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Abstract 

Subdifferential calculus and separation theorems play a crucial role for applications of clas

sical convex analysis to global optimization. More precisely, they allow the formulation of 

conditions (necessary or sufficient) for the global minimum of some convex optimization 

problems. The theory of abstract convexity generalizes ideas of convex analysis by using 

the notion of global supports and the global definition of subdifferential. In order to apply 

this theory to optimization, w e need to extend subdifferential calculus and separation prop

erties into the area of abstract convexity. This is the main objective of the present thesis. 

First, w e consider two particular cases. W e examine global subdifferentials for convex-

along-rays ( C A R ) functions with respect to different sets of elementary functions and give 

conditions, which guarantee the non-emptiness of these subdifferentials. The results ob

tained can be applied for the global minimization of some C A R functions over subsets of 

lRn by using numerical methods. W e also investigate the weak separability of two star-

shaped sets and derive conditions for the global minimum of the so-called star-shaped dis

tance. This is a "best approximation -like" problem. 

Then w e take a general approach to subdifferential calculus and separation properties 

in the theory of abstract convexity. W e show that the equivalence between local and global 

definitions of abstract subdifferential can provide certain calculus rules for such subdif

ferentials. W e also investigate the notion of A-connectedness of a topological space with 

respect to a convexity on this space and investigate separation properties via such type of 

connectedness. 

At the end of the thesis, w e generalize the notion of a duality between two complete 

lattices, to arbitrary partially ordered sets. W e introduce and examine conjugations and 

abstract subdifferentials corresponding to such type of dualities. Conditions for the global 

minimum in terms of these subdifferentials are given. 
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Chapter 1 

Introduction 

1.1 Overview 

The first monograph on abstract convexity ( [29]) by Kutateladze and Rubinov was pub

lished in 1976 in Russian. The theory of abstract convexity arises naturally from the convex 

analysis and is mainly driven by applications to optimization, namely global optimization. 

It is a well known fact that every local minimum of a convex function over a convex set 

coincides with the global one. So w e can say that in the convex case there are no differences 

between local and global optimization. 

The structure of the subdifferential in convex analysis has two aspects. O n the one 

hand, every subgradient (that is an element of the subdifferential) allows us to construct 

a local approximation of a convex function near a given point. Such approximations can 

give us information about local minimizers. O n the other hand, subdifferential as a global 

notion provides a necessary and sufficient condition for the global minimum. Existence 

of subdifferential calculus can help to find global minimum of some complicated convex 

functions. 

There are two ways for generalizations of ideas of convex analysis. One of them uses 

the notion of local approximation and forms nonsmooth analysis, which solves problems of 

local optimization. The second way leads to the so-called abstract convexity and exploits 

the notion of global supports and the global definition of subdifferential. 

W e know that each lower semicontinuous convex function / is the upper envelope of a 

certain set of affine functions. So the set of all affine minorants of / (the so-called support 

set) contains complete information about the initial function /. Hence conditions for a 
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Introduction 2 

minimum can be easily reformulated in terms of the support set. Such reformulation can 

be very convenient. From this point of view it is not important what kind of functions 

w e consider. W e can get the same constructions for an arbitrary set H of functions (not 

necessarily affine). Then w e will work with upper envelopes of subsets of H instead of 

lower semicontinuous convex functions. 

O n the whole, abstract convex analysis deals with the so-called closure structures and 

generalizes the outer definition of convexity for closed sets, which is based on the separation 

property. 

The main results on abstract convexity and its applications can be found in the books by 

Pallaschke and Rolewicz [37], Singer [57] and Rubinov [41]. Some applications to global 

optimization (namely, investigation of various dual problems and a survey of numerical 

methods) are mainly concentrated in [41]. 

In this thesis w e focus on global subdifferentials and separation properties in the frame

work of abstract convexity. Chapters 2, 3, 4, 6 and the first half of Chapter 5 are based on 

the corresponding papers [45,46,53-55]. 

1.2 Abstract convex functions and sets 

In this section we consider some notions, which have a central place in the theory of abstract 

convexity. All definitions presented here can be found in [41]. 

W e begin with the definition of abstract convex functions defined on a set X, which 

have values in the extended real line _R = IR U {+00} U {—00}. A more general case of 

functions with values in an upper complete semilattice is considered in Chapter 6. 

Definition 1.1 Let H be a set of functions defined on X. A function / : X —» IR is called 

abstract convex with respect to H (shortly iJ-convex) if there exists a set U C H such that 

/ is the upper envelope of this set: 

f(x) = sup{h(x) : heU} for all x e X. 

Functions h G H from the above definition are usually called elementary. The set H of all 

elementary functions is called a supremal generator of the set of all //-convex functions. 

Definition 1.2 Let Y be a set of functions / : X —»• JR. A subset H c Y is called a 

supremal generator of Y if each function / € Y is H-convex. 
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There are two main problems that arise in view of these definitions. The first one: how 

to describe H-convex functions if the set H of elementary functions is given. The second 

problem: how to find a sufficiently small and simple (in a certain sense) supremal generator 

H of the given set Y. Unfortunately, there is no good technique for solving these problems 

in the general case. Nevertheless, there are some results in this direction. The first problem 

is examined in Section 5.6 in a special case. A n attempt to solve the second problem was 

undertaken in [51]. 

Recall that a set Y of functions / defined on X is called an upper complete semilattice 

if a pointwise supremum sup / e F / belongs to Y for every subset F c Y. If we talk about 

functions / e F a s //-convex functions then the assumption that Y is an upper complete 

semilattice seems very natural. Recall also that a subset F of Y is called a chain if for any 

f,g eFwe have either f(x) < g(x) V „ 6 l o r f(x) > g(x) VxeX. Denote by H(Y) 

the set of all functions h € Y, for which there exists a point x° — x°(h) e X such that for 

a ny / G Y the conditions 

f(x°) = h(x°), f(x) < h(x) for all x e X 

imply the equality 

f(x) = h(x) for all x e X. 

The following assertions are valid. 

Proposition 1.1 ([51], Theorem 6.1) Let Y be an upper complete semilattice of functions 

f : X —> IR. If a pointwise infimum mi{f(x) : f e F} belongs to Y for every chain 

F C Y then H(Y) is a supremal generator ofY. 

Proposition 1.2 ([51], Theorem 6.2) Let Y be an upper complete semilattice of functions 

/ : X —• IR If H is a supremal generator ofY then for any function h E H(Y) there 

exists a sequence {hn} C H such that 

h(x) = lim hn(x)for all x € X. 
n—>oo 

So under conditions of Proposition 1.1 the set H(Y) is a supremal generator o f Y and it is 

the smallest in the sense of Proposition 1.2. Unfortunately, as a rule, it is a difficult task to 

describe H(Y) for a given upper complete semilattice Y. 

A classical example of //-convex functions is the usual convex case: every convex lower 

semicontinuous function / : IRn —>• _R+O0 = (-co, +oo] is //-convex with respect to the 
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set of all affine functions (i.e., linear functions plus constants). If H contains only linear 

functions then / is //-convex if and only if it is lower semicontinuous and sublinear. 

M a n y investigations were devoted to positively homogeneous functions. Various kinds 

of generalized derivatives used in nonsmooth analysis are positively homogeneous of degree 

one, and representations of such functions as upper envelopes of some sets of sufficiently 

simple functions can be very useful. 

For instance, it was shown in [10] that each continuous positively homogeneous of 

degree one function / defined on the Euclidean space can be represented as the supremum 

of a subset of the set H = {h : h(x) = -a\\x\\ + [«, x ] ; a > 0 , u G IRn} (here || • || is the 

Euclidean norm and [u, x] is the inner product of vectors u and x). 

Supremal generators for the set of all symmetric positively homogeneous of degree two 

functions (these functions arise in nonsmooth analysis as approximations of the second or

der) were considered in [16] and [17] for finite-dimensional and Banach spaces respectively. 

Another area, where abstract convexity is applicable, is the so-called monotonic analy

sis. Abstract convexity is a convenient tool for investigation of various classes of monotonic 

functions. Monotonicity arises in many areas of mathematics and its applications. In par

ticular, production, utility and cost functions, which describe the behaviour of economic 

agents, are monotonic with respect to the coordinate-wise order relation (see, for exam

ple, [19]). There are some works on this theme, where monotonic functions are studied in a 

very general setting (see [14], [15], [42]). Monotonicity was understood there with respect 

to a certain order relation induced by a solid closed convex cone K C X: 

x<y^=^y-xeK (x,y e X). 

Here w e consider only the results related to increasing functions defined on K " + = {x € 

IRn : xt > 0 Vi}. A function / : IR++ —• M + 0 0 is called increasing if 

(x,yelRn++, x<y) => f(x)<f(y), 

where the inequality x < y means that Xi < y{ for alU = l,...,n. Four classes of 

increasing functions defined on _R+ + were studied in the framework of abstract convexity: 

increasing positively homogeneous (IPH), increasing radiant (InR), increasing co-radiant 

(ICR) and increasing convex-along-rays (ICAR). 

Recall that a function / : IR++ ->• 1R+ = [0, +oo] is called radiant if/(Ax) < Xf(x) 

for all x € IR++ and A € (0,1). A function / : ]R++ -> IR+ is said to be co-radiant if 
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f(Xx) > Xf(x) \/x G IR++, V A G (0,1). A function / : IR"+ —> IR+0o is convex-along-

rays provided for each x G 1R++ the function fx(t) = f(tx) is convex on (0, +00). Note 

that the sets of all IPH, InR, ICR and ICAR functions are upper complete semilattices. 

The following min-type functions play a key role in the study of these classes of increas

ing functions: 

l(x) = {l,x)= min kxi, (l,x eJRl,). (1.1) 
1=1,..,n 

Let us describe supremal generators of the sets (for IPH, ICR and ICAR they can be found 

in [41]; for the set InR see [51]). 

A function / : 1R"+ —»• 1R+ is IPH if and only if it is L-convex with respect to the set 

L = {1: l(x) = (I, x), I G TRI+} U {0}. 

A function / : IR" + —»• 1R+ is InR if and only if it is //-convex, where H = {h : 

h(x) = ccpi(x), I G 1R++, c > 0} and the functions ipi are defined on _R"+ by 

f 0, if(/,x}<l, 
<Pl{x) = <p(l,x)={

 W ' (1.2) 
{ (l,x), if(l,x)>l. 

A function / : IR++ —• 1R+ is ICR if and only if it is //-convex, where H = {h : h(x) = 

min((Z,x),c), I G H + + , c > 0}. 

At last, a function / : H + + —» B + 0 0 is ICAR if and only if it is //-convex with respect 

to the set H = {h : h(x) = l(x) - c, I e L, ce IR}. 

One of interesting immediate applications of supremal generators is the following Prin

ciple of Preservation of Inequalities ( [28]). 

Proposition 1.3 Let Y be a set of functions defined on a set X and equipped with the 

natural order relation. Let H be a supremal generator of Y. Furthermore, let ip be an 

increasing functional defined on Y and let x G X. Then 

(h(x)<i)(h)forallhzH) < ^ (f(x) <^(f)far all f G Y ) . 

So if we have a set of elementary functions H and a certain inequality holds for all 

he H then the same inequality holds for each //-convex function /. A classical example 

of increasing functional if) defined on a set of functions is the integral. Hermite-Hadamard 

inequality states that for any convex function / : [a, b) —> IR 
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The inequality in the left-hand side of (1.3) is obvious for affine functions /. Hence, by the 

Principle of Preservation of Inequalities, it holds for convex functions as well. There are 

many generalizations of Hermite-Hadamard inequalities for different classes of nonconvex 

functions (see, for example, [12], [38] and the references therein). Consider some of them. 

Let / : [a, b] —> IR be integrable on [a, b] and such that 

f(Xx + (1 - X)y) < M + 1M. for all x, y G [a, b], X G (0,1). 

Then ([13]) 

and the constant 4 in this inequality is sharp. 

If / : [0,1] —»• IR is a nonnegative quasiconvex function then for any u G (0,1) the 

following inequality holds ([41]) 

f(u) < ~r-r\ r / f(x) dx. 
mm(u, 1 - u) J0 

Let / be an ICAR function defined on _R++ = {(x,y) G IR
2 : x > 0, y > 0}. Let 

D C 1R++ be a closed domain (i.e., a bounded set such that cl int D = D). Denote by 

A(D) the area of D. Let (x, y) G D be a point such that 

r—r / min ( -, - ) dxdy = 1. 
A(D) 

Then ([11]) 

/ ( x , y ) < - ^ r / f(x,y)dxdy, 

and this inequality is sharp. 

If/ : _R++ —»• 1R+ is an increasing radiant function and D C IR++ is a closed domain 

(in topology of _R"+) then we have the inequality ([52]) 

for all points x G D satisfying the equality 

M/XM"*=1' A(D) 

where the function <p is defined by (1.2) and 1/x = (l/aii, • • •, l/xn). 

N o w consider further notions related to abstract convexity. 
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Definition 1.3 Let / : X -»• IR. The set 

supp (/, H) = {h G H : h<f} (1.4) 

of all //-minorants of/ is called the support set of the function / with respect to the set of 

elementary functions H. 

Here h< f means that h(x) < f(x) for all x e X. The definition of//-convex functions 

can be reformulated as follows: a function / : X —• IR is //-convex if and only if its 

support set supp (/, H) is not empty and f(x) = sup{ft(a;) : A G supp (/,//)} V z G X. 

A general approach of abstract convex analysis to global optimization problems is based 

on the calculation of support sets. Namely, w e need to have a description of the following 

sets: 

d*Hf(y) = {heH: h G supp (/,//), h(y) = /(„)}. (1.5) 

Sufficient condition for the global minimum of the function / over X can be formulated in 

terms of the set d*Hf(y): if there exists a function h G d*Hf(y) such that h(y) = Mx€X h(x) 

then f(y) = inf~e^ /(a;). If H contains all constants then we have a necessary and suf

ficient condition: f(y) = MxeX f(x) if and only if the set d*Hf(y) contains the constant 

At the same time, in some numerical methods (see ( [41], Chapter 9) and the references 

therein), it is sufficient to know for each y G X at least one elementary function h G 

SUPP (/, H) such that h(y) = f(y). For example, in the so-called ̂ -bundle method, which 

was studied in detail by Pallaschke and Rolewicz in [37], a global minimizer o f / over X 

is represented as a limit point of a sequence of solutions of auxiliary global minimization 

problems. In order to construct these auxiliary problems we need to have for each y G X 

at least one function h < f with h(y) = f(y). 

Support sets can be useful also in the study of some constrained problems. A dual 

characterization of the problem of global minimization of an objective function subject to 

some inequality constraints can be given in terms of support sets (see, for example, [44]). 

Methods of abstract convex analysis are mostly adapted for needs of global optimiza

tion. Nevertheless, they are applicable for problems of local optimization as well. In gen

eral, w e have the following condition for the global minimum over a subset Z c X: if 

there exists a function h G d*Hf(y) such that h(y) = inf~ez h(x) then f(y) = infxeZ f(x). 

For example, the problem of global minimization of IPH functions over the unit simplex 
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was examined in [1]. In particular, if Z is a neighbourhood of y then we get: if there exists 

a function h G d^f(y) such that h attains at y its local minimum then y is also a local 

minimizer of/. 

Definition 1.4 Let / : X —> _R. Assume that the support set supp (/, H) is not empty. 

Then the function coHf defined by 

coHf(x) = sup{h(x) : h G supp (/, //)}, (z G X) (1.6) 

is called the //-convex hull of the function /. 

It is clear that //-convex hull of a function / coincides with the greatest //-convex function 

which minorizes /. So a function / : X —»• IR is //-convex if and only if / = conf-

Definition 1.5 A set U C H is called abstract convex with respect to X (or (//, AT)-convex) 

if there exists a function / : X —> IR such that U = supp (/,//)• 

In other words, a set [/ C H is called (//, AT)-convex if 

U = {heH: h(x) < fv(x) Vx G X}, 

where 

frfx) = supu(x) (1.7) 
ueu 

is the support function of the set [/. 

If U' is a (//, AT)-convex set then for any nonempty subset UofH the following asser

tions are equivalent 

(U C U') < ^ (fu < fv>). 

Every //-convex function / gives us its support set U = supp (/, H) (which is (//, X ) -

convex) and coincides with the support function fv of this set: f — fu- Conversely, each 

(H, X)-convex set U determines its support function fv (which is //-convex) and coincides 

with the support set supp(fu,H) of this function: U = supp (fu, H). This one-to-one 

correspondence between abstract convex functions and sets is called the Minkowski duality. 

Definition 1.6 The intersection of all (H, X)-convex sets containing a set U C H is called 

the abstract convex hull or (H, X)-convex hull of the set U. This hull is denoted by coH,xU 

(or shortly coHU). 
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It is easy to see that for any set U C H its (//, X)-convex hull coHU is equal to the support 

set of its support function: 

coHU = swpp(fu,H). (1.8) 

Indeed, due to the Minkowski duality 

coHU = f]{U' : U' is (H, X)-convex, U C U'} 

= f]{supp(/,H) : /is //-convex, U C supp(/,//)} 

= f| {supp (/, H) : /is //-convex, /^ < /} 

= {/i G // : h < f for all //-convex functions / such that fv < /} 

= {heH: h <fu} = supp (fv,H). 

Thus, abstract convex sets are exactly the support sets of their support functions. Since 

optimality conditions can be formulated in terms of support sets then it is very important to 

have a description of abstract convex sets. For example, if (hx + h2) G H for all hlth2e H 

then for any //-convex functions /i, /2 the following holds (see [41]) 

supp (/t + f2, H) = coH (supp (f1} H) + supp (f2, //)). 

Hence, if the set (supp (fx, H) + supp (f2, //)) is (H, X)-convex then we deduce that the 

support set of the sum coincides with the sum of support sets. Note also that the maxi

m u m of two abstract convex functions is always abstract convex, and the support set of 

the maximum coincides with the abstract convex hull of the union of support sets of given 

functions: 

supp (max(/!, f2), H) = co^(supp (fu H) U supp (f2, //)). 

Consequently the problem of describing abstract convex hull of the union of abstract convex 

sets is of exceptional importance. 

As a rule, describing abstract convex functions is much easier than describing abstract 

convex sets. In Chapter 5 we derive some conditions, which guarantee a description of both 

abstract convex functions and sets. W e also give a description of the abstract convex hull of 

a finite union of abstract convex sets. 

Consider two examples of abstract convex sets. 

If// consists of all linear functions h : IRn -»• IR then a set U C H = I T is (//, B i 

convex if and only if it is closed (in the topological space IRn) and convex. 
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If// consists of all min-type functions defined by (1.1) then a set U C H = IR++ is 

(H, IR"+)-convex if and only if it is closed and normal. The latter property means that U 

contains every u' G H such that u' < u for certain u G U. 

1.3 Abstract subdifferential and conjugation 

In this section we discuss classical versions of conjugation and abstract subdifferential for 

real-valued abstract convex functions. Some more general types of conjugations and sub-

differentials based on the notion of duality are examined in [57] for functions with values 

in a complete lattice. In Chapter 6 w e generalize the notion of duality and investigate cor

responding conjugation and subdifferential for functions with values in an upper complete 

semilattice and a partially ordered set respectively. 

Let L be a set of finite functions / : X —> IR. Denote by HL the set of all functions 

h(x) = l(x) - c defined on X, where I e L and c e JR. Here we are interested in HL-

convex functions. Note that the set HL is closed under vertical shifts, that is, (h + c) G HL 

for all h G HL and c G IR. This property of the set of elementary functions allows one to 

investigate abstract convex functions via the notions of a conjugate function and abstract 

subdifferential. 

Definition 1.7 Let / : X -+ IR. The function /£ : L -»• IR defined by 

fl(l) = sup(J0_) - f(x)), (leL) (1.9) 
xex 

is called the Fenchel-Moreau L-conjugate of/. 

The Fenchel-Moreau second //-conjugate /£* : X —> _R is defined as follows: 

/_*(*) = sup(/(x) - fl(l)), (x G X). (1.10) 
leL 

W e see that for any function / : X —> _R its second L-conjugate /£* is either H L -convex or 

identically equal to -co (if f*L = +00). Since ini{h(x) : h G HL} = -00 then it is natural 

to accept the following: if a function / : X —> IR has empty support set supp (/, HL) = 0 

then its H L -convex hull conLf is identical —00. 

The Fenchel-Moreau theorem (see, for example, [57]) states that for an arbitrary func

tion / : X —> IR its second L-conjugate coincides with the //^-convex hull: /£* = coHLf. 
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In particular, we get the following characterization of //^-convexity: a function / : X —> 

IR+0O is //_-convex if and only if / = /£*. 

Another important property of the Fenchel-Moreau conjugation is related to the notion 

of support set. For more convenience we will identify every pair (I, c) G L x IR with the 

function h(x) = l(x) — c. Then for any function / : X —• IR its support set supp (/, HL) 

with respect to HL coincides with the epigraph epi /£ = {(/, c) G L x IR : /£(/) < c} of 

the function /£. Indeed, 

supp (/, HL) = {(I, c) G L x IR : l(x) - c < f(x) Vx G X } 

= j ( I , c ) e _ x E : sup(/(a:) - f(x)) < c) = epi /£. 
L x£X J 

Thus, if we have a calculus of conjugate functions then a calculus of support sets is known 

as well, and vice versa. 

Definition 1.8 Let / : X —>• IR+0O and y G X be such that /(y) < -f-oo. The set 

dLf(y) = {1&L: l(x) - l(y) < f(x) - /(y) Vx G X } (1.11) 

is called the abstract subdifferential (or L-subdifferential) of the function / at the point y. 

Elements of L-subdifferential are called L-subgradients. 

It is easy to see that the subdifferential <9z,/(y) consists of all functions / G L such that 

the supremum in (1.9) is attained at the point y. Thus, the notions of L-conjugate function 

and L-subdifferential are related. 

It follows from (1.11) that there is a one-to-one correspondence between the subdiffer

ential dLf(y) and the set d*HJ(y) = {heHL: he supp (/, HL), h(y) = f(y)}. Every 

abstract subgradient I e dLf(y) forms the elementary function h(x) = l(x) - l(y) + f(y) 

which belongs to the support set supp (/, HL) and coincides with / at the point y: h(y) = 

f(y). O n the other hand, if h(x) = l(x) - c (I e L), h(y) = f(y) and h < f then 

h(x) = l(x) - l(y) + f(y) and / G dLf(y). Thus, we have 

grHLf{y) = {heHL: h(x) = l(x) - l(y) + f(y), I G dLf(y)}. (1.12) 

In particular, for a finite function / : X -> IR, nonemptiness of all L-subdifferentials 

dLf(y) implies that / is //^-convex. This means that the notion of L-subdifferential is 

a natural tool for examination of //^-convex functions. It should be mentioned that the 

reverse statement is not true in general. 
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In the previous section w e considered conditions for the global minimum of a function 

/ in terms of the set d*Hf(y). Formula (1.12) shows that, if the set of elementary functions is 

closed under vertical shifts, then the notion of abstract subdifferential allows one to simplify 

the description of the set d*Hhf(y). Indeed, to ensure that a function h e H L belongs to 

dffLf(y) w e need to check the equality h(y) = f(y) and the inequality h < f. In contrast 

to the set <9#L/(y), the definition of L-subdifferential contains only the inequality h < f 

with the elementary function h G HL defined by h(x) = l(x) — l(y) + f(y). Therefore 

the description of abstract subdifferential is easier than description of the set d*HLf(y). In 

view of (1.12), the conditions for global minimum can be easily reformulated in terms of 

subdifferentials. 

First, assume that L contains identical zero. Then the abstract subdifferential provides 

the following necessary and sufficient condition for the global minimum of a function / : 

X —* H + o o over X : 

f(y) = inf f{x) if and only if 0 G dLf(y). (1.13) 
x£A 

If L does not contain identical zero then w e can use the following sufficient condition: 

if a function / G dLf(y) exists such that l(y) = inixeX l(x) then f(y) — inf-gx f(x). 

It is convenient to consider also the set VLf(y) along with the L-subdifferential dLf(y) 

(see [41] p. 364, where this set was denoted by Vf(y)): 

T>Lf(y) = {heHL: h(x) = l(x) - l(y), I G dLf(y)}. (1.14) 

Then the above statement takes the form: if VLf(y) contains a nonnegative function then y 

is a global minimizer of / over X . 

In order to apply these optimality conditions, w e need to have a calculus of abstract 

subdifferentials. There are two approaches to this problem. The first one means immediate 

calculation of subdifferentials for some abstract convex functions. The second approach is 

based on finding certain calculus rules, which allow to describe subdifferentials of some 

combinations of abstract convex functions via subdifferentials of given functions. For ex

ample, the maximum of abstract convex functions is always abstract convex with respect 

to the same set of elementary functions. So the question " H o w is the subdifferential of 

the m a x i m u m of some functions via the subdifferentials of given functions expressed?" is 

natural. 
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As a rule it is a difficult task to describe the whole subdifferential, and we have only 

some abstract subgradients. Then only numerical methods and sufficient conditions for a 

minimum are applicable. For example, in Chapter 2 w e have a situation, when obtaining 

the description of the whole subdifferential seems unlikely. 

It seems there is still no general theory of subdifferential calculus for abstract convex 

functions. W e try to fill this gap in Chapter 4 based on the recent paper [53]. W e use there an 

approximation function, which is a little bit different from that in [53]. In order to get some 

calculus rules it is assumed that the set HL has the so-called strong globalization property. 

Nevertheless, there have been separate investigations of abstract subdifferentials for 

different classes of abstract convex functions. They allow to derive conditions for global 

optimality of some particular problems (see, for example, [21,22,61]). 

Moreover, in some cases we can get exact and sufficiently simple formulas for the L-

subdifferentials. Consider one nonconvex example. Let L be the collection of all min-type 

functions defined by (1.1). Let p be a proper (that is finite and non-zero) IPH function 

defined on WC++ and y G IR^+. Then ([41], Theorem 2.4) 

M») = {'='>^.p(j)=l}. 

where p(y)/y = (p(y)/yi, • • . ,p(y)/yn) and l/l = (1/h,..., 1/4). 

If a function / is I C A R and strictly increasing at y G 1R++ (this means that f(x) < f(y) 

for each x < y) then (see [43]) 

dLf(y) = {t/y. tedfy(i)}, 

where fy(a) = f(ay) for a > 0 and dfy(l) = {t > 0 : ta-t<fy(a)- /„ (1) V a > 0}. 

1.4 Separation properties in axiomatic and abstract con

vexity 

Axiomatic convexity deals with families of sets, which have some properties of usual con

vex sets. A general theory of convex structures can be found, for example, in [58] and [60]. 

Here w e use the following definition (see [60], p. 3). 

A collection Q of subsets of a set X is called a convexity on X if 

(1)0,XG_? 
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(2) P) A G g for every A C Q 

(3) U A e Q whenever A C Q is a chain with respect to the inclusion. 

Members of _7 are called convex sets and the pair (X, Q) is called a convexity space. For 

any subset A C X its convex hull convg^ is defined by conv6,4 = f]{G e Q : AcG}. 

Along with convexity spaces consider also the so-called closure spaces ( [60], p. 4). 

The pair (X, _7) is a closure space provided that 0, X G Q and Q is stable with respect to 

intersections, that is, f] A G Q for every A C Q. Members of Q are called closed sets and Q 

is called a protopology (Moore family) on X . Closure spaces go back to Moore [35]. They 

have a central place in lattice theory ([4]). 

Abstract convex analysis deals with such closure spaces. Indeed, the intersection of any 

family of epigraphs of abstract convex functions is also the epigraph of an abstract convex 

function, and the intersection of any family of abstract convex sets is abstract convex as 

well. 

Note that each convexity space (X, Q) is also a closure space. As a rule, in abstract 

convex analysis w e are interested in closure spaces, which are not convexity spaces. For 

example, in classical convex case the convexity space consists of all convex sets. At the 

same time, in the framework of abstract convexity, it is convenient to investigate only closed 

convex sets. 

Separation properties in axiomatic and abstract convexity are based on separation of 

complicated sets by sufficiently simple sets. Here w e consider a strong version of separa

bility for disjoint sets. Let A,B,H c X . W e say that H separates A from B provided 

that A C H and B C X\H. The following two cases are the most interesting: A and B 

are convex sets; A is convex and B is one-point set. It is important that the convex set H, 

which separates A from B, should be simple enough. 

Consider an interesting example of convexity o n / x E , where / C IR is an interval. 

Example 1.1 Let T be a family of continuous functions ip : I —> IR. Assume that T is a 

two-parameter family (see [2]). Last means that for any two points (xx,y^),(x2,y^) G /xlR 

with xi =£ x2 there exists exactly one ip G J
7 such that tp{xi) = yi and ip(x2) = y2. Let 

(P(xim)(x2,w)
 b e the function determined by the point (xx, yi) and (x2,y2). 

Beckenbach [2] introduced the notion of generalized convex functions in the following way: 

a function / : J -> It is said to be .F-convex if for any xx,x2e I, xx < x2 

f(x) < V(x1>/(-1))(x2,/(x2))(^), XX<X< X2. 
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Note that this definition does not coincide with the Definition 1.1. Namely, each :F-convex 

in the sense of Definition 1.1 function / : / —>• IR is .F-convex in the sense of Beckenbach. 

The reverse is not true. 

Using a similar idea, Krzyszkowski [26] introduced the notion of generalized convex sets. 

First, for each a = (xx, yx), b = (x2,y2) e I x IR define the generalized segment [a,b] C 

/ xIR: 

[a, b] = {(x, <P(xl,yi)(x2,y2)(
x)) '• min{:ri, x2} < x < max{x1, x2}}, if xx ^ x2 

and 

[a,b] = {(xi,y) : min{yi,y2} < y < max{yi,y2}}, if xx = x2. 

