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Abstract 

The threat posed by cybercrime to individuals, banks and other online financial 

service providers is real and serious. Through phishing, unsuspecting victims’ 

Internet banking usernames and passwords are stolen and their accounts robbed. In 

addressing this issue, commercial banks and other financial institutions use a 

generically similar approach in their Internet banking fraud detection systems. This 

common approach involves the use of a rule-based system combined with an 

Artificial Neural Network (ANN).  

The approach used by commercial banks has limitations that affect their efficiency 

in curbing new fraudulent transactions. Firstly, the banks’ security systems are 

focused on preventing unauthorized entry and have no way of conclusively 

detecting an imposter using stolen credentials. Also, updating these systems is slow 

and their maintenance is labour-intensive and ultimately costly to the business. A 

major limitation of these rule-bases is brittleness; an inability to recognise the limits 

of their knowledge.  

To address the limitations highlighted above, this thesis proposes, develops and 

evaluates a new system for use in Internet banking fraud detection using Prudence 

Analysis, a technique through which a system can detect when its knowledge is 

insufficient for a given case. Specifically, the thesis proposes the following 

contributions: 

 Conduct comprehensive comparisons of two successful prudence methods: 

Rated MCRDR (RM) and Ripple Down Models (RDM).   

 Redevelopment of Multiple Classifications RDM from Single Classification RDM.  

 Development of a new prudence method Integrated Prudence Analysis (IPA) by 

combining RM and RDM. 

 Introduction and application of RDR prudence to Internet banking fraud 

detection.  
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1. Introduction 

 

1.1 The State of Affairs 

 

Cybercrime in general continues to be a serious problem for individuals and businesses using 

or offering online services. According to published statistics, the financial and banking 

industry especially bears most of the effects of these crimes through Internet banking fraud, 

since the ultimate motive is usually financial gain (APWG, 2010). One of the most prevalent 

methods of Internet banking fraud is Phishing, which involves the use of technology and 

deceit to illicitly acquire an unsuspecting victim’s credentials (APWG, 2011). These 

credentials (including personal details, online banking usernames and passwords) are then 

used by fraudsters to access a victim’s emails, social security benefits and bank account, 

eventually resulting in the removal of funds from a victim’s account.  In 2008, phishing 

related Internet banking fraud was said to have cost banks around the world more than US$3 

billion (McCombie, 2008). It has been reported also that beyond 2010, there would be a rise 

in sophisticated and more effective phishing techniques, ultimately resulting in more losses 

of funds through Internet banking fraud (RSA, 2010). This situation necessitates the 

development and wide deployment of more efficient and rapid Internet banking fraud 

detection systems. 

1.2 Current Approaches to Internet Banking Fraud Detection     

 

Online banking fraud detection systems which rely purely on user account and password 

authentication have no way of differentiating an account’s legitimate user and a fraudster as 

long as the correct login credentials have been used to log in. This is one of the features 

enabling the prevalence of phishing, and also an area that security in Internet banking needs 

to focus on. The approach used by commercial banks to detect frauds in online transactions 

is generically similar. Reports and white papers of four commercially applied online payment 

fraud detection systems have shown that the common approach is the use of a Rule-base 

system combined with an Artificial Neural Network (ANN).  The Falcon Fraud Manager, the 

Proactive Risk Manager (PRM) and the SAS Fraud Management system are examples of fraud 

detection systems used in commercial Internet banking systems (FICO, 2011; ACI Worldwide, 
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2011; SAS, 2007).  These systems are extensively used around the world including in more 

than 40 countries, at 43000 sites and by half of the world’s top 20 banks.  Each of these fraud 

detection systems’ architectures involves the use of a neural network to profile user 

behaviours and a conventional rule-base to create and maintain rules that define normal and 

anomalous behaviour (FICO, 2011; ACI Worldwide, 2011; SAS, 2007).       

1.3 Limitations of Current Internet Banking Fraud Detection Methods     

 

Most online banking fraud detection systems have no immediate way of realising when a 

fraudster logs in with correct but stolen details. Many of these systems will actually accept 

the correct username and password for a registered customer even if the user at the time is 

a fraudster using stolen credentials. Although two way authentications reduce the extent of 

damage posed by this flaw, there still remains the threat of mobile phone hackings, 

interceptions and viruses through which the fraudsters can evade dual authentications 

(Weber & Darbellay, 2010; Androulidakis & Papapetros, 2008). Instead of just preventing 

unauthorised entry, Internet banking fraud detection systems have to be able to detect a 

fraud immediately within a compromised account. The systems need to have some capability 

of conclusively determining whether a given user is the legitimate account holder or an 

impersonator. 

Slow approach to Knowledge Acquisition 

Conventional rule-bases used by commercial Internet banking systems have been criticised 

for a number of performance limiting inadequacies. Their approach to Knowledge 

Acquisition (KA) has been faulted for being too slow, labour intensive and costly for business 

(Richards, 2003). Also, maintenance in RDR is integrated with KA and not an additional task 

as in conventional rule-bases. 

Brittle Rule-bases 

These rule bases have also been labelled brittle; a phenomenon when Expert Systems 

attempt to use current knowledge to cover a case beyond this knowledge (Prayote & 

Compton, 2006). Such systems do not have a way of knowing when a new case cannot be 

processed using existing knowledge. They always attempt to give an answer even if it may be 

inaccurate.  
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Slow to adapt to new frauds 

Consequently, a brittle Internet banking fraud detection system is less accurate since it 

always depends on its current knowledge even for novel cases where this knowledge is 

insufficient. It has also been consistently reported that modern fraud screening systems need 

capabilities for more accurate, automated and most importantly rapid detection of 

anomalous patterns (SAS, 2007; IBM, 2008).  Rapid detection will enable fraud teams to 

respond to threats and potential threats in real time and will help save resources expended 

whenever a fraud has occurred.     

1.4 Prudent Ripple Down Rules: a viable Solution to Internet Banking 

Fraud Detection 

 

The Ripple Down Rules (RDR) approach to KA has been shown to have notable advantages 

over conventional rule-bases. RDR methods   have been shown to have a better, faster and 

less costly rule addition and maintenance than conventional rule-bases (Kang, Compton, & 

Preston, 1995; Richards, 2003; Prayote, 2007).  

No need for knowledge engineer 

Conventional rule-bases typically require a knowledge engineer and a domain expert to 

build. Conversely, RDR knowledge bases only require a domain engineer. One of the earliest 

RDR systems, PIERS was described as user maintained and not requiring knowledge 

engineering expertise (Edwards, Compton, Malor, Srinivasan, & Lazarus, 1993). Similar RDR 

systems have since been successfully used in other applications including in web browsers, 

help desk systems, online shopping, email management systems and Network traffic 

classification (Kang, Compton, & Preston, 1995; Richards, 2003; Prayote, 2007). 

Ability to realise limits 

To address the issue of brittleness, RDR methods have an added feature called Prudence. 

Prudence allows the knowledge engine to realise when a current case is beyond the system’s 

expertise. In such situations, the prudent system would issue a warning for the case to be 

investigated by the expert, resulting in the addition of knowledge to cover the case.  In 

contrast, a brittle system would attempt to give a conclusion based on insufficient 

knowledge. The conclusion will most probably be erroneous and it would take some time for 

the system’s administrators/experts to correct the error. For Internet banking, prudent fraud 
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detection systems mean accurate and rapid detection of new fraud patterns, saving time, 

human resources and money for both the financial institutions and their customers. Some of 

the theoretically and domain successful prudent RDR methods include Rated Multiple 

Classification Ripple Down Rules (RM) and Ripple Down Models (RDM) (Dazeley, 2007; 

Prayote, 2007). RM uses patterns in the MCRDR engine’s inferencing paths to train an ANN 

to contribute to the system’s understanding of a domain. RDM applies an outlier detection 

method to homogenized profiles from an RDR engine.  

Impressive classification accuracy 

Both RM and RDM have shown impressive classification and prediction ability in a number of 

public and proprietary datasets and have been commended for their performance (Dazeley, 

Park, & Kang, 2011; Prayote & Compton, 2006; Dazeley & Kang, 2008).  The two systems’ 

fundamental difference is that RM is structural and uses the inferencing engine’s structure to 

deduce additional context about the domain. RDM is attribute-based and exploits the 

accuracy of outlier detection methods in homogenous profiles.  To date, there have not been 

focused and direct comparisons of the two methods and to establish which domain each 

method is better in.    

1.5 Project Plan and Contributions 

 

This research project intends to apply the successful methods of RDR prudence to Internet 

banking fraud detection. Theoretically, RDR prudence seems to be precisely what fraud 

detection in Internet banking systems requires given the need to identify new fraud patterns 

instantly in this domain. This project will therefore investigate the performance (in terms of 

classification accuracy and prudence accuracy) of RDR prudence in online banking. 

Specifically, this will be achieved through the following stages: 

1. Extend Single Classification RDM to Multiple Classifications RDM. The current RDM 

method (Prayote, 2007) uses a single class RDR engine. This project will redevelop the 

method to handle multiple classifications domains. Having a multiple classifications 

RDM system would enable comparisons between RDM and RM. 

2. Evaluate and compare RM and RDM. There are currently no known direct comparisons 

of RM and RDM. This research will conduct focused comparisons of the two methods 

and give informed analysis of the particular strengths and weaknesses of each of the 
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methods. The evaluations will be done using simulated experts which will also be 

developed in this project.  

3. Develop an integrated prudence method by combining RM and RDM. The combination 

of a structural and an attribute-based prudence method will provide some insight on 

whether the integrated method has better performance than the individual methods.  

4. Evaluate and apply the best prudence method to Internet banking fraud detection. The 

practical and commercial contribution of this project will be in using a chosen prudence 

method on an Internet banking transaction dataset. The chosen method will be 

whichever has recorded best results from the evaluations mentioned in the second and 

third points.      

1.6 Thesis overview 

 

Chapter 2: Fraud Detection 

Chapter 2 sets the scope of the research and provides a summarised review of the literature 

starting with Internet fraud, its effects and latest statistics and the industry most affected by 

this crime (financial sector). The chapter then analyses common trends in detecting frauds 

especially in Internet banking. Outlier Detection is then introduced as the fundamental 

aspect of all security mechanisms used to detect frauds in computer systems. Two 

applications of Outlier Detection namely Intrusion Detection and Fraud Detection are 

surveyed. The two are the basis of all commercial Fraud Detection and Intrusion Detection 

solutions. A profiling of three commercial Internet payment fraud detection systems reveals 

a common generic architecture.  The majority of online banking fraud detection systems use 

a Rule-Base and an ANN. The profiled systems represent eight of the world’s top 20 banks, 

are used in over 40 countries and in 430000 Internet banking systems. The chapter concludes 

with a cautionary note from an industry report warning that modern fraud detection systems 

will need to adopt intelligent programming techniques in order to improve their Knowledge-

Based Systems (KBS) and algorithms for rapid detection of novel patterns. 

Chapter 3: Knowledge-based Systems and Ripple Down Rules 

Given that Rule-based systems are the main components of most fraud/intrusion detection 

systems, this chapter will give an overview of Knowledge-based or Expert Systems.  The 

chapter also explains some of the main limitations of KBS including lack of causal knowledge, 
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slow knowledge acquisition process and lengthy and costly maintenance. RDR is then 

introduced as using a more efficient knowledge acquisition process, having an integrated 

rule addition and maintenance approach and essentially providing an alternative to the 

conventional KBS’ limitations. A structured discussion of RDR is followed by the introduction 

of Prudence as a solution to KBS brittleness providing the ability to notify an expert or 

system administrator each time a new case or potentially wrong conclusion was produced. 

The chapter concludes with a review of two early attempts at prudence.     

Chapter 4: Prudent RDR Methods 

Building on the introduction and definition of Prudence in the previous chapter, chapter 4 

analyses two of the newest and most successful prudence methods; RM and RDM. The 

chapter describes the structure, components and configurations of each method. RDM is 

originally a single classification method and this project extends the method to a multiple 

classifications version (MC-RDM). An explanation and the reasons for this extension are 

detailed in this chapter.  The last part of chapter 4 introduces the Integrated Prudence 

Analysis (IPA) as a methodical combination of RM and RDM proposed by this reseacrh. IPA is 

a novel, experimental prudence method to improve RM and RDM’s individual performances 

by combining an attribute based prudence method (MC-RDM) and a structural based 

prudence method (RM). Combining the two approaches has not been done before and is 

anticipated to take advantage of both the supplementary rule path context extraction of RM 

and partition based outlier detection of MC-RDM. As with RM and RDM in earlier sections, a 

detailed description of IPA’s structure, components and configurations is given.  

Chapter 5: Methodology 

Chapter 5 explores different metrics and methods used to evaluate knowledge-based 

systems. The chapter reviews four KBS evaluation approaches focusing on different areas of 

the KBS.  One method measures the accuracy of a KBS, another detects internal 

inconsistencies in the Knowledge Base and verifies if the system’s actual behaviour is as 

specified in the design. Yet another method analyses differences between the KBS’ false 

alarms and detection rates and the last method evaluates the Data Mining algorithms used 

in the KBS. Each of these methods is ultimately used to decide the degree of usefulness of a 

KBS by those who apply them. The chapter also presents the evaluation approach used in 

RDR based knowledge-based systems. The chapter describes the process of building a 

simulated expert and using the expert to evaluate a KBS under construction. A description of 
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the datasets and the metrics used specifically in this project is also given. The metrics, simple 

accuracy or classifier accuracy (   ), Sensitivity (Se), Specificity (Sp) and prudence accuracy 

or Balanced Accuracy (BA) are used to determine a prudent system’s precision in predicting 

correct domain cases and effectiveness of the system’s warning mechanism.     

Chapter 6: Results on Public Datasets 

This chapter presents results and comparisons between RM and RDM on categorical and 

numerical public datasets based on the metrics discussed in chapter 5. The chapter analyses 

RM and RDM’s classifier and prudence accuracy on the numerical and categorical datasets. 

Since the comparisons are meant to be a basis for selecting the better of the two methods, 

the chapter discusses a criterion for such a decision. The chapter also presents results from 

three Integrated Prudence Analysis (IPA) versions and evaluates the best IPA configuration 

against the two methods it was built from (RM and IPA).  These evaluations between IPA, RM 

and RDM will determine if indeed a combined system has a better classifier and prudence 

accuracy than either of the constituent systems.    

Chapter 7: IPA Results on Internet Banking Data 

Results from IPA’s evaluations on Internet banking transactions are presented in this 

chapter. A description of the depersonalised, online banking transactions are given including 

descriptions of the data’s attributes. The chapter also presents statistics from a commercial 

online banking fraud detection system and for use as a benchmark in evaluating the IPA 

system. Chapter 7 concludes with a discussion on some of the deterrents to effective 

research-based fraud detection solutions and some generic recommendations to improving 

Internet banking fraud detection including a possible adaptation of the Integrated Prudence 

Analysis fraud detection system. 

Chapter 8: Conclusion  

Chapter 8 is a summary of the whole project and starts with a quantitative overview of the 

latest losses from Internet fraud and what industry is affected the most. An outline of the 

current approaches to curbing Internet banking fraud is also given, including the limitations 

of these approaches given the dynamic and sophisticated nature of Internet banking fraud 

today.  The RDR technology is listed as a possible solution to these limitations, although 

hitherto unused in Internet banking. Towards the end, the chapter specifies a list of project 
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contributions and concludes with a note on the results, lessons learnt and future work in this 

domain.   
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2. Literature Review: Fraud Detection 

2.1 Introduction 

 

This Chapter introduces the foundational elements of this research. The chapter begins with 

an introductory overview of Internet fraud, elements of Internet fraud, statistical 

comparisons and trends of some of the persistent threats over the last five years. The 

financial sector, especially online banking is revealed as one of the industries most affected 

by Internet scams. To better understand Internet banking, a brief analysis of online banking 

is given, including main components of a generic online banking system and the general 

approach to fraud detection and security in these systems. Outlier detection is then 

introduced as the fundamental aspect of all security mechanisms used to detect fraud in 

computer systems. Two applications of outlier detection namely; intrusion detection and 

fraud detection are surveyed. The two are the basis of the majority of commercial fraud 

detection and intrusion detection software. The chapter concludes with a brief, informative 

overview of three commercial fraud detection systems and some insight from other 

researchers on merging fraud detection and intrusion detection ideas into a single, robust 

fraud and intrusion screening solution.  Each concept in this chapter has been carefully 

explained to a level of detail appropriate for understanding the rest of the material covered 

in latter chapters.  This was done to set a relevant depth of comprehension of all concepts 

and ideas discussed henceforth in the dissertation. 

2.2 Internet Fraud 

 

Internet fraud, online fraud and cybercrime are broad terms used to group various illegal 

activities committed through the Internet. A 2011 report commissioned by the British 

Cabinet Office defines cybercrime as illegal activities exploiting the Internet to illicitly access 

or attack information and services (Detica, 2011).  The Australian Institute of Criminology 

(AIC) describes Internet fraud as any dishonest activity using the Internet as a target or 

means of obtaining some financial reward (Smith, 2001).  Finally, online fraud is described by 

the Australian Federal Police as any type of fraud scheme using the Internet to conduct 

fraudulent transactions or transmit the proceeds of fraud (Australian Federal Police, 2012).  

The terms Internet fraud, online fraud and cybercrime are therefore often used 

interchangeably to describe various crimes, frauds and scams committed online.  The list of 
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online fraud examples is ever growing and comprises phishing, hacking, malware 

dispensation, denial of service attacks, spoofing, identity theft, spamming and many more.  

One or more of these scams are used to achieve different fraudulent motives including 

financial gain.  

The AFP website defines Internet banking fraud as theft committed using online technology 

to illegally remove money from a bank account, or transfer it to a different bank account 

(Australian Federal Police, 2012). One of the most prominent examples of Internet fraud is 

Phishing (RSA, 2010). Phishing involves the use of technology and deceit to illicitly acquire an 

unsuspecting victim’s credentials (APWG, 2011). The sought after credentials include 

personal details, online banking usernames and passwords and other confidential credentials 

and details.  With these credentials, fraudsters can easily gain access to their victim’s email, 

social security benefits and bank account.   

Phishing usually targets Internet users’ online banking details and was responsible for losses 

of up to US$3.2 billion in the US alone in 2007 (McCall, 2012). In 2008, phishing was said to 

have cost banks more than US$3 billion globally (McCombie, 2008). A year later in 2009, the 

Australian Bureau of Statistics estimated that approximately 3.5% of the nation’s population 

aged 15 years and over had been victims of some form of identity fraud or phishing (ABS, 

2010). Although not all identity theft attempts and phishing campaigns are successful, the 

sheer volumes of the attempts alone indicate how relentless the fraudsters have become. 

Despite vigilant campaigns on safe Internet use by banks and other groups, a 2010 report by 

RSA, a renowned security company cautioned that fraudsters were equally at work, 

improving the technology and sophistication of their attacks (RSA, 2010).  The report further 

forecasted that beyond 2010, there would be a rise in the effectiveness of phishing attacks 

resulting from new techniques.     

The Anti-Phishing Working Group (APWG) received 315517 unique phishing emails reported 

by consumers in 2010 (APWG, 2010). In the same year the APWG detected up to 365628 

unique phishing web sites. The most targeted industry in this period was the financial sector, 

receiving an average of 41.23% of all phishing attacks. The rest of the phishing targets 

included the retail industry, online classifieds, social networking, online auctions and the 

gaming industry (APWG, 2010). The following year (2011) saw a small decline in the number 

of phishing emails with 284445 reported to APWG. However, the number of phishing sites 

rose to 427314, an increase of 17% from the previous year. The financial sector remained the 

phishing campaign’s most targeted industry sector, receiving on average, 44.75% of all 
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phishing attacks (APWG, 2011) . The increasing number of phishing sites and the growing 

proportion of attacks on the financial sector affirm the primary motive of most phishing 

campaigns, financial gain.  

A number of conclusions could be drawn from the given results but the certain fact however 

is that phishing does not seem to be slowing down. In fact a variety of new phishing 

techniques are being invented and unleashed on unsuspecting and ignorant web users every 

day. The RSA fraud reports revealed that more diverse phishing attacks were deployed in 

2011 (RSA, 2012), and that in the first half of 2012, the number of phishing attacks had 

increased by 19% (RSA, 2012). The report also adds that throughout the year 2011, financial 

institutions were the target of at least half of all phishing attacks.             

2.3 Online Banking, a Victim of Internet Fraud 

 

Online banking or Internet banking includes all traditional banking transactions conducted 

over the Internet through the user’s banking institution’s website. Through online banking, 

banks have been able to provide banking facilities to their clients over the Internet. However, 

this capability has not been easy nor cheap to maintain (Datamonitor, 2009). It is therefore 

unsurprising that the first reported phishing attack in Australia was against a bank in March 

2003 (McCombie, 2008). Earlier in 2001, a group of bank executives and IT managers had 

advised a quantitative survey that one of the biggest challenges to online banking would be 

security (Aladwani, 2001). A typical online banking system will have the following subsystems 

with different access levels (RBI, 2001):    

 Information only subsystem 

 Electronic Information Transfer subsystems 

 Fully Transactional subsystems  

Information only subsystems provide non-sensitive information such as interest rates, 

branch locations, membership application forms and other general information. No 

identification of users is required with Information only subsystems. The Electronic 

Information Transfer subsystems provide read only, customer specific information including 

account balances, transaction records and account statements. Customers need to be 

identified and authenticated to access this part of the online banking system. Fully 

Transactional subsystems interact with the customer to update customer accounts such as 
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when funds are transferred to a different account or when a payment is made. The Fully 

Transactional subsystem requires customer identification details such as account number, 

login ID and password to access the right account and for authenticating a customer (RBI, 

2001).   

The Electronic Information Transfer and Fully Transactional subsystems form an important 

part of Online banking systems that are also commonly known as Electronic Payment 

Systems (EPS).  EPS enable the electronic transfer of monetary value between a payer and 

payee (Sadeghi & Schneider, 2003). EPS have also been described as key tools for electronic 

commerce over the internet (Putland & Hill, 1997). Commerce, in this context, involves the 

exchange of money between a payer and a payee through a financial institution (Asokan, 

Janson, Steiner, & Waidner, 1996). A number of EPS are in use commercially including 

PayPal, BPay, EFTPOS, SecurePay and many more. These systems are used by banks and 

other financial institutions to effect transactions between trading parties.   

Different research papers have provided a range of classifications for EPS. Some of these 

categorisations include pre-paid and pay-later classification, the digital currency and credit-

debit classification and the cash-like and debit order categorisation (Asokan, Janson, Steiner, 

& Waidner, 1996; Sadeghi & Schneider, 2003; Havinga, Gerard, & Smit, 1996; Abrazhevich, 

2001). Although the underlying details are almost the same in these classifications, the 

naming conventions are not uniform. This is affirmed by (Sadeghi & Schneider, 2003) that 

the various classification schemes are based on a number of aspects including: whether the 

payments are processed online or offline; whether a payment is pre-paid or pay-later and 

whether the payment system involves the use of some hardware token or not.  This research 

will not delve into detail about specific EPS or what differentiates one from the other.   

A principle that is almost unanimous in the publications reviewed in the previous section is 

the security requirements for EPS.  Some of the most cited requirements include usability, 

confidentiality and availability (Sadeghi & Schneider, 2003; Asokan, Janson, Steiner, & 

Waidner, 1996; Putland & Hill, 1997). Usability is meant to ensure that paying or accepting 

payment through an electronic payment system is not a complex task for either the payer or 

the payee. Confidentiality requires that the details of the transaction should be exclusively 

restricted to the parties involved in the transaction. Availability ensures that the system (EPS) 

is available whenever required by the users.  
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The items discussed earlier are only a subset of the longer list of security requirements for 

EPS.  (Asokan, Janson, Steiner, & Waidner, 1996; Putland & Hill, 1997) advise that not all EPS 

satisfy all these requirements and that it is not always essential to do so. It is also warned 

that the requirements may not be able to detect the legitimated user from a thief using 

legitimated login details (Putland & Hill, 1997). A user with a stolen username and password 

will have access to a particular account and can conduct a transaction from the compromised 

account.  Despite the security features of electronic payment systems, a smarter, consistent 

and invulnerable layer of security is still essential to allow exclusive access to legitimate users 

and to detect illegitimate users in case of a breach. 

2.4 Detecting Fraud with Outlier Detection  

 

A variety of techniques are employed to identify fraudulent transactions and sense new 

trends in credit card systems, marketing systems, telecommunications systems and many  

other systems. Most of these techniques apply a concept usually referred to as Outlier 

Detection (OD).  One of the earliest formal definitions of an outlier is that it is an observation 

that differs so much from other observations that it seems to have been generated by a 

different mechanism (Hawkins, 1980). Other definitions of outlier add that an outlier is a 

value that is very far from the middle of the distribution (Mendenhall, Reinmuth, & Beaver, 

1993), or a value whose occurrence frequency is very low and further located from the rest 

of the values (Pyle, 1999), or simply an inconsistent observation relative to the bulk of other 

observations (Barnett & Lewis, 1995).  

Aggarwal & Yu (2001) note that many OD definitions and algorithms overly depend on 

proximity between values to detect outliers, and that this is not sustainable for high 

dimensional data as it is sparse. The sparseness of the data therefore means some cases will 

be further away from others but they are not anomalous in any way.  (Aggarwal & Yu, 2001) 

adds that increasing dimensionality of data makes it increasingly difficult to detect outliers. 

Consequently, finding outliers in such data using the proximity oriented methods becomes 

complex.  To circumvent this issue in high dimensional data, (Aggarwal & Yu, 2001)  

recommends transforming the data into lower dimensional projections. A lower dimensional 

projection in this context is one where the density of the data is sufficiently lower than the 

average density. Data density is the proportion of elements (cases) to their covering space in 

a defined cluster (Breunig, Kriegel, Ng, & Sander, 2000; Kriegel, 2012).  Outlier Detection for 

this scenario would then involve observing density distributions of the data projections 
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where an outlier would be a point in the lower dimensional projection existing in a local 

region of very low density (Aggarwal & Yu, 2001).  According to (Aggarwal & Yu, 2001), this 

perception of OD is relevant and viable as most commercial applications of OD involve high 

dimensional data. It is for this reason that (Ben-Gal, 2005) advises that although some 

definitions of outlier are generic enough to be relevant in many applications, the exact 

definition depends on the structure of the data and the assumptions made by the detection 

methods. 

Outliers occur for a range of reasons; these include human error, system faults, data 

entry/conversion error, deliberate fraudulent behaviour, instrument errors and in some 

cases, naturally occurring deviations (Hodge & Austin, 2004; Last & Kandel, 2001).  The 

occurrence of outliers in data may be accidental or a deliberate attempt to contaminate the 

data or defraud the system. In some cases, outliers are not accidents or fraud attempts but 

correct information, however strange or exceptional (Last & Kandel, 2001). The importance 

of identifying outliers differs for different domains.  In cases where outliers are accidental 

and caused by machine or human error, the outliers have to be isolated to avoid 

contaminating the data and misspecification of the data model. In some cases, the outliers 

represent fraudulent activity and will need to be identified at the earliest opportunity to 

enable preventative measures.  In cases where the outlier is a correct representation of the 

information, it may be important to identify the outlier to inform system custodians of a new 

trend, new pattern or new limit. Other reasons for identifying and isolating outliers include 

avoiding biased estimations and improving the data quality (Ben-Gal, 2005; Last & Kandel, 

2001).  

There are two main approaches to OD: Univariate methods and multivariate methods (Ben-

Gal, 2005; Last & Kandel, 2001). Univariate outlier detection methods evaluate each variable 

in isolation and do not consider the correlations between variables. Multivariate OD 

methods take into account the interactions and dependencies between variables and use 

these associations to identify outlying observations (Last & Kandel, 2001).   

A separate taxonomy of OD techniques involves categorisation into parametric and non-

parametric methods (Ben-Gal, 2005). Parametric methods often either assume that the data 

distribution is known or use statistical parameters to build a model. Any observations that 

deviate from this model are flagged as outliers (Ben-Gal, 2005; Hodge & Austin, 2004). 

Parametric methods are suitable for data with a known distribution but are not applicable 

for high dimensional data sets whose distribution may be complex to compute. Non-
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parametric methods are model free and do not depend on a pre-determined data 

distribution.  

The two taxonomies briefly introduced above are not the only classifications of OD methods. 

Other categorizations are given by Barnett & Lewis (1995) and Prayote (2007).  

There are numerous OD techniques applied in different domains which will be explored later. 

A seemingly popular view in OD research is that no single OD method or technique can be 

applicable for all situations (Hodge & Austin, 2004; Aggarwal & Yu, 2001; Ben-Gal, 2005). 

Some of the main considerations for selecting a particular OD technique recommended by 

(Hodge & Austin, 2004) include selecting a technique that suits the data at hand (data 

attribute types for instance), distribution of the data and whether the data is labelled or not. 

The application domain also matters in terms of what kinds of outliers are expected and how 

they are dealt with once identified. 

 OD techniques are applied in a range of domains such as fault diagnosis in pipelines and 

space instruments; credit card fraud detection; computer network intrusion detection; 

marketing forecasts and loan applications fraud detection (Aggarwal & Yu, 2001; Ben-Gal, 

2005; Hodge & Austin, 2004). The next section explores the applications of outlier detection 

in intrusion detection and fraud detection.    

