
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2007

Enhancing OfCourse
John W. Furman
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Furman, J. W. (2007). Enhancing OfCourse. Retrieved from https://digitalcommons.wpi.edu/mqp-all/3619

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212997052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3619?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3619&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


 

 

ENHANCING OFCOURSE 
 

 
 

A MAJOR QUALIFYING PROJECT REPORT 

SUBMITTED TO THE FACULTY OF WPI 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

BACHELOR OF SCIENCE BY: 

 

JOHN FURMAN 

 

ADVISED BY: 

PROFESSOR KAREN A. LEMONE 

  

 

    

 

 

 

 

 



Abstract 
 
 This project made several key improvements to the distance education application 

OfCourse. Research was conducted into the field of distance learning and semantic 

searching. The software structure was reorganized from a monolithic entity to a plugin 

architecture. Several important security vulnerabilities were recognized and fixed. Many 

of the tools used in OfCourse were redesigned or replaced entirely. Finally, a 

discoverability search tool was added to provide a means for users to perform system-

wide searches of the information contained within OfCourse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
Acknowledgements 
 
I wish to express my utmost appreciation to the following individuals: 
 
Professor Lemone for her advice, guidance, feedback and support throughout the course 
of this project and for loaning me her laptop to use during this project. 
 
Seth Hunter for his participation in the testing phase of this project, as well as his help on 
various issues of the design and implementation of the same. 
 
The Library Staff of Gordon Library for their assistance in locating the necessary 
research materials for this project. 
 
The people at the writing center of WPI for their help in proofreading this report.  
 
Heidi Rose, Manny Riley and Patrick Swanson for their help in testing this project. 
 
The developers of Promia, an open source web based file sharing program, which was 
used as one of OfCourse’s plugins. 
 
The developers of PAM, an open source web based quiz system, which was used as one 
of OfCourse’s plugins. 
 
Matthew Smith, a friend and colleague who will always be fondly remembered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table Of Contents 
 
Abstract ............................................................................................................................... 2 
Acknowledgements............................................................................................................. 3 
Table Of Contents ............................................................................................................... 4 
Table Of Figures ................................................................................................................. 6 
Table Of Tables................................................................................................................... 7 
Executive Summary ............................................................................................................ 8 
1. Introduction................................................................................................................... 11 
2. Background................................................................................................................... 14 

2.1 - Considerations Regarding the Design of a Course Management System ............ 14 
2.1.1 – The Importance Of Application Familiarity ................................................. 14 
2.1.2 – Electronic Mail.............................................................................................. 15 
2.1.3 – Discussion Boards......................................................................................... 16 
2.1.4 – Instant Messaging ......................................................................................... 17 

2.2 – Search Tools......................................................................................................... 17 
2.2.1 – Discoverability Search .................................................................................. 18 
2.2.2 - Metadata ........................................................................................................ 18 
2.2.3 - Metadata Spaces and Discoverability Vectors .............................................. 19 

2.3 - Conclusion ............................................................................................................ 20 
3. Design and Implementation .......................................................................................... 22 

3.1 - Design of the Plugin API Architecture................................................................. 22 
3.1.1 – Design and Implementation of the Login API.............................................. 23 
3.1.2 - Design of the Database API........................................................................... 24 
3.1.3 - Design of the Admin API .............................................................................. 24 

3.2 - Security Considerations in the Design Process .................................................... 25 
3.2.1 – Cookie Generation Security Hole ................................................................. 25 
3.2.2 – Login System Security Hole ......................................................................... 26 
3.2.3 – User ID Security Hole................................................................................... 26 

3.3 - Design of the Individual Plugins .......................................................................... 27 
I redesigned several of OfCourse’s plugins to be more functional and user friendly. 
Others needed to be replaced entirely, because they were either not working or were 
very difficult for new users to figure out. ..................................................................... 27 

3.3.1 - Design of the Chatroom Plugin ..................................................................... 27 
3.3.2 - Design of the File Sharing Plugin.................................................................. 28 
3.3.3 - Design of the Quiz System Plugin................................................................. 29 

3.4 – Design Of The Discoverability Search Tool........................................................ 30 
3.4.1 - Design of the Search API .............................................................................. 31 
3.4.2 – Constructing the Discoverability Vectors..................................................... 31 
3.4.3 – Analyzing the Discoverability Vectors......................................................... 32 
3.4.4 – Sorting the Discoverability Vectors.............................................................. 32 
3.4.5 - Designing the Search Modules for the Individual Plugins ............................ 33 

3.4 - Summary............................................................................................................... 35 
4. Results........................................................................................................................... 36 

4.1 - Results of the Implementation of the APIs........................................................... 36 



4.1.1 - Results of the Implementation of the Database API...................................... 37 
4.1.2 - Results of the Login API ............................................................................... 39 

4.2 - Results of the Implementation of the Plugin Architecture ................................... 41 
4.2.1 - Results of the File Sharing Plugin ................................................................. 42 
4.2.2 - Results of the Quiz System Plugin ................................................................ 43 

4.3 - Results of the Discoverability Search Tool .......................................................... 44 
4.3.1 - Basic Search .................................................................................................. 46 
4.3.2 - Advanced Search ........................................................................................... 46 

4.4 – Testing.................................................................................................................. 49 
4.5 - Conclusion ............................................................................................................ 51 

5. Conclusion and Recommendations............................................................................... 52 
5.1 - Summary............................................................................................................... 52 
5.2 – Recommendations................................................................................................ 53 

6. Bibliography ................................................................................................................. 55 
Appendix A – Creating Digital Media For The Electronic Classroom ............................ 60 
Appendix B – Ethical Issues In Distance Learning .......................................................... 62 
Appendix C – Details Regarding the Integration of PAM and Promia ............................ 64 

Promia ........................................................................................................................... 64 
PAM.............................................................................................................................. 64 

Appendix D – A Test Of Promia ...................................................................................... 66 
Appendix E – A Test Of PAM.......................................................................................... 70 
Appendix F – A Test Of Search........................................................................................ 75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table Of Figures 
 
Figure 1 - Example Of A Discoverability Vector............................................................. 20 
Figure 2 - Previous OfCourse Database Connection Handling ........................................ 37 
Figure 3 - New OfCourse Database Connection Handling............................................... 39 
Figure 4 - Screenshot Of The Login Page ........................................................................ 40 
Figure 5 - Diagram Of The New Plugin Style Architecture ............................................. 41 
Figure 6 - Screenshot Of The File Exchange Utility ........................................................ 43 
Figure 7 - Screenshot Of OfCourse's New Quiz System .................................................. 44 
Figure 8 - Basic Search HTML Widget............................................................................ 46 
Figure 9 - Advanced Search.............................................................................................. 49 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table Of Tables 
 
Table 1 - Metadata Used For The Various Plugins........................................................... 34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Executive Summary 

 
 
 This project enhanced a web-based distance education application called 

OfCourse. OfCourse was a fully functional software package from the beginning; 

However it needed some critical and major improvements to the functionality from the 

points of view of the students, instructors, and developers who intended to interact with 

the application.  

Before attempting to do this, I discovered many techniques on how to maximize 

learning by students and the teaching efficiency of instructors through the careful and 

appropriate craftsmanship of distance education software. For example, tools such as a 

discussion boards should be designed to be structurally and functionally similar to web 

based applications that users are already familiar with. Therefore, I looked to several 

well-known web-based applications when redesigning the user interfaces of OfCourse's 

tools. 

However, the improvements that OfCourse needed went far deeper than the user 

interface alone. OfCourse was constructed over several different MQPs and IQPs by 

many different teams. As such, the application structure was a loose knit patchwork of 

several different pieces of relatively monolithic code. There were essentially two choices 

at this point: Add my own improvements and changes to the monolith, or rearrange the 

application into a more organized software structure. I chose the second route. Because 

OfCourse was by and large a collection of relatively distinct sub-applications, such as 

chat rooms, discussion boards, file exchanges and the like, I decided the best approach 

was to reorganize the software into a plugin style architecture, consisting of plugins and 

APIs. This change vastly simplified the improvement of existing components and the 

addition of new ones, while breaking tight software cohesion and improving efficiency 

and maintainability. Also, this fundamental change allowed a single install of OfCourse 

to handle a theoretically infinite number of simultaneous courses, as opposed to the 

original application that could only handle one course per install. 

 While doing this restructuring, several major security holes were discovered in the 

system. These holes would allow a cracker to potentially invade the system and alter 

and/or destroy data. Most of these vulnerabilities centered around the login page and the 



cookies that were sent out to the users browser by the web server. I used several web-

based application security techniques to design and implement a rolling-code based 

cookie generation algorithm for secure cookies. I also modified the login page to run over 

Secure Socket Layer (SSL), to prevent user’s accounts from being stolen. This changes 

vastly improved the security of OfCourse, making a malicious compromise of the 

application a far less than trivial task.  

 With a well-structured and secure code base now firmly in hand, the project 

shifted gears to specific improvements at the plugin level. The old file exchange, which 

was extremely cumbersome to use, was replaced with a very intuitive, user-friendly third 

party tool taken from the open source community. Integrating this outside piece of code 

was surprisingly easy, since OfCourse now supported a plugin style architecture. Another 

tool that was in need of attention was the quiz system, because it was badly broken to the 

point of being non-functional. Once again, I found a suitable quiz system from the open 

source community that was subsequently integrated into OfCourse as a plugin. 

 While some of the existing plugins were badly in need of improvement, perhaps 

the biggest discrepancy that separated OfCourse from being as powerful as it could be 

was the absence of any electronic search facility. Therefore, designing and implementing 

an adequate system-wide search tool was a major focus of this project. Since the 

application contained several plugins, each with its own type and method of storing and 

processing data, finding a method to seamlessly search them all accurately and efficiently 

was anything but trivial. To find a solution, I looked to the work of Watson and Wiley, 

two pioneers in a technique called Discoverability Search. Discoverability Search is 

specifically suited toward searching over many heterogeneous data sources (such as 

corporate data warehouses and the world wide web). As such, it was a natural choice for 

the technique to use for the design of OfCourse's search system. To accomplish this, I 

implemented a semantic structure, called a "metadata space" in the words of Watson and 

Wiley, to structure and organize the myriad heterogeneous data contained within 

OfCourse. I then selected, implemented, and deployed the appropriate algorithms to 

compare search strings and search criteria to the metadata spaces and produce search 

results ranked in order of their discoverability (relevance). This form of search was 

implemented over the discussion board, file exchange, chat room, course calendar, user 



directory and static web-based course content. This provided an easy and intuitive means 

for a student or teacher to quickly and effectively find information of interest within 

OfCourse, through the use of a familiar user interface in the form of a search box (eg: 

Google). I also provided advanced search features and controls for users to further refine 

the selectivity of their search as necessary. 

 Software testing was indeed mandatory with all of the changes made to OfCourse 

throughout this project. Therefore, I designed three specific regression and integration 

tests according to the IEEE 824-1997 standard. These tests were then deployed to several 

volunteer human testers. I used their feedback to locate and fix several bugs as well as 

improve the aesthetics and ease of use of the user interface. As a result, future users of 

OfCourse can be confident that the system has been thoroughly tested and that a high 

level of quality and reliability has been achieved. 

The efforts of this project vastly improved the functionality, usability, security 

and the information discoverability of the distance education tool OfCourse. The result is 

a very intuitive web based teaching tool that can be easily deployed on a wide variety of 

platforms, such as web hosts and web servers, and can be seamlessly integrated into any 

existing online curricula the instructor might have. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction 
 

 Distance education is the teaching of and learning from course material in which 

no physical contact between the teacher and student occurs. As a result, many methods of 

long distance communication have been used to connect students and teachers together to 

form a positive and productive learning environment, despite their physical separation. 

Before the mainstreaming of the Internet, distance educators and students rely on such 

technologies as snail mail, fax machines, and telephone calls to bridge the gap (Pallof & 

Pratt, 1999). However, with a personal computer in almost every home that usually has 

some kind of Internet access, the potential for major new advances and ideas in distance 

learning became possible. These new technological powers also brought new 

technological struggles along with them. Among these challenges were the questions of 

which medium would be most appropriate for maximizing educational value, how to best 

transform any existing course material into electronic format, and how to design a 

computer system that is both a powerful manager and disseminator of information and 

yet is easy enough to use by the average person (Williams, 1999). The current attempt at 

the ideal solution is the online course management system. 

