
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2012

Implementation of Robotic Convoy Control Using
Guidance Laws
Christopher W. Earley
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Earley, C. W. (2012). Implementation of Robotic Convoy Control Using Guidance Laws. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/2205

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212996498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2205?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


IMPLEMENTATION OF A ROBOTIC CONVOY CONTROL  

USING GUIDANCE LAWS 

 
A Major Qualifying Project Report Submitted to the Faculty of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for 

the Degree of Bachelor of Science 

in Robotics Engineering, 

By Christopher Earley 

 

Date: January 13, 2012 

 

 

 

 

Approved: 

 _______________________________________ 

Professor Taskin Padir, Advisor 

 

 

Project Number: MQP TP1 11E1 

Keywords: 

1. Convoy 

2. Ground Vehicle 

3. Path Following 

4. Kinematics 

5. Odometry 



 

ABSTRACT 
The goal of this project is to implement a semi-autonomous system consisting of two ground vehicles that simulate 

a convoy control scheme using operator control for the master and autonomous control for the slave. Using a 

control system based on platform kinematics in conjunction with the open source ROS framework, three different 

convoy scenarios are investigated using two Clearpath Husky A100 ground platforms and results are compared to 

computer simulation. The main contributions of this project are the development of a software framework for 

multi-vehicle convoys and the identification of vehicle kinematic model.  
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1 INTRODUCTION 
Over recent years a research trend has emerged that seeks to actively revolutionize mobility as we know it, 

research to develop autonomous ground vehicles. Numerous companies and agencies around the world are 

working towards developing automated solutions for a variety of applications that seek to benefit military and 

civilian interests. [1] In recent years the fruits of this labor have begun to work their way out of the lab and into 

active use. [2]  

From automated vehicle parking to autonomous material convoying, the growing pool of applications seek to raise 

system efficiency and increase the capability of human operators by offloading trivial or tedious tasks to 

automated systems. This has the ability to transform a variety of resource mobility processes by lowering the level 

of active human participation needed for a task, allowing operators to focus on other responsibilities. [3] 

Additionally, by allowing autonomous systems to govern locomotion, the amount of error caused by human 

intervention or distraction will be reduced, thus lowering vehicle collisions while increasing overall efficiency. [4] 

1.1 BACKGROUND 

With the number of autonomous agents in active duty around the world rising every year, more and more 

applications are being explored in order to achieve a state where each human in the loop corresponds to multiple 

robotic agents in the field. This aspect of human-to-machine “force multiplication” has been a big focus of private 

and public research prompting the creation of multiple projects that seek to change everything from the daily 

commute to how resources will be mobilized in active war zones. [5] [6] 

The sector that expects to be the training ground for some of these robotic agents is the military logistics 

subdivision, which in recent years has been strained to achieve the supply fulfillment requirements defined by the 

U.S. Army doctrine. [7] Current supply chains suffer from human unreliability and the growing need for continuous 

supplies is fast outpacing the ability for current personnel volumes to keep up. From this the need for some type of 

one-to-many system of force multiplication is a rising necessity.  
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One such system on the horizon is the Convoy Active Safety Technology (CAST) system being developed by 

Lockheed Martin for the US Army Tank Automotive Research, Development, and Engineering Center. CAST works 

as an installable kit for existing Army ground vehicles that integrate a host of sensors and actuators allowing the 

vehicle to be autonomously controlled. The outfitted vehicle can now act as a normal human-driven automobile or 

function autonomously as a slave convoy vehicle capable of following a lead unit though unknown terrain. [8] 

Though the recent developments in robotic convoy technology are focused on more than military logistics 

applications, the EU-financed Safe Road Trains for the Environment (SARTRE) project aims to allow for normal 

motorists to join into an ad hoc convoy commanded by a professional driver. After joining the platoon, the vehicle 

will transition into an autonomous state and hold a set distance from the car before it as the unit progresses along 

the highway. The driver can stay in the platoon until the relevant exit is approached and then the car can 

disengage the platoon and transition back to human control for the remainder of the trip. This system, if 

successfully developed and adopted could revolutionize modern transport by lowering traffic fatalities from 

human error, increasing fuel economy, and freeing commuters to focus on things other than driving. This project is 

currently progressing from the simulation phase to real-world testing at the Volvo Proving Ground near 

Gothenburg, Sweden. [9] 

1.1.1 ROBOTIC CONVOYS 
At the core of this logistics issue lie the convoy, a simple but effective manner of moving equipment and supplies 

over long ground distances using multiple vehicles and a set path. This manner of assembly affords the unit many 

useful logistic features not limited to, increased efficiency due to the drafting effect of following a in a vehicle’s 

wake, low logistic overhead since all traveling parties are using the same route, and high recoverability since the 

total supply package is split among the vehicles versus being contained in one vulnerable unit.  

The problem of designing a force multiplying convoy system can be boiled down to a set of simple requirements: 

1. The lead vehicle, driven by a human, must be functionally identical to a normal convoy lead vehicle 

meaning that all moment-by-moment decisions for the following units must be separated from the duties 

of the lead driver. 
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2. The following units must be able to follow the path set by the lead vehicle and be able to maintain a semi-

static distance with the unit before them. 

3. In addition, the following units must be able to deviate from the set path in the case of dynamic 

conditions on the set path. After executing the deviation, the units must be able to return to the path 

proper at the set distance. 

This project focuses on the implementation of requirements 1 and 2 to develop a functional two platform convoy 

system using two Clearpath Husky A100 ground vehicles. This research will serve as the Major Qualifying Project
1
 

[MQP] for fulfillment of a bachelor’s degree in Robotics Engineering at Worcester Polytechnic Institute.  

