
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2006-08-24

Updating XML Views
Ling Wang
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Wang, L. (2006). Updating XML Views. Retrieved from https://digitalcommons.wpi.edu/etd-dissertations/362

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212997620?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/362?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Updating XML Views

by

Ling Wang

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

Aug 23, 2006

APPROVED:

Prof. Elke A. Rundensteiner
Advisor

Prof. Murali Mani
Co-advisor

Prof. Michael Gennert
Head of Department

Prof. Dan Dougherty
Committee Member

Prof. Susan Davidson
University of Pennsylvania
External Committee Member

i

Abstract

Update operations over XML views are essential for applications using

XML views. In this dissertation work, we provide scalable solutions to

support updating through XML views defined over relational databases.

Especially we focus on the update-public semantic, where updates are al-

ways public (made to the public database), and the update-local semantic,

where update effects are first kept local and then made public as and when

required.

Towards this, we propose the clean extended-source theory for deter-

mining whether a correct view update translation exists, which then serves

as a theoretical foundation for us to design practical XML view updating

algorithms.

Under update-public semantic, state-of-the-art view updating work fo-

cus on identifying the correct update translation purely on the data. We

instead take a schema-centric solution, which utilizes the schema of the

underlying source to effectively prune updates that are guaranteed to be

not translatable and pass updates that are guaranteed to be translatable di-

rectly to the SQL engine. Only those updates that could not be classified

ii

using schema knowledge are finally analyzed by examining the data. This

required data-level check is further optimized under schema guidance to

prune the search space for finding a correct translation.

As the first work addressing the update-local semantic, we propose a

practical framework, called LoGo. LoGo Localizes the view update trans-

lation, while preserves the properties of views being side-effect free and

updates being always updatable. LoGo also supports on-demand merging

of the local database of the subject view into the public database (also called

global database), while still guaranteeing the subject view being free of side

effects. A flexible synchronization service is provided in LoGo that enables

all other views defined over the same public database to be refreshed, i.e.,

synchronized with the publically committed changes, if so desired.

Further, given that XML is an ordered data model, we propose an order-

sensitive solution named O-HUX to support XML view updating with or-

der. We have implemented the algorithms, along with respective optimiza-

tion techniques. Experimental results confirm the effectiveness of the pro-

posed services, and highlight its performance characteristics.

iii

Acknowledgments

This dissertation and the growth in my knowledge over the last few years

owe a great deal to many professors, colleagues, and friends. First among

them is my advisor, Prof. Elke A. Rundensteiner. She inspired my interests

in database research and gave me direction by suggesting interesting prob-

lems. It has been my luck to have her as my advisor. Her technical and

editorial advice was essential to the completion of this dissertation. I ex-

press my sincere thanks for her support, advice, patience, and encourage-

ment throughout my graduate studies. Her persistence in tackling prob-

lems, confidence, and great teaching will always be an inspiration.

My thank goes to the members of my Ph.D. committee, Prof. Murali

Mani, Prof. Dan Dougherty and Prof. Davidson, who provided valu-

able feedback and suggestions to my comprehensive-exam, my disserta-

tion proposal talk and dissertation drafts. All these helped to improve the

presentation and contents of this dissertation. I thank Prof. Kathi Fisler for

her time and efforts discussing with me in my research qualifying exam.

I would like to thank Ming Jiang for his collaboration on the HUX sys-

tem. I thank Song Wang for his valuable discussions on part of my first

iv

dissertation task and on the Rainbow system integration. My thanks also

go to all other previous and current Rainbow team members for their use-

ful discussions and feedback. The long hours spent in the Fuller Lab would

not have been possible but for the company of wonderful office colleagues

around me such as Hong Su. The friendship of Song Wang, Xin Zhang,

Li Chen and all the other pervious and current DSRG members is much

appreciated. They have contributed to many interesting and good-spirited

discussions related to this research.

I also thank Worcester Polytechnic Institute and the Computer Science

Department for giving me the opportunity to study and also providing

TAship during my studies.

My parents receive my deepest gratitude and love for their dedication

and the many years of support during my studies.

v

Contents

1 Introduction 1

1.1 Motivating Problem . 1
1.1.1 Applications Using XML Views 1
1.1.2 Updating Through Views 5

1.2 A Bird’s Eye View of the View Updating Problem 6
1.2.1 View Update Semantics 7
1.2.2 Limitations of Existing Works 12
1.2.3 Supporting Updates over XML Views 16

1.3 Contributions of This Dissertation 20
1.3.1 Clean Extended Source Theory 20
1.3.2 XML View Updates Handling Under Update-public

Semantic (HUX) . 22
1.3.3 XML View Updates Handling Under Update-Local

Semantic (LoGo) . 23
1.3.4 XML View Update Handling with Order (O-HUX) . 24

1.4 Dissertation Organization . 25

2 Background 26
2.1 XQuery . 26
2.2 XQuery Views over a Relational Database 27
2.3 Updates Language for Modifying XML Data 27
2.4 XML View Updating Problem 30
2.5 Modeling XML Views using Schema Graphs 32

2.5.1 View Annotated Schema Graph 32
2.5.2 Computation Dependency Graph 35
2.5.3 Foreign Key Graph . 36

2.6 Bridging the XML and Relational View Update Problem . . 37
2.7 The Restrictions on XQuery Views 39

CONTENTS vi

3 Theoretical Foundation 41

3.1 Introduction . 41
3.1.1 Motivation . 41
3.1.2 State-of-Art . 43
3.1.3 Contributions . 44

3.2 Clean Extended Source Theory 45
3.2.1 Extended Source and Clean Extended Source 46
3.2.2 Clean Extended Source Theory 49
3.2.3 Clean Source Theory on Schema 54

3.3 Complementary Theory . 55
3.3.1 Review of the Complementary Theory 55
3.3.2 A running example . 57
3.3.3 The Round-trip XML View Updating (RXU) 61
3.3.4 On the View Updatability in RXU 66

4 HUX: Schema-centric XML View Updating 67

4.1 Introduction . 67
4.1.1 Motivating Examples 68
4.1.2 HUX: Handling Updates in XML 71
4.1.3 Contributions . 74

4.2 Data-driven Side-effect Check 74
4.2.1 Partitioning XML View Elements 75
4.2.2 Checking Side Effects 76

4.3 Schema-driven Side-effect Checking 80
4.3.1 Schema-level Untranslatable Updates 81
4.3.2 Schema-level Translatable Updates 87
4.3.3 Data Dependency . 91

4.4 Schema-centric XML View Updating Algorithm 91
4.4.1 STAR: Schema-driven TrAnslatability Reasoning . . . 92
4.4.2 SDC: Schema-directed Data Checking 95
4.4.3 SQL Update Generation 96

4.5 Schema-driven Side Effect Checking For Insertion 97
4.5.1 Step1 — Group-NonDesc Examination 100
4.5.2 Step 2 — Group-Self Examination 105
4.5.3 Step 3 — Group-Desc Examination 108

4.6 Evaluation . 110
4.6.1 HUX vs. Naive View Update System 111
4.6.2 HUX vs. Data-driven View Update System 114
4.6.3 Complexity and Usefulness of HUX 115

4.7 Related Work . 116

CONTENTS vii

5 LoGo: Localized Write-through View Updates Services 121

5.1 Introduction . 121
5.1.1 Motivating Problem 121
5.1.2 State-of-Art . 122
5.1.3 LoGo: A Local vs. Global Flexible Write-through So-

lution . 125
5.1.4 Contributions . 127

5.2 LoGo-basic: Updating Through Views by Localization 127
5.2.1 Running Example . 128
5.2.2 Local Database and Update Translation 129
5.2.3 LoGo-Basic Algorithm 135
5.2.4 View Re-construction 137
5.2.5 Property of LoGo Basic 138

5.3 Local-to-Global Database Merging 143
5.3.1 Data Merging Service 143
5.3.2 View Re-construction 145

5.4 Public-to-Local Database Synchronization 146
5.5 LoGo-XML: Updating XML Views Through Localization . . 150

5.5.1 Running Example . 150
5.5.2 Update Translation and Data Sharing 151

5.6 Evaluation . 155
5.6.1 Performance of Relational View Updating 155
5.6.2 Performance of XML view updating 160

6 O-HUX: XML View Updating Handling with Order 163

6.1 Introduction . 163
6.2 Background . 164

6.2.1 Order in XML . 164
6.2.2 Running Example . 166

6.3 Order-sensitive Clean Source Theory 168
6.4 O-HUX: XML View Update Handling With Order 171

6.4.1 O-HUX Algorithm . 172
6.4.2 From Non-ordered to Ordered View Updates 173
6.4.3 Identification of the Ordered Sources 174

6.5 Related Work . 182

7 Conclusions of This Dissertation 185

CONTENTS viii

8 Ideas for Future Work 188

8.1 Condition-based Set Updates 188
8.2 Updating XML Views Published over XML Documents . . . 190
8.3 Additional Thoughts . 194

ix

List of Figures

1.1 The running example for the course registration system . . . 18

2.1 Update language used by [TIHW01] 28
2.2 XUpdate language used by [XD] 29
2.3 (a) The partition of view update domain 0 and (b) the correct

translation of view updates 31
2.4 The view ASG for the XML view in Fig. 1.1 33
2.5 The SQL fragments of XQuery view in Figure 1.1 34
2.6 (a) GC of CI-node and (b) GC of S-node 36
2.7 GFK of S-node . 37
2.8 XQuery views handled by our dissertation work 40

3.1 The running example for the course registration system . . . 47
3.2 Example XML schema . 58
3.3 Example XML data . 59
3.4 Relations in database . 60
3.5 Database schema of Figure 3.4 60
3.6 Default XML view of database shown in Figure 3.4 61
3.7 Virtual XQuery view over default XML view shown in Fig-

ure 3.6 producing the XML data in Figure 3.3 62
3.8 Round-Trip update problem 63
3.9 Tree representation for XML document shown in Figure 3.3 63
3.10 XQuery example . 65

4.1 The running example for the course registration system . . . 69
4.2 Schema graph of the XML view 71
4.3 The system framework of HUX 73
4.4 Schema Tree Structure . 75
4.5 (a) GP (C,P) and (b) GP (S,P) 83
4.6 Initialize the search space of S-node 92

LIST OF FIGURES x

4.7 Search space of S-node after STAR-untranslatable 94
4.8 Search space of S-node after STAR-translatable 94
4.9 Search space of CI-node after STAR algorithm 95
4.10 The view query used for insertion illustration 98
4.11 Schema graph of the XML view 99
4.12 Step 1 of STAR marking for insertion 102
4.13 The performance of HUX system 112
4.14 HUX vs. N.G.System with only key constraints 113
4.15 HUX vs. N.G.System with foreign keys 113
4.16 HUX vs. the relational view update system 115
4.17 HUX vs. Pure data-based XML view update system 115

5.1 The framework of LoGo . 125
5.2 A running example: the global database 128
5.3 A relational view (b) defined by the view query (a) over the

relational database in Figure 5.2 128
5.4 An update u1 over the view in Figure 5.3 128
5.5 The local database state after a deletion (u1) 130
5.6 The local database state after a deletion (u1) 133
5.7 The local view query QL for the view defined in Figure 5.3 . 133
5.8 The local database state after an insertion (u2) 134
5.9 The local database state after a modification (u3) 135
5.10 Walk-through Algorithm 10 for u1 137
5.11 The rewritten view query Q′ 138
5.12 A relational view over the global relational database in Fig-

ure 5.2 and local database in Figure 5.6 140
5.13 The local database state after a deletion (u4) 141
5.14 SQL updates used to update the global database in the merg-

ing procedure . 144
5.15 The global database after merging the local database in Fig-

ure 5.6 . 145
5.16 The global database after merging the local database in Fig-

ure 5.8 . 145
5.17 Q∆P : view query for D∆P . 146
5.18 The view V 2 after synchronization 149
5.19 The local database state of V 2 after refresh 150
5.20 Additional tables added into the global database in Figure 5.2 151
5.21 The XML view (b) defined by the view query (a) 152
5.22 The schema graph for the view in Figure 5.21 153
5.23 The local database state of S-node after u2 154

LIST OF FIGURES xi

5.24 The local database state of S-node after u3 154
5.25 Relational view for evaluation 155
5.26 Performance among different delete translations 156
5.27 Space increasing caused by update localization 157
5.28 The performance of a single view update 157
5.29 Time spreading for each update (public DBsize = 1G) 158
5.30 Performance of index during update translation (public DB-

size = 1G) . 158
5.31 Performance of view construction 159
5.32 Time spreading for view construction (public DBsize = 15M) 160
5.33 Performance of merging and synchronization 161
5.34 The XML view for LoGo-XML performance study 161
5.35 The schema graph for LoGo-XML view in Figure 5.34 162
5.36 Space performance of updating XML views (public DBsize =

1G) . 162

6.1 An example relational database 166
6.2 XML view ClassView . 167
6.3 View query for ClassView . 167
6.4 An update over XML view in Fig. 4.1 168
6.5 Key concepts of the clean extended source theory 168
6.6 XML view schema graph and its SQL mapping 169
6.7 Converted ordered update for update in Figure 6.4 174
6.8 View query for ClassView . 177
6.9 View query for ClassView . 179
6.10 View query for ClassView . 180
6.11 View query for ClassView . 181

8.1 The example relational database 189
8.2 A relational view (b) defined by the view query (a) over the

relational database in Figure 8.1 189
8.3 XML document D with Schema(D) 191
8.4 XML Schema tree . 192
8.5 Query Q1 and corresponding view 193
8.6 Query Q2 and corresponding view 193

1

Chapter 1

Introduction

1.1 Motivating Problem

1.1.1 Applications Using XML Views

In many database applications views play an important role as a means

to structure information with respect to specific users’ needs. Views also

provide the support for logical data independence. That is, the changes in

the conceptual schema of the database can be shielded from applications.

Views are valuable in the context of security. Namely, we can define views

that give a group of users access to just the information they are allowed to

see [AHV95].

Extensible Markup Language (XML) [W3C98] is increasingly consid-

ered the format of choice for the exchange of information among various

applications on the Internet. The popularity of XML is due in large part to

its flexibility for representing many kinds of information. The use of tags

1.1. MOTIVATING PROBLEM 2

makes XML data self-describing, and the extensible nature of XML makes

it possible to define new kinds of documents for specialized purposes.

XML makes it possible for applications to exchange data in a standard

format that is independent of storage. For example, one application may

use a native XML storage format, whereas another may store data in a rela-

tional database. Since XML is emerging as a standard for data exchange, it

is natural that queries among applications should be expressed as queries

against data in XML format. This use gives rise to a requirement for a query

language designed expressly for XML data sources. XQuery is designed for

this purpose.

XML data are different from relational data in several important aspects

that influence the design of a query language. Relational data tend to have

a regular structure, which allows the descriptive meta-data for these data

to be stored in a separate catalog. XML data, in contrast, are often quite

heterogeneous, and distribute their meta-data throughout the document.

XML documents often contain many levels of nested elements, whereas

relational data are flat. XML documents have an intrinsic order, whereas

relational data are unordered except where an ordering can be derived from

data values.

With XML [W3C98] becoming the standard for interchanging data be-

tween web applications, XML views over various data storage medium,

typically relational databases or native XML documents, are commonly

used by many applications. Among the key benefits of XML are its vendor

and platform independence and its high flexibility. XML is a data model

suited for any combination of structured, unstructured, and semistructured

1.1. MOTIVATING PROBLEM 3

data. XML data is easy to extend because new tags can be defined as

needed. XML documents can easily be transformed into different look-

ing XML and even into other formats such as HTML. Furthermore, XML

documents can easily be checked for compliance with a schema. All this

has become possible through widely available tools and standards such as

XML parsers, XSLT (Extensible Style sheet Language Transformation), and

XML Schema. They greatly relieve applications from the burden of dealing

with the particularities of proprietary data formats. In an era where mes-

sage formats, business forms, and services change frequently, XML reduces

the cost and time required to maintain application logic.

Below we list some of such applications using XML views.

• Biological Applications. The Protein Information Resource (PIR) lo-

cated at Georgetown University Medical Center (GUMC), is an inte-

grated public bioinformatics resource to support genomic and pro-

teomic research, and scientific studies. PIR provides the Protein Se-

quence Database (PSD) of functionally annotated protein sequences,

which grew out of the Atlas of Protein Sequence and Structure (1965-

1978). PSD is created either as an XML database or a relational database

[Res].

Another example of a biological application is the Human Genome

Project [HGP], which has involved thousands of scientists distributed

over many universities and industry during a 13 year period to iden-

tify all the genes in the human DNA, to store, share and further ana-

lyze this information.

1.1. MOTIVATING PROBLEM 4

A biological application over these databases might create an XML

view that collects only proteins having experimental evidence that

really functions as described. Such an XML view can be used among

biologists to share or exchange the data.

• Geographical Applications. The MONDIAL database is a world geo-

graphic database integrated from the CIA World Factbook, the Inter-

national Atlas, and the TERRA database among other sources. The

geographical data is stored either in XML documents or in relational

tables [May]. A particular user might only be interested in the geo-

graphical data from a certain region. User specific XML views can be

employed for this purpose.

• Online DBLP Applications. The Digital Bibliography Library Project

(DBLP) [Pro] provides bibliographic information on major computer

science journals and proceedings. The database researchers might

prefer to monitor only certain journals and conferences, such as SIG-

MOD, VLDB, ICDE, etc. User specific XML views could be utilized

to extract those data of high interest to certain online user groups.

• Existing Relational Databases. Most business data is currently stored

in relational database systems. XML views are a general and flexi-

ble way to publish relational data as XML. Typical XML applications

publish data from a relational database via XML views.

In response, major efforts from both commercial database systems [Rys01,

BKKM00, CX00] as well as research projects [CKS+00, FKS+02, JAKC+02]

1.1. MOTIVATING PROBLEM 5

focus on supporting XML views.

1.1.2 Updating Through Views

Frequently, users do not directly access the underlying data storage, in

fact, they may not even be familiar with or even be aware of it. Instead

they access derived information in terms of views as part of an external

schema, usually by specifying queries against these virtual XML views.

These queries are translated to queries against the underlying data stor-

age through query modification [Rys01, BKKM00, CX00, CKS+00, FKS+02,

JAKC+02, ZDW+03]. However, while the support of queries on views is

necessary, this is clearly not sufficient. Support must be provided for up-

date operations over views as we will introduce below.

Update operations are essential for applications using XML views, es-

pecially in dynamic environments for the following reasons:

• Without the capability of updating the stored data, the stored data

often becomes quickly out of date and less valuable.

• Supporting updates through the XML view will provide users with

a uniform interface (XML and XQuery), independent of what the un-

derlying data storage is, or which query and update language is being

used. It is thus convenient and easy to use.

Consider a typical view application domain such as scientific data shar-

ing in the Human Genome Project [HGP]. A public database (such as the

NCBI gene bank) has first been built and thereafter has been commonly

used and extended as appropriate by scientists in related areas. Scientists

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 6

use this as well as other public databases by either directly querying over

the database or through a view. Such a public database represents a valu-

able common resource that must be properly maintained and frequently

updated to ensure that the data is up-to-date, as new discoveries are made

and then contributed by different laboratories. This maintenance could be

accomplished by allowing a qualified user to update the public database

through her view assuming appropriate permission.

Given the importance and popularity of XML views, it is also essential

to support updates over XML views.

1.2 A Bird’s Eye View of the View Updating Problem

In current practice, however, updates must be specified against the under-

lying data storage rather than against the view, because updating through

views is often ambiguous. In other words, there are usually different ways

of translating an update, each of which leaves the database in a differ-

ent state. Update requests through views are difficult in the sense that

they have to be translated into “appropriate” updates on the underlying

databases. In particular, the translation of updates often need to be han-

dled transparently by the database system as much as possible, i.e., be in-

visible to users, while the effects of translated updates should at the same

time meet the user expectations.

To address this ambiguity, different update semantic can be defined. An

update semantic is a description of a general approach for how updates on

the view should be translated.

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 7

1.2.1 View Update Semantics

Given that views are usually virtual, view instance data is obtained by ap-

plying the view query on the base tables. The most common semantics

require view updates be achieved in a way that the view state after the up-

date is the same as what we would obtain if the update had been applied

directly to a corresponding materialized view instance. This is referred to

as updates through views with the guarantee of being free of side effects.

Update semantics without side effect free guarantee are also used in some

scenarios [Kel86b, BKT01, CWW00], which requires either always favoring

view side effect minimization [BKT01, CWW00], or, user communication

to agree with potential view side effects [Kel86b]. In this dissertation, we

focus on the side effect free view update semantic. In most cases, users

would like the update to be achieved exactly as they required, instead of

bearing some extra side effect. Thus the side effect free semantic is also the

default semantic used by commercial databases and also commonly stud-

ied by majority of research works [Kel85, BS81, CP84, DB82]. In addition,

non-side-effect-free update semantics usually involve view semantic and

user interaction, which is not the focus of this dissertation.

We classify update semantics based on the following two aspects. First,

what is the goal of the approach. Are view side effects allowed? Do all up-

dates need to be translatable, or, could some updates be rejected for not be-

ing translatable. Second, what are the restrictions for the particular seman-

tic? Can any local data be associated with the view for updating purpose?

Is any change made to the view always supposed to be written through

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 8

into the underlying database? If so, is the database schema allowed to be

changed?

In this dissertation, we focus on two semantics, namely, the update-

public semantic and the update-local semantic as described below. The

rest of semantics, we call them the hybrid update semantics as shortly de-

scribed below, are not the focus of this dissertation. The reason is that

the approaches of handling them can be easily obtained by merging the

update-public and the update-local semantic.

Update-public semantic. This is the “traditional” view update seman-

tic used by most relational view update solutions [Kel86b, Kel85, BS81,

CP84, DB82]. According to this semantic, all updates on the view need

to be achieved by mapping them into updates over the base data only. No

schema change can be made to the base database. No local data can be di-

rectly associated with the view and used to compute the view content. If

a view side effect free translation exists, the view update is accepted and

translated. Otherwise, the view update is rejected.

This is a very strict update semantic since many restrictions apply for a

correct translation to exist. Updates are thus not always translatable. De-

pending on the view definition and the update specified on the view, most

of the updates might be rejected in most cases. It also requires a complex

update translatability checking model that can identify a view side effect

and reject updates which do not have any side effect free translation.

However, it is a simple yet useful update semantic because all views

defined over the same database are always “synchronized” — the content

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 9

of each view is extracted from the same database state, and views are aware

of changes made by each other. Also, there is no data replication since no

local data copy is ever associated with the view compared to the update-

local semantic described below.

Some commercial relational database systems, such as Oracle [BKKM00],

DB2 [CX00] and SQL-Server [Rys01], use even stricter semantic: an update

is accepted and translated only if it has single unique side effect free trans-

lation.

So far, most of the view updating works [Kel86b, Kel85, BS81, CP84,

DB82] focus on the update-public semantic. The two major aspects to be

tackled for this problem include:

• Update Translatability. Is the update specified over the view map-

pable to updates over the base data storage? In other words, does

there exist at least one sequence of updates over the base data storage

which “correctly” translates the given view update? Any particular

view update request may result in a view state that does not corre-

spond to any database state. Such a view update request should be

rejected. This decision depends not only on the database instance,

the view definition and the update operation, but also on the update

translation policy. This policy determines the database updates to be

generated for a given view update.

• Translation Strategy. That is, assuming the view update is indeed

identified as being translatable, the translation strategy selects how

to translate the updates on the XML view into the equivalent tuple-

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 10

based SQL updates or XML document updates on the base data. Ide-

ally, there will be precisely one way to perform the database update

that results in the desired view update. However, if the view is many-

to-one, the new view state may correspond to many database states.

There thus exists ambiguity.

Update-local semantic. Now consider another scenario where scientists

with update capabilities may prefer to first keep their research results (up-

dates) “local” instead of always immediately updating the public database

through their views with all their newly discovered findings. Reasons for

this are plentiful. For example, newly identified gene information still

needs to be verified before it goes public. Another reason will be com-

petitiveness. Scientists may want to keep their discoveries private as long

as possible, that is, as long as permitted by regulation (e.g., for Human

Genome Project, anyone with government funding had six months maxi-

mum limitation of public disclosure), or until the results had been success-

fully published first. This requirement is called update-local.

Once the local data is ready (e.g., scientific articles reporting the fin-

ished genome sequence have been published), scientists (subject view user)

may want to (or have to) release the qualified data into the “public” database,

so that other scientists (object view) can gain access to this shared data. Other

scientists (object view users) can choose either to “synchronize” their local

database (if it is not empty) with the public database, or, to leave their lo-

cal customized data as it is. We call the two requirements data merging and

synchronization respectively.

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 11

In response to the above scenario, we design the update-local semantic.

(1) Localize the view update translation, while preserving the properties of

views being side-effect free and updates being always updatable. (2) On-

demand merging of the local database of the subject view into the public

database, while still guaranteeing the subject view to be free of side effects.

(3) On-demand synchronizing the local data of the object view with the pub-

lic database updated by the subject view.

This is the most general update semantic in the sense that all updates

are translatable in a side effect free manner under this semantic. It also

provides the maximum flexibility to the user such that they can keep their

localized data and get all their changes written through to the database

whenever they want.

However, it is a complex update semantic in the sense that (i) the view

contents are now extracted from both a “public” database and a “local”

database associated with the view; (ii) different views defined over the

same database are not always synchronized since each of them cannot keep

their own local data which might be hidden from others; (iii) data replica-

tion is often used to eliminate view side effects (e.g., using stored local data

copy to restore elements disappearing due to a view side effect).

Update hybrid semantic. There are other semantics which are not as strict

as the update public semantic and not as flexible as the update-local seman-

tic either. We call them update hybrid semantic. One typical hybrid semantic

is used in the recent work [YK06]. Any changes made by the user through

her view are encoded using special identifiers in the underlying database.

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 12

This then requires both data and schema changes. All view updates are

thus translatable, in the sense that they can be encoded, namely, first cloned

then some portion of the clones are updated. It also ensures that side-effects

are not visible to users.

1.2.2 Limitations of Existing Works

There are several implementations of XML storage that are independent

of relational databases [Mic01, Sah02, XH, dbX, JAKC+02, FHK+02, ST00,

Sch00]. Several of these are driven by the document (or programming lan-

guage) community, rather than the database community. Natix [FHK+02]

has been developed as a storage manager suitable for XML data. The focus

is on efficient management of tree-structured data at the level of page al-

location and physical placement. Timber [JAKC+02] is based upon a bulk

algebra for manipulating trees, and natively stores XML. It also developed

new access methods to evaluate queries in the XML context. Tamino [ST00,

Sch00] is a leading commercial “native” XML database, which uses a nested

relational engine as its data store, with the bulk of the innovation in the

product coming from new index structures, support for handling XML

schematic information, and the web interface layer.

XML databases have also been implemented on top of an object ori-

ented database [FE01, LAW99, RP02, eXc] and a semi-structured database

[GMW99, ML01].

Several mapping techniques have been proposed [FK99, KM00, SYU99]

to express tree-based XML data to flat tables in a relational schema. Many

recent XML data management systems [CKS+00, SKS+01, FMST01, MFK01b,

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 13

PB02, DT03, KCKN03, DTCO03, CKN03, KKN02] support queries over

XML views of the relational data.

In XPeranto system from IBM [CKS+00, SKS+01], a framework for pro-

cessing complex XQuery queries over XML views is presented. The given

user and view queries are converted to the XQGM (XML Query Graph

Model) representation, and optimized by eliminating the construction of

intermediate XML fragments and pushing down the computation. A sin-

gle SQL query is generated according to the optimized XQGM inside the

relational engine.

SilkRoute [FMST01] proposes an algorithm for translating an XQuery

expression into SQL by using the View-Forest methodology to separate the

structure of the output XML document from the computation that produces

the document’s contents. Especially, it addresses the issue of how to de-

compose an XML view over a relational database into an optimized set of

SQL queries. Agora [MFK01b] uses an LAV approach to translate XQuery

FLWR expressions into SQL. Rolex [PB02] addresses the issue of evaluating

a series of navigation operations on a virtual DOM wrapping a relational

database into SQL. MARS [DT03] proposes an XML-to-SQL translation al-

gorithm when both GAV-style and LAV-style views are present. The system

uses the constraints on both relational and XML data to achieve optimized

performance.

Commercial database systems, such as Oracle, DB2 and SQL-Server,

also provide XML support. Oracle XML DB [BKKM00] provides SQL/XML

as an extension to SQL, using functions and operators, to include process-

ing of XML data in relational stores. The SQL/XML operators make it

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 14

possible to query and access XML content as part of normal SQL oper-

ations. It also provides methods for generating XML from the result of

an SQL Select statement. The IBM DB2 XML Extender [CX00] provides

powerful user-defined functions to store and retrieve XML documents in

XML columns, as well as to extract XML elements or attribute values. In

Microsoft SQL Server2000 [Rys01], SQLXML supports the evaluation of

XPath queries over the annotated XML Schema.

Despite the importance of the XML view update problem, it has not yet

received much attention from the database research community.

So far, most existing work is designed under update-public semantic.

Translating updates issued on virtual views is a long standing difficult is-

sue [BS81, CP84, DB82, Kel85, Kel86a, Kel86b] under this semantic even in

the relational scenario. The reason is that a side effect free update mapping

from a view update to base updates does not always exist and, when it does

exist, it may not be unique.

[DB82] is a practical approach dealing with view update translatability

checking for relational databases. It stipulates the notions of correct trans-

lation and clean source. It also presents an approach for performing a care-

ful semantic analysis of the view definition to determine the existence of

a unique or at least a small set of update translations. The update transla-

tion strategy has been studied for the Select-Project-Join views on relational

databases [Kel85, Kel86a, Kel86b]. These works have been further extended

for object-based views in [BSKW91], when the view is anchored in a pivot

relation and updates are specified only in those well-nested relations. With

XML now as a nested data model, these works might not be suitable and

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 15

thus need to be further examined.

The update translation for XML view updating scenario has also been

explored to some degree in recent works such as [BKKM00, BDH03, BDH04,

CX00, Rys01, TIHW01]. Under the assumption that the given update is

translatable, [BDH03, BDH04] propose an update translation strategy for

converting the given XML view update into a relational view update. The

main result of [TIHW01] is a proposal of an XQuery update grammar. It

also studies the execution performance of translated updates.

Commercial database systems such as SQL-Server2000 [Rys01], Oracle

[BKKM00] and DB2 [CX00] also provide system-specific solutions for re-

stricted update types. Oracle XML DB [BKKM00] provides SQL/XML as

an extension to SQL, using functions and operators to query and access

XML content as part of normal SQL operations. It also provides methods

for generating XML from the result of an SQL Select statement. The IBM

DB2 XML Extender [CX00] provides user-defined functions to store and re-

trieve XML documents in XML columns, as well as to extract XML elements

or attribute values. However, neither IBM nor Oracle support update oper-

ations. [Rys01] introduces XML view updates in the SQL-Server2000 based

on a specific annotated schema and update language called updategrams. In-

stead of using update statements, the user provides a before and after im-

age of the view. The system computes the difference between the images

and generates corresponding SQL statements to reflect changes on the re-

lational database.

However, none of these works consider any of the following basic ques-

tions for XML views: (i) what are the possible correct translations and how

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 16

to find them? (ii) Which is the most suitable one and how to identify it? To

the best of our knowledge, no work has been done under the update-local

semantic to address the view updating problem either in the relational or

the XML scenario.

The first update hybrid semantic is proposed and has been used in the

very recent work [YK06] for the relational scenario. It has not yet been

adapted to the XML scenario because it lacks view side effects checking

mechanism and thus cannot reject updates with side effects.

1.2.3 Supporting Updates over XML Views

The ambiguity shown above exists in general for the problem of updates

through views. When the view in question is in XML format, new chal-

lenges arise as summarized below.

• The mismatch between the XML hierarchical view model and the

base model. That is the nested structure imposed by an XML view

may be in conflict with the hierarchy explicitly or implicitly defined

by the underlying base data model. In other words, if the base is rela-

tional, the constraints of the relational schema imply the base hierar-

chical structure. If the base is an XML document, its schema expresses

the hierarchy. This mismatch will affect the translatability of the view

updates. In particular, the challenge arises from the fact that the XML

view does not determine a unique relational database schema or XML

document schema underneath. Hence assumptions about the specific

nature of the base data storage cannot be built into the view-update

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 17

algorithm.

• Updates can be specified on any XML view element. Compared to

the fixed tuple-based update in the relational view update scenario,

this flexible update granularity now causes new issues. As an exam-

ple, although the relational database can be normalized and the XML

document can be well-formed to follow a certain schema, XML views

can be very complex and potentially contain data duplications. The

flexible granularity of XML updates thus could touch several dupli-

cates, while leaving others untouched. Such an update would not be

translatable without any side effect.

• XML is an order-sensitive data model. An order-sensitive update

can delete or insert a view element in a certain position of the XML

view. Order-sensitive update translation is a problem specific for

XML views, because both relational and the object-oriented data model

are both ordered models.

Motivating Examples. Given the fact that (1) XML views are hierar-

chically structured and (2) updates can happen on any element along the

view hierarchy, XML view updating is more complex than relational view

updating. Fig. 1.1(a) shows a running example of a relational database for

a course registration system. A virtual XML view in Fig. 1.1(c) is defined

by the view query in Fig. 1.1(b). The following examples illustrate cases of

classifying updates as translatable or not translatable. The XML update

language from [TIHW01] or the update primitives from [BDH04] are used

to define update operations. For simplicity, in the examples below we only

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 18

Professor

pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

Key:{pid}

Course

cid cname pid

t1 c1 Math p1

t2 c2 Physics p1

t3 c3 English p2

Key={cid}

FK: pid→ Professor.pid

Student

sid sname cid

t1 s1 Chun Zhang c1

t2 s2 Mike Fisher c1

t3 s3 Feng Lee c2

Key={sid, cid}

FK: cid→ Course.cid

(a) Relational Database

FOR $p IN DOCUMENT(Professor/ROW),
$c IN DOCUMENT(Course/ROW)

WHERE $p.pid = $c.pid
RETURN

<ClassInfo>

<Course>

$c/cname/text()
</Course>,
<Professor-Student>

<Professor>$p/pname/text()</Professor>,
FOR $s IN DOCUMENT(Student/ROW)
WHERE $s.cid = $c.cid
RETURN

<Student>
$s/sname/text()

</Student>
</Professor-Student>

</ClassInfo>

(b) View query

CI1 <ClassInfo>

CI1.C1 <Course>Math</Course>

CI1.PS1 <Professor-Student>
CI1.PS1.P1 <Professor>David Finkel</Professor>
CI1.PS1.S1 <Student>Chun Zhang</Student>
CI1.PS1.S2 <Student>Mike Fisher</Student>

</Professor-Student>
</ClassInfo>

CI2 <ClassInfo>

CI2.C1 <Course>Physics</Course>

CI2.PS1 <Professor-Student>
CI2.PS1.P1 <Professor>David Finkle</Professor>
CI2.PS1.S1 <Student>Feng Lee</Student>

</Professor-Student>
</ClassInfo>

CI3 <ClassInfo>

CI3.C1 <Course>English</Course>

CI3.PS1 <Professor-Student>
CI3.PS1.P1 <Professor>Tim Merrett</Professor>

</Professor-Student>
</ClassInfo>

(c) XML view

Figure 1.1: The running example for the course registration system

1.2. A BIRD’S EYE VIEW OF THE VIEW UPDATING PROBLEM 19

use a delete primitive with the format (delete nodeID), where nodeID is the

abbreviated identifier of the element to be deleted 1. For example, CI1 in-

dicates the first ClassInfo element, while CI1.PS1 the first Professor-Student

element of the first ClassInfo element. We use Professor.t1 to indicate the first

tuple of relation Professor.

