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Abstract 

Optimization theory deals with finding the local (global) mllllmizer of a function 

within a given set of points that are defined by constraints. When the functions 

describing objective and/or constraints are continuously differentiable, there are a 

mature theory and efficient methods to find a local optimal point. If one of those 

functions is not continuously differentiable (nonsmooth), finding descent directions 

and checking optimality conditions becomes very complicated. Despite the existence 

of an advanced theory, the design of efficient numerical methods in nonsmooth opti­

mization is still a topic for research. 

Over the last four decades, different methods have been developed to solve nons­

mooth optimization problems. The subgradient method, bundle methods, the discrete 

gradient method and the more recent, the gradient sampling method, are among them. 

The subgradient method and the bundle methods are based on convexity assumption 

of the problem, but they do not provide satisfactory results for nonconvex nonsmooth 

problems; however, in real world, convexity assumption is a strict restriction. Despite 

the fact that there exist many efficient algorithms for solving global optimization 

problems, there are not special algorithms for solving nonsmooth global problems. 

The other problem that originates from nonconvexity is global optimization. Most 

of the deterministic methods designed for optimization are able to find a local optimal 

point where we are interested in a global solution. Some deterministic, stochastic, 

heuristic and metaheuristic approaches exist to solve this problem, but they either 

get stuck in a suboptimal solution or take excessive CPU time to calculate a global 

solution. Hence, it is important to design efficient methods for solving nonsmooth 

and nonconvex problems. 

Nonsmooth nonconvex problems appear in different contexts of practical applica­

tions. For example, minimization problems involving maximum or minimum functions 
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Abstract 

and nonlinear programming with penalty function are among them. FUrthermore, 

many problems in Data Mining can be formulated as a nonsmooth and nonconvex 

problem. These problems have applications in machine learning, pattern recognition, 

image analysis, bioinformatics, etc. Other practical application examples would be the 

tax models in economical theory which consists of different pieces that are nonsmooth 

in their intersections and is a nonsmooth nonconvex problem or in telecommunica­

tion area, the problem of determining level-constrained hierarchical trees for network 

evaluation and multicast routing is also a nonsmooth nonconvex problem. 

This thesis is devoted to the development of algorithms for solving nonsmooth 

nonconvex problems some of these algorithms are derivative free methods. More 

specifically, we develop an approximate subgradient, secant method for nonsmooth 

optimization and generalize it for global optimization and quasi secant method. Also, 

we propose an incremental algorithm for the clustering problem in Data Mining. The 

efficiency of the methods is established by comparing the numerical results with dif­

ferent existing methods based on some standard test functions. To show the practical 

application of the methods, they are especially tested on large-scale problems of clus­

tering analysis. 
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Introduction 

Optimization Theory is one of the advanced branches in Computational Mathemat­

ics. In the simplest description, optimization is searching for the best option among 

some (finite or infinite number of) possible choices. It has many applications in differ­

ent areas such as Science, Engineering, Business, Management, Military, etc. Often 

the first step is to construct a model of the problem etc. of those areas in terms of 

objective functions and equality/inequality expressions; the model is called a mathe­

matical programming problem. The next step is to design (or select among designed) 

algorithms based on the nature of the model to find the best (optimal) solution. 

In classic theory of optimization, the differentiability of the involved functions is 

assumed. Nevertheless, there are many practical applications where the functions in­

volved in the model are not continuously differentiable. For example, the clustering 

problem in Data Mining is a nonsmooth problem [27, 13], in the Telecommunication 

area, the problem of determining level-constrained hierarchical trees for network eval­

uation and multicast routing are also nonsmooth problems. In Engineering, complex 

contact situations involving several bodies with corners are described by nonsmooth 

problems. It has applications such as fragmentation, where angular fragments undergo 

complex collision sequences before they scatter [93], etc. 

In addition to the nonsmoothness, many practical problems are nonconvex. Con­

vexity is a very important remedy that makes the situation to some extent easy 

because in convex problems every local solution is a global solution as well. The first 

two problems, stated in the paragraph above, are nonsmooth and nonconvex. Some 

efficient methods for solving nonsmooth convex problems exist, but they are not al­

ways successful in nonconvex case. The complexity of nonconvex problems arises from 

combinatorial nature of multiple local solutions. Generally most of the algorithms are 

able to find a local solution whereas a global solution is needed. 
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Introduction 

We start by providing a general overview of the research problems to understand 

the basic ideas and motivations to conduct the research in designing optimization 

methods for nonsmooth nonconvex problems. The general form of the nonlinear 

optimization problems is 

{

minimize f (x) 
(P) 

subject to x E X 

where x E IRn is a vector of decision variables, and the objective function f : 

(0.0.1) 

is considered to be locally Lipschitz on the feasible set X c IRn. If the feasible set is 

X = IRn
, the optimization problem (0.0.1) is referred as an unconstrained optimiza­

tion problem. The constrained optimization problem can be rewritten as: 

minimize f(x) 

subject to hi(x) = 0, i E E, 
(0.0.2) 

hi(x) :::; 0, i E I, 

x E IRn, 

where E and I are the index sets of equality and inequality constraints, and hi(x), 

i E E U I are constraint functions. When both objective and constraint functions 

are linear functions, the problem (0.0.2) is called a linear programming problem. 

Otherwise, it is called a nonlinear programming problem. Based on different kinds of 

objective functions, constraints, feasible sets and decision variables, it could be consid­

ered different types of mathematical programming problems like integer programming, 

convex programming, etc. 

The nature of optimization algorithms is iterative. Starting from an initial point 

xO E IRn , they construct a sequence {xk} C IRn so that the limit point, limk-->oo Xk = x* 

if it is convergent, hopefully, is an optimal solution. If f(xk+l) < f(xk) for all k, 

the method is called a descent method. The iterations are found by Xk+l = xk + akgk 

where a k is the step size and gk is a (descent) search direction. It is worthwhile to 

mention that different methods of optimization are categorized based on the way they 

find search direction and step length at each iteration. 
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Introduction 

Consider the unconstrained optimization problem: 

{

minimize f (x) 

subject to x E lRn
, 

(0.0.3) 

where the objective function f : lRn 
-t lR is a locally Lipschitz; meaning there is no 

differentiability or convexity assumption about f. If f is continuously differentiable, 

the problem (0.0.3) is called a smooth problem. Otherwise, it is a nonsmooth problem. 

If the function f(x) is continuously differentiable, then - V f(x), where V f(x) # On, 

is always the (steepest) descent direction. Whenever the algorithm reaches a station­

ary point, it satisfies V f(x*) = On. Hence, if the function is continuously differentiable, 

the gradient plays essential role in finding descent direction and formulating stopping 

criteria. The step size in this case could be found by an exact or inexact line search. 

However, V f(x) is not always numerically trustworthy and the accumulated errors of 

using approximations generally divert the results. Moreover, in nonsmooth problems, 

the gradient does not exist to be calculated at all points. 

In the nonsmooth case, the direct use of gradient-based methods will generally 

fail [114J. The reason for this failure is that the gradient does not exist at all points. 

One possibility would be to approximate the function by smooth ones. In this kind of 

treatment, the approximation error could be high when the approximation is rough. 

The other possible tool here is using derivative free methods. These methods do not 

use any information about the gradient, and the search direction is decided just by 

comparing function values. However, most of them like Powell's method or NeIder and 

Mead's simplex method, are slow and their convergence can be proved only assuming 

that functions invloved are smooth [139J. 

Another approach to design algorithms for nonsmooth optimization is to use the 

concept of subdifferential which are generalizations of the gradient for nonsmooth 

optimization. The sub differential could represent some local information about the 

function at a given point. The difficulty related to this approach is that the calculation 

of entire subdifferential generally is not possible whereas it is necessary to have the 

entire sub differential to decide about descent directions and stationary points. Also in 

this approach, the opposite role of gradient in smooth problems, the negative arbitrary 

sub gradient is not necessarily a descent direction. Furthermore, the stopping criteria 

is not easy to check. 
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Introduction 

In addition to the difficulty of nonsmoothness, in locally Lipschitz functions, there 

is the problem of multiple local and global optimal points. Based on the ability of 

optimization methods in finding local or global optimal points, the methods could 

be categorized local or global search methods. Finding the global minimizer is more 

difficult than the local one; this difficulty originates from the nonconvexity of objective 

function or constraints. For convex problems, any local solution is a global solution 

as well, and that is why convex problems are easier to deal with. However, there are 

many practical problems which have a nonconvex structure, which means they have 

many local minimizers, and we need a global optimal point. 

In this thesis, we will focus on designing algorithms for the unconstrained nons­

mooth nonconvex case of problem (0.0.3). The reason for restricting to unconstrained 

problems is that a constrained optimization problem could be easily transformed into 

an equivalent unconstrained problem by means of a penalty function technique. This 

is why in almost all nonsmooth optimization literature, the authors considered un­

constrained optimization problems. 

Over the last four decades, different methods have been developed to solve non­

smooth optimization problems. Subgradient Methods [118, 58, 130, 131], Bundle 

Methods and its variations [4, 119, 120, 80, 95, 96, 97, 112, 41, 43, 45, 46, 115, 47, 

109, 128, 141, 143, 126, 135, 85], Gradient Sampling Method [31, 32, 34], methods 

based on smoothing techniques [16, 59] are among them. 

Subgradient methods are quite simple, however they are not effective in solving 

many nonsmooth optimization problems. Algorithms based on smoothing techniques 

are applicable only to special classes of nonsmooth functions such as the maximum 

functions, max-min type functions. Bundle type algorithms are more general algo­

rithms and they construct information about the sub differential of the objective func­

tion using ideas known as bundling and aggregation. These algorithms are known to 

be very effective for nonsmooth convex problems. For nonconvex functions subgra­

dient information is only locally meaningful and must be discounted when no longer 

relevant. Special rules have to be designed to identify those irrelevant subgradients. 

As a result bundle type algorithms are more complicated in the nonconvex case [34]. 

The gradient sampling method proposed in [34] does not require any rules for 

discounting irrelevant subgradients. It is a stochastic method. It relies on the fact 
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that locally Lipschitz functions are differentiable almost everywhere. At each iteration 

of this method a given number of gradients are evaluated from a given neighborhood 

of a current point. 

From the application perspective, Data mining is one of the sources of challenging 

problems of both nonconvex and nonsmooth optimization problems. For example, the 

optimization approach toward unsupervised classification (clustering) leads to such 

problems. Clustering has broad application for instance in biology to classify plants 

and animals given their specifications, in marketing to find groups of customers with 

similar behavior, in insurance to identify groups of insurance policy with a high average 

claim cost or to identify frauds and etc. Also, the modeling of clustering problem in 

terms of nonsmooth nonconvex concepts has especial structures such as piecewise 

linear partially separable objective and/or constraint functions. It is important to 

design algorithms which could cope with large amounts of data and classify it into 

groups based on the similarities. 

Despite existence of numerous methods to solve clustering problem such as the 

k-means algorithm, the global k-means algorithm, the branch and bound method, 

the dynamic programming approach, metaheuristics etc., they are slow, sensitive to 

starting points or applicable for small data sets. Additionally, the nonsmooth opti­

mization approach to the clustering problem and related formulation suggests some 

important aspects like piecewise linearity which create the opportunity to develop 

methods which are fast, could deal with large data sets and are less sensitive to the 

starting points. 

Research Objectives 

According to discussion given above, the research objectives could be stated in three 

main goals: 

1) Developing new derivative free algorithms for nonsmooth optimization 

As stated above, many practical applications exist which do not have the differ­

entiabilityassumption. Efficient existing methods require a especial structure of 

the problems. Therefore, it is necessary to design methods which are applicable 

to wide range of nonsmooth problems according to the wide range of appearance 

of such problems in industry, engineering and etc. 
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2) Developing new algorithms for nonsmooth global optimization problems 

Because of great demand in different areas to find a global optimal point effi­

ciently, it is important to develop algorithms which are able to locate the global 

minimizer even in nonsmooth problems. 

3) Developing algorithms for cluster analysis 

As the the world is experiencing development in all branches, huge amounts of 

data and databases are created which makes it impossible to deal with them 

individually. Using data mining techniques, for example cluster analysis, it is 

easier to treat the entire data at once and make useful deductions and inferences 

about trends and patterns in it. In cluster analysis, we are dealing with the 

classification of data into different groups. It has broad application in machine 

learning, medical science (e.g. cancer and tumor detection), pattern recognition, 

image analysis and bioinformatics. 

Our Contribution 

The outcome of the research is to design some derivative free algorithms for nonsmooth 

local and global optimization problems. The designed algorithms have the capability 

to be applied in large-scale problems that have arisen in the clustering context. Their 

efficiency is established by numerical experiments which have been conducted on some 

standard academic and practical test functions. Also, using of these methods, we 

develop a new incremental algorithm for cluster analysis. Here is the list of designed 

algorithm with short explanation: 

1. Approximate subgradient method 

The approximate subgradient method is a new algorithm for minimizing locally 

Lipschitz functions. This algorithm is as simple to implement as the subgradi­

ent method, and at the same time it is numerically efficient. Descent directions 

in this algorithm are computed by solving a system of linear inequalities. The 

convergence of the algorithm is proved for quasidifferentiable semismooth func­

tions. 

2. Secant method 

The secant method is a new algorithm to locally minimize nonsmooth, noncon-
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vex functions. The notion of secants for nonsmooth functions is introduced. 

The secants are applied to find descent directions of locally Lipschitz functions. 

Then, the latter is used to design a minimization algorithm. It is proved that 

the iterates of this algorithm converges to Clarke stationary points. Also, we 

extended the method to a global search method and called it the global secant 

method. 

3. Quasi secant method 

The notions of quasi secants are introduced and a minimization method is de­

signed based on them. The quasi secants have the ability to exploit more global 

properties and information of the function. 

4. New algorithm for the clustering 

Using the secant method, we developed a new incremental method to solve the 

clustering problem. In this method, at each step, the nonsmooth nonconvex 

problem of finding a starting points for cluster centers is solved using the secant 

method. 

Outline of the Thesis 

The remainder of this document is organized as follows. After review of background 

information in Chapter 1, Chapter 2 gives an explanation and literature review of 

some methods in nonsmooth and global optimization. In Chapter 3, we present the 

approximate subgradient method which is a local method for nonsmooth nonconvex 

optimization problems. Chapter 4, provides another method for nonsmooth noncon­

vex optimization. In this chapter the notion of secant is introduced and it is used 

to approximate the sub differential. This chapter contains two version of the secant 

method. Chapter 5 will explain the quasi secant method. In Chapter 6, we present 

a short literature review of the clustering problem and propose an inceremental algo­

rithm for solving it. Finally, we conclude the thesis by providing final remarks and 

some recommendations for future research. 
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Chapter 1 

Background 

In this chapter, we first provide some theoretical background regarding nonsmooth op­

timization including Clarke subdifferential and some classes of functions. The approx­

imation of subgradients using the notion of discrete gradient is presented in Section 

1.2. 

1.1 Theoretical Background 

In this section, after introducing some of the notions related to convex nonsmooth 

optimization, we present the generalization of those notions for nonconvex nonsmooth 

optimization. We briefly discuss the conditions for stationary points and descent 

direction. At the end, two important classes of nonsmooth functions, which have 

frequent appearance in application, are introduced. 

Consider the following unconstrained optimization problem: 

{

minimize J (x) 

subject to x E lRn 
(1.1.1) 

A point x* is called a local minimizer of J if there exists an c > 0 such that 

J(x*) ::; J(x) Vx with IIx - x*1I < c. 

In plain language, this means x* is not worse than its neighbors. If the point is not 

worse than all other points, it is called global minimizer; it means, 

J(x*) ::; J(x) 
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Background 1.1. Theoretical Background 

The nonsmooth optimization theory was initially developed for convex functions. 

The sub differential of a convex function f : ffin ---7 ffi at a point x E Dom(f) is the 

set 8c f(x) of vectors ( E ffin so that 

8c f(x) = {(I( E ffin , f(y) 2': f(x) + ((, y - x) Vy E ffin}. 

Each member of this set is called a subgradient of f at x. However, if the function is 

not convex, this definition is not valid any more. It is constructive to mention that if 

the convex function f is continuously differentiable, then 8c f(x) = {V' f(x)}. 

For convex functions, local linearizations based on gradients (or subgradients in 

nonsmooth case) are always produce underestimations. By taking a maximum over 

those linearizations defined at several points, one can get a lower piecewise linear 

underestimation for the original function. This property is not correct for nonconvex 

functions, and it is one of the reasons why many efficient algorithms for convex case 

are not successful in nonconvex case. 

The Clarke Sub differential 

Locally Lipschitz functions are sufficiently general class for nonsmooth nonconvex 

functions. After the definition of locally Lipshitz functions, the generalization of 

sub differential and related tools for such functions are presented. 

A function f : JRn ---7 ffi is called a locally Lipschitz function if a positive constant 

L exists so that for all x, y E ffi n 

If(x) - f(y)1 ~ Lllx - YII· 

Let f be a locally Lipschitz function defined on JRn. Clarke introduced the notion 

of sub differential for such functions (see, for example, [64]) . Since these functions 

are differentiable almost everywhere, the Clarke sub differential is defined for them as 

follows: 

8f(x) = co {v E ffin: :3(xk E D(f),xk 
---7 x,k ---7 +00): v = lim V'f(xk)} , 

k-++oo 

here D(f) denotes the set where f is differentiable, co denotes the convex hull of a 

set. It is shown in [64J that the mapping x ~ 8f(x) is upper semicontinuous and 

bounded on bounded sets. 
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Background 1.1. Theoretical Background 

For locally Lipschitz functions, no classical directional derivatives 'need exist'. 

Therefore, the generalized directional derivative of f at x in the direction 9 is defined 

as 

fO(x, g) = limsup a-1[J(y + ag) - f(y)]. 
y-+x,Q--++O 

If the function f is locally Lipschitz, then the generalized directional derivative exists 

and 

fO(x, g) = max {(v, g) : v E 8f(x)}. 

A function f is called a regular function on lRn if it is differentiable with respect to 

any direction 9 E lRn
, and f'(x, g) = fO(x, g) for all x, 9 E lRn where f'(x, g) is the 

(one sided) directional derivative of the function f at the point x in the direction g: 

f'(x,g) = lim a-1[J(x + ag) - f(x)]. 
Q-++O 

For a point x to be a minimizer point of the function f on lRn
, it is necessary that 

o E 8 f (x). Also, a direction d is called a descent direction for f at x E lRn
, if there 

E > 0 exists such that for all A E (0, E] 

f(x + Ad) < f(x). 

As it is seen from these definitions, to find a descent direction and to check a stationary 

point, one should have information about the whole sub differential. However, it is not 

always easy to calculate the whole sub differential. (For a study of some optimality 

conditions in nonsmooth optimization see [6]). 

A function f is said to be upper semicontinuous at x E lRn if for every sequence 

{ xk} convergent to x the following holds 

lim sup f(xk) ::; f(x), 
k-+oo 

and it is lower semicontinuous if 

f(x) ::; lim inf f(xk). 
k-+oo 

An upper and lower semicontinuous function is continuous. A closed map is a function 

between two spaces which maps closed sets to closed sets. 
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Semismooth Functions 

A function J : IRn ~ IRI is called semismooth at x E IRn if it is locally Lipschitz at 

x, and for every g E IRn the limit 

lim (v, g) 
vE8f(x+ag'),g'--+g,a->+O 

exists. The class of semismooth functions contains convex, concave, max-type and 

min-type functions [142]. The semismooth function J is directionally differentiable, 

and 

f'(x, g) = lim (v, g). 
vE 8 f (x+ag') ,g'--+ 9 ,a--++O 

Quasidifferentiable Functions 

A function f is called quasidifferentiable at a point x if it is locally Lipschitz, direc­

tionally differentiable at this point and convex, compact sets Qf(x) and 8f(x) exist 

such that: 

f'(x, g) = max (u, g) + I!!in (v, g). 
uEflf(x) vE8f(x) 

The set QJ(x) is called a sub differential; the set 8f(x) is called a superdifferential, 

and the pair [Qf(x) , 8f(x)] is called a quasidifferential of the function f at a point x 

[166]. 

1.2 Approximation of Subgradients 

In this section, we consider an approach to approximate subdifferentials. This ap­

proach is based on the notion of a discrete gradient, which was introduced in [23] (see 

also [22, 9]). Here all propositions are given without proofs (for the proofs see [24] 

and [28]). 

In this section, we will use the following notations: 

IR+ = {t E IRI : t > O}. 

11 
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Let G = {e E lRn : e = (e1,'" ,en),!ei! = 1, j = 1, ... ,n} be a set of all vertices 

of the unit hypercube in lRn. We take e E G and consider the sequence of n vectors 

ei = ei(a), j = 1, ... ,n with a E (0,1]: 

e1 - (ae1, 0, ... ,0), 

e2 (ae1, a2e2' 0, ... ,0), 

- ......... 
en - (ae1, a2e2, . .. , anen). 

Assume A > 0 be a given number. Let 

be the set of all univariate positive infinitesimal functions. We take any 9 E 8 1 , e E G 

and compute i E {I, ... , n} such that !gi! = max{!9kL k = 1, ... , n}. For given 

x E lRn and z E P consider a sequence of n + 1 points: 

X
O = x+ Ag, 

::r;1 = xo+ z(A)e1 (a), 

Let f be a function defined on lRn. 

Definition 1.2.1 The discrete gradient of the function f at the point x E lRn is the 

vector ri(x, g, e, z, A, a) = (fi, ... , r~) E lRn, 9 E 81 with the following coordinates: 

r; = [z(A)ai ei)t1 [f(xi ) - f(Xi - 1)] , j = 1, ... , n, j -I i, 

r! = (Agit
1 

[f(X + Ag) - f(x) - A . t . r;gi]' 
J=l,J~t 

It follows from Definition 1.2.1 that 

f(x + Ag) - f(x) = A(ri(x, g, e, z, A, a), g) 

for all 9 E 8 1 , e E G, Z E P, A > 0, a> O. 

12 
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Remark 1.2.1 One can see that the discrete gradient is defined with respect to a 

given direction 9 E 8 1 , and in order to compute it first we define a sequence of points 

xO, ... , x n , and compute the values of the function f at these points that is we compute 

n + 2 values of this function including the point x. The i-th coordinate is defined so 

that it satisfies the equality (1.2.1) which can be considered as some version of the 

mean value theorem. 

Proposition 1.2.1 Let f be a locally Lipschitz function defined on lRn and L > 0 is 

its Lipschitz constant. Then for any x E lRn, 9 E 81 , e E G, A > 0, Z E P, Q > 0 

For a given Q > 0 we define the following set: 

B(x,a) = {v E lRn : 3(g E 81 , e E G, zk E P, zk ~ +0, Ak ~ +0, k ~ +00), 

(1.2.2) 

From now on, we consider a function f defined on lRn and assume that this function 

is quasidifferentiable. We also assume that both sets fl.f (x) and "8 f (x) are polytopes 

at any x E lRn that is at a point x E lRn there exist sets 

A { 1m} ai E lRn, . 1 > 1 = a, ... , a , Z = , ... , m" m, _ , 

B={b1
, •.. ,lJP}, llElRn, j=l, ... ,p, p~l 

such that 

fl.f(x) = co A, "8f(x) = co B. 

We denote by F the class of all semismooth, quasidifferentiable functions whose sub­

differential and superdifferential are polytopes at any x E lRn. This class contains, 

for example, functions represented as a maximum, minimizer or max-min of a finite 

number of smooth functions. 

Proposition 1.2.2 Assume that f E F. Then at a given point x there exists aD > 0 

such that 

co B(x, a) c 8f(x), V a E (0, aD]. 

13 



Background 1.2. Approximation of Subgradients 

Remark 1.2.2 After fixing 9 E 8 1 and e E G, the discrete gradient contains three 

parameters: A > 0, Z E P and a > O. z E P is used to exploit semismoothness of the 

function f and it can be chosen sufficiently small. Also, if f E F, then for any 6 > 0 

there exists ao > 0 such that a E (0, ao] for all y E 8,,(x). In the sequel we assume 

that z E P and a > 0 are sufficiently small. 

For a given A > 0 consider the following set at a point x E lRn
: 

Do(X,A) = clco {v E lRn
: 3(g E 8I,e E G,z E P): v = ri(x,g,e,A,z,a)}. 

Proposition 1.2.1 implies that for a locally Lipschitz function, the set Do(x, A) is 

compact and convex for any x E lRn. 

Corollary 1.2.1 Assume that f E F and in the equality 

f(·7: + Ag) - f(x) = AJ'(X, g) + O(A, g), 9 E 8 1 , 

A-10(A, g) -70 as A -7 +0 uniformly with respect to 9 E 8 1 . Then for any c > 0 there 

exists AO > 0 such that Do(x, A) C 8f(x) + 8e: for all A E (0, AO). 

Corollary 1.2.1 shows that the set Do(x, A) is an approximation to the subdiffer­

ential 8f(x) for sufficiently small A > O. However, it is true at a given point x, but 

not in some of its neighborhood. In order to get convergence results for a minimiza­

tion algorithm based on discrete gradients we need some relationship between the 

sets Do(x, A) and 8f(x) in some neighborhood of a given point x. We will consider 

functions satisfying the following assumption. 

Assumption 1.2.1 Let x E lRn be a given point. For any c > 0 there exist 0 > 0 

and AO > 0 such that 

Do(Y, A) C 8f(x + Be:) + 8e: 

for all y E 8,,(x) and A E (0, Ao). Here 

8f(x + Be:) = U 8f(y)· 
YES.(x) 

(1.2.3) 

Remark 1.2.3 The set Do(x, A), A > 0 can be used to compute descent directions of 

the function f. However, the computation of this set is very time-consuming. In the 

Chapter 3, for example, we propose an algorithm for computation of descent directions 

which uses only a few discrete gradients from Do(x, A). 

14 
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Chapter 2 

Literature Review 

In this chapter, we provide information about some algorithms for nonsmooth, global, 

derivative free optimization. Besides their description, we present a short literature 

review about their appearance and expansion. 

2.1 Nonsmooth Optimization Methods 

This section provides information about some methods in nonsmooth optimization. 

The subgradient method, bundle method, discrete gradient method and gradient sam­

pling are among them. The general description of the algorithms and some historical 

review is presented. 