 Course management systems, as the name implies, are computer tools that 

provide an electronic means of organizing and managing a course's structure, material, 

communication, and participation. Examples of popular course management systems 

include Blackboard (Blackboard, 2006), WebCT (WebCT, 2006), and Moodle (Moodle 

2006), the latter of which is open source software. Typically, these systems have 

attempted to incorporate the Internet's most popular communication tools, such as chat 

rooms, bulletin board services, email, voice over IP, and video conferencing into one 

easy to use, functionally cohesive interface. These systems typically have two viewing 

aspects. The first one is for use by the students, where they can, for example, download 

homework assignments or take quizzes, chat with other students, ask questions to the 

professor, view and/or participate in online lectures, or browse through the electronic 

BBS or secondary course materials for answers or discussions about issues of interest 

(Williams, 1999) (Petrides, 2000). In the last five to ten years, the use, development, and 

interest in such course management systems has grown significantly and as of 2003, 

online courses make up nearly three percent of higher education courses and seminar 



courses (Badrul, 2003). While online course management systems have made great 

strides in improvement of the distance education experience, they all suffer from one 

major drawback: the instructor must structure the course information according to the 

(often rigid) layout and specifications of the course management tool. Besides being 

relatively inflexible, this requirement can place a barrier to entry into the online teaching 

world from a professor's point of view, especially if his/her existing course material will 

have to be totally reformatted to work with the course management system. 

 OfCourse, a course management system developed here at WPI, provides a new 

paradigm to course management systems in that it allows the tools to be embedded 

directly into the existing course material. This completely eliminates one of the most 

major caveats to the other course management systems mentioned previously. Professors 

wishing to use OfCourse need not totally abandon or reorganize their existing electronic 

material, which may have taken significant effort to develop in the first place. Instead, the 

professor simply keeps the existing structure of the electronic course information, which 

is usually in the form of web pages, as it is and simply drops in the relevant OfCourse 

tool, such as the chatroom, where and if appropriate. The OfCourse system was a fully 

functional software package at the beginning of this project, and had indeed been tested 

and used as a teaching aid by the previous IQP teams and by Professor Lemone herself 

for her online courses. It includes a chatroom, discussion board, file sharing utility, grade 

book, and administrative tools, among other features.  

However, there were several aspects of the system that were either 

underdeveloped or lacking entirely. Certain key improvements were needed to take 

OfCourse to the next level in performance and ease of use from the viewpoint of both the 

instructor and the student. First and foremost, there was no way to perform a search 

across the myriad of very diverse and heterogeneous information that existed within the 

OfCourse system. A student or instructor wishing to find information relevant to a 

specific topic, keyword or subject, for instance, was required to manually browse through 

the multiple areas of OfCourse (such as the discussion board and file exchange) examine 

each piece of information that they found, and determine if it was relevant to what they 

were looking for. With the multitude of powerful computer-based search technologies 

that exist today, it was clear that this task was an unnecessary burden for the user. In 



addition to the omission of an adequate search facility, each new course that an instructor 

wanted to teach required a separate installation of the entire system, including the 

application software as well as the databases. This made administration of multiple 

courses very tedious and cumbersome for the instructor, and provided no means for a 

student to access information contained in previous offerings of the same class, or to 

switch between classes. It also made version control and upgrading the software a major 

ordeal, because each of the multiple instances of the system had to be upgraded one at a 

time. Also, this looseness in the design introduced several major security holes that could 

allow even a novice cracker to gain unauthorized access to the system. Finally, there were 

various shortcomings in some of the more widely used subsections of OfCourse. For 

example, the human interface to the file upload tool was very unintuitive and difficult to 

use; the chatroom was annoying because it required the user's browser to continually 

refresh the page every few seconds in order to receive new chats, and the quiz system 

was loaded with bugs to the point of being virtually non functional. These issues 

underscored the fact that this otherwise powerful and robust distance-learning tool was in 

need of some major improvements. 

 The goal of this project was to provide these needed improvements, as well as 

explore other options to make OfCourse more useful still. This goal was fulfilled by 

realizing the following objectives: Reorganizing the software structure from a patchwork 

of codependent software modules into a cohesive multi-tiered plugin style architecture, 

finding major security holes within the system and fixing them, redesigning and/or 

replacing certain tools within the system to be more functional and user friendly, and 

conducting extensive research and development into the creation of a powerful and 

flexible discoverability search mechanism. 

 

 

 

 



2. Background 
 

 An instructor needs to address several issues when deciding to teach a class 

online. One of the first tasks that must be preformed is to construct materials for the 

online classroom and curriculum by either creating new online content, or, more 

commonly, converting traditional media into electronic form. Then, an appropriate course 

management tool should be selected and deployed that acts as a powerful manager and 

disseminator of information, provides easy to use and effective communication tools, and 

a means to quickly and easily search for and find information contained within those 

tools. Each of these important topics in the administration of distance education is 

explored in this chapter. 
 

2.1 - Considerations Regarding the Design of a Course Management System 

 

 Of all of the expert sources consulted during the research phase of this project, the 

single most agreed upon issue was the importance of the course management tools that 

are deployed to provide the proper functionality in a way the users of the system can 

easily understand (Williams, 1999) (Pallof & Pratt, 1999) (Khan, 2003). Indeed, it seems 

to be an unnecessary burden to place upon the students or instructors of any distance 

learning community to have to learn and master a convoluted, awkward piece of poorly 

written software on top of the demands of having to learn the actual course material. Such 

an experience could possibly disillusion an individual student or instructor on the idea of 

distance learning for a long time, possibly forever (Berge & Collins, 1995). On the other 

hand, an effective design can tear down the boundaries between different styles of 

learning while accelerating the rate of learning, providing the users of the system with a 

comforting, easy to understand, and seamless experience. This, in turn, will draw more 

and more people into the distance learning community (Kahn, 2003) (Berge & Collins, 

1995). 
 

2.1.1 – The Importance Of Application Familiarity 
 



 Most experts agree that the way to accomplish Application Familiarity is through 

the design and deployment of tools that are functionally the same or very similar to 

applications that the users of the system are already familiar with (Williams, 1999) 

(Pallof & Pratt, 1999) (Khan, 2003). In today’s Internet age, the world is abound with 

various applications to do all number of different tasks. However, there are several pieces 

of software that have penetrated into the mainstream community and have become widely 

accepted. For example, most if not all people familiar with the Internet are at least 

marginally comfortable with applications such as email, bulletin board services, 

discussion boards or "blogs", instant messaging, search engines, and, of course, the world 

wide web, all of which can play a major role in disseminating information to online 

communities, such as virtual classrooms. Therefore, in the quest to design the optimal 

distance learning software, one has to examine the best and/or most popular applications 

for each of the aforementioned technologies and integrate their relevant functionality into 

the course management system. Then, when a student or instructor uses the system for 

the first time, they will already be familiar with what it is and how it works, especially if 

the interface closely resembles the interface to a program they already know how to use 

(Petrides, 2000) (Meyer, 2002). This can indeed go a long way toward encouraging 

instructors and students alike to considering distance learning. 
 

2.1.2 – Electronic Mail 
 

 By far the most widely used form of communication across computer networks 

worldwide is electronic mail, or email. Almost everyone who uses the Internet has at least 

one email address and is familiar with how it works (Primary Research Group, 1997). It 

is therefore essential that any decent course management system be able to utilize email 

in an effective manner. For example, a directory of all students and instructors in the 

class should be available (unless a particular individual does not want to be contacted by 

email and wants their address to remain private). This way, students can easily form a 

electronic correspondence with other students or email the professor to ask a question or 

obtain more information. The professor can also use email to send important 

announcements to the entire class via a mailing list, since most people are likely to check 



their email regularly, even if they do not happen to log onto the course management tool 

that day (Course Management Systems, 2006). 
 

2.1.3 – Discussion Boards 
 

 Another Internet application that is extremely beneficial to distance education and 

has gained wide acceptance and popularity is the electronic discussion board. A 

discussion board can be implemented in its traditional way, using a central Bulletin Board 

Server (BBS) and clients that connect to it and download or upload content, or the 

traditional functionality of a BBS can be implemented by dynamic web pages over HTTP 

(Sherry, 1996). The latter method is usually called a discussion board, web log, or "blog" 

for short, but the functionality is essentially the same as a classical BBS. 

 These tools typically allow users to create topics of conversation, called threads, 

in which people can write their own replies to the conversation, called posts. Some 

systems apply an additional layer of abstraction and split up the threads into separate 

groups called forums, where each forum typically has a certain theme or subject 

associated with it. Features of the more useful discussion boards usually include a search 

feature, where users can search the text of threads or individual posts, and filter the 

results by a certain range of criteria, including how old the post is, the user(s) who wrote 

it, and how other users of the discussion board rated the post, if a rating system exists 

(Course Management Systems, 2006). Much information, including the survey results 

from the previous IQP, indicates that the discussion board is one of the most accepted and 

heavily used features of course management systems, including the myWPI instance of 

the Blackboard system at WPI (IQP, 2005). In fact, studies show that success in distance 

learning is directly linked to posting and to reading the posts of others. Posts ranging 

from lecture questions, discussion of homework problems to social and intellectual 

interaction between students and teachers can all easily take place through an 

appropriately designed discussion board (IQP, 2005). This underscores the importance of 

making the discussion board in OfCourse searchable, so that students can easily find 

information contained within this most widely used tool. 
 



2.1.4 – Instant Messaging 
 

 Another widely accepted means of communication is instant messaging, such as 

chat rooms, which allow teachers and students to communicate with each other in real 

time. A chat room can also include an audio/visual information dissemination system, 

such as a web cam and videoconferencing system, enabling the professor to give lectures 

and discussions that the students can see and hear, as well as use to ask questions. This is 

far more powerful than just a basic text based chat room, because as most of the experts 

say that body language and tonality play a vital role in human communication (Williams, 

1999) (Pallof & Pratt, 1999) (Khan, 2003) (Course Management Systems, 2006). 

 While these popular Internet applications are indeed a vital part of any well 

designed course management tool, an equally important aspect that the system should 

possess is an effective means of searching the data contained within each of these tools 

(Primary Research Group, 1997) (Meyer, 2002) (Course Management Systems, 2006). 
 

2.2 – Search Tools 

 

 While the importance of the ease of the distance learning tools themselves cannot 

be stressed enough, an equally important issue is the means by which a student or 

instructor can coherently find and/or organize the information within the system once it 

has been placed there (Starr, 2000). There may be a tendency to want to group together 

related information, such as discussion board posts, files, chat logs and other sources of 

data that are related in some way. Indeed, the ease by which a user can do this plays a 

vitally important role in the overall distance education experience. It is somewhat 

analogous to a properly organized index in the back of a traditional textbook, in which 

the reader can look up a certain topic by keyword and quickly discover the page(s) that 

deal with or are relevant to that topic. This is a much more efficient process than flipping 

through the book page by page, hoping the eye will be fortunate enough to stumble upon 

the subject of interest while scanning each page one by one. The same is true of any 

repository of information; there must be an effective and efficient means of searching its 

contents. 



 

2.2.1 – Discoverability Search 
 

 Discoverability search, developed by Thomas Watson and John Wiley in a joint 

effort between the computer science departments at MIT and the University Of California 

At Berkley, is a method of searching for keywords, phrases and questions across a 

multitude of heterogeneous and loosely connected data sources (Watson & Wiley, 2001). 

It has been successfully deployed in a wide range of searching applications, such as 

libraries, corporate data warehouses, medical information repositories, expert systems, 

government and telecommunications databases, and the World Wide Web itself (Watson, 

2005). The general concept is to subdivide data into objects. These objects are analogous 

to objects in object oriented programming languages, such as those of the fourth and fifth 

generation. Each object definition is a template, consisting of data fields and functions, 

while each instance contains the information that belongs in each of the fields as well as 

references (pointers) to the functions contained in its template. The functions are then 

called to access and/or manipulate the information contained in the object instances. 

