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Abstract  

The purpose of this project is to research and develop a system to autonomously clear a 

specified area of snow. The resultant system includes a modified snowblower, a base station, 

and a computer application to monitor and define the area for the snowblower to clear. A high 

precision GPS is equipped on both the snowblower and the base station to provide accurate 

location data. The snowblower is additionally equipped with a LIDAR sensor for obstacle 

detection in the snow, as well as a microcontroller to run embedded software and interface with 

the computer application. The team faced many design challenges and learned a substantial 

amount through the implementation of the research they conducted. 
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1 Introduction  

1.1 Problem Statement  

Across the country, homeowners in northern climates face the daunting and downright            

dangerous task of clearing their driveways of snow multiple times each winter. Every year, there               

are over 100 snow-clearing-related deaths reported in the US alone, mostly from heart attacks.              

Snowblowers mitigate this risk somewhat, but they are far from perfect. The main way for               

homeowners to avoid the risk of heart attacks is to pay someone else to clear their driveway for                  

them. However, this approach merely transfers the danger to someone else and possibly ties up               

expensive capital (i.e., snowplows), making it rather costly and impractical. Clearly, some kind of              

alternative is needed. 

1.2 Project Statement  

The purpose of this Major Qualifying Project (MQP) was to develop a system for              

autonomously and safely clearing snow. After some initial design sessions, the team determined             

that this system would have two physical parts: an autonomous snow blower, and a “base               

station” of sorts that would allow the user to control the robot remotely, along with a computer                 

application to give the user control over and feedback from the system. 

The robot developed for this project, named Autonomous Snowblower, was designed to            

fulfill a number of requirements needed to create a system that could autonomously and safely               

clear snow from an arbitrary user-designated area, such as: 

● A drive train capable of carrying the robot over (and sometimes through) snow,             

ice, concrete, dirt, and other assorted surfaces 

● An auger-and-impeller assembly to break up ice and snow and throw them a             

considerable distance away 

● A GPS system accurate enough to prevent the robot from accidentally going            

outside of its boundaries 

● A sensor capable of detecting both static and dynamic obstacles at long ranges,             

even through heavy snowfall 

● A UI that allows the user to easily define and change boundaries, start or stop the                

robot, and view its progress 
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2 Background  

2.1 Problem Overview 

Every year, over 100 people die in the U.S. while shoveling snow, mostly from heart               

attacks . Snowblowers are safer, but still carry a nontrivial amount of risk . What makes clearing               1 2

snow so hazardous? First, and perhaps most obviously, lifting and throwing hundreds of pounds              

of snow in a given session - or even just pushing a heavy snowblower - is hard work. In one                    

study, researchers found that the average snow-shoveling session raised subjects’ heart rates            

more than running on a treadmill. Add to that the fact that many of the people shoveling their                  

own driveways are sedentary, overweight, and/or old (all risk factors for heart attacks), and              

suddenly this seemingly innocuous chore becomes downright dangerous. Furthermore, the          

most popular time for clearing snow is usually between 6AM and 10AM, when circadian              

fluctuations already make people more vulnerable to heart attacks. Cold conditions further            

exacerbate this risk by constricting arteries, leading to a “perfect storm” that contributes to over               

100 deaths and countless emergency room visits every winter. Clearly, this is somewhat of an               

issue, especially for those in the aforementioned at-risk groups (the elderly, overweight people,             

smokers, etc). 

The solution to this issue has traditionally been for these people to hire workers to clear                

their respective yards and driveways for them. However, this can get expensive rather quickly,              

as the cost for one worker to clear snow can run up to $75 an hour , and these services may not                     3

operate in remote locations. 

2.2 Related Work 

In the course of researching this project, the team came across several relevant bodies              

of work that had already covered some of what they hoped to go over. One of these was the                   

Kobi robot, which was announced and entered a closed beta halfway through this MQP. It bills                

itself as a “fully autonomous all-season garden robot”, capable of autonomously mowing a lawn,              

gathering fallen leaves, and clearing snow. However, the Kobi’s approach differs significantly            

1 http://www.bbc.com/news/blogs-magazine-monitor-30119410 
2 http://www.sciencedirect.com/science/article/pii/S000291490101520X 
3 https://www.angieslist.com/articles/whats-annual-snow-removal-contract-cost.htm 
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from ours: rather than clearing snow all at once like a traditional snowblower, it follows the                

weather forecast and clears the yard every time a few inches of snow fall. By doing this several                  

times, it is able to minimize power consumption and avoids the need for a large and dangerous                 

auger at the front. Although the Kobi’s approach was interesting, the team decided that it was                

not particularly relevant to the project, as they had already committed to using the modified               

snowblower as a platform. 

Another relevant body of work came from a seemingly unlikely source: tractors. Several             

companies, such as Trimble, Raven, and Ag Leader, specialize in assisted steering systems for              

tractors. These systems consist of a differential GPS system and an on-board computer that              

either assists a human driver or replaces them entirely. The latter situation was of specific               

interest to the team since it involved autonomously steering a large vehicle in a predetermined               

pattern, which seemed applicable to their project. What’s more, these systems are incredibly             

advanced, capable of providing minor corrections to account for elevation changes and            

following a specified path with centimeter-level accuracy. However, upon further investigation,           

the team discovered that these systems were all designed to work exclusively with tractors,              

highly proprietary, and well outside of their budget.  

3 Design Requirements and Proposed System Design 

The first step of the design process was to develop a strong set of design requirements                

and use cases for the finished product, then design a system around those specifications. 

3.1 Use Cases  

A snowblower can be a dangerous thing, even when piloted by an experienced human              

operator. This danger becomes magnified when turning the snowblower over to a completely             

automated system. Therefore, the team’s goal with this project is to make it so this dangerous                

object can be used with minimal human interaction while still being safe. This requires the team                

go through every step and scenario that could be brought up while using the snowblower               

system, then identify any potential hazards that may arrive from those steps. To accomplish this,               

the team created several use cases ranging from setting up the machine to obstacle detection. 

In addition to creating the actual use cases, the team also thought about and              

brainstormed some solutions to their associated problems, crossing out the ones they thought             

were not viable in their project. In some cases, their solutions were concepts or equipment that                
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some or all of the team had no previous experience with. They assigned these solutions to                

various group members, who then researched their viability. The use cases are as follows: 

 

Environment 

● Snow covered driveway 

● Snow covered sidewalk 

● Snow covered yard/lawn 

 

User 

● Residential 

● NOT intended for commercial use 

 

Setup 

● User needs to map out boundaries/determining where to throw snow 

○ GUI 
■ Need geospatial data 

■ GPS differentiator 

○ Beacons (ruled out as impractical) 

■ Additional setup from the user 

■ Considerable cost addition (minimum of 4 necessary for the robot) 

■ Development cost/time of implementing 4 beacons with the rest of the 

system 

○ Have user walk it around (ruled out as even more impractical than the beacons) 

● If the team have a GUI 

○ Map of area 

○ Map of where snow is put 

○ Show obstacles/where it thinks there are obstacles 

○ Snowcam 

■ Outside the scope of the project 

○ Manual control 

● Differential GPS 

○ Replace odometer for position tracking in mapping application (gmapping) 

● Fuel, charging 
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○ Alternator instead of charging battery 

■ Electric start 

● Put it in starting position 

○ Know when to start/stop 

■ Button on GUI? On machine? On both? 

