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Abstract

Our world teems with networked devices. Their configuration exerts an ever-expanding influ-
ence on our daily lives. Yet correctly configuring systems, networks, and access-control policies is
notoriously difficult, even for trained professionals. Automated static analysis techniques provide
a way to both verify a configuration’s correctness and explore its implications. One such approach
is scenario-finding: showing concrete scenarios that illustrate potential (mis-)behavior. Scenarios
even have a benefit to users without technical expertise, as concrete examples can both trigger
and improve users’ intuition about their system. This thesis describes a concerted research effort
toward improving scenario-finding tools for configuration analysis.

We developed Margrave, a scenario-finding tool with special features designed for security
policies and configurations. Margrave is not tied to any one specific policy language; rather, it
provides an intermediate input language as expressive as first-order logic. This flexibility allows
Margrave to reason about many different types of policy. We show Margrave in action on Cisco ios,
a common language for configuring firewalls, demonstrating that scenario-finding with Margrave
is useful for debugging and validating real-world configurations.

This thesis also presents a theorem showing that, for a restricted subclass of first-order logic,
if a sentence is satisfiable then there must exist a satisfying scenario no larger than a computable
bound. For such sentences scenario-finding is complete: one can be certain that no scenarios are
missed by the analysis, provided that one checks up to the computed bound. We demonstrate that
many common configurations fall into this subclass and give algorithmic tests for both sentence
membership and counting. We have implemented both in Margrave.

Aluminum is a tool that eliminates superfluous information in scenarios and allows users’ goals
to guide which scenarios are displayed. We quantitatively show that our methods of scenario-
reduction and exploration are effective and quite efficient in practice. Our work on Aluminum is
making its way into other scenario-finding tools.

Finally, we describe FlowLog, a language for network programming that we created with analy-
sis in mind. We show that FlowLog can express many common network programs, yet demonstrate
that automated analysis and bug-finding for FlowLog are both feasible as well as complete.
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Chapter 1

Introduction

System configuration is a difficult, high-risk task. Even a small misconfiguration can result in
disaster, yet misconfigurations abound [OGP, Woo04]. In large enterprise systems, the problem of
correct configuration is even more difficult [Woo10], and such misconfigurations are highly visible
and costly. For instance, a 2011 outage in Amazon Web Services [Ama11] and a 2010 outage in
Facebook [Rob10] were both caused by a configuration change. Even if the root cause of an outage
is a hardware failure rather than a misconfiguration, restoring service can involve reconfiguration
of backup hardware under a tight deadline. One outage can be quickly followed by another, as
experienced by PayPal in 2010 [Sco10].

In the face of these dangers, the first line of defense is run-time testing of configurations. While
such testing is valuable, it also has weaknesses. In the context of a network or federation of policies,
on-line testing requires either extensive hardware resources or a complex virtualized infrastructure.
Both of these are vulnerable to their own configuration problems. Moreover, such testing cannot
account for all possible scenarios. In contrast, static analysis of configurations, also called “off-line”
analysis, never actually deploys a configuration. Instead, configurations are treated as mathemat-
ical artifacts. Automated reasoning techniques are then used to investigate the behavior of the
configuration. In many cases, static analysis can cover all possible scenarios, although it is limited
by the mathematical model of the system used. For instance, a 2010 WordPress outage [Jus10] was
caused by a cable plugged into the wrong socket; most static analyses will not catch such low-level
errors. This balance of strengths and weaknesses makes static analysis a good complement to
on-line testing.

Scenario-finding is one particular type of static analysis. Scenario-finding tools provide concrete
instances of how a software artifact (such as a configuration) behaves. For instance, given a router
configuration, a scenario-generating tool would produce an example of packets being routed by
that configuration (using random or invented names and packet-headers). Scenario-finding is more
than just automated simulation, however: it can be targeted to specific goals in a system’s output,
or be focused on particular portions of a configuration.

The concreteness of scenarios makes scenario-finding a popular technique in software engineer-
ing. Software modeling helps system designers understand the consequences of their specifications,
determine missing constraints, and explore alternatives. Specification languages like UML benefit
from scenario-finding to help bridge concrete and abstract representations. Scenarios are also useful
for presenting counter-examples to verification tasks. This is especially helpful when studying secu-
rity policies, where the concreteness helps envision attacks [NBD+10, FKMT05, DGT07, ABL+10].
Network modeling systems similarly use scenarios to visualize designs [BEW95, TASB07].

In short, scenarios are useful for many reasons:

• They are concrete, making it easy for users to grasp the output and map it to reality.

• They do not require logical expertise to grasp. Thus, a logic-aware modeler working with a
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domain expert innocent of the joys of logic can present the output scenarios to the domain
expert, who should be in a position to understand them.

• They are rigorous, in that we can ascribe a precise semantics to them. This makes it possible
to employ them in formal settings.

Because of this unique combination of user-focused characteristics, many tools provide scenario-
based output. High-quality scenario-finding tools for configuration analysis could drastically reduce
the danger of configuration authoring and maintenance. Configuration-like artifacts, such as access-
control policies and network programs, would also be productive to analyze. The goal of this work is
to produce such tools and lay foundations for the improvement of existing tools. In this document,
we assert and defend that:

Declarative, predicate-logic-based formalisms make suitable foundations for expressing real-world
system configurations, access-control policies, and network programs, as well as for building

user-focused static-analysis tools for analyzing them.

1.1 Research Questions

This document will support the above thesis by answering several concrete questions:

Configurations can be complex, often involving state, and they are expressed in a plethora
of languages which differ not only by syntax, but also by semantics and domain. What logical
foundation is suitable for representing configurations, policies, and network programs such that
scenario-finding can be performed? To be suitable, a foundation must not only be able to represent
the configurations, but be amenable to scenario-finding and other user-focused techniques.

Existing tools for scenario-finding focus on efficiently finding and presenting single scenarios
(or showing that none exist), rather than on encouraging the exploration of the entire space of
scenarios. This view neglects the main advantage of scenario-finding: leveraging users’ strong
intuition for examples, even in the absence of a formal specification of “correctness”. Which
scenarios ought to be presented first? How might scenario-finding tools encourage exploration and
gradual increase in understanding? In what ways can tools that perform bounded scenario-finding
increase confidence in their results, or make guarantees of completeness?

1.2 Contributions

The contributions of this thesis are manifest in the following software projects:

Margrave Margrave is a static analysis tool for off-line testing of policies and configurations.
Margrave has been in development, in one form or another, for seven years. It has been applied
to different domains including access-control policies and firewall configurations. Margrave dif-
fers from most other static analysis tools in that it is agnostic toward the type of configuration
it analyzes. It is not only (say) a “firewall analysis tool”. Instead, the tool provides a general
policy framework on which support for different domains and input languages can be built. Un-
surprisingly, Margrave is a scenario-finder: given a configuration and a query, Margrave produces
a concrete set of scenarios that show how the configuration can behave in the situations the query
describes. Margrave’s user interface is designed to encourage an iterative exploration of scenarios
by way of an interactive prompt. Users can view the results of a query about one policy, then load
another and ask “How would these interact,” then refine that query to focus on a particular rule,
all without “re-compiling” and leaving their existing thread of analysis and exploration. Chapter 3
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presents the Margrave tool itself, while Chapter 6 shows Margrave in action by analyzing Cisco
router configurations.

Finally, Margrave can often automatically compute bounds under which its scenario-finding is
complete, that is, no scenarios will ever be “missed”. We accomplish this via a theorem stating,
for a class of formulas that often appears in policy analysis, that whenever there exists a scenario
for the policy’s behavior, there must exist a “small” scenario under a bound that can be easily
computed from the policy and query. In fact, this result is not tied to the policy-analysis domain:
any first-order logic formula benefits, provided it falls into an easily determined syntactic class.
Chapter 4 discusses the proof of this theorem and presents concrete and efficient algorithms for
both detecting whether the formula falls into our class and computing sufficient bounds for such
formulas.

Aluminum The Alloy Analyzer [Jac12] is a pre-existing popular scenario-finder. Alloy has been
used in hundreds of academic papers in software engineering, security, networking, and other
domains. Alloy allows users to specify systems and properties in relational logic with transitive
closure. Although Alloy can also be used for verification tasks, it focuses more on finding and
displaying scenarios. Alloy lets users see examples of how their system behaves, even in the
absence of formal goals, but only searches for scenarios up to a user-provided size bound.

Our project, Aluminum, is an extension to the Alloy Analyzer that displays only minimal sce-
narios: those which contain nothing unnecessary. Since they lack superfluous information, minimal
scenarios are more succinct than others, which we believe facilitates user understanding. Moreover,
removing non-minimal scenarios from consideration greatly reduces the number of scenarios users
must wade through in their exploration.

Aluminum does more than just minimize its output; it also shows what new facts can be con-
sistently added to each minimal scenario. For instance, on an operating-system model, Aluminum
might say that it is possible to add a new file to a filesystem or make someone that file’s owner.
The tool also allows users to add a consistent truth and examine the consequences of that addition.
In short, Aluminum gives users the ability to explore scenarios in a disciplined manner, rather than
just asking for yet another. We discuss our notion of minimality and the Aluminum itself in depth
in Chapter 5.

FlowLog The more expressive a configuration language, the more difficult it is to analyze stati-
cally. Configuration languages for traditional network hardware are often fairly limited and hence
easy to analyze. However, fully programmable software-defined networks, wherein a central con-
troller directs the global action of the network, change the nature of the beast: software-defined
network configurations can be far more powerful and flexible. This flexibility results in more oppor-
tunities for mis-configuration and greatly complicates analyses. Thus the networking field is now
faced with a classic programming language design trade-off: that between analyzability and expres-
sive power. Chapter 7 presents FlowLog, a declarative, stateful policy language for programming
network controllers. FlowLog is both expressive enough to be used for real-world network pro-
gramming and restrictive enough to facilitate rich, tractable model-checking and scenario-finding.

Roadmap

This document is organized so as to showcase each of these projects separately. Due to the multi-
pronged nature of this research, we discuss related work as appropriate in each chapter. Chapter 8
closes with discussion and a list of future research directions.
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Chapter 2

Foundations: Order-Sorted
Predicate Logic

The foundational setting of this thesis is order-sorted predicate logic. Since many of the concepts
are used throughout, this chapter serves as a primer on the necessary background. The definitions
and results in this chapter are either directly from Goguen and Meseguer’s work [GM92] or they
are the obvious extensions required to handle relations as well as functions.

Notation We use 〈〉 for the empty sequence. If (S,≤) is an ordering we extend ≤ to words in
S∗ and then to products, pointwise.

Signatures An order-sorted signature is a triple L = (S,≤,Σ) where (S,≤) is a finite poset of
sorts and Σ is an indexed family of symbols, the vocabulary, comprising

• {Σw | w ∈ S∗}, an S∗-sorted family of relation symbols, and

• {Σw,A | w ∈ S∗ , A ∈ S}, an (S∗ × S)-sorted family of function symbols.

We assume that the Σw and Σw,A are pairwise disjoint.

For readers familiar with the Alloy Analyzer tool, we stress that an order-sorted signature is
not the same as a signature in Alloy. Here, a signature denotes a language of discourse: available
sorts, functions, etc. along with an ordering on the sorts. In this way, an Alloy signature is a sort
or a predicate within an overall order-sorted signature.

Formalizing relations and functions through words—rather than through tuples — of sorts
simplifies certain definitions and eases capturing overloaded function symbols (as [GM92] does).
The restriction to finite vocabulary is reasonable given the fact that our main concern here is the
creation of software tools and (in Chapter 4) finite-model theorems. Our work assumes function
symbols are not overloaded (through the disjointness condition on the Σw,A); this is consistent
with Margrave and Alloy. Most of the results herein generalize to handle overloading, including
our finite model theorem (Theorem 4.4.1). The one exception is our term-counting algorithm (The-
orem 4.4.2), which relies on the lack of overloading to compute precise bounds; with overloading,
our algorithm only promises upper bounds on the sort-sizes.

When R ∈ Σw we say that w is the arity of R. When f ∈ Σw,A we say that w is the arity of
f and A is the result sort of f . If L = (S,≤,Σ) and L′ = (S,≤,Σ′) are such that for each w and
A, Σw ⊆ Σ′w and Σw,A ⊆ Σ′w,A we say that L′ is an expansion of L, and that L is a reduct of L′.

Following standard usage, a function symbol a ∈ Σ〈〉,A, taking no arguments, is referred to as
a “constant” of sort A, and in concrete syntax we write simply a instead of a().
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The connected components of an ordering (S,≤) are the equivalence classes for the equivalence
relation generated by ≤. A signature L = (S,≤,Σ) is coherent if each pair of sorts in the same
connected component has an upper bound. Henceforth we assume that our signatures are coherent.
See [GM92] for an extended discussion of the importance of coherence. Note: in [GM92] the notion
of coherence also requires that signatures be regular, a technical condition that is trivially satisfied
in the absence of overloading.

The set of formulas is defined inductively by closing the set of atomic formulas under the
propositional operators ∧, ∨, and ¬ and the quantifiers ∃ and ∀. We will indicate quantification
over a sorted variable x ∈ XA by ∃xA or ∀xA (where XA is the set of variables of sort A). The
notions of free and bound variable are standard; let FV (φ) denote the set of free variables of
formula φ. A sentence is a formula with no free variable occurrences.

Models Fix a signature L = (S,≤,Σ). An L-model M comprises (i) an S-sorted family {MA |
A ∈ S} of sets, the universe of M, such that A ≤ A′ implies MA ⊆ MA′ , (ii) for each R ∈ Σw a
relation RMw ⊆Mw, and (iii) for each f ∈ Σw,A a function fMw,A : Mw →MA.

Skolemization, the process of eliminating existential quantifiers in favor of function symbols,
will be important in Chapter 4. As a consequence we need to be attentive to the ways that the
language over which our models are defined can shift. If M is a model for L = (S,≤,Σ) and L′
is an expansion of L then an expansion of M to L′ is a model of L′ with the same universe as M
which agrees with M on the symbols in Σ.

Definition 2.0.1. An environment η over a model M is an S-indexed family of partial functions
{ηA : XA →MA | A ∈ S} such that ηA = (ηA′)�XA

(the restriction to XA) whenever A ≤ A′. As
usual the notation η[xA 7→ e] refers to the environment agreeing with η except that it maps variable
x ∈ XA to e. An environment η can be extended to terms in the usual way.

Definition 2.0.2 (Truth in a model). Let M be a model, φ a formula, and η an environment such
that FV (φ) ⊆ dom(η). The relation M |=η φ is defined by induction over φ as follows.

• If φ ≡ P (t1, ..., tn) then M |=η φ if and only if PM(η(t1), ..., η(tn)) holds.

• If φ ≡ t1 = t2 then M |=η φ if and only if η(t1) = η(t2) holds.

• If φ ≡ ¬α then M |=η φ if and only if M 6|=η α.

• If φ ≡ α ∧ β then M |=η φ iff M |=η α and M |=η β.

• If φ ≡ α ∨ β then M |=η φ iff M |=η α or M |=η β.

• If φ ≡ ∃xAα then M |=η φ iff there is some element e in MA such that M |=η[x 7→e] α.

• If φ ≡ ∀xAα then M |=η φ iff for each element e in MA it holds that M |=η[x7→e] α.

Homomorphism A homomorphism h : M → N between models M and N is an S-sorted
family of functions {hA : MA → NA | A ∈ S} satisfying the following conditions (suppressing
sort information for readability): (i) A ≤ A′ implies hA = (hA′) �MA

(ii) h(fM(a1, . . . , an)) =
fN(h(a1), . . . , h(an)), and (iii) RM(h(a1, . . . , an)) implies RN(h(a1), . . . , h(an)).

The Term Model When the set of relation symbols in L is empty then the set of ground terms
forms the universe of a model for L, the term algebra [GM92]. We may view this as a model for
an arbitrary order-sorted signature, as follows.

Fix L = (S,≤,Σ). The family {T LA | A ∈ S} of ground terms over L is the ⊆-least family
such that (i) T LA ⊆ T LA′ whenever A ≤ A′ and (ii) if f ∈ Σw,A with w = A1 . . . An and for each
i, ti ∈ T LAi

then f(t1, . . . , tn) ∈ T LA . The ground terms determine a model T L of L, the term
model, by taking the interpretation of each f ∈ Σ〈A1...An〉,A to be the function taking each tuple
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(t1, . . . , tn) ∈ (T LA1
× · · · × T LAn

) to the term f(t1, . . . , tn), and taking the interpretation of each
relation symbol to be the empty relation.

It may be that one would like to specify that certain pairs of sorts are to be disjoint (e.g. Alloy,
with “extends”). For simplicity we do not consider such a mechanism in our notion of signature,
since we can get the same effect by explicitly writing disjointness sentences and conjoining them
with any sentences under consideration (as long as they are in the same connected component!).
For future reference we note that such sentences involve no existential quantifiers.

Theorem 2.0.1. Suppose L = (S,≤,Σ) is a signature such that Σ has no relation symbols. Then
for any model M of L there is a unique homomorphism from T L to M (i.e., T L is initial).

Proof. Initiality of T L in the category of algebras was shown by Goguen and Meseguer [GM92].
Now, given an L-model M, we let M′ be the reduct of M to the language L′ obtained by removing
the relation symbols. So M′ is a L′-algebra so that Goguen and Meseguer’s theorem applies. But
the unique algebra homomorphism from T L to M′ is itself a L-homomorphism from T L to M,
simply because each T L-relation is empty, and the result follows.

Definition 2.0.3 (Open terms). Fix a signature L = (S,≤,Σ). Let X be an S-sorted set {XA |
A ∈ S} of variables, with the XA mutually disjoint and disjoint from Σ. The set T LX of (open)
terms over X is, intuitively, obtained by adjoining the variables in XA to the term model at
type A. Formally we proceed as follows [GM92]. Define ΣX to be the family of symbols with
ΣX 〈〉,A = Σ〈〉,A ∪XA and ΣXw,A = Σw,A for w 6= 〈〉. Then LX is the signature (S,≤,ΣX). Then

the family T LX of open terms over X is the family T LX

that is the terms of T LX are the ground
terms over LX .

As noted by Goguen and Meseguer [GM92] the fact that the open term algebra is initial in
the category of LX -algebras entails the fact that this algebra is free over the generators X in the
category of L-algebras. In particular, if η : X → M is an S-sorted assignment of values in M to
variables from X then there is a canonical way to extend η to map T LX to M.

Aside: On reduction to unsorted logic

It is not unusual for treatments of many-sorted logic to “encode” sorts as unary predicates and
to view many-sorted logic as a particular syntactic discipline over standard one-sorted logic. For
example one can reasonably view the sorted quantification ∃xA . φ as shorthand for ∃x . (A(x)∧φ).
This is the traditional approach taken in mathematical logic [End72]. To handle subsorting it is
natural to introduce coercion functions: to capture A ≤ B in the order-sorted setting we can add
to the signature a function symbol cAB : A→ B in the flat setting. There are some natural axioms
imposed on the coercion functions: that they are injective, that they compose properly to reflect
transitivity, and so forth. Goguen and Meseguer [GM92] prove a Reduction Theorem, showing that
there is an equivalence of categories between order-sorted algebra and flat many-sorted algebra,
once the latter is equipped with coercion functions and the conditional equations expressing the
axioms.

This theorem lifts, of course, to our setting of order-sorted logic. But, for a variety of reasons,
we resist such an encoding into unsorted logic. First, it would make counting ground terms, our
central concern in Chapter 4, more difficult. This is because the ground terms would involve the
coercion functions and we would have to count modulo the axioms governing them, otherwise we
would overestimate the size of the true set of ground terms in the original signature. Second,
introducing coercion functions would clutter the treatment of results such as Herbrand’s Theorem.
Finally, we want our results to provide clear information to users of tools—like both Margrave
and Alloy—that are explicitly order-sorted, and an encoding into another formalism would be an
obstacle to these users. So we prefer to work with order-sorted logic directly.
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Chapter 3

The Margrave Tool

Margrave is a flexible, powerful tool for policy analysis that has been in development for seven
years. The original version of Margrave appeared in a 2005 paper by Fisler, et al. [FKMT05],
and performed verification and change-impact analysis on policies written in a core fragment of
xacml. We have since re-written the original tool to reason about more general policies, and have
successfully applied it to Cisco IOS router configurations (more on this in Chapter 6), representing
both packet filtering acls and static routing as Margrave policies. We use “Margrave” to refer to
the current state of the tool, not the original 2005 version.

Margrave’s flexibility comes from thinking about policy analysis from an end-user’s perspective.
The questions that users wish to ask about policies obviously affect modeling decisions, but so
does our form of answer. Margrave’s core paradigm is scenario finding : when a user poses a
query, Margrave produces a (usually exhaustive) set of scenarios that witness the queried behavior.
Whether a user is interested in the impact of changes or how one rule can override another, scenarios
concretize a policy’s behavior. Margrave also allows queries to be built incrementally, with new
queries refining the results from previous ones.

Margrave’s power comes from choosing an appropriate model. Embracing both scenario-finding
and multi-level policy-reasoning leads us to model policies in first-order logic. Many analysis
tools (especially in the firewall-analysis domain, which we discuss in Chapter 6) use propositional
models for which analysis questions are decidable and efficient. In general, one cannot compute
an exhaustive and finite set of scenarios witnessing first-order logic formulas. Fortunately, the
formulas corresponding to many common policy queries do yield such sets. Margrave identifies
such cases automatically, thus providing exhaustive analysis for richer policies and queries than
other tools; we discuss the details of computing this exhaustive yet finite set in Chapter 4.

Before delving into the details of Margrave, we first discuss the motivation of the tool: what
do we mean when we say “policy analysis” in the first place?

3.1 Motivation: Policies and Configurations

Policies have many different forms and purposes. The use-cases below sketch the space that we
are interested in modeling.

Networking: Packet Filters Packet filters (often referred to as “access-control lists” or acls)
are simple access-control policies used in firewalls. Rules either permit or deny packets. The
first rule that applies to a packet dictates whether that packet is forwarded or dropped by the
firewall. While this style of policy occurs elsewhere, our main concern in this example is acls in
the firewall domain, written in languages such as Cisco ios, Juniper’s Junos, iptables scripts, etc.
The following iptables script serves as a packet filter. Each line in the script is a command-line
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invocation. The -A switch instructs the firewall to append a new rule, in this case to the INPUT

policy, which applies to incoming packets. -p tcp says that the rule only matches if the protocol
used is tcp. -s adds a constraint on the source address of incoming traffic; --dport similarly
constrains the destination tcp port. Finally, -j DROP and -j ACCEPT give the decision to render
should a packet match the rule. Rules are interpreted in the order in which they appear.

/sbin/iptables -A INPUT -p tcp -s 10.1.2.3 --dport 80 -j DROP

/sbin/iptables -A INPUT -p tcp -s 10.1.2.0/24 --dport 80 -j ACCEPT

Given (for example) the packet header <10.1.2.3, 192.235.10.11, 12345, 80, TCP>, this filter
will drop the packet. In some firewall configuration languages, packet filters can be more complex,
e.g. by the addition of log rules, which always apply if matched, irrespective of the rule order:

/sbin/iptables -A INPUT -p tcp -s 10.10.10.0/24 --dport 80 -j ACCEPT

/sbin/iptables -A INPUT -p tcp -s 10.1.2.3 --dport 80 -j DROP

/sbin/iptables -A INPUT -p tcp -s 10.1.2.3 --dport 80 -j LOG

This policy will both drop and log the packet header <10.1.2.3, 192.235.10.11, 12345, 80>.

Networking: Static and Policy-Based Routing While routers can make use of dynamic
routing algorithms1, their configurations frequently contain static routing instructions for well-
known or local destinations. For example, this Cisco ios command:

ip route 0.0.0.0 0.0.0.0 Serial0

which directs all traffic out the Serial0 interface. Cisco (and other vendors) also provides a more
flexible policy-based routing feature:

route-map all-employee-machines permit 10

match ip address 10

set ip next-hop 10.10.10.1

This snippet says that all traffic matching access-list 10 (itself a packet filtering policy!) ought
to be forwarded to address 10.10.10.1. Policy-based routing allows fairly sophisticated routing
policies to be expressed in the configuration itself, without utilizing dynamic methods.

Networking: Stateful Firewalls While routing policies and packet filtering can interact in
interesting ways, we must also consider state. Firewalls are no longer “dumb” packet filters; they
are aware of the traffic flowing to and fro across their interfaces, and their configuration often takes
this fact into account. For instance, the ios policy:

interface fe0

ip access-group fromoutside in

interface Vlan1

ip access-group frominside in

ip access-list extended frominside

permit tcp any any reflect returntcp

ip access-list extended fromoutside

evaluate returntcp

deny tcp any any

allows only return traffic from the outside world. No access is allowed via the fe0 interface that
is not necessary to service a flow initiated from the serial0 interface. The bolded commands in
the example cause such flows to be monitored via returntcp, a temporary state table.

1Such as Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), etc.
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Access Control Access-control policies are a more general version of packet-filtering firewalls.
Broadly, they describe whether a subject entity is allowed to take a certain action on a resource.
xacml [OAS05] is an example of an access-control policy language in wide use.

In xacml, a policy consists of rules, each of which has a target, a condition, and a decision.
If both the target and condition match, the rule matches and renders its decision; conflicts are
resolved by means of a rule-combination setting (for instance, favoring the first applicable rule).
The target element a rule governs whether that rule is considered applicable to a request; the
condition element dictates whether the rule actually fires for the request.

An xacml policy should only render one decision. Conflicts between rules must sometimes
be resolved. xacml provides several conflict-resolution algorithms, one of which is the “first ap-
plicable” algorithm seen in packet-filtering firewalls. Also of interest are “permit-overrides” and
“deny-overrides”, which state that rules yielding permit (respectively, deny) always take prece-
dence.

xacml also supports policy sets, which themselves contain a collection of policies and (smaller)
policy sets. This feature allows policies to be created by separate entities and then consulted
separately, depending on the nature of the request. Like rules, policies and policy sets have target
elements that advertise their domains of applicability.

xacml is an xml language. An example rule in xacml is:

<Rule RuleId="myrulename" Effect="Permit">

<Target>

<Subjects>

<AnySubject/>

</Subjects>

<Resources>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Tim’s Thesis</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</Resources>

<Actions>

<AnyAction/>

</Actions>

</Target>

</Rule>

This rule allows any subject to take any action on resources with id equal to “Tim’s Thesis”.

Federations of Heterogeneous Policies In the wild, policies interact to produce the overall
behavior of a system. A network is the canonical example of policy federation: multiple firewalls
may make access and routing decisions on a packet as it traverses the network. As the packet
travels, it may be modified by operations such as nat. Moreover, when a packet containing (say)
a database request reaches its destination, new policies come into play, deciding whether or not to
honor the request. This interaction between policies is especially powerful in the cloud, since the
federation may be distributed between different principals. Similarly, a single physical device may
embody a large number of policies. A physical firewall houses packet filters, routing policies, nat
policies, etc. and is a federation in itself.

3.2 Motivation: Analysis

We support all of the above policy types with a general, unified model for policies, which we can
then use to help policy authors better understand the implications of what they write. Of course,
that goal raises the question of just what kind of “understanding” we plan to promote.
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Margrave performs off-line, static analysis of policies. Policy analysis questions can take many
forms. We enumerate some common question types below. For each type, we include an example
in Margrave’s current query language.

“What if?” The most simple, and most natural, question about a policy’s behavior is: Given
a concrete request, what will the policy do?

Some examples of “What if?” queries are:

1. “Will an ip packet with the header (10.1.1.2, 192.168.2.3, 20000, 80, tcp) be allowed through
the packet filter?”

2. “Will patient A be permitted to access patient B’s medical records — provided the database
is in state C?”

Example Margrave Query for (2)
let Q[r: Record] be

recordFor(r, ’patientB) and

AccessPolicy.permit(’patientA, ’access, r) and

exists d: Doctor | assignedDoctor(d, ’patientB);

This analysis is amenable to ordinary run-time testing: simply load the policy and send the re-
quest! However, that approach requires that the policy already be deployed – either to a production
environment (which would be unwise for an un-tested policy) or a sandboxed testing environment
(which may be expensive or impractical in some cases). Margrave’s static analysis is therefore
useful even for such simple, “testable” questions.

“When can...?” More generally, we might ask: Under what circumstances can the policy yield
a certain decision?

This question is more abstract than the last. Rather than inquiring about the fate of a single
request, we are interested in the results for all possible requests. Instead of a yes or no answer, we
expect something more substantial: a set of scenarios that describe when the behavior of interest
can occur.

Some examples of “When can ...?” queries are:

1. “Which ip packets from web.cs.wpi.edu will be allowed through the firewall?”

2. “Can a student ever read someone else’s grades?”

Example Margrave Query for (2)
let Q[s: Subject, r: Resource] be

student(s) and grade(r) and

exists s2: Subject | (not s1 = s2) and

gradeFor(s2, r) and student(s2) and

AccessPolicy.permit(s, ’read, r)

While, in theory, run-time testing may be able to answer this type of question, it is often
impractical. Testing a firewall with every possible tcp packet, to determine which pass successfully,
would take an unacceptable amount of time.

“What did I change?” After making an edit to a policy a natural question is: “What did this
change affect?”

Answering this question requires going beyond just the syntactic alterations in the policy text.
Rather, we are interested in how the policy’s behavior changed as a result of the edit. We call this
change-impact analysis.

Some examples of “What did I change?” queries are:

1. “Which ip packets will now be allowed through the firewall?”
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2. “Of those newly permitted packets, do any involve the accounting or human-resources net-
works?”