Discoverability search is in essence a subset of the functionality of OOP in that the data 

fields are limited to information called metadata, and the functions are limited to search 

routines. These two vital concepts are discussed in the following sections. 
 

2.2.2 - Metadata 
 

 Metadata is essentially "data about data" (Watson & Wiley, 2001). It is 

information that describes, or gives meaning to, other information. A popular example is 

that of a zip code. By itself, "01720" is totally meaningless, but when the metadata "Zip 

Code" is assigned to it, it then becomes useful (Watson, 2005). While a book may have 

the metadata of title, author, year, subject, publisher and so on, a car may have the 

metadata of make, model, year, color, horsepower, transmission, etc. This is how 

instances of very different entities can be brought together into a single unified search 

space. Using the above example, a search on "year=2001" would divulge all of the books 

published and cars manufactured in that year that was known to the system. However, if 



the search was performed on "subject=computer science", only books would be returned, 

as results containing cars would obviously be meaningless (Watson & Wiley, 2001). 

Using the technique of discoverability search, relevant metadata is assigned to each 

category of information that the developer wishes to make searchable. Watson and Wiley 

have described over five hundred different categories of metadata (Watson & Wiley, 

2001). It then becomes the task of the developer to select from these the ones that are 

relevant to the particular category of data, which is to be searched. 
 

2.2.3 - Metadata Spaces and Discoverability Vectors 
 

 While choosing appropriate metadata is indeed a critical aspect of the design, an 

equally important task is to develop the functions that determine how relevant a given 

query string is to the metadata. Watson and Wiley have described the concept of a 

discoverability vector, which is what each of these functions is expected to return 

(Watson & Wiley, 2001). Essentially, a discoverability vector is a vector, extending from 

the origin, within a metadata space (Watson & Wiley, 2001). A metadata space is an 

orthogonal, multidimensional space where each axis is of unit length and represents how 

well the search string matched one particular piece of metadata (Watson & Wiley, 2001) 

(Watson, 2005). The dimensionality of the space is exactly equal to the number of 

metadata fields associated with the object being searched (Watson & Wiley, 2001). Each 

component of the discoverability vector, therefore, is a number between zero and one, 

inclusive, that indicates how relevant the search string was to the one piece of metadata 

represented by one of the axes (Watson & Wiley, 2001). For example, if the object being 

searched had two pieces of metadata associated with it, the discoverability vector would 

be two dimensional, with the "x" component indicating how well the search string 

matched the first piece of metadata, and the "y" component indicating how well the 

second piece of metadata was matched. This is illustrated in figure 2.1. A perfect match 

on both pieces of metadata would yield the vector (1,1), a partial match might result in 

(0.4,0.7), and no relevancy at all to either piece of metadata would produce (0,0). It is in 

this way that the results from the search can be sorted by relevancy. The greater the 



magnitude of the vector, and the closer the angle it makes with each of the axes is to pi 

over four (45 degrees), the more relevant that particular search result is. 

 

 
Figure 1 - Example Of A Discoverability Vector 

 
2.2.4 – Discoverability Search and OfCourse 
 

 In the design chapter that follows I will detail how the idea of discoverability 

search was used to design OfCourse’s search API. This made each of OfCourse’s plug-

ins searchable from a top-level interface and thus providing a common method of 

accessing the vastly differing types of information contained within each. 
 

2.3 - Conclusion 

 

 This chapter explored some major issues in deploying an online classroom and 

building an effective distance-learning environment. Course content must be integrated 

with a properly designed, and easily searchable, course management system, such as 

OfCourse, in order to be disseminated over the Internet. In the next chapter, Design, I 



will examine the technical details of how we applied this background research in distance 

learning toward the project goal of improving OfCourse. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Design and Implementation 
 
 
  The goal of this project was to refine OfCourse into being a modular, secure, 

easy to use and searchable online distance-learning tool that is relatively easy to install 

and maintain by a professor who is at least somewhat familiar with the Internet and 

World Wide Web. In the last section I focused on the background and theoretical issues 

related to the design and use of such a course management system. Now I shall examine 

the specific design issues used to redesign OfCourse. I will discuss the design of the 

specific updates, including the design of the new plugin architecture, redesign and 

modularization of the myriad existing components of the system, and the design of the 

new discoverability search component, as consistent with the stated goals from the 

Introduction Chapter. 
 

3.1 - Design of the Plugin API Architecture 

 
 
 In software design, the development of plugin architectures consists of dividing 

the system into two distinct parts: The upper level Application Program Interface, or 

APIs, and the plugins themselves. What separates the two is a very simple concept, the 

upper level APIs provide the general functionality that is common to all or most of the 

entire system, while the plugins supply functionality that is specific only to a subset of the 

system. The plugins can be thought of as the additional features, whereas the upper level 

APIs usually encapsulate much of the core functionality.  Many examples of plugin 

architectures abound in Computer Science, from microkernel operating systems to web 

browsers. The goal of the project was to rearrange OfCourse into a plugin style, 

modularized architecture where the functions that are common to all or most of the pages 

in OfCourse (such as logging in, connecting to the database, etc) exist in the high level 

APIs, while the individual features of OfCourse (such as the chat room, discussion board, 

etc) are organized into the plugins. In addition to making the code itself much easier to 

develop and maintain, the plugin approach also allows much easier development and 

installation of any future add-ons or updates to OfCourse, since they can be implemented 



as plugins and then "plugged into" the existing, well defined high level APIs. While 

providing these unique benefits to the programmer, this architectural change had 

desirable effects for the user as well. For example, a professor wishing to teach a course 

online only needs to install and configure the features (plugins) of OfCourse that he or 

she wishes to use, since plugins operate independently of each other. This has the obvious 

benefit of an increase in both flexibility and robustness from the user's point of view. I 

will now examine the methodology behind the development of each of the high level 

APIs and plugins, as well as the reasons why they are appropriate. 
 

3.1.1 – Design and Implementation of the Login API 
 
 
 I designed the login application program interface to be responsible for 

authenticating a user, then recognizing and remembering that particular user when he or 

she returns to any page in OfCourse. Since checking if and who is logged in when a page 

request occurs to any page, this functionality was an ideal candidate for a top level API. 

This API contains the login page itself, which I designed to look and feel exactly like the 

existing login page. Once a user supplies valid credentials, users need not log in again 

from that computer, since the module issues a long duration cookie to the web browser. 

Then, the API adds the user-userid tuple (contained in the cookie) to a list of 

authenticated users that it maintains. This way, when a page residing in one of the plugins 

needs to check if the user making the request is logged in (or if he or she has 

administrator privileges), all it must do is call a function in the login API. If the user is 

logged in, the function simply returns an appropriate value. However, if the user is not 

logged in (supplies no cookie or an invalid cookie) I designed the function to redirect the 

user to the login page. Once the user successfully logs in, he or she is then redirected 

back to the page that was initially requested. Note that this represents no fundamental 

change to the original behavior of OfCourse, only a fundamental change to the 

architecture. 
 
 
 
 



3.1.2 - Design of the Database API 
 
 
 In order to have persistence between page requests of state and data within 

OfCourse, a plugin must somehow connect to and manipulate information within a 

database. The original version used SQL queries to a MySQL database. While not a bad 

choice in and of itself, the application was heavily dependant upon the Mysql database 

driver, which has been obsolete for about the last seven years. In addition to this minor 

drawback, the extensive use of the Mysql driver throughout the OfCourse system made 

the application highly platform dependant, since no other database server other than 

MySQL would work. My design of the new database API not only provides a common 

connection point for all of OfCourse's many plugins and APIs, but also includes the 

updated version of the Mysql driver, known as DBI (Database Interface). In addition to 

being the preferred modern method of connecting to a database from a web interface (or 

any other application), the DBI database driver, unlike the Mysql driver, is truly 

independent of the type of database server being connected to. This allows OfCourse to 

be installed on a web host regardless of whether the host provides MySQL, mSQL, 

Microsoft SQL Server, Access, etc as its database server. Thus, the OfCourse database 

API is designed not only to provide a common entry point for plugins to access and store 

information in the database; it also decouples the hard-coded dependency between 

OfCourse and MySQL. 

 

3.1.3 - Design of the Admin API 
 
 
 The admin API is responsible for providing several much needed functions to the 

general architecture of OfCourse. Its primary purpose is to encapsulate the administrative 

functions, such as approving or disapproving a new user, maintaining the class directory 

list, and administration and maintenance of user accounts. This API includes the current 

approve/disapprove user's page and the class list. The lurker user tracking facility is also 

integrated into this API, and works in close connection to the Login API for a detailed 

tracking routine of login/logout times and user activity. The look and feel parameters of 

the system can also be administered here. This provides much greater flexibility in the 



configuration of the UI, because one change here takes effect everywhere throughout the 

entire system. All in all, the admin API is a much needed and valuable improvement. It 

serves as a central location for administrative tools and plugins to configure and 

administer users and user accounts, grades, look and feel, and make any changes to the 

current installation of OfCourse. 

 

3.2 - Security Considerations in the Design Process 

 
 Any system that depends on the open Internet to operate is vulnerable to attack by 

malicious hackers, sometimes referred to as crackers or cyber criminals. This 

vulnerability must be taken very seriously with regards to online classrooms. For 

example, the academic honesty policy here at WPI is put in place to ensure that any 

student who is granted credit for a class is given the credit because he or she has gained 

"mastery of the material", and not because they cheated, plagiarized, or in some other 

way tricked the professor into believing that they mastered the material when in fact they 

hadn’t. This possibility of academic dishonesty takes on a whole new dimension when 

the "classroom" is essentially a computer application running on an open wide area 

network like the Internet. 

 

3.2.1 – Cookie Generation Security Hole 
 

 One of OfCourse's strongest assets is its open nature. Only one login is required, 

and then the application remembers the computer's IP and browser, which authenticated 

successfully. This eliminates the need to login each time someone needs to access the 

course material. A cracker could, however, gain access and steal one or more accounts if 

he/she were to spoof his IP address and snoop the cookie value from a legitimate user, 

both of which are not hard to do for most programmers. The redesign to plug this hole 

was a relatively easy one, however. I simply designed a new "rolling code" id system that 

is now used for generating cookies. In this way, a new cookie id, which is totally 

independent of the old cookie id, is produced for each new request by the legitimate user 

making such an attack as mentioned above nearly impossible. 



 

3.2.2 – Login System Security Hole 
 

 A much more vulnerable part of the system was the login page itself. It ran over 

open plaintext HTTP (Hypertext Transfer Protocol) and did not use SSL (Secure Socket 

Layer). Therefore, whenever users logged in, including professors, their username and 

password were sent over the open Internet in clear text. It does not take a significant 

amount of skill to snoop an open network and reap (collect) passwords. It would 

compromise the safety and integrity of the entire class if this were to happen, especially if 

the account that was stolen had instructor privileges. The cracker could easily change 

grades, destroy course material, perform a denial of service attack, or any other nasty 

tricks. Clearly, this potential situation would prove disastrous for not only OfCourse, but 

the entire online educational community's reputation would be undermined as well. Since 

this was obviously an unacceptable situation, I designed in the necessary security fixes 

(use of SSL for logins) while still maintaining the unique and convenient "log in once" 

feature of OfCourse. 
 

3.2.3 – User ID Security Hole 
 

 I discovered another major security hole during the design process and that was 

the manner in which the user ids were generated. The user id is supposed to be a random, 

unique string that is assigned to each user of the system, professors and students alike, 

when their account is approved. This id in turn is then sent to the user's web browser 

encapsulated within a cookie. Then the web server can determine which user is issuing a 

request to the OfCourse system. The problem was that the user management code was 

written to generate user id's by performing an md5 hash on an auto-generated primary 

key value used to uniquely identify the rows in the user table within the database. 