Now let’s consider an example of an update under the update-public

semantic.

Example 1 Consider the update u2 = {delete CI1.C1}.

The appearance of the view element CI1.C1 is determined by two tuples: Professor.t1

and Course.t1. There are three choices for achieving this update: T1={delete Professor.t1},

T2={delete Course.t1} and T3={delete Professor.t1, delete Course.t1}. All three

translations would cause a view side effect, namely, the whole ClassInfo element

would disappear. From the view query, we see that any ClassInfo element must

always have a pair of Professor and Course sub-elements. Deleting the course el-

ement would break this join condition and thus make the whole ClassInfo element

disappear.

As we can see from the above examples, not only view updates can

happen anywhere along the view hierarchy, but also side effects can appear

anywhere in the view. The XML view updating is thus more complex than

in the relational case.

1Note that the view here is still virtual. In reality, this nodeID is achieved by specifying conditions
in the update query [WRMJ05].

1.3. CONTRIBUTIONS OF THIS DISSERTATION 20

1.3 Contributions of This Dissertation

In this dissertation work, we focus on the problem of updating XML views,

which wrap relational data. The main contributions of this dissertation

work include the following.

• We propose the clean extended source theory to serve as theoretical

foundation for the study of the view update problem under all differ-

ent update semantics.

• We propose our XML view updating approach specific to both the

update-public semantic and the update-local semantic. We call them

HUX and LoGo respectively.

• We have designed and implemented the HUX and LoGo algorithms,

along with respective optimization techniques in our XML manage-

ment system Rainbow.

• We propose an approach named O-HUX to extend HUX and LoGo

with ordered semantics.

• We report experiments assessing the performance and usefulness of

proposed algorithms.

• We prove the correctness of the proposed theory and algorithms.

1.3.1 Clean Extended Source Theory

Here we first explore the fundamental theory to determine whether a given

update over the XML view is indeed translatable. We call it clean extended

1.3. CONTRIBUTIONS OF THIS DISSERTATION 21

source theory, which provides the theoretical foundation for the study of the

view updating problem under all different semantics [WR04, WRMar].

In the relational scenario, [BS81, CP84] propose a complementary the-

ory that requires a correct mapping to avoid view side effects as well as

database side effects. Database-side-effect-free means that for a translation

to be considered correct, it cannot affect any part of the database that is

“outside” the view. This correctness criteria, however, is too restrictive to

be practical. [DB82] relaxes this condition to only require that no view side

effect occurs. In other words, a translation is correct as long as it corre-

sponds exactly to the specified update, and it does not affect anything else

in the view. Using the concept of “clean source”, it also characterizes the

schema conditions under which an update of a relational view is translat-

able.

With the hierarchical structure of the XML data model in consideration,

our work treats an XML view as a “composition” of a set of relational views

by following the approach in the literature [FKS+02, BDH04]. We extend

the concept of a “clean source” for relational databases [DB82] into the con-

cept of a “clean extended source” suitable for XML. This extension takes

the foreign key constraint in the relational data model into consideration,

since it is very commonly used as join condition to form the XML view hi-

erarchy. We propose a clean extended source theory for determining the

existence of a correct relational update translation for a given XML view

update.

We now exploit this proposed clean extended source theory to serve as

a theoretical foundation for solving the XML view updating problem under

1.3. CONTRIBUTIONS OF THIS DISSERTATION 22

various update semantics. Our main contributions in this direction include:

(1) We characterize the update translatability problem for XML views and

identify key factors affecting the translatability. (2) We then use the theory

for determining whether a correct view update translation exists. (3) We

prove the correctness of our clean extended source theory.

1.3.2 XML View Updates Handling Under Update-public Seman-

tic (HUX)

Here we design practical algorithms to determine whether a given update

over the XML view is indeed translatable under the update-public seman-

tic. We propose a schema-centric approach named HUX — Handling Up-

dates in XML [WRM06, WRMJ06].

HUX first bridges the XML and relational view update problem by

treating the XML view as a “composition” of a set of relational views. An

update over a schema node is treated as an update over its relational map-

ping view. This in turn can be handled as relational view update problem.

However, such a simple transformation between the two problems is not

sufficient. The relationship between a parent SQL view and its children

SQL views is critical in the XML view scenario for side effect-free checking.

The XML view update problem can be viewed as the problem of updating

multiple SQL views, with restrictions regarding how updates on one SQL

view can affect other SQL views.

HUX utilizes the schema of the underlying source to effectively prune

updates that are guaranteed to be not translatable and pass updates that

1.3. CONTRIBUTIONS OF THIS DISSERTATION 23

are guaranteed to be translatable directly to the SQL engine. Updates that

could not be classified using schema knowledge are finally analyzed by ex-

amining the data. This required data-level check is further optimized under

schema guidance to prune the search space for finding a correct translation.

Extensive experiments illustrate the reliability and performance benefits of

HUX.

We make the following contributions in this direction: (1) We propose

the pure data-driven strategy for XML view updating, which guarantees

that all updates are fully classified. (2) We also propose a schema-driven

update translatability reasoning strategy, which uses schema knowledge

including now both keys and foreign keys to efficiently filter out untrans-

latable and identify translatable updates when possible. (3) We then de-

sign an interleaved strategy that optimally combines both schema and data

knowledge into one update algorithm, which performs a complete classifi-

cation in polynomial time for the core subset of XQuery views. (4) We have

implemented the algorithms along with respective optimization techniques

in a working XQuery view system named HUX. We report experiments as-

sessing its performance and usefulness.

1.3.3 XML View Updates Handling Under Update-Local Seman-

tic (LoGo)

In this work, we propose a practical framework, called LoGo, that pro-

vides flexible view updating services under update-local semantic. LoGo

achieves update translation (mapping updates over views to updates over

1.3. CONTRIBUTIONS OF THIS DISSERTATION 24

the data), while guaranteeing side-effect free semantics as well as update-local

as required by update-local semantic.

Further, LoGo supports writing through from the local database to the

public (global) database whenever desired. A flexible synchronization ser-

vice is provided that enables all other views defined over the same public

database to be refreshed, i.e., synchronized with the publically committed

changes, if so desired.

LoGo is the first solution that provides a flexible view updating ser-

vice. Experimental results confirm the effectiveness of the proposed ser-

vices, and highlight its performance characteristics.

To summarize, our work in this direction makes the following contribu-

tions: (1) We propose a new view update semantics which relies on local-

ized behavior to guarantee: (i) all view updates are translatable in a view

side effect-free manner, (ii) local user updates can be separated from the

global database when desired and (iii) views are independent from each

other in terms of update effects. (2) We propose the LoGo framework which

fulfills our newly proposed update semantics, yet supports synchroniza-

tion between local and global behavior when so desired. (3) We implement

the LoGo system. Experiments are also conducted to assess the perfor-

mance of LoGo.

1.3.4 XML View Update Handling with Order (O-HUX)

Here we study the problem of updating XML views with order being con-

sidered, we call it O-HUX. O-HUX classifies the order syntax in the XML

view definition into different categories. For each category, we design a set

1.4. DISSERTATION ORGANIZATION 25

of rules that identify order-sensitive candidate update translations.

Our contributions include: (1) To the best of our knowledge, we are

the first to study updating order-sensitive XML views. (2) We extend the

clean source theory to order-sensitive semantics. (3) Based on the order-

sensitive clean source theory, we develop the O-HUX algorithm that guar-

antees view side effect free semantics while considering most of the XQuery

order constructs. (4) Our O-HUX algorithm relies largely on SQL, and

hence can be easily adopted by relational database systems to support order-

sensitive view updating.

1.4 Dissertation Organization

Chapter 2 describes the background data model used in XML view updat-

ing. After that, the dissertation is organized into four parts. The first part,

focusing on the clean extended source theory, is described in Chapter 3.

The second part, described in Chapter 4, depicts the updating algorithm

of XML views under update-public semantic. While the third part, focus-

ing on the XML view updating under update-local semantic, is described

in Chapter 5. Chapter 6 describes the order-sensitive XML view updating

solution. Conclusions of this dissertation and future work are described in

Chapters 7 and 8 respectively.

26

Chapter 2

Background

2.1 XQuery

The query language XQuery [Sco02] is a language to express to extract

and manipulate data from XML documents or any data source that can be

viewed as XML, such as relational databases or office documents. XQuery

uses XPath expression syntax to address specific parts of an XML docu-

ment. It supplements this with a SQL-like “FLWOR expression” for per-

forming joins. A FLWOR expression is constructed from the five clauses

after which it is named: FOR, LET, WHERE, ORDER BY, RETURN. The

language also provides syntax allowing new XML documents to be con-

structed. Where the element and attribute names are known in advance,

an XML-like syntax can be used; in other cases, expressions referred to as

dynamic node constructors are available. All these constructs are defined

as expressions within the language, and can be arbitrarily nested.

XQuery language is based on a tree-structured model of the information

2.3. UPDATES LANGUAGE FOR MODIFYING XML DATA 27

content of an XML document, containing seven kinds of nodes: document

nodes, elements, attributes, text nodes, comments, processing instructions,

and namespaces. The type system of the XQuery language models all val-

ues as sequences (a singleton value is considered to be a sequence of length

one). The items in a sequence can either be nodes or atomic values. Atomic

values may be integers, strings, booleans, and so on: the full list of types is

based on the primitive types defined in XML Schema [W3Ca].

2.2 XQuery Views over a Relational Database

XML views can be defined over a relational database using XQuery. An

XML view V is specified by a view definition DEFV over a given relational

database D. In our case, DEFV is an XQuery expression [W3C03] called a

view query.

Fig. 1.1(a) in Chapter 1 shows a running example of a relational database

for a course registration system. A virtual XML view in Fig. 1.1(c) is defined

by the view query in Fig. 1.1(b).

2.3 Updates Language for Modifying XML Data

Several update languages have been used to update XML data (views or

XML documents) [BDH03, TIHW01, XD, W3Cb, WLL03].

[TIHW01] proposes an XQuery like update language to change XML

views, which includes a set of basic update operations for both ordered and

unordered XML data. The update language used in [TIHW01] is shown in

2.3. UPDATES LANGUAGE FOR MODIFYING XML DATA 28

Figure 2.1(a). For example, the deletion of the view element CI1.C1 from

the XML view in Figure 1.1 is expressed as in Figure 2.1(b).

FOR $binding1 IN XPath-expr, ...

LET $binding := XPath-expr, ...

WHERE predicate1, ...

updateOp, ...

where updateOp is dened in EBNF as:

UPDATE $binding f subOp f, subOp g

and subOp is:

DELETE $child j

RENAME $child TO name j

INSERT content [BEFORE j AFTER $child] j

REPLACE $child WITH $content j

FOR $binding IN XPath-subexpr, ...

WHERE predicate1, ... updateOp

(a)

FOR $ci IN document(‘‘View.xml’’)/ClassInfo,

$c IN $ci/Course

WHERE $c.text() = ’Math’

UPDATE $ci {

DELETE $c }

(b)

Figure 2.1: Update language used by [TIHW01]

The XUpdate language proposed in [XD] defines the syntax and se-

mantics of XUpdate, which is a language for updating XML documents.

XUpdate is designed to be used independently of any implementation.

An update is represented by an xupdate:modifications element in an

2.3. UPDATES LANGUAGE FOR MODIFYING XML DATA 29

XML document. An xupdate:modifications element must have a ver-

sion attribute, indicating the version of XUpdate that the update requires.

The xupdate:modifications element may contain the following types of el-

ements:

xupdate:insert-before

xupdate:insert-after

xupdate:append

xupdate:update

xupdate:remove

xupdate:rename

xupdate:variable

xupdate:value-of

xupdate:if

Figure 2.2: XUpdate language used by [XD]

For example, an update <xupdate:remove select=/ClassInfo/Course

[text()=’Math’]/>will also delete the view element CI1.C1 from the XML

view in Figure 1.1.

[BDH03] proposes to use update primitives in updating XML data. The

proposed update primitive model is very simple, and allows the insertion

of a subtree at a given node, the deletion of the subtree rooted at a given

node, or the modification of a node’s context.

Definition 1 An update operation u over an XML view V is a tuple <u,δ,ref>,

where u is the type of operation (insert, delete, modify); is the XML tree to be

inserted, or (in case of a modification) an atomic value; and ref is the address of

a node in the XML tree. Deletions do not need to specify a δ since all the nodes

under ref will be deleted.

2.4. XML VIEW UPDATING PROBLEM 30

The reference ref can be obtained by an addressing scheme such as

DOM. For example, to delete the course CI1.C1 “Math”, we specify: u =

delete, ref = /vendors/ vendor/products/book[btitle=”ComputerNetworks”].

Recently the World Wide Web constitution proposes the XQuery update

facility to perform the update operations. For example, the update opera-

tion: do delete fn:doc(‘‘view.xml’’)/ClassInfo/Course

[text()=’Math’] deletes the CI1.C1 element.

Each of the above proposals is suitable for updating XML data. [BDH03,

XD, W3Cb] are simple solutions using XPath, while [TIHW01] is an XQuery

language for more complex update operations, such as sequence updates.

However, in this dissertation we consider only single element updates.

Either update language proposal above thus is suitable for our purpose.

Henceforth we thus only indicate which element to insert, delete, or mod-

ify without pointing to the specific update language.

2.4 XML View Updating Problem

Let 0 be the domain of update operations over the view. Let u ∈ 0 be an

update on the view V . An insertion adds while a deletion removes an ele-

ment from the XML view. A replacement replaces an existing view element

with a new one. A taxonomy of the view update domain 0 is shown in

Fig. 2.3(a). A valid view update is an insert, delete or replace operation

that satisfies all constraints in the view schema. All updates discussed in

this dissertation are assumed to be valid.

Definition 2 A relational update sequence U on a relational database D is a

2.4. XML VIEW UPDATING PROBLEM 31

Valid Invalid

Untranslatable Translatable

View Update

(a)

V

D

u(V)

DEFv DEFv

(2) u

(3) U
U(D)

(1) (4)

(b)

Figure 2.3: (a) The partition of view update domain 0 and (b) the correct
translation of view updates

correct translation of a valid update u on the view V iff (i) u(DEFV (D)) =

DEFV (U(D)) and (ii) if u(DEFV (D)) = DEFV (D)⇒ U(D) = D.

A correct translation means the “rectangle” rule shown in Fig. 2.3(b)

holds. Intuitively, this implies that the translated relational updates exactly

perform the view update and nothing else, namely, without view side ef-

fects. In addition, if an update operation does not affect the view, then it

should not affect the relational base either. This guarantees that any modi-

fication of the relational base is indeed done for the sake of the view. This

second criterion is guaranteed if the translation is done by composing the

view query and the update query. Hence it generally can be achieved.

For a valid update, if a correct translation does not exist, u is untrans-

latable. Otherwise, it is said to be translatable (Fig. 2.3(b)). We consider

the effects of foreign key constraints on update translatability since they

are widely used in defining XML views, while being largely ignored in ex-

isting work even for relational view updates [Kel86b, Kel85, DB82].

We assume a view update u is a valid view update and the update trans-

lation policy is the same type update translation.

2.5. MODELING XML VIEWS USING SCHEMA GRAPHS 32

2.5 Modeling XML Views using Schema Graphs

Similar to SilkRoute [FKS+02], we consider the XML view as the “compo-

sition” of a set of relational views as will be introduced in Section 2.6. We

use a set of schema graphs to capture the mapping relationship between

an XML view and its relational views, as well as relationships among rela-

tional views. In the rest of this dissertation, we make extensive use of these

schema graphs to handle XML view updating under different semantics.

2.5.1 View Annotated Schema Graph

We use the View Annotated Schema Graph to separate the structure of the

XML view from the computations that produce the content of the view,

with the latter expressed in SQL.

A view annotated schema graph (ASG), denoted by GV , is a forest in

which each node is labeled with an XML label and an SQL query over the

relational database. Fig. 2.4 depicts the view ASG for the XML view in

Fig. 1.1. Nodes v ∈ GV include root, leaf and complex nodes. The XML label

of the root and complex nodes is the corresponding element or attribute

name; for leaf nodes the label is its corresponding relational column name.

The SQL annotation of a node v represents the computations that produce

the atomic values contained in v.

The nodes, edges, and XML labels of the view ASG represents the struc-

ture of the XML view, while the SQL query represent the computation per-

formed by the relational database in order to construct the view. Fig. 2.4(a)

shows the structure of the XML view in Figure 1.1. The XML view can be

2.5. MODELING XML VIEWS USING SCHEMA GRAPHS 33

computed by executing these SQL queries, and constructing a distinct XML

node from these SQL answers. The view ASG in Fig. 2.4(b) shows the SQL

queries for each node of our example view 1. Given two nodes v1, v2 in GV ,

the edge (v1, v2) represents that v1 is a parent of v2 in the view hierarchy.

The view ASG exists because XQuery supports sequences whose items

may be arbitrary XML elements. In practice, view ASGs are often trees.

We now describe how to obtain the view ASG from the view query. This

description is similar to [FKS+02].

View

ClassInfo

Course Professor-Student

Student
Course.cname

Professor

Student.sname

*

*

Professor.pname

(a)

CI: Select *
from Professor P, Course C
where P.pid=C.pid

C : Same as CI node
PS: Same as CI node
P : Same as CI node
S : Select *

from Professor P, Course C, Student S
where P.pid=C.pid and C.cid = S.cid

(b)

Figure 2.4: The view ASG for the XML view in Fig. 1.1

We first associate with each view ASG node an SQL fragment. The SQL

fragment consists of a required select clause, containing a single value of

the corresponding atomic type and optional from and where clauses. For

exposition purposes, we use only the string atomic type and assume all

other values are cast into strings. We require that there is a tuple variable

that is bound to each table occurring in a from clause, and that every tuple

variable used in the SQL fragment of some node v is bound in the from

1In the rest of the dissertation, we use v to indicate a complex node. The treatment of other nodes
is either trivial or similar to that of complex nodes.

2.5. MODELING XML VIEWS USING SCHEMA GRAPHS 34

clause of n or in the from clause of one of v’s ancestors. The SQL fragments

for our running example view query in Figure 1.1 are in Figure 2.5.

FOR $p IN DOCUMENT(Professor/ROW),

$c IN DOCUMENT(Course/ROW)

WHERE $p.pid = $c.pid

RETURN

<ClassInfo> ;from Professor p, Course c where p.pid=c.pid

<Course> ;from ()

$c/cname/text() ;select p.cname

</Course>, ;

<Professor-Student> ;from ()

<Professor> ;from ()

$p/pname/text() ;select p.pname

</Professor>, ;

FOR $s IN DOCUMENT(Student/ROW) ;

WHERE $s.cid = $c.cid ;

RETURN ;

<Student> ;from student s where s.cid = c.cid

$s/sname/text() ;select s.sname

</Student> ;

</Professor-Student> ;

</ClassInfo> ;

Figure 2.5: The SQL fragments of XQuery view in Figure 1.1

The SQL fragments of the internal nodes, e.g., CI-node, C-node and PS-

node, contain FROM and WHERE clauses, whereas the leaf nodes, e.g.,

$c/cname/text(), contain only SELECT clauses. The FROM or WHERE

clauses may be empty, in which case we omit them (e.g., in the leaf nodes),

or represent them with from () (e.g., P-node. These queries are fragments: a

WHERE or SELECT clause in a fragment may have tuple variables that are

not defined in that fragment. However, each such tuple variable must be

defined in the FROM clause of an ancestor. For example, CI-node defines

the tuple variable c, which is used in in the WHERE clauses of S-node.

We associate with each node v a complete SQL query, Qv, as follows.

The FROM clause of Qv is the concatenation of all FROM clauses of v and

all v’s ancestors; the WHERE clause of Qv is the conjunction of all WHERE

2.5. MODELING XML VIEWS USING SCHEMA GRAPHS 35

clauses of v and all v’s ancestors; and if v is a leaf, the SELECT clause

of Qv is that of v, otherwise it is SELECT *. Notice that Qv is complete,

i.e., all tuple variables used in Qv are defined in the FROM clause. More-

over, if v1 is the parent of v2, then all tuple variables bound in the FROM

clause in Qv1 are also bound in the FROM clause of Qv2. Finally, notice that

Qv is of the form SELECT-FROM-WHERE, not SELECT-DISTINCT-FROM-

WHERE, thus duplicate values may occur in the answer. Fig. 2.4(b) shows

the associated SQL queries for each node of our example view (Figure 1.1).

2.5.2 Computation Dependency Graph

For each view ASG node v, the computation dependency graph intro-

duced below represents the cardinality between the referenced relations

specified by the view query.

Definition 3 Computation Dependency Graph GC .

1). Given a view ASG node v computed by SQL query Qv. Let R1, R2, . . . , Rn

be relations referenced by Qv. Each Ri, 1 ≤ i ≤ n is represented as a node

named Ri.

2). Let Ri, Rj be two nodes (Ri 6= Rj). There is an edge Ri → Rj if Q has a

join condition of the form Ri.a = Rj .b and Rj .b is UNIQUE in Rj .

3). If Q has a join condition Ri.a = Rj .b where Ri.a is UNIQUE for Ri and Rj .b

is UNIQUE for Rj , then there are two edges Ri → Rj and also Rj → Ri.

Fig. 2.6(a) shows the computation dependency graph for the CI-node,

with C-node, PS-node, and P-node graphs being identical. Fig. 2.6(b) shows

the graph for S-node.

2.5. MODELING XML VIEWS USING SCHEMA GRAPHS 36

ProfessorCourse ProfessorCourseStudent

Course.pid = Professor.pid Course.pid = Professor.pidStudent.cid = Course.cid

(a) (b)

Figure 2.6: (a) GC of CI-node and (b) GC of S-node

Proposition 1 Given a view ASG node v computed by SQL query Qv. Given two

nodes Ri, Rj in GC of v. If there is a path from Ri to Rj in GC , then each tuple

in Ri will be joined with at most one tuple in Rj . Let VR be the relational view

defined by Qv. If a node R in GC , which can reach all other nodes, then there is a

1-1 mapping from VR to R.

The property of this 1-1 mapping is useful [Kel86b, DB82, Kel85]. For

instance, in GC for the CI-node (Fig. 2.6(a)), the Course relation can reach all

relations in the graph. Therefore there is a 1-1 mapping from the elements

of the CI-node in the view to the tuples in the Course relation. Thus we

can delete a ClassInfo element by deleting the corresponding tuple from the

Course relation without causing side effects on other ClassInfo elements.

2.5.3 Foreign Key Graph

Since foreign key propagation could cause side effects, we now introduce

the foreign key graph for each view ASG node.

Definition 4 Foreign Key Graph (GFK).

1). Given a view ASG node v computed by SQL query Qv. Let R1, R2, . . . , Rn

be relations referenced by Qv. Each Ri, 1 ≤ i ≤ n, is denoted as a node

named Ri.

2.6. BRIDGING THE XML AND RELATIONAL VIEW UPDATE PROBLEM 37

2). Let Ri, Rj be two nodes (Ri 6= Rj). There is an edge Ri → Rj iff Q has a

foreign key constraint of the form Ri.fk ⊆ Rj .key, where Ri.fk is a foreign

key of Ri and Rj .key is the primary key of Rj .

Fig. 2.7 is the foreign key graph of S-node. If a relation Ri in GFK can

reach R, we say R is referenced by Ri.

ProfessorCourse

Course.pid = Professor.pidStudent.cid = Course.cid

Student

Figure 2.7: GFK of S-node

We define the entailment relationship |= between Qv and the relational

foreign key constraints as follows. Consider the foreign key constraint

R2.fk ⊆ R1.key, denoted as cFK . If Qv has a join condition of the form

R2.fk = R1.key, then we say that Q entails cFK , denoted by Qv |= cFK .

Similarly, let CFK be a set of foreign key constraints. We say Qv |= CFK if

Qv |= cFK for all cFK ∈ CFK . Intuitively, the entailment means the view

follows the foreign key and keeps the 1-1 mapping.

2.6 Bridging the XML and Relational View Update Prob-

lem

One possible direction for handling updates over XML views may be to

“convert” the XML view update problem to the equivalent relational view

update problem (if possible). For this purpose, let us treat the XML view as

a “composition” of a set of relational views by following the approach from

2.6. BRIDGING THE XML AND RELATIONAL VIEW UPDATE PROBLEM 38

the literature [FKS+02, BDH04]. Here, each node in the view annotated

schema graph (ASG) of the view (Fig. 2.4) can be considered as generated

by a relational view, with an associated SQL query. The set of instances of

a schema node is therefore given by this SQL query. Intuitively, an update

over a certain schema node can be treated as an update over its relational

mapping view. This in turn can be handled as relational view update prob-

lem.

However, such a simple transformation between the two problems is

not sufficient. The relationship between a parent SQL view and its children

SQL views is critical in the XML view scenario for side effect-free checking.

The relationship between the parent SQL view and the child SQL view

is explicitly defined by the join constraints specified in the view query (typi-

cally, this join is specified in terms of foreign key constraints). Secondly, the

relationship is also restricted by the update behavior. In this dissertation

work, we will assume the most commonly used update behavior, namely,

when we delete an element in the XML view, we will delete all its children

elements as well.

The XML view update problem can be viewed as the problem of updat-

ing multiple SQL views, with restrictions regarding how updates on one

SQL view must affect other SQL views. Therefore, the XML view update

problem is more complex than that of pure relational views [BS81, CP84,

Kel86b, Kel85, DB82]. Not only do all the problems in the relational con-

text still exist, but we also have to address new challenges derived from

the XML hierarchical data model and its flexible update operations. On the

other hand, the relational view update problem can be mapped to a special

2.7. THE RESTRICTIONS ON XQUERY VIEWS 39

XML view update problem, where the view only includes a single XML

schema node.

2.7 The Restrictions on XQuery Views

The XQuery language provides many features that make queries simpler

to write and use, but are also redundant. For instance, complex FLWR

expressions can be rewritten as the composition of individual FOR, LET,

and IF-THEN-ELSE expressions. The XQuery Formal Semantics [W3C03]

defines a proper subset of the XQuery language, called the XQuery Core

language, and gives rules that rewrite or normalize every XQuery expres-

sion as a XQuery Core expression. The static (type) and dynamic (value)

semantics of XQuery is defined on this core language.

XML views defined by XQuery core can be very complex and thus

might not be suitable for the purpose of updating. XQuery language sup-

ported in this dissertation work as defined in Figure 2.8 is a proper subset

of the XQuery Core language. The following restrictions are applied to

XQuery core:

• It excludes recursive functions and operators.

• It excludes aggregation functions and operators. This includes count,

avg, min, max, sum.

In addition, given that the XML view is specified over the relational database

(a flat data model), the backward axis such as parent, ancestor will not ap-

pear in the view definition query.

2.7. THE RESTRICTIONS ON XQUERY VIEWS 40

Expr ::= Literal

| element QName Expr ;Element constructor

| attribute QName Expr ;Attribute constructor

| () ;Empty sequence

| Expr1 , Expr2 ;Sequence constructor

| Var

| Expr1 BinOp Expr2

| Expr1 EqOp Literal

| UnaryOp Expr

| (For | Let)+ [Where] [Orderby] return Expr

| Var ;Single step path expression

Literal ::= String |Integer |Float | . . .

UnaryOp ::= + | - | not

BinOp ::= eq | ArithOp | SetOp | LogicalOp

ArithOp ::= + | - | * | div |mod

LogicalOp ::= and | or

SetOp ::= union Node set operator

EqOp ::= eq | lt | le | gt | ge | ne

Axis ::= self | child | descendant-or-self | descendant

For ::= for $var in Expr

Let ::= let $var := Expr

Where ::= where Expr

Orderby ::= order by Expr

Figure 2.8: XQuery views handled by our dissertation work

In short, we only consider XML views which can be mapped to a set of

relational Select-Project-Join-Union (SPJU) views (with join being an equal-

ity join). The reason is that views involving functions or operations, which

can not be mapped to SPJU views, are generally not updatable even in the

relational scenario. Since the base data is still in the relational data format,

such XML views would still be not updatable.

41

Chapter 3

Theoretical Foundation

3.1 Introduction

3.1.1 Motivation

Given the inherence of the ambiguity of the view updating problem, it is

quite common that we cannot find a correct update translation satisfying

the criteria under certain update semantics. Such an update should be re-

jected since it violates the specified update semantic. The update translata-

bility issue thus needs to be solved before any update translation proce-

dure can ever be applied. As shown by Example 1 in Section 1.2.3, the

mismatch between the hierarchical XML view model and the flat relational

base model further complicates the update translatability issue.

Studying update translatability is important in terms of both correct-

ness and performance. Without translatability checking, blindly translat-

ing a given view update into relational updates can be dangerous. Such

3.1. INTRODUCTION 42

blind translation may result in unintended view side effects. To identify

this, the view before the update and after the update would have to be

compared. To adjust for such an error, the view update would have to be

rejected and the relational database would have to be recovered for exam-

ple by rolling back. This would be time consuming and depends on the size

of the database. However, by performing an update translatability analy-

sis, such ill-behaved updates could be identified early on and rejected at

compile time. The latter would be less costly, depending only on the view

query size.

However, before any update translatability checking algorithm under

certain semantic can ever be designed, a general purpose theory is needed

to guide such algorithm design. This theory should aim to answer the fol-

lowing question:

• How to trace the data from the view to the underlying database? This

is important since this relationship represents the data trace or the

fragment in the underlying database, which we should consider to

change for achieving the given view update.

• How to achieve the given view update? It is essential to identify pos-

sible changes to the underlying relational database, which in turn can

achieve the given view update.

• How to identify the view side effect? Assuming we choose one trans-

lation to achieve the given view update, will this chosen update cause

any view side effect? If it does, where could the side effect happen?

The theory should also have the property of being independent from the

3.1. INTRODUCTION 43

view type (XML or relational) and the view definition language (XQuery or

SQL), even though the specific computation used to answer these questions

could be different. For example, a different SQL query might be issued to

identify the data trace for a given view update when view is in relational

or XML.

3.1.2 State-of-Art

Significant effort in theory has been made in the relational context to solve

the view updating problem.

[BS81, CP84] propose a complementary theory that requires a correct

mapping to avoid view side effects as well as database side effects. Database-

side-effect-free means that for a translation to be considered correct, it can-

not affect any part of the database that is “outside” the view. This cor-

rectness criteria, however, is too restrictive to be practical. This is firstly

because the view usually only exposes a subset of data from the underly-

ing relational database. Thus there is always some data which is outside of

the view (not being exposed). Also, it is possible that there is some “con-

nection” between those exposed and not-exposed data, which could be af-

fected by the view updating behavior. For example, deleting a tuple from

one table used by the view, will trigger the foreign key (delete cascading)

to delete more tuples from other tables, which might not be exposed in the

view.

[DB82] relaxes this condition to only require that no view side effect

occurs. In other words, a translation is correct as long as it corresponds ex-

actly to the specified update, and it does not affect anything else in the view.

3.1. INTRODUCTION 44

Using the concept of “clean source”, it also characterizes the schema condi-

tions under which an update of a relational view is translatable. Under this

relaxed criteria, [Kel86b, Kel85, Kel86a] study the view update translation

mechanism for SPJ queries on relations that are in BCNF.

When view is in XML, these theories need to be adjusted, given that the

data model is now hierarchical rather than flat. We extend these theoretical

works in the following aspects.

3.1.3 Contributions

First, with the hierarchical structure of the XML data model in considera-

tion, our work [WR04, WRMar] extends the concept of a “clean source” for

relational databases [DB82] into the concept of a “clean extended source”

suitable for XML. We propose a clean extended source theory for determin-

ing the existence of a correct relational update translation for a given XML

view update.

Second, using the complementary theory, we study the update trans-

latability of XML views over the relational database in the special “round-

trip” case [WMR03], which is characterized by a pair of reversible loss-

less mappings for (i) first loading the XML document into the relational

database for storage, and (ii) extracting an XML view identical to the orig-

inal XML document back out of it. We prove that any valid update opera-

tion over such XML views, given a pair of round-trip mappings, is always

translatable.

3.2. CLEAN EXTENDED SOURCE THEORY 45

3.2 Clean Extended Source Theory

Much work has been done on the existence of a correct translation for var-

ious classes of view specifications [BS81, DB82] in the relational context.

Especially, Dayal and Bernstein [DB82] use the concept of “clean source”

to characterize the schema conditions under which a relational view over a

single relational table is updatable. We call it the clean source theory [DB82],

which has been widely used as theoretical foundation to solve the relational

view update problem [CWW00, BKT01].

However, the relational view update translatability problem addressed

in [DB82] is different from the XML view update translatability problem

we described in Section 1.2.3. In addition, Dayal and Bernstein [DB82] only

consider the functional dependencies inside a single relation. However, we

notice that the integrity constraints such as foreign keys also deserve care-

ful consideration since (i) in most practical cases, nesting in XML views is

done through the Join operation between key and foreign key constrained

hierarchies and (ii) the update propagation through the foreign key, which

is used to maintain the referential integrity, is one major reason causing

view side effects. Considering integrity constraints makes the view update

problem harder than considering only updates over a single relation, for

such propagated updates may again cause view side effects.

We extend it now as clean extended source theory to determine whether a

given translation is correct for the XML view update problem when foreign

key constraints are also considered. The new critical concepts are listed

below.

3.2. CLEAN EXTENDED SOURCE THEORY 46

e A view element

g(e) The generator of e

s The source of e

extend(s) The extended source of s

We use the following as running example through this section. Fig. 3.1(a)

shows a running example of a relational database for a course registration

system. A virtual XML view in Fig. 3.1(c) is defined by the view query in

Fig. 3.1(b).

3.2.1 Extended Source and Clean Extended Source

The key concepts used by our clean extended source theory include extended

source and clean extended source.

Definition 5 Let R1, R2, ..., Rn be the set of relations referenced by the SQL

query Q of a given view ASG node v. Informally, the generator of a view ele-

ment e, denoted by g(e), is a set {t1, t2, ..., tn} where ti ∈ Ri (i = 1..n), that

contains exactly the tuple in Ri used to decide the appearance of e in the view. We

say g is the generator of v, and ∀ti ∈ g is a source-tuple in D of v.

For example, the generator of the ClassInfo element CI1 in Fig. 3.1(c)

is g(CI1) = {Professor.t1, Course.t1}. Note that if Q references a relation

more than once (self join), we would use their alias and denote the tuple

from each of these relation alias separately in g(e). Our definition of gen-

erator follows [DB82] and is the same as Data lineage [CWW00] and Why

Provenance [BKT01].