2.5 Applying Outlier Detection in Intrusion Detection 

 

One of the notable applications of OD is in Intrusion Detection (ID) (Ben-Gal, 2005). ID is the 

process of monitoring attempted access, file modification or entry to a network or computer 

system (Patel, Qassim, & Wills, 2010; Jones & Sielken, 2000). The advances in technology and 

increasing popularity of network dependent devices and systems have caused an emergence 

of a range of exploitations on networks and computers systems. The dependence of business 

systems, health systems, defence, banking and all other systems on networks necessitates 

implementation of thorough, precise network monitoring systems to guard against 

detrimental exploitations. Detecting these exploitations or intrusions involves monitoring all 

unauthorised activity and detecting the use of illegally obtained log in credentials in a 

computer system or network. Intrusion Detection systems are the applications used to 

automate the ID process (Patel, Qassim, & Wills, 2010).   
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ID systems are usually grouped into two main categories: Network based and Host based 

systems (Patel, Qassim, & Wills, 2010; Kabiri & Ghorbani, 2005). Host based ID systems 

exclusively monitor the host (or server) for intrusions (Kabiri & Ghorbani, 2005). These 

systems will not detect nor attempt to observe intrusions beyond the host computer. Host 

based ID systems monitor such activities as local data requests, network connection 

attempts, login activity and read/write attempts and usually reside on the host computer 

(Kazienko & Dorosz, 2004; Patel, Qassim, & Wills, 2010). Although their dedication to a single 

host could be beneficial, (Patel, Qassim, & Wills, 2010) advises that Host based ID systems’ 

tight integration to the host’s operating system could prove problematic after operating 

system upgrades. The Network based ID systems are distributed along the network and 

monitor intrusions to all systems connected to the network (Kabiri & Ghorbani, 2005; Patel, 

Qassim, & Wills, 2010).  Network based ID systems may be employed to monitor network 

firewalls, routers and client machines (Kabiri & Ghorbani, 2005; Kazienko & Dorosz, 2004).  

A mixture of Host based and network based ID systems can also be applied on the same 

network as suggested by Kazienko & Dorosz (2004).  In this approach, a blend of Host based 

and Network based ID systems may be considered to form a separate class of ID systems 

called Network Node Intrusion Detection Systems (NNIDS) or Hybrid per host ID systems. The 

arrangement is such that a Network based ID system monitors the whole network and each 

NNID agent is deployed on every host to process only the network traffic directed to that 

host. The choice of which ID approach to implement will therefore be dictated by the 

security needs, the size of network, the type of network and how the ID system is deployed.  

ID systems usually apply one of two detection methods: Signature Detection or Anomaly 

Detection (AD) (Patel, Qassim, & Wills, 2010; Kabiri & Ghorbani, 2005). AD defines a model of 

normal (or acceptable) behaviour and detects as abnormal anything that does not conform 

to this model. AD is designed to detect patterns that deviate from what has been defined as 

normal behaviour (Patel, Qassim, & Wills, 2010). An ID system that uses an AD method 

would first define the normal, acceptable region or range. Any observations classified 

beyond this region will be treated as anomalous. Defining a distinctive region is not a trivial 

task in real applications. Some of the main difficulties according to Gonzalez & Dasgupta, 

(2003) include the imprecision of the boundary between normal and anomalous behaviour.  

Drawing a definite boundary that separates the two is therefore harder. Furthermore, in 

many domains, behaviour is dynamic, the normal and abnormal behaviours are regularly 

changing; a current normal may not necessarily be a normal forever. This means that regular 
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redefinitions of either behaviour are required (Gonzalez & Dasgupta, 2003). The other AD 

complicating factor is that the notion and degree of anomaly differs for different domains 

and may not be uniform for a single domain. For example, in online banking, a single 

transaction of $10000 may be anomalous in one account but normal in another. For these 

reasons, most AD techniques are heavily influenced by the application domain, availability of 

training and testing data and types of anomalies to be detected (Gonzalez & Dasgupta, 

2003). Another cited problem with AD methods is their susceptibility to high False Positive 

rates because of their innate inability to define anomalous behaviour (Patel, Qassim, & Wills, 

2010). False Positives in this context include all normal cases (behaviour) incorrectly 

classified as anomalous or abnormal.     

An example of an anomaly based ID system is FlowMatrix (AKMA, 2011). FlowMatrix is a 

network AD system and monitors the records from routers and other devices to identify 

anomalous security incidents. The system processes and learns records from these devices 

for a period of 14 days and builds a behavioural model of the network. This is the normal 

region definition phase in an AD system. Incoming records are then compared to the defined 

(normal) models and anomalous events that deviate from these models are identified. 

FlowMatrix performs a continuous, automatic analysis of the network and detected 

anomalies are classified according to the type of breach (Denial of Service, malicious scans, 

Alpha Flows, and others) and logged to the user. 

The alternative to AD is Signature Detection, also known as Misuse Detection (MD) (Patel, 

Qassim, & Wills, 2010).  MD involves categorising known anomalies and exploitation patterns 

and comparing observed behaviour to the pre-defined patterns. In MD, attacks are 

represented in signatures such that known exploitations will always be detected (Patel, 

Qassim, & Wills, 2010). Exploitations in this context could be a bit string (e.g. virus bit string) 

or may describe a set or sequence of actions. The detection system monitors incoming 

observations and carefully compares them against these known patterns such that even 

variations of the known patterns should be detected (Patel, Qassim, & Wills, 2010). The main 

disadvantage with MD is that it will only detect the defined signatures or those that fit the 

generalised function(s). Effectively, unknown attacks cannot be detected if a function has not 

been defined for them. As new attacks are discovered, (Patel, Qassim, & Wills, 2010) remarks 

that signature databases should be constantly updated and the ID system should be able to 

keep up with the growing collection of signatures and also be able to conduct matches in a 

timely manner. 
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SNORT is a signature based ID system and highly regarded in many security forums. It is an 

open source, lightweight ID system and is reportedly the most widely used ID technology 

worldwide (SNORT, 2011). The system performs traffic analysis and packet logging on 

networks and detects worms, vulnerability exploit attempts, port scans, and many other 

suspicious incidents on the network (SECTOOLS, 2011). SNORT has three main components: 

the packet decoder, the detection engine and the logging and alerting subsystem. The packet 

decoder sets pointers into the packet for access and analysis by the detection. The detection 

engine maintains detection rules and uses them to decide whether a packet is suspicious or 

not. The first rule that matches a decoded packet triggers the specified action. The logging 

and alerting system logs decoded packet to a directory and sends alerts to a text file or as 

popup messages (Ditcheva & Fowler, 2005).   

MD and AD have their strengths and weaknesses and selecting one of them depends on the 

domain and security needs of the organisation. The main thing to note according to (Patel, 

Qassim, & Wills, 2010) is that AD tries to detect the complement of good behaviour, whereas 

MD tries to detect known bad behaviour. In many cases, anomalous behaviour is often much 

smaller than normal behaviour, so it may be easier to list all known attacks and use a MD 

approach. However, if there is a clear, steady distinction between normal and anomalous 

regions, then it may be wiser to define the normal region and implement an AD approach. To 

get the best of both MD and AD techniques, the two may be used together in a single system 

or in a complementary manner (Jones & Sielken, 2000).   

The Haystack is one of the early ID systems that combines both AD and MD approaches. 

Haystack utilises users’ log profiles to detect intrusions. The system employs both AD and 

MD and detects a number of intrusions including Denial of Service attacks, attempted break-

ins and information leakage (Smaha, 1988).  The MD component part of the system has a set 

of predefined suspicious behaviour patterns. The system also has a suspicion quotient used 

to determine the level of abnormality of a detected attack. If a pattern matches the 

predefined “bad” behaviour patterns and has a suspicion quotient higher than the defined 

threshold, then it is detected as an anomaly. The AD part of the system monitors 24 features 

of a user’s session and uses past statistics to detect significant deviations from the recorded 

statistics (Smaha, 1988).  

Intrusion Detection undoubtedly has immense value and importance in the security of 

networks and computer systems. As the networks grow and the technologies that support 

them advance, so do the exploits and their sophistication. A number of challenges facing ID 
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systems have been given.  A technical report published in 2000 advised that newer ID 

systems had to be able to manage and process large volumes of data in acceptable times 

(Jones & Sielken, 2000).  The report further advised that new ID systems should be able to 

detect as much anomalous behaviour as possible and have real time detection capabilities 

(Jones & Sielken, 2000).  Five years later in 2005, a journal article by Kabiri & Ghorbani (2005) 

added that ID systems were not fully reliable yet and that the ability to detect novel patterns 

had to be immediately addressed. A more recent journal article by(Patel, Qassim, & Wills 

(2010) maintains that ID systems need to adapt intelligent programming techniques and 

knowledge based systems to improve detection rates, handle significant amounts of data 

and boost computational power to be able to detect intrusions in real time. The article 

further recommends that the human effort needed to build and run these systems should 

also be reduced. 

2.6 Outlier Detection in Fraud Detection 

 

Another significant application of Outlier Detection is in Fraud Detection (FD) (Ben-Gal, 

2005). A fraud, in a computer systems context includes any deliberate abuse or misuse of a 

system (Kou Y. , Lu, Sirwongwattana, & Huang, 2004; Phua, Lee, Smith, & Gayler, 2005).  

Fraud Detection is the monitoring of users’ interaction with the system to estimate and 

detect undesirable behaviour (Kou Y. , Lu, Sirwongwattana, & Huang, 2004) or in simpler 

terms, the automation of a fraud screening process (Phua, Lee, Smith, & Gayler, 2005).  FD 

systems are used in different domains to detect different frauds including credit card fraud, 

online banking fraud, telecommunications fraud and online insurance fraud (Bolton & Hand, 

2002; Kou Y. , Lu, Sirwongwattana, & Huang, 2004).  

Fraud Detection systems is a generic term given to systems used to detect fraudulent 

behaviour. A number of approaches and technologies for FD systems have been suggested 

and reported in different research and technical publications. Different taxonomies for these 

technologies have also been suggested by researchers in this area. For example, Phua, Lee, 

Smith, & Gayler (2005) categorises approaches to FD in terms of supervised methods, semi-

supervised methods, unsupervised methods and hybrid methods. The organization 

employed by Kou, Lu, Sirwongwattana, & Huang (2004) involves first categorising the 

different frauds namely credit card fraud, computer systems intrusion and 

telecommunications fraud and then detailing the techniques used to detect fraud in each of 

the categories. The techniques surveyed under each category include Neural Networks, 
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Expert Systems and Data mining (Kou Y. , Lu, Sirwongwattana, & Huang, 2004).  In Bolton & 

Hand (2002)‘s review paper, a range of statistical based FD techniques are analysed under 

five categories of fraud.  These categories are money laundering, computer intrusion, 

medical and scientific fraud, telecommunications fraud, computer intrusion and credit card 

fraud (Bolton & Hand, 2002).  The large variety of available FD systems and techniques 

enables different researchers to choose a taxonomy and categorisation of their choice when 

reviewing one or a group of these methodologies. Some of the commercial FD systems used 

in banking systems include the Falcon Fraud Manager, the ACI Proactive Risk Manager (PRM) 

and the SAS Fraud Manager. A brief review of each of these systems follows. It must be 

noted that the listed systems are proprietary and in commercial use. Consequently, the 

amount of public detailed and technical information about these systems is therefore 

limited.  

The Falcon Fraud Manager is one of the most widely used and most accurate fraud detection 

systems by banks worldwide according to a report released by its developers (FICO, 2011). 

Falcon is mainly used for payment card fraud detection and has real time detection 

capabilities (FICO, 2011). Falcon uses an anomaly detection technique by profiling 

cardholders’ transaction behaviours to spot uncharacteristic behaviour. A diagram of the 

Falcon’s architecture shows that the system has a Rule Base and a Neural Network as some 

of its main components (FICO, 2011). Figure 2-1 shows an abstracted version of the Falcon 

system showing the interaction between the neural network and the Rule-base.  
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Figure 2-1. Some of the Falcon s main components (FICO, 2011) 

Like Falcon, the PRM is reported to be commercially successful and is used in over 40 

countries including eight of the top 20 banks in the world (ACI Worldwide, 2011).  PRM is a 

debit card, internet banking and credit card FD solution and is also reported to have real time 

transaction monitoring, helping to prevent loss of funds (ACI Worldwide, 2011). PRM 

employs both anomaly detection and signature detection methods; each transaction is 

compared with the custom fraud model and also with recorded behaviour patterns of 

account holders. In terms of architecture, neither of the two PRM white papers provide 

detail on the specific structure of the system, except that it combines an expert Rule Base 

with a Neural network (ACI Worldwide, 2011; IBM, 2008).  

Reportedly used at 43000 sites, the SAS Fraud Management system is another commercial 

FD solution (SAS, 2007). A debit and credit card FD solution, the SAS Fraud management 

system also boasts real time detection capabilities. The SAS system uses an anomaly 

detection method. Users’ transaction patterns are profiled into unique ‘signatures’ and 

unexpected deviations from these signatures are reported to the system administrator (SAS, 

2007). The system’s architecture includes a Rule Base and an ensemble of Self Organising 

Neural Networks (SONNA) (SAS, 2007).  

The consistent use of Rule Bases and Neural Networks in all of these FD systems is 

unsurprising. One of the earliest FD systems used at the Mellon Bank in New York used a 

Neural Network (Ghosh & Reilly, 1994). Cardwatch, another of the early FD systems also 
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used a Neural Network to process current transaction patterns and detect possible frauds 

(Aleskerov, Freisleben, & Rao, 1997). A steady advocacy and report of widespread use of 

Rule Bases and Neural networks is also given by (Bolton & Hand, 2002; Kou Y. , Lu, 

Sirongwatana, & Huang, 2004; Phua, Lee, Smith, & Gayler, 2005; Weatherford, 2002). The 

next Chapter will take a closer look at Rule Bases and Neural Networks and analyse their 

strengths and weaknesses and when it is ideal to use each.    

Other approaches suggested for use in Internet banking fraud detection and reported in 

academic forums include the use of a Hidden Markov Model (HMM), a hybrid model 

comprising One Class Classification (OCC) and a Rule-Base and ContrastMiner, another hybrid 

system consisting of neural networks, a contrast pattern mining module and a decision forest 

(wei, Li, & Cao, 2012; Mhamane & Lobo, 2012; Krivko, 2010). Although the publication on 

using HMM cites the success of a similar approach in a separate study, the publication 

provides no results and is more of a proposal and justification for using HMM (Mhamane & 

Lobo, 2012). Krivko (2010)’s hybrid approach is meant to bridge the individual limitations of 

supervised and unsupervised methods. The approach has two fraud detections levels; the 

OCC component sits on the first level and monitors changes in user behaviour and assigns a 

score based on the level of deviation to normal behaviour.   In the second level is the rule-

base filter which processes cases that have been passed from the first level. Cases that 

violate any of the rules are marked as suspicious. Wei et al (2012)’s approach also features a 

hybrid system including a contrast pattern miner, a neural network and a decision forest. 

Typical of hybrid systems, the system’s strength lies in leveraging a host of data mining 

models and is reportedly impressive in the skewed Internet banking data (Wei, Li, & Cao, 

2012). The two hybrid systems Krivko (2010) and ContrastMiner were able to detect around 

57% and 66% respectively of all frauds.  

Traditionally, Intrusion Detection and Fraud Detection have been separate fields, addressing 

separate security needs. Most ID research has originally focused on preventing illicit use at 

network level and Operating System level (Patel, Qassim, & Wills, 2010; Kabiri & Ghorbani, 

2005; Jones & Sielken, 2000). Conversely, FD research has also focused on detecting frauds 

at an application level (Bolton & Hand, 2002), (Kou, Lu, Sirwongwattana, & Huang, 2004). For 

example, some of the particular FD applications reviewed earlier sought to detect fraudulent 

behaviour in credit card systems, telecommunications systems and other specific 

applications (Kou, Lu, Sirwongwattana, & Huang, 2004; Phua, Lee, Smith, & Gayler, 2005). It 

is therefore fair to posit that there has not been much crossover between these two fields 
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although they rely on and apply the same principles. This is a view also held by (Kvarnstrom, 

Lundin, & Jonsson, 2000), who also suggest that merging FD and ID techniques may be a 

viable solution to protecting both networks and applications.  

Other perspectives on Intrusion Detection and Fraud Detection are that most forms of 

intrusions are actually instances of fraud (Fawcett & Provost, 1997). In addition, Fawcett & 

Provost (1997) add their proposed FD framework can also be justifiably applied to ID. The 

Java Agents for Meta-Learning (JAM) project is a valuable substantiation of how FD 

techniques can be used and still be as efficient in ID applications (Stolfo S. , Fan, Lee, 

Prodromidi, & Chan, 2000). A possible hindrance to the escalation of FD-ID combinatory 

systems such as JAM is that the commercial market has established brands in each of these 

two fields so crossing into unfamiliar territory may not be justifiable in business terms. 

However, it is hoped that research will continue to inform on the methods, strategies and 

benefits of incorporating ID in FD systems or vice versa.                   

A host of varying mechanisms have been suggested to prevent fraud in online banking.  One 

of the pivotal aspects of security in online banking according to Nilsson, Adams & Herd 

(2005) is trust. Nilsson, Adams & Herd (2005) assert that users’ perceived trust of an online 

banking system is of vital importance given the persistent threats of phishing and other risks. 

A recommendation by Nilsson, Adams & Herd (2005) is that a balance should be struck 

between the user’s trust of an online banking system, the actual security of the system and 

its usability.  

An alternative perspective is that online banking websites should invest in browser security 

(Sood & Enbody, 2011).  According to Sood & Enbody (2011), declarative security in Hyper 

Text Transfer Protocol (HTTP) response headers would be an additional defence mechanism 

and has been shown to reduce security flaws in online banking website. A 2007 paper by 

Mannan & Oorschot (2007) argued that the real issue in online banking is security and 

usability. It was reported that the security requirements for safe online banking were too 

difficult and unrealistic for average users and that there was a substantial difference 

between the banks’ expectation of their online customers and what the customers were 

actually doing in regards to online banking precautions (Mannan & Oorschot, 2007). 
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2.7 Remarks and Observations 

 

The view of this thesis is that sufficient and specific knowledge on commercial banks’ 

security and fraud detection mechanisms is scarce. Moreover, banks rarely publish 

performance statistics of their fraud detection systems. Consequently, only bits and pieces of 

information on the banks’ online banking infrastructure make it into the public domain. This 

proprietary information is usually kept confidential for commercial and security purposes. 

Banks are businesses foremost, and have to protect their commercial interests from 

competitors. 

 Secondly, most security software is provided by third party software companies who also 

want to protect their intellectual property from competing software vendors. Finally, both 

banks and security software vendors do not publicise most of the information on security 

systems to prevent attacks from technically savvy fraudsters. This secrecy and unavailability 

of information (despite the commercial reasons) slows the progress of research in this field.  

The same sentiment was also expressed by Bolton & Hand (2002) who assert that the 

exchange of ideas in fraud detection is limited and this hinders the development of new 

methods. Bolton & Hand (2002) also agree that it may not be wise to publicise detailed 

information on fraud detection techniques as this would give the fraudsters the information 

they need to elude detection mechanisms.  

2.8 Chapter Summary 

 

This chapter introduced the concepts on which the rest of the ideas and propositions of this 

thesis are based. To address the concern of fraud, especially phishing in Internet banking, 

two prominent applications of outlier detection were analysed. These two models; intrusion 

detection and fraud detection are at the core of many research ideas and indeed all 

commercial solutions to all sorts of fraud detection in computer networks and different 

applications. There appears to be a common approach to fraud detection in the Internet 

banking industry as evidenced by the three profiled fraud detection systems. All these 

systems are quite similar; they mainly feature a neural network and a Rule-base. This 

approach is consistent across all the reviewed systems, except for the unknown details rarely 

exposed by the developers nor end-users of these systems i.e. banks or the makers of the 

software themselves. The reason for this secrecy was noted and expressed in the previous 
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section and is corroborated by some research publications in this field such as Bolton & Hand 

(2002). Since Rule-bases are the major component of these systems and many other fraud 

detection applications, the next chapter takes a deeper look at what Rule-bases are. The 

chapter surveys what constitutes Rule-bases, what larger classification or category they 

comprise, any known issues they have and how these issues have been addressed.      
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3. Literature Review: Knowledge Based Systems and 

Ripple Down Rules 

3.1 Introduction 

 

The previous chapter presented an overview of the current approaches in detecting frauds in 

different domains. The chapter also revealed some of the challenges facing modern fraud 

detection systems in general.  Some of the desirable innovations in fraud detection include 

the use of intelligent programming techniques, Knowledge-Based Systems (KBS) and 

accurate algorithms for rapid detection of novel patterns. It was also shown in the previous 

chapter that most commercial fraud detection and intrusion detection systems are based on 

a KBS and ANNs. In this chapter, KBSs are more closely examined including their generic 

architecture and their limitations. The chapter also provides an analysis of the alternatives to 

these limitations. 

3.2 Knowledge-based Systems 

 

The Macquarie Australian National Dictionary defines knowledge as facts, truth or principles 

usually from study or investigation (Macquarie Australia's National Dictionary, 2001). The 

same dictionary defines expertise as special skill or knowledge in a particular field. In a 

similar sense, Giarratano & Riley (2005) add that expertise is rare and specialised whereas 

knowledge is more general and low level. Following these assertions, Knowledge Based 

Systems (KBS) are generic systems that attempt to understand and imitate human 

knowledge (Wiig, 1994) while Expert Systems (ES) are specialised KBS that use knowledge to 

solve problems that are difficult enough to require human expertise (Giarratano & Riley, 

2005). An alternate definition of ES is that they are computer systems/programs designed to 

model the problem solving ability of a human expert (Durkin, 1994) or systems that emulate 

the decision making ability of a human expert (Giarratano & Riley, 2005). Despite the small 

disparities, KBS, ES and Knowledge Based Expert Systems (KBES) are often used 

synonymously (Prayote, 2007; Giarratano & Riley, 2005) in reference to either system.  

An ES mainly comprises a Knowledge Base (KB) and an Inference Engine (IE) (Liao, 2003; Li, 

Xie, & Xu, 2011). All data, rules, cases and relationships are stored in the KB (Abraham, 

2005). The KB houses all the reusable knowledge used by the IE to produce conclusions (Li, 
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Xie, & Xu, 2011; Giarratano & Riley, 2005). During its use, the ES accepts some kind of query 

from the user through an interface. The IE uses the query parameters and the contents of 

the KB to generate a response which is then relayed to the user. The IE specifies the process 

through which output in the form of facts, conclusions or classifications is extracted from the 

KB (Hayes-Roth & Jacobstein, 1994). Figure 3-1 shows a schematic of a KBS.  

 

Figure 3-1. Basic schematic of a KBS (Giarratano & Riley, 2005) 

KBS have been in use for more than 30 years since the development of the first one around 

1980 (Hayes-Roth & Jacobstein, 1994; Feigenbaum & Buchanan, 1978). From their earliest 

inception, KBS were reported to have reduced goods and services production times 

dramatically and increased productivity.  

Some of the examples of early KBS impressive business value include the SXEL expert system, 

known to have reduced a three hour task to 15 minutes (Hayes-Roth & Jacobstein, 1994). 

This productivity boost is said to have been annually worth $70 million in monetary terms. In 

another example, an early American Express credit screening system is said to have reduced 

the rate of incorrect credit refusals by one third, resulting in an additional $27 million per 

annum (Hayes-Roth & Jacobstein, 1994).  Given that both of these facts were reported in 

1994, the technology of KBS has since advanced tremendously and the power and speed of 

computers has soared significantly. Some other recently published benefits of KBS are that 

they capture and preserve human experience, they are more consistent than humans, they 
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can compensate for the loss of human experts and are much faster than human experts (Li, 

Xie, & Xu, 2011; Abraham, 2005).  

The use of KBS has spanned various domains and industries including finance, military, 

construction, media, retail, government departments and many other areas (Hayes-Roth & 

Jacobstein, 1994). KBS are said to be especially effective in applications where knowledge 

rather than an imperative algorithm is needed to derive the solution (Preece, 2001). Some 

commonly listed early KBS include DENDRAL (Feigenbaum & Buchanan, 1978) and MYCIN 

(Buchanan & Shortliffe, 1984; Lindsay, Buchanan, Feigenbaum, & Lederberg, 1993).  

DENDRAL was used in elucidating chemistry to assist chemists in searching for molecular 

structures (Feigenbaum & Buchanan, 1978; Feigenbaum & Buchanan, 1993). MYCIN was 

built to provide advice on bacterial infections of the blood and could explain its reasoning 

(Buchanan & Shortliffe, 1984; Hayes-Roth & Jacobstein, 1994).  

One of the newer applications of KBS is in online banking fraud detection. In 1997, a number 

of research publications were predicting that retail banking transactions will be available to 

customers online (Barwise, 1997; Booz, Allen, & Hamilton, 1997). By the end of 1997, one of 

the four major banks in Australia had Internet banking services (Sathye, 1999). Just over 10 

years later, all the major banks in Australia provide online banking services with KBS 

powered fraud detection systems. Some of the online banking fraud detection systems in use 

today include Falcon, PRM and SAS Fraud Manager as profiled in Chapter 2. Each of these 

systems uses a Rule-Base System, one of the most popular types of KBS in use today 

(Giarratano & Riley, 2005).   

3.3 Rule-Based Systems 

 

Rule-Based Systems (RBS) have been regarded as an effective means of codifying human 

expertise (Hayes-Roth, 1985). RBS are a type of KBS where knowledge is presented in terms 

of multiple rules specifying what action or conclusion should or should not be taken in 

different situations (Giarratano & Riley, 2005).  Hayes-Roth observed that experts tended to 

express their problem-solving techniques in terms of situation-action rules and that 

consequently, RBS should be the de facto KBS method (Hayes-Roth, 1985).  In RBS, human 

expertise is presented as conditional rules that are used to provide a 

conclusion/action/answer to a contextual problem. Each conditional rule links the given 

condition(s) to a conclusion/action/answer (Abraham, 2005).  Hayes-Roth adds that the 
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knowledge contained in RBS includes conditions for achieving some goal, specific inferences 

resulting from specific observations, probable causes of a set of symptoms and likely 

consequences of hypothetical situations (Hayes-Roth, 1985).  

Since RBS are a type of KBS, the main components of a RBS are a Knowledge-Base (KB) and 

an Inference Engine. These components typically perform the same functions as in a generic 

KBS. The KB, also known as the rule-base in this context, is a collection of if-then rules and 

encodes the conclusions/actions/answers the system should produce given a specific 

situation. The IE applies appropriate rules to the current situation (Giarratano & Riley, 2005).  

A rule mainly comprises an antecedent (the situation) and a consequent (the 

conclusion/action/answer). If a given antecedent (the If part) is satisfied, the appropriate 

consequent (the Then part) is invoked (Hayes-Roth, 1985).  Figure 3-2 shows the general 

structure of a rule.      

 

Figure 3-2. Components of a simple rule 

Given the consistent use of KBS in different outlier detection applications, it follows that 

most fraud/intrusion detection systems in use today include some example of a knowledge 

base in their architecture. Since their introduction more than four decades ago, the 

advantages of KBS have been undoubtedly significant to say the least. Some of the main 

benefits stated earlier in this chapter include their ability to preserve human knowledge and 

experience, their superior consistency to humans and their running speed (Li, Xie, & Xu, 

2011; Abraham, 2005).  

In spite of their immense importance in different domains, KBS also have some considerable 

shortcomings. One of the main criticisms of KBS is their lack of causal knowledge. Without 

the understanding of underlying cause and effect, KBS cannot extend available information 
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to deduce new facts (Giarratano & Riley, 2005; Elkan & Greiner, 1993). For example, without 

explicit specification, an ES will not know that age cannot be negative and that only females 

can actually be pregnant. Another limitation of KBS is based on the knowledge acquisition 

bottleneck phenomenon, where the process of transferring knowledge to an ES is indirect 

(involves an expert and knowledge engineer), labour intensive and usually restricted to a 

specific context (Compton & Jansen, 1988; Giarratano & Riley, 2005; Dazeley, 2007; Richards, 

2009).  

Ignoring the dynamic nature of knowledge by traditional KBS wrongly assumed that 

ultimately, the domain specialist and knowledge engineer would produce a perfect image of 

the expert’s knowledge.  This approach to building knowledge-based systems is often 

criticised as being restrictive and costly (Hayes-Roth & Jacobstein, 1994; Dazeley, 2007). In 

some cases, the traditional approach to knowledge acquisition has even been labelled less 

innovative (Richards, 2009).  