However, the way MySQL generates these values is that it starts with the value of "1", 

and for each new row added to the table, the value is incremented by one. So, for 

example, the first row in the user table (which would be the entry for the administrator, 

since she was the first user added to the table), would have a user id which was the md5 



hash of "1", the second user added (perhaps a student, perhaps a TA) would get a user id 

of the md5 hash of "2", and so on. Anyone who knew of this behavior, or figured it out 

by observation and/or experimentation, could easily crack into the administrator account 

by simply sending the web server a cookie which contained the md5 hash of "1". This, of 

course, was a major security hole because with admin privileges a cracker could wreak 

all kinds of havoc to the system including, but not limited to, changing his or her grades, 

or the grades of other students, in the grade book. I therefore made the decision to 

redesign the user management code to generate md5 hashes for users based on a 

combination of their username, password, Unix timestamp of when the account was 

created, and a random number. 
 

3.3 - Design of the Individual Plugins 

 I redesigned several of OfCourse’s plugins to be more functional and user 

friendly. Others needed to be replaced entirely, because they were either not working or 

were very difficult for new users to figure out. 

3.3.1 - Design of the Chatroom Plugin 
 
 Chat rooms are not for just text anymore. In fact, there are several features that 

can be incorporated into traditional chat room programs and interfaces that both enhance 

and sometimes substitute for the real time text messaging experience. These include 

voice over IP features that allow the students and teachers to send two-way voice 

messages to each other and, in some cases, even emulate the traditional full-duplex voice 

mode of a telephone. Also, if high-speed Internet access is available, video conferencing 

can take place through a chat room, allowing the professor to provide lectures and/or 

office hours in real time with the students able to hear and see them on their screen. 

Electronic whiteboards can even be incorporated allowing the professor to draw 

diagrams, equations or notes right on the screen. This provides the students participating 

in the "chat" to see these drawings in real time. With the release of the new tablet PC 

interface, where the user uses a pencil-like device to draw directly on the screen, such a 

real time electronic white board feature shows promise for increased use in the future. 

While voice and video chat are somewhat bandwidth intensive, electronic whiteboard 



applications can actually be designed to use small amounts of bandwidth, since only 

changes in the image (which occur at a relatively slow speed) have to be sent over the 

network. 

 As mentioned in the Background Chapter, the programmer needs to look to 

popular chat clients and emulate the interface when designing a chat room feature for a 

course management system, thereby reducing the time it will take the average computer 

user to learn how to use it. Popular chat room software applications such as ICQ, IRC, 

and AIM were therefore appropriate candidates to look to for ideas on how the new chat 

room plugin should look and feel. Taking these considerations into mind, Seth Hunter, a 

Graduate Student who was also working with Professor Lemone to improve OfCourse, 

built in a video conferencing feature based on the popular TinCam software. This, as well 

as an electronic white board feature, greatly improved and standardized the user interface 

to provide students and teachers alike with a very useful and very powerful chat room 

application. 
  

3.3.2 - Design of the File Sharing Plugin 
 
 
 In keeping with the central theme that tools designed for online learning should 

mimic applications that people are already familiar with as much is possible, it makes 

sense to use a file sharing tool that closely resembles the way traditional computer file 

systems work. Even among casual computer users, the notion of directories (folders) and 

files is pretty much common knowledge. Therefore I decided that the file upload and 

sharing tools of OfCourse should implement directories and files in a similar manner to a 

basic file system. An invaluable asset a course management tool must possess is the 

ability to quickly and easily distribute and locate relevant course documents and files.  

Due to the limited amount of time that was available for the development phase of 

this project, I asked for and obtained permission to use an open source third party file-

sharing tool instead of constructing one from scratch. I located several good choices, 

mostly from sourceforge.com and other open source websites. Ease of use, and the ability 

to quickly and easily modify the application to fit into the plugin structure of OfCourse 

were the main deciding factors used to select the appropriate application. I downloaded 



and installed each of three final candidates and set them up as stand alone applications for 

Professor Lemone and myself to "play with" to see which one would be the best fit. After 

this short experimentation phase, we agreed that the best choice was a file upload 

application called Promia (Promia, 2006). I subsequently re-designed this software 

package to be a plugin to the larger OfCourse application. 
 

3.3.3 - Design of the Quiz System Plugin 
 
 
 While there were two quiz systems that were originally designed for this project, 

neither choice was adequate. The first quiz system included with OfCourse was poorly 

designed and implemented, badly broken and so loaded with bugs that it would have 

probably taken less time to write a new one than to fix the old one. So, for these reasons, 

Professor Lemone and I decided to scrap this piece of code. The second quiz system, 

while very well made and highly functional, was designed to be a stand-alone 

application. I considered modifying it to fit into the new plugin design, but 

documentation for the code was non-existent (most of the source code did not even 

contain meaningful comments), and the developers of the code had either left WPI and/or 

were very difficult if not impossible to contact. Once again, the decision was made to not 

use this quiz system based on the amount of time it would take to reverse engineer a 

relatively large and complex piece of code and then modify it to accept the new plugin 

architecture. A new quiz system was therefore needed, since the two available quiz 

systems were unacceptable. 

 Once again, I looked to open source software from sourceforge.com to find an 

acceptable, available third party tool rather than build an entirely new quiz system from 

scratch. However, unlike with the file sharing tools, there were much fewer choices 

available. At first I noticed all of the available choices were applications that were 

originally designed as web based polling and voting systems. These would need to be 

modified to not only fit into OfCourse as a plugin, but to include points and grading as 

well. Then, a fully functional quiz system called PAM was found, which was not from 

sourceforge but from its own independent website (PAM, 2006). It was very user 

friendly, included extensive and detailed documentation of the code, and was completely 



free and open source. When I examined the documentation, it became clear that PAM 

would be quite easy to integrate into OfCourse as a plugin. Therefore, I selected PAM 

and redesigned it to be OfCourse's new quiz system. 
 

3.4 – Design Of The Discoverability Search Tool 

 
 
 With the enormous popularity and usefulness of Internet search engines such as 

Google, Yahoo and Lycos, just to name a few, it should come as no surprise that any 

decent course management system should incorporate a powerful search facility to 

quickly and easily find desired information within the system. This feature is the one 

feature discussed so far that is noticeably lacking from OfCourse, and adding it was a 

major focus of this project. With information stored in so many forms, including 

discussion board posts, online chat sessions, course documents and materials, files, and 

lecture notes, Professor Lemone and I believed that by adding some method of unifying 

the information through a common search procedure would be doing OfCourse a great 

service. 

 OfCourse contains many different forms of popular Internet applications, such as 

a discussion board, chat room, file exchange, user directory, and HTML pages. Each one 

of these modules, or applications, stores vastly differing types of information, and 

manages the information in highly differing ways. While this plethora of useful tools is 

no doubt a very good thing for a distance learning application to have, it made the task of 

constructing a searching system that could effectively retrieve information from this wide 

variety of data far from trivial. A general, all-purpose solution was not acceptable 

because a system that would work well for searching a discussion board, for instance, 

might not be the best way to search web pages. Indeed, a solution was needed that would 

allow the programmer to custom tailor an appropriate search algorithm for all of the 

different plugins, while still providing the user access to a unified, cohesive top level 

search interface. Fortunately, as described in the Background Chapter, research revealed 

an existing technique to do just that called Discoverability Search. 

 



3.4.1 - Design of the Search API 
 

My primary focus in the design of the search API was to encapsulate the 

functionality that was to be used by some or all of the individual search modules. This 

was, in essence, the function that dealt with the computation of the metadata space and 

the discoverability vectors. Also, the search interface itself was to be contained here, 

since this would provide the common point of entry for the user to initiate a search. 
 

3.4.2 – Constructing the Discoverability Vectors 
 

 I designed functions to take metadata, in a textual form, and compare them 

against a search string and then return the relevancy as a number between 0 and 1 

inclusive. There were two techniques that were considered appropriate for doing this 

during the design process. The first took a binary approach to the discoverability 

computations of the search string to the metadata. If the search string appeared in the 

metadata itself, the function returned a 1, otherwise, 0 was returned. This was appropriate 

for use with metadata that was short in length, such as the title of a discussion board post. 

The second type of function I designed to take a list of metadata strings and count the 

number of occurrences of the search string within each piece of metadata. The metadata 

string which contained the most occurrences was to receive a value of 1, while each of 

the others that contained some number of occurrences less than the most but greater than 

zero was to receive some number less than one but greater than zero. Finally, metadata 

strings that contained no occurrences of the search string were to naturally receive a zero. 

For example, if the max number of occurrences was five, and another piece of metadata 

contained three occurrences of the search string, this piece of metadata is assigned a 

value of three over five, or 0.6. This is consistent with one of the techniques for handling 

this situation described by Watson and Wiley (Watson & Wiley, 2001). Since it was 

known at the design stage that an implementation of this procedure would be slower in 

run time than the binary method, this was reserved for metadata that was longer in length 

or more complex in structure. For example, the content of a discussion board post would 

fit this category. I decided that such content demanded a finer grain of discoverability 

measurement than a simple yes or no, one or zero answer given by the binary method. 



The values returned by these two discoverability-measuring functions were used to 

construct the discoverability vectors themselves, one component at a time. 
 

3.4.3 – Analyzing the Discoverability Vectors 
 

 Once the discoverability vectors were constructed, their length and their angle 

relative to the axes of the metadata space had to be calculated. I made the design choice 

to have a third function handle this. This is where weighting of the individual axes could 

be brought into play, if necessary. For example, if the designer of the discussion board 

search module decided that occurrences of the search string in the title were more 

important than occurrences within the content, the title metadata component could be 

weighted more heavily than the content component. Thus, I designed two functions for 

computing the length of the discoverability vectors, one that applied weighting, and one 

that did not. I further realized that the non-weighting function was just a special case of 

the weighting function where the weights of all the axes were equal. Once a complete 

discoverability vector was created and its length and angle measured, it was reduced to 

the two-tuple, or couple (r, theta). It was then only necessary to sort the discoverability 

vectors in non-ascending order. 
 

3.4.4 – Sorting the Discoverability Vectors 
 

 For the purposes of sorting, I used a special implementation of Randomized 

Quicksort. Instead of simply sorting numbers, as the classic implementation of Quicksort 

does, an appropriate method had to be designed to take both the length and the angles 

into account. Once again, there were several design choices available (Watson & Wiley, 

2001). Since the size of the search space (quantity of data being searched) was small 

comparatively (as opposed to an entire library or a cooperate data warehouse, say), the 

procedure that I selected was the simplest non-naive procedure recommended by Watson 

and Wiley (Watson & Wiley, 2001). The idea is to basically sort on the length of the 

vector, while using the angle as a tiebreaker if necessary. Therefore, I implemented a 

suitable version of Quicksort to accomplish this. 



 

3.4.5 - Designing the Search Modules for the Individual Plugins 
 
 
 While the design of the search API focused on how to construct and manipulate 

the metadata space and the discoverability vectors on a global or abstract level, the design 

of the search modules for the individual plugins needed to be focused on construction of 

the search space in the form of the object tree, and to search on the appropriate pieces of 

metadata. 

 The object tree consists of the individual objects to be searched as well as their 

parent-child relationships with each other. For example, discussion board threads 

represented as objects are a natural selection for the parents to discussion board posts, 

since threads contain posts. While it is possible in theory to construct object inheritance 

trees that is infinitely deep, in practice a line has to be drawn somewhere that limits how 

fine grained the object representation will be. This is a similar situation to designing 

object trees in object oriented programming languages, eventually a point is reached 

where objects are formed that have no children. These "leaf" objects represent the frontier 

of the tree where the highest level of desired specificity has been achieved. Once again, 

the time constraints of the project were the major limiting factor in the design as to how 

deep the object tree should be constructed. After careful consideration, Professor Lemone 

and I decided that the depth of the object tree should be limited to no more than two or 

three levels, to prevent the complexity of the object representation from getting out of 

hand. 