■ Link to weather service? ← stretch goal 

■ Home? (shed/base station) 

 

Operation 

● Needs to clear snow 

○ 2-stage drive system - Auger & Impeller 

● Movement 

○ Treads 

■ Small turn radius (can turn on a time) 

● Pathfinding 

○ Space filling algorithm 

● Sensing 

○ Obstacle detection 

○ Snow depth 

○ Stationary vs. Mobile 

○ Slope of driveway 

○ Detect if obstacle is in path of snow being thrown 

● Internal sensing 

○ Amount of fuel left 

○ Battery left 

○ Jammed/Status of snowblower 

○ Engine temperature 

○ Stuck/not stuck 

■ Computed internally 

○ Stress on motors 

● Obstacles 

○ Immobile obstacle → go around 

○ Mobile obstacle → stop if gets too close 
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■ “Aurora” around each mobile obstacle 

● Path around, if it is in aurora, set off warning, cut engine 

○ Restart once mobile object is at a safe distance 

 

3.2 Power and Energy/Mechanical Design  

This project is not only a computer science problem, nor is it solely an electrical               

engineering problem - it is a robotics engineering problem, which implies the inclusion of a               

mechanical aspect in the system. The team acquired two of them over the summer for               

experimentation purposes. By examining these snowblowers, the team determined that these           

snowblowers (and by extension, any off-the-shelf snowblower) would require slight to severe            

modifications before they were suited to their purpose. 

 The next step was to determine exactly what these modifications were. A conventional             

snowblower usually runs on a single gas powered engine. This engine powers the auger, which               

grinds up the snow and pushes it to the impeller. The impeller, which is also driven by the                  

engine, takes the snow and throws it through the chute. The engine additionally drives the               

wheels, which are connected by a single axle. Since this snowblower is designed to be steered                

by a human, the team’s next task was to figure out a way to retrofit an automated steering                  

system onto it. 

 The first step in the design was to decide what sort of “wheels” the snowblower should                

have. Since most of the members of their team have driven through the snow, they knew from                 

experience that plain rubber tires would not have enough traction. They came up with two               

potential solutions: chained tires, and treads. Chained tires are a hassle to put on, are very                

noisy, and prone to breaking. Treads, on the other hand, provide more traction due to their                

increased surface area and are better suited to varying types of terrain. For these reasons, they                

decided to go with treads. 

 The next issue to consider was the question of how to propel the snow itself. The Team                 

had two options: a gas powered engine, or an electric motor. They began by researching what                

type of motors electric snowblowers use, on the assumption that those same motors would work               

for their application. This research would also tell the team how much power these motors               

typically draw, a nontrivial consideration on a system with multiple powered parts. Upon starting              

their research, however, the team quickly realized that most if not all of the electric snowblowers                
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they could find were corded. This was unfeasible for their needs for a variety of reasons: it                 

would vastly complicate pathfinding, limit the distance the robot could travel from its base,              

require additional sensors to ensure it didn’t drive over its own cable, and create a tripping                

hazard. A further consideration was the fact that the relationship between torque and RPM              

differs for gas-powered and electric engines, as shown below: 

 4

Figure 1: Torque vs RPM graph of an electric motor vs a gasoline engine 

 As the above graph (roughly) shows, the curve for a gas engine is roughly an inverted                

parabola, with a “sweet spot” that outputs the most power that steadily decreases as RPM               

increases or decreases. Conversely, electric motors have relatively constant torque at low            

RPMs but drop off abruptly past a certain point before settling at a lower asymptote. The team                 

knew that driving the impeller and auger would require a good amount of torque and a high                 

enough RPM to get the snow a decent distance away. These factors seemed to point to a                 

gas-powered engine. 

 Once the team have figured out that they wanted a gas powered engine to drive the                

impeller and the author to actually throw the snow, they wanted a way to have the snowblower                 

drive on its own. Again, they were faced with choosing either gas-powered motors or electric               

ones. They had already decided that the snowblower should not achieve speeds greater than 2               

mph, for both effective snow clearing and general safety concerns. This meant that electric              

motors, which have high torque but low RPM, were perfectly suited to their needs. Furthermore,               

4 http://www.explainthatstuff.com/electriccars.html 
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electric motors are much more easily actuated by a microprocessor than gas-powered ones,             

which was a large consideration as the steering is entirely processor-controlled. 

 The first motors the team had mind were the CIM motors commonly used in FIRST               

robotics. These motors are familiar to the team and heavy duty. Most importantly, however,              

they’re cheap: the team couldn’t find motors with comparable torque outputs for less than              

double the price. The team also thought that the batteries used in FIRST robotics were also                

well-suited to their purpose, with a 17-amp-hour capacity and a good retention rate. 

Using electric motors on the drivetrain raised several concerns, however. The largest of             

these was power consumption, as clearing a driveway and yard could potentially take several              

hours. This led the team to the idea of using an alternator. The alternator would have same                 

function on their snowblower that an alternator in a car would have; namely, continuously              

charging the battery using some of the mechanical output from the gas engine. Because of this,                

the team needed to find an engine that could not only drive the impeller and auger but also the                   

alternator. This, in turn, meant that the team needed to see how much power the battery would                 

require. They began by trying to find an alternator that would meet their requirements for their                

battery. They wanted something that would produce around 17 amps; following that, they             

wanted to make sure that the alternator the team would use actually existed, and to see its data                  

sheet. Unfortunately, they could not find an alternator that provided 17 amps. After bit of digging                

they did find an alternator that provided 35 amps at 12 volts. After taking a look at where they                   

would buy the FRC batteries. When they realized that the battery came in a package of two they                  

took advantage designing a system to wire the batteries in parallel so that the charge could be                 

distributed at a longer period of time and use the alternator to charge the batteries. After some                 

calculations, they realize that this alternator would only use a single-digit percentage of the              

power that the gas powered engines provided. 

The engines they looked at were 11.5 and 14.5 horsepower: 

1.5HP 45.7 .5755KW1 * 7 = 8  

4.5HP  45.7 0.812KW1 * 7 = 1  

For the alternator, the team wanted to find out the required power: 

7 Amps 2 V olts 204 Watts1 * 1 =   

They wanted to assume that the alternator was only 50% efficient (worst-case scenario), so the               

team doubled the number to get 408 Watts. 

08W  / 8.575 KW 044 = .  
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08W  / 10.812KW  034 = .  

 Once the team had decided on all of the parts the team wanted to use, the team                  

realized that they hadn’t factored in the fact that if the drivetrain motors stalled, it would cause a                  

voltage drop across the other on-board electronics, such as the sensors and the microcontroller.              

In practical terms, this meant that every time the robot drove into a solid obstacle, it would                 

immediately and completely shut down. The team decided that they would work around this              

using either separate batteries for the sensitive electronics or by wiring them up with a voltage                

regulator, deciding on one or the other as they reached that point. They then did some                

calculations to make sure that all of the chosen parts were in fact completely viable for their                 

purposes. The problem with this was that they did not have all of the variables needed to                 

complete these equations. They found out that heavy wet snow is about 20% of the density of                 

water at its heaviest. The team assumed the snow to be 25% of the density of water for more                   5

than the worst-case scenario, ensuring steady operation in even heavy snowfall. In addition,             

they also wanted to know the weight of the snowblower. They visited HomeDepot.com and              

averaged six of the top rated snowblowers’ weights, which came out to about 200lb. However,               

they knew this would be lower than their final product’s weight, since the aftermarket              

modifications would add a significant amount of weight. To account for this, they doubled the               

estimated weight, bringing it up to approximately 400lb. They also needed to know the force that                

was required to drive the snowblower into snow. They decided that this force would be related                

to the weight of the actual snow. They then created a spreadsheet that allowed them to                

calculate the current needed by the CIM motors based off of a number of different factors, using                 

functions to allow for instant feedback after editing any cell. 

5 http://www.fsavalanche.org/density-snow-1/ 
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Figure 2: Mechanical calculations  6

When it came to the actual decision of which gas powered engine to use for this                

snowblower, the team was at a loss. The budget for this project was $750, the problem being                 

that most gas-powered engines costs anywhere from $200 to far beyond the constraints of their               

budget. Thanks to two generous donations, the team acquired the two aforementioned            

snowblowers. 
During the second term of the MQP process, the mechanical section hit many snags.              

Although the team would have love to work on their snowblower that the team received in A                 

term, they could not since they did not have a room for virtually all of the term.  