Under the traditional approach, changes of any kind to the knowledge base would always 

involve the domain expert and the knowledge engineer. Furthermore, such changes will 

most likely require the original expert to ensure that the latest changes do not render the 

prior knowledge invalid. These factors, and the fact that in these KBS, maintenance is 

performed as an additional task to knowledge acquisition (Richards, 2003), ultimately results 

in maintaining such systems being a time consuming and costly exercise (Hayes-Roth & 

Jacobstein, 1994; Dazeley, 2007). Figure 3-3 shows the change in complexity of a single rule 

in a medical expert system over three years (Compton & Horn, 1989). The rule changes from 

comprising just four conditions to being a compound of 28 conditions. This represents a 

threat to the knowledge engineer’s understanding and ability to edit such a rule (Dazeley, 

2007) and the general growth and continuity of the KBS.     
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1984 1987 

 

RULE(22310.01) 

IF (bhthy or utsh_bhft4 or 

vhthy) 

 and not on_t4 

 and not surgery 

 and (antithroid or 

hyperthyroid) 

THEN 

DIAGNOSIS(“…thyrotoxicosis”) 

 

RULE(22310.01) 

IF ((((T3 is missing) 

  or(T3 is low and T3_BORD is low) 

  and TSH is missing 

  and vhthy 

  and not (query_t4 or on_t4 or 

surgery or tumour 

  or antithyroid or hypothyroid or 

hyperthyroid)) 

  or((((utsh_bhft4 or 

  (hithy and T3 is missing and TSH is   

missing)) 

  and (antithyroid or hyperthyroid)) 

  or utsh_vhft4 

  or ((hithy or borthy) 

  and T3 is missing 

  and (TSH is undetect or TSH is 

low))) 

  and 

  not on_t4 and not (tumour or 

surgery))) 

  and (TT4 isnt low or T4U isn’t low) 

THEN DIAGNOSIS(“…thyrotoxicosis”) 

 

Figure 3-3. Change in complexity of a rule over 3 years. The rule started with four conditions (left) and 

eventually had 28 conditions (right) (Compton & Horn, 1989) 

 

3.4 Ripple Down Rules 

 

Ripple Down Rules (RDR) was introduced around 1988 (Compton & Jansen, 1988; Kang, 

Compton, & Preston, 1995) as an alternative to the traditional KBS. RDR eliminates the need 

for a knowledge engineer as the expert directly interacts with the system (Kang, Compton, & 

Preston, 1995). Additionally, maintenance in RDR has been described as trivial and brief 

(Kang, Compton, & Preston, 1995). In RDR, maintenance and knowledge acquisition are 

essentially integrated and usually do not require the additional services of a knowledge 

engineer (Richards, 2009).  In fact, one of the earliest commercial applications of RDR, a 

system named Pathology Interpretative Expert Reporting System (PIERS), was described as 

user maintained and not requiring knowledge engineering expertise (Edwards, Compton, 

Malor, Srinivasan, & Lazarus, 1993).  The PIERS system was used to generate clinical 
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conclusions for pathology reports. In 2009, PIERS was reported to have processed about 30 

million reports and been used by 14 pathology laboratories (Richards, 2009).  Other 

applications of RDR extend to Web browsers, help desk systems, online shopping, email 

management systems (Kang, Compton, & Preston, 1995; Richards, 2003) to cite a few. Some 

of the latest applications of RDR includes in an eHealth document management system, in 

Agile Software development for Expert Systems, in a home-based Telehealth system and 

most recently in internet banking fraud detection, which is one of this research’s 

contributions (Maruatona, Vamplew, & Dazeley, 2012; Dazeley, Park, & Kang, 2011; Yoon, 

Han, Kang, & Park, 2012; Han, et al., 2013).  

RDR has a binary tree structure in which each node corresponds to a rule.  The root node, 

which is always true by default, is connected to a network of nodes, also connected to their 

parent nodes through either a false or true branch. Every parent node has two possible 

branches; the true and false branches.  The parent is connected to a child node through the 

branch that represents the evaluation of the parent’s rule. For example, if the parent node’s 

rule evaluates to true for a given case then the child connected to the parent through the 

true branch is evaluated next. The same case applies for a child node on the false branch if 

the rule evaluation returns false.  Ultimately, the terminating node is reached after all its 

parents’ nodes have been evaluated. As newer, more specific rules are added to the lower 

levels of the tree, the broader rules get evaluated first, leading to the newer rules. This 

rippling from generic rules to specific ones is what earned the method its Ripple–Down 

name. The rippling continues until a terminating/leaf node is reached. The conclusion from 

the last successful node is returned as the ultimate conclusion for the case. If the last firing 

rule was false, then the last true ancestor’s conclusion is returned as the effective 

conclusion. RDR’s root node has a default conclusion such that if no other rules evaluate to 

true, the default conclusion is returned. This guarantees that a conclusion will be returned 

every time. Figure 3-4 shows an RDR tree with a case A= {a, c, r, t}.      
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The bolded rectangles in the RDR tree represent rules that return true for the case A= {a, c, r, 

t}. Rule 0 is the default rule so will always return true.  For this case, inferencing follows the 

highlighted nodes. The first rule tested after the default node is Rule 1, this node evaluates 

to false since the condition does not satisfy any of the case attributes. The false branch of 

Rule 1 leads to Rule 3. Rule 3 evaluates to true for the current case so Rule 4 is evaluated 

next. Rule 4 evaluates to false and leads to Rule 8, which returns true and leads to Rule 9. 

Rule 9 is false so the effective conclusion is 103 from Rule 8 since this is the last tested rule 

that returned true.     

3.5 RDR Learning 

 

One of RDR’s advantages over other KBS methodologies is its contextual oriented rule 

addition, whereby any new rule is added and validated within a specific context (Dazeley, 

2007).  To accommodate the dynamism of knowledge, Richards (2009) advises that 

knowledge acquisition must be incremental and captured within the context in which it is 

valid. This gives RDR the flexibility to make specific amendments to the Rule-base without 

invalidating the previously captured knowledge.  The goal of RDR, according to Kang, 

Compton, & Preston (1995), is to incrementally build a knowledge base where new rules are 

refinements to older rules added in a way that does not nullify pre-existing knowledge.  RDR 

Rule 0: 

default 

Rule 5: if p 

then 104 

Rule 1: if b 

then 101 

Rule 2: if q 

then 105 

Rule 3: if a 

then 107 

Rule 4: if k 

then 109 

Rule 6: if j 

then 111 

Rule 8: if r 

then 103 

Rule 9: if q 

then 102 

FALSE 

TRUE 

A= {a, c, r, t} 

Figure 3-4. The RDR tree structure. Horizontal solid lines represent true branches and false branches are 
represented by vertical dashed lines. Input A is the current case being processed. The shaded boxes represent 

evaluated nodes. Nodes which evaluated to true are represented by bolded boxes    
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learns as new rules are added to the knowledge-base. A new rule is added if the expert 

disagrees with the system’s conclusion. The expert then provides a justification of why the 

system’s conclusion is wrong, and the justification is the basis of the new rule (Compton & 

Jansen, 1988).  Each new rule is added to deal with a specific case so the expert’s justification 

is formed by comparing the new case with the case that caused the creation of the last firing 

rule for the present case. The former case is known as the cornerstone case and each rule 

has a directly associated cornerstone case.   The case is being processed at any moment is 

known as the current case. To guarantee that the new rule is exclusively satisfied by the 

current case, the expert selects one or more attributes from a difference list (Kang, 

Compton, & Preston, 1995). A difference list consists of attributes from the cornerstone case 

and the current case and ensures that the new rule satisfies the current case and not the 

cornerstone case.  For example, consider two models of the BMW 1 Series models.  The two 

models’ attributes are given below (Car Reviews, 2012): 

Model 16I Sport 18I Sport 

Engine Type Turbo Turbo 

Engine Size 1.6 L 1.6 L 

Max Torque 220 Nm@ 1350rpm 250 Nm@ 1500rpm 

Max Power 100kW @ 4400 rpm 125kW @ 4800 rpm 

Fuel Type Unleaded Petrol Unleaded Petrol 

Valve Gear Variable Overhead Variable Overhead 

      
Table 3-1. Attributes of two models of sports cars, the 16I and the 18I 

Assuming some RDR based car comparison system wrongly classifies the 18I Sport as the 16I 

Sport, a typical difference list for the current case (18I Sport) and the cornerstone case (16I 

Sport) may be formulated as given below.     

Case Cornerstone Current 

Max Power 100kW @ 4400 rpm 125kW @ 4800 rpm 

Max Torque 220 Nm@ 1350rpm 250 Nm@ 1500rpm 

    
       Table 3-2. A sample difference list of two different editions of sports cars, the 16I (cornerstone case) and the 

18I (current case) 

The expert can select the conditions for the new rule as Max Power == 125kW @ 4800rpm 

and Max Torque == 250Nm @ 1500rpm.  This rule will be guaranteed to work on the new 

case (18I Sport) and not for the 16I Sport since the 16I Sport does not have neither a Max 



- 35 - 
 

Torque of 250Nm @ 1500rpm nor a as Max Power of 125kW @ 4800rpm. The new rule will 

have the 18I Sport’s attributes as its cornerstone and will be added as a child node of the 16I 

Sport.  If a new rule describing a new diesel powered version of the 18I were to be added, 

then a similar process would be followed and so forth. The context specificity of the rules 

also means that the rules are validated at the time they are added, effectively eliminating a 

need for an additional validation task (Dazeley, 2007).  

Despite its advantages over traditional KBSs in terms of its knowledge acquisition and 

maintenance methodology, RDR’s usability has also been questioned, specifically on three 

main aspects. It has been argued that the contextual nature of rule addition in RDR can result 

in repetitions of the same knowledge in different parts of the tree (Compton & Horn, 1989). 

However, it has since been found that this is not a major problem after tests showed that 

less than 15% of the knowledge was repeated when an expert system was built using RDR 

(Dazeley, 2007; Kang, Compton, & Preston, 1995). The other misgiving of researchers about 

RDR is in relation to the possibility of the tree structure being unbalanced due to the lack of 

structural control of the knowledge base by the expert or knowledge engineer trees 

(Compton, Kang, Preston, & Mulholland, 1993).  Again, this criticism has been found to have 

no real impact after an RDR tree was found to have only twice as many rules as other 

optimised induction (Kang, Compton, & Preston, 1995).  

The last aspect of RDR’s shortcoming is its inability to provide multiple classifications. A 

practical demonstration of this limitation was shown by PIERS’ (Edwards, Compton, Malor, 

Srinivasan, & Lazarus, 1993) inability to provide multiple diagnoses in cases where patients 

have multiple diseases (Kang, Compton, & Preston, 1995). A possible workaround to this 

inefficiency would be to separate the problem into sub-domains and have an independent 

KB for each sub-domain. However, it is difficult to separate sub-domains in practice so this 

would be a difficult task for many domains (Kang, Compton, & Preston, 1995). So far, the 

accepted alternative solution to this problem is an extension of the RDR structure in a way 

that allows it to generate multiple classifications. This idea is explored further in the next 

section. 

3.6 Multiple Classifications RDR    

  

 Multiple Classifications Ripple Down Rules (MCRDR) is an extension of RDR with the added 

capability to handle multiple classifications (Kang, Compton, & Preston, 1995). The inability 
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of RDR to provide multiple classifications was seen as a limitation to its applicability in many 

domains, a classic example being the failure of PIERS to provide more than one diagnosis 

(Kang, Compton, & Preston, 1995). MCRDR was therefore developed to be applicable for 

domains where a single case may lead to multiple conclusions while still retaining the 

advantages of RDR. In fact, MCRDR has been shown to cover a domain quicker than its single 

class counterpart and has also been reported to produce a more compact KB with fewer 

redundancies than single class RDR (Richards, 2009).  

One of the main differences between single classification and multiple classifications RDR is 

that MCRDR‘s structure is an n-ary tree compared to RDR’s binary tree structure. Like RDR, 

MCRDR has a default root node which always returns a true to guarantee a conclusion with 

every input. However, unlike RDR’s true and false branch at each parent node, MCRDR has 

exclusively exception (or true) branches.  An MCRDR parent node can have any number of 

exception branches and each branch is followed when the parent node condition is true for a 

given case. Inferencing in MCRDR is generally similar to RDR except that if a condition is false 

at a parent node, then no child nodes will be evaluated.  Another variation between the two 

methods is that unlike in RDR, a case in MCRDR can return multiple effective conclusions 

depending on how many of the terminating nodes evaluate to true for the case.   

Inferencing in MCRDR is such that the root node is evaluated first, and then all nodes 

connected to the root are tested next. The nodes that evaluate to true will have their child 

nodes tested and the ripple continues until a terminating node is reached or until all children 

are false.  The effective conclusions for the case will then be a collation of the firing terminal 

rules in each branch. The following diagram illustrates the inferencing process in an MCRDR 

structure. In the diagram, it is assumed the structure has an input of X= {b,d,f,k,o,h,e,m,t,y}.          
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Figure 3-5. An MCRDR structure showing evaluated rules for the input X= {b, d, f, k, o, h, e, m, t, y}. Note that 

the default rule (Rule 0) always returns true. 

For the example at Figure 3-5, the root node is evaluated first, returning true by default. 

Rules 1, 2, and 3 are evaluated next.  Rule 1 returns false so its child is not checked. Rule 2 

returns true so all its branches (Rules 5, 6 and 7) are checked. Rule 5 returns true and is a 

terminating rule. Rule 6 also returns true so Rule 10 is checked, which also returns true and 

terminates. Rule 7 returns false so its leaf node is not checked. Since Rule 3 returns true, its 

branch (Rule 8) is evaluated and returns true. Rule 8’s child (Rule 12) is then evaluated and 

returns false. After all inferencing is done, the effective conclusions are 115, 122 and 118. 

These are the last true firing nodes in each independent branch.      

3.7 MCRDR Learning 

 

MCRDR learns as rules are added to its KB. When the expert considers an MCRDR 

classification to be incorrect, he/she supplies the correct classification and the system 

determines where a new rule to handle this case will be located. It is advised that the new 

rule cannot be simply assumed to be a refinement of the rule that gave the current 

conclusion as it may be a completely independent classification or the classification may be 
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just wrong (Kang, Compton, & Preston, 1995).  For each new rule addition, the system has to 

determine if the given conclusion is wrong and not to be repeated, in which case a stopping 

rule is added. If the classification given by MCRDR was wrong and has to be stopped, then 

the new rule is added as a refinement to the old rule to prevent the wrong classification. This 

new rule is called the stopping rule (Kang, Compton, & Preston, 1995).  The same approach is 

followed if the wrong classification is to be replaced by a new rule. If the system determines 

that the current conclusion should be replaced by another, then a refining rule is added. The 

new rule is added as a child of the terminating rule at the end of the path so that the wrong 

classification will not be given for this case again. Sometimes the current conclusion may not 

be wrong but an additional, independent conclusion may be needed. In this case, a new rule 

is added to the same node as the current node’s parent so that the new rule adds an 

additional conclusion to the current one (Kang, Compton, & Preston, 1995). This allows for 

multiple conclusions for a given case because the newly added rule and the current rule will 

both be evaluated the next time the current case is fed into the inference engine again 

(Dazeley, 2007).  

As in RDR, rule addition in MCRDR has to be done such that the new rule does not invalidate 

pre-existing rules and so that the new rule satisfies the current case (Kang, Compton, & 

Preston, 1995). In RDR, this validation process is done by comparing the current case with 

the cornerstone case. The same concept applies in MCRDR. When a rule is created, the 

relevant cornerstone cases and the current case will be used to formulate a difference list.  A 

formula has been suggested by Kang, Compton, & Preston (1995) for selecting conditions 

from a difference list in a way that ensures the resulting rule is sufficiently precise. Given two 

cornerstones C and D and the current case E, at least condition should be selected from one 

of the sets      or      . 

                    (3-1)   

           (3-2) 

Where E = exclusively E elements or conditions exclusively in the current case and     is the 

difference between the current case and the ith cornerstone case.  

In this situation, conditions for the new rule will be selected from comparing the difference 

list between case E and the common conditions (or intersection) of cornerstone cases C and 

D. For this scenario, consider the following example for current case E and cornerstone cases 

C and D: 
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E= { b, c }, C= { c, e, f} and D= {d, f}  

      E and !(C   D) = {b} and !{ f}  

 = b, !f  

The condition for the new rule from the example above can then be (if  a AND ! f). The above 

operations may sometimes return an empty list when using the approach defined in       

does not produce any set of conditions for the new rule (Kang, Compton, & Preston, 1995). 

In such circumstances, the rule conditions are formulated from comparisons involving the 

current case and a series of cornerstone cases.  The final rule conditions are composed from 

a series of difference lists between the current case and each of the cornerstone cases 

shown in       as defined at equation (3-2) 

Consider a situation where current case E= {a, d, g} and the two cornerstone cases are C= {a, 

d, q} and D= {g, k}.  

In this example,      is empty because   is empty and        is also empty. 

      then becomes DLE,C + DLE,D where DLE,C is the difference list between case E and case D 

and DLE,D is the difference list between case E and case D. 

So,      = (g, !q) + (a, d, !k) 

The new rule can be constructed using conditions from both DLE,C and DLE,D. The new rule can 

also be uniquely identified by combining at least one attribute from the two lists (Kang, 

Compton, & Preston, 1995). For example, the rule could be (if g AND !k ).  

Despite its seemingly laborious process, rule addition in MCRDR is not as complicated in 

practice. This is because as soon as the expert selects an attribute from a difference list, 

other cornerstone cases are checked against this attribute and all cases not satisfied are 

removed from the list. Effectively, this elimination process reduces a significant amount of 

comparisons the expert has to do, resulting in an average of three difference lists and four 

comparisons per rule addition (Kang, Compton, & Preston, 1995).  For example, using the Tic 

Tac Toe dataset (Aha, 1991), it was found that rule addition in MCRDR will involve at most 

seven cases and an average of 1.84 cases (Kang, Compton, & Preston, 1995). A single rule 

addition involving seven cases is rare, which is why the average for more than 110 rules is 

approximately two cases.  Adding a single rule in MCRDR is reported to be about twice as 

long as in RDR (Kang, Compton, & Preston, 1995). Rule addition in RDR is relatively rapid and 
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trivial (Compton & Jansen, 1988; Kang, Compton, & Preston, 1995) , lasting not more than 

two minutes in a KB of 1000 rules and under five minutes for a KB with 10000 rules 

(Compton, Peters, Edwards, & Lavers, 2005). It must be noted also that in RDR, only one 

cornerstone case is reviewed per rule addition whereas in MCRDR, around three cornerstone 

cases are seen by the expert.  Despite the multiple cornerstone cases, Kang, Compton, & 

Preston (1995) advise that rule addition in MCRDR will practically not be more than twice the 

time of RDR.    

Alternative Incremental KA Approaches  

 

The idea of incremental knowledge acquisition is not only applied within RDR methods. In 

fact, the incremental knowledge acquisition approach of RDR was introduced as 

advancement to existing methods. Some of the more recent work in non-RDR incremental 

KA includes a proposal for a context-aware system that uses a collaborative based KA 

approach (Joffe, Havakuk, Herskovic, Patel, & Bernstam, 2012). Joffe et al (2012) argue that 

the disadvantage with RDR-based KA is that it requires explicit expert input and that the 

proposed collaborative KA method could be used to implicitly collect knowledge from 

multiple experts unobtrusively. In this approach, knowledge was acquired by following and 

observing medical experts as they performed their duties.  The system would then be 

incrementally expanded by iteration and corroboration of existing knowledge by newly 

collected data from other experts. The resulting knowledge base had a precision range of 0.8 

to 1, justifying the viability of this approach (Joffe, Havakuk, Herskovic, Patel, & Bernstam, 

2012).  

Another non-RDR incremental KA approach features a combination of a Naïve-Bayes 

algorithm and a modified fuzzy partitioning method (Liu & Liang, 2011). In this system, a 

fuzzy unsupervised clustering procedure is combined with a Bayesian method into an 

incremental learning algorithm. The system was applied in text classification (where pre-

labelled data is reportedly often difficult to obtain) and recorded good results with an 

average precision of over 90% in six different datasets (Liu & Liang, 2011). Other alternative 

incremental KA methods include Learn++, an incremental KA method comprising an 

ensemble of classifiers and a weighted output method (Polika, Udpa, Udpa, & Honavar, 

2004). Another alternative at incremental KA is the Mixture of Experts (ME) system, 

consisting of several neural networks (or expert networks) (Ng, McLachlan, & Lee, 2006).    
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3.8 Prudence in Knowledge Bases     

 

A major limitation of KBS not directly addressed by RDR nor simple MCRDR is brittleness. 

Brittleness is a common occurrence in expert systems where the system produces a 

conclusion that may not be correct and sometimes impractical. A classical example of 

brittleness is demonstrated by the widely cited ‘pregnant male’ phenomenon, where a 

chemical pathological system diagnosed a male as pregnant because they had a hormone 

secreting tumour, which caused a detection of a pregnancy hormone (Prayote, 2007).  The ES 

in question did not know (and was not taught) the fact that only females can be pregnant. 

This occasional slip-up is common whenever some knowledge just outside of a system’s 

expertise is needed (Dazeley, 2007). In this case, the pathological system needed to know 

that males cannot get pregnant.  

One of the earliest implications from MCRDR noted by Kang, Compton, & Preston (1995) was 

the possibility to equip the MCRDR method with an ability to warn the system administrator 

whenever the method gives an erroneous conclusion.  The first RDR based attempt to 

address brittleness in this way was a technique named Prudence (Edwards, Kang, Preston, & 

Compton, 1995). Prudence and credentials were introduced as properties of expert systems 

that managed how errors are managed in an ES. Credentials represented an ES’s 

performance profile and would give the users a better understanding of the system’s 

credibility (Edwards, Kang, Preston, & Compton, 1995).  Prudence and Credentials were 

introduced through two approaches; Feature Exception Prudence (FEP) and Feature 

Recognition Prudence (FRP). In FEP, as the ES processes a case and produces a conclusion, 

the case’s attributes are compared against processed cases. If any features of the current 

case are found to be unacceptable relative to other processed cases, they are flagged as 

exceptions. These exceptions are noted because they potentially invalidate a case’s 

conclusion. FRP compares a case’s rule path against other paths of the same conclusion. If a 

similar path could satisfy a different conclusion, then this indicates a possibility that the 

original conclusion might have been incorrect (Edwards, Kang, Preston, & Compton, 1995). 

The system had a high false positive rate but marked a breakthrough in the development of 

prudent expert system. This was a giant leap in ensuring that knowledge-based systems have 

some way of realising their limits and that even with insufficient expertise or missing 

information, the systems do not make claims such as the pregnant male example described 

earlier.    
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Another early attempt at prudence included keeping a record of all processed cases and 

issuing a warning each time a previously unseen case was processed (Compton, Preston, 

Edwards, & Kang, 1996). For numerical attributes, the system maintains a range of previously 

seen values. Each time a new minimum or maximum is seen, a flag is raised so that the 

conclusion is verified by the expert. For categorical attributes, an incoming value is compared 

with a list of previously seen values so that a warning is given if the value is new (Compton, 

Preston, Edwards, & Kang, 1996).  It was concluded that this method‘s accuracy was not 

sufficient enough for real world use because of the high rate of false positives (Compton, 

Preston, Edwards, & Kang, 1996). Table 3.3 shows the performance summary of this method. 

In the table, False Positives (FP) are cases where a warning was produced unnecessarily.  The 

False Negatives (FN) are cases where a warning was not given but should have been. The 

True Positives (TP) include cases where a warning was rightly issued. When no warning is 

required and none is issued, then the case is a True Negative (TN).  

Dataset FN % TP % TN % FP % 

Garvan 0.2 2.4 83 15 

Chess 0.3 1.3 91 7 

Tic Tac Toe 1.5 3.8 81 14 

Table 3-3. Early prudence system's performance statistics 

The prudence methods profiled above form a part of attribute based prudence methods 

(Dazeley & Kang, 2008; Dazeley, 2007).  These methods rely on the presence or absence of 

case attributes to issue a warning (Dazeley & Kang, 2008).  The attribute based group were 

later extended by a model based method; Ripple Down Models (Prayote, 2007), which will 

be examined closer in the next chapter. Another type of the prudence methods is the 

structural based prudence method which uses the paths followed by an inference process to 

determine if a warning should be issued or not (Dazeley & Kang, 2008).  One of published 

and successful of these methods is Rated MCRDR (Dazeley & Kang, 2008), which will also be 

analysed in depth in the next chapter. Figure 3-6 illustrates the two types of prudence 

methods. 
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It has been proposed that the reliance on attributes by attribute based methods (include 

model based methods) limit their applicability in domains with a controlled number of 

relevant attributes (Dazeley & Kang, 2008). On the other hand, it can be argued that the 

reliance of structural based prudence on a context drawn from the arrangement of fired 

rules or traversed paths during inferencing may not be valid for all domains.  For this reason, 

this thesis combines attribute based and structural based prudence to form a new Integrated 

Prudence Analysis. This new method and its organisation will be discussed further in the next 

Chapter after an analysis of Ripple Down Models and Rated MCRDR.        

3.9 Chapter Summary 

 

This chapter introduced Knowledge-Based Systems (KBS) and Expert Systems (ES) and gave 

an analysis of components of KBS/ES. A few examples demonstrating the commercial worth 

of ES were also cited. The chapter introduced Rule-Based Systems (RBS) as a common variant 

of ES and listed some of the main limitations of knowledge acquisition and maintenance 

approaches used in conventional ES. As an alternative to these shortcomings, RDR was 

analysed in depth including how rules are added and how RDR learns. The Multiple 

Prudence Methods 

Structural-based 
Attribute based 

-Feature Exception Prudence (FRP) 

-Ripple Down Models (RM) -Rated MCRDR (RM) 

Figure 3-6. The two types of Prudence and their examples 
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Classification version of RDR (MCRDR) was also discussed at length together with why RDR 

was redeveloped to MCRDR. Although innovative in its knowledge addition, contextual 

nature of rules and its maintenance approach, MCRDR was still found not to address the 

issue of brittleness in KBS.  Prudence was introduced as the ES ability to notify the expert 

each time a new case or potentially wrong conclusion was produced. An overview of two 

early attempts at curbing brittleness was also given. The second prudence method forms the 

basis of RDM, a successful attribute based prudence method to be analysed further in the 

next chapter. Another successful method to be examined in the next chapter is RM, the only 

known structural based prudence method. This research proposes merging the two methods 

into an integrated prudence approach, also to be discussed at length in the next chapter. 

Chapter 4 examines RDM and RM in detail and describes Integrated Prudence Analysis, a 

merger of the two approaches.   
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4. Prudent RDR methods 

4.1 Introduction 

 

Following the previous chapter where RDR and prudence were introduced, this chapter 

analyses two of the reported successful prudence systems. The chapter starts with a 

description of the structure of Rated MCRDR (RM) and how it works. Using a similar format, 

the chapter then presents Ripple Down Models (RDM). Finally the chapter describes 

Integrated Prudence Analysis (IPA), a merger of RM and RDM. IPA is a novel method 

proposed and created by this research project. IPA is also one of the main contributions of 

this thesis. Three variations of IPA are described including a short explanation of the 

reasoning behind each proposed version. 

4.2 Rated MCRDR  

 

Rated MCRDR (RM) was founded on (Dazeley, 2007)’s proposal that a pattern of firing 

terminating rules in an MCRDR structure could reveal a hidden context that could be useful 

in understanding the KB’s domain.  In his PhD thesis, (Dazeley, 2007) explains that MCRDR 

had been identified by Gaines (2000) as a possible methodology for modelling the process of 

practice. Process of practice is defined as an instance when people are not compelled by 

logic or reflex but rather by their habits at the time (Dazeley, 2007). An example of such 

instances in official and business operations has been modelled through KBS (Gaines, 2000). 

Gaines (2000) further asserts that MCRDR is a promising method for modelling the concept 

of process of practice. It is on this idea that Dazeley (2007) founded Rated MCRDR.  

Dazeley (2007) argues that although the advantages of multiple conclusions in MCRDR are 

obvious, there still could be further unexplored benefit in finding some context between the 

structure’s individual paths.  He further posits that there are correlations between 

inferencing paths and that these correlations could contribute to understanding more about 

the knowledge base’s domain.  A hybrid system, known as Rated MCRDR was suggested to 

determine these correlations and their usefulness in improving learning. RM combines 

MCRDR outputs with an Artificial Neural Network (ANN) to maximise the online learning 

ability of MCRDR with the generalisation ability of the ANN (Dazeley, 2007).   The RM system 
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has 2 main components; the MCRDR engine and an ANN.  The diagram below shows a 

schematic of the components of RM. 

 

Figure 4-1. An overview of RM’s main components. MCRDR output classifications are indexed and fed to an 

ANN and the two components outputs are evaluated. (Dazeley, 2007) 

MCRDR Indexing 

After a case is processed by the MCRDR engine, an indexing mechanism converts the MCRDR 

outputs into a set of binary inputs for the ANN.  Five different methods of connecting the 

MCRDR outputs to the ANN were identified and tested. These included: 

 Class Association (CA), 

 Attribute Association (AA)  

 Rule Path Association (RPA)  

 Terminating Rule Association (TRA)  

 Decreasing Rule Path Association (DRPA) method  

In the CA association method, each possible classification for the domain is identified and 

assigned to a dedicated ANN input neuron. Each time the particular class is the final 

classification, the appropriate input neuron is turned on (assigned a 1 value), otherwise it is 

switched off (assigned a 0 value) (Dazeley, 2007).  The advantage of the CA method is that 
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the input neuron size will never be more than k + 1, where k is the number of possible 

classifications for the domain. The extra input neuron in this case represents the bias neuron 

if the ANN uses a bias. The downside to the reduced input space also means that the 

network receives limited information about the case, consequently affecting the ANN’s 

ability to generalize (Dazeley, 2007). This method was found to be less accurate than the 

other methods.  

For the AA method, each attribute is associated to an input neuron and, as in the CA method, 

any attribute included in the firing terminating rule is switched on while non used attributes 

are switched off. With this method, the input layer can have up to k + 1 input neurons, 

where k is the number of case attributes.  According to Dazeley (2007), the advantage with 

this method is that the system could still generalise well even if a rarely traversed MCRDR 

path involving similar attributes as in other rules is taken. The disadvantage with this method 

is that if the domain has contextually dependant attributes, the ANN inputs would fire 

globally, not exclusively when it was necessary (Dazeley, 2007).  Like the CA, the AA method 

was also outperformed by other methods.  

The RPA method associates each rule path to an ANN input neuron. As in the other methods, 

input neurons are switched on for every firing rule path. For this method, the network’s size 

will be determined by the indexed rule paths. For example, for a dataset with k rule paths, 

the input size will have up to k + 1, where k is the number of indexed paths. The RPA method 

extracted a significant amount of information from the MCRDR engine and had a larger ANN 

input size than the other association methods. It was found to be one of the best methods 

and was used for the RM system developed in this project.  

The TRA method is a modification of the RPA method where for every case the only indices 

switched on are terminal, firing rules (Dazeley, 2007). This method worked occasionally but 

does not pass on contextual content to the ANN. Dazeley (2007) suggests that it may be 

useful when individual rules represent a parent’s specialization.   