Then a set A C / x IR is said to be ̂ -convex (see [26]) if for any a,b G A we have 

[a, b] C A. It is easy to check that the collection of all ̂ "-convex sets is a convexity on 

I xTR. 

Such type of generalized convex functions and sets possesses strong separation properties. 

Here w e present only the result for sets, which was proved in [36]. Let A, B C / x IR be 

disjoint ̂ -convex sets. Then there exists an ̂ -convex set H which separates A from B 

and such that its complement (/ x JR)\H is also .F-convex. 

Let us consider separation properties in abstract convex analysis. If a function / : Y —> 

_R is L-convex then for any (y,c) G" epi / a function / G L exists such that epi / c epi / 

and (y, c) g* epi/. If a set U C L is (L, y)-convex and a function / G L does not belong 

to U then a point y eY exists such that l(y) > swpueU u(y). Hence U C H and / g" //, 

where H is an (L, F)-convex set defined by H = {h G L : h(y) < c} and c is a number 

such that l(y) > c> supue[/ u(y). In order to use these separation properties efficiently we 

need a description of abstract convex functions and sets. This is the main problem related 

to separability in abstract convex analysis. 

It appears that, in the framework of the notions of abstract convex functions and sets, 

w e usually deal with the separation of a set from a point in its complement. However, in 

some cases, which refer to abstract convexity, the separation property (in a certain sense) 

is also valid for pairs of sets. Separability of two sets can be very useful for formulation 

of optimality conditions of special global optimization problems. Namely, this finds ap

plications in some best approximation problems (see, for example, [31-34,47,48,56]). In 



Introduction 16 

Chapter 3 we discuss the weak separability of two star-shaped sets and derive conditions 

for the global minimum of the so-called star-shaped distance. 

N o w consider some general results from axiomatic convexity. W e begin with the sepa

ration theorem of Kubis [27] concerning two arbitrary convexities on a set. This result is a 

common generalization of results of Ellis [18] and Chepoi [6]. 

Theorem 1.1 ([27], Theorem 3.1) Let Q andH be two convexities on a set X. The follow

ing conditions are equivalent: 

(a) For every x,y,z G X and finite sets S,T C X such that x e comg({z} U S) and 

y e convn({z} U T) it holds that convg({y} U S) n c o n v e x } U T) =£ 0. 

(b) If A e Q and B G H are disjoint then there exist disjoint sets G e Q and H e H 

such that A c G, B c H and G U H = X. 

Equalities G n Z / = 0 a n d G U / / = X i n condition (b) mean that H = X\G. So we 

have that G is convex in convexity _7 and its complement is convex in convexity H. This 

allows to hope that H and G are sufficiently simple. 

In the classical convex case (see [24]) two disjoint convex sets in a real vector space 

can be separated by a halfspace (i.e, a convex set with the convex complement). W e can 

generalize the notion of a halfspace in the following natural way: a subset H C X of 

convexity space (X, Q) is called a halfspace provided H e Q and (X\H) G _7. There are 

some separation properties of convexity spaces formulated in terms of such halfspaces. W e 

consider the following separation axioms due to Jamison [20]: 

S3 : If A C X is convex and x G X\A then there is a halfspace H of X with A C H and 

x&H. 

S4 : If A, B C X are disjoint convex sets then there is a halfspace H of X with A c / / 

and B C X\H. 

The next theorem gives a characterization of properties S3 and S4 via screening of poly-

topes (i.e., convex hulls of finite sets) by convex sets. Recall that two sets A, B C X are 

said to be screened by C, D c X if A C C\D, B C D \ C and C U L> = X (cf. [59]). It 

is easy to see that screening by two convex sets is a weaker property than separation by a 

halfspace. Indeed, if a halfspace H separates A from B then A and B are screened by the 

convex sets H and X\H. 
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Theorem 1.2 ([60], Theorem 3.8) (Polytope Screening Characterization) 

1.) A convexity space satisfies S3 if and only if each polytope and each point in its 

complement can be screened by convex sets. 

2.) A convexity space satisfies 5 4 if and only if each pair of disjoint polytopes can be 

screened by convex sets. 

The situation becomes easier if the convexity is of finite arity. Let N be a positive integer 

and (X, Q) be a convexity space. Then g is called AT-ary (or of arity N) (see [60]) provided 

that a set A C X is convex if and only if convg{ai,..., aN} c A for all ai,..., aN e A. 

Theorem 1.3 ([27], Theorem 4.2) Let (X, g) be a convexity space. Ifg is N-ary then the 

following conditions are equivalent: 

(i) Every two disjoint convex sets can be separated by a halfspace. 

(ii) Every two disjoint N-polytopes can be separated by a halfspace. 

(iii) Every two disjoint N-polytopes can be screened by convex sets. 

(iv) Ifx e convg{c, ai,..., a/v-i} andy e convg{e, b\,..., 6/v-i} then 

convey, oi,..., aN^} p| convex, h,..., bN^} ^ 0. 

Note that Theorems 1.1 and 1.2 do not imply any description of convex sets. On the 

other hand, if such a description is given by definition of considered convexity, then there 

is no clear description of halfspaces and sets G G _/ with (X\G) G H. Moreover, con

dition (a) in Theorem 1.1 and the polytope screening in Theorem 1.2 are complicated for 

verification, because they involve arbitrary finite subsets of X . 

Theorem 1.3 gives an easier characterization of the separation property _?4, however this 

theorem (as well as Theorem 1.2) does not imply exact description of the collection of all 

halfspaces. Therefore we have no sufficient information about the sets, which can separate 

two convex sets. 

Thus, there are two main problems concerning separability in axiomatic convexity the

ory, namely the description of convex sets and the description of collections of sufficiently 

simple convex sets, which can separate arbitrary convex sets. 
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In abstract convex analysis w e usually deal with the situation, when the collection of 

elementary sets is given. Then w e need to get a description of sets, which can be represented 

as the intersection of a subfamily of this collection. 

It seems there is no solution of these problems in the general case. Hence w e need 

some restrictions. In Chapter 5, as a sort of such restriction, w e choose a special type of 

connectedness of a topological space with respect to a convexity on this space. Although 

separation properties in axiomatic and abstract convexity have no distinctions in kind, w e 

can say that Theorems 5.4 and 5.5 relate to abstract convexity while all results of Section 

5.2 are in the framework of axiomatic convexity. A s an application, w e give a description 

of abstract convex functions and sets. 



Chapter 2 

Subdifferentials of convex-along-rays 

functions 

In this chapter we study lower semicontinuous convex-along-rays (briefly, CAR) functions 

defined on an Euclidian space IRn and mapping into semi-extended real line _R+Oo := IR U 

{+00}. These functions were introduced and examined in [49], see also [41]. Here we 

examine the existence of abstract subgradients of C A R functions with respect to different 

sets of elementary functions. 

2.1 CAR functions and abstract convexity 

First we recall some definitions and results from [41], which are required in the current 

chapter. 

A function / : IRn —»• IR+0O is called convex-along-rays if its restriction /- on the ray 

Rx — {Xx : X > 0} is a convex function for each x e lR
n. In other words, / is C A R if the 

function /- : [0, +oo) -»• R + 0 _ defined by /X(A) = /(Arc) is convex for each x G IR
n. 

A function / : IRn —• IR+00 is called convex-along-lines (CAL) if its restriction /- on 

the line Lx = {Xx : X G IR} is a convex function for each x G _Rn. This special case of 

C A R functions was investigated in [9]. 

Positively homogeneous of degree one (briefly, PH) functions are C A R and they are of 

special interest in this chapter. Recall that I : IRn -* _R+Oo is P H if l(Xx) = Xl(x) for all 

x e JRn and A > 0. If p is P H and p(0) < +oo then p(0) = 0. 

C A R functions can be studied by the methods of abstract convexity. W e examine here 

19 
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abstract subdifferentials of C A R functions. 

Let L be a family of P H functions I: IRn -> IR and HL = {/iZc :l e L, ce IR}, where 

h>i,c(x) = l(x) — c. Consider an //^-convex function /. It is easy to check and well-known 

that the subdifferential dLf(y) is not empty if and only if there exists h e HL such that 

h(x) < f(x) for all x G IRn and h(y) = f(y). 

If p is P H then (see [41]), p is //^-convex if and only if p is L-convex and 

dLp(y) = {leL:l<p,l(y)=p(y)}. 

In this chapter we consider the sets L :— Cs of functions £ defined on IR
n by 

£(x) = min [lhx], xeM
n, (2.1) 

1=1,...,8 

where s is a positive integer and [/, x] stands for the inner product of vectors I and x. As 

a rale we assume that either s = n+ 1 or s = n. The function £ defined by (2.1) is 

PH. It is known (see [41]), that a lower semicontinuous (briefly, lsc) C A R function / with 

0 G d o m / := {x G H n : f(x) < +00} is Z/cn+1 -convex. Some lsc C A R functions are 

///^-convex. 

W e examine conditions that guarantee the non-emptiness of Cn+i -subdifferentials for 

C A R functions / with 0 G d o m / and £n-subdifferentials for C A R functions that /L_n-

convex. 

W e start with the existence of £s-subgradients. This question was investigated in [41], 

pp. 220-223 for s = n + 1. Unfortunately some of the results presented in [41] are not 

correct. W e present a revised version of these results in Section 2.3. 

2.2 £s-convexity and £s-subdifferentiability of positively 

homogeneous functions 

Positively homogeneous of degree one functions form the simplest class of CAR functions. 

So we shall start with lsc P H functions. 

Theorem 2.1 (see Theorems 5.14 and 5.15 in [41]) A function f : IRn -» lR+00 is £n+i-

convex if and only if this function is PH and lsc. Let f : IR" -• IR+oo be a lsc and PH 

function andx0 G dom/, x0 ̂  °- Then the subdifferential dcn+1f(x0) is not empty if and 
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only iff is calm of degree one at x0, that is 

uminfZM___£_>_0O. 
z->~o ||_C — _Co || 

We now consider nonnegative PH functions p with 0 G dom p. These functions are Cn-

convex. In order to study them w e need the following well-known definitions (see, for 

example, [41], Chapter 5). 

Let U c IRn be a set. The set 

kern/7 = {uG U:u + X(x-u) e U for all x e U and AG[0,1]} (2.2) 

is called the kernel of U. A set U is called star-shaped if kern U ^ 0. A star-shaped set U is 

called radiant if 0 G kern U. If U is a star-shaped set and u e kern U then U — u is radiant. 

Let U c IRn be a radiant set. The function 

pu(x) = inf{A > 0 : x G XU} (2.3) 

is called the Minkowski gauge of a radiant set U. (It is assumed here that the inf 0 = 

+oo, sup0 = 0.) The Minkowski gauge of a closed radiant set U is a lsc nonnegative 

positively homogeneous function. It can be proved that each lsc nonnegative positively 

homogeneous function p : IRn —> [0, +oo] coincides with the Minkowski gauge \xv of the 

set U = {x e JRn : p(x) < 1}. It follows from the presented geometric interpretation of 

nonnegative P H functions that each proper nonnegative lsc P H function is £n-convex (see 

Theorem 5.13 in [41]). 

W e can also use this geometric interpretation for examination of /.-.-subdifferentials of 

nonnegative P H functions. W e need the following definition (see [41], Definition 5.21). 

Definition 2.1 Let U C lRn be a closed set and x G U, x ^ 0. A collection of linearly 

independent vectors £ — (h,- • • ,lm) is called a support collection to U at x if [k, x] = 

1 (i = 1,... ,m) and 

min [k,u] < 1 for all ueU,u^x. (2.4) 
i=l,...,m 

Equalities [h,x] = ... = [lm, x] are used here only for normalization. It is important that 

[li,x] > OforalH. 
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Proposition 2.1 Let p be a nonnegative PHfunction and U = {x : p(x) < 1}. Letp(x0) = 

1 and let there exist a support collection £ = (lu... ,ln) toUat xQ. Then £ e dCnp(x0). 

Proof The equality £(x0) = 1 = p(x0) holds. So we need to show that £(x) < p(x) for all 

x. Clearly we can consider only x G dom p. Let +oo > p(x) > 0. Then u = x/p(x) e U 

and p(u) = 1, hence £(u) = mim=1^!n[k,u] < 1 = p(u). It follows from this that 

p(x) > £(x). Ifp(x) = 0 then Xx e U for all A > 0, hence £(Xx) < 1 for all A > 0. This 

means that £(x) < 0 = p(x). • 

A function p is called locally Lipschitz at x0 if the restriction of p to a neighborhood of 

p is Lipschitz. 

Theorem 2.2 Let p be a nonnegative PH function. Assume that p is locally Lipschitz at a 

point x0 with p(x0) = 1 and let U = {x : p(x) < 1}. Then there exists a support collection 

to the set U at the point XQ. 

The proof follows from Theorem 5.7 and Corollary 5.6 in [41]. 

Theorem 2.3 Let p be a nonnegative PH function. Assume that p is locally Lipschitz at 

a point xQ such that p(x0) > 0. Then dcnp(x0) ^ 0. Ifp(x0) = 0 then 0 G dCnp(x0). 

Consequently dcnp(x0) ^ 0. 

Proof Let p(x) > 0. It is easy to check that dcnp(x) = dCnp(Xx) for A > 0, so we can 

assume without loss of generality thatp(:ro) = 1. Then the result follows from Proposition 

2.1 and Theorem 2.2. If p(x0) = 0 then the inclusion 0 G dcnp(xQ) is trivial. • 

2.3 Lower affine approximations and £s-subdifferentials 

of convex-along-rays functions 

Our goal is to extend the results that are known for positively homogeneous functions, to the 

case of lsc C A R functions with 0 G dom /. For this purpose we need the notion of lower 

affine approximation of a lsc C A R function corresponding to a number a < /(0). This 

notion was introduced in [49], (see also [41]) for arbitrary lsc C A R functions, in particular 

for functions with /(0) = +oo, and it was assumed there that a < /(0). However, we can 

accept a = /(0) if /(0) < +oo. Many results from [41,49] related to the case a < /(0) 
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are also valid if a = /(0). First we need to consider the quantity 

F(x) = inf ___(__)_____; (2.5) 
ct>o a 

Note that ba is a P H function. Let a = /(0). Since /(0) = /_ (0) and /_ is a convex function 

then 

_*(*) __ inf ̂  " ̂ ° > = h m ^ " /a(0) = fx{0) = f(0,x). 

Definition 2.2 Let / be a lsc C A R function and 0 G dom/. Let a < /(0). Then the 

function ga(x) = a + ba(x) is called a lower affine approximation of/, corresponding to a. 

If a = /(0) then 0a(x) = /(0) + /'(0, x). Since ba is P H it follows that ga is affine at each 

ray starting from zero. It is easy to see that ga(x) < f(x) for all a < f(0) (see [41], p. 213 

where the case a < /(0) was considered). Each lsc C A R function is the upper envelope of 

its lower affine approximations (see [41], L e m m a 5.5). It can be shown that for a lsc C A R 

function / with /(0) < +oo the functions ba are lsc for all a < /(0) (this is the contents 

of the proof of Theorem 5.16 in [41]). It follows from this result and Theorem 2.1 that the 

following result holds. 

Theorem 2.4 Each lsc CAR function f : JRn —> IR with f(0) < +oo is Hcn+l -convex. 

Assume now that / is a lsc C A R function such that /(0) = min-e]Rn f(x). Then for each 

a < /(0) w e have 

(.(.) _ i„f /_____. > i„f _____! _ 0. (2.6) 
a>o a oo a 

Since ba is a nonnegative lsc P H function we can apply ( [41], Theorem 5.13) which shows 

that ba is £n-convex. This leads to the following statement. 

Theorem 2.5 Each lsc CAR Junction f : I T -> IR with /(0) = min~elR" f(x) is Bi

convex. 

W e study relations between dcJ(x0) and dCsb
a(x0) where b

a is defined by (2.5). Here 

s is an arbitrary integer, however the results are of interest only when the s-subdifferentials 

of 6° are nonempty. 

Proposition 2.2 Let f be a lsc CAR function and x0 G intdom/. Let v e dfXo(l) and 

a = f(x0) - v. Then a < /(0) anddCsb
a(x0) C d£J(x°). 
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Proof This proposition is of interest only if the set dc3b
a(x0) is nonempty. W e assume 

that this is the case. First we show that the number a is well-defined, that is dfXQ(l) ̂  0. 

Indeed this follows from x0 e intdom/. Let v G dfXo(l) and a = f(xQ) — v = /_Q(1) — 

v. For all a > 0 we have fXQ(ct) — /_0(1) > va — vl. In particular if a = 0 we get 

/zo(0) ~ /x0(l) __
 — v mat can be rewritten as a < /(0). Since v G dfXQ(l) we have 

/_.„(«) - v a > /„0(1) - v = a for all a > 0, therefore f
x^a>~a >v = / (i) _ 0. it 
a 

follows from this that 
ba(x0) = fxo(l)-a = v. (2.7) 

Since a < /(0) w e conclude that ya(x) = a + ba(a;) is a lower affine approximation of /. 

Let I G 9£ab
a(rco). Since ga is a minorant of/ and 6a(x0) = /(â o) — a we have 

/(*) - /(*o) > 9a{*) ~ fM = ba(x) - (f(x0) -a) = b
a(x) - ba(x0) > £(x) - £(x0). 

Thus the result follows. n 

Proposition 2.3 Let f be a lsc CAR Junction andx0 G dom /. Assume that the dcsf(xQ) is 

not empty. Then for each I G dcJ(xo) there exists a < /(0) such that I G dcsb
a(xQ). 

Proof: Let £ G dcJ(x0) and a = f(x0) - £(x0). Then for each x G IR
n and a > 0 we have 

a£(x) = ,(ai) < ^(x0) + /_(«) - /M = /_(«) - a. (2.8) 

Setting a = 0 we get from (2.8) that a < f(0). It follows from (2.8) that 

ba(x) = inf /x(Q:) ~ Q > £(x) 

and ba(x0) = £(x0). This means that £ G <9£s&
a(:ro). D 

It follows from Propositions 2.2 and 2.3 that calculation of the Cs-subdifferential for 

C A R functions can be reduced to the calculation of the £s-subdifferential for P H functions. 

W e also can study the non-emptiness of Cs -subdifferential for C A R functions using results 

known for P H functions. 

W e need the following definition (see [41,49], Definition 5.23): 

Definition 2.3 A lsc C A R function / is called totally lsc if for all x with ||x|| = 1 we have 

lim IM < fen^f 1^1. (2.9) 
a—>+oo a x'—>x,a—>+oo Ci 
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It is clear that always 

U m -___ > liminf fe-
a—>+oo a _'—>_, a—>+oo Q: 

so the inequality in (2.9) can be replaced by the equality. The following assertion has been 

proved in [41] (Lemma 5.8) for a < /(0). It is easy to check that the proof holds for 

a = /(0) as well. 

L e m m a 2.1 Let f be a totally lsc CAR function. Then the lower affine approximation ga is 

lsc for each a < f(0). 

W e also need the following definition: 

Definition 2.4 (see [41], p. 220) A function / : ]Rn -» _a+0 O is called locally Lipschitz on 

the ray /?~0 = {ax0 : a > 0} if there exists a number 5 > 0 such that for each r > 0 there 

exists a number L-, satisfying 

\f(ax) - f(ax0)\ < Lra\\x - x0\\, (2.10) 

whenever ||x — x0\\ < 5 and 0 < a < r. 

Lemma 2.2 Let f be a totally lsc CAR function with 0 G dom/. Let x0 G domf, x0 ^ 0. 

Suppose that f is locally Lipschitz on the ray RXQ and 

lim ___r_£l = + 0 0 (2.H) 
X—>XQ,CC—>+oo CC 

Let a = f(xo) — v where v G dfxo (1). Then the function b
a is locally Lipschitz at xQ. 

Proof: It was shown in the proof of Proposition 2.2 (see (2.7)) that ba(x0) — f(xo) — a. Let 

7 > ba(xo). In view of (2.10) we conclude that / is continuous at XQ hence 7 > f(x) — a 

for x close to x0. Therefore b
a(x) < f(x) — a < 7 for such x. It follows from (2.11) that 

there exist numbers 5 > 0 and r > 0 such that 

f(ax) -a .. ,. I, r 

— — > 7, if \\x - x0\\ < 5, a > r. 
a 

Since ba (x) < 7 for x close to x0 we conclude that 

f(ax) -a in, . ._ .. .. . 
— — > 7 > ba(x), if \\x - x0\\ < S, a > r. 

a 

In view of the definition of ba we have for x with ||ar — x0|| < 5: 

ba{x) = inf _ M l _ . (2.12) 
0<a<r Q; 
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Assume that 5 so small that (2.10) is valid. Then there exists a number L- such that 

/(ax) - a _ f(axo) - a 

a a 

whenever \\x - x0\\ < S and 0 < a < r. Due to (2.12) for each n > 0 there is a number 

a' < r such that f<<a'X] ~ a < ba(x) + v- Then 
a' 

ba(x0) <
 f(a'Xj " a < ba(x) +V + Lr\\x — -coll-

Since TJ > 0 is arbitrary we get &a(x0) < b
a(x) + Lr\\x — x0||. The similar argument shows 

that ba(x) < ba(x0) + Lr\\x - x0j|. Hence 

|6°(x) - 6a(x0)| < Lr||x - x0||, if ||x - x0|| < 5. (2.13) 

a 

W e now use Proposition 2.2 and Lemma 2.2 for the examination of the non-emptiness 

of Z_s-subdifferential for totally lsc C A R functions. 

Proposition 2.4 Let conditions of Lemma 2.2 hold. Then dcn+1f(x0) ^ 0. If f(0) — 

min-gn- f(x) then dCnf(xQ) =£ 0. 

Proof: Let a = f(x0) — v where v e dfxo(l). It follows from Lemma 2.1 that lower affine 

approximation ga is lsc. Since ba(x) = ga(x) — a we conclude that ba is also lsc. Theorem 

2.1 and L e m m a 2.2 imply that dcn+1b
a(x0) ^ 0. Applying Proposition 2.2 we conclude that 

Assume now that /(0) < f(x) for all x e _Rn. Then (see (2.6)) ba is a nonnegative PH 

function. It follows from Lemma 2.2 that ba is locally Lipschitz at x0. In view of Theorem 

2.3 we conclude that dcnb
a(x0) ̂  0. Proposition 2.2 demonstrates that dcnf(x0) ^ 0 . • 

W e now show that condition (2.11) can be weakened. 

Theorem 2.6 Let f be a totally lsc CAR Junction and x0 G dom /. Suppose that f is 

locally Lipschitz on the ray RXo, where x0 ̂  0. If there exist a neighborhood U ofx0 and 

numbers X > 1, £ > 0 such that 

f(x) - /'(Ax, x)+e< f(x0) - f'(x0, x0) Vx G U, (2.14) 

then the subdifferential dCn+1f(xQ) is nonempty. 

If in addition, /(0) = min-eiRn f(x) then dCnf(x0) is nonempty. 

f(ax) - f(ax0) < Lr x 
a 

x0 
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Proof: W e construct an auxiliary functions for which conditions of Proposition 2.4 hold 

and then we use this proposition. For the sake of definiteness we consider only Cn+\-

subdifferentials. The proof for £n-subdifferentials is similar. 

Let U be an open neighborhood of the point x0 such that (2.14) holds. Let k be a large 

enough number. Consider the function /* : _Rn —• IR+0_ defined by: 

, N ( f(x) + INI2 - k x£ Cone U, ||x||2 > k 

f*(?) = < 
I f(x) otherwise. 

It is easy to check that /* is a totally lsc function therefore conditions of Proposition 2.4 

hold for /*. In view of this Proposition, dcn+1f*(xo) is not empty. Let l* e dcn+1f*(xo). 

Then 

4(x) - 4(x0) < f*(x) - /*(x0) Vx G IT, 

Let 

hx(x) = f(x) - /(Ax) + (A - l)/'(Ax,x). 

Since / is a C A R function then 

nxx>t) = ^ /((A+ «)«)-/(A*) . ̂ / ((A + Q*)-/(A,) < m+1)x)_f{Xxl 

hence 

hx(x) < (f(x) - Xf(Xx) + (A - 1)/((A + l)x)). (2.15) 

Since / is locally Lipschitz on the ray .R-0 and x0 ̂  0 then there exists a neighborhood U 

of x0 such that supxeU(f(x) - Xf(Xx) + (A - 1)/((A + l)x)) < +oo. It follows from this 

and (2.15) that 

sup/ix(x) < +00. 
xeu 

Let 

K = max|A, -sup/iA(x) + 1 isup [|x||, (2.16) 
I £ xeu ) xeu 

where A and e as in (2.14). Assume that k > K2 and consider a function £ e 3cn+1/*(x0). 

W e show that I G dc„+1/(xo), that is £(x) - £(x0) < f(x) - f(x0) for all x G IR
n. We 

need to prove this inequality only for x G Cone U such that ||x||2 > k. Let x = ay, where 

yeU,a>0. Then 

„ 11*11 . * > * 
J/ SUpz£[; ||̂ | 
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so due to (2.16) the following inequalities hold: 

ot > X, e(ct -1) > hx(z) Mz e U. (2.17) 

Since yeU then ||y||2 < A2 (sup.e£, ||z||)
2 < K2 < k and /„(y) - /,(s0) = f(y) - f(Xo), 

therefore 

e(x)-£(x0) + f(x0) = £(ay) - £(x0) + f(x0) 

= a(£(y) - £(x0)) + (a - l)£(x0) + f(x0) 

< a(f(y) - /(s0)) + (a - lK(x0) + /(*„). 

Let < > 0 be a number such that (l + t)x0 eU, then 

tf (so) = *((1 + t)x0)) ~ i{xo) < /((I + t)x0) - f(x0). 

Hence 

<(«.)< Em ^° + te°)-/W _,.(_,,_o). 

We have 

*(*) - £(x0) + /(x0) < a(/(y) - /(x0)) + (a - l)/'(x0, x0) + /(x0) 

= af(y)-(a-l)(f(x0)-f(x0,x0)). 

Inequality (2.14) implies 

£(x)-£(x0) + f(xQ) < af(y)-(a-l)(f(y)-f'(Xy,y)+e) 

= f(y) + (a-l)f'(Xy,y)-e(a-l). 

Using (2.17) we get 

£(x) - £(x0) + f(x0) < f(y) + (a- l)f(Xy, y) - (f(y) - /(Ay) + (A - l)f(Xy, y)) 

= f(Xy) + (a-X)f(Xy,y). 

We need to check that f(Xy) + (a — X)f'(Xy, y) < f(ay) = f(x). Since a > X and / is 

CAR function then 

/(Ay,w)_inf_M__M___M </________ ^ 
3 v y,y) t>o t ~ a-X 

f(Xy) + (a-X)f(Xy,y)<f(ay). 

Thus, we have a function £ which belongs to d£n+1f(x0). • 
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Corollary 2.1 Let f be a totally lsc CAR function and let x0 G domf. Suppose that f is 

locally Lipschitz on the ray RXQ, x0 ̂  0. If there exist a neighborhood U ofxQ and numbers 

A > 1, e > 0 such that 

f'(Xx,x)>f(xo,x0)+£ VxGC/, (2.18) 

then the subdifferential dcn+1f(xo) is not empty. 

Proof Since / is locally Lipschitz on the ray .R~0 then there exists a neighborhood U(x0) 

of x0 such that f(x) — /(x0) < e/2, hence 

f(x) - /'(Ax, x) + ~ < /(x0) - /'(x0, x0) Vx G U(xQ) n U, 

where U is from (2.18). Thus we conclude that condition (2.14) holds. • 

We now show that the class of functions for which (2.14) holds is broad enough. Let 

x0 7^ 0 and let FXo be the class of totaly lsc C A R functions with the properties: 

1) / is locally Lipschitz on the ray .R_0 and 

2) for each A > 1 there exists a neighborhood of x0 such that the function x t-> /'(Ax, x) 

is lsc in this neighborhood. 

Let / G FXQ. Then the function /_0 is convex, hence its right derivative f'Xo(a) is an 

increasing function. There are two possibilities: 

1) f'x (A) is constant for A > 1, hence /~0 is affine on [1, +oo) (this means that /(Ax0) = 

/_0(l)A + /W-/_0(l)forA>l). 

2) there exists A > 1 such that /^0(A) > f'Xo(l), in other words 

/'(Ax0,Xo)>/'(xo,x0). (2.19) 

Assume that (2.19) holds. Since / G FXo then there exists a neighborhood U of x0 and 

e > 0 such that (2.18) holds. 

2.4 Geometric interpretations 

We now present geometric interpretations of the £n-subdifferential for nonnegative PH 

functions and £n+i-subdifferential for nonpositive P H functions. Using these interpreta

tions w e can easily calculate £s-subgradients (members of £s-subdifferentials) in some 
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cases. We also show that £s-subdifferentials dcJ(x) are very large sets whenever they are 

nonempty. 

Some special classes of £n-subdifferentials for nonnegative P H functions have been 

described in Section 2.2 in terms of support collections. First w e present a geometric inter

pretation of a support collection £. 

For each collection £ = {h,..., ln} of n linearly independent vectors consider the cone 

T = {y : [k,y\ > 0,i = l,...,n}. Then £ is the support collection if and only if 

UH(x + Te) = {x} and [k,x] = 1 foralH = 1,... ,n. 

It can be proved (see, for example, Proposition 5.32 in [41]) that for each convex cone Q 

with intQ ̂  0 and for each x G int<2 there exists a collection £' of n linearly independent 

vectors £' = (l[,..., l'n) such that intQ D T* and % x] = 1, i = 1,..., n. Putting Q = T
l 

w e obtain the following result from here: for each support collection £ there exists a support 

collection £' such that Te c intTe. Consider the set L(x, U) of all support collections to a 

set U at the point x with the order relation >. W e say that £ > £' if Te D Te'. 