Example Margrave Query for (2)
let Q[s: Subject, a:Action, r: Resource] be

not OldAccessPolicy.permit(s, a, r) and

NewAccessPolicy.permit(s, a, r) and

(inHRNet(s) or inAccountingNet(s))

Change-impact analysis is one instance in the broader class of property-free verification. In
traditional property verification, one has two artifacts to compare: a set of formally expressed
properties, and a system specification. In property-free verification, other artifacts are compared;
in the case of change-impact analysis, the artifacts are the old and the new policy. Property-free
verification can be helpful when there are no formally articulated properties to verify, or when
attempting to elucidate these properties.

Indeed, policy authors often do not know what properties they wish to verify until those
properties are violated — with embarrassing or disastrous results. Change-impact analysis can
reveal questions that the policy author did not realize they should ask.

“Why did that happen?” Confronted with unexpected policy behavior, a policy author would
like to know which portion(s) of the policy is responsible for the behavior. In a single policy, this
may amount to discovering the rule that fired for a request. In a federation, it also involves
computing the chain of custody for the request as it traversed the federation.

Some examples of “Why did that happen?” queries are:

1. “Which filtering rule is responsible for dropping my boss’ web packets?”

2. “Which firewalls handled my e-mail packets on the way out of the corporate network?”
Example Margrave Query for (1)

let Q[p: Packet] be true;

show realized PacketFilter.rule1_applies(p),

PacketFilter.rule2_applies(p),

...;

More complex questions Policy authors may also have broader questions about the behavior
of their policies. They may wish to feed the results of one query into a second or aggregate query
results. They may also seek domain-specific phenomena that require constructing queries in the
context of a larger application. To support such questions, a simple query language is insufficient;
advanced users require Margrave to be intelligently integrated with a programming language.

Some examples of domain-specific questions are:

1. “Which roles, when added to a set of roles, increase privileges vs. the original set?”

2. “Which of my firewall rules never apply? For each of those rules, which prior rules collude
to cause the inapplicability?”

A fragment of a Racket program using the Margrave API might resemble:
Example Margrave Script for (1)

(define fmla-sexpr ‘(and ([Mypol permit] s a r)

(Write a)

,@(cover-roles-qry aroleset)))

(m-let thisid

’([s Subject]

[a Action]

[r Resource])

fmla-sexpr)

(define result (m-is-poss? thisid))
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This fragment shows how a Margrave query can be constructed as an expression in the Racket [FP10]
programming language, and how query results can be obtained and manipulated.

Having seen concrete examples of our notion of “policy” and “query”, we can now discuss the
current state of the tool in detail.

3.3 The Tool

Margrave comprises a front-end read-eval-print loop (repl) written in Racket [FP10] and a backend
written in Java. The front-end handles parsing (of queries, commands, policies, and vocabularies)
and output presentation. Users write policies and issue queries in the Racket front-end. The actual
analysis and scenario generation occurs in the Java backend, which uses a tool called Kodkod [TJ07]
that produces solutions to first-order formulas using sat-solving. Those solutions are then returned
to the front-end and presented to the user. Figure 3.1 shows Margrave in action.

In Margrave, there are two key objects: the policies to be analyzed and the queries that describe
analysis.

3.3.1 Policies

A Margrave policy describes a list of rules that dictate a decision for requests to the policy, along
with conflict-resolution settings for when different rules apply to the same request. For error-
checking purposes, policies contain type declarations for all variables used. Margrave’s policy
language is inspired by xacml [OAS05], but has a more readable format. Figure 3.2 gives an
example Margrave policy.

Line 1 declares the policy’s vocabulary name, which we discuss in the next paragraph. Variables
used by a policy must be declared (lines 2 – 5) along with their type. The rules on line 7 – 10
say that faculty members can always write grades, students can always read their own grades, and
nothing else is allowed. The RComb expression on line 11 indicates that permit decisions should
always override deny decisions; we discuss such conflict-resolution options later.

Vocabularies Every policy in Margrave uses a single vocabulary, which gives the signature
(types, predicates, functions, etc.) that the policy uses. For instance, a vocabuluary for firewalls
will define a notion of ip address, predicates for state tables, and possibly functions to describe
nat. Such a vocabulary can be shared by many different firewall policies. A sample vocabulary
(for the school policy in Figure 3.3) can be found in Figure 3.3. The first line declares the name of
the vocabulary, which is referenced in policies. Lines 2 – 5 declare several types; some are subtypes
of others (e.g. Read and Write are subtypes of Action). Lines 6 – 10 declare the predicates:
similar to types but not constrained to be unary, and unused by the type checker.

Formalism of Policies and Vocabularies Relations are a natural representation for the con-
ditions in policy rules, the association of decisions with requests, and interactions between policies.
Accordingly, we use relational structures as the foundation of our notion of policy. Margrave uses
order-sorted predicate logic (Chapter 2), and a Margrave vocabulary defines an order-sorted sig-
nature, with the constraint that functions may not be overloaded. As usual, we view constants as
function symbols of 0 arguments.

Nothing in the definition of an order-sorted signature, and thus nothing in Margrave vocabular-
ies, is specific to security, firewalls, or access-control; this is intentional. Margrave is a general tool
for reasoning about rule-based specifications. When instantiated for a policy, a vocabulary would
contain relations for the policy’s decisions (such as permit and deny), each of whose type ranges
over the form of request for that policy (e.g., a subject-action-resource triple in access-control or
packet contents for a firewall). Concepts such as “Action”, “Resource”, or “IP Address” would
constitute the sorts.
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Policies are formed of rules that define some relations in Σ in terms of others. Specifically:

Definition 3.3.1. Given a vocabulary Σ, a policy P against Σ is a set of rules of the form

Dec(~u) :− L1( ~u1) . . . , Ln( ~un)

where Dec is a relation name in Σ that does not occur in the right-hand side of any rule, each
Li(~ui) is an atomic or negated atomic formula over Σ, and ~u and each ~ui is a vector of variables
and constants.

This is a semi-positive datalog program [AHV95]. It is fruitful to view the semantics of such
policies from the logic programming/database perspective.

We may view the facts about the system and the environment as a database over the relations
in the policy vocabulary, and view the policy as a database query whose answer predicates are the
decision predicates. Thus, applying the policy to an environment is just running the policy as a
query on the database that is the environment. The view computed by this query determines a
relation for each decision-predicate: these are the “database tables” defining permit, deny, etc.

From this point of view it is entirely reasonable to imagine allowing recursion in the policy,
by allowing decision-predicates on the right-hand sides of rules, though this would require a more
careful handling of negation. There are thus no fundamental obstacles to supporting recursion, but
the current implementation of Margrave does not support it. Although recursion is not a target
of this thesis, support for recursion is one motivation for investigating potential new approaches
to scenario-computation.

Policy Completion Margrave policies differ from Datalog in another important way. Datalog
programs take a set of ground facts and compute idb tables from those facts. For instance:

permit(s, r) :- administrator(s), file(r).

permit(s, r) :- ownerOf(s, r).

administrator(Alice).

employee(Bob).

ownerOf(Bob, Bobcar).

file(Billing).

results in a permit idb that includes [Alice,Billing] and [Bob,Bobcar]. Margrave needs to do
more – it must allow information to flow in the other direction. Suppose a query asks for scenarios
in which permit(s, r) holds. Then Margrave must produce scenarios that describe bindings for s
and r. Thus for each decision, the implementation uses a bi-implication to encode the fact that a
decision can only be rendered because of some rule’s action. For the above, it would use:

permit(s, r) ⇐⇒ (administrator(s) ∧ file(r)) ∨ ownerOf(s, r)

rather than only the “if” direction, as in the Datalog program. This approach is similar to the
completion semantics for Negation as Failure [Cla78] in Prolog.

Conflict Resolution The Datalog idb viewpoint leads to a complication in the policy setting.
In the Datalog perspective, a request may be contained in the relations for multiple decisions.
While there are no foundational complications with this, in practice some decisions cannot be
allowed to apply concurrently. For example, in most access-control contexts, it is nonsensical for
a request to be both permitted and denied. Such a situation is a conflict that the policy must
resolve. Margrave’s policy language echoes xacml and others in providing conflict-resolution (also
known as rule-combination) settings. Currently supported rule-combination algorithms are:

• First-applicable: Rules may apply in the order they are given; the first rule that matches
a request will apply.
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• Overrides (D1, ..., Dn): Takes an ordered list of decisions as an argument; conflicts are
resolved by favoring the highest-priority decision.

• No-op: Potential conflicts will be ignored; multiple decisions can apply.

At present, only one algorithm may be provided per policy. Recent work by Giannakopoulos [Gia12]
will allow more complex conflict-resolution, but is not currently implemented.

3.3.2 Queries

By way of example, we will examine the “What if?” query from that section. (In the current
language, preceding an identifier with a single-quote tells Margrave that it is a constant symbol,
rather than a variable name. All text on a line after a double-slash is ignored by Margrave.)

// Will patient A be permitted to access patient B’s medical

// records --- provided a doctor has been assigned to patient B?

let Q[r: Record] be

recordFor(r, ’patientB) and

AccessPolicy.permit(’patientA, ’access, r) and

exists d: Doctor | assignedDoctor(d, ’patientB);

The let keyword binds the name Q to the formula, which can include both universal and
existential quantifiers, as well as the usual boolean operators of first-order logic. The variable r is
free. The existential quantifier on d is required: if there were no quantifier and d were not listed
among the typed free variables in the declaration of Q, the formula would be ill-formed and rejected
by Margrave. The explicit types are used in error-checking.

The let construct lets users compute sets of scenarios, but does not provide a way to view
them. The query language therefore includes a set of commands for getting information about sets
of scenarios. Each let statement initializes an iterator over the corresponding set of scenarios.
Commands for showing scenarios utilize these iterators, which are stateful across repl commands.
Subsection 3.3.4 details the list of available commands and their semantics; first we give the
semantics of queries within the repl.

3.3.3 Semantics of Queries

Our semantics needs to support several features: formulas are bound to names that can be reused
in subsequent queries, formulas may reference the decisions of multiple policies, and commands
support iteration over the scenarios resulting from a query. This section describes the formal
infrastructure that enables these actions. Intuitively, at any point during repl execution, the
system has a current vocabulary (indicating the predicates that formulas can reference), a current
environment mapping formula names to formulas, and a store of the current state of each formula’s
iterator. Formally:

Definition 3.3.2. The state of the repl consists of the current vocabulary Σ, an environment
Γ that maps formula names to Σ-formulas, and a store σ that maps bound formula names to an
iterator over the set of scenarios for that formula.

The rest of this section discusses how each construct in the query language depends on and
updates the state of the repl. When the repl is started afresh, all three components are initialized
to empty.
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Binding and Interpreting Formulas A formula declaration is of the form

let f [x1 : A1, . . . xk : Bk] be α

where α is an ordinary first-order logic formula over the formula names bound in the environment
and the functions and relations defined in the current vocabulary. Quantifiers annotate their
variables with types. The set of free variables of α must be a subset of {x1, . . . , xk}.

Semantically, the let statement first type checks the formula (for consistent use of other formulas
in Γ), then

• Sends α and the current environment to the query interpreter, which returns the set S of
scenarios for α.

• Defines an iterator If over S and binds f to If in the iterator store.

• Extends the environment with the mapping of f to α (including the type declaration).

Our notion of type checking is standard. The details of interpretation and formal definition of
scenarios follow.

Interpretation and Scenarios

Definition 3.3.3. Given a vocabulary Σ = (S,≤,Σ, ar), a model M of Σ comprises

• A universe of elements for each type in S. If A ≤ A′, then the universe of A is contained in
the universe of A′. We allow universes to be empty.

• For each predicate R with type signature A1 × · · · ×Ak, a set of tuples 〈e1, . . . , ek〉 such that
each ei is in the universe corresponding to Ai.

• For each function symbol f with type signature A1 × · · · × Ak → A, a function from tuples
over the corresponding universes of each Ai to the universe of A.

Given a formula φ over Σ, a scenario for φ is a pair (M, η) where M is a Σ-model and η is a
type-respecting map from free variables in φ to M such that M, η � α in the standard semantics of
first-order logic.

Given a formula α, vocabulary Σ, and formula environment Γ, we interpret α by inlining each
reference to a formula f in α with Γ(f), inlining each reference to a formula identifier with the
formula corresponding to that name and computing the models of α under Σ. Note that inlining
formula bindings is safe as we do not allow rebinding of the same formula name, thus eliminating
the distinction between static and dynamic binding semantics.

If a type symbol, relation symbol, or function symbol in the current repl vocabulary Σis not
mentioned in a query Q and the policies it references, Margrave will omit that symbol from the
scenarios it produces for Q. This omission is only for optimization: if a formula does not contain
any occurance of a relation, the value of that relation in a model M will have no effect on the
formula’s truth in M.

3.3.4 Commands

After a let construct has been used to bind a query to a name, additional commands are used to
manipulate the scenarios for a query. Each command in our query language operates in the context
of the current vocabulary, environment, and store (although in fact not all of these “commands”
affect the store).

• show f : returns the next scenario in If .
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• show-all f : returns the set of all scenarios for Γ(f).

• reset f : updates the binding of f in the store to an iterator over all scenarios for Γ(f) (which
can be obtained by re-interpreting the formula bound to f in the environment).

• count f : returns the cardinality of the set of scenarios for Γ(f). This value is implementation
specific, as some model finders work with bounds on the universe sizes, while others remove
isomorphic scenarios.

• isposs? f : returns true iff the set of scenarios for Γ(f) is not empty.

• show realized C: returns the set of those c ∈ C such that Γ(f) ∧ c is satisfiable.

• show realized C for cases D: for each d ∈ D, returns the set of those c ∈ C such that
Γ(f) ∧ d ∧ c is satisfiable.

• load-policy P = filename: concrete syntax defined in the Margrave documentation). Adds
a typed relation P.D to the vocabulary for every relation D appearing on the left side of
a rule within p. If the vocabulary specified in p has not already been loaded, merge p’s
vocabulary with the extended current vocabulary to form the updated vocabulary. (It is
possible that the vocabularies conflict, so that a merge is not well-defined: the command
fails in this case.)

3.4 Implementation Details

Margrave’s backend must produce sets of solutions to first-order logic formulas. We currently use
a tool called Kodkod [TJ07] that produces solutions to first-order formulas using sat solving.2 sat
solvers handle propositional formulas. Kodkod bridges the gap from first-order to propositional
formulas by asking users for a finite universe-size; under a finite universe-size, first-order formulas
translate easily to propositional ones. For instance, consider the original first-order sentence:

∀x host(x) =⇒ ∃y (router(y) ∧ CanAccess(x, y))

Assume a universe of size 2 with elements A and B. Expand the ∀-formula with a conjunction
over each of A and B for x:

host(A) =⇒ ∃y (router(y) ∧ CanAccess(A, y)) ∧
host(B) =⇒ ∃y (router(y) ∧ CanAccess(B, y))

Next, expand each ∃-formula with a disjunction over each of A and B for y:

host(A) =⇒ (router(A) ∧ CanAccess(A,A)) ∨
(router(B) ∧ CanAccess(A,B)) ∧

host(B) =⇒ (router(A) ∧ CanAccess(B,A)) ∨
(router(B) ∧ CanAccess(B,B))

Replace each remaining formula with a propositional variable (e.g., router(A) becomes p2):

p1 =⇒ (p2 ∧ p3) ∨
(p4 ∧ p5) ∧

p6 =⇒ (p2 ∧ p7) ∨
(p4 ∧ p8)

2Within Kodkod, we use a sat-solver called sat4j [BP10].
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Every solution produced using a bounded size is legitimate (in logical terms, our analysis is
sound). However, analysis will miss solutions that require a universe larger than the given size (in
logical terms, it is not complete). Fortunately, for many policies and queries, Margrave is able to
automatically compute a size to use such that completeness is preserved (see Chapter 4.)

Regardless of whether Margrave can automatically produce a universe size, each query may be
enhanced with a user-provided size.

Overall, we believe sacrificing exhaustiveness for the expressive power of first-order logic in
policies and queries is worthwhile, especially given the large number of practical queries that can
be checked exhaustively.

3.5 Conclusion

Margrave is constantly being developed. The latest public release can be found at:

www.margrave-tool.org

We discuss many potential future enhancements to Margrave in Chapter 8.
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(a) Running a Query

(b) Refining a Previous Query

Figure 3.1: The Margrave Tool
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1 (Policy uses SchoolVocab

2 (Variables

3 (Variable s Subject)

4 (Variable a Action)

5 (Variable r Resource))

6 (Rules

7 (ProfessorsCanWrite = (permit s a r) :- (isFaculty s) (Write a) (Grade r))

8 (StudentsCanReadOwn = (permit s a r) :-

9 (isStudent s) (Read a) (Grade r) (gradeBelongsTo r s))

10 (DenyOtherwise = (deny s a r) :- true))

11 (RComb (fa permit deny)))

Figure 3.2: A Margrave policy specification

1 (Vocab SchoolVocab

2 (Types

3 (Type Subject)

4 (Type Action > Read Write)

5 (Type Resource > Grade))

6 (Predicates

7 (Predicate isStudent Subject)

8 (Predicate isFaculty Subject)

9 (Predicate isAdministrator Subject)

10 (Predicate gradeBelongsTo Grade Subject)))

Figure 3.3: A Margrave vocabulary
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Chapter 4

Completeness Guarantees for
Scenario-Finding

The undecidability of first-order logic poses a challenge to using first-order scenario-finding tools
for verification: analysis performed under bounds may not be complete. While incompleteness is
unavoidable for some classes of formulas, there are also classes for which analysis is complete under
domains of finite size. Margrave, like other similar tools, requires finite domain-size bounds. In
the general case, it obtains these bounds from the user, and does not help users determine whether
their bounds suffice for completeness. Ideally, tools like Margrave or Alloy would provide such
feedback or, better still, compute sufficient bounds automatically when possible.

Sufficient-bounds results are long-established for classical first-order logic. Margrave’s logic,
however, is different in ways that impact computing bounds. Margrave vocabularies yield first-
order logic with sorts: the class of many-sorted first-order logic formulas with sufficient bounds
properly includes that for the unsorted case. Existing results on sufficient bounds for many-sorted
logic, however, make assumptions that are not valid for many Margrave policies or Alloy specifica-
tions: both tools allow sorts to be empty, and also allow sorts to overlap. These features, which are
critical for modeling realistic systems, require an extended theory of bounds-computation. This
work1 presents the theory and algorithms for computing sufficient bounds for a substantial class
of first-order formulas.

We actively use these results within the current version of Margrave, which was introduced in
Chapter 3. One of our standard policy examples—from a deployed conference-paper manager—
requires the results we present here. Margrave uses the presented algorithms to compute how
many papers are required for complete reasoning. In other examples, Margrave computes sufficient
bounds on some sorts (even when others cannot be bounded). This can help a user decide how to
allocate the computational resources of model finding. Margrave is built upon Kodkod [TJ07], the
backend model-finder for the Alloy Analyzer and thus these results are of interest to both tools.

4.1 Overview of Results

The Bernays-Schönfinkel-Ramsey class, sometimes called “Effectively Propositional Logic” (EPL),
comprises the set of first-order sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ym . φ

where φ is quantifier-free and has no function symbols. The satisfiability problem for this class is
decidable: Bernays and Schönfinkel [BS28] and Ramsey [Ram30] showed that such a sentence has

1A preliminary version [NDFK12] of this work appeared at the International Conference on Abstract State
Machines, Alloy, B, and Z.
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a model if and only if it has a model of size bounded by n plus the number of constants in φ. When
such a finite model property holds, satisfiability-testing reduces to exhaustive search for a model
within bounded domains. Furthermore, the search need only consider models whose elements are
constants. In effect, satisfiability for these formulas reduces to propositional satisfiability.

The EPL results assume that all variables quantify over the same domain. Alloy uses a sorted
first-order logic, in which values come from several domains (Alloy signatures) and each variable
is associated with a particular domain. Sorts provide additional information that model finders
and theorem provers can exploit in the search for models [Jer88, HRCS02, dMB08b, LS04]. More
strikingly, the class of sentences with the finite model property is richer in a sorted framework
[Harpt, FG03, ARS10]. The following simple example illustrates the interplay between sorts and
bounds for completeness. Consider the class of unsorted sentences of the form

∀y1∃x∀y2 . φ.

Satisfiability is undecidable for this prefix class [BGG97]. In contrast, this sorted verion

σ ≡ ∀yA1 ∃xB∀yA2 . φ (4.1)

is better behaved. Suppose that φ contains constants, say nA constants of sort A and nB of sort
B, but no function symbols. If we were to postulate that sort A is a subsort of sort B, then if σ
has any models at all then it has a model whose size at sort A is bounded by nA and whose size
at sort B is bounded by (2nA + nB). On the other hand, if our signature declared that B were a
subsort of A, then some σ would only have infinite models. In considering subsort relationships,
this example illustrates order-sorted logic, in which there is a partial order on the sorts rather than
an assumption that all sorts are disjoint. We give a formal treatment of this example below, as
Example 3.

Tools using order-sorted logic that allow empty sorts demand new methods for computing
sufficient bounds. To illustrate why, we first consider a standard approach to establishing the
finite-model property. Let σ be a sentence in unsorted first-order logic.

1. By Skolemization, there is a universal sentence σsk equi-satisfiable with σ. The language of
σsk is richer than that of σ, since constants and function symbols have been introduced on
behalf of existential quantifiers of σ.

2. Any potential model M for σsk has a Skolem hull [CK73] consisting of the interpretation in
the model of the ground terms of the language. The set of ground terms is called the Herbrand
universe. The Skolem hull forms a submodel of M in which every element is named by a
term in the language.

3. A fundamental classical theorem is that the truth of universal sentences is preserved under
submodel. Thus, if the signature of σsk has only finitely many terms, that is, if the Herbrand
universe is finite, then σ has the finite-model property.

When the language has only a single sort, the only way to guarantee that the Herbrand universe is
finite is to have no function symbols (other than constants). In that setting, the sentences whose
Skolemization produces no function symbols comprise the EPL class. The many-sorted setting is
more lenient. Consider for example a sentence σ whose Skolemization leads to a language with
simply a constant a of sort A, a function f of sort A → B. Then the only ground terms that
can be constructed are a and f(a) (terms such as f(f(a)) are not well-sorted). This suggests—
correctly—that a richer classes of finite-model results are available.

But there are technical obstacles to generalizing the above argument. In particular,

• When empty sorts are allowed, the Skolem form of σ is not equi-satisfiable with σ. For
example the sentence (∀yA.y = y)∨ (∃xB .x 6= x) is true in models where the sort B is empty.
Skolemization, with a new constant b of sort B, yields the sentence (∀yA.y = y) ∨ (b 6= b)
which is is unsatisfiable. Section 4.2 addresses this issue formally.
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• When sorts are not assumed to be disjoint (the order-sorted setting), not every element in
the Skolem hull of a model is named by a term. Indeed the Skolem hull of M can be infinite
even when a finite submodel of M does exist. Example 2 in Section 4.2 illustrates this case.

Contributions We adapt the approaches in the standard argument to accommodate ordered
sorts and empty sorts. In doing so, it enables automatic bounds computation for additional Alloy
formulas through the following contributions:

• We identify (Definition 4.3.2) a syntactically-determined class of sentences extending EPL,
comprising Order-Sorted Effectively Propositional Logic (order-sorted effectively-propositional
logic), for which the Finite Model Property holds (Theorem 4.3.2, Section 4.3).

• We present a linear-time algorithm (Corollary 4.4.1) for membership in order-sorted effectively-
propositional logic. We present a cubic-time algorithm (Theorem 4.4.2) for computing an
upper bound on the size of models required for testing satisfiability. It is interesting to note
that the bound itself can be exponential in the size of the sentence (Section 4.4), even though
it can be computed in polynomial time.

We view identification of the order-sorted effectively-propositional logicclass as a contribution
to a taxonomy of decidability classes in order-sorted logic. In the presence of possibly-empty sorts,
sentences do not always have equivalent prenex-normal forms, so we cannot attempt a decidability
classification in terms of quantifier prefix as in [BGG97]. As Section 4.3 shows, our decidability
criterion is based entirely on the signature of the Skolemization of the given formula. This signature
can be viewed as a generalization of the idea of quantifier prefix, as it implicitly records the pattern
of nesting between universal and existential quantification.

An Example in Margrave

The PLT Scheme application Continue [KHM+07] automates many conference-management tasks.
Margrave has been helpful in developing and analyzing Continue; here we hint at some of the ways
that the algorithms given in this chapter have improved some of these analyses.

As shown in Chapter 3, we represent the access-control policy of a conference in Margrave
as a first-order theory, over a language representing facts about the world and access-control
decisions such as permit and deny . For example, a certain policy rule might say “The conference
administrator can advance the conference out of the bidding phase if every reviewer has bid on
some paper.” This rule gives rise to the sentence

permit(s, advancePhase, conference)←− Admin(s) ∧ (phase = Bidding)∧
∀uUser∃pPaper . bidOn(u, p)).

The set of such policy rules, together with assumed facts about the application domain, comprise
a background theory for analysis. Now suppose one wants to verify the property: “The conference
chair can modify user passwords.” It suffices to determine that there are no models of the negation
of the formula

∀rUser . permit(chair ,modifyPassword , r)

together with the background theory. The question, of course, is determining an upper bound on
the scope of the search. The fact that the formula being explored by the user is purely existential
is of little help by itself, since the entire policy theory is part of the satisfiability query. Besides
rules such as the permit rule quoted above, the language also includes such function symbols as
paperPhase : Paper → PaperPhase and decision : Paper → Decision.

In the absence of sensitivity to sorts this theory would not submit to a finite-model discipline.
But in fact, for the Continue theory and the associated query above Margrave automatically
computes sufficient bounds:
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Conference:7 PaperPhase:12 Object:14 ConferencePhase:10

Action:16 User:9 Resource:6 univ:59 Paper:6

Without the support of the finite-model algorithms herein, the user would—à la Alloy—have to
instruct the tool to restrict attention to a finite search space that was presumably arrived at in an
ad-hoc manner.

4.2 Skolemization

Lemma 4.2.1. Every formula is logically equivalent to a formula in negation normal form.

Proof. As for standard one-sorted logic. DeMorgan’s laws for pushing negations below ∧ and ∨,
and the equivalences between ¬∃xAα and ∀xA¬α all hold, even in the presence of empty sorts.

A formula is in negation-normal form if the negation sign is applied only to atomic formulas.
As for standard one-sorted logic, DeMorgan’s laws for pushing negations below ∧ and ∨, and the
equivalences between ¬∃xAα and ∀xA¬α all hold, even in the presence of empty sorts. So every
formula is logically equivalent to a formula in negation normal form. But the fact that models
can have empty sorts changes the rules for how quantifiers may be moved within a formula. In
particular the passage between ((∃xAα)∨β) and ∃xA(α∨β) (when x is not free in β) does not hold
if A can be empty (and of course the dual equivalence involving ∀ fails as well) and so we cannot
in general percolate quantifiers to the front of a formula. So we cannot restrict our attention to
formulas in prenex normal form, but we will always pass to negation-normal form.

Definition 4.2.1 (Skolemization). Let φ be a negation-normal form formula over signature L =
(S,≤,Σ); the result of a Skolemization-step of φ is any formula φ′ that can be obtained as follows.
If ∃xA.ψ(xA, xA1

1 , . . . , xAn
n ) is a subformula occurrence of φ that is not in the scope of an existential

quantifier, let f be a function symbol not in Σ, and let φ′ be the result of replacing the occurrence
of ∃xA.ψ(x, x1, . . . , xn) by ψ(f(x1, . . . , xn), x1, . . . , xn). Note that φ′ is a formula in an expanded
signature obtained by adding f to Σ〈A1,...,An〉,A.

A Skolemization of a formula φ is a sentence with no existential quantifiers, obtained from φ
by a sequence of such steps.

It is not hard to see that any two Skolemizations of a sentence will differ only in the names
of the new function symbols used. We do not need this result here and so will not prove it. But
in order to unambiguously speak of the Skolemization of a sentence σ let us agree that we will
eliminate existential formulas from left-to-right and use a canonical well-ordering of the universe
of potential vocabulary symbols. With this understanding, if σ is a sentence over L we we will
speak of “the Skolemization” of σ, and denote it σsk.

Lemma 4.2.2. For any σ we have σsk |= σ.

Proof. Note that the signature of σsk is an expansion of the signature of σ so the entailment claim
makes sense. It suffices to show that the result of a single Skolem-step on σ entails σ; this is very
easy to see from the definition.

In contrast to the classical case we do not have the fact that “σ satisfiable implies σsk satis-
fiable.” That holds in one-sorted logic because we can always expand a model of σ to properly
interpret the Skolem functions and make σsk true, but this expansion is not always possible in the
presence of empty sorts.

Example 1. Let σ be (∃xA . (x = x) ∨ ∃yB . (y = y) ) ∧ (∀zA . (z 6= z)). Then σ is satisfiable but
its Skolemization ((a = a) ∨ (b = b)) ∧ (∀zA . (z 6= z)) is not.
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The phenomenon in Example 1 is essentially the only thing that can go wrong: models can be
expanded to interpret Skolem functions if we do not existentially quantify over empty sorts. This
points the way to recovering a weak version of the classical equi-satisfiability result which will be
good enough for our present purposes.

Definition 4.2.2. A model M is safe for formula φ if for every occurrence of a subformula ∃xA . α
in φ we have MA 6= ∅.

Lemma 4.2.3. If M |= σ and M is safe for σ then there is an expansion M∗ of M to the signature
of σsk such that M∗ |= σsk.