The DRPA method is a combination of the RPA and the TRA methods. The indexing of MCRDR 

outputs is as in RPA and TRA where each rule path is linked to a dedicated ANN input. In this 

method, the ANN input’s value is determined by the last firing node’s distance from the 

terminating rule. For example, if the last firing node for some rule is the second last after the 

terminating rule, then a typical value for this neuron can be: 1-0.25 = 0.75. If the last firing 

node is two nodes from the terminating rule, then the value for such a neuron is: 1-2(0.25) = 
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0.5. If the last firing node is the terminating node then the neuron value is 1 since the 

distance between the node and the terminal rule is 0. In the three examples, a distance step 

of 0.25 was chosen arbitrarily. Dazeley (2007) informs that the idea behind DRPA is to have a 

means of removing an input’s discreetness relative to its closeness to the terminating rule. 

Although it occasionally outperformed the RPA method, the DRPA did not significantly aid 

the ANN in learning (Dazeley, 2007).             

Artificial Neural Network 

Artificial Neural Networks (ANN) are a biologically inspired form of distributed computing 

usually comprising a set of nodes (including input, hidden and output) and weighted 

connections between them (Chen, Hsu, & Shen, 2005). ANNs can also be defined as a 

topology formed by organizing nodes into layers and linking the layers of neurons. The nodes 

are interconnected by weighted connections, and the weights are adjusted when data is 

presented to the network during a training process (Dayhoff & DeLeo, 2001).  ANNs provide 

a mapping from the input space to the output space so can learn from the given cases and 

generalize the internal patterns of a given data set (Guo & Li, 2008). They adapt the 

connection weights between neurons and approximate a mapping function that models the 

provided training data (Marsland, 2003). Learning in supervised ANNs is usually achieved 

through two phases: the feed-forward and back-propagation (BP) processes. 

In a typical feed-forward process, the sum of the products of the input nodes and their 

weights are passed through a threshold and the result at each hidden node is multiplied by 

the corresponding weights (hidden-to-output node connections). The sum of each 

connection and hidden node product is collected at each output node, passed through a 

continuously differentiable non-liner function (CDNLF) and the ANN output is determined. 

Usually, the sigmoid function (CDNLF) is used at the hidden and output nodes. The sigmoid 

function provides enough information about the output to earlier nodes (hidden and input) 

so that the weights can be adjusted accordingly to reduce the difference between the ANN’s 

calculated output and the desired target output (Beale & Jackson, 1991).  The sigmoid 

function is given in equation (4-1). 

                               (4-1) 

Where k is a positive constant and controls the breadth of the function. 
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Figure 4-2 illustrates a simple 3 layered artificial neural network. 

 

Figure 4-2. A simple three layered ANN with input, hidden and output layers. 

 

A number of variations of neural networks with modified algorithms are in use today in 

different applications, including in fraud detection. The use of ANNs in fraud detection spans 

almost all major forms of fraud including telecommunications fraud, financial fraud and 

computer intrusion fraud among others (Kou , Lu, Sirongwatana, & Huang, 2004). In RM, an 

ANN is used as a secondary classifier where MCRDR outputs are indexed and passed to the 

ANN and the output is used to substantiate the MCRDR conclusion.  The next section 

describes the different RM versions and the variation of ANN used in each configuration. 

RM Versions 

Up to seven different function fitting methods were tested in different versions of the RM 

system (Dazeley, 2007). In the end, it was decided that the best configuration of RM 

comprised the ANN as the complementary component. This section gives a summary of 

some of the versions of RM and why the ANN was ultimately selected as the better 

component for the MCRDR outputs.   

RM Weighted (RMw)   

RMw does not use an ANN but assigns a value to an MCRDR rule, class or attribute depending 

on the association method. After a case is processed, the values are averaged and the 

returned value represents the effective output of RMw .  When a new feature is identified, it 

is assigned a value using equation 4-2 (Dazeley, 2007).     
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    (4-2) 

Where wn is the new feature’s value, vR is the system’s value of the reward, vRM is the 

effective average of the existing features and z is the step modifier, determining the degree 

of adjustment for the new features. 

 Although RMw was introduced as a benchmark for other RM versions, it was found to be 

incapable of the discovery of any non linear relationships nor any useful form of learning 

(Dazeley, 2007).  

RM with Basic Linear Technique (RMIr) 

RMIr uses a single layer ANN whose new inputs are initialised randomly to capture linear 

relationships. The use of a single layer ANN allows for the addition of new nodes with little 

consideration for their initial weights.  The method allowed the network to appropriately 

adjust its weight when a new neuron was connected and to generalise the linear 

relationships between features. The RMIr method was expected to only generalise linearly 

separable relationships between features. It was also found to be better than the previously 

discussed RMw (Dazeley, 2007).  

RM with Advanced Linear Technique (RMIA) 

RMIA is similar to RMIr except that after a new node is added, a single step delta initialisation 

(ssdi) is used to set the node’s weight instead of a random value (Dazeley, 2007). The ssdi 

formula enables the network to find the weight required to instantly produce the right value. 

When calculating the new weight, an inverse of the sigmoid may be used to determine the 

target output (Tws) because the feed-forward process uses a sigmoid function at the output 

node. Alternatively, the Tws can just be plugged in if known apriori. The aim of the ssdi is to 

assign the required weight to the connections so that the Tws is produced by the network. To 

do this, the network error at the output node (Eo) has to be known because the sum of the 

output error and the actual output (neto) equals the Tws. So,  

               (4-3) 

The network’s actual output (neto) is calculated during the feed-forward operation. Equation 

(4-4) shows, in a simple format how this value is calculated. 

              
 
   (4-4) 



- 51 - 
 

Where    is the input value at neuron i and     is the weight value for the connection 

between the input and output neuron.  

The weight value (  ) for each new connection is then determined by dividing the network 

error by the number of new inputs k. Equation (4-5) captures this step. 

     
  

 
   (4-5) 

Where z is the step modifier and determines the degree of precision of the new weight.   

As stated earlier, the target output can be determined by reversing the sigmoid thresholding 

operation that was done at the feed-forward stage.  The in Tws in this case is determined by 

finding the inverse of the sigmoid, as shown in Equation (4-6) 

                                           (4-6) 

Where      is the feed-forward value after the sigmoid thresholding operation.   

The detailed ssdi for a linear network then becomes: 

                                                        
 
       (4-7) 

Where Eo is represented by Tws as shown in Equation (4-6) and neto shown in Equation (4-4). 

This system was found to be able to generalise the correct output immediately after 

receiving expert knowledge, although this capability was restricted exclusively to linear 

relationships (Dazeley, 2007). 

RM with Basic Non-Linear Technique (RMbp) 

To improve on the linear techniques, a system using a multi layered neural network with a 

back-propagation algorithm was introduced. RMbp uses a symmetric sigmoid threshold 

function for the feed-forward process and assigns random weights to new input nodes 

(Dazeley, 2007).  When new hidden nodes are added, all input-to-hidden nodes (IH) 

connections are assigned a small random value, as are the new hidden-to-output node (HO) 

connections. Although at a slow rate, the RMbp system was expected to learn non linear 

relationships.   
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RM with Advanced Non-Linear Technique (RMbpA) 

To address the limitations of the other versions, RMbpA has a number of features that enable 

it to learn faster, generalise non linear relationships and do so without losing already learned 

information.  To conserve currently learned content, the system employs shortcut 

connections from a new input neuron directly to each output node (Dazeley, 2007). The new 

connections are used to support the weight adjustments needed to produce a particular 

output. With the shortcut mechanism, the network is capable of adjusting immediately when 

a new input is added to the network while still retaining previously added information.  

Dazeley (2007) adds that with the shortcut connections, there are effectively two networks; 

the multilayer perceptron for non-linear relationships and the single layer network (shortcut 

connections) for learning linear relationships. Since the ANN inputs are directly connected to 

the indexed MCRDR conclusions, when a new conclusion fires in the MCRDR structure, a 

corresponding input will have to be introduced to the ANN.  When such a new input node is 

added to the ANN, the following adjustments are made depending on the state of the 

network at the time and the settings for the hidden layer size. 

 If a new input is added and no new hidden neurons have to be added; connections are 

added from the new input node to all hidden nodes. The weights of these connections are 

initialised to zero. A new shortcut connection is also added from the new input neuron to 

all output nodes.  The weight for the new input-to output node (IO) connection is 

calculated using the modified ssdi equation for a for a non linear network with a hidden 

layer.  The ssdi* is similar in concept to the ssdi equation (explained earlier) except that 

the network’s actual output (neto) include the weighted sum from the shortcut (IO) 

connections (Dazeley, 2007). So for a non linear network,   

 

                       
 
    

 (4-8) 

 

Where q is the number of hidden nodes and    is the non-linear output at the hidden node 

h.  

The new ssdi* then becomes,  

 

                              
 
    

        (4-9) 

 

Where     is as shown in Equation (4-6). 
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The diagram at Figure 4-3 shows the connections and weight allocations when adding a new 

input and no hidden neurons to a network.  

 

 

Figure 4-3. Dynamic addition of a new input node to an ANN. 

 

 If a new input is added and a new hidden neuron has to be added; new IH connections 

are added from the new input neurons to the old hidden neurons. These connections are 

initialised to zero so that they have no immediate influence on existing generalisations 

(Dazeley, 2007).   New IH connections from all input neurons to the new hidden neurons 

are also added and initialised by random numbers. New HO neurons from the new hidden 

neurons to the output neurons. The connections are initialised to zero (Dazeley, 2007). 

Finally, new shortcut (IO) connections are added from the new input neurons to all 

output neurons and their initial values calculated using the ssdi equation for a non linear 

network shown at Equation (4-9). Figure 4-4 gives a pictorial abstraction of this process. 

 

 

Figure 4-4. Adding a new input and hidden node to an ANN 
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The RMbpA system is an advancement on all the other previously described systems in that it 

learns both linear and non-linear solutions effectively and immediately and can do so 

without disturbing previously learned information (Dazeley, 2007). However, Dazeley (2007) 

cautions that the system may struggle to generalise in a domain where only a few exclusively 

excitatory or exclusively inhibitory inputs fire. This is because currently, the system works 

well when a combination of both excitatory and inhibitory; and a considerably larger size of 

inputs actually fire (Dazeley, 2007).   

RM with Radial Basis Function (RMrbf) 

Developed incrementally like the RMbpA, the RMrbf system was first developed with a basic 

Radial Basis Function (RBF) then later improved to use the Advanced RBF. The earlier version 

was shown to have a good online learning ability and possibly prevent over-fitting by only 

adding hidden neurons when new input nodes are added. The drawback with this system 

was that hidden nodes could not be added for unique patterns and this had a significant 

impact on the system’s ability to learn (Dazeley, 2007).  The latter version, using an advanced 

RBF was aimed at addressing the limitations of the basic version. The new version was 

altered to occasionally add new hidden nodes even when there was no input, thereby 

achieving a faster and better generalisation. One of the main disadvantages of this system is 

that it was reliant on many parameters, many of which were directly related to the system’s 

performance. 

Comparing RM Versions 

Given the range of techniques applied in the RM systems above, a series of tests were 

performed by Dazeley (2007) to determine the best system. The systems expected to 

perform better overall are the latter versions of the non-linear methods and the advanced 

RBF method.  This is because each of these systems is a focused re-development of the 

earlier versions addressing specific limitations in these versions. The tests were categorised 

into two tasks: classification and prediction. Classification measures the system’s ability to 

correctly identify a case’s class and prediction determines the system’s ability to group 

similar cases as well as identify a new class and create a new rule (Dazeley, 2007).   

In the classification tests, RMbpA and RMrbf outperformed the other methods across five 

datasets (Dazeley, 2007).  This was not unexpected, since the advantages of these systems 

over the others were obvious.  Between the two, RMbpA consistently outperformed RMrbf, 

although the latter system marginally posted better results in training (Dazeley, 2007). For 
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prediction, only one dataset was used because the C4.5 simulated experts for the other 

datasets could not be used to determine a form of classification and a class value. Again, it 

was shown that RMbpA and RMrbf were the clear favourites. However, this time, (Dazeley, 

2007) advises that the RBF method may be better for simpler domains with linear 

relationships and that RMbpA would be ideal for more complex domains. Overall, (Dazeley, 

2007) informs that although they occasionally performed well, the RBF methods were 

volatile, inconsistent and dependant on the order of the cases.  

Generally, RMbpA with the RPA indexing showed better results in a consistent fashion and is 

consequently the better RM version. Additional tests comparing RMbpA and an ANN on its 

own further proved RMbpA‘s superiority as the method repeatedly outperformed the ANN in 

all the datasets (Dazeley, 2007). Informed by the methods, tests and results described in the 

previous and current sections, this research adopted the RMbpA system as the best RM 

version and used this configuration for all tests and evaluations used in this project. 

4.3 Ripple Down Models 

 

RDR’s inferencing process also partitions a search space into smaller sub-regions (Prayote, 

2007). It is on this principle that RDM prudence is primarily based. RDM was originally 

developed to be a network intrusion detection system. The system depends on RDR’s 

inferencing processes in which new partitions are created as new rules are added. Exploiting 

this particular feature of RDR and some others, RDM was designed to be an online ID system 

which would detect outliers as the system learnt the network behaviour (Prayote, 2007). The 

system assumes that the partitions resulting from RDR inferencing are homogenous and that 

the data within each partition is uniformly distributed (Prayote, 2007).  The RDM system can 

be dissected into three main components; RDR modelling, Outlier estimation and Final RDR 

classification. The diagram at Figure 4-5 shows a simplified representation of RDM with its 

main components.   
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Figure 4-5. Main components of RDM. The RDM Engine processes a case and passes an SP to the Outlier 

Detector which passes Outlier Indexes to the RDR Engine for final classifications. 

A case is introduced to the system through the RDR modelling component. In this phase, the 

RDR engine retrieves an appropriate Situated Profile (SP) for the case. As in RDR, there is a 

default SP in case none of the available SPs match the current case.  The SP is then passed to 

the outlier estimation components where each attribute value is searched for possible 

outliers. The outlier detection results are passed to the RDR decision base where another 

RDR inferencing process takes place to classify the case as either an anomaly or not. The RDR 

classification is first confirmed with an expert and is stored in the RDR decision base if 

correct. Otherwise, a new SP and a new rule are created for the case (Prayote, 2007). The 

next sections explain RDM’s three components in detail.      

RDR Modelling 

In conventional RDR, after a case is processed, a corresponding conclusion or class is 

returned (see chapter 3 for inferencing in RDR). In RDM, after RDR inferencing, a model is 

returned instead of a class. This model, also called a Situated Profile, contains profiles 

describing each of the attributes matching the current case. For this reason, the method is 

known as the Ripple Down Models. The diagram below shows the main disparity between a 

traditional RDR inference process and an RDM inference process. 
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Figure 4-6. Output of an RDR inference Engine and an RDM inference engine 

 

Each SP is made up of the same number of Profiles as the case attributes. If a dataset has n 

attributes, then each SP will contain n Profiles. The use of Profiles is adopted from general ID 

systems’ Profile modelling classification where a system either defines a normal behaviour 

Profile (Anomaly Detection) or maintains a list of known unacceptable Profiles (Signature 

Detection). A Profile in the RDM context is a behaviour pattern, representing a homogenous 

subspace in the domain data. A homogeneous region of data according to Prayote (2007)’s 

model is uniformly distributed on an interval [a, b] where the probability density function f(x) 

and the cumulative density function D(x) are defined further in the following sections.  

For example, in Prayote (2007)’s application, a Profile consisted of a homogenous pattern of 

network traffic and each Profile represented a particular situation in the network. In his 

network traffic AD system, Prayote (2007) states that the network traffic rises to 5MB per 

minute for 30 minutes on weekdays from 6am and that this could be seen as the “weekday-

6am” Profile (Prayote, 2007). Specifically, each RDM SP was defined by the TimeOfDay, 

DayOfWeek and Season Profiles (Prayote, 2007).  As is typical in RDR rule addition, a new SP 

is added whenever a new situation is identified. If the current case corresponds to a pre 

existing situation, a matching SP is retrieved using the RDR inferencing process (Prayote, 

2007).  The retrieved SP is then passed to the Outlier Estimation module where each Profile 

is screened for anomalies. The next section explains this process. 



- 58 - 
 

Outlier Estimation in RDM 

The SP passed from the RDM Modelling component is analysed by an outlier detection 

algorithm to detect outliers within Profiles. Each Profile is screened by one of two algorithms 

and a binary indication of whether the case’s attribute value for that Profile is an outlier or 

not is returned.  If a Profile models a categorical attribute, the Outlier Estimation for 

Categorical Attributes (OECA) algorithm is used to detect if the case’s value for the attribute 

is an outlier or not. For numerical Profiles, the Outlier Estimation with Backward Adaptability 

(OEBA) method is applied and a binary outlier index is returned for that Profile. For each SP 

of n Profiles, the Outlier Detector (OEBA and OECA) returns a set of n binary indexes 

indicating the status of each of the case’s attributes.  OEBA and OECA are described further 

below.  

Outlier Estimation with Backward Adaptability (OEBA) 

The OEBA algorithm is probability dependant and aims to model a continuous attribute in a 

dynamic environment (Prayote, 2007). The accuracy of OEBA is reliant on the homogeneity 

of a subspace, so the algorithm assumes the following: 

1. All attributes are independent of each other. 

2. Each cluster is homogenous and the data within each region behaves similarly. 

3. Each homogenous region is uniformly distributed on the interval [a, b] and, 

f(x) = 0 for x < a 

 = 1/(b-a) for a ≤ x ≤ b 

 = 0 for x> b  

And     

D(x) = 0 for x < a 

  (x-a)/(b-a) for a ≤ x ≤ b 

  1 for x> b  

Where f(x) is the probability density function and D(x) is the cumulative distributive function 

(Prayote, 2007). 

Given these assumptions, the probability of a value falling into a range [c, d] inside the 

interval [a, b] is,  
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P(c≤ x ≤d) = D(d) – D(c) 

 = (d-a)/(b-a)- (c-a)/(b-a) 

  (d-c)/(b-a) 

   

Where c ≥ a and d ≤ b. 

The function P(c≤ x ≤d) defines the probability of a given range [c, d] for a single point. 

Finding the Range Probability (RPk) for k consecutive independent points, P(c≤ x1≤ d),  P(c≤ 

x2≤ d) and P(c≤ xk≤ d) in the region [c, d] within the interval [a, b] can be calculated as 

follows: 

RPk = P(c≤ x1≤ d) x  P(c≤ x2≤ d) x P(c≤ xk≤ d) (4-9) 

 = (β/α) k                 

     

Where β = (d-c) and α= (b-a). 

Prayote (2007) advises that any point x that lies beyond this interval is not necessarily an 

outlier as it could be a new, previously unseen point. Similarly, it is possible for an outlier to 

be within this region. In a case where a point identified as an outlier is indeed within the 

region, the interval [a, b] can be re-defined as [a, x] if x ≥ b or [x, b] if x ≤ a.  The RPk for k 

objects falling within the sub-region [a, b] is now (β/α) k where α= (x-a) and x ≥ b or (β/α) k 

where α= (b-x) and x ≤ a. The Outlier Estimation algorithm pseudo code based on these 

assumptions is given below:  
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Outlier Estimation 

Let a: the minimum of the range after n observations 

b: maximum of the range after n observations 

x: new observation 

T: the least confidence level at which x is accepted as a 

value of the population 

q: binary indication (0 if not outlier, 1 if outlier) 

q=0 

If x ≥ a and  x ≤ b then 

n= n + 1,  

else if x > b and RP
k
 ≥  T then 

b=x, n= n+1 

else if  x < a and  RP
k
 ≥  T then 

a=x, n= n+ 1 

else 

q=1 //outlier 

end if 

 

After many cases have been observed, outliers are likely to stand out as extremes (Prayote, 

2007). After each Outlier Estimation update, the Backward Adaptability (BA) mechanism 

inspects the updated range and resets the Profile’s maximum or minimum value depending 

on where the outlier was detected. For example, if an outlier was accepted into the model as 

an upper bound, the following cases would all fall within a sub-range such that the previous 

bound will be identified as an outlier. The BA method would then correct the range 

accordingly.  The BA pseudo code is given below: 
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Backward Adaptability 

Let a: the minimum of the range after n observations 

b: maximum of the range after n observations 

x: new observation 

T: the least confidence level at which x is accepted as a 

value of the population  

c: min(x, observed minimum since a was set) 

d: max(x, observed maximum since b was set) 

ka: population within the range after a was set 

kb: population within the range since b was set 

if RP
k
(a, d)< T then 

b= d, kb =0 

end if 

if RP
k
(c, b)< T then 

a=c, ka= 0 

end if 

 

Outlier Estimation for Categorical Attributes (OECA) 

The OECA algorithm is used to detect outliers in categorical Profiles. The algorithm is 

modelled on the following assumptions: 

1. Each attribute is independent of another. 

2. Each attribute is uniformly distributed. This means that the occurrence probability of 

attribute values is equal and observes the function, 

                             
 

 
   (4-10) 

Where v is the number of different observed value. 

 From these assumptions and the geometric distribution function, (Prayote, 2007) deduces 

that the probability of a new value B being seen after k trials where A was seen is, 

      
 

   
    

 

   
     (4-11) 

A measure M is used to specify how well the cases match the Profile. M= 1.0 for seen values 

and when a value is new, then M is the probability of having this value after v different 

values from k observations. This statement is simplified in equation (4-12). 
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M(x) = 1.0 If x has previously been observed  

And   (4-12) 

M(x) = 
 

 

   
    

 

   
   

Otherwise    

 

Prayote (2007) suggests that a new value after a long spell of previously seen values is more 

likely to be an outlier than when new values have been regularly observed. To incorporate 

this aspect, the probability of a new value (M) is compared with the probability of the last 

value to be accepted into a Profile (MA).   The ratio of these probabilities is called as the New 

Value Ratio (NVR) and is given as, 

                     
 

  
    (4-13) 

OECA uses NVR to justify whether a value is an outlier or not. The higher the NVR, the less 

likely it is to be an outlier (Prayote, 2007). If a value is less than a given Threshold, it is 

marked as an outlier. The OECA algorithm pseudo-code is shown below: 

Outlier Estimation for Categorical Attributes 

Let x: an observation 

T: Threshold 

q: binary indication (0 if not outlier, 1 if outlier) 

If M(x)= 1.0 OR 

If NVR > T then 

q=0 

else 

q=1 

end if 

 

RDR Final Decisions 

After the Outlier Detection methods process the SP, a set of binary outlier indexes 

representing each Profile is passed to the RDR knowledge base for a final classification of the 

case. The re-classification of a case is done because OEBA and OECA only assess each 

attribute in isolation and have no way of conclusively determining if a case is an anomaly or 

not. Prayote (2007) explains that although each case may have more than one attribute, 

some individual attributes may be more important than others and this is why an additional 
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RDR inferencing will give an expert a chance to justify a conclusion based on particular 

attributes. The second RDR knowledge base also allows the expert to confirm or correct 

OEBA/OECA results, hence reducing false positives. If a conclusion was found to be wrong, 

the expert defines a new situation and a new SP and corresponding rule are added to the 

appropriate KBs (Prayote, 2007).    

4.4 MCRDR based RDM 

 

The RDM system described earlier uses a single classification RDR method in both the 

Situated Profile KB and the final decisions KB. This research introduced two main changes to 

the approach used by (Prayote, 2007).  First, a multiple classification RDR KB was used for 

the Situated Profiles. This was done primarily to enable the system to handle both single 

classification and multiple classification problems. The other rationale for using an MCRDR-

SP-KB was informed by (Richards, 2009)‘s work showing that even for single classification 

domains, MCRDR produced a more compact KB with fewer redundancies than single class 

RDR.   

The second modification to the original RDM was the use of OEBA/OECA as a complementary 

classifier to MCRDR rather than as a preliminary outlier detector incapable of classifying a 

case. In Prayote (2007)’s design, OEBA/OECA’s output is further processed by an RDR engine 

where the final decisions are made. In this project, a set of binary indexes for each SP were 

summed and if the aggregated outlier index was above some threshold, the case was 

classified as an anomaly. The outlier detection methods (OECA/OEBA) were used in a similar 

manner as the ANN in RM, where the systems effectively produce two classifications; the 

MCRDR classification and the outlier detector (ANN/OEBA /OECA) classification.   

The primary difference between single class RDM and multiple classification RDM is the 

MCRDR knowledge engine. Instead of producing a single conclusion for any input as in single 

Class RDM,   the multiple classification RDM knowledge is capable of multiple conclusions 

hence multiple Situated Profiles if necessary.  The modification to change single class RDM to 

MC-RDM was hence enabled through the use of a MCRDR knowledge engine, developed as 

part of the Ballarat Incremental Knowledge Engine (BIKE) project (Dazeley, Warner, Johnson, 

& Vamplew, 2010). With an MCRDR engine, the SP-KB could then be modified to produce 

more than one SP at a time when needed. The second section of chapter 6 (i.e. 6.2) provides 
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results on the comparisons of Prayote (2007)’s single classification RDM and the multiple 

classification RDM developed by this project.   

4.5 Integrated Prudence Analysis 

 

Integrated Prudence Analysis (IPA) is a novel prudence method proposed, developed and 

evaluated in this thesis. IPA is an attempt to combine an attribute based prudence method 

(MC-RDM) and a structural based prudence method (RM).  Attribute based prudence 

techniques’ warning mechanisms are dependent on the presence or absence of particular 

values of case attributes. For a warning to be issued, a case’s attributes are compared to 

similar cases in the KB and if the case is determined to have (or miss) the necessary 

attributes then a warning is given (Dazeley & Kang, 2008). Structural based prudence learns 

the paths traversed during inferencing and decides whether a warning is necessary or not 

given a path’s novelty and consistency with previously traversed paths.        

The combination of these approaches is anticipated to take advantage of the supplementary 

rule path context extraction of RM and partition based outlier detection methods of MC-

RDM. It is hoped that combining the principally opposite methods will eliminate the inherent 

limitations of using each method individually. RM’s impressive results are dependent on the 

method’s extraction of hidden contexts within the inference rule paths which enhance a 

classifier’s learning of a domain. Similarly, the segmentation of a domain into homogeneous 

partitions before applying an outlier detection algorithm gives MC-RDM its performance 

advantage. The strength of IPA, is therefore anticipated to be in the unison of the two 

methods rather than in some other configuration. This project proposes three combination 

strategies of RM and MC-RDM; IPAOR, IPAAND and IPAANN.  The diagram at Figure 4-7 illustrates 

an overview of the IPAOR /IPAAND architecture.   
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Figure 4-7. The IPAOR /IPAAND system. The final Secondary Classifier output is either the AND or OR result of the 

ANN output and the aggregated Outlier Index from OEBA/OECA. 

The IPAOR /IPAAND is a fairly simple method, combining RM’s ANN output with the MC-RDM’s 

aggregated outlier index through an AND or OR connection. The method is a generic 

connection of RDM and MC-RDM to an MCRDR engine. The slight difference in IPAOR /IPAAND 

is that a single MCRDR engine serves both the OEBA/OECA outlier detectors and the ANN. 

The indexing of rule paths (for the ANN) and the creation of SP’s (for the outlier detectors) is 

generated from a single MCRDR engine. Each time a new MCRDR rule is added, a new SP is 

created and a new ANN index is generated. The effective output of the complementary 

classifier can either be the AND or OR result of the ANN index and the OEBA/OECA 

aggregated outlier index.  

The IPAANN is slightly more complicated than the IPAOR /IPAAND. In IPAANN, the aggregated 

outlier index from the MC-RDM outlier detectors is combined with the MCRDR indexes and 

fed into the ANN. The idea behind this combination was to see if feeding the MCRDR hidden 

context (indexed MCRDR outputs) and the MC-RDM aggregated outlier index straight into an 

ANN would result in the ANN being a better classifier than the ANN in RM or the MC-RDM 

outlier detectors. The only difference between the two ANNs is that the ANN in the IPAANN 

takes the aggregated outlier index as its additional input. Other settings and configurations 

are as described in RDM and RM. Figure 4-8 shows the structure of the IPAANN. 
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Figure 4-8. A generic overview of the IPAANN system. In this approach, the ANN input combines output from the 

rule path indexes and the aggregated outlier indexes from OEBA/OECA. 

In RM, the ANN’s input exclusively comprises MCRDR rule path indexes. In IPAANN, these 

indexes are added to the aggregated outlier index from MC-RDM’s outlier detectors. The 

additional input from MC-RDM could boost the ANN’s classification and learning ability. The 

indexing of MCRDR rule paths and generation of SP’s in IPAANN is the same as in IPAOR /IPAAND. 

The differentiating feature of IPAANN is that the ANN input includes MCRDR rule path indexes 

and MC-RDM’s aggregated outlier index.  

Combining RM and RDM is expected to leverage the strengths of RM and RDM and thereby 

eliminate some of the systems’ individual vulnerabilities.  The strategic combination is also 

anticipated to take advantage of the supplementary rule path context extraction of RM and 

partition based outlier detection methods of MC-RDM. The ANN component is meant to 

extract any additional context there may be from paths of fired MCRDR rules while the OEBA 

and OECA components screen attribute inconsistencies to detect probable outliers. These 

strengths, combined with other inherent advantages of the RDR methodology over 

conventional knowledge bases is justify IPA as a potentially strong system. The three IPA 

versions were tested across eight public and private datasets and a full analysis of the tests 

and evaluations is discussed in chapter 6.         
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4.6 Chapter Summary 

 

This chapter presented a detailed analysis of the two successful prudence methods to date; 

RM and RDM. The structure and operation of each method was also explained in full 

including the redevelopment of the original single class RDM to a multiple classification RDM 

or MC-RDM. The chapter concludes with an introduction and analysis of IPA, a new 

integrated method combining elements of both RM and RDM.  IPA combines two different 

approaches to prudence; structural based approaches and attribute based approaches. The 

different variations of IPA were given along with what each variation was intended to 

achieve. The next chapter introduces and describes the overall methodology applied in this 

project including the evaluation metrics and the datasets used to compare and rate the three 

systems.  The chapter explains the need for simulated experts and how they were used to 

test the three systems.  
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5. Methodology 

5.1 Introduction 

 

The previous chapter gave a detailed analysis of RM and RDM and introduced IPA as a 

merger of the two prudent methods. The different configurations of IPA were also discussed 

at length. This chapter explains the methodology used to evaluate and compare the three 

prudent RDR methods. The chapter surveys a few general KBS evaluation approaches 

highlighting the strengths and limitations of each approach. In the later sections of the 

chapter, the discussion is narrowed down to specific RDR evaluations with a focus on how 

they will be applied in this project. The chapter explains the use of Simulated Experts to 

enable faster, repeatable tests. A full description of the datasets used in this project is also 

given. The chapter then explains the specific evaluation metrics used in this project: class 

accuracy and prudence accuracy and their relevance in assessing and comparing prudent 

RDR methods. 