Let p : lRn -* IR+00 be a nonnegative lsc P H function and U = {x G _R
n : p(x) < 1}. 

Then p = pv. Let p(x0) = 1 and there exists a support collection £ = (li,...,ln)to 

U at x0. It follows from Proposition 2.1 that £ e dcnp(x0). If £' < £ then £' is also a 

support collection, hence £' e dcnp(x0). Thus the subdifferential dcnp(x0) contains a very 

broad set of all collections £' < £. Letp(x0) := A > 0 and x'0 = x0/A. Then p(x'0) = 1 

and dcnp(xQ) — Xdcnp(x'Q), so w e can use the described construction for the examination 

of d£np(x0). This construction can be used for the examination only of d£n-subgradients 

t = (li,..., ln) with the additional properties [li, x] = [I2, x] = ... = [ln, x] > 0. 

The results obtained can be extended for the description of £n-subgradients for some not 

necessarily nonnegative P H functions, namely functions p for which there exists a vector 

I such that p(x) > [l,x\. Indeed in such a case the function p'(x) = p(x) — [l,x] is 

nonnegative. It is clear that £ = (Zi,..., ln) is a <9c_-subgradient of p if and only if (Zi -

l,...,ln — l)isa. d£n-subgradienf of p'. 

N o w w e give a geometric interpretation of £ n +i -subdifferentials for nonpositive P H 

functions by using their support sets with respect to £n+i. 

Let q be a nonpositive P H function and £ = (lx,..., ln+i)- W e have: £ G supp (q, Cn+1) 

if and only if mini=lj...in+1[/j,x] < q(x) for all x G _R
n. Then £ G dcn+1q(x0) if and only 

if^ G swpp(q,£n+1) andmmi=:l)...>n+i[Zi,Xo] = g(x0). Letp(x) = -q(-x). Then pis a 
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nonnegative P H function. Clearly, £ e supp (q, Cn+1) if and only if 

max [lu x] > p(x), xeW
1 (2.20) 

and £ e dCn+1q(xQ) if and only if (2.20) holds and maxi=1)...)n+1[/i, x0] = p(x0). 

W e establish the following result: 

Proposition 2.5 Let qbea nonpositive lsc PH function, p(x) = -q(-x) and 

U = {x: p(x) < 1} = {x : q(-x) > -1}. 

Then int U ^ 0 and£ =(k,..., ln+1) e supp (q, £n+1) if and only if 

^ O G c o j l ! , . . . , ^ } ; 

(ii) the set S£ = {x eJR
n : [k, x] < 1, i = 1,..., n + 1} is contained in U. 

Letp(x0) = 1, that is q(-xQ) = -1 and £ G supp (q, Cn+l). Then £ G dCn+1q(-xQ) if 

and only if 

(Hi) x0 e Se. 

Proof Let £ = (lly..., ln+1) be a collection of vectors. Note that 0 G intS* where St is 

defined in (ii). W e show that (i) is equivalent to 

max [Zi,x]>0, x G IRn (2.21) 
i=l,...,n+l 

Indeed let p^(x) = maxj=i;...jn+i[Zj,x]. Then pi is a sublinear function and dpi(0) = 

co{Zi,..., ln+i}. It is well known that a sublinear function is nonnegative if and only if 

zero belongs to its subdifferential at zero. This leads to the equivalency of (i) and (2.21). 

The set S(, is a radiant and St = HiSi where Si = {x : [k, x] < 1}. It is easy to check 

that psi(x) = max(0, [k, x]). Since the Minkowski gauge of the intersection is equal to the 

maximum of Minkowski gauges, we get using (2.21): 

ps (x) = maxmax([Zj,x],0) = max (max[/i,x],0) = maxfZ^x]. (2.22) 

The inclusion St cU is equivalent to 

max^, x] > p(x), xeWC (2.23) 
i 

Since the support set supp (q, £n+i) °f
 a lsc P H function q is not empty and 

min [k,x]<q(x) for all x <=> max [h,x]>p(x) for all x, 
i=l,...,n+l i=l,...,n+l 
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w e conclude that there exists £ such that Se C U. This implies int U =£ 0. 

Assume that £ e supp (q, £ n + i ) . Then (2.23) is valid. Since p is nonnegative we get 

from (2.23) that (2.21), which is equivalent to (i), is valid. It was also mentioned that (2.23) 

implies (ii). Assume now that both (i) and (ii) holds. In view of (i) w e get (2.22) that 

together with (2.23) implies £ e supp (q, C n + 1 ) . 

Let both (i) and (ii) hold and x0 be an element such that q(—x0) = — 1 (in other words, 

p(x0) = 1). Then maXi[Zj,x0] > p(x0) = 1. The inclusion x0 G Se is equivalent to 

VSefao) = maxj^jjXo] < 1, so maxi^xo] = 1. This is equivalent to minj/j,-x0] = 

- 1 = q(-x0). Thus £ G dcn+1q(—x0) if and only if x0 G Si. • 

Remark 2.1 1) Let q(—x0) < 0 that is p(x0) > 0. Using element x0/p(x0) we can present 

a geometric interpretation of dcn+1q(—x0) in this case. 

2) Let q be a P H function such that q(x) < [I, x] for a vector I and all x G IR". Then the 

function qJ(x) = q(x) — [I, x] is nonpositive and supp (q', Cn+i) consists of all collections 

£' = (h — I,...,ln+i — I) where £ — (h,- • • ,ln) G supp(q,£n+i), so w e can give a 

geometric interpretation of £n+i-support sets and £n+i-subdifferentials in this case. 

3) Let q : IRn —>• IR be a superlinear function. Then there exists I such that [l,x] > 

q(x) for all x, so the results obtained can be used for a geometric interpretation of £n+i-

subdifferentials of q. 



Chapter 3 

Star-shaped separability with 

applications 

We study the weak separability of star-shaped sets by finite collections of linear functions. 

One of the main goals of this chapter is to indicate some areas of research, where the 

star-shaped separability can be used. In particular, w e examine a "best approximation -

like" problem for star-shaped sets: w e introduce a star-shaped distance and consider the 

minimization of this distance over a star-shaped set. This is a non-convex optimization 

problem. 

3.1 Support collections and weak separability 

Separability of two convex sets is one of the fundamental facts of convex analysis that can 

be considered as a geometrical form of Hanh-Banach theorem. Some attempts to extend 

the notion of separability to star-shaped sets were undertaken in [56] and [41]. (Recall that 

a set is star-shaped if it can be represented as the union of a family of convex sets (Ut)ter, 

such that f]teT Ut ̂  0.) The support collection of linear functions at a regular boundary 

point x of a star-shaped set U C IR" was defined there and the existence of this collection 

was proved. A separability of two star-shaped sets by means of m linearly independent 

linear functions (the so-called weak separability) was also defined and studied. Here w e 

introduce also the notion of a conical support collection and discuss some properties of 

conical collections and weak separability. W e also examine some applications of these 

notions (Sections 3.2 - 3.4). 

33 
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One of the most challenging questions that arise in modern optimization is the develop

ment of a theory of global minimization for some broad classes of non-convex optimization 

problems. The theory of local optimization is based on calculus and its sophisticated gen

eralizations. Different tools should be used in global optimization. Since separability by a 

liner function has found applications in convex programming, it is natural to apply separa

bility by a collection of linear functions in star-shaped optimization. 

From a certain point of view, classical best approximation problems are the simplest 

convex nonlinear problems. Similarly, star-shaped best approximation problems are the 

simplest star-shaped optimization problems, so we start with best approximation. W e show 

that characterization of best approximation can be done in terms of weak separability of 

star-shaped sets. A challenging problem is to describe separation collections of linear func

tions at least in simple cases. This is the topic of the further research. 

So, let U C IR" be a set and x eU. Recall the Bouligand tangent cone T(x,U) consists 

of all vectors z such that for each a0 > 0 and e > 0 there exist v and a > 0 such that 

||v — z\\ < £,a < a0 and x + av G U. 

Let Un be a totality of all radiant sets U C IR" that are nontrivial in the sense that 

U 7̂  {0}. (Definitions of radiant and star-shaped sets can be found in Section 2.2.) For 

U eUn consider the set 

A(U) = {x G U : pv(x) = 1 and x £ T(x, U)}, (3.1) 

where the Minkowski gauge pu is defined by (2.3). It is easy to see that pu(x) = 1 if and 

only if x G bd U and Xx £ U for all A > 1. (Here and below bd U stands for the boundary 

of a set U.) Thus, the inclusion A(u) C bdU holds. A point „ e [/is called a regular 

boundary point of U if x G A(U). 

Remark 3.1 It is known ( [41]) that 0 G intkernC/ if and only if pu is Lipschitz (for 

the definition of kernel see (2.2)). In such a case (see [41], Propositions 5.15 and 5.17) 

bd U = {x e IRn : pv(x) = 1} and (see [41], Corollary 5.6) x £ Y(x, U) for all x G bdL". 

Hence A(U)=bd(U). 

The notion of a support collection was defined in Chapter 2 (see Definition 2.1). The 

following result holds. 

Theorem 3.1 (see [41], Theorem 5.7). Let U eUnbea closed set and let x G A(U). Then 

there exists a support collection £ = (li,... ,ln) to the set U at the point x. 
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Sometimes it is convenient to consider a weaker object than a support collection. First 

we recall the following definition. 

Definition 3.1 Vectors lu..., lm e IR" are said to be conically independent if conditions 

QiiZi H h amlm = 0, a{ > 0 for all i = 1,..., m 

imply that a1 = --- = am = 0. 

Conical independence of the collection £ = (L_,..., lm) means that -k does not belong to 

the cone spanned by (lk)k& for all *. 

Definition 3.2 Let U C IR" be a closed set and x G U, x ^ 0. A collection of vectors 

£= (h,...,lm)is called a conical support collection to U at x if [Z*, x] = 1 (i = 1,..., m ) 

and 

min [Zj,w] < 1 for all ueU,u^x. (3.2) 
1=1,...,m v ' 

A conical support collection £ = (Zi,..., Zm) at x consists of conically independent vectors. 

Indeed, let ££=. ̂ Z^ = 0 where a* > 0 for all* = 1,... ,m. Then £ 7 ^ <Xi[li,x] = 

_C»=i ai = 0> hence o^ = 0, *' = 1,..., m. 

It is clear that each support collection is a conical support collection. It follows from 

Definition 2.1, that a support collection cannot contain more than n vectors, on the other 

hand a conical collection can contain an arbitrary finite number of vectors. 

Let £ = (h,..., lm) be a conical support collection and T
e = {y : [lhy] > 0, * = 

1,..., m} be a cone generated by this collection. Then intT^ is nonempty and contains the 

cone {y : [k,y] > 0 i = 1,..., m } . It is known (see, for example, Proposition 5.32 and 

Remark 5.12 in [41]) that for each convex cone Q with intQ / 0 there exists a collection 

£' = (l[,..., l'n) of n linearly independent vectors such that [l'i,x] = 1 for all* = 1,..., n 

and Te c int Q. It follows from this that existence of a conical support collection to U at x 

implies existence of a support collection to U at x. However, the number of vectors in these 

collections can be different. 

W e now discuss some properties of conical support collections. 

Proposition 3.1 Let U be a closed radiant set, and XQ G bd U. Let £ = (l\,..., lm) be a 

conical support collection at x0 and 

Ui = {xeU : [h, x]<l} = Un H{, where H{ = {x G IR" : [k, x] < 1}. (3.3) 
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men U=i,...,m Ui = U and 

I) for each i = 1,... ,m the set U{ is a nonempty radiant set and kern Ui D kern U D //,; 

77/e Minkowski gauge pVi ofUt has the form 

pUt(x) = max(pv(x), [k, x\); (3.4) 

2) For each x G U there exists i such that Rx n £/ C _/< ̂ ere A- = {Ax : A > 0},); 

3,)Lef 

V_= f| 17< = l7n[ f| /Lj. (3.5) 
i=l,...,m \i=l,.,.,m / 

Then V elin and 

pv(x) = maxmax(/_[/(x), [Zi; x]) (3.6) 

Proof 1) Let y G kernC and [Zi;y] < 1. Let u G [/*, that is, « G _/ and [li,u] < 1. 

For each A G [0,1] we have Xy + (1 - A)« G Z7 and [Z*, Ay + (1 - A)«] < 1. This 

means that y e kern U{. W e showed that kern Ut D kern U il H^ It follows from this that 

0 G kern Ui, hence _/»is a nonempty radiant set. It is well-known (see, for example [41]) that 

the Minkowski gauge of the intersection of a finite number of sets is equal to the maximum 

of the Minkowski gauges of these sets. O n the other hand, pHt(x) = max(0, [k, x]), where 

PHi is the Minkowski gauge of the half-space Hi. This implies (3.4) and also (3.6). 

2) Let x G U and Ax = sup{A > 0 : Ax G U}. If A- < +oo then A~x G U. Let * be the 

index such that Axx G Ui. Then Rx n [0, Ax]x = Rx D U C Ui. Assume now that A- = +oo. 

Then Rx fl U = /?-. For each i = l,...,m consider the set Ai = {A > 0 : Ax G Ui}. There 

exists at least one i such that Aj is unbounded. It easy to check that /?~ = {Ax : A G Aj}, 

hence _?~ c U. 

3) V is radiant as the intersection of radiant sets. Since [k, x0] = 1 for all *, it follows that 

x0 G V, therefore V ^ {0}. Hence V G Un. • 

W e need the following definition (see [56] and also ([41], Definition 5.17). 

Definition 3.3 Let U and V be subsets of IR" and £ = (k)i=i,...,m be a collection of linearly 

independent vectors. The sets U, V are said to be weakly separated by vectors (k)i=i,...,m if 

for each pair ueU,v eV there exists % G / such that [lit u] < [k, v). W e say that U, V are 

conically weakly separated if there exists a collection £ of conically independent vectors 

with the indicated property. 
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Proposition 3.2 Let U and V be conically weakly separated by vectors (/<)£__ and hit U ^ 

0. ThenintUnV = t 

Proof: First we show that U - V ^ IR". Consider the superlinear function q(x) = 

mini=i,...,m[li, A- Weak separability of the sets U and V means that q(u - v) < 0 for all 

u e U, v e V. Let dq(0) = {I e IR" : [I, x] > q(x) for all x G IRn} be the superdifferential 

of q at zero. Then dq(0) coincides with convex hull S = {I = Y£i aih : a{ > 0 (i = 

l,...,m), YH=I ai = !} of vectors (k)^. Since these vectors are conically independent 

we conclude that 0 G" S. Then there exists x G IR" such that 0 < inileS[l, x] = q(x). This 

means that x ̂  U — V. 

Assume that there exists z e (intU) n V. Let Be(z) C U be a neighborhood of 2. 

Then 5e(z) — z CU — Visa neighborhood of zero. Since # is positive homogeneous and 

q(x) < 0 for x G U - V it follows that g(x) < 0 for all x G IR", which is a contradiction. 

• 

Remark 3.2 Let lu ..., lm be a collection of vectors in IR" such that 0 G co(Z1;..., lm). 

Then <?(x) = mini=i!...)m[Zi, x] < 0 for all x G IR". This implies the following assertion: let 

U, V C IR" be two arbitrary sets. Then for each u G U, v e V there exists * G {1,..., m } 

such that [li} u] < [l{, v\. A collection £ = (k)^ does not depend on sets U, V. Note that 

there exist n + 1 vectors (h)^i such that 0 G co(Zi,..., ln+i). 

For weak separability we consider collections (li)™=i of no more than n vectors and 

these vectors are linearly independent. It can be shown (see Proposition 3.3 below) that this 

collection can be chosen as a support collection to a certain set Z at a certain point z. This 

means that this collection enjoys an additional property: [k,z] > 0, * = 1,..., m and also 

that strict inequalities can be used instead of nonstrict ones. 

A conical collection (k)^ can contain more then n vectors. However, for such a col

lection we have 0 ̂  co(Zi,..., lm). 

Under some additional assumptions it can be proved that if (int U) D V = 0 then U and V 

can be weakly separated (see [41,56]). 

Theorem 3.2 (see Theorem 5.8 in [41]). Let U and V be star-shaped sets such that 

int kern U ^ 0 and (int U) D V = 0. Then U and V are weakly separated. 

Assume that U D V ^ 0. The proof of this theorem is based on the following construction, 

which is a modification of the construction from [56]. Let u G int kern U, v e kernV. 
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Consider the point z — v — u and the set Z = (U — u) — (V - v) = U - V + z. Then 

Z is a radiant set and 0 G int kern Z. It can be shown that either z £ cl Z or z G bd cl Z. 

Since U fl V ^ 0 it follows that 0 G U — V, hence z e Z . This implies that z is a boundary 

point of clZ. Since 2 G int kern _? it follows that z G A(z7). Then there exists a support 

collection £— (li,... ,ln)\oc\Z at the point z. It is easy to check that £ weakly separates 

U and V. It follows from the aforesaid that the following statement holds. 

Proposition 3.3 Let U and V be star-shaped sets such that int kern ( 7 ^ 0 , the setUDV 

is nonempty and the set (intU) C\V is empty. Let z G kern V — int kern U and Z = 

U — V + z. Then there exists a support collection £ — (l\,..., lm), (m <n)toZatz and 

this collection weakly separates the sets U and V. In other words, the following holds: 

1) [h,z] = ... = [lm,z] = 1; 

2) for each u eU,v eV with u^v there exists i such that [k, u] < [k, v\. 

W e only comment the assertion 2). If u G U, v G V and u / v , then u-v + z^z, hence 

there exists * such that [U,u — v -\- z] < 1 = [k,z]. 

3.2 Star-shaped distance and its minimization 

The following well-known corollary of Hahn-Banach theorem is a classical result of the 

approximation theory. Let U be a convex subset of a normed space X and x 0 U and let 

u G U be the best approximation of x by elements oft/, that is, r := min{||u - x|| : u G 

U) = \\u - x\\. Then there exists a linear function Z such that l(u) < l(u) < l(v) for all 

u e U and v G B(x, r) = {y : ||x - y \\ < r}. W e can present this result in the following 

form. A n element u e U is the best approximation of x if and only if there exists a linear 

function Z such that 

0=(-l,l)(u,u)=min{(-l,l)(u,v) :(u,v)eUx B(x,r)}. (3.7) 

Here, by definition, (-1, l)(u, v) = -Z(u) + I(v). 

If U is strictly convex then in addition to (3.7) the following holds: 

((u,v) eUx B(x,r), (u,v) ± (u,uj) =>• (~l,l)(u,v) > 0. (3.8) 

W e now give a version of (3.7)- (3.8) for star-shaped sets in IR". W e assume that IR" is 

equipped with the topology of pointwise convergence. Let || • || be a norm in K". 
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Let U c IR" be a star-shaped set and x ̂  U, let r = min{||u — x|| : u G U}. Then the 

intersection Z7 D {f : §x — v\\ < r} is empty, so the sets U and {t> : ||x — v\\ < r} can be 

weakly separated. W e do not need to have exactly a norm in order to prove this result, so we 

consider a more general situation. First consider a function p : IR" x K " —>• 1R+ = [0, +00) 

such that 

p(x,y + a(x-y))<p(x,y), x,y G ET,a G [0,1]. (3.9) 

It is easy to check that the function p enjoys this property if and only if the "balls" B(x, r) = 

{y : p(x, y) < r} are star-shaped with x G kern B(x, r) for all r > 0. W e need to have 

star-shaped balls B(x, r) such that 

(1) x G int kern B(x, r) for all r > 0. 

(2) the inequality p(x, y) <r holds for interior points of B(x, r). 

The following definition takes into account these requirements: 

Definition 3.4 A function p : IR" x IR" -+ 1R+ is called a star-shaped distance if 

(i) p(x, x) = 0 for all x G IR" and p(x, y) > 0 for all x, y G IR" x ̂  y. 

(ii) for each x G IR" and r > 0 there exists a neighborhood V of x such that 

p(x,y + a(x' - y)) < ar + (1 - a)/>(x,y), y G Rn,x' G V,a G [0,1]. (3.10) 

(iii) for each x G IR" the function px(y) defined by 

Px(y) = P(x,y), y G M " (3.11) 

has no local maxima. 

(iv) for each x G IR" the function px defined by (3.11) is continuous. 

Note that star-shaped distance is not required to be a distance function in usual sense. 

Let x,y e IR". Then (3.10) with r = p(x,y) and x' - x implies (3.9), so sets 

B(x,r) are star-shaped for all x G IR" and r > 0. On the other hand (3.10) implies 

x G intkern5(x,r). Indeed, let r > 0, V is a neighborhood of x that is considered in 

(3.10) and let p(x, y) < r. Then 

p(x, ax' + (1 - a)y) < or + (1 - a)p(x, y) < ar + (1 - a)r = r, 

so V C kern B(x,r). This means that x G int kern B(x,r). 

Proposition 3.4 Let p be a star-shaped distance. Then for each x G IR" and r > 0 we 

have intB(x,r) = {v G IR" : p(x,v) < r}. 
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Proof: Since px is continuous, the set {v : p(x,v) < r} is open. This implies that {v : 

p(x,v) < r} C intB(x,r). Let p(x,v) = r and v G int£(x,r). Then there exists a 

neighborhood V of zero such that v+V C int/^x,?-). For all v' e Vwehawep(x,v'+v) < 

r = p(x, v). This means that v is a local maximum of p- which contradicts (iii). • 

W e now give an example of a star-shaped distance. 

Proposition 3.5 Let (ft)ter be a uniformly continuous family of convex functions ft : 

IR" -> IR+ such that /t(0) = 0 and initeT ft(x) > 0 for x ^ 0. Then the function 

p(x, y) = infter ft(x — y) is a star-shaped distance in IR". 

Proof: W e need to check that (i) - (iv) hold. 

(i) It follows from properties of the family (ft)teT that p(x,x) — 0 and p(x,y) > 0 for 

x^y. 

(ii) Let us check (3.10). Let x G IR" and r > 0. Since (ft)teT is uniformly continuous at 

zero it follows that there exists a neighborhood V0 of zero such that ft(v) < r for all v G V0 

and t e T. Let V = x — VQ be a neighborhood of x and x' G V. Then 

p(x, y + a(a/- y)) = inf /t(x - y - a(x' - y)) 
Cfc J. 

= inift((l-a)(x-y) + a(x-x')) 

< inf((l-a)/t(x-y) + a/t(x-x')) 

< (inf (1 - a)ft(x - y)) + ar = (1 - a)p(x, y) + ar. 

Thus (3.10) is valid. 

(iii) W e need to check that for each x, y G IR" and small e' > 0 there exists a direction u 

such that 

p(x, y + £'u) - p(x, y) > 0. (3.12) 

Let z = x - y. Then p(x,y) = infter/*(>)• If « = 0 then (3.12) trivially holds, so we 
e' -2 

assume that z ̂  0. Consider a number e = then 1 + e' = 1/(1 - e). Let u — . 
1 + £' 1 — £ 

Then for each t G T we have 

ft(z) = ft((l-£)u) = ft((l-£)u + £0) 

< (1 - e)/t(ti) < /,(«) - e inf /T(«) = /t ̂ ^ ) - £X, 

where x = infT_T fr(u) > 0. This implies the following: 

p(x,y) = inf ft(z) < inf/t((l + e » - £X < p(x,j/ - e7^. 
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Thus (3.12) holds. 

(iv) Since the family (ft)teT is uniformly continuous it follows that px(y) = inffeT ft(x—y) 

is continuous. • 

Example 3.1 Consider a family (|| • ||t)ter of norms such that there exist numbers 0 < c < 

C < +oo such that 

c\\x\U < \\x\\t < C\\x\U, (3.13) 

for all t e T, where || • ||* is a fixed norm. The right-hand side inequality in (3.13) shows 

that the family (|) • || t)teT is uniformly continuous, the left-hand side inequality shows that 

infteT ||x||t > 0 for all x ̂  0. Hence the function d(x, y) = infteT ||x — y ||t is a star-shaped 

distance. 

Theorem 3.3 Let p be a star-shaped distance on IR" and U C IR" be a radiant set. Let 

x £ U, u e U andr = p(x, u). Then 

l)Ifr = minueu p(x,u) then there exist m linearly independent vectors l\,..., lm such 

that: 

(i) [lx,x] = ... = [lm,x] = 1. 

(ii) for each u G U andv G B(x,r) with u ̂  v there exists an index i such that [k, u] < 

[k,v\. 

2) If there exist m conically independent vectors U such that the condition (ii') below holds 

then r :— p(x, u) — minu&u p(x,u)- Here 

(ii) U x B(x,r) = \J?=AU x B(x> r))i where 

(U x B(x,r))i = {(u,v) eUx B(x,r) : [h,u] < [k,v]}. 

(Condition (ii') means that for every pair (u, v) with ueU andv G B(x, r) there exists an 

i such that [li} u] < [k, v}.) 

Proof 1) Let r := p(x,u) = minuei/p(x,w). It follows from the properties of the star-

shaped distance that the set B(x,r) is star-shaped and x G int kern B(x, r). The intersection 

U n B(x,r) contains u, hence nonempty. The intersection U (lint B(x,r) = 0. Indeed, 

in view of Proposition 3.4 we have intB(x, r) = {v : p(x, v) < r}. O n the other hand 

U C {u: p(x,u) >r}. 

Consider the set Z = U - B(x,r). Since 0 G kernC/ and x G int kern Z?(x,r) it 

follows that z := -x G kern U - int kern B(x, r). Then (see Proposition 3.3) there exists 
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m linearly independent vectors l[,...,l'm such that [Zi, -x] = ... = [l'm, -x] = 1 and for 

each ueU,v e B(x, r) with u^v there exists i such that [l'it v] < [l'} u]. Thus (i) and (ii) 

hold for k = -l\. 

2) Let (ii') hold. Let q(x) = mini=i)...>m[Zi, x]. Then (ii') is equivalent to 

q(u - v) < 0 for all ueU, v G B(x, r). (3.14) 

W e show that 

[/nintB(i,r) = 0. (3.15) 

Indeed, assume that there exists u eU and a neighborhood V of zero such that u — V c 

B(x, r). In view of (3.14) w e get q(v) < 0 for all v G V. It follows from positive homo

geneity of q that q(x) < 0 for all x G IR", hence 0 G dq = co{Z1;..., Zm}. This contradicts 

conical independence of vectors Zi,..., lm. 

Combining (3.15) and Proposition 3.4 we get U C {u e IR" : p(x,u) > r}. Since 

u e U and r = p(x, u) it follows that r = minu£j7 p(x, u). • 

Theorem 3.3 can be considered as a version of (3.7)- (3.8) for X = IR". If [/ is a convex 

set and p(x,y) = ||x — y || and we replace strict inequalities in (ii) with nonstrict ones, then 

(3.7) follows from Theorem 3.3 with m = 1. W e cannot take m = 1 for convex sets if we 

use strict inequalities. However Theorem 3.3 holds with m = 1 for a strictly convex set U. 

3.3 Star-shapedness and distance to a closed set 

In this section we demonstrate that star-shapedness can be used in the study of arbitrary 

(not necessarily star-shaped) sets. 

First w e consider an arbitrary closed subset U of IR" with 0 G U. Let || • || be an arbitrary 

norm in IR" and 

du(x) = inf{\\x-u\\:ueU}, x G IR" 

be the distance function generated by this norm. Let (3V be the function defined on X by 

Pu{x) = N l - dv(x). (3.16) 

Note that /3v(x) = \\x\\ for x G U; if x g [/ then /3(x) < ||x||. The sets {x G IR" : 

P(x) < c} = {x G IR" : dv(x) > ||x|| - c}, c > 0 can be useful for examination of the 

distance function. W e study these sets from the point of view of star-shapedness. 
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W e need some preliminaries. 

A function / : X -» IR+ is called increasing-along-rays (IAR) if for each x ̂  0 the 

function of one variable fx(t) = f(tx) is increasing (that is fx(h) > fx(t2) for t\ > t2 on 

[0, +oo)). (The definition of the IAR function in a more general situation was introduced in 

[8].) Note that /(0) = min-6x f(x) for an IAR function /. It has been proved in [62], (see 

also [8]) that a function / is IAR if and only if its level sets Sr(f) := {x G X : f(x) < r} 

are radiant for all r > /(0). 

Let 
,J W t \ v dv(x + av) - dv(x) 
(du)H(x,x) = hmsup 

a-++0,v—*x Ci 

be the Hadamard directional derivative of du at a point x in the direction x. It is easy to 

check that (dufH(x, x) < \\x\\. Indeed, since the distance du is Lipschitz continuous with 

the Lipschitz constant L = 1 it follows that (dv)^H(x, x) < limsup,^- ||v|| = ||x||. 

Theorem 3.4 Let x0 G IR
n \ {0} be a point such that ||x0|| > (d^jy(x0, x0) and let 

V = {x e IR" : ||x|| - dv(x) < ||x0|| - du(x0)}. Then there exist m linearly independent 

vectors l\,..., lm such that 

1) [h,xQ] = ...- [lm,x0] = 1; 

2) for each x G V there exists an i such that [k, x] < 1. 

The sets Vi = {x e V : [k, x] < 1} are star-shaped for all i. 

Proof: First we show that the function Pu defined by (3.16) is increasing-along-rays. Let 

x G X and A > p > 0. Then 

dv(Xx) = inf ||Ax - u|| = inf ||(A - p)x + px - u\\ <(X- p)\\x\\ + dv(px), 
v,eu ueu 

hence 

Pu(Xx) = A||x|| - du(Xx) > p\\x\\ - du(px) = pu(px), 

so /3V is IAR. It follows from this that level sets Sr{0u) = ix • Pu{x) < r) of Pv are 

radiant for all r > ^(0) = 0. 