In our preliminary research into convoy dynamics, numerous relevant papers were published covering a plethora 

of various solutions to the partial-autonomy convoy problem. [10] [11] [12] [13] Seeing as our focus for this 

research was to find a workable solution while reducing overall system complexity we focused on a paper written 

by Fethi and Boumediene Belkhouche that applied kinematic guidance laws to create a dynamic control system 

driven convoy. [14]  

Whereas most convoy control solutions rely on control methods like visual servoing [15] [16] [17] or fuzzy logic 

systems [18] [19] [20] that made decisions from external sensor data, the methods outlined in this paper rely on 

control systems derived from kinematic models of holonomic ground platforms. This lowers the computational 

burden imposed on the system while allowing for constant control of slave units even if visual contact with the 

leader is lost. For this system to work, assumptions are made to ensure a proper convoy starting arrangement 

where all units are in known positions and distances from each other and that the units have free access to the live 

velocity and pose information regarding their leaders. 

To control the two mobile platforms, a unified software framework was needed to connect each system in an 

asynchronous network capable of transferring sensor data while allowing for data collection and control of the 

platform’s movement.  

                                                                 
1  MQP is a capstone project that culminates a student’s WPI education with the application of ideas from their 
coursework to designing a product, instrument, device, or program which integrates theory and practice.  
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1.1.2 CONVOY VEHICLE SETUP 
  

In this convoy, we have two ground platforms with known positions within a global coordinate frame. The platform 

positions are defined as         for the master unit and             for the following slave unit with orientation 

angles of     and      respectively. The angle of the direct line-of-sight between the vehicles is denoted as 

      and has a desired length of   . 
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FIGURE 1: CONVOY SYSTEM SETUP 

Before the convoy vehicles are started, the platforms must be separated by the desired follow distance with both 

vehicles facing each other. In this case we can now place the master vehicle at the origin of the global coordinate 

frame with the slave offset along the x axis at a distance of    . This configuration simplifies the initial vehicle 

poses and makes the convoy problem an issue of maintaining the follow distance and slave pose with relation to 

the master.  
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FIGURE 2: INITIAL POSITION AND ORIENTATION OF THE LEADER AND FOLLOWER IN CONVOY FORMATION 

1.1.3 SOFTWARE FRAMEWORKS 
The software development framework ROS or robotic operating system was chosen as our unifying platform due 

to its stability and existing support for our ground vehicle. ROS is a multi-platform system aimed at creating 

singular computing clusters out of heterogeneous hardware units with a standard communication platform 

connecting the units together. This system began in 2007 at Stanford’s Artificial Intelligence Lab for their mobile 

robotic platform named STAIR (Stanford Artificial Intelligence Robot).  In 2008 the California robotics firm Willow 

Garage released the first version of their flavor of Switchyard they called ROS with a focus on extend the system to 

easily accept various hardware platforms, sensor packages, and the algorithms needed to tie them together into a 

working compliant system. Since its release in 2008, ROS had become a major player in the robotic development 

platform world with thousands of ROS framework elements, or packages, available and used by an active 

community of developers and companies. 

1.1.4 MOBILE ROBOT PLATFORMS 
To implement the convoy logic needed for autonomous control a set of hardware and accompanying software 

must be acquired or created. For this project we opted to utilize the Clearpath Husky A100 6-wheeled skid-steered 
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mobile platforms available for department research. These pre-built robotic systems not only afforded us a turn-

key hardware solution but also a provided C++ library and official support for widely used robotic frameworks. 

Lastly, since this application implies the possibility of natural or rough terrain, the rugged water-resistant body of 

the Huskies would prove to be an additional benefit for outdoor environments. The Clearpath Robotics Husky A100 

is a differential drive system built for rough terrain and large open spaces. It has a full micro ATX computer 

assembly on board along with a set of regulated voltage supplies for powering additional components that 

provides a nominal operation time of two hours and a peak power of 600 W. 

 

 

FIGURE 3: 3D RENDER OF THE A100 PLATFORM 
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2 CONTROL BASED ON GUIDANCE LAWS 
Based from the research into convoy pursuit methods, a strategy grounded on generating a set of control laws for 

the angular and linear momentum of the slave vehicle based of relative velocities was adopted and implemented. 

The control strategies used in this project were directly derived from guidance law formulations using the 

kinematic states as a platform for generating a mathematical formulation of their relative positions and velocities 

over time. Starting with the most basic case, the velocity pursuit, two other versions of guidance law will be 

discussed and tested. 

2.1.1 VELOCITY PURSUIT 

To maintain a convoy arrangement, control velocities that relate a slave and its master are calculated in the global 

coordinate frame. This is done using guidance law equations that take advantage of the available pose information 

of the platforms. First, the geometric relationship between the two platforms is defined and from that, control 

signals are generated to maintain a motion matching steady-state. 
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FIGURE 4: PLATFORM GEOMETRY 
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To relate the two platforms, the line of sight angle        and the relative unit distance        are calculated using 

the planar coordinates of the two platforms denoted here as         for the master unit and             for the 

following slave unit. 

            
        

        
 ,          √          

            
   

From those values we can now solve for the thrust velocity of the slave unit, 

                        

where    is the scalar velocity of the lead unit and   is the global orientation of the vehicle. 

With this velocity known, it can now be separated into the individual vector components with respect to the line of 

sight angle and sent to the slave system. The equations below are used for the simplest version of the convoy 

guidance law systems, the velocity pursuit. 

 ̇                       

 ̇                      

 ̇     ̇       

Now in the above example, only the angle and the velocities of the two systems are controlled with no attention 

spent on maintaining a set distance between the platforms. This can be rectified by adding the desired distance,  

   to the slave velocity calculations as follows. 

 ̇         
           

   

 

 ̇         
           

   

  

 ̇     ̇      

2.1.2 DEVIATED PURSUIT 

An extension to the standard velocity pursuit algorithm, the deviated pursuit includes a small          constant 

deviation angle      to the velocity calculation. The inclusion of this angle provides the following unit the ability to 

converge with the leader’s path with greater accuracy then can be achieved with the standard velocity pursuit.  
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 ̇                            

 ̇                            

 ̇     ̇       

2.1.3 PROPORTIONAL PURSUIT 

Another variation of pursuit law is the proportional pursuit which includes a small          scaling constant   

to the line of sight angle and angular velocity. This once again allows the following unit the ability to converge with 

the leader’s path with greater accuracy than can be achieved with the standard velocity pursuit.  