One of the first things the team did when they returned from their A term break was                 

examine the snowblower. There remained several questions from the last term about whether             

the equipment that the team had decided on would easily interact with the pre-existing              

snowblower parts. To do this, the team simply drained the snowblower of all of its fluids (the oil                  

6 
https://docs.google.com/spreadsheets/d/1pR_RTsbTWFoel4QymraSxgSQsC4iqSCiiHwcgnUxvTs/edit?us
p=sharing 
 

15 

https://docs.google.com/spreadsheets/d/1pR_RTsbTWFoel4QymraSxgSQsC4iqSCiiHwcgnUxvTs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1pR_RTsbTWFoel4QymraSxgSQsC4iqSCiiHwcgnUxvTs/edit?usp=sharing


and gasoline) to determine the quality of the engine. This was because, had the engine been                

relatively low-quality, tipping it over to check the underside could potentially flood it. Once they               

had drained everything they flipped the snowblower over to find that the snowblower was ideal               

for their situation. As the figure below shows, the snowblower appeared to have enough room to                

store the various parts researched the term before.  

 
Figure 3: Undercarriage of the unmodified snowblower 

One thing that was immediately obvious was that the team’s fears of the difficulty of               

getting the alternator to interface with the engine were unfounded. As shown above, the              

snowblower’s original drive train was powered by a belt running down from the engine. Since               

this drive train was going to be scrapped and replaced with electronic motors and treads, this                

belt would then be free to power an alternator mounted in the same spot as the old                 

transmission. Additionally, after doing some calculations using the table in Figure 2, it was              

determined that the CIM motors would need a 40:1 gear ratio, so the team purchased               

appropriate gearboxes. Unfortunately, due to the size of the alternator and its position in the               

undercarriage, the CIM motors were forced to stick out through holes in the chassis. The               

preliminary CAD model of the undercarriage based on this design is shown in Figures 4 and 5. 
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Figure 4: CAD model of the undercarriage 

After inspecting the snowblower further, the team realized that the alternator could            

actually be mounted above the engine, outside the chassis. This would free up room in the                

undercarriage, allowing both CIM motors to rest safely inside. 

Once the team had the above fully described in a CAD file, they focused on the treads.                 

Choosing the specific treads was difficult, as none of the listed measurements seemed to make               

any sense or correspond to any physical dimensions of the treads themselves. After some              

consideration, the team decided to use treads that their advisor had recommended them, since              

they worked on his snowblowers. Since the snowblower was designed to function at a specific               

height, the treads were chosen to be at the same height as the original wheels. This had the                  

somewhat unfortunate side effect of causing the treads to extend past the back of the existing                

undercarriage chassis. The other challenge was to make sure that the treads were taut. This               

problem was solved with a tread tensioning system, shown in Figures 5 and 6 below. 

 
Figure 5: CAD model of the tread tensioning system 
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As shown above, the treads in the back are connected by a single axle. The treads were                 

seated with bearings, which allowed them to spin independently of one another. 

As shown in the picture below, a threaded rod with a tapped shaft is used to push up a                   

block that is connected to the base using 80/20 with a built-in slider. The block is connected to                  

the axle. Turning the shafts will cause the blocks to slide forwards or backwards, which will in                 

turn cause the axle to move, which will in turn tighten the treads.  

 
Figure 6: Implementation of the tread tensioning system  

3.3 Electrical and Embedded Design  

The system’s main microcontroller is responsible for controlling the two motors           

responsible for moving the vehicle around. Most microcontrollers operate in the range of             

3.3V-5V. However, the CIM motors used in this project operate at 12V, and draw 15A of current                 

each. As a result, a motor controller must be used to supply this power to the motors, while                  

being controlled by signals from a 3.3V-5V source. To do so, an H-Bridge circuit will be used.                 

Shown below, an H-Bridge circuit can be used to control the direction of a motor by selecting                 

the path of current through the motor. The motor controller used in the system is more                

sophisticated than this however, as it is able to change the speed at which the motor operates                 

by controlling the voltage available to the motor. 
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Figure 7: H-bridge concept 

This motor controller is shown below. It can control two motors independently, and has 6               

pins responsible for driving the motors; 5V supply, ground, two digital inputs (DIR1, DIR2), and               

two PWM (Pulse Width Modulation) inputs (PWM1, PWM2). DIR1 and DIR2 control the direction              

that the two motors spin, while the PWM inputs control the speed at which the motors spin; a                  

PWM signal with a high duty cycle (majority of time spent in “high” or “1” state) will cause a                   

motor to spin faster, while a lower duty cycle (more time spent in “low” or “0” state) will cause                   

that same motor to spin slower. At the other side of the board are the connections for the                  

motors. Each motor attaches (at both the positive and negative terminal) to the board.              

Additionally, the power supply for the motors (12V, in this case) and ground are hooked up here.  

 
Figure 8: Motor controller circuit 
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The circuit below shown in figure 9 is the proposed design for a full motor controller. This                 

circuit is able to control (via software running on the Raspberry Pi microcontroller) the motors K1                

and K2, which are responsible for snowblower movement. The 12V supply V1 is used to model                

the power available from the alternator (or batteries). The alternator (and batteries) supply up to               

35A of power, which is enough for this application. The motors draw up to 15A of current each,                  

while the Raspberry Pi, 7805 linear voltage regulator, and Motor Controller collectively draw less              

than 5A. 

 
Figure 9: Motor controller circuit to drive the snowblower 

The Raspberry Pi is a relatively powerful general purpose microcontroller. The current            

model, the Raspberry Pi 3 model B, has enough features on board to meet the requirements of                 

the project. Two PWM signals are required to drive the inputs to the motor controller. Note that                 

these must be made in hardware and not in software, as the motor controller is sensitive to                 

minor changes in the signal. Software PWMs cannot provide the accuracy needed for this              

application. The Raspberry Pi 3B meets this specification, as it can generate up to two hardware                

PWM signals. If additional PWM signals are needed, the Raspberry Pi would need to              

communicate with an external circuit, similar to the Adafruit PWM module, which can provide up               

to 16 additional hardware PWM signals. 

The Raspberry Pi is also capable of running the Linux operating system. This is              

necessary to the project, as the backbone of the software is ROS (Robot Operating System). A                

ROS system will contain various nodes, or processes that perform computations. Each node will              

typically serve only one function, but can communicate and exchange information with other             

nodes in the system using messages. Messages are sent over different channels called topics.              

Nodes can post to a topic, and/or subscribe to a topic to receive all messages posted by other                  
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nodes. Additionally, ROS provides a platform for services. Similar to a web-server, a ROS              

service is comprised of pairs of a request and the subsequent response. 

In order to run ROS on the Raspberry Pi, the microcontroller must be reconfigured to run                

a special version of Debian (a distribution of Linux). Once this is configured, ROS can be                

installed on the device. One advantage of using ROS in this setting is that information can be                 

made available to view from a laptop or desktop. This makes testing the system significantly               

easier, as the Raspberry Pi will not need to be hooked up to a monitor. 

3.4 Localization and Mapping  

In order for the vehicle to properly clear an area of snow, it must know both its location,                  

and the location of obstacles relative to it. To achieve this, a similar approach was taken to the                  

Blanche robot. Blanche is an autonomous vehicle capable of mapping its environment and             

understanding its relative location. It uses only two sensors to achieve this; a 360-degree optical               

rangefinder, and an odometer. The odometer is used for “dead-reckoning”, that is, given an              

initial position and direction, the robot is able to determine its current location based on the                

movements that it has made from that initial position (recorded by the odometer). The              

rangefinder is used to determine the distance from the robot to an obstacle (wall, car, etc) in a                  

particular direction. In order to get a full understanding of its surroundings, the rangefinder will               

rotate 360o and take 180 measurements per rotation, shown below. 
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Figure 10: Map generated by Blanche robot using a 360-degree optical rangefinder. 

For the autonomous snowblower, a similar 360-degree rangefinder is used. However,           

the odometer used in Blanche is replaced by a high precision GPS unit. Dead-reckoning is not                

feasible in this situation, as the snowblower’s treads will likely slip during operation, which would               

result in the odometer increasing (thinking the vehicle is moving forward) while in reality it               

remains still. 