Let x0 G M " \ {0} be a given point and let r = I3(x0) = ||x0|| - dv{x0) > 0. Then 

V := Srifrj) = {x G K" : ||x|| - dv{x) < ||x0|| - du(x0)} (3-17) 

is a radiant set. Since x0 ^ 0 it follows that V G Un. We need to show that x0 is a regularly 

boundary point, that is, x0 G A(V), where A(V) = {x G V : pv(x) = 1, x i T(x, V)} 
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is the set defined for V = Sr(pv) by (3.1). Let us calculate pv(x0). The inclusion x0eV 

implies Hv(x0) < 1. Let us check that pv(x0) > 1 and hence pv(x0) = 1. 

Since V is a radiant set and 0 ̂  x0 G V then it is sufficiently to check that Ax0 G" V for 

A > 1. If Ax0 G V for some A > 1 then (x0 + ax0) e V for all a G (0, A - 1), that is 

||x0 + a;xo||-d[/(xo + axo) < ||x0|| - a![/(x0) forall aG(0,A-l). 

This fact implies ||x0|| < (dv%(x0, x0), which is impossible. Hence pv(x0) = 1. 

Assume that x0 G r(x0, V). Then there exist sequences vk -^ x0 and ak -*• 0 such that 

x0 + akvk e V, that is 

\\x0 + akvk\\ - ||x0|| < ^(xo + akvk) - dv(x0). (3.18) 

Letp(x) = ||x||. Since p'(x,x) = ||x|| it follows from (3.18) that ||x0|| < (du)li(x0,x0), 

which is impossible. Hence x0 ̂  T(x0, V). 

Applying Theorem 3.1 and Proposition 3.1 we conclude that the desired result holds. • 

W e now consider bounded subsets of IR". 

Proposition 3.6 Let U be a bounded subset ofJRn. Then the set hyp du is star-shaped. 

(Here hypdv = {(x, X) G IR" x IR : A < dv(x)}.) 

Proof: Let c > 0 be a number such that ||it|| < c for all u G U. Show that (0, —c) e 

kernhyp dv. Let t < dv(x) and a G (0,1). Then 

—ac+ (1 — a)t < —ac+(l — a)du(x) 

= vgAWO-~ <*)x - (1 - a)u\\ - ac) 
ueu 

= inf (||(1 — a)x — w + mi|| — ac) 
ueu 

< ugl\\0--<x)x-u\\+a\\u\\-ac) 
ueu 

< inf J|(l — a)x — u\\ = cf_r((l — a)x). 
ueu 

Hence 

a(0, -c) + (1 - a)(x, t) = ((1 - a)x, -ac + (1 - a)t) G hypdU} 

that means (0, — c) e kern hyp du- n 

Corollary 3.1 Let Ubea bounded subset ofJRn and 0 G U. Then the sets epi || • ||, hyp dv 

are weakly separated. (Here epi || • || = {(x, A) : A > ||x||}.j 
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Proof Since 0 G U then dv(x) < ||x||, that is intepi || • || n hyp dv = 0. It follows from 

convexity of norm that int kern epi || • || = int epi || • || ̂  0. Thus we can apply Theorem 3.2. 

• 

3.4 Degree of strict non-convexity 

Consider a radiant set U, which is non strictly convex. It is interesting to classify its bound

ary points in terms of their strict non-convexity. Conical support collections can be used for 

such a classification. 

Definition 3.5 A positive integer m is called the degree of strict non-convexity of a set 

U eUn near a point x G A(U) if there exists a conical support collection £ that consists 

of m conically independent vectors and there is no support collection of m - 1 conically 

independent vectors. W e denote the degree of strict non-convexity by nsc (x,U). 

A point x G A(U) will be called a point of strict convexity of U if nsc (x, U) = 1. W e now 

present some simple illustrative examples. 

Example 3.2 1) Let U C IR2 be a polyhedron with 0 G intU. Then nsc (x, U) = 1 for 

each vertex x of U and nsc (x, U) = 2 for a point x G U, which is not a vertex. 

2) Let U = U\ U _/_, where C/i and C/2 are circles: 

C/i = {(x1?x2) G IR
2 : (X! - l)2 + x2 < 1}, U2 = {(x!,x2) : (xx + l)2 + x2 < 1}. 

Then U is a radiant set. Consider all boundary points of U. Letx = (0,0). Thenpu(x) — 0, 

so x G" A(U) and the degree of strict non-convexity is not defined at this point. Let x = 

(xi, x2) be a boundary point of U with either xi < — 1 or xi > 1. Then nsc (x,U) = 1, so 

such points are points of strict convexity. Let x = (xi, x2) be a boundary point with either 

xi e [-1,0) or xi G (0,1]. Then nsc (x, U) = 2. 

3) Let U = {x = (xi, x2) G IR
2 : |xix2| < 1}. Then U is radiant and nsc (x, U) = 2 

for each boundary point x of U. 

The second example shows that degree of strict non-convexity of U at x is a global notion: 

it is possible that nsc (x, U) > 1 and the intersection of a set U with a small neighborhood 

of x is strictly convex (this means that U is locally strictly convex at x). 

W e now present a simple assertion about the degree of strict non-convexity. 
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Proposition 3.7 LetU\,...,Uk be strictly convex subsets o/IR" such that 0 G int U{for all 

i. Let U = |J. Ui and xeb&U. Then nsc (x, U) < k. 

Proof: It easy to check that kern U D rVnt U^ therefore 0 G int kerU. In view of Remark 

3.1 w e conclude that each boundary point of U belongs to A(U), therefore x G A(U). 

Since x ebdU then x G" int Ui for all i. It is well known from convex analysis that there 

exist vectors Zx,..., lk e _R"\{0} such that [lh u] < [k, x] for all i and u e Ui (u ̂  x). 

Since U ̂  0 and 0 G int Ui it follows that [Zi7 x] > 0 for all *. Denote l'i = h/[k, x]. Then 

[l[, x] = 1 and [l'i, u] < 1 for all * and u G Ui (u ̂  x). This implies mini[Ẑ , u] < 1 for all 

ueU (u^x). • 



Chapter 4 

Subdifferential calculus for abstract 

convex functions 

Our main goal in this chapter is to show that the subdifferential calculus is not a privilege 

of convex analysis only. W e indicate some conditions, which guarantee the existence of 

certain calculus rules in abstract convex case. W e are concentrating mainly on the maximum 

of a finite collection of functions. Subdifferential calculus is important for applications of 

abstract convex analysis, so it is interesting to find conditions that provide the exact formula 

for the subdifferential of the maximum. W e show that such a formula can be given in 

terms of abstract convex hull with respect to a certain subset of elementary functions (see 

Corollary 4.1). 

4.1 Subdifferential of the maximum of two abstract con

vex functions 

Let L be a set of functions Z: X —»• IR defined on a set AT. Let //_ be the set of all functions 

h(x) = l(x)-c, where Z G L and c G IR. Consider a function / : X —• 1R+00 = _RU{+oo} 

and assume that y G d o m / = {x G X : f(x) < +00}. In this chapter w e work with the 

set VLf(y) defined by (1.14). It is clear that a function h G /_"_, belongs to VLf(y) if and 

only if 

% ) = 0 and h(x)<f(x)-f(y) V x G X 

Remark 4.1 For the sake of convenience w e assume that for f(y) = +00 the sets d_,/(y) 

47 
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and VLf(y) are defined as empty sets. So if we write "the set VLf(y) is nonempty" then 

we mean, in particular, that y G dom /. 

W e use HLjV to denote the collection of all h G HL such that h(y) = 0, that is HL,y — 

{I — l(y) : I e L}. The symbol fy also denotes the function fy(x) = f(x) — f(y) (here 

y G d o m / ) . 

If T c HL>y then the //^-convex hull of T is defined as follows 

coHLtVT =lheHL>y: h(x) < supt(x) Vx G x\ . (4.1) 

It is more convenient to formulate all statements in terms of the set VLf(y). First we 

present a general inclusion, which does not require additional assumptions. 

Proposition 4.1 Let /i, /2 be HL-convexfunctions and fx(y) = f2(y). Then 

ooHLtV(VLh(y) U VLf2(y)) C PL(max{/1, f2})(y). (4.2) 

Proof: If (Z - l(y)) G co^^/ifo) U £>_./2(y)) then 

Z(x) — Z(y) < sup h(x) 
heVLh{y)lXDLf2(y) 

= max< sup (t(x)-t(y)), sup (£(x) - % ) ) > 
ytedLh{y) tedLf2(y) J 

< max{/i (x) - fx (y), h (
x) ~ h (y)} 

= max{/i(x), f2(x)} - max{/i(y), f2(y)}-

So (I - l(y)) e VL(m^{h, f2})(y). ° 

For some special types of HL-convex functions fu f2 we can get equality instead of the 

inclusion in (4.2). 

Proposition 4.2 Let /i, f2 be functions defined on X such that the functions fXy, f2y are 

HL,y-convexandfi(y) = f2(y). Then 

2>L(max{/i, /2})(y) = CQH^pLfiiv) U VLf2(y)). (4.3) 

Proof: If is clear that VLf(y) = supp (/„, HL)V) for any function /. Since the functions fly 

and /2y are HL>y-convex then 

supp (max{/iy, /2y}, HLtV) = co^^supp (/iy, _-"_,>y) U supp (f2y,HL,y)). 
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Note also that (max{/1, f2})y = max{/iy, f2y} because fx(y) = f2(y). Hence 

VL(max{fu f2})(y) = supp ((max{/1; f2})y, HL,y) = supp (max{/ly, f2y}, HL<y) 

= c°HL>y (supp (fly, HL>y) U supp (f2y, HL,y)) 

= ooHL<y(VLh(y)yjVLf2(y)). 

D 

The following example demonstrates that the equality (4.3) does not necessarily hold 

for arbitrary //̂ ,-convex functions /1} /2 with fi(y) = f2(y). 

Example 4.1 Let X = IR and L consists of all linear functions and the function Z(x) = x2. 

Consider the functions f\,f2: 

[ x2, x < 0, , N f 0, x < 0, 

/i(*) = < " /2(s) = { _ ~ 
(̂  0, x>0. [ x2, x>0. 

Note that /i and f2 are //^-convex and /i(0) = /2(0). At the same time, both fly and 

f2y are not //L)J/-convex for y = 0. It is clear that 2?_,/i(0) = VLf2(0) = {0}, hence 

CO H L O ( £> L /I(0) U VLf2(0)) = {0}. But the function /(x) = max{/i(x),/2(x)} co

incides with elementary function Z(x) = x2, therefore Z G VLf(0). This means that 

Pz,(max{/1, /2})(0) ? coHL<0(VLfi(0) U Z>L/2(0)). 

Further, consider a multifunction A : X x 2 f l i x 2 f f l - » 2HL, where 2Hl- is the set of all 

nonempty subsets ofHL. 

Proposition 4.3 Let y G X. Assume that the inclusion 

A(y, VL9l(y),VLg2(y)) c Z>L(max{_u,fl_})(l/) (4-4) 

holds for all HL-convex functions gx,g2 such that the sets VLgx(y),VLg2(y) are nonempty 

andg-i(y) = g2(y). Let fx, f2 be HL-convexfunctions such that the sets VLfx(y), VLf2(y) 

are nonempty and fi(y) = f2(y). If 

A(y,VLf1(y),VLf2(y)) = PL(max{/1,/2})(y) 

then 

PL(max{/1, f2})(y) = coHL,y(VLfi(y) U VLf2(y)). (4.5) 
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Proof: Let f\,f2 be //^-convex functions such that the sets T>Lfi(y) and £>i,/_(y) are 

nonempty, /i(y) = f2(y) and A(y,VLf1(y),VLf2(y)) = PL(max{/1,/2})(y). Consider 

the functions 

g{(x) = sup{/i(x) + f{(y) : h G VLfi(y)} 

= sup{/i(x) : Zi(y) = fi(y), h G supp (/;, //L)}. 

It is clear that gx(y) = fx(y) = f2(y) = g2(y) and gly,g2y are HL>y-convex. Proposition 

4.2 implies the equality :DL(max{#i, #2})(y) = coHLy(VLgi(y) U VLg2(y)). Since 

^i^(y) = {heHL,y: h<gi-gi(y)} 

heHLy: h(x) < sup /i'(x) V x G X \ = £>_./i(y) 
h'£T>Lfi{y) ) 

then A(y,VLgi(y),VLg2(y)) = A(y,VLf1(y),VLf2(y)). Hence 

PL(max{/1,/2})(y) = A(y,VLf1(y),VLf2(y)) = A(y,VLgx(y),VLg2(y)) 

C £>L(max{5l, y2})(y) = c o ^ P i ^ C y ) U VLg2(y)) (4.6) 

= CO H L > 1 F (PL/I(V)U_? L/2(V)). 

Combining the above inclusion with Proposition 4.1 yields the equality 

7>L(max{/1, /2})(y) = coH-i¥(Pj_/i(v) U 2>L/_(V))-

n 

Proposition 4.4 LetyeX. Assume that 

coHL,v(VLh(y)UVLf2(y)) C A(y,Pi/1(y),X>L/2(y)) C r>i(max{/1,/2})(y) 

/or a// HL-convexfunctions fuf2 such that the sets VLfi(y),VLf2(y) are nonempty and 

fi(y) = h(v)- Then for all such functions fi, f2 

A(y,VLh(y),VLf2(y)) = coHLJVLf1(y)UVLf2(y)). 

Proof: Using the same functions 9i as in the proof of Proposition 4.3 we conclude that 

A(y,VLh(y),VLfM) C c o ^ ( ^ / i ( y ) U^/ 2(y)) (see (4.6)). However, by our as

sumptions, coHh>v(VLh(y) U VLf2(y)) C A(y,VLf1(ylVLf2(y)). So we obtain the de-

sired equality. 
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Example 4.1 and Proposition 4.3 show that, in general, the set _?L(max{/i,/2})(y) 

cannot be described in terms of the sets VLfi(y) and T>if2(y). 

At the same time the equality DL(max{/i, f2})(y) = coHLy(VLfx(y) U VLf2(y)) is 

valid for broad classes of ///,-convex functions. However the mapping co#L y can be very 

complicated. 

Proposition 4.5 Let Cbea set of functions defined on asetX. Let L consist of all Junctions 

l(x) = max{Z1(x), l2(x) + c], where k,l2 G C andc G H. Then 

Pi(max{/1, f2})(y) = coH-iir(X>_,/i(v) U VLf2(y)) 

for all HL-convex functions /i, /_ and all points y G X such that the sets VLfx(y), VLf2(y) 

are nonempty and /i(y) = /2(y)-

Proof: It is clear that Hc C HL and a function is HL-convex if and only if it is //^-convex. 

Let /i and /2 be //^-convex functions (then they are also //^-convex). Let y G X be a 

point such that the sets VLfx (y) and VLf2(y) are nonempty and /i(y) = f2(y). First prove 

that 

snV{hi(x) : h e VLfi(y)} = h(x) - /<(y) V x G X Vt = 1,2. (4.7) 

For this purpose we only need to check that snp{h{(x) : hi G VLfi(y)} > fi(x) - fi(y). 

For each i = 1,2 choose an arbitrary function /ij G VLfi(y). Since /ij G //L then ̂ (x) = 

max{ZK*), Z?(x) + Ci} + cj, where Zj, Zf G £ and q, cj G R. For the sake of definiteness 

assume that %{y) = l}(y) + <• Then _i(y) + d{ = 0 and Z!(x) + cj < /•(_:) - h(y) for all 

x G X. For every U G supp (fi, Hc) consider the function hti defined by 

hti(x) = max{l}(x) + c'i,ti(x) - fi(y)}. 

We see that ^ G Jfx;,Mv) = Oand/ifi(x) < fi(x)-fi(y) Vx G X,thatis/iti G VLU(y). 

Since /j is //£-convex then 

sup{ti(x) - fi(y) : U G supp(/*, //_.)} = h(x) - fi(y) V x G X 

Hence 

s u p L ^ x ) : hieVLfi(y)} > sup{/iti(x) : ̂  G supp (/,, //_.)} 

> sup{^(x) - h(y) : U e supp (fh Hc)} 

= m-fAy) v*ex. 
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So the equalities (4.7) hold true. This means that 

cOff^L/ifo) U VLf2(y)) = {he HL,y : h(x) < max(/i(x) - f{(y)) Vx G X} 

= PL(max{/1,/2})(y). 

D 

Under the assumptions of Proposition 4.5, in order to describe the sets VLfi(y) and 

T}Lf2(y) w e need to know all support functions of fx and f2 with respect to He. In other 

words, w e need to know the values of the functions /i and f2 at each point x G X. These 

sets can be very complicated, and therefore the set COHLy(T>Lfx(y) U VLf2(y)) is also 

complicated. 

In the next section w e consider one special case, when the subdifferential calculus is 

possible. Namely, w e assume that the subdifferential has local nature. This means that for 

the description of a set VLf(y) w e need to know the behaviour of the function / only in 

a neighbourhood of the point y. This allows us to give a sufficiently simple description of 

vLf(y). 

4.2 Subdifferential calculus in the case when HL has the 

strong globalization property 

In the paper [39] Rolewicz introduced the notion of strong globalization property. He says 

that a set <_> of functions defined on a topological space X has the strong globalization prop

erty if for every ̂ -convex function / and for every point y G X each local <_>-subgradient of 

/ at y can be extended to a global one. Here, into the definition of the strong globalization 

property, w e put a more rigid condition. Namely, w e require that each local subgradient is 

also a global one. W e show that in such a case subdifferential calculus can be expressed in 

terms of special functions that in a sense approximate the given functions. 

Let H be a set of functions defined on a topological space X. W e say that H has the 

strong globalization property if for any //-convex function /, for any point y G X and for 

any h G H the following implication holds 

(h(y) = f(y), h(x) < f(x) in a neighbourhood of y) => (h(x) < f(x) for all x G X). 

(4.8) 
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For instance, it was shown in [39] (see Example 4.7) that the set H of all continuous affine 

functions defined on a topological linear space X has the strong globalization property. 

Remark 4.2 Assume that H has the strong globalization property. Then every subset H' c 

H also has the strong globalization property since any //'-convex function is //-convex. 

N o w let L be a set of functions defined on X . As above, Hi denotes the set of all 

vertical shifts of functions Z G L. Assume that H L has the strong globalization property. 

Take an /L_.-convex function / and a point y e X. Let U be a neighbourhood of y. Then 

the following equality holds 

dLf(y) = {leL: l(x) - l(y) < f(x) - f(y) V x G U}. (4.9) 

Indeed, let I G L and l(x) - l(y) < f(x) - f(y) V x G U. Then the function h(x) = 

l(x) - l(y) + f(y) belongs to HL. Moreover, h(y) = f(y) and Zi(x) < f(x) V x G U. 

Hence h(x) < f(x) for all x G X. This implies Z G dLf(y). 

Similarly, w e have the equality for the set VLf(y) 

VLf(y) = {heHL: h(y) = 0, h(x) < f(x) - f(y) V x G U}. (4.10) 

For y G X let U(y) denote the set of all neighbourhoods of y. Let / be an //_-convex 

function. Then we can introduce the following function defined on X 

appf„(x) = inf inf{p(x) : pis Z/L-convex, p(z) = f(z) Vz G U}. (4.11) 
•r'y ueu(y) 

W e will show that the function app^ y can be considered as an approximation of the 

function / near the point y. In the classical convex case we can estimate this function using 

e-subdifferentials (see Proposition 4.7 and Example 4.2). 

Note that another approximation function was considered in [53] (see formula (17) in 

[53]). It seems that the function (4.11) is more appropriate to our purposes. 

First, it is clear that 

a p P / » = f(vl « P P / » < /(*) V * e X <4-12) 

Let us prove some properties of the function app/ y. 

Proposition 4.6 Let y G X and f : X -• JR+0_ be an HL-convex function such that 

VLf(y) ^ 0- Assume that HL has the strong globalization property. Then 

VLf{y)=VL(wppf,y)ivl 
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and therefore 

sup (h(x) + f(y)) < app, (x) V x G X. (4.13) 
hevLf{y)

 J'y 

Ifg is an HL-convex function such that f(x) = g(x) in a neighbourhood of y then appy = 

aPP9,y 

Proof: If U e U(y) and p is an //.-convex function such that p(z) = f(z) for all z e U, 

then, by (4.10), VLp(y) = VLf(y). Hence 

VLf(y) = p | { £ M y ) : U e U(y), p is //^-convex, p(z) = f(z) \/zeU) 

= {heHL: h(y) = 0, h(x) < appear) - apP/iJ/(y) Vx G X } 

= VL(appf,y)(y)-

In particular, we have 

sup (h(x) + f(y)) = sup (h(x) + app, (y)) < app* (x) V x G X. 
hevLf{y) hevL{dipnfj{y) 

It follows directly from (4.11) that app/y — app5?/ whenever / and g are HL-convex 

and coincide in a neighbourhood of y. • 

So if HL has the strong globalization property and / is an //^-convex function such 

that T>if(y) ̂  0 then, in view of (4.12) and Proposition 4.6, we can say that the function 

app * approximates the function / near the point y in the following sense: the function 

app * depends only on the local behaviour of / near y, coincides with / at the point y and 

does not exceed / on the whole space X. The equality X>_(appyy)(y) = VLf(y) shows 

that such an approximation is closely related to the notion of subdifferential. Note that the 

function t(x) = suph&VLf^(h(x) + f(y)) enjoys all these properties as well. However, 

due to the inequalities t(x) < app/2/(x) < f(x) (see (4.13)), the approximation app/y(x) 

is better than t(x). 

Below we will be interested in conditions which guarantee that the approximations 

app/,y(z) and t(x) = snpheVLf{y)(h(x) + f(y)) coincide on X. 

Assume that the space JRn is equipped with the usual coordinate-wise order relation: 

a < b if and only if a{ < b{ for all i = 1,..., n (a, b G IR
n). W e will consider increasing 

continuous mappings M : IRn -> IR. For example, the mappings M(a) = Y,iai and 

M(a) = maxj a{ (a = (a_,..., an) G _R
n) are increasing and continuous on IRn. Moreover, 

since the maximum of abstract convex functions is always abstract convex then the mapping 

M(a) = maxi a{ satisfies the assumptions of Theorem 4.1 irrespective of the set HL. 
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If a mapping M : IRn —> IR is continuous and increasing then for any sets Aj c IR 

(i = l,...,n) 

M f sup a1;..., sup an j = sup M(ax,..., an), 

M [ inf ax,..., inf an ) = inf M(ax,..., an). 
VaiGAi aneAn J aieAi 

(Here we assume that M(bx,..., bj,..., bn) = lim6_^ M(bx,..., b,..., bn) for bj = ±00). 

Theorem 4.1 Let M : _Rn —> IR _>e aw increasing continuous mapping such that for 

all hi,... ,hn G HL the function M(hx(x),..., hn(x)) is HL-convex. Let y G X and 

fx,... ,fnbe HL-convex functions. IfHL has the strong globalization property then 

VLM(h,..., fn)(y) = X>_.M (app/l)y,..., app/B J (y). (4.15) 

Proo/? If h e VLM (app/l>y,..., app/ri J (y) then 

fc(x) < M (app/l>y(x),..., app/n>v(s)) - M (apP/liJ/(y),..., app/niV(y)) V x G X. 

Since the mapping M is increasing then, due to (4.12), 

h(x) < M(h(x),..., fn(x)) - M(h(y),..., fn(y)) V x G X, 

hence h G VLM(fx,..., fn)(y). 

Conversely, let h G VLM(fx,..., fn)(y). Let Ux,..., Un G Z % ) and px,... ,Pn be 

//L-convex functions such thatpj(z) = /i(z) for all z eU{. Then 

/i(*) < M(h(z),...,fn(z))-M(fx(y),...,fn(y)) 

= M(px(z),...,Pn(z))-M(Px(y),...,Pn(y)) VzGf|-/«. (4.16) 

Since all functions p; are Z/_-convex then, by (4.14), 

M(p!(x),...,pn(x)) = M( sup Mx),...,
 SUP ^^W 

\yi\ j, ,mK >) \^iesupp(Pi,#_) fc„esupp (pn,if_) 
= sup M(/n(x),...,/zn(a;)). 

h.i€SUpp (pi,HL) 

By our assumptions, M(/n(x),..., hn(x)) is //L-convex for any /i* G //_, Hence the 

functionp(x) = M(px(x),... ,Pn(x)) - M(Px(y),... > P B ( V ) ) is HL-convex as well. Since 

H L has the strong globalization property then it follows from (4.16) that 

h(x) < M(px(x),... ,pn(x)) - M(pi(y), •. • ,Pn(y)) V x G X 



Subdifferential calculus for abstract convex functions 56 

Thus, we deduce that for every x G X 

h(x) < inf inf \M(j>x(x),... ,pn(x)) - M(px(y),... ,Pn(y))} 
UieU{y) pieTi(Ui) 

= n^L ^rn
M(^(:E)'---'^(x))-M(aPP/i,2/(y)'---'

app/n,2/(y))' 
Uieu(y) Pieii(Ui) 

where Ti(Ui) is the collection of all //^-convex functions pi such thatp^z) = fi(z) for all 

z G U{. At last, it follows from (4.14) that 

h(x) < M(app/li2/(x),..., app/njJ/(x)) - M(appfltV{y),..., app/n>2/(y)) Vx G X. 

Therefore h G VLM (app/l>y,..., app/rvJ (y). P 

Corollary 4.1 Assume that HL has the strong globalization property. Let y G X arntf* 

fx,..., fn be Hu-convexfunctions such that 

appy. y(x) = sup (h(x) + fi(y)) for all x G X, i = 1,..., n. 
heVLfi{y) 

Ifh{y) = • • • = fn(y) then 

n 

VL(max{fx,..., fn})(y) = coH^y\J VLf{(y). (4.17) 

If all functions fi are continuous at y then 

£>x,(max{/1;..., fn})(y) = co^v \JVLfi(v), (4-18) 

w/*ere / = {« : /»(y) = max{/i(y),..., /«(#)}}• 

Proo/ Let M(ax, ...,an) = max{ai,..., an}. Then M satisfies the conditions of Theo

rem 4.1. Hence, by (4.15), 

PL(max{/1,..., fn})(y) = ^(max{app/l>2/,..., app/n!y})(y). (4.19) 

Let fx(y) = • • • = /„(y). Since apP/i» = fi(y) (see (4.12)) then we have 

max{app/l)y(x),..., app^fc)} - max{app/l)y(y),..., app/ni3/(y)} = 

= max sup (/i(x)+/i(y))-max{/i(y),...,/n(y)} 
* heVLfi(y) 

= m a x sup h(x). 
1 hevLn{y) 

So a function h! G HLtV belongs to VL(m^{zpnfuy,..., app/n,y})(y) if and only if 

h'(x) < max sup h(x) for all x G X. 
i heVLfi(y) 
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In other words (see (4.1)) 

n 

PL(max{app/iy,...,apvfn>y})(y) = CO H L > V (JVLfi(y). 

This and (4.19) give us the required equality (4.17). 

If all functions /» are continuous at the point y then there exists a neighbourhood U of 

y such that max{/i(x),..., /n(x)} = maxigj fi(x) for all x eU. Since HL has the strong 

globalization property then 

2>L(max{/i,,.., fn})(y) = VL (max//) (y). 

At the same time, fi(y) = fj(y) for any %, j G /. Then it follows from the first part of the 

proofthat 

VL (max/i) (y) = coHLty\JVLfi(y). 
\ / iei 

Thus the equality (4.18) holds true. P 

Corollary 4.2 Lety e X and fx,...,fnbe HL-convex functions such that 

appA y(x) = sup (h(x) + f{(y)) forallxeX, i = 1,..., n. 
heVLfi{y) 

Let M : IRn —> K be an increasing continuous mapping such that M(hx, ...,hn) G HL 

for all hi e HL. IfHL has the strong globalization property then 

VLM(fx,...,fn)(y) = coHh!y\M(VLfx(y) + fx(y),..,VLfn(y) + fn(y))-

- M(fx(y),..,fn(y))}, 

where [M(VLfx(y) + /i(y),... ,VLfn(y) + fn(y)) - M(fx(y),..., fn(y))\ is the set of 

all functions of the form 

h(x) = M(hx(x) + /i(y),• • •,K(x) + fn(y)) - M(fx(y),..., fn(y)) 

with hi e VLfi(y)for all i = 1,..., n. 

Proof: It is sufficient to note that, by our conditions, every function 

h(x) = M(hx(x) + fx(y),..., K(x) + fn(y)) - M(fx(y),..., fn(y)) with K e VLf{(y) 

belongs to HL,V-
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Due to (4.15) a function b! G HLjV belongs to VLM(fx,..., fn)(y) if and only if 

h'(x) < M(appfuy(x),..., app/ri>y(x)) - M(appfuy(y),..., app/nitf(y)) 

= M ( sup (h(x) + fx(y)),...,
 S U P (Hx) + fn(y)))-

\heVLhiy) heVLfn(y) J 

- M(fx(y),...,fn(y)) 

sup [M(hx(x) + fx(y),...,hn(x) + fn(y))-
hieT>Lfi{y) 

- M(h(y),...,fn(y)] V x G X . 

The proof is completed. P 

For example, if M (ax,..., an) — ax -\ +an then, under the assumptions of Corollary 

4.2, the sum (/H \- fn) of HL-convex functions fi is Z/L-convex as well and 

VL(fx + --- + fn)(y) = coHLty(VLfx(y) + •••+ VLfn(y)). 

Remark 4.3 A n interesting approach to deriving subdifferential sum formula was taken 

in [23]. Among other results, it was shown that additivity of the mapping supp (•, HL) 

implies additivity of the subdifferential. Namely, assume that (lx+l2) G L for all lx, Z2 G L. 