 ̇                        

 ̇                       

 ̇      ̇       

The three versions of guidance law are each capable of generating the velocities needed to allow a slave vehicle to 

follow a master. Though, for the two special cases of velocity pursuit, the proper choice of constants could have an 

overall positive effect on the slave vehicle’s ability to fully converge with the master’s path. These results will be 

examined later though simulation in an attempt to reproduce the results shown in the original research. 
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3 SOFTWARE FRAMEWORK 
Since we were to be using two husky A100 ground vehicles in concert to simulate the smallest convoy unit 

possible, a software platform that eased the development of the required inter-system communication was a 

must. In addition, since there was a large selection of dynamic data outlined in the paper that would be updated 

and broadcasted at any point in time, the ability to perform multi-threaded processes to react to the rapid changes 

in state was heavily favored. From these requirements two possible systems were discovered, first was straight 

C/C++ program development using the provided Clearpath libraries in conjunction with TCP/IP sockets, the second 

was the Robotic Operating System [ROS] framework maintained by Willow Garage.  

After initial research into development with the two platforms, it proved to be that creating an asynchronous 

multi-threaded communication system in C++ would become one of the bigger drawbacks to developing with the 

provided libraries. This was greatly contrasted by the ease of multi-system integration that ROS was known for, 

seeing that it was design to easily create homogeneous computing clusters from heterogeneous systems over 

UDP/TCP.  

Since the master unit will be human controlled, a method of user input was needed. Since the platform for ROS is a 

unix-based operating system, the use of USB videogame joy pads was made trivial. For ease of use, enhanced 

debugging, and data collection, the user control pad was connected to a mobile laptop that in turn connected to 

the wireless hub installed on the lead robotic platform. This setup prevented the driver from needed to be 

tethered to the mobile platform and allowed for a stationary interface to launch the software from or perform 

diagnostics. Lastly, the follower platform would also connect to the leader’s wireless hub to complete the network 

graph. 
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FIGURE 5: SYSTEM BLOCK DIAGRAM 

Within each Clearpath Husky A100, there exists a set of quadrature encoders connected to the drive shafts of the 

wheel assemblies that connect the three wheels on each side. These encoders generate timing signals that are 

interpreted by the A100 firmware and converted to linear/angular velocities and travel distances for the platform 

in real time, in meters per second and meters respectively. Since the gearing and the radius of the wheel are static 

values that cannot be changed by the owner, the automatic conversion from angular wheel speed to linear velocity 

can be considered valid and usable for later calculations. 

3.1.1 GUIDANCE LAWS 

For each of the guidance law based convoy algorithms defined in the paper by Fethi and Boumediene Belkhouche, 

a ROS node was developed capable of executing the algorithm on live velocity and pose data published by the two 

clearpath platforms. The similarities in each convoy algorithm allowed for comparable design patterns in how each 

algorithm’s node consumed data, performed the described operations, and finally published the resulting 

velocities.  

In the code for each version of the convoy algorithm, the flow of each program is identical in structure. The general 

process is as follows: 
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1. Initialize variables and setup topic subscription and publishing 

2. Update internal variables with the latest pose and velocity data from subscribed topics 

3. Perform the guidance law calculations 

4. Publish the resulting velocities for other nodes to consume 

3.1.2 ROS SYSTEM DEVELOPMENT 

Development in ROS revolves around the concept of a graph, where each node is a separate process and the edges 

connecting them are communication lines for sharing data. Each node is its own individual executable package that 

can be programmed in a variety of mainstream languages, including python and C++. For this system, we opted to 

use python due to its high level of support within the ROS community. Within these nodes, communication is setup 

using a publisher/subscriber model. In this nodes can send out data to the rest of the graph by creating a publisher 

on a unique topic with a set message structure.   

An example of a publisher object would look like this: 

cmd_pub = rospy.Publisher('cmd_vel', Twist) 

Where “cmd_vel” is the label of the topic that is getting created and “Twist” is a defined message structure that 

consists of two, three float value arrays that represent the linear and angular velocities for a three dimensional 

object. After this object is created, it can then be used to send Twist data to an arbitrary number of other nodes. 

The code required to actually publish the data contained in a populated Twist message object is as follows. 

cmd_pub.publish(self.twist) 

When this command is executed, whatever data is within the self.twist object is sent out over TCP to a backend 

central ROS core server that then handles the rest of the communication to subscribing nodes. 

Subscriptions work in a similar manner, during the initialization phase for a node the subscriber can be called that 

maps the data from a given topic, for example “/robot/cmd_vel” of the message type Twist, and upon reviewing a 

new message, run the function receivedTwist. 
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rospy.Subscriber("/robot/cmd_vel", Twist, self.receivedTwist) 

Now every time new data is transmitted on that topic, the service routine method receivedTwist will be executed 

and in most cases the called method will just copy the new information to an object for use in other parts of the 

program. 

With the custom equations now wrapped into executable ROS nodes that run continuously and publish data, the 

various stacks can be strung together to form the system capable of the functionality we outlined previously. This 

process is performed in ROS by creating a launch file that contains the information needed to execute each 

individual node and how they connect together to form the overall application structure.  

The convoy application is split up into three hardware devices, the control unit, the slave platform, and its master. 

Each of these systems will run a subset of the application’s nodes and during operation will pass information to 

each other asynchronously.  

Control Unit

Master Unit

Slave Unit
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Clearpath Base
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Current 
Joystick 
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Radial 
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Current 
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Convoy Algorithm
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Legend

Node
Data 
Type

 

FIGURE 6: ROS NODE OVERVIEW 

For the sake of reducing the TCP communication lag, nodes were made to run on systems that generated data that 

the node required for its calculations. That way the only time that a non-localhost data transfer will occur is when 

a sub-system is broadcasting data concerning its individual state to another set of nodes for further calculations.  
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For each of the clearpath platforms, a set of nodes for calculating pose estimates and turning velocity messages 

into platform movement is hosted locally. The slave unit has, in addition to the previously mentioned, a node for 

consuming current the poses and velocities of the two units and generating a velocity message in accordance with 

the guidance law algorithm being executed. Lastly, the control unit, acts as an interface USB joystick and converter 

for turning joystick state messages into velocities to be consumed by the master unit. 