 Having only two or three levels to work with, I had do give careful consideration 

to the choice of each object and how it fits into the tree to maximize the effectiveness of 

the representation while minimizing the complexity. For the discussion board, I made 

topic objects and designed them to be parents to thread objects. Similarly, thread objects 

were made the parents of post objects, which in turn were the leaves of the tree. Notice, 

for example, how the tree could have been extended deeper by making, say, content 

objects children of post objects, sentence objects children of content objects, and  word 

objects children of sentence objects. However, with the design choice to limit the depth to 

no more than three levels, I stopped at posts. In a similar way, design choices such as 



these had to be made for all of the other plugins as well. The file sharing utility had two 

levels, consisting of directory objects being parents to file objects. With the chat room, 

only one level was necessary: the chat archives themselves were designed to be the only 

object. The same one level deep strategy was used for the user directory, where just the 

users themselves were the only objects necessary. Finally, for the static web content, I 

made the HTML pages themselves to be parent objects of the content of the HTML 

pages. This design, I believe, provided a simple yet highly robust and usable object tree 

that could be easily extended by a future MQP team if the need arises. 

 Once the design of the object tree was complete, the appropriate metadata needed 

to be selected to serve as the data members to these objects. Again, time constraints 

played a factor in the design considerations here. The choice of metadata to use for the 

search space had to be large enough to be effective and useful, yet small enough to 

realistically implement within the allotted time. While Watson and Wiley have defined 

over five hundred different categories of metadata, it was obvious that a very small subset 

of these would need to be used in the design of OfCourse's discoverability search tool 

(Watson & Wiley, 2001). Basically, the choices were restricted to textual information 

that had the highest chance of providing a high level of selectivity between each object. 

Table 3.1 below summarizes the choices of metadata that were made for each object 

within each module (or plugin) within the system, according to the structure of the object 

tree discussed previously. 
 

Table 1 - Metadata Used For The Various Plugins 

 

Discussion board 

Object 
Name Metadata Fields 

Topics Name Of The Topic 
Threads Title Of The Thread, User Who Created The Thread 
Posts Title Of The Post, Content Of The Post, User Who Created The Post  

File Sharing Tool 

Object 
Name Metadata Fields 

Directories User Who Owns The Directory 

Files Name Of The File, Description Of The File, Content Of The File (if file 
is textual)  



Chat Room 

Object 
Name Metadata Fields 

Chat 
Archives Title Of Chat Archive, Content Of Chat Archive 

 

User Directory 
Object 
Name Metadata Fields 

Users First Name, Last Name, Username, Email Address  

Calendar 
Object 
Name Metadata Fields 

Events Date, Event Name, Event Description  

Static Course 
Content 

Object 
Name Metadata Fields 

Web Pages Title, Keywords 
Web 
Content Text Within Web Page 

 
 
 
 

3.4 - Summary 

 
 In this chapter, I described how this project redesigned the structure of OfCourse 

from a loose-knit, heterogeneous collection of application tools into a cohesive, efficient 

plugin style architecture and provided much needed security fixes to prevent crackers 

from gaining unauthorized access to the system. Also, I described the selection and 

modification of a chat room, file-sharing tool and quiz system. Finally, I detailed the 

design process involved in the development of a new discoverability search tool and 

object-metadata semantic structure. In the next chapter, Results, I will discuss the results 

related to these designs, as well as present the testing methodologies that were used and 

results of the tests that were applied during the course of this project. 
 

 

 

 

 



4. Results 
 

 This chapter explains the results obtained from the implementation of the 

research, redesign and improvements to OfCourse described in the previous chapters. I 

will discuss the specific impacts on the software, as well as the testing methods I used 

and test results I obtained. First, I will describe the results of the implementation of the 

new top level APIs that facilitate application wide communication between the various 

plugins and enable multiple classes to be administered from a single installation. Next, I 

will discuss the results from the redesign and/or replacement of the individual plugins 

such as the file exchange and quiz systems affected by these changes. Then, I will 

describe the results of the development of the new discoverability search tool. Finally, I 

discuss the tests that were performed on the system and the fixes and changes that were 

made as a result of these tests. 

 

4.1 - Results of the Implementation of the APIs 

 

 The most tedious aspect of the implementation phase of this project consisted of 

developing the system-wide Application Program Interfaces, or APIs, to unify all of the 

various tools contained within OfCourse. The original code base was very heterogeneous 

in nature because so many developers with varying levels of competence and expertise 

worked on it over a wide range of time. Because of this it was challenging to get all of 

these disparate pieces of code to communicate with each other through a common 

interface. While time consuming and tedious by nature, however, I realized this task was 

vital to the ongoing success of OfCourse because it enabled the application to not only be 

easily extended by future developers, if necessary, but it enabled a single install of the 

OfCourse system to handle (theoretically) an infinite number of classes. Despite the 

obvious benefits to the instructor in not having to perform a new complete installation 

every time she wanted to spawn a new course, this important improvement made the 

application much more secure, efficient, and easy to upgrade. I now discuss the results of 

these implementations of the new API structure in the following subsections. 
 



4.1.1 - Results of the Implementation of the Database API 
 

 In the past, OfCourse used a single database to store all of the information or state 

of one single course (see figure 4.1). While this design was perfectly acceptable in and of 

itself, the shortcoming was that the application had no way of switching between 

databases to handle multiple courses. This, for the reasons described previously, was 

unacceptable and needed to be fixed. 
 

 

 

 

 

 
Figure 2 - Previous OfCourse Database Connection Handling 

 

 Two possibilities existed to overcoming this discrepancy. The first entailed 

redesigning the schema of the database, adding a new column called "course_id" to each 

of the existing tables. This "course_id" field would be given a different value for each 

new course. Originally, this is how I set out to accomplish the one-install-many-courses 

theme. However, early in the implementation phase, I realized each of the existing 

database queries (SQL statements) needed to be altered to include this new "course_id" 

field, and many would have to be totally rewritten to perform inner joins on this value as 



well. While not difficult in and of itself, the problem was that the original developers of 

OfCourse decided not to separate the database interface from the user interface, as is 

usually done in deigning web-based database applications. Because of this, the SQL 

queries were loosely scattered throughout the entire application, often appearing right 

inline with procedures that generated the actual HTML that formed the web pages. This 

required that each and every code file within the entire application would have to be 

thoroughly examined to locate the relevant database queries and replace them with 

suitable SQL statements that included the “course_id” field. Considering the application 

consisted of over a hundred different Perl and PHP files, I therefore decided that this 

method would be too time consuming to accomplish within the six-week implementation 

period. It was then that I realized that the best way to implement the needed change was 

to use the second possibility, which was to use a new database for each new course. 

 To use a different database for each new course required only that the functions 

responsible for connecting to the database be made aware of the course in which the user 

was participating. To accomplish this, I added a second persistent HTTP cookie to the 

interaction between the client and the server. In this way, when a user logs in, he or she 

selects the course they wish to participate in, enters the username and password for that 

specific course, and clicks the login button. The system, after verifying the login 

credentials are acceptable, sends back to the user's browser two cookies: One containing 

the user's id as it appears in the database of that specific class as well as a cookie 

containing the course id of that class. Now, all further requests to the web server include 

cookies containing both the course_id and the user_id. The database API then uses the 

course_id to decide which course database to connect to, while the original OfCourse 

code can carry on as usual. I made this happen by hooking all database connects from the 

original OfCourse code through the new course_id-aware database API. This proved to 

be far less time consuming, since only the functions responsible for connecting to the 

database needed to be rewritten and moved into the API, rather than rewriting each of the 

numerous functions that queried the database. The result is a seamless transition from one 

installation of OfCourse being able to handle only one course, to the new paradigm of 

one installation being able to handle as many different courses that the instructor wishes 



to teach. Figure 4.1 illustrates how this is done. Note that each tool (plugin) in OfCourse 

is made to make calls to the database API to get a database connection. 
 

 

 

Figure 3 - New OfCourse Database Connection Handling 

 

4.1.2 - Results of the Login API 
 

 The results of my implementation of the login API vastly improved security and 

user management. First, I redesigned the login page itself to include a drop down menu to 

select the course the user wishes to log into. This menu is then used to set the course_id 

cookie described above, which the database API uses to connect to the appropriate course 

database. In addition, it allows a user who is taking more than one course (or who wishes 

to access information in previous offerings of the same course) to easily switch between 

classes. Then all that is necessary is to select the desired course from the drop down 

menu; the username and password only need to be entered the first time the course is 

accessed. Next, I added code to the Login API to authenticate a user, determine their 

privilege level (instructor or student), 



 and to manage the cookies in general. This code is primarily used during the login or 

course-switching process. By determining the privilege level, through the user_id cookie, 

OfCourse's plugins determine whether or not to display administrative options to the user. 

Finally, I re-implemented the entire login process over Secure Socket Layer, or SSL, so 

that passwords sent over the network were in encrypted form rather than in plain text. 

This change eliminated one of the largest security holes that previously existed. The 

result is an easy to use, robust and secure login page that will be highly intuitive to users 

who have even the most minimal exposure to web-based applications. Figure 4.2 shows a 

screenshot of the login page that the user sees when logging into OfCourse for the first 

time. 

 
 

 

Register 
 

Not logged in

Username  
Password  
Select Course aw t0601

 
Login

 
 

Figure 4 - Screenshot Of The Login Page 

 



 

Figure 5 - Diagram Of The New Plugin Style Architecture 

4.2 - Results of the Implementation of the Plugin Architecture 

 

 Once the APIs were properly implemented and tested, I began adapting the 

individual tools to the plugin architecture. I accomplished this by hooking certain key 

functions within the functions.cgi script. This script was originally responsible for 

holding commonly used functions across the various plugins. For example, this module 

contained functions responsible for database connectivity, authentication, user 

management, and cookie management. With the attention to detail given in the 

construction of the login, user, and database APIs described earlier, adapting the existing 

tools to be compatible with the new plugin architecture was relatively easy. It required 

only replacing the bodies of these functions with appropriate calls to the relevant API 

functions. Although this does introduce a slight amount of inefficiency, in that two 

function calls are required by a plugin instead of just one (one call to the original function 

in functions.cgi, then another call to the replacement function in one or more of the APIs) 

I decided that this was a better approach than to try to replace the function calls with API 

calls in each of the over one hundred different scripts. The time required to do so was 

much less, and the probability of introducing bugs was significantly lower as well. 

Therefore, I made the decision to sacrifice a modicum of performance for the sake of 

decreased development time in the form of finding and changing every single function 

call to functions.cgi in each of the plugin scripts, higher reliability, and less time 



debugging. I used the time that was saved to work on other areas of OfCourse that were 

more important to its overall improvement, such as replacing the file exchange, chat 

room, and quiz system with newer, better versions. 
 

4.2.1 - Results of the File Sharing Plugin 
 

 The first plugin I replaced was the file sharing system. As I mentioned in the 

design chapter, the original file exchange tool was unintuitive and difficult for most users 

to understand how to use. After successfully locating and testing the Promia web based 

file sharing system, I realized what changes the program needed to make it compatible 

with the new API architecture of OfCourse. It was the code that handled users and 

database connectivity. 

 In the standalone version of Promia, the application maintained its own user 

accounts and featured its own login and authentication scheme. Clearly this needed to be 

changed, because requiring the user to login to the file sharing application after already 

logging into OfCourse was just ridiculous. Therefore, I altered the code that was 

responsible for handling users within Promia to make calls to the user API within 

OfCourse instead. This was somewhat tedious, as Promia and OfCourse handled users in 

fundamentally different ways. For example, Promia had no notion of separate user 

authority levels, such as administrator and user; it simply treated all users as having the 

same privileges. Therefore, much of the code that I produced acted as a translator 

between the two different user management paradigms. 

 Also, Promia had its own database connectivity and database management 

modules, which needed to be modified to properly communicate with OfCourse's 

database API. This was less of a challenge than modifying the user management code, 

however. I simply replaced the calls to connect to the database with appropriate calls to 

the functions in the database API. The database management system itself then required 

only trivial modifications to be compatible. I produced a working version of modified 

Promia, ready to be plugged into OfCourse. For more information on the specific details 

regarding the integration of Promia, see Appendix C.  

 
 



jwf2's Filespace 
 

Upload A File
 

Your Files 
Filename Adjust Sharing Parameters Delete 
test Adjust Sharing Parameters Delete 
 

 
 
Files Shared With You 
Filename File Owner Remove Share 
Prof Lemones File Klemone Remove Share 

Figure 6 - Screenshot Of The File Exchange Utility 

 

4.2.2 - Results of the Quiz System Plugin 
 

 As I explained in the previous chapter, the two existing quiz systems that 

originally came with OfCourse were unacceptable. It was therefore necessary to integrate 

the new quiz system, PAM, into the OfCourse plugin architecture. I did this in the final 

days of the implementation phase of this project, after the completion of the much more 

time-consuming discoverability search tool. However, despite being a last minute effort, 

a reasonable and highly functional quiz system was provided nonetheless. 