Proof. It suffices to show that the corresponding result holds for a single Skolem-step on σ entails σ,
so suppose σ and σ′ are as in Definition 4.2.1. The argument is just as for classical one-sorted logic:
we can expand the model M to interpret the new function symbol f precisely because M satisfies
the the original σ, but we must know that A is non-empty in case the truth of ∃xA.σ(x, x1, . . . , xn)
is needed for this.

Definition 4.2.3. Let φ be a formula. An approximation of φ is a formula obtained by replacing
some (zero or more) subformulas ∃xA . α of φ by ⊥ (a propositional constant, interpreted as
falsehood in every model)

It is not hard to see that if σ⊥ is an approximation of σ then σ⊥ |= σ.

Lemma 4.2.4. If σ⊥ is an approximation of σ then σ⊥ |= σ.

Proof. We prove by induction over arbitrary formulas φ and approximations φ⊥, and for arbitrary
models M and environments η, if M |=η φ⊥ then M |=η φ. Suppose M |=η φ⊥.

• φ is a literal: then φ⊥ = φ. So certainly M |=η φ.

• φ ≡ α ∨ β: then φ⊥ = α⊥ ∨ β⊥, where α⊥ and β⊥, are approximations of α and β. Then
M |=η α⊥ or M |=η β⊥ so by induction M |=η α or M |=η β, as desired.

• φ ≡ α ∧ β: then φ⊥ = α⊥ ∧ β⊥, where α⊥ and β⊥, are approximations of α and β. Then
M |=η α⊥ and M |=η β⊥ so by induction M |=η α and M |=η β, as desired.

• φ ≡ ∀xAα: then φ⊥ = ∀xA . α⊥, where α⊥ is an approximation of α. For every e ∈ MA

we have M |=η[xA 7→e] α⊥, so by induction at each such e we have M |=η[xA 7→e] α, so M |=η

∀xA . α.

• φ ≡ ∃xAα: then either φ⊥ = ∃xA.α⊥ or φ⊥ = ⊥. In the former case we have, for some
e ∈ MA, M |=η[xA 7→e] α⊥, so by induction M |=η[xA 7→e] α, so M |=η ∃xA . α. The latter case
cannot arise under the hypothesis that M |=η φ⊥.

Lemma 4.2.5. If M |= σ then there is an approximation (σM
⊥ ) of σ such that M |= σM

⊥ and M is
safe for σM

⊥ .

Proof. The sentence σM
⊥ is obtained by replacing ∃xA . α by ⊥ precisely when MA = ∅.

Formally we inductively define approximations φM⊥ for arbitrary formulas φ as follows.

• φ is a literal: then φM⊥ = φ.

• φ ≡ ∃xAα and MA = ∅: then φM⊥ = ⊥

• φ ≡ ∃xAα and MA 6= ∅: then φM⊥ = ∃xA.αM
⊥ .

• φ ≡ ∀xAα: then φM⊥ = ∀xA . αM
⊥ .
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• φ ≡ α ∨ β: then φM⊥ = αM
⊥ ∨ βM

⊥ .

• φ ≡ α ∧ β: then φM⊥ = αM
⊥ ∧ βM

⊥ .

It is clear from the construction that M is safe for φM⊥ . We now claim that for an arbitrary
environment η, if M |=η φ then M |=η φ

M
⊥ . But this is a straightforward induction over formulas

φ. The lemma follows by taking φ to be σ.

Lemma 4.2.6. If σ is satisfiable then there exists an approximation σ⊥ of σ such that σ⊥sk is
satisfiable.

Proof. By Lemma 4.2.5 and Lemma 4.2.3.

4.3 A Finite Model Theorem for Order-Sorted Logic

Model M is a submodel of model N if (i) for each sort A, MA ⊆ NA and (ii) each fM and RM are
obtained as the restrictions of fN and RN to M. Note that we use “submodel” in this strong sense
rather than just requiring each RM to be a subset of RN (as is done by some authors).

If X = {XA | A ∈ S} is a family of sets with XA ⊆ MA for each A ∈ S then we say that X is
closed under a function g : MA1 ×· · ·×MAn →MA if whenever (a1, . . . , an) ∈ XA1 ×· · ·×XAn we
have g(a1, . . . , an) ∈ XA. Note that this is a stronger claim than saying that the single set

⋃
X is

closed under g.

Lemma 4.3.1. Let h : P → M be a homomorphism between models of L = (S,≤,Σ). There is a
unique submodel of M with universe {hA(PA) | A ∈ S}.

Proof. It is easy to check that the family {hA(PA) | A ∈ S} is closed under the interpretations in M
of the function symbols in Σ. So if we define the interpretations of the relation symbols in Σ to be
the restriction of the interpretations in M the result is a submodel. Since there is no choice in the
interpretations of the symbols in Σ once the universe {hA(PA) | A ∈ S} is determined, uniqueness
follows.

We will denote the submodel identified in Lemma 4.3.1 as h(M).

Remark 4.3.1. For future reference we observe that if P is a submodel of M and e ∈MB then it
need not be the case that e ∈ PB even if e ∈

⋃
{PA | A ∈ S}. Indeed this can happen even when P

is obtained as the image of a homomorphism into M. This has important consequences for the use
of sorts as predicates, as we will discuss in Section 4.5.

Next we establish the fundamental fact about preservation of universal sentences under sub-
model. The proof is a straightforward induction.

Theorem 4.3.1. Let σ be a sentence that is existential-free and in negation-normal form and let
M′ be a submodel of M. If M |= σ then M′ |= σ.

Definition 4.3.1 (The kernel of a model). Let M be a model for the signature L = (S,≤,Σ). Let
h be the unique homomorphism from T L to M (c.f. Theorem 2.0.1). The image of h is a submodel
of M by Lemma 4.3.1; this is the kernel of M.

The crucially important fact for us is that for the kernel K of M we have, for each sort A, the
cardinality of KA is bounded by the cardinality of T LA , simply because KA is the image of T LA
under h.
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The kernel and the Skolem hull Recall the classical treatment of Skolemization (see e.g.,
[CK73]): given a model M, let M∗ be a model interpreting the Skolem functions that satisfies the
Skolem theory (the sentences saying that the Skolem functions witness the truth of the associated
existential formula). Then given a subset X of the universe of M, the Skolem hull HM(X) is the
smallest subset of the universe containing X and closed under the functions and constants of the
enriched language; this determines an elementary submodel HM(X) of M∗. In particular HM(∅)
can be viewed as a “minimal” submodel of M.

But in the order-sorted setting, the kernel of a model is not in general the same as the Skolem
hull. The latter notion, although perfectly sensible in order-sorted logic, does not play the same
role of “minimal” submodel as it does in the one-sorted setting. Indeed it is possible for the kernel
of a model to be finite while the Skolem hull is infinite.

Example 2. Consider L = ({A,B}, ∅,Σ) with a ∈ Σ〈〉,A and f ∈ ΣB,B the only vocabulary

symbols. Let M have MA = {b0 = aM}, MB = {b0, b1, b2, . . .}, and fM map bi to bi+1. Then the
Skolem hull H(∅) of M is M itself. Yet the kernel K of M is the model of size 1 with KA = {b0},
KB = ∅, fK = ∅.

Here we present our main theorem.

Theorem 4.3.2. Let σ be an L-sentence whose Skolemization σsk has signature L∗. Then σ is
satisfiable if and only if σ has a model H such that for each sort A, the cardinality of HA is no
greater than the cardinality of T L∗A .

Proof. For the non-trivial direction, suppose σ is satisfiable. By Lemma 4.2.6 there is an approxi-
mation σ⊥ of σ such that σ⊥sk is satisfiable. Let L∗∗ be the signature for σ⊥sk; note that L∗∗ is
a reduct of L∗ and the sentence (σ⊥)sk is existential-free.

Let M be a model of (σ⊥)sk, and let H be the kernel of M. Since (σ⊥)sk is existential-free,
H |= (σ⊥)sk. Since H is a kernel we have that for each sort A, the cardinality of HA is no greater
than the cardinality of T L∗∗A , and thus no greater than the cardinality of T L∗A . Since (σ⊥)sk |= σ⊥
and σ⊥ |= σ, the model H is the desired model of σ.

Finally we can define precisely the key notion of the paper.

Definition 4.3.2. Order-Sorted Effectively Propositional Logic (order-sorted effectively-propositional
logic) is the class of sentences σ such that the signature of the Skolemization of σ has a finite term
model.

The next section shows how to decide whether a sentence is in order-sorted effectively-propositional
logicand if so, to compute the sizes of the sorts in the term model. Taken together with Theo-
rem 4.3.2, this establishes a decision procedure for satisfiability of order-sorted effectively-propositional
logicsentences.

4.4 Algorithms

Let L = (S,≤,Σ) be a signature. We say that sort A is finitary in L if T LA is finite. Our
membership algorithm reduces the problem of counting terms to one of asking whether a given
context-free grammar yields only a finite number of strings; well-known algorithms solve the latter
problem. Intuitively, the grammar captures the ground terms that can be generated from the
signature.

Definition 4.4.1. Given a signature L = (S,Σ,≤) with multiple sorts, we define a grammar GL
as follows. The set of nonterminals is S ∪ {A0}, where A0 is a fresh symbol not in S, the set of
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terminals is
⋃
{Σw,S | (w, s) ∈ S∗ × S}, and the set of productions comprises:

A0 → A for each A ∈ S
B → fA1 . . . An whenever f ∈ Σ〈A1...An〉,B

B → A whenever A ≤ B

A non-terminal X in a context-free grammar G is said to be useful if there exists a derivation
A0 ⇒∗ αXβ ⇒∗ u where u is a string of terminals, otherwise X is useless. If A is a useful
non-terminal and u is a string of terminals we say that A generates u if there is a derivation
A =⇒∗ u.

Lemma 4.4.1. Let A be a sort of L and let u be a string of terminals over
⋃
{Σw.S | (w, s) ∈ S∗ × S}.

Then u is a term in T LA if and only if there is a derivation A⇒∗ u in GL. A sort A is inhabited by
a ground term if and only if A is useful in the grammar GL. When A is useful as a sort in L(GL),
the set T LA is finite if and only if A generates only finitely many terms in L(GL). In particular the
set T L is finite if and only if L(GL) is finite.

Proof. The first claim is easy to check: it holds essentially by the construction of GL. The second
claim follows from the first and the facts that the u in question are strings of terminals of GL and
we have A0 ⇒ A for each A ∈ S.

Theorem 4.4.1. There is an algorithm that, given an order-sorted signature L, determines (uni-
formly) for each sort A, whether T LA is finite. The algorithm runs in time linear in the total size
of L.

Proof. By Lemma 4.4.1, T LA is finite if and only if A generates only finitely many terms in in
L(GL). There is a well-known algorithm for testing whether a non-terminal in a context-free
grammar generates infinitely many terminal strings: after eliminating useless symbols from the
grammar GL, form the graph whose nodes are the inhabited sorts, with an edge from B to A
if and only if there is a production in GL of the form B → α A β, that is, if and only if the
set Σ〈A1...A...An〉,B is non-empty or if A ≤ B. Then a non-terminal A generates infinitely many
terminal strings if and only if there is a path from A to a cycle. Since the size of GL is linear in
the size of L, the overall complexity of our algorithm is linear in L.

Example 3. Return to Equation 4.1 from Section 4.1.. After Skolemizing we have the signature
with b ∈ Σ〈〉,B and f ∈ ΣA,B in addition to those constants in the original signature. It is easy to
check that the graph constructed for this signature has edges from the node A0 to A and to B, and
an edge from B to A. This graph is acyclic so we conclude that this class of sentences has the finite
model property. On the other hand, if we were to postulate that B ≤ A (instead of A ≤ B) then
we cannot deduce the finite model property, since our grammar would have the production A→ B
in addition to B → A and the resulting graph would have a cycle.

Corollary 4.4.1. Membership in order-sorted effectively-propositional logicis decidable in linear
time.

Proof. Let σ be given, over signature L. We can compute the skolemization σsk of σ in linear
time, and extract the signature L∗ of σsk. The size of this signature is clearly linear in σ, so by
Theorem 4.4.1, we can decide whether all sorts of L∗ are finitary in time linear in σ.

Note that in the worst case, Σ may induce a number of terms exponential in its size. Thus
we would like to avoid actually generating the terms, and merely count them if we can do so in
polynomial time.

The intuition behind the algorithm is as follows. If a sort is finitary, its terms can be of height
no greater than the number of functions in Σ. So we construct a table containing the number of
terms of each height of each sort, starting with constants and then applying functions. The only
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complication is that when counting the ways to create a new term of height h using function f ,
we need to make certain that each has at least one subterm of height exactly h− 1.

Theorem 4.4.2. There is an algorithm that, given a signature L, computes, in time cubic in the
size of L, the size of T LA for each finitary sort A (returning “∞” for the non-finitary sorts).

Proof. The algorithm is given as Algorithm 4.4 below. A sketch of the algorithm follows:
Lines 1 through 3 perform initialization. Lines 4 through 7 fill the first row of the table with

the number of constant terms in each sort, remembering to propagate these constants to supersorts
of the sorts in which they were declared. The main body of the algorithm, which begins on line 8,
fills the rows for terms constructed using functions (and hence having “height” 1, 2, and so on.)
At each height, a flag is set (lines 9 and 20–21) which indicates whether terms of that height have
been found.

Line 10 begins iteration for every function f in the vocabulary Σ, attempting to count the
number of terms of height h which have f at their head; a running total is kept via the ways
variable, which is initialized on line 11.

To be of height h, a term must contain at least one subterm of height exactly h−1; exact counts
of these terms have already been computed in the prior row. Line 12 checks each component of f ’s
arity, counting the number of terms that have a h− 1 height sub-term in that component. Line 13
initializes the counter to the number of h − 1 height subterms available for this component, and
lines 14–17 factor in the options for the other components. Finally, line 18 adds the subtotal to
the running total for height h and function f . Once all options for f -headed, h-height terms have
been explored, lines 22–23 propagate those options to the supersorts of f ’s declared output sort.

Finally, the algorithm confirms that terms of height h exist (lines 24–25). If not, it can safely
terminate, since terms of height h+1 would require terms of height h to construct. The algorithm’s
result is the sum over each sort-column.

Proof of correctness Since the algorithm uses only FOR loops with finite arguments, it is easy
to see that it terminates. Furthermore we claim that after termination, the totals of each column
Tbl[

∑
][A] contain exactly |T LA | for each finitary sort A.

First observe that by the pigeonhole principle, all terms in T LA (A finitary) must have height ≤
nf . Therefore, when counting terms in finitary sorts it suffices to count only terms of height ≤ nf ,
and thus we need only prove that the algorithm populates the table correctly.

Theorem 4.4.3. For each h, A, Tbl[h][A] contains exactly the number of terms having height h
within T LA .

Proof. After a row is computed by our algorithm, it is never again modified. So we proceed by
induction on h.

Base: If h = 0 then we are concerned only with constant terms. The first block of our algorithm
counts every constant c : S exactly once in each Tbl[0][S′] such that S ≤ S′. So we can conclude
that Tbl[0] contains a faithful count of height 0 terms for all sorts.

Induction: Suppose h > 0 and that each Tbl[x], 0 ≤ x < h is correct. A non-constant term t is
in T LA if (by definition!):

1. t has a function at its head with result sort A

2. t has a function at its head with some result sort B with B ≤ A,B 6= A.

The algorithm increments a table cell according to case (2) if and only if it has already incre-
mented a cell according to case (1).

Each ground term of height h > 0 has one distinct function f at its head, and (with respect to
the ordering in f ’s arity) exactly one left-most subterm of height h−1 at index lm, 1 ≤ leftmost ≤ n.
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Algorithm 1 The Counting Algorithm

Input: A signature L = (S,≤,Σ)
Output: For each sort s for which Σ is finitary, the number of terms of sort s.

1: ns ← the number of sorts
2: nf ← the number of functions
3: Tbl, an array of size [nf + 1][ns], initialized with zeroes
4: for all c ∈ S do
5: Tbl[0][S]← Tbl[0][S] + 1
6: for all S′ such that S < S′ do
7: Tbl[0][S′]← Tbl[0][S′] + 1

8: for h = 1 to nf do
9: foundTermsOfThisHeight := false;

10: for all f : (A1, ..., An)→ B ∈ Σ do
11: ways← 0
12: for leftmost = 1 to n do
13: waysn = Tbl[h− 1][leftmost]
14: for component = 1 to (leftmost− 1) do
15: waysn∗ =

∑
{Tbl[k][component] | 0 ≤ k ≤ h− 2}

16: for component = (leftmost + 1) to n do
17: waysn∗ =

∑
{Tbl[k][component] | 0 ≤ k ≤ h− 1}

18: ways+ = waysn
19: Tbl[h][B]+ = ways
20: if ways > 0 then
21: foundTermsOfThisHeight := true

22: for all S′ such that B < S′ do
23: Tbl[h][S′]+ = ways

24: if not foundTermsOfThisHeight then
25: break;

26: Return a 1-dimensional vector of size ns which contains the column sums of Tbl
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So we only need to show that we correctly calculate the number of terms in T LA having height h,
head function f with result sort A and left-most h− 1 subterm at index leftmost

The number of such terms depends only on the number of subterms available to fill each index
of f ’s arity. The number of usable subterms for Ai is:

• If i = leftmost, terms of sort Ai having height exactly h− 1 are admissible.

• If i < leftmost, terms of sort Ai having height up to h− 2 are admissible.

• If i > leftmost, terms of sort Ai having height up to h− 1 are admissible.

(The usable heights differ by index since index leftmost is the leftmost appearance of a height
h− 1 subterm.)

But this is exactly the calculation that the algorithm makes, and by our induction hypothesis,
these subterm rows have been calculated correctly.

Complexity Note that we could optimize the counting algorithm by memoizing column to-
tals, saving us the trouble of repeatedly summing up

∑
{Tbl[k][component] | 0 ≤ k ≤ h− 1} and∑

{Tbl[k][component] | 0 ≤ k ≤ h− 1}. The code for this is omitted for clarity, but we assume it
when calculating the complexity bounds below.

The initial pass for row 0 takes no more than ncns steps. The loop structure of the main block
(with memoization) nests nf , nf once more, the arity of each f , and then (is bounded by) the arity
of each f once more. Note that nf times the maximum arity is in O(Σ). Thus the complexity of
the algorithm is ncns + nf(|Σ| ∗maxarity + nfns), which is cubic in the size of the signature.

We could use this algorithm to test for finitary signatures as well, since if we continue to iterate
term height past |ΣF |, there will be an increase in Tbl[h][S] if and only if S is infinitary. However, it
benefits us to know in advance which sorts are finitary and which functions never produce ground
terms, as that may greatly reduce the size of Tbl.

If we want to know the total number of terms across all sorts (without duplication), it is easy
enough to add a counter and increment it on population (not propagation) in the algorithm above.

Summarizing, we have the following sound and complete procedure for testing satisfiability of
order-sorted effectively-propositional logicsentences. Given sentence σ, compute its Skolemization
σsk; let L∗ be the signature of σsk. If the term model T L∗ is finite then we know that if σ is
satisfiable then σ has a model whose universe has cardinalities as given in Theorem 4.3.2. Since
these bounds are computable we can effectively decide satisfiability for such sentences.

Remark 4.4.1. The results of the algorithm in Theorem 4.4.2 can be useful even if not all sorts are
finitary. Fontaine and Gribomont [FG03] have implemented an instantiation-based algorithm that
takes advantage of the information that certain sorts are guaranteed to have finitely many ground
terms. Their algorithm does not do a sophisticated test for this condition, in fact it succeeds only
if there are no non-constant terms in the sort in question. Our algorithm here is simple yet will
allow their methods to be applicable to a wider class of sentences.

4.5 About Sorts-as-Predicates

Many formulations of sorted logic, and certain tools, allow sort names to be used as predicate
names in formulas. We have not built this into our syntax; this section explains why. We start by
considering Herbrand’s Theorem:

Theorem 4.5.1 (Herbrand’s Theorem for Order-Sorted Logic). Let τ ≡ ∀y1, . . . , yn . α be a
sentence with α quantifier-free. Then τ is unsatisfiable iff there is a set {α1, . . . , αk} of ground
instances of α such that (α1 ∧ · · · ∧ αk) is unsatisfiable.
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The standard model-theoretic proof of Herbrand’s Theorem in first-order logic uses in an es-
sential way the fact that every element in the Skolem hull of a model is named by a term. And the
theorem holds with the syntactic rules we’ve used here, in particular when sorts may not be used
as predicates. But when that restriction is not adopted, Herbrand’s Theorem fails in a dramatic
way, with obvious negative consequences for our finite model theorem.

Example 4. Consider a signature L = (S,≤,Σ) with sorts A and B, a constant b ∈ Σ〈〉,B and a
function f ∈ ΣA,B. Let σ be the following sentence expressing that f is one-to-one but not onto

(∀xA . B(x)) ∧ (∀yB . A(y)) ∧ (∀xA . f(x) 6= b) ∧ (∀xA1 xA2 . (x1 6= x2)→ (f(x1) 6= f(x2)).

Since the first two conjuncts force A and B to be equal, this sentence has only infinite models. But
the Herbrand universe for L is the singleton set {b}.

What went wrong? The fundamental fact that the truth of existential-free sentences is preserved
under submodel, Theorem 4.3.1, fails when sorts are allowed as predicates. This is because in the
definition of submodel there is no requirement that elements remain in each sort they inhabit in
the original model: if P is a submodel of M and element e happens to be in MA ∩MB then it is
possible that, e is in, say, PA but not in PB . So Theorem 4.3.1, crucial to Herbrand’s Theorem, as
well as to the soundness of our decision procedure, fails at the base case.

A natural response to this might be: if sorts are to be used as predicates then the notion of
submodel should be refined to reflect this. In particular we might refine the definition of submodel
and insist that an element in the universe of a submodel retain all of the “sort-memberships” it
had in the original model. Unfortunately, if we do this something else breaks: the fact that the
image of a homomorphism makes a submodel (Lemma 4.3.1). Recall that closure under under the
functions of a vocabulary is a property of a family of sets (e.g. the family of images of sorts in the
source model) and not the union of this family. When we put a sort-structure on the union, in the
target model, of the images of sorts in the source by retaining the sort-memberships in the target
the resulting family of sets can fail to be closed under the interpretations of the function symbols.

Example 5. Refer to Example 2; consider the unique homomorphism h : K → M, for which hA
maps b0 to b0 and hB = ∅. The submodel of M generated by h interprets sort A as {b0}, interprets
B as ∅, and is the universe of a submodel of M (in which f is interpreted as the empty function).
But if we were to insist that element b0 inhabit sort B in the “submodel” induced by h, then we
cannot interpret f : it is supposed to be the restriction of fM to the universe of our submodel, but
fM(b0) = b1, and b1 is not in the range of h.

We stress that these observations are not bound up with our project of trying to build finite
models, they are general foundational problems with using sorts as predicates. If we permit sorts
to be used as predicates, we must either give up the notion of models being closed under homo-
morphisms or give up the intuitively compelling model-theoretic result that universal sentences
are preserved under submodel.

The solution is to view the use of sorts as predicates as syntactic sugar for formulas in the core
language. The construction for de-sugaring is the following. Given σ with subterm A(t) for a sort
A, rewrite this to replace A(t) with (∃zA . z = t) (where z is a fresh variable). This is done before
passing to negation-normal form, so as a consequence a subformula ¬A(t) will be replaced with
(∀zA . z 6= t).

Lemma 4.5.1. If σ′ is obtained from σ by the process described in the previous paragraph then σ′

and σ are logically equivalent.

Proof. A formal proof is straightforward; here we simply point out that the fact that MA might
be empty does not cause any problems: if M |=η A(t) this means that η(t) ∈ MA and so we can
bind z to η(t) to witness the truth of (∃zA . z = t); while if M 6|=η A(t) this means that η(t) 6∈MA

and so M |= (∀zA . z 6= t).
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Example 6. We revisit Example 4. When the sentence there is de-sugared according to the recipe
above we arrive at

(∀xA∃uB . u = x)∧(∀yB∃wA . w = y)∧(∀xA . f(x) 6= b)∧(∀xA1 xA2 . (x1 6= x2)→ (f(x1) 6= f(x2))).

When this sentence is Skolemized we get a function from A to B and one from B to A; together
with the constant b this obviously generates an infinite set of ground terms.

4.6 Related Work

The decidability of the satisfiability problem for the ∃∀ class in pure logic is a classical result of
Bernays and Schönfinkel [BS28] in the absence of equality, extended by Ramsey [Ram30] to allow
equality. The problem is known to be EXPTIME-complete [Lew80].

Goguen and Meseguer did seminal work [GM92] on order-sorted algebra; order sorted predicate
logic was first considered by Oberschelp [Obe89]. Harrison was one of the first to observe that
many-sortedness can not only yield efficiencies in deduction but can also support new decidability
results. In unpublished notes [Harpt] he presents some examples of this phenomenon, and suggests
searching for typed analogs of classical decidability classes, as we have done here. Order-sorted
signatures (without relation symbols) can be viewed as tree automata, so the question of whether
the set of closed terms is finite can be answered using standard automata techniques. We believe
that the algorithm we give for counting terms is new.

Fontaine and Gribomont [FG03], working in “flat” many-sorted logic (i.e., without subsorting)
prove that if there are no functions having result sort A and σ is a universal sentence then σ has a
model if and only if it has a model in which the size of A is bounded by the number of constants of
sort A. This result is used to eliminate quantifiers in certain verification conditions. This theorem
has application even when not all sorts are finite and can be used in a setting where some functions
and predicates are interpreted. As observed in Remark 4.4.1, the algorithm in Theorem 4.4.2 can
be used to broaden application of their techniques.

Claessen and Sorensson [CS03] have integrated a sort inference algorithm into the Paradox
model-finder that deduces sort information for unsorted problems and, under certain conditions,
can bound the size of domains for certain sorts and improve the performance of the instantiation
procedure. Order-sorting is not used, and there are restrictions on the use of equality.

Momtahan [Mom05] computes a refutationally-complete upper bound on the size of a single
sort (as a function of the user-provided bounds on the other sorts) for a fragment of the Alloy
kernel language. The conditions defining this fragment are not directly comparable to ours, but
in some respects constrain the sentences rather severely. For example existential quantification in
the scope of more than one universal quantifier is usually not allowed.

Abadi et al. [ARS10] identify, as we do, a decidable fragment of sorted logic that is decidable
by virtue of having a finite Herbrand universe. Although they target Alloy in their examples they
work in a many-sorted logic without subsorts or empty sorts; their condition for decidability is
the existence of a “stratification” of the function vocabulary; they do not provide algorithms for
checking the stratification condition or computing size bounds on the models.

Ge and de Moura [GdM09] present a powerful method for deciding satisfiability modulo theories
with an instantiation-based theorem prover. Given a universal (Skolemized) sentence σ they con-
struct a system of set constraints whose least solution constitutes a set of ground terms sufficient
for instantiation; satisfiability is thus decidable for the set of sentences for which this solution-set
is finite (in the many-sorted setting this subsumes the Abadi et al. class). They do not treat
empty sorts nor subsorting. They can treat certain sentences that fall outside our order-sorted
effectively-propositional logicclass; detection of whether a given sentence falls into their decidable
class seems to require solving the associated set-constraints, as compared to our linear-time algo-
rithm. Generally speaking they do detailed fine-grained analysis of individual sentences; we have
focused on an easily recognized class of sentences.
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The problem of efficiently deciding satisfiability in the EPL class is an active area of research.
Jereslow [Jer88] described a “partial instantiation” approach to first-order theorem proving in the
EPL fragment, constructing a sequence of propositional instantiations instead of working with
the full set of possibilities from the outset. Work by Hooker et al. [HRCS02] builds directly
on Jereslow’s approach (see also many references there). Recent alternatives approaches include
[dMB08b] and [LS04]. De Moura and Bjørner [dMB08a] have developed the SMT constraint solver
Z3. SMT enriches propositional satisfiability by adding equality reasoning, arithmetic, bit-vectors,
arrays, and some quantification. Z3 is used in software verification and analysis applications. De
Moura and Bjørner [dMB08b]; and Piskac and de Moura and Bjørner [PdMB08], introduce a
DPLL-based decision procedure for the EPL class; this has been implemented as part of Z3. Our
work is complementary to these efforts in that it identifies an extended class of sentences to which
contemporary techniques can hopefully be applied.

A preliminary version of our finite-model theorem work was presented at the workshop on
Synthesis, Verification, and Analysis of Rich Models (SVARM), July 20-21, 2010.
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Chapter 5

Disciplined Scenario-Finding

Almost any interesting specification will have many scenarios; in fact, most first-order logic spec-
ifications will have an infinite number of them. But even when scenarios are constrained to be
finite (for example by the imposition of a size-bound), so that there are only finitely many distinct
scenarios, making scenario-finding effective requires focusing on what scenarios to present, in what
order, and how to help users navigate them. There is some work on this: for instance, the Alloy
Analyzer tries to exclude isomorphic scenarios [TJ07], on the grounds that these present no addi-
tional information. Beyond that, however, Alloy lets the underlying SAT-solver dictate the order
of presentation, which is effectively unordered, and lets users go from one to the next, again with
no semantics associated with the order of presentation.

Alloy does, however, hope to present scenarios in a sensible order. As Jackson’s book [Jac12,
page 7] explains (instance is Alloy’s name for a relational model):

[T]he tool’s selection of instances is arbitrary, and depending on the preferences you’ve
set, may even change from run to run. In practice, though, the first instance generated
does tend to be a small one. This is useful, because the small instances are often
pathological, and thus more likely to expose subtle problems.