This structure was described in the launch file through the use of namespaces defined in the file’s XML syntax. An 

example of a node being defined to run with a specific namespace is given below.  

<!-- Setup nodes for lead robot wolfgang --> 

<group ns= "clearpath/robots/master"> 

<node pkg="joy" type="joy_node" name="joy"> 

</node> 

</group> 

In this example, the controller messages generated from the joystick node will be broadcasted from the 

namespace “/clearpath/robots/master/joy”. Any other node that needed this information was written to subscribe 

to that address specifically and upon successful subscription, will be able to receive live data regardless of the 

hardware platform the node is run on. 

Once each node has been defined and given a namespace, the launch file can then be executed automating the 

process of executing the individual nodes on the appropriate hardware and setting up the needed communication 

framework. After the startup process, the system is ready to operate.  
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4 KINEMATIC MODEL IDENTIFICATION 
In order to fully control a ground vehicle in situations such as convoys, the kinematic characteristics of the 

platform must be investigated to develop a kinematic model. In the case of this project, analysis was performed to 

calculate the movement constraints on the differential drive vehicle to gain a general understanding of the 

platform’s limitations. Then a general model was created that allowed for the calculation of vehicle poses from the 

available wheel encoders. Lastly, the efficacy of this model was tested on multiple surfaces to see how the vehicle 

constraints influence pose calculation. 

4.1.1 PLATFORM CONSTRAINTS 

Due to the differential wheel layout of our robotic platform, constraints were bound to exist in the system that 

limits the controllable degrees of freedom that we can use for kinematic control. To illustrate these restrictions, a 

nonholonomic sliding and rolling constraint analysis was performed on the A100 wheel geometry to derive a set of 

equations that express the movement concerns for each wheel and how they contribute to the entire system. 
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FIGURE 7: CHASSIS LAYOUT 

After taking measurements of the A100 chassis’ width and wheel distances, a diagram of the system’s layout was 

generated and the relevant metrics computed. In order to calculate the constraints of the system, there are 3 data 

points that must be found for each wheel. 
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1. L : The distance of the center of the wheel from the geometric center of the platform, marked as the 

origin in the diagram. 

2. α : The angle of the wheel position with respect to the robot coordinate frame 

3. β : The angle of the right-hand-rule derived direction needed for the wheel to go forward orientation with 

respect to the angle α  

Wheel 1 2 3 4 5 6 

L  (inches) 14.33 14.33 9.75 9.75 14.33 14.33 

α (degrees) -137.12 137.12 -90 90 -42.88 42.88 

β (degrees) -137.12 -47.12 -180 0 137.12 47.12 

 

With these values calculated we can now begin to generate equations to describe the effect the motion of the 

platform’s wheels will have on the platform velocities expressed in the global coordinate system,  ̇ . The platform 

velocities are represented by the linear velocities   and   and the angular velocity   . Since there are constraints 

on the robot’s motion, we have to convert the vectors from the global coordinate frame to a frame related to the 

platform. This process is accomplished through the use of the rotation matrix,    that relates vectors from a global 

coordinate system to the local coordinate system used by the platform. 

 ̇   [
 
 
 

] 

   ⌊
          
         

   
⌋ 

It must be said that in these constraint models, we assume that the wheels are incapable of slipping or deforming, 

that there is no friction on the rotational axis, and that the steering axes are normal to the surface.  

4.1.2 ROLLING CONSTRAINTS 

The set of equations below seek to characterize in what direction the wheels will begin to roll if acted upon by an 

external force. 
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                               ̇    ̇ 

Wheel 1:                        ̇    ̇ 

Wheel 2:                ̇    ̇ 

Wheel 3:               ̇    ̇ 

Wheel 4:                 ̇    ̇ 

Wheel 5:                       ̇    ̇ 

Wheel 6:                ̇    ̇ 

The zero or near zero values present in the constraint values for each wheel point to our platform being unable to 

roll in all degrees of motion afforded by the two dimensional plane. This means that this system, for most intents 

and purposes, can only move along the direction of the surge velocity,   without having to undergo slipping. 

4.1.3 SLIDING CONSTRAINTS 

These constraints represent in which direction the wheels will begin to slip when acted upon by an external force, 

such as a force generated by the other wheels. 

                              ̇    

Wheel 1:                        ̇    

Wheel 2:                ̇    

Wheel 3:            ̇    

Wheel 4:            ̇    

Wheel 5:                        ̇    
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Wheel 6:               ̇    

The zero or near zero values present in the constraint values for each wheel point to our platform being unable to 

slide in all the degrees of motion afforded by the two dimensional plane. Additionally, if any considerable force is 

applied along the orthogonal axis, slippage will occur.  

Although this is common knowledge for anyone that has used a skid-steer platform, this exercise proves that this 

platform is indeed non-holonomic since there exists a discrepancy between the total degrees of freedom 

expressed in the vector  ̇  and the total controllable degrees of freedom expressed by the constraints.   

4.1.4 KINEMATIC MODEL 

To use the platform for this project we needed to generate a kinematic model that would allow us to calculate the 

system’s state relative to a global coordinate frame using the on-board quadrature encoders. Since using the 

encoder to generate a location and orientation estimate over an extended period of time would accumulate a 

large amount of error due to slip, we used a discretized version of an odometry pose model that would update the 

system pose every time step by looking at only the change in distance and angle that occurred during the small 

time increment. 

Beginning with the wheel distances calculated by the A100 firmware, the change in distance from the previous 

time step to the current is calculated for each side of the platform. 

                                          

 From that we can calculate the change in angle and linear distance for the entire platform where w is the width of 

the platform. 