In order to map information from the rangefinder, the snowblower takes a similar             

approach to Blanche, in that is will use a 2D occupancy grid to represent the area that the                  

snowblower will navigate over. An occupancy grid is effectively an array, where each position in               

the grid represents the likelihood that the real area represented by that square is occupied or                

not. The grid values are continuously updated as the rangefinder makes more readings, either              

from the same or a different position. 

In order to choose the proper rangefinder to use, multiple sensing technologies were             

evaluated. Radar was the first technology researched. Although techniques exist for dealing            

with snowfall, RADAR is ultimately not suitable for this application, as there aren’t any suitable               

360-degree rangefinders available. RADAR is also typically used to detect motion, so if an              

object remains the same distance from the snowblower, a RADAR would not be able to sense                

that the object is there. When investigating ultrasonic, similar issues arose. Ultrasonic sensors             
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have a relatively limited range of (typically) only a few meters. This would not be suitable for                 

their application, as the vehicle should be able to sense obstacles far enough in advance such                

that it has time to react to the information and path around it. Similarly, there does not exist                  

(based upon current research) a 360-degree ultrasonic distance sensor. The next technology            

evaluated was Infrared. The closest item to a 360-degree IR sensor is the IRCF360, shown in                

figure 11 below. However, this sensor module is not able to provide the accuracy necessary for                

the system. This module can make at most 8 measurements in the horizontal plane. For               

reference, Blanche’s rangefinder makes 180 measurements. Additionally, IR sensors are          

susceptible to interference from sunlight. This is a major red flag, as the system will be operating                 

outdoors. 

 
Figure 11: IRCF360 IR Distance Sensor 

Given the research, the technology the system will use for a 360-degree rangefinder is              

LIDAR. Most sensors of this type are not only very accurate, but also have a range upwards of                  

25m, which should be more than enough for their application. The only major drawback to this                

approach is that readings may be distorted in snow, due to the laser reflecting off of falling                 

snow. Testing is needed to determine if this will be an issue for their system. If it is, a backup                    

sensor will be necessary in order to ensure that the vehicle continues to operate normally, even                

if the LIDAR rangefinder’s readings are distorted due to snowfall. 

As LIDAR is still an emerging technology, it is relatively expensive, more so for a               

360-degree LIDAR sensor. The cheapest sensor of this type available is the RPLIDAR 360o              

Laser Scanner (shown below) coming in at a cost of ~$400. 
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Figure 12: RPLIDAR 360o Laser Scanner 

An alternative to this module is to create a similar mechanism out of a static LIDAR                

module and a servo motor. With this in mind, LIDAR Lite V3 was chosen as the LIDAR sensor,                  

and Lynxmotion Pan and Tilt Kit as the s``ervo (2 servo motors, in this case, both for sweeping                  

horizontally) for testing purposes. By connecting the LIDAR sensor to the Lynxmotion Kit, it is               

possible to configure the Kit to rotate at a constant speed, and to have the LIDAR sensor                 

sample at a regular interval. Knowing the speed of the servo and the time between LIDAR                

samples, it is possible to construct a map as described above from the LIDAR readings. 

 
Figure 13: LIDAR Lite V3 (left) and Lynxmotion Pan and Tilt Kit (right) 
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While the Lynxmotion motors were adequate for testing purposes, they had far too much              

shaking for use in the final product. Additionally, since they were servos, they were incapable of                

rotating continuously, meaning that they had to rotate 360o, stop, and then rotate in the opposite                

direction. This is undesirable behavior for a sensor that serves as the primary safety measure               

on the entire system. 

With this in mind, the team decided to purchase the ROB-09328 stepper motor for use in                

the final product. This motor is capable of rotating continuously and also keeps track of how far                 

it has rotated, making it perfect for the application in question (since keeping track of the angle                 

of the sensor is extremely important). The naive approach would be to mount the LIDAR sensor                

directly on top of the motor; however, since wires need to be run out of both the sensor and the                    

motor, this would result in either the wires becoming hopelessly tangled after one rotation (if the                

motor is under the sensor) or needing to build supports above the sensors that would block its                 

range of vision (if the sensor is under the motor). 

For these reasons, it was decided that the LIDAR system would utilize a gear system,               

with one gear being mounted on the motor and the other one serving as a platform for the                  

sensor itself. This permits the wires from the sensor to drop through the gear and through a slip                  

ring that allows for continuous rotation. All of this was housed inside of a custom-made               

3D-printed casing that provided all the components of the system (the sensor, the slip ring, and                

the motor) protection from the elements. A rendering of this housing can be seen below in                

Figure 14. 
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Figure 14: Rendering of the LIDAR housing 

3.5 Software Design  

The team was still to establish several key design parameters for the code the robot               

runs. In addition, the team also purchased and began to experiment with the implementation of               

high-end GPS chips. 

The team began by brainstorming the general outline of what the code will have to look                

like once loaded into the completed robot and eventually settled on several key points. Firstly,               

the robot would have to stay within a set of user-defined boundaries. These boundaries could               

exist purely within software or take the form of physical beacons placed along the edge of the                 

area to be cleared, but the important part is that these boundaries should be easily visible to the                  

user and highly customizable to account for uneven property lines or irregularly shaped             

obstacles. Initially, the plan was to use radio beacons mounted on stakes that could be driven                

into the ground at corners in the border, much like those used in “invisible fence” systems for                 

dogs. However, the team eventually decided that creating the beacons and integrating them             

with the rest of the robot would be more effort than it was worth, so they settled on geofencing.                   

Geofencing relies on the robot’s onboard GPS and is entirely software-based, so it would              

require no additional setup from the user beyond defining the fence using some sort of UI. A                 

mockup of this UI is shown below. 

 
Figure 15: User interface concept 
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The second major design specification was that the robot should be able to detect and               

avoid obstacles, both stationary and mobile. This was arguably the single most important part of               

the entire robot: if it fails, the robot could damage itself and the user’s property, and possibly kill                  

or maim someone. Thus, obstacle detection is of the highest priority. This, in turn, required               

high-quality sensors capable of detecting obstacles at significant range in heavy snowfall, a             

problem covered in more detail in other sections of this paper. Processing the data from these                

sensors is at least as important as making sure that the sensors are calibrated correctly.               

Although some noises can be eliminated using op-amps and band pass filters, there was still a                

significant amount of erroneous data due to the amount of snow. 

Once an obstacle is detected, it should obviously be avoided. How this avoidance is              

actuated depends on the obstacle itself. Obstacles can be broadly split into two categories:              

stationary, which includes things like trees, parked cars, and houses; and mobile, which             

includes things like animals, moving cars, and people. Stationary obstacles should ideally be             

pathed around as closely as possible (within reason) to clear the maximum amount of snow               

possible. Mobile obstacles, on the other hand, should cause the robot to stop entirely as soon                

as they enter a specified radius around it, then start up again when they leave. This model has                  

several problems, however. Firstly, categorizing obstacles as stationary or mobile is much            

easier said than done. For example, how can the robot differentiate between someone standing              

still and, say, a tree? Obviously anything that’s currently moving should be treated as a mobile                

obstacle and cause the robot to stop, but how can the robot be 100% sure that the “stationary”                  

obstacles it’s pathing around aren’t just temporarily stopped mobile obstacles? 

The elegant solution to this problem would be to keep track of every obstacle as a                

separate entity within the virtual map the robot has stored, with every obstacle having a flag                

indicating whether it’s mobile or stationary. Obstacles would be initially assumed to be             

stationary, then permanently flagged as mobile as soon as the robot detects movement from it.               

This solution may run into issues with the aforementioned sensor noise, as the robot could               

interpret this noise as movement and permanently stop due to a nonexistent “mobile” obstacle.              

Finding a balance between not running people over and not stopping every two feet due to                

sensor interference was one of the major challenges of this project. Erring on the side of caution                 

is preferable (a stopped robot is better than an injured person), but having the robot stop too                 

often is also bad. 