 PAM, described in the design chapter, was already a very useful and intuitive quiz 

system from both the instructor’s and student’s standpoint. It featured a method to easily 

create questions and answers, assign points to individual questions, perform automatic 

grading, set and enforce time limits for timed quizzes, and intuitively report the results of 

the quiz to both instructors and students. It also was very good from a security standpoint. 

It stored the answers to the quiz in the database in an encrypted form, encrypted the 

answers students gave on the quizzes when sending them over the network, and had 

several different and independent layers of code built in to ensure that students could only 

take a quiz once. It was therefore obvious from the start that PAM would not need any 

additional features built in, as would have been necessary for an application that was 

intended for doing web polling. I therefore realized that all that was necessary was to 



modify it to be compatible with OfCourse’s new plugin architecture, just as I had done 

with Promia. For more information on the specific details regarding the integration of 

PAM, I refer the reader to Appendix C. 

 This plugin, since it was new to the system, was again subjected to the IEEE 829-

1998 test format, and was tested by the same five different testers mentioned previously. 

Those test results, recommendations, and bug fixes are found in Appendix E. 
 

 

new quiz 
 

You have 77 minutes to finish this quiz.  
 
#1 
(10 
Pts) 

What is the meaning of life 
    

 A] zen 

 B] karma 

 C] salvation 

 D] 77 virgins 

 E] all of the above 

 F] none of the above  
SUBMIT QUIZ

 
Figure 7 - Screenshot Of OfCourse's New Quiz System 

 

4.3 - Results of the Discoverability Search Tool 

 

 I accomplished the discoverability search function by producing three distinct 

parts of the searching application. The first is the search API, which as previously 

mentioned, contains all of the necessary functions for producing, normalizing, weighting 

and sorting the discoverability vectors that are produced within the metadata spaces for 

the various searchable (or discoverable) components of the OfCourse system. The next 

component is the user interface, which is encapsulated within the search.cgi page. This 

script is essentially responsible for providing the user with the appropriate search 



interface. For Basic search this is a simple text field and a search button, whereas for 

Advanced search the complete plethora of various inputs, selections, details and controls 

for custom-tailoring a fine-grained query is available. The third and final component of 

the search tool is the various search modules that are implemented to search the specific 

plugins themselves. Each searchable plugin, therefore, has its own search module, or 

code, that knows only of how to search the data contained within that specific plugin. In 

this way, when a user instigates a search, the query is passed into these plugin-specific 

search modules via the search API through the use of CGI environment variables. The 

specific search modules are then responsible for generating the results for their particular 

plugin, complete with details and hyperlinks as necessary, and presenting them to the 

user via HTML. Therefore, if OfCourse is extended in the future by adding an additional 

plugin, or revising and extending an existing plugin, the developer(s) only needs to write 

or revise a single plugin-specific search module. This provides a highly flexible 

application structure, as the user interfaces, discoverability vector computation functions, 

and plugin-specific search software are each separated and modularized into their own 

components.  

 The result of this is that now all of the data in OfCourse’s myriad of plugins is 

now discoverable from a single cohesive and human-friendly search interface. No longer 

must the user methodically comb through each plugin, hoping by chance to stumble upon 

information of interest. Imagine how much more effective the OfCourse distance learning 

software has become with the addition of this new and exciting feature. The student can 

now quickly and easily locate relevant information from the discussion board, file 

exchange, events calendar, user directory, chat room, or static web based course content 

with no more effort than a single click of a mouse. The needed data, if found, is then 

spread out before the student in a comprehensive and well organized fashion, sorted in 

order of relevancy to his or her search. Needles to say, such an experience can vastly 

increase the pleasure and rate of learning  when dealing with distance education. To 

further enhance the user’s power of selection and choice, I developed OfCourse’s search 

application to provide the user with two clearly distinct and powerful methods to conduct 

a query: Basic Search and Advanced Search. 
 



4.3.1 - Basic Search 
 

 Basic search in OfCourse is very similar to other widely used Internet search 

engines such as Yahoo and Google. There is simply a text field to enter a query string and 

a search button, both of which should be excruciatingly familiar to most web users.  The 

beauty of this search method is its simplicity, just enter the text, click the button and you 

get your results. Also, this text field and button was made to be a simple, two line HTML 

widget, able to be embedded anywhere throughout the system, and even outside the 

system, such as within the static HTML course web content. Basic search in its 

generalized form searches all areas of OfCourse, but through a simple URL CGI 

command-line option, it can be custom tailored to search only one part, or parts, of the 

system. Thus, the search box present in the discussion board performs searches on only 

the discussion board, the one within the events calendar only searches that plugin, and so 

on. Figure 4.5 shows the Basic Search user interface. While this method of search is 

indeed sufficient for most user requests, I also recognized that some users would want to 

take more control over their search process, and thereby their search results. This is why 

in addition to Basic Search I also added an Advanced Search feature. 
 

 

Search Search Advanced Search
Home 

 

Figure 8 - Basic Search HTML Widget 
 

4.3.2 - Advanced Search 
 

 While taking slightly more time and effort on the users part, performing an 

Advanced search has several distinct advantages over Basic search. First, the user can 

select which specific areas of the system (plugins) they wish to search. Then, within each 

plugin, they can select various options as to which pieces of metadata that the query 

applies to. For example, if searching the discussion board, they can select whether to 

search the title only, content only, or both titles and content. Also, they can select if the 

query string is a list of keywords (default) or an exact phrase. This relates to the metadata 



space tree described in earlier chapters. Each possible selection is searching within one 

(or more) particular objects on one (or more) levels deep within the object tree. This adds 

far more selectivity to the search, since a user can drill down as deep as they need to but 

only within selective areas of information contained throughout OfCourse.  

Figure 9 shows the advanced search page. Notice how the search controls for each 

plugin are contained in their own separate unit on the page. This is once again an 

example of the modularization of the search system. Indeed, each plugin is responsible 

for delivering a module to provide its own customized advanced search controls if 

necessary. I developed each of the existing plugin’s advanced search control code, as 

well as developed new code to search PAM. In doing so, I demonstrated how easy it 

would be for a future developer to implement their own search features and functionality 

for their own specific plugin. This, I believe, adds a high degree of flexibility and 

robustness to the structure of the code. 

 To make the static web course content searchable, software was needed to find 

and parse the web resources that the instructor has provided and put online. To 

accomplish this, I created a simple but highly functional and powerful web spider for 

parsing the HTML pages that make up the static course content. Using this spider, an 

instructor can crawl through each of the pages, starting with the root page on the main 

menu, and proceed in a breadth-first manner until he/she reaches the boundary, or 

frontier, of the course content (usually in the form of external links). The spider provides 

a full implementation of HTTP/1.1, as well as several regular expression language 

patterns that are used for eliciting the text of the web page, capturing hyperlinks 

embedded within the page (for further exploration, as necessary), and finding and 

extracting the page’s metadata states, such as title and keywords. The careful construction 

of the patterns provided a quick and speedy way to implement a relatively complex 

parsing algorithm in just a few lines of code. The result is a tool that makes it very easy to 

make web pages external to OfCourse searchable from within OfCourse. A full range of 

advanced search controls, similar to those found at Yahoo and Google, were also 

provided to the user as a means of searching this selected set of course documents and 

web pages (see figure 9). 
 



 

Search 
Search

 
 

 Search Discussion Board 

  Query String Is A List Of Keyw ords  
  Search For Query String In The Subject And In The Content  

  Discussion Board Topics To Search

All Archived Only Non-Archived 

Only Selected Topics Only 

Lab 0 Introductions 

Lab 1 File Upload 

Startup Directions Surveys 

Lab 2 Lab 3 

Turning 
assignments in Projects 

Lab 2b - Perl/CGI Audience 
analyses 

Lab 4 lab 5 

Traveling lab 6 

Technologies Lab 7 

Lab 8 Lab 9 

final and final 
grades Vijay 

Grades  
  

  Discussion Board Objects To 
Search 

Threads and Posts  

  Results Should Be Dated Any Date Jan 1 2000
 

  From User All  
 

 Search Events Calendar 

  Search For Query String In the Event Name And The Event Description



  For Events Dated After Jan 1 2000  
  For Events Dated Before Jan 1 2000  

 

 Search File Exchange 

  Query String Is A List Of Keyw ords  
  Search For Query String In The Filename And In The File's Description

  Limit Results To A Specific File 
Type 

All Files  

  Files Owned By All  

  Search Content Of Files (Limited 
to Text Files Only) (for now)  

 

 Search For People 

  First Name  
  Last Name  
  Username  

 
Search

 
Figure 9 - Advanced Search 

 

 

4.4 – Testing 

 

For testing the new software, and the changes to the existing code base, I used the 

IEEE 829-1998 test format structure, which comes as highly recommended by software 

engineers for use by human based testers. I designed three separate IEEE 829-1998 tests 

for the testing of PAM, Promia and Discoverability Search and recruited human testers to 

perform these prescribed tests on the system.  I then carefully analyzed their feedback 

and bug reports, and made adjustments and/or fixes to the software as necessary. A 

sampling of these reports can be found in appendixes D, E, and F. With the testing done 

and the bug fixes made, I felt that the new code and improvements to OfCourse could 

now be classified as “stable release” status for use in the field. 



Professor Lemone and Seth Hunter were the first people to perform the tests, soon 

after the application was finished. They found several bugs, which were subsequently 

fixed. For example, within the file exchange, the directory path was improperly set, 

causing files that were uploaded to be placed in the wrong directory. In the quiz system, 

the auto-generated forms for creating quizzes were not being filled out completely. Also, 

quizzes that were previously deactivated could not be made active again. For the search 

plugin, there were some bugs found in the user interface, causing awkward display of 

search results. These were simple fixes and minor bugs from a developer’s standpoint, 

but any one of them had the potential to make parts of the system behave strangely or fail 

to operate properly. Thus, from the first round of integration testing, several key bugs 

were identified and fixed long before the newly updated version of OfCourse went live. 

This, no doubt, has proven to be very beneficial. 

More bugs were, however, found when the application was installed in a 

production environment. The vast majority of these bugs stemmed from the fact that there 

were stale modules of code that somehow found their way in to the final release. For 

example, an outdated version of both the chatroom and the file exchange were present in 

the final release. After looking into the issue on the SVN server, I discovered that an 

erroneous check-in had occurred sometime in the past, resulting in deprecated code being 

injected into the application structure. This situation was quickly remedied by replacing 

the suspect code with the correct versions, both in the production environment and on the 

SVN server.  

There was one other bug discovered that was not related to this issue, though. The 

calendar plugin, which worked fine in the development environment, suddenly stopped 

working when it was placed into the production environment. After some poking around, 

I found out that a blank line present in the header of a PHP script file was causing the 

problem. This was not really a bug per se; it was simply an incompatibility between the 

PHP interpreter on the development machine and the PHP interpreter on the production 

machine. Nevertheless, this was a significant issue, as it caused the calendar plugin to fail 

completely. After making this change, I once again tested it in the development 

environment to see if it would still work there. It did. Thus, I found out through testing 

that one brand of PHP interpreter ignored blank lines while another brand interpreted 



them as code. I made a note of this in the readme file of the install package, to alert future 

users of the software to this anomaly. 

Finally, after the application was in production, several more testers were 

recruited from Professor Lemone’s CS4533 Compilers Class. They performed the same 

IEEE 824-1997 tests mentioned previously that were made up for the various plugins. 

Tables detailing their feedback are presented in Appendices D, E, and F. Their 

recommendations for improvements to the system are presented in the Conclusions 

chapter, which follows this one. 