5.2 The Need for KBS evaluation 

 

Knowledge-Based Systems (KBS), like other systems need to be evaluated before 

deployment into the systems’ intended domain. A 1993 journal article advised that at that 

time KBS were being evaluated at three critical points: during design to measure the degree 

of performance at a particular stage of development; after a KBS has been completed to 

match the desired behaviour with the actual behaviour; and also when different 

implementations are proposed to compare the two methods (Guida & Mauri, 1993).  A 

technical report published the same year (Grogono, Preece, Shingal, & Suen, 1993) 

summarised that evaluation is done primarily to check if the KBS does what it is meant to do. 

Over five years later, a research paper published a KBS evaluation approach whose objective 

was to improve the system’s performance by revealing its strengths and weaknesses 

(Lippmann, et al., 2000).  

There is a range of specific and organisation-relevant purposes for evaluating a KBS but 

usually the greater objective includes determination of the system’s actual performance 

against the specified performance. Similarly, there exists a variety of evaluation methods for 
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KBS, the algorithms they employ and their Knowledge Acquisition (KA) techniques. Some of 

these evaluation approaches are discussed in the following section.   

5.3 Evaluation Metrics for KBS 

 

Apparently, a weakness in some evaluation methods of KBS is that they do not give an 

explicit measure of a KBS’s power and complexity. Furthermore, these methods are rarely 

packaged into independently usable packages (Salim, Villavicencio, & Timmerman, 2003). A 

journal article published in 2003 (Salim, Villavicencio, & Timmerman, 2003) applies the 

Function Point Analysis (FPA) method as an evaluation basis for comparing KBS for use in 

industrial applications. FPA is conventionally used to measure the accuracy and user 

friendliness of a software package. In FPA, specific features of a software application are 

assigned numerical values representing their degree of merit or lack-of.  Each feature’s value 

is then multiplied by an assigned weight and the sum of all features’ values is obtained and 

scaled to a small range, usually 0-5 (Salim, Villavicencio, & Timmerman, 2003).  This value 

corresponds to the software package’s level of accuracy and user friendliness.  An illustration 

on the use of the FPA’s direct method is shown in the following example.  

To complete the assessment the questions shown at Figure 5-1 are answered within an 

appropriate category shown in the assessment matrix at Table 5-1 (Salim, Villavicencio, & 

Timmerman, 2003).  
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Figure 5-1. FPA questions to determine accuracy and user-friendliness of a Knowledge-based system 

Each True or False question listed above is represented by its corresponding number in Table 

5-1. Using these questions, the matrix in the table is completed. The user (assessor) assigns a 

value between 0 and 5 in the Assessment column of each corresponding question. In this 

metric, 5 represents True and 0 represents False and the user can assign any number within 

the range depending on their assessment of the system. The product of the specified weights 

and the assessment level are then calculated for each row.  The values shown in the table 

are an assessment for the MP2 software as evaluated in Salim, Villavicencio & Timmerman, 

(2003).  
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Category Question Assessment (A) Weight (W) W x A 

Answer Correctness 1 5 2 10 

2 5 2 10 

3 5 2 10 

4 5 2 10 

Answer Accuracy 5 5 2 10 

6 5 2 10 

7 5 2 10 

Reasoning Technique 

Correctness 

8 5 1 5 

9 3 1 3 

10 5 1 5 

Sensitivity 11 5 1 5 

Reliability 12 5 1 5 

13 5 1 5 

Cost Effectiveness 14 5 1 5 

15 5 1 5 

16 1 1 1 

Limitations 17 5 1 5 

18 4 1 4 

19 0 1 0 

Results  Sum(W x A)/ 26 4.54 

Table 5-1. FPA assessment matrix 

The final rating ranges from 0 to 5, where 0 represents an unsatisfied user and 5 corresponds 

to a satisfied user. The MP2 software according to this assessment is reasonably accurate 

and quite user friendly as proven by its overall assessment level.   

The FPA approach as applied in this context is subjective and cannot guarantee consistency 

of the final assessment rating.  However, the weighted averaging provides an effective 

mechanism of smoothing differences between users. For example, if a different user totally 

disagreed that the procedure of getting the answer was simple and clear, and consequently 

awarded a value of 1 instead of 5 for question 7, this would result in an assessment sum of 

110, a reduction of 8 from 118.  In the final rating the new assessment translates to a rating 

of 4.23, a drop of 0.3 from the original rating. On the issue of subjectivity, Salim, 

Villavicencio, & Timmerman (2003) counter that the results still provide a useful scale for 
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comparing KBS and that the usefulness of the approach in comparing two relevant KBS is 

justified. For example, in a situation where a company may want to place more priority on a 

particular aspect of the KBS (e.g. cost effectiveness), the relevant metric in Table 5-1  (cost 

effectiveness) will be allocated an appropriate weight to reflect the respective significance 

attached to the metric. 

Evaluating KBS involves two main activities according to Grogono et al (1993); verification 

and validation (V & V). Verification detects internal inconsistencies in the Knowledge Base 

(KB) and Validation checks that the system’s actual behaviour is as specified in the design.  In 

Grogono et al (1993)’s approach, evaluation is divided into two aspects, where verification 

checks for the KB’s compliance with certain syntactic principles and validation checks if the 

system satisfies the specification requirements. The expertise in a KB may not always be 

perfect. In some case, a KB may contain omissions1, unwilling misrepresentations or errors of 

the expertise. Verification in Grogono et al (1993)’s approach checks for these omissions. 

There are four kinds of omissions identified: ambivalence, circularity, redundancy and 

deficiency.  

Ambivalence in a KB indicates a semantic constraint within a set of inferred final conclusions. 

For example, given that in a knowledge-base, conclusions {D, F} are a semantic constraint. If 

input A leads to conclusions B, D and F produced by rules 1, 3 and 4, then these rules are 

ambivalent because some elements of the output {B, D, F} are semantic constraints. This 

usually results from incompatible views by experts or mistakes during KA. Circularity exists in 

the KB if for some condition there is an indefinite firing of the rules. Grogono et al (1993) 

adds that although it indicates a problem with the KB, some inference engines are able to 

avoid rules that cause indefinite looping. Redundancy occurs when the exclusion of a rule 

from a KB has no effect on the conclusions of the inference engine. Although inefficient at 

times, redundancy is often accepted if the redundant rule does not contradict another.  A KB 

is called deficient when no conclusion is made for a particular condition. Conventionally, a KB 

should be able to produce a conclusion from every input. The conclusion may be wrong, or 

the input may be beyond the KB’s current expertise but some conclusion is expected all the 

same. The verification part of Grogono et al (1993)‘s evaluation approach checks for these 

omissions and alerts the knowledge engineer.   

                                                           
1
 Omission is used instead of ‘anomaly’ in the original text to avoid confusion with anomaly as described 

in Chapter 2.   
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Validation ensures that the KBS complies with the specification requirements (Grogono et al, 

1993). In most cases, this involves comparing the system with a human expert.  Grogono et 

al (1993) concurs with the general notion in KBS literature (Gupta, 1991 ) that validation is 

two-fold; comprising Laboratory and Field validation.  Laboratory validation measures the 

system’s performance in a development environment, with developers supplying test cases 

(Grogono et al, 1993). Such tests are usually conducted to refine the system for deployment.  

According to (Grogono et al, 1993), Laboratory validation usually reveals KB related 

problems. Field validation is conducted with real users who were not involved in the 

development of the system. Usually, tests are conducted on a synthetic problem although in 

some cases, real problems are used.  Most problems revealed in Field evaluation are 

interface-related (Grogono et al, 1993). 

The V & V approach of Grogono et al (1993) presents a good approach to checking and 

ensuring the quality of a KBS. Validation uncovers undesirable omissions within the KB and 

Verification checks if the system works according to plan. The obvious limitation with this 

approach is its lack of an aggregate rating to indicate a degree of quality or satisfaction. 

Consequently, this approach may not be suitable for comparing KBS or determining which 

KBS is better than another. 

Lippmann et al (2000) introduces Receiver Operating Characteristics (ROC) as an evaluation 

mechanism for Intrusion Detection (ID) systems. As detailed in Chapter 2, most ID systems 

are some type of a KBS.  In Lippmann et al (2000)‘s paper, the six ID systems used in the 

evaluation include three KBS. This effectively means that the ROC method was used to 

evaluate KBS and this is what earns the method its discussion in this context. The ROC 

method analyses differences between a KBS false alarm and detection rates and have 

traditionally been used as a way of visualising classifiers’ performances (Fawcett, 2003). 

Some of the applications of ROC graphs are in signal detection theory to show classifiers’ hit 

and false alarm rates; they are also used in the medical industry for diagnostic testing 

(Sweets, Dawes, & Monahan, 2000; Centor, 1991). The ROC analysis has been used in 

machine learning from as early as 1989 when ROC curves were used to evaluate algorithms 

(Spackman, 1989).  

In Lippmann et al (2000)’s ROC approach, a threshold is determined to distinguish the 

detection accuracy and false alarm rates of acceptable and ‘unusable’ systems. For these 

particular tests, systems with more than 100 false alarms per day were regarded as 

unusable. To conduct the evaluation, KBS were initially provided with training data for seven 



- 74 - 
 

weeks.  Each day, the systems received a dataset of around 287000 cases. After that, the 

systems were tested for two weeks and their detection accuracies and false alarm rates 

recorded.  ROC curves were then plotted for each system, showing the correct detection rate 

versus the number of false alarms per day. The diagram at Figure 5-2 shows a sample ROC 

curve from one of Lippmann et al (2000)‘s evaluations.     

 

Figure 5-2. ROC curves for 4 systems, 3 of which are KBS. The highlighted area represents high detection rate 

and low false alarms. 

The highlighted region (top left part of graph) corresponds to a detection rate of 50% or 

more and around 10 false alarms or less per day. Systems whose ROC curves pass through 

this region were considered good for the evaluations conducted in Lippmann et al (2000). 

Although Lippmann et al (2000) advise that this particular evaluation is not to compare 

individual systems, it can be inferred that the best system in this scheme would have its 

curve furthest to the left and closest to the top. The method has an added advantage of not 

being exclusively applicable to a single class of systems. However, the applicability of ROC to 

KBS evaluation may be limited by its disregard for KB integrity checking mechanisms, such as 

verification in Grogono et al (1993)’s approach. Despite that fact the Lippmann et al (2000) 

advises against it, ROC could be a good approach to comparing individual KBS accuracy and 

false alarm rates.  
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The evaluation method of Gholamreza & Schnabl (1997) presents a slight deviation from the 

approaches analysed in the previous sections. Instead of evaluating the KBS directly, 

Gholamreza & Schnabl (1997)’s method determines the worth of the KBS by evaluating the 

Data Mining (DM) algorithm(s) used in the system. DM is the process of identifying valid, 

potential useful patterns (in data) which can be used to predict future outcomes (Senator, 

2009). DM is a component of Machine Learning and enables the discovery of pattern, models 

and relationships; collectively known as knowledge (Mihaela, 2006). Some of the techniques 

of DM include decision tree induction, rule induction, ANN, Support Vector Machines and 

many more (Mihaela, 2006). Some of these techniques are used in KBS such as the ones 

developed in this project. In this context, this is why evaluating these techniques is as 

essential as evaluating the KBS on which they are applied.  

The method proposed by Gholamreza & Schnabl (1997) extends the concept of Data 

Envelopment Analysis (DEA) for application in evaluating DM algorithms. Gholamreza & 

Schnabl (1997) highlight a lack of objective metrics for evaluating both positive and negative 

characteristics of a DM algorithm. The DEA variant suggested by Gholamreza & Schnabl 

(1997) combines a KBS algorithm’s advantages and disadvantages into an evaluation metric. 

The DEA concept was adapted from Charnes, Cooper & Rhodes (1978) and was originally 

used to develop a ranking system for Decision Making Units (DMU).  In Gholamreza & 

Schnabl (1997)‘s approach, each DMU is represented by a DM algorithm.  In DEA, an 

algorithm’s positive property (advantage/strength) is called an output component and a 

negative property (weakness) is called an input component (Gholamreza & Schnabl, 1997).  

For example, a typical output component can be the algorithm’s accuracy rate and an input 

component can be the algorithm’s training time. Output components generally have higher 

values and input components have lower values (Gholamreza & Schnabl, 1997).  The 

efficiency of the algorithm (and indirectly the KBS) is then defined as the sum of weighted 

output components over the sum of weighted input components, represented 

mathematically in Equation 5-1.  

                    (5-1) 

where    is a weighted output component and    is a weighted input component.  

The determination process of the component’s weights is not systematic and is determined 

by the evaluator at the time (Gholamreza & Schnabl, 1997).  This is a limitation 

acknowledged by Gholamreza & Schnabl (1997) who add that it is often difficult to award 
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objective weights. The most efficient algorithm according to DEA is one with the higher 

efficiency. The inclusion of a KBS algorithm’s strengths and weaknesses into a combined 

efficiency metric is a good approach to comparing algorithms. Although there is a way 

around it, the subjectivity of components weight distribution remains a drawback to this 

approach as used in Gholamreza & Schnabl (1997).  

 A host of other approaches to evaluate a range of KBS in different application domains exist. 

Some evaluations are specific to a domain and some are generic and can be customised to 

any area of application. For example, Guo, Pan, & Heflin (2004) propose an evaluation 

scheme for KBS in large Web Ontology Language (OWL) applications using a modified version 

of the Leigh University Benchmark (Guo, Heflin, & Pan, 2003).  In Guo, Heflin & Pan (2003)’s 

tests, four KBS were evaluated according to an extended model of the Leigh University 

Benchmark. However, the method does not provide a metric to rank or compare one KBS 

from another. Another application-specific evaluation approach for KBS is briefly discussed 

by Senator (2009). The approach is not methodically elaborated but briefly discussed as a list 

of metrics essential in evaluating DM applications in security KBS. Some of these metrics 

include undetected attacks and wrongly classified non-attacks. Senator (2009) adds that 

other metrics should consider whether the system is better detecting major threats 

frequently or minor threats less frequently. Another class of metrics should determine the 

rate of detection of new threats (Senator, 2009).      

All of the evaluation methods presented above are useful in some aspect. Each approach has 

a particular strength based on the aspect of evaluation it targets such as the KBS algorithm, 

KB and output. Obviously each evaluation approach suits the KBS it was designed for (or 

tested on), so it may be hard to adapt some approaches to some other KBS. It would be 

desirable to combine some of these methods into a single evaluation approach that 

compares and ranks KBS based on multiple aspects including KB integrity, algorithm, output 

accuracy, usability and other important features.  This method can then be packaged into a 

flexible software that can handle a wide range of KBS as advised by Salim et al (2003).   

5.4 Evaluation in RDR KBS 

 

The RDR methodology eliminates most of the limitations of other Knowledge Acquisition 

(KA) methods such that some evaluation methods targeting these limitations in conventional 

KBS are not relevant for RDR KBS. Consequently, most RDR evaluations (Dazeley, 2007), 
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(Prayote, 2007; Dazeley, Park, & Kang, 2011) have consistently used a simulated setup.  The 

idea of simulating expertise to test RDR KB’s stems from the fact that recruiting human 

experts for the same job would be both costly and time consuming (Compton, Preston, & 

Kang, 1995). Also, a simulated environment would allow for multiple, faster and more easily 

controllable tests (Compton & Cao, 2006). A Simulated Expert (SE) is a KBS used as a source 

of expertise in assessing a KA tool.  In RDR, the KA method being trained or assessed acquires 

its knowledge from the SE (Compton, Preston, & Kang, 1995). As highlighted, the main 

advantage of simulated expertise is faster and flexible development and evaluation of KA 

methods (Compton, Preston, & Kang, 1995). The other advantage to use simulated expertise 

is the possibility of repeating tests and the consistency of simulated experts compared to 

human experts. Although machine learning derived rule traces do not strictly resemble 

human expertise (Cao & Compton, 2005), the ability to control variables and complete 

multiple tests in a short time gives SE a reasonable advantage and provides a good 

alternative to human expertise. 

One of the latest methods of evaluating RDR based KBS is by Beydoun and Hoffman (2013) 

and Finlayson and Compton (2013).  Beydoun and Hoffman (2013) propose an approach that 

essentially integrates knowledge acquisition with evaluation. In this, approach, instead of 

evaluating the KBS against a set of test cases, the knowledge acquisition process is 

monitored and the effectiveness of newly added rules is determined using a statistical 

analysis method (Beydoun & Hoffman, 2013).  The statistical analysis component tracks the 

key parameters during knowledge acquisition and evaluates the coverage and accuracy of 

newly added rules. The proposed approach replaces the traditional knowledge evaluation 

task after a KBS is developed by a knowledge tracking during knowledge acquisition. The 

approach by Finlayson and Compton (2013) involves a separate KBS being built 

simultaneously with the RDR KBS but using a different learning technique. Each time the two 

knowledge bases differ on a case, then an expert checks each of the KBSs and makes 

relevant corrections (Finlayson & Compton, 2013).    

The idea of run-time validation proposed by Finlayson and Compton (2013) is based on the 

premise that as KBS gets more complex, it is unlikely that the KBS will be completely 

validated against all cases. Beydoun and Hoffman (2013) argue that the proposed approach 

would require less training and testing data than the simulated expert and that rather than 

leaving evaluation to the end, the approach combines maintenance with evaluation. The 

paper asserts that the new approach may be potentially cheaper because an expert would 
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only be engaged when is strictly necessary.  Although the idea seems viable and potentially 

effective, it was not applied to this research for two main reasons; first, one of the primary 

contributions of this research was to comprehensively evaluate RM and RDM using a 

conventional and familiar RDR approach. Using the new approach would have weakened the 

relevance of these comparisons relative to other past RDR performance evaluations.  

Secondly, the proposed method was published when the rigorous testing process of this 

research had already been completed. Repeating evaluations using this approach would have 

been a massive task and would have taken much longer to complete all tests. A simulated 

expert was therefore used for all evaluations in this project. 

When building a KBS, a SE can be used as a source of expertise for the new KBS. With RDR 

being an incremental knowledge addition method, the new KBS will typically only have a 

default rule at the start and will incrementally add new rules (from the SE) to match 

incoming data. The default rule will be returned initially when the KBS has no other rules and 

later on when none of the available rules match the current case. When a case is introduced 

to the new KBS, the default rule fires and returns some dummy conclusion. Meanwhile, the 

same case is fed to the SE, which will return the correct conclusion.  The new KBS’s 

conclusion is then compared to the SE’s conclusion. If the two conclusions match, then the 

new KBS is assumed to have the right rule for the case. If the conclusions do not match, the 

rule(s) fired by the SE are added to the new KBS to correspond to the current case. The 

process is repeated until the new KBS matches the SE or until the new KBS has learnt all the 

rules from the SE. This will obviously depend on whether the training data covers all the rules 

in the SE. An abstracted process for developing a new KBS using simulated expertise is shown 

below, adapted from Cao & Compton (2005).       

Algorithm 5-1 

1. Accept a new case. 

2. Evaluate case against new knowledge base. 

3. Evaluate case against SE and get a rule trace. 

4. If the KBS conclusion does not match SE conclusion, then add rule (or rules) to new KB 

to correspond to new case 

5. Go to step 1 for next case.  

 

Simulated expertise can also be used in a similar manner to evaluate the accuracy of a KBS 

after its development. The difference in using an SE in evaluation is that there are no rule 
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additions to the assessed KB; instead, the assessed KB’s conclusion is classified as either a 

True Positive or True Negative if the conclusion matches the SE’s conclusion. When the SE 

and KBS have contradictory conclusions, the KBS’s conclusion is classified as either True or 

False classification.  The following process summarises the generic steps involved in 

evaluating a KBS using a SE. The generalised pseudo-code given below applies for both binary 

and non binary datasets.  

Algorithm 5-2 

1. Accept a new case. 

2. Evaluate case against assessed KB. 

3. Evaluate case against SE. 

4. If the case is correctly classified (If SE conclusion matches KBS): 

 Increment True Classifications (TC) 

5. If the case is not correctly classified (If SE conclusion does not match KBS): 

 Increment False Classifications (FC) 

6. Go to step 1 for new case. 

 

To evaluate the accuracy of a KBS during development, the following process is used.  This 

same generic process was used in evaluating the RM, RDM and IPA systems discussed in 

depth in chapter 4. The process is used in the online evaluation of other RDR KBS (Compton, 

Preston, & Kang, 1995). 

 

Algorithm 5-3 

1. Accept a new case. 

2. Evaluate case against assessed KB. 

3. Evaluate case against SE. 

4. If the case is correctly classified (If SE conclusion matches KBS): 

 Increment True Classifications (TC) 

5. If the case is not correctly classified (If SE conclusion does not match KBS): 

 Increment False Classifications (FC) 

 Add rule (or rules) to new KB to correspond to new case 

6. Go to step 1 for new case. 
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5.5 Creating a Simulated Expert 

 

Usually, a Simulated Expert represents a complete version of the KB being built or a version 

faultless enough to be used as a benchmark against another knowledge-base system. Most 

RDR SE’s were built by induction from a range of datasets using a learning algorithm 

including C4.5, InductRDR and See5 (Compton, Preston, & Kang, 1995; Maruatona, Vamplew, 

& Dazeley, 2012). For each SE, a corresponding dataset is first run on a machine learning 

algorithm to get a set of induction rules or a decision tree covering the dataset. To ensure 

that the SE is perfect and does not introduce conflicting rules into the KBS, any cases 

incorrectly classified in the machine learning decision tree or rule set can be removed so that 

every case in the dataset is correctly classified and covered by at least one rule in the rule 

set.  

Another approach to specifying levels of expertise in a SE is detailed in (Compton, Preston, & 

Kang, 1995) where the smartest expertise involves selecting the top four conditions from the 

intersection between the SE rule traces and the difference list for the current case. The next 

level of expertise involves choosing a single condition from the intersection of the SE rules 

and the case’s difference list and the lowest level of expertise (Dumb expert) selects all 

conditions from the case’s difference list without reference to the SE’s rules (Compton, 

Preston, & Kang, 1995).  The use of varying levels of expertise in Compton et al (1995)’s work 

was to determine the effect of smart and dumb experts on the size and accuracy of the KBS 

being built. It was found that dumb expertise resulted in larger knowledge bases than smart 

experts and that RDR knowledge bases were not necessarily larger than machine learning 

knowledge bases as had been initially thought. The results also affirmed initial propositions 

that the smart expert produced a system with fewer errors than the dumb expert.  

For this project, SEs of varying levels of expertise were built from See5 (Rulequest, 2012) 

decision trees. Some SEs were constructed from induction rules but were found to be slower 

and generally less accurate than their decision tree based counterparts.  An induction rule SE 

took longer to add a rule to a developing KBS because each SE rule condition was compared 

to a case’s difference list before the final rule could be constructed and added to the 

developing KBS. If only a few of the SE’s rule conditions were compared to the difference list, 

the added rules tended to be more general and required the addition of more rules and 

eventually resulted in the same general rule firing for many cases, sometimes wrongly. In the 

end, the use of induction rules was found to result in a less accurate MCRDR engine than 
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decision trees. Comparisons were made between a decision tree SE and an induction rule SE. 

In each of these comparisons, the decision tree based SE built a more accurate KBS than the 

induction tree SE. A similar trend is reported by Compton et al (1995) who noted that C4.5 

and Induct/RDR produced a more accurate KB than the normal induct method on its own. 

Figure 5-3 shows the decision tree and induction rules returned by See5 from the iris (UCI, 

2012) dataset.  

 

Figure 5-3. See5 decision tree (above dotted line) and induction rules from the iris dataset. 

Table 5-2 below shows the MCRDR accuracies for two KBS built from a decision tree SE and 

an induction rules SE. The accuracy in this setup is simply the classifications the MCRDR 

engine got right, i.e. the number of correct classifications/total number of cases. The 

preliminary comparison of RDM and RM published in Maruatona, Vamplew, & Dazeley 

(2012) used induction rules simulated experts for all datasets, but subsequent tests, 

including the tests on which the results reported in chapter 6 are based on, used decision 

tree based simulated experts.  
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Dataset Induction rules Accuracy Dec. Tree Accuracy 

Physical dataset 54% 81% 

Car Evaluation  61% 88% 

Table 5-2. MCRDR accuracy after learning from a See5 decision tree and induction rules SE. 

  

5.6 Evaluation Metrics 

 

Simple Accuracy/ Classifier Accuracy 

The classifier accuracy (or simple accuracy) determines the system’s ability to correctly 

classify a case. Dazeley (2007) calls this metric classification and defines it as the classifier’s 

ability to correctly identify a case’s class/group.  The confusion matrix for simple accuracy 

uses two measures: True Classification (TC) and False Classification (FC), evaluated as 

follows: 

 TC: Assigned to a case if the system correctly classified the case  

 FC: Assigned to a case where the system failed to pick the right class 

  

After the measures have been recorded, a system’s simple accuracy is calculated as a 

proportion of the system’s correct classifications (TC) on the whole dataset. The formula for 

simple accuracy is given by Equation (5-2): 

                   (5-2) 

The ultimate objective of evaluating most systems is to determine how precise they are in 

predicting correct domain cases. This effectively means finding how effective a system is at 

picking correct classifications or giving correct answers. In a similar sense, comparing 

systems aims to find which has the highest accuracy over a number of domains. Learning 

systems such as RDR depend on the expert (simulated or human) for training.  

In this project, the concept of Relative Accuracy (RA) is introduced whereby a system’s RA is 

its accuracy as a proportion of the expert’s accuracy.  This impact of SE accuracy on a KBS 

accuracy has been previously used in RDR evaluations where a system is trained with 

simulated experts of various levels of expertise (Kang, Compton, & Preston, 1995).  Given the 
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use of simulated experts of varying expertise, it is logical that the training system’s ultimate 

accuracy will be influenced by its expert’s competence level. This is affirmed by tests 

conducted by Kang, Compton & Preston (1995) using three levels of expertise. These tests 

showed that the clever expert produced a system with fewer errors than the stupid expert. 

In one dataset, the difference between the two systems error rates in testing was more than 

10% (Kang, Compton, & Preston, 1995). For the tests in this thesis, RA measures the system’s 

accuracy relative to the accuracy of the training SE.  The formula for Relative Accuracy is 

defined like so:  

                (5-3) 

where      is the system’s accuracy (Acc) and       is the SE’s accuracy.       

Prudence Accuracy   

For prudence evaluations, the confusion matrix incorporates the warnings and whether they 

were issued at appropriate times. The following measures were used to evaluate individual 

RM and RDM predictions and are similar to the measures which the original inventors of RM 

and RDM (Dazeley, 2007; Prayote, 2007) used in their evaluations of the systems: 

 FP: assigned to a case if the system produced a warning incorrectly.  

 FN: assigned if a warning was required but the system failed to do so.  

 TP: assigned to a case if a warning was produced correctly.  

 TN: assigned to a case if the system did not produce a warning when it was not 

supposed to.  

Simple accuracy has often been criticised for excluding class proportions and therefore not 

capturing the whole essence of the classifier’s performance (Metz, 1978; García, Mollineda, 

& Sánchez, 2009). A typical illustration of this limitation is demonstrated in a faulty malware 

detection system where the system classifies all its 100 input files as benign by default. Given 

that six of the 100 files are actually malicious, the system would be rated as 94% accurate 

according to the simple accuracy metric, despite the defective classification component. In 

such a situation, a system could classify all cases as normal and potentially be given a high 

accuracy rating without actually detecting any frauds. This is potentially problematic in fraud 

detection especially where the data is known to be skewed with fraudulent cases comprising 

an average of less than 30% of the data (Phua, Lee, Smith, & Gayler, 2005; Phua, Alahakoon, 

& Lee, 2004). It has been suggested that accuracy should incorporate the classifier’s rate of 
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positive and negative detections to avoid unbalanced performance ratings on skewed 

datasets (Metz, 1978). To this effect, two metrics; Specificity and Sensitivity are introduced.  

Sensitivity or recall is the classifier’s rate of detection of positive cases. Sensitivity has also 

been defined as the accuracy of positive cases or the proportion of correctly detected 

positive cases (Metz, 1978). For a prudence system, sensitivity can be viewed as measuring 

the accuracy of the system’s warning mechanism since each TP corresponds to a correctly 

issued warning. Similarly, Specificity determines the classifier’s rate of detection or the 

proportion of correctly detected negative cases. For prudence systems, Sensitivity 

corresponds to the instances when a warning was not necessary and the system correctly 

issued none. The formulas for Specificity and Sensitivity are given below: 

   
  

  
   and    

  

 
   (5-4) 

Where P is the number of all actual positive cases and N is the number of all negative cases. 