   
        

 
         

        

 
 

Finally, the generated deltas are then summed with the previous position and angle values after calculating their 

respective trigonometric components.  



19 
 

                   
  

 
  

                   
  

 
  

           

This set of equations describes the position and orientation of the mobile platform in the global coordinate frame. 

4.2 ODOMETRY VIABILITY TESTING 
 

One issue with this odometry pose system is that it does not account for the slip that results from the platform’s 

constraints. In order to quantify the amount of error that results from this, a simple test was performed that 

compared the actual rotated angle to the calculated angle on two types on flooring, short pile carpet and linoleum 

tile.  

 

FIGURE 8: ANGLE TESTING SETUP - INITIAL POSE AND POSE AFTER 45 DEGREE ROTATION 

 

As shown from figure 7, a tape marker was placed on the floor of test space with the vehicle placed above it. With 

the vehicle facing parallel to one of the tape lines, a game controller was used to make the platform spin till it was 

parallel to one of the four desired angles provided by the lines (45, 90, 135, 180 degrees respectively) and the 

angle calculated from the ROS odometry node was recorded for later analysis.  This process was repeated three 

times for each of the angle markers on both types of flooring.  
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5 RESULTS 
Using the control system based on platform kinematics in conjunction with MATLAB, the three different convoy 

scenarios were investigated with the aim to make a comparison to the computer models offered from the original 

research.  Finally, the developed odometry model was tested with the intent of investigating the effect of the 

platform’s kinematic constraints on calculating accurate vehicle poses. This process was performed with the Husky 

A100 platform on a set of surfaces with differing amounts of wheel friction to see if the resulting error was 

systematic or a function of the dynamic wheel grip. 

5.1.1 CONVOY SIMULATION 

To prove the validity of the guidance law concept, a simulation script was developed to test the theoretical 

concept of the various algorithms with a simplified set of holonomic platforms traveling on a simple path. The 

guidance law implementation used for this simulation is an exact copy of the version used in the final ROS package.  

A demonstration of the slave vehicle’s ability to converge with a circular master path was created to see if the 

slave was capable of following the master on a curved path using the velocity pursuit guidance law. 

 

FIGURE 9: VELOCITY SLAVE PATH CONVERGENCE 

Then a simulation utilizing the velocity pursuit with desired follow distance of 0.1 meters was made to test that the 

guidance equations would allow the slave to maintain the desired distance around a circular path.  
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FIGURE 10: PURSUIT WITH DISTANCE OF 0.1 METERS 

Finally, the three versions of guidance law were simulated on an identical circular path to compare their ability to 

match the movement of the master vehicle. 

 

FIGURE 11: SLAVE PATH CONVERGENCE, COMPARISON OF CONVOY ALGORITHMS 

 

5.1.2 PLATFORM POSE ESTIMATION ERROR QUANTIFICATION 
 

Using tape markers placed on the testing surface, a Husky A100 ground vehicle was driven to four different angles, 

the resulting calculated pose angles from the odometry system were recorded and compared to the actual amount 

the vehicle rotated. 
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FIGURE 12: ODOMETRY ANGLE CALCULATION - THREE TRIALS OF FOUR DESIRED ANGLES 

Using the data from the four trials the average of the recorded angles were computed and plotted against the 

desired angles that the vehicle actually traveled. 
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FIGURE 13: COMPARISON OF KNOWN ROTATION ANGLES AGAINST ODOMETRY CALCULATED POSE ANGLES 

With the average reported angles known, the angle errors for both surfaces were computed and compared to one 

another to illustrate the variation of odometry error caused by surface friction during turns. 

 

FIGURE 14: AVERAGE ERROR OF ODOMETRY ANGLE CALCULATIONS FOR FOUR DESIRED ANGLES ON TWO SURFACES 
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6 DISCUSSION AND FUTURE WORK 
The ability of the velocity pursuit algorithm as described in the original paper was successfully recreated in 

simulation. As shown in the results, we were able to develop a scenario where the slave platform converged onto 

the master’s path after starting a set distance away using velocity pursuit. In the case of the velocity pursuit 

variation that specified a mandatory following distance, the slave platform was able to stay away from the master 

at the correct distance for the entirety of the path. Lastly, the converging characteristics of the three variations of 

guidance law were simulated and the behaviors exhibited were similar to the original research. Both proportional 

and deviated pursuit generated accurate paths for the slave vehicle with greater fidelity then normal velocity 

pursuit. 

Due to the aforementioned inaccuracies caused by the excessive skid combined with odometry derived pose 

calculation, the actual physical implementation of the guidance law convoy was not able to be accomplished in the 

time frame of the project with the tools available. Since the calculated poses of the two platforms were inherently 

faulty and dependent on the variable traction provided by the driving surface, any later calculation based on these 

values would exhibit behavior not defined by the actual state of the world. This result itself stresses the necessity 

of improvements to the pose estimation methods. Implementing such changes could rectify this issue and serve as 

a good starting place for any individuals wanting to continue development of this system. 

6.1.1 RECOMMENDATIONS FOR FUTURE DEVELOPMENT 

The work performed here can be considered preliminary groundwork in developing the scaffolding for a two unit 

convoy system with the given hardware platforms. Although much work has been done to build the framework 

needed to compute the velocities needed for the slave unit to follow its master, the actual tests show that due to 

the large error generated during odometry pose calculations, the resultant slave movement profiles perform 

erratically. This issue most likely stems from the slip-dependent dynamics of the six-wheeled chassis causing large 

deviations in the pose estimate derived from the encoder data, which does not take into account the generous 

amount of slip needed to perform a turn.  
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Additional sensors for calculating poses would be beneficial addition to the system. A combination of GPS and IMU 

would go great lengths to give decent pose estimates in a global coordinate frame.  Within the ROS package 

repository, there exist multiple stacks that could be used to extend the existing framework to integrate the new 

data sources into the existing node graph. One possible combination would be to combine data from a commercial 

USB GPS dongle with a Nintendo Wiimote using a filtering algorithm to generate a unified pose. This process would 

be performed on both A100 platforms and used as the basis for any calculations regarding the positions of the two 

systems in the global frame. 