Definition 6 Let V 0 be a set of view elements in a given XML view V . Let G(V 0)

be the set of generators of V 0 defined by G(V 0) = {g | g is a generator of a view-

3.2. CLEAN EXTENDED SOURCE THEORY 47

Professor

pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

Key:{pid}

Course

cid cname pid

t1 c1 Math p1

t2 c2 Physics p1

t3 c3 English p2

Key={cid}

FK: pid→ Professor.pid

Student

sid sname cid

t1 s1 Chun Zhang c1

t2 s2 Mike Fisher c1

t3 s3 Feng Lee c2

Key={sid, cid}

FK: cid→ Course.cid

(a) Relational Database

FOR $p IN DOCUMENT(Professor/ROW),
$c IN DOCUMENT(Course/ROW)

WHERE $p.pid = $c.pid
RETURN

<ClassInfo>

<Course>

$c/cname/text()
</Course>,
<Professor-Student>

<Professor>$p/pname/text()</Professor>,
FOR $s IN DOCUMENT(Student/ROW)
WHERE $s.cid = $c.cid
RETURN

<Student>
$s/sname/text()

</Student>
</Professor-Student>

</ClassInfo>

(b) View query

CI1 <ClassInfo>

CI1.C1 <Course>Math</Course>

CI1.PS1 <Professor-Student>
CI1.PS1.P1 <Professor>David Finkel</Professor>
CI1.PS1.S1 <Student>Chun Zhang</Student>
CI1.PS1.S2 <Student>Mike Fisher</Student>

</Professor-Student>
</ClassInfo>

CI2 <ClassInfo>

CI2.C1 <Course>Physics</Course>

CI2.PS1 <Professor-Student>
CI2.PS1.P1 <Professor>David Finkle</Professor>
CI2.PS1.S1 <Student>Feng Lee</Student>

</Professor-Student>
</ClassInfo>

CI3 <ClassInfo>

CI3.C1 <Course>English</Course>

CI3.PS1 <Professor-Student>
CI3.PS1.P1 <Professor>Tim Merrett</Professor>

</Professor-Student>
</ClassInfo>

(c) XML view

Figure 3.1: The running example for the course registration system

3.2. CLEAN EXTENDED SOURCE THEORY 48

element in V 0}. For each g ∈ G(V 0), let H(g) be some nonempty subset of g.

Then ∪g∈G(V 0)H(g) is a source in D of V 0, denoted by s. If G(V 0) = ∅, then

V 0 has no source in D.

Definition 7 Let s be a source of V 0. Let E be the set of tuples {tj} from the

relations rel(DEF V), where ∃ti ∈ s such that tj refers to ti through foreign key

constraint(s). We say se = s ∪ E is an extended source in D of V 0.

A source includes the underlying relational part of a set of view ele-

ments V 0, which is sufficient to decide the appearance of V 0. For ex-

ample, there are two possible sources of CI1, namely, s1={Professor.t1},

s2={Course.t1}.

For example, in our example view (Fig. 3.1), consider V 0 as all the Stu-

dent elements of CI1.PS1 . We have G(V 0) = {g1, g2}, where g1 ={Professor.t1,

Course.t1, Student.t1}, g2 = {Professor.t1, Course.t1, Student.t2}. Then

H(g1)1 = {Professor.t1}, H(g1)2 = {Course.t1}, H(g1)3 = {Student.t1}.

And H(g2)1 = {Professor.t1}, H(g2)2 = {Course.t1}, H(g2)3 = {Student.t2}.

Any combination of H(g1)i and H(g2)j will be a source of V 0, for example,

s1 = {Professor.t1} and s2 = {Student.t1, Student.t2}. Assuming that

there is a foreign key from the Course relation to the Professor relation, the

extended source of s1 is given by se1 = {Course.t1, Student.t1, Studenst.t2},

while Se2 = S2.

Definition 8 Let D = {R1, ..., Rn} be a relational database. Let V 0 be a set of

view elements in a given XML view V and Se be an extended source in D of V 0.

Se is a clean extended source in D of V 0 iff (∀v ∈ V −V 0), (∃g) such that g is a

3.2. CLEAN EXTENDED SOURCE THEORY 49

generator in (R1−Se1, ..., Rn−Sen) of v. Or, equivalently, Se is a clean extended

source in D of V 0 iff (∀v ∈ V − V 0)(Se ∩ g = ∅), where g is the generator of v.

A clean extended source is a source of a view element used only by this

particular element and no other one. For instance, s2 is a clean extended

source of e, but s1 is not since s1 is also part of the generator of CI2.

3.2.2 Clean Extended Source Theory

We now establish a connection between clean extended source and update

translatability by introducing a series of theorems. The following theorems

form a clean extended source theory. This serves as the base theory for

identifying whether an update is translatable. Although somewhat simi-

lar to [DB82], the theorems below differ in several important ways. Most

notably, (i) the key concepts, such as the generator, source, extended source

and clean extended source, now follow the new definitions from Section 3.2.1

and (ii) XML view elements have different granularity, instead of just the

uniform granularity for relational view tuples.

Lemma 1, 2 and 3 below are used to prove Theorem 1 and Theorem 2.

Let relational database D = {R1, ..., Rn}. Let dom(V) denote the domain

of the view. Let V 0 be a set of XML view elements in a given XML view V

and v ∈ V 0 indicates that v is a view-element inside V 0.

Lemma 1 Given a view V defined by DEF V over D. (1) Se is an extended source

in D of V 0 iff DEF V (R1−Se1
, ..., Rn−Sen

) ⊆ V −V 0. (2) Se is a clean extended

source in D of V 0 iff DEF V (R1 − Se1
, ..., Rn − Sen

) = V − V 0.

3.2. CLEAN EXTENDED SOURCE THEORY 50

Proof.

(1) If. Suppose DEF V (R1 − Se1
, ..., Rn − Sen

) ⊆ V − V 0 but Se is not an

extended source in D of V 0. Let G(V 0) be the set of generators of V 0. From

definition 7, ∃(t1, ..., tp) ∈ G(V 0) be a generator of v ∈ V 0, such that (∀ti ∈

Rx)⇒ ti /∈ Sex
. That is, ti ∈ Rx − Sex

. Thus v ∈ DEF V (R1 − Se1
, ..., Rn −

Sen
). But, (t1, ..., tp) is a generator of v ∈ V 0. That is v /∈ V − V 0. Hence,

we have v ∈ DEF V (R1−Se1
, ..., Rn−Sen

) and v /∈ V −V 0, a contradiction

with the hypothesis that DEF V (R1 − Se1
, ..., Rn − Sen

) ⊆ V − V 0.

Only if. Suppose Se is an extended source in D of V 0 but DEF V (R1 −

Se1
, ..., Rn−Sen

) 6⊆ V −V 0. Then, ∃v such that (v ∈ DEF V (R1−Se1
, ..., Rn−

Sen
)) ∧ (v ∈ V 0). This implies that there is a generator (t1, ..., tp) of v ∈ V 0

such that {ti | ti ∈ Rx and Rx ∈ rel(DEF V)} ∩ Se = ∅, contradicting the

hypothesis that Se is an extended source in D of V 0.

(2) If. Suppose DEF V (R1 − Se1
, ..., Rn − Sen

) = V − V 0 but Se is not a

clean extended source in D of V 0. From (1), Se is an extended source in D

of V 0. By Definition 8, (∃v ∈ V − V 0) such that there is no generator g ∈
∏

Rx∈rel(DEF V)(Rx−Sex
) of v, and hence v /∈ DEF V (R1−Se1

, ..., Rn−Sen
),

a contradiction.

Only if. Assume that Se is a clean extended source in D of V 0. By (1),

DEF V (R1−Se1
, ..., Rn−Sen

) ⊆ V −V 0. Assuming V −V 0 6⊆ DEF V (R1−

Se1
, ..., Rn − Sen

), that is, (∃v ∈ V − V 0) such that (v /∈ DEF V (R1 −

Se1
, ..., Rn−Sen

)). Then there is no generator g ∈∏Rx∈rel(DEF V) (Rx−Sex
)

of v. Hence, by Definition 6, there is no source in (R1 − Se1
, ..., Rn − Sen

)

of v ∈ V − V 0, which contradicts the hypothesis that Se is a clean extended

source in D of V 0. 2

3.2. CLEAN EXTENDED SOURCE THEORY 51

Lemma 2 Let uV and UR be updates on V and D (respectively). Let v ∈ V . Then

(UR deletes an extended source of v and UR does not insert source-tuple of v) iff

v /∈ DEF V (UR(D)).

Proof.

Let R′x = UR(Rx) be one of the updated relation Rx ∈ rel(DEF V). Let

T = D − UR(D).

UR deletes an extended source of v ∈ V

⇐⇒ T is an extended source in D of v

⇐⇒ DEF V (R1 − T1, ..., Rn − Tn) ⊆ V − v (lemma 1)

⇐⇒ v /∈ DEF V (R1 − T1, ..., Rn − Tn)

⇐⇒ v /∈ DEF V (R1 ∩R′1, ..., Rn ∩R′n) since Rx − Tx = Rx ∩R′x
(1)⇐⇒ There is no generator of v in (R1 ∩R′1, ..., Rn ∩R′n).

UR does not insert an extended source-tuple of v ∈ V

(2)⇐⇒ ∀Rx ∈ rel(DEF V) ∀ti ∈ R′x − Rx, there is no tj ∈ R′y − Ry where

Ry ∈ rel(DEF V), x 6= y, such that (t1, ..., tp) is a generator of v.

(1) and (2) hold iff there is no extended-generator in UR(D) of v. The

proposition then follows. 2

Lemma 3 Let uV , UR, V,D be as in Lemma 2. Let v ∈ dom(V) − V . Then UR

inserts source-tuples of v iff v ∈ DEF V (UR(D)).

Proof.

UR inserts source-tuples of v

3.2. CLEAN EXTENDED SOURCE THEORY 52

⇐⇒ (∃Rx ∈ rel(DEF V),∃t ∈ R′x −Rx)(t is a source tuple in UR(D) of v)

(1)⇐⇒ (∃g = (t1, ..., tp) ∈
∏

Rx∈rel(DEF V) R′x)(g is a generator of v).

⇐⇒ v ∈ DEF V (R′1, ..., R
′
n) = DEF V (UR(D)).

(1) is proven as below:

If. Follow directly from Definition 6.

Only If. Assume that g = (t1, ..., tp) is a generator of v, but ∀Rx ∈ rel(DEF V),

ti ∈ Rx. Then g ∈ ∏Ri∈rel(DEF V) Ri and so v ∈ DEF V (R1, ..., Rn) =

DEF V (D), a contradiction. 2

The following theorems form the core of the clean-extended source the-

ory. The intuition behind is that an update translation is correct if and only

if it deletes or inserts a clean source of the view tuple. Intuitively, it means

that the update operation only affects the “private space” of the given view

element and will not cause any view side effect. A deletion or insertion is

translatable as long as there is a clean extended source of the view element

being deleted or inserted.

Theorem 1 Let uV be the deletion of a set of view elements V d ⊆ V . Let τ be a

translation procedure, τ(uV ,D) = UR. Then τ correctly translates uV to D iff

UR deletes a clean extended source of V d.

Proof.

By lemma 1(b), UR deletes a clean source of V d

⇐⇒ DEF V (R1 − T1, ..., Rn − Tn) = V − V d = uV (V)

⇐⇒ DEF V (UR(D)) = uV (V)

3.2. CLEAN EXTENDED SOURCE THEORY 53

⇐⇒ DEF V (UR(D)) = uV (V), since Ri − Ti = R′i

⇐⇒ τ correctly translates uV to UR. 2

By Definition 2, a correct delete translation is one without any view side

effect. This is exactly what deleting a clean extended-source guarantees by

Definition 8. Thus Theorem 1 follows.

Theorem 2 Let uV be the insertion of a set of view elements V i into V . Let

V − = V − V i, V u = V i − V . Let τ be a translation procedure, τ(uV ,D) = UR.

Then τ correctly translates uV to D iff (i) (∀v ∈ V u)(UR inserts a source tuple

of v) and (ii) (∀v ∈ dom(V) − (V u ∪ V −))(UR does not insert a source tuple of

v).

Proof.

By Lemma 3, condition (i) iff V u ⊆ DEF V (UR(D)).

Also, since type(uV) = insert and type(UR) = type(uV), DEF V (UR(D)) ⊇

V ⊇ V −.

Hence, V u ∪ V − ⊆ DEF V (UR(D)).

By Lemma 3, condition (ii) iff (dom(V)−(V u∪V −))∩(DEF V (UR(D))) =

∅.

Hence, DEF V (UR(D)) ⊆ V u ∪ V −.

Thus, condition (i) and condition (ii) iff DEF V (UR(D)) = V − ∪ V u =

uV (V), that is τ correctly translates uV to UR. 2

Since dom(V) − (V u ∪ V −) = (dom(V) − (V i ∪ V)) ∪ (V i ∩ V), The-

orem 2 indicates a correct insert translation is one without any duplicate

3.2. CLEAN EXTENDED SOURCE THEORY 54

insertion (insert a source of V i ∩ V) and any extra insertion (insert a source

of dom(V) − (V i ∪ V)). That is, it inserts a clean extended source for the

new view-element. Duplicate insertion is not allowed by BCNF, while extra

insertion will cause a view side effect.

3.2.3 Clean Source Theory on Schema

Section 3.2.2 described the clean extended source theory, which is used to de-

termine whether a given translation is correct for the XML view update

problem when foreign key constraints are also considered. In short, an up-

date translation is correct if and only if it deletes or inserts a clean source of

the view tuple. Intuitively, it means that the update operation only affects

the “private space” of the given view element and will not cause any view

side effect. The new critical concepts are listed below.

e A view element

g(e) The generator of e

s The source of e

extend(s) The extended source of s

However, the update translatability checking based on the clean ex-

tended source theory above must examine the actual base data. Unfor-

tunately, as shown by [BKT01], the number of potential translations of a

given update can be exponential. Therefore we propose instead to use the

schema knowledge to filter out the problematic updates. This prunes the

search space in terms of candidates we must consider. We thus introduce a

set of corresponding schema-level concepts as below.

Given a view element e and its schema node v. Schema-level genera-

tor G(v) indicates the set of relations from which the generator g(e) is ex-

3.3. COMPLEMENTARY THEORY 55

v A view schema node

G(v) The schema-level Generator of v

S The schema-level Source of v

Extend(S) The schema-level Extended Source of S

tracted. Similarly, S and Extend(S) denote the set of relations the source

s and the extended source extend(s) are derived from, named schema-level

source and extended source, respectively. For example, G(CI)={Professor, Course}.

Schema level sources include S1={Professor}, S2={Course}. And Extend(S1)

= {Professor, Course, Student}.

3.3 Complementary Theory

3.3.1 Review of the Complementary Theory

The view complement theory in [BS81] proposes that if a complementary

view, which includes information not “visible” in the view, is chosen and

is held constant, then there is at most one translation of any given view

update. Although as described in [Kel87], translators based on comple-

ments do not necessarily translate all translatable updates. It still provides

us with a conservative computation for the set of translatable updates. We

study the complementary theory, which is reviewed below, to solve the

XML view updating problem.

A relational database is a combination of a set of relations and a set of in-

tegrity constraints. A database state, denoted by s, is an assignment of data

values to relations such that the integrity constraints are satisfied. The do-

main of the database states, denoted by S, is the set of all possible database

states. A data update of a relational database is a mapping from S into S,

3.3. COMPLEMENTARY THEORY 56

denoted as û : S → S. A view V of a given relational database is defined

by a set of relations and a mapping f that associates with each database

state s ∈ S a view state f(s). In our case the mapping f is the view def-

inition mapping expressed in an XQuery Q. The set f(S) = {f(s)|s ∈ S}

is the view status. The set of view definition mappings on S is denoted as

M(S). A valid view update u on view state is an update that satisfies all the

constraints of view schema.

Definition 9 Let f, g ∈ M(S). We say that f is greater than g or that f deter-

mines g, denoted by f ≥ g, iff ∀s ∈ S,∀s′ ∈ S, f(s) = f(s′)⇒ g(s) = g(s′).

Definition 10 Let f, g ∈ M(S). We say that f and g are equivalent, denoted by

f ≡ g, iff f ≥ g and g ≥ f .

Definition 11 Let f, g ∈ M(S). The product of f and g, denoted by f × g, is

defined by f × g(s) = (f(s), g(s)),∀s ∈ S.

Definition 12 Let f ∈ M(S). A view g ∈ M(S) is called a complement of f ,

iff f×g ≡ 1. Further, g is the minimal complement of f iff (i) g is a complement

of f , and (ii) if h is a complement of f and h ≤ g, then h ≡ g.

Definition 9 can be interpreted as f ≥ g iff whenever we know the view

state f(s), then we also can compute the view state g(s). Definition 11 im-

plies that the product f × g “adds” to f the information in g. We denote

the identity mapping on S as 1 and a constant mapping on S as 0. In our

case, the mapping query used to define the default XML view is mapping

1. And a XQuery such as < bib >< /bib > is a constant mapping. Accord-

ing to Definition 12, if f × g ≡ 1, then f, g contain sufficient information

3.3. COMPLEMENTARY THEORY 57

for computing the database, and the complementary view g contains the

information not “visible” within the view f . For example, assuming the

query in Figure 3.7 define a mapping f , the query in Figure 3.10 defines a

mapping g, then f ≥ g and g × f ≡ 1. f is complement of g.

Lemma 4 Given a complement g of f and a view update u ∈ Uv, u is g-translatable

iff ∀s ∈ S,∃s′ ∈ S so that f(s′) = uf(s) and g(s′) = g(s).

This lemma is the complement theory, which implies that given a com-

plement g of the view f and a view update u ∈ Uv, the translation of u

that leaves g invariant is the desired translation satisfying our correctness

criteria defined above. This is first presented in [DB82] as the “absence of

side effects” feature. For the proof of this lemma, please refer to [BS81].

3.3.2 A running example

In the rest of the section, we use the following running example. Figures

3.2 and 3.3 respectively show an XML schema and document representing

a book list from an online book store application.

Many XML applications use a relational data store by applying loading

strategy such as [STH+99, DD99]. Figures 3.4 and 3.5 show an example re-

lational database generated from the XML schema and data of our running

example using a shared inlining loading strategy [STH+99]. The basic XML

view, called Default XML View, is a one-to-one mapping to bridge the gap

between the two heterogeneous data models, that is the XML (nested) data

model and relational (flat) data model. Each table in the relational database

is represented as one XML element and each of its tuples as subelements of

3.3. COMPLEMENTARY THEORY 58

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema>
<xs:elementname="bib">

<xs:complexType>
<xs:sequence>

<xs:elementname="book" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:elementname="bookid" type="xs:string" nillable="false"/>
<xs:elementname="title" type="xs:string" nillable="false"/>
<xs:elementname="author">

<xs:complexType>
<xs:sequence>

<xs:elementname="aname" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:elementname="publisher">

<xs:complexType>
<xs:sequence>

<xs:elementname="pname" type="xs:string"/>
<xs:elementname="location" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:elementname="review" type="xs:string" nillable="true"/>

</xs:sequence>
<xs:attributename="year" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 3.2: Example XML schema

this table element. Figure 3.6 depicts the default XML view of the database

(Figure 3.4).

A default XML view explicitly exposes the tables and their structure to

the end users. However, end users often want to deal with an application

specific view of the data. For this reason, XML data management systems

provide a facility to define user-specific view capabilities on top of this de-

fault XML view, called a virtual view. Such a virtual view can be specified by

an XQuery expression called a view query. Several recent systems such as

3.3. COMPLEMENTARY THEORY 59

<bib>
<book year="1994">

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<author>

<aname>W. Stevens</aname>
</author>
<publisher>

<pname>Addison-Wesley</pname>
<location>San Francisco</location>

</publisher>
<review>

One of the best books on TCP/IP.
</review>

</book>
<book year="1992">

<bookid>98002</bookid>
<title>Programming in Unix</title>
<author>

<aname>Bram Stoker</aname>
</author>
<publisher>

<pname>Addison-Wesley</pname>
<location>Boston</location>

</publisher>
<review>

A clear and detailed discussion of UNIX programming.
</review>

</book>
... ...

</bib>

Figure 3.3: Example XML data

XPERANTO [CKS+00], SilkRoute [FMST01] and Rainbow [ZDW+03] fol-

low this approach of XML-to-Relational mapping via defining XML views

over relational data. An XML query language, such as XQuery proposed

by World Wide Web Consortium (W3C), can be used both to define such

views and also to query them. Figure 3.7 shows the view query defining a

virtual view identical to the originally loaded XML document in Figure 3.3.

3.3. COMPLEMENTARY THEORY 60

3.0

2.0

1.0

2.0

1.0

IID

Serge Abiteboul31.0

Peter Buneman31.0

Bram Stoker21.0

Dan Suciu31.0

11.0

PID

W.Stevens

aname

31.0

21.0

11.0

author_IID

3.0

2.0

1.0

IID

0.0

0.0

0.0

PID

1992Programming in Unix98002

2000

1994

year

Data on the Web98003

TCP/IP Illustrated98001

titlebookid

author

book

3.0

2.0

1.0

IID

Morgan Kaufman publishers

Addison-Wesley

Addison-Wesley

pname

Boston

New York

San Francisco

location

publisher

3.0

2.0

1.0

IID

A clear and detailed discussion of
UNIX programming.

2.0

A very good discussion of semi-
structured database systems and XML.

3.0

1.0

PID

One of the best books on TCP/IP.

review

review

Legend:
Primary Key

Unique Key

Non Key

Figure 3.4: Relations in database

CREATE TABLE book
(IID VARCHAR2(20),
PID VARCHAR2(20),
bookid VARCHAR2(20),
title VARCHAR2(100),
author_IID VARCHAR2(20),
year INTEGER,
CONSTRAINTS AuthorUK UNIQUE (author_IID),
CONSTRAINTS BookPKPRIMARYKEY (IID))

CREATE TABLE author
(IID VARCHAR2(20),
PID VARCHAR2(20),
aname VARCHAR2(20),
CONSTRAINTS AuthorPKPRIMARYKEY (IID,PID),
FOREIGNKEY (PID) REFERENCES Book (author_IID))

CREATE TABLE publisher
(IID VARCHAR2(20),
pname VARCHAR2(256),
location VARCHAR2(256),
CONSTRAINTS PublisherPKPRIMARYKEY (IID),
FOREIGNKEY (IID) REFERENCES Book (IID))

CREATE TABLE review
(IID VARCHAR2(20),
PID VARCHAR2(20),
review VARCHAR2(2000),
CONSTRAINTS ReviewPKPRIMARYKEY (IID),
FOREIGNKEY (PID) REFERENCES Book (IID))

Figure 3.5: Database schema of Figure 3.4

3.3. COMPLEMENTARY THEORY 61

<DB>
<book>

<row>
<IID>1.0</IID>
<PID>0.0</PID>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<author_IID>11.0</author_IID>
<year>1994</year>

</row>...
</book>
<author>

<row>
<IID>1.0</IID>
<PID>11.0</PID>
<aname>W. Stevens</aname>

</row>...
</author>
<publisher>

</row>
<IID>1.0</IID>
<pname>Addison-Wesley</pname>
<location> SanFrancisco</location>

<row>...
</publisher>
<review>

<row>
<IID>1.0</IID>
<PID>1.0</PID>
<review>

One of the best books on TCP/IP.
</review>

</row>...
</review>

</DB>

Figure 3.6: Default XML view of database shown in Figure 3.4

3.3.3 The Round-trip XML View Updating (RXU)

We focus on one important case which we name the round-trip XML view

updating scenario (RXU). Given an XML schema and a valid XML doc-

ument, by using a suitable loading algorithm, such as inlining [STH+99],

edge or universal [DD99], accompanied with a constraint-preserving map-

ping such as described in [LC00], assume we built a relational database. We

3.3. COMPLEMENTARY THEORY 62

<bib>
FOR $book in document("default.xml")/book/row
RETURN{

<book year=$book/year/text()>
<bookid>$book/bookid/text()</bookid>,
<title>$book/title/text()</title>,
<author>

FOR $aname in document("default.xml")/author/row
WHERE $book/author_IID = $aname/PID
RETURN{

<aname>$aname/aname/text()</aname>}
</author>,
FOR $publisher in document("default.xml")/publisher/row
WHERE $book/IID = $publisher/IID
RETURN{

<publisher>
<pname>$publisher/pname/text()</pname>,
<location>$publisher/location/text()</location>

</publisher>},
FOR $review in document("default.xml")/review/row
WHERE $book/IID = $review/PID
RETURN{

<review>
$review/review/text()

</review>}
</book>

}
</bib>

Figure 3.7: Virtual XQuery view over default XML view shown in Figure
3.6 producing the XML data in Figure 3.3

call it a structured database. Further we specify an XML view query on this

structured database using an XQuery expression, which constructs an XML

view with the content identical to the XML document that had just been

supplied as input to the loading mapping. We call this special-purpose

view query an extraction query. We then can extract a view schema by ana-

lyzing the extraction query semantics and the relational database schema.

Thus the view has the same content and schema as the original XML docu-

ment which had just been captured by the relational database. We call this

special view a twin-view. The problem of updating the database through

this twin-view is referred to as the round-trip XML view update scenario (Fig-

3.3. COMPLEMENTARY THEORY 63

ure 3.8).

XML Document & Schema

Loading query

Default XML View

Default Mapping

Relational Database

XML View

Extraction query

Figure 3.8: Round-Trip update problem

bib

book

bookid title author

aname

year= " 1994 "publisher

pname location

review

book

"98001"

"TCP/IP Illustrated"

"W. Stevens"

" Addison-Wesley "

" San Francisco "

" One of the best
books on TCP/IP "

......

Figure 3.9: Tree representation for XML document shown in Figure 3.3

As defined above, RXU is closely related with the loading procedure of

the XML document and schema into the relational database. To address the

influence of the loading strategy on the view updatability, we hence now

study the loading strategy characteristics for the RXU case. Many XML

loading strategies have been presented in the literature [LC00, STH+99,

DD99]. Not only the XML document, but also the XML schema is typically

captured in this procedure, which are called data and constraint informa-

tion respectively.

3.3. COMPLEMENTARY THEORY 64

Data Loading Completeness. The XML (nested) data structure is distinct

from the relational (flat) data model. Thus the loading procedure must

translate from one model (structure) to the other. The completeness of data

loading is important in RXU since the twin-view must have exactly the same

content as the original document , independent on whatever we may do to

the structure.

Definition 13 Given an XML document Dx, a loading L generates a resulting

relational database instance Dr, denoted by Dx
L−→ Dr. L is a lossless data

loading iff ∃L′ such that Dr
L′−→Dx.

Figure 3.9 is a tree structured representation of the XML document in

Figure 3.3, while Figure 3.4 is a structured database resulting from apply-

ing the inlining loading to that XML document. The extraction query in

Figure 3.7 will generate the twin-view from the structured database of Figure

3.4. Thus this loading is a lossless data loading by Definition 13.

A lossless data loading guarantees to capture all leaves in the XML tree-

structured representation (Figure 3.9). Leaves represent actual data instead

of document structure. Hence we will be able to reconstruct the XML doc-

ument. While a lossy data loading may not have loaded some of leaves,

hence is not sufficient for reconstruction. Most loading strategies presented

in the literature, such as Inlining [STH+99] and Edge [DD99], are all lossless

data loadings.

Constraint Loading Completeness. Given a relational database schema

Sr and a view query Q, we define the constraints implied by the XML

3.3. COMPLEMENTARY THEORY 65

<bib>
FOR $book in document("default.xml")/book/row
RETURN{

<book year=$book/year/text()>
<bookid>$book/bookid/text()</bookid>,
<title>$book/title/text()</title>,

<author>
FOR $aname in document("default.xml")/author/row
WHERE $book/author_IID = $aname/PID
RETURN{

<aname>$aname/aname/text()</aname>}
</author>

</book>
}
</bib>

Figure 3.10: XQuery example

view as XML View Schema, which can be extracted by a mapping named

constraint extraction mapping denoted by ê. In RXU, we assume a lossless

constraint loading as defined below.

Definition 14 Given an XML schema Sx, a loading L generates a structured

database with schema Sr, denoted by Sx
L−→ Sr. L is a lossless constraint

loading iff ∃Q be an extraction query generating an XML view with schema

Sv = (ê(Sr), ê(Q)), such that Sv = Sx.

An XML to relational database loading is a lossless loading iff it is both

a lossless data loading as defined by Definition 13 and a lossless constraint

loading as defined by Definition 14. Obviously the loading in RXU must be

a lossless loading. Most loadings proposed in the literature are all lossless

data loading strategies, however few of them are also lossless constraint

loading strategies. For example, Edge [DD99] is a lossless data loading,

while it is not a lossless constraint loading. In order for such loading strate-

3.3. COMPLEMENTARY THEORY 66

gies to be usable for RXU, it must accompany a constraint preserving load-

ing such as proposed in [LC00].

3.3.4 On the View Updatability in RXU

We now study the updatability of views in the RXU space. The view com-

plementary theory fits our RXU scenario well, since here the complement

view always corresponds to a constant. We hence use the view complement

theory to prove that any update on a twin-view is always translatable.

Observation 1 Within the RXU case, given an XQuery view definition f defined

over the relational state s, ∀u ∈ Uv, u is translatable.

Proof.

(i) Since the mapping query defining the default XML view is 1, according

to Definition 10, in RXU, ∀f , f ≡ 1. This is because we can always com-

pute the default XML view from the view state f(s) by using the loading

mapping, that is f ≥ 1, while 1 ≥ f always holds true. (ii) Since 0 is the

complement of 1, while f ≡ 1, then 0 is the complement view of f . (iii)

∀u ∈ Uv, let f(s′) = uf(s), then 0(s′) = 0(s). Thus, by Lemma 4, u is

always translatable. 2

67

Chapter 4

HUX: Schema-centric XML

View Updating

4.1 Introduction

As described in Section 1, the update-public semantic requires all updates

on the view to be achieved by mapping them into updates over the base

data only. No schema change can be made to the base database. No local

data can be stored at the view side with the view and used to compute the

view content. If a view side effect free translation exists, the view update is

accepted and translated. Otherwise, the view update is rejected.

Although Section 3 proposes the clean extended source theory to solve

the problem, the update translatability checking directly applying the the-

ory must examine the actual base data. Unfortunately, as shown by [BKT01],

the number of potential translations of a given update can be exponential.

4.1. INTRODUCTION 68

On the other hand, the schema knowledge of both the base and the

view could be utilized to optimize this analysis. For example, research in

the relational database context [DB82] has proposed to identify side effects

for some Select-Project-Join views by exploring schema knowledge. A pure

schema-based approach is efficient, but rather restrictive. Even for many

relational view update cases, it is impossible to decide the translatability

by only examining the schema.

4.1.1 Motivating Examples

Given the fact that (1) XML views are hierarchically structured and (2) up-

dates can happen on any element along the view hierarchy, XML view up-

dating is more complex than relational view updating. Fig. 4.1(a) shows a

running example of a relational database for a course registration system.

A virtual XML view in Fig. 4.1(c) is defined by the view query in Fig. 4.1(b).

The following examples illustrate cases of classifying updates as translat-

able or not translatable. XML update language from [TIHW01] or update

primitives from [BDH04] is used to define update operations. For simplic-

ity, in the examples below we only use a delete primitive with the format

(delete nodeID), where nodeID is the abbreviated identifier of the element to

be deleted 1. For example, CI1 indicates the first ClassInfo element, while

CI1.PS1 the first Professor-Student element of the first ClassInfo element. We

use Professor.t1 to indicate the first tuple of relation Professor.

Example 2 Update u1 ={delete CI1.PS1.S2} over the XML view in Fig. 4.1

1Note that the view here is still virtual. In reality, this nodeID is achieved by specifying conditions
in the update query [WRMJ05].

4.1. INTRODUCTION 69

Professor

pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

Key:{pid}

Course

cid cname pid

t1 c1 Math p1

t2 c2 Physics p1

t3 c3 English p2

Key={cid}

FK: pid→ Professor.pid

Student

sid sname cid

t1 s1 Chun Zhang c1

t2 s2 Mike Fisher c1

t3 s3 Feng Lee c2

Key={sid, cid}

FK: cid→ Course.cid

(a) Relational Database

FOR $p IN DOCUMENT(Professor/ROW),
$c IN DOCUMENT(Course/ROW)

WHERE $p.pid = $c.pid
RETURN

<ClassInfo>

<Course>

$c/cname/text()
</Course>,
<Professor-Student>

<Professor>$p/pname/text()</Professor>,
FOR $s IN DOCUMENT(Student/ROW)
WHERE $s.cid = $c.cid
RETURN

<Student>
$s/sname/text()

</Student>
</Professor-Student>

</ClassInfo>

(b) View query

CI1 <ClassInfo>

CI1.C1 <Course>Math</Course>

CI1.PS1 <Professor-Student>
CI1.PS1.P1 <Professor>David Finkel</Professor>
CI1.PS1.S1 <Student>Chun Zhang</Student>
CI1.PS1.S2 <Student>Mike Fisher</Student>

</Professor-Student>
</ClassInfo>

CI2 <ClassInfo>

CI2.C1 <Course>Physics</Course>

CI2.PS1 <Professor-Student>
CI2.PS1.P1 <Professor>David Finkle</Professor>
CI2.PS1.S1 <Student>Feng Lee</Student>

</Professor-Student>
</ClassInfo>

CI3 <ClassInfo>

CI3.C1 <Course>English</Course>

CI3.PS1 <Professor-Student>
CI3.PS1.P1 <Professor>Tim Merrett</Professor>

</Professor-Student>
</ClassInfo>

(c) XML view

Figure 4.1: The running example for the course registration system

4.1. INTRODUCTION 70

deletes the student “Mike Fisher”. We can delete Student.t2 to achieve this without

causing any view side effect. This can be concluded by looking at the schema of

the view. From the view query in Fig. 4.1(b), we know that each student can

only appear once in the view, namely, in the ClassInfo element that represents its

course-professor-student relationship. In general, deleting any student element in

the view can always be translated as deleting the student tuple without causing

any side effect. The schema knowledge is sufficient to decide if an update

is translatable.

Example 3 Consider the update u2 = {delete CI1.C1}.

The appearance of the view element CI1.C1 is determined by two tuples: Professor.t1

and Course.t1. There are three choices for achieving this update: T1={delete Professor.t1},

T2={delete Course.t1} and T3={delete Professor.t1, delete Course.t1}. All of three

translations would cause a view side effect, namely, the whole ClassInfo element

would disappear. This conclusion again can be made based on schema knowledge.

From the view query, we see that any ClassInfo element must always have a pair of

Professor and Course sub-elements. Deleting the course element would break this

join condition and thus make the whole ClassInfo element disappear. The schema

knowledge is sufficient to classify the update as untranslatable.

Example 4 For update u3 = {delete CI1}, it is easy to see that T1={delete Course.t1}

will achieve the update without causing any view side effect for the same reason

as Example 2. On other hand, T2={delete Professor.t1} will cause a side effect

since CI2 would disappear. For update u4 = {delete CI3}, we find that T ′1={delete

Course.t3} is a correct translation for the same reason as Example 2. T ′2={delete

Professor.t2} is a correct translation since CI3 is the only class Prof. Tim Merrett

4.1. INTRODUCTION 71

teaches. The difference here indicates that the schema knowledge itself is not suf-

ficient for deciding translatability. The translatability depends on the actual

base data.