Se and Sp can therefore also be defined thus: 

   
  

      
   and    

  

     
   (5-5) 

From a prudence context, a positive case is one which is currently not covered by any rule in 

the knowledge base and hence necessitates the system to issue a warning. In a similar sense, 

a negative case would be one covered by one or more rules in the knowledge base and 

hence within the system’s current knowledge. Ideally, a perfectly prudent RDR system will 

only issue warnings for cases beyond the system’s current knowledge. In other words, 

warnings will only be issued if a rule for a particular case has not been added yet. This means 

that for a dataset with a perfect SE which has X rules, the system will only warn X times once 

before each of the X rules are added. After all X rules are added, there cannot be any more 

positives since the system’s current knowledge is sufficient to cover all remaining cases. 

Observations done with a perfect SE (of four rules) on the Iris dataset showed that the 

MCRDR engine misclassified only four cases and each misclassification was immediately 

followed by a new rule addition. The same pattern occurred with a portion of the Car 

Evaluation dataset with 10 rules. Therefore the derivation of P and N for the Sensitivity and 

Specificity calculations could also be based on the idea that P (from equation 5-5) should be 

equal to the number of rules a dataset SE has.  

Earlier it was shown that simple accuracy has limitations and that Specificity and Sensitivity 

measure opposite aspects of a system’s accuracy. Prudence Accuracy or Balanced Accuracy 
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(BA) is a metric that incorporates the proportion of negative and positive classes in a dataset 

and avoids the problem of assigning classifiers exaggerated performance ratings on skewed 

datasets (Powers, Goldszmidt, & Cohen, 2005; Hardison, et al., 2008). BA is essentially a sum 

of the average accuracies of the positive (Sensitivity) and negative (Specificity) classes. 

Equation (5-6) defines the formula for BA. 

              (5-6) 

BA avoids situations where the classifier is rated high because of an imbalanced dataset. For 

example, consider the earlier example where a faulty detection blindly classified 100 cases as 

benign (negative); using BA, the system’s accuracy will be calculated as follows:    

Se  = (0/6) = 0, and 

Sp  = (94/100) = 94, so 

BA = 0.5(0+94) = 47% 

 

The example above shows how a system rated 94% according to simple accuracy can be 

more appropriately rated 47% if class imbalances are considered. There are a host of other 

performance metrics used in different domains to evaluate a range of classifiers (García, 

Mollineda, & Sánchez, 2009). The metrics described in this project are relevant and 

appropriate for the purposes of the reviewed systems; the ability to give correct 

classifications and issue warnings only when necessary.    

Testing with Prudence 

Prudent systems ideally issue warnings only when a warning is required. The primary 

measure of a prudent system’s performance is prudence accuracy (specified in Equation 5-6),  

which involves measuring a prudence system involves determining if the correct 

classification was given, if a warning was issued and whether the warning was necessary.   

For RDR specifically, prudence may also affect the classifier accuracy since rules are added 

only when a warning is issued. Consequently, this means that rules may not be added to the 

RDR knowledge-base due to missed warnings, potentially resulting in reduced classifier 

accuracy.  This research therefore considers the impact of RDR prudence on classifier 

accuracy. This issue had been previously investigated by Dazeley & Kang (2008), who advised 

that the impact of missed warnings to the classifier accuracy in a prudent system was 

insignificant. It was further reported by Dazeley & Kang (2008) that significant impact of 
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missed warning on a prudent system’s classifier accuracy was observed when the classifier 

already had a very low level of accuracy or in datasets where slight changes in attribute 

values resulted in a different conclusion altogether. This issue is explored further in this 

project with RDM and IPA.  

The evaluation process used for each system in this thesis is as follows for each randomised 

dataset: 

 An RDR classifier is built using the SE for the dataset without prudence. The 

classification accuracy is then measured using the process described in Algorithm 5-

2. The classification accuracy serves as the base accuracy to be compared against 

the classification accuracy recorded when the system is run with prudence. 

 Using the same SE, a second classifier is built with prudence enabled. The prudence 

accuracy and classifier accuracy of the system are measured using the process 

defined in Algorithm 5-4 below: 

Algorithm 5-4 

1. Accept a new case from randomised data. 

2. Evaluate case against assessed KB. 

3. Apply prudence 

4. Evaluate case against SE. 

5. If the case is correctly classified (If SE conclusion matches KBS): 

 If warning is issued, increment FP 

 Else increment TN 

6. If the case is not correctly classified (If SE conclusion does not match KBS): 

 If warning is issued, increment TP and  

       Add rule (or rules) to new KB to correspond to new case 

 Else increment FN 

7. Go to step 1 for new case. 

 

After a system’s performance measures have been collected, the prudence accuracy can 

then be calculated according to the formulae in Equations 5-4, 5-5 and 5-6. The classifier 

accuracy with the prudence component turned on can be calculated as in Equation 5-2 

where the rate of correct classifications is measured. Alternatively, this can be also 
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calculated from the pseudo-code above by adding the TNs and FPs. The two measures 

effectively represent a correct classification (TC).  

Comparing the systems accuracies with and without prudence will also provide further 

insight on whether the system’s missed warnings (FN) have compounding effects in terms of 

the overall accuracy of the prudence system, hence confirming or refuting whether the 

earlier tests conducted by Dazeley and Kang (2008) apply to the RDM and IPA prudent 

systems.  

 This evaluation process was repeated for each system for each of the datasets used in this 

project. The next section discusses the public datasets used to test and evaluate the systems.     

5.7 Datasets 

 

Eight different datasets have been used in testing and evaluating the three prudent RDR 

algorithms; RM, RDM and IPA. Each dataset is randomised before every test. Seven of these 

datasets included public datasets from the UCI Machine Learning repository (UCI, 2012). The 

public datasets included the Iris plants dataset, Car Evaluation, EMG Physical Action, Poker, 

Tic tac toe, Garvan and the Adult census income dataset. The other dataset is the proprietary 

online banking transactions provided by a bank. Further details on this dataset are discussed 

fully in chapter 7. A SE had to be developed for each of these datasets before tests could be 

run. The respective SE’s were then used to train and test the systems using the approach 

described in the earlier sections. Table 5-3 describes each of the public datasets in terms of 

the dataset size, the number of decision tree rules from each dataset’s SE and the SE’s 

accuracy (for the dataset). 
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  Dataset Size/cases Type Attributes Classes  DT 

size 

SE 

Accuracy 

Iris Plants 146 numerical 4 3 4 100% 

Car Evaluation 1728 categorical 6 4 81 94% 

Physical Action 1375 numerical 8 3 100 98% 

Poker 5000 numerical 10 6 83 60% 

Tic tac toe 958 categorical 9 2 172 100% 

Adult 2000 categorical 8 2 94 85% 

Garvan 5000 categorical 31 30 278 98% 

Table 5-3. Description of used public datasets and SEs. 

 The DT size is the number of rules in the SE’s decision tree. The SE Accuracy is the accuracy 

of the See5 decision tree simulated expert on a given dataset.  The whole Garvan dataset has 

a total of around 21000 cases. Both RM and single class RDR had been tested on some part 

of this dataset (Dazeley, 2007; Prayote, 2007). In this project, no more than 5000 randomly 

selected cases were used for bigger datasets such as Garvan and Poker.  

Keeping the dataset at a maximum of 5000 cases was both for simulation convenience and 

also within the limits of what a commercial RDR system was reported to handle. Labwizard, 

an RDR chemical pathology system was reported to have processed a maximum of around 

340000 reports (cases) across 18 KB’s in one month (around November 2005) (Compton, 

Peters, Edwards, & Lavers, 2005). This simplifies to at most 19000 reports per KB over a 

month, which is at least 633 cases per report per day for a 30 day month or 950 cases for a 

20 day month.  In another graph, it is shown that an individual KB did not exceed 140 rules 

per month (Compton, Peters, Edwards, & Lavers, 2005).  The results in Table 5-4 are 

extracted from the Labwizard statistics, showing the total number of cases interpreted, total 

number of rules added, cases per day and the number of months in use.  
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KB Total Cases Total Rules Months Cases per day 

A 1490767 1061 29 2570 

B 1333598 1091 18 3704 

E’ 187848 9307 29 324 

Table 5-4. Labwizard statistics for 3 knowledge bases (Compton, Peters, Edwards, & Lavers, 2005). 

Note that Table 5-4 assumes a 20 day month as in Compton et al (2005).  

5.8 Chapter Summary 

 

The evaluation methodology chapter presented a framework of how individual RDR methods 

will be tested and compared.  The brief survey of general evaluation approaches in KBS 

sought to demonstrate how there is a variety of evaluation schemes focusing on a range of 

different KBS aspects. However there is still no adopted standard evaluation criterion for KBS 

in both commercial and academic applications. The latter sections of the chapter focused on 

the evaluation approach used in RDR and the specific metrics applied in this dissertation in 

measuring the class accuracy and prudence accuracy of RM, RDM and IPA across a range of 

datasets. Class accuracy measures the system’s raw classification ability without prudence. 

Prudence accuracy incorporates the system’s warning mechanism and measures how 

effective the warnings are. The next chapter presents the results and analysis for all tests 

using the metrics discussed in this chapter on the public datasets.     
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6. Results on Public Datasets 

 

6.1 Introduction 

 

Using the metrics and methodology detailed in the previous chapter, this chapter presents a 

number of results and comparisons of prudence accuracies of RM and RDM on categorical 

and numerical public datasets. The chapter also presents results on the system’s simple 

accuracies after their prudence mechanism are switched on and discusses if prudence has 

any effect on a system’s simple accuracy. In the latter part of the chapter, IPA is compared 

with RM and RDM to verify if combining the two methods has any benefits in terms of 

improvement both in classifier and prudence accuracy.      

6.2 Single and Multiple Classifications RDM 

 

As explained in Chapter 4, the original Ripple Down Models (RDM) approach by Prayote 

(2007) used a Single Classification RDR engine. The modification to Multiple Classifications 

RDM (MC-RDM) proposed in this thesis and detailed in chapter 4 enables the system to 

handle both single classification and multiple classifications domains.  Richards (2009) 

reported that even for single class domains, MCRDR produced a more compact KB than 

single class RDR.  

Two configurations of Prayote (2007)’s reported SC-RDM results on the Garvan dataset (UCI, 

2012) were compared with their MC-RDM versions on the same dataset to determine if 

Single Class RDM (SC-RDM) had any advantage or disadvantage over MC-RDM on a single 

class dataset.  The statistics for SC-RDM presented on Table 6.1 are adapted from Prayote 

(2007)‘s tests comparing different OECA thresholds on the Garvan dataset. The two systems 

(SC-RDMA and SC-RDMB) are in fact the same SC-RDM method at two different 

configurations; one with a default OECA threshold of 0.0 (for SC-RDMA) and one with 1E-10 

(for SC-RDMB) (Prayote, 2007).  The MC-RDM systems are the multiple classifications 

equivalents of the RDM method proposed and introduced in this project.  Table 6-1 presents 

two configurations of the SC-RDM and MCRDM’s balanced accuracies on the Garvan dataset.      
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System TP % TN % FP % FN % Se Sp BA % 

SC-RDMA 1.3 89.5 9.2 0.01 99.24 90.68 94.96 

MC-RDMA 7.8 84.7 4.4 3.1 71.56 95.06 83.31 

SC-RDMB 1.3 98.0 0.6 0.1 92.86 99.39 96.12 

MC-RDMB 7.2 90.8 1.4 0.6 92.31 98.48 95.39 

Table 6-1. Comparison of two SC-RDM and MC-RDM configurations on prudence accuracy on the Garvan 

dataset 

The two SC-RDM systems represent the most accurate (SC-RDMB) and least accurate (SC-

RDMA) OECA threshold options reported by Prayote (2007). According to the results in Table 

6-1, the prudence accuracy of both versions of the SC-RDM system is slightly higher than the 

accuracy of MC-RDM with corresponding thresholds. Generally, the two systems’ accuracies 

are comparable given that the results include only one dataset. It must also be noted that 

the results for the MC-RDM systems were recorded from a random subset of the Garvan 

dataset whereas the reported results for the SC-RDM system were recorded from the whole 

Garvan dataset. Consequently, there is no guarantee that the simulated experts of the two 

systems will be similar both in terms of size and accuracy. The comparisons presented in 

Table 6-1 are therefore not definitive but give a good indication of the two systems’ 

comparable performance.    

Table 6-1 presents the only results on public datasets reported by Prayote (2007) on the SC-

RDM system. Consequently further comparisons between SC-RDM and MC-RDM were 

impossible unless a SC-RDM system was developed. Given time constraints, this was 

unfeasible. The OECA threshold for the MC-RDM was set to a default of 0.0 for all other 

comparisons and evaluations.  The next section evaluates the class accuracy of MCRDR 

across seven public datasets.   
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6.3 Simple Accuracy: MCRDR 

 

Numeric datasets 

Three public numerical datasets of up to 5000 cases and with SE decision tree sizes of up to 

100 rules were tested on the MCRDR system. The MCRDR system represents both the RDM 

and RM systems without their prudence components.  Results on Tables 6-2 to 7-4 represent 

averages over ten runs of each dataset with different randomisations of the data order. 

Table 6-2 presents results of MCRDR’s simple accuracies in three numerical datasets.     

Dataset TC % FC %     %    % 

Physical 59.4 40.6 59.4 60.6 

Poker 52.0 48.0 52.0 86.7 

Iris 97.3 2.7 97.3 97.3 

Table 6-2. MCRDR’s Simple accuracy in numerical datasets 

MCRDR’s average simple accuracy across numerical datasets is 69%. The system’s relative 

accuracy on the numerical datasets is 81%. Essentially, this means that the system has 

correctly learnt 80% of the knowledge from the simulated expert. The next section compares 

MCDRD’s class accuracies on four categorical datasets. 

Categorical datasets 

In the same manner as the evaluations with the numerical datasets, MCRDR’s non-prudent 

classification accuracy was tested on four public categorical datasets. Table 6-3 presents the 

simple accuracy results for the system on the Car Evaluation, Tic tac toe, Garvan and the 

Adult datasets. A full description of all the datasets used in this project is given in the 

previous chapter. 
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Dataset TC % FC %     %    % 

Car  65.0 35.0 65.0 69.1 

Tic tac toe 68.9 31.1 68.9 68.9 

Garvan 89.0 19.0 89.0 90.8 

Adult 62.5 37.5 62.5 73.5 

Table 6-3. MCRDR’s simple accuracy on categorical datasets 

The results on Table 6-3 indicate that MCRDR’s average simple accuracy on the categorical 

datasets is around 71%. In terms of relative accuracy, the system’s average was 76%, 

indicating a fair learning ability. The next section summarises MCRDR’s simple accuracies in 

both categorical and numerical datasets. 

Analysis on RM and RDM’s simple accuracy   

Based on the simple accuracy experimental results presented in the previous sections, it is 

fairly evident that MCRDR recorded comparable results in both categorical and numerical 

datasets. The system’s average simple accuracies in the numerical and categorical datasets 

were 69% and 71% respectively, indicating a consistent level of performance in both types of 

datasets. Another aspect of MCRDR’s consistency is demonstrated in MCRDR’s average RA in 

the two types of datasets, which are 81% for numeric data and 76% for categorical datasets. 

This suggests that MCRDR will on average learn at least seven tenths of the knowledge it gets 

trained on.  The next section presents RM and RDM’s prudence accuracies.  

6.4 Prudence Accuracy: RM versus RDM 

 

Numerical datasets 

Table 6-4 presents the Specificity (Sp), Sensitivity (Se) and Prudence Accuracy (or BA) results 

of RM and RDM in the three numerical datasets. Three configurations of the RM system with 

three z step modifier values of 0.1, 0.5 and 0.95 for RMA, RMB and RMC respectively were 

evaluated.  A detailed analysis of the use of the z step modifier is given in chapter 4.  
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Balanced Accuracy (BA) is meant to address simple accuracy’s limitation of ignoring class 

proportions by taking into account a dataset’s negative and positive classes. This prudence 

accuracy metric considers whether a warning was issued by the system and whether the 

warning was necessary.  

Dataset System TP % TN % FP % FN %    %    %      

Physical RDM 27.0 43.8 15.3 13.9 66.01 74.11 70.06 

RMA 27.6 43.0 16.4 13.0 67.98 72.39 70.19 

RMB 24.4 42.3 17.1 16.2 60.10 71.21 65.66 

RMC 23.0 42.0 17.4 17.6 56.65 70.71 63.68 

Poker RDM 29.0 39.2 12.8 19.0 60.42 75.38 67.90 

RMA 29.1 42.1 10.4 18.4 61.26 80.19 70.73 

RMB 29.3 41.8 10.7 18.2 61.68 79.62 70.65 

RMC 29.1 42.1 10.4 18.4 61.26 80.19 70.73 

Iris RDM 2.7 95.2 2.1 0.0 100.00 97.84 98.92 

RMA 2.7 95.2 2.1 0.0 100.00 97.84 98.92 

RMB 2.7 95.2 2.1 0.0 100.00 97.84 98.92 

RMC 2.7 95.2 2.1 0.0 100.00 97.84 98.92 

Table 6-4. Specificity, Sensitivity and prudence accuracy (BA) of RM and RDM in numerical datasets 

In the Physical and Iris dataset, the two systems’ prudence accuracies are comparable 

although an RM version (RMA) is slightly ahead of RDM in the former dataset. In the Poker 

dataset, RM recorded a slightly higher BA performance than RDM.     

In terms of average prudence accuracy on the numeric datasets, the results in Table 6-4 

show a slight performance advantage of RM over RDM. In the numerical dataset, an RM 

version (RMA) produced the highest average BA of 79% compared to RDM’s average of 78%. 

An RM version has also recorded the highest BA in every numerical datasets.  The two 

systems prudence performances in the numerical datasets are generally similar. There does 



- 95 - 
 

not seem to be an obvious trend in terms of which RM version is better with numerical data. 

The next section presents more BA results on categorical datasets.  

Categorical datasets 

Table 6-5 shows RM and RDM’s Specificity, Sensitivity and prudence accuracy results over 

four categorical datasets. 

Dataset System TP % TN % FP % FN %    %    %      

Car  RDM 21.1 42.7 23.4 12.6 62.61 64.60 63.61 

RMA 21.2 31.4 33.6 13.8 60.57 48.32 54.44 

RMB 21.2 33.0 32 13.8 60.57 50.77 55.67 

RMC 21.2 31.4 33.6 13.8 60.57 48.32 54.44 

Tic tac toe RDM 23.5 51.1 17.8 6.9 77.30 74.17 75.73 

RMA 20.8 50.8 18.0 10.0 67.53 73.84 70.68 

RMB 20.8 50.8 18.0 10.0 67.53 73.84 70.68 

RMC 20.8 50.8 18.0 10.0 67.53 73.84 70.68 

Garvan RDM 7.8 84.7 4.4 3.1 71.56 95.06 83.31 

RMA 7.8 81.0 8.1 3.1 71.56 90.91 81.23 

RMB 7.5 81.0 8.1 3.4 68.81 90.91 79.86 

RMC 7.6 81.1 8.0 3.3 69.72 91.02 80.37 

Adult RDM 29.4 45.7 18.8 6.1 82.82 70.85 76.83 

RMA 31.0 41.8 20.7 6.5 82.67 66.88 74.77 

RMB 31.1 42.2 20.3 6.4 82.93 67.52 75.23 

RMC 31.0 41.8 20.7 6.5 82.67 66.88 74.77 

Table 6-5. RM and RDM‘s Specificity, Sensitivity and BA in categorical datasets 
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According to the results, RDM had a better Sensitivity than RM in three datasets and RM 

produced better Sensitivity results than RDM in one of the four datasets. On average, RDM 

recorded a higher Sensitivity than RM, reaching 72% for the former and 70% for the latter. 

RDM’s average Specificity in the categorical datasets is 74%, compared to RM’s average of 

70%.  

RDM posted the highest BA in all four categorical datasets and had the highest average BA of 

75%. The average BA of RM’s three versions on the same datasets was 72%. This suggests 

that RDM may be slightly better than RM in categorical data although the relatively 

comparable average results of the two systems on categorical datasets indicate that the 

efficiencies their prudence methods are somewhat equivalent. 

There does not appear to be a dominating version of RM across the categorical datasets 

despite RMB recording the best prudence accuracy in two of the three datasets where the 

RM systems’ BA is not the same for all three versions. Generally, there does not seem to be a 

best RM version in the categorical datasets. 

 Analysis on RM and RDM’s prudence accuracy   

RDM recorded a better prudence accuracy than the average RM versions in four of the seven 

tests. Conversely, RM recorded a higher prudence accuracy of the two systems across two of 

the numerical datasets. The two systems’ prudence was equal in the Iris dataset. In general, 

RDM is ahead of RM in terms of the average BA across all datasets. This was mainly due to 

RDM’s consistent advantage over RM on the categorical datasets. RDM’s average BA across 

all datasets was 77% and RM’s overall average BA was 76%. It must be mentioned also that 

the two systems’ performances seem to be complementary in numerical and categorical 

datasets. The results show that RM appears to have a slight upper hand in the numerical 

datasets and that RDM was consistently the clear favourite in categorical datasets. 

On average, there does not appear to be a clear best version of RM. The results presented in 

Tables 6-4 and 6-5 do not indicate a trend in terms of an outstanding RM version. It is worth 

noting that the differences between the prudence accuracies of the different RM versions 

per dataset are inconsistent, ranging from as low as 0.08% in one dataset to as high as 6.5% 

in another. In two of the seven datasets, the three RM systems recorded equivalent BA’s. 

The inconsistent ordering of the best RM version over seven datasets suggests that the ideal 

setting and optimum version for RM seems to vary over different datasets.   
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The generally accepted norm with most data mining approaches is that each given method 

will usually have a specialisation domain, and may not be consistently superior to other 

methods in all domains- this is the so called ‘no free lunch’ theorem (Wolpert & Macready, 

1997). The inconsistent performance of RM versions in different datasets and 

complementary domination of RM and RDM in different types of datasets support this 

proposition. The same sentiment is echoed in an anomaly detection context that a good 

algorithm/system should be suited to the user’s dataset and domain and that a system may 

be selected for a specific domain although it may not be superior in other domains (Hodge & 

Austin, 2004) .  The results at tables 6-4 and 6-5 suggest that RM might be better suited for 

numerical datasets and RDM for categorical data.  The next section evaluates the systems 

simple accuracies when the prudence components are engaged and analyses whether 

prudence results in some form of improvement in simple accuracy.  

6.5 Simple Accuracy Before and After Prudence 

 

Table 6-6 shows RM and RDM’s simple accuracies before the prudence mechanism is 

engaged and after. The simple accuracy results before prudence are as shown in Tables 6-2 

and 6-3. The simple accuracy results after prudence were calculated by adding a system’s 

False Positives (FP) and True Negatives (TN) which is equivalent to summing up the system’s 

correct classifications (TC).  When a system makes a correct classification (TC), the system’s 

prudence mechanism can either issue a warning (FP) or not (TN). This is the rationale behind 

calculating a system’s TC this way. The different RM versions given in the table correspond to 

the best RM version for a given dataset.  
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Dataset System Accuracy 

Before (%) 

Accuracy 

After (%) 

% 

Improvement  

Physical RDM 59.4 59.1 -0.3 

RMB 59.4 59.4 0.0 

Poker RDM 52.0 52.0 0.0 

RMA 52.0 52.5 0.0 

Iris RDM 97.3 97.3 0.0 

RMC 97.3 97.3 0.0 

Car  RDM 65.0 66.1 0.1 

RMC 65.0 65.0 0.0 

Tic tac toe RDM 68.9 68.9 0.0 

RMA 68.9 68.8 -0.1 

Garvan RDM 89.0 89.1 0.1 

RMB 89.0 89.1 0.1 

Adult RDM 62.5 64.5 2.0 

RMA 62.5 62.5 0.0 

Table 6-6. Comparison of simple accuracy before and after prudence 

Generally speaking, there does not appear to be an improvement or drop in classification 

accuracy after prudence. Either one of the two systems recorded an equal classification 

accuracy after prudence as the original MCRDR classification accuracy in six of the seven 

datasets.  

Specifically, RDM’s prudence produced a small improvement in simple accuracy in three 

categorical datasets and recorded small drop in simple accuracy in one numerical dataset. 

RDM’s average classification accuracy improvement over the seven dataset is 0.27%.  RM 

posted an insignificant accuracy improvement in one numeric dataset and recorded a small 

accuracy drop in one categorical dataset. RM’s average classification accuracy improvement 

across the seven datasets is 0%. In other words, RM neither improved nor decreased 

MCRDR’s base classification accuracy.     

The two systems’ average simple accuracy improvements are small and suggest that 

prudence has very little effect on the base classification accuracy.  The results in Table 6-6 

are unsurprising given that prudence primarily attempts to enable the system to issue some 
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kind of signal when a novel pattern or previously unseen case is introduced. The importance 

of rapid detection of novel cases has already been highlighted in chapter 3 as being critical in 

fraud detection. The results in Table 6-6 suggest that prudence provides this capability 

without compromising the classifier’s simple accuracy. The results also agree with Dazeley & 

Kang (2008)’s earlier proposal that the effect of missed warnings in a prudent classifier are 

relatively minor.          

6.6 IPA Prudence Accuracy       

 

RM and RDM use different approaches in deciding whether to issue a warning for a case.  RM 

is structural and depends on context derived from the MCRDR structure to train an ANN. 

RDM is attribute based and employs outlier detection methods on homogenised profiles. The 

two systems can be viewed as complementary, given their different development 

approaches and the different performances in accuracy and prudence. Part of this project’s 

hypothesis was that merging a structural based prudence system (RM) with an attribute 

based prudence system (RDM) would result in some improvement in accuracy. The 

Integrated Prudence Analysis (IPA) method was developed from joining RM and RDM’s 

secondary classifiers; RM’s ANN and RDM’s outlier detection methods (OEBA and OECA). The 

next sections present and analyse IPA’s simple accuracy and balanced accuracy in the seven 

datasets used for the other two systems. 

Three configurations of IPA were developed and tested. The three versions of IPA include 

IPAOR, IPAAND and IPAANN. IPAOR and IPAAND configurations involve the joining of RM’s ANN 

output and RDM’s aggregated outlier index through an AND or OR connection. In the IPAANN 

version, MCRDR rule paths are added to the aggregated outlier index from MC-RDM’s outlier 

detectors and all fed to the ANN. A detailed description of IPA is given in chapter 4. Since IPA 

uses a similar MCRDR engine as the RDM and RM systems, it’s simple accuracy results were 

similar to the two systems’ simple accuracies shown in Tables 6-2 and 6-3.  

Numerical datasets 

Table 6-7 presents the prudence accuracies of different IPA versions on numerical datasets.  
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Dataset System TP % TN % FP % FN %    %    %      

Physical IPAAND 27.6 41.7 17.7 13.0 67.98 70.20 69.09 

IPAOR 29.7 39.9 19.5 10.9 73.15 67.17 70.16 

IPAANN 26.5 40.7 18.7 14.1 65.27 68.52 66.89 

Poker IPAAND 24.9 45.4 7.1 22.6 52.42 86.48 69.45 

IPAOR 29.1 45.2 7.3 18.4 61.26 86.10 73.68 

IPAANN 26.1 45.2 7.3 21.4 54.95 86.10 70.52 

Iris IPAAND 2.7 95.2 2.1 0.0 100 97.9 98.9 

IPAOR 2.7 95.2 2.1 0.0 100 97.9 98.9 

IPAANN 2.7 95.2 2.1 0.0 100 97.9 98.9 

Table 6-7. IPA prudence accuracy on numerical datasets 

According to the results in Table 6-7, IPAOR has outperformed the other two versions in BA in 

two of the three numerical datasets and is close to the other two versions in the other 

dataset. IPAOR‘s domination over other IPA configurations in balanced accuracy in the 

numerical datasets is supported by the system’s average BA of 80.9% compared to IPAANN‘s 

78% and IPAAND‘s 78.4%. BA results on categorical datasets are shown in the next section.  

Categorical datasets     

The three IPA versions’ prudence accuracy results in the categorical datasets are presented 

in Table 6-8. 
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Dataset System TP % TN % FP % FN %    %    %      

Car  IPAAND 20.4 39.1 26.6 13.9 59.5 59.5 59.49 

IPAOR 22.5 37.3 28.4 11.9 65.4 56.8 61.09 

IPAANN 21.5 38.7 27 12.8 62.9 58.9 60.79 

Tic tac toe IPAAND 20.8 53.2 15.7 10.3 66.9 77.2 72.05 

IPAOR 24.8 51.2 17.7 6.3 79.7 74.3 77.03 

IPAANN 22.5 51.8 17.1 8.6 72.4 75.2 73.76 

Garvan IPAAND 7.5 85.2 3.9 3.4 68.8 95.6 82.22 

IPAOR 8.1 84.3 4.8 2.8 74.3 94.6 84.46 

IPAANN 7.6 84.6 4.5 3.3 69.7 95.0 82.34 

Adult IPAAND 28.5 44 18.5 9.1 75.8 70.4 73.10 

IPAOR 32.8 43.4 19.1 4.7 87.5 69.4 78.45 

IPAANN 29.1 43.7 18.8 8.4 77.6 69.9 73.76 

Table 6-8. IPA prudence accuracy statistics on the categorical datasets 

In categorical datasets, IPAOR has continued to record the best prudence accuracy of the 

three IPA configurations. The pattern observed in the numerical datasets has recurred in the 

categorical data, with IPAOR producing the highest BA, followed by IPAANN and finally IPAAND. 

The domination of IPAOR over other IPA versions in six of the seven datasets suggests that 

IPAOR is the best of the three versions in prudence accuracy.  At this point, it is clear that 

IPAOR is by far the best IPA version. The consistently higher BA ratings in both the categorical 

and numerical datasets support this proposition. 

Although the IPA versions used in these tests include IPAANN, IPAOR and IPAAND; these are not 

the only possible configurations of IPA. Many other ways of combining RM and RDM exist 

and some could possibly have better accuracies than any of the versions involved in these 
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tests. However, given the current results, IPAOR has emerged as the most optimum tested 

configuration of IPA.          