In other words, Alloy wishes to present the smallest scenarios first. It is therefore natural to ask
whether it is possible to force it to do so. There are two difficulties we might encounter: semantic
(can this be computed?), and performance (can it be done efficiently?), each of which can be an
obstacle.

We present a theory for scenario exploration, which has been implemented in a modified version
of Alloy called Aluminum.1. Aluminum has the following features:

• It presents minimal scenarios. Thus, when confronting a scenario given by Aluminum, a user
can be confident that every tuple2 in the scenario is necessary for that scenario to satisfy the
specification’s constraints. When a user chooses to view another scenario, Aluminum ensures
this too is minimal. By browsing the initial set of scenarios, the user can quickly obtain a
sense of the scope of scenarios engendered by the specification.

• Aluminum allows the user to augment a scenario with a tuple. Here again Aluminum com-
putes a minimal scenario, which includes any other tuples that may necessarily follow from
the augmentation.

• For a given scenario and specification, Aluminum computes the set of tuples consistent with
that scenario—that is, consistent with the specification— but not currently realized. These
suggest natural ways to augment the scenario, and hence continue the exploration.

1A preliminary version [NSD+13] of this work appeared at the International Conference on Software Engineering.
2We use tuple to represent an atomic truth (or falsity) instead of the standard logical fact in order to avoid

potential confusion with Alloy’s fact keyword.
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abstract sig Subject {}

sig Student extends Subject {}

sig Professor extends Subject {}

sig Class {

TAs: set Student ,

instructor: one Professor

}

sig Assignment {

forClass: one Class ,

submittedBy: some Student

}

pred PolicyAllowsGrading(s: Subject ,

a: Assignment) {

s in a.forClass.TAs or

s in a.forClass.instructor

}

pred WhoCanGradeAssignments () {

some s : Subject | some a: Assignment |

PolicyAllowsGrading[s, a]

}

run WhoCanGradeAssignments for 3

Figure 5.1: A simple gradebook specification

These features, respectively, comprise the core operations of Aluminum: GenerateMin, Augment,
and ConsistentFacts. The precise specifications of these operations, comprising the basic semantics
of Aluminum as a tool, are given in Theorem 4.3.2.

Exploration with minimal scenarios results in a different form of traversal of the space of
scenarios than what Alloy currently provides. Putting the user in control of exploration is perhaps
the chief merit of Aluminum’s approach (Section 5.1). We present the theory (Section 5.2), and
explain how we implement it atop Alloy (Section 5.3), including a brief discussion on the impact
of symmetry-breaking on minimality. We show that users incur minimal performance penalty
(Section 5.4), and finally (Section 5.6) examine the user experience that ensues from the minimality-
driven approach.

Scenarios, Formally Because the term “scenario” has many informal meanings, it helps to pin
down our terminology. A specification is a first-order logic description written by a user, e.g., in
Alloy syntax. This will include an (Alloy) command to be run: the result of running a command
is a set of models. Here “model” has its traditional meaning from logic: an assignment of values
to variables that makes a formula true. A model can be either propositional or relational, the
latter being the structures appropriate to first-order logic; we need to refer to both, because our
specifications are first-order but the underlying SAT-solver produces propositional models. Which
one we mean will usually be clear from context, but where necessary we will disambiguate. Finally,
a scenario is a relational model that is shown to the user. It may thus have embellishments for
compelling visual presentation, such as atom names drawn from the specification. Nevertheless,
because its semantic content is just a relational model, we will feel free to use “scenario” and
“model” interchangeably whenever it is clear that we are in a non-propositional context.
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5.1 A Worked Example

Figure 5.1 provides the Alloy specification for a simple gradebook. There are two kinds of users
(called Subjects in the specification): Student and Professor. A class has one Professor and a
set of Students designated as TAs. An assignment is submitted by a set of students for a specific
class. The gradebook specifies a policy on who may grade assignments: specifically, professors and
TAs may grade assignments in their associated classes.

5.1.1 Scenario Selection in Alloy vs. Aluminum

The specification’s run command asks for scenarios of who can grade assignments. Both Alloy
and Aluminum present one scenario at a time; users may request another scenario by clicking the
Next button. Aluminum produces a three initial scenarios in response, shown in Figure 5.3. In
contrast, Figure 5.2 shows the first three scenarios that Alloy produces (out of over 10,000). The
order in which each of Alloy and Aluminum produces scenarios is non-deterministic; the scenarios
in Figure 5.2 are representative of what we got in several independent runs.

Figure 5.2: Gradebook scenarios from Alloy

Aluminum’s scenarios illustrate three conditions under which one can grade an assignment:
(1) the subject is a TA and also the submitter of the assignment, (2) the subject is a TA for the
class but not the submitter of the assignment, (3) the subject is a Professor for the class. Each of
Alloy’s first three scenarios illustrate the first condition, but with additional elements that are not
necessary to satisfy the specification (such as two additional classes). Some of Alloy’s scenarios
(not shown) include additional tuples, such as a second student submitter of some assignment.
While these extra elements and tuples can exist in a satisfying scenario, they are not necessary.
Aluminum, in contrast, weeds out all unnecessary tuples, focusing instead on the essence of the
scenario.
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Figure 5.3: Gradebook scenarios from Aluminum

For the particular scenarios that Alloy generated on this example, one might posit that the
minimality problem is about the domain bounds used in the analysis: had we run the gradebook
specification with tighter bounds (1 Class, 1 Professor, 1 Assignment, and 2 Students), Alloy would
produce fewer and “tighter” scenarios. Minimality is, however, about more than just setting good
domain bounds, for two reasons. First, the bounds only control the number of elements, not the
number of tuples; even with tight bounds, non-minimal scenarios can contain unnecessary tuples.
Second, by setting bounds too tight, a user can fail to learn about potentially dangerous scenarios,
thus gaining inappropriate confidence in their specification. Thus, discovering good bounds is
often a process of trial-and-error; minimal scenarios eliminate unnecessary elements and tuples
automatically, without placing that burden on the user.

5.1.2 Partitioning the Scenario Space

Each of Aluminum and Alloy embodies a choice of which scenarios to present. Since both tools
build upon externally-developed SAT-solvers, their choices are constrained to principles that can
be encoded in the propositional formulas on which SAT-solvers operate. Within this constraint,
Alloy attempts to partition the scenario space into equivalence classes based on isomorphism and
presents one scenario per class (as we discuss in more detail in Sections 5.3 and 5.4)—but chooses
the scenario indiscriminately. Aluminum instead organizes scenarios into a partial order based on
the tuples they contain and presents the scenarios that are lowest in that ordering.

Figure 5.4 illustrates this fundamental difference between Alloy and Aluminum. The black
dots in (A) are scenarios of a specification. The blobs group them into equivalence classes. Part
(B) shows how Alloy might present this space: the red dots are representatives of each class;
Alloy presents one representative each, and the other members of the class (hollow dots) are
not presented. However, there is no ordering to how these representatives are presented, as we
have already seen: a fairly complex scenario could precede a very simple one. Part (C) shows
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Figure 5.4: How Aluminum and Alloy organize the space of scenarios. Each circle is a scenario,
and blobs represent equivalence classes. Red circles are those obtained using the Next button.
Hollow circles are those never shown to the user. Arrows represent augmentation operations, and
gray circles are scenarios presented after exploration. (A) shows a set of scenarios grouped by
isomorphism. (B) shows Alloy’s unordered presentation of representatives. (C) shows Aluminum’s
output, presenting minimal scenarios and augmentation. (D) shows a cone of scenarios.

what Aluminum does (we describe part (D) in Section 5.1.3.) It groups scenarios and picks
minimal representatives to show. The Next button shows only minimal scenarios, but Aluminum’s
augmentation command (described in Section 5.1.3) enables users to find scenarios (the gray dots)
with selected tuples added.

As part (C) suggests, augmentation might lead the user to scenarios (the gray circles) that are
isomorphic to ones that have been seen previously. We believe showing these scenarios is more
sensible than refusing to show a user-constructed scenario just because symmetry-breaking in
the original generation procedure would have suppressed it. Nevertheless, unreachable isomorphic
scenarios are still excluded, since the user cannot get to them through any operations; this therefore
shrinks the exploration space.

5.1.3 Exploration via Augmentation

Aluminum views minimal scenarios as a starting point for understanding specifications, but not as
sufficient. Alloy users commonly sanity-check specifications with a simple query that says “show
me satisfying scenarios”. The following query does this for the gradebook specification:

run {some Class} for 3

Aluminum produces only one minimal scenario for this query; it contains a single Class and a single
Professor who is the instructor for that Class. This is a sufficient scenario because the gradebook
specification does not require Students, TAs, or Assignments in a Class. Sanity-checking, however,
requires illustrating some of the optional components of a specification. These optional components
are not, however, independent: any gradebook scenario that contains an Assignment, for example,
must also contain a Student who submitted the Assignment. A systematic technique for exploring
the space of scenarios should help the user understand these dependencies.

Aluminum provides two operations that support systematic exploration of the scenario space.
Consistent Tuples suggests avenues for exploration by producing a list of all additional tuples that
are consistent with the current scenario (and hence can be added to the scenario). Augment adds
a user-selected tuple to the current scenario, producing a list of minimal scenarios that include
both everything in the current scenario and the new tuple. Returning to our gradebook example,
for the scenario showing just a single Class and Professor, Aluminum indicates that the following
additions are consistent:

Student[NEW(Subject$0)]
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Professor[NEW(Subject$0)]

Class[NEW(Class$0)]

Assignment[NEW(Assignment$0)]

Class.TAs[NEW(Class$0), NEW(Subject$0)]

Class.TAs[Class, NEW(Subject$0)]

Class.instructor[NEW(Class$0), NEW(Subject$0)]

Class.instructor[NEW(Class$0), Professor]

Assignment.forClass[NEW(Assignment$0), NEW(Class$0)]

Assignment.forClass[NEW(Assignment$0), Class]

Assignment.submittedBy[NEW(Assignment$0),

NEW(Subject$0)]

Each description string contains a relation name and, enclosed in square brackets, a list of atoms.
If an atom already exists in the current scenario, it appears by the name given it in the visualizer
(e.g., Class or Professor). If the atom is not present in the current scenario, its descriptor is
NEW, along with its internal name (Class$0, Subject$0, etc.).

Visually, it helps to imagine the cone of scenarios that extend, and are consistent with, a
given scenario. This is shown in part (D) of Figure 5.4. Aluminum’s consistent tuple computation
shows all the tuples that can inhabit this cone, thereby mapping out the cone’s landscape. These
tuples may not all, however, necessarily co-habit: a tuple appears in this list if it exists in some
satisfying scenario that extends the current one, but the presence of some can exclude others, due
to specification constraints or domain size bounds.

Suppose a user augments the scenario with the following:

Assignment.forClass[NEW(Assignment$0), Class]

There is only one extended scenario, and it includes a Student as well as an Assignment. Since
Aluminum produces only minimal scenarios (even under augmentation), this tells the user that
every addition to this model which adds an Assignment requires adding a Student—a form of
deductive reasoning that Alloy does not provide. Asking Aluminum for the consistent tuples for
this new scenario suggests some potentially interesting situations:

Class.TAs[Class, Student]

Assignment.submittedBy[Assignment, NEW(Subject$0)]

...

Specifically, (1) the Student who authored the Assignment could also be a TA in the class, and
(2) more than one Student is allowed to submit the same Assignment. Each of these may suggest
additional queries to a user. (Aluminum also implements a Backtrack button so users can undo
augmentation and continue exploration from a previous scenario.)

Aluminum’s combination of minimal scenarios and exploration helps users understand the im-
plications of their specifications in a lightweight manner. Alloy, in contrast, does not offer an
exploration mode (much less one based on minimality). If a user wants to see classes with assign-
ments, she must create a new run command that adds the assignment constraint. The resulting
scenarios may include unnecessary truths; determining the status of each is left to the user to sort
out, typically by continuing to refine the query. Furthermore, each change is followed by a new
execution, which may start the user out from a completely different initial scenario. By supporting
interactive exploration, we feel that Aluminum (a) reduces context switching, (b) reduces “explo-
ration clutter” in the specification, and (c) helps users stay with the same example, which can be
lost when executing afresh.

5.1.4 Tuple Provenance

Because of the semantics of Aluminum, when confronted with a particular scenario, a user can
understand the provenance of each tuple in it: it is present because it is either (a) part of a minimal
scenario, or (b) chosen by a user for augmentation, or (c) the consequence of a user augmentation.
While we have not modified Alloy to present this information explicitly, this could easily become
part of the user interface.
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5.2 Foundations

Models for first-order languages A (relational) model for a language L is a map I binding
each relational variable R of L to an actual set-theoretic relation I(R). If F is sentence of L and
I is an model making F true, we sometimes say that “I satisfies F” or “I witnesses F”, and write
I |= F . If T is a set of first-order sentences we say that I is a model for T , or I satisfies, or
witnesses, T if I satisfies each sentence of T , and we write I |= T .

As Jackson notes [Jac12], one can view Alloy’s specification language as first-order logic or
relational algebra. A tuple over a model I is given by a n-ary relation R and a sequence [a1, . . . , an]
of elements of I such that [a1, . . . , an] is in I(R).

If I1 and I2 are models, we define I1 ≤ I2 to mean that for each relation R, I1(R) ⊆ I2(R); we
write I1 < I2 if for at least one R the inclusion is strict. The cone of a model I is {I′ | I ≤ I′}:
intuitively, this is the set of extensions of I; such an extension can add elements and tuples, but
never lose information. This relation is a partial order on the set Mod(T ) of models for any T ; we
say that a model I is minimal for T if (i) I |= T and (ii) there is no I′ |= T with I′ < I. If T has
any finite models then it has at least one minimal model; in general, of course, T may have several
minimal models.

We will often consider models “up to isomorphism”: models I and I′ are isomorphic if they can
be made identical by renaming of elements. We write I1 � I2 to mean that, for some I′1 and I′2
isomorphic to I1 and I2 respectively, I′1 ≤ I′2.

Models for propositional languages A (propositional) model for a given set of atoms for
propositional logic is a function M from atoms to {0, 1}, (qua {false, true}).

If M1 and M2 are propositional models, we define M1 ≤M2 to mean that, for each propositional
atom p, M1(p) ≤ M2(p); write M1 < M2 if for at least one p, M1(p) < M2(p). Analogously with
relational models, the relation ≤ is a partial order on the set of models for any set B of propositional
formulas and determines the obvious notion of “cone” over a propositional model. A propositional
model M is minimal for a set B of propositional formulas if it satisfies B and B has no satisfying
model M′ <M.

Finite relational models can be encoded as propositional models using standard techniques. In-
deed, Alloy’s engine, Kodkod [TJ07], translates users’ relational specifications to the propositional
world, and the results back again for output.

Propositional encoding of specifications Alloy converts a “specification” into a constraint
represented as a relational algebra expression encoding the axioms and declarations of an Alloy
module together with the predicate for which we seek a (relational) model. Kodkod translates such
a constraint into (following the language of [TJ07]) a Kodkod problem, which is a triple consisting of
a universe of elements, a set of lower- and upper-bounds for each relation symbol in the language,
and a relational formula.

Any Kodkod problem P gives rise to a formula B(P ) of propositional logic. So given an
Alloy specification S, we eventually arrive at a propositional logic formula B(PS). Moreover –
if we remove the secondary variables that Kodkod introduces when translating to conjunctive
normal-form – Kodkod also gives us a one-to-one correspondence between relational models of PS
and propositional models of B(PS). The orderings defined above for relational and propositional
models are preserved under this mapping.

Theorem 5.2.1 states our correctness claims about Aluminum. Proofs follow naturally from the
algorithms in Section 5.3.

Theorem 5.2.1.

1. (Completeness of Generation) Let S be an Alloy specification. Procedure GenerateMin gen-
erates a complete set of minimal models for S up to isomorphism. That is, for any model I
witnessing S, GenerateMin will produce some minimal I0 such that I0 � I.
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Input: a model M and formula P with M |= P
Output: M ′, a minimal model for P

repeat
M ′ ←M
M ← Reduce(M)

until M = M ′ // Cannot minimize any more

Figure 5.5: Minimize Algorithm

2. (Correctness of Augmentation) Let I be an model witnessing specification S and let F be a
tuple over I. Procedure Augment either returns a model I′ such that (i) I � I′, (ii) I′ satisfies
S and F , and (iii) is minimal with respect to these properties, or detects failure if there is
no such model.

3. (Completeness of Exploration) Let I and I+ each witness specification S, with I < I+. There
is a finite sequence of Augment steps leading from I to I+.

4. (Completeness of Consistency-Checking) Let I be an model witnessing specification S. Pro-
cedure ConsistentFacts returns the set of those tuples F such that there is at least one model
I′ with I � I′ with I′ witnessing S and F .

5.3 Implementation

Aluminum modifies both the Alloy Analyzer’s user interface and underlying constraint solver,
Kodkod [TJ07]. Aluminum’s user interface is based on that of Alloy: the user submits an Alloy
specification, Kodkod translates the associated constraint to a propositional formula, the SAT-
solver is iterated to produce propositional models, and these are eventually translated to scenarios
by Kodkod and rendered by Alloy.

The differences between Alloy and Aluminum lie in the nature of the iterator to produce the
initial suite of scenarios, and the facility for user-controlled exploration of the space of scenarios.
This section outlines the algorithms underlying the functionality specific to Aluminum.

5.3.1 GenerateMin

The sequence of models produced by Aluminum as a result of the initial execution of the specifi-
cation is produced by procedure GenerateMin. Given a Kodkod problem P , Aluminum initializes
an iterator by invoking a SAT-solver (sat4j [BP10], in our implementation) to return a model M
of P ; M and P are then passed to the minimizer.

Minimization consists of repeated calls to Algorithm Reduce (Algorithm 5.6), until there is no
change: see Algorithm 5.5. Minimization is not a deterministic process, because a given model
can lie in the cone of several different minimal models (as Figure 5.4 (C) and (D) show). This
non-determinism manifests itself in practice in Aluminum, because the output of Reduce depends
on choices made by the SAT-solver.

After each (minimal) model M is generated, we of course want to ensure that M is excluded
from future generation. It is straightforward to filter the output to ensure this, as Alloy does.
In our setting the problem is somewhat more subtle, since the process of minimization will of
course return identical results from quite different models. But in fact this is an opportunity for a
significant optimization. After each output model M is computed, Aluminum adds to the current
problem the disjunction of the negations of the atoms true in M. This ensures that no subsequent
model from the SAT-solver will be in the cone of M. This is a sound pruning of the model space,
since M represents each model in its cone.
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Input: model M and formula B, with M |= B
Output: M ′ < M with M ′ |= B, if one exists; otherwise M
C ←

∧
{¬p | p is false in M}

D ←
∨
{¬p | p is true in M}

if there is a model N with N |= B ∧D ∧ C then
return N

else
return M // M is minimal

Figure 5.6: Reduce Algorithm

Suppressing Isomorphic Models. We have seen how to suppress the generation of identical
models, but eliminating isomorphic models is much harder. Kodkod tries to avoid generating iso-
morphs by adding “symmetry-breaking” formulas [Shl07, CGLR96] to the input. This is necessarily
heuristic, since no polynomial-time algorithm is known for detecting isomorphisms of relational
models.

Unfortunately, symmetry-breaking does not interact well with minimization. For intuition,
consider part (C) of Figure 5.4, in which two non-isomorphic models each lie in the cone of the
rightmost minimal model in the equivalence class with three entries. When these models are
minimized they may return the same minimal representative, depending on choices made by the
SAT-solver.

It is even the case that if Aluminum were to use the same mechanism as Kodkod for symmetry-
breaking it could incorrectly conclude that a non-minimal model is minimal. Aluminum thus uses
a slightly different heuristic for symmetry-breaking. One consequence is that Alloy sometimes
eliminates more isomorphic models than Aluminum, a fact which we discuss in Section 5.3.4.

5.3.2 Augment

A key observation is that augmenting a model of a specification by a tuple is merely an instance of
the core problem of minimal-model generation: the result of augmentation is precisely an iterator
over minimal models of the specification given by the original specification, along with the tuples
of the given model plus the new tuple.

One detail is important for performance. Letting B be the conjunctive normal form of the
original specification and Ap the Boolean variable representing the augmenting tuple A, the input
for model-generation is B ∪ {p |M(p) = 1} ∪ {Ap}. The point here is that since the augmentation
is performed entirely at the propositional level, Aluminum avoids the cost of re-translating from
relational to propositional logic.

5.3.3 ConsistentFacts

To aid the user in deciding how to explore the space of scenarios by augmentation, Aluminum can
determine in advance which new tuples can be consistently added to a given scenario in the context
of a given specification. If M is a model of B, we say that atom d is consistent with M and B if
there is a model of B and d extending M . Aluminum’s procedure for computing consistent tuples
(modulo translation to and from the propositional level) is given in Algorithm 5.7.

If two unused atoms occur in the same position in otherwise identical consistent tuples, Alu-
minum presents only one such. For instance, suppose that following two augmentations are con-
sistent:

Student[NEW(Subject$0 )]

Student[NEW(Subject$1 )]
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Input: model M and formula B, with M |= B
Output: the atoms false in M consistent with M and B
C ←

∧
{p | p is true in M}

D ←
∨
{p | p is false in M}

R← ∅
repeat

if there is a model N with N |= B ∧D ∧ C then
F ← {p | N(p) = 1 and M(p) = 0}
R← R ∪ F
D ← D − F

until no change in R
return R

Figure 5.7: Consistent Tuples Algorithm

That is, there are two unused Subject atoms, and either of them may be instantiated into Student.
In this case, Aluminum will only present the first. Since minimal models often have many unused
atoms, this filtering can substantially reduce the number of consistent tuples shown.

5.3.4 Symmetry Breaking in Aluminum

There is one technical issue remaining with our algorithms for minimization and augmentation.
The instances of a specification often include several that are identical up to renaming, i.e., are
isomorphic to one another. After translating to Boolean logic, Kodkod adds a symmetry-breaking
formula [CGLR96, Shl07] to eliminate many of these isomorphic copies. Isomorph-elimination
yields two benefits. It removes scenarios that provide no new information – “noise” in the output
– reducing the burden of scenario-browsing. It can also give a substantial performance improvement
on some specifications, especially ones that are unsatisfiable; it effectively reduces the search space.
Due to inherent complexity reasons, Alloy does not attempt to remove all isomorphs, but its greedy
approach is effective in practice.

Symmetry-breaking appears to be fairly straightforward, but it has interesting consequences
for producing minimal models. Let the translation of the original spec be α and the symmetry-
breaking predicate be β. Kodkod produces models for α∧ β. Since β is guaranteed to be satisfied
by at least one model in every isomorphism class, this approach is complete (up to renaming) for
model-finding. However, β can interfere with our minimization algorithm. If P = α ∧ β, then the
algorithm is guaranteed to produce models minimal for α ∧ β. But the original spec is α alone.
Minimizing with respect to α∧ β is too restrictive: reduction may terminate on a model even if it
can be further minimized with respect to α. If we did not address this problem then (depending
on the order in which candidate models are found) Aluminum could produce models that were not
minimal for the original specification.

One option would be to disable symmetry-breaking entirely. This is impractical, since doing
so would rob us of both its benefits. Instead, Aluminum finds candidate models to minimize with
respect α ∧ β, but reduces those candidates with respect to α only. This assures that we produce
models that are minimal for the spec. Furthermore, since the original candidate models are models
of α ∧ β, we retain much of what symmetry-breaking provides.

The end of every chain of reduction involves an unsatisfiable result, and symmetry-breaking
constrains the solver, often making such a result easier to find. This is a potential downside of
minimizing without β. However, the reduction cycle introduces a unit clause ¬p for every negative
variable p in M. These unit clauses also reduce the state space to be searched, and in practice we
have found that disabling β for minimization does not impair our performance. All minimization
numbers reported in Section 5.4 were generated using this hybrid approch to minimal-scenario

43



sig U {}

fact {some U}

run {} for 3

Figure 5.8: A simple specification and its space of models

finding.
But there is a price to pay: even if Alloy’s symmetry-breaking were perfect (it is not!), Alu-

minum could now output isomorphic minimal models. Figure 5.8 illustrates how this can occur.
The simple specification in the figure defines a universe of up to three objects, and requires that at
least one object exist in a model of the specification. We represent each model with a three-digit
binary bitstring indicating which objects are present in the model. For example, bitstring 011
indicates that the model contains objects 2 and 3, but not object 1. The partial order shows
models of the specification (it omits the bitstring 000 because this violates the specification).

This model space has three equivalence classes under symmetry: models with one, two, and
three objects, respectively. Each equivalence class occupies a row in the figure. This model space
has three minimal models: 100, 010, and 001. The minimal models form the bottom row of the
lattice; each model in an upper row adds facts to one of the minimal models.

A tool designed around both minimal models and symmetric elimination would initially yield
just one model, from the bottom row. Ideally, this is what Aluminum would produce, but the
subtleties mentioned above complicate the story. Suppose that all but the lex-leading models
(001, 011, and 111) are ruled out by symmetry-breaking. If the first model M provided to our
minimization algorithm is 001, then Aluminum will (correctly) stop after presenting that model.
However, if the first M provided is 111, the reduction process may terminate with any of 001, 010,
or 100, depending on SAT solver behavior. Aluminum will then rule out the models above what it
returned and iterate, seeking a new candidate for minimization. If it returned either of the latter
two models (010 or 100), there will still be room to find a candidate, and multiple isomorphic
minimal models will be produced.

Symmetry-Breaking and Augmentation Symmetry-breaking can also interfere with aug-
mentation and the detection of consistent facts. Consider the following specification:

sig U {}

sig P extends U {}

run {} for exactly 2 U

The specification has exactly one minimal instance. The instance has two elements U0 and U1,
and neither is in sig P. Symmetry-breaking will rule out either the instance where U0 ∈ P or the
one where U1 ∈ P . When performing ordinary model-finding, this is acceptable, but Aluminum
allows users to try adding tuples to instances on the fly. It has been noted before [TJ07, MR12]
that exposing the underlying set of atoms in an instance (as we do via tuples) changes some
standard intuitions of first-order logic. In particular, the “names” of atoms in a Kodkod-produced
model do not necessarily behave like constants in a logical formula. This fact will affect which
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augmentation is possible: if the tuple U1 ∈ P cannot be added only because of symmetry-breaking,
yet U2 ∈ P can be, we risk giving incorrect and confusing results. Because of this problem, we
disable symmetry-breaking prior to generating consistent facts or augmenting instances; users are
free to explore the entire model space that is reachable from the initial set of minimal models.

Consequences of Aluminum’s Handling of Symmetry-Breaking Our implementation sep-
arates the original spec (α) and the symmetry-breaking formula (β) after conversation to propo-
sitional logic, but before conversion to conjunctive normal-form. Aluminum converts them to cnf
separately, which means that we lose the ability to simplify the conjunction, which affects our
performance. This can be seen in our performance numbers for the last (unsatisfiable) command
in stable mutex ring (c.f. Table 5.2).

As our experience suggests, symmetry-breaking is a subtle operation. The clash between mini-
mization, augmentation, and symmetry-breaking is inherent to the very nature of these operations,
independent of the particular techniques used to implement them. Though Aluminum incorporates
methods to ameliorate these effects, this is clearly an area for future foundational work.

5.4 Numeric Evaluation

We now compare Aluminum to Alloy numerically. We first study how the resulting scenarios
compare mathematically to those produced by Alloy, and then explore how long it takes to compute
these minimal scenarios.

We conduct our experiments over the following specifications, with a short name that we use
to refer to them in the rest of the paper. (In the tables, where a file contains more than one com-
mand, we list in parentheses the ordinal of the command used in our experiments.) The following
specifications are taken from the Alloy distribution: Addressbook 3a (Addr), Birthday (Bday),
Filesystem (File), Genealogy (Gene), Grandpa (Gpa), Hanoi (Hanoi), Iolus (Iolus), Javatypes
(Java), and Stable Mutex Ring (Mutex). In addition, we use three independent specifications: (1)
Gradebook (Grade), which is defined in Figure 5.1, and enhanced with two more commands:

run WhoCanGradeAssignments for 3 but

1 Assignment , 1 Class , 1 Professor , 3 Student

and

run {some Class} for 3

(2) Continue (Cont), the specification of a conference paper manager, from our prior work. (3)
The authentication protocol of Akhawe, et al.’s work [ABL+10] (Auth), a large effort that tries to
faithfully model a significant portion of the Web stack.

5.4.1 Scenario Comparison

We consider a set of satisfiable specifications for which we can tractably enumerate all scenarios.
This lets us perform an exhaustive comparison of the scenarios generated by Alloy and Aluminum.
The results are shown in Table 5.1.

The first (data) column shows how many scenarios Alloy generates in all. This number repre-
sents one more than the number of times the user can press the Next button. Because the Alloy
user interface suppresses some duplicate scenarios, this is a smaller number than the number of
scenarios produced by Kodkod; we present this smaller number. The second column shows the cor-
responding number of minimal scenarios presented by Aluminum (the red dots in Figure 5.4 (C)).

The third column shows how many scenarios it takes before Alloy has presented at least one
scenario in the cone of every minimal model from Aluminum. Because a given scenario can be
in the cone of more than one minimal scenario, the number of scenarios needed for cone coverage
may in fact be fewer than the number of minimal models. An important subtlety is that an Alloy

45



Table 5.1: Alloy’s coverage of minimal models and their cones.