4.1.2 HUX: Handling Updates in XML

As we can see from the above examples, not only view updates can hap-

pen anywhere along the view hierarchy, but also side effects can appear

anywhere in the view. The XML view side effect checking is thus more

complex than in the relational case. A view update can be classified as

translatable or untranslatable using either schema or data knowledge. We

aim to support updates of XML views by (i) extending the relational view

update solution and (ii) utilizing schema knowledge as much as possible.

We thus propose our schema-centric XML view updating system named

HUX (Handling Updates in XML).

View

ClassInfo

Course Professor-Student

Student
Course.cname

Professor

Student.sname

*

*

Professor.pname

CI: Select *
from Professor P, Course C
where P.pid=C.pid

C : Same as CI node
PS: Same as CI node
P : Same as CI node
S : Select *

from Professor P, Course C, Student S
where P.pid=C.pid and C.cid = S.cid

Figure 4.2: Schema graph of the XML view

As we will show in the later sections, the XML hierarchical structure,

which is expressed by constraints between the different relational views,

increases the complexity of the XML view update problem, but at the same

time, this view composition opens more optimization opportunities for ef-

4.1. INTRODUCTION 72

ficient update checking and translation. In other words, we are now able

to decide if an update is translatable or untranslatable much earlier, than

would otherwise have been possible. As we will show, our schema-centric

XML view updating algorithm makes translatability decisions, either in the

stage of pure schema-based checking or in the early stage of data-based

checking. For instance, in our Example 3, the hierarchy between the rela-

tional views of the Course and the Professor tells us that deleting a Pro-

fessor should not affect any Course element (even in the same CourseInfo

element). However, the constraints between the two view elements also

indicate that any appearance of a course implies the appearance of the pro-

fessor. Thus it is impossible to find a correct translation for either deleting

a course or deleting a professor.

HUX is a schema-centric solution. Fig. 4.3 shows the HUX framework.

The Schema-driven TranslAtability Reasoning (STAR) process first filters

out all untranslatable updates and classifies some updates as definitely

translatable based purely on the schema. Determining these two classes

of updates takes polynomial time in the view query size. For updates

that cannot be classified by the STAR process, the Schema-directed Data

Checking (SDC) process examines a subspace of the data (guided by the

schema knowledge) to definitely decide whether the update is or is not

translatable.

Untranslatable updates are directly rejected with an appropriate error

message (indicating the potential side effects). Updates, that successfully

pass the STAR or SDC process, are forwarded to the SQL Update Genera-

4.1. INTRODUCTION 73

View Query

STAR:
Schema-driven

Translatability Reasoning

SDC:
Schema-directed

Data Checking

SQL Updates GeneratorHUX

Data Storage
Oracle

Valid User Update Query

Uncertain

SQL Updates

Annotated
Schema Graph

Generator

XML/RDB
Schema

ASG

Fail

Fail

Untranslatable
Error Message

DB2 SQL-Server Sybase

Success

Translatable Translatable

Figure 4.3: The system framework of HUX

tor to produce the correct SQL update statements to be executed over the

underlying relational database. HUX guarantees that the generated SQL

updates are view side effect-free. Requiring no extra side effect checking or

roll back results in a major performance benefit.

Let us illustrate HUX for the motivating examples. During the schema

level check, update u1 is classified as translatable. We translate this update

by deleting the corresponding tuple in the Student relation. Update u2 will

be found to be untranslatable by the schema-level check. Updates u3 and

u4 cannot be classified as translatable or untranslatable by the schema-level

check. Therefore we proceed to the data-level check, where we find that u3

and u4 are both translatable, and the candidate translations are suggested.

4.2. DATA-DRIVEN SIDE-EFFECT CHECK 74

4.1.3 Contributions

In short, we make the following contributions. (1) We propose the first

pure data-driven strategy for XML view updating, which guarantees that

all updates are fully classified. (2) We also propose a schema-driven update

translatability reasoning strategy, which uses schema knowledge includ-

ing now both keys and foreign keys to efficiently filter out untranslatable

and identify translatable updates when possible. (3) We then design an

interleaved strategy that optimally combines both schema and data knowl-

edge into one update algorithm, which performs a complete classification

in polynomial time for the core subset of XQuery views. (4) We have im-

plemented the algorithms, along with respective optimization techniques

in a working XQuery view system named HUX. We report experiments

assessing its performance and usefulness.

4.2 Data-driven Side-effect Check

Using clean source theory, most commercial relational database systems [Rys01,

BKKM00, CX00] and some research prototypes [BKT01, CWW00] directly

issue SQL queries over the base data to identify view side effects. If any

clean source (exclusive data lineage [CWW00]) is found, then this source

can be a correct translation. Below we extend this approach to find a clean

source for updating elements in an XML view. We illustrate the ideas us-

ing only deletion examples in our discussion below. However, a similar

discussion follows for insertion as shown in Section 4.5.

4.2. DATA-DRIVEN SIDE-EFFECT CHECK 75

4.2.1 Partitioning XML View Elements

Suppose we want to update a view element e of a schema node v. Now

the translation of this update can update any descendant elements of e in

addition to updating e. This translation should not affect any of the non-

descendant elements of e. We classify these non-descendant elements into

three groups as shown in Figure 4.4. Group-NonDesc includes view ele-

ments whose schema nodes are non-descendant ones of v (does not include

v itself). Group-Self includes those whose schema node is v. Group-Desc

includes those whose schema nodes are descendants of v (except e’s de-

scendants).

Group-NonDesc

Group-Self

Group-Desc

V

Figure 4.4: Schema Tree Structure

For example, let the view element e be CI1.PS1. Then Group-NonDesc

includes CI1, CI2, CI3, CI1.C1, CI2.C1, CI3.C1. Group-Self includes

CI2.PS1, CI3.PS1. Group-Desc includes CI2.PS1.P1, CI2.PS1.S1,

CI3.PS1.P1.

For updating a view element e, if there is a translation that deletes/inserts

e without deleting any existing element or inserting any new element of

any of the three groups, then this is the correct translation of the given up-

date. On the other hand, if every translation will affect some element in

one of these three groups, then this update is untranslatable.

4.2. DATA-DRIVEN SIDE-EFFECT CHECK 76

Given the generator g(e) = {R∗1 , R∗2 , ..., R∗n} of a view element e of a

schema node v. Intuitively, deleting any R∗i from the generator will cer-

tainly delete the element e. If R∗i is not used to generate any element other

than e(clean source), then deleting R∗i is a correct translation that will not

cause any side effects. Our three rules below will identify whether R∗i

is used to generate any other element in Group-NonDesc, Group-Self, or

Group-Desc respectively.

4.2.2 Checking Side Effects

Let us first consider Group-NonDesc elements. Let v′ be a schema node of a

Group-NonDesc element, whose corresponding SQL query is Qv′(. . . , Ri, . . .).

In other words, Qv′ uses the relation Ri. The rule below says that R∗i is not

used to generate any element of v′ if the result of executing Qv′(. . . , R∗i , . . .)

is empty. Here R∗i is used instead of Ri, while all other relations stay the

same.

Rule 1 Consider Group-NonDesc node v′ with Qv′(. . . , Ri, . . .) as its SQL anno-

tation. Deleting R∗i from g(e) will delete the element e without causing side effect

on any element e′ of v′ if Qv′(. . . , R∗i , . . .) = ∅.

Proof.

If Qv′(. . . , R∗i , . . .) = ∅, then ∀e′ being an instance element of v′, R∗i ∩ g(e′) =

∅. That is, the generator of e′ will not be affected by any deletion over R∗i .

Thus, there is no side effect on e′. 2

4.2. DATA-DRIVEN SIDE-EFFECT CHECK 77

In Example 2, for the element CI1.PS1.S2, its generator is {Professor,t1,

Course.t1, Student.t2}. Let R∗ = {Student.t2}. The Group-NonDesc nodes

are CI, C, PS, P, S. Since the Student relation is not used by any of them,

deleting R∗ will not cause any side effect on any of their elements.

Now let R∗ = {Course.t1}. The Course relation is used by all Group-

NonDesc nodes. Let us pick the CI-node as an example. By executing

the SQL query of the CI-node: select * from Professor P, R∗ where

P.pid=R∗.pidwe get the result {Professor.t1, Course.t1}. This means Course.t1

is also used by CI1, and deleting it will cause side effects.

Let us now consider Group-Self elements. R∗i is not used by any view

element in Group-Self if the result of executing the SQL view query of v

over R∗i only generates e, as shown by the rule below.

Rule 2 Deleting R∗i from g(e) will delete e without causing side effect on any

other view element e′ of v, iff

Qv(. . . , R∗i , . . .) = e, where Qv is the SQL annotation of v.

Proof.

If Qv(. . . , R∗i , . . .) = e, then ∀e′ being an instance element of v, where e′ 6= e,

R∗i ∩ g(e′) = ∅. That is, the generator of e′ will not be affected by any dele-

tion over R∗i . Thus, there is no side effect on e′. 2

Again consider deleting CI1.PS1.S2(Mike Fisher). The Group-Self el-

ements are: CI1.PS1.S1 (Chun Zhang), CI2.PS1.S1 (Feng Lee). Consider

R∗ = {Student.t2}. By executing the SQL query: select * from Professor

P, Course C, R∗ where P.pid=C.pid and C.cid=R∗.cid, we find that

4.2. DATA-DRIVEN SIDE-EFFECT CHECK 78

the result is only the element CI1.PS1.S2. This means deleting R∗ will not

cause any side effect on any other Student elements.

On the contrary, if R∗={Course.t1}, then besides “Mike Fisher”(CI1.PS1.S2),

the query result will also include CI1.PS1.S1 (Chun Zhang). Thus Course.t1

is also used by CI1.PS1.S1 and deleting it will cause view side effects.

Let us now consider Group-Desc elements. Consider a schema node v′

of a Group-Desc element, whose corresponding SQL query is Qv′ (R1, R2,

. . ., Rn, . . .). Note that the SQL query corresponding to any schema node

that is a descendant of v will include all the relations specified in the SQL

query corresponding to v, namely, R1, R2, . . . , Rn. The rule below indicates

that a Source R∗i is not used to generate any view element in Group-Desc

node v′ if the result of executing SQL queries of v′ includes only those de-

scendants of e.

Rule 3 Consider a schema node v′ of a Group-Desc element. Let Qv′(R1, R2,

. . ., Rn, . . .) be its SQL annotation. Deleting R∗i from g(e) will delete e without

causing side effects on any element e′ of v′ if T2 − T1 = ∅ holds, where T1 =

Qv′(R∗1 , R∗2 , . . ., R∗n, . . .) and T2 = Qv′(R1, R2, . . . , Ri−1, R∗i , Ri+1, . . ., Rn,

. . .).

Proof.

First, T1 includes all view elements whose ancestor includes e. Second, T2

includes all view elements which uses R∗i while its schema node is a de-

scendent of v (e’s schema node). Thus T2 − T1 includes all view elements

whose schema node is a descendent of v, except descendent elements of e,

which is exactly Group-Desc. If T2 − T1 = ∅, then Deleting R∗i from g(e)

4.2. DATA-DRIVEN SIDE-EFFECT CHECK 79

will delete e without causing side effects on Group-Desc. 2

Consider the element e be CI1.PS1 of the PS-node. Its generator is

{Professor.t1, Course.t1}. Let R∗1 = {Professor.t1} and R∗2={Course.t1}. To

find out whether it is used by any sub-elements of e, we first execute the

SQL query: select * from R∗1, R∗2 where R∗1.pid=R
∗
2.pid. We find that

the descendents of e, denoted by T1, include: CI1.PS1.S1 (Chun Zhang)

and CI1.PS1.S2 (Mike Fisher). By executing SQL query: select * from

Professor P, R∗2 where P.pid=R∗2.pid, we find that R∗2 has been used to

generate the Student elements (T2): CI1.PS1.S1 (Chun Zhang), CI1.PS1.S2

(Mike Fisher) and CI2.PS1.S1 (Feng Lee). The difference T2-T1 indicates

that R∗2 is also used to generate CI2.PS1.S1 (Feng Lee), which is the side

effect of deleting R∗2 .

Observation 2 If deleting R∗i from g(e) does not cause side effects on any Group-

NonDesc element (using Rule 1), on Group-Self element (using Rule 2), on any

Group-Desc element (using Rule 3), then R∗i is a clean source of e. Deleting it

will not cause any view side effect.

Proof.

According to Rule 1, deleting R∗i from g(e) does not cause side effects on

any Group-NonDesc element; according to Rule 2, deleting R∗i from g(e)

does not cause side effects on any Group-Self; according to Rule 3, deleting

R∗i from g(e) does not cause side effects on any Group-Desc element.

Given an element e′ in the view which is different from e, according to

the node partition for the XML views (Section 3.2.3), e always belongs to

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 80

one of the three groups: Group-NonDesc, Group-Self, Group-Desc.

Therefore, deleting R∗i from g(e) does not cause any view side effect. 2

When we have foreign key constraints, the checking becomes more

complex. To determine whether any side effects are caused by deleting

R∗i , it is also required that tuples being deleted by the foreign key propa-

gation should not in the generators of any other elements. For example,

consider a course CI1.C1 (Math). If we delete Course.t1, the Student.t1 and

Student.t2 will also be deleted. If any other elements, such as CI1.PS1.S1,

use Student.t1, the element CI1.PS1.S1will disappear from the view as side

effect.

4.3 Schema-driven Side-effect Checking

In the previous section, we have described the approach of identifying side

effects by examining the actual base data. In general this approach is correct

and complete, namely, we can reject all untranslatable updates and identify

all translatable updates by always directly examining the data. This step

could be quite expensive, however, as we need to ensure no side effects for

every schema node by issuing a probe query.

In this section, we propose a more effective solution by using the schema

knowledge. The available schema knowledge for XML view updating prob-

lem, including the view definition and relational database schema, can be

represented by a set of graphs introduced in Section 2.

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 81

4.3.1 Schema-level Untranslatable Updates

Utilizing the schema knowledge only, we will now divide an update as

untranslatable (Example 3) or translatable (Example 2). Those we can not

make the decision will be labeled as uncertain(Example 4), which means

that updates are data dependent. In other words, the update is translatable

for some view instance, while for others the update is untranslatable.

In particular, in this section, utilizing only the schema knowledge, we

will illustrate that certain updates can be identified as definitely causing

view side effects. These updates will be labeled as untranslatable.

Rule 4 Given a view ASG Node v. Let U be a translation which achieves the

deletion of an element of v by deleting the source from the relation R ∈ G(vp),

where G(vp) is schema-level generator of the parent node of v. U is guaranteed to

always cause a side effect on elements of vp.

Proof.

Given any view element e of the ASG node v. Let ep be the parent view

element of e, whose schema node is vp. Let t ∈ R be the tuple in R to be

deleted to achieve the given view update (deleting e). Then t ∈ g(e) and

t ∈ g(ep). Deleting t will make ep to disappear from the view as a side ef-

fect. 2

Since G(vp) ⊆ G(v) always holds, deleting from G(vp), shared by G(v),

will definitely cause a side effect, namely the parent element will disap-

pear. For example, to delete CI1.PS1.S1, both Professor.t1 and Course.t1

will cause side effects on their parent elements CI1 and CI1.PS1.

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 82

Given an ASG node v, let’s now consider the non-ancestor Group-NonDesc

nodes v′. Deleting an element of v will cause a side effect on some element

of v′, if there is an onto mapping from elements of v′ to elements of v.

Equivalently, if an element e of v exists, there is always an element e′ of v′,

such that g(e) ⊆ g(e′). Clearly, if we were to delete e, then in that case e′

will also disappear.

For example, in our example view, there is an onto mapping from the

P-node to the C-node. Whenever a Professor element appears in a ClassInfo

element, there is always a Course element in the same ClassInfo element,

and vice versa. Hence, deleting either of them will certainly cause view

side effects on the other one.

Below we introduce the participation graph GP (v′, v) of the ASG node v′

with respect to node v, which is used to identify the onto mapping from

elements of v′ to elements of v.

Definition 15 Participation Graph GP (v′, v).

1). Given a view ASG node v computed by SQL query Qv. Let v′ be a non-

ancestor Group-NonDesc group node computed by SQL query Qv′(R1, R2,

. . ., Rn). Each Ri (1 ≤ i ≤ n) is denoted as a node with name Ri.

2). Let Ri, Rj be two nodes (Ri 6= Rj). There is an edge Ri → Rj iff Qv′

includes a join condition of the form Ri.fk = Rj .key, where Ri.fk is the foreign

key of Ri and Rj .key is the primary key for Rj . There is an edge Ri — Rj

iff Qv′ has a general join constraint Ri.a = Rj .b.

3). A set of nodes Ri1, ..., Rik form a partition P iff they are directly or indi-

rectly connected.

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 83

4). Let Ri, Rj be two nodes such that Ri ∈ Pi, Rj ∈ Pj and Pi 6= Pj . There is

an edge Ri → Rj in GP iff there is an edge Ri → Rj in GFK .

5). Let Ri, Rj be two nodes (Ri 6= Rj). There is an edge Ri ↔ Rj iff Cv |= Cv′ ,

where Cv is the set of constraints between Ri and Rj in Qv, while Cv′ is the

set of constraints between Ri and Rj in Qv′ .

Consider Example 3 of deleting the professor “David Finkel” (CI1.PS1.P1).

Here v is the S-node. Its non-ancestor Group-NonDesc nodes are {S-node,

C-node}. As shown below the participation graph with respect to P-node

for the C-node is shown in Fig. 4.5(a) and for the S-node is shown in Fig. 4.5(b).

ProfessorCourse ProfessorCourseStudent

Course.pid = Professor.pid Course.pid = Professor.pidStudent.cid = Course.cid

(a) (b)

Figure 4.5: (a) GP (C,P) and (b) GP (S,P)

Intuitively, the directed path R1 → R2 → . . . → Rn in GP (v′, v) means

that if any tuple t1 ∈ R1 is used by a view element e′ of v′, there is always

a set of tuples {t2,...,tn} being used by e′ as well. Thus there is a one-to-one

mapping from tuples in R1 to view elements of v′. Proposition 2 indicates

this one-to-one mapping. Lemma 5 is used to prove this proposition.

Lemma 5 Given two nodes Ri and Rj in GP (v′, v), if there is a directed path from

Ri to Rj , then ∀t ∈ Ri participates in the generator of an element of v′), denoted

by g(e′), ∃t′ ∈ Rj such that t′ participate in g(e′) as well.

Proof.

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 84

We prove this lemma by examining each item in the definition of the par-

ticipation graph (Definition 15). We point each of them by the step number.

Step #2. An edge Ri → Rj from a join condition Ri.fk = Rj .key certainly

satisfies. Since foreign key is forced by the relational database schema, the

Lemma holds. A general join condition Ri.a = Rj .b, however, overwrites

any foreign key constraint, which might exist between Ri and Rj . The rea-

son is that the matching tuple in Rj would not participate in the same gen-

erator g(e).

Step #4. Now consider edges between the partitions, which is implied

by the relationship between v and v′. Again, the foreign key expression,

which is not exposed in the view, implies that ∃t′ ∈ Rj such that t′ partici-

pates in g(e′). Thus there should be an edge from Ri to Rj .

Step #5. Given any view element e of v, the condition Cv is certainly

satisfied. Since Cv |= Cv′ , Cv′ is satisfied too. Then ∀t ∈ Ri participates in

the generator of an element of v′), denoted by g(e′), ∃t′ ∈ Rj such that t′

participates in g(e′) as well. 2

Intuitively, Lemma 5 means that a path in the participation graph GP (v′, v)

implies the following: whenever there is a tuple in Ri that participates in

generating the view element e′, there always exists a tuple t′ in Rj , which

also contributes to generating e′.

Proposition 2 Given a non-ancestor Group-NonDesc node v′ and its participa-

tion graph GP (v′, v). If a node R in GP (v′, v) can reach every other nodes through

a directed path, then there is a onto mapping from tuples in R, which participates

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 85

in generating elements of v, to the view elements of v′.

Proof.

According to Lemma 5, if R in GP (v′, v) can reach every other node through

a directed path, then ∀t ∈ R, there exist a set of tuples {t1, t2, ..., tn}, which

(along with t) will form the generator for an element e′ of v′. Thus there is a

onto mapping from tuples in R, which participates in generating elements

of v, to the view elements of v′. 2

For example, according to Fig. 4.5(a) there is a one-to-one mapping

from the Course relation to the Course elements in the view; according to

Fig. 4.5(b), there is a one-to-one mapping from the Student relation to Stu-

dent elements in the view.

To guarantee the onto mapping from elements of v′ to elements of v,

three conditions have to hold. First, the schema-level generator of v′, de-

noted by G(v′), and the schema-level generator of v, denoted by G(v), share

some common relations. Without shared relations, deleting v will certainly

not cause any side effect on v′. Second, for shared relations, the tuple set

used by the to-be deleted element e is also used by some elements of v′.

Third, if there are other relations referenced by v′ but not v, there always

exists a set of tuples in these relations, which will certainly produce an ele-

ment of v′.

Proposition 3 Let T = G(v) ∩ G(v′) and T̃ = G(v′) − G(v). There is an onto

mapping from elements of v′ to elements of v if the following two conditions hold.

(i) T is a strongly connected component in GP (v′, v). (ii) Either T̃ = ∅, or, T̃ 6= ∅

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 86

but ∀R ∈ T , ∀R′ ∈ T̃, there is a directed path from R to R′ in GP (v′, v).

Proof.

(i) If T is a strongly connected component in GP (v′, v), then ∀R ∈ T , ∀R′ ∈

T where R 6= R′, there is a directed path from R to R′.

(ii) if T̃ = ∅, then ∀R ∈ G(v′), R can reach every other relation in GP (v′, v).

According to Lemma 5, there is an onto mapping from R to elements of v′.

This implies that there is an onto mapping from elements of v to elements

of v′.

(ii) If T̃ 6= ∅ but ∀R ∈ T , ∀R′ ∈ T̃, there is a directed path from R to R′

in GP (v′, v). Then ∀R ∈ T , R can reach every other relation in GP (v′, v).

According to Lemma 5, there is an onto mapping from R to elements of

v′. This also implies that there is an onto mapping from elements of v to

elements of v′. 2

In our example, to check whether there is an onto mapping from ele-

ments of C-node (v′) to elements of P-node (v), we compute T = {Professor,

Course} and T̃ = ∅. It is easy to see that T is a strongly connected component

in Fig. 4.5(a). The onto mapping exists. Deleting any source of CI1.PS1.P1

will certainly cause side effects on CI1.PS1.C1. Thus based on the schema

knowledge, we can infer that updates on any Professor element are never

translatable. This conclusion is data independent.

On the contrary, let v′ = S-node and v = P-node. Then we have T =

{Professor,Course} and T̃ = {Student}. There is no directed path from the Pro-

fessor node or the Course node to the Student node in GP (v′, v) (Fig. 4.5(b)).

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 87

Thus, there is no onto mapping from Student elements to Professor ele-

ments. We cannot infer anything about side effects on Student elements.

The following rule describes the scenario of guaranteed side effects on non-

ancestor Group-NonDesc nodes.

Rule 5 Given a view ASG node v. Deleting an element of v will cause side effects

on some element of v′, which is v’s non-ancestor nodes from Group-NonDesc, iff

there is an onto mapping from elements of v′ to the elements of v.

Proof.

The onto mapping from elements of v′ to the elements of v means that if

there exists an element e′ of v in the view, there certainly exists an element

e′ of v′ in the view. Thus deleting e from the view will certainly cause side

effect of making e′ disappear. 2

4.3.2 Schema-level Translatable Updates

For some updates, the schema knowledge alone can be utilized to decide

whether the update is translatable, meaning translatable independent of

the actual data. In Example 2, deleting any Student element is always trans-

latable. To find this, we have to check whether a clean source always exists

for any update on the schema node.

The following rules are used to identify whether it is possible to delete

a source without ever causing any side effects on Group-NonDesc, Group-

Self and Group-Desc nodes.

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 88

First, deleting the source S of v will not cause any side effect on v′ if its

generator never uses any relation from the schema-level extended source

Extend(S).

Rule 6 Given a view ASG node v. Deleting a source S ∈ G(v) of v will not cause

any view side effect on view element of node v′ in Group-NonDesc if Extend(S) ∩

G(v′) = ∅.

Proof.

By the definition of the Extended Source, Extend(Si) includes all the relations

that will be affected if the generator tuple from Si is deleted. Let v′ be a

non-descendent schema node of v. Since Extend(Si) ∩ G(v′) = ∅, relations

in G(v′) will not be updated by this deletion. Therefore, any view element

of v′ will not be affected. 2

Second, deleting from the source S of an element e of v will not cause

side effects on other elements of v, as long as (i) there is a one-to-one map-

ping from S to the elements of v and (ii) any foreign keys referring to S are

entailed by the SQL query of v (Rule 7).

Rule 7 Given a view ASG node v and its computation dependency graph GC .

Deleting a source S of v will not cause any view side effect in any view element

of Group-Self if the following two conditions hold: (i) The corresponding node of

S in GC can reach all other nodes. (ii) Let CFK(S) be the foreign key constraints

from any relation R ∈ G(v) referring to S. Then Q |= CFK(S), with |= be the

entailment defined in Section 2.5.

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 89

Proof.

Let VR be the relational view defined by Q. First, according to Proposition 1,

if there exists a node R in GC which can reach all other nodes, then there is

a 1-1 mapping from view tuples of VR to base tuples in the relation R. Let e

be an element of v to be deleted. Let’s use si to denote the source of e from

relation R. Thus if condition (i) is satisfied, this indicates that the source si

does not contribute to any view element of v other than e.

Further, when foreign key constraints exist, if Q |= CFK(Si) then any

tuple reference to si indeed contributes to the element e only through the

foreign key connection, rather than other elements. Namely, the 1-1 map-

ping does not conflict with the foreign key constraints.

In summary, if both conditions (i) and (ii) hold, then this means that

deleting si will not affect any other view element of its schema node. 2

For example, deleting a student element CI1.PS1.S1 (Chun Zhang) by

deleting Student.t1 for the Student relation will not cause side effects on any

other student element (e.g., Mike Fisher, Feng Lee), since the above rule

holds. However, if we choose to delete Professor.t1, then student “Feng

Lee” will also disappear from the view.

Third, deleting from the source S of an element e of v will not cause

side effects on any other element of the descendent node of v, if those de-

scendent nodes are well nested. For example, deleting the professor element

CI1.PS1.P1 will not cause side effects on student elements CI1.PS1.S1 and

CI1.PS1.S2, since the Student relation is well nested with respect to the

4.3. SCHEMA-DRIVEN SIDE-EFFECT CHECKING 90

foreign keys.

Rule 8 Deleting a source S of v will not cause any view side effect in any view

element of node v′ in Group-Desc if CV |= CFK(S), where CFK(S) is the set of

foreign key constraints from any relation R ∈ G(v′) referring to S.

Proof.

If Q |= CFK(S), then let si be the generator tuple from the Source Si. Let

Ed be the set of tuples which refer to si directly or indirectly through for-

eign key constraints. Then for any element edj
∈ Ed, whose schema node

is v′, if edj
is not descendent of e, then the tuple in Ed will not contribute

towards generating edj
. Thus no side effect on any view element of node v′

in Group-Desc will arise. 2

Observation 3 For a given view update u, if a translation U satisfies rules 6, 7

and 8, U is guaranteed to be view side effect-free.

Proof.

Let e be the view element to be deleted from the view by u. Let v be the

schema node of e. Then a different view element e′ will certainly belong to

Group-NonDesc, Group-Desc or Group-Self. If the translation U will not

cause any side effect on any of those three groups, then U deletes e only

(side effect free). 2

For example, deleting any student element is always translatable. This

is why we call Example 2 as data independent translatable.

4.4. SCHEMA-CENTRIC XML VIEW UPDATING ALGORITHM 91

4.3.3 Data Dependency

If we cannot classify an update into either translatable or untranslatable

using Observation 3, we say that the translatability of an update is data

dependent. Techniques from Section 4.2 could now be utilized. While more

expensive, they guarantee to find a definite answer.

4.4 Schema-centric XML View Updating Algorithm

In Section 4.2, we show that performing fully data-driven check will cor-

rectly classify updates according to their translatability. While correct, this

classification is very expensive. One critical issue in XML view updating

is thus how to prune the search space for correct translations. Section 4.3

proposes a schema based translatability checking technique that identifies

all the data independent untranslatable or translatable cases. Thus it ef-

ficiently prunes the search space. Ideally the search space could be fully

examined using only schema-based checks. However, given the flexibil-

ity of the view definition, we may still require to examine the data for

the remaining relations. In this section, we propose a schema-centric al-

gorithm to combine the power of both schema-based and data-based ap-

proaches. This includes a schema-based translatability reasoning (STAR)

step, a schema-directed data checking (SDC) step, and finally an efficient

SQL update generation step. The algorithm is fully implemented in HUX

system as shown in Fig. 4.3.

4.4. SCHEMA-CENTRIC XML VIEW UPDATING ALGORITHM 92

4.4.1 STAR: Schema-driven TrAnslatability Reasoning

Given an update u deleting a single view element e from an XML view. Let

v be the schema node of e in the view ASG GV . By default, u can be achieved

by deleting any tuple t ∈ g(e). However, to guarantee the view side effect

free property, all elements of schema nodes from Group-NonDesc, Group-

Self and Group-Desc need to be examined for side effects. Initially, the

search space SS0 of v for finding a schema-level clean extended source is

generated using Algorithm 1.

Algorithm 1 Initialize the search space
Let G(v) be schema-level generator of v.
for all relation Ri of schema-level generator G(v) do

Add Ri as column name in SS0

for all Rj ∈ Extend(Ri)− G(v) do
Add Rj as extended column name in SS0

end for
end for
for all view ASG nodes v′ do

Add v′ as row name in SS0

for all Ri ∈ G(v′) do
Add× into cell (v′ , Ri) in SS0

end for
end for

The initial search space SS0 for the S-node in our example is shown

below. Here we use RP , RC and RS to denote the Professor, Course and

Student relations.

(a) The Generators

nodes Generator

CI-node (RP , RC)

C-node (RP , RC)

PS-node (RP , RC)

P-node (RP , RC)

S-node (RP , RC , RS)

(b) The search space SS0 of S-node

Sources Extended

nodes RP RC RS

CI-node × ×
C-node × ×
PS-node × ×
P-node × ×
S-node × × ×

Figure 4.6: Initialize the search space of S-node

4.4. SCHEMA-CENTRIC XML VIEW UPDATING ALGORITHM 93

The schema-level untranslatable updates rules (Rule 4 and 9) are first

applied as described in Algorithm 2.

Algorithm 2 STAR-Untranslatable
Let current search space SS = SS0

/*Horizontal-Prune*/
for all row v′ in SS, where v′ 6= v do

Let p be the parent node of v in Gv

if G(v′)− G(p) = ∅ then
Delete row v

end if
end for

/*Vertical-Prune-I (Rule 4)*/
for all column Ri in SS do

if (vp , Ri) is initialized then
Delete column Ri

end if
end for

if size(Sources) 6= ∅ then
/*Vertical-Prune-II)*/
for all column Ri in SS do

if (Rule 9 holds then
Delete column Ri

end if
end for

end if

if size(Sources) 6= ∅ then
return SS

end if

Below we show step-by-step how the STAR-Untranslatable algorithm

is used to prune the initial search space SS0. First, the Horizontal-prune re-

duces the search space by eliminating two rows from Fig. 4.6(b): P-node

and C-node. Both of them share exactly the same generator with their

parent node (CI and PS). Any side effects on them will also be captured

by their parent node. Thus it is sufficient to just check side effects on CI

and PS nodes. Second, the Vertical-prune-I will eliminate two columns from

Fig. 4.6(b): RP and RC , since deleting from them will certainly cause side

effects on PS-node, which is the parent of v (S-node). The Vertical-Prune-II

will not further reduce the search space since the non-ancester Group-NonDesc

nodes are empty.

Next, we can identify translatable updates by purely using the schema

knowledge. Algorithm 3 applies schema-level translatable rules.

For example, the search space for S-node after the STAR-translatable

4.4. SCHEMA-CENTRIC XML VIEW UPDATING ALGORITHM 94

After Horizontal-Prune

nodes RP RC RS

CI-node × ×
PS-node × ×
S-node × × ×

After Vertical-Prune-I

nodes RS

S-node ×

After Vertical-Prune-II

(Same as above)

Figure 4.7: Search space of S-node after STAR-untranslatable

Algorithm 3 STAR-Translatable

Let current search space be SS

for all Group-NonDesc node v′ in SS do
for all column Ri in Sources of SS do

if Rule 6 holds then
mark

√
in the cell (v′ , Ri)

end if
end for

end for

for all Group-Self node v in SS do
for all column Ri in Sources of SS do

if Rule 7 holds then
mark

√
in the cell (v, Ri)

end if
end for

end for

for all Group-Desc node v′ in SS do
for all column Ri in Sources of SS do

if Rule 8 holds then
mark

√
in the cell (v′ , Ri)

end if
end for

end for

Let CS be the set for clean sources
for all column Ri in Sources of SS do

Let clean = TRUE
for all row v in SS do

if mark(v,Ri) =× then
clean = FALSE; Continue

end if
end for
if clean = TRUE then

Add Ri to CS

end if
end for
return CS

algorithm (Algorithm 3) is shown in Fig. 4.8. At this point, we can conclude

that deleting an element of S-node can always be achieved without causing

any side effect by deleting from the Student relation.

nodes RS

S-node
√

Figure 4.8: Search space of S-node after STAR-translatable

4.4. SCHEMA-CENTRIC XML VIEW UPDATING ALGORITHM 95

4.4.2 SDC: Schema-directed Data Checking

Given the current search space SS of node v from the STAR algorithms,

each × mark left in the cell (v′, Ri) indicates the potential view side effect

on v′, if the view update is achieved by deleting from Ri. The certainty,

however, depends on the actual relational data. For these nodes, we need

to issue a probe query over the relational database to check for potential

side effects (Section 4.2).

nodes RP RC RS

CI-node × √

S-node
√ √ √

Figure 4.9: Search space of CI-node after STAR algorithm

Consider our motivating example 4. The search space of the CI-node

is shown in Fig. 4.9. To decide whether we can delete CI1 by deleting

from the Professor relation, we need to check whether deleting the tuple

Professor.t1 will cause any side effect on other ClassInfo elements. Let R∗C

= {Professor.t1} be the result of the probe query Select * from R∗P P,

Course C where P.pid = C.pid, which includes both CI1 and CI2. This

means Professor.t1 is also used by CI2. Thus it is not a clean source for CI1.

However, assume we want to delete CI3. Let R∗C={Professor.t2}. The

same probe query will generate CI3 only. This means {Professor.t2} is not

used by any other ClassInfo element. Thus we can now change the ×mark

in the cell (CI-node, RP) to
√

. Thus R∗C={Professor.t2} is a clean source of

CI3.