6.7 Integrating Two Prudent Methods: Does It Work? 

 

The original intent behind IPA was to use RM and RDM to complement each other such that 

the combination is better than using any of the two methods individually. The combination 

of attribute based RDM and structural based RM was anticipated to eliminate the individual 

methods’ limitations, consequently improving accuracy. The next two tables present the 

accuracies of IPAOR (the best IPA version), RM and RDM in numerical and categorical data.  

Numerical datasets     

For RM, the results shown on Table 6-9 were taken from the best RM configuration in each 

dataset. Table 6-9 shows the three systems’ prudence accuracy in numerical datasets.  

Dataset System      

Physical RDM 70.06 

RMA 70.19 

IPA 70.16 

Poker RDM 67.90 

RMC 70.73 

IPA 73.68 

Iris RDM 97.3 

RMA 97.3 

IPA 97.3 

Table 6-9. IPA, RM and RDM's BA in numerical datasets. 

IPA recorded the best prudence accuracy in two of the three datasets. The integrated 

prudence method had the best average BA of 79.6% on numeric datasets, followed by RM at 

78.6% and RDM at 78.3%. The average prudence accuracies of the three systems on the 
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numeric datasets are relatively close to one another, although IPA appears to have slight 

advantage over the other two systems. Results on the three systems’ prudence accuracy on 

categorical datasets will confirm whether this is true for all types of data or only for 

numerical datasets.  

Categorical datasets         

Table 6-10 presents RM, RDM and IPA’s balanced accuracy in categorical data.          

Dataset System      

Car  

 

RDM 63.61 

RMB 55.67 

IPA 61.09 

Tic tac toe RDM 75.73 

RMA 70.68 

IPA 77.03 

Garvan 

 

RDM 83.31 

RMC 80.37 

IPA 84.46 

Adult RDM 76.83 

RMB 75.23 

IPA 78.45 

Table 6-10. RM, RDM and IPA Acc and BA on categorical data 

In categorical data, IPA produced the best prudence accuracy in three of the four datasets. 

Once more the combined system had the highest average prudence accuracy in the 

categorical datasets. IPA recorded the best average BA of 75.3%, with RDM and RM following 

at 74.9% and 70.5% respectively.       
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The results in Tables 6-9 and 6-10 suggest that IPA has some advantage over RM and RDM in 

terms of prudence accuracy. Although the performance differences between IPA and the two 

other systems are relatively small (between 0.3% and 3%) in each dataset, IPA’s consistent 

recording of the highest BA in five of the seven datasets suggests that the combined method 

is better than any of the individual method in most instances. 

It is also worth noting the strength of selected RM versions in particular datasets. This shows 

that at the right settings, RM is as competitive as the RDM and IPA. However pre-

determining this optimum setting (the step modifier) is still not obvious as the results differ 

in different datasets.  

IPA Simple Accuracy after Prudence 

As was done with RM and RDM, the simple accuracy of IPA was compared to the base 

system (without prudence) to determine if prudence had an effect on the system’s simple 

accuracy. Table 6-11 records the MCRDR base system’s simple accuracy against IPA’s simple 

accuracy. 

Dataset Accuracy 

Before (%) 

Accuracy 

After (%) 

% 

Improvement  

Physical 59.4 59.4 0.0 

Poker 52.0 52.5 0.5 

Iris 97.3 97.3 0.0 

Car  65.0 65.7 0.7 

Tic tac toe 68.9 68.9 0.0 

Garvan 89.0 89.1 0.1 

Adult 62.5 62.5 0.0 

Table 6-11. IPA’s simple accuracy before and after prudence 

According to the results in Table 6-11, IPA has recorded minor classifier accuracy 

improvements in three of the seven datasets. On four occasions, IPA maintained an equal 

simple accuracy as the base MCRDR system. IPA’s average simple accuracy improvement 

across the seven datasets is 0.2%. Once more, the results suggest that prudence has a very 

little effect on MCRDR classifier accuracy.  

Importantly, the IPA results in Tables 6-9 to 6-11 confirm this project’s hypothesis that 

combining the two complementary prudence methods in some fashion could improve the 
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individual systems’ prudence accuracy. IPA has shown a consistent performance advantage 

over RM and RDM according to the results presented in Tables 6-9 to 6-10.  

6.8 Chapter Summary 

 

This chapter presented a number of evaluations, comparisons and analysis between different 

systems on public datasets. The early sections presented results and analysis of class 

accuracy and prudence accuracy comparisons between the RM and RDM systems in 

numerical and categorical public datasets. The simple accuracy results of RM and RDM were 

also taken after the systems’ prudence components were switched on. Results show that 

prudence as applied in this project has very little effect on a classifier’s simple accuracy. The 

latter sections showed prudence accuracy results from three IPA versions and selected the 

best IPA configuration which was then evaluated against the two methods it was built from 

(RM and IPA). Although only three configurations of IPA were developed; IPAANN, IPAOR and 

IPAAND do not represent the only possible combination options between RM and RDM.  

Results from throughout the chapter suggest that RDM generally has a higher BA than RM in 

categorical datasets and that a combination of RM configurations has a higher prudence 

accuracy than RDM in numerical datasets. It was also shown in the latter sections of the 

chapter that combining the two systems (RM and RDM) into IPA does indeed improve 

prudence accuracy. The next chapter presents test results on IPA with Internet banking 

transactions and discusses the potential use of IPA in a commercial online banking fraud 

detection system. 
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7. IPA Results on Internet Banking Data 

7.1 Introduction 

 

Chapter 7 presents results from IPA’s evaluations on Internet banking transactions.  The 

Internet banking data was sourced from a commercial online banking fraud detection system 

and has been depersonalised before it was used on this project. The chapter describes the 

banking data, the tests done with IPA and the results in terms of balanced accuracy. A simple 

comparison between IPA and a commercial Internet banking fraud detection system is also 

given, using the commercial system’s performance metrics. The latter sections of the chapter 

provide some remarks on the effective use of research in developing useful solutions in 

Internet banking fraud detection. A few recommendations on successful online banking 

fraud detection are also briefly discussed including a hierarchical approach to screening 

online transactions and on-going user education.    

7.2 Internet Banking Fraud 

 

Financial institutions and individuals continue to lose millions of dollars through Internet 

banking fraud.  The loss of money through online banking is mainly perpetrated by some 

form of identity theft.  After a legitimate user’s online banking credentials have been stolen 

somehow, their account is accessed illegally and their funds transferred to a mule’s account. 

The mule then withdraws the stolen cash from their account and wires it to the ultimate 

fraudster. This is usually how Internet banking accounts are robbed and the money 

transferred by mules to cyber-criminals who exploit international policing loopholes.  

Additionally, the banks have to decide whether to launch costly, slow investigations or 

reimburse the lost funds.  

The main thing to note in Internet banking fraud is that access to a victim’s online banking 

account was achieved using stolen but correct credentials. These details are usually sought 

from unsuspecting victims through sophisticated phishing and pharming techniques. A July 

2011 RSA Fraud Report noted that Internet users were being persuaded, encouraged, 

conned, swindled and reasoned into revealing their passwords and important credentials 

and also clicking malicious links that downloaded malware into their computers (RSA, 2011).  

According to this report, the sophisticated social engineering operations use the same 
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persuasion techniques employed by modern corporate advertising and marketing. In other 

cases, the fraudsters developed complex pharming Trojans that modified a victim’s 

computer’s hosts file so that an Internet banking site’s IP address is redirected to a phishing 

website where online banking credentials are illicitly obtained and sent to the fraudster (RSA, 

2011).   

In response to the advancing pharming and phishing campaigns, the focus in deterring online 

banking frauds must not be exclusively focused on preventing entry (password checks, 

dynamic screen keyboards, etc) but also on detecting fraudulent activity within an account.  

The increasing deployment of advanced and sophisticated phishing techniques by fraudsters 

to get users’ details suggests that Internet banking systems must have capabilities to spot 

illegitimate access even if the password and username are correct. This is the fundamental 

approach adopted by this research, strengthening fraud detection mechanisms within 

accounts and not just before access is granted.  

A brief review of some commercial Internet banking fraud detection systems was given in 

chapter 2. Usually, not much is publicised about how these systems work for competition 

and security reasons. The reviewed systems (PRM, Falcon and SAS), which are the most 

popular in the industry have a relatively common architecture. The systems use either 

anomaly detection or a signature detection approach or a combination of the two to define 

Internet banking users’ spending, access, cash withdrawal, transfer, bill payment and other 

transaction patterns. A rule-base or ANN system is then used to monitor, update and detect 

any variations on these patterns.  

The approach proposed and developed by this project is similar in structure to the 

commercial systems but uses a new method and focuses on detecting fraudulent activity 

within a compromised account. The IPA system mainly combines two prudent RDR systems 

and is intended to be especially helpful in warning system administrators of new internet 

banking transaction patterns. Tests and evaluations with public datasets showed that a 

combination of RM and RDM was more accurate than any of the two systems individually. A 

full description of IPA and the evaluations with the public datasets is given in chapters 4 and 

6 respectively. The next section describes the online banking transactions used to evaluate 

and establish IPA’s worth in online banking fraud detection. 
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7.3 Internet Banking Transactions 

 

Internet banking systems record a plethora of details every time a user accesses their 

account.  Usually, a combination of these details are also used by fraud detection systems to 

distinguish a fraudulent transaction from a legitimate one e.g. an attempt to transfer more 

than the set limit, several, consecutive transfers to a new account in a short period of time or 

a relatively odd log-in time.  These actions might well be by the legitimate account holder 

but if they are anomalies or variations of the user’s usual patterns, the system combines 

them with other details to conclusively decide if the transaction is legitimate or not.  For this 

project, Internet banking transactions from a commercial online banking system were used 

to test IPA.   

Table 7-1 shows some of the attributes of an online banking transaction dataset used to test 

and evaluate the IPA system. Different transactions have respective names depending on the 

details of the transaction. For example, OTT represents Outward Telegraphic Transfers which 

are electronic international money transfers. BPay is a system through which utility bills and 

other service providers can be directly paid from the client’s account. Funds Transfer (FT) 

and Pay Anyone (PA) are other types of an Internet banking transaction representing the 

movement of funds between accounts linked to the same holder and the transfer of funds to 

an account held by a different account holder respectively. Different banks and systems 

adopt different nomenclatures for different transactions. 
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Name  Description   Type Values  

Transaction ID Unique ID for every transaction label System generated 

Transaction Type Type of transaction discrete BPAY, OTT, FT, PA 

Account From Source account number label System generated 

Account To Destination account number label System generated 

Account Type Type of account in use discrete Savings, Business, 

Credit, Home loan 

Event time Time of transaction Time  System time  

Session ID Unique session ID  label System generated 

Browser String String describing browser user label System generated 

IP Address IP address for machine in use label System generated 

Country Host country for given IP  Label System generated 

Trans Amount Transfer amount (if Transfer) Continuous  0-account balance 

BPay Amount BPay Amout (if BPay) Continuous  0-account balance 

IMT Amount International transfer amount IMT Amount IMT Amount 

Biller Code Unique biller code (for BPay)  Label  System generated 

Biller Name BPay Biller business name Label  System generated 

Log in ID User’s log in ID Label  System generated 

Log in Time Time of log in Time  System time  

Log in Count Number of log ins for the day Continuous  Real numbers  

Password change Number of password changes Continuous  Real numbers  

Table 7-1. Description of online banking transaction attributes 
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7.4 Obfuscation and Online Banking Data 

 

Before the data was issued by the bank, intense obfuscation was carried out on personal 

details and thorough checks were conducted to ensure that no personally identifying details 

remained in the data whilst the data still retained its referential integrity. An Obfuscation 

tool (or Obfuscator) was developed to scramble personal details in a dataset such that the 

data could still be useful for research but contain no real personal details. The obfuscation 

process had to be irreversible and as such no algorithm should have the capacity to recover 

the scrambled personal details. Additionally, the internal relations of the different data 

elements should be maintained. This means that identical items had to remain identical after 

obfuscation.    

The Obfuscator input file was a transaction log-file from a bank database similar to the 

sample shown in Table 7-1. The file may contain any number of headers and a sufficiently 

large number of items under each header.   The Obfuscator uses this log-file (csv format) and 

produces an equivalent .csv file with the same headers as the input file but different data 

items according to what columns are to be scrambled. Any number of headers (or columns) 

can be selected to be obfuscated. Furthermore, the tool provide a choice of three 

obfuscation styles including numeric only obfuscation, alphabetic obfuscation and mixed 

(alpha-numeric) obfuscation. When the user preferences have been specified, obfuscation is 

done and the output file will have the same headers as the input, with the selected columns 

scrambled accordingly.  By the time of use by this project, some features such as IP address, 

BPay Biller codes, session IDs and transaction IDs were de-personalized but maintained 

referential usefulness.   Table 7-2 demonstrates the three types of obfuscation using some 

examples.  

Obfuscation type Original string Obfuscated string 

Alphabetic  John Columb hnvr hacdekj  

Alpha-numeric John Columb 7n4r 5acde8j  

Numeric 121.220.74.208 48.127.331.3105 

Table 7-2. Demonstration of three obfuscation types 
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Data preparation 

In total, the dataset comprised 40 attributes and consisted of 1760 transactions, 60% of 

which were legitimate and 40% of which were fraudulent transactions.  The data was divided 

into three streams of exclusively categorical attributes (trans_Cat) consisting of eight 

attributes, exclusively numerical attributes (trans_Num) with seven attributes  and the mixed 

attributes (trans_Mixed) comprising both categorical and numerical datasets. The division of 

transactions into categorical and numerical streams was to enable focused tests on the OEBA 

and OECA components of outlier detection in the RDM part of IPA. Simulated experts for the 

three streams (trans_Cat, trans_Num and trans_Mixed) were developed using See5. The SE 

for the trans_Cat dataset had 49 rules, the trans_Num SE had 72 rules and the trans_Mixed 

SE had 100 rules. The SEs had respective accuracies of 75%, 60% and 90%.   

IPA performance in Online Banking Fraud Detection 

Table 7-3 shows IPA’s cross validated accuracy results on the trans_Cat, trans_Num and 

trans_Mixed datasets.       

Dataset TC % FC %     %    % 

trans_Cat 70.3 29.7 70.3 93.7 

Trans_Num 53.3 46.7 53.3 88.8 

Trans_Mixed 73.9 26.1 73.9 82.1 

Table 7-3. IPA simple accuracy on online banking data 

The main thing to note from Table 7-3 is that IPA’s good learning capability is applicable to 

Internet banking data. This is shown by the system achieving an average of over 80% across 

the Trans_Cat and Trans_Num datasets both in simple accuracy and balanced accuracy. 

Importantly, IPA has shown a capability to learn over 80% of the knowledge from a simulated 

expert in the complete dataset (Trans_Mixed) with both categorical and numerical 

attributes. Table 7-4 presents IPA results on prudence accuracy. 
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Dataset TP % TN % FP % FN %    %    %      

trans_Cat 18.6 57.4 12.9 11.1 62.63 81.65 72.14 

Trans_Num 27.4 43.3 10.2 19.1 58.92 80.93 69.93 

Trans_Mixed 15.6 69.4 4.5 10.5 59.77 93.91 76.84 

Table 7-4. IPA prudence accuracy on online banking data 

 

According to the results in Tables 7-3 and 7-4 above, using exclusively categorical attributes 

produces a higher accuracy than using numerical attributes only. This is shown by the higher 

relative accuracy from the categorical datasets. This also suggests that OECA has a higher 

accuracy than OEBA in online banking transactions. It is also important to note that the 

system’s accuracy in the mixed dataset is also very good.     

Prudence in Fraud detection 

The idea of prudent fraud detection systems in any domain is meant to enable the system 

with an added capability of reporting strange, suspicious or previously unseen behaviour. As 

much as simple accuracy is important in such systems, it is also important that the systems 

realise when a case is beyond their current expertise and be able to issue alerts or warnings 

rather than attempt to classify the case using the current knowledge. According to the 

results above, IPA has shown an overall adequate prudence across both datasets but 

especially in the categorical transaction details where the system learned more than 90% 

from the SE.  

The importance of a capability like prudence in Internet banking fraud detection systems can 

never be understated. In 2008, two independent reports by IBM and SAS advised that the 

major challenge in online payment systems is the ability to react rapidly to new fraud trends 

(SAS, 2007; IBM, 2008).  The sooner a peculiar case is reported to an administrator by the 

system, the better it is for the organisation. If strange cases are reported as soon as they are 

discovered by the system, new rules will be promptly developed and the system will be 

better equipped to handle the recurrence of such cases. However if the system attempts to 

classify a new case and misclassifies it, it may be both time consuming and inconvenient for 

the organisation to add a rule that rectifies the misclassified case.  In some cases, the 

organisation may have to reimburse the defrauded account and investigate the case a few 
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days later and this would be much messier than if the system had reported the strange case 

the instance it was processed.  

A potentially problematic scenario with prudence is when a system issues too many 

unnecessary warnings. In an Internet banking application for example, too many unnecessary 

warnings may overwhelm the human operators as they will have to check each reported 

case. Ultimately, the imperfection of systems and a need for some kind of warning capability 

in such systems results in a convenient compromise between warning too few times and 

warning too many times. In online banking fraud detection, it may be wiser for the system to 

warn too many times and detect most frauds than warn too few times and miss most frauds. 

Fortunately, the exact setting of the warning threshold in IPA is customizable and can be 

specifically set based on the organisational needs. Generally speaking, the good BA results 

recorded for both the numerical and categorical attributes suggest that IPA has good 

potential as far as application in online banking fraud detection is concerned.   

7.5 IPA versus Commercial System 

 

To get the relative significance of IPA’s performance in online banking fraud detection, in-

house statistics from a proprietary commercial system were compared to IPA’s accuracy. The 

commercial system’s performance metrics are different to the metric used previously to 

evaluate IPA but nonetheless, IPA’s corresponding results on the commercial metrics could 

be calculated. The commercial system’s metrics DR(n) and DR($) measure the system’s rate 

of detection in terms of how many frauds were detected by the system as a percentage of all 

frauds (n) and in terms of how much in dollar terms the detected frauds represent over the 

whole fraud amount. The formula for Detection Rate (DR) is defined in equation (7.1). 

        
             

          
    and        

           

        
           (7.1) 

Detection Rate (n) is the number of system detected fraudulent transactions over all 

fraudulent transactions including reported cases missed by the system. Detection Rate ($) 

refers to the amount of money represented by the detected fraudulent transactions as a 

percentage of the total amount of all fraudulent transactions in dollar terms. For example 

assuming that the system detected 10 of 20 fraudulent transactions and that the fraudulent 

transactions were directly responsible for a loss of $1000 to the bank, of which $375 was 
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recovered when the system detected the fraud; DR(n) and DR($) can then be determined 

thus: 

DR(n) = 10/20 = 50%   

DR($) = 375/1000 = 37.5% 

 

Detection rate as defined in equation (7.1) is equivalent to recall or sensitivity in 

classification systems. In chapter 5, specificity was defined as the proportion of correctly 

detected positive cases (Metz, 1978). For a prudent system such as IPA, this corresponds to 

the rate at which the system issued correct warnings or knew when a case needed further 

examination by the expert. This essentially means that sensitivity in IPA corresponds to cases 

when the system knew it would be potentially wrong because it had inadequate knowledge 

to give a decisive conclusion.  Results on Table 7-4 show that IPA has a sensitivity of 60% on 

the mixed online banking transaction attributes. Table 7-5 below shows a comparison of IPA 

and a commercial system’s detection rates. 

System DR (n) 

commercial 65% 

IPA (trans_Mixed) 60% 

Table 7-5. IPA vs. Commercial system detection rates 

The performance statistics for the commercial fraud detection system were sourced from an 

Australian bank. The IPA results are derived from the system’s sensitivity, calculated from 

the results at Table 7-4.  

A DR ($) rate could not be determined for either system because there was no indication of 

how much in dollar terms, the fraudulent transactions represented.  The bank however 

advised that the total amount of money lost through fraud differs on a daily basis and that it 

would be ideal if the system could spot potential frauds as the transaction is conducted or 

before the funds are withdrawn or moved offshore.   

It may not be fair to decide which of the two systems is better because the reported results 

are from a single batch of legitimate and fraudulent transactions compiled over time. The 

results may be different on a day to day setting. The bank advised that Internet banking 

transactions are usually skewed with legitimate cases comprising well over 70% of all 
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transactions, and even more than 98% according to Wei, Li, & Cao (2012) and  Krivko (2010) . 

This may also affect a detection system’s performance especially if there were adequate 

cases of both positive and negative cases to train the system. Generally, it is encouraging to 

note that IPA’s detection rate is at least comparable to a commercial system. 

7.6 Internet Banking Fraud Detection Framework 

 

Although widely reported in the media and by some organisations as a problem, it is hard to 

measure how big a problem Internet banking fraud really is. This is because banks and other 

financial services providers are reluctant to disclose specific facts and figures about Internet 

banking fraud and the extent by which it affects their businesses (Kou Y. , Lu, 

Sirwongwattana, & Huang, 2004; Bolton & Hand, 2002). Consequently, it is harder for 

researchers to develop practical and immediately useful methods and systems for fraud 

detection in this domain. This is because real data is often hard to acquire and proprietary 

data cannot be shared between researchers in the same field (Stolfo S. , Fan, Lee, & 

Prodromidis, 1997; Bolton & Hand, 2002).  The whole situation makes it especially difficult to 

develop targeted and impactful solutions through research. This is a serious deterrent to the 

effective use of research resources in solving real problems and has to be addressed 

accordingly.  

Successful online banking frauds occur because of a number of security breaches including 

theft of Internet banking credentials which may have resulted from a phishing or pharming 

campaign. Essentially, a fraudster first has to get a user’s login details before they can access 

their Internet banking account. Getting these credentials usually involves some other scam 

such as phishing or pharming. Conversely, curbing online banking frauds should involve a 

number of measures in other aspects of identity security, not just in a financial service 

provider’s Internet banking login page. By the same token, Internet banking fraud cannot be 

realistically stopped by the use of a single software application. A hierarchical approach 

involving a number of specific screening and checking mechanisms in verifying and 

authenticating users’ identities may help deter and detect fraud attempts. This approach, 

also known as layered security involves using different screening mechanisms at different 

stages of a transaction so that the different controls compensate and complement one 

another (EMA, 2012).  A 2012 white paper by the Federal Financial Institutions Examination 

Council's (FFIEC) advises that layered security can substantially strengthen the overall 
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security of online services reducing account break-ins, protecting against loss of customer 

details and effectively preventing loss of funds (FFIEC, 2012).    

Internet banking services user awareness and education is also critical in combating identity 

theft. Users’ education on identity theft, the ways it can be perpetrated and safety measures 

should be continual in ensuring that they are informed of potential ways through which their 

identity can be stolen and ultimately result in distress, loss of money and other 

inconveniences. The RSA report (RSA, 2011) mentioned earlier has highlighted the fact that 

fraudsters use sophisticated methods of persuasion to lure unsuspecting victims into their 

scams. In this regard, users will need to be cautious of potential phishing and pharming 

scams and always exercise discretion before giving away their details.     

IPA’s impressive performance with Internet banking data presents a viable solution to online 

banking fraud detection. This is especially so given that most Internet banking frauds go 

undetected (or detected after the incident) because fraudsters use correct log in details and 

that most online banking security features focus on  preventing entry into accounts than 

they do in detecting fraudulent activity within compromised accounts.  IPA is versatile and 

can incorporate other data sources within the bank’s systems to form a smarter Internet 

banking intelligence system. This system can then be used with other security mechanisms in 

a layered approach as suggested in the previous sections.  The inherent advantage of an IPA 

based Internet banking intelligence system will be its ability to detect novel cases rapidly and 

warn a human expert (or system administrator) in time. Given its advantages over 

conventional knowledge-based systems, its accuracy and fast, cost effective knowledge 

acquisition methods, IPA is definitely worth a try in Internet banking fraud detection.     

7.7 Chapter Summary 

 

This chapter presented IPA’s accuracy results on Internet banking transactions. Results from 

a commercial system used to detect frauds in online banking transactions were also given 

and benchmarked against IPA. Although the size of the data given to this project and other 

factors restrict some aspects of the evaluations, it is fair to conclude that given what has 

been observed (and recorded), IPA has shown good potential in online banking fraud 

detection. It is also the view of this project that effective fraud detection in Internet banking 

transactions cannot be realistically achieved from one individual system.  This view is based 

on facts about how most frauds exploit a gap in users’ ignorance, ineffectiveness and lack of 
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systems. The next chapter summarises the whole project and concludes the dissertation. The 

chapter will provide detail on what the project aim was, what was involved and done to 

achieve this aim and whether this aim was achieved.  
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8. Conclusion 

8.1 Introduction 

 

This chapter summarises the whole project and briefly describes current trends and statistics 

in Internet fraud especially phishing through which people’s passwords get stolen and their 

online banking accounts robbed. A brief summary of present approaches to detecting 

Internet banking frauds is given, and the limitations of these approaches are identified. The 

chapter also highlights a possible solution to these limitations and proposes how these 

methods were used in the project. A brief analysis of the results, analysis and finally the 

issues encountered and future work are presented at the end of the chapter. 

8.2 The Situation 

 

Despite the advances and conveniences of buying and selling goods and services online, 

Internet crime or cybercrime poses a major problem for most businesses and individuals. 

One of the most prominent examples of internet fraud is Phishing, whose objective is to get 

hold of unsuspecting internet users’ credentials and ultimately use these details to defraud 

people’s accounts (RSA, 2010). According to the Anti-Phishing Work Group (APWG), the 

financial services sector remained the most targeted industry by cyber-criminals as at 2011 

(APWG, 2011). Furthermore, the effectiveness (and success rate) of phishing was forecasted 

to rise due to the increase in the development of more sophisticated techniques by online 

fraudsters (RSA, 2010).  

The ultimate motive for stealing people’s online usernames and passwords is to log into the 

victims’ accounts (undetected) and exploit their accounts by transferring funds to a different 

bank account. Most Internet banking sites unfortunately have poor detection mechanisms if 

the log-in credentials were correct. A common approach to detecting fraudulent activity in 

online banking systems involves the use of a conventional Knowledge-Based System (KBS) 

and an Artificial Neural Network (ANN). Three Internet banking fraud detection systems used 

in more than 40 countries, employed at 43000 Internet banking sites and used by eight of 

the world’s top 20 banks have this architecture of combining a KBS and an ANN (FICO, 2011), 

(ACI Worldwide, 2011; SAS, 2007).Other systems employing  Rule-Bases and  ANN’s in fraud 

detection include (Kou Y. , Lu, Sirwongwattana, & Huang, 2004; Phua, Lee, Smith, & Gayler, 



- 119 - 
 

2005; Weatherford, 2002). The worth and importance of KBS in a host of Industries and 

domains is unquestionable.  KBS can imitate and learn human expertise, are faster, more 

consistent and cheaper to run than humans (Li, Xie, & Xu, 2011; Abraham, 2005).  

KBS have also been criticised especially on their Knowledge Acquisition (KA) and 

Maintenance approach. The process of transferring knowledge to a KBS has been 

condemned for being slow and indirect and labour intensive (Richards, 2009; Dazeley, 2007; 

Giarratano & Riley, 2005). Maintenance in such systems has also come under scrutiny for 

being an additional and separate task from KA and ultimately lengthy and costly (Richards, 

2009; Hayes-Roth & Jacobstein, 1994).  Another limitation of KBS is their lack of awareness of 

their limitations- a phenomenon known as brittleness. Brittleness occurs when a KBS does 

not realise when its knowledge is inadequate for a particular case (Compton, Preston, 

Edwards, & Kang, 1996) and this leads to the system giving erroneous and sometimes 

illogical conclusions. 

Motivated by the elimination of maintenance and KA limitations of KBS, the Ripple Down 

Rules approach (RDR) was founded around 1988. RDR eliminates the need for a knowledge 

engineer as the expert directly interacts with the system (Kang, Compton, & Preston, 1995). 

Additionally, maintenance and KA in RDR are integrated, usually trivial and brief (Kang, 

Compton, & Preston, 1995; Richards, 2009). There are two varieties of RDR; Single Class RDR 

(SC-RDR) and Multiple Classifications RDR (MCRDR). SC-RDR (usually simply called RDR) is 

binary in structure and can only produce a single conclusion from every case. MCRDR is an n-

ary version of RDR and can give more than one classifications/conclusion to a case. Since its 

inception, RDR has been used in different applications including web browsers, help desk 

systems, online shopping and email management systems (Richards, 2009).  

To address brittleness, the idea of Prudence was introduced to equip the KBS with the ability 

to issue warnings whenever a case was beyond the system’s current set of expertise (Kang, 

Compton, & Preston, 1995). A perfectly prudent RDR system is therefore for all intents and 

purposes free of traditional KBS’ maintenance, KA and brittleness limitations. In terms of 

fraud detection, a prudent RDR system should have a competitive edge over traditional 

approaches to fraud detection in that new fraud patterns will be detected rapidly through 

the system’s warning mechanism. The two main existing prudent RDR techniques are Rated 

MCRDR (RM) and Ripple Down Models (RDM) (Dazeley, 2007; Prayote & Compton, 2006). 
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8.3 The Project  

 

Given the demonstrated superiority of the prudent RDR methods over conventional KBS in 

maintenance and KA, this project sought to conduct a comprehensive evaluation and 

comparison of two of the best prudent methods: RM and RDM. There are currently no 

published records of such comparisons so the proposed evaluations should provide more 

insight into the strengths and weaknesses of the respective prudence methods and advance 

knowledge and application relevance of the methods. The original RDM method uses a Single 

Classification RDR engine. An intellectual contribution of this project is to develop a Multiple 

Classifications based RDM (MC-RDM) which is the version actually compared to RM.  