Then for any //L-convex functions fx, f2 we have 

supp (A + f2, HL) = COHL (supp (/i, HL) + supp (f2, HL)). 

If, moreover, //^-convex functions fx,f2 are such that (supp (fx,HL) + supp (f2, HL)) is 

(HL,X)-convex, i.e. 

supp (/i + f2, HL) = supp (fx, HL) + supp (/_, HL), (4.20) 

then ( [23], Corollary 3.2) 

^(/i + /2)(^) = ^/i(x) + ai/2(x) V x G d o m / i n d o m / , . (4.21) 

It is clear that (4.21) holds if and only if VL(fx + f2)(y) = VLfx(y) + VLf2(y) for all 

x e dom/i Hdom/2. 

Note that verification of the equality (4.20) is not easy, because we need to have a descrip

tion of (HL, X)-convex sets. 

The main problem now is to find conditions which guarantee the equality app/y(x) = 

supheVLf{y)(h(x) + f(y))- Since a P P / » > supheVLf{y)(h(x) + f(y)) then we are inter

ested in the inverse inequality. In the following proposition we estimate the function app/y 

file:///heVLhiy
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using e-subdifferentials. Let e > 0. Recall that the set 

dL,ef(y) = {leL: l(x) - l(y) < f(x) - f(y) + e V x G X } 

is called the e-subdifferential of the function / at y with respect to L. 

Proposition 4.7 Let y G X. Assume that for any HL-convex function g the following 

implication holds: 

limsupy(x) < + 0 0 => g is continuous at y. (4.22) 
x->y 

Let a function f be HL-convex and continuous at y. Then 

a p P / » < h m sup (l(x) - l(y) + f(y)) forallxeX. (4.23) 
s^+°iedL,sf(y) 

Proof: First prove that for each e > 0 a neighbourhood Ue of the point y and a number 

S = 5(e) > 0 exist such that 

l(y) - l(z) + f(z) > f(y) - e + 5(e) for all zeU£,le dLmf(z). (4.24) 

Assume it is not true. Then a number e > 0 exists such that for any neighbourhood U of 

the point y and for any «5 > 0 we can find z G U and I G dL,sf(z), for which the inequality 

l(y) - Kz) + f(z) < f(y) -e + 8 holds. 

Then consider the function 

g(x) = sup sup {Z(x) - l(z) + f(z) - 8 : 
5>0 

zeX,le dL,sf(z), l(y) -l{z) + f(z) < f(y) -e + 8}. 

This function is //^-convex, g(x) < f(x) for all x G X and g(y) < snp5>0(f(y) -

e _)_ § - S) = f(y) - e. Moreover, due to our assumption, for any neighbourhood U 

of the point y a point z G U exists such that g(z) > snp5>0(f(z) - 8) = f(z), hence 

lim sup._^ g(z) > lim inf z^y f(z). Since / is continuous at the point y and g(y) < f(y) -e 

then lirnsup-_+y g(z) > f(y) > f(y) -e> g(y). Hence g is discontinuous at y and, by 

(4.22), we conclude that limsup.^ g(z) = +oo. On the other hand, since g < f and / is 

continuous at y then limsupz_y g(z) < \imsnpz^yf(z) = f(y) < +oo, which contradicts 

the equality limsupz_+y g(z) = +oo. 

So for each e > 0 a neighbourhood Ue of y and a number 5(e) > 0 exist such that (4.24) 

holds. Then for any z G Ue and Z G dL,s{e)f(z) we have 

l(x) - l(y) = (l(x) - l(z) + f(z)) - (l(y) - l(z) + f(z)) 

< (f(x) + 8(e))-(f(y)-£ + 8(e)) = f(x)-f(y)+e V x G X. 
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This implies that Z G dL,ef(y) for all Z G dLAe)f(z) with z e Ue. Since dL,sf(z) C 

dL,5{e)f(z) for any 0 < 8 < 8(e) then Z G dL,e/(y) for all Z G 0_.,./(s) with z G Ue and 

0 < 5 < 5(e). Therefore for all e > 0 and 0 < 8 < 8(e) 

sup (Z(x) - l(y) + f(y)) < sup (Z(x) - l(y) + f(y)) for all x G X. (4.25) 
i£dL,sf(z),zeue iedL,sf(y) 

At the same time, since (-l(z) + f(z)) < (-l(y) + f(y)) + 8 whenever Z G dL,sf(z) then 

sup (l(x) - l(z) + f(z)) < sup (l(x) - l(y) + f(y)) + 8 for all x G X. 
iedLtSf(z),zeue iedLiSf(z),zeue 

(4.26) 

It follows from the inequalities (4.25) and (4.26) that for all e > 0 and 0 < 8 < 8(e) 

sup (l(x)-l(z)+f(z))< sup (l(x)-l(y)+f(y))+8 for all x G X. (4.27) 
ieaLtSf{z),zeue iedL<Ef{y) 

Since the function / is continuous at y then it is finite in a neighbourhood U'ofy. Since 

/ is HL-convex then dL,sf(z) / 0 for every z e U' and <5 > 0. Hence for any e > 0 the 

function 

p(x) = sup sup sup (l(x) — l(z) + f(z) — 8) 
zeuenu> S(e)>6>0 ledL,sf(z) 

is HL-convex and coincides with f(x) for all x G U£ fl [/'. Thus, we deduce that 

apptJx) = inf inf{p(x) : pis //_-convex, p(z) = f(z) Vz eU} 
rrj,y\ / £/_W(_) 

< inf inf {p(x) : p is ZL_.-convex, p(z) = f(z) Wz eU£n U'} 
e>0 

< inf sup sup sup (l(x)— l(z) + f(z) — 8), 
£>0 zeUertU' 5(e)>S>0 ledL,sf(z) 

and, due to (4.27), 

apPf v(x) < inf sup (l(x) - l(y) + f(y)) = lim sup (l(x) - l(y) + f(y)). 
J'y e>0 iedL,ef(y)

 £^+0iedL,sf(y) 

D 

Remark 4.4 Implication (4.22) means that every //L-convex function g is continuous at y 

whenever a neighbourhood [/ of y and a number c G IR exist such that g(u) < c for all 

u G U. Note that this implication can be false even in the case when all elements of //_ are 

continuous. For example, let g : IR -»• IR be the function defined by: g(x) = 0 if x < 0 and 

#(x) = 1 if x > 0. Then g can be represented as the supremum of a family of continuous 

functions. We see that g is uniformly bounded on IR. However g is discontinuous at zero. 
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Example 4.2 Let L be the set of all linear continuous functions defined on a normed space 

X . Then every //^-convex function is convex in the usual sense. It is well known (see, 

for example, Proposition 2.2.6 in [7]) that a convex function g defined on X is Lipschitz 

continuous at y G X provided that g is bounded above in a neighbourhood of y. Thus we 

conclude that the condition (4.22) is valid in the classical convex case. 

The other approach to examining the equality appy (x) = snpheVLf^ (h(x) + f(y)) 

is based on a special property of the mapping X>_,/0) at the point y. Let X and T be 

topological spaces. W e say that a mapping D : X —> 2 T enjoys property (*) at y G X 

if, for any open set G C T such that D(y) C G, a neighbourhood U of y exists such that 

D(u) n G ^ 0 for all u e U. Kuratowski [30] gives the following definition of upper 

and lower semicontinuity of multifunction D : X —> 2 T (see also Borwein and Zhu [5], 

Definition 5.1.15): D is upper (lower) semicontinuous at y provided that for any open set 

G in T with D(y) C G, (D(y) n G ̂  0), 

{xGX: D(X)CG} ({xeX: D(x) n G ̂  0}) 

is an open set in X . Thus, if L>(u) is nonempty for all u from a neighbourhood of y then 

any semicontinuity (upper or lower) of D at y implies the property (*). 

Proposition 4.8 Lef HL be equipped with the topology of pointwise convergence. Let f be 

an HL-convex function and y G X. If f is upper semicontinuous at y andVLf(-) enjoys 

property (*) at y then app/>y(x) = supheVLf{y)(h(x) + f(y))forallx G X. 

Proof: Take x G X and e > 0. Let G£ = {/i G ZL_. : 3 # G Z>_,/(_0 M * ) < _K*) +
 £}-

Then G£ is an open set and VLf(y) C Ge. Since the mapping £>_,/(•) possesses property 

(*) at the point y and / is upper semicontinuous at y then there is a neighbourhood Z7e of y 

such that VLf(u) nGey£® and f(u) < f(y) + e for all u G U£. Consider the function 

p£(z) = sup sup (h(z) + f(u)) V z G X. 
ueue hevLf(u)r\G£ 

It is clear that pe is //L-convex and pe(z) = /(s) for all zeUs. Hence 

app, (x) = inf inf{p(x) : p is //^-convex, p(z) = /(z)Vz G t/} 

< inf pe(x) = inf sup sup (h(x) + f(u)) 
e>0 e>o ueLr£ hevLf(u)r\Ge 

= inf sup sup [(/»(*) + /(y)) + (f(u) - f(y))] 
e>°uevehevLf{u)r\Gs 

< inf sup (g(x) + f(y) + 2e)= sup (g(x) + f(y)). 
e>0gevLf(y) gevLf(y) 
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The reverse inequality suphevLf^(h(x) + f(y)) __ app^ (as) follows from Proposition 

4.6. D 

4.3 Examples 

For beginning, we consider the case, when abstract convex functions are generalized convex 

in the sense of Beckenbach [2]. 

Example 4.3 Let T be a two-parameter family of continuous functions defined on an 

interval / c IR (see Example 1.1). It is easy to check that each ̂ -convex function 

/ : / —• IR U {+00} possesses the inequality 

f(x) < ¥>(__,/(__))(__)/(x_))(aO, X! < x < x2 (4.28) 

for every xx,x2 e I such that f(xx) and /(x2) are finite. Let / : / -> B U {+00} be 

^-convex and xi G /. Let <p G T be such that <p(xx) = f(xx) and (p(x) < f(x) in a 

neighbourhood of xx. W e show that (p(x) < f(x) for all x G /. Assume it is not true. Take 

an arbitrary x2 G / with p(x2) > f(x2). For the sake of definiteness, let x2 > xx. Since 

P(__,/(-x))(*»,/C-2))(3_) = f(xi) = V>M and¥J(_1>/(xl))(X2)/(X2))(a;2) = /(x2) < <p(x2) then 

(̂_i,/(x1))(x2,/(x2))(̂ ) < V(x) for all x G (xx,x2) (see [2]). Hence ̂ (-1)/(xi))(X2,/(X2))(x) < 

f(x) for all x > xx close to xx, which contradicts (4.28). 

Thus, the family T has the strong globalization property. 

Let X and Y be topological spaces and u : X -> Y be an open continuous mapping. 

Let £ be a set of functions defined on u(X) = {oo(x) : x G X } . Let L be the set of 

all functions l(x) = ^(wfz)) defined on X , where £ G £. Then the set of all Z/_-convex 

functions coincides with the set of functions f(x) - y(w(x)), where y is //^-convex. 

Proposition 4.9 IfHc has the strong globalization property then also HL has the strong 

globalization property. 

Ifg is an Hc-convexfunction, y = u(x) and 

app01/Cz)= suP (Kz)+9(y)) Vzeu(X), 
9 hevc9(y) 

then the following equality holds for the function f = g o u 

a p p / ) X W = sup (h(z) + f(x)) MzeX. 
hevLf(x) 
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Proof: Assume that Hc has the strong globalization property, and let h G HL. Let f(x) = 

g(uj(x)) be an //^-convex function such that 

h(y) = f(y), h(x)<f(x) VxGf/, 

where U is a neighbourhood of y. Since h(x) = £(u(x)) - c then £(u(y)) -c = g(u(y)), 

£(u(x)) - c < g(cu(x)) Vx G U. Since a; is an open mapping then U' = o;(C/) is a 

neighbourhood of the point c_(y). Because Hc has the strong globalization property, we 

have £(z) - c < g(z) for all z e u(X) and h(x) < f(x) for all x G X. So we proved that 

//_ has the strong globalization property. 

Let us prove the second part of proposition. Let g be //̂ -convex, y = co(x) and 

appg,y(z) = supheT>cg^(h(z) + g(y)) for all z e w(X). Since every //̂ -convex func

tion p has the form p(x) = q(u>(x)), where q is //̂ -convex, then 

apP/x^) = inf inf{p(,z) : pis //_-convex, p(u) = f(u) MueU] 
ueu(x) 

— inf inf{<7(a;(,z)) : q is /Lj-convex, g(o>(u)) = y(t_(tt)) Vw G U}. 
ueu(x) 

Since the mapping cu is continuous and open then we get 

aPP/,x(*) = ^J^L))1^^)) : q is ^-convex, q(u') = g(v!) Vu' G U'} 

= WPg^z)) = sup (h(u;(z)) + g(y)) 
hevcg(y) 

= sup (/i(w(z)) + g(u(x))) = sup (Zi(z) + /(x)). 
hevcg(u(x)) heVLf{x) 

• 

Note that, under the conditions of Proposition 4.9, we have a simple isomorphism be

tween //^-convex and //^-convex functions. If/ = gou then inixeX f(x) = in{yeaj(X) g(y)-

So if He has the strong globalization property but the elementary functions h G //c seem 

difficult then we can use such isomorphism in order to get a more convenient equivalent 

form of abstract convex functions. 

Proposition 4.10 Let X and V be topological spaces. Let H be a set of functions h : 

X —* IR Assume that for each two points x,y G X there exists a continuous mapping 

u . y __> x such that x,y G OJ(V) and H" has the strong globalization property, where 

H" is the set of all functions h! : V —> IR defined by h'(v) = h(u(v)), (h G / / ) . Then H 

has the strong globalization property. 
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Proof Let / : X -> K + 0 0 be //-convex function. Let y G X and /i G // be a function 

such that h(y) = /(y) and /i(x) < /(x) for all x from a neighbourhood [/ of the point y. 

Take a point x G X and consider a mapping w : V -»• X , which satisfies the conditions of 

our proposition for the points x, y. Let w ^ ) = y and OJ(V2) = x. Consider the functions 

h', /' defined on V by the formulas: h'(v) = h(u(v)), f'(v) = f(uj(v)). Then h! belongs 

to H", and /' is //"-convex. Since u is continuous then a neighbourhood [/' of the point 

vx exists such that c_(t;) G [/ for all t; G U'. Hence fc'fa) = h(y) = f(y) = f'(vx) and 

h'(v) = h(uj(v)) < f(u(v)) = f'(v) for all v G U'. Since //" has the strong globalization 

property then h'(v) < f'(v) for all v e V. In particular, h(x) = ti(v2) < f'(v2) = f(x). P 

N o w consider the simplest case X = IR. 

Proposition 4.11 Let Lbea set of continuous functions defined on IR Assume that for any 

functions hx,h2 G HL and for any points xx,x2eX the following implication holds 

(hx(xx) = h2(xx), hx(x2) = h2(x2), xx ̂  x2) => (hx - h2). (4.29) 

Let y G IR and f be an HL-convex function such that the sets VLf(z) are nonempty in a 

neighbourhood U ofy. Then for any he HL implication (4.8) holds. 

Proof: Let U be a neighbourhood ofy such that VLf(z) ^ 0 for all z G U. Let h e //_ be 

an elementary function such that h(y) = f(y) and h(x) < f(x) for all x G U', where U' is 

a neighbourhood ofy. W e need to check that h(x) < f(x) for all x G IR. 

First show that h(x) < f(x) for any x > y. Let x > y. Then a point z G U D U' 

exists such that x > z > y. Since z e U then VLf(z) ^ 0. Take an arbitrary function 

^z G T>Lf(z). Then /i_(y) + /(_;) < /(y) = /i(y). Moreover, since z e U' then h(z) < 

f(z) = hz(z) + f(z). Consider the function h'(t) — hz(t) + f(z). Since HL is closed under 

vertical shifts and hz G HL then h' e HL. So for these 2, y and h, h' G //_ we have 

z>y, h'(y)<h(y), h(z)<h'(z). (4.30) 

Note that, under our assumptions, HL consists of continuous functions. Then, due to (4.30), 

a point tx e [y, z] exists such that h'(tx) = h(tx). 

N o w suppose that h(x) > h'(x). This means, in particular, that h ^ h'. It follows 

from (4.29) that h'(t) ̂  h(t) for any t ̂  tx. Then, by (4.30), either h'(y) < h(y) or 

h(z) < h'(z). If h(z) < h'(z) then a point t2 G (_-,x) exists such that Zi'(i2) = /i(t2), which 

contradicts our assumption. Hence h'(y) < h(y) and y <tx. Take a positive number e such 
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that e < min{h(y) - h'(y), h(x) - h'(x)} and considerthe function h£(t) = h'(t)+e. Then 

h£ e HL. Moreover, the following inequalities hold 

h£(tx) > h(tx), he(y) < h(y), h£(x) < h(x). (4.31) 

Since y < tx < x and the functions h£ and h are continuous then, by (4.31), we can find 

two different points a G (y, tx) and b e (tx,x) such that he(a) = h(a) and he(b) = h(b). 

Then, by (4.29), h£ = h, which contradicts (4.31). 

So we conclude that h(x) < h'(x). Since h'(x) = hz(x) + f(z) and hz G VLf(z) then 

h'(x) < f(x). Thus we have proved that h(x) < f(x) for any x > y. 

The same arguments show that h(x) < f(x) for all x < y. P 

Proposition 4.12 Let L be a set of continuous functions defined on IR such that (4.29) is 

valid for HL- Assume also that for any sequence {hi} C HL the following holds: if a 

function h G HL and an interval (a, b) C IR exist such that limj_>+00 Zij(x) = h(x)for all 

x e (a, b) then lim^+oo hi(x) = h(x)for all x G IR. Then HL has the strong globalization 

property. 

Proof: Let / be an //^-convex function and y G H. Let h G HL be an elementary function 

such that h(y) = f(y) and h(x) < f(x) in a neighbourhood U of the point y. W e need to 

check that h(x) < f(x) for all x G IR. Here w e show only that h(x) < f(x) for all x < y. 

The proof of the inequality h(x) < f(x) for x > y is analogous. 

First suppose that a sequence {y»} C IR exists such that y{<yVi, lim;_++0_ yi = y and 

KVi) < fiVi) for a11 *• Since / is HL-cowex then for each i a function hi G supp (/, HL) 

exists such that /(y*) > hi(y{) > % < ) . W e have for each« 

Vi<y, hi(yi)>h(yi), hi(y)<f(y) = h(y). (4.32) 

Since the functions fu and Zi are continuous then we can find a point t G (yh y] such that 

Zii(t) = h(t). Assume that ̂ (x) < h(x) for certain x < y{. Then a point t' G (x, ŷ ) exists 

such that hi(t') = h(t'), and therefore, by (4.29), h = h, which contradicts (4.32). Hence 

h(x) < h{(x) < f{x) for all x < Vi. Since Vi -> y then Zz(x) < /(ar) for all x < y. 

N o w suppose that such a sequence {yj does not exist. Since h(x) < f(x) for all x G U 

then /z(x) = /(x) for all x G [a, y], where a is a point from the neighbourhood U and a < y. 

Assume that a point y0 < a exists such that h(y0) > f(y0). W e will get some contradictions 
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for such a situation. So take a small enough e > 0 such that Zi(y0) — /(y0) > 2e. Let {ej 

be a decreasing sequence of positive numbers and limi_^+o0 _; = 0, ex = e. Since / is 

//^-convex and H L is closed under shifts then a sequence {/̂ } c supp (/, HL) exists such 

that hi(d) = /(a) — e, for each L Consider two cases: 

1.) Let a point y' G (a, y) and an index % exist such that f(y') - hi(y') > /(a) - hi(a) = e^ 

Choose a positive number 5 such that min{/(y') — Zij(y'), 2e,} > £ > /(a) — hi(a) = e*. 

Then consider the function h'(x) = hi(x) + 8. W e have 

h'(y') = hi(y') + 8 < f(y') = h(y'), ti(a) = hi(a) + 8 > f(a) = h(a), 

h'(yo) = hi(y0) + 8< f(yQ) + 2e< < f(y0) + 2e< h(y0). 

Since y0 < a < y', these inequalities contradict (4.29) and the continuity of the elementary 

functions. 

2.) Let f(y') - hi(y') < f(a) - h{(a) = e{ for all i and y' G (a, y). Since f(y') - hi(y') > 0 

then 

lim h{(x) = f(x) = h(x) for all x G (a,y). 
i—>+oo 

Due to the assumptions of this proposition limi-.+oo hi(x) = h(x) for all x G X . Hence 

% 0 ) = Hm^+oo Zii(y0) < f(y0) because h* G supp(/,//L). But this contradicts the 

assumption Zi(y0) > /(yo)-
 D 

Example 4.4 Let aQ > 0 and X = IR. Let L be the set of all functions l(x) = -a0(x - a)
2, 

where a G IR. Then the conditions of Proposition 4.12 hold for HL, and therefore HL has 

the strong globalization property. But w e do not have tools here for establishing necessary 

or sufficient conditions for global minimum of //^-convex functions, since //_ does not 

contain any constant and each function h(x) = -a0(x - a)2 - c has no global minimum 

over X . 

So w e should consider only examples where some elementary functions attain their 

global minimum. In the following example zero belongs to L. Hence w e have necessary 

and sufficient condition for the global minimum. 

Example 4.5 Let lx(x) and Z2(x) be continuous strictly decreasing and strictly increasing 

functions respectively (x G IR). Assume that L consists of all the functions aZi(x), al2(x) 



Subdifferential calculus for abstract convex functions 67 

with a > 0. It is easy to check that the set H L satisfies the assumptions of Proposition 4.12. 

For example, w e can take 

Zi(x) = -ex, l2(x) = -e~
x. 

We see that the set HL here is closed under horizontal and vertical shifts. Moreover, the 

set of all H L -convex functions is bigger than the set of all lower semicontinuous convex 

functions defined on IR. Indeed, let t(x) = ax — c be an affine function. If a = 0 then 

t e HL. If a > 0 then for each y G IR w e have that (-ae
ye"x + a + t(y)) < t(x) for any 

x G IR, the function h(x) = -aeye~x + a + t(y) coincides with t at the point y and belongs 

to HL. The same can be done for a < 0. Hence every affine function is /L_,-convex. 

Example 4.6 Let lx,..., lm, ax,..., am be strictly increasing continuous functions defined 

on IR. Let L denote the set of all functions Z*(x) = ax(t)lx(x) ̂  h am(t)lm(x) with 

t e JR. Check that (4.29) is valid for HL. So let 

hx(x) = ai(ii)Zi(x)+- • -ram(tx)lm(x)-cx, h2(x) = ax(t2)lx(x)+- • •+am(t2)lm(x)-o1. 

Letx ^ yandhx(x) = h2(x),hx(y) = h2(y). Then(hx(x)-hx(y))-(h2(x)-h2(y)) = 0, 

that is 

(ax(h) - ax(t2))(h(x) - h(y)) + ••• + (am(k) ~ am(t2))(lm(x) - lm(y)) = 0. (4.33) 

Since x ^ y and the functions k are strictly increasing then all the quantities (k(x) - k(y)) 

are not equal to zero and have the same sign. Since all a{ axe strictly increasing then the 

equality (4.33) is possible only for tx = t2. It follows from the equality hx(y) - h2(y) that 

cx = c2, hence hx = h2. 

N o w let the sequences {£*}, {ck} and an interval (a, b) be such that 

5 3 ai(tk)h(x) - ck = J2 o,i(t0)k(x) - co for all x G (a, b). 

i=i / <=i 

Let x,y e (a, b) and x > y. Then 

m m 

lim Yai(tk)(k(x) - k(y)) = _>>(*,)&(*) - U{v))> 

consequently 

k^+°°—1 <=i 

lim V(o^tfc) - ai(t0))(Zi(x) - ^(y)) = 0. 
k—»+oo 

i=l 
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Since all the quantities (k(x) — k(y)) are positive and all the functions a, are continuous 

and strictly increasing then linifc-̂ oo tk — t0. The equality liinfc_>+00 cfc = co is valid as 

well. Hence, due to Proposition 4.12, HL has the strong globalization property. 

Now consider the usual convex functions defined on a topological linear space. 

Example 4.7 Let L be the set of all linear continuous functions defined on a topological 

linear space X . Let C be the set of all linear functions defined on IR. It follows from 

Example 4.6 (with m = 1, ax(t) = t, h(x) = x) that the set Hc of all affine functions 

defined on IR has the strong globalization property. Take two arbitrary points x, y G X and 

consider the function u : IR -> X defined by u(v) = vx + (1 - v)y. Then u(0) = y and 

u(l) = x. Moreover, u is continuous and for any h G //_ the function ti(v) = M w(^)) 

belongs to HL. Indeed, if 0.(2) = l(z) + c V z G X , where Z G L and c G IR, then 

h'(v) = l(vx + (1 - v)y) + c = v(l(x) - l(y)) + (l(y) + c). Thus, by Proposition 4.10 (see 

also Remark 4.2), HL has the strong globalization property. 



Chapter 5 

Separation properties via connectedness 

of topological convexity spaces 

In this chapter we investigate separation of convex sets by elements of a subbase. In order to 

get required results, w e apply a restriction on the choice of a subbase in terms of a special 

type of connectedness of topological convexity spaces. A m o n g other results, w e give a 

description of convex sets, which can be represented as the intersection of a subfamily of 

subbase (see Theorem 5.4). In particular, this allows to describe abstract convex functions 

and sets. W e also obtain a description of the abstract convex hull of a finite collection of 

abstract convex sets. 

5.1 Subbases for convexities and topologies 

Recall that a collection Q of subsets of a set X is called a convexity on X if 

(1)0,XG£ 

(2) f| A e Q for every A C Q 

(3) (J A e Q whenever A C Q is a chain with respect to the inclusion. 

Members of _? are called convex sets and the pair (X, Q) is called a convexity space. 

There are two main ways to introduce a convexity on a set. First, w e can say that a set 

G C X is convex if it satisfies certain properties. In this case w e should require that the 

collection Q of all such sets G C X satisfies axioms (l)-(3). Another way is based on a 

notion of a subbase for convexity. 

It is clear that the intersection of any family of convexities on a given set X is a convex-

69 
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ity as well. This fact allows us to talk about subbases for convexities. A set H c _7 is called 

a subbase for the convexity Q if Q is the intersection of all convexities, which contain H 

(we will say also that Q is generated by H). Note that topologies enjoy the same property: 

intersection of any family of topologies on a given set X is also a topology on X. So we 

can consider subbases for topologies as well. 

Let H be a subbase for topology T. Then open sets can be described in the following 

way. First we construct the collection B of all intersections of finite subfamilies ofH. Then 

T consists of the empty set, whole X and all unions of subfamilies of B. 

If A is a subset of X then its convex hull convgA with respect to the convexity Q is 

defined as follows: 

conveA = p|{G G Q : A C G}. 

For any points x,y e X denote by [x, y]g their convex hull conve{x, y}. W e will also use 

symbol [A]<u for the collection of all finite subsets of A. 

Recall two results of axiomatic convexity. The following one is well known as the 

finitary property. 

Proposition 5.1 ([60], p. 31, Proposition 2.1) Let (X, Q) be a convexity space. Then for 

every subset A C X 

convgA = |̂ J convgF. (5.1) 
Fe[A]<" 

Proposition 5.2 ([60], p. 10, Proposition 1.7.3) Let (X, Q) be a convexity space. IfH is a 

subbase for the convexity Q then for every finite subset F C X 

convgF = f]{H e U : F C //}. (5.2) 

In the right-hand side of (5.2) it is assumed that the intersection over the empty set is 

equal to X. In other words, if F qt H for any H eH then we set comgF = X. 

It follows from the formulas (5,1) and (5.2) that for every A c X its convex hull conv^A 

can be described via elements of 7. in the following way: 

convgA= [j f]{He?{: F C //}. (5.3) 
Fe[A]<» 

Due to Proposition 5.1, a set A C X is convex (belongs to convexity Q) if and only if 

A = M convgF. 
Fe\A]<u 
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This means that A e G whenever convg-F C A for all F G [A]<w. 

The so-called N-ary convexities form one of the most important subclasses of convex

ities. Let AT be a positive integer. Let [A]-N denote the collection of all subsets F C A, 

which contain no more than N points. A convexity Q is called N-ary (or of arity N) 

(see [60]) if A G Q whenever convgF C A for all F G [A]^N. Thus, if Q is A-ary and the 

number N is not very large then we have a sufficiently simple description of convex sets. 

In this chapter we are concentrated on subbases for A-ary convexities and separation of 

convex sets by the elements of a subbase. 

Let H be a collection of subsets of a set X. In this chapter we use the following nota

tions: 

• H' = {X\H : H eH} is the collection of all complements of sets H eH; 

• HX = {H eH: x G //} for every x G X ; 

• H* is the collection of all sets Hx with x G X ; 

• H*' = {H\HX : x G X } is the collection of all complements of sets HxeH*. 

W e introduce the following convexities and topologies on X: 

• _7 is the convexity on X generated by H; 

• Q is the convexity on X generated by the union HUH'; 

• Tx is the topology on X generated by H\ 

• Tx is the topology on X generated by H'. 

Note that H* and W are collections of subsets of the set H. Hence we can introduce the 

following: 

• Q* is the convexity on H generated by the union H* U H*'\ 

• TH is the topology on H generated by W; 

• TJt is the topology on H generated by W. 

Here we use the same definition of a subbase as above. For example, Q* is the intersection 

of all convexities, which contain H* U H*'. 