4.5 - Conclusion 

 

 The goals of this project were to 1) modularize OfCourse into a plugin-API style 

architecture 2) find major security holes and fix them 3) redesign and/or replace existing 

plugins to make them more useful to the user and 4) to implement a functional and 

cohesive system wide search tool. This chapter has explained the results of achieving 

those goals. I replaced the awkward functions.cgi with the new user, database, and admin 

APIs to make the software structure second to none. Throughout the chapter, I explained 

how making those critical changes resulted in vast security fixes and improvements. I 

found, evaluated, and re-designed PAM and Promia to be used as plugins to OfCourse. 

Finally, I explained the results of the highly advanced and powerful discoverability 

search tool and the new web spider. All of these results, I believe, have culminated into a 

vast and remarkable improvement to OfCourse in many, many ways. 

 



5. Conclusion and Recommendations 
 
 

The mission of this project was enhancing the distance education application 

called OfCourse. Specifically, these goals were the following: Modularize the software 

structure into a API-plugin architecture, find major security holes and fix them, replace 

and/or redesign existing plugins to make them more functional and user-friendly, and, 

most importantly, develop and implement a system wide discoverability search tool.  

While all of those goals were achieved completely during the six-week time frame 

allotted to this project, there were also several notable suggestions for future 

improvements from a range of sources including the individuals who tested this software, 

Professor Lemone, and myself. A description of their recommendations as well as a 

summary of the enhancements made during the project is the subject of this chapter. 

5.1 - Summary 

 

At the beginning of this project, OfCourse was a relatively functional software 

application on the surface. However, underneath the hood it was perhaps a few steps up 

from a total disaster. The application structure was highly disorganized, with multiple co-

dependencies and obsolete libraries being used throughout. It required the entire code 

base to be reinstalled for each new course that an instructor wanted to teach. There were 

several glaring security holes that could enable crackers to easily gain administrator 

privileges, such as the sending of passwords in clear text. Some of the tools, such as the 

quiz system, were totally inoperable due to bugs, while others, such as the file upload 

tool, were very awkward for the average computer user to figure out how to use. 

However, perhaps the most glaring omission to the whole application was the complete 

absence of a search facility.  I focused on each one of these goals in turn. 

 First, I concentrated on reorganization of the software structure. I developed 

several top-level APIs, including the database API, user API, admin API, login API and 

search API, then restructured the existing modules of code into plugins for the new 

application program interface. While doing this, I naturally came across the numerous 

security holes present in the system, then designed and implemented fixes for them. After 



this was accomplished, I then focused on redesigning and/or replacing certain plugins 

that were holding OfCourse back in terms of ease of use and/or functionality. 

Specifically, these included the file exchange, chat room, and quiz system. After locating 

suitable candidates from the open source community, I modified these third-party 

solutions to plug in to OfCourse’s new APIs. This made vast improvements to these areas 

of the system. Finally, yet most importantly, I designed and implemented the system-

wide search feature that OfCourse now contains. To do this, I looked to the concept of 

Watson and Wiley’s Discoverability Search and built an object-oriented semantic 

structure called a metadata space around the data in OfCourse that was to be made 

searchable, then implemented appropriate algorithms to search the resulting metadata 

space as necessary. The result is a powerful and flexable search tool that allows users to 

find relavent information all throughout OfCourse, from both a basic search and 

advanced search interface.  

During this project, I used all the phases of the software development cycle to 

enhance OfCourse into a well organized, easy to use, secure, and searchable distance 

learning application. Each of these enhancements made an already good piece of software 

even better. Indeed, at the conclusion of this project, OfCourse is currently installed and 

running in a production environment, serving the needs of an online classroom. 

 

5.2 – Recommendations 

- Create a backup feature so that the database can be backed up at regular 

intervals 

- Make user interface improvements to the discussion board. Give it the look 

and feel of a modern forum 

- Improve administrative controls, giving the administrator more fine grained 

control over the user interface display 

- Add a video archive to the chat room, so that students can review lectures 

from the past. 

- Incorporate a help feature or link for each page within OfCourse. 



- When logging in, display the user’s last login date and time like a UNIX 

system does. This can alert users to unauthorized access. 

- Link the quiz system directly to the gradebook, so that when quizzes are taken 

the student’s grade is recorded automatically. 

- Have the system email the administrator when more than three unsuccessful 

login attempts happen from the same IP. 

- Allow administrators to maintain a list of banned IPs 

- Have a turnin feature that is separate from the file exchange that is only used 

to submit assignments 

- Add to the chatroom the ability to create private rooms such that users can 

have private chats with one another. 

- Fix the smilies in the discussion board 

- Allow users to upload their picture to the user directory, so that other users 

can put a face (or an avatar) to a name. Do the same in discussion board posts. 

- Make certain error messages are as non-technical as possible 

- Incorporate a two-way radio feature into the chatroom. 

- Add a whiteboard facility to the chatroom 
 

 

 

 

 

 

 

 



6. Bibliography 
 

Williams, Marcia L. (1999) Distance Learning: The Essential Guide. Sage Publications: 
Snata Clara, California. 0761914412 
 
Describes how to integrate familiar applications into the online classroom making 
users feel comfortable; also includes trends in distance learning and the online 
classroom. 
 
 
Primary Research Group, Inc. (1997) The Survey of Distance Learning Programs in 
Higher Education. Primary Research Publishers: New York, New York. 1574400088  
 
A statistical review of distance learning students, teachers and methods, containing 
many charts of raw statistical data as well as some descriptions of the data. 
 
 
Pallof, Rena M. & Pratt, Keith (1999) Building Learning Communities in Cyberspace 
Jossy-Bass Sansome Street Press, San Francisco, California 
 
A guide to conducting experiments with distance learning, transitioning from a 
traditional classroom, protecting privacy and ethics in the online classroom, and an 
evaluation of the effectiveness of online teaching techniques. 
 
 
Berge, Zane L. & Collins, Mauri P. (1995) Computer Mediated Communication and the 
Online Classroom. Hampton Press: Cresskill, New Jersey. 188130308X 
 
A book which gives ideas about various searching strategies for the online 
classroom, how to design an online classroom and trends in distance education for 
the 21st century. 
 
 
Petrides, Lisa A (2000) Case Studies On Information Technology in Higher Education 
Idea Group Publishing: Hershey, Pennsylvania 
 
Gives many case studies on course management systems and techniques. Performs a 
cost/benefit analysis of various online learning techniques and provides an example 
of building a relational database for an online education system. 
 
 
Starr, Roxanne H. (2000) The Virtual Classroom: Learning Without Limits Ablex 
Publishing: Norwood, New Jersey. 
 



Explains many aspects of human/computer interaction with regards to distance 
learning applications. Also gives tips and attempts to bridge the gap in transitioning 
from traditional to online education. 
 
 
Meyer, Katrina A. (2002) Quality in Distance Education: Focus on Online Learning. The 
George Washington University Press: Washington, DC. 0787963496 
 
Researches the impact of distance learning technology on students and faculty and 
their attitudes. Describes means of measuring quality, eliminating 
misunderstandings and charts the rapid growth of distance education. 
 
 
Ko, Susan & Rossen, Steve. (2001) Teaching Online: A Practical Guide. Houghton 
Mifflin: Boston, Massachusetts. 0618000429 
 
Describes methods of constructing online classrooms and course management 
systems; also offers information on how to convert existing course material to an 
effective online format. 
 
 
Khan, Badrul H. (2003) Web Based Instruction Educational Technology Publications: 
Englewood Cliffs, New Jersey 
 
Describes how to best design web based instruction courses, user interface design, 
supporting collaborative learning and methods on adapting traditional education 
material to the world wide web. 
 
 
McClure, Polly A. (2003) Organizing and Managing Information Resources On Your 
Campus John Wiley & Sons: San Francisco, California 
 
On effective management techniques of online course management systems, 
dissemination of information to students and online help and training for these 
systems. Provides detailed guide on how to select an appropriate course 
management system for university level education. 
 
 
Blackboard  (2005) Retrieved August 28, 2006 from http://www.blackboard.com/ 
 
Home page for the popular commercial course management system Blackboard; 
gives information about and demonstrations of the software. 
 
 
Peraya, Daniel (2006) “Distance Education and the WWW” Retrieved August 28, 2006 
from http://tecfa.unige.ch/edu-comp/edu-ws94/contrib/peraya.fm.html 



 
Gives an overview of the current state of distance learning and how to use the 
WWW to most effectively teach online. Discusses both the theory and practice of 
using the web to design online learning courses. 
 
 
Sherry, L. (1996). Issues in Distance Learning. International Journal of Educational 
Telecommunications, 1 (4), 337-365. Retrieved August 28, 2006 from 
http://carbon.cudenver.edu/~lsherry/pubs/issues.html 
 
 
Journal article describing several issues related to distance learning, how to select 
the proper technology and how to measure the quality of the online educational 
experience from both the teacher and student’s point of view. 
  
 
Course Management Systems: A Guide to Researching Product Features of Over 40 
Different Course Management Systems. (2006). Retrieved August 28, 2006 from 
http://www.edutools.info/static.jsp?pj=8&page=HOME 
 
Web site that offers a tool to do side by side comparisons of the features of over 40 
different commercially available course management systems. 
 
 
Moodle: A Free, Open Source Course Management System For Online Learning (2006). 
Retrieved August 28, 2006 from http://moodle.org 
 
Home page of the popular open source distance learning application Moodle. 
Provides documentation of the software as well as the source code itself. 
 
 
Angel Distance Learning Software (2006) Retrieved August 28, 2006 from 
http://www.angellearning.com/ 
 
Home page of the course management system ANGEL. Provides software 
documentation, online help, and an extensive FAQ. 
 
 
WebCT eEducation Software (2006) Retrieved August 28, 2006 from 
http://www.webct.com/ 
 
Home page of the commercially available proprietary course management system 
WebCT, a direct competitor to the Blackboard system annotated above. 
 
 



 Manhattan Open Source Course Management System (2006) Retrieved August 28, 2006 
from http://manhattan.sourceforge.net/ 
 
Another open source distance education application. Provides features similar to the 
Moodle project. 
 
 
Sakai Project: Collaboration and Online Learning Environment (2006) Retrieved August 
28, 2006 from http://www.sakaiproject.org/ 
 
Homepage of the Sakai project, which is a freeware version of a popular web based 
distance education and course management product. 
 
 
ILIAS: Open Source Software for Distance Education (2006) Retrieved August 28, 2006 
from http://www.ilias.de/ios/index-e.html 
 
Home page to ILIAS, an open source online learning application. Provides 
documentation, user reviews, explanations of the source code, and articles written 
by the developers of the package. 
 
 
Gilmore, Jason W. (2004). Beginning PHP 5 and MySQL. Sage Publications: Santa 
Clara, California 1893115518 
 
Book providing a beginner’s guide to programming in PHP. Gives examples and 
methods of using PHP and MySQL to create web based relational database 
applications. 
 
 
Lerdorf, Rasmus & Tatroe, Kevin (2006). Programming PHP. O’Reilly Media: New 
York, New York 0596006810 
 
O’Reilly book for professional PHP programmers. Demonstrates coding examples, 
techniques and advice to the computer scientist that wants to use PHP to create 
dynamic web based content. 
 
 
 Watson, Thomas and Wiley, David (2001). Structured Metadata Spaces. Journal Of 
Internet Cataloging 
 
Scientific journal article by the original developers of discoverability search. 
Explains discoverability vectors, metadata spaces, search strategies, object 
representations and other concepts relevant to the construction of discoverability 
search tools. 
 



 
Watson, Thomas (2005). Lessons on Effectively Optimizing Content for Internal and 
External Discoverability. Special Libraries Association, Fairfield Counties Chapter 
 

A live presentation by Thomas Watson, co-inventor of discoverability search. 
Presents informative lecture and discussion about lessons learned while 
implementing discoverability search in a wide range of real-life sceneries, such as 
libraries, cooperate data warehouses, government databases, and the World Wide 
Web. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A – Creating Digital Media For The Electronic Classroom 
 
 
 One of the issues that must be addressed is which types of media the instructor 

wishes to use to educate her/his students, and how to best present these in an electronic 

form for use over a network. For the purposes of most learning environments, these 

typically include text (i.e.: books, articles, notes), audio (e.g.: lectures) or video, although 

combinations are also possible. Methods of and issues with the conversion and 

presentation of these three vital methods of human communication in electronic form will 

now be explored. 