2.1.1 Subgradient Method 

The subgradient method is a simple method for minimizing nonsmooth convex func­

tions, and considered as the first method in this area. The basic idea behind the 

subgradient method is to generalize methods for smooth problems by using subgra­

dient instead of gradients. It is very similar to the ordinary gradient method, which 

takes steps in the direction of antigradient toward local minimum for minimizing 

differentiable functions, but there are some considerable differences. The primary dis­

similarity is the fact that the step lengths are fixed ahead of time. This means the 

sub gradient method does not use any information computed during the time which 

the method is running, and it does not use line search. The other difference is that 

the subgradient method is not a descent method. It is possible (quite often) that the 
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function value increases during the process. 

The subgradient method has some disabilities that make it weak in practice. First, 

unlike the antigradient, the negative direction of an arbitrary subgradient is not nec­

essarily a descent direction. For this reason, the method is not considered a descent 

method, and it is unrealistic to use line search to find appropriate step sizes. The 

other weakness is related to lack of implement able stopping criteria. Only one ar­

bitrary subgradient does not have enough information about optimality condition 

o E 8f(x). Because of these two facts, the step sizes are chosen ahead of time. 

The subgradient method is much slower than Newton-like Methods. However, the 

range of problems that can be minimized by this method is far too wide. Furthermore, 

under some assumptions the sequence of points generated by this method is convergent 

to the optimal solution. 

From a historical point of view, this method was developed by Shar [130J in the 60s 

and 70s, and from then because of its simplicity, it was developed and used extensively 

by researchers. There exist two major extensions of subgradient methods: descent­

based methods (as stated above, similar to gradient-type methods and based on the 

function descent) [173, 29J and non-descent methods that are based on the distance 

decrease from optimal set [167, 121, 30, 80, 131, 58J. 

Recently, Chang [163J suggested the surrogate subgradient method and related 

framework for separable and coupled subproblems. Cavalcente and Yamada [148J 

used the adaptive projected subgradient method to find the adaptive filters that refine 

a given estimate of the optimal filter by suppressing a sequence of closed convex 

functions in Multiaccess Interface suppressions. Ruszczynski [5J considered a version 

of the subgradient method for convex nonsmooth optimization involving averaging. 

There are many other applications including [36, 146, 2, 168, 156, 157, 170J. Also, 

there is broad application of the subgradient method in road network design [156, 158J. 

The Method 

Consider the following optimization problem: 

{

minimize f (x) 

subject to x E lRn 

16 
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where f : lRn 
-7 lR is a convex nonsmooth function. To minimize the function, the 

subgradient method uses the iterations 

where xk E Dom(J) is the k-th iterate and l E 8f(xk) is any subgradient of f at 

xk. The simplest description of the subgradient method is that at each iteration, it 

takes one step in the direction of anti-subgradient with predefined step size O.k. 

It is possible that _gk is not a descent direction, or even if it is, the predefined 

step sizes could lead to f(xk+l) > f(x k). In such cases, the common strategy is to 

keep track of the best solutions found so far. If we consider 

then {f:est}OO will be a nonincreasing sequence. 

Algorithm 2.1.1 Subgradient Algorithm. 

Step 1. Select a starting point Xl E lRn, and put k = 1. 

Step 2. Calculate f(x k) and an arbitrary gk E 8f(xk ). 

Step 3. Based on the step size rule compute Xk+l = Xk - o.kgk 

Step 4. If some stopping criteria are satisfied, stop. Otherwise, go to Step 2, and 

put k = k + 1 . 

Step Size Rules 

As stated above, the step size in the subgradient method is chosen in a different way 

compared to ordinary gradient methods. To understand the main idea behind the 

selection of step size rules, it is essential to consider the following facts. Let x* be 

the optimal point, and Xk be the k-th estimate of x*. Then Ilxk+1 - x*11 < Ilxk - x*11 
whenever 0 < o.k < 2[J(xk) - f(x*)]/llgkll. Furthermore, at each iteration k we have 

Ilxo - xkll ::; 2:;=0 O.k. Therefore, to guarantee global convergence, we should have 

o.k L 0 as k -7 00 and 2:;:oo.k = 00 [114]. Here some of the most common step size 

rules used in the literature are listed. 

1. Constant step size. Consider o.k = 0. which 0. is a positive number independent 

of k. 

17 



Literature Review 2.1. Nonsmooth Optimization Methods 

2. Constant step length. Consider O'.k = 'Yk/lilib where 'Yk > 0 and Ik = 

Ilxk+1 - xkll. 

3. Square summable but not summable. The step size satisfies 

00 

LO'.~ < 00, 

k=l 

00 

LO'.k = 00. 

k=l 

4. Nonsummable diminishing. The step size satisfies 

lim O'.k = 0, 
k--+oo 

00 

LO'.k = 00. 

k=l 

5. Nonsummable diminishing step length. The step sizes are chosen as O'.k -

Ik/llgkI12, where 

00 

Ik ~ 0, lim Ik = 0, 
k->oo 

L'Yk = 00. 

k=l 

There are some more choices for step length based on the different variants of the 

method. The common feature of all possible step lengths is that they are determined 

before running the algorithm. Therefore, it is to a large extent independent of current 

point, search direction and the data calculated during running time. 

Convergence Results 

Under some assumptions, it is possible to investigate the convergence properties of 

the subgradient method. If there is a point x* which is the optimal point of the 

function (f(x*) = minxEffin f(x) or x* E X*), the subgradients are bounded (:3S > 

o s.t. Ilgkll ::; S, Vk) and there exists an upper bound on the distance Xl and the 

optimal set X* (:3R s.t. Ilxl - x* 112 ::; R), it is easy to prove that 

R2 S2 ""k 2 
fk _ f* < + wi=l O'.i 
J best - 2 ""k . 

wi=l O'.t 

(2.1.1) 

Using the equation (2.1.1) the convergence results of the subgradient method will be 

summarized as follows: 

1. Constant step size 0'.. 

The method is convergent to within 8 20'./2 of the optimal value, i.e. litest- 1*1 ::; 
8 20'./2 . 
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2. Constant step length. 

The method is convergent to within S"( /2 of the optimal value, i.e. 1 Nest - 1* 1 :::; 

S,,(/2. 

3. Square summable but not summable, nonsummable diminishing and nonsummable 

diminishing step length. 

In these case the method is convergent to the optimal value, i.e. ftest -t 1* . 

It would be interesting to think about the best possible choice for Ui so that the 

right hand side of equation (2.1.1) is minimized. Because that expression is a convex 

combination of UiS, it achieves the minimum when all Uk are equal. In other words, if 

we put Ui = R/ s../k i = 1, ... ,k, we get the right hand side minimized and we have 

INest - 1*1 :::; RS/../k. 
In the case when the optimal value 1* is known, Polyak [30) suggests a step size 

that gets benefit from this knowledge. There are many situations, for example solving 

system of nonlinear equations using optimization, we know that the optimal value is 

zero if system is continuous. Furthermore, sometimes we can estimate the optimal 

value and use that knowledge in the calculation of the step length. The suggested 

step size in presence of optimal value 1* is 

f(x k
) - J* 

Uk = Ilgkll§ 

It is not hard to prove that the sequence of f(x k
) will converge to 1* [30]. The 

subgradient method with stated step size is called alternating projection. 

Constrained Convex Optimization Problems 

It is worthwhile to mention, there is an extension of the subgradient method to solve 

constrained convex optimization problem in terms of projection. Consider the follow­

ing constrained minimization problem: 

{

minimize 

subject to 

f(x) 

xEX 

The projected subgradient method to solve this problem consists of iterates generated 

by 
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where Px is the projection operator on set X of constraints. It is very simple to 

describe the algorithm. At each iteration, after calculation of xk - cxkgk, it is projected 

into set X using the projection operator Px . The convergence proof in the projected 

subgradient method is even easier, as by projection the iterates get closer and closer 

to all points of the set X and especially to the optimal point. 

2.1.2 Bundle Methods 

I3undle methods are the most efficient methods to solve a nonsmooth convex problem 

at the moment. They are based on the Clarke [64] subdifferential theory developed 

for Lipschitz continuous functions. The main idea behind the bundle method is to 

collect information about the sub differential of the function using sub gradients met 

in previous iterations into a bundle. In this way, rather than dealing with just one 

subgradient (like the subgradient method) the sub differential is approximated by a 

bunch of subgradients. 

The bundle method originated from Lemarechal's E:-steepest descent method [113J 

which was a combination of the cutting plane method [101] and conjugate subgradient 

methods [112]. Because of the the difficulty of determining tolerance in E:-steepest 

descent method, the generalized cutting plane method was designed by Lemarechal 

[42] and developed by Kiwiel [95]. In the later method a convex piecewise linear 

approximation of the objective function is considered by means of subgradients and 

a descent direction is found by solving a quadratic problem. Also, in [95], Kiwiel 

suggested two strategies, namely subgradeint selection and aggregation, to limit the 

number of stored subgradients. 

In spite of different backgrounds for the methods suggested by Lemarechal and 

Kiwiel, both methods solve a quadratic direction finding problem to find the search 

direction at each iteration. As stated about determining the tolerance for Lemarechal's 

method, Kiwiel's method suffered from sensitivity to the scaling of the objective func­

tion and the uncertain number of line searches. All late versions of bundle methods 

are designed to overcome those difficulties. 

Two more extensions of the bundle method are the proximal bundle method of 

Kiwiel [96] based on the proximal point algorithm [153] and bundle trust region de­

veloped by Schramm and Zowe [71] which is the combination of bundle method and 
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trust region method. These methods are very similar, and they arc different just in 

technical implementations. 

Developing different versions of bundle method is continuing. Among them are 

the infeasible bundle method of Sagastizabal and Solodov [49], proximal-projection 

bundle method and proximal bundle method with approximate subgradient of Kiwiel 

[98, 99], limited memory bundle method Haraala et al. [74, 75] and limited memory 

interior point bundle method of Karmitsa (Haraala after marriage) et al. [94], that is 

a combination of variable metric bundle method and interior point approach. 

The Method 

The bundle method is a descent method originating from the conjugate subgradient 

method [135]. At the k-th iteration of this method the search direction is determined 

by 

iEh 

where h is an index set and A~k) are obtained by solving the subproblem 

min II L Aigill~ 
iEh 

As stated before, the idea in the bundle method is to use a bunch of subgradients 

instead of individual one. Suppose a certain number of points are met by different 

steps of conjugate subgradient method. At each point, the function value and an 

arbitrary subgradient is calculated. Consider the following subproblem: 
k 

min II L Aigi II (2.1.2) 
i=l 

iEh 

iEh 

where e is a given constant and weight factors t~k) i = 1, ... ,k should be found. The 

search direction in the bundle method is determined by 

dk = - L A~k)gi 
iEh 
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Algorithm 2.1.2 Bundle Algorithm. 

Step 1. Given initial point Xl E lRn
, compute gl E 8f(Xl)' Choose 0 < m2 < ml < 

0.5, 0 < m3 < 1, c > 0, TJ > 0, k := 1 and t~l) = 1. 

Step 2. Solve subproblem 2.1.2 to find A~k) and compute dk by 2.1.3. If Ildkll ~ TJ 

stop. 

Step 3. Compute Yk = Xk + O'.kdk such that 

holds or 

where gk+l E 8f(Yk)' If (2.1.4) does not hold, then go to step 5. 

Step 4. 

Set k := k + 1, go to step 2. 

Step 5. 

t(k+I) - 1 
k+I - , 

(k+I) _ (k) ( . _ ) tj - tj , J - 1, ... ,k , 

Set k := k + 1, go to step 2. [169] 

(2.1.4) 

The convergence of the Bundle method was proven by Leman§chal [44] as the 

following theorem: 

Theorem 2.1.1 Let f(x) be convex and 118f(x)11 be bounded on some open set con­

taining the set {xlf(x) < f(Xl)}' Algorithm 2.1.2 will terminate in finitely many 

iterations, i.e., there exists k E IN such that f(Xk) ~ f* + c. 
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2.1.3 Discrete Gradient Method (DGM) 

The notion of discrete gradient was introduced in [23] (for more details see [22,9]). Its 

definition was given in the Section 1.2 in this thesis. The Discreet Gradient Method is 

based on Discrete gradient and trying to approximate subgradients and subdifferential. 

Consider the following unconstrained minimization problem: 

{

minimize f (x) 

subject to x E IRn 

where the function f is assumed to be a semismooth quasidifferentiable function. 

An important step in the discrete gradient method is the computation of a descent 

direction of the objective function f. Therefore, first, an algorithm is described for 

the computation of this direction. 

Let z E P, A > 0, a E (0,1], the number c E (0,1) and a tolerance 8 > 0 be given. 

Algorithm 2.1.3 An algorithm for the computation of the descent direction. 

Step 1. Choose any gl E SI, e E G, compute i = argmax {Igil, j = 1, ... , n} and a 

discrete gradient VI = r i(x,gl,e,z,A,a). Set Dl(X) = {VI} and k = 1. 

Step 2. Calculate the vector IIwk ll 2 = min{lIwll2 : w E Dk(X)}. If 

then stop. Otherwise go to Step 3. 

Step 3. Calculate the search direction by gk+l = -lIwk 1I-1wk . 

Step 4. If 

then stop. Otherwise go to Step 5. 

Step 5. Compute i = argmax {lgj+ll : j = 1, ... ,n} and a discrete gradient 

V k+1 = ri(x gk+l e Z A a) , "'" 

(2.1.5) 

(2.1.6) 

construct the set D k+ 1 (x) = co { D k (x) U { vk+ I }}, set k = k + 1 and go to Step 2. 
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Some explanation seems necessary about Algorithm 2.1.3. In Step 1, the first 

discrete gradient is calculated with respect to an initial direction gl E IRn. The 

distance between the convex hull Dk(X) of all calculated discrete gradients and the 

origin is calculated in Step 2. This problem can be solved using Wolfe's algorithm 

([136]). If this distance is less than the tolerance d > 0 then the point :r is accepted 

as an approximate stationary point (Step 2), otherwise another search direction is 

calculated in Step 3. In Step 4, we check whether this direction is a descent direction. 

If this is true, the algorithm stops and the descent direction has been calculated, 

otherwise another discrete gradient ia calculated with respect to this direction in Step 

5, and the set Dk(x) is updated. At each iteration k, the approximation Dk(x) of the 

sub differential of the function f is improved. It can be proved that Algorithm 2.1.3 

is terminating (see [22, 9]). 

Now we have the necessary components to describe the Discrete Gradient Method. 

Let sequences dk > 0, Zk E P, Ak > 0, dk ~ +0, Zk ~ +0, Ak ~ +0, k ~ +00, 

sufficiently small number a > 0 and numbers CI E (0,1), C2 E (0, cil be given. 

Algorithm 2.1.4 Discrete Gradient Method (DGM) 

Step 1. Choose any starting point xO E IRn and set k = o. 

Step 2. Set s = 0 and x~ = xk. 

Step 3. Apply Algorithm 2.1.3 for the computation of the descent direction at 

x = x~, d = dk, Z = Zk, A = Ak, C = CI. This algorithm terminates after a finite number 

of iterations l > O. As a result we get the set Dl(X~) and an element v: such that 

Furthermore either Ilv:11 ::; dk or for the search direction g: = -llv:II-1v: 

(2.1.7) 

Step 4. If 

(2 .1.8) 

then set Xk+l = x~, k = k + 1 and go to Step 2. Otherwise go to Step 5. 
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Step 5. Construct the following iteration :l:~+1 = x~ + o-sg:, where o-s is defined as 

follows 

Step 6. Set s = s + 1 and go to Step 3. 

For the point Xo E IRn we consider the set M(xO) = {x E IRn : f(x) ~ f(xO)}. 

Theorem 2.1.2 Assume that the function f is semisrnooth and quasidifferentiable, 

its subdifferential and superdifferential are polytopes at any x E IRn and the set M(xO) 

is bounded for starting points XO E IRn. Then every accumulation point of {Xk} belongs 

to the set XO = {x E IRn : 0 E 8f(x)}. 

Remark 2.1.1 One of the important parameters in the definition of the discrete 

gradient is A > O. It follows from Proposition 1.2.2 that sufficiently small values of A 

allow one to get approximations to subgradients. Despite the fact that large values of 

A cannot be used to approximate subgradients, they can be used to compute descent 

directions. In the discrete gradient method we take any AO E (0,1), some (J E (0,1) 

and compute Ak, k;:::: 1 as follows: 

Thus, in the discrete gradient method approximations to subgradients are only used 

at the final stages of the method. Therefore, it is not a sub gradient-based method, 

and it is a derivative-free method. 

2.1.4 Gradient Sampling Method 

The idea of stochastic gradient goes back to the works of Shor [130] and Ermoliev 

[174]. Later in [31] Burke, Lewis and Overton used gradient sampling techniques to 

approximate the Clarke sub differential for a locally lipschitz function. In 2005, they 

published a paper containing a gradient sampling method for nonsmooth nonconvex 

optimization [34] and they presented some convergence results. Later, there is diverse 

application of this method in different contexts such as [35, 33, 34, 19J . More re­

cently, Kiwiel strengthened the convergence results and slightly modified the gradient 

sampling method [lOOJ. 
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The Method 

By the Radamacher Theorem, a locally Lipschitz function is differentiable almost 

every where. Therefore, at a randomly selected point , with probability 1, the subgra­

dient is unique, which means it is equal to the gradient. Considering this fact, in the 

gradient sampling method, at a given iterate, the gradient is calculated on a set of 

randomly generated nearby points. This process would provide local information of 

the function, and an c-steepest descent direction is constructed by solving a quadratic 

programming problem, where c is the sample radius. The next iterate is found by 

applying a line search toward the descent direction. 

Suppose L = {xlf(x) ::; f(x)} is the bounded level set, D is the set that f is 

differentiable on and B is the closed unit ball. 

Algorithm 2.1.5 Gradient sampling Method. 

Step O.(Initialization) 

Let X
O E L n D, /, f3 E (0,1), J.L, B E (0,1]' co > 0, 110 > 0, k - 0 and m E 

{n+1,n+2, ... }. 

Step 1. (Approximate the Clarke c-subdifferential by gTadient sampling) 

Let U kl , ... , ukm be sampled independently and uniformly from B, and set 

If for some j = 1, ... , m the point xkj ~ D, then STOP; otherwise, set 

and go to step 2. 

Step 2.(Compute a search direction) 

Let l E Gk solve the quadratic program mingEGk Ilg11 2
, i.e., 

Illll = dist(OIGk ). 

If Ilk = Ilgkll = 0, STOP. If Ilgkll ::; Ilk, set tk = 0, IIk+l = Bilk, and CkH = J.LCk, and go 

to the step 4; otherwise, set lIk+l = Ilk, ckH = Ck, and dk = _gklllgkil and go to step 

3. 
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Step 3.(Compute a step length) 

Set 

and 

and go to the step 4. 

Step 4.(Update) 

tk = max ,s 
sE{0,1,2, ... } 

2.2. Derivative Free Optimization 

If xk + tkdk E D, set Xk+l = xk + tkdk, k = k + 1, and go to Step 1. If xk + tkdk ~ D, 

let xk be any point in xk + ekB satisfying xk + tkdk E D and 

(such an xk exists due to the continuity of j). Then set Xk+l = xk + tkdk, k = k + 1, 

and go to Step 1. 

The main convergence result follows. Let Pr:;(x) = dist(OIGr:;(x)) be the distance 

between the origin and Gr:;(x). 

Theorem 2.1.3 {convergence for fixed sampling radius}. If {Xk} is a sequence gener­

ated by the GS algorithm with co = e, liD = 0 and J-t = 1, then with probability 1 either 

the algorithm terminates finitely at some iteration ko with Pr:; (xko) = 0 or there is a 

subsequence J c IN such that pr:;(Xk) -+j 0 and every cluster point x of the subsequence 

{xk} J satisfies 0 E 8r:;1(x) {the E: subdifferential}. 

2.2 Derivative Free Optimization 

The exact definition of derivative free optimization is not clear. Considering this con­

cept from different perspectives would lead to different categories of included methods. 

What the name implies is to not use any exact or approximate information of deriva­

tives. Based on the literature dealing with optimization methods which do not use 

any information about the derivatives, there exist two main categories: derivative 

free methods and direct search methods. Roughly speaking, derivative free methods 

are those do not require derivative information and they use approximation of the 

objective function (not necessarily Taylor expansions). This means they rely on local 
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models of the objective function and constraints. However, direct search methods rely 

on the objective function values and decide about descent direction by comparing its 

value in current iterate with the best found so far. Also, this kind of method uses 

simple decrease rather than sufficient decrease, which is used in other derivative free 

methods. 

Derivative Free Optimization (DFO) and direct search methods were designed 

especially to solve optimization problems whose objective function are computed by 

a "black box" or simulation (for example in modelling complex physical systems), so 

there is no function to calculate gradient. Each call of the black box is expensive and 

hence estimating the gradient using finite difference is more costly. More difficulties 

arise when the objective function value may be computed with noise, so the finite 

difference, even though expensive, may not be accurate. 

2.2.1 Direct Search Method 

Over the last decade different direct search algorithms have been developed. Among 

them generalized pattern search (GPS) algorithms are known to be most efficient. 

Apparently the first direct search methods are due to pattern search of Hooke and 

Jeeves [140] and simplex algorithm of NeIder and Mead [86]. Later this method was 

modified significantly by Torzcon and Lewis [164, 149, 151] and more recently by 

Audet and Dennis [37, 38]. 

Pattern search methods are a subclass of direct search algorithms. Direct search 

methods do not explicitly use exact information or approximation of derivative. 

In 1997 Torczon [164] introduced the class of generalized pattern search (GPS) 

methods for solving unconstrained Nonlinear Programming (NLP) and showed that, 

this type of algorithm can cover coordinate search, evolutionary operation in factorial 

design [68], Hooke and Jeeves' algorithm [140] and the multidirectional search algo­

rithm [88]. In that paper, Torczon showed that if all iterates lie in a compact set 

and the objective function f is continuously differentiable in a neighborhood of the 

level set {x E Rn : f(x) ~ f(xo)}, where Xo is starting point, then a subsequence of 

iterates {Xk} produced by GPS converges to a point x that satisfies Vf(x) = 0 when 

step size parameter (mesh size) is decreasing to zero. 

In [149], Lewis and Torczon generalized their algorithm by applying the theory 
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of positive linear dependence of Davis [40] to reduce the number of trial points at 

each iteration. They also introduced a heuristic, called rank ordering, in which, after 

evaluating f in directions forming a basis, they generate the new direction based on 

difference between the best and worst directions. 

Lewis and Torczon have extended the GPS method to solve both bound [150] and 

linearly constrained problems [151]. They showed that by choosing appropriate search 

directions, if the objective function f is continuously differentiable in a neighborhood 

of the level set {x E Rn : f(x) :::; f(xo)}, the algorithm is guaranteed to produce a 

subsequence of iterates converging to a limit point x satisfying V' f(xf(x - x) 2: 0 

for any feasible x. Also, for nonlinear objective functions with nonlinear constraints, 

Lewis and Torczon [152] developed a derivative-free augmented Lagrangian version of 

GPS. For this algorithm they proved that under some assumptions, some subsequences 

of iterates converge to a K KT first order stationary point. 

Audet and Dennis [37] presented an equivalent version of GPS for bound and 

linearly constraints, in which the strength of the results depends on local continuity 

and smoothness of the objective function. By using these concepts, their proofs are 

shorter and simpler. In [38] they implement a filter method into GPS to handle 

general nonlinear constraints. 

A key point to Audet and Dennis, GPS algorithms is that they explicitly separate 

the search step from the poll step within the iteration, in which, any finite search 

strategy (including none) on the mesh may be employed without special effect on the 

convergence results. The flexibility and freedom in the search step enable the user to 

apply heuristics and knowledge of the problem to accelerate its convergence rate. 

Recently, Audet, Dennis and Abramson in [123] and [39], have worked on mesh 

adaptive direct search (MADS). MADS is a version of GPS in which local exploration, 

called polling, is carried out in a dense set of directions in the space of optimization 

variables. They prove in [39] that a subsequence of MADS iterates converges to a 

limit point satisfying second-order necessary or sufficient optimality conditions. 
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Pattern Search Method 

Consider 

{

minimize f (x) 

subject to x E lRn
, 

where f : Rn ---t lR is continuously differentiable. Direct search methods for this 

problem are those that neither compute nor explicitly approximate derivatives of f . 

A special subclass of direct search methods is pattern search methods. Examples of 

those methods include coordinate search with fixed stepsize, evolutionary operation 

using factorial design, and original pattern search from Hooke and Jeeves. All the 

methods perform search using a pattern of points independent of f. 

The Pattern 

The basic requirement for pattern search is a lattice T (or mesh) such that if {Xl, ... , X N } 

are the first N iterations of the method, then there exists a scale factor ¢ N such that 

{Xl - Xo, X2 - Xl, ... ,XN - XN-I} all lie in the scaled lattice ¢NT. 

We are going to present an abstract version of pattern search methods. To define 

a pattern we need two matrices, a basic matrix and a generating matrix. The basic 

matrix could be any nonsingular matrix B E Rnxn and the generating matrix is a 

matrix Ck E znxp where p > 2n. Consider the following partition of Ck: 

(2.2.1) 

It is required that Mk E M c znxn, where M is a finite set of nonsingular matrices, 

and Lk E znx(p-2n) and contains at least one column, the column of zeros. 

A pattern Pk is then defined by the columns of the matrix Pk = BCk. Because B 

and Ck have rank n, the columns of Pk span Rn. Using 2.2.1 we can partition P k as 

follows: 

(2 .2.2) 

Given stepsize i::l. k E R, i::l. k > 0, we define a trial step 4 to be any vector of the form: 

where c~ is the i-th column of Ck = [el ... £f,;J. Note that B4 is the direction of 

the step and i::l. k is steplength parameter. At iteration k, the trail points would be 

xi = Xk + s~ where Xk is the current iterate. 
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The Exploratory Moves 

The pattern search method does the search by using exploratory moves around the 

current point Xk before declaring the new iteration or updating parameters. These 

moves can be interpreted as sampling the function around Xk in a deterministic way 

to find Xk+l = Xk + Sk with lower function value. From the convergence point of view 

we should consider some assumptions for exploratory moves: 

Under these assumptions we can prove that 

liminf IIV f(xk)11 = 0, 
k ...... oo 

even though we just need a simple decrease on f. To obtain limk->oo IIV f(xk)1I = 0 

we need a stronger assumption on exploratory moves and matrices [164]. 