W e first give a description of convex hulls conv<j and convg-. of finite subsets of X and 

H respectively. 
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Proposition 5.3 Let F be a finite subset ofX. Then a point x e X belongs to con\gF if 

and only if for every setHeH the following implications hold 

FcH =• x G H, 

xeH => Fn//^0. 

Proof: Since H U H! is a subbase for convexity Q and F contains a finite number of points 

of X then its convex hull convgF can be described via elements of H U W (see Proposition 

5.2): 

convaF = (f|{// eH: F C //}) f| (p\{X\H = H G H, Fc (X\//)}) . 

So a point x G X belongs to convgF if and only if for any H eH 

(x e H whenever F C H) and (x G" // whenever Fn //= 0). 

D 

Proposition 5.4 Let £ be a finite subset ofH. Then 

convg-.S = I H e H : Q £ C // C (J F I. (5.4) 
I £__" £e£ J 

Proof: Since 5 is a finite subset of H and 7_* U H*' is a subbase for Q* then 

convg-._: = p|{yl : AeH*UH*', £ c A} 

= (f]{Uc : x G X, £ C 7ix}) f| (f|{7< : x G X, _• C 7<}) • 

We have 

£ C ft- ^=* x G Q F, SCH'X <^> X#\JE. 
Ee£ Et£ 

Hence for every setHeH 

(5.5) 

H e f]{Hx : xeX, £CHX} <=^ []ECH, 
Ee£ 

Hef){H'x: xGX, £CH'X} <=• H C [J E. 
(5.6) 

E££ 

Thus, the required formula (5.4) follows from (5.5) and (5.6). • 

Let Y be a topological space. We will need the following interpretation of continuity of 

a mapping u : Y -> H in cases, when H is equipped with one of the topologies: TH or T^. 
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Proposition 5.5 Let y0 G Y and w : Y -+ H be a mapping. IfH is equipped with the 

topology Tn then UJ is continuous at y0 if and only if for each x e u(yQ) a neighbourhood 

U ofy0 exists such that x G cv(y)for all y eU. IfH is equipped with the topology 7^ then 

u is continuous at y0 if and only if for each x G" u(y0) a neighbourhood U ofyQ exists such 

that x G" ui(y)for all y eU. 

Proof: Let H be equipped with the topology TH, and assume that u is continuous at the 

point y0. Take a point x G u(y0). Then u(y0) e Hx G H* C Tn. Hence the set Hx is a 

neighbourhood of ou(y0). Since u is continuous at y0 then we can find a neighbourhood U 

of y0 such that w(y) G Hx for all y G U. In other words, x G u(y) for all y G U. 

Conversely, assume that for each x G cu(y0) a neighbourhood U of y0 exists such that 

x G a;(y) for all y e U. Let <S be a neighbourhood of u;(y0). Since the topology TH is 

generated by H* then a finite collection {HXl,..., HXk} of elements of H* exists such that 

w(yo) £ Di=i % * c «S- This implies x» G c_>(y_) for alU = 1,..., k. By our assumption, 

there exist a neighbourhoods Ux,..., Uk of the point y0 such that Xj G a>(y) for all y e Ui. 

Then the set U = f)*=1 Ui is a neighbourhood of y0 and u(y) e f)*=1 74* C S for all 

y G U. So the mapping u : Y —> 7. is continuous at yo. 

We omit the second part of the proof since all arguments are the same as in the first one. 

• 

A similar interpretation of continuity of a mapping u : Y —• X is valid for the topolo

gies Tx and Tx. 

Proposition 5.6 Let y0 G Y and w : Y -^ X be a mapping. IfXis equipped with the 

topology Tx (Tx) then u is continuous at yo if and only if for each H G H such that 

to(yo) e H (u(y0) G" H) a neighbourhood U ofyQ exists such that u(y) G H (u(y) £ H) 

for all y eU. 

Proof: The proof is straightforward. P 

Remark 5.1 Let X be equipped with a topology T. Then all sets H e H are open (closed) 

in the topology T if and only if Tx cT(TxcT).As one can see from Proposition 5.5, it 

is natural to apply the topology TH in the case, when all sets H G H are open. At the same 

time, the topology T^ on H can be suitable when all sets H G H are closed. 
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5.2 Subbases for iV-ary convexities 

First we define A-connectedness of a topological space with respect to a convexity on this 

space. 

Definition 5.1 Let (X, T) be a topological space and Q a convexity on X. We say that 

(X, T) is Af-connected with respect to Q if N subsets Xx,..., X N C X exist such that 

X = Xi U • • • U XN and for each i = 1,..., N the following condition holds: for any two 

points x, y G X{ a continuous mapping to : [0,1] —> [x,y]g exists such that CJ(0) = x and 

o;(l) = y. W e say that (X, T) is connected with respect to Q in the case, when N = 1. 

It should be mentioned that the number N above is not minimal possible. In other words, 

if (X, T) is A-connected with respect to Q then it is also n-connected for any n> N. 

Remark 5.2 It is easy to see that A-connectedness of a topological space with respect to 

a convexity on this space remains valid if the topology or the convexity decreases. This 

means the following. Assume that (X, T) is A-connected with respect to Q. Let Tx and 

Qx be a topology and a convexity on X such that Tx C T and Qx c _/. Then (X,TX) is 

A-connected with respect to Qx as well. 

The following two theorems give important information about convex hulls of finite 

subsets of X. 

Theorem 5.1 Assume that one of the spaces (H, TH) or (H, TL) is connected with respect 

to the convexity Q*. Let F be a finite subset ofX. Then for any points x,y G F and for 

each z G [x,y]g the following holds: 

convgF = convg({z} U (F\{x})) (J convg({z} U (F\{y})). (5.7) 

Proof: Since the set F is finite then 

convgF = [}{HeH: F C H}. (5.8) 

Let Fx = {z} U (F\{x}) and F2 = {z} U (F\{y}). Since z G [x,y]g C [x,y]g C conveF 

then 

convgF D conv^Fi |JconvgF2. 
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N o w we need to check the inclusion convgF c convgFx \J convgF2. W e have 

convgF. |JconvaF2 = (f]{Hx e H : Fx C //j) |J (f}{//2 e H : F2 C //2}) 

= fl^U//,: Hx,H2eH, FxcHx, F2cH2}. 

If either {Hx : Hx e H, Fx C Hx} = 0 or {/Z2 : H2 e H, F2 C H2} = 0 

then conv^Fi (J conveF2 = X and the inclusion convgF c conv^Fi (J convgF2 becomes 

trivial. 

So we need to show that convgF c Hx U //_ whenever Fx c //i and F2 c //2 

(HX,H2 e H). Consider such sets Hx and H2. Since the space H is connected with 

respect to the convexity Q* then a continuous mapping u; : [0,1] —> [//i, ___]<*. exists 

such that OJ(0) = Hx and UJ(1) = //2. If either Hx D F or H2 D F then, due to (5.8), 

convgF C //i U //2. Assume that Hx ̂  F and H2 ;_> F. Then x G" //i and y G" //2. 

Let 7. be equipped with the topology Tn. Since y e Hx — cu(0) and the mapping u is 

continuous then, by Proposition 5.5, a positive number e exists such that y G _;(£) for all 

£ < e. 

Let £ = sup{e G (0,1) : ye u(t) V. G [0,e)}. Then y G" u(t). Indeed, if t = 1 

then y G* a>(£) = //2. If t G (0,1) and y G a>(£~) then a positive number 8 exists such that 

y G o;(£) for alH G (i~ — 5, t + 8), which contradicts the definition of t. Thus the point y 

does not belong to u(t). 

Since u;(£) G [Hx, H2]g* then it follows from the formula (5.4) that HXD H2 C co(t). 

This implies z G cv(t) G ft. Since 2 G [x,y]g then, due to the Proposition 5.3, {x,y} n 

u;(t) _̂ 0. W e proved before that y 0 a>(f). Hence x G a>(£). Since i > 0 then a positive 

number 5 exists such that x e v(t) for all t G (t - 8, t). Take an arbitrary t0 e (t- 8,t) 

and consider the set H0 = u(tQ) e H. Then x,y e H0. 

Since H0 G [Hx,H2]g* then, due to (5.4), Hxn H2 cz H0 c HXU H2. Since x, y G H0 

and F\{x, y} C Hx n i/2 C i/0 then F C //0. This implies convgF c H0 C Hx U //2. 

N o w assume that ft is equipped with the topology TL_. Since x G" i/i = w(0) then, 

by Proposition 5.5, a positive number e exists such that x G* w(£) for a u t < e. Let 

i = sup{e G (0,1) : x G" o;(£) Vt G [0,e)}. Then x G u(t). Indeed, if £ = 1 then 

x e u>(t) = H2. Ifi G (0,1) and x G" u(t) then a positive number 8 exists such that x £u(t) 

for all _ G (t - 8,t + 8), which contradicts the definition oft. Since {x,y} C u(t) ̂  0 for 

any t e [0,1] and x G" u;(£) for all t < ttnen y G u(t) whenever t < t. Due to continuity of 
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to, the point y belongs to co(t). Hence F c u(t), and therefore conveF c u(T) C HXU H2. 

D 

Theorem 5.2 Assume that one of the spaces (ft, Tn) or (ft, T^) is connected with respect 

to the convexity Q*. Let X be equipped with a topology T such that 

M cowg(S U {zi}) = comgS whenever S G [X]<u and Zi converges to a point in S. 
i=l 

(5-9) 

Let F be a finite subset ofX andx, y G F. Let u : [0,1] —»• [x, y]g be a continuous mapping 

such thatu}(0) = x andu(l) = y. TTzen 

conv6F= |J conve({o;(£)}U(F\{x,y})). (5.10) 

te[o,i] 

Proof: Inclusion 

|J convg({u(t)} U (F\{x,y}) C conv^F 

*6[0,1] 

is obvious because u>(t) G [x, y]g C [x, y]g C conv6F for each £ G [0,1]. 

Let a G convgF. W e need to find a number t e [0,1] such that 

a e convG({c_(t)} U (F\{x,y})). (5.11) 

It follows from the Theorem 5.1 that 

a e comg({oj(t)} U (F\{x})) (J conve({<_>(i)} U (F\{y») for each t G [0,1]. (5.12) 

Define a sequence of segments [a, di] C [0,1]. Let c_ = 0 and di = 1. We set: 

(d + di)/2, ifaeconvg({co((a + di)/2)}U(F\{x})) 

c^ otherwise 

(ci + di)/2, ifaGconve({o;((Q + ^)/2)}U(F\{y})) (^4) 

' dh otherwise 

Then [ci+1, di+x] C [cu d{] for any integer i > 1. Moreover, due to (5.12), (dj+i - cj+i) < 

(di - Cj)/2. Hence there exists a unique point t G [0,1] such that {t} = (\[ci, <U]. Since 

the mapping u is continuous on [0,1] then limi_+0O u{ci) = lim^oo <*>(<&) = <-»(t). 

It is clear that for any * > 1 

a e conva({o;(Q)} U (F\{x})) (]ccMg({u>{di)} U (F\{y})). (5.15) 
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Indeed, (5.15) is obvious for i = 1. Then, by induction, inclusion (5.15) follows from the 

formulas (5.13) and (5.14). Since u(t) = limi_+00 co(ci) = lim^o- to(di) then, due to (5.9), 

f| convg({a;(ci)} U (F\{x})) C f| convg({o;(Ci)} U {_,(*)} U (F\{x})) 
i>l i>\ 

= conv5({o;(£)}U(F\{x})), 

p| conv^M^)} U (F\{y})) C f| conve({a;(di)} U Mt)} U (F\{y})) 
i>l i>l 

= conv6({a;(t)}U(F\{y})). 

Hence 

a G convent)} U (F\{x}))f]convg({u(t)} U (F\{y})). (5.16) 

Check the inclusion (5.11). Since {u(t)} U (F\{x,y}) is a finite subset of X then it is 

sufficient to show that a e H whenever H e ft and {u(t)} U (F\{x,y}) C //. So let 

{u(t)} U (F\{x, y}) C //. Since u(t) e [x, y]g and u(t) G // then {x, y} n // ̂  0 (see 

Proposition 5.3). If x G // then {u(t)} U (F\{y}) C //, and therefore convg({u(t)} U 

(^\{y})) C //. If y G // then convg({uj(t)} U (F\{x})) C //. In any event the point a 

belongs to//(see (5.16)). P 

N o w we can formulate the main result of this section. 

Theorem 5.3 Assume that one of the spaces (ft, TH) or (ft, TI) is connected with respect 

to the convexity Q*. Let T be a topology on X such that (5.9) holds true. Let A > 2. 

Assume that the space (X, T) is N-connected with respect to the convexity Q. Then the 

convexity Q is of arity N. 

Proof Let A be a subset of X such that convgF c A whenever F G [A]^N. We need to 

check that A belongs to the convexity Q. Due to Proposition 5.1, we have 

A e Q <(=^ COWQA CA 4=^ (convgF C A for each F G [A]<U}). 

Let F be a finite subset of A. If F G [,4]^ then the inclusion convgF C A is valid. 

N o w assume that F consists of n different points of A and n > N. W e need to show 

that for each point a G conveF a set Fn_i G [A)^
n-^ exists such that a G convgFn-!. 

Then, by induction, we can find a set FN G [A]^N such that a G conv^F^. Therefore 

convgF C A. 
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So take a point o G conv^F. Since the space (X, T) is A-connected with respect to 

Q and F contains more than A points of A C X then a points x, y G F (x ̂  y) and a 

continuous function u : [0,1] -> [x, y]g exist such that u/(0) = x and u(I) = y. Then, by 

Theorem 5.2, there is a number t e [0,1] with a G convg({a;(£)} U (F\{x, y})). 

Consider the set Fn_x = {cu(t)} U (F\{x,y}). Since u(t) e [x,y]g C [x,y]g and 

{x, y} G [ A p c [ A ] ^ then u(t) e A. This implies Fn_i G [A]^"
1). n 

Below we will show that the estimate of arity number in Theorem 5.3 is sharp (see 

Example 5.3). 

Remark 5.3 Recall that a convexity space (X, Q) is called join-hull commutative (see [25]) 

provided for each finite set F C X and for each x G X we have 

convg(FU{x})= |J [x,y]g. 
yeconVgF 

Assume that one of the spaces (ft, Tu) or (ft, TL) is connected with respect to the convexity 

Q*. Assume also that (X, T) is connected with respect to _/, where T is a topology on X, 

which enjoys (5.9). Then the convexity space (X, _7) is join-hull commutative. 

Indeed, let F be a finite subset of X and x G X. Take an arbitrary a G convg(F U {x}). 

Let yi, y2 G F. Since (X, T) is one-connected with respect to Q then a continuous mapping 

u : [0,1] —> [yx,y2]g exists such that o;(0) = yi and a>(l) = y2. Theorem 5.2 implies that 

conv^F U {x}) = |J convg({u;(t)} U {x} U (F\{yx, y2})). 

te[o,i] 

Hence there is a point y0 G convgF such that a G convg({y0}U{x}U(F\{yi,y2})). Since 

F is finite then, by induction, we can find a point y G convgF with a e [x,y]g. 

Since condition (5.9) is not easy for verification, we present a simpler condition, which 

implies (5.9). 

Proposition 5.7 Let T be a topology on X such that 

f|{FGft: ScintE}cH for each H eH and S G [//]<", (5.17) 

where int E is the interior ofE in topology T. Then condition (5.9) holds true for T. 

In particular, (5.9) holds for any topology T such that all sets H eHare open in T. 
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Proof: Let S be a finite subset of X and z{-^ ze S. We need to check the inclusion 

OO 

Pi convg(5' U {zi}) c convcS. 
i=i 

It follows from (5.17) that 

P|{FGft: ScintE}cf){HeH: S C H} = convgS. 

Let E eH be such that S C int F. Since z{ ^ z e S then a number A; exists such that 

S U {z^ C F for all i > k, and therefore conv^S U {^}) C F for all i > k. Thus we 

conclude that 

OO 

Pi convg(S U L-J) C P|{F G ft : _? C intF} C conv^S. 
i=i 

If all sets F G ft are open in topology T (i.e. int E = E) then (5.17) obviously holds. P 

Corollary 5.1 Assume that (ft, 7^) /_* connected with respect to Q* and (X, Tx) is N-

connected with respect to Q, where A > 2. Then the convexity Q is of arity N. 

Proof: It follows from Proposition 5.7 that condition (5.9) is valid for the topology T = Tx 

because all sets H G ft are open in Tx. Then, by Theorem 5.3, Q is of arity A. P 

Unfortunately, condition (5.9) does not necessarily hold for the topology T = TX. To 

show this consider a simple example. 

Example 5.1 Let X = IR. Let ft be the collection of all segments [c, +oo) with c G IR. 
T' 

Since ft' is a subbase for the topology Tx then zt -4 z G IR if and only if z{ G" // for all 

sufficiently large i whenever H eH and z 0 //. In other words, 

T' 
Zi-5- z 4=£- (zi < c for large i whenever z < c) <^=> lim sup Zi < z. 

i—«X3 

—-/ 

For example, 0 -4 1. At the same time, conve{0} = [0, +oo) (£_ conve{l} = [1, +oo). So, 

condition (5.9) does not hold in this case. 

However, it can be convenient to use a topology T on X, which possesses (5.9) and 

contains the topology Tx. 
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5.3 Some particular cases 

In order to check the connectedness of a topological space with respect to a convexity on 

this space w e need to describe convex hulls of each two elements of this space, or at least 

to indicate some points of these convex hulls. Here w e consider two particular cases, where 

the sets H e ft are expressed via real-valued functions, and get some formulas for the 

convex hulls in terms of these functions. 

Subbases of level sets S0(l) = {x G X : Z(x) < 0} 

Let L be a family of real-valued functions defined on a set X . Consider the collection 

ft of all sets S0(l) = {x G X : Z(x) < 0}, where Z G L. 

Let xi, x2 G X . Then, by Proposition 5.3, the set [xi, x2]g consists of all points x e X 

such that for any Z G L the following implications hold 

max{Z(xi), l(x2)} < 0 = > Z(x) < 0, 

l(x) < o = * min{Z(xi),Z(x2)} < 0. 

In particular, [xx,x2]g contains all points x G X such that 

min{Z(xi),Z(x2)} < l(x) < max{Z(x!),l(x2)} VZ G L. 

Let lx,l2e L. Due to Proposition 5.4, we have 

[So(Zi), S_(fe)]_i. = {So(Z) G ft : S_(fi) n S0(l2) C So(0 C S0(lx) U S0(Z2)}. 

In other words, the set [S0(lx), S0(l2)]g* consists of all S0(l) such that for any x G X the 

following implications hold 

max{Z1(x),Z2(x)}<0 = > Z(x) < 0, 

Z(x) < 0 = ^ min{Zi(x),Z2(x)} < 0. 

In particular, [S0(lx), S0(l2)]g* contains all S0(l) such that 

min{Z1(x),Z2(x)} < l(x) < max{Z1(x),Z2(x)} V x G X (5.18) 

Proposition 5.8 Assume that L is closed under vertical shifts (this means that for each 

leLandceJR the function h(x) = l(x) + c belongs to L). Let xx,x2e X. Then 

[xx,x2]g = {xeX: min{Z(x1),Z(x2)}<Z(x)<max{Z(x1),Z(x2)} WleL}. (5.19) 
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If, moreover, X is equipped with a topology T such that 

{xeX: l(x) <0}cint50(Z) VZ G L (5.20) 

then condition (5.9) is valid for T. 

Proof: First w e check the equality (5.19). Let x G [xi, x2]§. Take an arbitrary I G L and 

consider the number c = mzx{l(xx), l(x2)}. Since L is closed under vertical shifts then 

the function h(z) = l(z) - c belongs to L. It is easy to see that xi,x2 G SQ(h). Since 

x G [xi, x2]g then x G S0(h), therefore h(x) = l(x) - max{Z(xi), Z(x2)} < 0. 

In order to check the inequality min{Z(xi), l(x2)} < l(x) consider the function h(z) = 

l(z)-l(x). Since S0(h) G ftandx G S0(h) then, by Proposition 5.3, {xx,x2}nS0(h) ^ 0. 

Hence either h(xx) < 0 or h(x2) < 0. This means that min{Z(x!), Z(x2)} < Z(x). 

Let T be a topology on X , which enjoys (5.20). W e show that (5.17) holds for T. Then, 

by Proposition 5.7, condition (5.9) holds as well. So let SQ(l) G ft, where I G L. Take 

a positive number e and consider the function hE(x) = l(x) - e. Since L is closed under 

vertical shifts then he e L and, by (5.20), 

{ x G X : Z(x)<e} = { x G X : he(x) < 0} C int S0(he). 

Hence S0(l) C int S0(he) for any positive _. W e have 

p|{// G ft : So{l) C int//} C P| SQ(h£) = p|{x G X : Z(x) < e} = S0(l). 
e>0 e>0 

Thus w e have proved even a stronger fact then that in (5.17). n 

Consider the classical convex case. 

Proposition 5.9 Let (X, T) be a topological linear space and L be the set of all continuous 

affine functions I : X -»• H. LetH be the collection of all level sets SQ(l) = {x G X : 

Z(x) < 0}, wherel e L (in other words, H consists of the empty set, whole X and all closed 

half-spaces ofX). Then the convexity Q generated by ft is of arity 2. 

Proof Let us prove that the space (ft, TL_) is connected with respect to the convexity Q\ 

and (X, T) is connected with respect to Q. 

Let lx,l2e L. Since lx and Z2 are continuous and affine then for every a G [0,1] the 

function l(x) = (1 - a)lx(x) + al2(x) is also continuous and affine. Consider the mapping 

UJ : [0,1] -»• ft defined by 

cu(a) = {xeX: (1 - a).i(x) + al2(x) < 0}. (5-21) 
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Then w(0) = S0(lx) and w(l) = S0(l2). Moreover, since for any a e [0,1] and x G X 

min{Z1(x),Z2(x)} < (1 - a)lx(x) + al2(x) < max{Z1(x),Z2(x)} 

then, due to (5.18), uj(a) e [S0(h), S0{h)]g. for all a e [0,1]. 

Assume that ft is equipped with the topology 7^. W e need to check that u is continuous 

on [0,1]. Take an arbitrary a0 e [0,1] and x G" <_•(_*_). Then (1 - a0)lx(x) + a0l2(x) > 0 

and w e can find a sufficiently small number e > 0 such that (1 - a)lx(x) + al2(x) > 0 for 

all a e [0,1] n (a0 - e, a0 + e). This implies continuity of a; (see Proposition 5.5). Thus 

the space (ft, TL_) is connected with respect to the convexity Q*. 

Let xi, x2 G X . Consider the mapping u : [0,1] -> X defined by 

w(a) = (1 - a)xi + ax2. (5.22) 

Then UJ(0) = xx and w(l) = x2. Since Z((l - a)xx + ax2) = (1 - ct)Z(xi) + aZ(x2) 

whenever Z is affine then 

min{Z(x1),Z(x2)} < l(u;(a)) < max{Z(xi),Z(x2)} \/leL. 

Hence, by (5.19), u(a) e [xx, x2]g for any a e [0,1]. Since (X, T) is a topological linear 

space then u is continuous on [0,1]. So the space (X, T) is connected with respect to the 

convexity Q. 

Note that L is closed under vertical shifts, and all functions Z G L are continuous in 

topology T (in particular, they enjoy (5.20)). Then, by Proposition 5.8, condition (5.9) is 

valid for T. At last, it follows from Theorem 5.3 that the convexity Q generated by the 

collection of all closed half-spaces of X is of arity 2. D 

N o w consider the case of affine functions defined on an arbitrary linear space. 

Example 5.2 Let X be a linear space and L be the set of all affine functions Z : X —> M. 

As in Proposition 5.9, let ft be the collection of all level sets So(l) = {x G X : l(x) < 0} 

(Z G L) and _7 the convexity on X generated by ft. Then the space (ft, TL) is connected 

with respect to the convexity _J* and (X, Tx) is connected with respect to Q. Indeed, for 

any lx,l2 G L the function (5.21) enjoys all required properties. For xx, x2 e X we only 

need to check that the function (5.22) is continuous on [0,1] if X is equipped with the 

topology Tx. Let a0 G [0,1] and Z G L be such that l(uj(a0)) > 0. Since Z is affine 

then (1 - o^K^i) + aoZ(x2) = l(oj(a0)) > 0, hence a positive number e exists such that 
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l(u)(a)) = (1 — a)Z(xi) + od(x2) > 0 for all a G [0,1] D (a0 — e, a0 + e). This implies 

continuity of u> (see Proposition 5.6). 

Since for any affine function I the function — Z is also affine then the set 

{xGX: Z(x)<0} = {xGX: -Z(x) > 0} = X\S0(-l) G ft' 

is open in the topology Tx for all Z G L. Hence (5.20) holds true for T = Tx, and, by 

Proposition 5.8, condition (5.9) is also valid. Thus, due to Theorem 5.3, the convexity _? on 

X is of arity 2. 

The following example demonstrates that the estimate of arity number in Theorem 5.3 

is sharp. 

Example 5.3 Let N > 2. Choose arbitrary vectors e1,..., e^ G IR^-1 such that every 

(A - 1) of them are linearly independent and zero is a convex combination of all e1 (for 

example, we can take the usual orthogonal base of IR^"1 and vector (-1,..., -1)). Let 

X = Xi U • • • U XN, where Xi = {ael : a > 0} for any i = 1,..., A. Let L be 

the set of all affine functions defined on IR^"1 and ft be the collection of all level sets 

S0(l) = {x e X : l(x) < 0}, Z G L. Then (ft, XL) is connected with respect to Q* 

and (X, 7£) is A-connected with respect to Q. Indeed, we can use the same functions 

u : [0,1] -> ft and u : [0,1] -»• X as in the proof of Proposition 5.9 and Example 5.2. 

For each i = 1,..., A we have: u(a) = (1 - a)xx + ax2 belongs to [xx,x2]§ for any 

xx,x2e X{ and a G [0,1]. Condition (5.20) is also valid for the topology T = Tx. Then, 

by Proposition 5.8 and Theorem 5.3, convexity _J on X = Xi U • • • U XN generated by ft is 

of arity A. N o w we show that Q is not of arity A - 1. Consider the set A = {e1,..., e^}. 

Then, due to our choice of vectors e\ convgF = XnconvF = F C A for any F G [ A ] ^ " 1 

(here convF is the classical convex hull of F in M N ' 1 ) . However, the set A does not belong 

to Q since 0 G convg A 

Subbases of epigraphs epiZ = {(y, c)eYxE: l(y) < c} 

Let L be a set of real-valued functions defined on a set Y. Let X = Y x IR. Consider 

the collection ft of all epigraphs epi Z = {(y, c) G Y x TR : % ) < c}, where Z G L. 

Remark 5.4 Just note that each epigraph epi Z can be represented as a level set S0(h) of the 

function h(y, c) = l(y) - c defined on one higher dimension space Y x H. 
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Let (yi, ci), (1/2, c_) G Y x IR. Then the set [(y_, c_), (y2, c_)]g consists of all points 

(y, c) G y x IR such that for any Z G L the following implications hold 

max{Z(yi) - cx,l(y2) - e2} < 0 = > l(y) < c, 

l(y) < c = » min{Z(y!) - cx,l(y2) - c2} < 0. 

In particular, [(yi, ci), (y2, c2)]g contains all (y, c) such that 

min{/(yi) - c_, /(jfe) - c2} < Z(y) - c < max{Z(yi) - cx, i(jfe) - c2} VZ G L. (5.23) 

At the same time, we have a very easy description of the set [epi Zi, epi l2]g. for every 

[epi lx, epi l2]g* = {epi Z : I e L, (epi Zi n epi Z2) C epi Z C (epi lx U epi Z2)} 

= {epiZ: l e L , minZ^y) < l(y) < maxZj(y) V y G V } . 

Proposition 5.10 Assume that L is closed under vertical shifts. Let (yi,cx),(y2,c2) G 

Y x JR. Then a point (y,c) eY x IR belongs to [(yx, cx), (y2, c_)]g z/awrf o«Zy if (5.23) 

holds. 

In other words, 

Kvi, ci), (y2, c2)]g = {(y, c) : /(_/) < c < y(y)}, 

w/aere the Junctions f and g are defined by 

f(x) = sup(Z(x) - max{Z(yi) - cx,l(y2) - c2}), 

g(x) = inf(Z(x) - min{Z(yi) - cx, l(y2) - c_}). 

Let, moreover, Y x IR be equipped with a topology T such that 

{(y,c) : l{y) < c} C intepiZ VZ G L. 

77zen condition (5.9) is valid for T. 

Proof: Let (y, c) G [(yucx), (y2, c_)] j. Take an arbitrary Z G L and consider the following 

functions defined on Y: 

h(z) = J(z) - max{Z(yi) - cu l(y2) - c2}, fc'(z) = l(z) - l(y) + c 
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Since L is closed under vertical shifts then h, h' G L. W e have 

h(yx) < ci, h(y2) < c2, h'(y) = c. 

Since (y,c) G [(yx,cx),(y2,c2)}g thenh(y) < candmin{/i
/(y1)-ci,/i'(y2)-c2} < 0. This 

means that l(y) — c< max{Z(yi) — cx, l(y2) - c2} and min{Z(yi) - Ci, l(y2) - c2} <l(y)- c. 

Let The a topology on Y x IR such as in the statement of proposition. Take an arbitrary 

Z G L. Then for any positive e the function he(z) =l(z) — e belongs to L and 

epiZ C {(y, c) : /ie(y) < c} C int epi /ie. 

Thus we have 

P|{//Gft: epiZcint//}cpepi/ie = p{(y,c)Gy xlR: /(y) < c + e} = epiZ. 
e>0 e>0 

Proposition 5.7 implies that condition (5.9) is valid for T. P 

5.4 Separation theorems 

In this section we investigate separation of convex sets by elements of a subbase. In general, 

we have the following weak version of the separation property, which follows directly from 

(5.3): if ft is a subbase for convexity Q and G G Q then for every g <£ G and for every finite 

subset F C G a set H G ft exists such that F C // and g G" H. 