Spec. Models Models Cone Min. Scenario Ordinal Sum Ordinal Sum
(Alloy) (Aluminum) Coverage Coverage (Alloy) (Aluminum)

Addr 2,647 2 1 5 8 3

Bday (2) 27 1 1 3 3 1

Bday (3) 11 1 1 1 1 1

Gene 64 64 64 64 2,080 2,080

Gpa 2 2 2 2 3 3

Grade (1) 10,837 3 289 10,801 11,304 6

Grade (2) 49 3 2 12 33 6

Grade (3) 3,964 1 1 105 105 1

Hanoi (1) 1 1 1 1 1 1

Hanoi (2) 1 1 1 1 1 1

Java 1,566 3 374 1,558 4,573 6

scenario may not fall in a new cone, but may be isomorphic to one that does (i.e., Alloy may have
produced a hollow circle in Figure 5.4). We use Kodkod’s symmetry-breaking algorithm to try to
identify such situations and “credit” Alloy accordingly.

The fourth column shifts focus to minimal scenarios. If a user is interested in only minimal
scenarios, how many scenarios must they examine before they have encountered all the minimal
ones (up to isomorphism-detection)? This column lists the earliest scenario (as an ordinal in Alloy’s
output, starting at 1) when Alloy achieves this.

This number does not, however, give a sense of the distribution of the minimal scenarios.
Perhaps almost all are bunched near the beginning, with only one extreme outlier. To address
this, we sum the ordinals of the scenarios that are minimal. That is, suppose Aluminum produces
two minimal models. If the second and fifth of Alloy’s models are their equivalents, then we
would report a result of 2 + 5 = 7. The fifth and sixth columns present this information for Alloy
and Aluminum, respectively. The sixth column is technically redundant, because its value must
necessarily be 1 + · · ·+ n where n is the number of Aluminum models; we present it only to ease
comparison.

To ensure understanding, let us examine two rows in detail:
Addr : Aluminum finds two minimal models. The very first Alloy model is in both their cones,

so the cone coverage value is lower than the number of minimal models. Such a model clearly
cannot itself be minimal; indeed, since the minimal scenario coverage requires 5 models and the
Alloy ordinal sum is 8, the 3rd and 5th Alloy models must have been (equivalent to) Aluminum’s
minimal ones.

Grade (3): Aluminum finds just one minimal model. Thus, any model found by Alloy (including
the first one) must be in its cone, so the cone coverage value is 1. However, it takes Alloy another
104 models before the minimal one is found.

We can now see Aluminum’s impact on covering the space of scenarios. Even on small examples
such as Grade (2), there is a noticeable benefit from Aluminum’s more refined strategy. This impact
grows enormously on larger models such as Java and Grade (1). We repeatedly see a pattern where
Alloy gets “stuck” exploring a strict subset of cones, producing numerous models that fail to push
the user to a truly distinct space of scenarios. Even on not very large specifications (recall that
Grade is presented in these pages in its entirety), it often takes hundreds of Nexts before Alloy
will present a scenario from a cone it has not shown earlier. The real danger here is that the user
will have stopped exploring long before then, and will therefore fail to observe an important and
potentially dangerous configuration. In contrast, Aluminum presents these at the very beginning,
helping the user quickly get to the essence of the scenario space.
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Table 5.2: Relative times (ms) to render an unsatisfiable result.

Spec. Aluminum Alloy d
Avg σ Avg σ

Bday (1) 9 8 5 3 1.57

Cont (6) 1 <1 1 <1 -0.37

Cont (8) 5 6 3 <1 5.88

File (2) 5 5 6 4 -0.28

Iolus 5,795 239 5,000 177 4.49

Mutex (3) 18,767 52 8,781 60 165.91

Table 5.3: Relative times (ms) per scenario (minimal, in Aluminum).

Spec. Aluminum Alloy d
Avg σ N Avg σ N

Addr 13 12 2 8 6 0.89

Auth 800 32 110 36 19.35

Bday (2) 9 9 1 5 6 0.59

Bday (3) 8 6 1 7 6 0.17

Cont (3) 4 2 3 1 <1 9 4.86

File (1) 16 13 7 4 2.39

Gene 10 5 6 5 0.85

Gpa 9 4 2 6 5 2 0.62

Grade (1) 6 6 3 3 3 1.10

Grade (2) 3 4 3 3 4 0.01

Grade (3) 8 6 1 4 4 0.96

Java 5 4 3 2 2 1.11

Hanoi (1) 2,509 11 1 1,274 1,239 1 1.00

Hanoi (2) 14 3 1 10 2 1 2.14

The Gene specification presents an interesting outlier. The specification is so tightly constrained
that Alloy can produce nothing but minimal models! Indeed (and equivalently), it is impossible to
augment any of these models with additional tuples, as we will see in Table 5.4.

One important caveat is that these experiments were conducted with one particular SAT-solver,
using Alloy’s default parameters. Different SAT-solvers and parameters will likely have different
outcomes, and studying this variation is a worthwhile task. Nevertheless, the above numbers
accurately represent the experience of a user employing Alloy (version 4.2) in a state of nature.

5.4.2 Scenario Generation

Having examined the effectiveness of Aluminum, we now evaluate its running time (the space
difference is negligible). All experiments were run on an OS X 10.7.4 / 2.26GHz Core 2 Duo /
4Gb RAM machine, using sat4j version 2.3.2.v20120709. We handled outliers using one-sided
Winsorization [Wil12] at the 90% level. The times we report are obtained from Kodkod, which
provides wall-clock times in milliseconds (ms). All experiments were run with symmetry-breaking
turned on. Numbers are presented with rounding, but statistical computations use actual data,
so that values in those columns do not follow precisely from the other data shown. Every process
described below was run thirty (30) times to obtain stable measurements.

To measure effect strength, we use Cohen’s d [Wil12]. Concretely, we subtract Alloy’s mean
from that of Aluminum, and divide by the standard deviation for Alloy. We use Alloy’s in the
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denominator because that system is our baseline.
Because Aluminum slightly modifies Kodkod to better support symmetry-breaking, we begin by

measuring the time to translate specifications into SAT problems. Across all these specifications,
Aluminum’s translation time falls between 81% and 113% that of Alloy, i.e., our modification has
no effective impact. The absolute translation times range from 5ms (for Gradebook) to 55,945ms
(for Auth). (We use commas as separators and our decimal mark is a point. Thus 55,945ms =
55.945s = almost 56 seconds.)

Though our focus is on the overhead of minimization, in the interests of thoroughness we also
examine unsatisfiable queries. Table 5.2 shows how long each tool spends in SAT-solving (ignoring
translation into SAT, and then presentation) to report that there are no scenarios. The d values
show that in some cases, the time to determine unsatisfiability is much worse in Aluminum. (It is
very important for the reader to remember that the d value is measuring the effect size, not the
ratio of average times! Thus, a d of almost 166 still results in only a 2.1x increase in time.) The
effect is because of the way Aluminum and Alloy handle symmetry-breaking: Aluminum splits the
formula produced by Kodkod into two parts, one representing the specification and query and the
other capturing symmetry-breaking, whereas Alloy keeps the formulas conjoined. The conjoined
formula offers greater opportunities for optimization, which the SAT-solver exploits. Nevertheless,
we note that even in some of the large effects, the absolute time difference is relatively small.

For satisfiable queries, we calculate the time to compute the first ten scenarios (equivalent to
clicking Next nine times), which we feel is a representative upper-bound on user behavior. When
the tool could not find ten scenarios, the N column shows how many were found (and the average
is computed against this N instead).

When queries are satisfiable, Aluminum’s performs well compared to Alloy. First, the overall
running time is small for both tools, so even large effect sizes have small wall-clock impact. Indeed,
in the most extreme case, Aluminum takes only about 1.2 seconds longer, for a total time of 2.5
seconds—surely no user can read and understand a scenario in less time than that, so Aluminum
could easily pre-compute the next scenario. Second, in many cases Aluminum offers many fewer
scenarios than Alloy, helping users much more quickly understand the space of models. Finally,
the time taken by Kodkod to create the SAT problem can be vastly greater than that to actually
solve it, which suggests that a more expensive SAT-solving step will have virtually no perceptible
negative impact on the user experience.

We observe two outliers in the data. First, the time for minimization for Auth is very signif-
icant. For this specification, we found that the number of extraneous tuples eliminated during
minimization is 78 on average. This shows a direct trade-off: 0.7 seconds in computing time for a
possibly great impact on user comprehension. Second, the standard deviation for Alloy on Hanoi
(1) looks enormous relative to the mean. This is because Kodkod is producing a second dupli-
cate model (which in fact is discarded by the Alloy user interface) very quickly. This results in
datapoints that take a long time for the first solution but close to zero for the second.

We also examine the time taken by Aluminum’s exploration features: how long it takes to com-
pute the consistent tuples, and how long it takes to augment a scenario. Since the complete space
of models is enormous, we restrict attention to the first set of scenarios produced by Aluminum
(i.e., the red circles in the bottom row of Figure 5.4 (C)).

Table 5.4 shows the consistent tuples times. We compute up to ten scenarios (five, in the
case of Auth) and for each of these we determine the number of consistent tuples. The first
column indicates the number of consistent tuples found, averaged over the number of minimal
scenarios (i.e., consistent tuples per model). The zero-values are not errors: they arise because
the specifications are sufficiently constrained that there is no room for augmentation beyond the
initial scenarios. The next two columns show how long it took to compute the number of consistent
tuples. These numbers are clearly very modest. Auth is the exception: it produces models with, on
average, over 1,300 consistent tuples, more than can be explored by hand. Implementing strategies
for helping the user in such situations is an interesting topic for future work.

The last column shows how long, on average, it takes to augment a scenario with a consistent
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Table 5.4: Times (ms) to compute consistent tuples and to augment scenarios.

Spec. # Cons. Cons. Tup. Time Aug.
Tupls Avg σ Time

Addr 57 45 25 4

Auth 1,335 106,456 17,268 194

Bday (2) 20 19 24 6

Bday (3) 8 9 10 2

Cont (3) 2 5 <1 3

File (1) 24 29 16 3

Gene 0 2 <1 N/A

Gpa 0 1 <1 N/A

Grade (1) 25 13 10 1

Grade (2) 6 2 1 1

Grade (3) 36 14 7 1

Java 25 17 11 2

Hanoi (1) 0 4 <1 N/A

Hanoi (2) 0 1 1 N/A

tuple (backtracking between each augmentation). The “N/A”s correspond to specifications that
have no more consistent tuples, and hence cannot be augmented. This too takes very little time.

In Figure 5.9, we show the relationship between the performance cost of scenario minimization
versus the gain, i.e. the factor by which Aluminum condenses the model space. Each point
represents one of our satisfiable use-cases from Table 5.3 for which we have scenario information in
Table 5.1. We plot the Cohen’s d for each example in the X-axis versus the collapsing factor (i.e.,
the number of Alloy scenarios divided by the number of Aluminum scenarios) on the Y-axis. We
see three broad clusters: the examples which are already highly constrained and thus gain little
from minimization near y = 1, three examples with a modest gain around y = 20, and several
examples with a high reduction factor around y = 1000. Even in these high-gain cases, the cost of
minimization is fairly low, with a d-value near only one standard deviation; even when the benefits
of minimization are enormous, the cost is sometimes quite small.

5.5 Related Work

Logic programming languages produce single, least, models as a consequence of their semantics.
Because user specifications are not limited to the Horn-clause fragment, Aluminum can offer no
such guarantee. The more general notion of minimal model presented here has already been used
in specifying the semantics of disjunctive logic programming [LMR92] and of database updates
[FUV83] and in non-monotonic reasoning, especially circumscription [Rob01].

The development of algorithms for the generation of relational models is an active area of
research. The two most prominent methods are “MACE-style” [McC01], which reduce the problem
to be solved into propositional logic and employ a SAT-solver, and “SEM-style” [ZZ95], which work
directly in first-order logic. The goals of these works are mostly orthogonal to ours, since their
concern is usually not the exploration of the space of all models of a theory. Generation of minimal
models specifically usually relies on dedicated techniques, often based on tableaux (e.g., [Nie96]) or
hyperresolution (e.g., [BY00]). Since we are more concerned with exploration as an enhancement of
established software design methodology, we made a choice to work with the SAT-solver technology
bundled with a tool (Alloy) designed for presenting models.

Koshimura et al. [KNFH09] uses minimality of propositional models to optimally solve job-
scheduling problems. Our minimization algorithm is essentially identical to theirs. However,
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Figure 5.9: Scatterplot of the performance cost of Aluminum versus Alloy (in Cohen’s d) versus
the reduction factor in number of scenarios presented. Does not include Auth, Bday, Cont, or File,
for which there were too many scenarios to count and thus were not presented in Table 5.1. The
Y-axis has been logarithmically scaled.
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their algorithms do not make use of symmetry-breaking, nor do they address augmentation or
consistent-tuple generation.

Janota [Jan10] offers an algorithm to compute all minimal models of a formula once one is
computed, and shows how to compute a minimal model by modifying a SAT-solver satisfying a
certain technical property. Our technique works with unmodified solvers; it would still be inter-
esting to compare the performance of Janota’s method with ours. Another instance of changing
the solver would be to use a specialized solver like Max-SAT. We opted to use an ordinary SAT-
solver (sat4j) because using Max-SAT would have involved significant changes that might have
introduced confounding factors that would complicate a side-by-side evaluation.

The goals of the Cryptographic Protocol Shapes Analyzer [DGT07] are closely aligned with
ours. In analyzing protocols, it too generates minimal models. However, its application domain
and especially algorithms are quite different from ours.

5.6 Qualitative Impressions

We have run Aluminum on many representative uses of Alloy beyond those reported in Section 5.4.
Here, we report on qualitative impressions. Instead of dwelling on successes, we focus on those
aspects of Aluminum that are interesting, potentially controversial, and certainly deserving of
future work (such as rigorous user studies).

Verification versus Realization There is an (informal) distinction between two modes of
exploring a specification: verification, where the user has a property to check (and whose failure
yields a counter-example), versus realization, in which a user wants to see which scenarios are
compatible with a specification. Minimality and orderly growth appear especially useful for the
former (where the pithiest counterexample is often the most useful) but perhaps less so for the
latter, since the scenarios presented are less likely to surprise the user. Adding some of the other
features discussed below would ameliorate this weakness.

Negative Information Aluminum’s consistent tuple enumeration does not list what cannot
become true. This negative information can be vital in comprehending scenarios, and should
ideally be incorporated into the exploration process.

Random Exploration Using exploration, an Aluminum user can eventually reach any scenario
that Alloy would have generated (Theorem 4.3.2). But our experience suggests that there is an
important benefit to Alloy’s more random generation of scenarios: richer scenarios raise situations
that a user didn’t think to ask about, and can thus be insightful and thought-provoking. Per-
haps Aluminum could add a Surprise Me! button that presents a random, non-minimal model to
encourage adventitious discovery (or Alloy could be enhanced with Aluminum’s minimization and
exploration facilities).

Transition Systems and Framing Conditions Framing conditions describe what should not
change between states of a system. We found Aluminum good at highlighting some missing frame
conditions. For instance, in an address book (as in [Jac12, chapter 2]), if the add predicate fails to
mention that all existing entries must be retained, the book will contain only the entry just added.
Thus, two consecutive add operations will starkly illustrate the absence of a frame condition. This
absence may be masked by the non-minimal models of Alloy.

However, frame conditions express not only “lower bounds”—what must remain—but also
“upper bounds”: what must not be added. In the absence of upper-bounds, a scenario-finder is
free to add extra domain elements or relational tuples. Alloy will frequently present just such
models, alerting the user to the lack of appropriate framing. In contrast, Aluminum is guaranteed

51



to excise such superfluity! These superfluous entries are actually still present in the consistent
tuples, but we believe it is too difficult for users to find them there.

5.7 User Study on Scenarios and Minimality

While we have quantitatively evaluated Aluminum’s performance (Section 5.4) and discussed our
own qualitative observations about its use (Section 5.6), it remains to show that Aluminum is
appealing from a user perspective. That is, are users’ needs truly met by a combination of minimal
scenarios and exploration via augmentation? Thus, we have created a survey with two goals in
mind: to help us better understand how users of tools like Alloy use scenarios in practice, and
to inform us whether users actually prefer minimal scenarios to larger ones. We attempted to
administer the survey at a conference that typically attracts many Alloy users, but the response
rate was too low to render meaningful results. Because of this fact, we present the survey as an
appendix, rather than as a significant contribution of this dissertation. The survey can be found
in its entirety in Appendix A, along with a more detailed exposition on its design.
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Chapter 6

Analysis of Router Configurations

Writing a sensible firewall policy from scratch can be difficult; maintaining existing policies can
be terrifying. Oppenheimer, Ganapathi, and Patterson [OGP] have shown that operator errors,
specifically configuration errors, are a major cause of online-service failure. Configuration errors can
result in lost revenue, breached security, and even physical danger to co-workers or customers. The
pressure on system administrators is increased by the frenetic nature of their work environment
[BKM+04], the occasional need for urgent changes to network configurations, and the limited
window in which maintenance can be performed on live systems.

Many questions arise in checking a firewall’s behavior: Does it permit or block certain traffic?
Does a collection of policies enforce security boundaries and goals? Does a specific rule control
decisions on certain traffic? What prevents a particular rule from applying to a packet? Will a
policy edit permit or block more traffic than intended? These questions demand flexibility from
firewall-analysis tools: they cover various levels of granularity (from individual rules to networks
of policies), as well as reasoning about multiple versions of policies (to check the impact of edits).
Margrave handles all these and more, offering more functionality than other published firewall
tools.1

The key to how we apply Margrave to ios is in our decomposition of ios configurations into
simple policies for analysis. Single firewall configurations cover many functions, such as access
filtering, routing, and switching. Margrave’s ios compiler generates separate policies for each task,
thus enabling analysis of either specific functionality or whole-firewall behavior. Task-specific
policies aid in isolating causes of problematic behaviors. Our firewall models support standard
and most extended acls, static nat, acl-based and map-based dynamic nat, static routing, and
policy-based routing. Our support for state is limited to reflexive access-lists; it does not include
general dynamic nat, deep packet inspection, routing via osfp, or adaptive policies. Margrave
has an iptables compiler in development; other types of firewalls, such as Juniper’s JunOS, fit our
model as well.

A reader primarily interested in a tool description can read Sections 6.1, 6.4, and 6.5 for a sense
of Margrave and how it differs from other firewall-analysis tools. Section 6.1 illustrates Margrave’s
query language and scenario-based output using a multi-step example. Section 6.2 shows how
firewall questions map into Margrave. Section 6.3 describes a query-rewriting technique that
often improves performance on firewall policies. Section 6.4 presents experimental evaluation on
both network-forum posts and an in-use enterprise firewall. Section 6.5 describes related work.
Section 6.6 concludes with perspective and future work.

1A preliminary version [NBD+10] of this work appeared at the USENIX Large Installation System Administration
conference.
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Table 6.1: Feature comparison between Margrave and other available firewall-analysis tools. In
each cell, X denotes included features; Xnip denotes features reported by the authors in private
communication but not described in published papers; X− denotes included features with more
limited scope than in Margrave; ∼ denotes features that can be simulated, but aren’t directly
supported; ? denotes cases for which we aren’t sure about support. Section 6.5 describes nuances
across shared features and discusses additional research for which tools are not currently available.
(Table was generated in August 2010.)

ITVal Fireman Prometheus ConfigChecker Fang/AlgoSec Vantage
Which packets X X X X X X
User-defined queries X ? X X Xnip

Rule Responsibility X ? X− ∼ X X
Rule Relationships ∼ X− X X− Xnip X
Change-impact ? X Xnip X−

First-order queries ? ? ?
Support NAT X X X X
Support Routing X X X X Xnip

Firewall Networks X X X X X Xnip

Language integration X
Commercial Tool? no no yes no yes yes

6.1 Margrave in Action on Firewalls

As discussed in Chapter 3, Margrave presents scenarios that satisfy user-specified queries about
configuration behavior. Queries state a behavior of interest and optional controls on which data to
consider when computing scenarios. In the firewall domain, scenarios contain attributes of packet
contents that make the query hold. The extended example in this section highlights Margrave’s
features on firewall configurations, echoing the different kinds of query laid out in Chapter 3.
Table 6.1 summarizes which of these features are supported by other available (either free or
commercial) firewall analyzers. The Margrave website [Mar] contains sources for all examples.

For our purposes, a firewall encompasses filtering (via access-lists), nat transformation, and
routing; we reserve the term router for the latter component. The ios configuration in Figure 6.1
defines a simple firewall with only filtering. This firewall controls two interfaces (fe0 and vlan1).
Each has an IP address and an access-list to filter traffic as it enters the interface; in lines 3 and
7, the number (101 or 102) is a label that associates access rules (lines 9-16) with each interface,
while the in keyword specifies that the rules should apply on entry. Rules are checked in order
from top to bottom; the first rule whose conditions apply determines the decision on a packet.
This firewall allows inbound web and mail traffic to the corresponding servers (the .10 and .11

hosts), but denies a certain blacklisted IP address (the 10.1.1.2 host). All traffic arriving at the
inside-facing interface vlan1 is allowed. As this filter is only concerned with packets as they arrive
at the firewall, our queries refer to the filter as InboundACL.

Basic Queries: All firewall analyzers support basic queries about which packets traverse the
firewall. The following Margrave query asks for an inbound packet that InboundACL permits:

EXPLORE InboundACL:Permit(<req>)

SHOW ONE
Query 1
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1 interface fe0

2 ip address 10.150.1.1 255.255.255.254

3 ip access-group 101 in

4 !

5 interface vlan1

6 ip address 192.128.5.1 255.255.255.0

7 ip access-group 102 in

8 !

9 access-list 101 deny ip host 10.1.1.2 any

10 access-list 101 permit tcp

11 any host 192.168.5.10 eq 80

12 access-list 101 permit tcp

13 any host 192.168.5.11 eq 25

14 access-list 101 deny any

15 !

16 access-list 102 permit any

Figure 6.1: Sample ios configuration

EXPLORE clauses describe firewall behavior; here, the behavior is simply to permit packets. <req> is
shorthand for a sequence of variables denoting the components of a request (detailed in Section 6.2):

〈ahostname, src-addr-in, src-port-in, protocol, ...〉.

Users can manually define this shorthand within Margrave; details and instructions for passing
queries into Margrave are in the tool distribution [Mar]. SHOW ONE is an output-configuration
command that instructs Margrave to display only a single scenario. The resulting output indicates
the packet contents:

1 ********* SOLUTION FOUND at size = 15

2 src-addr-in: IPAddress

3 protocol: prot-tcp

4 dest-addr-in: 192.168.5.10

5 src-port-in: port

6 exit-interface: interface

7 entry-interface: fe0

8 dest-port-in: port-80

9 length: length

10 ahostname: hostname-router

11 src-addr-out: IPAddress

12 message: icmpmessage
Result

This scenario shows a tcp packet (line 3) arriving on the fast-ethernet interface (line 7), bound
for the web server (line 4, with line 11 of Figure 6.1) on port 80 (line 8). The generic IPaddress

in lines 2 and 11 should be read as “any IP address not mentioned explicitly in the policy”; lines
5 and 6 are similarly generic. The size=15 report on line 1 indicates that the scenario involved 15
objects overall.

A user can ask for additional scenarios that illustrate the previous query via the command SHOW

NEXT: Once Margrave has displayed all unique scenarios, it responds to SHOW NEXT queries with no

results.
To check whether the filter accepts packets from the blacklisted server, we constrain src-addr-in

to match the blacklisted IP address and examine only packets that arrive on the external interface.
Both src-addr-in and entry-interface are variable names in <req>. The IS POSSIBLE? command
instructs Margrave to display false or true, rather than detailed scenarios.
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EXPLORE

InboundACL:Permit(<req>) AND

10.1.1.2 = src-addr-in AND

fe0 = entry-interface

IS POSSIBLE?
Query 2

In this case, Margrave returns false. Had it returned true, the user could have inspected the
scenarios by issuing a SHOW ONE or SHOW ALL command.

Rule-level Reasoning: Tracing behavior back to the responsible rules in a firewall aids in both
debugging and confirming that rules are fulfilling their intent. To support reasoning about rule
effects, Margrave automatically defines two formulas for every rule in a policy (where R is a unique
name for the rule):

• R matches(<req>) is true when <req> satisfies the rule’s conditions, and

• R applies(<req>) is true when the rule both matches <req> and determines the decision on <req>

(as the first matching rule within the policy).

Distinguishing these supports fine-grained queries about rule behavior. Margrave’s ios compiler
constructs the R labels to uniquely reference rules across policies. For instance, acl rules that
govern an interface have labels of the form hostname-interface-line#, where hostname and inter-
face specify the names of the host and interface to which the rule is attached and # is the line
number at which the rule appears in the firewall configuration file.

The following query refines query 2 to ask for decision justification: the EXPLORE clause now
asks for Deny packets, while the INCLUDE clause instructs Margrave to compute scenarios over the
two Deny rules as well as the formulas in the EXPLORE clause:

EXPLORE

InboundACL:Deny(<req>) AND

10.1.1.2 = src-addr-in AND

fe0 = entry-interface

INCLUDE

InboundACL1:Router-fe0-line9_applies(<req>),

InboundACL1:Router-fe0-line14_applies(<req>)

SHOW REALIZED

InboundACL1:Router-fe0-line9_applies(<req>),

InboundACL1:Router-fe0-line14_applies(<req>)
Query 3

The SHOW REALIZED command asks Margrave to display the subset of listed facts that appear in some
resulting scenario. The following results indicate that the rule at line 9 does (at least sometimes)
apply. More telling, however, the absence of the rule at line 14 (the catch-all deny) indicates that
that rule never applies to any packet from the blacklisted address. Accordingly, we conclude that
line 9 processes all blacklisted packets.

< InboundACL:line9_applies(<req>) >
Result

The INCLUDE clause helps control Margrave’s performance. Large policies induce many rule-
matching formulas; enabling these formulas only as needed trims the scenario space. SHOW REALIZED

(and its dual, SHOW UNREALIZED) controls the level of detail at which users view scenarios. The lists
of facts that do (or do not) appear in scenarios often raise red flags about firewall behavior (such
as an unexpected port being involved in processing a packet). Unlike many verification tools,
Margrave does not expect users to have behavioral requirements or formal security goals on hand.
Lightweight summaries such as SHOW REALIZED try to provide information that suggests further
queries.
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Computing Overshadowed Rules through Scripting: Query 3 checks the relationship be-
tween two rules on particular packets. A more general question asks which rules never apply to
any packet; we call such rules superfluous. The following query computes superfluous rules:

EXPLORE true

UNDER InboundACL

INCLUDE

InboundACL:router-fe0-line9_applies(<req>),

InboundACL:router-fe0-line10_applies(<req>),

InboundACL:router-fe0-line12_applies(<req>),

InboundACL:router-fe0-line14_applies(<req>),

InboundACL:router-vlan1-line16_applies(<req>)

SHOW UNREALIZED

InboundACL:router-fe0-line9_applies(<req>),

InboundACL:router-fe0-line10_applies(<req>),

InboundACL:router-fe0-line12_applies(<req>),

InboundACL:router-fe0-line14_applies(<req>),

InboundACL:router-vlan1-line16_applies(<req>)
Query 4

As this computation doesn’t care about request contents, the EXPLORE clause is simply true. The
heart of this query lies in the INCLUDE clause and the SHOW UNREALIZED command: the first asks
Margrave to consider all rules; the second asks for listed facts that are never true in any scenario.
UNDER clauses load policies referenced in INCLUDE but not EXPLORE clauses.

While the results tell us which rules never apply, they don’t indicate which rules overshadow
each unused rule. Such information is useful, especially if an overshadowing rule ascribes the
opposite decision. Writing queries to determine justification for each superfluous rule, however, is
tedious. Margrave’s query language is embedded in a host language (Racket [FP10], a descendent
of Scheme) through which we can write scripts over query results. In this case, our script uses a
Margrave command to obtain lists of rules that yield each of Permit and Deny, then issues queries
to isolate overshadowing rules for each superfluous rule. These are similar to other queries in this
section. Scripts could also compute hotspot rules that overshadow a large percentage of other
rules.

Change-Impact: Sysadmins edit firewall configurations to provide new services and correct
emergent problems. Edits are risky because they can have unexpected consequences such as al-
lowing or restricting traffic that the edit should not have affected. Expecting sysadmins to have
formal security requirements against which to test policy edits is unrealistic. In the spirit of
lightweight analyses that demand less of users, Margrave computes scenarios illustrating packets
whose decision or applicable rule changes in the face of edits.

For example, suppose we add the new boldface rule below to access-list 101 (the line numbers
start with 14 to indicate that lines 1–13 are identical to those in Figure 6.1):

14 access-list 101 deny tcp

15 host 10.1.1.2 host 192.168.5.10 eq 80

If we call the modified filter InboundACL new, the following query asks whether the original and
new InboundACLs ever disagree on Permit decisions:

EXPLORE

(InboundACL:Permit(<req>) AND

NOT InboundACL_new:Permit(<req>)) OR

(InboundACL_new:Permit(<req>) AND

NOT InboundACL:Permit(<req>)))

IS POSSIBLE?
Query 5

Margrave returns false, since the rule at line 9 always overrides the new rule. If instead the new
rule were:
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14 access-list 101 deny tcp

15 host 10.1.1.3 host 192.168.5.10 eq 443

Margrave would return true on query 5. The corresponding scenarios show packet headers that
the two firewalls treat differently, such as the following:

********* SOLUTION FOUND at size = 15

src-addr-in: 10.1.1.3

protocol: prot-tcp

dest-addr-in: 192.168.5.10

src-port-in: port

exit-interface: interface

entry-interface: fe0

dest-port-in: port-80
Result

As we might expect, this scenario involves packets from 10.1.1.3. A subsequent query could
confirm that no other hosts are affected.

