 
regions (indicated by the boxes) in normal and ischemic hemispheres 
of the rat brain following 30 minutes of MCAO. 
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ischemia to predict regions of reversible and irreversible injury have resulted in somewhat 

mixed results. Hasegawa et al. (1994) reported that regions of mild ADC reduction during 

ischemia (pre-reperfusion) exhibited no infarct as defined by post mortem histology 70% of 

the time. Mancuso et al. (1995) evaluated transient ischemia of 30 or 90 minutes in a rat 

model and reported that regions of significantly reduced ADC values (85% of normal) at 30 

and 90 minutes represented 53% and 74% of tissues at risk for infarction, respectively. In 

1997, Mancuso and his colleagues report results that support the findings herein. Specifically, 

significant variability was noted in rats subjected to 30 minutes of transient occlusion. Fur-

ther, regions of substantially reduced ADC values (up to 45%) often fully recovered (as de-

termined by histology performed at 72 hours), whereas regions defined as normal during the 

ischemic episode exhibited infarct post mortem. Mancuso et al. (1997) also reported that the 

regions of the caudate-putamen often exhibited significant ADC changes as well as infarct. 

This finding, complemented by the data provided in this study, could suggest that different 

brain tissue respond differently to ischemia and reperfusion. In a more recent study, van Dor-

sten et al. (2000) probed the prognostic value of ADC in combination with T2 and perfusion 

in 60 and 90 minute transient ischemia in rats. Specifically, these authors were interested in 

determining if acute MR parameter values could predict tissue recovery following reperfu-

sion as opposed to predicting secondary lesion development, which was our focus. In our 

study, all regions of the brain exhibited renormalization of the ADC values following reper-

fusion after 30 minutes of occlusion; however, van Dorsten et al. report that there was only 

limited recovery following 60 and 90 minutes of occlusion. These authors suggest that the 

probability of recovery trends with the severity of the ADC decline, i.e., lower ischemic ADC 

values indicate tissue with less likelihood of recovery following reperfusion. Considering that 
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we report ADC changes consistent with the values reported by van Dorsten et al., it seems 

more likely that the probability of tissue recovery following reperfusion depends more on the 

duration of the ischemic insult rather than the ADC value. Regardless, the results presented 

herein coincide with the conclusions of these previous studies to confirm that the use of acute 

ADC values to predict chronic tissue state is limited. 

 In conclusion, ADC data (and hence DWI) is reliable for the detection of cerebral ische-

mia; however, the classification of potentially salvageable tissues may be beyond the reach of 

this parameter alone. More appropriately, analyses may be short-sighted without acknowl-

edgement of the intrinsic heterogeneity of water ADC values in the rat brain. The fact that the 

ADC values converge to similar values during occlusion despite significant spatial differ-

ences in normal brain (Fig. 6.6) suggests that these tissue may respond somewhat differently 

to the ischemic insult. Further, it could be speculated that different regions of the rat brain 

may react differently to reperfusion. For instance, studies have demonstrated the potential 

neuroprotective effect of transient occlusion (David et al., 1996), and it could be possible that 

different brain regions utilize this benefit differently. Significant future research is required to 

demonstrate if the intrinsic ADC heterogeneity of normal rat brain tissue is functionally sig-

nificant and if these characteristics could improve the use of water ADC analysis of cerebral 

ischemia to predict potentially salvageable tissues. 
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7.1 Preface 

Initially decreased apparent diffusion coefficient (ADC) values are reversible if reperfusion is 

rapidly performed following focal brain ischemia. This study was designed to determine if 

reperfusion-induced renormalization of initially abnormal values indicates reversal of cellu-

lar, morphological changes that occur during acute ischemia. My contributions to this work 

were collection of the NMR data, C and IDL programming for image reconstruction and 

analysis, and participation in the writing of the manuscript. 
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7.2 Abstract 

Background and purpose: Initially decreased apparent diffusion coefficient (ADC) values are 

reversible if reperfusion is rapidly performed following focal brain ischemia. This study was 

designed to determine if reperfusion-induced renormalization of initially abnormal values 

indicates reversal of cellular, morphological changes that occur during acute ischemia. 

Methods: Sprague-Dawley rats underwent 30 minutes of middle cerebral artery occlusion 

without reperfusion (group A, n=6), with 1.5 hours of reperfusion (group B, n=6), or with 12 

hours of reperfusion (group C, n=6). Diffusion- and perfusion-weighted images were 

obtained at the end of occlusion, 1.5 hours and 12 hours after reperfusion. Immediately after 

the final MRI study, the brains were fixed by cardiac perfusion with 4% paraformaldehyde. 

Neuronal injury was evaluated on hematoxylin-eosin stained sections, and astrocytic size was 

determined by the area of glial fibrillary acidic protein (GFAP) plus S-100 expression. 

Results: In group A where ADC values decreased significantly, 47% (±12%) of the neurons 

were slightly shrunken; astrocytes were moderately swollen, and the area expressing 

GFAP+S100 was larger than that in the contralateral hemisphere (117±6 µm2 vs 89±2 µm2; 

p<0.001). In group B where ADC had renormalized, most neurons were moderately 

shrunken, and the frequency of such neurons was greater in group B (92%±2%) than in group 

A (p<0.001); astrocytes were markedly swollen, and the area was larger than that in the 

contralateral hemisphere (123±8 vs 85±4 µm2, p<0.001). In group C where a secondary ADC 

decline occurred, most neurons (94±3%) were severely shrunken, and some had eosinophilic 

cytoplasm; astrocytes were disintegrated, and the area of GFAP plus S-100 expression was 

reduced (78±4 vs 90±5 µm2, p<0.01). Conclusion: Reperfusion-induced acute re-
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normalization of ADC values is not associated with the reversal of neuronal shrinkage and 

astrocytic swelling that occur during ischemia. Conversely, the morphological changes of 

astrocytes and neurons progressively worsened over time, although ADC values showed a 

biphasic change.   

 

7.3 Introduction 

Although diffusion-weighted magnetic resonance imaging (DWI) has been used increasingly 

in delineating ischemic stroke, the mechanisms of decrease in the apparent diffusion coeffi-

cient (ADC) of water that is used to generate contrast on DWI are not well understood. Pre-

vious evidence suggested that ADC declines are likely related to cellular swelling that is 

caused by shifts of water from the extracellular space to the intracellular space where water 

movement is more restricted (Moseley et al., 1990a; Moseley et al., 1990b; Busza et al., 

1992; Benveniste et al., 1992; Sevick et al., 1992). Recent experimental studies demonstrated 

that initially reduced ADC values that occur during ischemia can renormalize with rapid res-

toration of cerebral blood flow (Mintorovitch et al., 1991; Minematsu et al., 1992; Davis et 

al., 1994; Li et al., 1999) and that such renormalized ADC values can secondarily decrease 

(Dijkhuizen et al., 1998; van Lookeren Campagne et al., 1999; Li et al., 2000a; Li et al., 

2000b; Li et al., 2000c; Neumann-Haefelin et al., 2000; Olah et al., 2000). However, it has 

not been determined whether changes of ADC values (i.e., initial decline, renormalization 

and secondary decline) are associated with corresponding changes in cellular morphology 

(such as cellular swelling) after a short period of focal brain ischemia.  

The purposes of the present study were to determine (1) if the initial ADC declines fol-

lowing focal cerebral ischemia are accompanied by perturbations and abnormalities in cellu-
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lar morphology; (2) if acute renormalization of ADC values induced by early reperfusion in-

dicates resolution of cellular perturbations and abnormalities that arose during ischemia; and 

(3) if similar values of ADC during the initial and secondary decline reflect similar histopa-

thological abnormalities. To achieve these goals, DWI was performed in animals undergoing 

30 minutes of middle cerebral artery occlusion (MCAO) with immediate sacrifice and tissue 

fixation, 30 minutes of transient MCAO followed by 90 minutes of reperfusion and immedi-

ate fixation, and 30 minutes of transient MCAO followed by 12 hours of reperfusion and 

brain fixation (n=6 per group). With the fixed tissue sections, neuronal injury was determined 

by hematoxylin-eosin (H&E) staining and changes of astrocytic expression of glial fibrillary 

acidic protein (GFAP) plus S-100 nuclear protein were assessed by immunohistochemistry. 

To gain further insight into the degree of injury, the ultrastructural changes of representative 

astrocytes and neurons were investigated by electron microscopy (EM). Subsequently, the 

changes of ADC values in each group were correlated with these indices of neuronal and as-

trocytic injury. 

 

7.4 Methods 

7.4.1 Animal preparation and induction of focal brain ischemia 

All experimental procedures were approved by our institutional Animal Research Committee. 

Eighteen male Sprague-Dawley rats weighing 300 to 350 g were anesthetized with 2.0% 

isoflurane delivered in air at 1.0 L/min. PE-50 polyethylene tubing was inserted into the left 

femoral artery for continuous monitoring of mean arterial blood pressure throughout the 

study and for obtaining blood samples to measure pH, PaCO2, and PaO2. Another piece of 

PE-50 polyethylene tubing was inserted into the left femoral vein for injection of gadopen-
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tetate dimeglumine for perfusion-weighted imaging (PWI). During the surgical procedure, 

temperature was continuously monitored with a rectal probe and maintained at 37oC with a 

thermostatically-controlled heating lamp.  

Focal brain ischemia was induced with the intraluminal suture MCAO method as ini-

tially described by Koizumi et al. (1986). Briefly, the right common carotid artery, internal 

carotid artery, and external carotid artery were exposed through a midline incision of the 

neck. The proximal portions of the right common carotid artery and external carotid artery 

were ligated with 5-0 surgical sutures. A 4-0 monofilament nylon suture, its tip rounded by 

flame and coated by silicone, was inserted through an arteriotomy of the right common ca-

rotid artery 3 mm below the carotid bifurcation and advanced into the internal carotid artery 

until a mild resistance was felt, indicating that the occluder had entered the anterior cerebral 

artery and thus blocked the blood flow to the middle cerebral artery.  

Animals were subjected to 30 minutes of MCAO with immediate sacrifice (group A, 

n=6), 30 minutes of transient MCAO followed by 90 minutes of reperfusion (group B, n=6), 

and 30 minutes of transient MCAO followed by 12 hours of reperfusion (group C, n=6). The 

rats in the group B and group C were reperfused in the MRI magnet bore by withdrawing the 

occluder. 

 

7.4.2 MRI measurements 

Animals were fixed to a head holder with a tooth-bar and ear-bars and quickly placed into the 

MRI magnet bore after MCAO. Inside the magnet, anesthesia was maintained with 1.0% 

isoflurane delivered in air at 1.0 L/min. Body temperature was maintained at 37oC by means 

of a thermostatically-regulated heated-air flow system. 
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The MRI studies were performed in a GE CSI-II 2.0T/45 cm imaging spectrometer (GE 

NMR Instruments, Fremont, CA) operating at 85.56 MHz for 1H and equipped with ±20 

G/cm self-shielding gradients. Half-sine-shaped diffusion-sensitive gradient pulses were ap-

plied along each of the three orthogonal gradient axes (x, y, and z). Eight contiguous, coronal, 

2-mm-thick slices were acquired with diffusion-weighted spin-echo echo-planar imaging 

(EPI) (Turner and Le Bihan, 1990), and nine b-values, ranging from 18 to 1552 s/mm2, were 

used to measure the ADC of water along each of the three diffusion-gradient directions for 

each slice. The imaging offset in the coronal plane was adjusted such that the second slice 

started from the frontal pole of the brain. The MRI parameters were: a field-of-view (FOV) = 

25.6mm × 25.6mm, pixel resolution=64 × 64, repetition time (TR) = 5 s, echo time (TE) = 74 

ms, EPI data acquisition time = 65 ms, number of excitations (NEX) = 2, diffusion-

sensitizing-gradient pulse width (δ) = 7 ms, and diffusion-sensitizing-gradient separation 

time (∆) = 35 ms. The natural logarithm of the signal intensity was plotted versus b-value, 

and the slope of the resulting line was extracted to yield ADC by using linear least-squares 

regression. The ADC map was calculated by averaging the three orthogonal ADC values on a 

pixel-by-pixel basis (van Gelderen et al., 1994).  

T2-weighted spin-echo EPI was employed to perform dynamic contrast-enhanced PWI 

for demonstrating arterial occlusion and reperfusion (Wendland et al., 1991). Four contigu-

ous, coronal, 2-mm-thick slices, which corresponded to the center four diffusion slices, were 

acquired with FOV = 25.6 mm × 25.6 mm and pixel resolution = 64 × 64. A total of 40 spin-

echo EPIs (TR = 900 ms, TE = 74 ms, EPI data acquisition time = 65 ms, NEX = 1) was ob-

tained for each slice. A bolus injection of 0.25 ml of gadopentetate dimeglumine was admin-

istered following acquisition of the 15th image. A cerebral blood flow (CBF) index was de-
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rived from PWI data to quantitatively estimate the change of CBF during occlusion and after 

reperfusion as previously described (Li et al., 2000b). 

DWI and PWI were acquired at 25 minutes after MCAO in all groups, at 90 minutes af-

ter reperfusion in groups B and C, and at 12 hours in group C.   

 

7.4.3 Analysis of CBF index and ADC values  

On the CBF index maps or ADC maps at the level of the optic chiasm (slice 4), one region of 

interest (ROI) in the lesion center of the ipsilateral caudoputamen (10×10 pixels on CBF in-

dex maps and 4×4 pixels on ADC maps) and the other in the homologous region of the con-

tralateral hemisphere were selected for the measurement of CBF index or ADC values. The 

percent changes of the CBF index in the ipsilateral hemisphere in comparison with the CBF 

 

Group A 

Occlusion              1.5 hr                   12 hr 

 0 

255 
(10-5 mm2/s) 

Group B 

Group C 

Figure 7.1.  Representative apparent diffusion coefficient  (ADC) 
maps from each group. Regions of interest ( ) in the lesion center of 
the ipsilateral ischemic hemisphere and in a homologous region of 
the contralateral non-ischemic hemisphere were chosen for 
measurement of ADC values and labeled for histological analysis.   
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index in the contralateral hemisphere were used to estimate CBF changes during occlusion 

and after reperfusion. The two ROIs on the ADC maps were labeled for histological analysis 

as shown in Fig. 7.1.  

 

7.4.4 Histopathological evaluation 

After the MRI protocol was completed, the rats were immediately subjected to cardiac perfu-

sion-fixation with 200 ml of phosphate buffered 4% paraformaldehyde (Garcia et al., 1997). 

The rats were decapitated, and the heads were fixed overnight in the same paraformaldehyde 

solution. The next day, the brains were removed from the skull. Each brain was cut into seven 

2-mm-thick coronal slabs starting from the frontal pole of the brain, and labeled A (frontal) 

through G (occipital). Sections from the posterior surface of slab C and the anterior surface of 

slab D at level of the optic chiasm that precisely matched slice 4 on the ADC maps were used 

for the following histological evaluation. The corresponding ROI on the histology sections 

was matched to that on the ADC maps by using a previously described coregistration method 

(Li et al., 1999). All histological analyses were performed by one investigator who was 

blinded to the animal groups. 

Neuronal analysis: The first 6 µm-thick section from the posterior surface of slab C was 

stained with H&E for evaluation of neuronal injury. A global Lab image analysis system 

(Data Translation Incorporated, Marlboro, MA) was used for quantitation by collecting im-

ages through a Sony video camera interfaced with an Olympus microscope system. Under a 

light microscope at ×400 magnification, 10 non-overlapping fields in each selected ROI were 

examined to determine the number of intact neurons and injured neurons. Injured neurons 

included both the shrunken neurons that exhibited condensed neuronal perikarya surrounded 
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by swollen cellular process and necrotic (red) neurons that exhibited nuclear pyknosis and 

cytoplasmic eosinophilia (Garcia et al., 1995b). The percentage of injured neurons was ob-

tained by dividing the number of injured neurons by the total number of intact and injured 

neurons.  

Astrocytic analysis: The second 6 µm-thick section from the posterior surface of slab C 

was obtained for astrocytic staining. Immunohistochemical probes for GFAP and S-100 pro-

tein (Dako Corporation, Carpenteria, CA) were used to detect astrocytes by double staining. 

Both antigens were demonstrated by the avidin-biotin peroxidase system. The GFAP in both 

perikaryal cytoplasm and processes of astrocytes was stained brown with diaminobenzidine 

(DAB) substrate. On the same section, S-100 protein within the nuclei of astrocytes was 

stained purple with the Vector VIP substrate kit (Vector Lab Inc, Burlingame, CA). Using the 

imaging system indicated above, 10 non-overlapping fields in each selected ROI were exam-

ined to determine the number of astrocytes co-expressing GFAP and S-100 and the areas of 

their co-expression.   

Electron microscopy (EM) analysis: Slab D was cut into 8 pieces that included the entire 

surface of each hemisphere, and these tissues were postfixed in 3% glutaraldehyde and os-

mium tetroxide, and embedded in araldite. One micron-thick section stained with toluidine 

blue was obtained from each block to identify the selected ROI. The ultrathin sections were 

stained with lead citrate and uranyl acetate and examined with a Philips electron microscope 

to evaluate the ultrastructure of the normal and abnormal neurons and astrocytes (Garcia et 

al., 1993).        
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7.4.5 Statistical analysis 

Data are presented as mean ± standard deviation (SD). The parametric variables were ana-

lyzed by using one-way analysis of variance (ANOVA), two-way repeated ANOVA, or an 

unpaired or paired t-test. A two-tailed value of p<0.05 was considered significant. 

 

7.5 Results 

Physiological variables such as body temperature, mean arterial blood pressure, pH, PaCO2 

and PaO2 were within the normal range throughout experiment in each group (data not 

shown).  

 

7.5.1 Cerebral blood perfusion 

During occlusion, the CBF index in the ipsilateral ROI decreased approximately by 50% 

(54±6% in group A, 51±5% in group B, and 53±10% in group C) in all animals, compared 

with the CBF index in the contralateral homologous ROI, indicating successful MCAO. After 

reperfusion, the CBF index returned to normal (104±13% in group B and 101±10% in group 

C at 90 minutes after reperfusion), indicating successful reperfusion.             

 

7.5.2 ADC changes  

At the end of 30 minutes after MCAO, ADC values were about 25% lower in the ipsilateral 

ischemic ROI than in the contralateral non-ischemic ROI in all three groups (Figs. 7.1 and 

7.2), and the differences in ADC between the two sides were significant (p<0.001). Further-

more, ADC values in the ischemic ROI were almost the same in all three groups 

(47.3±6.7×10-5 mm2/s in group A, 47.6±3.9×10-5 mm2/s in group B and 45.6±2.0×10-5 mm2/s 
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in group C; p>0.5, ANOVA). In groups B and C, ADC values returned to normal at the end 

of 90 minutes of reperfusion (Figs. 7.1 and 7.2). In group C, ADC values decreased secondar-

ily when DWI was repeated at 12 hours after reperfusion (Figs. 7.1 and 7.2); ADC values at 

12 hours after reperfusion were virtually identical to those observed at 30 minutes after oc-

clusion (45.6±2.0×10-5 mm2/s vs 47.1±1.2×10-5 mm2/s, p>0.41).  

 

7.5.3 Histological outcomes 

In the contralateral non-ischemic ROI of all groups, no histological abnormalities except for a 

few dark neurons were found in all groups (Fig. 7.3-A, E).      

In the ischemic ROI of group A, many neurons were slightly shrunken and surrounded 

by swollen cellular processes (Fig. 7.3B), and the nuclei of the shrunken neurons were often 

 

Group A Group B Group C 

Figure 7.2.  Changes of the apparent diffusion coefficient (ADC) 
values over time in the lesion center of the ipsilateral hemisphere 
(open) and the non-ischemic (filled) homologous region of the 
contralateral hemisphere. In all groups, ADC values in the ischemic 
lesion center decreased significantly (p<0.001) during 30 minutes of 
ischemia, compared with the contralateral hemisphere. In group B, 
the reduced ADC values during ischemia recovered to normal 90 
minutes after reperfusion. In group C, the previously renormalized 
ADC values declined secondarily at 12 hours after reperfusion. 

0
10
20
30
40
50
60
70
80

Occ Occ 1.5 h Occ 1.5 h 12 h

A
D

C
 v

al
ue

s (
x1

0-5
m

m
2 /s

)



 
 

 151 

triangular and darkly stained. Some microvacuolation due to dilation of the endoplasmic re-

ticulum and mitochondria was evident in the cytoplasm of these injured neurons (Fig. 7.4A). 