If our goal is to get all possible translations, all these probe queries need

to be performed over the actual data. If our goal is to find the first correct

4.4. SCHEMA-CENTRIC XML VIEW UPDATING ALGORITHM 96

translation, then the data check is performed only if the STAR algorithm

does not find any clean source (CS = ∅). Since the latter is commonly used

by both commercial and research projects, Algorithm 4 corresponds to this

strategy.

Algorithm 4 Schema-directed Data Checking
Let CS = ∅.
Let SS be the search space from STAR
Compute the generator of e: R∗

1
, R∗

2
, ..., R∗n

for all column Ri in SS do
for all row v do

if Rule 2 does not hold then
Continue

end if
if Rule 1 does not hold then

Continue
end if
if Rule 3 does not hold then

Continue
end if
Add Ri into CS

Return CS

end for
end for

4.4.3 SQL Update Generation

Updates that successfully pass the STAR procedure and the SDC procedure

will finally reach the SQL update generator to form the SQL update state-

ments. The suggestions on possible correct translations are also carried

along. Algorithm 5 creates the SQL updates.

In Example 2, the generator of CI1.PS1.S1 is {Professor.t1, Course.t1, Student.t1}.

Let R∗C={Student.t1}. The finally generated SQL update is “Delete from

Student where rowid in R∗C”. Since the view side effect has been checked

by the STAR and SDC procedure, the generated SQL updates will be exe-

cuted over the relational database directly, without worrying about any

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 97

Algorithm 5 SQL Update Generation
/* To delete an element e of node v from the view */
Compute the generator of e: R∗

1
, R∗

2
, ..., R∗n

Let CS be the schema-level clean sources from STAR algorithm
if CS 6= ∅ then

Pick the first Ri from CS

Generate SQL statement:
DELETE FROM Ri WHERE ROWID IN R∗i

end if

view side effect.

4.5 Schema-driven Side Effect Checking For Insertion

Insertion is supported by HUX in a similar fashion with deletions. By view

side effect in insertion, we mean that inserting an element e might cause

inserting an element e′ (e 6= e′) into the view. Intuitively, to avoid the side

effect, we need either (i) the translation of e will not form a generator for e′

or (ii) even if it does form the generator for e′, it can be eliminated without

affecting anyone else in the view. Using clean source theory, we have the

following observation.

Proposition 4 To achieve insertion of e into the view by inserting T={t1,t2...,tn}

into the relations R1, ..., Rn will not cause view side effect of inserting another

view element e′, if: (i) ∄g(e′) such that e′ appears in the view, or, (ii) ∃g(e′) and e′

can be safely deleted by removing t ∈ g(e′)− T .

This proposition is straightforward, that is, side effect will only appear

if the generator of another view element has been formed and can not be

removed without touching those inserted data.

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 98

The challenge now is how to achieve this goal by utilizing the schema

knowledge. Given a view ASG node v. Let INS(v) denote the set of re-

lations into which an insertion of a v’s element will insert. The INS(v) is

computed as follows: INS(v) = (G(v) ∪ G(Group-Desc)) - G(vp), where

G(Group-Desc) is the union of the generators of Group-Desc nodes of v,

and vp is the parent node of v. For example, INS(CI) = {Professor, Course,

Student} and INS(S)={Student}.

For illustration purpose, we extend the motivation example in Section 4.1.1

by adding a new ProfessorListnode. Figure 4.10 shows the view and Fig-

ure 4.11 shows the ASG for this new XML view.

FOR $p IN DOCUMENT(Professor/ROW),
$c IN DOCUMENT(Course/ROW)

WHERE $p.pid = $c.pid
RETURN

<ClassInfo>

<Course>

$c/cname/text()
</Course>,
<Professor-Student>

<Professor>$p/pname/text()</Professor>,
FOR $s IN DOCUMENT(Student/ROW)
WHERE $s.cid = $c.cid
RETURN

<Student>
$s/sname/text()

</Student>
</Professor-Student>

</ClassInfo>

FOR $p IN DOCUMENT(Professor/ROW)
RETURN

<Professor-List>
$p/pname/text()

</Professor-List>

CI1 <ClassInfo>

CI1.C1 <Course>Math</Course>

CI1.PS1 <Professor-Student>
CI1.PS1.P1 <Professor>David Finkel</Professor>
CI1.PS1.S1 <Student>Chun Zhang</Student>
CI1.PS1.S2 <Student>Mike Fisher</Student>

</Professor-Student>
</ClassInfo>

CI2 <ClassInfo>

CI2.C1 <Course>Physics</Course>

CI2.PS1 <Professor-Student>
CI2.PS1.P1 <Professor>David Finkle</Professor>
CI2.PS1.S1 <Student>Feng Lee</Student>

</Professor-Student>
</ClassInfo>

CI3 <ClassInfo>

CI3.C1 <Course>English</Course>

CI3.PS1 <Professor-Student>
CI3.PS1.P1 <Professor>Tim Merrett</Professor>

</Professor-Student>
</ClassInfo>

PL1 <ProfessorList>David Finkel<ProfessorList>
PL2 <ProfessorList>Tim Merrett<ProfessorList>

Figure 4.10: The view query used for insertion illustration

Again, we can perform a complete classification by examining side ef-

fects on each of the three groups in Fig. 4.4. This is very similar to the dele-

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 99

View

ClassInfo

Course Professor-Student

Student
Course.cname

Professor

Student.sname

*

*

Professor.pname

ProfessorList

CI: Select *
from Professor P, Course C
where P.pid=C.pid

C : Same as CI node
PS: Same as CI node
P : Same as CI node
S : Select *

from Professor P, Course C, Student S
where P.pid=C.pid and C.cid = S.cid

PL: Select * from Professor

Figure 4.11: Schema graph of the XML view

tion scenario except that we are now examining every relation in INS(v)

instead of G(v).

Algorithm 6 InsT-Mark — STAR marking algorithm for insertion

Input:
GV , GC , GF K

Output: The marked GV

for every schema node v of GV do
InsT-NonDesc-SideEffect(v, GV , GC , GF K)
if InsT(v) = unsafe-insert then

CONTINUE
end if
InsT-Self-SideEffect(v, GV , GC , GF K)
if InsT(v) = unsafe-insert then

CONTINUE
end if
InsT-Desc-SideEffect(v, GV , GC , GF K)
if InsT(v) is marked as unsafe-insert then

CONTINUE
else

InsT(v)=safe-insert
end if

end for

First of all, the schema-level untranslatable insert rule (similar to Rule 9

in the deletion scenario) is still applicable for insert scenario.

Rule 9 Given a view ASG node v. Inserting an element of v will cause side effects

on some element of v′, which is v’s non-ancestor nodes from Group-NonDesc, iff

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 100

there is an onto mapping from elements of v′ to the elements of v.

Proof.

Let T be the set of tuples to be inserted into the database in order to achieve

the view update (inserting an element e of v into the view). Then T will at

least form the generator of e, namely, g(e) ⊂ T . Since there is an onto map-

ping from elements of v′ to elements of v, then there exists an element of v′,

whose generator will also be formed. Namely, g(e′) ⊂ T . This onto map-

ping also implies that e′ can not be eliminated without making e disappear.

Thus, there will always be a side effect on elements of v′. 2

4.5.1 Step1 — Group-NonDesc Examination

We first examine the view ASG nodes of Group-NonDesc. To insert a new

Course of C-node into view, we check whether any other view elements

will be inserted (e.g., a new ClassInfo element of CI-node).

When we insert an element e of a view ASG node v, we first determine

which view ASG nodes have side-effects – that is, for which view ASG node

an element could get inserted. Note that an element of a node v′ will not

get inserted if (i) the generator of v′ does not overlap with the relations into

which we insert tuples when we insert e, or, (ii) we know that there is a

relation R′ required by the generator of v′, but the tuple in R′ does not exist

currently (e.g., this can be guaranteed by foreign key constraints), and so

no element of v′ will be generated.

Rule 1 (Side effects examination for Group-NonDesc)

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 101

1). Inserting an element of v will not cause any view side effect in Group-

NonDesc node v′ if G(v′) ∩ INS(v) = ∅.

2). Inserting an element of v will not cause any view side effect in Group-

NonDesc node v′ if ∃R ∈ (G(v′) ∩ INS(v)), ∃ R′ ∈ (G(v′) − INS(v))

that references R through foreign key constraint(s) CFK(R,R′) and Q |=

CFK(R,R′).

Proof.

First, by the definition of INS(v), it includes all relations into which we

could possibly insert. Let v′ be a non-descendent schema node of v. Since

G(v′) ∩ INS(v) = ∅, none of relations in G(v′) will be updated. Thus any

view element of v′ will not be affected.

Second, let T = G(v′) ∩ INS(v). If T 6= ∅, then there could be potential

view side effects on v′. However, given a relation R, if there is a relation R′

∈ (G(v′) − INS(v)) referring to R through a foreign key, and this foreign

key condition is entailed by the view query, then the generator of v′ can

never be formed. The reason is that the tuple of R′, which is required by

the join condition through the foreign key to form the generator of v′, does

not exist. Thus any view element of v′ will not be affected. 2

If condition (i) is satisfied, the generator G(v′) does not overlap with the

relations being inserted INS(v), and will not be affected at all. For exam-

ple, consider inserting a Student of S-node. Since INS(S-node) = {Student}.

This insertion will not affect any Course element of C-node, nor Professor

element of P-node.

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 102

If condition (ii) is satisfied, the generator of any element of v′ cannot be

formed. To insert an element of v, we will insert into one or more relations

in INS(v). Suppose we insert a tuple t into relation R; as R′ references

R, no tuple in R′ references t. For example, inserting a new ProfessorList

PL3 of PL-node will not cause side effect on CI-node. The reason is that we

need an existing Course tuple with PL3 as its professor to form a ClassInfo

element in the view. This cannot happen since there is a foreign key from

Class to Professor table.

Rule 2 is implemented by Algorithm 7. Fig. 4.12 shows the progressive

application of the algorithm InsT-NonDesc-SideEffect to identify side-effect

on Group-NonDes. For example, inserting a ClassInfo of CI-node will

cause side effect on ProfessorList of PL-node, and inserting a professor of a

ClassInfo (CI-node) will cause side effect on Course (C-node).

View ASG Node CI-node PS-node S-node PL-node

G(v) {Professor, Course} {Professor, Course} {Professor, Course, Student} {Professor}

INS(v) {Professor, Course, Student} {Professor, Student} {Stdent} {Professor}

CS(v) {Course} {} {Student} {}

1 {PL-node} {CI-node,S-node,PL-node} {CI-node,S-node,PL-node} {CI-node,S-node,PL-node}

2 {PL-node} {CI-node,S-node,PL-node} {} {CI-node,S-node,PL-node}

3 {PL-node} {CI-node,S-node} {} {CI-node,PS-node,S-node

4 {PL-node} {CI-node,S-node} {} {CI-node,S-node}

5 {PL-node} {CI-node} {} {}
Step 1

6 unsafe-insert unsafe-insert - -

Figure 4.12: Step 1 of STAR marking for insertion

Rule 2 only determines view ASG nodes where there could be side-

effects. Below we further examine whether these side-effects can be re-

moved. We will do this in two steps. First, we need to find view ASG nodes

where side-effect “actually” happens. Second, we will examine whether

the side-effects on such nodes can be removed. The following proposition

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 103

Algorithm 7 InsT-NonDesc-SideEffect — Side effect examination for
Group-NonDesc nodes

Input:
v: The schema node of the element e (to be in-
serted)
GV , GC , GF K

Output:

Compute INS(v)
Let GroupNDesc be the non-descendent nodes
set from GV

for every node v′ in GroupNDesc do
Compute the Generator G(v′)
Let Intersect = G(v′) ∩ INS(v)
if Intersect = ∅ then

Remove v′ from GroupNDesc, CONTINUE
end if
Let Diff = G(v′)− INS(v)
Let IsRemoved = FALSE
while !IsRemoved AND Intersect 6= ∅ do

Get next relation R ∈ Intersect
while !IsRemoved AND Diff 6= ∅ do

Get next relation R′ ∈ Diff

Compute CF K(R, R′)
Let Q be the SQL query of v′

if (CF K(R, R′) 6= ∅) AND (Q |=
CF K(R, R′)) then

Remove v′ from GroupNDesc

IsRemoved = TRUE
end if

end while
end while

end for
if GroupNDesc is not empty then

InsT(v)=unsafe-insert
end if

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 104

identifies view ASG nodes for which side-effects actually happen.

Proposition 5 Let v′ be a Group-NonDesc node, and p be the parent node of v′.

Assume (G(v′)−G(vp)) ∩ INS(v) = ∅. (i) An insertion causing side effects on

v′ also causes side effect on vp. (ii) Eliminating side effect on vp will also eliminate

the side effect on v′. We say that side effect does not actually happen on v′.

Proof.

First, assume G(v′) − G(vp) = ∅, then G(v′) = G(vp). Thus both (i) and (ii)

hold. Second, Let Diff = (G(v′)−G(vp)) and Diff 6= ∅. Since Diff∩INS(v)

= ∅, if the view side effect ever appears, it is never caused by Diff. In other

words, the side effect can only be caused by updating a relation in G(vp).

Thus any side effects on v′ will also be side effect on vp. (ii) follows trivially.

2

For example, we do not consider Student, because G(S-node) - G(CI-

node) includes only Student, which does not overlap with INS(PL-node).

Any side effect that appears on S-node again implies side effect on CI-node,

and can be eliminated by removing side effects on CI-node.

As another example, when inserting a new ProfessorList PL3 of PL-node

into the view, there could be a side effect on PS-node. But, whenever there

is a side effect on PS-node (a professor appears under the ClassInfo), there

certainly will be a side effect on CI-node as well (a ClassInfo element ap-

pears in the view). Therefore, we say that side-effect does not actually hap-

pen for CI-node, and we need not examine PS-node’s side-effect. Instead,

we need to consider only CI-node’s side-effect. Also, if we eliminate the

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 105

side effect on ClassInfo (delete the Course tuple), we can also eliminate the

side effect on its ProfessorStudent (PS elements disappear as well).

For these nodes where (G(v′)−G(vp)) ∩ INS(v) 6= ∅, we eliminate the

side-effects of v′ by the following rule.

Rule 2 (Side effects elimination for Group-NonDesc) Consider a Group-

NonDesc node v′ where there is a side effect. Let vp denote v’s parent and (G(v′)−

G(vp)) ∩ INS(v) 6= ∅. The view side effect on v′ can be eliminated if CS(v′) −

INS(v) 6= ∅.

Proof.

If CS(v′)− INS(v) 6= ∅, then ∀R ∈ (CS(v′)− INS(v)), R is a clean source.

We thus can always use it to eliminate the view side effects. 2

For example, to insert a new professorList PL3 of PL-node into the view,

we have INS(PL-node)={Professor}. We need to consider the side effect on

CI-node. From our STAR-marking deletion algorithm (Section 4.4), we get

the clean source candidates CS(CI-node)={Course}. And, since CS(CI) -

INS(PL-node)={Course}, we can always eliminate the side-effect by delet-

ing the corresponding Course.

4.5.2 Step 2 — Group-Self Examination

For those ASG nodes that passed Step1 examination, in this step we check

the side effect of inserting an element of v on other view elements of v. For

instance, we determine whether an insertion of a new review CI1.PS1.S2

of S-node will cause the insertion of another new Student element.

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 106

Rule 3 (Side effects examination for Group-Self) Inserting an element of v

will not cause any view side effect of inserting an element of Group-Self, if ∀R ∈

(G(v) −G(vp)), R can reach all other nodes in GC .

Proof.

First, according to the proposition 1 in Section 2.5, since R can reach

all other nodes in GC , there is a 1-1 mapping from tuples of any relation

R ∈ G(v)−G(vp) to elements of v. Thus inserting into R will not cause any

side effect in Group-Self. Second, any other relation S in INS(v), namely,

INS(v)− (G(v)−G(vp)) is never been used by G(v). Thus inserting into S

will not cause any side effect in Group-Self either. 2

It is straight forward that if a schema node is generated from single re-

lation only, inserting an element will not cause any side effect of inserting a

new element of this schema node. In our example, adding a new publisher

PL3 of ProfessorList will not cause side effect of another ProfessorList

element (a new professorList) to appear.

As another example, consider the extreme case, where each Professor

can only teach one course. Namely, let’s assume the pid is a unique key of

Course relation as well. Then the computation graph of CI-node will be:

Course ⇋ Professor. INS(CI-node) = {Professor, Course, Student}. Each

element of CI-node will map to a unique tuple in Course, as well as in

Professor. Thus inserting into Course or Professor will not cause side effect

on other CI-node element in this case. On the other hand, inserting into

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 107

Student will not cause side effect either.

Algorithm 8 InsT-Self-SideEffect — Side effects examination for Group-Self
nodes

Input:
v: The schema node of the element e (to be in-
serted)
GV , GC , GF K

Output:

Compute the Generator G(v), G(vp)
for all relation R ∈ G(v)− G(vp) do

for all relation R′ ∈ (G(v) − G(vp)− R) do
if R can not reach R′ in GC then

InsT(v) = unsafe-insert, RETURN
end if

end for
end for

Algorithm 8 (InsT-Self-SideEffect) is used to implement Rule 3. Simi-

larly, some side effects can be eliminated using the rule below.

Side-effect Eliminating Rule. View side effect in Group-Self node v caused

by inserting an element of v can be eliminated if DelT(v)=safe-delete.

Proof.

Assume inserting a view element e of v causes view side effects of inserting

another view element e′ of v. If DelT(v)=safe-delete, then ∃R ∈ G(v), delet-

ing the generator tuple of e′ from R can safely remove e′, thus eliminate the

side effects. 2

Side-effect eliminating in this step is also straightforward. If v is marked

as safe-delete, we always can eliminate the side effect safely. For exam-

ple, we try to insert a new ClassInfo element CI4 of CI-node. Since CI-

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 108

node is marked as safe-delete, it thus passes the side-effect eliminating test.

To achieve the update by inserting into the Professor relation might cause

other CI-node element, say CI5 to appear in the view, but CI5 can always

be removed by deleting the Course tuple from its generator.

4.5.3 Step 3 — Group-Desc Examination

Having the result of Step 2, we now check whether we can insert a view

element e without affecting other view elements whose schema nodes are

in Group-Desc. For example, to insert CI4 into Fig. 4.1, we need to examine

whether any other new view element (e.g.,CI2.P1) will also be inserted.

Rule 4 (Side effects examination for Group-Desc) Inserting an element of

v will not cause any view side effect in Group-Desc node v′, if ∃R ∈ INS(v),

∃ R′ ∈ (G(v′) − INS(v)) that references R through a foreign key constraint(s)

CFK(R,R′) and Q |= CFK(R,R′).

Proof.

same as the proof of Rule 2. 2

As an example, consider inserting an element e of CI-node in our exam-

ple view. This insertion will not cause any view side effect on any element

of S-node. The reason is that G(S-node) - INS(CI-node) = {Student}. The

Student relation refer to Course relation through a foreign key CFK(Course,

Student) = (Student.cid⊆Course.cid). As we can see, Q |= CFK(Course, Student).

Thus no side effect appears on any element of S-node.

4.5. SCHEMA-DRIVEN SIDE EFFECT CHECKING FOR INSERTION 109

Algorithm 9 InsT-Desc-SideEffect — Side effects examination for Group-
Desc nodes

Input:
v: The schema node of the element e (to be in-
serted)
GV , GC , GF K

Output:

Compute INS(v)
Let GroupDesc be the non-descendent nodes set
from GV

for every node v′ in GroupDesc do
Compute the Generator G(v′)
Let Diff = G(v′)− INS(v)
Let IsRemoved = FALSE
while !IsRemoved AND INS(v) 6= ∅ do

Get next relation R ∈ INS(v)
while !IsRemoved AND Diff 6= ∅ do

Get next relation R′ ∈ Diff
Compute CF K(R, R′)
if (CF K(R, R′) 6= ∅) and (Q |=
CF K(R, R′)) then

Remove v′ from GroupDesc

IsRemoved = TRUE
end if

end while
end while

end for
if GroupDesc is not empty then

InsT(v)=unsafe-insert, RETURN
end if

4.6. EVALUATION 110

Algorithm 9 (InsT-Desc-SideEffect) can be used to implement Rule 4.

Similar to Step1, to determine whether these side-effects can be removed,

we need the following two steps. First, we need to find view ASG nodes

where side-effect “actually” happens. Second, we will examine whether

side-effects on such nodes can be removed. Proposition 5 also holds for

Group-Desc nodes and will be used to identify view ASG nodes for which

side-effects actually happen. The side effect eliminating is also the same

with Step1 as described below.

Side-effect Eliminating Rule. Consider a Group-Desc node v′where there

is a side effect. Let vp denote v’s parent and (G(v′)−G(vp)) ∩ INS(v) 6= ∅.

The view side effect on v′ can be eliminated if CS(v′)− INS(v) 6= ∅.

Proof.

Same as the proof of the side-effect eliminating rule of Step 1. 2

As long as the generator of descendant node v′ cannot be formed, there

is no way the side effect could appear. Even if the side effect could appear,

we still have a clean extended source to eliminate the side effect.

4.6 Evaluation

We conducted several experiments to address the performance impact of

our system. The test system used is a dual Intel(R) PentiumIII 1GHz pro-

cessor, 1G memory, running SuSe Linux and Oracle 10g. The relational

4.6. EVALUATION 111

database is built using TPC-H benchmark [TPC]. Two views are used in

our experiments, with their view ASGs shown below.

View

Region

Nation

Customer

Orders

*

*

LineItem

*

*

*

R.regionkey=N.regionkey

N.nationkey=C.nationkey

C.customerkey=N.customerkey

O.orderkey=LI.orderkey

WellNestedView

View

Region

Nation

Customer

Orders

*

*

LineItem

*

*

*

R.regionkey=N.regionkey

N.nationkey=C.nationkey

C.customerkey=N.customerkey

O.orderkey=LI.orderkey

Regionnew

*

DupSiblingView

We note that the schema-level translatability decision holds for the same-

type of updates on the given schema node. Thus we can perform STAR

algorithm at compile-time. The view ASG is marked according to the de-

cision of STAR algorithm. When an update comes, it is first evaluated by

checking the compile-time mark. The performance of STAR marking and

STAR checking in HUX system is shown by Fig. 4.13. The time of STAR

marking procedure increases linearly with the size of the view query. The

STAR checking time stays stable.

We now compare the performance of our system with other possible

update systems.

4.6.1 HUX vs. Naive View Update System

We compare the performance of HUX against two different naive approaches.

The first naive approach, which we call the N.G.System, performs a view

4.6. EVALUATION 112

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L LO LOC LOCN LOCNR

View

Time(s)

Mark-t ime Check-t ime

Figure 4.13: The performance of HUX system

update without checking for any side effects. For instance, given a view

element to be deleted, the N.G.System deletes one of the tuples in its gen-

erator. Note that the N.G.System has to do little work to find the transla-

tion. For an accurate comparison in our experiments, we will assume that

the N.G.System performs the same translation as what HUX would have

found.

Fig. 4.14 shows the performance of HUX vs. N.G.System, when only

key constraints are considered for DupSiblingView. The database used is 1G.

As we can see, HUX takes a little bit more time (around 10ms) for deleting

a customer, lineitem, order or region element, which are all identified as

translatable by our STAR-translatable algorithm. This difference is the time

spent on the STAR algorithm to get the translatability decision. Now let

us consider deleting nation element (which is not translatable). The naive

system chooses to delete the source from the relation Nation. This will

cause view side effect. Our HUX system instead will reject it directly using

the result from STAR algorithm. The cost is negligible. The difference in

4.6. EVALUATION 113

deleting the regionnew is huge, since HUX now has to perform the SDC to

decide whether it is side effect free. The N.G.System, however, finds the

correct translation directly (not possible in reality), and only have the cost

of actually deleting the data from the database.

Similar conclusion holds when the foreign key constraints are consid-

ered (Figure 4.15), except that the time spent on deleting a tuple is much

more due to the delete cascading.

0.01

0.047 0.047

0.033
0.0280.030.03

0.015
0.01 0.01

0.011

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Lineitem Orders Customer Nation Region RegionNew

element-to-
delete

Times(s)

N. G. System HUX

5.908

Figure 4.14: HUX vs. N.G.System with only key constraints

0.03 0.028 0.01

2.001

2.233
2.124

0.04 0.037

2.127
2.01

2.243

0

1

2

3

Lineitem orders customer nation region regionnew
Element-to

-Delete

Time(s)

N.G.System
HUX

7.209

Figure 4.15: HUX vs. N.G.System with foreign keys

4.6. EVALUATION 114

The second naive approach against which we compare HUX is one that

checks for side-effects by comparing the views before and after the update.

This approach is very expensive.

4.6.2 HUX vs. Data-driven View Update System

Several relational database systems [BKT01, CWW00], which support the

view updating based on pure data checking, are available. We compare

HUX with these systems by performing updates only on the “highest” com-

plex node of the view, as shown in Fig. 4.16. For our WellNestedView, we

only delete a region element. We use five different well nested views, each

with a different number of relations. The update is always to delete an

element from the bottom most schema node. HUX only takes the STAR

checking time, which is very small. The pure data-driven system, however,

has to perform probe queries on the actual data to find the correct transla-

tion. In the best case, it will find the correct one by the very first probe. This

already takes much more time than HUX. In the worst case, it will find the

correct translation in the last probe.

Motivated by this result, we compare HUX with the system which per-

forms pure data-driven check as in Section 4.2. As shown by Fig. 4.17, the

cost of pure data-driven increases rapidly with the view size, while HUX

stays efficient.

4.6. EVALUATION 115

0.01

0.1

1

10

100

L LO LOC LOCN LOCNR

view
size

Time(s) HUX

Data-driven best case

Data-driven worst case

Figure 4.16: HUX vs. the relational view update system

13.897

26.5

117.764

6.023.91

87.495

60.035 0.035 0.02 0.003 0.02
0

20

40

60

80

100

120

lineitem orders customer nation region regionnew

Element-to-
Delete

Time(ms)

Data-driven
HUX

Figure 4.17: HUX vs. Pure data-based XML view update system

4.6.3 Complexity and Usefulness of HUX

We restrict our queries to XQuery queries that can be translated into a view

ASG. The view ASG used in HUX has the same limitations as the view for-

est from SilkRoute [FKS+02]. This property requires these queries to be in

XQueryCore [W3C03], with the exception of recursive functions, order re-

lated functions and aggregation functions. In addition, the SQL query of

each schema node in the view ASG is of the form SELECT-FROM-WHERE,

4.7. RELATED WORK 116

not SELECT-DISTINCT-FROM-WHERE. Thus duplicate values may occur

in the view. In [BKT01], the authors study the complexity of the update

translatability problem in the case of deletion over relational SPJU views.

They show that this problem is poly-time solvable with respect to the size

of the database for SPU and SJ views, whereas it is NP-hard for PJ and JU

views. Note that Project here implicitly eliminates the duplicates. How-

ever, when Project does not eliminate duplicates, the translatability of up-

dates over PJ views (actually over SPJ views) is polynomial.

Since we restrict the view query handled by our ASGs, our views are ac-

tually a combination of SPJ views (in XML format), where the project does

not eliminate duplicates. Therefore our overall algorithm is polynomial —

our STAR procedure runs in poly-time in the size of the view query (also

shown by our experiment in Fig. 4.13); the SDC uses the SQL engine, and

runs in poly-time in the database size.

To examine the practicality of our approach, we studied the Protein Se-

quence Database (PSD) from [Res]. From typical user studies over this do-

main [Res] gained by discussion with biologist (Ryder, Elizabeth F) at WPI,

we observed that the well-nested view assumed by [BDH04], where the nest-

ing “follows” the key and foreign key constraints, is not often the case in

this domain. Our approach hence provides a practical solution to this do-

main, because it supports even non-well-nested views.

4.7 Related Work

[Kel86b, Kel85, Mas84] study the view update translation mechanism for

4.7. RELATED WORK 117

SPJ queries on relations that are in BCNF. These works have been further

extended for object-based views in [BSKW91]. Commercial database sys-

tems, such as Oracle [BKKM00], DB2 [CX00] and SQL-Server [Rys01], also

provide XML support. [TIHW01] assumes that the update is indeed trans-

latable and has in fact already been translated into updates over a rela-

tional database. They also study the performance of executing the trans-

lated updates by using relational techniques, such as triggers or indices.

Our work addresses the view update translatability, an aspect different than

update translation strategy.

An abstract formulation of the update translatability problem is given

by the view complementary theory in [BS81, CP84]. It uses the invariance

of the complement of a view, namely database side-effect free, to decide the

translatability of a given update. However, this property is too restrictive to

be practical. [DB82] relaxes the criteria for a correct translation as only re-

quiring view side-effect free. Based on the notion of a clean source, it presents

an approach in the relational context for determining the existence of up-

date translations by performing a syntax analysis of the view definition.

Recent works [BDH04, BDHar] study the update over well-nested XML

views. They assume joins are through keys and foreign keys, and nesting

is controlled to agree with the integrity constraints and to avoid duplica-

tion. [LL92] develops a theory within the framework of the ER approach

to characterize the conditions under which mappings exist. It is further

extended in [CLL02] to guide the design of valid XML views. Valid views

based on this design approach are a proper subset of general XML views

studied in this paper. [CLL02] avoids the duplication from joins and multi-

4.7. RELATED WORK 118

ple references to the relations. Our work in this paper is orthogonal to these

works by addressing new challenges related to the decision of translation

existence when no particular restrictions have been placed on the defined

views. That is, in general, conflicts are possible and a view cannot always

be guaranteed to be well-nested [BDH04] or valid [CLL02] (as assumed by

these prior works).

Commercial database systems, such as Oracle, DB2 and SQL-Server,

also provide XML support. Oracle XML DB [BKKM00] provides SQL/XML

as an extension to SQL, using functions and operators to query and access

XML content as part of normal SQL operations, and also to provide meth-

ods for generating XML from the result of an SQL Select statement. The

IBM DB2 XML Extender [CX00] provides user-defined functions to store

and retrieve XML documents in XML columns, as well as to extract XML

elements or attribute values. However, neither IBM nor Oracle support up-

date operations. [Rys01] introduces XML view updates in SQL-Server2000,

based on a specific annotated schema and update language called update-

grams. Instead of using update statements, the user provides a before and

after image of the view. The system computes the difference between the

image and generates corresponding SQL statements to reflect changes on

the relational database.

As part of our data-level check we are able to analyze the performance

of existing work [BDH04]. This leads us to suggest alternative approaches

that can work with existing DBMS without imposing additional require-

ments, and that yields better performance.

Recent works [BKT01, CWW00] indicate a loose connection between

4.7. RELATED WORK 119

data provenance [BKT01] or lineage [CWW00] and the view update prob-

lem. The distinction between “why provenance” and “where provenance”

is used to guide the view update process to find an appropriate update

translation. Their work has several similarities with ours, e.g., to try to find

the data trace (provenance) at the query syntax level. However, we utilize

this data trace or provenance for a different purpose. The question that

[BKT01] tries to answer is: given two equivalent queries that are rewrit-

ings of each other, when are the provenance guaranteed to be identical?

Instead, we use the provenance to determine if a correct translation exists,

for a given update.

In addition to the relational framework [BS81, CP84, DB82, CA81], the

view update problem has been attacked from various logical vantage points.

One method extends the semantics of the database to express some or all

the possible correct translations of a view update [FUV83, RN89, Wil86]

or to directly store the view updates and provide new semantics for the

database [LLS93]. This approach increases the complexity of query pro-

cessing. The opposite approach to restrict the class of translations in an

attempt to compute a unique result [Heg90], has also been studied. We

believe this work is limited in scope. Another approach classis and deals

with each type of ambiguity in computes the implications of a view update

translation and presents decisions to resolve ambiguity to the database ad-

ministrator. We believe that correctness is a property of interest to database

administrators and would be reported by these editors. The addition of in-

tegrity constraints clearly impacts translations and [TA91] considers dele-

tion but defines insertion as the insertion of ID facts. For data log, [JMN83]

4.7. RELATED WORK 120

considers view updates for deletion but defines insertion as the insertion

of IDB facts. Another methods [Bry90, Dec90, KM90], closely related to

conjunctive query containment, generate all possible translations of a view

update. The number of possible translations of a view update is very large,

and we believe that usually a database administrator knows the correct

translation of a view update and simply needs a language to express the

translation.

121

Chapter 5

LoGo: Localized Write-through

View Updates Services

5.1 Introduction

So far, we have introduced HUX (Chapter 4) for update-public semantic.

Update-local semantic is also very common. We address it in this chapter.

5.1.1 Motivating Problem

Consider a typical view application domain such as scientific data sharing,

e.g., in the Human Genome Project [HGP].

A public database (such as the NCBI gene bank) has first been built and

thereafter has been commonly used and extended as appropriate by scien-

tists in related areas. Scientists use this as well as other public databases by

either directly querying and updating over the database or through a view.

5.1. INTRODUCTION 122

In many practical cases, scientists with update capabilities may prefer

to first keep his research results (updates) “local” instead of always imme-

diately updating the public database through their views with all their local

new findings. Reasons for this are plentiful. For example, new identified

gene information still needs to be verified before it goes public. Another

reason will be competitiveness. Scientists may want to keep their discover-

ies private as long as possible. This local data can be modified by the user

for the purpose of overwriting any previous change. This requirement is

called update localization.

Once the local data is ready (e.g., scientific articles reporting the fin-

ished genome sequence have been published), scientists (subject view user)

may want to (or have to) release the qualified data into the “public” database,

so that other scientists (object view) can gain access to this shared data. Other

scientists (object view user) can choose either to “synchronize” their local

database (if it is not empty) with the public database, or, to leave their lo-

cal customized data as it is. We call these requirements data merging versus

synchronization.

This is referred as the update-local semantic (introduced in Chapter 1).

5.1.2 State-of-Art

The above identified requirements suggest that a new system framework

is required to support such flexible updates through the view. Unfortu-

nately, none of the research projects or commercial systems meet the above

requirements as we will review below.

First of all, for many common update scenarios no side-effect free trans-

5.1. INTRODUCTION 123

lation may exist. This led researchers to permit side-effects [Kel86b, BSKW91,

TIHW01], to develop algorithms to detect them [BS81, CP84, DB82, WR04,

BKT01, CWW00], or to restrict the kind of updates that can be performed

on a view [LL92, CLL02, BDH04, BKKM00, CX00, Rys01]. For many appli-

cations where views need to be handled in the same way just as base tables

on updates, accepting side-effects or having such stringent restrictions is

simply unacceptable. Alternatively, updates without any side effect free

translation counterpart are often rejected.

Under the traditional view update semantics [BS81, CP84, DB82], the

above two requirements of updating through views, namely, (1) the view

update translation being side effect free and (2) a correct translation to al-

ways exist, conflict with each other. In other words, if the view updating

systems guarantee updates to not cause any view side effect, then most

view updates will be considered untranslatable and thus must be rejected.

On the other hand, if the view updating system guarantees to translate

all updates, then many of these updates will end up causing undesirable

view side effects. However, from the user’s point of view, the ideal view

updating system needs to achieve both of the above goals. Such a win-win

solution can be achieved by relaxing the traditional view update semantics,

namely, the requirement that the instance of a view is equal to the execution

of its view query on the base tables.