The next design specification was that the robot’s code should also allow the snow to be                

thrown to a specified obstacle-free location. This location could be either defined by the user or                
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automatically selected by the robot based on some set of criteria. This leads to two conclusions:                

one, that the impeller should be able to rotate and have that rotation controlled by the                

microprocessor on board (not directly driven from the engine); and two, that obstacle detection              

must extend beyond the user-defined limits of the area to be cleared. The obstacle detection               

discussed previously technically has no reason to care about obstacles a good distance away              

from the edge of the area, since the robot will never get close enough to them to hit them.                   

However, when throwing snow, it is imperative that the robot first ensures that its chosen               

dumping area is completely free of obstacles. While not quite as lethal as being run down by the                  

snowblower itself, being hit in the face by a massive jet of snow is obviously something to avoid                  

if at all possible. 

There were two main challenges that could have stopped the team from achieving this              

goal. First, since the snow could potentially be rather light, wind could have a significant effect                

on its parabolic arc, causing the snow to land far away from its intended location or even be                  

blown right back at the robot. If this project was to eventually be released as a consumer                 

product, this could probably be fixed by adding some form of wind speed sensor to either the                 

robot or the base station and including that data in the calculations. The second factor to                

consider is that the snow being thrown will necessarily block the sensors from detecting              

obstacles at the location being thrown to. This seems like it could be solved by ensuring the                 

area is clear when throwing begins and then continually checking either side of the stream for                

mobile obstacles headed towards it; however, this does not deal with the corner case of               

someone (or something) approaching the stream of snow head-on. While this is admittedly             

unlikely, it’s not entirely possible to rule out. Again, the team will most likely be ignoring this                 

corner case for the project, but if it were to become a consumer product there would have to be                   

measures to prevent this. 

The final design constraint is that all of these elements should be visible to the end user                 

via some form of user interface, much like the mockup shown previously. One of the main                

decisions to make regarding this UI was where exactly it should be displayed. The team               

eventually settled on a standalone base station, preferably with some form of touchscreen. The              

main reason behind this decision was related to the GPS system, which requires a stationary               

base in order to calibrate itself. However, this did not rule out the possibility of having the                 

associated software be a standalone app, capable of running on phones or computers. 

The project implemented a differential GPS system (DGPS), which is a method that             

allows consumer-grade GPS chips to get centimeter-level accuracy. This amount of accuracy is             

28 



necessary to define the robot’s boundaries using geofencing – a few centimeters could be the               

difference between cleaning someone’s driveway and taking out their side-view mirror.           

Traditional GPS chips use signals from four satellites at known distances and angles to              

calculate their own position on the Earth. This can result in varying levels of inaccuracy due to                 

factors such as chip quality, obstacles between the receiver and a satellite, or one or more of                 

the satellites being too close to the horizon. To solve these issues, DGPS operates on the                

assumption that two GPS receivers located close to each other will experience the same              

atmospheric interference and therefore have the same inaccuracies. DGPS uses two GPS            

chips: one on the thing to be tracked (in this case, the robot), and an immobile one used to                   

calculate corrections (in this case, on the base station). The immobile GPS knows that it can’t                

possibly move and can thus ignore or average out variations in the data to obtain a “true” set of                   

coordinates for its own position. Once it obtains these coordinates, it compares every new GPS               

signal to them. The difference between the base station’s known location and its calculated              

location is then used as the offset for the roamer’s position at that moment, resulting in accurate                 

location calculation. 

There are many different methods that can be used to attain this desired behavior. For               

example, the corrections can be applied in post-processing to correct logged locations from the              

roamer after the fact. The one most suited to this particular application, however, is most likely                

real-time DGPS. This method involves the base station transmitting corrections to the robot in              

real time via a radio link. From the end user’s perspective, this would involve setting up a base                  

station somewhere with a relatively clear line of sight to the sky and calibrating its position. 

4 Methodology/Implementation  

This chapter details the implementation of the electrical, software, and mechanical           

sub-systems of the autonomous snowblower. These sub-systems are designed to meet the            

requirements put forth in Chapter 3. 

The final system includes the autonomous snowblower (snowblower), a base station for            

high-precision GPS measurements (base-station), and a standalone computer application (app). 
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4.1 Hardware Configuration  

As discussed in section 3.3, the snowblower includes a Raspberry Pi (model 3b) to run               

the embedded software for the snowblower. This is powered by the alternator and connected to               

the motor controller as detailed in Figure 9.  

The Raspberry Pi is connected to one of two identical uBlox high precision GPS modules               

via a Serial interface (USB). These GPS modules are used for differential GPS measurements              

as described in section 3.5; the GPS on the snowblower acts as the roaming GPS. The other                 

uBlox GPS module acts as the stationary GPS, sending correction via radio link (see Figure 16                

below). 

 
Figure 16: uBlox setup  

Included with the uBlox GPS modules is a computer application u-center. By default,             

both GPS modules are configured to be in roaming mode. In order to receive differentially               

corrected GPS, one must be configured to act as the base GPS. The base GPS is configured as                  

shown below in u-center. 
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Figure 17: Example of u-center GUI during operation 

Here, the precision of the base station is set to be 0.1 meters. Once configured properly,                

the base GPS will start to collect location readings. The module then calculates its position by                

averaging the position of the samples. Once the base station has determined its location, it will                

begin to transmit correction data over the radio link for the roaming GPS to pick up. 

The roaming GPS is able to use the correction data, along with its own readings, to                

generate differentially corrected readings, which gives the roaming GPS a high level accuracy,             

compared to the roaming GPS acting on its own. 

A LIDAR module is used by the system to detect obstacles in the snowblower’s              

environment. It is connected to the Raspberry Pi via the I2C interface, while the servo motors                

are controlled by an Arduino uno (acting as a PWM driver), which is connected to the Raspberry                 

Pi via the SPI interface. This is due to the limitations of the Raspberry Pi; only two hardware                  

PWM modules are included on the Raspberry Pi, which are already used by the motor               

controller, thus the Adafruit PWM driver is needed to provide the additional hardware PWM              

signal. 

4.2 Software Implementation  

The backbone of the software in the project is ROS (Robot Operating System). ROS is a                

powerful platform that provides tools to aide in developing robots, including a powerful mapping              

31 



engine, gmapping. It uses a system of nodes and topics. Nodes are “processes that perform               

computation” (wiki.ros.org/Nodes). In the case of the project, they are used to interface with              

various hardware components (sensors and actuators), as part of the user interface, and to              

interface with the gmapping system. Topics are “channels” used to to allow different processes              

(running on either the same or a different computer) to communicate with each other. A node                

can subscribe or publish to a topic. Publishing to a topic sends messages on that channel. If a                  

node subscribes, it “listens” to the channel; when any message is published, the node will               

process the incoming message. 

For the project, the majority of the coding is done in Python. ROS has a client library for                  

Python. Additionally, there are multiple open source libraries for interfacing with the raspberry             

pi’s GPIO written in Python. In terms of UI development, Python contains a powerful GUI               

module tkinter. 

 

 
Figure 18: Software interface 
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The figure above documents how the software is divided into two separate applications,             

the responsibilities of the various nodes, and the various channels of communications that allow              

the embedded software to communicate. The desktop application, in addition to running the             

User Interface and Mapping Interface nodes, runs roscore, which spawns a ROS server             

(accessible at http://nicholas-raspi.dyn.wpi.edu:11311 by default). As long as the Raspberry Pi           

is on the same WiFi network, it is able to communicate with the desktop application, and the                 

nodes can communicate across the various topics regardless of which system the nodes are              

running on. 

Note that for the final system, all nodes run directly off of the Raspberry Pi, while the                 

User Interface and rViz can be displayed on a remote machine over SSH.  

4.2.1 User Interface  

The User Interface node is responsible for providing the end user control over the              

autonomous snowblower, as well as relay system and mapping information back to the user.              