At the end of 30 minutes of occlusion, 47±12% of the neurons in the ischemic ROI were 

shrunken (Fig. 7.5). The nuclei and cytoplasm of astrocytes were moderately swollen in the 

ischemic ROI at the end of 30 minutes of MCAO (Fig. 7.3F and Fig. 7.4B). The area of 

GFAP+S-100 expression (Fig. 7.6) was significantly greater in the ipsilateral ischemic ROI 

(117±6 µm2) than in the contralateral non-ischemic ROI (89±2 µm2; p<0.001). 

In the ischemic ROI of group B where ADC values recovered completely after 90 min-

utes of reperfusion, neurons were moderately shrunken, scalloped in appearance, and sur-

rounded by swollen cellular processes (Fig. 7.3C). Both the nuclei and cytoplasm were highly 

condensed (Fig. 7.4C). The percentage of injured neurons was significantly greater after 90 

minutes of reperfusion (92±2%) than at the end of occlusion (47±12%; p<0.001). Both the 

nuclei and cytoplasm of most astrocytes were markedly swollen and highly electron-lucent 

(Fig. 7.3F and Fig. 7.4D) and vacuolation of the neuropil—indicative of swelling of dendrites 

and astrocytic processes, was evident (Fig. 7.3C). In this group, the area of GFAP+S-100 ex-

pression  (Fig. 7.6) was significantly greater in the ipsilateral ischemic ROI (123±8 µm2) than 

in the contralateral non-ischemic ROI (85±4 µm2, p<0.001). 

In the ischemic ROI of group C where secondary ADC declines occurred, most neurons 

were markedly shrunken, and some had pyknotic nuclei and eosinophilic cytoplasm (Fig. 

7.3D), both signs of irreversible injury. In support of this contention and further indicative of 

necrosis, many neurons had fragmented nuclei, ruptured nuclear membranes, dense organ-

elles, and patches of homogenous electron-dense material in the cytoplasm (Fig. 7.4E). The 

percentage of injured neurons in this group (94±3%) was not different from that in group B 
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(92±2%, p=0.2; Fig. 7.5), but the qualitative degree of cellular injury was much greater in 

group C than group B. The number of astrocytes staining positive for GFAP and S-100 was 

significantly lower (p<0.03) after 12 hours of reperfusion (2.2±1.5/microscopic field) than 

after 1.5 hours of reperfusion (6.5±1.5/ microscopic field). Within the neuropil, there were 

many large vacuoles (Fig. 7.3D), in this instance possibly the result of both cytoxic and 

vasogenic edema. In a few residual astrocytes, cytoplasmic GFAP had disintegrated, and nu-

clear S-100 protein was greatly reduced (Fig. 7.3H). Electron microscopy showed gaps in the 

nuclear membranes of these disintegrated astrocytes (Fig. 7.4F), indicating that they were ir-

reversibly injured. In this group, the area of GFAP+S-100 expression was significantly less 

(Fig. 7.6; p<0.001) in the ipsilateral ischemic ROI (78±4 µm2) than in the contralateral non-

ischemic ROI (90±5 µm2).   
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Figure 7.5.  Percentage of injured neurons
in the ipsilateral ROI in the three groups
(Mean±SD). Group A: At end of 30 minutes
of middle cerebral artery occlusion
(MCAO). Group B: At 90 minutes of
reperfusion after 30 minutes of transient
MCAO. Group C: At 12 hours of
reperfusion after 30 minutes of transient
MCAO. 

Figure 7.6.  Combined area of expression of two
astrocytic proteins, GFAP and nuclear S-100 in
both ipsilateral (open) and contralateral (filled)
hemispheres of three groups (Mean±SD). Group
A: At end of 30 minutes of middle cerebral
artery occlusion (MCAO). Group B: At 90
minutes of reperfusion after 30 minutes of
transient MCAO. Group C: At 12 hours of
reperfusion after 30 minutes of transient MCAO. 
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Figure 7.3.  Neuronal morphology indicated by hematoxylin-eosin staining (A-D, ×160) and 
astrocytic changes by double staining of glial fibrillary acidic protein (GFAP) plus S-100 pro-
tein (E-H, ×160). A: Many normal neurons and one dark neuron with perineural vacuoles (ar-
row) were observed in the contralateral non-ischemic caudoputamen. B: At the end of 30 min-
utes of ischemia when ADC had initially fallen, some neurons showed slightly shrunken peri-
karya and nuclei (arrow).  C: After 90 minutes of reperfusion and recovery of ADC to normal, 
most neurons were moderately shrunken and surrounded by swollen cellular process and were 
scalloped in appearance. The neuropil showed marked vacuolation (star), indicative of swollen 
dendrites and astrocytic processes. D: After 12 hours of reperfusion and a subsequent or sec-
ond decline in ADC, most neurons were severely shrunken, and the neuropil showed extensive 
vacuolation, and possibly some vasogenic edema (star). E: Dark purple reaction product de-
marcated S-100 protein in astrocytic nuclei; brown reaction product indicated GFAP in the cy-
toplasm and processes of astrocytes (arrow) in the contralateral non-ischemic caudoputamen. 
F: At the end of 30 minutes of ischemia, astrocytes were moderately swollen. G: After 90 min-
utes of reperfusion, astrocytes were severely swollen with less intranuclear S-100 reactivity 
and watery appearance. H: After 12 hours of reperfusion, astrocytes had begun to disintegrate 
and lose nearly all S-100 immunoreactivity within their nuclei (arrow). At this time, some 
GFAP had moved into the extracellular space (arrowhead).   
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Figure 7.4.  Electron micrographs of neurons (×3000) and astrocytes (×4500). A and B: At the 
end of 30 minutes of ischemia. A: Shrunken neurons with condensed nuclei and cytoplasm sur-
rounded by a ring of swollen astrocytic processes (a). B:  A swollen astrocyte with clumps of 
heterochromatin around the edge of its nucleus and an abnormally wide rim of watery peri-
karyal cytoplasm, which contained a few swollen mitochondria (m). C and D: At the end of 90 
minutes of reperfusion. C: Two markedly shrunken neurons with highly condensed nuclei and 
cytoplasm; these neurons were surrounded by severely swollen astrocytic processes (a). D: 
Greatly swollen astrocyte with extensive and watery perikaryal cytoplasm and a few contracted 
mitochondria. E and F: At the end of 12 hours of reperfusion. E: Two necrotic neurons show-
ing cytoplasmic and nuclear disintegration with marked chromatin clumping and discontinuous 
cellular membranes. F: An irreversibly injured astrocytes with breaks in the nuclear membrane 
(arrow), watery cytoplasm, and severely swollen mitochondria (m).  
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7.6 Discussion 

In the present study, two structural features or endpoints were quantified and assumed to be 

good indicators of cellular status. First, the percentage of injured neurons that were shrunken 

and/or necrotic was taken as a marker of neuronal damage. This is a standard index of neu-

ronal injury during and following cerebral ischemia (Garcia et al., 1997; Garcia et al., 1995b; 

Garcia et al., 1993), and its employment is straightforward. Second, the combined area of ex-

pression of two astrocytic proteins – GFAP within the perikaryon and cellular processes and 

S-100 within the nucleus, was taken as an index of astrocytic size. GFAP and S-100 are well-

known astrocytic markers (Ludwin et al., 1976; Boyes et al., 1986), and have been used to 

investigate the astrocytic changes after ischemia (Schmidt-Kastner et al., 1990; Tanaka et al., 

1992; Ingvar et al., 1994). In the shorter time groups (group A and group B) of the present 

study, increase of the GFAP and S-100 positive area most likely reflects swelling of the soma 

and processes of astrocytes as suggested by the electron-lucent appearance within astrocytes 

and by one previous study (Schmidt-Kastner et al., 1993). After 12 hours of reperfusion 

(group C), however, GFAP had begun to breakdown in the ischemic ROI, and the area of ex-

pression had decreased, indicating disintegration of astrocytes. Further electron microscopic 

study demonstrated extensive vacuolation of the neuropil (representing swelling of astrocytic 

processes and/or dendrites) and gaps in the nuclear membranes of these disintegrated astro-

cytes, suggesting that many astrocytes were irreversibly injured, either dying or already dead.   

Considering these observations, the present findings demonstrate three major points. 

First, neuronal shrinkage and astrocytic swelling were seen in the region where ADC de-

clined during the first 30 minutes of ischemia. Second, acute ADC renormalization after 

reperfusion was not associated with reversal of these structural abnormalities. Third, these 
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and other morphological features showed more severe structural disturbances and death of 

neurons and astrocytes when ADC decreased for the second time. These results imply that the 

morphological changes of astrocytes and neurons associated with ADC declines during 

ischemia do not reverse and worsen over time even though ADC values recover after 30 min-

utes of temporary focal brain ischemia. 

 

7.6.1 Acute ADC declines and morphological changes   

DWI is a highly sensitive modality to detect early focal brain ischemia (Baird and Warach, 

1998). Since the early DWI hyperintensity (ADC decline) was found to be associated with 

eventual infarction at a delayed time point, such an early ADC decline is likely to be an in 

vivo sign of ischemic brain injury at least in the center of ischemia after 30 minutes of focal 

brain ischemia as demonstrated by a previous study (Li et al., 2000a). It is not clear, however, 

what acute morphological changes are related to the lower ADC at the time of its measure-

ment.  The histopathological features appearing during the acute phase of ischemia include 

both shrinkage and swelling of the neuronal soma as well as swelling of astrocytes and den-

drites (Garcia et al., 1995b; Pantoni et al., 1996). Some studies have suggested that water 

movement from the extracellular to intracellular space (cytotoxic edema) causes ADC to de-

cline (Moseley et al., 1990a; Moseley et al., 1990b; Busza et al., 1992; Benveniste et al., 

1992; Sevick et al., 1992). In this study, when histological studies were performed on brain 

tissues fixed immediately after DWI, the areas with ADC declines at 30 minutes after ische-

mia manifested neuronal shrinkage and astrocytic swelling. The possible role of neuronal 

shrinkage in the fall of ADC has been, in general, overlooked. Although unclear in detail, the 

current findings suggest that the early ADC decline after arterial occlusion is a complex func-
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tion of water flow not only between the extracellular and intracellular spaces but also among 

the different cellular compartments of neurons and glia.  

 

7.6.2 Acute ADC renormalization and cellular injury 

Acute reversal of ADC following rapid restoration of blood flow and the subsequent or sec-

ondary fall in ADC have been reported similarly by us and by other groups as well 

(Dijkhuizen et al., 1998; van Lookeren Campagne et al., 1999; Li et al., 2000a; Li et al., 

2000b; Li et al., 2000c; Neumann-Haefelin et al., 2000; Olah et al., 2000). It is fairly clear 

that the secondary reduction in ADC is associated with delayed neuronal death after a short 

period of focal brain ischemia (Li et al., 1999; Li et al., 2000a; Li et al., 2000b; Li et al., 

2000c). With a cerebral ischemia hypoxia model, Miyasaka et al recently demonstrated that 

acute renormalization of ADC is not associated with normal brain histology (Miyasaka et al., 

2000). It has not been demonstrated, however, whether reperfusion-induced renormalization 

of ADC after transient focal brain ischemia indicates reversal of histological changes that oc-

curs during ischemia. Furthermore, it is not known whether delayed neuronal death is truly a 

secondary event or just a slow continuation of the initial changes. Presumably, ADC renor-

malization should indicate resolution of cellular swelling, if cellular swelling is the only rea-

son for the decline of ADC values. Surprisingly, the present study demonstrates that ADC 

renormalization after reperfusion is not associated with restoration of astrocytic size and neu-

ronal structure. Indeed, with renormalization of ADC, not only were many neurons and astro-

cytes morphologically abnormal in the regions, but also the number of injured neurons and 

the amount of astrocytic swelling became greater. Our findings in the present study are con-

sistent with those of a recent study where an ischemia hypoxia model was used (Miyasaka et 
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al., 2000). Those results suggest that ADC reduction during ischemia is likely related more 

than just cytotoxic edema.   

Recent studies have shown that a reduction of energy-dependent cytoplasmic motion af-

ter ischemia is likely an important factor for ischemia-related ADC declines (Duong et al., 

1998; Dijkhuizen et al., 1999). Restoration of energy production is able to restore cytoplas-

mic movement, thus renormalizing ADC values. Using phosphorus magnetic resonance spec-

troscopy, Lorek et al. (1994) and Blumberg et al. (1997) have demonstrated that energy me-

tabolism can recover to normal after initial declines in transient hypoxia-ischemia models, 

and such energy restoration was associated with ADC renormalization (Thornton et al., 

1998). We therefore assume the reperfusion-induced ADC renormalization in the present 

study is likely due to energy recovery. However, such an explanation contradicts the finding 

in a previous study (Wick et al., 1995) where there was still decreased metabolite diffusion in 

the intracellular environment early after reperfusion, although water ADC recovered com-

pletely. Moreover, further study will be needed to demonstrate if morphologically abnormal 

neurons and astrocytes are able to restore energy production when blood flow is restored.  

Another important finding in this study is that delayed neuronal damage associated with 

secondary ADC declines demonstrated in previous studies (Li et al., 1999; Li et al., 2000a; Li 

et al., 2000b; Li et al., 2000c) is likely a slow continuation of initial ischemic injury rather 

than a true secondary injury, since the morphological abnormalities measured at the end of 30 

minutes of focal ischemia did not return to normal after reperfusion. Although this postula-

tion may hold for the ischemic core following 30 minutes of unilateral MCAO in Sprague-

Dawley rats, it does not rule out the possibility that injury is reversible in the areas of less se-

vere ischemia in this model or in other models of ischemia.  
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7.6.3 Histopathological features of secondary ADC declines 

The findings herein show that the initial and secondary ADC declines, although similar in 

severity, have different histopathological features. During the initial fall in ADC, neurons 

were slightly shrunken and surrounded by swollen cellular process. After 12 hours of reperfu-

sion and with secondary ADC decline, cellular injury was much more severe—neurons had 

become necrotic, and astrocytes disintegrated and decreased in number. We have recently 

demonstrated that the extent of neuronal damage is correlated with the severity of initial 

ADC reduction (Li et al., 1999; Liu et al., 2001) and now report that the initial and secondary 

ADC declines have different histological features. Because the secondary decline is probably 

indicative of untreatable injury, distinguishing the initial from the secondary ADC decline 

may be of clinical importance.  

       
7.7 Conclusion 

In summary, it has been shown for this model of reversible focal ischemia that the initial drop 

in ADC is accompanied by neuronal shrinkage and astrocytic swelling and that acute renor-

malization of ADC values after reperfusion does not indicate reversal of these cellular ab-

normalities. Indeed, despite the rapid restoration of CBF flow and renormalization of ADC, 

the state of astrocytes and neurons worsen over time. 
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8.1 Preface 

This paper presents a method for measuring compartmental water diffusion coefficients with 

the aid of a contrast reagent (CR) to separate the intracellular (IC) and extracellular (EC) 

1H2O signals via differences in their respective longitudinal (T1) relaxation times. This ap-

proach is based on relaxography, which can utilize a numerical inverse Laplace transform 

(ILT) or discrete biexponential fitting of longitudinal relaxation data in order to differentiate 

compartmental signals on the basis of T1 differences. My contributions to this work were de-

velopment of the NMR pulse sequences, C and IDL programming for spectroscopic and im-

age data analysis and statistical evaluation of the biexponential methods, yeast-cell suspen-

sion preparation, performance of the NMR experiments, and principle authorship on the 

manuscript. 
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8.2 Abstract 

     This paper presents a method for measuring compartmental water diffusion coefficients 

with the aid of a contrast reagent (CR) to separate the intracellular (IC) and extracellular 

(EC) 1H2O signals via differences in their respective longitudinal (T1) relaxation times. This 

approach is based on relaxography, which can utilize a numerical inverse Laplace transform 

(ILT) or discrete biexponential fitting of longitudinal relaxation data in order to differentiate 

compartmental signals on the basis of T1 differences. The technique was validated using 

yeast-cell suspensions that had wet/dry mass ratios of 3.25:1.0. The suspension medium was 

3 mM in Gd-DTPA2-. Two-dimensional NMR data sets were acquired at 2.0T using a diffu-

sion-weighted inversion-recovery spin-echo (DW-IRSE) pulse sequence in which the inver-

sion time (TI) and diffusion-attenuation gradient amplitude (g) values were varied systemati-

cally. The resulting data were analyzed in three different ways. I.) An entire 2D data set (TI 

and g incrementations) was submitted for a 2D numerical ILT analysis using the program 

CONTIN to produce a 2D contour plot with T1 for one dimension and the diffusion coeffi-

cient (D) for the other. II.) Sequential 1D analysis was performed where the TI recovery at 

each g value was subjected to an independent numerical ILT analysis to yield a stacked plot 

of longitudinal relaxograms with g as the vertical dimension. Subsequent 1D analysis of the 

diffusion-attenuation dimension with ILT yielded D values associated with the respective T1 

components. III.) Sequential 1D analysis was performed in which each TI recovery was sub-

jected to discrete biexponential fitting to yield the apparent equilibrium magnetizations of the 

two T1 components for a given g value. Subsequent 1D analysis of the g-dependence of these 

magnetizations yielded the D values associated with the respective T1 components. For a rep-

resentative yeast-cell preparation, the 2D numerical ILT analyses (I) shows two major peaks 
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whose T1:D coordinates are 326 ms:0.208 × 10-5 cm2/s (79%) for the IC component and 48 

ms:3.18 × 10-5 cm2/s (21%) for the EC component. The sequential 1D numerical ILT method 

(II) yielded T1:D values of 307 ms:0.032 × 10-5 cm2/s (46%) and 64 ms:1.29 × 10-5 cm2/s 

(54%) for the IC and EC components, respectively. The sequential 1D discrete biexponential 

fitting method (III) yielded T1:D values of 304 ms:0.023 × 10-5 cm2/s (47%) and 65 

ms:1.24 × 10-5 cm2/s (53%) for the IC and EC components, respectively.  Differences in the 

T1:D values between the 2D ILT method (I) and both sequential 1D analyses (II and III) were 

attributed to limitations in the 2D ILT analysis vis-à-vis the insufficient diffusion attenuation 

of the 1H2O signal from the highly restricted IC space. Consequently, it seems that the use of 

the CR to separate the respective contributions of the IC and EC spaces, based on 1H2O T1 

differences, significantly improves the accuracy of the IC D value estimate obtained using 

pulsed-field gradient methods.  

 

8.3 Introduction 

 Andrasko (1976) considered the idea that an NMR signal arising from biological tissue 

can be a mixture of signals from water or metabolite molecules exchanging between the in-

tracellular (IC) and extracellular (EC) spaces. Therefore, the signal measured by standard 

NMR techniques may contain information that is weighted by NMR (e.g., relaxation times) 

and physical (e.g., diffusion coefficients) parameters of the two compartments.  To better un-

derstand changes of these parameters in response to pathology, it would be useful to separate 

the contributions from each compartment, IC and EC, and determine if contributions from 

one or both are responsible for any overall NMR signal change. 
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 Application of diffusion-weighted NMR techniques to in vivo systems was first demon-

strated by Wesbey et al. (1984) and Le Bihan et al. (1986). Moseley et al. (1990) demon-

strated a decline in the apparent diffusion coefficient (ADC) of cerebral tissue water during 

ischemia, and this discovery has established ADC measurement as an effective technique for 

detecting acute stroke. However, the mechanism of this change is not yet fully understood 

and it is unclear whether the ADC decrease during ischemia is related to changes in the IC 

space, EC space, or both. Previous studies have shown that water ADC changes in biological 

systems can result from changes in the cellular membrane permeability, relative changes in 

the volume fractions of the IC and EC spaces, or combinations of these (Latour et al., 1994; 

van Gelderen et al., 1994). Recent studies have also suggested that IC molecular diffusion in 

cerebral tissue also may be dependent on cytosolic streaming, an energy-dependent process 

that is retarded during ischemia (Duong et al., 1998). 

 This paper presents a method for distinguishing compartmental diffusion coefficients 

based on the use of a contrast reagent (CR) to separate the IC and EC water proton signals 

via differences in their respective longitudinal (T1) relaxation times. In previous experiments, 

T1 relaxation was used to separate the compartmental signal contributions using relaxography 

(Labadie et al., 1994; Han et al., 1998). This method can utilize a numerical inverse Laplace 

transform (ILT) (Provencher, 1982a; Provencher, 1982b; Provencher and Dovi, 1979) of lon-

gitudinal relaxation data in order to differentiate the compartments on the basis of T1 differ-

ences. This can be combined with other types of NMR measurements [e.g., image spatial en-

coding (Labadie et al., 1994)] to acquire additional information from the separate compart-

mental signals. The result of the ILT is a distribution of relaxation times that can be multi-

modal, depending on the number of populations in the sample. If this so-called relaxogram 
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displays two distinct relaxation time peaks, a discrete ILT regression converges on the con-

tinuous distribution means. Comparable results can be obtained by fitting the data to a biex-

ponential function using a constrained nonlinear least-squares algorithm (Han et al., 1998; 

Silva et al., 1998). In this case, the biexponential model can accurately find the distribution 

means in the continuous relaxation time spectrum.  