Corporate LAN

Contractors
(192.168.4.*)

Manager
(192.168.1.2)

Employees
(192.168.3.*)

Internal
Firewall

 in_lan

Internet

 in_dmz

External
Firewall

 out_inet

WWW
Server

(10.1.1.4)

Mail
Server

(10.1.1.3)

 out_dmz

Figure 6.2: A small-business network-topology

Networks of Firewalls: So far, our examples have considered only single firewalls. Margrave
also handles networks with multiple firewalls and nat. Figure 6.2 shows a small network with web
server, mail server, and two firewalls to establish a dmz. The internal firewall performs both nat
and packet-filtering, while the external firewall only filters. The firewall distinguishes machines for
employees (192.168.3.*), contractors (192.168.4.*), and a manager (192.168.1.2). This example
captures the essence of a real problem posted to a networking help-forum.
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1 hostname int

2 !

3 interface in_dmz

4 ip address 10.1.1.1 255.255.255.0

5 ip nat outside

6 !

7 interface in_lan

8 ip access-group 102 in

9 ip address 192.168.1.1 255.255.0.0

10 ip nat inside

11 !

12 access-list 102 permit tcp any any eq 80

13 access-list 102 deny any

14 !

15 ip nat inside source list 1 interface

16 in_dmz overload

17 access-list 1 permit 192.168.1.1 0.0.255.255

18 !

19 ip route 0.0.0.0 0.0.0.0 in_dmz

20

Internal Firewall

Lines 15–17 in the internal firewall apply nat to traffic from the corporate lan.2 Line 11 in
the external firewall blacklists a specific external host (10.200.200.200). Despite the explicit rule
on lines 19–20 in the external firewall, the manager cannot access the web. We have edited the
configurations to show only those lines relevant to the manager and web traffic.

1 hostname ext

2 !

3 interface out_dmz

4 ip access-group 103 in

5 ip address 10.1.1.2 255.255.255.0

6 !

7 interface out_inet

8 ip access-group 104 in

9 ip address 10.200.1.1 255.255.0.0

10 !

11 access-list 104 deny 10.200.200.200

12 access-list 104 permit tcp any host 10.1.1.4

13 eq 80

14 access-list 104 deny any

15 !

16 access-list 103 deny ip any

17 host 10.200.200.200

18 access-list 103 deny tcp any any eq 23

19 access-list 103 permit tcp host 192.168.1.2

20 any eq 80

21 access-list 103 deny any

22

External Firewall

The following query asks “What rules deny a connection from the manager’s PC (line 2) to
port 80 (line 10) somewhere outside our network (line 8) other than the blacklisted host (line 9)?”

2In this example, we use the 10.200.* private address space to represent the public IP addresses.
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1 EXPLORE prot-TCP = protocol AND

2 192.168.1.2 = fw1-src-addr-in AND

3 in_lan = fw1-entry-interface AND

4 out_dmz = fw2-entry-interface AND

5 hostname-int = fw1 AND

6 hostname-ext = fw2 AND

7

8 fw1-dest-addr-in IN 10.200.0.0/255.255.0.0

9 NOT 10.200.200.200 = fw1-dest-addr-in AND

10 port-80 = fw1-dest-port-in AND

11

12 internal-result(<reqfull-1>) AND

13

14 (NOT passes-firewall(<reqpol-1>) OR

15 internal-result(<reqfull-2>) AND

16 NOT passes-firewall(<reqpol-2>))

17

18 UNDER InboundACL

19 INCLUDE

20 InboundACL:int-in_lan-line-12_applies

21 (<reqpol-1>),

22 InboundACL:int-in_lan-line-17_applies

23 (<reqpol-1>),

24 InboundACL:ext-out_dmz-line-19_applies

25 (<reqpol-2>),

26 InboundACL:ext-out_dmz-line-21_applies

27 (<reqpol-2>),

28 InboundACL:ext-out_dmz-line-24_applies

29 (<reqpol-2>)
Query 6

Lines 12–16 capture both network topology and the effects of nat. The internal-result and
passes-firewall formulas capture routing in the face of nat and passing through the complete
firewall (including routing, nat and acls) whose hostname appears in the request, respectively;
Section 6.2 describes them in detail. The variables sent to the two passes-firewall formulas
through <reqpol-1> and <reqpol-2> encode the topology: for example, these shorthands use the
same variable name for dest-addr-out in the internal firewall and src-addr-in in the external firewall.
The fw1-entry-interface and fw2-entry-interface variables (bound to specific interfaces in lines
3–4) appear as the entry interfaces in <reqpol-1> and <reqpol-2>, respectively.

A SHOW REALIZED command over the INCLUDE terms (as in query 3) indicates that line 21 of
the external firewall configuration is denying the manager’s connection. Asking Margrave for a
scenario for the query (using the SHOW ONE command) reveals that the internal firewall’s nat is
changing the packet’s source address:

1 ...

2 fw1-src-addr-out=fw2-src-addr_=

3 fw2-src-addr-out: 10.1.1.1

4 fw1-src-addr_=fw1-src-addr-in: 192.168.1.2
Result

The external firewall rule (supposedly) allowing the manager to access the Internet (line 19)
uses the internal pre-nat source address; it never matches the post-nat packet. Näıvely editing
the nat policy, however, can leak privileges to contractors and employees. Change-impact queries
are extremely useful for confirming that the manager, and only the manager, gain new privileges
from an edit. An extended version of this example with multiple fixes and the change-impact
queries, is provided in the Margrave distribution.

Summary: These examples illustrate Margrave’s ability to reason about both combinations of
policies and policies at multiple granularities. The supported query types include asking which
packets satisfy a condition (query 1), verification (query 2), rule responsibility (query 3), rule
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relationships (query 4) and change-impact (query 5). A formal summary of the query language
and its semantics is provided with the Margrave distribution.

6.2 Mapping Firewalls to the Theory

There is a sizeable gap between the theory and general tool presented in Chapter 3 and a Cisco
ios configuration, such as the example in Figure 6.1. To represent policies in the theory, we must
describe the shapes of requests, the available decisions, what relations can appear in formulas, and
how policy rules translate into formulas. Section 6.1 used several relations relevant to firewalls,
such as passed-firewall. Margrave defines these relations and other details automatically via
several mechanisms. We note that the policies and vocabularies shown here will differ slightly in
syntax from those in Chapter 3, as this this work was done on a preliminary version of Margrave.

Cisco IOS Configurations as Policies: Figure 6.3 shows part of the result of compiling the ios
configuration in Figure 6.1 to Margrave’s intermediate policy language. The fragment captures the
ios rule on line 10. (Permit hostname, ...) specifies the decision and states a sequence of variable
names corresponding to a request. The :- symbol separates the decision from the conditions of the
rule. Formula (prot-tcp protocol), for example, captures that tcp is the expected protocol for this
rule. Margrave represents constants (such as decisions, IP addresses, and protocols) as elements of
singleton unary relations. A scenario that satisfies this rule will map the protocol variable to some
element of the universe that populates the prot-tcp relation. The other conditions of the original
rule are captured similarly. The (RComb FAC) at the end of the policy tells Margrave to check the
policy rules in order (FAC stands for “first applicable”). The first line of the policy ascribes the
name InboundACL.

(Policy InboundACL uses IOS-vocab

(Rules

...

(Router-fe0-line10 =

(Permit hostname, ...) :-

(hostname-Router hostname)

(fe0 entry-interface)

(IPAddress src-addr-in)

(prot-tcp protocol)

(Port src-port-in)

(192.168.5.10 dest-addr-in)

(port-80 dest-port-in))

...)

(RComb FAC))

Figure 6.3: A Margrave policy for an ios configuration

Decomposing IOS into policies: Figure 6.4 shows our high-level model of ios configurations.
Firewalls perform packet filtering, packet transformation, and internal routing; the first two may
occur at both entry to and exit from the firewall. Specifically, packets pass through the inbound
acl filter, inside nat transformation, internal routing, outside nat transformation, and finally the
outbound acl filter on their way through the firewall. The intermediate stages define additional
information about a packet (as shown under the stage names): inside nat may yield new address
and port values; internal routing determines the next-hop and exit interface; outside nat may
yield further address and port values.

Internal routing involves five substages, as shown in Figure 6.6. Margrave creates policies (à la
Figure 6.3) for each of the five substages. The -Switching policies determine whether a destination
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exit−interface
next−hop src−addr−out

dest−addr−out
src−port−out
dest−port−out

protocol
src−addr−in
dest−addr−in
src−port−in
dest−port−in
tcp−flags

PACKET HEADER

InsideNAT Internal Routing OutsideNAT OutboundACL

NOT int−dropped

internal−result

passes−firewall

entry−interface
hostname
length
message

ADD’L INFO

InboundACL

src−addr_
dest−addr_
src−port_
dest−port_

Figure 6.4: Margrave’s decomposition of firewall configurations

is directly connected to the firewall; the -Routing policies bind the next-hop IP address for routing.
In addition, Margrave generates four policies called InboundACL, OutboundACL, InsideNAT, and
OutsideNat. The two -ACL policies contain filtering rules for all interfaces.

Requests and Decisions: Margrave automatically defines a relation for each decision rendered
by each of the 9 subpolicies (e.g., InboundACL:Permit in query 1). Each relation is defined over
requests, which contain packet headers, packet attributes, and values generated in the intermediate
stages; the boxes in Figure 6.4 collectively list the request contents. As Margrave is not stateful,
it cannot update packet headers with data from intermediate stages. The contents of a request
reflect the intermediate stages’ actions: for example, if the values of src-addr and src-addr-out

are equal, then OutsideNAT did not transform the request’s packet. Currently, Margrave shares the
same request shape across all 9 subpolicies (even though InboundACL, for example, only examines
the packet header portion).

Flows between subpolicies: Margrave encodes flows among the 9 subpolicies through three
relations (over requests) that capture the subflows marked in Figure 6.4.

• Internal routing either assigns an exit interface and a next-hop to a packet or drops the
packet internally. Margrave uses a special exit-interface value to mark dropped packets; the
int-dropped relation contains requests with this special exit-interface value. Any request
that is not in int-dropped successfully passes through internal routing.

• Unlike internal routing, nat never drops packets. At most, it transforms source and destina-
tion ports and addresses. Put differently, nat is a function on packets. internal-result cap-
tures this function: it contains all requests whose next-hop, exit-interface, and OutsideNAT

components are consistent with the packet header and InsideNAT components (as if the latter
were inputs to a nat function).

• acls permit or deny packets. The relation passes-firewall contains requests that the two
acls permit, are in internal-result (i.e., are consistent with nat), and are not in int-dropped

(i.e., are not dropped in internal routing).

Our ios compiler automatically defines each of these relations as a query in terms of the 9 ios
subpolicies (capturing topology as in query 6). Margrave provides a RENAME command that saves
query results under a user-specific name for use in later queries. Users can name any set of resulting
scenarios in this manner.
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(PolicyVocab IOS-vocab

(Types

(Interface : interf-drop

(interf-real vlan1 fe0))

(IPAddress :

192.128.5.0/255.255.255.0

10.1.1.0/255.255.255.254

192.168.5.11

192.168.5.10

10.1.1.2)

(Protocol : prot-ICMP prot-TCP prot-UDP)

(Port: port-25 port-80)

(Decisions Permit Deny ...)

...

(disjoint-all Protocol)

(nonempty Port)

...

)

Figure 6.5: A Margrave vocabulary for an ios configuration

Cisco IOS Configuration Vocabularies: The 9 subpolicies share ontology about ports and
IP addresses. Margrave puts domain-knowledge common to multiple policies in a vocabulary spec-
ification; the first line of a policy specification references its vocabulary through the uses keyword.
Figure 6.5 shows a fragment of the vocabulary for ios policies: it defines datatypes (such as
Protocol) and their elements (correspondingly, prot-ICMP, prot-TCP, prot-UDP).

Vocabularies also capture domain constraints such as “all protocols are distinct” or “there must
be at least one port” (both shown in Figure 6.5). While these constraints may seem odd, they
support Margrave’s scenario-finding model. Some potential “solutions” are nonsensical, such as
one which assigns two distinct numbers to the same physical port. Domain constraints rule out
nonsensical scenarios.

Packet Arrives LocalSwitching

Packet Departs

 Fwd

PolicyRouting

 Pass

 Fwd

StaticRouting

 Pass

NetworkSwitching

 Route  Fwd

DefaultPolicyRouting

 Pass

 Route

 Fwd

 Route

 Fwd

Figure 6.6: Internal flow of packets within a router. Edges are labeled with decisions rendered by
the policies at the source of the edge. Routing policies determine the next-hop IP address, while
switching policies send traffic to directly to a connected device.
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Table 6.2: Run-time impact of TUPLING on acl queries. The first column contains the number
of rules in each acl. The second column lists the number of existentially-quantified variables in
the query; we include one 3-variable (non-firewall) query to illustrate the smaller gains on smaller
variable counts. The 14-variable acls are older firewall examples with smaller request tuples. The
“Min Size” column indicates the universe size for the smallest scenario that satisfied the query.
Larger minimum sizes have a larger search space.

Rules # Vars Min Size Not Tupled Tupled
100 3 3 694ms 244ms
1000 14 6 7633ms 1221ms
1000 14 10 17659ms 1219ms
1000 14 14 32116ms 1205ms

6.3 Rewriting Firewall Queries

Under large universe sizes, both the time to compute scenarios and the number of resulting sce-
narios increase. The latter puts a particular burden on the end-user who has to work through the
scenarios. Query language constructs like SHOW REALIZED summarize details about the scenarios in
an attempt to prevent the exhaustive from becoming exhausting. However, query optimizations
that reduce universe sizes have more potential to target the core problem. This section describes
an optimization that was developed exclusively for the large request-vectors seen in our Cisco ios
work.

Most firewall queries have the form ∃ req α, where α typically lacks quantifiers. Requests have
16 or 20 components (as shown in Figure 6.4), depending on whether they reference internal-result.
Margrave therefore analyzes all-existential queries under a universe size of 16 or 20. However, these
queries effectively reference a single request with attributes as detailed in α. This suggests that
we could rewrite this query with a single quantified variable for a request and additional relations
that encode the attributes. For example:

∃ pt in ∃ pt out : route(pt in, pt out)

becomes
∃ pkt : is ptIn(pkt, i) ∧ is ptOut(pkt, o) ∧ route(i, o)

Effectively, these new relations lift attributes from the individual packet fields to the packet as a
whole.

Formulas rewritten in this way require a universe size of only 1, for which scenario generation
stands to be much faster and to yield fewer solutions. The tradeoff, however, lies in the extra
relations that Margrave introduces to lift attributes to the packet level. Additional relations
increase the time and yield of scenario computations, so the rewriting is not guaranteed to be a
net win.

Table 6.2 presents experimental results on original versus rewritten queries. In practice, we
find performance improves when the query is unsatisfiable or the smallest model is large. A user
who expects either of these conditions to hold can enable the rewriting through a query-language
flag called TUPLING. All performance figures reported were computed using TUPLING.

6.4 Evaluation

We have two main goals in evaluating Margrave on firewalls. First, we want to confirm that our
query language and its results support debugging real firewall configuration-problems; in particular,
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the scenarios should accurately point to root causes of problems. We assume a user who knows
enough firewall basics to ask the questions underlying a debugging process (Margrave does not, for
example, pre-emptively try queries to automatically isolate a problem). Second, we want to check
that Margrave has reasonable performance on large policies, given that we have traded efficient
propositional models for richer first-order ones.

We targeted the first goal by applying Margrave to problems posted to network-configuration
help-forums (Sections 6.4.1 and 6.4.2). Specifically, we phrased the poster’s reported problem
through Margrave queries and sought fixes based on the resulting scenarios. In addition, we
used Margrave to check whether solutions suggested in follow-up posts actually fixed the problem
without affecting other traffic. The diversity of firewall features that appear in forum posts de-
manded many compiler extensions, including reflexive access-lists and tcp flags. That we could
do this purely at the compiler level attests to the flexibility of Margrave’s intermediate policy- and
vocabulary-languages (Section 6.2).

We targeted the second goal by applying Margrave to an in-use enterprise firewall-configuration
containing several rule sets and over 1000 total rules (Section 6.4.3). Margrave revealed some
surprising facts about redundancy in the configuration’s behavior. Individual queries uniformly
execute in seconds.

Notes on Benchmarking Our figures report Margrave’s steady-state performance; they omit
jvm warmup time. Policy-load times are measured by loading different copies of the policy to
avoid caching bias. All performance tests were run on an Intel Core Duo E7200 at 2.53 Ghz with
2 GB of ram, running Windows XP Home. Performance times are the mean over at least 100
individual runs; all reported times are ±200ms at the 95-percent confidence level. Memory figures
report private (i.e., not including shared) consumption.

6.4.1 Forum Help: NAT and ACLs

”My servers cannot get access into the internet, even though I will be able to access the website,
or even FTP... I don’t really know what’s wrong. Can you please help? Here is my current

configuration...”

In our first forum example [azs08], the poster is having trouble connecting to the Internet
from his server. He believes that nat is responsible, and has identified the router as the source
of the problem. The configuration included with the post appears in Figure 6.7 (with a slight
semantics-preserving modification3).

A query (not shown) confirms that the firewall is blocking the connection. Our knowledge of
firewalls indicates that packets are rejected either enroute to, or on return from, the webserver.
Queries for these two cases are similar; the one checking for response packets is:

EXPLORE

NOT src-addr-in

IN 192.168.2.0/255.255.255.0 AND

FastEthernet0 = entry-interface AND

prot-TCP = protocol AND

port-80 = src-port-in AND

internal-result(<reqfull>) AND

passes-firewall(<reqpol>)

IS POSSIBLE?
Query 7

Margrave reports that packets to the webserver are permitted, but responses are dropped. The
resulting scenarios all involve source ports 20, 21, 23, and 80 (easily confirmed by re-running the

3We replaced named interface references in static nat statements with actual IP addresses; our compiler does
not support the former.
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1 name-server 207.47.4.2

2 name-server 207.47.2.178

3 !

4 interface FastEthernet0

5 ip address 209.172.108.16 255.255.255.224

6 ip access-group 102 in

7 ip nat outside

8 speed auto

9 full-duplex

10 !

11 interface Vlan1

12 ip address 192.168.2.1 255.255.255.0

13 ip nat inside

14 !

15 ip route 0.0.0.0 0.0.0.0 209.172.108.1

16 !

17 ip nat pool localnet 209.172.108.16 prefix-length 24

18 ip nat inside source list 1 pool localnet overload

19 ip nat inside source list 1 interface FastEthernet0

20 ip nat inside source static tcp 192.168.2.6 80 209.172.108.16 80

21 ip nat inside source static tcp 192.168.2.6 21 209.172.108.16 21

22 ip nat inside source static tcp 192.168.2.6 3389 209.172.108.16 3389

23 !

24 access-list 1 permit 192.168.2.0 0.0.0.255

25 access-list 102 permit tcp any host 209.172.108.16 eq 80

26 access-list 102 permit tcp any host 209.172.108.16 eq 21

27 access-list 102 permit tcp any host 209.172.108.16 eq 20

28 access-list 102 permit tcp any host 209.172.108.16 eq 23

29 access-list 102 deny tcp any host 209.172.108.16

Figure 6.7: The original configuration for the forum post for Section 6.4.1

query with a SHOW REALIZED command asking for only the port numbers). This is meaningful to
a sysadmin: an outgoing web request is always made from an ephemeral port, which is never
less than 1024. This points to the problem: the router is rejecting all returning packets. acl 102
(Figure 6.7, lines 25–29) ensures that the server sees only incoming http, ftp, and telnet traffic,
at the expense of rejecting the return traffic for any connections that the server initiates.

Enabling the server to access other webservers involves allowing packets coming from the proper
destination ports. Methods for achieving this include:

1. Permit tcp traffic from port 80, via the edit:

28 access-list 102 permit tcp

29 any host 209.172.108.16 eq 23

30 access-list 102 permit tcp any eq 80 any

31 access-list 102 deny tcp

32 any host 209.172.108.16

2. Allow packets whose ack flags are set via the established keyword (or, in more recent versions,
the match-all +ack option). This suggestion guards against spoofing a packet’s source port
field and allows servers to listen on unusual ports.

3. Use stateful monitoring of the tcp protocol via reflexive access-lists or the inspect command.
This guards against spoofing of the tcp ack flag.

Follow-up posts in the forum suggested options 1 and 3. Margrave can capture the first two options
and the reflexive access-list approach in the third (it does not currently support inspect commands).
For each of these, we can perform verification queries to establish that the InboundACL no longer
blocks return packets, and we can determine the extent of the change through a change-impact
query. To apply reflexive acls here, we first apply an acl to the inside interface:
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11 interface Vlan1

12 ip address 192.168.2.1 255.255.255.0

13 ip access-group frominside in

14 ip nat inside

and then create the reflexive acl:

28 ip access-list extended frominside

29 permit tcp any any reflect returntcp

leaving the original acl for the external interface intact save for an invocation to evaluate the
dynamic list being built by outgoing packets:

31 ip access-list extended fromoutside

32 permit tcp any host 209.172.108.16 eq 80

33 permit tcp any host 209.172.108.16 eq 21

34 permit tcp any host 209.172.108.16 eq 20

35 permit tcp any host 209.172.108.16 eq 23

36 evaluate returntcp

37 deny tcp any host 209.172.108.16

Reflexive acls allow return traffic from hosts to which prior packets were permitted. Margrave
encodes prior traffic through a series of connection- relations over requests. Intuitively, a request is
in a connection- relation only if the same request with the source- and destination-details reversed
would pass through the firewall. Although the connection state is dynamic in practice, its stateless
definition enables Margrave to handle it naturally through first-order relations.

Performance: Loading each version of the configuration took between 3 and 4 seconds. The
final change-impact query took under 1 second. After loading, running the full suite of queries
(including those not shown) required 2751ms. The memory footprint of the Java engine (including
all component subpolicies) was 50 MB (19 MB JVM heap, 20 MB JVM non-heap).

6.4.2 Forum Help: Routing

“there should be a way to let the network 10.232.104.0/22 access the internet, kindly advise a
solution for this...”

In our second example [Oel09], the poster is trying to create two logical networks: one “pri-
mary” (consisting of 10.232.0.0/22 and 10.232.100.0/22) and one “secondary” (consisting of
10.232.4.0/22 and 10.232.104.0/22). These logical networks are connected through a pair of
routers (TAS and BAZ) which share a serial interface (Figure 6.8). Neither logical network should
have access to the other, but both networks should have access to the Internet—the primary via
10.232.0.15 and the secondary via 10.232.4.10.

The poster reports two problems: first, the two components of the primary network, 10.232.0.0/22
and 10.232.100.0/22, cannot communicate with each other; second, the network 10.232.104.0/22

cannot access the Internet. The poster suspects errors in the TAS router configuration, which is
shown in Figure 6.9.

We start with the first problem. The following query confirms that network 10.232.0.0/22

cannot reach 10.232.100.0/22 via the serial link. The hostname formulas introduce names for each
individual router based on the hostname specification in the ios configuration; these names appear
in the tasvector- and bazvector- requests. (The -full- requests extend the corresponding -pol-
requests with additional variables needed for internal-routing.
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TAS
Router

 GigabitEthernet0/0
10.232.0.0/22 primary

10.232.4.0/22 secondary

Serial0/3:0
10.254.1.129/30

10.232.4.10/22

 GigabitEthernet0/1
10.232.8.1/22

10.232.0.15/22

BAZ Router
GigabitEthernet0/0

10.232.100.0/22 primary
10.232.104.0/22 secondary

Serial0/3:0
10.254.1.130/30

Figure 6.8: Structure of the network for the forum post for Section 6.4.2

1 EXPLORE hostname-tas = tas AND

2 hostname-baz = baz AND

3

4 internal-result(<tasvectorfull-fromtas>) AND

5 internal-result(<bazvectorfull-fromtas>) AND

6 passes-firewall(<tasvectorpol-fromtas>) AND

7 passes-firewall(<bazvectorpol-fromtas>) AND

8

9 GigabitEthernet0/0 = tas-entry-interface AND

10 tas-src-addr-in IN

11 10.232.0.0/255.255.252.0 AND

12 tas-dest-addr-in IN 10.232.100.0/255.255.252.0

13 AND "Serial0/3/0:0" = tas-exit-interface AND

14

15 "Serial0/3/0:0" = baz-entry-interface AND

16 GigabitEthernet0/0 = baz-exit-interface

17

18 IS POSSIBLE?
Query 8

Margrave returns false, which means that no packets from 10.232.0.0/22 reach 10.232.100.0/22

along this network topology.
By the topology in Figure 6.8, packets reach the TAS router first. We check whether packets

pass through TAS by manually restricting query 8 to TAS (by removing lines 2, 5, 7, 14, and
15); Margrave still returns false. Firewall knowledge suggests three possible problems with the
TAS configuration: (1) internal routing could be sending the packets to an incorrect interface, (2)
internal routing could be dropping the packets, or (3) the acls could be filtering out the packets.
Margrave’s formulas for reasoning about internal firewall behavior help eliminate these cases: by
negating passed-firewall on line 6, we determine that the packet does pass through the firewall,
so the problem lies in the interface or next-hop assigned during routing. This example highlights
the utility of not only having access to these formulas, but also having the ability to negate (or
otherwise manipulate) them as any other subformula in a query.

To determine which interfaces the packets are sent on, we relax the query once again to remove
the remaining reference to Serial0/3/0:0 (on line 12) and execute the following SHOW REALIZED

command:
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1 hostname tas

2 !

3 interface GigabitEthernet0/0

4 description $ETH-LAN$$ETH-SW-LAUNCH$$INTF-INFO-GE 0/0$

5 ip address 10.232.4.1 255.255.252.0 secondary

6 ip address 10.232.0.1 255.255.252.0

7 ip access-group 101 in

8 ip policy route-map internet

9 duplex auto

10 speed auto

11 !

12 interface GigabitEthernet0/1

13 ip address 10.232.8.1 255.255.252.0

14 duplex auto

15 speed auto

16 !

17 interface Serial0/3/0:0

18 ip address 10.254.1.129 255.255.255.252

19 ip access-group 102 out

20 encapsulation ppp

21 !

22 ip route 10.232.100.0 255.255.252.0 10.254.1.130

23 ip route 10.232.104.0 255.255.252.0 10.254.1.130

24 !

25 access-list 102 deny ip 10.232.0.0 0.0.3.255 10.232.104.0 0.0.3.255

26 access-list 102 deny ip 10.232.4.0 0.0.3.255 10.232.100.0 0.0.3.255

27 access-list 102 permit ip any any

28 access-list 101 deny ip 10.232.0.0 0.0.3.255 10.232.4.0 0.0.3.255

29 access-list 101 deny ip 10.232.4.0 0.0.3.255 10.232.0.0 0.0.3.255

30 access-list 101 permit ip any any

31 !

32 access-list 10 permit 10.232.0.0 0.0.3.255

33 access-list 10 permit 10.232.100.0 0.0.3.255

34 access-list 20 permit 10.232.4.0 0.0.3.255

35 access-list 20 permit 10.232.104.0 0.0.3.255

36 !

37 route-map internet permit 10

38 match ip address 10

39 set ip next-hop 10.232.0.15

40 !