Shown below is the current state of the user interface. 
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Figure 19: Example of the GUI during operation 

In the top left corner is the mapping interface. The map is provided from Google, using                

the Google Static Maps API. In order to retrieve the map, a call is made to the following URL -                    

https://maps.googleapis.com/maps/api/staticmap - using the wrapper function      

googleApiRetrieveStaticImage, while providing the appropriate latitude, longitude, and zoom         

level. The node keeps track of these parameters, and allows the user to alter them using the                 

controls surrounding the map. When the user changes one of these parameters, a call is made                

to this function to replace the image. Of particular note is the address bar, which allows the user                  

to bring up an image centered around the given address. In order to do this, another function                 

googleApiRetrieveCoords, is used to make a call to the Google Address API at the URL               

https://maps.google.com/maps/api/geocode/json. This call is supplied with address given by the          

user, and spits back the latitude and longitude of the best matching address returned from the                
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API call. This latitude and longitude are used to call the aforementioned update image function,               

thus displaying the specified address. 

On the map is a movable polygon. The user can drag the vertices, and thus move the                 

object. The polygon is used to specify the boundaries for the autonomous snowblower.             

Whenever the user moves the boundaries, the position change is relayed through a message              

over the BoundaryInfo topic. The message follows the format of: 

UpdateCorner <corner number> <latitude> <longitude> 

Corner number is a unique identifier for each vertex equal to {0,1,2,...,n-1}, where n is the                

number of sides of the polygon. Latitude and longitude correspond to the new GPS coordinates.               

To calculate the updated GPS coordinates, a set of open source python functions (found at               

http://stackoverflow.com/questions/7490491/capture-embedded-google-map-image-with-python

-without-using-a-browser) are given the zoom level and GPS coordinates of the center of the              

map. These serve as the base for calculating the GPS coordinates of other pixels. The code                

also receives the difference (in pixels, horizontal and vertical) between the point where the              

vertex is placed and the center of the map. Given this information, the code calculates the GPS                 

coordinates of the given pixel, which in this case corresponds to the vertex’s new boundary. The                

messages sent over BoundaryInfo are received by the Mapper node to provide boundaries in              

the backend mapping system (g_mapping). 

4.2.2 High Precision GPS Sensor  

The onboard uBlox GPS module acts as the roaming GPS, as discussed in section 4.1.               

As such it receives differentially corrected messages to provide highly accurate position            

readings of the robot. However, this only works if the base station is properly transmitting               

position correction data, and the roaming GPS is able to receive the data. The gps node                

(running on the Raspberry Pi) is responsible for communication with the GPS module over this               

line. To achieve this, the node utilizes Python’s build in Serial library to set a connection to                 

receive and send messages from/to the GPS module. The Baud rate is set at 9600, as this is                  

the rate that the GPS module operates at. The uBlox GPS module communicates via the NMEA                

and UBX protocols. NMEA messages are used to relay position updates, as well as meta-data               

about the state of the GPS module, such as connection status to various satellites. It is a very                  

comprehensive and widely used protocol. UBX, on the other hand, is a protocol made              

specifically for uBlox products, and is used to relay device information. The node is configured               

to read in messages over the established Serial line, parse each message sequentially, and              
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then issue the appropriate action based on the message type and content of the message. The                

figure below shows various messages sent to the node for processing. 

 
Figure 20: NMEA messages from the uBlox roaming GPS module as they are processed by the gps node. 

In this system, only the GNGLL messages trigger any actions, all others are discarded.              

GNGLL messages are part of the NMEA library, and are used to relay position measurement               

data. The first four data points (separated by commas) provide the location of the module. The                

final data point before the checksum (separated by ‘*’) will either be ‘A’ or ‘D’, for Autonomous,                 

or Differentially corrected. In the case of the last line in Figure 20. above, the measurement is                 

differentially corrected. When processing these messages, the gps node sends a message over             

the GpsInfo topic. The message is in the format of  

GLL <latitude> <longitude> 

The latitude and longitude are parsed from the message using a Python NMEA parsing library               

found at https://github.com/Knio/pynmea2. The processing for this message type can be           

extended to include a check for the nature of the measurements; whether they are differentially               

corrected or not, and provide the user feedback that they are not getting the best possible                
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measurements. The messages sent over the GpsInfo are processed by the Mapper            

node/g_mapping. 

 

4.2.3 Lidar Sensor  

The LIDAR sensor interacts with the Raspberry Pi via an I2C connection. This             

connection is managed by the LidarNode, which is responsible for triggering and reading             

distance measurements from the Lidar Lite sensor. It continuously runs a loop to trigger and               

read measurements, while at the same time rotating in increments the servo motors which              

controls the rotation of the Lidar Lite sensor. In doing so, the node is able to capture 360 degree                   

distance measurements. As the node receives measurement data from the Lidar Lite, it sends              

the information on the DistanceSensor topic in the following message format: 

UpdatePosition <angular position> <distance (cm)> 

Note that each message corresponds to a single measurement. The angular position is             

provided by an internally stored variable, which is updated whenever the stepper motor changes              

positions. The Lidar module includes a little switch that is triggered once per rotation. This is                

used to calibrate the system, as there is no way to determine the starting position of the stepper                  

motor, thus it would be impossible to tell which direction is forward. The Mapper node               

subscribes to the DistanceSensor topic, and uses the distance readings to aid in mapping (via               

g_mapping). 

 

4.2.4 g_mapping and rViz Interface  

Discussed in the previous sub-secitons (4.2.1, 4.2.2, 4.2.3), the Mapper node receives            

input across the BoundaryInfo, GpsInfo, and DistanceSensor topics from the Gui, Gps, and             

Lidar nodes, respectively. There are callback functions in the Mapper node corresponding to             

each topic. Additionally, the Mapper node is responsible for interacting with g_mapping.            

G_mapping is a powerful, ROS based mapping tool that builds a map of the system’s               

environment from the incoming distance scans (provided by LIDAR) and location information            

(GPS). 

Whenever a message is sent across BoundaryInfo (by the Gui node), the Mapper             

receives and handles the message using the biCallback function. This function first parses out              
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the function arguments (corner index, gps coordinates), and uses them to update the system              

map boundaries in g_mapping. This function is not currently fully implemented 

Messages sent over GpsInfo (by the Gps node) are similarly handled by Mapper using              

the giCallback function. The position of the robot is updated via communicating with the tf node                

(spawned under g_mapping). Note that normally, g_mapping is used with a system that uses an               

odometer and not a GPS. As such, most examples using g_mapping send odometry data, using               

the data between readings to update the position and rotation. However, it is possible to alter                

these directly without odometry data by sending a tf/tfMessage (message type in ROS) to the tf                

node, which is updated to include new position/rotation data based on GPS readings received.              

This function is not fully implemented, as it does not currently interact with g_mapping. 

Distance readings sent over DistanceSensor are processed similarly. The callback          

function for this topic, dsCallback, constructs sensor_msgs/LaserScan messages to send to the            

scan node (spawned under g_mapping). These messages are constructed by grouping together            

one full rotation of scans. The ROS based program rViz is used to visualize the map as it is                   

constructed. 

 

4.2.5 Pathfinding  

Pathfinding, at this point, has not been implemented yet. See discussion of future work              

(section 6). 

4.2.6 Motor Controller  

The motor controller node includes a single listener, which listens on the            

systemCommands topic. The node listens for an UpdateMotor command sent on the channel,             

which is sent in the form of: 

UpdateMotor <PWM 0> <GPIO 0> <PWM 1> <GPIO 1> 

The pwm values are sent to the PWM driver, while the output from the PWM driver and the                  

GPIO values are sent to the motor controller. As a reminder from section 3.5, the PWM is                 

responsible for altering the speed of the connected motor, while the GPIO (binary; 0 or 1) is                 

responsible for setting the direction of the motor. 

This module is disabled by default, as the PWM driver discussed in section 3.4 is not                

implemented. As such, priority is given to the LidarNode to use the two PWM modules on the                 

Raspberry Pi. 
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4.2.7 Packaging  

A ROS launch file is used to start and stop the program in its entirety. The file first                  

launches a bash script with the following two lines: 

source /opt/ros/kinetic/setup.bash 

export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:~/catkin_ws/ 

The first line is responsible for configuring the environment to use ROS. The second line               

updates one of the ROS environment variables - ROS_PACKAGE_PATH - to include the user’s              

catkin_ws directory, which includes the raw source code for the snoomba. 