   In an analogous manner, diffusion-encoding gradient pulses can be used to determine the 

decay of magnetization in b-space, where b is the diffusion-weighting parameter defined be-

low. The appropriate numerical ILT of such data can also produce a multimodal ADC distri-

bution [a diffusigram (Vétek et al., 1994)] that can facilitate discrimination of compartmental 

signals (Vétek et al., 1994; Pfeuffer et al., 1999). Alternatively, those data could also be sub-

jected to discrete exponential analysis. The earlier 1D diffusigraphic results were encourag-

ing in that, for cell suspensions, the differences in diffusion may be sufficient to allow dis-

crimination without the necessity for CR (Vétek et al., 1994). However, most intact tissue 

has a considerably higher cell density than can be generally achieved with suspensions of 

cells. We suspect that the presence of CR will be necessary in vivo in order to reduce ADC 

assignment ambiguity, and we show here that it is necessary to increase ADC quantitation 

accuracy, especially for small D values. 

 The method presented herein demonstrates that separation of compartmental relaxation 

characteristics via biexponential fitting of inversion-recovery spin-echo (IRSE) data can ad-

vantageously isolate IC and EC compartmental 1H2O signals from yeast cell suspensions. By 

appropriate incrementation of diffusion gradients in the IRSE pulse sequence, each IR curve 

becomes differently diffusion-weighted. The data attain a two-dimensional nature. They can 

be subjected to a 2D ILT analysis to produce a relaxo-diffusigram. Or, they can be subjected 
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to sequential 1D analyses, numerical ILT or discrete exponential. If the longitudinal relaxa-

tion dimension is analyzed first, the water ADC can then be accurately calculated for each 

compartment from the second 1D analysis. The validity of this method is demonstrated here.   

 

8.4 Theory 

 Figure 8.1 shows a diffusion-weighted, inversion-recovery spin-echo (DW-IRSE) pulse 

sequence. The dependence of the nuclear magnetization on the T1 and T2 relaxation times 

and the diffusion coefficient (D) for the spin-bearing molecule in a homogenous sample ex-

cited by the DW-IRSE pulse sequence can be derived from the Bloch equations: 
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where M(T1, T2, D) is the magnetization measured at a particular inversion time (TI), echo 

time (TE), diffusion gradient pulse separation (∆), diffusion gradient strength (g), and diffu-

sion gradient duration (δ). The equilibrium magnetization is denoted by M0; α (ranging from 

0 to 1) is the efficiency of the inversion pulse; and γ is the gyromagnetic ratio.  

 For measurements made at a constant TE, Eq. [8.1] can be rewritten to express M with the 

constant T2 relaxation effects being subsumed with M0, giving 0M′ : 
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 When the IR data are collected at a given TE and diffusion-weighting, the T1 relaxation 

time and equilibrium magnetization can be calculated by fitting with: 
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where 0M ′′  contains the effects of both transverse relaxation and diffusion. To measure the 

molecule's D value, the IR data collection must be repeated at different diffusion g values at 

constant TE. At each constant g value, the DW-IRSE data set is then fitted with Eq. [8.3] for 

0M ′′ , T1, and α. The value of D can be calculated from the dependence of 0M ′′  on γ2δ2g2[∆-

(δ/3)]. 

 For a sample containing two components in exchange equilibrium, for example signals 

from the IC and EC compartments having different relaxation times and self-diffusion coeffi-

cients, Eq. [8.1] can be modified to include the signals arising from each component: 
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where a0M  and b0M  are the apparent equilibrium magnetizations of components a and b, 

respectively, and T1a and T1b are the respective apparent longitudinal relaxation time values. 

The respective apparent transverse relaxation times are given by T2a and T2b, while Da and Db 

are the respective component apparent diffusion coefficients. The inversion efficiency, α, is 

assumed to be the same for both components.   

 As shown in Eq. [8.2], experiments conducted at a constant TE can be rewritten to express 

M with the constant transverse relaxation effects as: 
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 For DW-IRSE experiments conducted with constant diffusion-weighting as well as TE, 

the respective T1 relaxation times and component magnetizations can be determined from a 

biexponential fitting of the data with: 
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and solving for a0M ′′ , b0M ′′ , T1a, T1b, and α. Then, as shown previously, the component diffu-

sion coefficients (Da and Db) can be calculated from the dependence of a0M ′′  and b0M ′′  on 

γ2δ2g2[∆-(δ/3)]. The fraction of the signal from component a, fa, and component b, fb, can be 

calculated from the magnetizations at g = 0, ( )0M a0′′  and ( )0M b0′′ , that is, when no diffusion-

weighting is applied: 

( )
( ) ( )0M0M

0Mf
b0a0

a0
a ′′+′′

′′
=    and   ( )

( ) ( ).0M0M
0Mf

b0a0

b0
b ′′+′′

′′
=  [8.7a, 8.7b] 

This two-site approximation assumes that components a and b are the only signal sources in 

the sample (i.e., fa + fb = 1). 

 

8.5 Methods 

8.5.1 Yeast Preparation 

 Approximately 1.5 g of common dry baking yeast (Saccharomyces cerevisiae, 

Fleishmann’s Yeast, Inc., Oakland, CA) was rehydrated at room temperature in a 50 mL cen-

trifuge tube with 35 mL of distilled H2O. The yeast suspension was bubbled with medical-

grade air, and, after a starving period of three hours, the suspension was centrifuged for eight 

minutes at 3500 rpm (IEC-Centra8 Centrifuge, International Equipment Company, USA). 

The supernatant was discarded, and the packed yeast cells were resuspended in a solution of 
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3 mM gadopentate dimeglumine (Gd-DTPA2-, Magnevist®, Berlex, Wayne, NJ) and centri-

fuged. The cells were washed three times with the 3 mM Gd-DTPA2- solution. After the final 

washing, the packed yeast cell pellet was weighed and the wet/dry mass ratio adjusted to 

3.25:1.0 with an additional amount of the 3 mM Gd-DTPA2- solution. Preliminary experi-

ments indicated that this ratio value yielded a cell suspension with nearly a 1:1 IC:EC 1H2O 

apparent magnetization ratio (fb:fa) and was viscous enough to remain suspended (i.e., there 

was no settling) during the experiment. After wet/dry mass ratio adjustment, the cells were 

re-suspended with agitation. Approximately 0.2 mL of the Gd-doped yeast-cell suspension 

was then transferred to a standard 1.0 mL syringe and placed in a radio frequency (RF) coil 

and positioned in the magnet. Experiments were performed on seven separate yeast-cell 

preparations. For comparison, a single experiment was conducted on a yeast-cell sample 

without CR. The procedure for sample preparation was the same except the yeast cells were 

washed and resuspended (wet/dry mass ratio adjusted to 3.25:1.0) with distilled H2O. 

 

8.5.2 NMR Experiments 

 All data were acquired with a GE CSI-II 2.0T/45 cm imaging spectrometer operating at 

85.56 MHz for 1H and equipped with ± 20 G/cm self-shielded gradients. NMR measurements 

were performed on the entire yeast sample using a 7.25 mm diameter, 8-turn solenoid trans-

ceiver RF coil. The magnet-bore temperature was 17º C. NMR data were acquired using an 

inversion-recovery pulse sequence with diffusion-weighted spin-echo detection (Fig. 8.1). 

Thirty-two inversion times (TI), with logarithmic temporal spacing  (TI = TI0*an-1, TI0 = 5.0 

ms, a = 1.257, n = 32) and two signal averages, were used to measure each T1-relaxation 

curve. Other acquisition parameters were ∆ = 46.5 ms, δ = 6.0 ms, TR = 6.1 s, and TE = 55.0 
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ms. Diffusion-weighting was accomplished using half-sine-shaped magnetic field gradient 

pulses simultaneously applied in three orthogonal directions with effective amplitudes (g) of 

2.6 to 31.18 G/cm, incremented in steps of 2.6 G/cm (12 diffusion gradient strengths). The 

use of half-sine-shaped diffusion gradient pulses requires a modification to the equations 

shown in the Theory section. In this case, the diffusion-weighting term, the b-value (Le Bi-

han, 1991), was modified from γ2δ2g2[∆-(δ/3)] to γ2δ2(2/π)2g2[∆-(δ/4)] to account for the 

three simultaneously applied, orthogonal, half-sine-shaped diffusion-gradient pulses. Half-

echoes were acquired with a spectral width of ± 5 kHz and 8,192 data points.   
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Figure 8.1.  Diffusion-weighted inversion-recovery spin-echo (DW-
IRSE) pulse sequence. T1-weighting is performed by varying the in-
version time (TI) and maintaining a constant echo time (TE). For the 
isotropic yeast-cell suspension sample, diffusion gradients were ap-
plied simultaneously along three orthogonal gradient directions (Gx, 
Gy, Gz). The diffusion gradient pulse parameters are: diffusion gradi-
ent separation (∆), diffusion gradient strength (g), diffusion gradient 
duration (δ). 

 

8.5.3 Data Analysis 

 Raw DW-IRSE data were transferred to a PC and processed using software written in the 

C programming language (Borland International, Inc., Scotts Valley, CA). The phase-
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corrected water resonance in each spectrum was fitted to a Lorentzian function and the peak 

height was extracted. The resulting data were analyzed in several different ways. I.) An entire 

2D data set (TI and g incrementations) from a preparation was submitted for a 2D numerical 

ILT analysis using the program CONTIN (Labadie et al., 1994; Han et al., 1998; Provencher, 

1982a; Provencher, 1982b; Provencher and Dovi, 1979; Vétek et al., 1994; Pfeuffer et al., 

1999; Lee et al., 1993). This produced a 2D contour plot (Lee et al., 1993) with T1 for one 

dimension and D for the other. II.) Alternatively, the TI recovery at each g value was sub-

jected to an independent numerical ILT analysis. This yielded a stacked plot of longitudinal 

relaxograms with g as the vertical dimension (Han et al., 1998). III.) In a third alternative, the 

IR curve obtained at each diffusion gradient value was separately fitted with both the mono-

exponential (Eq. [8.3]) and biexponential (Eq. [8.6]) models using 3- and 5-parameter (re-

spectively) constrained, nonlinear least-squares Levenberg-Marquardt fitting algorithms writ-

ten in the Interactive Data Language (IDL, Research Systems, Inc., Boulder, CO) (Han et al., 

1998; Silva et al., 1998). Fitting constraints were defined such that no fitted relaxation time 

parameter could be negative or greater than twice the bulk water relaxation time constant. 

Data were separately fitted with both the monoexponential and biexponential equations be-

cause at high diffusion weighting the signal contribution of the fast-relaxing component be-

comes negligible and the composition of the IR curve changes from two components to one 

(Han et al., 1998).  

 To determine this transition, both discrete exponential models were tested on every data 

set. To determine the most appropriate model to describe the IR data at each diffusion-

gradient value, F-statistics were calculated. The F-statistic is a measure of model appropri-

ateness based on the ratio of the sum of residual squares of the fitted data of each model 
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weighted by the number of degrees of freedom for the model. In general, if two distribution 

variables U and V have independent χ2 with degrees of freedom νU and νV, respectively, the 

F-statistic is the distribution of the random variable F, which is defined as 
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For this application, the F-statistic was used to test the hypothesis that the biexponential 

model is statistically different than the monoexponential model. Equation [8.8] was modified 

to: 
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where SSF is the sum of residual squares and νF  is the number of degrees of freedom for the 

biexponential model in Eq. [8.6], the full model. SSE is the sum of residual squares and νE is 

the number of degrees of freedom for the extra terms of the biexponential model as com-

pared to the monoexponential model in Eq. [8.3] (SSE = SSmono – SSF). As the IR data sets 

change from biexponential to monoexponential, the F-statistic (F in Eqs. [8.8] and [8.9]) ap-

proaches zero, indicating that the monoexponential model is statistically equal to the biexpo-

nential model; therefore, the biexponential hypothesis is not true and the monoexponential 

model is the most appropriate. The output of the fitting program was: (1) 0M ′′ , T1, and α from 

a single-component fitting with Eq. [8.3]; (2) a0M ′′ , b0M ′′ , T1a, T1b, and α from a two-

component fitting with Eq. [8.6]; and (3) the F-statistic.  

 Finally, the natural logarithms of the fitted a0M ′′  and b0M ′′  values were plotted versus the 

γ2δ2(2/π)2g2[∆-(δ/4)] values, and Da and Db were calculated using a non-weighted, linear 

least-squares regression fit to the equation: 
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where subscript “i” denotes “a” or “b”. Assuming the two components are the only sources of 

signal, a0M ′′  and b0M ′′  were used to calculate the normalized fractional contributions. The 

fractional contributions of components a and b are denoted fa and fb, respectively, and were 

calculated as the ratio of a0M ′′  or b0M ′′  to the total signal when g = 0 according to Eqs. [8.7a] 

and [8.7b]. For consistency, signal “a” is equated with the fast relaxation component and sig-

nal “b” with the slow component. We refer to this third method as sequential 1D analyses 

(longitudinal relaxation analysis followed by diffusion decay analysis).   

 

8.6 Results 

 A set of DW-IRSE curves from a representative preparation (#6) is shown in Fig. 8.2, with 

signal intensity plotted versus inversion time, TI, for 12 diffusion gradient strengths (g) rang-

ing from 2.6 to 31.18 G/cm (b-values of 3,172, 12,688, 28,549, 50,754, 79,303, 114,196, 

155,434, 203,016, 256,942, 317,212, 383,827, and 456,786 s/cm2, respectively). Notice that 

the dynamic range (i.e., 2M0) of the data decreases with increasing gradient strength. This is 

because the signal from the faster diffusing component is being more rapidly attenuated by 

the diffusion gradient compared with that from the slower diffusing component (Han et al., 

1998). Above some b-value, the fast-diffusing component will be completely attenuated be-

fore the signal acquisition, and the inversion recovery curve will be best described by the 

single component model. Since the exact b-value at which the fast-diffusing component be-

comes quenched is unknown, the IR data set at every gradient value will be separately fitted 

with both the bi- and monoexponential models (see below) to determine the transition from 
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two- to one-component recovery. Further, note that the g-induced change in signal intensity 

at a given TI is not uniform (i.e., the spacing between data points becomes closer at high gra-

dient strengths). 

 Countour plots in Fig. 8.3 presents results from 2D numerical ILT analyses. The vertical, 

relaxographic dimensions measure the logarithm of T1 with units of ms. The horizontal, dif-

fusigraphic dimensions measure the logarithm of D with units of cm2/s. The top panel pre-

sents the results from a preparation with [CR] = 0 mM. It shows two major peaks whose 

T1:D coordinates are 509 ms:0.27 × 10-5 cm2/s (49%) and 496 ms:2.2 × 10-5 cm2/s (51%), 
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Figure 8.2.  DW-IRSE data set for a representative yeast-cell
suspension with signal intensity plotted versus inversion time, TI,
logarithmically spaced from 5.0 to 6002.9 ms for 12 diffusion
gradient strengths ranging from 2.6 to 31.18 G/cm (b-values of
3,172, 12,688, 28,549, 50,754, 79,303, 114,196, 155,434, 203,016,
256,942, 317,212, 383,827, and 456,786 s/cm2, respectively). As the
diffusion-weighting is increased, the asymptote (M0) of the measured
signal intensity decreases. At high diffusion-weighting, the
asymptotes (M0) of the measured signal intensity curves become
closer together as the recovery changes from a two- to one-
exponential time function due to quenching of the fast-diffusing
component by the strong diffusion gradients. 
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respectively. If one conducts a 1D diffusigraphic analysis of the b-space decay ignoring any 

T1-weighting (say, by using a set of fully-recovered data analogous to that at the largest TI 

value (6000 ms) in Fig. 8.2), one obtains two diffusigraphic peaks. If one conducts a 1D dif-

fusigraphic analysis of the b-space decay of data that had no T1-weighting, one obtains simi-

lar results (Vétek et al., 1994). The bottom panel presents the results from a preparation (#6) 

with [CR] = 3 mM. It shows two major peaks whose T1:D coordinates are 326 ms:0.208 × 

10-5 cm2/s (79%) and 48 ms:3.18 × 10-5 cm2/s (21%), respectively. Though, as expected 

(Labadie et al., 1994), both peaks are shifted to smaller T1 values by the CR, which acts as a 

shift reagent in relaxographic space, it is quite clear that it is the peak with the larger D value 

that is significantly more shifted. Since Gd-DTPA2- is known to be restricted to the extracel-

lular space (Labadie et al., 1994), it is clear that this peak should be assigned to the EC sig-

nal. This confirms ones intuition with regard to the compartmental water D values in cell 

suspensions. However, since tissue has a higher cell density than cell suspensions, one's in-

tuition might not be so accurate, and this might be a useful analysis for tissue data. We will 

show below, however, that the D positions of the peaks seem to be shifted from accurate   

values.   

 Figure 8.4 shows the results if only the numerical ILT relaxographic analysis is performed 

on the same 3 mM CR preparation (#6) as in the bottom panel of Fig. 8.3. It presents a 

stacked plot of the longitudinal relaxograms (the abscissa measures the logarithm of T1, in 

ms) obtained for different b-values. These range from b-value = 3,172 s/cm2 at the top to b-

value = 456,786 s/cm2 at the bottom, with the incrementation listed above. It has been thor-

oughly demonstrated that the peak at smaller T1 represents the EC signal (Labadie et al., 

1994). Thus, Fig. 8.4 shows very clearly that it is the EC signal that is attenuated with in-
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creasing b-value, as we reported earlier with a preliminary version of Fig. 8.4 (Han et al., 

1998). The average positions (and areas) of the EC and IC peaks are: 64 ms (54% @ b = 0) 

and 307 ms (46% @ b = 0), respectively. If a subsequent numerical ILT diffusigraphic analy-

sis is conducted on the areas of the Fig. 8.4 EC and IC peaks, one obtains D values of 

1.29 × 10-5 cm2/s and 0.032 × 10-5 cm2/s, respectively. Though the EC D value is reduced by 

a factor of ~2 from that of the 2D plot, the IC D value is reduced by almost an order of mag-

nitude. This is significant, and will be discussed below. 

 

Figure 8.4.  A stacked plot of longitudinal relaxograms obtained at different b-
values. These result from the 1D numerical ILT of the inversion recovery data for the 
system in Fig. 8.3, bottom. The abscissa measures the logarithm of T1, in ms. The b-
values range from 3,172 s/cm2 (top) to 456,786 s/cm2 (bottom).  The incrementation 
is given in the text. 
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Figure 8.3.  Contour plots of the relaxo-diffusigrams resulting from 2D numerical ILT analyses 
of data sets of the type seen in Fig. 8.2: Top, from a preparation without extracellular shift re-
agent (i.e., [GdDTPA2-] = 0 mM; Bottom, from a preparation with extracellular [GdDTPA2-] = 3 
mM. The ordinates measure the logarithm of T1, in ms. The abscissae measure the logarithm of 
D, in cm2/s. The mean value of each peak in the contour plots (i.e., the center of mass) may not 
necessarily coincide with the position of the apex of the peak due to asymmetry in the peak shape. 
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 For the data shown in Figs. 8.2−8.4 (preparation #6), let us illustrate the sequential 1D 

analyses using discrete exponential fittings. Figure 8.5 shows a comparison of the bi- and 

monoexponential fittings for the data acquisitions with the 2.6 G/cm and 31.18 G/cm diffu-

sion-gradient pulses.  The natural logarithm of the magnetization function is shown for easier 

visualization of the data nature. The IR data acquired at a diffusion-weighting of 2.6 G/cm 

( ) are fitted with both the biexponential () and monoexponential (---) models. The biex-

ponential fitting is clearly more appropriate for these data and this is statistically supported 

with an F-statistic >> 0. Also in Fig. 8.5, the IR data acquired at the much larger diffusion-

weighting of 31.18 G/cm (××××) are fitted with both the biexponential () and monoexponential 

models. For this data set, the monoexponential fitting  (---) is not visible because it is coinci-

dent with the biexponential fitting. In this case, the monoexponential model is more appro-

priate (F-statistic ~ 0). 