41 route-map internet permit 20

42 match ip address 20

43 set ip next-hop 10.232.4.10

Figure 6.9: Original Configuration (2)
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SHOW REALIZED

GigabitEthernet0/0 = exit-interface,

"Serial0/3/0:0" = exit-interface,

GigabitEthernet0/1 = exit-interface
Query 9

The output contains only one interface name:

{ GigabitEthernet0/0[exit-interface] }
Result

According to the topology diagram, packets from 10.232.0.0/22 to 10.232.100.0/22 should be us-
ing exit interface Serial0/3/0:0; the results, instead, indicate exit interface GigabitEthernet0/0.
Firewall experience suggests that the router is either switching the correct next-hop address
(10.254.1.130) to the wrong exit interface, or using the wrong next-hop address. The next query
produces the next-hop address:

1 EXPLORE hostname-tas = tas AND

2 internal-result(<tasvectorfull-fromtas>) AND

3 passes-firewall(<tasvectorpol-fromtas>) AND

4 GigabitEthernet0/0 = tas-entry-interface AND

5 tas-src-addr-in IN

6 10.232.0.0/255.255.252.0 AND

7 tas-dest-addr-in IN 10.232.100.0/255.255.252.0

8

9 INCLUDE

10 10.232.0.15 = tas-next-hop,

11 10.232.4.10 = tas-next-hop,

12 tas-next-hop IN 10.254.1.128/255.255.255.252,

13 tas-next-hop IN 10.232.8.0/255.255.252.0

14

15 SHOW REALIZED

16 10.232.0.15 = tas-next-hop,

17 10.232.4.10 = tas-next-hop,

18 tas-next-hop IN 10.232.8.0/255.255.252.0,

19 tas-next-hop IN 10.254.1.128/255.255.255.252
Query 10

{ 10.232.0.15[tas-next-hop] }
Result

The next-hop address is clearly wrong for the given destination address. To determine the extent
of the problem, we’d like to know whether all packets from the given source address are similarly
misdirected. That question is too strong, however, as LocalSwitching may (rightfully) handle
some packets. To ask Margrave for next-hops targeted by some source packet that LocalSwitching
ignores, we replace line 7 in query 10 with:

NOT LocalSwitching:Forward(<routingpol-tas>)
Query 11

This once again highlights the value of exposing LocalSwitching as a separate relation. The re-
vised query yields the same next-hop, indicating that all non-local packets are routing to 10.232.0.15,
despite the local routing policies. A simple change fixes the problem: insert the keyword default
into the routing policy:

route-map internet permit 10

match ip address 10

set ip default next-hop 10.232.0.15

This change ensures that packets are routed to the Internet only as a last resort (i.e., when static
destination-based routing fails). Running the original queries against the new specification confirms
that the primary subnets now have connectivity to each other. Another query checks that this
change does not suddenly enable the primary sub-network 10.232.0.0/22 to reach the secondary
sub-network 10.232.4.0/22.
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Now we turn to the poster’s second problem: the secondary network 10.232.4.0/22 still cannot
access the Internet. As before, we confirm this then compute the next-hop and exit interface that
TAS assigns to traffic from the secondary network with an outside destination. The following
query (with SHOW REALIZED over interfaces and potential next-hops) achieves this:

EXPLORE

tas = hostname-tas AND

internal-result2(<tasvectorfull-fromtas>) AND

firewall-passed2(<tasvectorpol-fromtas>) AND

GigabitEthernet0/0 = tas-entry-interface AND

tas-src-addr-in IN

10.232.4.0/255.255.252.0 AND

NOT tas-dest-addr-in IN

10.232.4.0/255.255.252.0 AND

NOT tas-dest-addr-in IN

10.232.104.0/255.255.252.0 AND

NOT tas-dest-addr-in IN

10.232.0.0/255.255.252.0 AND

NOT tas-dest-addr-in IN

10.232.100.0/255.255.252.0 AND

NOT tas-dest-addr-in IN

10.254.1.128/255.255.255.252 AND

NOT tas-dest-addr-in IN

192.168.1.0/255.255.255.0 AND

NOT tas-dest-addr-in IN

10.232.8.0/255.255.252.0

Query 12

{ gigabitethernet0/0[tas-exit-interface],

10.232.4.10[tas-next-hop] }
Result

The next-hop for the secondary network’s Internet gateway is as expected, but the exit-interface
is unexpectedly GigabitEthernet0/0 (instead of GigabitEthernet0/1). In light of this scenario, the
network diagram reveals a fundamental problem: the gateway 10.232.4.10 should be “on” the same
network as the GigabitEthernet0/1 interface (address 10.232.8.1/22); otherwise LocalSwitching

will send the packet to the wrong exit interface.
This problem can be resolved by changing the address of either the GigabitEthernet0/1 interface

or the next-hop router (10.232.4.10). We chose the latter, selecting an arbitrary unused address
in the 10.232.8.0/22 network:

39 route-map internet permit 20

40 match ip address 20

41 set ip default next-hop 10.232.8.10

Re-running the queries in this new configuration confirms that both goals are now satisfied.

Performance: Loading each version of the configuration took between 3 and 4 seconds. Query 12
took 351 ms. After loading, running the full suite of queries (including those not shown) finished
in 8725ms. The memory footprint of the Java engine (including all component subpolicies) was 74
MB (49 MB JVM heap, 21 MB JVM non-heap).

6.4.3 Enterprise Firewall Configuration

Our largest test case to date is an in-use enterprise iptables configuration. In order to stress-test our
ios compiler, we manually converted this configuration to ios. The resulting configuration contains
acls for 6 interfaces with a total of 1108 InboundACL rules (not counting routing subpolicies). The
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Table 6.3: Run-time performance of various queries on the enterprise acls. For the change-
impact query, we switched the decision from deny to permit on one non-superfluous rule. The
overshadowing-rules computation asked only for overshadows with the opposite decision.

Query Time (ms)
Permit pkt from addr X on interface Y? 1587
Previous with rule responsibility 23317
Change-impact after 1 decision edit 3167
Previous with rule responsibility 24039
Detect all superfluous rules 22578
List overshadows per rule in previous 72178

routing component of this firewall was fairly simple; we therefore focus our performance evaluation
on InboundACL.

From a performance perspective, we have illustrated three fundamentally different types of
queries: (1) computing over a single policy or network with just the default relations (which-
packets and verification queries), (2) computing over a single policy or network while including
additional relations (rule-responsibility and rule-relationship queries), and (3) computing over mul-
tiple, independent policies or networks (change-impact queries). The third type introduces more
variables than the first two (to represent requests through multiple firewalls); it also introduces
additional relations to capture the policies of multiple firewalls. The second type has the same num-
ber of variables, but more relations, than the first type. We therefore expect the best performance
on the first type, even under TUPLING.

Table 6.3 reports run-time performance on each type of query over the enterprise firewall-
configuration. Loading the policy’s InboundACL component required 10694ms and consumed 51
MB of memory. Of that, 40 MB was jvm heap and 7 MB was jvm non-heap.

Section 6.1 described how we compute superfluous rules through scripting. For this example,
these queries yielded surprising results: 900 of the 1108 rules in InboundACL were superfluous.
Even more, 270 of the superfluous rules were (at least partially) overshadowed by a rule with a
different decision. The sysadmins who provided the configuration found these figures shocking and
subsequently expressed interest in Margrave.

6.5 Related Work

Studies of firewall-configuration errors point to the need for analysis tools. Oppenheimer, et
al. [OGP] survey failures in three Internet services over a period of several months. For two of these
services, operator error—predominately during configuration edits—was the leading cause of fail-
ure. Furthermore, conventional testing fails to detect many configuration problems. Wool [Woo04]
studies the prevalence of 12 common firewall-configuration errors. Larger rule-sets yield a much
higher ratio of errors to rules than smaller ones; Wool concludes that complex rule sets are too
difficult for a human administrator to manage unaided.

In a seminal paper on firewall analysis, Guttman [Gut97] gives algorithms for converting a
network-wide connectivity policy into a set of router-level logical specifications (a vendor-independent
“filtering posture”) that implements the policy. The paper also describes an algorithm for checking
existing filtering postures to see if they conform to the global policy. Both algorithms are based
on graph traversal, which is a natural approach given that connectivity is inherently about host
reachability. Margrave does not support the automated generation of router configurations, and
its sat-based analyses are not geared toward reachability. Instead, it provides support for richer
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analyses, consideration of mutation of packets between routers (e.g. nat), and the ability to find
the cause of unexpected network behavior at the rule level.

Mayer, Wool and Ziskind [MWZ00, MWZ05] and Wool [Woo01] describe a tool called Fang
that has evolved into a commercial product called the AlgoSec Firewall Analyzer [Alg]. AlgoSec
supports most of the same analyses as Margrave, covering nat and routing, but it does not
support first-order queries or integration with a programming language. AlgoSec captures packets
that satisfy queries through sub-queries, which are a form of abstract scenarios.

Marmorstein and Kearns’ [MK05b, MK05a] ITVal tool uses Multi-way Decision Diagrams
(mdds) to execute sql-like queries on firewall policies. ITVal supports nat, routing, and chains of
firewall policies. Later work [MK06] supports a useful query-free analysis: it generates an equiv-
alence relation that relates two hosts if identical packets (modulo source address) from both are
treated identically by the firewall. This can detect policy anomalies and help administrators un-
derstand their policies. Additional debugging aids in later work includes tracing decisions to rules
and showing examples similar to scenarios. Margrave is richer in its support for change-impact
and first-order queries.

Al-Shaer et al.’s ConfigChecker [ASH03, ASH04] is a bdd-based tool that analyses networks
of firewalls using ctl (temporal logic) queries. Rules responsible for decisions can be isolated
manually through queries over sample packets. For performance reasons, the tool operates at the
level of policies, rather than individual rules (other of the group’s papers do consider rule-level
reasoning); Margrave, in contrast, handles both levels.

Bhatt et al.’s Vantage tool [BBOR08, BOR08, BR08] supports change-impact on rule-sets and
other user-defined queries over combinations of acls and routing; it does not support nat. Some
of their evaluations [BOR08] exploit change-impact to isolate configuration errors. This work also
supports generating acls from specifications, which is not common in firewall-analysis tools.

Liu and Gouda [LG08, LG09] introduce Firewall Decision Diagrams (fdds) to answer sql-like
queries about firewall policies. fdds are an efficient variant of bdds for the firewall packet-filtering
domain. Extensions of this work by Khakpour and Liu [KL10] present algorithms for many of the
firewall analyses we discuss, including user-defined queries, rule responsibility, and change-impact,
generally in light of nat and routing. A downloadable tool is under development.

Yuan, et al.’s Fireman tool [YMS+06] analyzes large networks of firewall acls using Binary
Decision Diagrams (bdds). Fireman supports a fixed set of analyses, including whitelist and
blacklist violations and computing conflicting, redundant, or correlated rules between different
acls. Fireman examines all paths between firewalls at once, but does not consider nat or internal
routing. Margrave’s combination of user-defined queries and support for nat and routing makes
it much richer. Oliveira, et al. [OLK09] extend Fireman with nat and routing tables. Their tool,
Prometheus, can also determine which acl rules are responsible for a misconfiguration. It does not
handle change-impact across firewalls, though it does determine when different paths through the
same firewall render different decisions for the same packet. In certain cases, Prometheus suggests
corrections to rule sets that guarantee desired behaviors. Margrave’s query language is richer.

Verma and Prakash’s face tool [VP05] aids both configuration of distributed firewalls and
analyzing existing distributed firewalls expressed in iptables. It supports user-defined queries,
as well as a form of change-impact over multiple firewalls. Its depth-first-search approach to
propagating queries through a network resembles Mayer, Ziskind, and Wool’s work. It does not
handle routing or nat. The tool is no longer available.

Gupta, LeFevre and Prakash [GLP09] give a framework for the analysis of heterogeneous policies
that is similar to ours. While both works provide a general policy-analysis language inspired by
sql, there are distinct differences. Their tool, span, does not allow queries to directly reference
rule applicability and the work does not discuss request-transformations such as nat. However,
span provides tabular output that can potentially be more concise than Margrave’s scenario-based
output. span is currently under development.

Lee, Wong, and Kim’s NetPiler tool [LWK08, LWK09] analyzes the flow graph of routing
policies. It can be used to both simplify and detect potential errors in a network’s routing config-
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urations. The authors have primarily applied NetPiler to BGP configurations, which address the
propagation of routes rather than the passage of packets. However, their methods could also be
applied to firewall policies. Margrave does not currently support BGP, though its core engine is
general enough to support them.

Jeffrey and Samak [JS09] present a formal model and algorithms for analyzing rule-reachability
and cyclicity in iptables firewalls. This work does not address nat or more general queries about
firewall behavior.

Eronen and Zitting [EZ01] perform policy analysis on Cisco router acls using a Prolog-based
Constraint Logic Programming framework. Users are allowed to define their own custom predicates
(as in Prolog), which enables analysis to incorporate expert knowledge. The Prolog queries are
also first-order. This work is similar to ours in spirit, but is limited to acls and does not support
nat or routing information.

Youssef et al. [BYBJ09] verify firewall configurations against security goals, checking both for
configurations that violate goals and goals that configurations fail to cover. The work does not
handle nat or routing.

6.6 Perspective on Applying Margrave

We introduced Margrave as a general-purpose policy analyzer in Chapter 3. Its most distinc-
tive features lie in and arise from embracing scenario finding over first-order models. First-order
languages provide the expressive power of quantifiers and relations for capturing both policies
and queries. Expressive power generally induces performance cost. By automatically computing
universe bounds (Chapter 4) for key queries, however, Margrave gets the best of both worlds:
first-order logic’s expressiveness with propositional logic’s efficient analysis. Effectively, Margrave
distinguishes between propositional models and propositional implementations. Most logic-based
firewall -analysis tools conflate these choices.

First-order modeling lets Margrave uniformly capture information about policies at various
levels of granularity. We have illustrated relations capturing policy decisions, individual rule be-
havior, and the effects of nat and internal routing. The real power of our first-order modeling,
however, lies in building new relations from existing ones. Each of the relations capturing behavior
internal to a firewall (passes-firewall, internal-routing, and int-dropped) is defined within Mar-
grave’s query language and exported to the user through standard Margrave commands. While
our firewall compilers provide these three automatically, users can add their own relations in a sim-
ilar manner. Technically, Margrave allows users to define their own named views (in a database
sense) on collections of policies. Thus, Margrave embraces policy-analysis in the semantic spirit of
databases, rather than just the syntactic level of sql-style queries.

Useful views build on fine-grained atomic information about policies. Margrave’s unique de-
composition of ios configurations into subpolicies for nine distinct firewall functions provides that
foundation. Our pre-defined firewall views would have been prohibitively hard to write without a
clean way to refer to components of firewall functionality. Margrave’s intermediate languages for
policies and vocabularies, in turn, were instrumental in developing the subpolicies. Both languages
use general relational terms, rather than domain-specific ones. Vocabularies allow authors to spec-
ify decisions beyond those typically associated with policies (such as Permit and Deny). Our ios
compiler defines separate decisions for the different types of flows out of internal routing, such as
whether packets are forwarded internally or translated to another interface. The routing views are
defined in terms of formulas capturing these decisions. The policy language defines the formulas
through rules that yield each decision (our rule language is effectively stratified Datalog). Had we
defined Margrave as a firewall-specific analyzer, rather than a general-purpose one, we likely would
have hardwired domain-specific concepts that did not inherently support this decomposition.

User-defined decisions and views support extending Margrave from within. Integrating Mar-
grave into a programming language supports external extension via scripting over the results of
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commands. Margrave produces scenarios as structured (xml) objects that can be traversed and
used to build further queries. SHOW REALIZED produces lists of results over which programs (such
as superfluous rule detection in Section 6.1) can iterate to generate additional queries.
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Chapter 7

Analysis of Software-Defined
Networks

The primary function of a network is to route traffic from point to point. To do so, each switch
on the network must know how to route arriving packets. There is a conceptual distinction be-
tween a network’s control plane, which settles on such a routing policy for each switch, and its
data plane, which actually performs the routing. In a traditional network, switches implement
both planes themselves, with the control plane distributed between the switches via standardized
protocols. These switches must be configured, usually in a fairly inexpressive language such as
Cisco ios (Chapter 6). They do not tend to be programmed in the full sense of the word.

In a software-defined network (SDN), switches receive their routing orders from programs run-
ning on a centralized controller. This strategy allows developers and operators to truly program
their network, rather than being restricted by proprietary, black-box abstractions and limited
configuration languages. Many network programs are written using libraries in widely-used pro-
duction languages like Java and Python. Other languages, tailor-made for programming SDNs,
are beginning to emerge as well. Such languages must be sufficiently low-level and expose enough
networking primitives to enable network programming.

In the rush to create languages for a new domain, expressive power often wins. This is
natural: the first task of a language is to express functionality. Thus, most software-defined
network controller programs are currently written using libraries in general-purpose (henceforth,
“full”) programming languages like Java and Python. Even tailor-made SDN languages (e.g., Fre-
netic [FHF+11] and NetCore [MFHW12]) are embedded in full programming languages to support
dynamic policies and state.

Because of the power of these languages, analysis of controller programs is non-trivial. In
languages with concurrency and state it can be extremely difficult to form useful static summaries
of program behavior. Add features like eval and dynamic loading, and it can be hard or impossible
to even determine what the program’s full code even is. As a result, analyses are either dynamic or
use unsound techniques such as symbolic evaluation. Any form of reliable static analysis is heavily
compromised and tools can usually only offer a “best effort” outcome. Approaches like directly
analyzing static forwarding tables [ASAH10] cannot avail of the rich semantic knowledge contained
in the original controller program. This is sufficient in some contexts but not when reliability is
a must. The Margrave tool, discussed in Chapters 3 and 6, provides sound, complete, and rich
analyses for configuration languages. Thus, our goal is to sustain the Margrave perspective in the
far more complex world of SDN programming.

We contend that languages for network programming can be effectively designed with respect
to both expressive power and analyzability, resulting in a powerful new idiom in which to program
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networks. As a first step on this hybrid path, we have created FlowLog1, a declarative language
for programming SDN controllers. We show that FlowLog is expressive enough to be used for
many real-world controller programs. It is also a finite-state language, and thus amenable to many
types of analysis, which we discuss. We compile arbitrary FlowLog programs for automated bug-
finding via standard model-checking techniques, showing that useful and efficient static analyses
are possible with minimal programmer effort.

7.1 FlowLog by Example

We introduce FlowLog through a pair of examples.

7.1.1 MAC Learning

We begin with a controller that learns which physical ports have connectivity to which layer-2
(MAC ) addresses. It also provides forwarding instructions to the switches that take this learning
into account.

+learned(pkt, sw, pt, mac) ←
pkt.locSw == sw,

pkt.dlSrc == mac,

pkt.locPt == pt;

5 emit(pkt, newp) ←
learned(pkt.locSw,newp.locPt,pkt.dlDst),

pkt.locSw == newp.locSw,

pkt.header == newp.header;

emit(pkt, newp) ←
10 not learned(pkt.locSw, any, pkt.dlDst),

pkt.locSw == newp.locSw,

newp.locPt != pkt.locPt,

pkt.header == newp.header;

− learned (pkt, sw, pt, mac) ←
15 pkt.locSw == sw,

pkt.dlSrc == mac,

pkt.locPt != pt;

Listing 7.1: MAC Learning in FlowLog

As the name suggests, FlowLog is inspired by Datalog [AHV95]. FlowLog programs consist of
a set of rules, each of which has a head and a body separated by the implication ←. Each rule
describes one of two things: a modification of the controller’s internal state (e.g., the rules with
+learned and −learned in their head) or a packet-handling action (the rules with emit in the
head). When the conditions in the body are met, the action specified in the head is performed.

The first rule tells the controller when to learn a port-to-address mapping. The rule’s head
(line 1) instructs the controller that when it receives a packet pkt, it should add any tuples <sw,

pt, mac> that satisfy the rule body to its learned relation. The body simply ensures that the
tuple’s contents represent the packet’s location switch (line 2), source MAC address (line 3), and
arrival port (line 4).

The second rule, beginning on line 5, handles forwarding when the controller has learned an
appropriate port. It informs the controller that when a packet pkt is received, all new packets
newp that match the rule body should be sent. That is, the new packet must be sent out the port

1This chapter describes joint work with Arjun Guha, Daniel J. Dougherty, Kathi Fisler,
and Shriram Krishnamurthi.
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dictated by the learned relation (line 6), on the same switch as received it (line 7). All other
attributes of the packet are left unmodified (line 8). This last stipulation is necessary because
FlowLog will cause all packets that match the conditions in the rule body to be produced. This
behavior is extremely useful for flooding packets on multiple ports (e.g., in the next rule).

The third rule, beginning on line 9, handles the other forwarding case: when the controller has
not yet learned an appropriate port to send a packet on. Barring two differences, it is identical
to the second rule: the negative use of the learned relation on line 10 enforces that, for the rule
to fire, no appropriate port has been learned. Line 12 adds a condition on the output port that
ensures that the switch will not backflow traffic.

Finally, the rule beginning on line 14 allows the controller to account for mobility of hosts by
removing outdated port-to-address mappings.

7.1.2 ARP Cache

Our second example involves the controller acting as a cache for address-resolution protocol re-
sponses. ARP allows hosts to discover which datalink-layer (MAC) addresses are currently bound
to a specific network-layer (IP) address. The program must, therefore, do several things: allow the
dissemination of ARP requests across the network, spy on the replies to those requests in order to
update its internal state, intercept requests for which the reply is already known, and spawn reply
packets for known requests. Excluding the un-learning of outdated ARP assignments, the entire
program is given below:

+learned(pkt, ip, mac) ←
pkt.dlTyp == 0x0806,

pkt.nwProto == 2,

not learned(pkt.nwSrc, any),
5 ip == pkt.nwSrc,

mac == pkt.dlSrc;

emit(pkt, newpkt) ←
pkt.dlTyp == 0x0806,

(pkt.nwProto == 2 ||

10 (pkt.nwProto == 1 &&

not learned(pkt.nwSrc, any))),
newpkt.locSw == pkt.locSw,

newpkt.locPt != pkt.locPt,

newpkt.header == pkt.header;

15 emit(pkt, newpkt) ←
pkt.dlTyp == 0x0806,

pkt.nwProto == 1,

newpkt.dlTyp == 0x0806,

newpkt.nwProto == 2,

20 learned(pkt.nwDst, newpkt.dlSrc),

newpkt.loc == pkt.loc,

newpkt.nwDst == pkt.nwSrc,

newpkt.dlDst == pkt.dlSrc,

newpkt.nwSrc == pkt.nwDst,

25 newpkt.otherwise == pkt.otherwise;

Listing 7.2: ARP Cache in FlowLog

In this program, pkt.dlTyp == 0x0806 checks that the packet is an ARP packet, for which
pkt.nwProto == 1 denotes a request and pkt.nwProto == 2 a reply.
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The first rule updates the controller’s state when the network sees an ARP reply for a previously-
unknown IP address. The negated condition on line 4 encodes that the IP is indeed not in the
current state.

The first emit rule, beginning on line 7, allows the propagation of all ARP replies as well as
ARP requests for unknown IP addresses. Line 9 floods reply packets, and line 10 stipulates that
the IP address must unknown to apply to request packets. Line 13 prevents backflow, and line 14
explicitly preserves the packet header.

The second emit rule (starting line 15) spawns reply packets for IP addresses that the controller
knows. The generated packet newpkt is constrained to be an ARP reply (line 18), while the
originating packet must be an ARP request (line 16). Its source MAC address is obtained from
the controller’s state (line 20). The reply is sent from the same switch and port that observed the
request (line 21) but with the packet’s destination and source addresses reversed (lines 22–24). All
other header fields are preserved in the new packet (line 25). As before, omitting this restriction
would cause FlowLog to produce packets to cover all possibilities.

7.2 FlowLog Under the Hood

These examples show that FlowLog offers a concise means for describing how a controller ought
to react to packets. It can govern how those packets are forwarded, cause entirely new packets to
be produced and sent, and modify the controller’s internal state, by both adding and removing
information.

FlowLog syntax is inspired by Datalog [AHV95] with negation, to which we have added a
notion of packet fields and slight syntactic sugar. Furthermore, we require that there be no cyclic
dependencies between relation names across programs, i.e., FlowLog is non-recursive. FlowLog’s
concrete syntax as used in Section 7.1 is currently provisional, and thus we do not give a grammar
for it here. However, FlowLog’s core language (i.e. after desugaring) is simply non-recursive
Datalog with negation — the same formalism that Margrave uses for its policies. The heart of
FlowLog lies in its semantics.

FlowLog Semantics FlowLog programs have a relational notion of state, which the program
can both read and update. A relational state is simply a collection of concrete tables (equivalent to
a relational database). For example, in our ARP-cache implementation, the controller’s knowledge
of which ip addresses are mapped to which ethernet addresses is contained in the learned relation.

Let P be a FlowLog program, and let sig(P ) denote the state relations used in P . If rules exist
to define them, it is natural to consider also the following generated relations, which have special
meaning in FlowLog:

1. emit, a special binary relation;

2. +R, where R ∈ sig(P ) and arity(+R) = arity(R) + 1;

3. -R, where R ∈ sig(P ) and arity(-R) = arity(R) + 1

Together, these relations define the semantics of P . Given a relational state S for sig(P ) (i.e.,
a set of tuples for each state relation), the meaning of P at S is a function that accepts individual
packets and produces two things: the next relational state S′ and a set of packets to output on
the network.

Let S+ be the interpretation of the emit, +R, and -R relations given by Datalog seman-
tics [AHV95]. We denote the relation R in a state S by RS . Now the semantics of P is the
function [[P ]](S, p) = (S′, p′) such that:

1. For each R ∈ sig(P ): RS
′

= (RS − -RS
+

) + +RS
+

; and

2. p′ = {p′ | 〈p, p′〉 ∈ emitS
+

}
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7.3 Analyzing FlowLog

A FlowLog program naturally defines a finite-state transducer2 on controller states. This is easy to
see from our operational semantics: each transducer state is a set of relations, and each transition
has arriving packets as input and the resulting output packets as output. Due to this fact, many
rich analyses of FlowLog programs are not only possible [HU79], but even efficient. These include
all of the analyses mentioned in Chapter 3 (e.g. change-impact analysis, verification, and bug-
finding) and more; the key is that, regardless of the questions asked or the tools used, FlowLog’s
simple structure and carefully chosen restrictions ease analysis in general.

As an illustrative example, we describe the application of model-checking below. Model-
checking is a sound and complete exploration of a finite state-space. For our experiments we
used the SPIN model checker [Hol03]. First we discuss the properties to verify, then examine
performance.

Verification Properties We begin by considering MAC-learning. Properties one might want
to verify include:

Consistency of State The controller never learns an inconsistent state: all switch-address pairs
are mapped to at most one port.

Preservation of Connectivity If a packet appears at an endpoint, it will eventually exit the
network at the appropriate point.

No Loops The algorithm never induces routing loops.

Eventually Never Flood The algorithm will eventually stop flooding.

The “Eventually Never Flood” property is especially interesting. Though it is a behavioral
property, it is also equivalent to saying that the second emit rule (listing 7.1, line 9) will always
eventually stop firing. In our experience analyzing rule-based languages, we often find it easier to
ascribe semantic properties to a small number of syntactic rules, making it easier to understand
and debug programs.

ARP-cache shares some properties with MAC-learning and differs on others. The ARP-cache
properties we considered are:

Consistency of State The controller state must not become inconsistent, meaning one IP ad-
dress must not map to multiple MAC addresses.

Reliability All ARP requests will be answered.

Cache All ARP requests for known addresses will be stopped and replied to, without propagation
in the network.

We haved verified each of these properties, as well as caught errors that were artificially injected.
Checking against injected errors is important even when a system passes, because all system
descriptions—even incorrect ones—will pass (erroneous) vacuously true property statements. Also,
it is important to distinguish the times for verification and falsification, since these can be quite
different.

Performance of Analysis To evaluate the performance of our analyses, we use metrics and
network topologies similar to those of Canini et al. [CVP+12]. We note that our rough use of
out-of-the-box model-checking tools sees performance similar to theirs, which used a custom-built
checker. This is because the restricted nature of FlowLog allows for fairly simple modeling. All

2A finite-state automaton that reads and writes a symbol at each step.
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tests are run on an Intel Core i5-2400 CPU with 8 GB of memory, running Windows 8 64-bit.
We use Spin version 6.2.3, and make the modeling assumption that packets are injected into the
network serially. For MAC-learning, we allow host mobility, limiting the number of times hosts
can relocate to three. We test all MAC-learning properties on two different network topologies:
an acyclic topology with two switches and a cyclic topology with three switches. For ARP-cache,
we test without allowing host mobility on a two-switch topology.

Spin verifies Consistency of State, Reliability and Cache in under 20 seconds each, using
no more than 500 MB of memory. Preservation of Connectivity fails in the presence of host-
mobility, and Spin yields an example of this on the 2-switch topology in 140 milliseconds. No
Loops is correct on the acyclic topology, but Spin finds potential routing loops on the cyclic
topology in 40 milliseconds.

Eventually Never Flood fails on both topologies. Spin returns a short illustration of this
failure in 160 milliseconds. The property fails for a somewhat subtle reason: address-port mappings
are only learned locally. Thus, packets from an unlearned source address to a previously learned
destination will not be flooded, preventing other switches from learning the right port for that
address. This oversight can be fixed with a single FlowLog rule (not shown in the listing) that
floods the first (and only the first) packet seen from an unknown source, even if its destination is
known.

7.4 Executing FlowLog Programs

Since FlowLog is a refinement of Datalog, a first option for execution would be using an out-of-
the-box Datalog engine. Given a specific packet, running such an engine would certainly yield the
set of packets that ought to be emitted, as well as any necessary state edits. However, notifying
the controller of every packet arrival places unnecessary overhead on both the network and the
controller hardware. A real-world controller must provide flow rules proactively to the switches,
and only be informed when a packet arrival might cause the controller’s state to be updated or
cause behavior that the switch perform do on its own.

Fortunately, there is a way to accomplish this with FlowLog. The NetCore [MFHW12] con-
troller provides a runtime environment and a verified compiler [GRF13] from programmatically
generated policies to OpenFlow switch tables. The compiler allows controllers to issue rules proac-
tively, making use of wildcarding. We therefore intend to execute FlowLog programs within the
NetCore environment, using its verified compiler whenever possible.

FlowLog programs are, however, not just NetCore policies! Instead, FlowLog programs are
richer in three ways: they can access controller state, they can modify that same state, and they
can make non-constant modifications to packet fields. NetCore policies are stateless, and moreover
their ability to modify packet fields is restricted by the nature of OpenFlow 1.0. For instance,
a flow table cannot express “swap the source and destination addresses”. Thus some pieces of a
FlowLog program will not be expressible in a NetCore policy.

To circumvent this problem, we divide a FlowLog program in two: rules which are simple
enough to be (modulo the current controller state) compiled to flow tables, and rules which will
require direct controller action in some way. Here we find another advantage of our non-recursive,
rule-based design: it is easy to characterize the packets that the controller may need to take direct
action on. These packets are the ones that can be matched by the bodies of state-modification
rules or rules that modify packets in a non-constant fashion. The controller can process these
exceptional packets using either a Datalog engine or custom algorithms. By proactively compiling
as much of the program as possible to flow tables, we reduce overhead; furthermore, we can
statically determine when the overhead will occur, making it easier to tune for performance if the
cost of updating switches is found to be expensive. As an added benefit, automatic computation of
controller-notifications eliminates the potential for bugs (and inefficiency) in controller notification.
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7.5 Related Work

There have been many Datalog-derived and -related programming languages, especially in the SDN
domain. Hinrichs, et al. [HGC+09] present the FML language for network management, which,
like FlowLog, is based on non-recursive Datalog with negation. FML programs have far more
expressivity in their rule conditions than do FlowLog programs, yet they do not provide a way for
the program to modify state.