Lastly, with dependable position data available, the system should be extended to allow for the slave unit to 

deviate from the control law dictated path to avoid obstacles. This deviation should occur when the possibility of 

collision with an external object becomes significant. After the obstacle is cleared, the system should revert back to 

normal control law convoy tracking. Fuzzy logic or probability based approach could be used as possible methods 

of controlling this behavior swapping that occurs when faced by an obstacle. 
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7 APPENDICES 

7.1 APPENDIX A: ROS INTRODUCTION PRESENTATION SLIDES
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7.2 APPENDIX B: ROS NODE CODE 
#!/usr/bin/env python 

 

# velocity_pursuit.py 

# This is the ROS node that performs the velocity pursuit slave movement  

# calculations. This node consumes live pose information from the two husky 

A100  

# systems and generates a twist velocity message for the slave unit to 

consume 

# Author: Chris Earley 

 

import roslib; roslib.load_manifest('convoy_follow') 

import sys 

import rospy 

import math 

from convoy_follow.srv import * 

from geometry_msgs.msg import Twist 

from geometry_msgs.msg import PoseStamped 

from convoy_follow.msg import PoseStampedVel 

from clearpath_base.msg import * 

 

class Velocity_Pursuit: 

 

    def __init__(self): 

        rospy.init_node("velocity_pursuit") 

 

        self.turnscale = 5 

        self.twist = None 

        self.followPose = PoseStampedVel() 

        self.leadPose = PoseStampedVel() 

        cmd_pub = rospy.Publisher('cmd_vel', Twist) 

        rate = rospy.Rate(rospy.get_param('~hz', 10)) 

     

        # setup calculated pose subscriptions 

        rospy.Subscriber("/clearpath/robots/wolfgang/pose", PoseStampedVel, 

self.setFollowPose) 

        rospy.Subscriber("/clearpath/robots/polly/pose", PoseStampedVel, 

self.setLeadPose) 

 

        # calculate twist for slave at 20Hz 

        while not rospy.is_shutdown(): 

            self.callback() 

            # publish calculated twist message 

            cmd_pub.publish(self.twist) 

            rate.sleep() 

             

    # calculated pose ISRs 

    # update pose data after recieving new information 

    def setFollowPose(self, data): 



VI 
 

        self.followPose = data 

        print "updated FollowPose!" 

 

    def setLeadPose(self, data): 

        self.leadPose = data 

        print "updated LeadPose!" 

 

    def callback(self): 

        print "Calculating Velocity Pursuit!" 

 

        sigma_i_ip1 = math.atan2(self.leadPose.pose.pose.position.x - 

self.followPose.pose.pose.position.x, self.leadPose.pose.pose.position.y - 

self.followPose.pose.pose.position.y) 

 

        r_i_ip1   = 

math.sqrt(math.pow(math.fabs(self.leadPose.pose.pose.position.x - 

self.followPose.pose.pose.position.x), 2) + 

math.pow(math.fabs(self.leadPose.pose.pose.position.y - 

self.followPose.pose.pose.position.y), 2)) 

 

        if r_i_ip1 == 0: 

            sigma_vel_i_ip1 = 999 

        else: 

            sigma_vel_i_ip1 = self.leadPose.vel * 

math.sin(self.leadPose.pose.pose.orientation.z - sigma_i_ip1) / r_i_ip1 

 

        vel_ip1 = self.leadPose.vel * 

math.cos(self.leadPose.pose.pose.orientation.z - 

self.followPose.pose.pose.orientation.z) 

 

        x_vel = vel_ip1 * math.cos(sigma_i_ip1) 

        y_vel = vel_ip1 * math.sin(sigma_i_ip1) 

        theta_vel = sigma_vel_i_ip1 * 10 

 

        # create a new twist message 

        twist = Twist() 

 

        # convert the global velocities to the robot's orientation frame 

        twist.linear.x = x_vel * 

math.cos(self.followPose.pose.pose.orientation.z) +  y_vel * 

math.sin(self.followPose.pose.pose.orientation.z) 

 

        twist.linear.y = x_vel * 

math.sin(self.followPose.pose.pose.orientation.z) +  y_vel * 

math.cos(self.followPose.pose.pose.orientation.z) 

 

        twist.angular.z = theta_vel 

 

        self.twist = twist 
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if __name__ == "__main__": 

    Velocity_Pursuit() 

 

 

#!/usr/bin/env python 

# calculate_pose.py 

# This ROS node consumes the live odometry information provided  

# by the clearpath base node and calculates an estimated 2d pose  

# for the system. 

# As a warning, this node should not be used due to the large error 

# that accumulates when the platform turns due to sliding. 

# Author: Chris Earley 

 

import roslib; roslib.load_manifest('convoy_follow') 

import sys 

import rospy 

from convoy_follow.msg import PoseStampedVel 

from geometry_msgs.msg import PoseStamped 

from clearpath_base.msg import * 

import math 

 

class Calculate_pose: 

 

    def __init__(self): 

        rospy.init_node('calculate_pose') 

        # set the width of the robot base 

        self.base_width = 0.5 # 19 3/4 inches 

 

        #init previous distances for delta encoder computation 

        self.prev_dist_l = 0 

        self.prev_dist_r = 0 

         

        pose_pub = rospy.Publisher('pose', PoseStampedVel) 

        # this published stamped pose was for some early rviz testing 

      #  rviz_pose_pub = rospy.Publisher('rviz_pose', PoseStamped) 

 

        self.pose = PoseStampedVel() 

        # this value is the starting distance that the 

        # robot is in at start 

        self.pose.pose.pose.position.x = rospy.get_param('~init_pose_offset', 

0) 

        # setup subscription with topic encoders from the clearpath base node 

        rospy.Subscriber("data/encoders", Encoders, self.callback) 

        rate = rospy.Rate(20) 