 Each Fig. 8.2 data set was fitted with the biexponential model to determine a0M ′′ , b0M ′′ , 

T1a, T1b, and α, and also with the monoexponential model to determine 0M ′′ , T1, and α. The 

fitting of each of the twelve recoveries was performed independently (fitting constraints and 

initial parameters were the same for each iteration). For this representative preparation, the 

average calculated fast-relaxing T1 value (T1a) was 65 ± 2 ms and the average slow-relaxing 

T1 value (T1b) was 304 ± 5 ms. As we saw in Fig. 8.4, with increasing diffusion-weighting, 

the fast-relaxing (which is also the fast-diffusing) component is increasingly quenched by the 

strong gradient. It is important to note that the average T1b (the slow-relaxing, slow-diffusing 

component of the two-component signal) is 304 ± 5 ms, which statistically matches the T1 

measured, 306 ± 1 ms, from the monoexponential model at high g values. Since the system is 

well-described with one component at high diffusion-gradient strengths, the fact that these T1 
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values are the same gives confidence that the same water population is being measured for 

both cases.  

 From the model fittings, 0M ′′ , a0M ′′ , and b0M ′′  were extracted at each g value and plotted 

versus the b-value. Fig. 8.6 shows the natural logarithm of 0M ′′ , a0M ′′ , and b0M ′′  (arbitrary 

units) derived from the data of the representative preparation used for Figs. 8.2−8.5. The tri-

angles (▲) and the open circles ( ) are the calculated magnetization values for the fast-

relaxing ( a0M ′′ ) and the slow-relaxing ( b0M ′′ ) components, respectively, from the biexponen-

 

Figure 8.5.  Biexponential () and monoexponential (---) model 
fittings to IR data sets obtained with diffusion-weighted gradient 
amplitudes of 2.6 G/cm ( ) and 31.18 G/cm (××××) for a representative 
yeast-cell sample. The natural logarithm of the relaxation functions 
(19) is shown to aid in visualizing the data characters. The 2.6 G/cm 
data set ( ) is best described by the biexponential model; note the 
monoexponential fit (dashed line) markedly deviates from the 
experimental points. The monoexponential model and the 
biexponential model match the IR data for the set acquired at a 
diffusion-weighting of 31.18 G/cm (××××), which indicates that the 
biexponential model “over fits” this data set and the 
monoexponential model is most appropriate. 
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tial model. The closed circles ( ) are the fitted 0M ′′  values from the monoexponential model. 

Note that as the b-value is increased, the contribution of the fast-relaxing component ( a0M ′′ ) 

vanishes, and the fitted 0M ′′  values asymptotically approach b0M ′′ .  Fitting errors are apparent 

in the biexponential model for b-values greater than 300,000 s/cm2, and these points have 

been omitted from Fig. 8.6. 

 Each curve in Fig. 8.6 was fitted using Eq. [8.10] to calculate the fractional contributions 

(at g = 0) and the component diffusion coefficients. For these data, the fractional contribution 

of the fast-relaxing component, fa, was 0.53, and the fractional contribution of the slow-

 Figure 8.6.  The natural logarithm of the calculated a0M ′′ , b0M ′′ , and 

0M ′′  values for the representative data set shown in Fig. 2. The trian-
gles (? ) and the open circles ( ) are the fast-relaxing a0M ′′  and 
slow-relaxing b0M ′′  components calculated using the biexponential 
model. The solid circles ( ) are the 0M ′′  values calculated using the 
monoexponential model. Note that 0M ′′  itself is non-
monoexponential and approaches the slow-relaxing, slow-diffusing 
component (IC) described by b0M ′′ . 
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relaxing component, fb, was 0.47. The diffusion coefficient of the fast-relaxing component, 

Da, is 1.24 × 10-5 cm2/s, and the diffusion coefficient of the slow-relaxing component, Db, is 

0.023 × 10-5 cm2/s. The R2 linear regression coefficients (Eq. [8.10]) for Da and Db were 0.80 

and 0.99, respectively. Note that the D values are very similar to those resulting from the 

diffusigraphic analyses of the Fig. 8.4 data, and (again) different from those in the Fig. 8.3 

2D plot.   

 Table 8.1 contains the results from sequential 1D analyses (exponential) of the experi-

ments on the seven different yeast-cell preparations. The T1 values are presented as the 

means and standard deviations (σ), which were calculated within each preparation, and over 

all preparations. Almost identical results are obtained if numerical ILT analyses replace the 

Preparation 
T1a (σσσσ) 

[ms] 
T1b (σσσσ) 

[ms] 
Da 

[××××10-5 cm2/s] 
Db 

[××××10-5 cm2/s] 
fa (g = 0) 
[unitless] 

fb (g = 0) 
[unitless] 

1 65 (2) 1 291 (4) 1 1.22 4 0.026 5 0.54 0.46 
2 67 (1) 301 (3) 1.26 0.026 0.53 0.47 
3 67 (2) 289 (3) 1.11 0.024 0.54 0.46 
4 65 (3) 292 (2) 1.22 0.021 0.54 0.46 
5 64 (2) 294 (3) 1.20 0.020 0.59 0.41 
6 65 (2) 304 (5) 1.24 0.023 0.53 0.47 
7 65 (2) 294 (4) 1.10 0.021 0.51 0.49 

Overall 65 (2) 2 295 (6) 2 1.19 (0.06) 3 0.023 (0.002) 3 0.54 (0.02) 3 0.46 (0.02) 3 
Table 8.1.  Apparent compartmental relaxation times (T1a and T1b) 
with standard deviations (σ), diffusion coefficients (Da and Db), and 
fractional contributions (fa and fb) without diffusion attenuation (i.e., g 
= 0) from experiments on seven separate yeast-cell suspensions 
determined with sequential 1D analysis. 
1The intra-experiment σ is from the T1a and T1b values obtained from 
the nine (out of a total of 12) DW-IR data sets fitted to the 
biexponential model (Eq. [8.6]).  
2σ is calculated from the means and σ of the experiments on the 7 
preparations.  
3σ is calculated from the means of the experiments on the 7 
preparations.  
4Linear regression R2 > 0.80 for fit of a0M ′′  versus b-value. 
5Linear regression R2 > 0.98 for fit of b0M ′′  versus b-value. 
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discrete exponential analyses in the sequential 1D analyses. Further, given the significant dif-

ference in Da and Db, discrete biexponential analysis of the diffusion attenuation curve was 

also tested. Magnetization values at the longest TI value were fitted versus the b-value, and 

the results were very similar to the results presented in Table 8.1: Da = 1.17 ± 0.003 × 10-5 

cm2/s (56 ± 3%) and Db = 0.017 ± 0.004 × 10-5 cm2/s (44 ± 3%). 

 

8.7 Discussion and Conclusions 

Using a yeast-cell suspension as a model system, this paper presents a method for evaluating 

apparent diffusion coefficients for water in the IC and EC spaces via differences in their re-

spective 1H2O NMR T1 relaxation times. The intrinsic IC and EC 1H2O T1 values by them-

selves are not sufficiently different to allow discrimination of these compartments, especially 

given the facile equilibrium transcytolemmal exchange of water (Labadie et al., 1994). How-

ever, by the natural restriction of CR to the EC space, the T1 relaxation time of the EC com-

partment 1H2O can be decreased such that the relaxation time constants of the IC and EC 

space 1H2O signals differ by more than a factor of three. Simulations have shown that this is 

the minimum necessary to deconvolve correctly a sum of exponentials with a signal-to-noise 

ratio (SNR) ~50 by fitting with a biexponential model (Silva et al., 1998). The addition of 3 

mM CR to the suspension reduced the apparent EC 1H2O T1 to 65 ± 2 ms, giving approxi-

mately a factor of five between the apparent 1H2O T1 relaxation times of the signals from the 

two compartments. Lastly, diffusion measurements made on homogeneous water phantoms 

doped with different CR concentrations indicate that the presence of CR does not by itself 

alter the diffusion coefficient of water molecules (unpublished results); in this case, diffusion 

measurements made in CR-adjusted homogeneous samples match diffusion measurements 
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made in the equivalent homogenous CR-free sample. This will not necessarily hold true for 

all cell suspensions, however. The susceptibility differences caused by the presence of the 

paramagnetic Gd-DTPA2- in only one compartment can affect the T2 and *
2T  values of each 

compartment, even in the absence of exchange, and could alter the diffusion coefficients 

measured using a pulsed-field gradient (PFG) method. 

 Separation of the IC and EC compartments on the basis of the apparent 1H2O T1 relaxation 

times allows the water diffusion coefficients in the IC (slow-relaxing) and EC (fast-relaxing) 

spaces to be measured with greater accuracy. The D of the IC space is 0.023 ± 0.002 × 10-5 

cm2/s with an apparent fractional contribution of 0.46. At the cell density used here, the D of 

the EC space is 1.19 ± 0.06 × 10-5 cm2/s, which is considerably greater than for the IC D. The 

intracellular water apparent D is theorized to be much smaller than the EC water apparent D 

due to the diffusion restrictions imposed by the small size of the tiny yeast cells, which we 

estimated using a standard light microscope to be ~7 µm in diameter. Assuming a spherical 

shape, the intracellular diameter (dIC) of the yeast cell can be estimated from the apparent dif-

fusion coefficient and the diffusion time, as shown by Tanner (1983): 

.Dt20d diffIC =  [8.11] 

Using values for tdiff of 45 ms [which is ∆-(δ/4) in these studies] and for D of 0.023 × 10-5 

cm2/s, Eq. [8.11] yields a dIC value of 4.6 µm, which is in good agreement with the value of 

4.0 µm reported by Tanner (1983). Further, the pre-exchange intracellular lifetime of a water 

molecule in suspensions of this strain of yeast cells has been estimated at 672 ms (Labadie et 

al., 1994), which indicates that for these preparations the yeast cell membrane is relatively 

impermeable (Landis et al., 1999), and the cell suspension NMR system is in the slow-

exchange-regime. From the analysis of the relaxographic peak areas (by numerical ILT), 
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similar yeast-cell suspensions doped with 3 mM CR were found to be in the slow-exchange-

regime, but 3 mM CR was not sufficient for the system to reach the slow-exchange-limit 

(Labadie et al., 1994; Landis et al., 1999), where fa would be ~0.62 for the cell density used 

here.  In the slow-exchange-regime, exchange affects the values of T1a, T1b, fa, and fb, and 

also, to some extent, the measured apparent diffusion coefficients (Da and Db) (Landis et al., 

1999). However, in cell suspensions, water diffusing in the EC environment should have a D 

value closer to that of free water. At our magnet bore temperature of 17° C, the diffusion co-

efficient of bulk water is approximately 1.8 × 10-5 cm2/s. The reduction in the EC water D 

relative to the diffusion coefficient of free water is presumably caused by restrictions in this 

concentrated cellular suspension due to the close proximity of the external surfaces of cell 

membranes. Also, in this particular case, EC water includes water in the periplasmic spaces, 

which are quite confined (Landis et al., 1999). Given the effects of the restrictions and the 

exchange, the measured EC diffusion coefficient deviates from the self-diffusion coefficient, 

D, of the water molecules. 

 The method described in this paper is based on relaxography, Labadie et al. (1994), which 

uses T1 relaxation time differences to separate the compartmental signal contributions. As 

originally implemented, relaxography used a numerical ILT analysis (Provencher, 1982a; 

Provencher, 1982b; Provencher and Dovi, 1979) to calculate the continuous relaxation time 

distribution of the signals from a sample. One disadvantage of this method is that the ILT 

method requires very large TI values to estimate the total M0 of the sample. Fitting the IR 

data with the 5-parameter biexponential model does not require an M0 estimate since it is a 

fitted parameter, thus allowing smaller TI values to be used, resulting in shorter experiment 

times. Another aspect of the numerical ILT method is that the width of the relaxographic 
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peak representing a given compartment can be significantly affected by user-supplied input 

parameters to the fitting and inappropriate choices may interfere with the separation of peaks 

from different compartments. The biexponential fitting relaxographic method avoids this 

limitation as it fits for the means of the relaxation time distributions determined by the ILT 

method (Labadie et al., 1994). We have explored the limitations of the biexponential fitting 

method through data simulation. For a two compartment system, the optimal data conditions 

call for: signal contributions (M0a and M0b) in a ratio of 1:1, a T1 relaxation time difference of 

at least three (T1b > 3T1a), and a signal-to-noise ratio (SNR) greater than 20 (Silva et al., 

1998). The data presented in this paper exceeds these criteria: The fractional signal contribu-

tion (M0a:M0b) was 0.54:0:46 or 1.2:1.0; T1b was 4.5 times T1a; and the SNR for a 0.2 mL 

sample exceeded 500. Extension of this method to an in vivo biological system would require 

careful experimentation to establish the appropriate CR concentrations and SNR conditions 

to ensure reliable results using this approach. 

 Other NMR methods have attempted to separate the IC and EC water diffusion coeffi-

cients in in vitro and in vivo biological samples. Early experiments by Andrasko (1976) and 

Tanner (1983) suggested that the non-monoexponential behavior of the diffusion attenuation 

curve in human red blood cell and yeast-cell preparations resulted from two water popula-

tions with different diffusion coefficients. However, non-monoexponential attenuation also 

may arise from restricted diffusion, as an alternative to multiple compartments with different 

diffusion coefficients, or some combination of both (Helmer et al., 1995); and in all cases, 

water exchange between compartments can further complicate the diffusion measurement. 

Previous work analyzing rat brain 1H2O signals attempted to fit diffusion attenuation curves 

to biexponential models that represent the water diffusion coefficients in IC and EC spaces 



 

 185 

(Pfeuffer et al., 1999; Neindorf et al., 1996). However, when the diffusion coefficients of the 

two spaces were considered in the absence of exchange and restrictions, the fitted volume 

fractions did not agree with the known compartmental fractions (Neindorf et al., 1996; 

Trouard et al., 1997). Because non-monoexponential attenuation curves have been found in 

single compartment systems with barriers to diffusion (Helmer et al., 1995), the presence of 

restricting barriers in tissue must also be considered in any successful model.  

 It is generally true that the numerical ILT approach gives results consistent with the dis-

crete exponential analysis. The quantitative failure in the numerical diffusigraphic analysis in 

the 2D ILT (Fig. 8.3), and in the 1D evaluation of data obtained with no CR and no T1-

weighting (Vétek et al., 1994), is therefore probably attributable to some other aspect. We 

suspect that it has primarily to do with the very small IC D value here, caused by the tiny size 

(reported above) of the yeast cells. This value of D is so small (~2 × 10-7 cm2/s) that it is very 

difficult to experimentally reach b-values that cause much decay in the signal arising from 

this space. Thus, it seems that the use of the CR to separate the respective contributions of 

the IC and EC spaces, based on 1H2O T1 differences, significantly improves the accuracy of 

the IC D value estimate obtained using PFG methods. Though mammalian cells are larger 

than yeast cells (Landis et al., 1999), they are still small, and this feature could prove invalu-

able for in vivo studies. 

 Recent work has demonstrated some success with analytical models of water dynamics in 

red blood cell suspensions and in simulations that includes 1H2O relaxation, tortuosity, re-

stricted diffusion, compartmental exchange (membrane permeability), and cell geometry 

(Stanisz et al., 1998; Szafer et al., 1995b). These and other studies have used combined T2-

relaxation and diffusion methods to describe biological tissue using the two-compartment (IC 
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and EC) model (Neindorf et al., 1996; Trouard et al., 1997; Stanisz et al., 1998; Szafer et al., 

1995b). The disadvantages of T2-relaxation time methods are that T2 is sensitive to bulk 

magnetic susceptibility effects and exchange effects, both of which contribute to the miscal-

culation of the volume fractions (Neindorf et al., 1996). Given that in the slow-exchange-

regime the T1 relaxation time of the water signals from the IC space will be only slightly al-

tered by the presence of CR in the EC space, methods based on CR-enhanced T1-relaxation 

separation do not have the same drawbacks and ensure the more accurate measurements of 

compartment relaxation times, diffusion coefficients, and volume fractions if equilibrium 

transcytolemmal water exchange is properly accounted for.   

 Studies by Labadie et al. (1994) and Stanisz et al. (1998) have shown the efficacy of using 

MR CRs to discriminate between the IC and EC water signals in a biological sample by vir-

tue of their relaxation time differences. These studies demonstrated that the addition of the 

CR alters the relaxation time constants (T1 and T2) of the EC water; and, due to the molecular 

size, hydrophilicity, and electrical charge of the Gd-DTPA2- anion, it remains in the EC 

space. Facile (equilibrium) exchange of water molecules between the IC and the EC envi-

ronments complicates the measurement of the absolute (i.e., exchange-less) compartmental 

T1-relaxation times because mixing of the compartmental water increases the number of 

molecules that contact the CR. However, it has been shown that the addition of a sufficient 

concentration of CR can move the system from a fast-exchange-regime toward a slow-

exchange-regime (Labadie et al., 1994; Landis et al., 1999; Herbst and Goldstein, 1989; 

Donahue et al., 1994) by reducing the relaxation time of the signal from the EC space water, 

thereby reducing the exchange effects. Another reason for selecting the yeast-cell strain used 

in these experiments is that the transmembrane exchange is relatively slow as compared to 
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other biological systems (Labadie et al., 1994), such as red blood cell suspensions (Latour et 

al., 1994), and even other yeast strains (Labadie et al., 1994; Landis et al., 1999). In this 

study, confidence that the yeast-cell suspension was in the slow-exchange-regime was sup-

ported by the F-statistic analysis method, which determined that the biexponential model 

most appropriately described the data for small diffusion gradient values. Further, a slow-

exchange condition is defined as the compartmental exchange rate constant being much less 

than the difference between the relaxation rate constants for the signals from the two com-

partments (Labadie et al., 1994; Landis et al., 1999; Herbst and Goldstein, 1989). It was re-

ported by Labadie et al. (1994) that the measured exchange rate constant in a yeast-cell sus-

pension was ~2.3 s-1. The difference in apparent T1 relaxation rate constants between the IC 

and the EC spaces for the present experiments is 12 s-1, which further supports the contention 

that the yeast-cell NMR system is in the slow-exchange-regime when the extracellular con-

centration of CR is 3 mM. 

 Using CR in a yeast-cell suspension, we have successfully demonstrated a method for de-

convolving compartmental apparent diffusion coefficients based on differences in the respec-

tive T1 relaxation times of the two compartmental 1H2O signals. The application of this 

method to an animal model could be used to study the in vivo compartmental (IC and EC) 

relaxation time constants and ADCs of tissue such as muscle or brain. Further, tissue changes 

resulting from injury or disease could be measured with respect to each compartment indi-

vidually. Specifically, since Moseley et al. (1990) demonstrated a decline in the ADC of 

cerebral tissue water after cerebral ischemia resulting from stroke, there has much specula-

tion regarding the mechanisms causing the ADC decline. If CR could be successfully used to 

alter the relaxation time constants of the cerebral EC compartment, it should be possible to 
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employ this method to assign the observed ADC components, determine the cerebral IC and 

EC apparent 1H2O T1 relaxation times, and the water ADC values. This could lead to better 

understanding of the underlying mechanism responsible for the water ADC changes during 

cerebral ischemia. 
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9.1 Preface 

The reason for the apparent diffusion coefficient (ADC) of water decline in cerebral ischemia 

is still not well understood, and in these experiments the relative roles of the intra- and ex-

tracellular spaces are isolated via intracerebroventricular infusion of an MR contrast reagent. 

Intracellular water T1, T2, and ADC values were measured in vivo in normal and middle 

cerebral artery occluded (MCAO) rats using volume-localized, diffusion-weighted inversion-

recovery spin-echo (DW-IRSE) spectroscopy and diffusion-weighted echo-planar imaging 

(DW-EPI). My contributions to this work were development of the NMR pulse sequences, C 

and IDL programming for spectroscopic and image data analysis and statistical evaluation, 

performance of the NMR experiments, and principle authorship on the manuscript. 
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9.2 Abstract 

Diffusion-weighted imaging (DWI) is an accepted tool for detection of acute cerebral ische-

mia due to the significant changes in the apparent diffusion coefficient (ADC) of water that 

occur in ischemic brain tissue; however, the reason for the ADC decline (and hence DWI 

contrast) is still not well understood. Since conventional MR data contains the combined sig-

nals from the intracellular (IC) and extracellular (EC) spaces, it is difficult to determine the 

separate roles of these two compartments to the overall changes in water ADC. Conse-

quently, this study proposes a method of separating the NMR signals from IC and EC water 

to gain an understanding of the ADC changes that occur during acute cerebral ischemia. In-

tracerebroventricular (ICV) infusion of an MR contrast reagent (CR) was used to isolate IC 

T1, T2, and ADC values in vivo in normal and middle cerebral artery occluded (MCAO) rats 

using volume-localized, diffusion-weighted inversion-recovery spin-echo (DW-IRSE) spec-

troscopy and diffusion-weighted echo-planar imaging (DW-EPI). The presence of the EC 

contrast reagent (CR) selectively enhances the relaxation of water in the EC space and allows 

the IC and EC signal contributions to be separated based on T1-relaxation time differences 

between the two compartments.  