If the convexity Q is A-ary and the number N is not very large (as a rule, we are 

interested in the cases, when A = 2) then w e have a sufficiently simple description of 

convex sets. At the same time, if Q is generated by ft then our weak separation property 

can be applied for every convex set G. 

For example, if (ft, Tn) is connected with respect to G* and (X,TX) is A-connected 

with respect to Q (A > 2), then for any G C X the following conditions are equivalent 

1.) for every ̂  G" G a n d F G [G] < w a set// G ft exists with F C H and <? G" //, 

2.) conve{yi,..., gN] C G for all yi, - • •, gN G G. 

Indeed, by Corollary 5.1, the convexity Q is of arity A. Then conditions 1.) and 2.) are 

equivalent because 1.) means that G eQ. 

In order to have a stronger version of the separation property, some additional assump

tions are required. Namely, w e need some topological properties of convex sets. 
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Here we consider the case, when all sets H e ft are closed. More precisely, we as

sume that X is equipped with the topology Tx and ft is equipped with the topology T^. 

Moreover, one-connectedness of (X, Tx) with respect to Q (as well as one-connectedness 

of (ft, TL) with respect to _J*) will be essential to get next results. 

Let us begin with the following lemma. 

Lemma5.1 Assume that (X,Tx) is connected with respect to Q. Let x,y G X and 

Hi, H2 e ft. 

/.; Ifx eHx,ye H2 and [x, y}§ cHxUH2 then [x, y}§ nHxC)H2^$. 

2.) Ifx ̂ Hx,y^ H2 and [x, y\Q n Hx n i__ = 0 then [x, y}5 <£ Hx U H2. 

Proof: Since (X, Tx) is connected with respect to Q then a continuous mapping u : [0,1] —> 

[x, y]g exists such that a; (0) = x and c_(l) = y. W e will use the interpretation of continuity 

of a; presented in Proposition 5.6. 

1.) Assume that x G Hx, y G H2 and [x, y}§ C //i U H2. Consider the number 

t = sup{e > 0 : u(t) eHxMt< e}. 

Then cj(t) e Hx (otherwise, if u>(t) G" Hx then u(t) G
- Hx for all t from a neighbourhood 

oft, which contradicts the definition oft). W e need to check that u(t) e H2 (then uj(t) e 

[x, y]g n Hx n H2). Assume it is not true, that is u(t) G" H2. Since u(l) G H2 then t < 1. 

By definition of t, for any 8 > 0 a number t G (t, t + 8) exists such that u(t) G" //i. 

At the same time, since u>(t) £ H2 then u(t) e" H2 for all t from a neighbourhood oft. 

Hence a number t G (t, 1) exists such that u(t) G" //i U Z/2, which contradicts the inclusion 

[x,y}gCHxUH2. 

2.) N o w assume that x G" Hx,y <£ H2 and [x, y]g C //i n //2 = 0. If either x 0 H2 or 

y £ Hx then [x, y]g ̂  //i U //2, because either x £ HXU H2oiy £ HXU H2. So, assume 

that x e H2 and y e Hx. Define the following number 

t = sup{_ > 0 : u(t) e H2 Vt < e}. 

Since w is continuous and OJ(0) G //2 then u(t) e H2. If t = 1 then y = u(T) G i/2, 

which contradicts the assumption y £ H2. Hence t < 1 and, by definition oft, for each 

8 > 0 a number t G (t,f + 8) exists such that c_(t) £ H2. On the other hand, since 

[x,y]g n //i n //_ = 0 and w(t) G //2 then t.(t) ̂  Hlt therefore u(t) (£ Hx for all t 
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from a neighbourhood of t. Thus, for each 8 > 0 a number te(t,i+8) exists such that 

u(t) £ Hx U //2. This implies that [x, y]g <£HXU H2. D 

For any G c X let co{x,H)G denote the set defined by: 

co{x,K)G = f){HeH: G c//}. (5.24) 

If G G: // for all // G ft then we set c o p ^ G = X. 

The following separation theorem gives a description of sets G c X, which can be 

represented as the intersection of a subfamily of ft. 

Theorem 5.4 Assume that (ft, 7%) is connected with respect to Q* and (X, Tx) is con

nected with respect to Q. Let G C X. 

1.) The following conditions are equivalent: 

(i) For every g G X\G a set H eH exists such that G C H and g G' H. 

(ii) G is closed in topology Tx and convex in convexity Q. 

(iii) G is closed in topology Tx and [x, y\Q c Gfor all x,y e G. 

(iv) G is closed in topology Tx and [x, y]g c Gfor all x, y e G 

2.) If[x, y]g C Gfor all x,y e G then 

co{x,K)G = c\T>cG, (5.25) 

where cl _^G is the closure ofG in topology Tx. 

Proof We first prove (5.25). Since each set H e ft is closed in topology Tx then clr' G C 

cO(x,n)G. In order to prove the inclusion co(X,n)G C clr' G we will check that y G" 

C0(x,n)G whenever y G1 clr' G. Note that y ̂  C0(X,H)G if and only if a set // G ft exists 

with y ̂  // and G C //. So let y ̂  clT^G. 

Since the topology Tx is generated by ft' = {X\// : // G ft} then a finite collection 

{Hx,..., Hn} C ft exists such that y G fli(X\//i) C X\G. In other words, y G" Ui ^ 

and G C \Ji H^ If n = 1 then the set //i possesses required properties: G C Hx and 

y ̂ //i. Letn > 1. 

W e will prove that a set Z/0 G convg*{Hx, H2} exists such that G C Ui > 3 //̂  U H0. 

Then, by induction, there is a set // G convg-.{//i,..., //„} with G C //. Moreover, 

y G" // because y G* (Ĵ  //j and // C Ui -̂ i (see Proposition 5.4), hence g G" CO(X,H)G. 
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Since (ft, TL) is connected with respect to _J* then a continuous mapping w : [0,1] —> 

[//i, // 2 ] 0 - . exists such that t_ (0) = Hx and cu(l) = //2. Consider the number 

Z = supieG [0,1] : G C [JHi Uw(t) Vt < e I. 

Prove the inclusion G C Ui>2 //j U co(t). If t = 0 then this inclusion is trivial. If t > 0 

and G <£. Ui>2 ̂ tUw(i) then a point y e G exists such that y G" U;>2 ̂  and y g u(t). 

Hence, by Proposition 5.5, y G" w(t) for all t e (t-8,t) with sufficiently small 8 > 0. This 

implies that G G: Ui>2 #*
 u w(*) f°r an * e (* ~~ ̂  *)> which contradicts definition of t. 

Thus, we conclude that G C Ui>2 Ht U c_ (t). 

Let //0 = cu(t). If t = 1 then H0 = //_, therefore G C Ui>2
 Hiuw© = U>3

 Hiu #o-

Assume that t < 1. 

W e need to check that G C Ui>3 HiUH0. Assume it is not true. Since G C Ui>2
 H i u 

w(t) then a point y G G P //2 exists such that y £ u(t) and y g Hi for all t > 3. Since 

t < 1 and y 0 w(t) then, due to Proposition 5.5, y g w(i) for all t G (t, t + 8) with 

sufficiently small 5 > 0. At the same time, by definition of t, G <£ U;>2 HiU w(t) for some 

. G (t, t + 5). Hence a number t G (t, t + <f) and a point x G G exist such that x&w(t) and 

x ̂  Hi for all i > 2. This implies, in particular, that x G //i, because G C Ui>i #*• W e 

have 

x,yeG, x,yguj(t), x,yG"HiVi>3, x G//i, y e H2. 

It follows from Proposition 5.3 that [x,y]s P w(.) = 0 and [x,y]<j n H* = 0 for any 

i > 3. On the other hand, [x,y]^ C G C Ui>i #*• Therefore [x,y]<? C //i U //2. Since 

(X, 7£) is connected with respect to Q then, by Lemma 5.1, [x, y}§ n HxnH2^ 0. Since 

w(t) G '[i/i,//2]6-* then Hi n //2 C w(t). Hence l[x,y]s- n ^ f l //2 n.(i) ̂  0, which 

contradicts the equality [x, y]g n w(t) = 0. 

Thus, (5.25) is valid. N o w prove the equivalence of (lHiv). Clearly condition (i) means 

that G = C]{H eH: G C H} = co(x,n)G. 

(i) _=> (ii) Since all sets H G ft are closed in topology 7^ and convex in convexity Q 

then condition (ii) holds true. 

(ii) = > (Hi) It is obvious because [x, y]g C G for all x, y G G whenever G G _7. 

(iii) = > (iv) It is sufficient to note that [x, y]§ C [x, y]g for all x,yeX. 

(iv) ___̂  (i) since G is closed in topology Tx then clr^G = G. Moreover, by (5.25), 

co(j_,tt)G = clrj^G because [x, y]<* C G for all x, y G G. Hence co(x,w)G = G. • 
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Remark 5.5 If (ft,^) is connected with respect to Q* and (X,TX) is connected with 

respect to Q then for any G C X 

co(x,w)G = clr^convgG. (5.26) 

Indeed, equality co(*,?*)conv^G = clr^convgG follows from (5.25) because [x,y]g C 

convgG for all x, y G conv^G. At the same time, since for every H eH inclusions G C H 

and conveG C H are equivalent then c0(x,«)Conv^G = CO(X,H)G. 

The next theorem states that, under some conditions, two convex sets, one of which is 

closed in Tx and the other one is compact in Tx, can. be separated by a set H G ft. 

Theorem 5.5 Assume that (ft, T^) is connected with respect to Q* and (X, Tx) is con

nected with respect to Q. Assume also that [Hi, ___]g. = [Hi, H]§. U [H, ___]$• whenever 

Hx,H2eHandH e [Hx, H2]g*. Let G,K C X be such that G n K = 0. Assume that 

[x,y]g C G V x, y G G and[x,y\g C K V x, y G K. IfG is closed in topology Tx and K 

is compact in Tx then a set H eH exists with G C H and K C X\H. 

Proof: Since G and K are disjoint then, by Theorem 5.4, for every g G K a set H G ft 

exists such that G C H and y £ H. Hence AT C U ( * \ # € ft' : G C H } . Since H 

is compact in topology Tx and all sets X\H G ft' are open in T^ then there exists a finite 

collection {Hi,..., Hn} C ft such that G c f l ^ i and 

H C |J(*W <5-27) 
i>l 

Let n > 1. 

W e need to find a set H 0 G convg-,{Hi, H 2}, which satisfies inclusion 

K C \J(X\H{) U (X\H0). (5-28) 
i>3 

Due to Proposition 5.4, HXDH2C H0 whenever H 0 G conv^Hi, H 2}, therefore G C 

P|.> H{ P H0. Then, by induction, there is a set H G ft with G C H and A C X\H. 

First, note that for any H G convg. {Hi, H 2} we have: 

either K C |J(X\Hi)U(X\H)U(X\Hi) or K C |J(X\Hi) U (X\H) U (X\_f2). 

^ 3 '-3 (5.29) 
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Assume it is not true. Since K C Ui:>1(X\Hj) then there exist x, y G K such that 

x,yeH, x,yeHi Vi > 3, x e X\HX, y G X\H2. 

Hence [x, y]g C H and [x, y]g C Hi for any i > 3. Since [x, y]g C K C U^XXH*) then 

[x, y]g C ( X \ H L ) U (X\H2). This means that [x, y\g f) Hx n H 2 = 0 and, due to Lemma 

5.1, [x, y]g G! H I U H2, which contradicts [x, y)g C H, because H C Hi U H2. Thus, (5.29) 

holds true for every H G convg-.{Hi, H2}. 

Since (ft, 7^) is connected with respect to _J* then a continuous mapping UJ : [0,1] -> 

[Hi, H2\g* exists such that w(0) = H x and w(l) = H2. Consider the following number 

t = sup (t G [0,1] : K C |J(*V*i) u (*V(*)) } • 
I i>2 J 

Prove that 

K C (J(*\Hi) u (Aw(i)) U (X\HX). (5.30) 
i>3 

If t = 1 then this inclusion is trivial. Assume it is not true for t < 1. Then, by (5.29), K C 

\J.>2(X\Hi) U (X\oj(i)). Since u is continuous then x G X\u(t) whenever x G X\u(t) 

and t is close to t. Therefore X\u>(t) C Ute(t,i) X V W and 

ATC |J (X\Hi)U(XV(t)). 

i>2, t_(£,i) 

Since AT is compact then a finite collection T c (t, 1) exists such that 

A C |J (X\Hi)U(XV(t)). (5-31) 

i>2, t_T 

Check that for every t', t" G T 

either AT c |J (*W0 U (*>(t)) or A C |J (X\ifc) U (X\c(t)). 

t>2, ter\*' i-2> teTNvt" 

By conditions of theorem, [Hx,H2]g. = [Hi,u,(t')]g. U [a;(t'),H2]g.. Hence u,(t") belongs 

to the union [Hx,u)(t')]g* U [u;(t'), H2]g.. 

If uj(t") G [Hi,a;(t')]g-. thena;(t") C HxUu(t'). This means that (X\HX) n (XV(t')) C 

X\o;(t"), and, in view of inclusions (5.27) and (5.31), we get 

A C |J (X\H,)U(X\o;(t)). 

i>2, t&T\t' 
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If u(t") e [co(t'),H2]g, then oj(t') n H2 C co(t"), which is equivalent to X\u(t") C 

(X\c_(t')) U (X\H2). This and (5.31) give the inclusion 

AC |J (X\Hi) U (X\u(t)). 
i>2, teT\t" 

Since T is finite then, by induction, a number feT exists such that 

AcU(X\Hi)u(XV(t)). 
i>2 

This contradicts definition of t because t>i. So, we conclude that (5.30) is valid. 

By definition oft, a sequence {tj} C [0, t] exists such that tj —• t and for any j 

A C |J(*\#i) U (XV(t,)). (5.32) 
i>2 

Since w is continuous and tj —»• t then if follows from (5.30) that 

AC (J (X\Hi) U (XV(t,)) U (X\Hi). 
i>3, J>1 

Since K is compact then a finite collection T = {tjx,..., tjm} exists such that 

AC |J (X\Hi)U(X\o;(t))U(X\Hi). 
i>3, teT 

By repeating reasoning after formula (5.31) (with Hx instead of H2), we deduce that an 

integer j exists, which enjoys the inclusion 

K C \J(X\Hi) U (X\oj(ti)) U (X\Hi). (5.33) 
i>3 

At last, inclusions (5.32) and (5.33) imply that 

AcU(X\Hi)U(XV(t,)), 
i>3 

because (X\HX) n (X\H2) C (X\u(tj)). Thus, (5.28) is valid for H0 = u{tj). • 

5.5 Convex hull of a finite union of convex sets 

Here we give a description of the convex hull convg U"=i G" where {Gi,..., Gn} is a finite 

collection of convex sets. Note that the set convg U?=1 G{ can be described via convex 

hulls of unions of two convex sets, because convg \X=X Gi = G
n, where G = Gx and 

& = convg(Gi'1 U Gt) for * = 2,..., n. 
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Proposition 5.11 Assume that one of the spaces (ft, TH) or (ft, TL) is connected with 

respect to the convexity Q*. Assume also that (X, T) is N-connected with respect to Q, 

where T is a topology on X, which enjoys (5.9). Then for any Gx,...,GneQ 

n n 

convg[JGi = (J convgljFi. (5.34) 

Proof If Fi e [G^N for all i then Ui Ft C Ui Git hence convg Ui ^ C convg Ui Gt. 

N o w we need to check the inclusion 

n n 

convg (J Gi c \J convg (J Fi. 
i=l Fie[Gi]^N *=1 

Let a G convg Ui G». Then, by Proposition 5.1, there exists a finite subset F C Ui Gi with 

a G convgF. 

If F n Gi G [G^N for alii < n then a e convg \J. Fit where Fi = F n Gi G [GJ^^. 

Let F n Gj 0 [Gi]-^ for certain i. In other words, F contains m different points of Gi 

and m > A. Since (X, T) is A-connected with respect to Q then two points x, y G F n G< 

and a continuous mapping w : [0,1] -> [x, y]g exist such that u(0) = x and u(l) = y. 

Theorem 5.2 implies that 

convgF = |J convg({u;(t)}U(F\{x,y})). 
t€[0,l] 

Therefore a G conve({oj(t)} U (F\{x, y})) for certain t G [0,1]. Since G< is convex and 

x,y e G i then w(-) G Gi. Hence the set {w(.)} U (F\{x, y}) contains (m - 1) points of 

Gi. 

By induction, there is a set Fi G [G^ ̂  such that a G convg(FiU(F\Gi)). Byrepeating 

this process for each i = 1,..., n, we will find n sets F* G [G{]^
N with a G convg U?=i #• 

a 

N o w consider a description of the set C0(X,«) UiLi ̂ <»wn e r e ̂  e $• 

Proposition 5.12 Let T be a topology on X such that Tx C T and (5.9) is valid for T. 

Assume that (H,TL) is connected with respect to Q* and (X, T) is connected with respect 

to Q. Then for any Gx,...,GneQ 

co{x,H)(jGi = clr>c (convgLJGi) = c__j ( IJ convg{yi,...,yn} . (5.35) 
i=l \ i=l / \SiGGi / 

file:///SiGGi
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Proof Since (X, T) is connected with respect to Q and Tx c T then (X, Tx) is connected 

with respect to Q as well (see Remark 5.2). It follows from (5.26) that 

n / n 

™(X,H) |J Gi = c\rk convg |J Gi 

*=i V i=i 

and, by Proposition 5.11 (with A = 1), 

n 

convgljGi^ |J convg{yi,...,yn}. 
*=i QieGi 

D 

5.6 Description of abstract convex functions 

Let L be a set of functions Z : Y —> IR defined on a set Y. Let X = y x IR and ft be the 

collection of all epigraphs epi Z = {(y, c) G Y x IR : Z(y) < c} with Z G L. 

Some formulas for the segments [(yx, cx), (y2, c2)]g and [epi Zi, epi l2]g-, in this case were 

considered in Section 5.3. Below we give a description of L-convex functions by using 

connectedness of X and ft. 

W e begin with the description of L-convex functions on finite subsets of Y. Let Z be 

a subset of Y. Recall (see [41]) that a function / : Y —» M + 0 0 = IR U {+00} is called 

L-convex on Z if a subfamily T C L exists such that /(z) = supjeT l(z) for all z e Z. 

Proposition 5.13 Let A > 2 and T be a topology on X, which enjoys (5.9). Assume that 

(ft, 77^) is connected with respect to Q* and (X, T) is A-connectedwith respect to Q. Then 

for any function f :Y —> _R+0O the following conditions are equivalent: 

1.) For every y,yx,...,yN G Y 

f(y) < sup{Z(y) : leL, l(Vi) < f(Vi) Vi = 1,..., A}. (5.36) 

2.) f is L-convex on every finite subset ofY. 

Proof: It follows from Theorem 5.3 that the convexity _7 generated by ft is of arity A. 

1.) =_=> 2.) Let a function / enjoys (5.36) for all y, yx,..., yN G Y. Then its epigraph 

epi / belongs to the convexity Q. Indeed, since Q is A-ary then epi / belongs to Q if and 

only if convg{(yi, cx),..., (yN, cN)} C epi / for any (yx, cx),..., (yN, cN) G epi /. So let 
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(yi) ci),..., (yN, cN) e epi /. Then we have 

convg{(y1; ci),..., (yN, cN)} = {(y, c) : sup{Z(y) : l(Vi) < q Vi < A } < c} 

C {(y,c) : sup{Z(y) : l(Vi) < f(Vi) \/i<N}< c} 

C epi/. 

Let Z be a finite subset ofy. If/(;_) = +00 for anzeZ then also supz-L l(z) = +00 

for all z e Z, and therefore / is L-convex on Z. Indeed, if f(z) = +00 on Z then it follows 

from (5.36) that for any z,yx,... ,yN e Z 

supZ(z) = sup{Z(;z) : leL, l(yt) < +00 Vt = 1,..., A } > f(z) = +00. 

N o w assume that the set F = {(z, f(z)) : z e Z, f(z) < +00} is not empty. Since F is a 

finite subset of Y x IR then due to (5.2) 

convgF = p|{H G ft : F C H } = p|{epi Z : I e L, l(z) < f(z) Vz G Z}. (5.37) 

Let T be the collection of all functions Z G L such that l(z) < f(z) for any z e Z. 

Since epi / G £7 and F C epi / then convgF C epi /. This means, in view of (5.37), 

that T is nonempty (otherwise F G: H for any H eH and, by Proposition 5.2, we have 

convgF = Y x IR {_: epi/) and /(y) < supieT Z(y) for all y G Y. On the other hand, 

suPzeTKz) ̂  /(z) I°r anY z e Zhy definition of T. Hence f(z) = supieTl(z) Vz e Z. 

In other words, / is L-convex on Z. 

2.) =>• 1.) Let / be L-convex on every finite subset ofy. Let y,yx,... ,yN eY. Since 

/ is L-convex on {y, yi,..., y^} then 

f(y) = sup{Z(y): Z G L, l(y) < f(y), l(Vi) < f(Vi) Vt = 1,..., A } 

< sup{Z(y): leL, l(yt) < f(Vi) Vi = 1,... ,N}. 

D 

N o w consider the case, when (X, Tx) is connected (one-connected) with respect to Q. 

This allows us to give a description of L-convex functions on the whole set Y. 

Proposition 5.14 Let C be the collection of all functions £(x) = minieTl(x) with T G 

[L]<u}, where [L]<w is the collection of all finite subsets of L. Assume that (H,Tl) is 

connected with respect to Q* and (X, Tx) is connected with respect to Q. Then a function 

j •• y —• _R+00 is L-convex if and only if it is C-convex and 

f(y) < sup{Z(y) : Z G L, l(yx) < f(yx), l(y2) < f(y2)} Vy,yi,y2 G Y. (5.38) 



Separation properties via connectedness of topological convexity spaces 95 

Proof If / is L-convex then inequalities (5.38) obviously hold. Moreover, since L c C 

then / is £-convex as well. 

Conversely, assume that / is £-convex and enjoys (5.38). It is clear that for every 

I e C its epigraph epi^ is closed in topology Tx because it is union of a finite number of 

epigraphs of functions Z G L. Since / is ̂ -convex then the epigraph epi / is also closed in 

topology Tx. Moreover, inequalities (5.38) imply that [(yi, ci), (y2, c2)]g C epi/ for any 

(yi,ci), (y2,c2) G epi/. Indeed, if (yx,cx), (y2,c2) G epi/ and (y,c) G [(yx,cx), (y2,c2)]Q 

then 

f(y) < sup{Z(y) : Z G L, Z(yi) < f(yx), l(y2) < f(y2)} 

< sup{Z(y) : leL, l(yx) < cx, l(y2) < c2} 

< sup{Z(y) : I e L, l(y) < c} < c. 

Due to Theorem 5.4, for each (y,c) e" epi / a set epi Z G ft exists such that epi / C epi Z 

and (y, c) G" epi Z. This means that / is L-convex. P 

Next proposition shows that, in some cases, /^-convexity of/ can be interchanged with 

the lower semicontinuity. 

Proposition 5.15 Assume that L is closed under vertical shifts. Let Y be equipped with 

a topology such that Y is compact and all functions I G L are continuous. Assume that 

(ft, TL) is connected with respect to Q* and (X, Tx) is connected with respect to Q. Then a 

function f :Y —• IR+oo is L-convex if and only if it is lower semicontinuous and possesses 

(5.38). 

Proof: Since L consists of continuous functions then every L-convex function is lower 

semicontinuous. Inequalities (5.38) for L-convex functions / are trivial. 

N o w assume that / is lower semicontinuous and possesses (5.38). Let us prove that / 

is £-convex, where C is the collection of all minimums of finite subfamilies of L. Then, by 

Proposition 5.14, / is L-convex. 

Take an arbitrary y G Y. It follows from (5.38) that 

f(y) < sup{Z(y) : leL, l(y) < f(y), l{z) < f(z)} Vz G Y, 

hence 

f(y) = sup{Z(y) : leL, l(y) < f(y), l(z) < f(z)} V z G Y (5.39) 
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Let e > 0. If f(y) < +00 then, by (5.39), for each z e Y a function lz e L exists such 

that lz(z) < f(z) and f(y) - e/2 < lz(y) < f(y). If f(y) = +00 then for each z eY a 

function lz G L exists such that lz(z) < f(z) and 1/e < lz(y) < f(y). Since L is closed 

under vertical shifts then every function hz(x) = Z_(x) — e/2 belongs to L. W e have: 

hz(y) < f(y) - e/2, hz(z) < f(z) - e/2 

and 

f(y)-e<hz(y) if f(y)<+00, 1/e - e/2 < hz(y) if f(y) = +00. 

Since / is lower semicontinuous, hz is continuous and hz(z) < f(z) then for each z eY a 

neighbourhood Uz ofz exists such that hz(x) < f(x) for all x G Uz. Due to compactness 

of y, there is a finite collection {zx,..., zm} C Y with UZl U ... U £/__, = Y. Consider 

the function ̂ (x) = mini /i-.(x). Then ̂  G C and £(x) < /(x) for all x G Y. Moreover, 

f(y) -e< £(y) if f(y) < +00 and 1/e - e/2 < ^(y) if f(y) = +00. 

Thus, we have proved that, for any y G Y and e > 0, a function £ G supp (/, £) exists 

such that f(y) - e < £(y) for f(y) < +00 and 1/e - e/2 < l(y) for f(y) = +00. This 

means that / is £-convex. n 

5.7 Description of abstract convex sets 

Let L be a set of functions defined on a set Y. Let X = L and ft be the collection of all 

subsets {leL: l(y) < c} C X, where (y, c) G Y x IR. 

Then for any lx,l2 e L 

[h,h}g = f]{HeH: Zi,Z2GH} 

= {leL: l(y)< c whenever max{Zi(y), l2(y)} < c} 

= {leL: l(y) < max{Z1(y),Z2(y)} Vy G Y}. 

Similarly, 

[h, k]g = {Z G L : mm{lx(y),l2(y)} < l{y) < max{Z1(y), l2(y)} Vy G Y}. 

Let (yi, ci), (y2, c_) € Y x IR and H, = {Z G L : l(Vi) < Q} (» = 1,2). Then, by 

Proposition 5.4, [Hx, H2\g. = {H e ft : _*_ n H 2 C H C Hi U H2}. In other words, a set 
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H = {l eL: l(y) < c} belongs to [HuH2]g. if and only if for each Z G L the following 

implications hold: 

max{Z(yi) - cx,l(y2) - c^} < 0 = • l(y) < c, 

l(y) <c => min{Z(y1) - cx,l(y2) - c2} < 0. 

Thus, our formulas for [Zx, l2]g and [Hi, H2]g* coincide with the corresponding formulas 

for [epiZi, epi l2]g. and [(yx, cx), (y2, c2)]g in the case, when X = Y x IR and ft = {epi Z : 

I e L} (see the second part of Section 5.3). 

Recall that a set U c L is called (L, Y)-convex if U = coLU, where coLU = {I G L : 

l(y) < supu6t/ w(y) Vy G Y}. It is easy to see that coLU = CO(X,H)U, where CO^X,H)U is 

defined by (5.24). Indeed, 

™{X,H)U = ^ { H G f t : UczH} 

= {leL: l(y) < c whenever u(y) < c V u G U} 

= < Z G L : l(y) < sup u(y) Vy G Y > = coLt/. 
L «_£/ J 

Proposition 5.16 Assume that (ft, 77̂ ) /_* connected with respect to Q* and (X, Tx) is con

nected with respect to Q. Then a set U C Lis (L, Y)-convex if and only if it is closed in the 

topology Tx and 

{leL: min{Zi(y),Z2(y)} < l(y) < max{Zi(y),Z2(y)} Vy G Y } C U \flx,l2 G U. 

(5.40) 

Proof Let Z7 C L = X. Theorem 5.4 states that £/ = C0(X,H)U if and only if Z7 is closed 

in topology Tx and [Zi,Z2]g C U for all Zi,Z2 G U. Since coLf/ = co(x,w)^
 tnen ̂  is 

(L, Y)-convex if and only if it is closed in topology Tx and possesses (5.40). P 

A set U C L is closed if and only if it contains each Z G L such that every neighbourhood 

of Z contains an element of U. Since the topology Tx is generated by the collection of all 

sets {leL: l(y) > c} with (y, c) G Y x IR, then C/ is closed in topology Tx if and only if 

it contains all Z G L such that for every finite subset F c Y and for every e > 0 a function 

u e U exists with u(y) > l(y) - e Vy e F. 

Let T be the topology of pointwise convergence on L. Then (X, T) is connected with 

respect to Q if and only if for any Zi, Z2 G L a mapping to : [0,1] x Y -• IR exists such that 

cu(•, y) is continuous on [0,1] for each fixed y G Y and the following holds: 

o;(t,-)GL V t G [0,1], u(0,-) = lx, u(l,-) = l2, 
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min{Zi (y),Z2(y)} < u(t,y) < max{lx(y), l2(y)} Vt G [0,1], y eY. 

It is clear that condition (5.9) is valid for T. Indeed, let U be a finite subset of L and k 

converges to an element Z' G U. This means that k(y) converges to l'(y) for every y G Y. 

Then 

P convg(Z7 U {U}) = UeL: l(y) < max I k(y), max u(y) \ Vy G Y, i > 1 j 

= U-L: l(y) < max«(y) Vy G Y I = convgH 

Moreover, since every set H = {Z G L : l(y) < c} G ft is closed in topology T then 

Tj_cT. 