Recent work [YK06] proposes a new update semantic for the relational

view updating problem. The main idea is that any changes made by the

user through her view are encoded using special identifiers in the base data.

This encoding assures the uniqueness of data tracing for each view tuple,

5.1. INTRODUCTION 124

namely, no two view tuples ever share the same base data. All view up-

dates are thus translatable, in the sense that they can be encoded, namely,

first cloned then updated. It also ensures that side-effects are not visible

to users. Beyond the fact that encodings are now being carried along with

actual base data, they can be hidden from the view by an extended view

query.

However, by allowing every update to be translated, this approach now

conflicts with the spirit of data sharing. Updates from each user will always

change the public database, leaving other users (using different views) with

side effects. The situation could get out of control by interleaving the up-

date effect and the side effects. The whole database might end up being

unusable.

Most commercial database systems [BKKM00, CX00, Rys01] provide

some support for version management, for example, for extracting (static)

snapshots. The user can work on their own local cached data copy. But such

snapshots tend to be disconnected from the original database and from fu-

ture changes by users.

Some GUI-centric software such as CVS repository also provides the

capability of backing up the whole database into local storage. Although

one could update through views and change the public database by spe-

cializing a data merging procedure, it is not practical due to the high cost

of backing up the whole database and the manual task of having to attempt

to resolve conflicts for the purpose of later merging. Also, it is hard to ful-

fill the goal of data sharing between scientists, given the large amount to

be compared and merged.

5.1. INTRODUCTION 125

5.1.3 LoGo: A Local vs. Global Flexible Write-through Solution

In brief, a solution needs to be developed that supports the following sce-

narios. (1) Localize the view update translation, while preserving the prop-

erties of views being side-effect free and updates being always updatable.

(2) On-demand merge of the local database of the subject view into the public

database (also called global database), while still guaranteeing the subject

view to be free of side effects. (3) On-demand synchronize the local data of

the object view with the public database updated by the subject view.

We now propose a solution that successfully tackles all the above re-

quirements within one uniform framework named LoGo (Local-to-Global

view update services). LoGo provides a localized and flexible write-through

solution for the view updating problem. The framework of LoGo is shown

in Figure 5.1.

View
Definition

Global DB

SQL
Updates

Local-to-Global
DB

Merger

Global-to-Local
DB

Synchronizer

Update
Translator

User
Updates

V1 V2
Local DB

Views
V1 V2

View
Definer

View
Definition

Probe
Query

SQL
Updates

SQL
Updates

Updates

User DBA

Figure 5.1: The framework of LoGo

The first key issue in the design of the update localization solution is how

to design the local database schema. This schema needs to be capable of

5.1. INTRODUCTION 126

memorizing update translations in the local database as well as to be suf-

ficient to preserve data used for canceling-out update side effects. It also

needs to be compatible with the public database schema so that the local

and the public data can be easily merged without any schema changes. The

second issue is how to memorize the update translation, including deletion,

insertion and modification, in our local database. In addition, LoGo needs

to identify any view side effect and propagate the counter-part into the lo-

cal database to cancel out the view side effect. Finally, the view query needs

to be rewritten to smoothly puzzle together the view content from both the

local and the public databases. The update translator in Figure 5.1 is em-

ployed for this purpose. Section 5.2 will describe LoGo update localization

solution and its properties.

Updates-writing-through means to merge the localized changes back

to the public database. The key issues here include: how to encapsu-

late various changes from different update types in the local database into

one single public database, and how to re-construct the view content af-

ter merging. The local-to-global database merger is used for writing through.

When multiple views are available, this writing through capability will

affect other views. Whether or how should other views be synchronized

with the updated new public database must be addressed. Updates writ-

ing through and synchronization can interleave with each other. Namely, a

view can be the subject view (the one merging data into the global database)

during one merge procedure and it can also be an object view (the one re-

freshing according to the global data) during another synchronization pro-

cedure. Section 5.3 describes the merging techniques used by the local-to-

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 127

public merger in Figure 5.1. Section 5.4 describes the synchronizing tech-

niques used by the public-to-local synchronizer in Figure 5.1.

5.1.4 Contributions

To summarize, we make the following contributions: (1) We propose a new

view update semantics which relies on localized behavior to guarantee: (i)

all view updates are translatable in a view side effect free manner, (ii) user

updates are separated from the global database and (iii) views are indepen-

dent in terms of update effects. (2) We propose the LoGo framework which

fulfills our newly proposed update semantics, yet supports synchroniza-

tion between local and global behavior when so desired. (3) We implement

LoGo system. Experiments are also shown for the performance of LoGo.

5.2 LoGo-basic: Updating Through Views by Local-

ization

Instead of mapping the given view update into updates over the public

database, LoGo achieves the update translation using the following steps.

First, LoGo maps the given view update into update operations over a local

database of the given view, which record the pre-selected update transla-

tion achieving the given view update if issued over the public database.

Second, the view construction query is now changed to query over both

the public and local database. As result, LoGo guarantees that (1) all up-

dates are translatable with a side effect free guarantee and (2) all update

effects are isolated from the public database. Below we describe how these

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 128

goals are achieved.

5.2.1 Running Example

We use the following running example to illustrate the basic idea of LoGo

for updating the Select-Project-Join relational views. Figure 5.2 shows the

relational database of a campus online registration system. Figure 5.3(a)

depicts the relational view definition which extracts the courses and their

corresponding teachers into a view (Figure 5.3(b)).

Professor

tid pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

Course

tid cid cname credit

t1 c1 Math 3

t2 c2 Physics 2

t3 c3 Math 2

Teaching

tid pid cname

t1 p1 Math

t2 p1 Physics

t3 p2 Math

Figure 5.2: A running example: the global database

CREATE VIEW V1 AS {

SELECT P.pname AS professor,

C.cname AS course,

C.credit AS credit

FROM Professor P, Course C,

Teaching T

WHERE P.pid = T.pid

AND T.cname = C.cname}

(a)

professor course credit

David Finkel Math 3

David Finkel Physics 2

David Finkel Math 2

Tim Merrett Math 3

Tim Merrett Math 2

(b)

Figure 5.3: A relational view (b) defined by the view query (a) over the
relational database in Figure 5.2

u1: DELETE FROM V1 WHERE professor = ‘‘David Finkel’’

AND course = ‘‘Math’’ AND credit = 3

Figure 5.4: An update u1 over the view in Figure 5.3

Now assume the update u1 in Figure 5.4 over the relational view, which

deletes the three-credit “Math” class taught by professor “David Finkel”.

The relational tuples used to compute this to-be-deleted view tuple (so

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 129

called generator) include: Professor.t1, Course.t1, Teaching.t1. There are

many possible ways to achieve this update: (1) delete Professor.t1; (2) delete

Course.t1; (3) delete Teaching.t1, or (4) any combination of two or three of

the above base updates. Basically, to delete any part of the generator will

always achieve the given view update. However, it is obvious that none of

them is a correct translation in the sense of guaranteeing the view side effect

free property. The reason is that our view definition involves an m : n join,

namely, Course.cname = Teaching.cname. As result, Math can be taught by

different professors, while each professor can teach different Math classes

with different credits. Deletion of any single teaching relationship from the

view, as done by u1, cannot be achieved by simply deleting one or more

tuples from the public database. This has illustrated in our example. Tra-

ditional view updating systems including commercial databases will reject

the view update in this case. Below we now describe how LoGo handles

this view update and succeeds to make it translatable.

5.2.2 Local Database and Update Translation

Create Local Database. LoGo builds a local database to: (i) store the cho-

sen update translation in the public database and (ii) restore or eliminate

the view data disappearing or appearing from the view respectively, which

otherwise would have caused undesired view side effects. This way, LoGo

guarantees that all updates are translatable in a view side effect free man-

ner. This is achieved without modifying the public database.

We build a local database DL for each view allowed to be updated. The

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 130

local database includes a ∆ table, which memorizes the base table name

and the tuples in the table to be deleted to achieve the given view up-

date. It also includes a delta table for each table being referenced by the

view definition (e.g., ∆Professor for Professor table). This delta table is

used to restore view elements which might disappear as view side effects.

For example, Figure 5.5 depicts the local database schema for the view in

Figure 5.3. The linkID column in delta tables (e.g., ∆Professor) is used to

connect the ∆ table and ∆ table, since one transaction of deletion will af-

fect both. The cloneID is used to uniquely identity each restore procedure,

which eliminates view side effects. The cloneID is automatically generated

and unique to each update translation transaction.

∆

table linkID

∆Professor

linkID pid pname cloneID

∆Teaching

linkID pid cname cloneID

∆Course

linkID cid cname credit cloneID

Figure 5.5: The local database state after a deletion (u1)

Translate View Deletions. Using the update u1 as an example, we now

illustrate the schema of the local database and how it is used in the update

translation procedure to keep all user updates localized. Assume that the

user or the system decides to choose the update translation (1) to achieve

u1, namely, to delete the tuple t1 from the Professor relation.

LoGo first adds the tuple <Professor, t1> into ∆ table to memorize the

delete translation (See the figure below). This achieves the deletion u1.

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 131

∆

table linkID

Professor t1

However, as side-effect the second and the third view tuples (Physics

and Match taught by David Finkel) would also be disappearing from the

view. We call them to-be-disappeared tuples. To eliminate this side effect,

we now extend the local database to re-store these to-be-disappeared view

tuples.

Each restore procedure is uniquely identified by an assigned cloneID, e.g.,

cloneID =1 for our example. The restore procedure is achieved by consid-

ering join relationships in the view query step by step.

We start from the join between the Professor and Teaching tables. The

tuple professor.t1 from the table Professor in the public database is cloned. It

is then inserted into the ∆Professor table in the local database as two tuples,

both with linkID = t1 but cloneID = “d” and cloneID = “1” respectively.

This starts the re-store procedure corresponds to the deletion of Professor.t1

memorized in ∆ table.

∆Professor

linkID pid pname cloneID

t1 p1 David Finkel 1

t1 p1 David Finkel d

All tuples from the Teaching table in the public database, which joins

with this professor.t1 by the view query, are cloned. The cloned Teaching

tuples (except Teaching.t1) are added into the ∆Teaching table in the local

database with cloneID = 1. The clone of Teaching.t1, however, is inserted

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 132

into the ∆Teaching table in the local database with cloneID = “d”.

∆Teaching

linkID pid cname cloneID

- p1 Physics 1

- p1 Math d

Second, the join between Teaching and Course is processed. The cloned

Teaching tuple with cloneID = “d” is cloned again, but with cloneID = 1.

All Course tuples joined with any Teaching tuple, which has been cloned in

the first step, are cloned. The cloned Course tuples (except Course.t1) are

added into the ∆Course table in the local database with cloneID = 1. The

clone of Course.t1 is inserted into ∆Course with cloneID = “d”.

∆Teaching

linkID pid cname cloneID

- p1 Physics 1

- p1 Math d

- p1 Math 1

∆Course

linkID cid cname credit cloneID

- c2 Physics 2 1

- c3 Math 2 1

- c3 Math 3 d

In essense, after the restore procedure, the local database contains not

only the generator of the to-be-deleted view tuple, but also generators of all

to-be-disappeard view tuples. At the last step, the generator of the to-be-

deleted view tuple, which has been marked as “cloneID = d”, is removed.

Figure 5.6 depicts the local database state after the translation.

We slightly modify the view definition Q (Figure 5.3) to produce the

new query named local view query QL (Figure 5.7). QL re-stores the tu-

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 133

∆

table linkID

Professor t1

∆Professor

linkID pid pname cloneID

t1 p1 David Finkel 1

∆Teaching

linkID pid cname cloneID

- p1 Physics 1

- p1 Math 1

∆Course

linkID cid cname credit cloneID

- c2 Physics 2 1

- c3 Math 2 1

Figure 5.6: The local database state after a deletion (u1)

ples, that would otherwise have disappeared as the view side effect under

the initial view query Q, back into the view (the second and third tuples

in Figure 5.3). QL is rewritten by adding cloneID join condition for each

pair of joined tables in the original view query. In Figure 5.7, two cloneID

join conditions are added into the original view query, namely, P.cloneID =

T.cloneID and T.cloneID = C.cloneID.

SELECT P.pname AS professor, C.cname AS course, C.credit AS credit
FROM ∆Professor P, ∆Course C, ∆Teaching T
WHERE P.pid = T.pid AND P.cloneID = T.cloneID

AND T.cname = C.cname AND T.cloneID = C.cloneID

Figure 5.7: The local view query QL for the view defined in Figure 5.3

Translate View Insertions. Now let’s consider an example of insertions.

We always translate an insertion over the view directly into insertions over

the local database. This translation will never change the public database.

Thus we do not need to write into ∆ table in the local database. For ex-

ample, assuming that originally the local database is empty, the insertion

u2 will result in the new local database state as shown in Figure 5.8. Note

that we use I as linkID to indicate the newly inserted tuple. This indicator

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 134

is used later on for the local-to-global database merger.

u2 = INSERT INTO V1 VALUES (Peter Griffen, English, 3)

∆

table linkID

∆Professor

linkID pid pname cloneID

I PI1 Peter Griffen 1

∆Teaching

linkID pid cname cloneID

I PI1 English 1

∆Course

linkID cid cname credit cloneID

I CI1 English 3 1

Figure 5.8: The local database state after an insertion (u2)

Translate View Modifications. Modification is treated as a deletion fol-

lowed by an insertion in LoGo during the translation procedure. For exam-

ple, u3 in Figure 5.9 modifies the professor of the 3-credit Math class from

“David Finkel” to “Peter Griffen”. LoGo will consider u3 as first deleting

the 3-credit Math class taught by professor “David Finkel”, then inserting

a 3-credit Math class taught by professor “Peter Griffen”. Assuming that

originally the local database is empty, then the local database state after

translating u3 is shown in Figure 5.9. Note that two different cloneIDs (1

and 2) are chosen for the deletion and the insertion, namely, we assume

them as two different restore procedures. For the deletion, the linkID of

Professor tuple is t1. For the insertion, the linkID of the professor tuple is

specially coded as M-t1. The similarity identifies them both as the restore

procedures resulting from one view modification. In addition, instead of

assigning randomly selected or default values for the columns invisible to

the view, we also choose the value from the generator of the view tuple

to-be-modified. In our example, the generator of the to-be-modified tuple

is: {Professor.t1, Course.t1, Teaching.t1}. We thus choose p1 as pid for the

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 135

tuple to be inserted to ∆Professor table.

u3 = UPDATE V1 SET Professor = ‘‘Peter Griffen’’

∆

table linkID

Professor t1

∆Professor

linkID pid pname cloneID

t1 p1 David Finkel 1

M-t1 p1 Peter Griffen 2

∆Teaching

linkID pid cname cloneID

null p1 Physics 1

null p1 Math 1

null p1 Math 2

∆Course

linkID cid cname credit cloneID

null c2 Physics 2 1

null c3 Math 2 1

null c1 Math 3 2

Figure 5.9: The local database state after a modification (u3)

5.2.3 LoGo-Basic Algorithm

Algorithm 10 LoGo-Basic for deletion
Input:
DP : The public database
Q: The view definition over the relational database DP

u: A user update over the view V defined by Q

DL: The current local database of V

Output:
U : A sequence of SQL update over DL

Compute the generator g of the tuple to be deleted
Choose the source tuple Ri.tj to achieve the deletion
Insert into ∆ the new tuple (“Ri”, “tj”)
Generate the new cloneID cID for restore procedure
Insert into Ri the cloned tuple (“tj ”, tj , cID)
Let T be the set of current to-be-joined tuples
T = {Ri.tj}
for each Rk 6= Ri referenced by V do

Let Tk be the set of tuples in Rk joined with a tuple in T

Insert Tk into ∆Rk with cloneID = cID and linkID = null
T = Tk

end for
delete the generator of the to-be-deleted tuple from DL

Algorithm 10 is the LoGo basic algorithm for deletion. Figure 5.10

shows the walk-through steps of applying Algorithm 10 for u1. First, the

generator of the to-be-deleted tuple is computed [WRMar]. The computa-

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 136

tion is done by issuing a query combining the view query and the update

query, namely, add the where conditions in update query into the where

clauses of the view query. Deleting any of the tuples in the computed gen-

erator set will achieve the deletion. In the second step, a translation is cho-

sen (e.g., Professor.t1). This can be done either by communicating with the

user [Kel86b], or by a system automatic choice. How to choose the best

translation [Kel85, WRMar] is an orthogonal problem and thus not further

discussed here. The chosen update is memorized in ∆. That is, a new tuple

(Professor, t1) is inserted into the delete differential table ∆. Finally, a re-

store procedure for side effect eliminating purpose changes all ∆ tables to

recover view tuples that otherwise would be disappearing from the chosen

translation. The tuple Professor.t1 is first cloned into ∆Professor table with

cloneID =1 and linkID = t1. All tuples from the Teaching table, which join

with Professor.t1, are then cloned into ∆Teaching. Similarly, tuples from

the Course table, which join with the cloned Teaching table are also cloned

into ∆Course table. Finally, we delete the chosen generator tuple of the

to-be-deleted tuple from the local database DL.

The algorithm for insertion is very easy: we only need to insert tuples

into local database. These tuples will be treated as “new”, namely, without

any connection with the global database. The algorithm for modification

translation is first performs the deletion algorithm and then perform the

insertion algorithm.

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 137

1. Compute the generator into G:
Select P.ROWID, C.ROWID, T.ROWID
From Professor P, Course C, Teaching T
Where P.pid = T.pid and T.cname = C.cname and C.credit = 3

and P.pname = “David Finkel” and T.cname = “Math”;
2. Choose the translation:

Assuming Professor.t1 is chosen; generated cloneID = 1
3. Update ∆:

Insert into ∆ values (“Professor”, “t1”)
4. Update ∆:

Insert into ∆Professor Select “t1”, pid, pname, 1 From Generator;
Insert into ∆Teaching Select null, T.pid, T.cname, 1

From Generator G, Teaching T Where G.pid = T.pid;
Insert into ∆Course Select null, C.cid, C.cname, C.credit, 1

From ∆Teaching DT, Course C
Where DT.cloneID = 1 and DT.cname = C.cname;

Delete from ∆Course DC
Where DC.cid not in (Select cid from Generator)

Figure 5.10: Walk-through Algorithm 10 for u1

5.2.4 View Re-construction

By introducing the local database, the view now needs to be constructed

over both the data from the local and the public databases. Given a view

V defined by the view definition query Q over the public database DP =

{R1,...,Rn}. Let DL = {∆, ∆R1,...,∆Rn} denote the local database associ-

ated with the view V . We first compute the view tuples generated from the

“updated” public database, namely, QP (DP − ∆), where QP is a slightly

rewritten query of Q. For example, the first half of the query in Figure 5.11

(before UNION) is QP and used for this purpose. Second, the view tu-

ples generated from the local database DL need to be computed. This is

done by issuing a probe query QL similar to the view query over DL with

the following changes: (i) replace each public table Ri in Q with the corre-

sponding local table ∆Ri; (ii) add the cloneID join conditions. In our exam-

ple, the second portion of the query in Figure 5.11 (after UNION) is used

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 138

for this purpose. Finally, by union-ing the view tuples computed from the

public and those from the local database, we get the re-constructed view.

In other words, the updated view is now computed as: QP (DP − ∆) ∪

QL(∆R1,...,∆Rn).

Select P.pname as professor, C.cname as course, C.credit as credit
From Professor P, Course C, Teaching T
Where P.pid = T.pid and T.cname = C.cname

and P.ROWID not in (Select linkID From ∆ Where table=“Professor”)
and T.ROWID not in (Select linkID From ∆ Where table=“Teaching”)
and C.ROWID not in (Select linkID From ∆ Where table=“Course”)

UNION
Select DP.pname as professor, DC.cname as course, DC.credit as credit
From ∆Professor DP, ∆Course DC, ∆Teaching DT
Where DP.pid = DT.pid and DT.cname = DC.cname

and DP.cloneID = DT.cloneID and DT.cloneID = DC.cloneID

Figure 5.11: The rewritten view query Q′

5.2.5 Property of LoGo Basic

So far, we have only considered updating the view tuple generated from

the public database. However, given that the local database may not be

empty once we start updating through the view, a view tuple could be pro-

duced either from the public database DP or the local database of the view

DL. Observation 4 shows that according to the LoGo update translation

methodology, it is impossible for a view tuple to have a generator com-

posed of tuples from both the public and the local database (Observation 4).

Observation 4 Given a view V and a tuple t ∈ V . Let g(t) be the generator of t.

Then g(t) ∈ DP or g(t) ∈ DL, but not both.

Proof.

When the local database is empty (before any update over the view has ever

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 139

applied), all view tuples are generaged form the public database. We now

prove that the deletion, insertion and modification translations in LoGo

will all keep the observation hold.

Delete. Let two tuples ti, tj from g(t) satifies the condition ti.col1 =

tj .col2 in the view query. Let ti ∈ DL. Let us assume tj ∈ DP . Accord-

ing to Algorithm 10, tj will be cloned into the local database, since it has

joined with the tuple ti. This conflicts with our assumption of tj ∈ DP .

Therefore after any deletion, Observation 4 holds.

Insert. Since our translation never updates the public database, each

insert is translated into a sequence of insertions to the local database. The

newly inserted view tuple is generated from the local database, which is

essentially connected by the cloneID.

Modify. Given that we treat a modification as a deletion followed by an

insertion during translation. Observation 4 holds naturally. 2

However, it is critical to distinguish between the pure public database

generator and local database generator for the following reasons. First, in

typical applications, the local databases tend to be fairly small. Computing

the local-generator is rather quick. LoGo should only search the public

database – a more costly operation, if and only if a local-generator cannot

be found.

Different update translation algorithms must be developed for updat-

ing tuples generated from global or local database respectively. The view

tuple generated from the public database (with a public-generator) are up-

dated using algorithms in Section 5.2.3. View tuples with a local-generator

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 140

are updated using an algorithm similar to Algorithm 10 with only a simple

change: instead of memorizing the tuple to be deleted, the chosen transla-

tion is directly achieved by actually deleting from the local database.

professor course credit

David Finkel Physics 2

David Finkel Math 2

Tim Merrett Math 3

Tim Merrett Math 2

Figure 5.12: A relational view over the global relational database in Fig-
ure 5.2 and local database in Figure 5.6

As an example, consider the current local database as in Figure 5.6.

Let us assume the current view as in Figure 5.12, which is the result view

of deleting the first view tuple from Figure 5.3(b). Now the view tuples

(David Finkel, Physics, 2) and (David Finkel, Math, 2) are generated from

the local database, while view tuples (Tim Marrett, Math, 3) and (Tim Marett,

Math, 2) are generated from the public database. Now assuming a view

update u4 deletes the view tuple (David Finkel, Math, 2), which has a

local-generator {∆Professor(t1, p1, David Finkel, 1); ∆Teaching(null,p1,

Physics,1); ∆Course(null, c2, Physics, 2,1)}. Assume the chosen delete

translation is to delete from ∆Professor. That is, the tuple (t1, p1, David

Finkel, 1) is deleted from ∆Professor in the local database. The restore pro-

cedure now clones this tuple as (t1, p1, David Finkel, 2), with cloneID = 2.

The rest of the restore procedure is the same as that for the public-generator

case. The resulting local database is shown in Figure 5.13. As an optimiza-

tion step, we could also delete all tuples with cloneID = 1 from the local

database but do not contribute to the view tuple generation anymore. The

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 141

result local database will not only contain tuples with cloneID = 2.

∆

table linkID

Professor t1

∆Professor

linkID pid pname cloneID

t1 p1 David Finkel 2

∆Teaching

linkID pid cname cloneID

- p1 Physics 1

- p1 Math 1

- p1 Physics 2

- p1 Math 2

∆Course

linkID cid cname credit cloneID

- c2 Physics 2 1

- c3 Math 2 1

- c3 Math 2 2

Figure 5.13: The local database state after a deletion (u4)

Proposition 6 shows the correctness of Alforithm 10.

Proposition 6 Given a view V defined by a view query Q over the public database

DP and the local database DL. Let QP be the part of query Q querying against

DP , while QL be the part of Q querying over DL. Given a view deletion u, Algo-

rithm 10 achieves a side effect free translation.

Proof.

According to Observation 4, the view update u could be deleting a view

tuple t with either a public-gnerator or a local generator, but not both. We

thus need to prove that for both cases, Algorithm 10 will achieve the side

effect free translation. By side effect free, we need to show that when t

disappears from the view, no other existing view tuples t′ besides t would

be deleted from the view, no any new view tuples being inserted into the

view either. Namely, we should have V = Q(DP ,DL) = QP (DP - ∆) ∪

QL(DL).

Public-generator. Assuming the tuple Ri.tj is chosen to be deleted to achieve

the view deletion u. According to Algorithm 10, any view tuple, whose

5.2. LOGO-BASIC: UPDATING THROUGH VIEWS BY LOCALIZATION 142

public-generator never uses Ri.tj , will not be affected. Any view tuple with

a public-generator using tuple Ri.tj will be affected. These to-be-affected

view tuples cannot be formed from DP anymore since Ri.tj is removed

by performing QP (DP - ∆). Algorithm 10 clones all tuples ever connected

with Ri.tj through joins into the local database DL during the restore pro-

cedure. Thus all generators of these view tuples are now located in DL.

Among these to-be-affected tuples, (1) t will not appear anymore since

its generator is removed from DL by the last step of the algorithm; (2) Let

t′ ∈ V be an existing view tuple (to-be-affected), its generator is thus all

cloned into DL. t′ thus will not disappear from the view after the view

re-construction. (3) Assuming t′′ be a new view tuple appearing in the

view after the reconstruction. Then the generator of t′′ is located in DL

and satisfies all join conditions. Since that QL is a rewritten query of Q by

adding new join conditions between cloneID into the where clauses, QL is

thus “stricter” than Q in filtering and joining. Thus the generator for t′′ will

certainly satisfy all join condition of Q. This implies that t′′ indeed had been

already in the view before the update. This contradicts over assumption in

the proposition. Thus no new view tuple will appear in the view.

From the above cases, we now conclude that the proposition holds for

deleting a view tuple with a public generator.

Local-generator. The only difference between the public-generator and local-

generator is that we do not need to memorize the chosen update transla-

tion. Instead, we directly delete from the corresponding relation in the local

database. The rest of the proof for the public generator above will still hold.

2

5.3. LOCAL-TO-GLOBAL DATABASE MERGING 143

5.3 Local-to-Global Database Merging

Update localization (Section 5.2) prevents user views from affecting each

other. It allows each user to work on their own local database, whenever

they so desire. Once the user is satisfied with changing and preparing their

private/customized local data, they might want to publish some or all of

their data to share it with the other users. This is achieved by merging the

local database explicitly into the global (public) database.

5.3.1 Data Merging Service

We divide the data in the local database into two categories: (i) ∆ and tu-

ples in ∆Ri produced by the restore procedure of the deletion processing

and (ii) new tuples in ∆Ri produced by the insertion processing. This clas-

sification can be easily identified by searching the insertion mark “I” in

the tid column of each local table, which indicates that the tuple belongs

to the insertion instead of the deletion data restore procedure. For exam-

ple, assume the user wants to merge the local database in Figure 5.8 into

the public database. Category (ii) includes all tuples in ∆Ri whose tids are

indicated as “I”, while the remaining tuples fall into category (i).

Tuples in category (i) will be merged into the public database. First, all

tuples indicated by ∆ will be removed. We call this public database purg-

ing. For instance, the first tuple of the Professor relation with “tid = t1” in

the public database will be removed during the public database purging

5.3. LOCAL-TO-GLOBAL DATABASE MERGING 144

time. Then, all tuples in ∆Ri, which have been linked with the just purged

tuple in ∆ will be inserted into the public database, namely, local database

purging. LoGo will automatically produce new tids for each purged tuple,

which participate joins in the view reconstruction time (discussed in Sec-

tion 5.3.2). The tid is generated by combining the cloneID of the tuple and

assign a new tuple id in each clone. For deletion, tid = “D” + cloneID + “-” +

tupleID. For our example, the local database purging is achieved by insert-

ing tuples from the local database, which are identified by the query below,

into the global database. Assuming the public database as in Figure 5.2,

SELECT DP.ROWID, DC.ROWID, DT.ROWID
FROM ∆Professor DP, ∆Course DC, ∆Teaching DT
WHERE DP.pid = DT.pid AND DP.cloneID = DT.cloneID

AND DT.cname = DC.cname AND DT.cloneID = DC.cloneID
AND DP.linkID = t1

after merging the local database (Figure 5.6) into the global database, the

global database state is shown in Figure 5.15. The sequence of updates used

for this merging are shown in Figure 5.14.

DELETE FROM Professor P WHERE P.tid = t1
INSERT INTO Professor VALUES (D1-t1 , p1, David Finkel)
INSERT INTO Course VALUES (D1-t1 , c2, Physics, 2)
INSERT INTO Course VALUES (D1-t2 , c3, Math, 2)
INSERT INTO Teaching VALUES (D1-t1 , p1, Physics)
INSERT INTO Teaching VALUES (D1-t2 , p1, Math)

Figure 5.14: SQL updates used to update the global database in the merging
procedure

Tuples in category (ii) will be merged into the public database similarly

with newly generated tids. For insertion, tid = “I” + tcloneID. For exam-

ple, assuming the public database as in Figure 5.2, after merging the local

5.3. LOCAL-TO-GLOBAL DATABASE MERGING 145

Professor

tid pid pname

t2 p2 Tim Merrett

D1-t1 p1 David Finkel

Course

tid cid cname credit

t1 c1 Math 3

t2 c2 Physics 2

t3 c3 Math 2

D1-t1 c2 Physics 2

D1-t2 c3 Math 2

Teaching

tid pid cname

t1 p1 Math

t2 p1 Physics

t3 p2 Math

D1-t1 p1 Physics

D1-t2 p1 Math

Figure 5.15: The global database after merging the local database in Fig-
ure 5.6

database (Figure 5.8) into the global database, the global database state is

shown in Figure 5.16.

Professor

tid pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

I-t1 PI1 Peter Griffen

Course

tid cid cname credit

t1 c1 Math 3

t2 c2 Physics 2

t3 c3 Math 2

I-t1 PI1 English 3

Teaching

tid pid cname

t1 p1 Math

t2 p1 Physics

t3 p2 Math

I-t1 PI1 English

Figure 5.16: The global database after merging the local database in Fig-
ure 5.8

5.3.2 View Re-construction

We now describe the changes needed after the local-to-global merging, so

that the view definer in Figure 5.1 can extract the virtual view content. Note

that the procedure we described below corresponds to the general view

reconstruction, namely, not necessarily to be the view just performed the

local-to-global merging, which have an empty local database.

Let DP denote the original tuples in the public database (tid = ti). Let

D∆P denote the tuples newly inserted tuples in the public database by a

merging procedure, thus tid ∈ {Iti, Dti, Mti}). Let ∆ and DL denote the ∆

and ∆R tables in the local database of the view. Then the view content is

5.4. PUBLIC-TO-LOCAL DATABASE SYNCHRONIZATION 146

computed by: V = QP (DP - ∆) ∪Q∆P (D∆P) ∪QL(DL). In other words, the

view content is computed from three parts. The first part, denoted by Q(DP

- ∆), is the original view query over the original public database, which

now has some tuples removed according to the local database. The second

part, denoted by Q∆P (D∆P), corresponds to the rewritten view query exe-

cuted over the public delta data (coming from merging). The latter could

only be empty if we never performed a view merging procedure before.

Here Q∆P denotes the rewritten query with each Join condition being as-

sociated with an extra cloneID Join, which is achieved by the function get-

CloneID(tid). For example, Q∆P query for Q (Figure 5.3) is shown in Fig-

ure 5.17. The third part, denoted by QL(DL), corresponds to the rewritten

view query executed over the local delta tables. The latter tables would not

be empty if we ever performed any update through the view which has not

yet been pushed public (merged with the public database). Here QP and

QL are the same as in Section 5.2.4 (e.g., Figure 5.11).

SELECT P.pname AS professor, C.cname AS course,
C.credit AS credit

FROM Professor P, Course C, Teaching T
WHERE P.pid = T.pid AND getCloneID(P.tid) = getCloneID(T.tid)

AND T.cname = C.cname AND getCloneID(T.tid) = getCloneID(C.tid)

Figure 5.17: Q∆P : view query for D∆P

5.4 Public-to-Local Database Synchronization

If the view is truly virtual (without any data captured in the associated lo-

cal database), the updates affecting the base data are naturally reflected by

5.4. PUBLIC-TO-LOCAL DATABASE SYNCHRONIZATION 147

the view as well. We call this the default refresh. LoGo naturally permits this

default refresh. However, when the user view updates have been accumu-

lated over time in the local database, we may want to synchronize with the

public database at some point. Reasons for this include the following. First,

a database administrator can modify the database directly. Such an update

would be public, thus possibly affecting all user views. Therefore, the local

database needs to be synchronized. Second, since a user (called subject view

user) can merge her locally collected data residing in the local database into

the public database (Section 5.3), this implies that the updates to the pub-

lic database should then be public, namely, other user views (called object

views) should be aware of these changes and synchronize with them.

Now data in the public database can be either original or collected from

the merging procedure, given that we enable the local-to-global database

merging. Now updates over the public database could be requested either

indirectly due to data merging or directly by the database administrator.

The delta data (D∆P) generated due to the merging procedure of a sub-

ject view has never been shared with other views (objective views). Thus

these data are automatically refreshed to these objective views. When an

update happens to the data from the original table, since this part of the

data is shared by other views, the synchronizer will force to refresh the

local databases of the object views to reflect the update.

First, if any deletion operation of the original data matches the tuple

deletion memorized in a local ∆ table, this deletion operation should be

propagated to the local database by eliminating the memorized deletion.

The matching tuple in ∆ table should thus be deleted. For other tuples

5.4. PUBLIC-TO-LOCAL DATABASE SYNCHRONIZATION 148

“linked” to it (through linkID in the same cloneID transaction), we could

either leave them untouched or eliminate them to save space. The former

will leave dangling tuples and thus waste the space over time. The latter,

however, is more space efficient. We call it synchronization purging.

Let’s use an example to illustrate synchronization purging. Assume an-

other view V 2 identical to the view in Figure 5.3 has the same local database

state as in Figure 5.8 at a certain point of time. Now after we have merged

the local database associated with V 1 in Figure 5.3 (subject view) into the

global database (Figure 5.15) using a sequence of SQL updates (Figure 5.14),

we can synchronize the local database of V 2 (object view). The first deletion

in Figure 5.14 matches the first memorized deletion in the ∆ table of V 2.

Thus this tuple can be removed from ∆. Meanwhile, all tuples linked with

this just removed ∆ tuple will also be eliminated from the local database.

On the other hand, if the deletion from an original table does not match

any ∆ tuple in the local database, no synchronization is forced. The refresh

will be automatically achieved whenever we re-construct the view by exe-

cuting the view query over the public database, that is, by the traditional

view mechanism.

Similarly, an insertion to the public database carries the semantics in our

context that the inserted tuple has never been visible to other views before.

This is guaranteed due to our merging strategy of treating inserted tuples

as completely new, each with a new tid. Such insertion thus never needs to

be propagated to the other local databases. The view re-construction will

also automatically reflect this change. In our example, after the global-to-

local synchronization, the local database of V 2 is now empty.