DW-IRSE and DW-EPI was performed in four groups (of five animals each) to study 

normal and ischemic brain tissue (both with and without the infused CR). Measurements of 

the apparent T1, T2, diffusion, and volume fraction of the IC space were performed. Informa-

tion about the EC space was calculated indirectly from the IC data. In the CR-infused, nor-

mal rat brain, the IC water was found to comprise 80% of the measure signal and had T1 and 

T2 values of 235 ± 10 ms and 46 ± 2 ms, respectively. The T1 and T2 values of the EC water 

were 48 ± 8 ms and 6 ± 2 ms, respectively, in the presence of the CR.  
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In subsequent experiments, the echo time of the NMR pulse sequences was set to >5T2 of 

the EC space in order to filter the EC signal contribution and thus allow selective ADC 

measurements of the IC water. In normal brain tissue (i.e., no ischemia or CR), the spectro-

scopic ADC value was 0.90 ± 0.02 (all ADC values ×10-3 mm2/s). Following infusion of the 

CR, the measured ADC value (presumed to be the IC ADC value only) was 0.81 ± 0.05. In 

the ischemic rat brain, the ADC values in the CR-free and CR-infused groups were 0.51 ± 

0.02 and 0.53 ± 0.07, respectively. DW-EPI experiments were performed using diffusion co-

efficients measured along the z-axis direction and as well as averaged over the x-, y-, and z-

axis directions (i.e., the average diffusivity or the trace of the diffusion tensor). In the z-axis 

direction, the ADC values were 0.81 ± 0.03, 0.75 ± 0.05, 0.51 ± 0.04, and 0.52 ± 0.05 for the 

normal, CR-infused, ischemic, and ischemic/CR-infused rat brains, respectively. The average 

diffusivity values for the same groups were 0.70 ± 0.05, 0.69 ± 0.06, 0.45 ± 0.06, and 0.44 ± 

0.06, respectively. These results suggest that the IC ADC value measured from the CR-

infused group was the major determinant of the overall ADC value measured from the nor-

mal group. Further, the statistical similarity between the ischemic and ischemic/CR-infused 

groups suggests that the ADC decline experienced during acute ischemia is dictated largely 

by changes in the IC ADC.   

 

9.3 Introduction 

Diffusion-weighted magnetic resonance imaging is sensitive to changes in tissue water diffu-

sion properties that occur during ischemia (Moseley et al., 1990; Benveniste et al., 1992; van 

Gelderen et al., 1994), however, the mechanisms of these changes are not well understood. In 

cerebral tissue, water diffusion is a complex process that involves passive Brownian motion 
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and active processes (e.g., water transport, cerebral spinal fluid (CSF) pulsation, and bulk 

motion). Restrictions to water diffusion (e.g., cellular membranes and intracellular struc-

tures), macromolecular binding, and exchange between different environments further com-

plicate the water diffusion characteristics. Furthermore, biological tissue environments in-

clude the intracellular (IC) and extracellular (EC) spaces as well as the relatively smaller IC 

organelles, microtubules, and periplasmic spaces. It is presumed that the apparent diffusion 

coefficient (ADC) of the water in the EC space is faster than the IC space, a crowded milieu 

that contains many structures to restrict diffusion.  

 A few hypotheses regarding the mechanisms of water ADC decline in ischemic tissue 

have been proposed and focus on the relative roles of water diffusion in the IC and EC 

spaces. The initial hypothesis suggested that cytotoxic edema (cellular swelling) caused by 

disruption of the energy-dependent ionic equilibrium pumps results in an influx of fast-

diffusing EC water to the slow-diffusing IC space (Moseley et al., 1990; Benveniste et al., 

1992; van Gelderen et al., 1994; Zhong et al., 1993; Anderson et al., 1996). A second hy-

pothesis proposed that the influx of EC water to the IC space causes a volume reduction in 

the EC space and a proportional increase in the restrictions to diffusion imposed by the cellu-

lar membranes (i.e., increased tortuosity) in the EC space (Sykova et al., 1994; Latour et al., 

1994; Norris et al., 1994; van der Toorn et al., 1996). More recently, it has been hypothe-

sized that in ischemic conditions energy-dependent IC microcirculation (cytoplasmic stream-

ing) is halted, resulting in a reduction in the IC water ADC (Neil et al., 1996; Wick et al., 

1995; van der Toorn et al., 1996; Duong et al., 1998). Although one mechanism may domi-

nate the ADC reduction observed during ischemia, it is more likely, given the complex nature 
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of the diffusion process, that the ADC change results from a combination of all these mecha-

nisms (Szafer et al., 1995a). 

 Attempts to separate the IC and EC properties in normal and ischemic cerebral tissue have 

focused on the use of exogenous and metabolic surrogates to gain insights about biological 

water diffusion (Neil et al., 1996; Wick et al., 1995; van der Toorn et al., 1996; Duong et al., 

1998; Duong et al., 2001). Neil et al. (1996) investigated in vivo diffusion properties of ce-

sium-133 (133Cs), an intracellular potassium analog, and found that the magnitude of changes 

in the 133Cs ADC were on the same order as the reduction in water ADC following ischemia. 

Duong et al. (1998) introduced a compartment-specific marker, 2-[19F]luoro-2-deoxyglucose-

6-phosphate (2FDG-6P), that could be selectively isolated in the IC space (via intravenous 

infusion) or in the EC space (via intraventricular infusion). Duong et al. found that the 

changes in the IC and EC 2FDG-6P ADCs during global ischemia in a rat model were ap-

proximately equal (37% and 40%, respectively) and matched the water ADC decline of 40%. 

Both studies support the hypothesis that diffusion changes in the IC space may dominate the 

reduction in ADC; however, in both instances, water ADC is being inferred from the behav-

ior of an exogenous molecular tracer. Similar results have been observed in spectroscopic 

studies of cerebral metabolites. Focal ischemia in rat brain results in a significant reduction in 

the ADCs of metabolites, including N-acetyl-aspartate (NAA), total creatine (tCR), choline 

(Cho)—suggesting that IC diffusion properties dominate the ADC change during ischemia 

(Wick et al., 1995; van der Toorn et al., 1996). The recent publication from Duong et al. 

(2001) attempts to infer the ADC of EC water from ADC measurements of mannitol, 

phenylphophonate, and polyethylene glycol. These results suggest that in both normal and 

ischemic conditions the IC and EC ADC values are very similar, however the larger IC vol-
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ume contributes the dominant term. Consequently, the interpretation of these data must be 

tempered by the fact that the exogenous tracer (or metabolite) and water may have different 

molecular size, diffusion coefficient temperature dependence, macromolecular binding prop-

erties, and exchange properties both in normal and ischemic tissue.  

 Other attempts to isolate the IC and EC diffusion properties have employed fitting the dif-

fusion signal attenuation curve to a sum of two decaying exponentials (biexponential model). 

Neindorf et al. (1996) first showed that using large range of b-values (up to 10,000 s/mm2) 

amplified the non-monoexponential nature of the diffusion signal attenuation curve. These 

investigators found that the biexponential fit of diffusion signal attenuation curves in rat 

brain yielded a slow ADC value of 0.83 ± 0.03 × 10-3 mm2/s and a fast ADC value of 1.68 ± 

0.1 × 10-3 mm2/s, with the fast-diffusing component accounting for 80% ± 2% of the signal. 

If, as hypothesized, the EC water ADC is faster than the IC water ADC, these findings do not 

agree with the known IC / EC fractions, where 80% of cerebral tissue is IC space in normal 

brain tissue. Similar results have been obtained by Mulkern et al. (1999, 2000) in studies per-

formed in human brain. In the latter study, the authors state that although it was appealing to 

assign non-monoexponential behavior to two independently diffusing compartments, namely 

IC and EC, there was not enough evidence to draw such a conclusion (Mulkern et al., 2000). 

Other recent work, from Clark and Le Bihan (2000), suggested that bias introduced by T2 

relaxation time differences between IC and EC water and diffusion anisotropy could compli-

cate the biexponential analysis and explain some of the volume fraction discrepancies. 

Lastly, more complicated diffusion analyses have involved three component exponential fit-

ting to the diffusion signal attenuation curve (Assaf and Cohen, 1998; Pfeuffer et al., 1999), 

however, it should be noted that the three exponentials from each study are not the same. In 
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short, non-monoexponential diffusion signal attenuation does not necessarily imply multiple 

compartments (Helmer et al., 1995). In fact, the complex diffusion process can result in non-

monoexponential signal decay due to restrictions, exchange, relaxation time effects, and dif-

fusion time selection as well as compartmental ADC differences. 

 Since conventional MR data contain the combined signals from the IC and EC spaces, it is 

difficult to determine the separate roles of these two compartments to the overall changes in 

water ADC during cerebral ischemia. To date, no direct MR measurements of IC and EC wa-

ter diffusion have been performed in vivo. In this study, we will demonstrate a method of in-

tracerebroventricular (ICV) contrast reagent (CR) infusion to isolate IC T1, T2, and ADC val-

ues in vivo in normal and middle cerebral artery occluded (MCAO) rats via volume-

localized, diffusion-weighted inversion-recovery spin-echo (DW-IRSE) spectroscopy (Silva 

et al., in review) and diffusion-weighted echo-planar imaging (DW-EPI).  This method em-

ploys the use of an MR CR to selectively enhance relaxation of water in the EC space in or-

der to separate the respective IC and EC signal contributions based on T1-relaxation time dif-

ferences. 

 

9.4 Methods 

9.4.1 Animal Preparation 

9.4.1.1 CR Infusion Procedure 

Intracerebroventricular infusion of CR (ProHance, Gd-HP-D03A, Bracco Diagnostics, 

Princeton, NJ) was performed on male Sprague-Dawley rats (290−330 g). Anesthesia was 

initiated with intraperitoneal injection of chloral hydrate (400 mg/kg). The infusion proce-

dure followed that detailed by Duong et al. (1998). The animal was fixed in a stereotaxic 
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frame (Kopf Instruments, Inc., Tujunga, CA), and the skull was exposed with a midline inci-

sion along the top of the animal’s head. Bilateral burr holes (ca 1.5 mm ∅) positioned dorsal 

to the lateral ventricles were made using a cordless rotary tool (Craftsman, Inc., USA) and a 

0.635 mm bit. The positions were fixed using the stereotaxic device at 1.0 mm anterior and 

1.2 mm lateral to bregma and 3.5 mm below the dura. A total volume of 20 µl (10 µl per ven-

tricle) of 0.25 M ProHance (half dilution of stock) was infused continuously using an infu-

sion pump (Harvard Apparatus, Inc., Holliston, MA) over a 2-hr period. Anesthesia was 

maintained during the infusion using choral hydrate. Animal body temperature was continu-

ously monitored via a rectal probe and was maintained at 37° C with regulated heat lamp. 

Following the infusion period, the animal was allowed to recover from anesthesia for ap-

proximately 1 hour to minimize seizure and death.  

 

9.4.1.2 Focal Ischemia  

For two groups in this study, focal cerebral ischemia was induced with the intraluminal su-

ture MCAO method as initially described by Koizumi et al. (1986). Briefly, the right com-

mon carotid artery, internal carotid artery and external carotid artery were exposed through a 

midline incision of the neck. The proximal portions of the right common carotid artery and 

external carotid artery were ligated with 5-0 surgical sutures. A 4-0 monofilament nylon su-

ture, its tip thermally rounded and silicone coated, was inserted through an arteriotomy of the 

right common carotid artery 3 mm below the carotid bifurcation. The suture occluder was 

advanced into the internal carotid artery until a mild resistance was felt, indicating that the 

occluder had entered the anterior cerebral artery and thus blocked the blood flow from the 
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anterior communicating artery and the posterior communicating artery to the middle cerebral 

artery.  

 

9.4.2 MR Methods 

MR experiments were performed with a GE CSI-II 2.0T/45 cm imaging spectrometer (GE 

NMR Instruments, Fremont, CA) operating at 85.56 MHz for 1H and equipped with ±20 

G/cm self-shielding gradients. The animals were fixed in a homebuilt birdcage RF coil with 

tooth- and ear-bar restraints and placed into the MRI magnet bore. Inside the magnet, anes-

thesia was maintained with 1.0% isoflurane delivered in air at 1.0 L/min. Body temperature 

was continuously monitored using a rectal probe and was maintained at 37° C by means of a 

thermostatically-regulated heated-air flow system.  

 

9.4.3 CR Steady-State Equilibrium and Stability 

Initial experiments were conducted to evaluate the quality of the ICV CR infusion method. 

High-resolution T1-weighted images (T1WIs) were acquired on three animals to evaluate the 

dispersion and steady-state equilibrium of the infused CR in the animal brain. Eight, 2-mm-

thick, coronal images centered about the optic chiasm were acquired every 30 minutes for 5 

hours with TR = 300 ms and TE = 20 ms. An imaging field-of-view (FOV) of 25.6 mm × 

25.6 mm and a pixel resolution of 256 × 256 provided an in-plane resolution of 100 µm × 

100 µm.  

 During spectroscopic and diffusion MRI experiments, the CR infusion was evaluated us-

ing transverse relaxation time (T2) maps of the brain immediately before and after the ex-

periment. A multislice, double spin-echo (SE), EPI pulse sequence was used to map the T2 of 
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the brain. T2-weighting EPI (T2W-EPI) was achieved by varying the echo time for the first 

echo. T2 maps were constructed from nine T2-weighted EPIs with TR = 5s, NEX = 4, and 

TE1 values between 20 and 110 ms. The echo time for the second echo was the same as the 

echo time for the DW-EPI sequence (TE2 = 74 ms). Eight contiguous, coronal, 2-mm-thick 

slices, which corresponded to the eight DW-EPI slices, were acquired with FOV = 25.6 mm 

× 25.6 mm and pixel resolution = 64 × 64. Using a linear least-squares regression, maps of 

the T2 values were calculated from the natural logarithm of the signal intensity versus TE 

value; the slope of the best-fit line was used to calculate the T2 value. 

 

9.4.4 Volume-localized DW-IRSE Spectroscopy 

Prior to spectroscopic relaxation time and ADC measurements, scout images were acquired 

to localize the 4 × 4 × 4 mm3 volume-element in the animal brain. First, a SE-EPI sequence 

was used to determine the imaging offset in the coronal plane such that subsequent images 

were centered about the optic chiasm. Second, a high-resolution, T1WI was acquired in the 

coronal plane to determine the optimal placement of the localized voxel. Spectrometer soft-

ware was used to choose a subcortical voxel (4 × 4 × 4 mm3), which did not overlap the ven-

tricular space, from the T1WI. A T1WI image of the localized volume was acquired to vali-

date the voxel location.   

 

9.4.5 DW-IRSE Sequence 

The DW-IRSE sequence employed a PRESS sequence that was preceded by an inversion 

pulse and contained diffusion-sensitizing gradients. Primer-crusher gradients about the 180° 

RF pulses were added to remove spurious out-of-voxel contamination of the signal. The ef-
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fective diffusion-sensitizing gradient strengths (b-values) were calculated including the 

cross-terms and contributions of the crusher gradients (Mattiello et al., 1994). To ensure that 

the correct effective b-values were calculated, ADC measurements made using the DW-IRSE 

pulse sequence and the recalculated b-values were compared with ADC measurements made 

using a standard Stejskal-Tanner pulsed-field gradient (PFG) sequence on a water phantom.  

 Based on the high-resolution, scout T1WIs, coordinates for the localized volume were de-

termined for the DW-IRSE sequence. For all spectroscopic experiments, thirty-two inversion 

times (logarithmically spaced from 5 to 1800 ms) were acquired to calculate the T1-

relaxation curve. Half-echoes were acquired with a spectral width of ±1kHz and 8k data 

points (TR = 4 s, NEX = 2). Spin-spin relaxation time measurements were made using the 

DW-IRSE sequence by acquiring the full IR data set at a constant diffusion-gradient strength 

of 4 G/cm (to serve as a primer-crusher gradient pair) and TE values of 13.6, 15, 20, 30, 50, 

and 80 ms. ADC measurements were made at a constant TE value (42.8 ms) by changing the 

strength of the diffusion-sensitizing gradient pulse (g) over successive experiments. Half-

sine-shaped, diffusion-sensitive z-gradient pulses were used with amplitudes of 4, 5, 15, and 

16 G/cm (b-values = 24.5, 36.6, 308.7, and 348.6 s/mm2, respectively). Other acquisition pa-

rameters were diffusion-sensitive gradient pulse width (δ) = 4.0 ms and diffusion-sensitive 

gradient pulse separation (∆) = 30.6 ms (tdiff = 27.8 ms).  Spectroscopic DW-IRSE data was 

processed using custom IDL code (Interactive Data Language, RSI, Inc., Boulder, CO). 

Briefly, the raw spectroscopic data was Fourier transformed, filtered using a 5-point Gaus-

sian filter moving window, and interpolated to a Lorentzian function. The maximum ampli-

tude of the interpolated peak height was stored as the signal intensity value for that particular 

data set. 
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9.4.6 DW-EPI  

Multislice, DW-EPI was used to map the ADC of brain water. Eight contiguous, coronal, 2-

mm-thick slices, were acquired with a FOV = 25.6 mm × 25.6 mm, pixel resolution = 64 × 

64, TR = 5 s, TE = 74 ms, EPI data acquisition time = 65 ms, NEX = 2, δ = 7 ms, and ∆ = 35 

ms (tdiff = 33.25 ms). Half-sine-shaped, diffusion-sensitive gradient pulses were applied along 

one of the three orthogonal gradient axes (x, y, or z).  In separate experiments, nine b-values, 

ranging from 19 to 1531 s/mm2, were used to measure the ADC of water along each of the 

three diffusion-gradient directions (ADCx, ADCy, and ADCz). Using a linear least-squares 

regression, the natural logarithm of the signal intensity was fitted to the b-values, where the 

slope of the fitted line is proportional to the ADC.  The average ADC (ADCav) map was cal-

culated by averaging the three orthogonal ADC values on a pixel-by-pixel basis. The combi-

nation of the 4th and 5th imaging slices (the center slices) corresponded to the region of the 

DW-IRSE spectroscopic voxel. 

 

9.4.7 Experimental Protocols 

In preliminary experiments, the stability of the CR infusion method was evaluated using 

high-resolution T1WI, however, due to time constraints, this imaging protocol was not used 

during the subsequent spectroscopy and imaging experiments. T2W-EPI was performed to 

verify CR infusion stability for all other experiments. The T2W-EPIs of CR-enhanced brain 

were compared to the T2W-EPIs of normal rat brain to verify that the CR was distributed uni-

formly throughout the brain. Further, T2W-EPIs acquired before diffusion measurements 

were compared to T2W-EPIs acquired immediately after diffusion measurements; no change 
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in tissue T2 suggested that the CR-enhancement remained constant during the diffusion     

experiments. 

 After the characteristics and stability of the CR-infusion were established, a series of ex-

periments was conducted to determine the TE-dependence of the cerebral tissue T1 relaxation 

time. Four male Sprague-Dawley rats received ICV CR infusion to determine the loss of EC 

signal contribution due to the CR-enhanced T2 decay as a function of TE. Six TE values, 

ranging from 13.6−80 ms, were employed using the DW-IRSE sequence with constant diffu-

sion-weighting. The ultimate goal of this experiment was to find the TE value that corre-

sponded with the loss of signal from the EC space. First, the IR data sets were fitted to both 

the biexponential and monoexponential models to track the IR change from two-component 

(IC and EC signals) at short TEs to one-component (only IC signal) at long TEs. Second, the 

percent change in T1 was analyzed as a function of TE. At short TE values, the contribution 

of the fast-relaxing EC signal would presumably reduce the overall (bulk) T1 relaxation time. 

When the TE is sufficiently long to allow complete dephasing of the EC signal, only the IC 

water will contribute to the measured T1 value, and the T1 will lose significant dependence on 

the TE. Experiments were conducted 2−3 hours following CR infusion. 