Generalized Pattern Search Method (GPS) 

The algorithms of GPS for unconstrained optimization is as follow: 

Algorithm 2.2.1 The Generalized Pattern Search (GPS) Method. 

Let Xo E IRn and tlk > O. 

For k=O,l,... do 

Step 1. compute f(xk) 

Step 2. Determine a step Sk using an exploratory move 

Step 3. compute Pk = f(xk) - f(xk + Sk). 

Step 4. If Pk > 0 then Xk+l = Xk + Sk. Otherwise Xk+l = Xk· 

Step 5. Update Ck and D..k. 

To define a special pattern search method, one should define the basis matrix B, the 

generating matrix Ck, the exploratory moves for Sk and updating of Ck and D..k. The 

general scheme for updating steplength is keeping it fixed after a successful move and 

halving it if there is no improvement in iteration. 
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Coordinate Search Method 

Coordinate search or compass search is the simplest case in GPS. Let k be the iteration 

index, Xk the current iterate and Xo the initial guess. Let Dff) denote the set of 2n 

coordinate directions, defined as the positive and negative unit coordinate vectors: 

Let 6.k denote the steplength control parameter. 

Algorithm 2.2.2 The Coordinate Search Method. 

Let Xo E Rn and 6.0 > 6.tol > O. 

For k = 1,2, ... do 

Step 1. If there is dk E Dff) such that f(xk+6. kdk) < f(xk) then set Xk+l = Xk+6.kdk 

and 6.k+1 = 6.k. 

Step 2. Otherwise, if f(Xk + 6.kdk) 2: f(Xk) for all d E Dff), set Xk+l = Xk and 

6.k+l = ~6.k' 

Step 3. If 6.k < 6.tol , then terminate. 

There are different ways to see if there is any dk E Dff) satisfying a simple decrease 

f(xk+l) < f(xk)' One may consider all2n trial points and choose the highest decrease 

(this can happen sequentially or using parallel computing). Another possibility is 

evaluating sequentially and stopping after the first simple decrease. Whenever the 

decrease direction is found, we call it a successful iteration. 

Regardless of the process of evaluation of the objective function, the value of 6.k 

is not reduced unless every trial point has been evaluated. In this case the iteration 

is called unsuccessful. 

From a matrix point of view, we can say coordinate search is a special case of GPS. 

Consider B = I. The generating matrix Ck = C contains all possible combinations 

of {-I, 0, I} in its columns. Thus C has p = 3n columns. We define M = I, and L 

consists of the remaining 3n - 2n columns of C. 
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Hooke and Jeeves' Pattern Search Algorithm 

In addition to the general notion of a direct search method, Hooke and Jeeves intro­

duced an original pattern search method [140}. The pattern search of Hook and Jeeves 

could be considered as a variant of coordinate search that uses a pattern step to ac­

celerate the progress of the algorithm by incorporating previous successful iterations. 

It is a deterministic local search method. 

The Hook and Jeeves' pattern search is an opportunistic process. If the previous 

iteration is successful, then the current iteration begins by conducting coordinate 

search about a speculative point Xk + (Xk - Xk-l), rather than around the current 

iterate Xk (called pattern step). 

If we have Xk-l and Xk, the algorithm takes a step Xk - Xk-l from Xk. The function 

is evaluated at this trial point and accepted even if f(Xk + (Xk - Xk-l)) ~ f(Xk). Then 

the algorithm does a coordinate search around this temporary point. If the coordinate 

search about the trial point is successful, the point returned is the new iterate Xk+l. 

If not, the method reduces to coordinate search around Xk. In the unsuccessful case, 

the algorithm will reduce step length until some stopping criteria are met. 

NeIder-Mead Simplex Method 

Much of the early work on direct search methods arose in the statistics community. 

The relation between unconstrained optimization and statistical design of experiments 

is explored in [165]. For instance, Box's paper on evolutionary operation (EVOP) [68] 

proposed the construction of a two-level factorial design around the current best point 

in order to capture some local second-order effects. The problem is that in this method 

the number of function evaluations will increase exponentially(2n for each iteration). 

In response to the costly Box's EVOP, Spendly, Hext and Himsworth [155] ob­

served that a simplex (n + 1 points in Rn) is the minimum number of points required 

by statistical design to capture first-order information. They proposed an optimiza­

tion algorithm based on reflecting the vertex in the simplex with the highest (vn ) 

through the centroid of the opposite face (c = ~ (vo + ... + Vn-l)) to get next trial 

point as Vr = Vn + 2(c - vn). Then we compare f(vr) with f(Vn-l) and in case of 

decrease we accept it. 

The simplex algorithm of NeIder and Mead [86] is a version of this basic idea that 
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allows a simple line search of the form 'Un + 0:( C - 'Un) with a set of four possible choices 

for 0:. Typical choices are 0: E H,~, 2, 3}. The line search has the effect of allowing 

the shape of the simplex to deform. Generally we can see the method as a sequence of 

simplices, but we can modify and change their shapes so that they adopt themselves 

to the local topology of the function [103]. 

In more detail, at each iteration of NeIder and Mead's algorithm, a current simplex 

is defined by n + 1 vertices. We have five kinds of operation on the simplices: reflec­

tion, expansion, outside contraction, inside contraction and shrinking. There are two 

possible outcomes: (1) a single new point replaces the worst vertex; or (2) if a shrink 

is performed, the new simplex contains the best point from the previous iteration and 

n new points closer to the best point than the previous ones. 

For the NeIder and Mead simplex algorithm, only very week convergence results 

and only in one or two dimensions has been established. This method is widely used 

because it is simple and uses only function values. It is also applicable to nonsmooth 

problems, and where the function is not explicitly given. 

2.2.2 Derivative Free Methods 

As stated above, derivative free methods are a class of optimization methods for non­

linear programming problems which construct a local approximation of the objective 

function and use the derivative information of this approximation. this kind of meth­

ods have been extensively considered in last few decades. The approximation model 

would be constructed using interpolation or regression methods. 

The idea of employing a quadratic model instead of the original objective function 

goes back to Winfield [55, 56]. From the early days, one important problem was the 

geometry of sampling of points for interpolation or regression. A similar approach to 

Winfield's models was Powell's linear multivariate interpolation [127]. The primary 

difference between the two methods was in updating geometric properties of sample 

points. 

The first proof of convergence of the methods was presented by Conn, Schein­

berg and Toint [50J. Recently Conn et al [51, 137] have extensively investigated the 

convergence properties and geometry of the sampling set. 
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Trust Region Method 

The concept of trust region is introduced in Levenberg [92J and Marquardt [53J for 

solving nonlinear least square problems. The method constructs a model mk(p) which 

is an approximation of the objective function j(x) in a neighborhood of the current 

iterate Xk. Because the model is quite trustable in this neighborhood, it is called a 

trust region. The model is minimized to get the minimum point Xk+s as a candidate 

for the next iterate. Then the original objective function (J(Xk + s)) is evaluated at 

the trial point. If the new point is better than previous iterations (J(Xk+S) < j(Xk)), 

it is accepted as the new iteration Xk+l = Xk +s, and the radius of the trust region will 

be increased. Otherwise, the trial point is rejected and the radius will be decreased. 

Algorithm 2.2.3 Trust Region Method. 

Step 1. Choose initial guess Xo, initial radius 80 and termination tolerance c. k = 0 

Step 2. Construct the model mk 

Step 3. Minimize it within the trust region and consider the minimum at Xk + s. 

Step 4. If j(Xk + s) < j(Xk), increase 8k, Xk+l = Xk + s and update the model by 

step 2. 

Step 5. Otherwise, reduce 8k . if 8k < c exit, in other case, go to step 3. 

2.3 Global Optimization 

Global Optimization means finding the absolute minimum of a given nonconvex func­

tion. The primary difficulty in dealing with global optimization problems using con­

ventional methods is that they easily get trapped at a local minimum. However, 

because of nonconvexity there are many such local minima, and we are interested in 

the global one. A good reference for global optimization is [83J, and especially for 

Lipschitz functions is [84]. 

Algorithms for global optimization could be classified into deterministic such as 

branch and bound, and metaheuristic, including simulated annealing, genetic algo­

rithm, tabu search etc. 

Metaheuristic methods are generally inspired from the real world and they use 

artificial intelligence. They have the capability to explore the whole search space, and 
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they can escape from local minima. However, they are computationally expensive 

because of poor convergence rates. The reason for poor convergence is the random 

search nature of such algorithms. 

2.3.1 Branch and Bound(B&B) 

Branch and Bound algorithms are nonheuristic general methods for finding optimal 

solution especially for discrete (integer programming) and combinatorial optimization, 

introduced by Dakin [147J and developed by Gupta and Ravindra [70], Borchers and 

Mitchell [20J and Leyffer [154J. The method works reasonably efficiently and another 

good aspect is that it solves linear continuous problems as subproblems. 

B&B searches for the optimal solution by investigating only part of search space 

rather than the whole space while it is understood that upon derived bounds on the 

objective function there is no optimal solution on the excluded parts of space. B&B 

is guaranteed to find the global minimizer with desired accuracy after a predictable 

number of steps. 

The central idea behind B&B is to branch (partition the feasible region into many 

simpler subsets) and then attempt to find the best solution or compute a lower bound 

of the objective function on each subset. We can consider each subset as a subproblem 

of the original problem with a smaller feasible region. Each subproblem is solved if 

the best feasible solution in that subset is found or, it is discovered that the subset 

is empty or, based on the bounds, it is proven that there exists no optimal solution 

in that subset. If the subproblem couldn't be ended in one of these cases, then the 

subset will be partitioned into smaller subsets and the process will be repeated. 

B&B uses both lower bounds and upper bounds of objective function. The lower 

bounds can be obtained by relaxing the problem. The upper bound will be considered 

the best solution value found in subset. If the lower bound in a subset is worse than 

the upper bound already obtained in another subproblem, the first subproblem does 

not contain a better solution and it does not need to be explored. 

In continuous global optimization, the subproblems are constructed by partitioning 

the feasible region into smaller parts. The most commonly used way is dividing the 

domain of a variable into smaller intervals. In this case the complexity of branching 

may increase exponentially with the dimension. 
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2.3.2 Metaheuristics 

In the theory of algorithm, there are two basic goals in designing algorithms. They are 

finding algorithms with good run time and good optimal solution quality. A heuristic 

algorithm is one that neglects one of them. For many practical problems, heuristic 

algorithms are the only way because there is no satisfactory good algorithm that ends 

in reasonable time or with accurate solution. 

There is a class of general heuristic strategies called metaheuristics which often 

use a concept of random search. They can be applied to a wide range of real-world 

problems, even though they are designed for combinatorial hard problems. The term 

metaheuristics was first used by Glover [60J in 1986. Metaheuristic methods are 

virtually used to find a good solution within an acceptable time. Usually, there is 

no guarantee of obtaining the global solution for them. For this reason the result of 

metaheuristic methods for optimization problems is called sub-optimal solution. 

The growing interaction between Computer Science and Optimization has yielded 

new practical solvers for global optimization problems. Metaheuristics mainly employ 

exploration and exploitation search procedures in order to diversify the search all 

over the search space and intensify the search in some promising areas. Therefore, 

metaheuristics cannot easily be trapped in a local minimum. However, they are 

computationally expensive because of their slow convergence due to using randomized 

search methods. 

Metaheuristics can be classified into two categories: population-based methods 

and point-to-point methods. In a point-to-point scheme, at the end of each iteration 

there is a new point that is not worse than the previous one. In population-based 

methods, they start with a set (population) of feasible points and via iterations the 

methods improve the set. Genetic algorithms are regarded as examples of population­

based methods, and simulated annealing and tabu search as examples of point-to-point 

methods. 

In the rest, we briefly explain simulated annealing and tabu search as two repre­

sentatives of point-to-point methods, and genetic algorithms as a type of population­

based algorithms. 
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Tabu Search (TS) 

Tabu search (TS) as a member of metaheuristic local search methods was proposed 

by Glover [60] in 1986. The method was first designed for hard Combinatorial Opti­

mization problems and the results were satisfactory [61, 62, 63, 82, 48]. There are a 

few contributions of TS in continuous optimization. The most important features of 

TS are its use of adaptive memory and responsive exploration. 

TS is the combination of local search and anti-cycling memory-based rules. It 

uses a local search procedure to move from a solution Xk to the next one Xk+l in the 

neighborhood of Xb until some stopping criteria have been met. TS uses the concept 

of tabu list to restrict returning to recently visited solutions. The list will act as a filter 

for the search procedure. Using tabu list, the search will be able to explore regions 

of the search space that would be left unexplored. The side result of the prevention 

of revisiting explored regions is escaping from local optimality. The stopping criteria 

could be different depending on the structure of the problem. More or less, if there 

is no progress after seeing some new points, the algorithm would be terminated[17]. 

Although the method is widely used on many problems from different areas, there is 

not a robust convergence proof for it. 

Algorithm 2.3.1 Tabu Search (TS) Algorithm. 

Step 1. (Initialization) Choose an initial solution Xo. Set the tabu list to be empty, 

and k = O. 

Step 2.(Generation) Generate neighborhood moves (trial points) list M(Xk) = {y : 

y E N(Xk)}, based on tabu restrictions (considering the points should not be met), 

where N(Xk) is a neighborhood of Xk. 

Step 3. (Update) Set Xk+l equal to the best trial solution in M(Xk), and update the 

tabu list. 

Step 4. (Stopping Criteria) If stopping criteria are satisfied, stop. Otherwise, go to 

Step 2. 
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Simulated Annealing (SA) 

Simulated annealing (SA) is a random search method for the global optimization 

problem to find a suboptimal solution. It was independently introduced for combina­

torial optimization problems by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 

[102], and by V. Cerny in 1985 inspired from Metropolis et. al. [125], simulation on 

the behavior of atoms in special temperature. The application of SA for continuous 

problems was suggested by Pincus [122] and developed in [69, 73, 54]. An excellent 

overview of SA can be found in [129]. Despite proof of convergence of the method to 

the global minimum, it is computationally slow [108]. 

By analogy with the physical process of annealing in thermodynamics, each step of 

the SA algorithm replaces the current solution by a random" nearby" solution, chosen 

with a probability that depends on the difference between the corresponding function 

values and on a global parameter T (called the temperature). The dependence is such 

that the current solution changes almost randomly when T is large, but increasingly 

"downhill" as T goes to zero. The allowance for "uphill" moves saves the method 

from becoming stuck at local minima, the problem with greedier methods. 

At each step, the SA heuristic considers some neighbour X of the current state 

X, and probabilistically decides between moving the system to state X or staying in 

state X. The probabilities are chosen so that the system ultimately tends to move to 

states of lower energy. 

The main parts of a SA are choice of neighbours , transition between states and 

decreasing cooling schedule (the gradually reduction of T). The neighbours of each 

state are specified by the user, usually in an application-specific way. The probability 

of making the transition from the current state X to a candidate new state X is a 

function A(e, e', T) of the energies e = f(X) and e' = f(X) of the two states, and of 

a varying parameter T (the temperature). 

One essential requirement for the transition probability function A is that it must 

be nonzero when e' > e, meaning that the system may move to the new state even 

when it is worse (has a higher energy) than the current one (to escape from local 

minima). On the other hand, when T goes to zero, the probability A(e, e', T) must 

tend to zero if e' > e, and to a positive value if e' < e. In particular, when T becomes 

0, the procedure will reduce to a greedy algorithm. In order to apply the SA method 
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to a specific problem, one must specify the state space, the neighbor selection method, 

the probability transition function, and the annealing schedule. 

Algorithm 2.3.2 Simulated Annealing. 

Step 1. Choose an initial solution Xo and cooling scheme. 

While (T > Tmin ) do 

Step 2. Randomly generate a neighbor x of Xk. 

Step 3. If e(x) < e(xk), set Xk+l = x. 
.(X)-.(x) 

Step 4. Otherwise, set Xk+1 = Xk with probability e- T and decrease T. 

Genetic Algorithm (GA) 

Genetic algorithm is a method that mimics genetic evolution in nature and environ­

mental adaptation of consecutive generations. The mentioned adaptation is applied 

through genetic inheritance from parents to children and survival of the fittest. The 

first appearance of GA is considered the Holland's paper and book [89, 90] in 1975. 

Nowadays GA is one of the best known types of metaheuristics, and has multipurpose 

usage in all branches of Science [162, 21, 175]. 

Formally GA starts with a population that is a finite set of feasible solutions 

which are called chromosomes. Chromosomes are gained through coding process that 

converts feasible solutions from original problem so that the algorithm can manipulate 

them. Before the coding process, we consider fixed number of attributes or variables 

for chromosomes (which are called genes). Also, there is a fitness function derived 

from the objective function and used for evaluations. 

GAs consist of three main operations: selection, crossover and mutation. By se­

lection, the algorithm selects chromosomes form current population in order to apply 

other operators. The selection is based on the value of fitness, and the chromosomes 

with higher fitness value have more chance to be selected. After selection, pairs of par­

ents (chromosomes) are chosen upon probability to crossover and produce offsprings 

(new chromosomes). In order to increase diversity, the mutation is used to alter one 

or more genes of a randomly chosen chromosome [17]. 

Algorithm 2.3.3 Genetic Algorithm (GA). 
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Step 1. (Initialization) Generate an initial population Po. Set the crossover and muta­

tion probabilities Pc E (0,1) and Pm E (0, 1) , respectively. Set the generation counter 

t = 0. 

Step 2. (Selection) Evaluate the fitness function F at all chromosomes in Pt . Select 

an intermediate population P! from the current population Pt. 

Step 3. (Crossover) Associate a random number from (0, 1) with each chromosome in 

P! and add this chromosome to the parents pool Sf if the associated number is less 

than Pc. Repeat the following Steps 3.1 and 3.2 until all parents in Sf are crossovered: 

Step 3.1 Choose two parents PI and P2 from Sf . Mate PI and P2 to reproduce chil­

dren CI and C2. 

Step 3.2 Update the children pool set Sf through Sf := Sf U {Cll C2} and update 

Sf through Sf := Sf - {PI,P2}' 

Step 4. (Mutation) Associate a random number from (0, 1) with each gene in each 

chromosome in PI, mutate this gene if the associated number is less than Pm, and add 

the mutated chromosome only to the children pool set Sf . 

Step 5. (Stopping Criteria) If stopping conditions are satisfied, then terminate. Oth­

erwise, select the next generation Pt+I from ptusf . Set Sf to be empty, set t := t+ 1, 

and go to Step 2. 

Hybrid Methods 

One approach that has recently drawn attention is to combine global and local search 

methods to design more efficient global optimization algorithms (see [11, 18, 172]) . 

Such an approach allows one to use powerful methods of local optimization for solving 

global optimization problems. Local search methods are fast and more precise than 

the global search methods. In contrast, global search methods are time-consuming. 

However, local search methods can be even trapped in stationary points that are not 

local minimizers. Therefore various combinations of local and global search methods 

can be considered to design algorithms of global optimization exploiting advantages 

of both local and global search methods. 

Since DFO methods do not explicitly rely on local models of the objective and/or 

constraint functions their combination with global search methods may lead to better 

hybrid methods than any Newton-like methods. Results of numerical experiments 
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presented, for example, in [11] show that unlike Newton-like methods, some DFO 

methods can overcome stationary points which are not local minimizers and even 

sometimes shallow local minimizers. Thus the use of DFO methods allows one to 

reduce the number of stationary points which might be met in order to reach the 

global minimizer. Therefore, DFO methods have got more attention to be used in 

hybrid methods of global optimization. 

Different strategies can be used for a combination of local and global search meth­

ods. These algorithms fall roughly into the following three classes: 

1. The first class contains algorithms where the global search methods are applied 

to improve global search properties of local search methods (see, for example, 

[18, 107, 171]); 

2. The second class contains algorithms where global search methods are used to 

escape from a stationary point which has been calculated by the local search 

algorithm and to generate a new starting point for a local search algorithm (see, 

for example, [11, 15, 172]); 

3. The third class contains algorithms where a global method is used to generate a 

set of starting points for a local search method. Then the local search method is 

applied starting from each these points and the best is taken as an approximation 

to the global solution (see e.g. [117]). 
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Chapter 3 

Approximate Subgradient Method 

In this chapter, we propose approximate subgradient method (ASM) to solve the 

following problem: 

{

minimize J (x) 

subject to x E IRn
, 

where the objective function f is locally Lipschitz. 

(3.0.1) 

As stated in previous chapter, the subgradient method is a very simple algorithm 

for minimizing a nonsmooth convex function (see, [58] and [130] for details). This 

method uses step-lengths that are fixed ahead of time, and it does not contain a 

line search procedure. The subgradient method is not a descent method. For some 

problems it is extremely inefficient; However, it is simple and can be applied to a far 

wider variety problems. These facts motivate us to develop minimization algorithms 

based on the subgradient methods which are still quite simple, easy to implement and 

on the same time are more efficient than the subgradient algorithms and applicable 

to a wider class of minimization problems. 

The approximate subgradient method is such an algorithm. This algorithm can 

be applied for minimizing nonconvex, nonsmooth functions. In this algorithm, as 

stated in Section 3.1, descent directions are computed by solving a system of linear 

inequalities. The latter problem is solved using the subgradient method, which is 

demonstrated in subsection 3.1.1. The algorithm is presented in Section 3.2 and its 

convergence is proved for quasidifferentiable semismooth functions. Armijo-type line 

search technique is used to find step-lengths. The numerical efficiency of the algorithm 

is demonstrated in Section 3.3 by numerical results. The chapter will be finished by 
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concluding Section 3.4. 

3.1 Computation of Descent Directions 

In this section, we propose an algorithm for the computation of descent directions. 

Let z E P, A > 0, a E (0,1], numbers c E (0,1) and 6 > 0 be given. 

Algorithm 3.1.1 An algorithm for the computation of the descent direction. 

Step 1. Choose any gl E SI, e E G, compute i = argmax {Igil, j = 1, ... , n} and a 

discrete gradient VI = ri(x,gl,e,z,A,a). Set Dl (x) = {VI} and k = 1. 

Step 2. Compute the direction 9 E IRn as a solution to the following system: 

(3.1.1) 

Step 3. If the system (3.1.1) is not solvable, then stop. Otherwise compute 9 as a 

solution to this system and go to Step 4. 

Step 4. If 

f(x + A9) - f(x) :s; -c6A, (3.1.2) 

then stop. Otherwise set gk+l = 9 and go to Step 5. 

Step 5. Compute i = argmax {lgj+II : j = 1, ... , n} and a discrete gradient 

V k+l = ri(x gk+1 e Z A a) , "", 

construct the set Dk+1(X) = co {Dk(X) U{ Vk+1}}, set k = k + 1 and go to Step 2. 

Some explanation to Algorithm 3.1.1 is necessary. In Step 1, we compute the 

discrete gradient with respect to an initial direction gl E 8 1. In Step 2, a solution is 

found to the system of linear inequalities (3.1.1) with an additional condition 9 E 8 1 

(below we will discuss algorithms for solving the system (3.1.1)). If the system is not 

solvable, then in Step 3, we accept the point x E IRn as an approximate stationary 

point and the algorithm stops. If the system is solvable, then we compute a new search 

direction 9, and in Step 4, we check whether this direction is a descent direction. If 

it is, the algorithm stops and the descent direction has been computed, otherwise 
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we compute another discrete gradient with respect to this direction in Step 5 and 

update the set Dk(X), At each iteration k, we improve the approximation of the 

subdifferential of the function f. 

We will show that Algorithm 3.1.1 is terminating, that is, after a finite number of 

steps either we find that the point .7: is an approximate stationary point or we compute 

the descent direction. First, we will prove the following propositions. 

Proposition 3.1.1 If the system (3.1.1) is not solvable, then 

Il!in Ilvll < O. 
vEDk(X) 

(3.1.3) 

Proof: Let v be a solution to the following problem: 

min ~llvll2 subject to v E Dk(X), 

If v = 0 then the proof is straightforward. So we assume that v =1= O. Then it follows 

from the necessary condition for a minimum that 

which means 

(3.1.4) 

Since the system (3.1.1) is not solvable we get 

Consider 9 = -II~II' Then there exists i E {I, ... , k} such that 

Then the proof follows from (3.1.4). o 

Remark 3.1.1 It follows from Proposition 3.1.1 that if in Step 2 of Algorithm 3.1.1 

the system (3.1.1) is not solvable, then the point .7: E ffin can be considered as an 

approximate solution. 

Proposition 3.1.2 If (3.1. 3) is satisfied then the system (3.1.1) is not solvable. 
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Proof: Assume the contrary that is (3.1.3) takes place but the system (3.1.1) has a 

solution. The latter means that there exists 9 E 8 1 such that 

Let 

We get 

- ""' i V = Daiv, 
iEI 

On the other hand 

which contradicts (3.1.5). 

(vi,g)+6~O, i=l, ... ,k. 

IIvil = II!in IIvll· 
vEDk(x) 

~ ai = 1, ai E (0, 1], i E I c {I, ... , k}. 
iEI 

(v, g) ~ -6. 

l(v,g)1 ~ IIvllllgil = IIvil < 6 

(3.1.5) 

o 

Proposition 3.1.3 Let f be a locally Lipschitz function defined on lRn. Then in 

Algorithm 3.1.1 one of the stopping criteria 'Will be satisfied after a finite number of 

steps. 

Proof: If both conditions for the termination of the algorithm are not satisfied, then 

a new discrete gradient vk+1 ~ Dk(x) exists. Indeed, in this case 

It follows from (1.2.1) that 

and therefore 

f(x + Agk+1) - f(x) > -c6A. 

A(ri(X, gk+1, e, z, A, a), l+1) 

- A (v k+1, l+1 ) 

Assume that Vk+1 E Dk(X). Since gk+1 E 81 is a solution to the system (3.1.1) 
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we have 

(Vk+1,gk+l) ~ -8 

which contradicts (3.1.6). The latter means that Vk+1 (j:. Dk(X), 

Now we will show that Algorithm 3.1.1 is terminating. Assume the contrary. Then 

Algorithm 3.1.1 generates an infinite sequence {gk} of directions gk E S1' It follows 

from (3.1.6) that 

(v k
, gk) > -c8, V k = 2,3, ... . (3.1.7) 

The latter means that for any k E {2, 3, ... } the direction gk does not satisfy the 

system: 

(vt,g)+8~O, t=l, ... , i, i?k. 