A further contribution proposed by this project is the development of a novel prudent 

method from a merger of RM and MC-RDM. The new method; Integrated Prudent Analysis 

(IPA) is anticipated to use the collective strength of the two methods to eliminate or reduce 

the limitations of using each individual method. Most research in fraud detection is limited 

by a use of synthetic data or lack of real records from the appropriate domain(s). In contrast, 

the commercial contribution of this project is based on the application of IPA in Internet 

banking fraud detection using real online banking transactions. This is where this project’s 

commercial relevance and industrial application sets it apart from other projects with a 

similar objective.   

8.4 The Results 

 

A host of tests and comparisons were conducted including comparing SC-RDM and MC-RDM; 

RM and RDM over eight datasets; RM, RDM and IPA; and finally, running IPA on Internet 

banking transactions. Comparisons were based on two main metrics, classifier accuracy (or 

simple accuracy) and prudence accuracy (or balanced accuracy).  

Generally, RDM and RM showed good results, validating what had been reported about their 

performance previously (Prayote, 2007; Dazeley, 2007). According to the metrics used in this 

project, RDM was slightly better than RM in prudence accuracy in categorical datasets and 

RM had a slight advantage over RDM in numerical datasets.  Over all the seven public 

datasets, the two systems performances are generally close and comparable to one another. 

In the end, this research concluded that given the two systems performance proximity to one 
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another across all the datasets, there could not be an outright best method as far as the 

prudence accuracy metric was concerned. It was further concluded that choosing whatever 

method was best for a given domain would be determined by each system’s results in that 

domain. So far, RDM seems suited for categorical data and RM for numerical datasets.   

A comparison of the two methods (RM and RDM) with IPA favoured the combined method in 

terms of prudence accuracy. This confirmed the project’s hypothesis that a particular 

combination of the two methods could improve each method’s individual prudence 

accuracy. IPA was further tested with Internet banking transactions showing good results. 

The application of IPA in Internet banking fraud detection was not necessarily meant to 

show-off the system’s good prudence accuracy in this domain but rather to demonstrate the 

viability of prudence methods in fraud detection applications.     

8.5 Contributions 

 

In accordance with the projected goals, most of the project’s objectives were met. 

Specifically, the following can be explicitly mentioned as contributions of the project.     

 Redevelopment of Multiple Classifications RDM from Single Classification RDM. Using 

an MCRDR engine, a Multiple Classifications-RDM system was developed.  

 Hitherto unpublished, focused comparisons of RM and RDM were conducted. A 

conference paper was published detailing results of preliminary tests of the two 

systems. 

 Introduction of RDR prudence to Internet banking fraud detection. RDR had not been 

applied in the Internet banking fraud detection domain. A conference paper reporting 

early test results and explaining the viability of prudent fraud detection in online 

banking was published.    

 Development of IPA by combining RM and RDM. Combining two known prudence 

methods RM and RDM, a more accurate prudent system IPA was developed.     

 Application of IPA to Internet banking fraud detection. A commercial contribution and 

practical milestone of this project was when the newly developed IPA system was 

tested on Internet banking transactions.  



- 122 - 
 

 

8.6 Conclusion 

 

In closing, it is the position of this project that the set objectives were met. A Multiple 

Classifications version of RDM was developed, a series of tests were run to compare RM and 

MC-RDM and IPA; a combination of RM and RDM was developed and shown to have better 

performance than any of the two systems. IPA was applied to online banking fraud 

detection, showing a good potential for an RDR based, prudent fraud detections system in 

this domain. A number of minor distractions worth flagging include the need for a unified, 

cross-domain and standardised KBS evaluation framework/standard. A number of disparate 

methods are being used in different domains to test and evaluate KBS. The existing methods 

evaluate different aspects of a KBS and usually vary from one domain to another.  RM and 

RDM have a number of parameters, most of which directly affect the systems’ performances. 

Having developed RM and MC-RDM from scratch, it became impossible for this project to 

test all possible RM, RDM and IPA thresholds and parameters. This issue is also highlighted 

by Dazeley (2007).  

Future work in this field could organise a systematic way of organising systems’ parameters 

and conduct further tests with unreported parameters. For some datasets, it was impossible 

to get perfect simulated experts from See5. Consequently, some tests were done with 

average SEs and others with fairly accurate SEs. Investigating the effect of different levels of 

SE accuracy on prudence would help explain some of the results reported in this project 

especially on the online banking data. There is still plenty of room to experiment with other 

configurations of IPA by trying different combinations of RM and RDM. The IPA configuration 

reported as the best of all the developed versions may not be so given the availability of 

other thresholds and parameters.  Given the introduction and advances in new KBS 

evaluation methodologies, it may be worth evaluating IPA with the dynamic evaluation 

proposed by Beydoun and Hoffman (2013) and the run time validation approach of Finlayson 

and Compton (2013).   

  



- 123 - 
 

9. Bibliography 

 

Australian Federal Police. (2012, May). Retrieved from Australian Federal Police: 

http://www.afp.gov.au/policing/cybercrime/internet-fraud-and-scams.aspx 

FlowMatrix A. l. (2011, January 20). FlowMatrix-Network Behavior Analysis System. Retrieved 

January 21, 2011, from Xharru ltd- Home of FlowMatrix and Network Simulator: 

http://www.akmalabs.com/flowmatrix.php 

Abraham, A. (2005). Rule-Based Expert Systems. John Wiley & Sons. 

Abrazhevich, D. (2001). Classification and Characteristics of Electronic Payment Systems. 

International Conference on Electronic Commerce and Web Technologies , (pp. 81-90). 

Androulidakis, I., & Papapetros, D. (2008). Survey Findings towards Awareness of Mobile 

Phones’ Security Issues. International Conference on Data Networks, Communications and 

Computers (DNCOCO), (pp. 130-135). 

Australian Bureau of Statistics. (2010, June). Retrieved from Australian Bureau of Statistics: 

http://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1301.0Feature+Article13012009%E2%80

%9310 

ACI Worldwide. (2011, January 18). ACI payment systems. Retrieved January 18, 2011, from ACI 

Worldwide: 

http://www.aciworldwide.com/igsbase/igstemplate.cfm/SRC=DB/SRCN=/GnavID=15 

Aggarwal, C., & Yu, P. (2001). Outlier Detection for High Dimensional Data. 2001 ACM SIGMOD 

International Conference on Management of Data , (pp. 37-46). New York. 

Aha, D. (1991). Tic-Tac-Toe Endgame Data Set . Retrieved 2012, from 

http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame 

Aladwani, A. (2001). Online banking: a field study of drivers, development challenges and 

expectations. International Journal of Information Management(21), 213-225. 

Aleskerov, E., Freisleben, B., & Rao, B. (1997). Cardwatch: a neural network based database 

mining system for credit card fraud detection . Computational Intelligence for Financial 

Engineering, (pp. 173-200). 

Anti-Phishing Working Group. (2010). Phishing Activity Trends Report. APWG. 

Anti-Phishing Working Group. (2011). Phishing Activity Trends Report. APWG. 

Asokan, N., Janson, P., Steiner, M., & Waidner, M. (1996). Electronic Payment Systems. IBM 

Research Division, Zurich. 



- 124 - 
 

Barnett, V., & Lewis, T. (1995). Outliers in Statistical Data (3 ed.). Wiley. 

Barwise, P. (1997). Editorial. The Journal of Brand Management, 220-223. 

Beale, R., & Jackson, T. (1991). Neural Computing: An introduction. Bristol, Great Britain: IOP 

Publishing. 

Ben-Gal, I. (2005). Outlier Detection. In O. R. Maimon, Data Mining and Discovery Handbook: A 

Complete Guide for Practitioners and Researchers (pp. 131-146). Kluwer Academic Publishers. 

Beydoun, G., & Hoffman, A. (2013). Dynamic evaluation of the development process of 

knowledge-based information systems. Knowledge Information Systems, 35, 233-247. 

Bolton, R., & Hand, D. (2002). Statistical fraud detection: A Review . Statistical Science, 17(3), 

235-249. 

Booz, Allen, & Hamilton. (1997). Internet Banking; a global study of potential. New York: Booz, 

Allen & Hamilton Inc. 

Breunig, M., Kriegel, H., Ng, R., & Sander, J. (2000). LOF: Identifying Density-Based Local 

Outliers. ACM SIGMOD, (pp. 93-104). 

Buchanan, B., & Shortliffe, E. (1984). Rule Based Expert Systems: The Mycin Experiments of the 

Stanford Heuristic Programming Project . Reading: Addison-Wesley. 

Cao, T., & Compton, P. (2005). A simulation framework for knowledge acquisition evaluation. 

28th Australasian Computer Science Conference, (pp. 353-360). Newcastle. 

Car Advice. (2012, July). Retrieved July 26, 2012, from 

http://www.caradvice.com.au/140921/bmw-1-series-review/ 

Centor, R. (1991). Signal Detectablity: The Use of ROC Curves and Their Analyses . Medical 

Decision Making, 102-106. 

Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. 

European Journal of Operational Research, II(6), 429-444. 

Chen, W.-H., Hsu, S.-H., & Shen, H.-P. (2005). Application of SVM and ANN for intrusion 

detection. Elsevier: Computers and OPerations Research, 2717-2634. 

Compton, P., & Cao, T. (2006). Evaluation of Incremental Knowledge Acquisition with Simulated 

Experts. Australian Conference on Artificial Intelligence, (pp. 39-48). 

Compton, P., & Horn, K. (1989). Maintaining an Expert System. Applications of Expert Systems, 

366-385. 

Compton, P., & Jansen, R. (1988). Knowledge in context: a strategy for expert system 

maintenance. Australian Joint Conference on Artificial intelligence (pp. 292-306). Springer-Verlag 

New York. 



- 125 - 
 

Compton, P., Kang, B., Preston, P., & Mulholland, M. (1993). Knowledge Acquisition Without 

Analysis. In Knowledge Acquisition for Knowledge Based Systems (pp. 278-299). Berlin: Springer 

Verlag. 

Compton, P., Peters, L., Edwards, G., & Lavers, T. (2005). Experience with Ripple-Down Rules. 

Artificial Intelligence-2005. Cambridge. 

Compton, P., Preston, P., & Kang, B. (1995). The Use of Simulated Experts in Evaluating 

Knowledge Acquisition . The 9th Knowledge Acquisition for Knowledge Based Systems 

Workshop, (pp. 12- 30). Calgary. 

Compton, P., Preston, P., Edwards, G., & Kang, B. (1996). Knowledge Based Systems That Have 

Some Idea of Their Limits. CIO, 15, 57-63. 

Datamonitor. (2009). Security in Online Banking (Strategic Focus). DataMonitor. 

Dayhoff, J. E., & DeLeo, J. M. (2001). Artificial Neural Networks- Opening the Black Box. CANCER 

Supplement, 1615-1635. 

Dazeley, R. (2007). To the Knowledge Frontier and Beyond: A Hybrid System for Incremental 

Contextual-Learning and Prudence Analysis. PhD Thesis, University of Tasmania. 

Dazeley, R., & Kang, B. (2008). Detecting the Knowledge Boundary with Prudence Analysis. AI 

2008, (pp. 482-488). Auckland. 

Dazeley, R., & Kang, B. (2008). The Viability of Prudence Analysis. The Pacific Rim Knowledge 

Acquisition Workshop, (pp. 107-121). Hanoi. 

Dazeley, R., Warner, P., Johnson, S., & Vamplew, P. (2010). The Ballarat Incremental Knowledge 

Engine. Pacific Knowledge Acquisition Workshop (PKAW) (pp. 195-207). Springer Link. 

Dazeley, R., Park, S., & Kang, B. (2011). Online knowledge validation with prudence analysis in a 

document management application. Expert Systems with Applications, 38, 10959-10965. 

Detica. (2011). The Cost Of Cybercrime. Detica Ltd, Surrey. 

Ditcheva, B., & Fowler, L. (2005). Signature-based Intrusion Detection. Chapel Hill: University of 

North Carolina. 

Durkin, J. (1994). Expert systems: design and development. Macmillan. 

Edwards, G., Compton, P., Malor, R., Srinivasan, A., & Lazarus, L. (1993). PEIRS: a pathologist 

maintained expert system for the interpretation of chemical pathology reports. Pathology, 

25(1), 27-34. 

Edwards, G., Kang, B., Preston, P., & Compton, P. (1995). Prudent Expert Systems with 

Credentials: Managing the expertise of decision support systems. International Journal of Bio-

Medical Computing, 40, 125-132. 



- 126 - 
 

Elkan, C., & Greiner, R. (1993). Book Review: Building Large Knowledge-Based Systems: 

Representation and Inference in the CYC Project . Artificial Intelligence, 41-52. 

Enterprise Management Associates. (2012). The Industrialization of Fraud Demands a Dynamic 

Intelligence-Driven Response. Boulder: Enterprise Management Associates. 

Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Data Mining 

Researchers. Palo Alto: HP Laboratories. 

Fawcett, T., & Provost, F. (1997). Adaptive Fraud Detection. Data Mining and Knowledge 

Discovery(1), 291-316. 

Feigenbaum, E., & Buchanan, B. (1978). Dendral and Meta-Dendral: Their Applications 

Dimension. Artificial Intelligence, 5-24. 

Feigenbaum, E., & Buchanan, B. (1993). DENDRAL and Meta-DENDRAL: roots of knowledge 

systems and expert system applications. Artificial Intelligence, 233-240. 

Federal Financial Institutions Examination Council. (2012). Authentication in an Internet Banking 

Environment. Arlington: FFIEC. 

FICO. (2011, January 18). Falcon Fraud Manager. Retrieved January 18, 2011, from FICO: 

http://www.fico.com/en/products/dmapps/pages/fico-falcon-fraud-manager.aspx 

Finlayson, A., & Compton, P. (2013). Run-time validation of knowledge-based systems. 

International Conference on Knowledge Capture . Banff. 

Gaines, B. (2000). Knowledge Science and Technology: Operationalizing the Enlightenment. 6th 

Pacific Knowledge Acquisition Workshop. Sydney. 

García, V., Mollineda, R. A., & Sánchez, J. S. (2009). Index of Balanced Accuracy: A Performance 

Measure for Skewed Class Distributions. Lecture Notes in Computer Science , pp. 441-448. 

Gholamreza, N., & Schnabl, A. (1997). Development of Multi-Criteria Metrics for Evaluation of 

Data Mining Algorithms. Knowledge Discovery and Data Mining, (pp. 37-42). Newport Beach. 

Ghosh, S., & Reilly, D. (1994). Credit Card Fraud Detection with a Neural-Network. 27th 

International Conference on System Sciences , (pp. 621-630). Hawaii. 

Giarratano, J., & Riley, G. (2005). Expert Systems: Principles and Programming. Thomson Course 

Technology. 

Gonzalez, F. A., & Dasgupta, D. (2003). Anomaly Detection Using Real-Valued Negative 

Selection. Genetic Programming and Evolvable Machines, pp. 383-403. 

Grogono, P., Preece, A., Shingal, R., & Suen, C. (1993). A Review of Expert Systems Evaluation 

Techniques. Technical Report, Concordia University, Montreal. 



- 127 - 
 

Guida, G., & Mauri, G. (1993). Evaluating Performance and Quality of Knowledge-Based 

Systems: Foundation and Methodology. IEEE Transactions in Knowledge and Data Engineering, 

204-224. 

Guo, T., & Li, G.-Y. (2008). Neural Data Mining for Credit Card Fraud Detection . 7th International 

Conference on Machine Learning and Cybernetics, (pp. 3630-3634). Kunming. 

Guo, Y., Heflin, J., & Pan, Z. (2003). Benchmarking DAML+OIL Repositories. International 

Semantic Web Conference, (pp. 613-627). 

Guo, Y., Pan, Z., & Heflin, J. (2004). An evaluation of knowledge base systems for large OWL 

datasets . International Semantic Web Conference, (pp. 278-288). 

Gupta, U. (1991 ). Validating and verifying knowledge-based systems. Los Alamitos: IEEE 

Computer Society Press. 

Han, S., Mirowski, L., Jeon, S. H., Lee, G. S., Kang, B., & Turner, P. (2013). Expert Systems and 

Home-based Telehealth: Exploring a role for MCRDR in enhancing diagnostics. Advanced Science 

and Technology Letters, 22, 121-127. 

Hardison, N., Reif, D., Fanelli, T., Ritchie, M., Dudek, S. M., & Motsinger-Reif, A. (2008). A 

Balanced Accuracy Fitness Function Leads to Robust Analysis using Grammatical Evolution 

Neural Networks in the Case of Class Imbalance . GECCO'08, (pp. 353-354). 

Havinga, P., Gerard, J., & Smit, A. (1996). Survey of Electronic Payment Methods and Systems. 

Memoranda Informatica, 7-28. 

Hawkins, D. (1980). Identification of Outliers. Biometrical Journal, 29(2), 188-198. 

Hayes-Roth, F. (1985). Rule-Based Systems. Communications of the ACM, 921-932. 

Hayes-Roth, F., & Jacobstein, N. (1994). The State of Knowledge-Based Systems. 

Communications of the ACM, 27-39. 

Hodge, J., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence 

Review, 22, 85-126. 

International Business Machines. (2008). Improving Payments Fraud Detection and Prevention: 

ACI Proactive Risk Manager with IBM System z10. IBM Corporation. Somers: IBM Corporation. 

Joffe, E., Havakuk, O., Herskovic, J., Patel, V., & Bernstam, E. V. (2012). Collaborative knowledge 

acquisition for the design of context-aware alert system. Journal of American Medical 

Informatics Association, 19, 988-994. 

Jones, A., & Sielken, R. (2000). Computer System Intrusion Detection: A Survey. Technical Report, 

University of virginia. 

Kabiri, P., & Ghorbani, A. (2005, September). Research on Intrusion Detection and Response: A 

Survey. International Journal of Network Security, 1(2), 84-102. 



- 128 - 
 

Kang, B., Compton, P., & Preston, P. (1995). Multiple Classification Ripple Down Rules: 

Evaluation and Possibilities. 9th Banff Knowledge Acquisition for Knowledge Based Systems 

Workshop, (pp. 17-26). Banff. 

Kazienko, P., & Dorosz, P. (2004). Intrusion Detection Systems (IDS) Part 2 - Classification; 

methods; techniques. Retrieved March 26, 2010, from WindowSecurity.com: 

http://www.windowsecurity.com/articles/IDS-Part2-Classification-methods-techniques.html? 

Kou, Y., Lu, C., Sirwongwattana, S., & Huang, Y. (2004). Survey of Fraud Detection Techniques. 

International Coneference on Networking, Sensing and Control, (pp. 749-754). Taipei. 

Kriegel, H. P. (2012). Density-Based Cluster- and Outlier Analysis. Retrieved from University of 

Munich Insitute for Computer Science: http://www.dbs.informatik.uni-

muenchen.de/Forschung/KDD/Clustering/index.html 

Krivko, M. (2010). A Hybrid Model for Plastic Card Fraud Detection Systems. Expert Systems with 

Applications, 37, 6070-6076. 

Kvarnstrom, H., Lundin, E., & Jonsson, E. (2000). Combining fraud and intrusion detection- 

meeting new requirements. Nordic Workshop on Secure IT Systems, (pp. 11-19). 

Last, M., & Kandel, A. (2001). Automated Detection of Outliers in Real-World Data. Second 

International Conference on Intelligent Technologies, (pp. 292-301). 

Li, B., Xie, S., & Xu, X. (2011). Recent development of knowledge-based systems, methods and 

tools for One-of-a-kind Production. Knowledge Based Systems, 1108-1119. 

Liao, S. (2003). Knowledge management technologies and applications- literature review from 

1995 to 2002. Expert Systems with Applications, 155-164. 

Lindsay, R., Buchanan, B. G., Feigenbaum, E., & Lederberg, J. (1993). A Case Study of the First 

Expert System for Scientific Hypothesis Formation. Artificial Intelligence - AI, 209-261. 

Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K., McClung, D., Weber, D., Webster, S., 

Wyschogrod, D., Cunninghan, R., Zissman, M. (2000). Evaluating intrusion detection systems: 

The 1998 DARPA off-line intrusion detection evaluation. DARPA Information Survivability 

Conference, (pp. 12-26). 

Liu, L., & Liang, Q. (2011). A high-performing comprehensive learning algorithm for text 

classification without pre labeled training set. Knowledge Information Systems, 29, 727-738. 

Macquarie Australia's National Dictionary (3rd ed.). (2001). Sydney, Australia: Macquarie 

Library. 

Mannan, M., & Oorschot, P. (2007). Security and usability: the gap in real-world online banking. 

Workshop on New Security Paradigms , (pp. 1-14). New Hampshire. 

Marsland, S. (2003). Novelty detection in learning systems. Neural Computing Surveys, 157-195. 



- 129 - 
 

Maruatona, O., Vamplew, P., & Dazeley, R. (2012). Prudent Fraud Detection in Internet Banking. 

Cybercrime and Trustworthy Computing Workshop 2012. Ballarat. 

Maruatona, O., Vamplew, P., & Dazeley, R. (2012). RM and RDM, a Preliminary Evaluation of 

two Prudent RDR Techniques. The Pacific Rim Knowledge Acquisition Workshop, (pp. 188-194). 

Kuching. 

McCall, T. (2012, May). Retrieved from Gartner Inc.: 

http://www.gartner.com/it/page.jsp?id=565125 

McCombie, S. (2008). Trouble in Florida, The Genesis of Phishing attacks on Australian Banks. 

6th Australian Digital Forensics Conference. Perth. 

Mendenhall, W., Reinmuth, J., & Beaver, R. (1993). Statistics for Management and Economics. 

Belmont: Duxbury Press. 

Metz, C. (1978). Basic Principles of ROC Analysis. Seminars in Nuclear Medicine, 283-298. 

Mhamane, S., & Lobo, L. (2012). Internet banking fraud detection using HMM. Computing 

Communication & Networking Technologies (ICCCNT), (pp. 1-4). Coimbatore. 

Mihaela, O. (2006). On the Use of Data-Mining Techniques in Knowledge-Based Systems. 

Economy Informatics, VI(1-4), 21-24. 

Ng, S. K., McLachlan, G. J., & Lee, A. H. (2006). An incremental EM-based learning approach for 

on-line prediction of hospital resource utilization. Artificial Intelligence in Medicine, 36, 257-267. 

Nilsson, M., Adams, A., & Herd, S. (2005). Building security and trust in online banking. 

Conference on Human Factors in Computing Systems, (pp. 1701-1704). New York. 

Patel, A., Qassim, Q., & Wills, C. (2010). A survey of intrusion detection and prevention systems. 

Information Management and Computer Security, 18(4), 277-290. 

Phua, C., Alahakoon, D., & Lee, V. (2004). Minority Report in Fraud Detection: Classification of 

Skewed Data. SIGKDD Explorations, pp. 50-59. 

Phua, C., Lee, V., Smith, K., & Gayler, R. (2005). A Comprehensive Survey of Data Mining-based 

Fraud Detection Research. Artificial Intelligence Review. 

Polika, R., Udpa, L., Udpa, S., & Honavar, V. (2004). An incremental learning algorithm with 

confidence estimation for automated identification of NDE signals. Transactions on Ultrasonics, 

Ferroelectrics and Frequency Control, 51, 990-1001. 

Powers, R., Goldszmidt, M., & Cohen, I. (2005). Short Term Performance Forecasting in 

Enterprise Systems. Stanford: Stanford University. 

Prayote, A. (2007). Knowledge Based Anomaly Detection. PhD Thesis, University of New South 

Wales, Sydney. 



- 130 - 
 

Prayote, A., & Compton, P. (2006). Detecting Anomalies and Intruders. International Conference 

on Artificial Intelligence 2006, (pp. 1084-1088). Hobart. 

Preece, A. (2001). Evaluating Verification and Validation Methods in Knowledge Engineering. 

Micro-Level Knowledge Management , 123-145. 

Putland, P., & Hill, J. (1997). Electronic payment systems. BT Technology Journal, 15(2), 32-38. 

Pyle, D. (1999). Data preparation for Data Mining. San Francisco: Morgan Kaufmann. 

Reserve Bank of India. (2001, June). Report on Internet Banking. Retrieved from Reserve Bank of 

India: http://www.rbi.org.in/scripts/BS_ViewPublicationReport.aspx 

Richards, D. (2003). Knowledge-Based System Explanation: The Ripple-Down Rules Alternative. 

Knowledge and Information Systems, 2-25. 

Richards, D. (2009). Two decades of Ripple Down Rules research. The Knowledge Engineering 

Review, 24(2), 159-184. 

RSA Security. (2010). 2010 Special Online Fraud Report. White Paper, RSA Security Inc. 

RSA Security. (2011). Sophisticated Local Pharming Trojan Targets Brazilian Banks. RSA. 

RSA Security. (2011). The Psychology of Social Engineering. RSA. 

RSA Security. (2012). Online Fraud Report. RSA. 

Rulequest. (2012, August). Retrieved from RuleQuest data mining tools: 

http://www.rulequest.com/see5-info.html 

Sadeghi, A., & Schneider, M. (2003). Electronic Payment Systems. In Digital Rights Management 

(pp. 113-137). Springer Berlin / Heidelberg. 

Salim, M., Villavicencio, A., & Timmerman, M. (2003, January). A Method for Evaluating Expert 

System Shells for Classroom Instruction. Journal of Industrial Technology, 19(1), 2-11. 

SAS. (2007). SAS Fraud Management. Technical Report, SAS Institute Inc. 

Sathye, M. (1999). Adoption of Internet banking by Australian consumers: an empirical 

investigation. International Journal of Bank Marketing, 324-334. 

SECTOOLS. (2011, January 21). Top 5 Intrusion Detection Systems. Retrieved January 21, 2011, 

from SECTOOLS.ORG: http://sectools.org/ids.html 

Senator, T. (2009). On The Efficacy of Data Mining for Security Applications. Cyber Security and 

Intelligence-Knowledge Discovery and Data mining , (pp. 75-83). Paris. 

Smaha, S. (1988). Haystack: an intrusion detection system. Aerospace Computer Security 

Applications Conference, (pp. 37-44). 



- 131 - 
 

Smith, R. (2001). Internet Related Fraud: Crisis or Beat-up? Australian Institute of Criminology, 

Canberra. 

SNORT. (2011, January 21). SNORT:: Home Page. Retrieved January 21, 2011, from SNORT: 

http://www.snort.org/ 

Sood, A., & Enbody, R. (2011). The state of HTTP declarative security in online banking websites. 

Computer Fraud and Security, 11-16. 

Spackman, K. (1989). Signal Detection Theory: Valuable Tools for evaluating inductive learning. 

International Workshop on Machine Learning, (pp. 160-163). San Mateo. 

Stolfo, S., Fan, D., Lee, W., & Prodromidis, A. (1997). Credit Card Fraud Detection Using Meta-

Learning: Issues and Initial Results. AAAI. 

Stolfo, S., Fan, W., Lee, W., Prodromidis, A., & Chan, P. (2000). Cost-based modeling for fraud 

and intrusion detection: results from the JAM project. DARPA Information Survivability 

Conference and Exposition, (pp. 130-144). 

Sweets, J., Dawes, R., & Monahan, J. (2000). Better decisions through science. Scientific 

American, 82-87. 

University of California Irvine. (2012, June). Retrieved from UCI Machine Learning Repository: 

http://archive.ics.uci.edu/ml/index.html 

Weatherford, M. (2002). Mining for Fraud. IEEE Intelligent Systems, pp. 4-5. 

Weber, R., & Darbellay, A. (2010). Legal issues in Mobile Banking. Journal of Banking Regulation, 

129-145. 

Wei, W., Li, J., & Cao, L. (2012). Effective Detection of Sophisticated Online Banking Fraud on 

Extremely Imbalanced Data. World Wide Web, 16, 449-475.  

Wiig, K. (1994). Knowledge management: the central management focus for intelligent-acting 

organizations. Arlington: Schema Press. 

Wolpert, D., & Macready, W. (1997). No Free Lunch Theorems for Optimization. IEEE 

Transactions on Evolutionary Computation , 67-82. 

Yoon, H., Han, S., Kang, B., & Park, S. (2012). V & V to use agile approach in ES development: 

Why RDR works for expert system developments! Communications in Computer and 

Information Science, 340, 113-120. 

 

  



- 132 - 
 

Appendix A: Acronyms 

 

AD: Anomaly detection 

AIC: Australian Institute of Criminology 

ANN: Artificial Neural Network 

BA: Balanced Accuracy 

CDNLF: Continuously Differentiable non-liner Function 

DEA: Data Envelopment Analysis 

DMU: Decision Making Units 

EPS: Electronic Payment System 

ES: Expert Systems 

FEP: Feature Exception Prudence 

FFIEC: Federal Financial Institutions Examination Council 

FPA: Function Point Analysis 

FRP: Feature Recognition Prudence 

HMM: Hidden Markov Model  

ID: Intrusion Detection 

IPA: Integrated Prudent Analysis 

KB:  Knowledge-Base 

KBS: Knowledge-Based Systems 

MCRDR: Multiple Classifications Ripple Down Rules 

MD:  Misuse Detection 

NNIDS: Network Node Intrusion Detection Systems 
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OBS: Online Banking System 

OCC: One Class Classification 

OD: Outlier Detection    

OEBA: Outlier Estimation with Backward Adaptability 

OECA: Outlier Estimation for Categorical Attributes 

OWL: Web Ontology Language 

PIERS: Pathology Interpretative Expert Reporting System 

RBF: Radial Basis Function 

RBS: Rule Based Systems 

RDM: Ripple Down Models 

RDR: Ripple Down Rules 

RM: Rated Multiple Classifications Ripple Down Rules 

ROC: Receiver Operating Characteristics 

SP: Situated Profile 

V&V: Verification and Validation 

 

 

 

 

 

 

 