The Declarative networking effort [LCG+09] uses declarative languages to program distributed
systems, focusing on temporal reasoning and message-passing between network nodes, rather than
programming for a centralized controller. While these languages are designed to encourage code
correctness, analysis has not been a goal equal to expressive power in their design.

Katta et al. [KRW12] describe a language called Flog which has a similar appearance to ours.
Flog does not give the ability to explicitly remove tuples in the next state (as we do with -R rules).
Instead, Flog’s next state is empty unless tuples are explicitly carried over. In terms of expressive
power, Flog allows recursion in its rules, but not explicit negation; we allow the opposite. Flog’s
forwarding policies allow implicit negation via rule-overriding, as in their example implementation
of MAC learning. Unsurprisingly, the inclusion of recursion gives Flog a significant advantage in
expressiveness over FlowLog. However, Flog is not designed with analysis in mind; both are equal
considerations in FlowLog.

Field et al. [FMS09] present a declarative language model, designed for web applications, that
allows a database to react to external updates. Like FlowLog, their language is inspired by Datalog,
but it has significantly more expressive power than FlowLog. It supports recursion, provides
numerics, and offers features designed for interaction between processes. Thus, one could view
their language as a possible evolution of FlowLog, were we only concerned with expressive power
and usability, and not with analysis or the embedding of third-party code. They do not discuss
analysis, and the addition of recursion renders some analysis questions undecidable.

Voellmy et al. [VKF12] present Procera, a functional-reactive policy language for SDNs. Pro-
cera allows the reactive modification of state as well as packet filtering. It is more expressive than
FlowLog, for instance allowing arithmetic, but does not address analysis.

Skowyra et al. [SLBK13] compile their rapid-prototyping language to model-checkers in order to
verify properties and find bugs in specifications. Their language (VML) is designed for prototyping
and not execution, although it is widely applicable outside SDNs. Like us, they use MAC learning
as a testbed.

NICE [CVP+12] uses a mix of symbolic execution and model-checking to find bugs in NOX
controllers written in Python. However, since Python is a full language, symbolic execution is
unsound and required implementing a specialized model-checker. We propose a language-design
strategy that will increase the available efficiency and soundness of analysis via a finite-state
surface language, while still embracing tools like NICE for analysis of arbitrary call-outs, thereby
ringfencing the regions of the controller program that may need to rely on unsound methods.

FlowChecker [ASAH10] analyzes low-level OpenFlow flow tables. switches. In contrast, FlowLog
is an efficiently analyzable language for controller programming, and thus operates at a different
level of abstraction. Similarly, Anteater [MKA+11] uses SAT-solving techniques to analyze the
switch forwarding rules on a network. Likewise, Gutz et al. [GSSF12] perform analysis of stateless
controller policies when analyzing their slice abstractions. In contrast, analysis of FlowLog must
take shifting controller state into account, rather than assuming a fixed switch forwarding base.
Guha et al. [GRF13] recently developed a machine-verified controller for NetCore that ensures
that static NetCore policies are correctly translated to OpenFlow messages. In contrast, our work
addresses the verification of dynamic control programs.

Other analysis tools such as FortNOX [PSY+12] and Veriflow [KZCG12] act only at runtime;
we have focused on designing a language for efficient static analysis as well.
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Chapter 8

Conclusion and Future Work

Misconfiguration of enterprise systems can result in severe consequences, including lost profits,
identity theft, and even physical danger. Nevertheless, systems become more complex every year,
and misconfigurations abound. Analysis tools such as Margrave provide a layer of defense against
misconfiguration. Through Margrave and the rest of this thesis, we hope to increase the reliability
of systems, as well as make static-analysis techniques more available and approachable for users
who have neither the time nor the expertise to dabble in formal methods. As this work evolves, we
plan to focus on providing tools not only to practitioners, but also to designers of new configuration
languages.

We have shown that predicate logic–in particular, declarative first-order formalisms such as
non-recursive Datalog with negation– is a suitable representation for configurations, access-control
policies, and network programs. Margrave, our scenario-finding tool for configuration and policy
analysis (Chapter 3), uses non-recursive Datalog with negation to represent configurations. We
apply Margrave’s first-order scenario-finding techniques to great effect in debugging real-world
network configurations (e.g. Cisco ios in Chapter 6). The FlowLog language for network pro-
gramming (Chapter 7) also uses non-recursive Datalog with negation, but adds an explicit notion
of state-change to the language, something that Margrave supports only implicitly. We used both
Margrave and off-the-shelf model-checking software to analyze FlowLog programs, demonstrating
how declarative first-order formalisms are amenable to different kinds of analysis.

We have also shown that declarative predicate-logic foundations support configuration-analysis
tools that are user-focused in ways beyond just scenario-finding. Our Aluminum tool (Chapter 5)
improves the concision of output scenarios as well as encourages user-driven scenario exploration.
Our evaluation demonstrates that presenting minimal scenarios reduces both the number and the
complexity of scenarios that are seen. Our finite-model theorem gives completeness guarantees
for bounded scenario-finding in many common analysis situations (Chapter 4). By implementing
algorithms that use this theorem in Margrave, we have shown that there are real world settings
(e.g., networks) in which our finite-model theorem applies, allowing for complete, trustworthy
scenario-finding.

Lessons Learned In the Margrave tool, we used a logical foundation for queries–full first-
order logic–that is technically undecidable. However, we learned that general undecidability is not
necessarily a deal-breaker in analysis; finite-model properties can be established that allow us to
avoid undecidability in everyday use. It can also be reasonable, however, to restrict expressiveness,
as seen in FlowLog. We have come to believe that configuration analysis ought to be pursued
from both sides, simultaneously designing languages and analysis techniques for them. Indeed,
designing new languages with analysis in mind will become more important as configurations
themselves become richer, as in the software-defined networking domain. Languages designed only
with expressivity in mind are easy to adopt, but tend to eventually become an analysis nightmare;
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witness the Turing-completeness of sendmail.cf.
In Aluminum, we found that removing unnecessary information from output scenarios gave

us great concision in the results. We used the same algorithm–removing unnecessary facts–to
expose the consequences of adding fresh information to a scenario. However, we also discovered
that presenting only minimal scenarios can unintentionally conceal important information. In
particular, a fact that is possible but not necessary is not shown in a minimal scenario; we addressed
this by showing a list of possible facts to add.

8.1 Future Work

Each sub-project in this thesis presents multiple avenues for future work.

8.1.1 Margrave

Our long-term goal is to grow Margrave into a mature tool that is useful to both academics and
industry practitioners alike. This will involve supporting more and richer configuration languages,
but also continuing to push Margrave’s user focus to make the tool more appealing. Some selected
improvements are:

• We have applied Margrave to many different kinds of policies, including access-control, sim-
ple hypervisors, product-line configuration, firewalls, and routing configuration. Margrave’s
general-purpose flexibility also supports reasoning about interactions between different kinds
of policies, such as a firewall and an access-control policy for database access. Support for
heterogeneous policy federations is increasingly relevant in cloud deployments, and is an
exciting possibility for future work.

• Margrave’s performance is reasonable, but slower than other domain-specific analysis tools;
this is especially true in the firewall analysis, where tailoring the underlying data structures to
the domain yields dividends (as seen in, e.g. Liu and Gouda’s work [LG09]). In particular,
we expect Margrave will scale poorly to large networks of firewalls, as our formulas grow
linearly with the number of firewalls. Our use of sat-solving instead of bdds may be another
factor, though Jeffrey and Samak’s comparisons between these for firewall analysis [JS09] are
inconclusive. Exploring alternative back-ends—whether based on bdds or other solvers—is
another area for future work. Another, similar direction would be to create better data
structures for representing policies and formulas in Margrave. The current tool represents
formulas using the Kodkod abstract-syntax classes; this leads to inefficiency in larger policies
since the syntax tree does not self-simplify. For instance, ¬P (x)∧P (x) (and far more lengthy
such formulas, in practice) are not reduced to false before being handed to Kodkod. The
right balance of speed and expressiveness must be found, and the obvious data structures,
like bdd s, only generally apply to propositional, not first-order, logic. The fact that Kodkod
converts first-order formulas to propositional ones is no help here; the conversion happens
too late to deliver the benefits we desire.

• Real-world configurations often involve arithmetic or at least numerics. Margrave can cur-
rently support a limited notion of numerics, but doing so requires building scaffolding for
(among other things) linear ordering into the vocabulary. Better numeric support would in-
crease Margrave’s usefulness in the system administration domain, among others. Margrave
also lacks support for recursively-defined policies; allowing recursive policies would enable
Margrave to better handle aspects of trust management, such as delegation.

• Policies are often embedded in a larger system. Before taking an action, the system queries
the policy. This interaction leads to subtle questions about policy analysis, especially when
system state is involved. We intend to make a deeper exploration of state and state updates in
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policies, and an understanding of what kinds of state can be expressed fully in a policy rather
than a wrapper program. In our firewall analysis work, we accounted for reflexive access lists,
a simple kind of state that appears in firewalls. But support for stateful, protocol-aware
packet inspection would be far more complex, and has yet to be modeled in Margrave. Our
FlowLog language from Chapter 7 takes a first step in this direction.

• Finally, Margrave would greatly benefit from better support for additional real-world policy
languages and improved interfaces for the languages it already supports. For example, Mar-
grave supports a reasonable fragment of Cisco’s ios configuration language, but the scenario
output is generic, and not tailored to the networking domain, and network topology must
be encoded into the queries themselves. We wish to make Margrave an attractive option for
users of existing languages as well as creators of new languages. By allowing the tool to tailor
both its interface and its output to a domain, we would improve usability in both cases.

8.1.2 Finite-Model Theorems

Our work on a finite-model theorem for order-sorted predicate logic suggests two major lines of
further inquiry. The first is the exploration of new efficient algorithms for working with order-sorted
effectively-propositional logic sentences. A natural approach is to leverage insights from existing
tools for model-finding and theorem-proving that are currently optimized for the traditional EPL
class. The other direction is to pursue a program of classifying fragments of order-sorted logic
according to decidability. Abadi et al. [ARS10] suggest a taxonomy based on quantifier prefix
patterns but, as pointed out in the introduction, prenex-normal form is not available when sorts are
allowed to be empty. We propose that a combinatorial analysis of the signature of Skolemizations
of sentences is the proper generalization of the analysis of classical quantifier prefix classes.

8.1.3 Aluminum

The most obvious continuation of the Aluminum project is to make minimization and augmentation
standard features of the Alloy Analyzer. This modification would enable users to maximize their
gain from the scenarios that Alloy returns, and not require them to perform their minimization in
our special tool.

There exist situations where minimal scenarios are actually counterproductive (such as detect-
ing failed upper-bound frame conditions). We believe that this fact only underscores the need
to investigate new strategies for scenario-exploration as well as how they might interact. For
example, a tool presenting only maximal scenarios (up to a finite size bound) would be a dual
to Aluminum: always demonstrating failed upper-bound frame conditions, but not lower-bound
failures. Providing both modes of exploration to a user might be useful.

There are unanswered questions revolving around minimization. Aluminum was originally
conceived to produce homomorphically minimal scenarios. That is, minimality would be computed
with respect to three things: existence of atoms in the scenario, relational facts about those atoms
(corresponding to tuples in relations), and the equation of atoms. However, the existing tool only
minimizes with respect to the first two aspects. To obtain the third, we would need to encode
equality separately from Kodkod’s built-in support, which was unfeasible at the time.

At this time, evaluation of these tools has been either quantitative or via informal user feedback.
We have not conducted rigorous user-studies on either Margrave or Aluminum. Our quantitative
results have been extremely strong, and initial user feedback has been positive. In fact, we have
received substantial interest in incorporating Aluminum’s functionality into Alloy itself.

8.1.4 FlowLog

FlowLog, our proposed language for network programming from Chapter 7, is only part of a larger
research program to produce a tractable, expressive, analysis-friendly language that enables rich
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reasoning to create reliable controllers. The goal of FlowLog was to broaden the notion of state
to which we could bring Margrave-style analyses. Thus, Flowlog rules can modify state as well as
read it.

Programming controllers entirely in languages with limited expressive power, e.g., finite-state
languages like FlowLog, is attractive from an analytic standpoint, but impractical in the gen-
eral case. Controller authors need to take advantage of the full power of programming on some
instances, and methodologies that don’t provide it will (rightly) be deemed impractical.

Future work will make possible an alternative SDN programming experience based on the
following tenets:

• Controller authors should have the freedom to use both restricted and full languages. Which
one they use is a function of the analytic power they need, previously written code they wish
to reuse, etc.

• A single controller program should be able to combine elements from both restricted and
full languages. This provides the most flexibility and puts the trade-off in the hands of the
author.

• Because of the difficulty of recovering reasoning power once we permit full expressive power,
we prefer that the restricted language reside “outside” and the “full” language play the role
of callouts or libraries.

In short, we are aiming for the Alan Kay principle of “Easy things should be easy, while hard
things should be possible”.

From an analysis perspective, the restricted outer language will be amenable to rich, sound,
and complete analyses. We are not interested only in “verification”, as can be seen in Chapters 3
and 6. Change-impact analysis and other forms of property-free analysis will feature prominently.
Having a restricted language also opens the door to sophisticated forms of synthesis and much else.

But what to make of the embedded full-language components? Our view is that performing
the analysis over the restricted language will enable us to automatically infer constraints, such
as preconditions, postconditions, and invariants, on the behavior of the full language components
being invoked. Discharging those constraints becomes a language-specific, task-specific problem:
mechanisms may range from using existing tools for controller languages (such as NICE [CVP+12]
for Python) to applying richer model-checking techniques to performing dynamic monitoring of
invariants.

We have focused so far on the design of a decidable yet expressive language. Because our design
is based on permitting external code in full languages, future work will proceed on two fronts:

1. Automatically extracting interfaces on callouts. We can exploit the long history of work on
interface generation in the verification community, though the nature of composition here—
being sequential rather than parallel—has been studied less.

2. Focusing on tasks other than traditional verification. Our primary emphasis will be change-
impact analysis, but we are also interested in program synthesis approaches.
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Appendix A

Preliminary User Study

This appendix contains a two-part user study that we designed to evaluate how people use scenario-
finding tools, along with how scenarios might be tailored (e.g. the minimal scenarios of Chapter 5)
to improve the benefit they gain from these tools. Concretely, we crafted this study to help us
learn:

1. How are scenario-finding tools such as Alloy used in practice?

2. Given a flood of scenarios, how soon will a user simply stop browsing?

3. What kinds of scenarios might a user wish to see first? Are minimal scenarios useful to see
first?

4. What scenarios might a user wish to see next, having already seen one? Is the “augmentation”
paradigm, in which the next scenario adds facts to the prior one, something that they find
useful?

We are also interested in the qualitative reasoning behind users’ answers.

A.1 Survey Discussion

In order to encourage participation, we divided the study into two parts: a short-form survey
containing broad but informative questions and a longer-form version where participants are asked
to consider which scenarios they would like to see for three different specifications. We designed the
short-form survey to take roughly five minutes, and the longer version approximately ten additional
minutes. This expectation was borne out by internal testing.

A.1.1 Short-Form Survey

The short-form part of this survey contains nine questions, and is reproduced in its entirety in
Section A.2. Questions 1 – 3 obtain information about the participant’s usage of formal-methods
tools, as well as their current position. Question 4 inquires about what motivates them to use
scenarios, and Questions 5 and 7 delve deeper into how they use scenarios. Question 6 is meant
to discover whether participants even consider necessity (and thus, minimality) when looking at
scenario output. Questions 8 and 9 give the participant an open-ended space in which to write
about features that they would like to see in scenario-finding tools and additional information
about how they use scenarios.

While this survey is brief, it gathers a great deal of information about how people use scenario-
finding tools. Question 6 is particularly useful: do users of these tools even think about facts in
scenarios in terms of necessity, or is minimality an entirely new way of thinking to them?
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A.1.2 Long-Form Survey

The long-form survey (reproduced in Section A.3) contains three example specifications and ques-
tions about each. The three specifications use different mathematical concepts and different do-
mains, which we believe will help rule out or discover user bias. Each specification contains some
surprising behavior, and some example scenarios illustrate that behavior. When there are multiple
variations of the bug (as in Specification 1), we use different scenarios to illustrate each variation
and one to illustrate both simultaneously. In each question, we have included at least one minimal
scenario, at least one extension of that scenario (e.g. by adding new facts or items), and at least
one “large” scenario that may involve several unnecessary facts.

A.1.2.1 Long-Form Specification 1: Address Book

The address-book specification comes from Jackson [Jac12]. The specification has a bug: an
address-book name (either a group or an alias) can fail to point to a concrete address. We are
interested in whether the user notices the bug, and which scenarios help them to do so. The bug
manifests in Scenarios 1, 3, 4, and 5. Scenarios 1 and 5 are minimal, up to a bound requiring at
least two names to exist. Thus, the bug is present in both minimal and non-minimal scenarios.

Scenario 1 demonstrates that aliases can be empty. Scenario 5 shows that groups can be empty.
Scenario 3 contains both examples of the bug: it contains both an empty group and an empty
alias, yet it is an extension (up to isomorphism) of Scenario 1, and thus not minimal. Scenario 4
contains only an empty alias, and is not minimal.

Our expectation is that users would prefer the non-minimal, but doubly useful Scenario 3. If
first given Scenario 1 or Scenario 5, we expect users to prefer either the appropriate counterpart
(Scenario 1 leading to Scenario 5 or vice versa) or Scenario 3. If our expectation is false, we expect
to gain insight into this different preference via users’ qualitative comments.

A.1.2.2 Long-Form Specification 2: Grade Book

The grade-book specification is of our own design. It contains a bug that is only seen in non-
minimal scenarios: it is possible for TAs to grade their own assignments.

Scenarios 1 and 5 illustrate the bug. The minimal scenario 2 has no TAs, and in Scenarios
3 and 4, no TA authored the assignment. Scenario 5 is an extension of Scenario 1 that adds an
(unnecessary) extra instructor. Since the specification does not require the presence of a TA, only
scenario 2 is truly minimal.

We expect Scenario 1 to be preferred, since it demonstrates the problem with the least amount
of extra information. If the minimal Scenario 2 is seen first, we hope that scenario 1 will be most
desirable as a second scenario.

A.1.2.3 Long-Form Specification 3: Conference Manager

This specification, also of our own design, models a fragment of a conference-manager. The sur-
prising behavior here is that a single review can cover multiple papers. Since the constraints only
say that there must be one of each type of object (paper, reviewer, etc.) only Scenario 1 is minimal.
Scenarios 2, 3, and 4 all illustrate the bug, but Scenario 2 is minimal among the three.

We expect that Scenario 2 would be preferred, followed by either Scenario 3 or Scenario 4.
If Scenario 3 or 4 is preferred over Scenario 2, we believe that this may be due to perception of
the minimal scenarios as an “incomplete” corner-case; we will validate this through qualitative
feedback.
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A.1.3 Cautions

There are some caveats to keep in mind about these surveys.

Possibility and Augmentation This survey has focused mainly on minimality and modes of
scenario use. While no example scenario for Specification 3 shows a paper with more than one
author, nothing in the specification prevents it. If the specification did in fact prevent multiple-
author papers, it would be negative information that could not be extracted from a single scenario.
Such bugs are beyond the scope of this study, although one might create a followup study to
evaluate the effectiveness enriching scenarios with (im)possibility information. Our Aluminum
tool (Chapter 5) also gives users the ability to explore the consequences of adding new facts to
output scenarios. An expanded study could evaluate the usefulness of this feature as well.

Preference vs. Effectiveness This survey tests which scenarios users prefer, but not which
scenarios are actually most effective in leading them to the bugs in each specification. Even if
users do not prefer minimal scenarios, it may be that minimality and augmentation, as seen in
Aluminum, are still helpful. Thus, this study could benefit from revision or extension to test for
scenario effectiveness. There is also a risk that the small size of these scenarios do not allow the
benefits of minimality to come across clearly; an on-line version of this study could include a fourth
long-form example with larger scenarios.
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A.2 Short-Form Survey

The short-form survey follows on the next page. Page formatting of the survey has been
preserved.
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This survey explores how people use concrete models/instances/counterexamples to analyze and 

understand formal specifications.  It is being conducted by formal methods researchers from WPI and 

Brown University: Kathi Fisler, Tim Nelson, Shriram Krishnamurthi, and Dan Dougherty. 

This survey uses the term scenario for a concrete example that witnesses the success or failure of a 
property or query.   It includes instances, counterexamples, and models (from mathematical logic). 
 
1. Which of the following formal-methods tools do you use?  Check all that apply:  

 
___ Alloy ___ ASM 
___ B ___ SAT solvers (directly, not through tools like Alloy) 
___ Z ___ Model checkers 
Other (please specify): _____________________________________________________ 
 

2. Which of the following best describe your current position? 
 Masters student 
 PhD student 
 University faculty (professor, lecturer, etc.) 
 Industry or government employee 
 Other: ____________________________________ 

3. For Alloy and other formal methods tools, which statement best describes your usage? 
 

 
Alloy 

Other 
tools 

I’ve never used it   

I’ve worked through small examples (e.g., from a tutorial or textbook)   

I’ve used it in class (as a student or professor), but not outside of class   

I do research on it, but don’t model or analyze significant projects with it   

I’ve built other systems that incorporate it, but don’t use it directly   

I’ve used it for a nontrivial part of a research project   

Other (please explain): 
 
 

 
 
4. How often do you find scenarios useful for each of the following tasks?   

  

 Rarely Sometimes Often 

Help find the source of a behavior or bug in a specification     

Suggest additional properties to check of a specification     

Suggest additional constraints required in a specification     

Identify unexpected relationships between parts of a specification    

Foster human confidence in the behavior of a specification     

Other (please describe): 
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5. Imagine you use a tool to run a property or query against a specification.  The tool produces a set of 

scenarios.  How often do you use each of the following approaches to explore those scenarios?   
  

 Rarely Sometimes Often 

Trace each scenario through the specification before viewing another     

Inspect several scenarios at a high-level, then go back and trace 
(some of) their contents to the specification 

   

Refine query to include some fact(s) in a recently-viewed scenario     

Ask a query that includes some fact(s) not seen in the scenarios so far     

Ask a refined query that checks whether two distinct elements in an 
existing scenario could merge into a single element  

   

Edit the specification as soon as a scenario indicates an issue, then 
re-run the original query  

   

Other (please describe): 
 
 
 

 
 

6. When using a tool that produces scenarios in response to a query, how often do you wonder 
whether a particular fact or element in the scenario is necessary to satisfy the query?  

 
Rarely                           Sometimes                         Often                      

 
7. When using a tool that produces scenarios, how often do the contents of one scenario suggest a 

new property or query that you hadn’t previously identified?  
 

Rarely                           Sometimes                         Often                      
 

8. What are your favorite or desired features in tool support for exploring scenarios? 
 

 
 
 
 
 
 
9. Any additional comments on your usage of scenarios in formal analysis? 
 
 
 
 
 
 

Thank you! If you’d be willing to respond to further questions about how you use scenarios, please 

continue to the next section and/or provide a contact email address:__________________________  
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A.3 Long-Form Survey

The long-form survey begins on the next page. Page formatting of the survey has been preserved.
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Detailed Questions

This survey evaluates which scenarios are most helpful for confirming that a specification behaves
as expected. We will show you three specifications. For each, we show five (of the many) scenarios
that are consistent with the specification. We want to know which of the five are helpful to see
first, and which you would want to see next. Please fill in the answer table under each specification.
Thank you for participating!
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Specification 1: Address Book

Consider the following specification for an address book that supports groups of addresses and
aliases for single addresses. The hierarchy of types (aka, sorts, signatures, or domains) is on the
left. The relations and constraints are on the right.

Target
(abstract)

Address

Alias Group

Address-book Type Hierarchy

Name
(abstract)

Relations
addr: Name × Target

Constraints
1) addr is acyclic

2) addr maps each alias to

no more than one name

3) there is at least one Address

Assuming your analysis tool were going to show the five scenarios on the next page (numbered 1
to 5) in some linear order, please fill in the following table:

If checked, numbers
Scenario Helpful to see first? of up to two other Please explain your response
Number (check all that apply) scenarios to show next (for the whole row)

1 �

2 �

3 �

4 �

5 �
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Address book Scenario 1 Address book Scenario 2

Alias:
Boss

Alias:
LISP Prof

Address:
kfisler@cs.wpi.edu

addr

Group:
Margrave

Alias:
Boss

Address:
kfisler@cs.wpi.edu

Alias:
Lead Dev

Address: 
tn@cs.wpi.edu

addr addr addr

addr

Address book Scenario 3 Address book Scenario 4

Group:
Margrave

Alias:
LISP Prof

Alias:
Boss Address: 

tn@cs.wpi.edu

addr

Group:
Margrave

Alias:
LISP Prof

Alias:
Boss Address:

kfisler@cs.wpi.edu

Address: 
tn@cs.wpi.edu

addr
addr

addr

addr

Address book Scenario 5

Group:
Margrave

Alias:
LISP Prof

Address: 
tn@cs.wpi.edu

addr
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Specification 2: Homework and Grading Tool

Consider the following specification of which users of a homework and grading tool are allowed to
submit work and grade assignments. The hierarchy of types (aka, sorts, signatures, or domains)
is on the left. The relations and constraints are on the right.

Subject
(abstract)

Student Professor

Assignment

Gradebook Type Hierarchy

Relations
TA: Student

instructor: Professor

studentOf: Assignment × Student

canGrade: Subject × Assignment

Constraints
1) canGrade(s, a) ⇐⇒

TA(s) or instructor(s)

2) studentOf(a) is non-empty

for all Assignments a

Assuming your analysis tool were going to show the five scenarios on the next page (numbered 1
to 5) in some linear order, please fill in the following table:

If checked, numbers
Scenario Helpful to see first? of up to two other Please explain your response
Number (check all that apply) scenarios to show next (for the whole row)

1 �

2 �

3 �

4 �

5 �
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Grading Scenario 1 Grading Scenario 2

Student:
Adam

Professor:
Smith
Instructor

Assignment Submission:
Program #1

studentOf

Student:
Barbara

TA

canGrade

canGrade

studentOf

Student:
Adam

Professor:
Smith
Instructor

Assignment Submission:
Program #1

studentOf

canGrade

Grading Scenario 3 Grading Scenario 4

Student:
Adam

Professor:
Smith
Instructor

Assignment Submission:
Program #1

studentOf

Student:
Barbara

TA

canGrade

canGrade

Student:
Adam

Student:
Chris

TA

Professor:
Smith
Instructor

Assignment Submission:
Program #1

studentOf canGrade

Student:
Barbara

TA

canGrade

canGrade

Grading Scenario 5

Student:
Adam

Student:
Barbara

TA

Professor:
Smith
Instructor

Assignment Submission:
Program #1

Professor:
Sorensen
Instructor

studentOfstudentOf

canGrade

canGrade canGrade
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Specification 3: Conference Manager

Consider the following specification of the relationships between reviews, reviewers, papers, and
authors in a conference manager. The hierarchy of types (aka, sorts, signatures, or domains) is on
the left. The relations and constraints are on the right.

Paper Author Review Reviewer

Conference Type Hierarchy

Relations
hasAuthor: Paper × Author

reviewFor: Review × Paper

writtenBy: Review → Reviewer

Constraints
1) There is at least one paper,

author, review, and reviewer;

2) Relations hasAuthor and reviewFor

are total (i.e. every paper has at

least one author and every review is

about at least one paper)

Assuming your analysis tool were going to show the five scenarios on the next page (numbered 1
to 5) in some linear order, please fill in the following table:

If checked, numbers
Scenario Helpful to see first? of up to two other Please explain your response
Number (check all that apply) scenarios to show next (for the whole row)

Scenario 1 �

Scenario 2 �

Scenario 3 �

Scenario 4 �

Scenario 5 �
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Conference Scenario 1 Conference Scenario 2

Paper:
PRIMES is Still In P

Review:
Review #1

reviewFor

Author:
Brian

Reviewer:
Anne

writtenBy
hasAuthor

Paper:
PRIMES is Still In P

Review:
Review #1

reviewFor

Paper:
Candymaking in 17th 
Century France

Author:
Brian

Reviewer:
Anne

hasAuthorwrittenBy

reviewFor

hasAuthor

Conference Scenario 3 Conference Scenario 4

Paper:
PRIMES is Still In P

Review:
Review #1

reviewFor

Paper:
Candymaking in 17th 
Century France

Review:
Review #2

Author:
Brian

Reviewer:
Anne

hasAuthorwrittenBy

reviewFor reviewFor

reviewFor

writtenBy
hasAuthor

Paper:
PRIMES is Still In P

Review:
Review #1

reviewFor

Paper:
Candymaking in 17th 
Century France

Review:
Review #2

Author:
Dorothy

Author:
Brian

Reviewer:
Charlie

Reviewer:
Anne

hasAuthorwrittenBy

reviewFor reviewFor

reviewFor

writtenBy
hasAuthor

Conference Scenario 5

Paper:
PRIMES is Still In P

Review:
Review #1

reviewFor

Paper:
Candymaking in 17th 
Century France

Author:
Dorothy

Author:
Brian

Reviewer:
Charlie

Reviewer:
Anne

hasAuthorwrittenBy hasAuthor
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