 

        while not rospy.is_shutdown(): 

            if self.pose: 
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                pose_pub.publish(self.pose) 

             #   rviz_pose_pub.publish(self.pose.pose) 

            rate.sleep() 

     

    def callback(self, data): 

 

        # extract the encoder array from the encoders msg 

 distance_left = data.encoders[0].travel 

 distance_right = data.encoders[1].travel 

 velocity_left = data.encoders[0].speed 

 velocity_right = data.encoders[1].speed 

        # calculate the movement deltas for the current time step 

        delta_dist_l = distance_left - self.prev_dist_l 

        delta_dist_r = distance_right - self.prev_dist_r 

        # compute the current overall distance and angle for the robot 

        delta_robot_distance = (delta_dist_l + delta_dist_r) / 2 

        delta_robot_angle = (delta_dist_r - delta_dist_l) / self.base_width  

         

        # create new empty pose vel object 

        new_pose = PoseStampedVel() 

 

 # populate the respose with the calculated pose values 

 new_pose.pose.pose.position.x = self.pose.pose.pose.position.x + 

delta_robot_distance * math.cos(self.pose.pose.pose.orientation.z + 

delta_robot_angle/2) 

 new_pose.pose.pose.position.y = self.pose.pose.pose.position.y + 

delta_robot_distance * math.sin(self.pose.pose.pose.orientation.z + 

delta_robot_angle/2) 

 new_pose.pose.pose.orientation.z = self.pose.pose.pose.orientation.z + 

delta_robot_angle 

 

 new_pose.vel = (data.encoders[0].speed + data.encoders[1].speed)/2 

 

        # update the self pose object 

        self.pose = new_pose 

         

        # update the prev distances at the end of the calculation 

        self.prev_dist_l = distance_left 

        self.prev_dist_r = distance_right 

         

if __name__ == "__main__": Calculate_pose()  
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7.3 APPENDIX C: MATLAB SIMULATION CODE 
% velocityPursuit.m 

% This script simulates a holonomic ground platform moving along a  

% circular path with a slave unit following under the control of 

% the Velocity pursuit guidance laws. 

% The a subset of the paths for both system is printed to the 

% screen as a figure. 

 

clear; clc; 

% Independent variable - time 

tstep = 0.01; 

t = 0:tstep:pi/4; 

dio = 4; 

 

% Desired x, y , th, u and w 

xd_m = cos(t); 

yd_m = sin(t); 

 

dxd_m = diff(xd_m); 

dyd_m = diff(yd_m); 

thd_m = atan2(dyd_m, dxd_m); 

 

ud_m = (dxd_m.^2 + dyd_m.^2).^0.5; 

wd_m = diff(thd_m); 

 

[m,n]=size(xd_m); 

 

% init the previous values for the first calculation 

xPrev_s = 0.9; 

yPrev_s = 0; 

thetaPrev_s = 0; 

 

% calculate the velocities for the slave unit and simulate the movement 

for i = 1:1:(n-1), 

    sigma_i_ip1 = atan2((yd_m(i) - yPrev_s) , (xd_m(i) - xPrev_s)); 

     

    r_i_ip1 = ((yd_m(i) - yPrev_s).^2 + (xd_m(i) - xPrev_s).^2).^0.5; 

 

    vFollow = 1; 

    dxd_s(i) = vFollow * cos(sigma_i_ip1); 

    dyd_s(i) = vFollow * sin(sigma_i_ip1); 

 

    wd_s(i) = ud_m(i) * sin(thd_m(i) - sigma_i_ip1) / r_i_ip1 ; 

    

    thd_s(i) = wd_s(i) + thetaPrev_s; 

     

    xd_s(i) =  dxd_s(i) * tstep + xPrev_s; 

    yd_s(i) =  dyd_s(i) * tstep + yPrev_s; 

     



X 
 

    xPrev_s = xd_s(i); 

    yPrev_s = yd_s(i); 

    thetaPrev_s = thd_s(i); 

end 

 

% Print out paths 

%quiver(xd_s,yd_s,cos(thd_s),sin(thd_s),0.4); 

hold on 

plot(xd_m, yd_m, 'r'); 

hold on 

plot(xd_s, yd_s, 'b'); 

box('on'); 

hold('all'); 

 

% Create xlabel 

xlabel({'X Position (meters)'}); 

 

% Create ylabel 

ylabel({'Y Position (meters)'}); 

 

 

% velocityPursuit_withDistance.m 

% This script simulates a holonomic ground platform moving along a  

% circular path with a slave unit following under the control of 

% the Velocity pursuit guidance laws with a set follow distance. 

% The a subset of the paths for both system is printed to the 

% screen as a figure. 

 

clear; clc; 

% Independent variable - time 

tstep = 0.01; 

t = 0:tstep:pi/2; 

dio = 0.1; 

 

% Desired x, y, theta, u and w 

xd_m = cos(t); 

yd_m = sin(t); 

 

dxd_m = diff(xd_m); 

dyd_m = diff(yd_m); 

thd_m = atan2(dyd_m, dxd_m); 

 

ud_m = (dxd_m.^2 + dyd_m.^2).^0.5; 

wd_m = diff(thd_m); 

 

[m,n]=size(xd_m); 

 

% init the previous values for the first calculation 
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xPrev_s = 1.1; 

yPrev_s = 0; 

thetaPrev_s = 0; 

 

% calculate the velocities for the slave unit and simulate the movement 

for i = 1:1:(n-1), 

 

    sigma_i_ip1 = atan2((yd_m(i) - yPrev_s) , (xd_m(i) - xPrev_s)); 

 

    r_i_ip1 = ((yd_m(i) - yPrev_s).^2 + (xd_m(i) - xPrev_s).^2).^0.5; 

 

    vFollow = 1; 

 

    dxd_s(i) = vFollow * (xd_m(i) - xPrev_s)/dio; 

    dyd_s(i) = vFollow * (yd_m(i) - yPrev_s)/dio; 

 

    wd_s(i) = ud_m(i) * sin(thd_m(i) - sigma_i_ip1) / r_i_ip1 ; 