It follows from Proposition 1.2.1 that IIvll ~ C for all v E Dk(x) . The direction gk+l 

is a solution to the system 

(vi,g)+8~O, i=l, .. . ,k. 

However, directions gi, j = 2, ... , k are not solutions to this system. Then we get 

Ilgk+1 _ gill> (1-
C

c)8, V j = 2, .. . ,k. (3.1.8) 

Indeed, if there exists j E {2, ... , k} such that 

then we have 

The latter means that 

which contradicts (3.1.7). The inequality (3.1.8) can be rewritten as follows: 

. (1 - c)8 
.min IIl+1 - gJII > . 

J=2, ... ,k C 

Thus Algorithm 3.1.1 generates a sequence {gk} of directions gk E S1 such that the 

distance between gk and the set of all previous directions is bounded below. Since the 

set S1 is bounded the number of such directions is finite. o 
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3.1.1 Solving the System (3.1.1) 

Step 2 is an important step in Algorithm 3.1.1, where we solve the system (3.1.1) 

to find search directions. Different methods have been developed to solve a system 

of linear inequalities (see, for example, [7, 91]). However, these methods cannot be 

applied directly to solve the system (3.1.1) because of the presence of the additional 

condition 9 E 51. To solve this problem, we use the nonsmooth optimization approach. 

To solve the system (3.1.1) we reformulate it as the following optimization problem: 

minimize rp k (g) = max { 0, (vi, g) + 8, j = 1, ... , k} (3.1.9) 

subject to 

(3.1.10) 

It is clear that if the system (3.1.1) is solvable then there exists 9 E 51 such that 

rpk(g) = O. If it is not solvable then rpk(g) > 0 for all 9 E 51 . 

The function rpk is convex and piecewise linear and the problem (3.1.9)-(3.1.10) 

is convex programming problem. The problem of minimization of the function rpk 

without the constraint (3 .1.10) can be easily reduced to a linear programming prob­

lem. However, linear programming techniques cannot be applied directly to solve the 

problem (3.1.9)-(3.1.10) because of the nonlinear constraint (3.1.10). 

The nonsmooth optimization approach has some advantages. First of all, since 

the discrete gradients are computed step by step we get the sequence of minimization 

problems of convex piecewise linear functions over the unit ball. The functions rpk 

are built step by step and one can use the solution in step j, j < k as a starting 

point in step (j + 1) which allows one to reduce the computational effort. We use the 

subgradient method to solve Problem (3.1.9)-(3.1.10). Since the minimum value or 

its lower bound is 0 we can use the following version of the subgradient method [30J : 

1+1 _ P . (I rpk(l) I) 
9 - rOJBl 9 - Ilwl 1l 2 W , 

where Proj B1 (.) is a projection operator onto the set B 1 , wi E 8rpk (l) is a subgradient 

of the function rpk at the point gl . The subgradient Wi is computed as follows . First, 

we compute 
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Then the subdifferential of the function <{Jk at the point gl is: 

Let lo = IR(gl)1 be the cardinality of the set R(i). Then 

The convergence results for this version of the subgradient method can be found, for 

example, in [30]. 

3.2 The Method and its Convergence 

In this section we describe the approximate subgradient method. Let sequences 6k > 

0, Zk E P, Ak > 0, 6k ~ +0, Zk ~ +0, Ak ~ +0, k ~ +00, sufficiently small 

number a > 0 and numbers C1 E (0,1), C2 E (0, C1] be given. 

Algorithm 3.2.1 The approximate sub gradient method 

Step 1. Choose any starting point XO E IRn and set k = O. 

Step 2. Set s = 0 and xks = xk . 

Step 3. Apply Algorithm 3.1.1 for computation of the descent direction at x = xks, 6 = 

6k, Z = Zk, A = Ak) C = C1. This algorithm terminates after a finite number of iterations 

l > O. As a result we get the system: 

(3.2.1) 

Step 4. If this system is not solvable set xk+1 = xks, k = k + 1 and go to Step 2. 

Otherwise we get the direction gks E Sl which is a solution to this system and 

(3.2.2) 

Step 5. Construct the following iteration Xks+l = xks + O"sgk.) where O"s is defined as 

follows 

Step 6. Set s = s + 1 and go to Step 3. 
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Remark 3.2.1 One can see that Algorithm 3.2.1 consists of two loops: inner and 

outer loops. The inner loop consists of Steps 3, 4, 5, 6 and parameters c5k, Zk , Ak are 

fixed in this loop. The outer loop consists of Steps 2, 3 and 5 and the parameters 

8k, Zk, Ak are updated in this loop. The algorithm each time returns to the outer loop 

if further improvement of the solution is not possible with the same values of the pa­

rameters, and they have to be updated to improve the approximation of subgradients. 

Remark 3.2.2 Unlike the subgradient method, the proposed algorithm may use more 

than one approximate subgradient at each iteration. This makes it similar to bundle­

type methods. However, at the same time, it does not use polyhedral underestimators 

of the objective function which makes it different from them. Moreover, in this method 

the subgradient method is applied to find descent directions. 

We assume that the function f satisfies the following assumption: 

Assumption 3.2.1 Let x E lRn be a given point. For any c > 0 there exist c5 > 0 

and AO > 0 such that 

(3.2.3) 

for all y E S,,(x) and A E (0, AO). Here 

8f(x + Se) = U 8f(y)· 
yES.(x) 

For the point xO E lRn
, we consider the set M(xO) = {x E lRn : j(x) ~ f(xO)}. 

Theorem 3.2.1 Assume that f E F, Assumption 3.2.1 is satisfied and the set M(xO
) 

is bounded for starting points XO E IRn. Then every accumulation point of {xk} belongs 

to the set XO = {x E lRn 
: 0 E 8f(x)} . 

Proof: Since the function f is locally Lipschitz and the set M(xO) is bounded, 

f* = inf {f(x) : x E IRn} > -00. (3 .2.4) 

First we show that the inner loop stops after finite number of steps. In other words, 

for any k > 0 there exists s = Sk ~ 0 such that the system (3.2.1) becomes unsolvable 
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at xk.. Assume the contrary that is there exists k > 0 such that the inner loop is 

infinite for this k. This implies that the system (3.2.1) is solvable and the inequality 

(3.2.2) is satisfied for all s ;::: o. Since C2 E (0, Cl], it follows from (3.2.2) that Us ;::: Ak. 

Then we can write 

f(X ks+ l
) - f(x ks ) < -C2us6k 

< -c2usll vk'll 

< -C2Ak Ilvk·lI· 

If the system (3.2.1) is solvable for any s then it follows from Propositions 3.1.1 and 

3.1.2 that Ilvk'll ;::: 6k and 

or 

(3.2.5) 

Since Ak > 0 and 6k > 0 are fixed for any k > 0, it follows from (3.2.5) that f(x k.) --7 

-00 as s --7 +00. This contradicts (3.2.4), that is the inner loop stops after a finite 

number of steps. This implies that for any k > 0 there exists s = Sk ;::: 0 such that 

the system (3.2.1) is not solvable at xk •. It follows from Proposition 3.1.1 that 

Ilv ks II = !llin Ilvll < 6k· 
VEDk.(Xk.) 

At the end of k-th inner loop, we get a point Xk+l = x k., and 

_ min Ilvll < 6k· 
vEDk+l (xk+l) 

min Ilvll < Ok· 
VEDo(xk+I,Ak) 

Replacing k + 1 by k, we get 

min Ilvll < bk-l· 
VEDo(xk ,Ak-I) 

(3.2.6) 

Since {J(xk)} is a decreasing sequence, xk E M(xO) for all k > o. Then the sequence 

{xk} is bounded and therefore it has at least one accumulation point. Assume x* is 
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any accumulation point of the sequence {xk} and xki --+ :1;* as ·i --+ +00. Then we 

have from (3.2.6) 

(3.2.7) 

According to Assumption 3.2.1 at the point x* for any c > 0 there exist f3 > 0 and 

AD > 0 such that 

(3.2.8) 

for all y E Sf3(x*) and A E (0, AD). Since the sequence {Xki } converges to x* for f3 > 0, 

there exists io > 0 such that xki E S{3(x*) for all i ;::::: io. On the other hand since 

bk, Ak --+ 0 as k --+ +00 there exists ko > 0 such that bk < E and Ak < AD for all k > ko. 

Then there exists i l ;::::: io such that ki ;::::: ko + 1 for all i ;::::: i l . Thus it follows from 

(3.2.7) and (3.2.8) that 

min _ Ilvll ~ 2E 
vE8f(x·+S.) 

Since E > 0 is arbitrary and the mapping 8f(x) is upper semicontinuous 0 E 8f(x*). 

o 

Remark 3.2.3 Since Algorithm 3.1.1 can compute descent directions for any values 

of A > 0, we take AD E (0,1), some f3 E (0,1) and update Ak, k ;::::: 1 as follows: 

Ak = f3k AD, k;::::: 1. 

Remark 3.2.4 It follows from (3.2.2) and C2 ~ CI that always as ;::::: Ak; therefore, 

Ak > 0 is a lower bound for as. This leads to the following rule for the computation 

of as. We define a sequence: 

and as is defined as the largest ()m satisfying the inequality in Step 5. 

3.3 Numerical Experiments 

We compare the proposed algorithm with the subgradient method [130J. This method 

is as follows: 

(3 .3.1) 

where vk E 8 f(x k ) is any subgradient, and O'.k > 0 is a step-length. 
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Convergence of the subgradient method was proved only for convex functions [130]. 

However, we apply this algorithm to nonconvex problems. Two different versions of 

the subgradient method is considered here: 

1. SUB1: in this version the step-length Ok is to some extent constant. We take 

Ok = 0.005 for the first 1000 iterations, Ok = 0.001 for the next 4000 iterations 

and Ok = 0.0001 for all other iterations. Based on numerical experience, such a 

choice of Ok leads to better results. 

2. SUB2: in this version the step-length Ok is a decreasing sequence. We take 

Ok = 11k, however after each 25000 iterations we update it. Let Pk is the largest 

integer smaller than or equal to k/25000. Then, 

1 
Ok = . 

k - 25000Pk 

Without updating of Ok the convergence of the subgradient method is extremely 

poor for nonconvex functions. 

Since there is no stopping criterion in the subgradient method, we use the following 

two stopping criteria strategies. The number of function evaluations is restricted by 

106
, and also, the algorithm stops if it cannot decrease the value of objective function 

in 1000 successive iterations. We compute subgradients vk in (3.3.1) using the scheme 

from Section 1.2. 

Numerical experiments were conducted on a Pentium 4 PC with CPU 1.83 GHz 

and 1GB of RAM. We used 20 random starting points for each problem, and the 

starting points are the same for all three algorithms. 

Results of numerical experiments are presented in Tables 3.1 and 3.2. In these 

tables ASM stands for the approximate subgradient method. In Table 3.1, we report 

the average objective function value over 20 runs of the algorithms as well as the 

numbers nb and ns (refer to A for definitions) for each problem. Table 3.2 presents 

the average number of the objective function evaluations and the average CPU time 

over 20 runs. 

Results presented in Table 3.1 show that ASM outperforms other two algorithms 

in all problems except problems P5 and P7 where SUB2 algorithm produces better 

results. The latter with the application of updates of the step-lengths gives better 
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Table 3.1: Results of numerical experiments: obtained solutions 

Prob. I ASM SUB1 SUB2 
Jav nb ns Jav nb ns Jav nb ns 

PI 1.95222 20 20 1.95236 18 18 1.95223 20 20 
P2 -43.99997 20 20 -43.94407 12 12 -43.99973 20 20 
P3 3.70348 20 20 1106.25628 0 0 3.72973 8 8 

P4 0.00492 18 19 2.72430 0 1 3.48299 6 6 
P5 0.26208 4 4 17.49696 14 17 0.08947 10 11 
P6 3.59972 20 20 3.60367 19 19 3.59974 20 20 
P7 12.17732 11 12 -11.53027 5 5 -29.89826 7 12 
P8 0.03891 3 13 0.04810 0 3 0.04761 0 8 
P9 0.04273 0 17 1.59493 0 1 0.09259 0 3 
PlO 115.70646 20 20 231.41148 0 0 197.90843 0 0 
P11 0.00318 0 20 0.79443 0 0 0.21997 0 0 
P12 0.06862 0 12 0.10392 0 3 0.06876 0 8 
P13 0.10373 2 19 4.85194 0 0 1.75332 0 1 
P14 0.33172 2 17 12.30531 0 1 5.94889 0 2 
P15 0.04008 17 20 0.59012 0 0 0.50676 0 0 
P16 0.14117 0 20 0.52659 0 0 0.47843 0 0 
P17 680.63056 20 20 1283.63922 0 0 738.18848 0 0 
P18 24.30702 20 20 1083.73783 0 0 242.21861 0 0 
P19 93.93033 8 20 6353.92360 0 0 3597.49593 0 0 
P20 0.38112 0 20 749.33916 0 0 172.41626 0 0 
P21 0.34827 0 14 1.52721 0 4 0.95114 0 6 

P22 2.00000 20 20 2.00009 18 18 2.00000 20 20 
P23 0.40000 12 19 2.12330 0 1 2.13230 0 1 
P24 0.90000 11 19 54.55650 0 0 44.29527 0 1 
P25 0.00000 20 20 7.09383 0 0 1.11665 4 4 
P26 0.31303 0 20 62.26375 0 0 37.87321 0 0 
P27 26.19072 0 20 42.35418 0 0 40.92745 0 0 

results than SUBI algorithm. Overall, ASM produced best known solutions in 49.6 % 

of cases (100 % for nonsmooth convex, 40.3 % for nonconvex regular and 52.5 % for 

nonconvex, nonregular functions). It gives in 81.9 % of cases (100 % for nonsmooth 

convex, 73.3 % for nonconvex regular and 98.3 % for nonconvex, nonregular functions) 

best solutions among all three algorithms. 

SUB1 algorithm produced best known solutions in 15.9 % of cases (50 % for 

nonsmooth convex, 10.6 % for nonconvex regular and 15 % for nonconvex, nonregular 

functions). It gives in 19.1 % of cases (50 % for nonsmooth convex, 15 % for nonconvex 

regular and 15.8 % for nonconvex, nonregular functions) best solutions among all three 
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algorithms. 

SUB2 algorithm produced best known solutions in 21.3 % of cases (SO % for 

nonsmooth convex, 11.9 % for nonconvex regular and 20 % for nonconvex, nonregular 

functions). It gives in 2S.0 % of cases (SO % for nonsmooth convex, 21.4 % for 

nonconvex regular and 21.7 % for nonconvex, nonregular functions) best solutions 

among all three algorithms. 

Comparing these results, one can see that the approximate subgradient algorithm 

is more efficient than two other sub gradient algorithms. Our results show that both 

versions of the subgradient method are inefficient for solving nonsmooth optimization 

problems with moderately large number of variables (more than 10 variables). 

One can see from results presented in Table 3.2 that ASM requires a significantly 

less number of the objective function evaluations. However, this is not the case for 

average CPU time. In Problems P2, P4, P7, P17, PIS, P19, P24, P25 it requires more 

CPU time than other two algorithms. This means that in this problems ASM spends 

the most of CPU time on solving the subproblem to find descent directions. In the 

same time in the most of these problems it produces significantly better results than 

other algorithms. 

3.4 Conclusions 

In this chapter, we have presented an approximate subgradient algorithm for solv­

ing unconstrained nonsmooth convex and nonconvex optimization problems. The 

problem of computation of descent directions ,in this algorithm, is reduced to the 

minimization of a convex piecewise linear function. The latter problem is solved us­

ing the subgradient method. Unlike the subgradient method, the proposed algorithm 

may use more than one approximate subgradient at each iteration. This makes it 

similar to bundle-type algorithms. But on the same time, it does not use polyhedral 

underestimators of the objective function which makes it different from them. More­

over, in this method the subgradient method is applied to find descent directions. 

This makes the proposed method easier to implement. However, it is hard to say that 

this algorithm is as efficient for nonconvex problems as bundle-type algorithms for 

convex problems. To make the proposed algorithm more efficient, better algorithms 
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Table 3.2: Results of numerical experiments: the number of function evaluations 

Prob. I No. of function eva!. I CPU time I 
ASM SUB1 SUB2 ASM SUB1 SUB2 

PI 365 180761 69601 0.03 0.03 0.01 
P2 1600 954382 369713 0.17 0.12 0.04 
P3 5419 1000000 878419 1.38 16.59 14.55 

P4 4165 241993 31460 0.38 0.03 0.01 
P5 780 606317 577381 0.04 0.11 0.11 
P6 643 756612 283865 0.08 0.09 0.03 
P7 2875 819993 643470 0.24 0.11 0.07 
P8 692 992131 582893 0.05 2.94 1.72 
P9 1691 905838 880996 0.13 0.29 0.27 
PlO 1736 1000000 1000000 0.23 3.14 3.11 
P11 3815 957729 934791 0.36 0.82 0.80 
P12 2324 751279 638933 0.22 2.78 2.36 
P13 2788 996645 930583 0.42 2.13 1.95 
P14 3231 1000000 870773 0.46 4.51 3.91 
P15 5662 977514 946413 0.89 11.15 10.69 
P16 11197 889630 725645 1.93 12.78 10.41 
P17 2930 1000000 1000000 0.56 0.20 0.15 
P18 11454 1000000 1000000 2.47 0.29 0.21 
P19 34949 1000000 1000000 18.63 0.70 0.34 
P20 50617 1000000 1000000 28.16 61.23 55.77 
P21 6053 620464 558975 1.38 15.33 13.59 

P22 339 82720 41532 0.03 0.02 0.01 
P23 378 955895 527285 0.04 0.07 0.04 
P24 1487 967631 885073 0.22 0.07 0.06 
P25 7989 1000000 960136 1.71 0.17 0.15 
P26 11934 1000000 1000000 2.56 3.75 3.96 
P27 6671 54272 33675 1.77 1.26 1.59 

for solving subproblems should be developed. This, as well as the comparison of the 

proposed algorithm with the bundle method, will be a topic for the future research. 

56 



Chapter 4 

Secant Method 

In this chapter, we propose a secant algorithm for solving the problem 

{

minimize f (x) 

subject to x E IRn. 
(4.0.1) 

We introduce the notion of an r-secant for locally Lipschitz functions and design a 

minimization algorithm based on it. The secant is an approximation to a subgradient. 

We use the bundling idea to collect some information from previous iterations which 

makes this algorithm similar to the bundle method. However, we don't approximate 

the objective function which makes this method different. 

After this short introduction, the notion of an r-secant is introduced and studied in 

Section 4.1. Necessary conditions for a minimum using r-secants are given in Section 

4.2. In Section 4.3 we describe an algorithm for the computation of a descent direction. 

A secant method is introduced and its convergence is studied in Section 4.4. Results 

of numerical experiments are given in Section 4.5. Section 4.8 concludes the chapter. 

4.1 An r-Secant 

In this section we introduce the notion of an r-secant for locally Lipschitz functions. 

Let 81 = {g E IRn : Ilgll = I} be the unit sphere in IRn. For any 9 E 81 we define 

gmax = max {Igil, i = 1, ... , n}. 

It is clear that Igmaxi ~ n-1/ 2 for any 9 E 81 , 
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Secant Method 4.1. An r-Secant 

Definition 4.1.1 Let 9 E 51 and gj = gmax for some j E {1, ... ,n}. For l' > 0 and 

9 E 51 we take any subgradient v E of (x + rg). A vector s = s(x, g, 1') E lRn where 

and 

rgj 

f(x + rg) - f(x) - l' ~~=1,i#j Sigi 
Sj = 

is called an r-secant of the function f at a point x in the direction g. 

Remark 4.1.1 If gj = gmax for more than one j E {1, ... , n} then r-secants are 

defined for all of them. 

Remark 4.1.2 One can see that the r-secant is defined with respect to a given di­

rection and it is not unique if the sub differential of (x + rg) is not the singleton set. 

Remark 4.1.3 If n = 1 then an r-secant of the function f at a point x E lR1 is 

defined as follows: 
f(x + rg) - f(x) 

s = ---'---"---'--'-
rg 

where 9 = 1 or 9 = -1. 

Proposition 4.1.1 Let x E lRn and 9 E 51' Then for a given r > 0 

f(x + rg) - f(x) = r(s(x, g, r), g) (4.1.1) 

where s(x, g, r) is an r-secant of the function f at a point x in the direction g. 

Proof: Proof follows immediately from Definition 4.1.1, more exactly from the defi-

nition of the j-th coordinate Sj of the r-secant s(x, 1', g). o 

Remark 4.1.4 The equation (4.1.1) can be considered as a version of the mean value 

theorem for r-secants. 

For any bounded subset X c lRn there exists M > 0 such that (see [64] for more 

information) 

sup{llvll : v E of (x) , x E X} ::; M. (4.1.2) 

We define the following set 

5r f(x) = {s E lRn 
: ::3g E 51: s = s(x, g, r)} 

which is the set of all possible r-secants of the function f at the point x. 
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Secant Metbod 4.1. An r-Secant 

Remark 4.1.5 In general, the set Srf(.1;) is not a singleton set even for continuously 

differentiable functions. 

Proposition 4.1.2 Let f be locally Lipschitz function defined on IRn. Then for any 

bounded subset X c IRn there exists Mo > 0 such that 

sup{llvll : v E Srf(x), x E X} :s; Mo. (4.1.3) 

Proof: Take any x E X and s E SrJ(x). It follows from the definition of the set 

Srf(x) that there exists 9 E Sl such that s = s(x, g, r) where s(x, g, r) is an r-secant 

in the direction g. Since Si(x,g,r) = Vi, i E {l, . . . ,n}, i =1= k,gk = gmax for some 

V E 8f(x + rg) it follows from (4.1.2) that 

n 

L s~:S; M2. 
i=l,i# 

Since the function f is locally Lipschitz there exists L > 0 such that 

If(x + rg) - f(x)1 :s; Lrllgll· 

Then we have 

Denote 

Then we have 

Ilsll :s; Mo \::Is E Srf(.x). 

D 

Proposition 4.1.3 The set Srf(x) is closed. 

Proof: Take any sequence {Sk}, sk E Srf(x). For each Sk E Srf(x) there exists 

gk E Sl such that sk = sk(x,gk,r). Without loss of generality we assume gk -t 9 as 

k -t +00. Since Sl is a compact set 9 E Sl. It is clear that gk,max -t gmax. Let 

J(g) = {j E {I, ... , n} : gj = gmax} 
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Secant Method 4.1. An r-Secant 

and 

J( k) - { . {I } . - k,max} 9 - J E , ... , n . gj - 9 . 

Then there exists ko > 0 such that J(gk) ~ J(g) for all k ~ ko. We take any jo E J(g) 

such that jo E J(gk) for sufficiently large k. Since gk ~ 9 the upper semicontinuity 

of the set-valued mapping x 1---+ 8f(x) that if v = limk-t+oovk then v E 8f(x + rg). 

We define an r-secant using the subgradient v E 8f(x + rg) and the fixed jo E J(g). 

Then the continuity of the function f implies that Sjo(x,gk,r) ~ Sjo(x,g,r). Since 

vk ~ v and Si(x,gk,r) = vf, Si(x,g,r) = Vi, i = 1, ... ,n, i i= jo we get that 

S(x, gk, r) ~ s(.7:, g, r) as k ~ +00. o 

Corollary 4.1.1 The set Sr f (x), r > 0 is compact. 

Proof: The proof follows immediately from Propositions 4.1.2 and 4.1.3. 0 

Proposition 4.1.4 The set-valued mapping (x, r) 1---+ Srf(x), r > 0 is closed. 

Proof: Take any xk E lRn
, rk > 0, vk E SrJ(xk) such that xk ~ x, rk ~ r > 0 and 

vk ~ v as k ~ +00. Then we have to show that v E Srf(x). If vk E Srkf(xk) then 

there exists gk E Sl and w k E 8f(xk + rkgk) such that 

k k· 1 . ...j... J( k) Vi = Wi' '/, = , ... , n, '/, r J, J E g. 

without loss of generality we assume that gk ~ 9 E Sl and wk ~ w as k ~ +00. 

Since the set-valued mapping x 1---+ 8f(x) is closed wE 8f(x+rg). There exists ko > 0 

such that J(gk) ~ J(g) for all k ~ ko. If we define an r-secant s(x, g, r) using any 

j E J(l), k ~ ko, the subgradient w E 8f(x + rg) then s(x, g, r) = limk-t+oo vk that 

is v E Srf(x). 0 

Proposition 4.1.5 The set-valued mapping (x, r) 1---+ Srf(x), r > 0 is upper semi-

continuous. 

Proof: The upper semi-continuity of the mapping (x, r) 1---+ Srf(x) follows from the 

fact that it is closed and its values are compact sets. o 

We introduce the following two sets: 

Sof(x) = {v E lRn
: :3(g E Sl, rk ~ +0, k ~ +00): v = lim s(x,g,rk)}, 

k-t+oo 
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Secant Method 4.1. An r-Secant 

80,g.f(x) = {v E IRn
: 3(rk -t +0, k -t +(0): v = k~~oo S(.T,g,rk)}' 

It is clear that 

80 f(x) = U 80,gf(x) 
gESl 

Proposition 4.1.6 Let f be directionally differentiable at x E IRn. Then 

f'(x, g) = (v, g), \:Iv E 80,gf(x). 

(4.1.4) 

Proof: The proof follows from Proposition 4.1 .1 and the definition of the set 80,gf (x). 

o 

Corollary 4.1.2 Let f be directionally differentiable at .T E IRn. Then 

f'(x, g) ~ max{(v,g), v E 50 f(x)}. 

The proof follows from Proposition 4.1.1 and the definition of the set 50 f(x). 0 

Proposition 4.1. 7 Let f be semismooth at x E IRn. Then 

50,gf(x) c 8f(x). 

Proof: For a given 9 E 51 at a point x consider the following set 

Q(x, g) = {v E IRn : 3(rk -t +0, k -t +00, vk E 8f(x + rkg)): v = lim Vk}. 
k->+oo 

Since the function f is semismooth 

f'(x, g) = (v, g) \:I v E Q(x, g). 