With the environment properly configured, the launch program can start up both            

third-party nodes, as well as the nodes made specifically for this project. Nodes are specified               

using the <node> tag in the launch file, while the <machine> tag is used to specify which                 

machines the nodes will run on (embedded on the Raspberry Pi, or on the user’s own machine). 

4.3 Mechanical Implementation  

To start, the team had to gut the snowblower. The undercarriage, which was to house               

most of the new components, needed to have the old drive train removed in order to make                 

room. Once this was accomplished, the sides of the chassis were cut down to remove a lip                 

running around the edge that was blocking the gearboxes. A plasma cutter was used to widen                

the holes that the gearboxes were to mount onto. 

The next step was to obtain parts for the tread mounting and tensioning system shown in                

Figures 4 and 5. After some searching, the team was able to find a local scrapyard named                 

Sullivan Metals graciously willing to provide the parts for free. Since there was no area for the                 

tapped shaft color to push up on and the team only had ¼ in scrap, they doubled them up to                    

make for a thicker area to push on. In order for the tensioning system to be effective, the                  

threaded shafts need something to push against that will move the axle back and forth. The                

original idea was to use two pieces of aluminum scrap; however, due to the thinness of the                 

scrap provided (¼”), the team doubled it up on each side of the axle, using four pieces in total.                   

They then tapped the 80/20 so that it could be easily connected to the base of the snowblower.                  

After that, they drilled some holes to allow for the axle to pass through the block. They then                  

drilled and tapped the shaft collar for the threaded rods. Finally, the rod was cut down to the                  

appropriate size. 
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5 Results 

This section details the capabilities and limitations of the robot’s design and            

implementation to date in a variety of areas. 

5.1 GPS  

The uBlox GPS module turned out to be precise, but not necessarily accurate. As shown               

in the figure below, the differentially corrected GPS consistently reported the same location,             

even over 50 samples (~2-3 minutes of sampling). However, the actual position of the              

measurements is significantly off, as shown by the difference between the GPS’s actual and              

measured positions. 
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Figure 21: Measured GPS position vs. actual GPS position 

The offset in this instance can be attributed to the message processing techniques used              

by the Raspberry Pi. The uBlox module attached to the snowblower (roaming GPS) sends              

messages to the raspberry pi in the NMEA message format, as discussed in section 4.2.2. The                

Raspberry Pi then uses the raw latitude and longitude from the GNGLL messages; however,              

this is not the correct latitude and longitude displayed by the u-center program (uBlox’s              

proprietary software for interfacing with and setting up the uBlox GPS modules). The program              

uses corrections from other messages, most likely the GNGGV and GNRMC messages. These             

messages provide fix information regarding the position of the GPS.  

 
Figure 22: u-center configuration showing the raw lat. & lon. (left) vs. the corrected lat. & lon (right) 

Rather than applying the corrections provided by the other NMEA messages, the            

GpsNode sends the raw latitude and longitude to the MapperNode, where an offset is applied.               

This offset is meant to correct the raw lat. & lon. such that it is more accurate, and closer to the                     

real lat. & lon. of the module. 

To calculate this offset, the team first gathered a set of 50 raw data points from the GPS                  

(via the GNGLL messages), and then calculated the average latitude and longitude of these              

points. Next, the team used u-center to determine the actual position of the GPS module.               

Finally, the team calculated the difference in latitude and longitude between the actual position              

and the measured position. This difference was as follows: 
Lat_offset = actual_lat - measured_lat = 42.21292400 - 42.16373864 = 0.10918536 
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Lon_offset = actual_lon - measured_lon = -71.80409283 - (-71.482420478) = -0.321672352 

As shown in figure 21. above, this correction is not quite accurate enough for use in the                 

snowblower. The measured position, with the offset applied, is still inaccurate by about 3              

meters. Given that boundaries are defined by GPS coordinates, this offset would cause the              

robot to operate in an area that is shifted 3 meters from the user defined boundaries. The robot                  

may believe it to be inside the user defined boundaries, but due to the GPS error, it could be up                    

to 3 meters outside. 

5.2 LIDAR  

The LIDAR sensor works as expected. The Raspberry Pi is able to receive the distance               

measurements from the Lidar Lite sensor over I2C. In order for the Raspberry Pi to use the I2C                  

module, it needed to be configured to do so, as this functionality is not enabled by default. To                  

enable this behavior, the user must run the command sudo raspi-config -> advanced             

options (8) -> I2C (A7) . Once enabled, the Raspberry Pi can communicate using its              

I2C bus. The Lidar Lite sensor is set up as an I2C slave (on channel 62, default I2C address of                    

the Lidar Lite module), as shown below in figure 23. 

 

  
Figure 23: Raspberry Pi I2C connections - Lidar Lite connected on channel 62 

 

Using a python I2C library, the Raspberry Pi is able to parse incoming messages from               

the Lidar Lite. Given the position of the servo motors, along with the distance information from                

the LidarLite, the LidarNode is able to send the polar coordinates of the distance readings over                

the LidarInfo topic, with both the angle and distance included as shown below in figure 24 (see                 

section 4.2.3). 
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Figure 24: Datastream from the DisatnceSensor topic 

6 Future Work 

Due to several unforeseen hurdles and issues that arose over the course of this project, 

it was unfortunately unable to be completed on time. This leaves several sections with large 

amounts of room for improvement. 

6.1 Further Mechanical Work  

6.1.1 Aiming the Chute 

Initially conceived as a stretch goal, this particular goal is one of the more involved ones                

left to implement. It requires several components, including robust LIDAR sensor readings and             

path planning capable of taking into account snow piles it creates itself. Additionally, there would               

need to be some way to aim the auger using a microcontroller, most likely with a belt drive and                   

a stepper motor. 
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6.1.2 Controlling the Auger 

A more essential goal for future work is effectively engaging and disengaging the auger.              

This is accomplished via a Bowden cable, much like the brakes on a bicycle. When the cable is                  

taut, the auger is engaged; when it is slack, the auger is disconnected from the engine. Being                 

able to tighten or loosen the cable at will would allow the robot to turn on without the auger on,                    

as a safety measure, and would allow the user to disengage it remotely for safety reasons. The                 

team’s planned solution was to use a motor with a spool on it to tighten and loosen the cable at                    

will; however, pneumatic systems may be more suited to this task. 

6.1.3 Designs for the Future 

 A design the team could not implement in time was the motor mounts. Due to the fact                 

that the gearboxes arrived so late and a team member having to deal with personal issues, the                 

team was unable to create a mount for the motors that would attach them to the gearboxes.                 

One challenge involved in designing the mounting mechanism for the motors was the physical              

limitations involved in the undercarriage, which made using allen wrenches awkward or            

downright impossible. Additionally, they never got a chance to design the coupling between the              

CIM motors and the gearboxes, which is needed due to the fact that the drive shaft of the CIM                   

motor is significantly smaller than the gearbox’s hole. This coupler could easily be machined on               

a lathe. 

6.1.4 Battery Mount 

Mounting the batteries was another challenge the team could not surpass. The problem             

they mainly ran into, other than time, was running out of space on the snowblower. Putting the                 

batteries on the back of the snowblower was considered; however, the tread mount got in the                

way. In any case, the final battery housing case must be watertight and have wire access to                 

both the microcontroller and the alternator, wherever on the snowblower it ends up being              

installed. 

6.1.5 Alternator 

The other place where the team ran out of time was with the alternator. They decided to                 

drive the alternator with the engine that was originally used for driving the wheels. They found                

that they could take some of the casing off of the snowblower and mount the alternator to the                  
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top of the snowblower. However, the belt that connects the alternator and the engine needs to                

be taut and the alternated needs to be connected in two different places on either side of the                  

alternator. The other challenge presented was the fact that it needed to be taut and because of                 

the fact that the mounting spots are on opposite sides of the alternator. They originally planned                

to have an alternator on the snowblower so that the batteries would not die, if not have a                  

prolonged life.  