 

    thd_s(i) = wd_s(i) + thetaPrev_s; 

 

    xd_s(i) =  dxd_s(i) * tstep + xPrev_s; 

    yd_s(i) =  dyd_s(i) * tstep + yPrev_s; 

 

    xPrev_s = xd_s(i); 

    yPrev_s = yd_s(i); 

    thetaPrev_s = thd_s(i); 

end 

 

% Print out paths 

hold on 

plot(xd_m, yd_m, 'r'); 

plot(xd_s, yd_s, 'b'); 

scatter(xd_s(n-1), yd_s(n-1), 'b') 

scatter(xd_m(n), yd_m(n), 'r') 

% Create xlabel 

xlabel({'X Position (meters)'}); 

% Create ylabel 

ylabel({'Y Position (meters)'}); 

% set bounds and ratio 

axis([0.6 1 -0 0.8]) 

axis('square') 

 

 

% deviatedPursuit.m 

% This script simulates a holonomic ground platform moving along a  

% circular path with a slave unit following under the control of 

% the deviated pursuit guidance laws. 

% The a subset of the paths for both system is printed to the 

% screen as a figure 
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clear; clc; 

 

% Independent variable - time 

tstep = 0.01; 

t = 0:tstep:pi; 

 

% Desired x, y , th, u and w 

xd_m = cos(t); 

yd_m = sin(t); 

 

dxd_m = diff(xd_m); 

dyd_m = diff(yd_m); 

thd_m = atan2(dyd_m, dxd_m); 

 

ud_m = (dxd_m.^2 + dyd_m.^2).^0.5; 

wd_m = diff(thd_m); 

 

[m,n]=size(xd_m); 

 

xPrev_s = 0.9; 

yPrev_s = 0; 

thetaPrev_s = 0; 

 

for i = 1:1:(n-1), 

  

    sigma_i_ip1 = atan2((yd_m(i) - yPrev_s) , (xd_m(i) - xPrev_s)); 

 

    r_i_ip1 = ((yd_m(i) - yPrev_s).^2 + (xd_m(i) - xPrev_s).^2).^0.5; 

 

    alpha_ip1 = deg2rad(-1); 

 

    if alpha_ip1 > deg2rad(1) 

        alpha_ip1 = deg2rad(1); 

    end 

 

    if alpha_ip1 < deg2rad(-1) 

        alpha_ip1 = deg2rad(-1); 

    end 

 

    vFollow = 1; 

 

    dxd_s(i) = vFollow * cos(sigma_i_ip1 + alpha_ip1 ); 

    dyd_s(i) = vFollow * sin(sigma_i_ip1 + alpha_ip1 ); 

 

    wd_s(i) = ud_m(i) * sin(thd_m(i) - sigma_i_ip1) / r_i_ip1 ; 

 

    thd_s(i) = wd_s(i) + thetaPrev_s; 

 

    xd_s(i) =  dxd_s(i) * tstep + xPrev_s; 
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    yd_s(i) =  dyd_s(i) * tstep + yPrev_s; 

 

    xPrev_s = xd_s(i); 

    yPrev_s = yd_s(i); 

    thetaPrev_s = thd_s(i); 

end 

 

hold on 

plot(xd_m, yd_m, 'r'); 

 

plot(xd_s, yd_s, 'b'); 

 

% set bounds and ratio 

axis([0.95 1 0.1 0.3]) 

axis('square') 

 

% Create xlabel 

xlabel({'X Position (meters)'}); 

 

% Create ylabel 

ylabel({'Y Position (meters)'}); 

 

 

% proportionalPursuit.m 

% This script simulates a holonomic ground platform moving along a  

% circular path with a slave unit following under the control of 

% the proportional pursuit guidance laws. 

% The a subset of the paths for both system is printed to the 

% screen as a figure. 

clear; clc; 

 

% Independent variable - time 

tstep = 0.01; 

t = 0:tstep:pi; 

K = 0.99; 

 

% Desired x, y , th, u and w 

xd_m = cos(t); 

yd_m = sin(t); 

 

dxd_m = diff(xd_m); 

dyd_m = diff(yd_m); 

thd_m = atan2(dyd_m, dxd_m); 

 

ud_m = (dxd_m.^2 + dyd_m.^2).^0.5; 

wd_m = diff(thd_m); 

 

[m,n]=size(xd_m); 
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xPrev_s = 0.9; 

yPrev_s = 0; 

thetaPrev_s = 0; 

 

for i = 1:1:(n-1) 

 

    sigma_i_ip1 = atan2((yd_m(i) - yPrev_s) , (xd_m(i) - xPrev_s)); 

     

    r_i_ip1 = ((yd_m(i) - yPrev_s).^2 + (xd_m(i) - xPrev_s).^2).^0.5; 

 

    vFollow = 1; 

 

    dxd_s(i) = vFollow * cos(K * sigma_i_ip1); 

    dyd_s(i) = vFollow * sin(K * sigma_i_ip1); 

 

    wd_s(i) = K * (ud_m(i) * sin(thd_m(i) - sigma_i_ip1) / r_i_ip1) ; 

    

    thd_s(i) = wd_s(i) + thetaPrev_s; 

     

    xd_s(i) =  dxd_s(i) * tstep + xPrev_s; 

    yd_s(i) =  dyd_s(i) * tstep + yPrev_s; 

     

    xPrev_s = xd_s(i); 

    yPrev_s = yd_s(i); 

    thetaPrev_s = thd_s(i); 

end 

 

hold on 

plot(xd_m, yd_m, 'r'); 

 

hold on 

plot(xd_s, yd_s, 'b'); 

  

% set bounds and ratio 

axis([0.95 1 0.1 0.3]) 

axis('square') 

% Create xlabel 

xlabel({'X Position (meters)'}); 

 

% Create ylabel 

ylabel({'Y Position (meters)'}); 
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7.4 APPENDIX D: CLEARPATH HUSKY A100 SPECIFICATIONS 
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