It follows from the definition of the set 50 ,gf(x) that for any S E 50 ,gf(x) there exists 

v E Q(x, g) such that Si = Vi, i = 1, ... , n, i i= j, j E J(g). On the other hand it 

follows from Proposition 4.1.6 

f'(x , g) = (s , g) = (v , g). 

Then we get Sj = Vj that is S = v and S E Q(x, g) c 8f(x). Since S E 50,gf(x) is 

arbitrary we get the proof. 0 
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Secant Method 4.1. An r-Secant 

Corollary 4.1.3 Let f be semismooth at x; E JRTI . Then 

Sof(x) C 8f(x). 

Proof: The proof follows immediately from (4.1.4) and Proposition 4.1.7. 0 

At a point x E JRTI consider the following two sets: 

S~f(x) = co Srf(x), r > 0, 

Sgf(x) = co Sof(x). 

From Corollary 4.1.3 we get the following 

Corollary 4.1.4 Assume that the function f is semismooth at a point x E JRn
. Then 

sgf(x) ~ 8f(x). 

Proposition 4.1.8 Assume that the function f is regular and semismooth at a point 

x E JRn
. Then 

8f(x) = Sgf(x). 

Proof: It follows from Corollary 4.1.4 and semismoothness of the function f that 

sgf(x) ~ 8f(x). 

Therefore we have to show that 

8f(x) ~ Sgf(x). 

Since the function f is regular it is directionally differentiable and 

1'(.'[;, g) = max{(v,g) : v E 8f(.'[;)}. 

Then it follows from Corollary 4.1.3 that for any 9 E S1 

!,(x, g) < max{ (v, g) : v E Sgf(x)} 

< max{ (v, g) : v E 8f(x)} 

!,(x, g). 
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Secant Method 4.2. Necessary Conditions and Descent Directions 

Therefore for any g E Sl 

max { (v, g): v E S8 f (x)} = max { (v, g): v E [] f (x)}. 

Since both sets S8f(x) and []f(x) are convex and compact we have that 

[]f(x) = S8f(x). 

D 

4.2 Necessary Conditions and Descent Directions 

In this section, we introduce r-stationary points; formulate necessary conditions for a 

minimum; and compute descent directions using the set S8f(x). 

Proposition 4.2.1 Assume that f(x + rg) ~ f(x) for any 9 E Sl. Then 

o E S~f(x). (4.2.1) 

Proof: It follows from (4.1.1) that for any 9 E S1 

f(x + rg) - f(x) = (s(x, g, r), g) ~ o. 

Since Srf(x) c S~f(x) then we have 

max{ (v, g): v E S~f(x)} ~ 0 (4.2.2) 

for all 9 E Sl' For any 9 E IRn, 9 =1= 0 there exist gO E Sl and A > 0 such that 

9 = AgO, therefore the inequality (4.2.2) is true for any 9 E IRn. Furthermore, the set 

S~f(x) is convex and compact and consequently we get the inclusion (4.2.1). D 

Corollary 4.2.1 Let x E IRn be a local minimizer of the function f. Then there 

exists ro > 0 such that 0 E S~f(x) for all r E (0, ro]. 

Proof: If x E IRn is a local minimizer then there exists ro > 0 such that f(x + rg) ~ 

f(x) for any 9 E S1 and r E (0, ro]. Then the proof follows from Proposition 4.2.1. D 
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Secant Method 4.2. Necessary Conditions and Descent Directions 

Proposition 4.2.2 Let x E lRn be a local minimizer of the function J and it is 

directionally differentiable at x. Then 

o E Sgf(x). (4.2.3) 

Proof: Since x is a local minimizer f'(x, g) ~ 0 for all g E lR,n.Then it follows from 

Corollary 4.1.2 that 

max{ (v, g): v E Sgf(x)} ~ 0, Vg E lR,n. 

The set S8f(x) is compact and convex and therefore 0 E S8f(x). D 

Definition 4.2.1 A point x E lR,n is said to be an r-stationary point for a function 

f on lR,n if 0 E S;f(x). 

Definition 4.2.2 A point x E lR,n is said to be an (r, o)-stationary point for a function 

f on lR,n if 0 E S;f(x) + Bo where 

Bo = {v E lRn
: IIvll:::; o}. 

Assume that a point x E lR,n is not an r-stationary point of a function f on lR,n. This 

means that 

o ~ S~f(x). 

In this case one can compute a descent direction using the set S; f (x), which follows 

from the following proposition. 

Proposition 4.2.3 Let x E lR,n and for a given r > 0 

min{llvll : v E S~f(x)} = Ilvoll > O. 
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Secant Method 4.3. Computation of a Descent Direction 

Proof: Since S;j(x) is compact and convex set we have 

max {(v,l) : v E S~j(x)} = -Ilvoli. 

Then it follows from (4.1.1) that 

j(x + rl) - j(x) (s(x, l, r) , l) 

< r max {(v, l) : v E S~j(x)} 

-rllvoll· 

4.3 Computation of a Descent Direction 

D 

Proposition 4.2.3 implies that for the computation of the descent direction we have 

to solve the following problem: 

{

minimize 

subject to 

Ilv 112 

v E S;j(x) . 
(4.3.1) 

Problem (4.3.1) is difficult to solve due to difficulties to compute the set S;f(x) . In 

this section we propose an algorithm which uses only a few elements of S;j(x). 

Let the numbers r > 0, c E (0,1) and a small enough number r5 > ° be given. 

Algorithm 4.3.1 An algorithm for the computation of the descent direction. 

Step 1. Choose any gl E Sl and compute an r-secant Sl = s(x, gl , r) in the direction 

gl. Set W1(x) = {Sl} and k = 1. 

Step 2. Compute the vector wk which IIwk l1 2 = min{llwl1 2 : wEco W k(X)}. If 

(4.3.2) 

then stop. Otherwise go to Step 3. 

Step 3. Compute the search direction by gk+1 = -llwk ll-1wk . 

Step 4. If 

(4.3.3) 
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Secant Method 4.3. Computation of a Descent Direction 

then stop. Otherwise go to Step 5. 

Step 5. Calculate an r-secant Sk+l = s(x, gk+l, r) with respect to the direction gk+I, 

construct the set W k+l(X) = co {Wk(X) U{ sk+l}}, set k = k + 1 and go to Step 2. 

Remark 4.3.1 In Step 1 we compute the first secant. In Step 2 the least distance 

between the convex hull of all computed secants and the origin is computed. It is a 

quadratic programming problem and effective algorithms exist for its solution (see, 

for example, [3, 136]). If the distance is less than a given tolerance 0 > 0 then the 

point x is (r, o)-stationary point, otherwise we compute a new search direction in Step 

3. If it is descent the algorithms and the descent has been found (Step 4). If it is 

not descent direction then in Step 5 we compute a new r-secant in this direction. It 

improves the approximation of the set S~f(x). 

In the next proposition we prove that Algorithm 4.3.1 is a terminating. 

Proposition 4.3.1 Let f be a locally Lipschitz junction, 

max{llvll : v E S~f(x)} :::; M < +00 

and c E (0,1),0 E (0, M). Then Algorithm 4.3.1 terminates after m steps, where 

Proof: First, we will show that if both stopping criteria 4.3.2 and 4.3.3 are not 

satisfied, then a new r-secant sk+l (j. W k(X) exists, that is in this case the algorithm 

allows one to improve the approximation of the set S~f(x). Indeed, in this case 

Ilwkll > 0 and 

On the other hand it follows from (4.1.1) that 

Then from the definition of the direction gk+l we get 

(4.3.4) 
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Secant Method 4.3. Computation of a Descent Direction 

Since 'Wk = argmin{II'W112 : 'W E Wk(x)}, the necessary condition for a minimum 

implies that for any 'W E W k (x) 

or 

The latter along with (4.3.4) means that Sk+l tI. Wk(x). 

Now we will show that the algorithm is terminating. It is sufficient to get an upper 

estimation for the number m when 

It is clear that 1I'Wk+11l2 ::; IItVk+l + (1 - t)'Wk 112 for all t E [0,1] or 

1I'Wk+11l2::; lI'Wkll 2 + 2t('Wk, vk+l _ 'Wk) + ellvk+1 _ wkll 2. 

It follows from Proposition 4.1.2 that there exists M > 0 such that 

Hence taking into account the inequality (4.3.4), we have 

IIWk+1 1l 2 ::; IIwk 112 - 2t(1 - c) IIwk 112 + 4t2 M2. 

If t = (1 - c)(2M)-2I1wkI1 2 E (0,1) we get 

IIWk+1 11 2
::; {1- [(1- c)(2M)-1IlwkIW} IIwkll2. 

(4.3.5) 

(4.3.6) 

Take any 6 E (0, M). It follows from (4.3.6) and the condition Ilwkll > 6, k = 

1, ... , 'Tn - 1 that 

Let Ml = 1 - [(1 - c)(2M)-16j2. It is clear that Ml E (0,1). Consequently, 

If Mf'-l M2 ::; 62, then the inequality (4.3.5) is satisfied and 

o 

67 



Secant Method 4.4. The MetllOd and its Convergence 

4.4 The Method and its Convergence 

In this section we describe the secant method for solving problem (4.0.1). Let 7' > 

0, 8 > 0, Cl E (0,1), C2 E (0, cll be given numbers. 

Algorithm 4.4.1 The secant method for a (7', 8)-stationary point 

Step 1. Choose any starting point XO E ffin and set k = 0. 

Step 2. Apply Algorithm 4.3.1 for the computation of the descent direction at x = xk 

for given 8 > 0, C = Cl. This algorithm terminates after a finite number of iterations 

m > 0. As a result we get the set W m(xk
) and an element v k such that 

Furthermore either Ilvkll ::; 8 or for the search direction gk = -llvkll-lVk 

(4.4.1) 

Step 3. If 

(4.4.2) 

then stop. Otherwise go to Step 4. 

Step 4. Construct the following iteration Xk+l = Xk + O'kgk, where O'k is defined as 

follows 

O'k = argmax {O' ~ 0: f(xk + O'l) - f(x k) ::; -c20'11vk II} . 

Set k = k + 1 and go to Step 2. 

Remark 4.4.1 There are some similarities between the secant method on one side 

and the bundle method and the gradient sampling method on the other side. The se­

cant method uses a bundle of 7'-secants which makes it similar to the bundle method. 

On the other hand, the secant method does not use any rule similar to the subgar­

dient discounting rule which makes the secant method similar the gradient sampling 

method. However, the secant method uses 7'-secants instead of subgradients. 

For the point XO E ffin we consider the set £(XO) = {x E ffin : f(x) ::; f(xO)}. 
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Theorem 4.4.1 Assume that J is a locally Lipschitz function and the set £(XO) is 

bounded for starting points XO E ]Rn. Then after a finite number of iterations K > 0 

Algorithm 4.4.1 produces (r, o)-stationary point xK . 

Proof: Since the function f is locally Lipschitz and the set £(xO) is bounded 

f* = inf {f(x) : x E ]Rn} > -00. ( 4.4.3) 

Assume the contrary. Then the sequence {xk} is infinite and points xk are not (r,O)­

stationary points. The latter means that 

Therefore Algorithm 4.3.1 will find descent directions and the inequality (4.4.1) will 

be satisfied at each iteration k. Since C2 E (0, cIl it follows from (4.4.1) that CJk 2:: r. 

Then we have 

f(Xk+I) - f(x k
) < -C2CJkll vk ll 

< -c2r ll vk ll· 

Since IIv k II 2:: 0 for all k we get 

Consequently 

f(X k+I):::; f(.7:°) - (k+ 1)c2ro. 

We get that f(x k ) ---? -00 as k ---? +00 which contradicts (4.4.3), that Algorithm 4.4.1 

stops after a finite number of iterations. D 

Remark 4.4.2 Since C2 :::; CI always CJk 2:: r and therefore r > 0 is a lower bound for 

CJk. This leads to the following rule for the computation of CJk. We define a sequence: 

01 = lr, l 2:: 1 

and CJk is defined as the largest 01 satisfying the inequality in Step 4. 

Algorithm 4.4.1 can be modified to compute Clarke stationary points of the func­

tion f that is points x where 0 E 8f(x). We take sequences {rk}, {od such that 
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Tk ~ +0 and 15k ~ +0 as k ~ +00. Applying Algorithm 4.4.1 for each {-rd, Ud we 

get a sequence of (Tk, c5)-stationary points {xk}. Convergence of the sequence {xk} 

to the Clarke stationary points can be proved under more restrictive assumptions. 

We assume that the function f satisfies the Assumption 1.2.1 of Section 1.2. 

Let {Td, {15k} be sequences such that Tk ~ +0 and 15k ~ +0 as k ~ +00. 

Algorithm 4.4.2 The secant method. 

Step 1. Choose any starting point xO E IRn and set k = O. 

Step 2. Apply Algorithm 4.4.1 starting from the point xk for T = Tk and 15 = c5k. 

This algorithm terminates after a finite number of iterations p > 0 and as a result the 

algorithm finds (Tk, I5k )-stationary point Xk+l. 

Step 3. Set k = k + 1 and go to Step 2. 

Theorem 4.4.2 Assume that the function f is locally Lipschitz which satisfies As­

sumption 1.2.1 at any x E IRn and the set £(XO) is bounded for starting points 

XO E IRn. Then every accumulation point of the sequence {xk} belongs to the set 

XO = {x E IRn : 0 E 8f(x)}. 

Proof: All conditions of Theorem 4.4.1 are satisfied and therefore Algorithm 4.4.1 for 

all k ~ 0 generates an (rk, c5k )-stationary point after the finite number of iterations. 

Since for any k > 0 the point Xk+l is (rk, 8k )-stationary it follows from the definition 

of the (Tk, I5k )-stationarity that 

(4.4.4) 

Since xk E £(XO) for all k ~ 0 and the set £(xO) is bounded, it follows that the 

sequence {Xk} has at least one accumulation point. Let x* be an accumulation point 

and :r,ki ~ x* as 'i ~ +00. then it follows from (4.4.4) that 

(4.4.5) 

Assumption 1.2.1 implies that at the point x* for any c > 0 there exist TO > 0 and 

TJ > 0 such that 

( 4.4.6) 
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for all y E Blr,*) and r' E (0, TO)' Since the sequence {xk
;} converges to x· for", > 0 

there exists io > 0 such that xki E B7)(x*) for all i ~ io. On the other hand since 

15k , Tk ~ +0 as k ~ +00 there exists ko > 0 such that Dk < c and Tk < TO for all 

k > ko. Then there exists i l ~ io such that ki ~ ko + 1 for all i ~ i l . Thus it follows 

from (4.4.5) and (4.4.6) that 

min{llvll : v E 8f(x· + BE)} ~ 2c. 

Since c > 0 is arbitrary and the mapping x ~ 8f(x) is upper semicontinuous 0 E 

8f(x*). 0 

4.5 Results of Numerical Experiments 

In our experiments we use two bundle algorithms for comparisons: PMIN - a recur­

sive quadratic programming variable metric algorithm for minimax optimization and 

PBUN - a proximal bundle algorithm. The description of these algorithms can be 

found in [111J. PMIN is applied to minimize maximum functions and PBUN is ap­

plied to the rest of problems. In PMIN exact subgradients are used however in PBUN 

we approximate them using the scheme from Section 1.2. 

In Algorithm, 4.4.2 CI E (0.2,0.5), C2 = 0.001 and subgradients are approximated 

using the scheme from Section 1.2. 

The results of numerical experiments are presented in Table 4.1. We also use 

present fav the average objective value over 20 runs of algorithms. 

Results presented in Table 4.1 show that both the secant method and the bundle 

method (PMIN) are effective methods for the minimization of nonsmooth convex 

functions. However, the bundle method is faster and more accurate than the secant 

method. Results for nonconvex nonsmooth, regular functions show that overall the 

bundle method (PMIN) produces better results than the secant method on this class 

of nonsmooth optimization problems. Indeed, the bundle method in 69.71 % of cases 

finds the best known solutions whereas for the secant method it is only 49.71 %. 

The bundle method, in 79.80 % of cases, produces the best solutions among two 

algorithms, but for the secant method is 68.82 %. On the same time we should note 

that the secant method performs much better than the bundle on some nonsmooth, 

nonconvex, regular problems (Problems P7, P14, PIS). 
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Overall the secant method performs better than the bundle method (PBUN) on 

nonconvex, nonsmooth nonregular functions. The secant method in 55.83 % of cases 

finds the best known solutions whereas the bundle method finds only in 44.58 % 

of all cases. The secant method produces best solutions among two algorithms in 

94.58 % of all cases, but the bundle method only in 64.17 % of all cases. However 

for some nonconvex, nonsmooth nonregular functions the results by both algorithms 

are comparable (P22, P23, P31, P32). It should be noted the objective functions 

in Problems P22-P33 are quasidiferentiable semismooth and their sub differential and 

superdifferential are polytopes. 

Table 4.2 presents the average number of objective function (nf) and subgradient 

(nsub) evaluations as well as the average CPU time (t) for both algorithms on each of 

test problems. 

4.6 Secant Algorithm for Global Optimization 

One can see from Algorithm 4.4.2 that, in order to apply it, we take an initial value 

To > 0 of T and gradually reduce it. If TO > 0 is large then Algorithm 4.3.1 will 

compute long descent directions which are global descent directions. In this case, the 

algorithm will overcome some local minimizers. However, the minimization algorithm 

can only converge to Clarke stationary points. Results of numerical experiments 

presented in the next section show that this algorithm does not always converge to 

global minimizers. This means that one needs an algorithm to escape from local 

minimizers found by Algorithm 4.4.2. We can use Algorithm 4.3.1 with large values 

of T to find global descent directions from local minimizers found by Algorithm 4.4.2. 

In this case, we can take some initial value To of T which is not too large. Then we 

can gradually increase T until we find a new global descent direction. We compute a 

new starting point for Algorithm 4.4.2 along this direction. 
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Algorithm 4.6.1 A secant method for global optimization. 

Step O. Choose any starting point XO E IRn and set k = O. 

4.7. Numerical Results 

Step 1. Apply Algorithm 4.4.2 starting from xk to find stationary point y. Set 

xk+l = y and set k = k + 1. 

Step 2. Apply Algorithm 4.3.1 at the point xk to find a global search direction. If 

such a descent is not found, then stop. Otherwise this algorithm find a direction gk. 

Step 3. Compute xk = Xk + gk and go to Step 1. 

It should be noted that this algorithm is still local search algorithm. However, it 

has very good global search properties. One should not expect that it will always con­

verge to global minimizers. Indeed, we can prove its convergence to Clarke stationary 

points. Nevertheless, results of numerical experiments presented in the next section 

and chapter on cluster analysis demonstrate that this algorithm is fast and efficient 

in solving both smooth and nonsmooth global optimization problems. At the same 

time, we should emphasis that its efficiency can not be compared with many global 

optimization algorithms. 

4. 7 Numerical Results 

The efficiency of the proposed algorithm is verified by applying it to two categories 

of nonsmooth problems. Table 4.3 provides information about first category. In this 

table n stands for the number of variables and f opt is the known optimal value. Table 

4.4 presents the list of second category of test functions. The latter test functions 

are box-constrained nonsmooth global optimization problems which are proposed by 

Gaviano et.al [67]. A short explanation is reported in the Section A.O.1. For these 

test functions, m stands for the predefined number of local minima. 

We run the algorithm starting with 20 uniformly distributed initial points. The 

average of objective function through 20 runs is presented by fav. To show the per­

formance of the algorithm in finding optimal solution, we use the success rates nb and 

ns which are explained in Section A.0.2. 

In Tables 4.3 and 4.4, we report the average objective function value over 20 runs 

of the algorithm as well as success rates. Table 4.3 indicates that the algorithm is 
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quite successful for more than 50% of test functions , and the result is moderate for 

22 % of them. In Table 4.4, we present the numerical results over test functions for 

nonsmooth global optimization problems. The algorithm is successful regardless of 

dimension and number of local minima. Only for the test function n = 10, m = 50 

the algorithm gets stuck in a close local optimal solution. 

The tables 4.5 and 4.6 present the number of objective function evaluations and 

CPU time. 

4.8 Conclusions 

In this chapter, we developed the secant method for minimizing nonsmooth nonconvex 

functions. We introduced the notion of an r-secant and studied its some properties. 

The convex hull of all limit points of r-secant is subset of the Clarke sub differential of 

semismooth functions . An effective algorithm to approximate subgradients of semis­

mooth quasidifferentiable functions is presented. An algorithm based on r-secants for 

the computation of descent direction is developed and it is proved that this algorithm 

is terminating. 

We presented results of numerical experiments. In these experiments, minimiza­

tion problems with nonsmooth, nonconvex and nonregular objective functions were 

considered. The computational results show that the secant method outperforms the 

bundle method when the objective is nonsmooth, nonconvex and nonregular and it 

is semismooth qusidifferentiable function where both sub differential and superdiffer­

ential are polytopes. However, in most cases the secant method requires significantly 

more objective function, subgradient evaluations as well as CPU time. We applied the 

secant method straightforward. However taking into account the special structure of 

the objective functions such as their piecewise partially separability (see [12]) one can 

significantly reduce the number of the objective function and subgradient evaluations 

and also CPU time. 

Although the secant method is not better than the bundle method for solving 

nonsmooth convex problems as well as many nonconvex, nonsmooth regular prob­

lems, however, it is better than the bundle method for many nonconvex nonsmooth 

nonregular problems such as semismooth quasidifferentiable problems. 
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Also, in this chapter we present the global secant method for nonsmooth global 

optimization prol:;>lems. This method is an extension of secant method which was 

presented earlier in this chapter. The numerical results are presented. 
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Table 4.1: Results of numerical experiments 

Prob. I Secant Bundle 
fav nb ns fav nb ns 

P1 1.95222 20 20 1.95222 20 20 
P2 -44 20 20 -44 20 20 
P3 3.70348 20 20 3.70348 20 20 

P4 0.90750 17 17 0.90750 17 17 
P5 0.57592 4 4 0.00000 20 20 
P6 3.59972 20 20 3.59972 20 20 
P7 -44 20 20 -28.14011 12 12 
P8 0.03565 7 13 0.03051 9 17 
P9 0.02886 0 7 0.01520 2 16 
P10 115.70644 20 20 115.70644 20 20 
P11 0.00291 0 0 0.00264 20 20 
P12 0.01773 0 6 0.02752 14 16 
P13 0.10916 3 9 0.30582 3 15 
P14 0.24037 8 18 0.32527 5 9 
P15 0.03490 20 20 0.30572 12 12 
P16 0.12402 0 11 0.39131 2 9 
P17 680.63006 20 20 680.63006 20 20 
P18 24.30621 20 20 24.30621 20 20 
P19 93.90566 20 20 93.90525 20 20 
P20 0.00302 0 0 0.00000 20 20 
P21 0.21456 0 9 0.22057 1 14 

P22 2.00000 20 20 2.00000 20 20 
P23 0.10000 18 18 0.07607 17 17 
P24 1.50000 7 18 2.30008 2 10 
P25 0.00000 20 20 0.00000 20 20 
P26 0.00000 20 20 0.00000 20 20 
P27 24.72876 0 18 35.19230 0 2 
P28 8.53416 x 106 10 18 10.29861 x 106 5 12 
P29 5.56355 x 106 3 20 7.10874 X 106 0 9 
P30 2.93562 x 106 2 19 3.16944 x 106 0 2 
P31 7.27436 x 105 11 19 7.26213 x 105 12 20 
P32 3.94879 x 105 10 19 3.94922 x 105 5 13 
P33 1.86467 x 105 13 18 1.88295 x 105 6 9 
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Table 4.2: The number of function and subgradient evaluations and CPU time 

Prob. I Secant Bundle 
nj nsub t nj nsub t 

PI 221 160 0.000 10 10 0.001 
P2 1113 601 0.002 12 11 0.001 
P3 974 701 0.143 65 55 0.003 

P4 749 593 0.002 22 9 0.000 
P5 4735 461 0.002 493 251 0.001 
P6 574 309 0.001 20 16 0.000 
P7 1225 579 0.003 146 56 0.001 
P8 1184 342 0.009 1626 171 0.009 
P9 2968 601 0.003 57891 4843 0.186 
PIO 1192 619 0.010 29 15 0.001 
P11 1829 811 0.005 26081 1904 0.122 
P12 4668 1327 0.014 372 173 0.007 
P13 1310 749 0.014 61 26 0.002 
P14 837 686 0.020 51 23 0.002 
PIS 1373 1090 0.085 4985 445 0.108 
P16 3463 1989 0.302 60331 4761 1.099 
P17 1270 860 0.012 58 33 0.000 
P18 2234 1592 0.029 18 15 0.000 
P19 4752 4001 0.362 35 26 0.003 
P20 3399 2733 3.393 160 52 0.030 
P21 1529 849 0.249 66280 4974 2.971 

P22 289 198 0.001 32 32 0.000 
P23 2278 277 0.001 22 22 0.000 
P24 470 450 0.003 37 37 0.000 
P25 1022 983 0.010 25 25 0.001 
P26 2677 920 0.005 68 68 0.001 
P27 725 707 0.039 37 37 0.002 
P28 305 289 0.099 16 16 0.007 
P29 417 401 0.360 21 21 0.022 
P30 766 736 2.734 51 51 0.205 
P31 283 257 0.254 19 19 0.024 
P32 406 370 0.955 28 28 0.085 
P33 703 653 7.003 67 67 0.763 
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Table 4.3: Results of numerical experiments for global secant method 

Prob. Global Secant 
n fopt fav nb ns 

Branin 2 0 0.1492 13 14 
Ackleys 2 0 0.2580 18 19 
Ackleys 10 0 1.9641 18 18 
Ackleys 20 0 10.68431 11 11 
Bohachevsky 2 0 0.0000 20 20 
Bohachevsky 2 0 0.0000 20 20 
Bohachevsky 2 0 0.0000 20 20 
Camel 2 -1.0316 -1.0316 20 20 
Easom 2 -1 -0.1000 2 5 
Gloldestein 2 3 15.1500 17 17 
Griewanks 2 0 0.0216 0 6 
Griewanks 10 0 0.0385 0 5 
Hansen 2 -176.5418 -176.5418 20 20 
Hartman 3 -3.8627 -3.8627 20 20 
Hartman 6 -3.3224 -3.3044 20 20 
Michalewicz 2 -1.8013 -1.5663 12 12 
Rastringins 2 0 0.6965 6 11 
Rastringins 5 0 2.9351 4 8 
Rastringins 10 0 7.7109 1 4 
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Table 4.4: Results of numerical experiments for global secant method 