 To characterize the changes in the ADC of cerebral tissue water during ischemia, 20 male 

Sprague-Dawley rats were divided into four groups, each with five animals. Spectroscopic 

data were collected with the volume-localized DW-IRSE sequence, and DW imaging ex-

periments were conducted with the DW-EPI sequence. The TE values of both the spectro-

scopic and imaging sequences—42.8 and 74 ms, respectively—were chosen to exceed ~5 

times the T2 of the CR-enhanced EC space. The DW-EPI sequence did not involve an IR 

pulse; and therefore, no T1 fitting was required. In the imaging experiments, the TE was cho-
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sen such that for the CR-enhanced animal groups, only the IC signal contributed to the meas-

ured signal, and the diffusion signal attenuation curve was fitted by a monoexponential.  

 The Normal animal group in the ADC experiments did not undergo any surgical proce-

dures (i.e., neither CR infusion nor focal ischemia). The MCAO group received focal ische-

mia via MCA occlusion. ADCs measured in the Normal and MCAO groups represent the 

standard experimental protocol, where the measured ADC is the combined ADC of the IC 

and EC water. The ICV animal group received an ICV infusion of CR but no focal ischemia. 

The ICV+MCAO group received both ICV infusion of CR and focal ischemia via MCA oc-

clusion. For the CR-enhanced groups (ICV and ICV+MCAO), the measurement of the ADC 

is from the IC space due to the CR-induced loss of EC signal contribution. Experiments were 

conducted 2−3 hours following CR infusion. 

 

9.5 Data Analysis 

9.5.1 CR Steady-State Equilibrium and Stability 

T1WIs were acquired to detail the temporal changes in cerebral-tissue signal intensity follow-

ing the infusion of the CR. The mean signal intensity on the T1WIs was plotted in several re-

gions-of-interest (ROIs) as a function of time to determine the stability of the infusion, the 

time window for diffusion measurements, and the extent of CR distribution throughout the 

cerebral tissue. A similar ROI analysis was performed on the T2W-EPIs. 
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9.5.2 Experimental Data Modeling 

The dependence of the nuclear magnetization on the T1 and T2 relaxation times and the ADC 

the spin-bearing molecule in a homogenous sample excited by the DW-IRSE pulse sequence 

can be derived from the Bloch equations: 

( ) ( )ADCbT
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TI

021 eee21MADC,T,TM 21 −
−−






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



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where M(T1, T2, ADC) is the magnetization measured at a particular inversion time (TI), 

echo time (TE), and b-value (b). The b-value is determined for half-sine-shaped diffusion-

sensitizing gradient pulses of diffusion gradient separation (∆), diffusion gradient strength 

(g), and diffusion gradient duration (δ) according to: (2γδg/π)2(∆-δ/4). In MR pulse se-

quences with imaging or crusher gradients during the diffusion period, the b-value is modi-

fied to reflect the presence of the additional gradients (24). The equilibrium magnetization is 

denoted by M0; α (ranging from 0 to 1) is the efficiency of the inversion pulse; and γ is the 

gyromagnetic ratio.  

 For measurements made at a constant TE and diffusion-weighting, Eq. [9.1] can be rewrit-

ten to express M with the constant T2 relaxation and diffusion effects being subsumed with 

M0, giving 0M′ : 
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where 0M ′′  contains the effects of both transverse relaxation and diffusion. To measure the 

molecule's ADC value, the IR data collection must be repeated at different diffusion g values 

at constant TE. At each constant g value, the DW-IRSE data set is then fitted with Eq. [9.2] 

for 0M ′′ , T1, and α. The value of ADC can be calculated from the dependence of 0M ′′  on the 
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b-value. Similarly, the T2 of the sample can be measured from the change in 0M ′′  as a func-

tion of TE if the data collection is performed at multiple TEs and constant b-value. 

 For a sample containing two components in exchange equilibrium—for example, signals 

from the IC and EC compartments having different relaxation times and self-diffusion coeffi-

cients—Eq. [9.1] can be modified to include the signals arising from each component: 
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where f0M  and s0M  are the apparent equilibrium magnetizations of the fast (f) and slow (s) 

relaxing components, respectively, and T1f and T1s are the respective apparent longitudinal 

relaxation time values. The respective apparent transverse relaxation times are given by T2f 

and T2s, while ADCf and ADCs are the respective component apparent diffusion coefficients. 

The inversion efficiency, α, is assumed to be the same for both components. Component 

separation based on differences in the T1 relaxation time constants permits separation of 

compartmental diffusion coefficients, even if the ADC of the components are similar. Fur-

ther, if the TE of the experiment is longer than five times T2f, the contribution of the fast-

relaxing component will be eliminated, and Eq. [9.3] reduces to Eq.[9.1]. 

 As shown in Eq. [9.2], experiments conducted at a constant TE and diffusion-weighting 

can be rewritten to express M with the constant transverse relaxation and diffusion effects: 
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and solving for f0M ′′ , s0M ′′ , T1f, T1s, and α. Then, as shown previously, the component diffu-

sion coefficients (ADCf and ADCs) can be calculated from the dependence of f0M ′′  and s0M ′′  

on the b-value. The fraction of the signal from component f, ff, and component s, fs, can be 

calculated from the magnetizations at b = 0, ( )0M f0′′  and ( )0M s0′′ , that is, when no diffusion-

weighting is applied: 

s0f0

f0
f MM

M
f

′′+′′
′′

=    and   
s0f0

s0
s MM

M
f

′′+′′
′′

= . [9.5a, 9.5b] 

This two-site approximation assumes that components f and s are the only signal sources in 

the sample (i.e., ff + fs = 1).  

 For all spectroscopic experiments, the IR data was fitted to both the mono- and biexponen-

tial data models—Eqs. [9.2] and [9.4], respectively. To calculate the T2 or ADC from the fit-

ted IR data, the natural logarithm of the calculated M0s was fitted to the TE- or b-values, re-

spectively, using linear least-squares regression, where the slope of the line is proportional to 

the T2 or ADC. F-statistic analysis was performed to determine the best fit model. The F-

statistic tests the hypothesis that the biexponential model is statistically different than the 

monoexponential model using the relationship: 

,
SS
SSF

FF

EE

ν
ν=  [9.6] 

where SSF is the sum of squares and νF  is the number of degrees of freedom for the biexpo-

nential model in Eq. [9.4] (the full model). SSE is the sum of squares and νE  is the number of 

degrees of freedom for the extra terms of the biexponential model as compared to the mono-

exponential model (SSE = SSmono – SSF). As the IR data transitions from biexponential to 

monoexponential, the F-statistic (F in Eq. [9.6]) approaches zero, indicating that the mono-
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exponential model is statistically equal to the biexponential model; therefore, the above hy-

pothesis is not true and the monoexponential model is the most appropriate model. For the 

spectroscopic ADC studies, the F-statistic was used to confirm that the monoexponential 

model provided the best fit of the IR data (i.e., to prove that the TE was long enough to com-

pletely eliminate the EC signal).  

 

9.5.3 ROI analysis of ADCz and ADCav Maps 

ROI analysis of the ADCz and ADCav maps was performed to (1) confirm the spectroscopic 

ADC measurements and (2) to select specific tissue regions for ROI analysis. A 10 pixel × 10 

pixel × 2 pixel ROI (4 × 4 × 4 mm3) with the center coordinates derived from the spectro-

scopic experiment was analyzed on the ADCz images. The location of the ROI was chosen to 

closely match the spectroscopic volume but was not corrected for differences due to resolu-

tion changes or EPI distortions. The large ADCz ROI was compared with the ADCs meas-

ured along the z-axis using spectroscopy. ADCav data was obtained from the average ADC 

values from three orthogonal gradient orientations, which minimizes the confounding effects 

of diffusion anisotropy in the brain. Finally, 3 pixels × 3 pixels × 1 pixel (1.2 × 1.2 × 2 mm3) 

ROIs in the subcortical region on the 4th and 5th slices of ADCav maps were analyzed. All 

ROI data is presented as the mean and standard deviation (σ). Statistical significance be-

tween animals was tested using a two-tailed t-test with p-values less than 0.05 considered 

significant. 

 

9.6 Results 

9.6.1 CR Steady-State Equilibrium and Stability 
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The steady-state equilibrium and stability of the CR infusion was determined using T1- and 

T2-weighted imaging sequences. Figure 9.1 shows a representative T1WI and a plot of the 

signal intensity over time in an ROI (denoted by the white box). The overall signal intensity 

of the T1WIs decreases during the period 0.5 hours to 2 hours post infusion as the CR 

redistributes throughout the brain. The connectivity of the cerebral ventricles and pulsations 

of CSF enhance CR mixing in the brain and allow CR diffusion to occur from both the inner 

regions of the brain (i.e., the lateral ventricle where the infusion is performed) as well as 

from the outer subarachnoid space. The figure inset plots the percent change in signal inten-

sity in a 7 pixel × 7 pixel ROI in the subcortical tissue—approximately in the center of the 

localized-volume for diffusion measurements. As the CR in the ventricular space is redistrib-

uted into the deeper regions of the brain, the signal intensity measured with the ROI de-

creases until it finally achieves a steady-state at approximately 3 hours. 

 Following the 2-hour infusion and 30 minute imaging preparation periods, significant dis-

persion of the CR may have already occurred; therefore, the infusion method was also evalu-

ated by measuring the cerebral tissue T2 relaxation time from T2W-EPI in normal and ICV-

infused animals. The normal T2 in subcortical ROIs measured from T2W-EPI was 75 ± 6 ms. 

Two hours after ICV infusion of CR, the T2 measured from the same region of the brain was 

58 ± 7 ms. Four hours after the infusion, following T2 and ADC spectroscopy and imaging, 

the measured T2 within the ROI was 59 ± 7 ms. 

 

9.6.2 TE-dependence of IR Curves 

Localized DW-IRSE spectroscopy was performed on three animals to determine the TE-

dependence of the IR curves. In separate experiments, IR data were acquired at TE values of 
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13.6, 15, 20, 30, 50, and 80 ms at a constant diffusion-weighting. Each IR data set was fitted 

with the mono- and biexponential equations, Eqs. [9.2] and [9.4], respectively, and F-statistic 

analysis was performed to determine the most appropriate model for the data. The IR data 

sets acquired at TE values equal to 13.6, 15, and 20 ms were best described mathematically 

by the biexponential model (Eq. [9.4]). The data sets acquired at 30, 50, and 80 ms were most 

appropriately fitted with the monoexponential model (Eq. [9.2]). This finding suggests that 

using this infusion protocol, the relaxation times of the water in EC space have been suffi-

ciently shortened such that, for echo times greater than 30 ms, the signal from the EC space 

is sufficiently attenuated that it does not contribute significantly to the NMR signal. Figure 

9.2 is a semi-log plot of the a representative set of IR data versus TE to compare the bi- and 

monoexponential data models. 
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Figure 9.1.  A representative T1WI and a plot of the signal intensity
overtime in a 7 pixel × 7 pixel subcortical ROI (denoted by the white
box). As the CR in the ventricular space is redistributed into the
deeper regions of the brain, the signal intensity measured with the
ROI decreases until it finally achieves a steady-state at
approximately 3 hours. 
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 The T1 relaxation time constant measured using the monoexponential model (Eq. [9.2]) 

assumes a single contributing component or, more appropriately, a continuous distribution 

relaxation time constants water molecules in similar environments. The change in this “bulk” 

measure of T1 as a function of TE is shown in Fig. 9.3. Note that there is a significant change 

in the T1 when the TE is varied from 13.6−30 ms, however, there is no significant difference 

in the change in T1 measured at TEs of 30, 50, or 80 ms due to the removed contribution of 

the fast-relaxing EC water. 
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Figure 9.3. The percent change in bulk T1 (%∆T1) as a function of 
TE. There is a significant change in the T1 when the TE is varied 
from 13.6−30 ms, however, there is no significant difference in the 
change in T1 measured at TEs of 30, 50, or 80 ms. At short TEs, the 
fast-relaxing EC water contributes significantly to the measured T1 
value, which is the sum of the IC and EC signal components; how-
ever, as the TE is increased, the contribution the faster relaxing EC 
water becomes increasingly attenuated. 
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Figure 9.2. Semi-log plots of the IR data fitted to the biexponential and monoexponential models. (a) 
The DW-IRSE data set acquired at TE of 13.6 ms is best described by the biexponential model (). 
The monoexponential model (· · ·) poorly describes the overall curvature, which indicates an error in 
fitting for the relaxation time constant, and also increasingly deviates as the TI increases, which indi-
cates a misestimation of M0. (b) The bi- and monoexponential fitted models ( and · · ·, respectively) 
of the DW-IRSE data set acquired at TE of 80 ms are highly similar and overlap on the plot. In this 
case, the biexponential model over fits the data, and the monoexponential model is most appropriate. 
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Table 9.1 summarizes the apparent values of T1, T2, and fractional contribution from the IR 

data sets. The apparent T1 values calculated from the biexponential model are 48 ± 8 ms for 

water in the fast-relaxing EC space and 235 ± 10 ms for water in the slow-relaxing IC space 

(T1f and T1s in Eq. [9.4]). Changes in f0M ′′  and s0M ′′  from Eq. [9.4] plotted versus TE can be 

used to estimate T2f and T2s, which were found to be 6 ± 2 ms and 46 ± 2 ms, respectively. It 

is important to note that an EC T2 time constant, T2f, of 6 ms is consistent with the contention 

that the EC signal is attenuated completely for TEs greater than 30 ms. Lastly, the fractional 

contributions of f0M ′′  and s0M ′′  to the measured signals were calculated from Eq. [9.5]. The 

fraction of the fast-relaxing EC signal, ff, was 0.20 ± 0.08, and thus the slow-relaxing IC sig-

nal, fs, fraction was 0.80 ± 0.08. These values correspond well with the known 0.8:0.2 ratio 

of IC volume to EC volume in normal cerebral tissue.  

 

 T1 [ms] T2 [ms] Fraction [unitless] 

IC space 235 ± 10 46 ± 2 0.80 ± 0.08 

EC space 48 ± 8 6 ± 2 0.20 ± 0.08 

 
Table 9.1.  The apparent values of T1, T2, and fractional contribution 
from the DW-IRSE data sets. The apparent T1 values are calculated 
from the biexponential model (T1f and T1s in Eq. [4]). Changes in 

f0M ′′  and s0M ′′  from Eq. [9.4] plotted versus TE were used to 
estimate T2f and T2s. The fractional contributions of f0M ′′  and s0M ′′  
to the measured signals were calculated from Eq. [9.5] and 
correspond well with the known IC / EC volume fraction in normal 
cerebral tissue. 

 

9.6.3 Spectroscopic Experiments 

Localized DW-IRSE spectroscopy was performed on four groups of five animals each to de-

termine the ADC in normal rat brain, CR-enhanced rat brain, ischemic rat brain, and CR-
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enhanced, ischemic rat brain. Table 9.2 contains the result of the spectroscopic experiments. 

The ADC measured in the normal rat brain (Normal) from the subcortical volume was 0.90 ± 

0.02 × 10-3 mm2/s. The ADC measured in the CR-enhanced rat brain (ICV) was 0.81 ± 0.05 × 

10-3 mm2/s. The ADC measured in the ischemic rat brain (MCAO) was 0.51 ± 0.02 × 10-3 

mm2/s. The ADC measured in the CR-enhanced, ischemic rat brain (ICV+MCAO) was 0.53 

± 0.07 × 10-3 mm2/s. 

 

9.6.4 Imaging Experiments 

Results of the DW-EPI are also shown in Table 9.2. 10 pixel × 10 pixel ROIs (4 × 4 mm2) 

were chosen from the 4th and 5th slices (each 2 mm thick) of the calculated ADCz maps in the  

same coordinate locations used for the localized spectroscopy. The ADCz measured in the 

normal rat brain (Normal) from the volume was 0.81 ± 0.03 × 10-3 mm2/s. The ADCz meas-

ured in the CR-enhanced rat brain (ICV) was 0.75 ± 0.05 × 10-3 mm2/s. The ADCz measured 

in the ischemic rat brain (MCAO) was 0.51 ± 0.04 × 10-3 mm2/s. The ADCz measured in the 

CR-enhanced, ischemic rat brain (ICV+MCAO) was 0.52 ± 0.05 × 10-3 mm2/s. 

 Table 9.2 also shows the results of ROI analysis on ADCav maps using smaller ROIs (3 

pixels × 3 pixels × 1 pixel or 1.2 × 1.2 × 2 mm3). The ADCav measured in the normal rat 

brain (Normal) from the volume was 0.70 ± 0.05 × 10-3 mm2/s. The ADCav measured in the 

CR-enhanced rat brain (ICV) was 0.69 ± 0.06 × 10-3 mm2/s. The ADCav measured in the 

ischemic rat brain (MCAO) was 0.45 ± 0.06 × 10-3 mm2/s. The ADCav measured in the CR-

enhanced, ischemic rat brain (ICV+MCAO) was 0.44 ± 0.06 × 10-3 mm2/s. 
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 Spectroscopic ADCz 
[××××10-3 mm2/s] 

Imaging ADCz 
[××××10-3 mm2/s] 

Imaging ADCav 
[××××10-3 mm2/s] 

Normal Group 0.90 ± 0.02 0.81 ± 0.03 0.70 ± 0.05 

ICV Group 0.81 ± 0.05 0.75 ± 0.05 0.69 ± 0.06 

MCAO Group 0.51 ± 0.02 0.51 ± 0.04 0.45 ± 0.06 

ICV+MCAO Group 0.53 ± 0.07 0.52 ± 0.05 0.44 ± 0.06 

 
Table 9.2.  Localized DW-IRSE spectroscopy and imaging ADC 
values from four groups of five animals: normal rat brain (Normal), 
CR-enhanced rat brain (ICV), ischemic rat brain (MCAO), and CR-
enhanced, ischemic rat brain (ICV+MCAO). In the spectroscopic ex-
periments, the ADCz was calculated from the dependence of the 
magnetization extracted from a series of inversion-recovery experi-
ments on the b-value. In the imaging experiments, ADCz and ADCav 
were calculated directly from the dependence of the magnetization 
on the b-value. 

 

9.7 Discussion 

Since conventional MR data contains the combined signals from the IC and EC spaces, the 

unique classification of IC and EC water characteristics is challenging. In this study, the ap-

parent T1, T2, fractional contributions, and diffusion values in the IC and EC spaces of nor-

mal and ischemic rat brain were measured via selective reduction of the EC water signal by 

ICV CR infusion. Direct infusion of the CR into the ventricular space was required because 

CR injected intravascularly does not cross the blood-brain barrier into the EC space due to 

the size and hydrophilicity of the Gd-HP-D0H3A complex. These features ensure that, once 

in the EC space, the infused CR will remain in the EC space (i.e., it will not cross the cell 

membrane into the IC space nor will it be cleared by the vasculature). Previously, we have 

performed studies in a model yeast-cell system that demonstrate the use of CR-enhanced, dif-
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fusion-weighted, inversion-recovery NMR for the separation of IC and EC apparent T1, T2, 

fractional contributions, and diffusion values (Silva et al., in review). 

 The stability of the CR infusion was assessed in an initial study of three animals and dur-

ing all subsequent experiments. During the initial experiments, high-resolution T1-weighted 

imaging was performed in an attempt to correlate CR dispersion with signal intensity 

changes on the images. Changes in tissue T1 following infusion of CR are consistent with the 

isolation of CR to the EC space because intravascular CR (e.g., used for cerebral perfusion 

studies) does not produce substantial changes in tissue T1. The initial studies indicated that 

there was a sufficient time window of CR-stability during which other measurements could 

be made. During all subsequent experiments, the presence and stability of the CR was as-

sessed using T2W-EPI, which was performed immediately before and after T1 and diffusion 

measurements. The T2W-EPIs of CR-enhanced brain were compared to the T2W-EPIs of 

normal rat brain to verify that the CR was distributed uniformly throughout the brain. Fur-

ther, T2W-EPIs acquired before diffusion measurements were compared to T2W-EPIs ac-

quired immediately after diffusion measurements; no change in tissue T2 was used to confirm 

that the CR-enhancement (and hence concentration) remained constant during the diffusion 

experiments. 

 Classification of the acquired DW-IRSE data as either two- or one-compartment was 

based on the results of F-statistic analysis and changes in the measured T1 relaxation time as 

a function of TE. DW-IRSE data acquired at a TE greater than 30 ms were statistically best 

described by the monoexponential model; whereas at shorter TEs, the data were best de-

scribed by the biexponential (two-component) model. The measured data transitioned from 

biexponential to monoexponential as the TE was increased as a result of T2-attenuation of the 
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fast-relaxing (CR-enhanced) EC NMR-visible water signal. In the semi-log plot of Fig. 9.2, 

the IR data was fitted to both the biexponential and monoexponential models. The DW-IRSE 

data set acquired at TE of 13.6 ms (•) was best described by the biexponential model (). 