5.4. PUBLIC-TO-LOCAL DATABASE SYNCHRONIZATION 149

professor course credit

David Finkel Physics 2

David Finkel Math 2

Tim Merrett Math 3

Tim Merrett Math 2

Figure 5.18: The view V 2 after synchronization

By providing services for merging and synchronizing, we now encounter

a new view update translation scenario as below. A synchronized view,

such as V 2, can again be updated. Sometimes this update will be trans-

lated into updating the delta data in the public database. Certainly we

could use the LoGo basic approach by simply treating D∆P as the origi-

nal public database. The only difference here is that we query over Q∆P

instead of QP to identify tuples which have been linked together through

Joins, and then propagate them into the local database. For example, as-

suming that we have an update specified over the refreshed view V 2 in

Figure 5.18: delete from V 2 where professor=‘‘David Finkel’’ and

course=‘‘Math’’ and credit=2. First, we search DP and do not find the

generator. We then search D∆P and identify the generator (Professor.D1-t1,

Teaching.D1-t1, Course.D1-t1). Assume we choose to delete Professor.D1-

t1 to achieve the view update. Then the local database after the update

translation is shown in Figure 5.19.

5.5. LOGO-XML: UPDATING XML VIEWS THROUGH LOCALIZATION 150

∆

table linkID

Professor D1-t1

∆Professor

linkID pid pname cloneID

D1-t1 p1 David Finkel 4

∆Teaching

linkID pid cname cloneID

- p1 Physics 4

∆Course

linkID cid cname credit cloneID

- c2 Physics 2 4

Figure 5.19: The local database state of V 2 after refresh

5.5 LoGo-XML: Updating XML Views Through Local-

ization

As described in Section 2.6, an XML view over a relational database can be

considered as a combination of a set of relational views [WRMar]. Thus we

map the XML view updating problem into a set of relational view updat-

ing problems. This mapping provides us the opportunity of extending the

LoGo basic approach to also cover the XML scenario as we will describe in

this section.

5.5.1 Running Example

Let us consider the following relational database (Figure 5.20). For illustra-

tion purpose, we add two tables, Student and Enrollment, into the global

relational database in Figure 5.2.

We use an XML view (Figure 5.21) defined over this extended global

database as our example. The view annotated schema graph of this XML

view is shown in Figure 5.22(a). Figure 5.22(b) shows the SQL query corre-

sponding to each schema node.

5.5. LOGO-XML: UPDATING XML VIEWS THROUGH LOCALIZATION 151

Professor

tid pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

Course

tid cid cname credit

t1 c1 Math 3

t2 c2 Physics 2

t3 c3 Math 2

Teaching

tid pid cname

t1 p1 Math

t2 p1 Physics

t3 p2 Math

Students

tid sid sname

t1 s1 Chun Zhang

t2 s2 Mike Fisher

t3 s3 Feng Lee

Enrollment

tid sid cid

t1 s1 c1

t1 s1 c2

t2 s2 c2

t3 s3 c3

Figure 5.20: Additional tables added into the global database in Figure 5.2

5.5.2 Update Translation and Data Sharing

Given that we map the XML view updating problem into the relational

view updating problem, the proposed LoGo-basic approach can now be

used to support updates on elements of each schema node. This naturally

leads us to the very first naive extension for solving the XML view updat-

ing problem, namely, we treat each schema node separately as a relational

view and apply the LoGo basic approach to it. Since LoGo-basic will guar-

antee the property of update localization, namely, no other relational views

(map to other schema nodes) will be affected, then the view side effect free

property is naturally guaranteed.

However, this simple solution requires a local database for each XML

schema node. This would lead to a major data explosion problem. In fact, it

is possible to share data between XML schema nodes. The view hierarchy

essentially implies the data sharing. The question we now must address

is how best to design the update translation since each node (mapped to

a relational view) is now sharing certain portions of the data with other

5.5. LOGO-XML: UPDATING XML VIEWS THROUGH LOCALIZATION 152

FOR $c IN DOCUMENT(Course/ROW),
$t IN DOCUMENT(Teaching/ROW)
$p IN DOCUMENT(Professor/ROW)

WHERE $c/cname = $t/cname AND $p/pid = $t/pid RETURN
<ClassInfo>

<Course>$c/cname/text(), $c/credit/text()</Course>,
<Professor>$p/pname/text()</Professor>,

FOR $s IN DOCUMENT(Student/ROW)
$e IN DOCUMENT(Enrollment/ROW)

WHERE $s/sid = $e.sid AND $e/cid = $c/cid
RETURN

<Student>$s/sname/text()</Student>
</ClassInfo>

(a) View query

CI1 <ClassInfo>

CI1.C1 <Course>Math, 3</Course>

CI1.P1 <Professor>David Finkel</Professor>
CI1.S1 <Student>Chun Zhang</Student>

</ClassInfo>

CI2 <ClassInfo>

CI2.C1 <Course>Physics, 2</Course>

CI2.P1 <Professor>David Finkel</Professor>
CI2.S1 <Student>Mike Fisher</Student>
CI2.S2 <Student>Feng Lee</Student>

</ClassInfo>

CI3 <ClassInfo>

CI3.C1 <Course>Math, 2</Course>

CI3.P1 <Professor>David Finkel</Professor>
CI3.S1 <Student>Feng Lee</Student>

</ClassInfo>

CI4 <ClassInfo>

CI4.C1 <Course>Math, 3</Course>

CI4.P1 <Professor>Tim Merrett</Professor>
CI4.S1 <Student>Chun Zhang</Student>

</ClassInfo>

CI5 <ClassInfo>

CI5.C1 <Course>Math, 2</Course>

CI5.P1 <Professor>Tim Merrett</Professor>
CI5.S1 <Student>Feng Lee</Student>

</ClassInfo>

(b) XML view

Figure 5.21: The XML view (b) defined by the view query (a)

nodes (other relational views).

5.5. LOGO-XML: UPDATING XML VIEWS THROUGH LOCALIZATION 153

View

ClassInfo

Course Student

cname

Professor

sname

*

*

pnamecredit

CI: Select *
From Professor P, Course C, Teaching T
Where P.pid=T.pid and T.cname = C.cname

C : Same as CI node
P : Same as CI node
S : Select *

From Professor P, Course C, Teaching T, Student S, Enrollment E
Where P.pid=T.pid and T.cname = C.cname

and E.cid = C.cid and S.sid = E.sid

Figure 5.22: The schema graph for the view in Figure 5.21

Deletion. Let v be the schema node to be updated by a view update u.

Let G(v) be the schema level generator of v (relations referenced by the

mapping of the relational view query of v, defined in Section 3.2.3). Let vp

be the parent schema node of v. Then the local database of v consists of

the following: (i)
−
∆ and (ii) ∆Ri where Ri ∈ G(v) − G(vp). This implies

that v shares ∆Ri (Ri ∈ G(vp)) with its parent vp, although ∆Ri is not

necessarily in the local database of vp (it might be in vp’s ancester nodes’

local databases).

Assume a view update u6, expressed as:

(delete; view/ClassInfo[Course=‘‘Math, 3’’ and Professor=‘‘David

Finkel’’]). Update u6 deletes CI1 from the view. Let us assume that we

choose to delete from the Professor relation. The local database of the CI-

node is the same as in Figure 5.6. The local database state of S-node remains

unaffected by this update translation.

Now consider another view update u7 to delete CI4.S1. The local database

of S-node is shown in Figure 5.23, if we choose to delete from the Student

relation. Here the translation will only write the local database of S-node,

while leaving the local database of CI-node unaffected.

5.5. LOGO-XML: UPDATING XML VIEWS THROUGH LOCALIZATION 154

−

∆

table linkID

Student t1

∆Student

linkID sid sname cloneID

t1 s1 Chung Zhang 1

∆Enrollment

linkID sid cid cloneID

null s1 c1 1

Figure 5.23: The local database state of S-node after u2

−

∆

table linkID

Student t1

∆Student

linkID sid sname cloneID

t1 s1 Chung Zhang 1

t1 SI1 Peter Griffen 2

∆Enrollment

linkiD sid cid cloneID

null s1 c1 1

null SI1 c1 2

Figure 5.24: The local database state of S-node after u3

Note that here we always choose to update the non-shared data. It is

also possible to update the shared data. However, by doing that, we break

the sharing property between the parent and child node. The shared data

now needs to be cloned in both local databases, which essentially is not

shared anymore.

Insertion. Insertion is also handled similarly to the LoGo-Basic approach.

But again, we insert only into the local database without touching the shared

data. For example, consider the insertion of a new student element into CI4.

This update is expressed as:

u8 = (Insert; View/ClassInfo[Course=‘‘Math, 3’’ and Professor=‘‘David

Finkel’’]; <Student>Peter Griffen< /Student>). The updated local

database of S-node is shown in Figure 5.24.

5.6. EVALUATION 155

The data sharing we proposed here is maximal data sharing. The reason

is that if there is another relation R which can be shared between a parent

and a child node, then R ∈G(v)∩G(vp), which has already been included

by our sharing policy.

5.6 Evaluation

We have conducted experiments to address the performance impact of LoGo.

The test system used is a dual Intel(R) Pentium-III 1GHz processor, 1G

memory, running SuSe Linux and Oracle 10g. The relational database is

built using TPC-H benchmark [TPC].

5.6.1 Performance of Relational View Updating

CREATE VIEW EV1{

SELECT *

FROM region R, nation N, customer C, orders O, lineitem L

WHERE N.N_REGIONKEY = R.R_REGIONKEY AND C.C_NATIONKEY = N.N_NATIONKEY

AND O.O_CUSTKEY = C.C_CUSTKEY AND L.L_ORDERKEY = O.O_ORDERKEY};

Figure 5.25: Relational view for evaluation

Figure 5.25 shows the relational view used in our experimental study.

A deletion over the view EV1 is to delete a single tuple. An insertion is to

insert a new tuple into the view.

Update Performance. Deleting a view tuple can be achieved by deleting

any tuple in the generator. For example, deleting from the Region relation

can achieve the deletion, while deleting from Lineitem can also achieve a

5.6. EVALUATION 156

view tuple deletion. Similarly, deleting from the Customer, Orders or Na-

tion tables can all achieve the view tuple deletion. Figure 5.26 shows the

performance difference among these candidate translations. Deleting from

the Lineitem table is the cheapest one since it will not cause any view side

effect, thus no any data propagation to the local database is needed. We

refer to this translation as LoGo-best in the rest of the section. Deleting from

the Region is very expensive (referred as LoGo-worst later on), since it will

cause side effects by making all view tuples from that region disappear.

To eliminate the side effect, generators of all these to-be-disappeared view

tuples are propagated and preserved in the local database to restore these

view tuples. Figure 5.27 also shows that the local database space required

for deleting from the Region relation is much larger than other translations.

0

20

40

60

80

100

120

140

160

10M 250M 500M 750M 1G

Data size

Time(s)

Del-LineItem Del-Order

Del_Cust Del-Region

Figure 5.26: Performance among different delete translations

Figure 5.28 shows the performance of a single deletion and insertion.

Insertion takes very little time, given that it only visits the local database.

The latter usually is very small. Even the best translation of deletion (LoGo-

best) is much more expensive compared with insertion.

5.6. EVALUATION 157

DataSize Orig-DB Del-Lineitem Del-Order Del-Cust Del-Region

10M 12.4M 0.383M 0.383M 0.383M 0.383

250M 284.1M 0.383M 0.383M 0.383M 24.4

500M 574.1M 0.383M 0.383M 0.383M 47

750M 855.1M 0.383M 0.383M 0.383M 71.1

1G 1100M 0.383M 0.383M 0.383M 100.2

Figure 5.27: Space increasing caused by update localization

0

50

100

150

200

10M 250M 500M 750M 1G

Data Size

Time(s)

Insert

Delete-Best

Delete-worst

Figure 5.28: The performance of a single view update

Figure 5.29 shows an analysis of each update translation. For deletion,

the system always computes the generator of the to-be-deleted tuple, in

order to even identify any candidate translation. Here we assume that the

cost of making choice among these translations is negligible. This is a major

portion of time spending for translating a view deletion. Actually, the real

update cost is actually very cheap for delete-best, which is comparable to

the insertion time.

Figure 5.30 shows that the performance gains when the public database

includes indices.

5.6. EVALUATION 158

0
42.04 42.04

136.415

0.105

0.095

0

50

100

150

200

Insert Delete-best Delete-worst

Update type

Time(s)

Update

computeGen

Figure 5.29: Time spreading for each update (public DBsize = 1G)

0.02
8.62

42.04
29.715

40.295

136.415

103.74

0.120.090.17
0.0950.105

0

20

40

60

80

100

120

140

160

Insert Comp-Gen Del-LineItem Del-Order Del_Cust Del-Region

Translation

Time(s)

Index No-Index

Figure 5.30: Performance of index during update translation (public DBsize
= 1G)

Performance of view construction. Figure 5.31 shows the cost of comput-

ing the view content. The initial view computation time refers to the cost

of extracting the view content, when no local database has ever been used.

LoGo view computation time includes commutating the view content from

both the local database and the public database. The best case of LoGo al-

5.6. EVALUATION 159

lows view updating by only memorizing the translation in ∆ without prop-

agating any extra data into ∆ tables to cancel-out side effects. The perfor-

mance of LoGo-best is even comparable to the original view construction

time. However, the worst case will increase the local database size, thus it

takes more time to re-compute the view content. Figure 5.32 also shows an

analysis of the time spent on querying the public and the local databases

respectively.

0

500

1000

1500

2000

2500

3000

1M 5M 10M 15M 20M

Data Size

Time(s)

Initial View

DHUX-Worst

DHUX-Best

Figure 5.31: Performance of view construction

Performance of merging and synchronization. Figure 5.33 shows the per-

formance of the merge and synchronize services. Here we assume that the

system always select the best translation for deletion, namely, it always

delete from the Lineitem table. This assumption implies that all ∆ tables

include only tuples from insertion translation, while deletion translation

only writes into the ∆ table. We compare the performance of merging a lo-

cal database constructed due to deletions only and another local database

5.6. EVALUATION 160

1585.55 1596.18
1275.8

0 0.1 633.5

0

500

1000

1500

2000

2500

Original DHUX-Best DHUX-Worst

View

Time(s)

Global Local

Figure 5.32: Time spreading for view construction (public DBsize = 15M)

from the same number of insertions only. The deletion merging is always

cheaper than the insertion merging, since that the insertion merging in-

volves adding new tuples into the public database in addition to the local

operations.

Synchronizing is very efficient as shown in Figure 5.33. The reason is

that (i) the local database is usually small if we always choose the best trans-

lation for deletion translation and (ii) newly inserted data is not forced to

be synchronized rather it would be automatically refreshed when execut-

ing the rewritten view query by a further user request.

5.6.2 Performance of XML view updating

Figure 5.35 depicts the structure (schema) of an XML view constructed by

nesting through the foreign key (Figure 5.34).

There are two extreme sharing policies for XML view update transla-

tion, namely, no-sharing or maximally sharing. Without any sharing, the

5.6. EVALUATION 161

0

2

4

6

8

10

1000 2500 5000 7500 10000 12500

#Update

Time(s)

Delete-Dump

Insert-Dump

Refresh

Figure 5.33: Performance of merging and synchronization

<View>

FOR $r IN DOCUMENT(Region/ROW)

RETURN

<Region>

$r.R_regionkey,

FOR $n IN DOCUMENT(Nation/ROW)

WHERE $n/regionkey = $r.R_regionkey

RETURN

<Nation>

$n.N_nationkey,

FOR $c IN DOCUMENT(Customer/ROW)

WHERE $c/nationkey = $n.nationkey

RETURN

<Customer>

$c.C_customerkey,

FOR $o IN DOCUMENT(Order/ROW)

WHERE $c.C_customerkey = $o.customerkey

RETURN

<Order>

$o.O_orderkey,

FOR $li IN DOCUMENT(Order/ROW)

WHERE $o.O_orderkey = $li.orderkey

RETURN

<Lineitem> $li/Li_lineitemkey </Lineitem>

</Order>

</Customer>

</Nation>

</Region>

</View>

Figure 5.34: The XML view for LoGo-XML performance study

5.6. EVALUATION 162

View

Region

Nation

Customer

Orders

*

*

LineItem

*

*

*

R.regionkey=N.regionkey

N.nationkey=C.nationkey

C.customerkey=N.customerkey

O.orderkey=LI.orderkey

Figure 5.35: The schema graph for LoGo-XML view in Figure 5.34

data explosion in the local database is significant as shown in Figure 5.36.

This is because side effects appearing on any node will also cause side ef-

fects on its children (if any). Side effects need to be eliminated by propagat-

ing to the local database of a parent node as well as to its children nodes.

This causes data republication. Maximal data sharing will reduce the size

of the local database significantly, as shown in Figure 5.36.

XML View Local Database Space

0

0.2

0.4

0.6

0.8

1

1.2

1.4

No-Share Share

sharing strategy

DB size
(MB)

R-node RN-node

RNC-Node RNCO-node

RNCOL-node

Figure 5.36: Space performance of updating XML views (public DBsize =
1G)

163

Chapter 6

O-HUX: XML View Updating

Handling with Order

6.1 Introduction

When the view is in XML, the problem of updating through the view be-

comes more complex. In particular, compared to the non-ordered flat rela-

tional data model, XML is an ordered hierarchical data model. Correspond-

ingly, XQuery can be order sensitive. However, despite the fact that order

is an essential aspect of XML, it is not well addressed by the database com-

munity. That is, all previous XML view updating work [BDH04, CLL02,

WRMar] assumes a non-ordered semantic.

In this chapter, we focus on the order specific issues of updating XML

views defined over a relational database, namely, handling cases when both

the XML view as well as the XML update query are order sensitive. We now

6.2. BACKGROUND 164

consider two XML views to be equal if and only if they include not only the

same view content, but also the same order among the elements.

We classify the order syntax in the XML view into different categories,

according to their potential effects on the view updating problem. We de-

sign a set of rules for each category, which are used for identifying potential

update translations.

Our contributions include: (1) We are the first to study updating order-

sensitive XML views, to the best of our knowledge. (2) We extend clean

source theory to order sensitive semantics. (3) Based on the order-sensitive

clean source theory, we develop the O-HUX algorithm that guarantees view

side effect free semantics while considering most of the XQuery order con-

structs. (4) Our O-HUX algorithm relies largely on SQL, and hence can be

easily adopted by relational database systems to support order-sensitive

view updating.

6.2 Background

6.2.1 Order in XML

Order comes in various forms. Generally speaking, an ordered data model

and the order-based functionality present in standard query language are

key ingredients that contribute to order.

First of all, XML is an ordered data model. An XML document repre-

sents a tree structure; a pre-order traversal of this tree representation indi-

cates the document order. However, if we consider the default mapping of

the relational database as a canonical XML view, it does not have implicit

6.2. BACKGROUND 165

document order. The reason is that the relational data model is not ordered.

A view definition using a standard query language, such as XQuery, can

overwrite the implicit document order (if any) using explicit query order.

Such explicit query order can be specified using the following constructs.

• Order-based axes in XPath. XPath includes following-sibling and fol-

lowing axes as well as their backward counterparts. These axes are

called the order-based axes. Order-based axes in XPath only “expose”

the existing order, but never overwrite it.

• Order By clauses. Using Order By in XQuery will produce new orders

by overwriting the existing order.

• Position and Range function. Position and range functions can be used

to select certain parts of the elements from the previous query result.

For example, an XPath query to select the third book is: /book[3];

XPath to find all books after the fourth one /book [position() >

4].

• Relative order functions. XQuery standard defines two order functions

in XPath, namely, first() and last(). We call the ordered XPath using

these functions as relative order functions. For example, an XPath query

to select the second last book is: /book[last()-1].

• Order expression. Some expressions using position and range func-

tions will also generate ordered result. For example,

/book[position() mod 2 = 0] exposes all elements at all even num-

bered positions.

6.2. BACKGROUND 166

XML query result reflects both the implicit document order (if any) and

the explicit query order in an interleaved manner. Also, when the doc-

ument is not ordered, such as the relational database considered in this

paper, the XML query result might only be partially ordered. Namely, only

part of the view result maybe ordered by the explicit order specified in the

query, while others remain with non-ordered semantics.

6.2.2 Running Example

Professor

pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

Key:{pid}

Course

cid cname pid

t1 c1 Math p1

t2 c2 Physics p1

t3 c3 English p2

t4 c4 Biology p1

t5 c5 Chemistry p1

t6 c6 Spanish p2

Key={cid}

Figure 6.1: An example relational database

Let us consider the following relational database (Figure 6.1) as a run-

ning example to illustrate the order sensitive XML view updating problem.

An XML view (Figure 6.2) can be defined using order constructs introduced

above, as shown in Figure 6.3. In our view updating scenario, as the view is

defined over the relational database, the order-based axes would never be

used. We will refer to any expression that uses position, range, or relative

order functions as order filter. Thus, the order constructs we addressed

include OrderBy and order filters.

We use the update syntax from [TIHW01] to specify an update opera-

6.2. BACKGROUND 167

<ClassInfo>

<Professor>David Finkel</Professor>
<CourseSecond>Physics</CourseSecond>

<CourseMore>Math</CourseMore>

<CourseMore>Physics</CourseMore>

<CourseMore>Biology</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>Tim Merrett</Professor>
<CourseSecond>Spanish</CourseSecond>

<CourseMore>English</CourseMore>

<CourseMore>Spanish</CourseMore>

</ClassInfo>

Figure 6.2: XML view ClassView

FOR $p IN DOCUMENT(Professor/ROW)
ORDER BY $p.pid
RETURN

<ClassInfo>

<Professor> $p/pname/text() </Professor>,
FOR $c IN DOCUMENT(Course/ROW)
WHERE $p.pid = $c.pid
ORDER BY $c.cid
RETURN

FOR $c1 IN $c[2]
RETURN

<CourseSecond> $c1/cname/text() </CourseSecond>,
FOR $c2 IN $c[1 to 3]
RETURN

<CourseMore> $c2/cname/text()</CourseMore>

</ClassInfo>

Figure 6.3: View query for ClassView

tion (insert, delete or replacement) over the view. An update may or may

not specify order syntax. An example update query (that does not specify

order) is shown below in Figure 6.4.

6.3. ORDER-SENSITIVE CLEAN SOURCE THEORY 168

FOR $ci IN DOCUMENT(View.xml)/ClassInfo,
$cm = $ci/ClassMore

Where $cm /text() = “Physics”
Update $ci{

Delete $cm}

Figure 6.4: An update over XML view in Fig. 4.1

6.3 Order-sensitive Clean Source Theory

The clean source theory, proposed in [DB82], has been widely used to solve

the relational view update problem [CWW00, BKT01]. It is further ex-

tended in [WR04] (Chapter 3) into the clean extended source theory to serve as

a theoretical foundation for solving the XML view update problem. It de-

termines whether a given translation mapping is correct for the XML view

update problem. In order to handle order semantics, we now first extend

the key concepts shown in Figure 6.5. We then form our order-sensitive clean

source theory.

e A view element

g(e) The generator of e

s The source of e

extend(s) The extended source of s

Figure 6.5: Key concepts of the clean extended source theory

As introduced in Section 2.6, we consider an XML view as the combi-

nation of a set of relational views. In other words, elements in each XML

schema node are considered to be generated by issuing an SQL query to

the relational database. This in turn defines the mapping relational view of

the given schema node. For example, the annotated schema graph (ASG)

for the view in Fig. 6.2 is depicted in Fig. 6.6. We use the abbreviation CIi

6.3. ORDER-SENSITIVE CLEAN SOURCE THEORY 169

to represent the i-th ClassInfo element.

ClassInfo

Professor CourseSecond

text()text()

Root

CourseMore

text()

CI: SELECT * FROM Professor

P: Same as CI

CS: SELECT A2.cname FROM Q2 AS A2 WHERE A2.pos = 2,

CM: SELECT A2.cname FROM Q2 AS A2

WHERE A2.pos >= 1 and A2.pos <= 3

For CS and CM, Q2 is defined as following:

Q2 = SELECT A1.cname, row_number() OVER

(partition by A1.pid order by A1.cid) pos

FROM Q1 AS A1

Q1 = SELECT * FROM Professor P, Course C

WHERE P.pid = C.pid

Figure 6.6: XML view schema graph and its SQL mapping

Let R1, R2, ..., Rn be the set of relations referenced by the SQL query

Q of a given view ASG node v. Informally a view element e’s generator

g(e) is {R∗1 , R∗2 , ..., R∗n}, where R∗i ⊆ Ri (i = 1..n) contains exactly those

tuples in Ri that are used to derive e. The formal definition can be bound

in Section 3.2. For example, the generator of the ClassInfo element CI1 in

Fig. 6.2(b) is g(CI1) = {Professor.t1}.

We now propose the following extension to the generator definition. If

Q specifies order constructs (the order construct can be OrderBy or order

filter), then we first remove all the order constructs and compute e’s gen-

6.3. ORDER-SENSITIVE CLEAN SOURCE THEORY 170

erator as mentioned above. We refer to each R∗i as a non-ordered trace

of e. Further, if Q specifies an order construct over Ri, then we define an

ordered trace
o

R∗i to include all tuples in Ri that participate in the order

computation. For example, the non-ordered traces of the CourseSecond el-

ement CI1.CS1 is R∗1 = {Professor.t1}, R∗2 = {Course.t2}. The only ordered

trace is
o

R∗2 = {Course.t1, Course.t2, Course.t4, Course.t5}. That includes all

tuples from the Course relation which participate in the order computation

(Order By $c.cid).

We now define the concept of source, which determines the existence

of e in the view. Each non-ordered trace R∗i is also a non-ordered source

of the view element. Computing an ordered source from an ordered trace
o

R∗i is more complex, and will be discussed in Section 6.4.3. Intuitively,

an ordered source satisfies the property that updating this source will not

cause any side-effects on the relational mapping views due to the position

change of the view elements.

For example, consider the view element CI1.CS1 discussed above. Its

relational mapping view is shown in Figure 6.6. The two non-ordered

sources are: s1={Professor.t1} and s2={Course.t2}. This element also has an

ordered trace
o

R∗2 =
o

Course∗ = {Course.t1, Course.t2, Course.t4, Course.t5}.

An ordered source for this element (as will be discussed in Section 6.4.3)

is
o
s2 = {Course.t2, Course.t4, Course.t5}. Note that if we do not delete

Course.t4 and Course.t5 while deleting CI1.CS1, then it will cause view

side-effects: another Course will appear as the CourseSecond element as

side effects in the XML view, as well as in its mapping relational view.

Clean source theory [DB82, WR04] (Section 3.2) says that an update

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 171

translation is correct if it deletes or inserts a clean source of the view el-

ement. We now extend the concept of clean source as: a clean source is an

(ordered or non-ordered) source of an element used only by this particular

element and no other one. Intuitively, this means that the update operation

only affects the “private space” of a given view element and thus will not

cause any view side effect. The clean source theory becomes order-sensitive

by utilizing the order specific concepts as mentioned above.

Determining whether a source is a clean source is quite straight for-

ward. For instance, one could compare the view before and after the up-

date, that is, deleting or inserting the source, as done in [Rys01]. Opti-

mizations for this step have been studied in [BKT01, CWW00], as well as

our previous work [WRMar] (Chapter 4). We will not focus on this issue.

Instead, we will only focus on how to find the ordered sources from or-

dered traces (Section 6.4). We identify ordered sources by only considering

whether deleting or inserting it will cause side effects on the mapping re-

lational view of the schema node. To identify whether an ordered source

is clean, side effect checking on the ancestor and descendent schema nodes

are required, which essentially are the same as we described in Chapter 4

or in the literature [BKT01, CWW00].

6.4 O-HUX: XML View Update Handling With Order

Based on the order-sensitive clean source theory stated in Section 6.3, we

now introduce the general framework named O-HUX for XML view up-

date handling with order (reads right to left).

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 172

6.4.1 O-HUX Algorithm

The detailed algorithm of O-HUX is shown in Algorithm 11. O-HUX takes

the order-sensitive view definition query Q and the update over the view

u as input. It then generates the first correct SQL translation it identifies.

Algorithm 11 O-HUX: Order-sensitive XML view updating
Input:
V : XML view defined by XQuery DEFV

u: The update over the XML view to delete/insert an element e

Output: U : The sequence of SQL updates

/* Step 1: Update transformation */
Compute the ASG GV of V

Identify the update type type

Identify the schema node v in GV to be updated by u

/* convert non-ordered into ordered update (Section 6.4.2)*/
u′ = ConvertNonOrderToOrderUpdate(u)

/* Step 2: Computing the sources */
Compute the non-ordered and ordered traces of e

Compute the set of non-ordered sources NOS of e

Compute the set of ordered sources OS of e using rules from Sec-
tion 6.4.3

/* Step 3: Identifying clean sources */
/* Identify the first clean source from non-ordered sources */
for all Source si ∈ NOS do

boolean sideEffectFree = CheckSideEffect(si, GV)
if sideEffectFree then

U = GenerateSQLUpdates(si, type)
RETURN U

end if
end for
/* Identify the first clean source from ordered sources */
for all Source si ∈ OS do

boolean sideEffectFree = CheckSideEffect(si, GV)
if sideEffectFree then

U = GenerateSQLUpdates(si, type)
RETURN U

end if
end for

There are three steps in O-HUX. The first step transforms a non-ordered

view update u into an ordered update u′. This step is needed because the

update statement u might not specify the position of the element to be up-

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 173

dated. For instance, update in Figure 6.4 does not specify the position of

the CourseMore element to be updated, while the XML view definition (Fig-

ure 6.3) extract view content based on the order information. This position

is needed to compute the ordered traces in the next step, also as described

in Section 6.4.2.

In the second step, O-HUX computes the non-ordered and ordered traces

of the to be inserted or deleted view element e. Further, it identifies non-

ordered and ordered sources of e. Section 6.4.3 shows how to compute the

ordered sources.

In the third step, O-HUX identifies the clean sources (if any). Once a

clean source is identified, the corresponding SQL update will be generated;

otherwise, the view update is rejected. Our algorithm favors non-ordered

sources over ordered sources, as non-ordered sources tend to touch less

data in order to achieve the given view update.

6.4.2 From Non-ordered to Ordered View Updates

As mentioned in Section 6.4.1, we need to transform the non-ordered view

update into ordered update. For instance, consider the update in Figure 6.4,

we will first issue a probe query to identify the position of the CourseMore

element to be deleted. This probe query can be obtained by combining the

SQL query of CM node with the update statement. This is given by: SELECT

A2.pos FROM Q2 AS A2 WHERE A2.cname = ‘‘Physics’’, where Q2 is de-

fined by the SQL mapping of CM node in Figure 6.6. The query result shows

that “Physics” is the first course before order-filter $c[1 to 3] is applied.

Therefore we get the ordered update statement as in Figure 6.7.

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 174

FOR $ci IN DOCUMENT(View.xml)/ClassInfo,
$cm/CourseMore[1]

UPDATE $ci{
DELETE $cm }

Figure 6.7: Converted ordered update for update in Figure 6.4

6.4.3 Identification of the Ordered Sources

Consider a view element e, whose corresponding SQL query Q references

relations R1, R2, ..., Rn. Q can specify different order constructs on each Ri

(Section 6.2.1). Computing the ordered sources from the ordered trace R∗i

depends on the order constructs specified on Ri, as discussed below.

(1) Ordered traces with only OrderBy clauses. This is the case when only

OrderBy clauses are specified on Ri in SQL query Q, namely, there are no

order filters. In our example view (Figure 6.2), if we omit the order fil-

ter [1 to 3] specified on the CourseMore element, the ordered trace from

the Course relation, denoted by Course∗, is defined only using OrderBy

clauses (OrderBy cid).

Definition 16 Given an XML view element e computed by the SQL query Q.

Assume Q specifies only OrderBy on Ri. The non-ordered source si is also the

ordered source
o
si.

As described in Section 6.3, an ordered source needs to satisfy the prop-

erty that updating this source will not cause any side-effects due to the po-

sition change of the view elements. Apparently, change the order among

view element using Order By clauses will not change the update behavior.

Namely, no side effects will appear just because the position change.

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 175

For example, consider the CourseMore node without the order filter

[1 to 3] as mentioned earlier. An element CI1.CM1 has an ordered trace
o

Course∗ = {Course.t1, Course.t2, Course.t4, Course.t5}. A non-ordered

source of this element CI1.CM1 is Course.t1. Therefore, from Definition 16,

we obtain an ordered source of CI1.CM1 as {Course.t1}.

(2) Ordered traces with order filter using only one range. Consider an

order filter with one single range, namely, of the form [position()=k] or [po-

sition() = m to n] specified on Ri in SQL query Q 1. In our running example

in Figure 6.2, both CS and CM elements are defined using an order filter on

the Course relation with a single range.

Intuitively, if we want to delete the view element derived from the tuple

at position k in the ordered trace
o

R∗i , we need to delete not only the tuple at

position k, but also everyone after the end of the range (i.e., after position

n).

Definition 17 Consider deleting an XML view element e computed by the SQL

query Q. Assume Q specifies an order filter on Ri as [m to n]. Let a non-ordered

source si =
o

R∗i [k], m ≤ k ≤ n, that is si has position k in the ordered trace. An

ordered source
o
si is defined as

o

R∗i [k] ∪
o

R∗i [position() > n].

Let us now consider an example of deleting a CM element, say the course

Math (CI1.CM1) taught by professor David Finkel. An ordered source is

given by {Course.t1; Course.t5}. As another example, consider the view

update to be deleting the CourseSecond element (CI1.CS1). An ordered

source for this delete is { Course.t2, Course.t4, Course.t5 }.
1Note that [position()=k] is equal to [position() = k to k]

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 176

Definition 18 Consider inserting view element e, where Q is the same as in

Rule 17. Also Q specifies an order filter on Ri as [m to n]. Let the non-ordered

source si =
o

R∗i [k], m ≤ k ≤ n, that is it has position k in the ordered trace. If
o

R∗i [n] = ∅, an ordered source is defined as
o

R∗i [k]; otherwise no ordered source

exists for e.

Definition 18 follows the same intuition as the non-ordered source def-

inition for deletion (Definition 17). If an element already exists in the view

that is derived from
o

R∗i [n], then this view element will disappear after

insertion (view side effect caused by position change). Thus there is no

ordered source exists and we should reject this view insertion.

As an example, assuming an insertion to insert “History” as a new

CourseMore element of professor Tim Merrett. We will insert Course tu-

ple (c31, History, p2). We consider c31 > c3 in lexicographic order.

As another example, consider inserting a new course Music as the first

course for professor David Finkel. This update will always cause view side

effect, as it will cause the course Biology to disappear from the view. Here,

Rule 18 will say that there is no ordered source for this insertion.

(3) Ordered traces with order filter using multiple ranges. Consider an or-

der filter with multiple ranges defined by [r1, r2,...,rn] (multiple positions)

specified on Ri. For example, consider the view in Fig. 6.8. The view query

is slightly modified from the view query in Fig. 6.2 by replacing the binding

of c2 with $c[1,3,5].