Prob. Global Secant 
n fopt fau nb ns 

MDDY (m = 10) 2 -1 -1 20 20 
MDDY (m = 50) 2 -1 -1 20 20 
MDDY (m = 200) 2 -1 -1 20 20 
MDDY (m = 500) 2 -1 -1 20 20 
MDDY (m = 10) 5 -1 -1 20 20 
MDDY (m = 50) 5 -1 -1 20 20 
MDDY (m = 200) 5 -1 -1 20 20 
MDDY (m = 500) 5 -1 -1 20 20 
MDDY (m = 10) 10 -1 -1 20 20 
MDDY (m = 50) 10 -1 0.6 12 12 
MDDY (m = 200) 10 -1 -1 20 20 
MDDY (m = 500) 10 -1 -1 20 20 
MDDY (m = 10) 20 -1 -1 20 20 
MDDY (m = 50) 20 -1 -1 20 20 
MDDY (m = 200) 20 -1 -1 20 20 
MDDY (m = 500) 20 -1 -1 20 20 
MDDY (m, = 10) 50 -1 -1 20 20 
MDDY (m = 50) 50 -1 -1 20 20 
MDDY (m = 200) 50 -1 -1 20 20 
MDDY (m = 500) 50 -1 -1 20 20 
MDDY (m = 10) 100 -1 -1 20 20 
MDDY (m = 50) 100 -1 -1 20 20 
MDDY (m = 200) 100 -1 -1 20 20 
MDDY (m = 500) 100 -1 -1 20 20 
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Table 4.5: The number of function evaluations and CPU time for first category 

Prob. I Global Secant I 
nf l 

Branin 2251 0.003 
Ackleys 2446 0.003 
Ackleys 53193 0.119 
Ackleys 225096 1.139 
Bohachevsky 2114 0.006 
Bohachevsky 999 0.003 
Bohachevsky 1004 0.003 
Camel 959 0.002 
Easom 324 0.000 
Gloldestein 1351 0.004 
Griewanks 3632 0.017 
Griewanks 3010 0.018 
Hansen 1545 0.006 
Hartman 2185 0.009 
Hartman 2958 0.021 
Michalewicz 1234 0.002 
Rastringins 1675 0.004 
Rastringins 3625 0.022 
Rastringins 6123 0.055 
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Table 4.6: The number of function evaluations and CPU time for second category 

Prob. I Global Secant I 
nf t 

MDDY (n = 2, m = 10) 4003 0.005 
MDDY (n = 2, m = 50) 2106 0.005 
MDDY (n = 2, m = 200) 2109 0.008 
MDDY (n = 2, m = 500) 2220 0.019 
MDDY (n = 5, m = 10) 9146 0.012 
MDDY (n = 5, m = 50) 5230 0.015 
MDDY (n = 5, m = 200) 5719 0.033 
MDDY (n = 5, m = 500) 4654 0.063 
MDDY (n = 10, m = 10) 19372 0.026 
MDDY (n = 10, m = 50) 16326 0.035 
MDDY (n = 10, m = 200) 17794 0.137 
MDDY (n = 10, m = 500) 21628 0.373 
MDDY (n = 20, m = 10) 19114 0.032 
MDDY (n = 20, m = 50) 62030 0.231 
MDDY (n = 20, m = 200) 13172 0.176 
MDDY (n = 20, m = 500) 22976 0.713 
MDDY (n = 50, m = 10) 74438 0.226 
MDDY (n = 50, m = 50) 241407 1.716 
MDDY (n = 50, Tn = 200) 59927 0.713 
MDDY (n = 50, m = 500) 130438 7.052 
MDDY (n = 100, m = 10) 214240 2.430 
MDDY (n = 100, m = 50) 160649 4.926 
MDDY (n = 100, m = 200) 120837 23.12 
MDDY (n = 100, m = 500) 507013 178.1 
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Chapter 5 

Quasi Secant Method 

In this chapter, we propose a new algorithm for solving the problem 

{

minimize f (x) 

subject to x E IRn, 
(5.0.1) 

which is efficient for the minimization of nonsmooth nonconvex functions. We also 

introduce the notions of a secant and a quasi secant for locally Lipschitz functions. 

The new minimization algorithm uses quasi secants to compute descent directions. 

The main difference between the notion of a secant in the quasi secant method and in 

the secant method introduced in Chapter 4 is in the manner of calculation of secants. 

In the secant method, we only used function values to calculate secants, whereas for 

the quasi secant method, we calculate the whole set of quasi secants for different types 

of nonsmooth functions. 

The structure of this chapter is as follows: The notions of a secant and a quasi 

secant are introduced in Section 5.1. In Section 5.2, we describe an algorithm for 

the computation of a descent direction. A quasi secant method is introduced and its 

convergence is studied in Section 5.3. Results of numerical experiments are given in 

Section 5.4. Section 5.5 concludes the chapter. 

5.1 Secants and Quasi Secants 

The concept of secants is widely used in optimization. For example the secants have 

been used to design quasi-Newton methods. In this section we introduce the notion 
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l 

of secants and quasi secants for locally Lipschitz functions. We start with univariate 

functions. 

Consider a function cp : lRl ~ lRl and assume that it is locally Lipschitz. A secant 

is a line passing through at least two points on the graph of the function cp. A straight 

line passing through points (x, cp(x)) and (x + h, cp(x + h)), where h > 0, is given by: 

l(x)=cx+d 

where 

cp(x + h) - cp(x) d = rfl(X) _ ex. 
c= h ' T 

The equation 

(5.1.1) 

is called a secant equation (see Fig. 5.1). For smooth functions the secant line is close 

to the tangent line if h is sufficiently small. 

We can give another representation of the number c in the secant equation using 

Lebourg's mean value theorem (see [64]). This theorem implies that there exist y E 

(x, x + h) and u E 8cp(y) such that 

and one can take c = u. However, it is not easy to compute the point y and conse­

quently the subgradient u. 

Now let us consider a locally Lipschitz function f : lRn ~ lRl
. For given x E 

lRn,g E SI and h > 0 consider the following function cp(t) = f(x + tg), t E lRl
. It is 

obvious that 

f(x + hg) - f(x) = cp(h) - cp(O). 

One can give the following definition of secants for the function f by generalizing the 

definition for the univariate function cp. 

Definition 5.1.1 A vector u E lRn is called a secant of the function f at the point x 

in the direction 9 E SI with the length h > 0 if 

f(x+hg) - f(x) = h(u,g). (5.1.2) 
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x+hg 

5.1. Secants and Quasi Secants 

f(x+hg)- f(x) 

= h(u, g) 

Figure 5.1: Secants for a univariate function 

From now on we will use the notation u(x, g, h) for any secant of the function f at a 

point x in the direction g E Sl with the length h > o. 
For a given h > 0, consider a set-valued mapping x ~ Sec(x, h): 

Sec(x, h) = {w E lRn
: 3(g E Sl), w = u(x, g, h)}. 

Note that a secant with respect to a given direction is not unique, and there are many 

vectors u satisfying the equality (5.1.2). Consequently, the mapping x ~ Sec(x, h) can 

be defined in many different ways. However, only secants approximating subgradients 

of the function f are of interest. One such secant is given by Lebourg's mean value 

theorem when the function f is locally Lipschitz. Lebourg's theorem implies that 

there exist y E (x, x + hg) and u E 8f(y) such that 

f(x + hg) - f(x) = h(u, g). 

Then it is clear that the subgradient u is a secant at a point x. However it is not easy 

to compute such subgradients. 

Consider the following set at a point x: 

SL(x) = {w E lRn
: 3(g E Sl, {hd, hk t 0 as k ~ (0): w = lim u(x, g, hk)} . 

k~oo 
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A mapping x r+ 8ec(x, h) is called a subgradient-related (SR)-secant mapping if the 

corresponding set 8L(x) ~ 8f(x) for all x E lRn. 

Computation of secants is not always an easy task. For this reason, we introduce 

the notion of quasi secants by replacing strict equality in the definition of secants by 

inequality. 

Definition 5.1.2 A vector v E lRn is called a quasi secant of the function f at the 

point x in the direction 9 E 81 with the length h > 0 if 

f(x + hg) - f(x) :::; h(v, g). 

Fig. 5.2 presents examples of quasi secants in univariate case. 

f(x+hg)- f(x) 

s; h(lI,g) 
-..."'------¥--.. _ ... _ ...... _ .. - ......... . 

x+hg 

Figure 5.2: Quasi secants for a univariate function 

We will use the notation v(x, g, h) for any quasi secant of the function f at the 

point x in the direction 9 E 8 1 with the length h > O. It is clear that any secant is 

also a quasi secant. Therefore, the computation of quasi secants must be easier than 

the computation of secants. 

For a given h > 0 consider the s~t of quasi secants of the function f at a point x: 

QSec(x, h) = {w E lRn : :3(g E 8 1), W = v(x, g, h)} 
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and the set of limit points of quasi secants as h L 0: 

A mapping x f--t QSec(x, h) is called a subgradient-related (SR)-quasi secant mapping 

if the corresponding set QSL(x) ~ 8f(x) for all x E IRn. In this case elements of 

QSec(x, h) are called SR-quasi secants. In the sequel, we will consider sets QSec(x, h) 

which contain only SR-quasi secants. Next we will present classes of functions for 

which SR-quasi secants can be efficiently computed. 

5.1.1 Quasi Secants of Smooth Functions 

Assume that the function f is continuously differentiable. Then 

v(x, g, h) = "V f(x + hg) + ag, 9 E S1, h > 0 

where 
f(x + hg) - f(x) - h("V f(x + hg), g) 

a= ~----~--~~--~~----~~ 
h 

is a secant (also quasi secant) at a point x with respect to the direction 9 E S1' Since 

the function f is continuously differentiable, it is clear that v(x, g, h) -+ "V f(x) as 

h L 0, which means that v(x, g, h) is SR-quasi secant at the point x. 

5.1.2 Quasi Secants of Convex Functions 

Assume that the function f is proper convex (finite valued convex function). Since 

f(x + hg) - f(x) ::; h(v, g), \Iv E 8f(x + hg), 

any v E 8 f (x + hg) is a quasi secant at the point x . Then we have 

QSec(x, h) = U 8f(x + hg). 
gESl 

The upper semicontinuity of the mapping x f--t 8f(x) implies that the set QSL(x) c 

8f(x). This means that any v E 8f(x + hg) is a SR-quasi secant at the point x. 
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5.1.3 Quasi Secants of Maximum Functions 

Consider the following maximum function: 

f(x) = . max h(x) 
1.=l, ... ,m 

where the functions Ii, i = 1, ... ,m are continuously differentiable. Let vi E IRn be a 

SR-quasi secant of the function fi at a point x. For any 9 E S1 consider the following 

set 

R(x + hg) = {i E {I, ... , m}: fi(X + hg) = f(x + hg)}. 

The set QSec(x, h) of quasi secants at a point x is defined as 

QSec(x, h) = U {vi(x, g, h), i E R(x + hg)} . 
gESl 

Since the mapping x 1--7 8f(x) is upper semicontinuous, the set QSL(x) c 8f(x), and 

quasi secants, which are defined above, are also SR-quasi secants. 

5.1.4 Quasi Secants of d.c. Functions 

Consider the function 

f(x) = h(x) - h(x) 

where functions hand h are proper convex. Take any subgradients v1 E 8h(x + 
hg), v2 E 8 h (x). Then the vector v = v 1 - v2 is a quasi secant of the function f 

at a point x. However, such quasi secants need not be SR-quasi secants. Since d.c. 

functions are quasidifferentiable ([166]) and if additionally sub differentials 8h(x) and 

8h(x) are polytopes, one can use an algorithm from [24, 28] to compute subgradients 

v1 and v2 such that their difference will converge to a subgradient of the function f 

at the point x. Thus, we can use this algorithm to compute SR-quasi secants of the 

function f. 

The following important nonsmooth functions are d.c. functions and their subdif­

ferential and superdifferential are polytopes: 

m 

F2 (x) = . max . min fij(X). 
t=1, ... ,m J=1, ... ,p 
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Here functions fij are continuously differentiable and proper convex. Both functions 

FI and F2 can be represented as the difference of two convex functions . One can 

compute their SR-quasi secants using their d.c. representation. Many interesting 

functions belong to this class. For example, the error function in cluster analysis is 

of this type ([14]). Continuous piecewise linear functions can be represented as a 

max-min of linear functions. 

Results of this section demonstrate that SR-quasi secants can be efficiently com­

puted for a large class of nonsmooth convex and non convex functions. However, the 

computation of SR-quasi secants for d.c. functions is more costly than for other 

functions considered in this section. 

SR-quasi secants defined in Subsections 5.1.1- 5.1.4 satisfy the following condition: 

for any [ > 0 there exists b > 0 such that 

QSec(y, h) C 8f(x) + Be(O) (5.1.3) 

for all .7: E B5(X) and hE (0,8). This can be easily proved taking into account upper 

semicontinuity of the sub differential. 

5.2 Computation of a Descent Direction 

From now on, we will assume that for any bounded subset X C lRn and any ho > 0 

there exists K > 0 such that 

Ilvil ~K 

for all v E QSec(x, h), x E X and h E (0, ho]. It is obvious that this assumption is 

true for all functions considered in the previous section. Given x E lRn and h > 0 we 

consider the following set: 

W(x, h) = co QSec(x, h). 

where co is a closed convex hull of a set. It is clear that the set W(x, h) is compact 

and convex. 

Proposition 5.2.1 Assume that On rt. W(x, h), h> 0 and 

Ilvoll = min {IIvll: v E W(x, h)} > O. 
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Then 

Proof: Since W(x, h) is a compact and convex set we get 

max {(v, l): v E W(x, h)} = -Ilvoli. 

Then it follows from the definition of quasi secants that 

f(x + hgO) - f(x) < h(v(x, l, h), l) 

< hmax{(v,l): v E W(x,h)} 

-hllvoll· 

D 

Proposition 5.2.1 implies that quasi secants can be used to find descent directions 

of a function f. Furthermore, this can be done for any h > O. However it is not 

always possible to apply Proposition 5.2.1 since it assumes the entire set W(x, h) to 

be known. However, the computation of the entire set W(x, h) is not always possible. 

It can not even be computed for functions whose subdifferentials are polytopes at 

any point. Therefore, we propose the following algorithm for computation of descent 

directions and this algorithm uses only a few elements from W(x, h). 

Let the numbers h > 0, Cl E (0,1) and a small enough number 0 > 0 be given. 

Algorithm 5.2.1 Computation of the descent direction. 

Step 1. Choose any gl E SI and compute a quasi secant VI = V (x, gl , h) in the 

direction gl. Set VI (x) = {VI} and k = 1. 

Step 2. Compute IIvk l1 2 = min{llvl1 2 
: v E co Vk(X)}. If 

(5.2.1) 

then stop. Otherwise go to Step 3. 

Step 3. Compute the search direction by gk+l = -llvk ll- lVk
• 

Step 4. If 

89 



Quasi Secant Method 5.2;. Computation of a Descent Direction 

(5.2.2) 

then stop. Otherwise go to Step 5. 

Step 5. Compute a quasi secant vk+1 = v(x, gk+1, h) in the direction gk+1, construct 

the set Vk+1(X) = co {Vk(X) U{vk+1}}, set k = k + 1 and go to Step 2. 

Some explanations of Algorithm 5.2.1 follow. In Step 1 we select any direction 

g1 E 8 1 and compute the initial quasi secant in this direction. The least distance 

between the convex hull of all computed quasi secants and the origin is found in Step 

2. This is a quadratic programming problem and algorithms from [3, 136] can be 

applied to solve it. In numerical experiments we use the algorithm from [136]. If the 

least distance is less than a given tolerance ~ > 0, then the point x is an approximate 

stationary point; otherwise, we compute a new search direction in Step 3. If it is 

the descent direction satisfying (5.2.2) then the algorithm stops (Step 4). Otherwise, 

we compute a new quasi secant in the direction gk+1 in Step 5 which improves the 

approximation of the set W(x, h). 

It should be noted that there are some similarities between the ways descent direc­

tions are computed in the bundle-type algorithms and in Algorithm 5.2.1. The latter 

algorithm is close to the version of the bundle method proposed in [135]. However in 

the new algorithm we use quasi secants instead of subgradients. 

In the next proposition, we prove that the Algorithm 5.2.1 terminates using a 

standard technique. 

Proposition 5.2.2 Assume that f is a locally Lipschitz function, h > 0 and there 

exists K,O < K < 00 such that 

max {lIvll : v E W(x, h)} ~ K. (5.2.3) 

If C1 E (0,1) and 0 E (0, K), then Algorithm 5.2.1 terminates after at most m steps, 

where 
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Proof: In order to prove the proposition it is sufficient to estimate an upper bound 

for the number of steps m when the condition (5.2.1) is satisfied. If both stopping 

criteria (5.2.1) and (5.2.2) are not satisfied, then a new quasi secant Vk+l computed in 

Step 5 does not belong to the set Vk(x): Vk+l rf. Vk(X), Indeed, in this case I/vkl/ > 6 

and 

It follows from the definition of the quasi secants that 

and we have 

(5.2.4) 

Since vk = argmin {llvl1 2 
: v E Vk(x)}, the necessary condition for a minimum implies 

that 

for all v E Vk(x). The inequality along with (5.2.4) means that Vk+l rf. Vk(X), Thus, if 

both stopping criteria are not satisfied then the algorithm allows one to improve the 

approximation of the set W(x, h). 

It is clear that Ilvk+1 11 2 ~ Iltvk+l + (1 - t)vkl1 2 for all t E [0,1] which means 

It follows from (5.2.3) that 

Hence, taking into account the inequality (5.2.4), we have 

Let to = (1 - cl)(2K)-21IvkI\2. It is clear that to E (0,1) and therefore 

(5.2.5) 

Since Ilvkll > 5 for all k = 1, ... ,m - 1, it follows from (5.2.5) that 
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Thus, the inequality (5.2.1) is satisfied if K,;-l K2 ::; cSZ. This inequality must happen 

after at most m steps where 

o 

Definition 5.2.1 A point x E IRn is called a (h, 6)-stationary point if 

min Ilvll::; 6 
vEW(x,h) 

5.3 A Quasi Secant Method 

In this section we describe the quasi secant method for solving problem (5.0.1). Let 

h > 0, 6 > 0, CI E (0,1), C2 E (0, ell be given numbers. 

Algorithm 5.3.1 The quasi secant method for finding (h, 6)-stationary points. 

Step 1. Choose any starting point XO E IRn and set k = 0. 

Step 2. Apply Algorithm 5.2.1 for the computation of the descent direction at x = xk 

for given 6 > ° and CI E (0,1). This algorithm terminates after a finite number of 

iterations m > 0. As a result, we get the set Vm(x k ) and an element v k such that 

Furthermore, either IIvkll ::; 6 or for the search direction gk = -IIvkll-lvk, 

(5.3.1) 

Step 3. If 

(5.3.2) 

then stop. Otherwise go to Step 4. 

92 



Quasi Secant Method 5.3. A Quasi Secant Method 

Step 4. Compute Xk+l = :rk + O"kgk, where (J"k is defined as follows 

Set k = k + 1 and go to Step 2. 

Theorem 5.3.1 Assume that the function f is bounded below 

f* = inf {f(x) : x E IRn} > -00. (5.3.3) 

Then Algorithm 5.3.1 terminates after finite many iterations M > 0 and produces 

(h, 0) -stationary point x M where 

Proof: Assume the contrary. Then the sequence {Xk} is infinite and points xk are 

not (h, o)-stationary points. This means that 

min{IIvli: v E W(Xk, h)} > 0, 'Vk = 1,2, .... 

Therefore, Algorithm 5.2.1 will find descent directions and the inequality (5.3.1) will 

be satisfied at each iteration k. Since C2 E (0, Cll, it follows from (5.3.1) that (J"k ;::: h. 

Therefore, we have 

f(Xk+l) - f(x k) < -c2(J"klivk ll 

< -c2h ll vk ll· 

Since Iivk ll > 0 for all k ;::: 0, we get 

which implies 

and therefore, f(x k ) --+ -00 as k --+ +00 which contradicts (5.3.3). It is obvious that 

the upper bound for the number of iterations M necessary to find the (h, o)-stationary 

point is Mo. o 
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Remark 5.3.1 Since C2 :::; CI, O"k ~ h, and therefore h > 0 is a lower bound for O"k. 

This leads to the following rule for the estimation of O"k. We define a sequence: 

and O"k is defined as the largest 01 satisfying the inequality in Step 4 of Algorithm 

5.3.1. 

Algorithm 5.3.1 can be applied to compute stationary points of the function f 

that is points x where 0 E 8f(x). Let {hd, {15k} be sequences such that hk -t +0 

and 15k -t +0 as k -t 00 . 

Algorithm 5.3.2 The quasi secant method. 

Step 1. Choose any starting point xO E IRn, and set k = O. 

Step 2. If 0 E 8 f (xk), then stop. 

Step 3. Apply Algorithm 5.3.1 starting from the point xk for h = hk and 15 = 15k. 

This algorithm terminates after finitely many iterations AI > 0, and as a result, it 

computes (hk , c5k )-stationary point Xk+l. 

Step 4. Set k = k + 1 and go to Step 2. 

For the point XO E IRn, we consider the set £(xO) = {x E IRn : f(x) :::; f(xO)}. 

Theorem 5.3.2 Assume that the function f is locally Lipschitz, the set W(x, h) is 

constructed using SR-quasi secants, the condition (5.1.3) is satisfied and the set £(XO) 

is bounded for starting points xO E IRn. Then every accumulation point of the sequence 

{xk} belongs to the set X O = {x E IRn : 0 E 8f(x)}. 

Proof: Since the function f is locally Lipschitz and the set £(XO) is bounded, 

f* > -00. Therefore, conditions of Theorem 5.3.1 are satisfied, and Algorithm 5.3.1 

generates a sequence of (h k , c5k )-stationary points after the finite number of points for 

all k ;:::: O. Since for any k > 0 the point xk+l is (h k , c5k )-stationary, it follows from the 

definition of the (hk' c5k )-stationary points that 

(5.3.4) 
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It is obvious that xk E £(xO) for all k ~ O. The boundedness of the set £(XO) implies 

that the sequence {Xk} has at least one accumulation point. Let x* be an accumulation 

point and xki ~ x* as i ~ +00. The inequality in (5.3.4) implies that 

(5.3.5) 

The mapping QSec(·,.) satisfies the condition (5.1.3), therefore, at the point x* for 

any c > 0 there exists TJ > 0 such that 

W(y, h) C oj(x*) + BE: (5.3.6) 

for all y E BI7(x*) and h E (0, TJ). Since the sequence {Xki } converges to x* there exists 

io > 0 such that xk; E BI7(x*) for all i ~ i o. On the other hand since 6k, hk ~ +0 as 

k ~ +00 there exists ko > 0 such that 6k < c and hk < TJ for all k > ko. Then there 

exists i l ~ io such that ki ~ ko + 1 for all i ~ i l . Thus, it follows from (5.3.5) and 

(5.3.6) that 

min{llvll : v E oj(x*)} ~ 2c. 

Since c > 0 is arbitrary and the mapping x ~ oj(x) is upper semicontinuous, 0 E 

of(x*). 0 

5.4 Results of Numerical Experiments 

The efficiency of the proposed algorithm was verified by applying it to the academic 

test problems with nonsmooth objective functions introduced in Appendix A. It is 

important to note that only in the tables for this section, P3 stands for Problem 2.22 

[110] with n = 10, m = 2 and jopt = 54.598150. Also, problems P23-P25 are problems 

1-3 from [8] with optimal value 2,0 and 0 respectively. The dimensions are 2,2 and 

6, and the values for mare 6,0 and 0 respectively. 

In our experiments, we use two bundle algorithms for comparisons: PMIN - a 

recursive quadratic programming variable metric algorithm for minimax optimization 

and PBUN - a proximal bundle algorithm. The description of these algorithms can be 

found in [111]. PMIN is applied to minimize maximum functions and PBUN is applied 

to solve problems with nonregular objective functions. We compute subgradients 

in problems with maximum objective functions, and in problems with nonregular 
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objective functions, we approximate subgradients using the scheme from [24, 28] . In 

Algorithm 5.3.2 CI = 0.2, C2 = 0.05, Ok = 10-7
, hk+I = 0.5hk , k ~ 1 and hI = 1. 

First we applied both PMIN and Algorithm 5.3.2 for solving problems P1-P22 

using starting points from [110]. Results are presented in Table 5.1. In this table 

we present the value of the objective function at the final point (1) and the number 

of function and subgradient evaluations (nf and nsub, respectively). These results 

demonstrate that the bundle method performs better than the secant method. The 

latter method uses significantly less function and subgradient evaluations. The secant 

method fails to find the best known solutions for problems P9 and P10 whereas the 

bundle method finds those solutions for all problems. 

Table 5.1: Results of numerical experiments with given starting points 

Prob. , Quasi secant I Bundle 

f nf nsub f nf nsub 

PI 1.95222 288 134 1.95222 8 8 
P2 -44 436 238 -44 16 12 
P3 54.60361 469 137 54.59815 88 36 
P4 3.70348 509 266 3.70348 18 17 

P5 0 244 164 0 8 8 
P6 0 511 241 0 180 94 
P7 3.59972 709 208 3.59972 15 14 
P8 -44 379 285 -44 21 13 
P9 0.05061 2639 881 0.00420 9 9 
P10 0.01983 455 254 0.00808 12 11 
Pll 115.70644 432 310 115.70644 11 11 
P12 0.00264 3092 1439 0.00264 113 36 
P13 0.00202 1633 995 0.00202 86 35 
P14 0.00012 1214 892 0.00012 8 7 
P15 0.02234 777 537 0.02234 57 17 
P16 0.03490 868 681 0.03490 53 22 
P17 0.00619 1194 960 0.00619 107 20 
P18 680.63006 431 282 680.63006 45 20 
P19 24.30621 836 679 24.30621 19 14 
P20 93.90525 1991 1703 93.90525 30 21 
P21 0.00000 15104 11149 0.00000 20 19 
P22 0.04803 3187 2880 0.04803 286 68 

At the next step we applied both methods to solve all problems using 20 randomly 

generated starting points. The results of numerical experiments are presented in 
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Tables 5.2 and 5.3. In Table 5.2 we present fav - the average objective value over 

20 runs of algorithms and also numbers nb and ns for each method (refer to A for 

definitions) . 