By contrast, the monoexponential model (· · ·) poorly described the overall curvature, indicat-

ing an error in fitting for the relaxation time constant, and increasing deviations with increas-

ing TI, indicating a misestimation of M0. The bi- and monoexponential fitted models ( and 

· · ·, respectively) of the DW-IRSE data set acquired at TE of 80 ms (×) were identical and 

overlap on the plot. In this case, the biexponential model over fits the data, and the monoex-

ponential model is most appropriate. As previously noted, for TE > 30 ms, the fast-relaxing 

EC water signal was eliminated by T2, leaving only signal from the slower-relaxing IC space 

to contribute to the measured NMR signal. A simple test of this hypothesis is that the slow-

relaxing T1 (T1s) measured using the biexponential fit at short TEs (i.e., TE < 30 ms) should 

match the T1 measured from the monoexponential fit at the longer TEs. In other words, when 

the EC signal is sufficiently attenuated, the measured T1 should be statistically similar to T1s, 

which we contend is the apparent IC T1 relaxation time. This contention was substantiated by 

the result that the apparent T1s ( 235 ± 10 ms) was statistically identical to the monoexponen-

tially fitted T1 value of 233 ± 21 ms. 

 The second method used to determine the TE-dependence of the DW-IRSE data sets was 

to characterize the change in the T1 value fitted from the monoexponential model (Eq. [9.2]) 

as a function of TE. It was hypothesized that if the IR data sets were fitted to the monoexpo-

nential model regardless of the number of contributing components (i.e., measuring the 

“bulk” T1), the contribution of the fast-relaxing EC water to the measured magnetization 

would diminish as the TE increased due to T2 relaxation. At short TEs, the fast-relaxing EC 
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water contributes significantly to the measured T1 value, which is the sum of the IC and EC 

signal components; however, as the TE is increased, the contribution of the faster relaxing 

EC water becomes increasingly attenuated. At some TE value, the EC water would no longer 

significantly contribute to the measured signal and the fitted bulk T1 value would no longer 

exhibit a TE dependence. As seen in Fig. 9.3, the fitted T1 value increased (resulting in a 

positive percent change) with increasing TE value due to the loss of signal from the fast-

relaxing EC space. Data acquired at TE values less than 30 ms were significantly different (t-

test, p < 0.05) from data acquired at TE values greater than 30 ms. Further, there was no sta-

tistical change in the data as the TE was changed from 30 to 80 ms. In other words, individu-

ally and collectively, all three animals showed significant T1 changes between TEs of 13.6 

and 30 ms, but not between 30 and 80 ms. The increase in the variance of the percent change 

in T1 at increasing TE values can be attributed to differences in the tissue CR concentration 

for different animals. If the concentration of CR in the EC space is relatively high in one 

animal, the percent change of T1 as a function of TE will be lower than the change in an ani-

mal with a relatively lower CR concentration. The change in T1 is a function of the initial 

concentration of the CR in the tissue, which cannot be controlled; therefore, the variance in-

crease is not unexpected. In each individual case, there was an appreciable change in T1 as a 

function of TE with no change for TEs greater than 30 ms. We conclude from the informa-

tion gathered from the F-statistic analysis and the percent change in T1 value that (for this 

experimental protocol) the data acquired at a TE value greater than 30 ms consists of signal 

only from IC water. 

 It is important to note that the values reported in Table 9.1 are apparent measures of the 

actual T1, T2, and fractional contribution values, which are calculated in the presence of CR 
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and exchange, neither of which can be ignored. A recent study has suggested that the mean 

intra- and extracellular pre-exchange lifetimes of water in rat cerebral tissue are 667 ms and 

125 ms, respectively, which are longer than the timescale of these measurements, suggesting 

that the effects of compartmental exchange are small (Quirk et al., 2001). The apparent T1 

values of the EC (T1f) and IC (T1s) spaces (48 ± 8 ms and 235 ± 10 ms, respectively) are con-

siderably shorter than the normal brain T1 values of 1040 ± 42 ms, which were measured 

from the inversion-recovery data on normal rat brain. If, as hypothesized, the EC space con-

tains primarily mobile water, it is not unreasonable to speculate that the IC T1 could be sig-

nificantly shorter than the T1 of the EC space. However, the short extra-to-intracellular ex-

change time relative to the IC T1 relaxation time constant indicates that the IC T1 is coupled 

to the relaxation rate of EC water and the exchange rate between the spaces. Similarly, the 

apparent T2 values following ICV infusion of the CR are significantly reduced from normal 

(Table 9.1). The apparent T2 of the EC space (T2f) was calculated from a 3-point fit of the 

calculated magnetization ( f0M ′′ ) from Eq. [9.4] to the 13.6, 15, and 20 ms TEs. Interestingly, 

the F-statistic and percent change in T1 analyses suggest that the EC signal contribution is 

attenuated by 30 ms, which is five times the T2f value of 6 ms.  

 The apparent T2 of the IC space (T2s) is significantly less than the normal T2 value in cere-

bral tissue, which was reported herein as approximately 75 ms. It is not surprising that the IC 

value of T2 would be lower than the volume-averaged value given the high concentration of 

macromolecules, the crowded cytoplasmic milieu, and the extensive cytoskeletal structure. 

Water molecules experiencing the slowly fluctuating magnetic fields associated with these 

structures would have an efficient T2 relaxation rate relative to the T2 of the EC space, which 

contains primarily mobile water. Although the characteristics of MR CR are well described 



 

  218 

in biological tissue, it would be difficult to estimate the specific relaxivity of the CR in the 

EC, the concentration of the CR in the EC, or the intrinsic T2 of water in the EC space. 

Therefore, from the data in this study, it would be imprudent to speculate on a true EC T2 

value. Finally, it is important to note that the apparent fractional contributions of the IC space 

accounts for 80% of the signal, which matches the known IC volume fraction of the normal 

brain. Specifically, volume fraction measurements in rat brain have been performed using 

ionopheric (Sykova et al., 1994) and electrical impedance methods (Verheul et al., 1994; 

Schuier and Hossmann, 1980), and both approaches yield EC fractions of approximately 0.2 

in healthy brain and 0.1 in ischemic tissue. Previous NMR attempts to separate the IC and EC 

water properties, based on diffusion measurements alone, resulted in non-physiological frac-

tional contribution estimates (Neindorf et al., 1996; Mulkern et al., 1999; Mulkern et al., 

2000). The fact that the fraction values obtained in these experiments are consistent with the 

expected values adds confidence to the IC / EC compartmental assignments. 

 We hypothesize that sequence differences and misregistration of the ROI could account 

for the ADCz value difference between the spectroscopic and imaging ADC data (0.90 ± 0.02 

× 10-3 mm2/s versus 0.81 ± 0.03 × 10-3 mm2/s, respectively) of the Normal group (Table 9.2). 

First, there could be a change in spin population between the  data acquired with the DW-

IRSE and DW-EPI sequences due to differences in the TE (42.8 versus 74 ms, respectively). 

Also, the acquisition mode of the two sequences is entirely different (half-echo spectroscopy 

versus single-shot EPI) and the sensitivity of EPI to susceptibility could account for addi-

tional T2 signal loss. Lastly, the coordinates used for the imaging ROI exactly matched the 

spectroscopic voxel coordinates, and no adjustments were made to the ROI location despite 

differences in the sequences, resolution, acquisition method, and TE; therefore, it is not sur-
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prising that there would be some discrepancy between the spectroscopically- and imaging-

derived ADCz values. Despite errors in the values, the changes in ADCz that occur between 

the Normal and ICV (CR-enhanced) groups are consistent between spectroscopy and imaging 

(10% and 7%, respectively). From the TE-dependence characteristics of the IR curve, we as-

sume that the ADC values measured in the ICV group represent the ADC of water confined 

to the IC space, and these results suggest that the water in the IC space is the major determi-

nant of the overall ADC measured in cerebral tissue. Further, following ischemia, there was 

no statistical difference between ADCz values in CR-free (MCAO group) and CR-enhanced 

(ICV+MCAO) brains, and this conclusion is evident in both the spectroscopic and imaging 

data (Table 9.2). These results are consistent with the conclusion that the ADC of the IC 

space dominates the overall measure of ADC, presumably due to the significant fraction of 

water within this space. 

 To minimize the confounding effects of anisotropy, ADCav maps were calculated and 

compared to the spectroscopy and imaging ADCz results. Further, to ensure no CSF contami-

nation from ventricular spaces and to remove comparison of different tissue types (i.e., sub-

cortical and cortical), a 3 pixel × 3 pixel ROI in the caudoputamen was examined (results 

shown in Table 9.2). The ADCav measured in the Normal and ICV groups (0.70 ± 0.05 × 10-3 

mm2/s and 0.69 ± 0.06 × 10-3 mm2/s, respectively) favorably compared with previously re-

ported ADCav values in rat brain (Benveniste et al., 1992; van Gelderen et al., 1994). Unlike 

the spectroscopic and imaging ADCz diffusion measurements in this region of the brain, the 

IC ADC (ICV group) matched the bulk ADC (i.e., combined IC and EC ADC). However, the 

result that the IC ADC is the same as the bulk ADC continues to support the contention that 

the water ADC of the IC space is the major determinate of overall ADC in rat brain tissue. 
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Lastly, there was no difference in the ADCav values in the ischemic rat brain (MCAO group) 

or the CR-enhanced, ischemic rat brain (ICV+MCAO group) (Table 9.2). These data are con-

sistent with the conclusion that the IC space dominates the overall ADC measurement and 

the overall ADC change during cerebral ischemia. 

 Two of the three prominent theories regarding the ADC changes in cerebral tissue during 

ischemia have suggested that changes in the ADC of water residing in the EC space may play 

a role. Although the data presented herein suggest that the IC space is the major determinant 

of the ADC characteristics, changes in the of EC water ADC may also contribute to the 

measured decline in the volume-averaged ADC value. In other words, it is possible that the 

EC ADC change during ischemia is significant, which is supported work by Duong et al. 

(1998, 2001); however, the volume of water in the EC space is sufficiently small to limit its 

contribution to the overall ADC.  

 Using basic assumptions, the EC ADC could be inferred from: 

 ( )( )( ) ( )( )( ) ADC0H%fADC0H%fADC EC2ECECIC2ICIC =+ , [9.7] 

where ADC is the bulk measured ADC composed of contributions from IC ADC (ADCIC) 

and EC ADC (ADCEC). Both the IC and EC spaces contribute to some fraction of the signal 

(fIC and fEC, respectively) and each compartment has some percent water content (%H20IC 

and %H20EC, respectively). Based on information from a standard cell physiology text, we 

assumed that the IC space accounts for 80% of the tissue volume and is 70% water (of which 

the remaining 30% is organelles and other microstructures) and that the EC space accounts 

for the remaining 20% of the volume and is 100% water. Using the ADC values from the 

ADCav imaging ROI, the EC water ADC value is calculated to be approximately 1.6 × 10-3 

mm2/s. During ischemia, the EC ADC value can be estimate from Eq. [9.7] to be  1.3 × 10-3 
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mm2/s, which constitutes a 15% decline in the EC ADC value. This supports findings that 

suggest that the EC ADC decline, albeit significant, does not matches the overall percent de-

cline of the ADC measured during ischemia.  

 From the estimated EC ADC values, the tortuosity, λ, a parameter that describes the effect 

of a restrictive environment on a diffusing species, can be calculated. The tortuosity of the 

EC space can be calculated from λ2 = DEC / ADCEC, assuming the self-diffusion coefficient 

(DEC) of water at 37°C is 3 × 10-3 mm2/s. Using an ADCEC of 1.6 × 10-3 mm2/s, the estimated 

EC tortuosity was 1.4 for healthy brain, which corresponds reasonably to the λ values of 1.6 

and 1.5 reported in the literature (Sykova et al., 1994; van der Toorn et al., 1996; Pfeuffer et 

al., 1998). Specifically, van der Toorn et al. (1996) reported normal and ischemic EC 

tortuosity values of 1.5 and 2.1, respectively, from 1H and 31P MR spectroscopy. 

 During ischemia, cytotoxic edema results in a decrease in the EC volume (i.e., fEC de-

creases) and a corresponding increase in the EC tortuosity. Although merely speculation, Eq. 

[9.7] can be modified to reflect the tissue changes during ischemia. Following cytotoxic 

edema, ionopheric and tissue resistance methods have demonstrated that the fIC:fEC changes 

to approximately 0.9:0.1 (Sykova et al., 1994; Verheul et al., 1994; Schuier and Hossmann, 

1980). Also, in the acute phase, the barrier function of the cellular membranes are intact, and 

the EC space remains 100% water (%H20EC = 100%). Assuming that the shift of EC water to 

the IC space is the only change to the IC space (i.e., there is no significant lose of cellular 

materials during the acute ischemic phase), IC space water content increases linearly with the 

volume increase (%H20IC ≈ 80%). From the ischemic IC and EC ADCav values and Eq. [9.7], 

λ can be estimated at 1.5—lower than values reported by van der Toorn et al. (1996). The 

idea that the EC ADC changes that occur in response to acute ischemia does not conflict with 
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the findings of this study, however, it may be that the considerably smaller volume of the EC 

space could minimize its contribution to the overall changes. 

 To classify the measured ADC as the ADC of water diffusing in the IC space requires 

consideration of the role of compartmental exchange and CR effects on the IC space. Two-

compartment data modeling (e.g., biexponential diffusion attenuation or inversion-recovery) 

implicitly assumes that the compartments are in slow exchange, i.e., during the diffusion time 

the mixing between compartments is minimized. Fast (equilibrium) exchange of water mole-

cules between the IC and the EC environments complicates the measurement of the absolute 

(i.e., exchange-less) compartmental T1-relaxation times because mixing of the compartmental 

water increases the number of molecules that contact the CR. Recent work by Quirk et al. 

(2001) suggests (using a method similar to the one present herein) that the IC / EC water pre-

exchange lifetime in healthy rat cerebral tissue is on the order of 100 ms, which is longer 

than both the diffusion and echo times used in this study. Further, in model system studies, it 

has been shown that the addition of a sufficient concentration of CR can move the system 

from a fast-exchange regime toward a slow-exchange regime by reducing the relaxation time 

of the signal from water in the EC space (Labadie et al., 1994; Landis et al., 1999; Donahue 

et al., 1994). Although the absolute concentration of the CR in the EC space of the rat brain 

following ICV infusion is difficult to estimate, the significant changes in tissue relaxation 

times indicate the presence of the CR. The slow exchange condition is met when the com-

partmental exchange rate constant is much less than the difference between the relaxation 

rate constants for the signals from the two compartments (Labadie et al., 1994; Landis et al., 

1999; Donahue et al., 1994). Quirk et al. (26) reported that the compartmental exchange rate 
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constant is less than 10 s-1, which is shorter that the apparent T1 relaxation rate constant dif-

ference of 16 s-1 between the IC and EC spaces. 

 Studies by Labadie et al. (1994) and Stanisz et al. (1998) have shown the efficacy of using 

MR CRs to discriminate between the IC and EC water signals in a biological sample by vir-

tue of their relaxation time differences. These studies demonstrated that the addition of the 

CR alters the relaxation time constants (T1 and T2) of the EC water while remaining in the 

EC space. These studies have used methods of compartmental separation based on T2 relaxa-

tion and diffusion in the presence of EC CR. Methods based on T2 are vulnerable to data arti-

facts caused by the sensitivity of T2 to bulk magnetic susceptibility effects and exchange ef-

fects as a result of the though-space effect of the EC CR on IC water across the cell mem-

brane. The sensitivity of T2 in the presence of the CR may account for the non-physiological 

compartmental volume fractions (Neindorf et al., 1996). Given that in the slow-exchange re-

gime the T1 relaxation time of the water molecules in the IC space will not be altered by the 

presence of CR in the EC space, methods based on CR-enhanced T1-relaxation separation do 

not have the same drawbacks and should result in more accurate measurements of compart-

ment relaxation times, diffusion coefficients, and volume fractions if water exchange is ac-

counted for properly. 

 Using the nonmonoexponential behavior of the diffusion signal attenuation curve, early 

work classified the two calculated diffusion coefficients to the ADC of the IC and EC spaces. 

In a rat model, Neindorf et al. (1996) showed that for increasing b-values (up to 10,000 

s/mm2) diffusion attenuation curves further deviated from monoexponentiality. Using a biex-

ponential model, Neindorf et al. defined populations of fast- and slow-diffusing water mole-

cules with ADC values of 0.83 ± 0.03 × 10-3 mm2/s and 1.68 ± 0.1 × 10-3 mm2/s, respec-
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tively. The fast-diffusing component accounted for 80% ± 2% of the signal, which contra-

dicts the hypothesis that the EC water ADC is considerable faster than the IC ADC. Assum-

ing the validity of this hypothesis, Neindorf’s findings do not agree with the known IC / EC 

fractions, which state that the IC space accounts for approximately 80% of cerebral tissue. 

Mulkern et al. (1999, 2000) have performed several studies in human brain and have ob-

tained similar results to Neindorf et al. Mulkern and colleagues ultimately concluded that al-

though non-monoexponential diffusion attenuation was observed, evidence for diffusion 

compartmentalization was inadequate. Clark and Le Bihan (2000) also have examined the 

multi-exponential nature of the diffusion attenuation curve in human brain. These investiga-

tors demonstrated that the diffusion signal attenuation curves were more appropriately de-

fined as biexponential rather than monoexponential using goodness-of-fit statistics. However, 

the classification of non-monoexponentiality as compartmentalization rather than phenome-

non is complex, especially since diffusion attenuation curves are sensitive to restrictions (tor-

tuosity), compartmental exchange, chemical exchange (magnetization transfer), relaxation 

time effects, and diffusion time. For instance, Helmer et al. (1995) demonstrated that non-

monoexponential diffusion attenuation occurs in single compartment samples (polystyrene 

bead packs). Clark and Le Bihan (2000) suggested that bias introduced by T2 relaxation time 

differences between IC and EC water and diffusion anisotropy could complicate the biexpo-

nential analysis and explain some of the volume fraction discrepancies. Similar discussion 

can be found in Buckley et al. (1999), who performed high resolution imaging on rat hippo-

campal slices. These investigators quantified the ADC change following ouabain-induced 

cell swelling in an attempt to model cytotoxic edema in vitro. Buckley et al. reported similar 

volume fraction discrepancies, which they also suggested could be explained by T2 differ-
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ences in the IC and EC spaces. They also noted, however, that some contribution to the vol-

ume fraction discrepancy could be attributed to partial volume effects caused by the sur-

rounding perfusate and parameter misestimations due to the limited number of data points. 

Despite the volume fraction discrepancy, Buckley et al. concluded that cellular swelling ex-

plains the reduction in the water ADC during acute cerebral ischemia. As mentioned, meth-

ods based directly on T2 and diffusion are limited by inherent sensitivities to susceptibility, 

restriction, compartmental exchange, chemical exchange, relaxation time effects, and diffu-

sion measurement parameters. Separating the effects contributing to the non-

monoexponentiality of the diffusion signal attenuation curve from the effects contributing to 

the volume fraction discrepancies would be very difficult in an experimental model wherein 

all effects manifest similar behavior. 

 The data presented herein suggests that the majority of the ADC change observed during 

acute cerebral ischemia is a result of changes in the IC space. Using 133Cs NMR, Neil et al. 

(1996) concluded that changes associated with cellular injury could cause a reduction in IC 

water diffusion that could account for the entire ADC change, assuming that cesium diffusion 

accurately reflects intracellular diffusion. In work by Duong et al. (1998), both IC and EC 

diffusion properties were evaluated with 2FDG-6P as a marker for water ADC. Assuming 

that the molecular markers mimic the diffusion characteristics of water, Duong et al. con-

cluded that both IC and EC ADCs decline by approximately 40% following permanent 

global cerebral ischemia. Similarly, focal ischemia in rat brain results in a significant reduc-

tion in the ADCs of metabolites, including NAA, tCR, Cho (Wick et al., 1995; van der Toorn 

et al., 1996). In this study, we have attempted to directly measure the ADC of IC water and 

have arrived at the same conclusion as Neil, Duong, Wick, van der Toorn, and their associ-
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ates: Although the ADC of EC water most likely changes as a result of water shift and in-

creased tortuosity, the major determinate of the ADC change (and diffusion-weighted con-

trast) observed in cerebral ischemia is due to a reduction in the ADC of water in the IC space. 

There is evidence that the IC contribution to the ADC is in part an active process. Wheatley 

et al. (1985, 1991, 1993) found there exists an energy-dependent cytoplasmic streaming and 

suggested that passive diffusion does not provide an adequate explanation for the complex 

intracellular transport system required to maintain cell metabolic function. During ischemia, 

the cascade of biochemical events may include loss of regulation of ionic pumps which in 

turn cause cytotoxic edema as well as disruption of the IC cytoplasmic streaming process. 