Let us consider deleting the CourseMore element Math (CI1.CM1) from

this view. This view element can be deleted by deleting Course.t1 and

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 177

FOR $p IN DOCUMENT(Professor/ROW)
ORDER BY $p.pid
RETURN

<ClassInfo>

<Professor> $p/pname/text() </Professor>,
FOR $c IN DOCUMENT(Course/ROW)
WHERE $p.pid = $c.pid
ORDER BY $c.cid
RETURN

FOR $c2 IN $c[1,3,5]
RETURN

<CourseMore> $c2/cname/text()</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>David Finkel</Professor>
<CourseMore>Math</CourseMore>

<CourseMore>Biology</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>Tim Merrett</Professor>
<CourseMore>English</CourseMore>

</ClassInfo>

Figure 6.8: View query for ClassView

Course.t2. The intuition behind such a deletion is as follows: We need to

maintain the successor-predecessor “distance” even after the deletion (this

distance was always 1 in the previous case, and hence can naturally be

maintained).

Definition 19 Consider deleting an XML view element e computed by the SQL

query Q. Assume Q specifies an order filter as multiple ranges on Ri as [r1, r2, . . . , rn].

Let dj denote rj+1 − rj , 1 ≤ j ≤ n− 1. Let a non-ordered source be si =
o

R∗i [rk],

where 1 ≤ k ≤ n. The ordered source for deleting e is defined as follows.

• Case-Dec: if dk+j > dk+j+1 (distances between ranges decreases), for 1 ≤

j ≤ n− k − 2, then no ordered source exists for e.

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 178

• Case-Inc: otherwise, the ordered source consists of elements of R∗i from the

following three sets of positions: (1) elements at positions rk to rk+1− 1, (2)

elements at positions rk+j+1 + 1 to rk+j+1 + dk+j+2 − dk+j+1, 1 ≤ j ≤

n− k − 2, and (3) elements at positions after rn.

For example, consider the view defined in Figure 6.9, which is a slightly

modification for our motivating view which is a slightly modified view

query from Fig. 6.2 by replacing the binding of c2 with $c[1,3,4].

Let us consider deleting the CourseMore element Math (CI1.CM1) from

this view. This view element cannot be achieved without causing any

view side effects on CourseMore node. We need to maintain the successor-

predecessor “distance” even after the deletion (this distance was now de-

creasing now and hence cannot be maintained).

Consider the following example (Figure 6.10) for Case-inc. Let us con-

sider deleting the CourseMore element Math (CI1.CM1) from this view. This

view element can be deleted by deleting Course.t1 and Course.t3. The

intuition behind such a deletion is as follows: We need to maintain the

successor-predecessor “distance” even after the deletion. This distance is

increasing, and hence can be maintained by removing those increased part.

In our example, we need to remove c[3] to keep the distance to 1. We also

need to remove all courses after c[4], if there is any.

The definition for insertion is similar to that of deletion as described

below.

Definition 20 Consider inserting element e, where Q, dj and si are as defined in

Rule 19 above. The ordered source for inserting e is defined as follows:

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 179

FOR $p IN DOCUMENT(Professor/ROW)
ORDER BY $p.pid
RETURN

<ClassInfo>

<Professor> $p/pname/text() </Professor>,
FOR $c IN DOCUMENT(Course/ROW)
WHERE $p.pid = $c.pid
ORDER BY $c.cid
RETURN

FOR $c2 IN $c[1, 3, 4]
RETURN

<CourseMore> $c2/cname/text()</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>David Finkel</Professor>
<CourseMore>Math</CourseMore>

<CourseMore>Biology</CourseMore>

<CourseMore>Chemistry</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>Tim Merrett</Professor>
<CourseMore>English</CourseMore>

</ClassInfo>

Figure 6.9: View query for ClassView

• if
o

R∗i [rn] 6= ∅, then there is no ordered source.

• If Case-Dec (as defined in Definition 19) holds, then there is no ordered

source.

• Case-Inc (as defined in Rule 19): otherwise, the ordered source consists of
o

R∗i [rk], as well as dummy tuples inserted into the following positions (1)

positions rk +1 to rk+1−1, (2) elements at positions rk+j+1+1 to rk+j+1+

dk+j+2 − dk+j+1, 1 ≤ j ≤ n− k − 2.

(4) Ordered traces with general order filter expression. Consider an order

filter with order filter expression, such as [position() mod d = n] (evenly dis-

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 180

FOR $p IN DOCUMENT(Professor/ROW)
ORDER BY $p.pid
RETURN

<ClassInfo>

<Professor> $p/pname/text() </Professor>,
FOR $c IN DOCUMENT(Course/ROW)
WHERE $p.pid = $c.pid
ORDER BY $c.cid
RETURN

FOR $c2 IN $c[1, 2, 4]
RETURN

<CourseMore> $c2/cname/text()</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>David Finkel</Professor>
<CourseMore>Math</CourseMore>

<CourseMore>Physics</CourseMore>

<CourseMore>Chemistry</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>Tim Merrett</Professor>
<CourseMore>English</CourseMore>

<CourseMore>Spanish</CourseMore>

</ClassInfo>

Figure 6.10: View query for ClassView

tributed, but infinite). For example, the view in Fig. 6.11 choose all courses

at odd position.

Definition 21 Consider deleting an XML view element e computed by the SQL

query Q. Assume Q specifies an order filter on Ri as [position() mod d = n]. Let a

non-ordered source si =
o

R∗i [k], where k mod d = n. The ordered source consists

of tuples in
o

R∗i from position k to k + d− 1.

For example, consider deleting the CourseMore element Math (CI1.CM1)

from this view. This view element can be deleted by deleting Course.t1 and

Course.t2.

6.4. O-HUX: XML VIEW UPDATE HANDLING WITH ORDER 181

FOR $p IN DOCUMENT(Professor/ROW)
ORDER BY $p.pid
RETURN

<ClassInfo>

<Professor> $p/pname/text() </Professor>,
FOR $c IN DOCUMENT(Course/ROW)
WHERE $p.pid = $c.pid
ORDER BY $c.cid
RETURN

FOR $c2 IN $c[position() mod 2 = 1]
RETURN

<CourseMore> $c2/cname/text()</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>David Finkel</Professor>
<CourseMore>Math</CourseMore>

<CourseMore>Biology</CourseMore>

</ClassInfo>

<ClassInfo>

<Professor>Tim Merrett</Professor>
<CourseMore>English</CourseMore>

</ClassInfo>

Figure 6.11: View query for ClassView

Definition 22 Let e and Q be the same as in Rule 21. Also Q specifies an order

filter on Ri as [position () mod d = n]. Let the non-ordered source si =
o

R∗i [k],

where k mod d = n. The ordered source consists of si and a set of dummy tuples

from position k + 1 to k + d− 1.

(5) Ordered traces with relative order functions.

Order filter with relative order function first() can always be converted

into an absolute order function, since first() will always return the fixed

number 1. For example, $c[position() = first()] can be converted into

$c[1].

On the other hand, relative order function last() cannot be converted

6.5. RELATED WORK 182

into an absolute order function, since last() is evaluated as different number

for different instances. However, views in this case can always be consid-

ered as symmetric to the corresponding case with first(). For example, the

view element e defined by [position()=last()-k] on
o

R∗i can be deleted

by deleting tuples from position 1 to [last() - k]. Other categories can

be derived similarly.

6.5 Related Work

A lot of effort has been put into building XQuery engines in research [CKS+00,

SKS+01, FKS+02, MFK01b, PB02, DT03] and in commercial database sys-

tems [BKKM00, CX00, Rys01]. Order as a key issue in XML query process-

ing has not been addressed adequately so far.

To the best of our knowledge, however order as a key issue specific to

the XML data model has not yet been addressed by any of those research

projects nor by any of the commercial systems.

[TVB+02] assessed order issue in the XML querying processing context.

[TVB+02] proposed three order encoding methods to represent XML order in

the relational data model and an algorithm for translating ordered XPath

expressions into SQL using these encoding methods. The performance of

the ordered-encoding methods on a workload of ordered XML queries are

also presented. However, the proposed algorithm is dependent on and spe-

cific to the loading and encoding strategy used in building the relational

database. That is, (1) the knowledge of loading and encoding is required

by the translation algorithm (2) different loading and encoding strategy re-

6.5. RELATED WORK 183

quire different translation algorithm. In addition, not only the translation

strategies proposed, but also the performance studies described, mainly

concentrate on the correctness and efficiency of XPATH translation and

evaluation. The complexity of handling the order-sensitive XQuery nested

structure is not addressed.

The Agora system [MFK01a], which stores XML in relational tables, is

one of the few systems that provides support for handling order-sensitive

XQuery expressions. XQuery queries are first normalized, then translated

and rewritten into SQL queries to be executed over the relational tables.

However, this solution is limited to XQuery queries that semantically match

SQL and can successfully be translated and rewritten into SQL. Such sup-

ported category of queries handling order is an expensive process where

an XQuery is translated into many SQL queries requiring several passes

and materializing of intermediate XML results. [SKS+01] introduces mech-

anisms to publish relational data as XML documents using an extension to

SQL. The use of a sorted outer union approach is proposed to retrieve the

relational data needed for constructing XML documents when the result-

ing XML document does not fit into main memory. However, this approach

performs unnecessary additional work to support user-defined ordering as

it produces total ordering even when only partial ordering is needed. Tim-

ber [JAKC+02], a native XML data management system, has the ability to

deal with order in query processing. However to preserve order, sorting

for some of the intermediate results appears to be required during execu-

tion [JAKC+02]. The order handling strategy in Timber is built on top of

the node start-end-level labeling described above. Hence, it suffers from

6.5. RELATED WORK 184

the disadvantages described above.

185

Chapter 7

Conclusions of This

Dissertation

In many database applications views play an important role as a means

to structure information with respect to specific users’ needs. Views also

provide the support for logical data independence. With XML [W3C98]

becoming the standard for interchanging data between web applications,

XML views are commonly used by many applications. Update operations

are essential for applications using XML views, especially in dynamic en-

vironments.

In this dissertation work, we provide scalable solutions to support up-

dating through XML views defined over the relational databases. We clas-

sify the view updating problem into different semantics. We have mainly

focused on two particular semantics, namely, the update-public semantic

and the update-local semantic, given their popularity, importance and gen-

CHAPTER 7. CONCLUSIONS OF THIS DISSERTATION 186

erality. We have provided a novel schema-centric approach for XML view

updating under the update-public semantic as well as a local-to-global ser-

vice framework for XML view updating under the update-local semantic.

The conclusions of this dissertation work are listed below.

In part I, we extend the concept of a “clean source” for relational databases

[DB82] into the concept of a “clean extended-source” suitable for XML. We

propose the clean extended-source theory for determining whether a cor-

rect view update translation exists. We prove the correctness of our clean

extended source theory, which then serves as a theoretical foundation for

XML view updating problem under various update semantics.

In part II, we design practical algorithms to determine whether a given

update over the XML view is indeed translatable under the update-public

semantic. We propose a schema-centric approach named HUX. HUX first

bridges the XML and relational view update problem by treating the XML

view as a “composition” of a set of relational views. Existing solutions from

the relational scenario are thus applicable. HUX then addresses the hierar-

chical model property of the XML view updating problem by considering

the relationship among the mapping relational views.

HUX is a schema-centric solution given that it utilizes the schema of

the underlying source to effectively prune updates that are guaranteed to

be not translatable and pass updates that are guaranteed to be translatable

directly to the SQL engine. Only those updates that could not be classified

using schema knowledge are finally analyzed by examining the data. This

required data-level check is further optimized under schema guidance to

prune the search space for finding a correct translation. We have imple-

CHAPTER 7. CONCLUSIONS OF THIS DISSERTATION 187

mented the algorithms, along with respective optimization techniques in

HUX. We also report experiments assessing its performance benefit and

usefulness in practical scenarios.

In Part III, we propose a practical framework, called LoGo, that pro-

vides flexible view updating services under update-local semantic. LoGo

localizes the view update translation, while preserves the properties of

view updates being side-effect free and being always updatable.

LoGo supports on-demand merging of the local database of the sub-

ject view into the public database (also called global database), while still

guaranteeing the subject view being free of side effects. A flexible synchro-

nization service is provided in LoGo that enables all other views defined

over the same public database to be refreshed, i.e., synchronized with the

publically committed changes, if so desired. Experimental results confirm

the effectiveness of the proposed services, and highlight its performance

characteristics.

In Part IV, we consider the XML view updating problem under order-

sensitive semantic. We propose the O-HUX approach to classify the order

syntax in the XML view definition into different categories. For each cate-

gory, we design a set of rules that identify order-sensitive candidate update

translations. We are the first to study updating order-sensitive XML views,

to the best of our knowledge. We extend clean source theory to order sen-

sitive semantics. Based on the order-sensitive clean source theory, we de-

velop the O-HUX algorithm that guarantees view side effect free semantics

while considering most of the XQuery order constructs.

188

Chapter 8

Ideas for Future Work

8.1 Condition-based Set Updates

So far all our discussion focuses on the single element updates. In the fu-

ture, we would like to consider condition-based set updates, which means

updating a set of elements that satisfy certain conditions. For example, the

user can delete all students enrolled in the “Math” class.

Intuitively, we can treat a condition-based deletion as a “composition”

of single view element deletions. The schema-level decision on updating a

set of elements of v can stay the same as updating single element of v. For

example , if deleting a single element of v is translatable based-on schema-

level knowledge, then deleting a set of elements satisfying certain condition

is also translatable.

However, this is an aggressive solution. It sometimes rejects updates,

which otherwise may be translatable. For example, consider the view in

Figure 8.2, which is defined over the relational database in Figure 8.1. Con-

8.1. CONDITION-BASED SET UPDATES 189

sider a deletion removing a single view tuple, e.g., delete from V1 where

professor= David Finkel and course = Math and credit = 3. This deletion is

not translatable under the update-public semantic.

Professor

tid pid pname

t1 p1 David Finkel

t2 p2 Tim Merrett

Course

tid cid cname credit

t1 c1 Math 3

t2 c2 Physics 2

t3 c3 Math 2

Teaching

tid pid cname

t1 p1 Math

t2 p1 Physics

t3 p2 Math

Figure 8.1: The example relational database

CREATE VIEW V1 AS {

SELECT P.pname AS professor,

C.cname AS course,

C.credit AS credit

FROM Professor P, Course C,

Teaching T

WHERE P.pid = T.pid

AND T.cname = C.cname}

(a)

professor course credit

David Finkel Math 3

David Finkel Physics 2

David Finkel Math 2

Tim Merrett Math 3

Tim Merrett Math 2

(b)

Figure 8.2: A relational view (b) defined by the view query (a) over the
relational database in Figure 8.1

Now consider three deletions, which removes the first, the second and

the third tuples from the view V1 in Figure 8.2 respectively. None of these

single tuple deletions is translatable. However, the condition-based dele-

tion “Deleting from V1 where professor = David Finkel” can be easily achieved

by deleting the professor David Finkel from the Professor relation. Thus

by considering the condition-based deletion simply as a composition of a

sequence of single element deletions, we are aggressively rejecting some

translatable updates.

A better way of achieving the condition based update would be to per-

form an analysis on the view side effects, which are collected by decompos-

ing the condition-based update into a sequence of single element deletions.

8.2. UPDATING XML VIEWS PUBLISHED OVER XML DOCUMENTS 190

If side effects only appear on elements to be deleted by the condition-based

deletion, then it will be canceled out internally. We thus should conclude

that the condition-based update is translatable.

This checking can be done to some degree based on the schema knowl-

edge, as done in the relational scenario [DB82]. It can also be performed

by examining the actual data through an exhaustive search in the relational

scenario [CWW00]. In the XML scenario, the problem needs to be further

considered to fully explore the extra schema information that can be gath-

ered from the XML hierarchy.

8.2 Updating XML Views Published over XML Docu-

ments

Given an XML view over XML data, the problem of how to check the up-

datability of the view elements and further give the correct and efficient

translation of this view update still remains unsolved.

Due to the similarity of this problem to the relational view problem,

many concepts and previous studies can be reused for this XML view up-

date problem. However, because of the hierarchical structure of XML and

expressive query statements, there are some situations that cannot be han-

dled by former solutions.

Let us consider the XML document with its schema as in Figure 8.3.

We also present the schema tree of this XML document in Figure 8.4. Note

the base schema element course is recursive, as a course may require some

other courses as pre-requisite courses. In Figure 8.4, an arrow starts and

8.2. UPDATING XML VIEWS PUBLISHED OVER XML DOCUMENTS 191

ends at course to denote that it is recursive.

<!DocType root[
<!Element root(institute*)>
<!Element institute (name, department+)>
<!Element department (name, professor+,

course+)>
<!Element professor(name, student*)>
<!Element student(name)>
<!Element course(name, course*)>
<!Element name(#PCDATA)>]>

<root>
<institute>

<name> WPI </name>
<department>

<name> CS</name>
<professor>

<name> Henry </name>
<student>

<name>John </name>
</student>

<student>
<name> Joe </name>

</student>
</professor>
<course>

<name> Database</name>
<course>

<name> algorithm </name>
</course>

</course>
</department>

</institute>
</root>

Figure 8.3: XML document D with Schema(D)

Consider two queries over D, as shown in Figure 8.5 and 8.6. In Fig-

ure 8.5, (a)is the XQuery statement which defines the view. (b) is the view

schema tree that corresponds to the XQuery. (c)is the view instance tree

generated by the XQuery and XML document D. The same goes with Fig-

ure 8.6. Note in Figure 8.6(a), course1 and course2 correspond to the same

view schema node, we use subscript to differentiate them.

A user may want to delete student1 in Figure 8.5(c). We can try to delete

student1 in D. This update exactly performs the view update and is a cor-

rect translation. However, let us consider how to translate if the user wants

to delete course1 in Figure 8.6(c). If we delete course1 in D, this update

would cause course2 and its descendants to be removed in Figure 8.6(c).

Therefore, it is not a correct translation.

8.2. UPDATING XML VIEWS PUBLISHED OVER XML DOCUMENTS 192

root

institute

name
department

name
professor

course

student
name

name
name

*

+

+
+

*

*

Figure 8.4: XML Schema tree

Intuitively, for the above example, the recursion of the underlying XML

database makes the problems harder. XML schema contains cardinality in-

formation indicating the number of a certain kind of elements. Also XML

query languages are more expressive. For example, “//” in XPath binds

the variable to different elements that may appear at different locations of

the XML document. Such elements could be ancestor-descendant relation-

ships. For instance, course1 and course2 in Figure 8.3 bind to $course in

Figure 8.6(a). Side-effects due to these features in XML should be consid-

ered.

Besides the recursion, the order issue also becomes complicated in this

scenario, since the order-based axes in XPath introduced in Section 6.2.1

will now be used in the view query. This in turn may affect the clean ex-

tended source theory, as well as the practical approach of handling updates.

8.2. UPDATING XML VIEWS PUBLISHED OVER XML DOCUMENTS 193

<result>

FOR $dept IN

$prof IN $dept//professor

RETURN <professor>

$prof/name,

FOR $student IN $prof/student

RETURN <student>

$student/name

</student>

</professor>

</result>

result

professor

$prof /name

student

$student/name

*

result

professor

Henry student1 student2

John Joe

*

(a) view query

(b) view schema tree STView

(c) view instance tree

Document(“base.xml”)//department,

Figure 8.5: Query Q1 and corresponding view

<result>

FOR $course IN Document(“base.xml”) //course

RETURN <course>

$course/name

</course>

</result>

result

course

course/name

result

course1 course2

database

*

algorithm(c) view instance tree

(a) view query

(b) view schema tree STView

(c)

Figure 8.6: Query Q2 and corresponding view

8.3. ADDITIONAL THOUGHTS 194

8.3 Additional Thoughts

Transaction based XML view updating. So far, we only considered a sin-

gle update translation. Updates of different types over the same view can

be grouped together into one transaction. New issues related to update

translatability may arise. This may lead to new update semantics.

Update Interpretation. In this dissertation, we chose the most straight-

forward (and natural) way to interpret the behavior of a given update on

the XML views. For example, to delete an element of the XML view is

interpreted as deleting the whole document sub-tree, which is rooted at

the to-be-deleted element. However, in some scenario, this deletion may

need to be interpreted differently, such as to just delete the element tag.

Especially, in cases when we can move an XML view element inside the

XML view. The new way of interpreting the update behavior then would

also need to be addressed. This may lead to the design of new update

translation strategies.

195

Bibliography

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations
of databases. In Addison Weseley, page 293, 1995.

[BDH03] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A.
Heuser. On the Updatability of XML Views over Relational
Databases. In WEBDB, pages 31–36, 2003.

[BDH04] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A.
Heuser. From XML view updates to relational view updates:
old solutions to a new problem. In VLDB, pages 276–287, 2004.

[BDHar] Vanessa Braganholo, Susan Davidson, and Carlos A. Heuser.
PATAXO: a framework to allow updates through XML views.
In TODS, 2006 to appear.

[BKKM00] Sandeepan Banerjee, Vishu Krishnamurthy, Muralidhar Krish-
naprasad, and Ravi Murthy. Oracle8i - The XML Enabled Data
Management System. In ICDE, pages 561–568, 2000.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why
and where: A characterization of data provenance. In ICDT,
2001.

[Bry90] Francois Bry. Intensional Updates: Abduction via Deduction.
In Proceedings of the seventh international conference on logic pro-
gramming, 1990.

[BS81] F. Bancilhon and N. Spyratos. Update Semantics of Relational
Views. In ACM Transactions on Database Systems, pages 557–575,
Dec 1981.

BIBLIOGRAPHY 196

[BSKW91] Thierry Barsalou, Niki Siambela, Arthur M. Keller, and Gio
Wiederhold. Updating Relational Databases through Object-
Based Views. In SIGMOD, pages 248–257, 1991.

[CA81] C. R. Carlson and A. K. Arora. The Updatability of Rela-
tional Views based on Functional Dependencies. In COMP-
SAC, pages 415–420, 1981.

[CKN03] Surajit Chaudhuri, Raghav Kaushik, and Jeffrey F. Naughton.
On Relational Support for XML Publishing: Beyond Sorting
and Tagging. In SIGMOD, 2003.

[CKS+00] Michael Carey, Jerry Kiernan, Jayavel Shanmugasundaram,
Eugene Shekita, and Subbu Subramanian. XPERANTO: Mid-
dleware for Publishing Object-Relational Data as XML Docu-
ments. In The VLDB Journal, pages 646–648, 2000.

[CLL02] Ya Bing Chen, Tok Wang Ling, and Mong-Li Lee. Designing
Valid XML Views. In ER, pages 463–478, 2002.

[CP84] Stavros S. Cosmadakis and Christos H. Papadimitriou. Up-
dates of Relational Views. Journal of the Association for Comput-
ing Machinery, pages 742–760, Oct 1984.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wienner. Trac-
ing the lineage of view data in a warehousing environment.
In ACM Transactions on Database Systems, volume 25(2), pages
179–227, June 2000.

[CX00] Josephine M. Cheng and Jane Xu. XML and DB2. In ICDE,
pages 569–573, 2000.

[DB82] Umeshwar Dayal and Philip A. Bernstein. On the Correct
Translation of Update Operations on Relational Views. In ACM
Transactions on Database Systems, volume 7(3), pages 381–416,
Sept 1982.

[dbX] dbXML. dbXML Core. http://www.dbxml.org.

[DD99] Florescu Daniela and Kossmann Donald. Storing and Query-
ing XML Data Using an RDBMS. IEEE Data Engineering Bul-
letin, 22(3):27–34, 1999.

BIBLIOGRAPHY 197

[Dec90] Hendrik Decker. Drawing Updates from Derivations. In ICDT,
1990.

[DT03] Alin Deutsch and Val Tannen. MARS: A System for Publishing
XML from Mixed and Redundant Storage. In VLDB, 2003.

[DTCO03] Davis Dehaan, David Toman, Mariano P. Consens, and
M. Tamer Ozsu. A Comprehensive XQuery to SQL Translation
using Dynamic Interval Encoding. In SIGMOD, 2003.

[eXc] eXcelon. eXcelon XML platform.
http://www.exceloncorp.com/platform/extinfserver.shtml.

[FE01] Leonidas Fegaras and Ramez Elmasri. Query Engines for Web
Accessible XML Data. In VLDB, 2001.

[FHK+02] Thorsten Fiebig1, Sven Helmer2, Carl-Christian Kanne3,
Guido Moerkotte2, Julia Neumann2, Robert Schiele2, and Till
Westmann. Natix: A Technology Overview. In Proc. Web, Web-
Services, and Database Systems, NODe 2002 Web and Database-
Related Workshops, 2002, 2002.

[FK99] Daniela Florescu and Donald Kossmann. Storing and Query-
ing XML Data Using an RDBMS. In Bulletin of the Technical
Committee on Data Engineering, pages 27–34, September 1999.

[FKS+02] Mary Fernandez, Yana Kadiyska, Dan Suciu, Atsuyuki Mor-
ishima, and Wang-Chiew Tan. SilkRoute: A Framework for
Publishing Relational Data in XML. ACM Transactions on
Database Systems, 27(4):438–493, 2002.

[FMST01] Mary F. Fernandez, Atsuyuki Morishima, Dan Suciu, and
Wang Chiew Tan. Publishing Relational Data in XML: the
SilkRoute Approach. IEEE Data Engineering Bulletin, 24(2):12–
19, 2001.

[FUV83] Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the
Semantics of Updates in Databases. In SIGMOD, pages 352–
365, 1983.

[GMW99] Roy Goldman, Jason McHugh, and Jennifer Widom. From
Semistructured Data to XML: Migrating the Lore Data Model
and Query Language. In WebDB (Informal Proceedings), pages
25–30, 1999.

BIBLIOGRAPHY 198

[Heg90] Stephen J. Hegner. Foundation of Canonical Update Support
for Closed Database Views. In ICDT, 1990.

[HGP] Human Genome Project. http://www.ornl.gov/sci/techresources
/HumanGenome/home.shtml.

[JAKC+02] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks
V. S. Lakshmanan, Andrew Nierman, Stelios Paparizos, Jig-
nesh M. Patel, Divesh Srivastava, NuweeWi watwattana,
Yuqing Wu, and Cong Yu. Timber: A native xml database. In
VLDB, 2002.

[JMN83] Kioumars Yazdanian Jean-Marie Nicolas. An Outline of BD-
GEN: a Deductive DBMS. In R.E.A. Mason, editor, Proceedings of
IFIP 83, pages 711–717, 1983.

[KCKN03] Rajasekar Krishnamurthy, Venkatesan T. Chakaravarthy,
Raghav Kaushik, and Jeffrey F. Naughton. Recursive XML
Schemas, Recursive XML Queries and Relational Storage:
XML-to-SQL Query Translation. In ICDE, 2003.

[Kel85] Arthur M. Keller. Algorithms for Translating View Updates to
Database Updates for View Involving Selections, Projections
and Joins. In Fourth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 154–163, 1985.

[Kel86a] Arthur M. Keller. Choosing a View Update Translator by Dia-
log at View Definition Time. In VLDB, pages 467–474, 1986.

[Kel86b] Arthur M. Keller. The Role of Semantics in Translating View
Updates. IEEE Transactions on Computers, 19(1):63–73, 1986.

[Kel87] Arthur. M. Keller. Comments on Bancilhon and Spyratos’ ”Up-
date Semantics and Relational Views”. ACM Transactions on
Database Systems, 12(3):521–523, 1987.

[KKN02] Rajasekar Krishnamurthy, Raghav Kaushik, and Jeffrey F.
Naughton. Optimizing Fixed-Schema XML to SQL Query
Translation. In VLDB, 2002.

[KM90] Antonis C. Kakas and Paolo Mancarella. Database Updates
Through Abduction. In VLDB, 1990.

BIBLIOGRAPHY 199

[KM00] Meike Klettke and Holger Meyer. XML and Object-Relational
Database Systems - Enhancing Structural Mappings Based on
Statics. In WebDB, pages 151–170, 2000.

[LAW99] Tirthankar Lahiri, Serge Abiteboul, and Jennifer Widom.
Ozone: Integrating Structured and Semistructured Data. In
DBPL, 1999.

[LC00] Dongwon Lee and Wesley W. Chu. Constraints-Preserving
Transformation from XML Document Type Definition to Re-
lational Schema. In ER, pages 323–338, Oct 2000.

[LL92] Tok Wang Ling and Mong-Li Lee. A Theory for Entity-
Relationship View Updates. In ER, pages 262–279, 1992.

[LLS93] Dominique Laurent, Viet Phan Luong, and Nicolas Spyratos.
Updating Intensional Predicates in Deductive Databases. In
ICDE, 1993.

[Mas84] Yoshifumi Masunaga. A Relational Database View Update
Translation Mechanism. In VLDB, pages 309–320, 1984.

[May] Wolfgang May. Information Extraction and Integration with
Florid: The Mondial Case Study. http://www.informatik.uni-
freiburg.de/ may/Mondial/florid-mondial.html.

[MFK01a] Ioana Manolescu, Daniela Floresce, and Donald Kossmann.
Answering XML Queries on Heterogeneous Data Sources. In
VLDB, Roma, Italy, pages 241–250, Sept. 2001.

[MFK01b] Ioana Manolescu, Daniela Floresce, and Donald Kossmann.
Answering XML Queries over Heterogeneous Data Sources. In
VLDB, 2001.

[Mic01] Microsoft Inc. XML Query Language Demo.
http://131.107.228.20/xquerydemo/demo.aspx, April 2001.

[ML01] Pedro Joseeee Marroooon and Georg Lausen. On Processing
XML in LDAP. In VLDB, pages 601–610, 2001.

[PB02] Henry F. Korth PPS Narayan Pradeep Shenoy Philip Bohan-
non, Sumit Ganguly. Optimizing View Queries in ROLEX to
Support Navigable Result Trees. In VLDB, 2002.

BIBLIOGRAPHY 200

[Pro] Digital Bibliography Library Project. DBLP Computer Science
Bibliography. http://dblp.uni-trier.de/.

[Res] Protein Information Resource. Protein Sequence Database.
http://pir.georgetown.edu/.

[RN89] Francesca Rossi and Shamim A. Naqvi. Contributions to the
View Update Problem. In Proceedings of the Sixth International
Conference on Logic Programming, 1989.

[RP02] Kanda Runapongsa and Jignesh M. Patel. Storing and Query-
ing XML Data in ORDBMSs. In EDBT XML-Based Data Man-
agement (XMLDB) Workshop, 2002.

[Rys01] Michael Rys. Bringing the Internet to Your Database: Using
SQL Server 2000 and XML to Build Loosely-Coupled Systems.
In VLDB, pages 465–472, 2001.

[Sah02] Arnaud Sahuguet. Querying XML in the New Millennium.
http://kweelt.sourceforge.net, 2002.

[Sch00] Harald Schoning. Tamino - A DBMS designed for XML. In
ICDE, pages 149–154, 2000.

[Sco02] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Flo-
rescu, Jonathan Robie, and Jerome Simeon. XQuery 1.0: An
XML Query Language. http://www.w3.org/TR/xquery/,
August 2002.

[SKS+01] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita,
Catalina Fan, and John Funerburk. Querying XML Views of
Relational Data. In VLDB, 2001.

[ST00] Harald Schoning and J. Wasch. Tamino. Tamino - An Internet
Database System. In EDBT, pages 383–387, 2000.

[STH+99] Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun
Zhang, David DeWitt, and Jeffrey Naughton. Relational
Databases for Querying XML Documents: Limitations and Op-
portunities. In VLDB, pages 302–314, September 1999.

[SYU99] Takeyuki Shimura, Masatoshi Yoshikawa, and Shunsuke Ue-
mura. Storage and Retrieval of XML Documents Using Object-
Relational Databases. In DEXA, pages 206–217, 1999.

BIBLIOGRAPHY 201

[TA91] Riccardo Torlone and Paolo Atzeni. Updating Deductive
Databases with Functional Dependencies. In DOOD, 1991.

[TIHW01] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S.
Weld. Updating XML. In SIGMOD, pages 413–424, May 2001.

[TPC] TPC Benchmark H (TPC-H).
http://www.tpc.org/information/benchmarks.asp.

[TVB+02] Igor Tatarinov, Stratis D. Viglas, Kavin Beyer, Jayavel Shanmu-
gasundaram, Eugena Shekita, and Chun Zhang. Storing and
Querying Ordered XML Using a Relational Database System.
In SIGMOD, 2002.

[W3Ca] W3C. XML Schema. http://www.w3.org/XML/Schema.

[W3Cb] W3C. XQuery Update Facility.
http://www.w3.org/TR/xqupdate/.

[W3C98] W3C. XMLTM . http://www.w3.org/XML, 1998.

[W3C03] W3C. XQuery 1.0 Formal Semantics.
http://www.w3.org/TR/query-semantics/, June 2003.

[Wil86] Marianne W. Wilkins. A Model-theoretic Approach to Updat-
ing Logical Databases. Technical report, Computer Science De-
partment, Stanford University, 1986.

[WLL03] Guoren Wang, Mengchi Liu, and Li Lu. Extending XML-RL
with Update. In IDEAS, page 66, 2003.

[WMR03] Ling Wang, Mukesh Mulchandani, and E. A. Rundensteiner.
Updating XQuery Views Published over Relational Data: A
Round-trip Case Study. In XML Database Symposium, pages
223–237, 2003.

[WR04] Ling Wang and E. A. Rundensteiner. On the Updatability of
XQuery Views Publised over Relational Data. In ER, pages
795–809, 2004.

[WRM06] Ling Wang, E. A. Rundensteiner, and Murali Mani. UFilter: A
Lightweight XML View Update Checker. In ICDE, poster paper,
2006.

BIBLIOGRAPHY 202

[WRMJ05] Ling Wang, E. A. Rundensteiner, Murali Mani, and Ming Jiang.
HUX: An Efficient Schema-centric Approach on Handling Up-
dates in XML. Technical Report WPI-CS-TR-05-11, Computer
Science Department, WPI, 2005.

[WRMJ06] Ling Wang, E. A. Rundensteiner, Murali Mani, and Ming Jiang.
HUX: A Schemacentric Approach for Updating XML Views. In
CIKM, poster paper, 2006.

[WRMar] Ling Wang, E. A. Rundensteiner, and Murali Mani. Updating
XML Views Published Over Relational Databases: Towards the
Existence of a Correct Update Mapping. In DKE Journal, 2005
to appear.

[XD] XML-DB. XUpdate — XML Update Language. http://xmldb-
org.sourceforge.net/xupdate/xupdate-wd.html.

[XH] X-Hive. X-Hive/DB. http://www.x-hive.com.

[YK06] Yannis Velegrakis Yannis Kotidis, Divesh Srivastava. Updates
Through Views: A New Hope. In VLDB, 2006.

[ZDW+03] Xin Zhang, Katica Dimitrova, Ling Wang, Maged EL-Sayed,
Brain Murphy, Luping Ding, and Elke A. Rundensteiner. Rain-
bowII: Multi-XQuery Optimization Using Materialized XML
Views. In Demo Session Proceedings of SIGMOD, page 671, 2003.

	Worcester Polytechnic Institute
	Digital WPI
	2006-08-24

	Updating XML Views
	Ling Wang
	Repository Citation

	dissertation.dvi