Table 5.2: Results of numerical experiments 

Prob. I Quasi secant Bundle 
fav nb ns fav nb ns 

PI 1.95222 20 20 1.95222 20 20 
P2 -44 20 20 -44 20 20 
P3 54.59890 20 20 54.59815 20 20 
P4 3.70348 20 20 3.70348 20 20 

P5 1.21000 16 17 0.90750 17 18 
P6 0 20 20 0 20 20 
P7 3.59972 20 20 3.59972 20 20 
P8 -44 20 20 -28.14011 12 12 
P9 0.04646 4 7 0.03051 9 18 
PlO 0.01789 0 9 0.01520 2 17 
P11 115.70644 20 20 115.70644 20 20 
P12 0.00264 20 20 0.00264 20 20 
P13 0.00627 19 19 0.02752 14 14 
P14 0.10662 3 16 0.30582 3 15 
P15 0.27411 7 17 0.32527 5 10 
P16 0.09631 17 19 0.30572 12 13 
P17 0.09312 0 10 0.39131 2 10 
P18 680.63006 20 20 680.63006 20 20 
P19 24.30621 20 20 24.30621 20 20 
P20 93.90525 20 20 93.90525 20 20 
P21 0.00000 20 20 0.00000 20 20 
P22 0.24743 0 9 0.22057 1 16 

P23 2 20 20 2 20 20 
P24 0 20 20 0.07607 17 17 
P25 1.5 8 17 2.30008 2 8 

Results presented in Table 5.2 show that both the quasi secant method and the 

bundle method (PMIN) are effective methods for the minimization of nonsmooth 

convex functions. However, the bundle method is faster and more accurate than the 

secant method. Both algorithms perform similarly for nonconex nonsmooth, regular 

functions. However, results for fav show that the bundle method is more sensitive to 

the choice of starting points than the quasi secant method. Overall the quasi secant 

method performs better than the bundle method (PBUN) on nonconvex, nonsmooth 
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nonregular functions. 

Table 5.3 presents the average number of objective function (nf) and subgradient 

(nsub) evaluations as well as the average CPU time t (in seconds) over 20 runs of 

the algorithms. These results demonstrate that the bundle method uses significantly 

less function and subgradient evaluations to minimize convex functions . Results for 

nonconvex regular functions show that the bundle method is sensitive to the choice 

of starting points. The numbers n f and nsub are large for some starting points and 

therefore their average values are very large for some problems (Problems P9, PIa, 

P12, P16, P22). The quasi secant method is much less sensitive to the choice of 

starting points. 

Table 5.3: The number of function and subgradient evaluations and CPU time 

Prob. I Quasi secant Bundle 
nf nsub t nf nsub t 

PI 269 132 0.00 10 10 0.00 
P2 347 207 0.00 12 11 0.00 
P3 304 121 0.00 66 35 0.00 
P4 544 327 0.01 65 55 0.00 

P5 242 146 0.00 22 9 0.00 
P6 1729 771 0.00 493 251 0.00 
P7 425 181 0.00 20 16 0.00 
P8 603 408 0.00 146 56 0.00 
P9 608 232 0.00 1626 171 0.01 
PlO 1060 372 0.00 57891 4843 0.19 
P11 443 280 0.00 29 15 0.00 
P12 3170 1487 0.01 26081 1904 0.12 
P13 1807 1091 0.01 372 173 0.01 
P14 1086 775 0.00 61 26 0.00 
P15 785 529 0.01 51 23 0.00 
P16 856 669 0.02 4985 445 0.11 
P17 2460 1791 0.10 60331 4761 1.10 
P18 445 272 0.00 58 33 0.00 
P19 990 801 0.01 18 15 0.00 
P20 2035 1745 0.03 35 26 0.00 
P21 14427 11108 0.67 160 52 0.03 
P22 1171 818 0.03 66280 4974 2.97 

P23 185 104 0.00 32 32 0.00 
P24 228 106 0.00 22 22 0.00 
P25 459 251 0.00 37 37 0.00 
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5.5 Conel usions 

In this chapter, we developed the quasi secant method for minimizing nonsmooth 

nonconvex functions. We introduced the notion of a secant and quasi secant and 

demonstrated how they can be computed for some classes of nonsmooth functions. We 

proposed an algorithm for the computation of descent directions using quasi secants. 

We presented results of numerical experiments and compared the quasi secant 

method with the bundle method. The computational results show that the bundle 

method performs significantly better than the quasi secant method for minimizing 

nonsmooth convex functions whereas the quasi secant method outperforms the bundle 

method when the objective function is nonsmooth, nonconvex nonregular. Results for 

nonsmooth, nonconvex regular functions are mixed. These results show that the quasi 

secant method is much less sensitive to the choice of starting points than the bundle 

method. 
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Chapter 6 

Application to Cluster Analysis 

In this chapter, we present the mathematical formulation of clustering problem, and 

convert it to a nonsmooth non convex optimization problem. Then, we provide a review 

of the methods applied for solving this problem. An algorithm to solve this problem 

based on the nonsmooth formulation is described. In this algorithm, we use the secant 

method (described in Chapter 4) to solve nonsmooth nonconvex subproblems. Finally, 

we present numerical experiments and compare the results with some other clustering 

algorithms in this area and conclude the chapter. 

6.1 Optimization Based Cluster Analysis 

In this section, a general description of the clustering problem is presented. Besides 

different approaches dealing with this problem, we provide a formulation of the prob­

lem as a nonsmooth nonconvex problem. 

Clustering is the unsupervised classification of patterns. Cluster analysis deals with 

the problems of classifying of a collection of patterns into groups (called clusters) based 

on similarity. It has found many applications, including cancer detection, information 

retrieval, image segmentation and etc. 

Consider a set X of a finite number of points of n-dimensional space lRn
, that is 

The subject of cluster analysis is the partitioning of the set X into a given number q 

of overlapping or disjoint subsets Gi , 'i = 1, ... ,q with respect to predefined criteria 
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so that 

i=l 

The sets Ci, i = 1, ... ,q are called clusters. The clustering problem is said to 

be hard clustering if every data point belongs to one and only one cluster. Unlike 

hard clustering, in the fuzzy clustering problem, the clusters are allowed to overlap, 

and instances have degrees of appearance in each cluster. In this section, we will 

exclusively consider the hard unconstrained clustering problem, that is the condition 

is additionally assumed, and no constraints are imposed on the clusters Ci, '/, 

1, ... ,q. Therefore, every point x E X is contained in exactly one set Ci . 

Each cluster Ci can be identified by its center (or centroid). Using the centroids, 

we can express the clustering problem in terms of the following optimization problem 

(see [78, 79, 72]): 

minimize 
1 q 

<p(C, a) = - L L Ilai 
- xl1 2 

m 
i=l XECi 

(6.1.1) 

subject to C E C, a = (a1
, . .. ,aq

) E lRnxq 

where 11·11 denotes the Euclidean norm, C = {G1 , ... , Gq } is a set of clusters, G is a set 

of all possible q-partitions of the set X, ai is the center of the cluster Gi , i = 1, ... ,q : 

. 1 "'"' a~ = IGil L..J x, 
XECi 

and IGil is the cardinality of the set Gi , 'i = 1, ... , q. The problem (6.1.1) is also 

known as the minimum sum-of-squares clustering. The combinatorial formulation 

(6.1.1) of the minimum sum-of-squares clustering is not suitable for direct application 

of mathematical programming techniques. The problem (6.1.1) can be rewritten as 

the following mathematical programming problem: 

and 

q 

subject to L Wij = 1, i = 1, ... ,m, 
j=l 

'Wij E {O, I}, 'i = 1, ... , m, j = 1, ... , q. 
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t 

Here 

j = 1, . . . ,q 

and Wij is the association weight of pattern Xi with cluster j (to be found), given by 

1 if pattern i is allocated to cluster j , 

Vi = 1, ... ,m, j = 1, ... ,q, 

o otherwise. 

6.1.1 The nonsmooth Optimization Approach to the Cluster-
. 
lng 

In this section we present a formulation of the clustering problem in terms of nons­

mooth, nonconvex optimization. 

The problems (6.1.1) and (6.1.2) can be reformulated as the following mathemat­

ical programming problem (see [25, 26, 78, 79]) 

(6.1.3) 

where 
m 

f( 1 q) _ 1 ~ . II j il12 a, ... ,a --~ . .:nm a -x . 
m J-l, .. . ,q 

i=l 

(6.1.4) 

It is shown in [78] that problems (6.1.1), (6.1.2) and (6.1.3) are equivalent. The 

number of variables in problem (6.1.2) is (m + n) x q whereas in problem (6.1.3) this 

number is only n x q, and the number of variables does not depend on the number 

of instances. It should be noted that in many real-world databases, the number of 

instances m is substantially greater than the number of attributes n . Also, in the hard 

clustering problems the coefficients Wij are integer, that is the problem (6.1.2) contains 

both integers and continuous variables. In the nonsmooth optimization formulation 

of the clustering problem we have only continuous variables. All these circumstances 

can be considered as advantages of the nonsmooth optimization formulation (6.1.3). 

If q > 1, the objective function (6.1.4) in problem (6.1.3) is nonconvex and nons­

mooth. If the number q of clusters and the number n of attributes are large, we have a 

large-scale global optimization problem. Moreover, the form of the objective function 

in this problem is complex enough not to be amenable to the direct application of 
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general purpose global optimization methods. Therefore, in order to ensure the practi­

cality of the nonsmooth optimization approach to clustering, proper identification and 

use of local optimization methods is very important. Clearly, such an approach does 

not guarantee a globally optimal solution to problem (6.1.3). On the other hand, this 

approach provides a "deep" minimum of the objective function that, in turn, provides 

a good enough clustering description of the data set under consideration. 

Note also that a meaningful choice of the number of clusters is very important for 

clustering analysis. It is difficult to define a priori how many clusters cover the set 

X under consideration. In order to avoid this difficulty, a step-by-step calculation of 

clusters is implemented in the optimization algorithm discussed in the next section. 

6.2 A Brief Overview of Clustering Algorithms 

There exist several methods to deal with clustering including agglomerative and di­

visive hierarchical clustering algorithms as well as algorithms based on mathematical 

programming techniques. Some good references to study algorithms for clustering 

problem can be found in [138, 81, 72]. Also, [87] is an excellent up-to-date survey of 

existing methods and related literature. 

Problem (6.1.2) is a global optimization problem, and different global search algo­

rithms can be applied to solve this problem. Some review of these efforts presented 

in [133] including dynamic programming, branch and bound, cutting planes, k-means 

algorithms. Dynamic programming is efficient when number of instances m ::; 20, 

which means this approach is not suitable for real-world problems (see for example 

[145]). However, when q = 1 the minimum sum-of-squares clustering problem can be 

solved exactly by dynamic programming in polynomial time [72]. 

One step ahead, branch and bound algorithms are effective when the database 

contains only hundreds of records and the number of clusters is not large (less than 5) 

(see [65, 132, 104, 133]). These methods are absolutely incapable when m ~ 1000 and 

q ~ 10 . Some heuristic methods like k-means can be used for solving large clustering 

problems. Different versions of this algorithm have been studied by many authors 

(see [72]). The method is a very fast algorithm and it is suitable for solving clustering 

problems in large data sets. The k-means Algoirthm provides good results when 
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there are few clusters but deteriorates when there are many [133]. This algorithm 

achieves a local minimum of problem (6.1.1)( see [161]); however, results of numerical 

experiments presented, for example, in [76] show that the best clustering found with 

k-means may be more than 50 % worse than the best known one. 

Although the metaheuristic methods produced better results compared with pre­

vious methods, they take a lot of CPU time and so are considered ineffective for large 

problems [52]. In [57, 160, 159], the simulated annealing method is investigated, and 

tabu search method is applied to clustering problem in [105]. Furthermore, the genetic 

algorithm is tried in this problem in [52]. The results of numerical experiments, pre­

sented in [106] show that even for small problems of cluster analysis when the number 

of entities m :::; 100 and the number of clusters q :::; 5, these algorithms take 500-700 

(sometimes several thousands) times more CPU time than the k-means algorithms. 

For relatively large databases one can expect that this difference will increase. This 

makes metaheuristic algorithms of global optimization ineffective for solving many 

clustering problems. However, these algorithms can be applied to large clustering 

problems if combined with decomposition (see [77]). 

In [124] an interior point method for minimum sum-of-squares clustering problem 

is developed. The paper [77] develops variable neighborhood search algorithm and 

the paper [134] presents j-means algorithm which extends k-means by adding a jump 

move. The global k-means heuristic, which is an incremental approach to minimum 

sum-of-squares clustering problem, is developed in [116]. The incremental approach 

is also studied in the paper [76]. Results of numerical experiments presented show the 

high effectiveness of these algorithms for many clustering problems. 

6.3 An Optimization Clustering Algorithm 

In this section we will describe an incremental algorithm for solving clustering prob­

lem. 

Algorithm 6.3.1 An algorithm for solving the cluster analysis problem. 

Step 1. (Initialization). Select a tolerance E > O. Select a starting point aD = 

(a~, . .. ,a~) E lRn and solve the minimization problem (6.1.3) with q = 1. Let a h E 
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lRn be a solution to this problem and J1* be the corresponding objective function 

value. Set k = 1. 

Step 2. (Computation of the next cluster center). Select a point yO E lRn and solve 

the following minimization problem: 

minimize jk(y) subject to y E lRn (6.3.1) 

where 
m 

Jk(y) = L min {ilah 
- xiI12, ... , Ilak* - xi112, Ily - xiI12}. 

i=l 

Step 3. (Refinement of all cluster centers). Let yk+l,* be a solution to problem (6.3.1). 

Take ak+l,O = (ah , ... , ak .. , yk+l,*) as a new starting point and solve the following 

minimization problem: 

minimize jk+l (a) subject to a = (al , ... , ak+l) E lRnx (k+I) (6.3.2) 

where 

Step 4. (Stopping criterion). Let ak+I,* be a solution to the problem (6.3.2) and jk+l,* 

be the corresponding value of the objective function. If 

jk* _ jk+I,* 

J1* < E 

then stop, otherwise set k = k + 1 and go to Step 2. 

In Step 1, the centers of the first qo clusters are calculated. In particular, one can 

take qo = 1. In this case the center of the entire set X will be calculated. In Step 2, we 

calculate a center of the next (k+1)-st cluster, assuming the previous k cluster centers 

to be known. It should be noted, the number of variables in problem (6.3.1) is n which 

is substantially less than if we calculate all cluster centers simultaneously. In Step 3, 

the refinement of all k + 1 cluster centers is carried out. Since the starting point ak+I,O 

calculated in the previous step, Step 2 is not far from the solution to problem (6.3.2), 

and it takes only a moderate number of iterations to calculate it. Such an approach 

allows one to significantly reduce the computational time for solving problem (6.3.2). 
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Table 6.1: The brief description of data sets 

Data sets Number of Number of 

instances attributes 

German towns 59 2 

Bavaria postal 1 89 3 

Bavaria postal 2 89 4 

Fisher's Iris Plant 150 4 

Heart Disease 297 13 

Liver Disorders 345 6 

Ionosphere 351 34 

Congressional Voting Records 435 16 

Breast Cancer 683 9 

Pima Indians Diabetes 768 8 

TSPLIBI060 1060 2 

Image Segmentation 2310 19 

TSPLIB3038 3038 2 

Page Blocks 5473 10 

It is clear that fk* ~ 0 for all k ~ 1 and the sequence {fk*} is decreasing that is, 

The latter implies that after k > 0 iterations the stopping criterion in Step 4 will be 

satisfied. 

To solve the nonsmooth nonconvex problem 6.3.2, we use the secant method, which 

is introduced in Chapter 4. As we will see in the next section, this algorithm creates 

better solutions for the clustering problem. 

6.4 Numerical Experiments 

To verify the efficiency of the proposed algorithm, numerical experiments with a 

number of real-world data sets have been conducted. Fourteen data sets have been 

used in numerical experiments. The brief description of the data sets is given in 

Table 6.1. The detailed description of German towns, Bavaria postal data sets can 

be found in [72], Fisher's Iris Plant data set in [144], the traveling salesman problems 

TSPLIB1060 and TSPLIB3038 in [66J and all other data sets in [lJ . 

We computed up to 10 clusters in data sets with no more than 150 instances, up 

to 50 clusters in data sets with the number of instances between 150 and 1000 and up 
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to 100 clusters in data sets with more than 1000 instances. The multi-start k-means 

(MS k-means) and the global k-means algorithms (GKM) have been used in numerical 

experiments for comparison purpose (for description of these algorithms see [10]). To 

find k clusters, 100 times k starting points were randomly chosen in the MS k-means 

algorithm for all data sets and starting points were data points. In the GKM and 

secant algorithms a distance matrix D = (dij )i,j=1 of a data set was computed before 

the start of the algorithms. Here dij = !lai 
- aj ll 2

. This matrix was used by both 

algorithms to find starting points. 

Results of numerical experiments are presented in Tables 6.2-6.8. In these tables 

we use the following notation: 

• k is the number of clusters; 

• jopt is the best known value of the cluster function (6.1.4) (multiplied by m) for 

the corresponding number of clusters. For German towns, Bavaria Postal 1 and 

2 and Iris Plant data sets, jopt is the value of the cluster function at the known 

global minimizer (see [76]); 

• E is the error in %; 

• N is the number of Euclidean norm evaluations for the computation of the 

corresponding number of clusters. To avoid big numbers in tables we use its 

expression in the form N = a x 10l and present the values of a in tables. Thus 

l = 4 for German towns, Bavaria Postal 1 and 2, Iris Plant data sets, l = 5 

for Heart Disease, Liver Disorders, Ionosphere, Congressional Voting Records 

data sets, l = 6 for Breast Cancer, Pima Indians Diabetes, TSPLIB1060, Image 

Segmentation data sets and l = 7 for TSPLIB3038, Page Blocks data sets. 

• t is the CPU time (in seconds). 

• In Table 6.9, L E stands for accumulated errors for each data set in previous 

tables, and s.r stands for number of times the algorithm could find the global 

optimal solution or near solution (0 ~ E ~ 1). 

The values of jopt for German towns, Bavaria postal, Iris Plant, Image Segmen­

tation (k ~ 50), TSPLIB1060 (k ~ 50) and TSPLIB3038 (k ~ 50) data sets are 
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available, for example, in [14, 76] . In all other cases we take as !opt the best value 

obtained by the MS k-means, GKM and modified global k-means algorithms (see 

[10]). 

The error E is computed as 

E = U - !opt) . 100, 
!opt 

(6.4.1) 

where 1 is the best value (multiplied by m) of the objective function (6.1.4) obtained 

by an algorithm. The condition E = 0 implies that an algorithm finds the best known 

solution. We say that an algorithm finds a near global (or best known) solution if 

o:s; E:S; 1. 

Table 6.2: Results for German towns and Bavaria postal 1 data sets 

k jopt MS k-means GKM Secant 

E a E a E a 

German towns 

2 0.12143 . 106 0.00 6.80 0 .00 0.00 0.230 0.00 0.00 1.38 0.00 

3 0.77009 . 105 0.00 13.6 0.00 1.45 0.289 0.00 1.45 2.92 0.00 

4 0.49601 . 105 0.00 23 .6 0.00 0.72 0.366 0.00 0.72 4.71 0.00 

5 0.38716 . 105 0.00 31.2 0.00 0.00 0.490 0.00 0.00 6.77 0.00 

6 0.30536.105 0.00 38.3 0.00 0.00 0.602 0.00 0.27 9.90 0.00 

7 0.24433.105 5.35 44.9 0.00 0.09 0.732 0.00 0.00 13.3 0.00 

8 0.21748.105 0.33 46.1 0.00 0.10 0.832 0.00 0.00 15.9 0.00 

9 0.18946 . 105 4.14 57.8 0.00 0.00 0.997 0.00 2.28 18.8 0.00 

10 0.16555.105 13.98 61.4 0.02 0.28 1.120 0.00 0.00 21.9 0.00 

Bavaria postal 1 

2 0 .60255 . 1012 0.00 11 .7 0.00 7.75 0.445 0.00 0.00 5.26 0.02 

3 0.29451 . 1012 0.00 30.5 0.00 0.00 0.507 0.00 0.00 8.98 0.02 

4 0 .10447. 1012 0.00 43.0 0.00 0.00 0.730 0.00 0.00 14.7 0.02 

5 0.59762 . lOll 0.00 67.6 0.00 0.00 1.050 0.00 0.00 19.8 0.02 

6 0.35909. lOll 27.65 76.0 0.00 0.00 1.170 0.00 0.00 24.0 0.02 

7 0 .21983 . lOll 0.61 107 0.02 1.50 1.550 0.00 1.50 42.0 0.03 

8 0.13385 . lOll 0.00 124 0.03 0.00 1.980 0.00 0.00 55.2 0.03 

9 0.84237 . 1010 35.81 135 0.03 0.00 2.150 0.00 0.00 69.5 0.05 

10 0.64465 . 1010 30.67 160 0.03 0.00 2.870 0.00 0.00 90.2 0.05 

The results presented in Table 6.2 show that the MS k-means algorithm is effective 

when the number of clusters is small. For German towns the results of the GKM and 

secant method are quite similar. Considering the summary Table 6.9, for a small data 

set like this, GKM has higher success rate, and the accumulated error is lower. The 
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similar scenario is repeated for MS k-means for Bavaria postal 1 data set, and it is 

successful only for small number of clusters. For this data set, the secant method 

outperforms GKM both in success rate and accumulated error. 

Table 6.3: Results for Bavaria postal 2 and Iris Plant data sets 

k fopt MS k-means GKM Secant 

E O! E O! E O! 

Bavaria postal 2 

2 0.19908 . 1011 26.16 13.3 0.00 0.00 0.445 0.00 0.00 2.85 0.00 

3 0.17399 . 1011 0.00 23.9 0.00 0.00 0.507 0.00 0.00 10.2 0.00 

4 0.75591 . 1010 0.00 40.9 0.00 0.00 0.659 0.00 0.00 29.0 0.01 

5 0.53429 . 1010 0.00 53 .5 0.00 1.86 0.801 0.00 1.86 42.8 0.01 

6 0.32263 . 1010 37.37 69 .4 0.00 0.00 0.917 0.00 0.00 47.8 0.01 

7 0.22271 . 1010 10.75 91.6 0.00 0.00 1.49 0.00 0.00 82.0 0.03 

8 0.17170·1010 12.31 106 0.03 0.00 1.71 0.00 0.00 88.5 0.03 

9 0.14030 . 1010 9.50 126 0.03 0.00 2.12 0.00 0.00 117 0.06 

10 0.11928 . 1010 18.88 132 0.05 0.00 2.31 0.00 0.00 125 0.06 

Iris Plant 

2 152.348 0.00 17.8 0.00 0.00 1.26 0.00 0.00 7.51 0.Q1 

3 78.851 0.00 41.9 0.00 0.01 1.78 0.00 0.01 16.8 0.01 

4 57.228 0.00 81.4 0.03 0.05 2.21 0.00 0.05 27.4 0.01 

5 46.446 0.00 105 0,05 0,54 2.53 0.02 0.54 38.6 0.01 

6 39.040 0.00 121 0.05 1.44 2.81 0.02 1.44 25.9 0,01 

7 34.298 4.20 157 0.05 3.17 3.14 0.02 3.17 66.0 0.01 

8 29.989 10.69 171 0.05 1.71 3.88 0.02 1.71 86.7 0.03 

9 27.786 2.31 184 0,06 2.85 4.16 0.02 2.85 102 0,03 

10 25.834 8.27 212 0.08 3.55 4.48 0,02 3.56 122 0.03 

As one can see from Table 6.3, the GKM and secant algorithms find the same 

solutions for both Bavaria postal 2 and Iris Plant data sets. However, the GKM 

algorithm requires less computational effort than the secant algorithm. For the Iris 

plant data set, MS k-means is successful five times while the other two are successful 

4 times; however, the accumulated error for secant and GKM is less than for MS 

k-means. 

The results from Table 6.4 demonstrate that the MS k-means algorithm cannot 

locate the global solution for Heart Disease data set when k > 5 and for Liver Disorders 

data set when k > 10. For Heart Disease data set the GKM algorithm does the same 

as the secant algorithm with a success rate of seven, but the accumulated error for 

secant method is less. For Liver Disorder data set the secant method has better 
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Table 6.4: Results for Heart Disease and Liver Disorders data sets 

k fopt MS k-means GKM Secant 

E a E a E a 

Heart Disease 

2 0.59890 . 106 0.00 7.86 0.16 0.00 0.505 0.02 0 .00 5.78 0.03 

5 0.32797 . 106 0.00 29.7 0.47 0.52 0.722 0.02 0.51 30.0 0.12 

10 0.20222 . 106 2.76 80.1 0.84 0.00 1.57 0.03 1.93 89.4 0.37 

15 0.14771 . 106 8.79 113 1.14 0.00 2.68 0.06 0.69 179 0.73 

20 0.11778.106 7.46 130 1.19 0.00 3.98 0.09 1.37 267 1.10 

25 0.10213 . 106 5.16 151 1.31 0.48 5.46 0.11 0.00 404 1.64 

30 0.88795 . 105 18.66 180 1.64 0.00 6.80 0.14 0.31 533 2.15 

40 0.68645 . 105 28.65 213 1.67 1.71 9.71 0.20 -0.84 868 3.51 

50 0.55894.105 33.68 250 1.88 2.06 13.2 0.27 0.20 1257 5.14 

Liver Disorders 

2 0.42398 . 106 0.00 6.91 0.09 93.96 0.600 0.00 0.00 3.81 0.16 

5 0.21826 . 106 0.00 41.7 0.42 0.08 0.990 0.03 0.08 19.9 0.06 

10 0.12768.106 0.09 87.5 0.67 0.00 2.00 0.05 0.05 63.4 0.18 

15 0.97474 . 105 6.53 147 0.92 1.62 3.41 0.08 0.73 119 0.34 

20 0.81820 . 105 9.05 184 1.11 0.29 5.12 0.11 0.93 176 0.50 

25 0.70419 . 105 16.64 208 1.17 0.23 6.99 0.13 0.18 244 0.71 

30 0.61143 . 105 24.33 229 1.31 0.21 8.75 0.16 -0.61 326 0.98 

40 0.47832 . 105 37.83 290 1.61 3.59 14.6 0.23 1.78 515 1.60 

50 0.39581 . 105 50.64 337 1.88 5.50 19.9 0.28 -0.21 761 2.42 

performance with higher success rate and accumulated error 2.92 versus 105.48. 