 In recent work, we have also shown that the connection between ADC change and cellular 

swelling may be more complex than previously theorized. In a transient ischemia rat model, 

Li et al. (2002) demonstrated that the acute renormalization of ADC values is not associated 

with corrected neuron and astrocyte morphology. Following 30-minutes of transient MCAO, 

brain regions with significant ADC decline contained shrunken neurons and swollen astro-

cytes, as evaluated by hematoxylin-eosin staining. After reperfusion, the ADC renormalized 

in the ischemic region, however, the cellular abnormalities were not resolved. In fact, the 

percentage of abnormal neurons increased to 92 ± 2% from 47 ± 12% observed during 

ischemia. Further, although the ADC in the ischemic region had returned to normal values, 

both the nuclei and cytoplasm of the astrocytes were markedly swollen. This finding suggests 

that the ADC change in acute ischemia may not be solely the result of cytotoxic edema, 

which is consistent with the idea that the overall ADC changes are primarily associated with 

changes in the ADC of the IC space. 
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 In conclusion, using both spectroscopic and imaging MR techniques, we have attempted 

to separate the IC and EC water diffusion coefficients based on differences in the compart-

mental T1 relaxation times in the presence of CR in the EC space. Based our the results, we 

conclude that the major determinant of the equilibrium ADC value in rat cerebral tissue is the 

water of the IC space, which accounts for approximately 80% of the tissue volume. Further-

more, during acute focal cerebral ischemia, the reduction of ADC that generates diffusion-

weighted contrast is primarily a result of a reduction of the ADC in the IC space. This finding 

is consistent with previously published results but does conflict with other studies that have 

suggested that changes in the EC space play a role in acute ADC reductions. Although it is 

theoretically possible for significant EC ADC reductions to occur as a result of water loss 

and restriction increases, this study suggests that the larger IC volume is more likely the ma-

jor determinant of acute water ADC changes in ischemic brain tissue. 



 

 

 

 

 

 

 

Chapter 10 

 

Summary 
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The body of work spanned by the research in this dissertation focuses primarily on the 

dynamic temporal and spatial characteristics of the apparent diffusion coefficient (ADC) of 

brain water in a rat stroke model of transient ischemia. Secondarily, research efforts were 

also directed towards the mechanism(s) governing cerebral water ADC changes during 

ischemia. Although the use of diffusion-weighted magnetic resonance imaging (DWI) for the 

detection and study of acute stroke is prevalent in the research and clinical world, there is 

still substantial information to be learned about the method and the information acquired. 

This dissertation aims to characterize both the progression of ischemia following temporary 

occlusion via DWI, but also to employ histological techniques to further interpret the MRI 

findings—specifically, towards a better understanding of ADC changes in diseased tissues. 

Ultimately, it is the goal of this work and others that scientific research in animals may eluci-

date mechanisms of disease that can be used to detect, diagnose, evaluate, and treat human 

disease. 

The research presented in this dissertation demonstrates both the value and the limita-

tions of diffusion analysis of transient cerebral ischemia. The seminal papers demonstrating 

the value of DWI in animal stroke models (Moseley et al., 1990; Mintorovich et al., 1991; 

Benveniste et al., 1992; Minematsu et al., 1992; van Gelderen et al., 1994) prompted similar 

evaluation of human stroke (Warach et al., 1992); and, since, DWI has become a valuable 

tool in stroke work. These initial studies also demonstrated that the ischemic lesion detected 

by DWI is highly correlated with the tissues destined for infarction. This allows non-invasive 

imaging to be used to monitor the temporal evolution of ischemia. More recent experiments 

on transient ischemia in animals [which is analogous to transient ischemic attacks (TIA) in 

humans] demonstrated that the evolution of the lesion as determined by DWI is dynamic and 
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complex (Mintorovitch et al., 1991; Minematsu et al., 1992; Davis et al., 1994; Li et al., 

1999). As explored by the research in this dissertation, the duration of the occlusion and the 

region of brain damage significantly impact the chances of tissue survival. Further, the re-

normalization of ADC values following reperfusion is not necessarily permanent, and the 

prediction of reversibly and irreversibly damaged pixels is limited by the intrinsic heteroge-

neity of water ADC values in normal rat brain. 

 In the study presented in Chapter 3, we studied DWI, PWI and T2 changes in eight rats 

that were subjected to 30 minutes of MCAO. Imaging was performed during occlusion, im-

mediately after reperfusion, 0.5, 1.0, 1.5, 12, 24, 48 and 72 hours after reperfusion. The goals 

of this study were (1) to determine whether secondary ADC declines occur after recovery of 

initially decreased ADC values, (2) to characterize the temporal and spatial evolution of the 

in vivo ischemic lesions, and (3) to determine if secondary cerebral hypoperfusion contrib-

utes to the secondary ADC declines. The results presented in Chapter 3 demonstrated that 

ADC recovery following 30 minutes of arterial occlusion is transient and that secondary 

ADC reduction may occur following reperfusion, a finding consistent with other recent stud-

ies (Dijkhuizen et al., 1998; Thornton et al., 1998; van Bruggen et al., 1998). The transient 

renormalization of ADC values is suggestive of the restoration of energy metabolism (Schutz 

et al., 1973; Rehncrona et al., 1979; Hossmann et al., 1977; Eleff et al., 1991; Hossmann et 

al., 1994); however, additional studies were required to better characterize the changes in the 

MR parameters. 

In a follow-up study (Chapter 4), our previous experiments [Li et al., 2000a (Chapter 3); 

Li et al., 1999] were extended to evaluate ischemic progression following different durations 

of transient ischemia using MRI (i.e., DWI, PWI, and T2WI) and histological analysis. Six-
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teen rats were subjected to 10 minutes (n=7) or 30 minutes (n=7) of temporary MCAO, and 

imaging was performed as in Chapter 3. Following the last MRI time point, the brains were 

fixed, sectioned, stained with hematoxylin & eosin staining, and evaluated for neuronal ne-

crosis. The first conclusion of this study was that the resolution of initial DWI lesions is per-

manent following 10 minutes of transient ischemia; however, the resolution of initial DWI 

lesions is transient following 30 minutes of transient ischemia and may be followed by a sec-

ondary DWI lesion development. The second conclusion was that the permanent reversibility 

of initial DWI lesions does not indicate a normal histological outcome. Conversely, selective 

neuronal necrosis is seen in regions where the initial DWI lesions disappear permanently af-

ter reperfusion in both the 10- and 30-minute animal groups. As in the previous study (Chap-

ter 3), it was concluded that renormalization of DWI hyperintensity is not necessarily perma-

nent and does not necessarily correlate with complete tissue recovery. In addition, this study 

suggests that DWI may not be sensitive enough to detect slight necrosis exhibited following 

short periods of transient ischemia, which may be due to volume averaging of many abnor-

mal and normal neurons in the image voxel. This finding may help to explain neurological 

deficits in some patients who have normal DWI after cerebral ischemia (Ay et al., 1999) and 

cognitive deficit in some patients who experience transient ischemic attacks (TIA) (Hénon et 

al., 1999). 

 The data presented in Chapters 3 and 4 lacks the temporal resolution to accurately de-

scribe secondary ADC changes following 30 minutes of transient MCAO. In Chapter 5 of 

this dissertation, a study is described wherein DWI, PWI, and T2WI were performed during 

MCAO and every 30 minutes for a total of 12 hours after reperfusion (n=6). In another ani-

mal group, neurological outcomes were evaluated during MCAO, every 30 minutes for a to-
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tal of 6 hours, and at 24 hours after reperfusion (n=8). The goal of this experiment was to 

provide detailed information regarding both the temporal and spatial evolution of ADC 

changes. As noted in previous studies, PWI abnormality was resolved immediately following 

reperfusion and remained normal. Given the increased temporal resolution, we could isolate 

the complete recovery of the ADC values (of regions with ADC value reduction during oc-

clusion) to approximately 1 hour after reperfusion. Further, the renormalized ADC values 

started to decrease secondarily at approximately 2.5 hours, accompanied by a delayed in-

crease in T2 values by about 5 hours. The ADC-defined secondary lesion grew over time, and 

at 12 hours the lesion size was 52% of the initial lesion (i.e., during occlusion). Further, as in 

Chapter 4, histological evaluation demonstrated neuronal damage in the regions of secondary 

ADC decline. Interestingly, complete resolution of neurological deficits was seen in one rat 

at 1 hour, six rats between 2.5 and 6 hours after reperfusion, and no secondary neurological 

deficits were observed at 24 hours. These data suggest that (1) a secondary ADC reduction 

occurs as early as 2.5 hours after reperfusion, evolves in a slow fashion, and is associated 

with neuronal injury; and (2) renormalization and secondary decline in ADC are not associ-

ated with neurological recovery and worsening, respectively. 

The results presented in Chapters 3–5 suggest that recovery following transient ischemia 

in rats and humans may not be permanent and may not represent damage-free brain tissue. It 

is not clear why the neurological deficits improved or resolved at the time when secondary 

injury, demonstrated by secondary ADC reduction, continued to evolve. Possible explana-

tions for this discrepancy are gradual hyperactivation of remaining intact neurons in the 

ischemic region or functional substitution by other neurons in the neighboring normal brain 

regions as demonstrated by functional MRI in stroke patients (Cramer et al., 1997; Cramer et 
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al., 2000). Our results, along with others (Nakano et al., 1990; Garcia et al., 1995; Persson et 

al., 1989), also show that all rats that experienced complete resolution of their neurological 

deficits had some degree of neuronal injury. This suggests that patients with prolonged TIA 

may have neuronal injury, as was recently documented by DWI (Kidwell et al., 1999), which 

may underlie the pathogenesis of gradual cognitive deficits that occurred after TIA, although 

the patients recovered from their neurological deficits after TIA (Hénon et al., 1999). Lastly, 

the data presented in these chapters suggest that thrombolytic treatment alone may not en-

tirely salvage ischemic brain tissue, as delayed ischemic injury may occur. Accordingly, 

other therapeutic strategies directed against delayed ischemic injury may be desirable in 

combination with thrombolytic therapy. These strategies might include scavenging free radi-

cals, inhibiting excitotoxicity and calcium accumulation, targeting the apoptosis-inducing 

genes, preventing release of the mitochondrial apoptogens, blocking mitochondrial perme-

ability transition pore (Fiskum et al., 1999), and restoring function of the endoplasmic reticu-

lum (Paschen and Doutheil, 1999). 

In Chapter 6, the ADC and T2 data acquired in the study presented in Chapter 5 were 

further explored to determine if the temporal and spatial evolution of acute ADC and T2 val-

ues could be employed to predict secondary tissue changes following reperfusion. In this 

analysis, the ADC and T2 data (acquired at 26 time points over a 12-hour period) was used to 

generate novel, composite maps of the tissue characteristics. Using the composite maps, sta-

tistical analysis was performed to determine if the changes in tissue ADC and T2 values were 

predictive of the tissue condition at the end of the experiment. Ultimately, no statistical 

measure could be found to accurately predict the tissue characteristics at 12 hours, and it was 

concluded that acute ADC and T2 data may be limited for the prediction of infarction.  
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In future studies, other MR parameters could also benefit the classification of reversibly 

or irreversibly damaged tissue either by the methods presented in this dissertation or using 

multi-spectral MR analysis as proposed by Carano et al. (2000). One such parameter could 

be the T1 relaxation time measured in the rotating frame of reference (T1ρ). Gröhn et al. 

(2000) demonstrated that T1ρ values (as well as the dispersion of T1ρ values) remain elevated 

despite the recovery of ADC values to normal following reperfusion in a transient occlusion 

rat model. It is hypothesized that T1ρ is sensitive to the behavior of water associated with 

macromolecules and that changes during acute cerebral ischemia (that are not well under-

stood) persist despite reperfusion. It would be interesting to expand on Gröhn’s work and 

evaluate the ADC and T1ρ following 30-minutes of transient cerebral ischemia to characterize 

parameter changes during occlusion and following reperfusion for 12 hours to assess the T1ρ 

changes during secondary ADC decline. If significant T1ρ changes can be quantified during 

occlusion, it is possible that regions of T1ρ abnormality correlate with irreversibly damaged 

tissues in the same way that chronic T2 elevation due to edema correlates with infarct. 

Other future work could include some variation of the stroke model. For instance, David 

et al. (1996) demonstrated that short periods of transient ischemia may provide some neuro-

protective effect. In Chapter 4, it was shown that tissue recovery following 10 minutes of 

ischemia is complete and permanent; however, 30 minutes of occlusion resulted in chronic 

tissue damage. One future study could incorporate a 10-minute occlusion followed by per-

manent occlusion. It would be interesting to monitor the lesion progression and final lesion 

volume as compared to permanent occlusion. Another study could combine two temporary 

occlusion periods to determine if a short (10 minute) occlusion somehow alters the secondary 

lesion development following a longer (30 minutes) period of occlusion. 
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The bridge between experiments conducted for the purpose of describing ADC changes 

during transient ischemia (Chapters 3–5) and those conducted to explore the mechanisms 

governing the ADC changes (Chapter 9) are performed in the study in Chapter 7. We per-

formed experiments designed to determine if reperfusion-induced renormalization of initially 

abnormal ADC values indicates reversal of cellular, morphological changes that occur during 

acute ischemia. Rats were subjected to 30 minutes of middle cerebral artery occlusion with-

out reperfusion (group A, n=6), with 1.5 hours of reperfusion (group B, n=6), or with 12 

hours of reperfusion (group C, n=6). DWI and PWI were obtained at the end of occlusion 

(groups A, B, and C), 1.5 hours (groups A, B, and C) and 12 hours after reperfusion (groups 

A and C). Immediately after the final MRI study, the brains were fixed by cardiac perfusion 

with 4% paraformaldehyde. Neuronal injury was evaluated on hematoxylin-eosin stained 

sections, and astrocytic size was determined by the area of glial fibrillary acidic protein 

(GFAP) plus S-100 expression. As presented within the chapter, the results of this study lead 

to the conclusion that reperfusion-induced acute renormalization of ADC values is not asso-

ciated with the complete reversal of neuronal shrinkage and astrocytic swelling that occurs 

during ischemia. Conversely, the morphological changes of astrocytes and neurons progres-

sively worsened over time, although ADC values showed a biphasic change. Further, the re-

sults support the hypothesis that ischemia-related ADC declines could be the result of the re-

duction of energy-dependent cytoplasmic motion (Neil et al., 1996; Wick et al., 1995; van 

der Toorn et al., 1996; Duong et al., 1998; Dijkhuizen et al., 1999). It is reasonable to as-

sume that the reperfusion-induced ADC renormalization in this study is likely due to energy 

recovery; therefore, following reperfusion, the restoration of energy production is able to re-

store cytoplasmic movement results in a renormalization of ADC values. Further study will 
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be needed to demonstrate (1) if morphologically abnormal neurons and astrocytes are able to 

restore energy production when blood flow is restored and (2) the dominant mechanism(s) 

responsible for the ADC decline during ischemia. 

The final papers in this dissertation (Chapter 8 and 9) delve into the measurement of 

compartment ADC values and the mechanisms of ADC changes during acute cerebral ische-

mia. The model yeast-cell suspension was used to introduce a method of NMR signal separa-

tion via differences in the relaxation properties of water in the compartments. Specifically, 

extracellular (EC) water doped with an MR contrast reagent (CR) will exhibit a significant 

change in its T1 and T2 relaxation times, allowing the NMR signal from the EC space to be 

separated from the intracellular (IC) signal. Following signal separation, the ADC values of 

these regions can be calculated independently. Using CR in a yeast-cell suspension, we suc-

cessfully demonstrated that this method can be used, first, to separate the NMR signal from 

IC and EC compartments based on differences in the compartmental relaxation times and, 

second, to calculated the compartment ADC values of the IC and EC water. The paper pre-

sented in Chapter 8 describes this method in detail such that future experiments in more 

complex systems (e.g., the rat brain experiments presented in Chapter 9) could be performed 

with clear understanding of the experimental considerations and issues. 

Future work should be performed in this yeast-cell model and possibly in other multi-

compartment models (i.e., other in vitro biological cell systems) to determine the effects of 

volume fractions, contrast reagent concentration, permeability, and NMR parameters, such as 

diffusion and echo times. This work would further be benefited by computer simulations of 

the parameters to supplement the experimental data. We embarked on creating multi-
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dimensional Monte-Carlo simulations of restricted, multi-compartmental diffusion, and it is 

my belief that valuable data can be gleaned from continued efforts in this arena. 

Since conventional MR data contain the combined signals from the IC and EC spaces, it 

is difficult to determine the separate roles of these two compartments to the overall changes 

in water ADC during cerebral ischemia. At the time of this dissertation, no direct MR meas-

urements of IC and EC water diffusion have been performed in vivo. Application of the 

method described in Chapter 8 to the study of rat brain, which was presented in Chapter 9 of 

this dissertation, required some modifications; however, the goal was the same, to separate 

the IC and EC NMR signal contributions via relaxation time differences and measure the 

compartmental diffusion coefficients of these spaces. One issue encountered with the in vivo 

experiments was that the small EC volume fraction contributed very little to the measured 

signal, complicating the biexponential analysis. Accordingly, the NMR pulse sequence pa-

rameters were adjusted to remove the small contribution of the EC water, leaving on the IC 

water. ADC, T1, T2, and fraction measurements made in these experiments, compel us to 

conclude that we had isolated the IC water, from which the EC properties could be inferred. 

The results of this experiment somewhat contradict the most widely accepted hypotheses for 

ADC changes during cerebral ischemia: (1) cellular swelling caused by disruption of the en-

ergy-dependent ionic equilibrium pumps results in an influx of fast-diffusing EC water to the 

slow-diffusing IC space (Moseley et al., 1990; Benveniste et al., 1992; van Gelderen et al., 

1994; Zhong et al., 1993; Anderson et al., 1996); and (2) cellular swelling increases the tor-

tuosity of EC diffusion paths resulting in a decrease in the measured ADC value (Sykova et 

al., 1994; Latour et al., 1994; Norris et al., 1994; van der Toorn et al., 1996). It is also inter-

esting to note that the histological results in Chapter 7 demonstrate significant cellular swell-
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ing while the ADC is renormalized, and suggests that the contribution of cytotoxic edema to 

the overall decline in the ADC value may be small. Although one mechanism may dominate 

the ADC reduction observed during ischemia, it is more likely, given the complex factors 

affecting the diffusion measurement as well as the dynamic progression of water ADC 

changes during ischemia (highlighted in the transient ischemia studies), that the ADC change 

results from a combination of all these mechanisms (Szafer et al., 1995a). The results pre-

sented herein support the findings of other researchers who have proposed that during 

ischemic conditions energy-dependent IC microcirculation (cytoplasmic streaming) is halted, 

resulting in a reduction in the IC water ADC (Neil et al., 1996; Wick et al., 1995; van der 

Toorn et al., 1996; Duong et al., 1998).  

In the future, additional work in in vivo biological tissue would be required to confirm 

the conclusions in this dissertation. One such model that we have thought to explore is the IC 

/ EC diffusion characteristics in muscle. An MR contrast reagent can be introduced intrave-

nously to nephrectomized rats (to prevent clearance) to dope the EC space of muscle with the 

contrast. This method is somewhat easier to perform than the intracerebroventricular injec-

tions performed in the experiments detailed in Chapter 9. In the doped-muscle model, the ef-

fects of contrast concentration, diffusion time, echo time, and ischemia can be studied.   Ul-

timately, however, more experiments are required in the rat brain. I would expect research to 

be directed to the improvement of the imaging protocol and the characterization of more 

variables, such as contrast concentration, diffusion time, and echo time. Careful MR se-

quence and experimental optimization could allow future researchers ample signal-to-noise 

as to simultaneously measure the NMR signals of the IC and EC spaces. In addition, it would 

be extremely interesting to apply the study of compartmental ADC values to transient ische-
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mia. One would hypothesize from the results present in Chapter 9 that the ischemic and post-

reperfusion ADC changes would likely be isolated to IC water, however, it would be infor-

mative to track the IC and EC contributions to the secondary ADC changes. 

In conclusion, the work presented in this dissertation furthers the understanding of water 

ADC, perfusion, and T2 characteristics in cerebral ischemia, especially following temporary 

occlusion. Continued improvements in imaging and histological techniques in the future will 

increase our understanding of the disease process. These advances, in conjunction with the 

emergence of genetically modified animals and drug and gene therapies, will clarify disease 

management in humans and, ultimately, lead to stroke management that will benefit patients 

who suffer this disease.   
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