 

6.2 User Interface Improvement  

The user interface at the moment is relatively bare bones. It is able to send the                

necessary boundary information to the rest of the system, but there remain four areas where the                

user interface can be improved upon: additional console interaction, system feedback, boundary            

selection, and presentation. 

The console interaction at the moment is very minimal. It has a limited number of               

functions that it can call, which are mostly used for direct interaction with the peripherals.               

However, the console could be greatly extended. First, it should be able to publish to all topics,                 

not just the ones that the UI already publishes to. Next, it would be worthwhile to implement                 

some ROS callbacks, especially rostopic, which would allow the user to view the messages sent               

over various channels. 

Currently, the system does not provide much feedback to the user interface. It therefore              

may be worthwhile to additionally subscribe to all (or most) topics. Although the user interface               

currently receives messages from the mapper node (in the form of corrected GPS             

measurements), it does not use them, except to display the 50 most recent points to the user                 

via the “GPS Test” button. It should, in addition to this, display the snowblower’s position, and                

update it every time a new gps reading is available. 

The boundary selection window only allows the user to define a boundary within four              

corners, and gives the user no option to specify where the snow is sent to. As discussed in                  

section (insert section here), one of their design requirements for the user interface is to allow                

the user to define where the snow is sent. As there is currently no chute control mechanism,                 

there is no immediate need for this feature. However, should such mechanism be implemented,              

this feature would be needed immediately, as it would provide a target area for the chute to aim                  

for. In terms of defining the boundary for operation, it should be extended upon to allow for a                  

45 



variable number of corners, not just four (for areas more complex than a rectangular driveway).               

Additionally, there exists a bug in the current implementation of the boundary selection             

mechanism. As shown in figure 25. below, if a corner crosses over a figure, the area within the                  

rectangle will not be filled, but will instead create two triangles due to the center lines crossing                 

over each other. 

 
Figure 25: Glitch in the boundary definition apparatus 

Given the current implementation, there are two solutions to this problem. The first             

option is to dynamically reassign the corner indices as needed. This would require complex              

calculations to re.-assign the indices whenever one of the corners crosses over a             

non-connected line, making it difficult to implement, as well as being a strain on the processor.                

Otherwise, this reassignment would need to occur when gmapping accepts boundary info. This             

may not be possible with gmapping, and the issue still occurs that the boundary will not appear                 

properly filled to the user. 
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6.3 Sensor Improvements  

The sensors currently provide the snowblower with the information it needs to navigate a              

specified area autonomously. However, the GPS module is not perfectly accurate, and the lidar              

sensor requires better housing. 

6.3.1 GPS Improvements  

As discussed in section 5.1, the GPS module still has an offset of about 3 meters, due to                  

the method that the latitude and longitude are extracted from the GPS messages. Currently, the               

team adds an offset which mostly corrects the raw latitude and longitude; however, it is still                

unsuitable for use by the snowblower. 

The best way to improve this error is to use the correction information found in other                

message types sent from the GPS module. Further discussed in section 5.1, the GpsNode              

currently only listens for GNGLL messages. 

6.3.2 Localization (LIDAR) Improvements  

Although the final LIDAR system is fairly robust, it is not without its faults. The most                

obvious of these is the fact that the acrylic gears need to be recut, since they were accidentally                  

cut at an angle and therefore have trouble meshing together. Additionally, the 3D-printed             

adapter that attaches the second gear to the LIDAR sensor above it and the slip ring below it                  

needs to be reprinted to properly fit where it should. There are also potential changes or                

improvements that could be made to the main body of the assembly; for example, changing the                

attachment mounts from 1.5” 80/20 aluminum to some other size or shape might allow for better                

integration with the rest of the system. 

The other major change that could be made is to the system that determines what angle                

the sensor is currently pointing in. Although the final build uses a stepper motor capable of                

tracking its own position, this is not entirely foolproof, as it is still susceptible to sudden impacts                 

that might cause it to miss steps and therefore have inaccurate readings. The team’s finalized               

solution to this problem was a bump switch mounted under the second gear in such a way that it                   

is triggered once per revolution. This allows the software to calculate what angle the sensor is                

pointing in by multiplying the time since the last bumper switch interrupt by the gear’s rotational                

velocity. This particular method was chosen since it was easy to implement and relatively              

47 



resilient to environmental interference. However, there are many other ways to achieve this             

same outcome. The most straightforward of these would be to attach an encoder to the shaft                

under the sensor, but there is potential in using a magnet and a Hall effect sensor in the same                   

way the bumper switch is currently being used. 

The final issue with the LIDAR system is due more to inherent limitations in the               

technology itself rather than any design flaws in the housing. LIDAR systems in general do not                

handle falling snow or rain very well, due to the snowflakes/raindrops causing interference and              

false “obstacle” readings. Since the final system was envisioned as being able to operate during               

heavy snowfall, this is a major issue. Unfortunately, as of the publishing of this paper, vision                

systems capable of reliably piercing through snow are not commercially available. There is             

some promise in a new process being developed by Ford that combines multiple LIDAR              

sensors with a post-processing algorithm designed to detect and correct for raindrops; however,             

this technology is still experimental at this time and also highly proprietary. 

6.4 Navigation Improvements 

Although the project never reached the stage where navigation was possible, the team             

still drew up several design specifications for the future pathfinding code of the robot during the                

initial design phase. More specifically, the robot’s code should take the aforementioned            

geofenced area and run a space-filling algorithm on it, generating a path that the robot can                

follow to most efficiently clear the specified area of snow. Space-filling algorithms are somewhat              

self-explanatory: given an enclosed area and a starting position, they will break the area down               

into a grid of “cells” and calculate a path that visits all of them. The space-filling algorithm used                  

for this particular implementation will have to be slightly modified, as the robot clears snow               

several cells on either side of its calculated path (which describes the motion of the robot’s                

center of rotation). To account for this, the algorithm needs to be written in such a way that it                   

considers cells off to the side of the path to be “cleared”, avoiding situations where the robot                 

makes multiple passes over the same area. At the same time, however, there should be some                

overlap between these cleared but unvisited cells to avoid thin lines of uncleared snow that               

would occur due to the robot pushing snow slightly off to the side as it moves forward. 

These aforementioned physical limitations of the robot also extend to obstacle           

avoidance. Since the robot moves on treads, it is capable of turning in place about its center of                  

rotation. However, this might cause the side of the robot to move into uncleared snow. For                
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example, if the robot started clearing a square area on the rightmost side, got to the top border,                  

and attempted to rotate 90° to the left, it would be pushing its left face – which obviously lacks                   

any snow-clearing mechanisms – into potentially deep snowbanks. To avoid this, the turns             

generated by the space-filling algorithm should cause the robot to back up while turning at a                

slight angle, then position itself at the correct pose without colliding with snow. 

7 Conclusion  

Although this project’s final product ended up not being entirely functional, it is not              

without its accomplishments. First, the team learned several valuable lessons about determining            

the scope of a project. Although this project was originally slated to take three terms, it ended up                  

taking four; this was partially due to the sheer amount of work that needed to be done, but was                   

exacerbated by unforeseen time-consuming hurdles such as renting out a workspace and            

ordering parts. Additionally, the team initially had difficulties determining the scope of the project              

and what goals would be realistic to achieve within what was originally assumed to be a                

three-term timeframe. This could have been partially remedied by setting hard, specific goals at              

the end of each term, which would have given us a sense of how far behind we were. 

Secondly, the project has provided a robust jumping-off point for a future major qualifying              

project (MQP). Since the logistics and most of the base platform were completed, a future team                

would be able to focus all their efforts on troubleshooting and software development. Even if this                

project isn’t directly continued, much of the research is applicable to a wide range of projects in                 

robotics and beyond. For example, the LIDAR scanner and associated mapping packages in             

ROS can be repurposed to be used in virtually any robotic system. 

As a whole, this project served as a valuable learning experience for all parties involved               

and laid down a solid foundation for future work. 
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