One important aspect in Table 6.4 is that the secant method could find the global 

solution better than the result reported [10J, in one situation in Heart disease data set 

and two times in Liver disorder data set. This accuracy does not make a big difference 

in CPU time, but it needs more norm calculations. 

In Ionosphere and Congressional Voting Records data sets the MS k-means algo­

rithm again cannot find the global solution when the number of clusters k > 5 (see 

Table 6.5). For these date sets, the performance of GKM is similar to MS k-means, 

but the accumulation error is better for GKM. The secant method was successful nine 

times on Ionosphere and seven times on Congressional Voting Records. Even though, 

the accumulated error for Ionosphere is negative, it is small for Congressional Voting 

Records. Another evidence for superiority of secant method is that this method could 

find global solution four times in Ionosphere and three times in Congressional Voting 

Records data sets better than reported solution in [10J. 
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Table 6.5: Results for Ionosphere and Congressional Voting Records data sets 

k /opt MS k-means GKM Secant 

E O! E O! E O! 

Ionosphere 

2 0.24194 . 104 0.00 5.75 0.45 0.00 0.663 0.03 0.00 13.5 0.14 

5 0.18915 . 104 0.00 26.2 0.70 0.07 0.899 0.05 0.18 80.8 0.93 

10 0.15694.104 1.02 67.3 1.88 1.73 1.40 0.08 -0.33 243 2.45 

15 0 .14014 . 104 3.72 104 2.47 4.31 1.88 0.11 0.05 419 4.14 

20 0.12714.104 2.62 136 3.05 5.73 2.53 0.13 -0.32 638 6.42 

25 0 .11486 . 104 11.95 182 4.02 6.76 3.35 0.16 -0.26 936 9.85 

30 0.10469.104 13.99 200 4.19 7.37 4.35 0.20 -0.46 1240 14.1 

40 0.85658 . 103 30.35 273 5.59 7.82 7.88 0.30 0.46 2063 24.3 

50 0.70258.103 45.90 352 6.72 6.63 11.1 0.38 0.15 3069 36.7 

Congressional Voting Records 

2 0.16409 . 104 0.00 7.77 0.28 0.12 1.00 0.02 0.12 9.12 0.06 

5 0.13371 . 104 0.00 37.5 0.39 1.02 1.60 0.05 1.01 53 .6 0.29 

10 0.11312.104 1.12 95 .8 1.48 1.33 2.84 0.08 0.56 171 1.00 

15 0.10089 . 104 1.42 134 1.73 0.00 4.72 0.13 -0.36 380 2.01 

20 0.91445 . 103 6.11 174 2.30 1.40 6.25 0.17 0.32 627 3.18 

25 0.85032 . 103 5.87 209 2.38 2.03 7.55 0.22 -0.01 855 4.57 

30 0.78216.103 12.31 238 2.73 2.73 10.1 0.27 1.85 1144 5.68 

40 0.69412 . 103 18.36 291 3.20 3.32 15.2 0.38 0.27 1939 9.65 

50 0.62451 . 103 25 .72 351 3.69 4.35 19.9 0.48 -0.56 2860 14.5 

Results from Table 6.6 show that the MS k-means algorithm cannot find the 

global solution when the number of clusters k > 5 in Breast Cancer data set and 

when k > 10 in Pima Indians Diabetes data set. For breast cancer, secant method 

located better results considering both ~uccess rate and accumulated error. For Pima 

Indians Diabetes data set the success rates are close but the accumulated error result 

is better for secant method. 

The MS k-means algorithm cannot find the global solution when the number of 

clusters k > 10 for TSPLIBI060 data set and k > 2 for Image Segmentation data 

set (Table 6.7). For TSPLIBI060 data set the GKM algorithm does the same as the 

secant algorithm two times, it does two times better and five times worse than the 

secant algorithm. For Image Segmentation data set the GKM algorithm does the same 

as the secant algorithm five times and it does two times better and two times worse 

than the secant algorithm. Again the GKM algorithm requires less computational 

efforts than two other algorithms. 
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Table 6.6: Results for Breast Cancer and Pima Indians Diabetes data sets 

k /opt MS k-means GKM Secant 

E a E a E a 

Breast Cancer 

2 0.19323.105 0.00 0.891 0.38 0.00 0.242 0.05 0.00 1.52 0.06 

5 0.13705. 105 0.00 8.50 1.30 2.28 0.306 0.09 1.86 7.90 0.32 

10 0.10216 . 105 4.40 15.8 1.47 0.00 0.559 0.17 0.02 22.4 0.84 

15 0.87813 . 104 0.20 24.2 1.91 0.00 0.803 0.23 -0.17 39.8 1.45 

20 0.77855 . 104 5.99 34.0 2.45 1.80 1.06 0.31 -0.06 62.2 2.21 

25 0.69682 . 104 9.87 40.6 2.66 4.12 1.27 0.38 0.79 85.6 3.01 

30 0.64415 . 104 10.44 49.3 3.23 3.43 1.63 0.45 0.72 111 3.90 

40 0.56171 . 104 15.99 61.7 3.77 3.70 2.22 0.61 0.28 175 6.04 

50 0.49896 . 104 22.37 74.2 4.27 4.21 3.03 0.77 -1 .95 252 8.59 

Pima Indians Diabetes 

2 0.51424. 107 0.00 2.30 1.13 0.00 0.318 0.06 0.00 3.42 0.14 

5 0.17370.107 0.00 10.6 1.58 0.14 0.440 0.13 0.14 12.0 0.50 

10 0.94436 . 106 0.00 30.4 2.75 0.36 0.646 0.20 0.36 27.2 1.04 

15 0.69725 . 106 2.30 46.5 3.73 0.00 1.06 0.30 0.03 47.1 1.73 

20 0.57438.106 3.50 56.1 3.94 0.00 1.53 0.39 0.36 74.2 2.64 

25 0.49058 . 106 5.75 66.5 4.61 0.00 2.20 0.52 -0.13 101 3.53 

30 0.43641 . 106 10.65 77.2 5.28 1.84 2.53 0.59 0.09 135 4.65 

40 0.36116 . 106 13.77 106 6.61 0.00 4.02 0.83 0.07 207 7.12 

50 0.31439 . 106 20.16 120 7.09 0.24 5.31 1.06 -0.34 287 9.84 

For TSPLIBI060 data set the MS k-means algorithm finds the best known (or 

near best known) solutions two times, the GKM algorithm five times and the secant 

algorithm six times. For Image Segmentation data set the MS k-means algorithm finds 

such solutions only once, the GKM algorithm six times and the secant algorithm five 

times. In summary for these two data sets, secant method is almost better from 

success rate and accumulated error point of view. 

The MS k-means algorithm again cannot find the global solution when the number 

of clusters k > 10 for TSPLIB3038 data set and k ~ 2 for Page Blocks data set (Table 

6.8) . For TSPLIB3038 data set the GKM algorithm was successful in four situations 

where the secant method in seven situations. Also, the accumulated error for the 

secant method is better. For page blocks data set, the results of GKM and secant 

methods are close; however, the accumulated error for the secant method is better. 

The Table 6.9 represents the summary of information in the previous seven tables. 

It contains the success rates and accumulated errors. It is important to note that, the 
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Table 6.7: Results for TSPLIBI060 and Image Segmentation data sets 

k fopt MS k-means GKM Secant 

E C< E C< E C< 

TSPLIBI060 

2 0.98319 . 1010 0.00 1.71 0.75 0.00 0.580 0.08 0.00 2.61 0.06 

10 0.17548 . 1010 0.05 53.1 2.36 0.23 1.45 0.36 0.23 30.3 0.71 

20 0.79179.109 8.74 93.9 2.78 1.88 2.96 0.69 0.41 74.5 1.54 

30 0.48125 . 109 4.91 123 3.14 3.34 4.70 1.03 0.34 125 2.71 

40 0.35312 . 109 8.23 141 3.48 1.14 6.45 1.38 0 .00 185 4.28 

50 0.25551 . 109 21.17 167 3.95 3.10 8.92 1.73 2.53 244 5.54 

60 0.20443 . 109 22.11 199 4.58 0.72 11.3 2.08 0 .00 321 6.84 

80 0.13535 . 109 33.51 251 5.47 0.00 17.2 2.80 0.06 465 10.4 

100 0.10041.109 52.12 281 5.94 0.10 22.7 3.53 -0.02 648 14.0 

Image Segmentation 

2 0.35606 . 108 0.00 6.49 11.59 0.00 2.71 1.06 0.00 44.7 0.03 

10 0.97952 . 107 2.25 80.3 15.95 1.76 3.67 3.97 1.76 803 52.5 

20 0.51283 . 107 14.06 188 20.58 0.09 6.36 7.58 1.49 2404 151 

30 0.35076 . 107 14.52 270 23.83 0.06 12.5 11.36 0.06 4892 302 

40 0.27398 . 107 21.56 339 26.59 1.25 17.1 16.67 1.26 6879 419 

50 0.22249 . 107 27.33 423 30.55 2.41 22.8 18.73 2.47 8558 521 

60 0.19095 . 107 35.21 493 33.33 0.00 29.7 22.50 0.82 10142 619 

80 0.14440 . 107 45 .87 659 39.47 0.93 45.9 30.19 0 .14 13108 795 

100 0.11512 . 107 50.03 805 45.17 0.92 63.8 38.00 -0.17 15897 955 

secant method could improve the global solution in 18 occasions, as reported in [10]. 

The MS k-means algorithm is efficient to find global solutions to minimum sum­

of-squares clustering problems when the number of clusters k ::; 5. The solutions 

obtained by the MS k-means algorithm differ significantly from the global solution as 

the number of clusters increases and it is not an efficient algorithm to solve clustering 

problems with even relatively large number of clusters 

Three algorithms, considered in this Chapter , are different versions of the k-means 

algorithm. Their main difference is in the way they compute starting points. In the 

MS k-means algorithm starting points are chosen randomly, however in two other 

algorithms special schemes are applied to find them. In the clustering algorithm 

based on the secant method, we solved the nonsmooth problem of finding the next 

cluster center by applying the secant method. Results of numerical experiments show 

that the secant algorithm is more effective than two other algorithms at finding good 

starting points. The GKM algorithm achieves considerably better results than the 
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Table 6.8: Results for TSPLIB3038 and Page Blocks data sets 

k f opt MS k-means GKM Secant 

E a E a E a 

TSPLIB3038 

2 0.31688 . 1010 0.00 0.860 12.97 0.00 0.469 1.38 0.00 2.00 0.42 

10 0.56025 . 109 0.00 14.2 11 .52 2.78 0.857 8.41 0.58 19.9 3.92 

20 0.26681 . 109 0.42 37.1 14.53 2.00 1.60 16.63 0.48 45.8 9.03 

30 0.17557 . 109 1.16 57.8 19.09 1.45 2.97 25.00 0.64 75 .7 13.7 

40 0.12548 . 109 2.24 74.6 22.28 1.35 3.98 33.23 1.04 107 19.3 

50 0.98400 . lOB 2.60 84.5 23.55 1.19 5.26 41.52 2.58 144 25.9 

60 0.82006 . lOB 5.56 103 27.64 0.00 6.39 49.75 -0.50 180 34.1 

80 0.61217 . lOB 4.84 119 30.02 0.00 9.56 66.42 0.38 264 49.0 

100 0.48912. lOB 5.99 138 33 .59 0.59 12.9 83.16 0.29 365 69.3 

Page Blocks 

2 0.57937. 1011 0.24 1.82 577.05 0.24 1.50 8.19 0.00 8.03 3.98 

10 0.45662 . 1010 206.38 42 .3 168.45 0.80 1.66 49.62 0.00 107 54.8 

20 0.17139 . 1010 70.44 259 367.39 0.00 2.30 92.30 0.19 258 121 

30 0.94106 . 109 399.77 452 417.28 0.75 3.15 132.41 0.00 551 330 

40 0.62570 . 109 485.89 641 477.88 0.17 4.22 172.13 0.00 841 440 

50 0.42937 . 109 725.19 760 503 .03 0.04 5.86 212.27 0.00 1127 610 

60 0.31185 . 109 1057.99 920 571.77 0.00 10.1 254.88 0.33 1706 859 

80 0.20576. 109 1647.96 889 513 .25 1.46 14.2 334.36 0.51 2892 1299 

100 0.14545.109 998.80 796 443.64 0.00 20.5 415.19 0.10 4090 2024 

MS k-means algorithm as the number of clusters increases. 

There is no significant difference between the results of the GKM and the secant 

algorithms on small data sets. However, the GKM requires significantly less com­

putational efforts. Additionally, the secant algorithm works better than the GKM 

algorithm for large data sets and for large number of clusters (k ;::: 25) . The secant 

algorithm is especially effective for data sets such as Ionosphere, Congressional Voting 

Records, Liver Disorders data sets, which do not have well separated clusters. 

The secant algorithm outperforms considerably the MS k-means algorithm for all 

data sets and the number of clusters k > 5. The algorithm produces, as a rule, better 

solutions than the GKM algorithm in many cases. For Ionosphere data set (k ;::: 15), 

Breast Cancer data set (k ;::: 25), Congressional Voting Records data set (k ;::: 30) 

and Liver Disorders data set (k ;::: 40) , solutions obtained by the secant algorithm are 

significantly better than those obtained by the GKM algorithm. However, the GKM 

algorithm takes less CPU time and uses less computational efforts than the other two 

114 



Application to Cluster Analysis 6.5. Conclusion 

Table 6.9: The summary of numerical results 

Data sets MS k-means GKM Secant 

"EE s.r EE s .r EE s.r 

German towns 23.8 6 2.64 8 4. 72 7 

Bavaria postal 1 99.88 6 9.25 7 1.51 8 

Bavaria postal 2 114.97 3 1.86 8 1.86 8 

Fisher's Iris Plant 25.47 5 13.32 4 13.32 4 

Heart Disease 105.16 2 4.77 7 4.16 7 

Liver Disorders 145.11 3 105.48 5 2.92 8 

Ionosphere 109.55 2 40.42 2 -0.54 9 

Congressional Voting Records 70.91 2 16.3 2 3.22 7 

Breast Cancer 69.26 3 19.54 3 1.52 8 

Pima Indians Diabetes 56.13 3 2.58 8 0.59 9 

TSPLIB1060 150.79 2 10.51 5 6.54 8 

Image Segmentation 210.83 1 7.42 6 7.82 5 

TSPLIB3038 22.81 3 9.36 4 5.52 8 

Page Blocks 5592.66 1 3.42 8 1.13 9 

algorithms. 

6.5 Conclusion 

In this chapter, the cluster analysis problem, related literature review and the results 

of different kind of algorithms have been presented. We formulated it as a nonsmooth 

nonconvex optimization problem. To minimize the nonsmooth objective function, we 

applied secant method which is introduced in Chapter 4. To show the numerical 

competence, we presented the results of the secant method and compared with the 

results of MS k-means algorithm and global k-means algorithm which was reported 

in [10] . The numerical results confirmed superiority of the secant method over other 

two algorithms. 
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Conclusion and Future Research 

This thesis investigates the optimization of nonsmooth nonconvex functions. To avoid 

having special assumptions about the objective function such as convexity or smooth­

ness, we have been concerned with locally Lipshitz functions. Despite existence of 

efficient methods for nonsmooth convex problems such as bundle methods and its vari­

ants, there is no effective method for nonsmooth and nonconvex problems. Although, 

we encountered some metaheuristic and hybrid methods to solve such problems, they 

demand huge amount of time and computation to locate a suboptimal solution. 

The significance of the study originates from the frequency of appearance of nons­

mooth nonconvex problems in many areas of research and application. Firstly, many 

practical applications exist where the differentiability assumption is no longer valid. 

This fact makes it impossible to apply traditional gradient based optimization meth­

ods on nonsmooth problems. However, even for many problems with differentiability 

assumption, the existence of errors in calculation may lead to a false solution. These 

considerations insist the role of methods which are able to find the optimal point 

without any dependence on the derivative information. Secondly, in some problems, 

the global solution for the problem is in interest. For these problems, a local solution 

would neglect some important aspects of the design or arrangement. Nevertheless, 

for many traditional methods, they are only able to find the first local solution; they 

get stuck there, and could not jump from the trap to calculate better solutions. The 

problem of finding the global optimal point versus local optimal points pertains to 

the nonconvexity nature of the problem under consideration. 

In this thesis, we have introduced four new methods for nonsmooth nonconvex 

problems. In addition to the theoretical proof of their convergence, they have been 

tested on standard test problems. The numerical experiments confirm their efficiency 

in finding optimal solutions. 
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Contribution of the Study 

As stated above, the design of derivative free methods for nonsmooth optimization 

which are applicable for nonconvex problems is important. Toward this aim, we 

designed some derivative free methods, and using numerical experiments, we showed 

their efficiency for nonsmooth nonconvex problems. Also, we applied them to solve 

some cluster analysis problems, which indicates their ability in dealing with large scale 

problems. Moreover, using one of these methods, we developed a new incremental 

algorithm for cluster analysis. Here is the list of designed algorithms with short 

explanations: 

1. Approximate subgradient method 

The approximate subgradient method is a new algorithm for minimizing locally 

Lipschitz functions. This algorithm is as simple to implement as the subgradi­

ent method, and at the same time it is numerically efficient. Descent directions 

in this algorithm are computed by solving a system of linear inequalities. The 

convergence of the algorithm is proved for quasidifferentiable semismooth func­

tions. 

2. Secant method 

The secant method is a new algorithm to locally minimize nonsmooth, noncon­

vex functions. The notion of secants for nonsmooth functions is introduced. 

The secants are applied to find descent directions of locally Lipschitz functions. 

Then, the latter is used to design a minimization algorithm. It is proved that 

the iterates of this algorithm converges to Clarke stationary points. Also, we 

extended the method to a global search method and called it the global secant 

method. 

3. Quasi secant method 

The notions of quasi secants is introduced and a minimization method is de­

signed based on them. The quasi secants have the ability to exploit more global 

properties and information of the function than the subgradients. 

4. New algorithm for the clustering 

Using the secant method, we developed a new incremental algorithm to solve 
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the clustering problem. In this method, at each step, the nonsmooth nonconvex 

problem of finding a starting points for cluster centers is solved using the secant 

method. 

Future Study 

The numerical results show that the proposed methods are efficient in finding optimal 

solution in comparison with some existing methods. However, we could improve per­

formance of the proposed methods by doing more research in the following directions: 

• Finding descent direction 

Generally in most algorithms for nonsmooth optimization, the descent direction 

is found by solving a quadratic problem which is expensive. This component, 

which is frequently called by the algorithm, plays important role in the CPU 

time and number of function evaluations. In approximate sub gradient method, 

we tried to find descent direction solving a system of linear inequalities. How­

ever, more research is necessary to do in this direction to design more efficient 

methods. 

• Large scale problems 

We successfully applied the methods on some large scale nonsmooth problems. 

However, according to the rapid development in science and technology, larger 

problems are emerging which require especial attention in developing new meth­

ods. 

• Constrained optimization 

Our focus in the thesis was about unconstrained optimization problems. Al­

though, we could convert the constrained optimization problems in uncon­

strained problems, this needs setting some parameters which make the situation 

difficult. In this regard, it would be convenient to do further research to extent 

the designed methods into constrained problems as well. 
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Appendix A 

Test Functions 

The efficiency of the proposed nonsmooth optimization algorithms was verified by 

applying it to some academic test problems with nonsmooth objective functions. We 

consider three types of problems: 

1. Problems with nonsmooth convex objective functions; 

2. Problems with nonsmooth nonconvex regular objective functions; 

3. Problems with nonsmooth, nonconvex and nonregular objective functions. 

Test Problems 2.1-7, 2.9-12, 2.14-16, 2.18-21 and 2.23-25 from [110] and Problems 

1-3, 5 and 7 from [8] have been used in numerical experiments. We also include the 

following problem with nonsmooth, nonconvex and nonregular objective function. 

Problem 1 
p 

minimize f(x) = L . min Ilxi - a i l1 2 

. J=l, ... ,k 
t=l 

Here p = 20, k = 5, x = (xl, . .. , x5
) E IRl5 and the vectors ai E R3

, i = 1, ... ,20 

are as follows: 

a l a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a lO 

1.1 0.8 0.1 0.6 -1.2 0.9 0.2 -0.3 -0.8 0.0 
1.0 -1.6 -1.0 0.2 1.0 1.9 0.2 -0.2 0.6 -0.4 

-0.1 0.3 -0.3 0.2 1.4 -0.8 0.0 0.8 -0.2 0.6 
all a l :.! al;s a l4 a l :> a 16 alI a 1tl a 1ll a 2U 

1.0 0.0 0.0 2.1 0.2 -2.1 -1.0 0.3 1.1 3.1 
0.0 1.0 0.0 -1.4 -1.0 0.0 0.5 -2.0 1.2 -1.5 
0.0 0.0 1.0 1.0 1.0 -1.0 1.5 0.9 1.0 2.1 
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This is well known clustering function (see [27, 14]). We apply it to solve clustering 

problem on two real-world data sets: TSPLIB1060 and TSPLIB3038. The description 

of these data sets can be found in [66]. The first data set contains 1060 2-dimensional 

points and the second data set contains 3038 2-dimensional points. We compute 3, 5 

and 10 clusters for each data set. 

The brief description of test problems are given in Table A.1, where the following 

notation is used: 

• n - number of variables; 

• nm - the total number of functions under maximum and minimum (if the func­

tion contains maximum and minimum functions); 

• jopt - optimum value. 

The objective functions in Problems P27-P33 are the clustering function. In Prob­

lem P27 the number of clusters k = 5, the number of data points p = 20 and they are 

given in Table 1. In Problems P28-P30 data points are from the data set TSPLIB1060 

and the number of clusters in Problem P28 is 3, in Problem P29 it is 5 and in Problem 

P30 10. In Problems P31-P33 data points are from the data set TSPLIB3038 and the 

number of clusters in Problem P31 is 3, in Problem P32 is 5 and in Problem P33 it 

is 10. 

A.O.l Global Optimization Test Functions 

A recent procedure for generating test functions for multiextremal multidimensional 

box-constrained global optimization is proposed by Gaviano et.al [67]. This package 

has capability to generate continiously differentiable, differentiable and non differ en­

tiable test functions. Test functions are generated by defining a convex quadratic 

function systematically distorted by polynomials in order to introduce local minima. 

The user defines the following parameters along with the type of class: (i) problem 

dimension, (ii) number of local minima, (iii) value of the global minimum, (iv) radius 

of the attraction region of the global minimizer, (v) distance from the global mini­

mizer to the vertex of the quadratic function. The most important information about 

these type of test functions are the dimension of the problem and number of local 
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minimas. We refer to these test functions as MDDY with specifying the dimension n 

and multimodality m. 

A.O.2 Performance of Algorithms 

To compare the performance of the algorithms, we use two indicators: nb - the number 

of successful runs considering the best known solution and ns - the number of successful 

runs considering the best found solution by these three algorithms. For Problems P3 

and PIg algorithms found better solutions than those reported in [110]. We take 

these new solutions as the best solutions. Assume that fopt and J are the values of 

the objective function at the best known solution and at the best found solution, 

respectively. Then, we say that an algorithm finds the best solution with respect to 

a tolerance c > a if 
f. - fa < c 
1 + If.1 - , 

where f. is equal either to fopt (for nb) or to ! (for ns), and fa is the optimal value of 

the objective function found by an algorithm. In our experiments c = 10-4 . 
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Table A.1: The description of test problems 

FUnction type Problems n nm fopt 

Nonsmooth PI (Problem 2.1 [110]) 2 3 1.9522245 
convex P2 (Problem 2.5 [110]) 4 4 -44 

P3 (Problem 2.23 [110]) 11 10 261.08258 

P4 (Problem 2.2 [110]) 2 3 0 
P5 (Problem 2.3 [110]) 2 2 0 
P6 (Problem 2.4 [110]) 3 6 3.5997193 
P7 (Problem 2.6 [110]) 4 4 -44 
P8 (Problem 2.7 [110]) 3 21 0.0042021 
P9 (Problem 2.9 [110]) 4 11 0.0080844 

Nonsmooth P10 (Problem 2.10 [110]) 4 20 115.70644 
nonconvex P11 (Problem 2.11 [110]) 4 21 0.0026360 
regular P12 (Problem 2.12 [110]) 4 21 0.0020161 

P13 (Problem 2.14 [110]) 5 21 0.0001224 
P14 (Problem 2.15 [110]) 5 30 0.0223405 
P15 (Problem 2.16 [110]) 6 51 0.0349049 
P16 (Problem 2.18 [110]) 9 41 0.0061853 
P17 (Problem 2.19 [110]) 7 5 680.63006 
P18 (Problem 2.20 [110]) 10 9 24.306209 
P19 (Problem 2.21 [110]) 20 18 133.72828 
P20 (Problem 2.24 [110]) 20 31 0 
P21 (Problem 2.25 [110]) 11 65 0.0480274 

P22 (Problem 1 [8]) 2 6 2 
Nonsmooth P23 (Problem 2 [8]) 2 0 
nonconvex P24 (Problem 3 [8]) 4 0 
nonregular P25 (Problem 5 [8]) 5 0 

P26 (Problem 7 [8]) 5 0 
P27 (Problem 1) 15 100 13.311214 
P28 (Problem 1) 6 3180 6.32621 x 106 

P29 (Problem 1) 10 5300 3.57642 x 106 

P30 (Problem 1) 20 10600 2.13505 x 106 

P31 (Problem 1) 6 9114 7.16372 x 105 

P32 (Problem 1) 10 15190 3.94402 x 105 

P33 (Problem 1) 20 30380 1.84415 x 105 
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