 The use of text based media in the digital classroom is practically a given. The 

syllabus, the schedule, notes, drawings, books and articles just to name a few will almost 

certainly fall under this category. The best methods to convert the existing material to a 

form that is usable on a computer vary considerably, but they should all have a few things 

in common. First and foremost, they should aim to be converted into a media type (file 

format) that is compatible with as many different types of computer systems as possible. 

This is true not only with text media, but with all the other types of media as well. While 

it might be tempting to use *.doc files for class notes and other text materials, for 

example, one should always keep in mind that the student's computer may not have that 

particular word processor installed, or be using an alternative operating system, such as 

Linux or Mac OS X. A choice such as rich text format (*.rtf) or HTML would be mush 

more flexible, and provide most of the layout features offered by proprietary software.  

Another issue to be considered here is how time consuming it is to convert information 

on paper, say, into the desired file format. While there do exist several programs that take 

a image file of text on paper (produced by a scanner hooked up to a PC, say) and extract 

the text to a textual based file format, they tend to vary wildly in quality and accuracy. It 

seems that few things can be more frustrating to a student trying to learn than to have to 

decipher a document that has not been decoded properly by the software, and contains 

numerous errors in the text as well as in the layout. For this reason alone, not to mention 

the many others, all textual material converted to electronic form should be carefully 

proofread by the instructor(s) before being made available to the students. 



 In a similar nature to textual components, there are many features and formats 

available for audio and video data as well, but a careful balance must be achieved 

between quality, compatibility and file size. With audio/visual files for example, it seems 

that for every different proprietary digital media player available, there is at least one 

(and often many more) proprietary file formats that come with them. An entire volume 

could easily be written comparing and contrasting the various audio and video data file 

formats and structures, so only a very simplified general overview of them will be 

presented here. Some are better at reproducing quality than others, usually at the expense 

of file storage size, and are usually the product of lossless compression algorithms 

(programs that don’t throw away any audio or video information during the compression 

process). Others are very good at compressing large, complex audio/video streams into 

small compact files for a less disk storage footprint and reduced network bandwidth 

requirements. These are usually produced by lossey compression algorithms, which in 

contrast to lossless compression, do actually throw away some of the input information, 

albeit usually an unperceivable amount, during their compression process. In addition to 

these considerations, there is the issue of whether or not any copyright protection is 

needed for the digital audio or video. While some file formats offer very high levels of 

encryption, authorization, and copy protection, others offer none of this whatsoever. One 

last important consideration that specifically applies to the subject of audio and video 

files is the method in which they will be disseminated. For example, the choice of media 

and how much of it to use can vastly depend upon whether the distance learning 

community will consist entirely of students and instructor(s) hooked up to a high speed 

network, for example, or a more heterogeneous community where some users can 

connect only at 56kbps (or slower) speeds. 

 
 
 

 

 

 

 



Appendix B – Ethical Issues In Distance Learning 
 
 

While in the past various methods of long distance communication have been 

used in the implementation of distance education, the Internet appears to be the way to 

proceed in the 21st century and beyond. However, there are several important ethical 

issues that remain to be considered when using such a powerful, highly interconnected 

worldwide network. 

 One of the most important of these issues to be considered is the issue of how the 

students and teachers will access the Internet, in particular with regards to speed and 

bandwidth. If everyone has a fast broadband connection, obviously more vast and 

expansive Internet technology can be deployed. This includes streaming audio and video, 

Voice over IP, and video conferencing, just to name a few. However, an important 

question arises when and if some students have the high-speed access while others do 

not. Should the higher bandwidth features be made available for those with the capacity 

to use them, even if this means that students with slower connections will be missing out? 

Clearly this can put a certain population of the students at an unfair disadvantage, if they 

live in an area where high-speed access is not available or are not able to afford the 

broadband Internet service. This issue is known to experts in the field of distance 

education as the Digital Divide. 

 The Digital Divide is the amount of social and economic separation between those 

who have access to computers and the Internet, and those that do not. As with the 

introduction of any new product, the computer has proliferated into modern society by 

first being the domain of the very rich, then gradually being adopted by the mainstream. 

However, there are still vast segments of the population who either have no access to, 

cannot afford, or are otherwise prevented from using, computer technology. These groups 

of people find themselves on one side of the Digital Divide, while the one's who have 

afforded and embraced the computer find themselves on the other. As distance learning 

today carries the prerequisite of computer access and literacy, people on the wrong side 

of the divide see fewer educational opportunities. On the other hand, those who are 

familiar with computers and are able to afford them, are finding more and more. Thus, a 



simultaneous upward and downward sociopolitical and socioeconomic shift has been 

created by the emergence of this digital divide. 

 The Digital Divide exists between several key segments of the population. First, 

there is a major separation between the rich and the poor. This is the biggest divide in 

America, with people earning over 75,000 dollars a year being four times more likely to 

have a computer with high speed Internet access than people making 20,000 or less (U.S. 

Census Bureau, 2001). Also, there is much separation between the races in terms of 

computer access. A huge chasm has developed in the statistics, with Whites and Asians 

being twice as likely to have a computer in their homes than Blacks and Hispanics. Also, 

there is separation between the old and the young, with those who "grew up" with 

computers being more comfortable with using them. However, these domestic digital 

divides pale in comparison to the worldwide digital divide, which exists between 

developed and non-developed countries. "Most people in the world have never made a 

telephone call, let alone used a computer" (Sara Baase, 2002). While there are many 

viewpoints about the relevance of this data, as well as what to do about it, most experts 

do however agree on one thing: Those with little or no access to computers and the 

Internet have little or no access to distance education curricula. While this project 

obviously cannot address this large-scale worldwide problem, we must keep it in mind 

when considering issues such as file sizes, bandwidth requirements, and deployment of 

brand new cutting edge technologies within OfCourse. 
 

 

 

 

 

 

 

 

 

 

 

 



Appendix C – Details Regarding the Integration of PAM and Promia 
 

Promia 

 

 After the new plugin was integrated, I disabled much of the file and directory 

permission management features, and enabled only the basic user interface skin, so that 

Professor Lemone could test the application in its most basic form and determine which 

features of the file and directory permissions and user interface she wished to have turned 

on. Much to my surprise, she liked the plugin just fine the way it was, sighting its 

simplicity and easy learning curve as major advantage to its future users. I therefore 

decided to leave the more advanced features turned off, but they remain available to be 

activated through a text based config file if the need (or desire) ever arises to enable them 

in the future. 

 The last modification that needed to be made to Promia (now and hereafter 

referred to as OfCourse's file sharing plugin) was to add a way to associate user-specified 

keywords and or descriptions to the uploaded files. This would allow the files to be 

searchable by their keyword and description, instead of just their name that is sometimes 

not descriptive enough to describe the contents of an entire file. For example, the name of 

this file you are reading now is named OfCourseMQPreport.doc, however as I think you 

would agree, that name alone does a very poor job of describing the contents of the file. 

To accomplish this, I altered the "files" table in the database to include a textual column 

called “keywords.” I then modified the user interface to the file upload page to include a 

web-form text field for users to enter keywords and/or a description of their file prior to 

uploading it. A screenshot of the resulting file upload page is shown in Figure 4.3. 
 

PAM 

 

PAM was originally designed to work with a separate web based user 

management system, which made the modifications to accept OfCourse's user API calls a 

snap. The database connectivity required slightly more work, as PAM was originally 



designed to use a Microsoft Access database via ODBC drivers, instead of the MySQL 

database that OfCourse uses. For this reason, most of the database queries had to be 

changed, as it turns out that Access uses a slightly different (and of course incompatible) 

SQL dialect than MySQL does. This was not as hard as it sounds, though, because all of 

PAM's database queries were properly separated from the user interface code. Indeed, 

they were all self contained in one single perl module, so that once this module was 

properly modified to be compatible with MySQL, the rest of the application did not know 

the difference. The result is a fully modified version of PAM that I easily plugged in to 

OfCourse's APIs.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix D – A Test Of Promia 
 

 
 



 
 



 
 

 

 
 



Test #1 of Filesharing Plugin 
ITEM # PASS/FAIL COMMENTS 
1 Pass   
2 Pass   
3 Pass   
4 Pass   
5 Pass   
6 Pass   
7 Pass   
General 
Comments N/A Seems Promising 

Recommendations N/A 

It is slightly annoying that after you upload a file it has 
that separate confirmation page, rather than just taking 
you back to your fileshare and mentioning that you 
successfully uploaded a file. It isn't a big deal though. 

Compare to 
myWPI N/A 

The big difference is that when saving a file from 
myWPI it will fill in the proper name and file extension 
for the suggestion as what to save the file as, rather then 
manually having to change "blah.cgi" to a proper name. 

 

Test #2 of Filesharing Plugin 
ITEM # PASS/FAIL COMMENTS 
1 Pass   
2 Pass   
3 Pass   
4 Pass   
5 Pass   
6 Pass   
7 Pass   
General 
Comments N/A naming of files is not strict. /'s ;' etc are allowed. 

Recommendations N/A 
when trying to download / save as an uploaded file it 
gets renamed to "postal.cgi" uploading a file with name 
; says it is successful but does not show the file. 

Compare to 
myWPI N/A   



Appendix E – A Test Of PAM 
 

 
 



 
 



 
 

 

 



Test #1 of Quiz Plugin 
ITEM # PASS/FAIL COMMENTS 
1 Pass   
2 Pass   

3 Pass The edit form did not show that A was still the correct 
answer (the radio button was not selected).  

4 Pass 
I assume that the "Create/Administer Quizes" link you 
refer to should really be "Create/Modify Quizes" as 
there is no "Create/Administer Quizes".  

5 Pass   

6 Pass 
I assume that the "Class Tools" button you refer to 
should really be "Course Tools" as there is no "Class 
Tools" button.  

General 
Comments N/A   

Recommendations N/A    
Compare to 
myWPI N/A    

 

Test #2 of Quiz Plugin 
ITEM # PASS/FAIL COMMENTS 
1 Pass   

2 Pass 
"There were some errors while prosessing your POST" 
Not all users are aware of what POST means, perhaps 
make the error msg less technical?  

3 Pass   
4 Pass   
5 Pass   

6 Pass 

-Quiz's with duplicate names show separately in the 
create/edit view but only one shows up in the 'take quiz' 
view. 
-After hitting "OK" at the end of the quiz, the site loads 
in a frame, inside another frame. So there are two 
toolbars across the top showing "main page" 
"login/logout" etc...  

General 
Comments N/A    

Recommendations N/A    



Compare to 
myWPI N/A    

 

 

 



Appendix F – A Test Of Search 
 

 
 



 
 



 
 

 

 

 

 

 



Test #1 of Search Plugin 
ITEM # PASS/FAIL COMMENTS 
1 Pass   
2 Pass   

3 Fail 

There were no results from the File Exchange. The 
search found multiple discussion board postings and the 
test event from the previous test (with discoverability 
70%).  

4 Pass   
5 Pass   
General 
Comments N/A Seems Promising 

Recommendations N/A Looks a bit rough, but nothing seems fundamentally 
wrong.  

Compare to 
myWPI N/A 

From the student-user point of view, myWPI is much 
nicer. However after getting used to OfCourse it seems 
to be as easy to use as myWPI  

 

Test #2 of Search Plugin 
ITEM # PASS/FAIL COMMENTS 
1 Pass   
2 Pass   
3 Pass   
4 Pass   
5 Pass   
General 
Comments N/A It works okay, it takes some getting used to though.  

Recommendations N/A An icon or text next to each hwk assignment letting 
users know if it is 'up to date' or not.  

Compare to 
myWPI N/A 

Seems to have fewer features and a smaller simpler feel 
to it 
-It is not integrated w/ banner 
-It is not integrated w/ STUDENT domain 
-The submission system used in both myWPI and 
ofCourse is frustrating to work with. (the 'turnin' 
webapp was very nice though)  

 

 


	Worcester Polytechnic Institute
	Digital WPI
	April 2007

	Enhancing OfCourse
	John W. Furman
	Repository Citation


	Microsoft Word - ocmqpapril4.doc