Proposition 5.17 Assume that (ft, 77^) /_• connected with respect to Q* and (X, Tx) is con

nected with respect to Q. IfL is compact in the topology ofpoinwise convergence then a set 

U C L is (L, Y)-convex if and only if it is closed in T and 

{leL: l(y) < max{Zi(y),Z2(y)} Vy G Y} C U Vlx,l2 G U. (5.41) 

Proof: By Theorem 5.4, U is (L, Y)-convex if and only if it is closed in topology Tx and 

[Zi,Z2]g CU for all lx,l2eU. 

Inclusions [Zi, l2]g C U for lx,l2 eU are equivalent to (5.41). IfU is closed in topology 

Tx then it is closed in T as well, because Tx cT. 

Conversely, let U C L be closed in the topology of pointwise convergence and enjoy 

(5.41). Assume that L is compact in T. Then U is also compact in T. W e need to check 

that U is closed in the topology Tx. Let Z G L\*7. It follows from (5.41) that for every 

u e U a point yueY exists with Z(yu) > u(yu). Let c = (u(yu) + l(yu))/2. Then for each 

u e U the set {V e L : l'(yu) < c_} is a neighbourhood of u (i.e. it is open in topology 

T and contains u), and Z(yu) > cu. Since [/ is compact then there is a finite collection 

{(yi, ci), • • -, (yn, c^} C Y x IR such that min^yi) - Q ) < 0 < mini(Z(yi) - a) for all 

« G H. Hence Z G" U #< and C/ C Ui H» where Hi = {V G L : Z'(yi) < Q } G ft. This 

means that Z does not belong to the closure cl ?>x U, because Ui H* is closed in topology 7̂ .. 

Thus, U is closed in Tx.
 D 

Proposition 5.18 Assume that L is closed under vertical shifts. Let Y be equipped with a 

topology such that Y is compact and all functions I G L are continuous on Y. Assume that 
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(ft, TL) is connected with respect to Q* and (X, T) is connected with respect to Q. Then a 

setU c L is (L, Y)-convex if and only if (5.41) holds and U contains every I e L such that 

(I - e) e U for any e > 0. 

Proof: Iff/ is (L, Y)-convex then (5.41) is valid. Moreover, since l(y) = supe>0(Z(y) - e) 

then U contains every Z G L such that (Z — e) eU for all e > 0. 

Conversely, assume that U C L possesses (5.41) and Z G U whenever (l-e) eU for all 

e > 0. Let Z G L be such that l(y) < supu6[7 u(y) for all y G Y. W e show that (l-e) eU 

for any positive e. Then Z belongs to U as well, and therefore U is (L, Y)-convex. 

So let e > 0. Since l(y) — e < snpueU u(y) Vy eY then for each y G Y a function 

uy e U exists with l(y)—e < uy(y). Due to the continuity of functions Z and uy,l(z) — e < 

uy(z) for all z from a neighbourhood ofy. Then, by compactness ofY, a finite collection 

{ux,... ,un} C U exists such that l(y) — e < maxj Ui(y) for all y G Y. 

Since the topology T enjoys condition (5.9) then, by Theorem 5.3, the convexity Q is 

of arity 2. It follows from (5.41) that [Zi, l2]g C U for any Zi, Z2 G U. Hence U is convex. 

This implies that convg{wi,..., un} C U. In other words, 

lue L: u(y) < max u{(y) Vy G YJ C £/. 

In particular, U contains the function h(y) = l(y) — e. P 

At last, we give a formula for the (L, Y)-convex hull of a finite union of (L, Y)-convex 

sets. This is important for the description of the support set and the subdifferential of the 

maximum of a finite collection of abstract convex functions. Indeed, for every L-convex 

functions /i,...,/„wehave 

supp ( max fi,L) = coLMsupp(/i;L). 
\i=l,...,n J >£ 

Subdifferential of the maximum of a finite collection of abstract convex functions have been 

considered in Chapter 4 (see formulas (4.17) and (4.18)). 

Proposition 5.19 Assume that (ft, TL) is connected with respect to Q* and (X, T) is con

nected with respect to Q. Then for any (L, Y)-convex sets Ux,...,Un 

coL(jUi = clT>({J {leL: l(y) < msz^iv) Vy G Y} j . (5.42) 

i=i \meUi *• ' 

file:///meUi
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Proof: Since Tx C T and condition (5.9) is valid for T then we can apply Proposition 5.12. 

Let Ux,..., Un c L be (L, Y)-convex. Then Ux,..., Un G Q and, by (5.35), 

n n / ^ 

coL (J £/* = co(x>W) (J t/< = clTir. ( (J convg{ui,..., wn} 
i=l i=l \Ui_i7i / 

= cl^ ( 1J {I e L : l(y) < max^d/) Vy G Y} j 
\_i_LTi / 

• 

file:///Ui_i7i
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Chapter 6 

On generalized conjugations and 

subdifferentials 

Applications of abstract convex analysis to global optimization problems are based on the 

description of support sets or, at least, its maximal elements (see [41]). The most convenient 

tools for this are the notions of a conjugate function and abstract subdifferential. In this 

chapter w e consider a type of conjugate functions, which is an evident generalization of the 

notion of conjugation examined in [57]. W e also consider abstract subdifferentials and give 

conditions for the global minimum in terms of these subdifferentials. 

6.1 Optimality conditions and the role of the abstract sub-

differential and conjugation 

The notion of a support set of real-valued functions can be easily generalized for functions 

with values in an arbitrary partially ordered set. Let H be a collection of functions h : X —> 

U, where X is a set and U is a partially ordered set. The set 

supp(/,H) = {heH: h(x) < f{x) VxeX} (6.1) 

of all H-minorants off is called the support set of the function / with respect to H . 

If, moreover, U is an upper complete semilattice then w e can define also H-convex 

functions. Namely, a function / : X -»• U is called abstract convex with respect to H 

(or H-convex) if its support set supp (/, H ) is not empty and f(x) = sup{h(x) : h G 

supp (/, H ) } Vx e X. If / : X -> U is a function such that supp (/, H ) ^ 0 then its 

101 
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H-convex hull coHf is defined by 

coHf(x) = snp{h(x) : h e supp (/, H)} (x e X). (6.2) 

Note that the family of all H-convex functions is an upper complete semilattice as well. 

Let / : X —> U, where U is a partially ordered set. For each point y e X define the 

following set 

d*Hf(y) = {heH: he supp(f,H), h(y) = f(y)}. (6.3) 

Consider conditions for the global minimum and global minimal element in terms of the 

set d*Hf(y). Recall that an element w e W of a partially ordered set W is called minimal 

if there is no w G W such that w < w (in other words, w ^ w for all w e W). Let S be a 

subset of X. The following statements are obvious. 

1. If there exists a function h G d^f(y) such that h(y) i> h(x) for all x e S then 

f(y)? f(x) for all xeS. 

2. If there exists a function h G d*Hf(y) such that h(y) < h(x) for all x e S then 

/(y)</(x)farall_;€S. 

3. Assume that H contains all constants. Then f(y) < f(x) for all x G X if and only if 

the set d*Hf(y) contains the constant f(y). 

Let U = IR+oo = IR U {+00} and H be a set of functions h : X -• IR. 

First, assume that H is closed under vertical shifts. Then it is convenient to represent 

H as H i = {h : h(x) = l(x) - c, leL, ce IR}, where L is a subset of H such that 

(l-c) G" L whenever Z G L and c ̂  0. For any function / : X -+ TR+00 we can define its 

L-conjugate function /£ and L-subdifferential dLf(y) in usual manner: 

f*L(l) = snp(l(x) - /»), (Z G L), (6.4) 

dLf(y) = {leL: l(x) - Z(y) < /(*) - /(y) Vo; G X}. (6.5) 

Then the support set of / with respect to H coincides with the epigraph of the conjugate 

function /£. Thus, conjugate function accumulates whole information about the support set 

of the initial function. Furthermore, as it was discussed in Section 1.3, the description of 
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the abstract subdifferential is easier than the description of the set d*HJ(y). At the same 

time, w e have: 

d*Hf(y) = {h : h(x) = l(x) - l(y) + f(y), I G dLf(y)}. (6.6) 

So if H is closed under vertical shifts then we can simplify the description of the set d*Hf(y). 

Moreover, conditions for global minimum can be easily reformulated in terms of subdiffer

entials. 

N o w assume that H is not closed under vertical shifts and consider its extension H' = 

{h1 : h'(x) = h(x) + c, h G H, c G IR}. Define also the conjugation /£ and the 

subdifferential dLf(y) for this new set H'. Then both f*L and dLf(y) contain an excess 

information about the function /. For example, the set d*H,f(y) is in one-to-one corre

spondence with dLf(y), while w e need only the description of the set d*Hf(y) C d*H,f(y). 

Hence w e have an excess complexity of /£ and dLf(y). Moreover, if the functions h G H 

are not real-valued (for example, if they have values in a nonlinear space) then the notions 

of conjugate function (6.4) and subdifferential (6.5) are not applicable. This is the reason 

why w e need a generalization of these notions. 

Some types of conjugations and subdifferentials for functions / : X —»• U, where U is 

a complete lattice, were considered in [57]. Here we examine the case, when the set U is 

either partially ordered or upper complete semilattice. 

6.2 Involutions, subinvolutions and dualities 

Definition 6.1 Let T be a partially ordered set. A mapping I : T ->• T is called an in

volution of T if it is decreasing and I(I(t)) = t for all t e T. W e will say that I is a 

subinvolution of T if it is decreasing and I(I(t)) <t for all t e T. 

The notion of involution can be found, e.g., in [4]. Consider a classical example. 

Example 6.1 Let M be a set and T be the collection of all subsets of M (including the 

empty set and whole M ) . Assume that T is equipped with the following order relation: 

tl < t2 <=» tx C t2. Then the mapping I(t) = M\t = {m G M : m G" t} is an 

involution of T. 
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Remark 6.1 Equalities I(I(t)) = t in the definition of involution mean that I : T -+ T is 

a bijective mapping and 7"1 = /. Indeed, since I(t) e T and I(I(t)) = t then I(T) = T. 

If I(tx) = I(t2) then tx = I(I(tx)) = I(1(h)) = t2. So, every involution is strictly 

decreasing. 

The following characterizations of involutions and subinvolutions can be useful. 

Proposition 6.1 Let T be a partially ordered set. 

1.) A mapping I :T -*Tisa subinvolution ofT if and only if for each tx,t2eT 

1(h) < t2 <^> I(t2) < tx. (6.7) 

2.) A mapping I : T -> T is an involution ofT if and only if for each tx,t2eT 

(1(h) < h <=> I(t2) < tx) and (I(tx) = t2 <=^ I(t2) = tx). (6.8) 

Proof: 1.) Let I he a subinvolution ofT. Since I is decreasing and I(I(t)) < t then 

inequality I(tx) < t2 implies that I(t2) < I(I(tx)) < tx. Conversely, let (6.7) be valid. Let 

t e T. If follows from (6.7) and the inequality I(t) < I(t) that I(I(t)) < t. If t < t! then 

I(I(t)) < t', hence 1(f) < I(t). 

2.) If I is an involution ofT then I is also a subinvolution and (6.7) is valid. If I(tx) = t2 

then I(t2) = I(I(tx)) = tx. So w e get (6.8). Conversely, assume that (6.8) holds. Then I is 

decreasing on T. Equality I(I(t)) = t follows from the right part of (6.8) and the equality 

I(t) = I(t). P 

The next proposition states that every subinvolution is an involution of its image. 

Proposition 6.2 Let I : T —• T be a subinvolution ofT. Then its restriction I : I(T) —» 

I(T) on the image I(T) = {I(t) : t e T} is an involution of I(T). In particular, 

I(I(I(t))) = I(t)forallteT. 

Proof: We only need to check that I(I(t')) > t' for all t! G I(T). So let t! = I(t), 

where t G T. Since I is decreasing on T then the mapping I o I is increasing, hence 

I(I(I(I(t)))) < 7(7(0) < *• Due to (6.7) w e get t' = I(t) < I(I(I(t))) = I(I(?)). • 

Recall two definitions from the book [57]. Let U and V he complete lattices. 



On generalized conjugations and subdifferentials 105 

Definition 6.2 ( [57], Definition 5.1) A mapping A : U —> V is called a duality if for each 

nonempty subset S C U 

A ( inf u ) = sup A(u) (6.9) 
\ues J ueS 

and A(_/max) = V^m, where [/max is the maximal element of U and V^- is the minimal 

element ofV^. 

Definition 6.3 ( [57], Definition 5.2) Let A : U —> V he a mapping. Then the mapping 

A' :V-*U defined by 

A'(v) = inf{u eU : A(u)<v} (6.10) 

is called the dual of A. If {u e U : A(u) <v} = ® then we set A'(v) = C/max. 

If A : U —• V is a duality then its dual mapping A' : V —> U is a duality as well and 

A" = A, where A" = (A')' : U -> V (see [57], Theorem 5.3). 

Here we show that dualities can be described via subinvolutions. At the same time, 

involutions correspond to bijective dualities. 

For complete lattices U and V consider the following partially ordered set: 

T = (U,1)U(V,2), (6.11) 

where (U, 1) = {(u,l) : u G U} and (V.2) = {(v,2) : v G V}. We assume that 

(w, i) < (w', j) if and only if i = j and w < w' (here (w, i), (w', j) G T, i, j = 1,2). 

Proposition 6.3 Let U and V be two complete lattices and A : U -»• V. Consider the 

mapping I: T -• T defined by the formulas 

I((u,l)) = (A(u),2) VueU, I((v,2)) = (A'(v),l) VveV, (6.12) 

w/zere T /_• defined by (6.11). Then 

I.) I is a subinvolution ofT if and only if A is a duality. 

2.) I is an involution ofT if and only if A is a bijective duality. 

Proof: 1.) If/ is subinvolution ofTthen, by Definition 6.1, A is decreasing and A A » < 

for all veVAX follows from ( [57], Proposition 5.3) that A is a duality. Conversely, let 

A be a duality. Then, due to ( [57], Corollary 5.3), 

A(u) < v «=» A'(v) <u (u e U, v e V), 

v 
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and, by Proposition 6.1,1 is subinvolution ofT. 

2.) If I is involution ofT then it is subinvolution, and therefore A is a duality. In view 

of Remark 6.1 A is a bijective mapping. Conversely, let A : U —> V he a bijective duality. 

Then I is subinvolution of T. Since A is bijective then Proposition 6.2 implies that I is 

involution ofT. • 

N o w consider the case of arbitrary partially ordered sets U and V. 

Proposition 6.4 Let U andV be two partially ordered sets and A : U —> V. Let Ix and I2 

be subinvolutions ofT, where T is defined by (6.11). If 

Ix((u,l)) = I2((u,l)) = (A(u),2) VueU 

then Ix = I2. 

Proof Let Ax, A2 : V —» U he the mappings defined by 

(Ax(v),l) =Ix((v,2)), (A2(v),l) = I2((v,2)). 

If Ji and I2 are subinvolutions ofT then, by Proposition 6.1, we get 

Ax(v) < u -£=> A(u) < v <{=> A2(v) < u. 

Hence Ax = A2.
 D 

Proposition 6.4 allows one to extend the notion of duality to arbitrary partially ordered 

sets U and V. 

Definition 6.4 Let U and V be two partially ordered sets. We will say that a mapping 

A : U __> y is a duality if there exists a subinvolution I of the set T (see (6.11)) such that 

I((u, I)) = (A(u), 2) for all u G U. If A is a duality then the mapping A' :V^U defined 

by (A'(v), 1) = I((v, 2)) is called the dual of A. 

In other words, a mapping A : U -> V is called a duality if there exists a mapping 

A': V -»• U such that 

A(«) < v <=> A'(v) < u. (6.13) 

If A is a duality then A' is called the dual of A. 
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Proposition 6.5 Let U andV be two partially ordered sets. If A :U —• V is a duality then 

its dual mapping A' : V —»• U is a duality as well, and A" = (A')' = A. Moreover, both 

mapping A and A' are decreasing and 

A'A(u) <u VueU, AA'(v) < v VveV, (6.14) 

AA'A(u)=A(u) VueU, A'AA» = A» VveV. (6.15) 

In particular, if A : U —> V is a bijective duality then we have equalities 

A'A(u)=u VueU, AA'(v) = v VveV, (6.16) 

that is A' = A-1. 

Proof: It follows from the Definitions 6.4 and 6.1 that the inequalities (6.14) hold and the 

mappings A and A' are decreasing. Due to equivalent definition of duality (see (6.13)) the 

mapping A' is duality and A" = A. Equalities (6.15) follow from the Proposition 6.2, 

where the mapping I: T -> T is defined by (6.12). If A : U -»• V P 

Remark 6.2 It is easy to see that Proposition 6.3 holds true for any partially ordered sets 

UandV. 

6.3 L-subdifferentials with respect to a mapping 

<$>:XxLxU ->V 

Let U and V be two partially ordered sets. Let X and L be sets. 

Consider a mapping <_> : X x L x Z7 —>• V such that for each fixed x G X and Z G L the 

mapping Axj : U -»• V defined by AXji(u) = $(x,l,u)isa duality. Denote by Hx the set 

of all functions h : L -»• V defined by h(l) = $(_;, Z, u), where x G X and « G H 

Let $': X x L x K -> _/ be the mapping defined by <_>'(x, Z, v) = A'xl(v) (here A^, is 

the dual of AXjj). By the symbol Hf' we denote the set of all functions h : X -+U defined 

by h(x) = $'(x, I, v), where Z G L and v e V. 

W e introduce L-subdifferentials of functions / : X -»• U in the following way (compare 

it with the definition of the subdifferential considered in ([57], p. 359)). 
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Definition 6.5 Let / : X -* U and y G X. W e say that the set 

dLf(y) = {leL: $(x,l,f(x)) < $(y,l,f(y)) Vx e X} (6.17) 

is the L-subdifferential of the function / at the point y with respect to the mapping $. 

Elements Z G dLf(y) will be called L-subgradients of / at y with respect to $. 

Since $'(x, Z, •) : V -»• _/ is the dual of $(_;, Z, •) : U -• V then, due to (6.13), 

$(x,Z,/(*))<<%,Z,/(y)) <*=» &(x,l,$(y,l,f(y)))<f(x). 

Therefore 

9i/(y) = {i€L: $'(a;,Z,$(y,Z,/(y))) < f(x) Vx G X}. (6.18) 

Proposition 6.6 Let f : X —» _/ andy G X. Le/ L-subgradient I e dLf(y) be such that 

the mapping <_»(y, I,) : U ->V is bijective. Then the function h(x) = <_>'(_;, Z, $(y, Z, /(y))) 

belongs to the set d*& f(y) defined by 

d*H*f(y) = {heHt : h(y) = f(y), h G supp(/,Hf)}. 
L 

Therefore, if <_>(y, Z, •):[/—> K is bijective for all I G L //ze« 

3>/(y) = i>: ^) = ^(x,«,^(y,i,/(y))), ^ e 9./(y)}. (6.19) 

Proof Formula (6.18) implies that the function h(x) = $'(x, Z, $(y, Z, /(y))) belongs to 

supp (/, Hf'). If the mapping <_>(y, Z, •) : U -* V is bijective then, due to (6.16), we get 

h(y) =f(y). Hence hed^f(y). 

Assume that $(y,l, •) is bijective for all Z G L. Take a function h(x) = $'(x,l,v) 

from the set d^f(y). Since &(y,l,v) = % ) = f(y) then v = $(y,l,$'(y,l,v))) = 

$(y, h f(y))- Since /i < / then h(x) = &(x, I, $(y, I, f(y))) < f(x) for all xeX, hence 

l e 0_,/(y). D 

Corollary 6.1 Assume that U is upper complete semilattice. Consider a function f : X —> 

Z7. ̂ « w e to/or eac/z y G X andleLthe duality $(y, Z, •) : C/ -»• V is bijective. If all 

subdifferentials dLf(y) (y G X ) are nonempty then the Junction f is Hf/-convex. 

Consider conditions for the global minimum and global minimal element in terms of 

abstract subdifferentials defined in this section. 
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Denote by L 0 the following set 

LQ = {leL: &(x,l,$(y,l,u))=uVx,yeX,VueU}. (6.20) 

For example, in the classical convex case we have: X = Y = IRn, U = V = IR 

_>(_;, Z, u) = $'(a;, Z,«) = (a:, Z) - u. Therefore L 0 = {0}. 

Remark 6.3 If Z G L 0 then _>(a;,7, it) < $(y, Z, u) for all x,y eX,ueU, therefore we 

get equalities $(_;, Z, w) = $(y, Z, w) ( i , ^ ! , ^ U). 

Proposition 6.7 Let f : X -> [/, y G X am/_? C X. 

/.j Suppose that the set L 0 is nonempty. Then 

f(y) < f(x) VxeX if and only if L0 C dLf(y). 

2.) If there exists a suhgradient I G dLf(y) such that 

f(y)<&(x,l,$(y,l,f(y))) for all xeS 

then f(y) < f(x)forallx e S. 

3.) If there exists a suhgradient I e 5z,/(y) such that 

f(y)^®(x,lMy,l,f(y))) for all xeS 

then f(y) ̂  f(x)forallx G S. 

Proof: The proof follows directly from the formula (6.18). P 

6.4 Conjugate functions with respect to <_> and <_>' 

Assume that U and V are upper complete semilattices. 

Definition 6.6 Let / : X -»• U. W e say that the function /£ : L -> V defined by the 

formula 

£ ( 0 = sup *(*,*,/(*)) (6.21) 

is the L-conjugate to / with respect to $. 

For a function g : L —> V the function gx:X^>U defined by 

y^(x)=sup$'(a;,Z,y(Z)) (6.22) 

will be called the X-conjugate to y with respect to -J'. 
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So we define a conjugation for all functions / : X —»• U and g : L ^> V. Sometimes 

for more convenience we will use the term "conjugate functions" for both cases (without 

symbols L or X ) . Thus the term "second conjugate function" seems natural. The second 

conjugate functions f**:X—>U and g** : L —> V are defined as follows: 

/**(*) = (flYxW, <T(0 = (SX)L(O- (6-23) 

Proposition 6.8 Let f : X -> U and g : L -+ V. Let x e X, I G L, u e U and v G V. 

Then 

$'(.,Z,v)Gsupp(/,Hf) ^=> fl(l)<v, 
(6.24) 

$(x, •, u) G supp (y, H%) « = • gx(x) < u. 

Proof: Consider f:X->U. Since §(x, I, •) : U -»• V is a duality then (see (6.13)) 

$'(z,Z,t;)<7(x) V ^ G l ^ $(_;,/,/(a;)) < v Vx G X «=* fl(l)<v. 

Similarly, for a function y : L —• V, we have 

$(z,Z,-u.) < fli(0 VZ G L <^> &(x,l,g(l)) <uVleL <^ g*x(x) < u. 

• 

Since U and V are upper complete semilattices then we can define elements [/max = 

max{u : u G 17} and Vma* = m&x{v : v G V}. Since each function Ax>i(u) = $(_;, Z, u) 

is a duality then 

$(x,Z,w)<Vmax V n G l / =J- $'(x,Z,Vmax)<u VuGt/, 

$'(*,/, V) < t/max VW G V = » $(x,Z,[7max) < V VV € V. 

Hence there exist elements t/min G t/ and V ^ G V such that U^ < u Vu e U and 

Knin <v Vv eV.We have equalities: 

$(ar, Z, Z7max) = V__ui, $'(z, Z, Vmax) = _/___,. 

Therefore for any functions / : X -> t/ and y : L - V their support sets supp (/, Hf') and 

supp (g, Hx) are nonempty, and abstract convex hulls coH«// and coF*y are well defined. 

Proposition 6.9 Let f : X-+U andg : L ̂  V. Then second conjugate functions /** W 

y** coincide with Hf'-convex and Hx-convex hulls respectively: 

f** = coHt>f, g** = coHp. (6-25) 
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Proof We consider only function /. We have: 

/**(*) = (flYx(x) =sup$'(x,Z,/*(Z)) = sup*' (x,l,sup^(y,l,f(y))) . 
l£L l£L \ yeX J 

Since each function &(x,l, •) is decreasing and &(x,l,$(x,l,u)) < u (see Proposition 

6.5) then 

/*•(*) < sup$'(x,l,$(x,l,f(x))) < f(x). 
leL 

Since the function /** : X -> U is Hf'-convex then /** < coH&f. 
Is 

On the other hand, due to Proposition 6.8, 

co^/Cr) = sup^,^): $'(.,/,«) G supp(/,Hf)} 

= sup{$'(*,Z,<;): /£(Z) < v} < snp&(x, I, f*L(l)) = /**(*). 

D 

So a function / : X —> U is Hf-convex if and only if / = /**. 

Now we present a formula for conjugation of elementary functions from the sets Hf' 

and Hf. Let x e X,l e L,u eU and v eV. Consider the following functions defined on 

X and L respectively: 

</>*,_(y) = sup{%) : h G Hf, /i(x) < w} (y G X), 
(6.26) 

^)W(_) = snp{h(t) : heHx, h(l) <v} (t G L). 

Proposition 6.10 Letx e X,l e L,ueU andv G V. Then 

($(x, •, u))x = Vv ow/ ($'(•, Z, v))J, = W (6.27) 

Proof: Let us prove the second equality in (6.27). Let f(x) = &(x, I, v). We need to check 

the equality /* = W since tne function /* is Hf-convex then, due to (6.26), 

/*<W «=• f*(l)<v ^=> $(x,l,&(x,l,v))<v VxeX. 

Now we show that /* > ^i,v. Let $(5, •, u) G Hf be a function such that <_>(x, Z, u) < v. 

Then &(x,l,v)<u, and therefore for alU G L 

$(x, t, u) < §(x, t, _>'(_;, Z, v)) < sup $(x, t, $'(_;, Z, v)) = /*(t). 

Hence ^ < /*. 
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Denote by F the set of all Hf'-convex functions / : X —> U. By the symbol G we 

denote the set of all Hf-convex functions y : L -> V. It is clear that F and G are upper 

complete semilattices. 

Consider the mapping A : Ux -> K L defined by A(/) = /£, where Ux is the set of all 

functions / : X -» Z7 and V L is the set of all functions y : L -+ V. 

Proposition 6.11 The mapping A :UX -*VLisa duality. Its dual duality A': VL -»• t/x 

i5 de/wed Z?y A'(y) = g*x. The duality A : F -> G is bijective with A
- 1 = A'. 

Proo/? Let / G Ux and y G VL. Then 

A(/)<y «=• fl(l)<9(l) VI eL 4=> $(x,Z,/(x))<y(Z) Vx G X VZ G L 

<^> &(x,l,g(l)) < f(x) VxeXVleL «=* g*x<f. 

Hence A : Ux —> T/L is a duality and A'(y) = y^. 

Due to Proposition 6.9, the duality A : F —»• G is bijective. Indeed, for any function 

y G G we have y = y** = A(y^), where g*x e F. This means that A(F) = G. If 

A ( A ) = A(/2) (A, /2 G F) then /i = /** = A'A(/i) = A'A(/2) = /•* = /_. Thus, the 

mapping A : F —>• G is bijective. P 

N o w assume that Z7 and V are complete lattices. Let Z G L0, where L0 is defined by 

(6.20). Then Remark 6.3 and Definition 6.2 imply that for any / : X -» 17 and y G X 

/£(Z) = sup <_>(x, Z, /(x)) = sup $(y, Z, /(ar)) = $ f y, Z, inf f(x)) . 
xex xex \ x&x J 

So for arbitrary y e X and Z G L 0 the following equality holds (see (6.20)) 

mf f(x) = tf (y,I, * (y, Z, mf /(*))) = $'(y, I, /£(/)). (6.28) 

6.5 Inverse results 

Let Z7 and V be two upper complete semilattices such that there exist elements Umin G U 

and V-jn eV: U^^uVue U, Vmia < v Vv G V. Let F be an upper complete 

semilattice of functions / : X -> Z7 and G be an upper complete semilattice of functions 

g: L->V. Assume that Fmin G F and Gmin G G, where Fmin(x) = Umin and Gmin(l) = 

vrnhv 
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Here we show that each duality A : F ->• G can be represented as a conjugation with 

respect to a certain mapping $. A similar results was obtained in ( [57], Theorem 7.3) in 

the case, when U and V are complete lattices. 

Let x G X , Z G L, n G 17 and v G V. Due to our assumptions we can define the 

following functions 

^x,u(y) = s u p { % ) -. heF, h(x) <u} (yeX), 
(6.29) 

\htV(t) = sup{/z(t) : heG, h(l) <v} (teL). 

Since F and G are upper complete semilattices then ipXyU e F and ipijV e G. 

Proposition 6.12 LetA.F^Gbea duality. Consider the mapping $ : XxLxU —>V 

defined by 

$(x,U) = A(V>_,_)(0- (6-30) 

Then for each fixed x G X and I G L the mapping $(x,l,-) : U -^ V is a duality. The dual 

duality _>'(x, Z, •) :V —> U is defined by 

&(x,l,v) = A'(ipl>v)(x). (6.31) 

Moreover, for any functions f G F an J g e G 

A(f) = f*L, A'(y)=y^, (6.32) 

vv/jere /£ is /fce L-conjugate to f with respect to $, a«J y^ is f/*e X-conjugate to y wtf/j 

respect to _?'. 

Proof: We have 

A ( V O ( 0 < ̂  «=* A(Vx,«) < </V «=> A'(^,.) < ̂ _,« «=» A'(̂ ,_)(aO < «. 

This means that the mapping _>'(_;, Z, •) : V -> _/ defined by (6.31) is the dual of $(_;, Z, •)• 

Hence the mapping $(z, Z, •) : Z7 -* V is duality. 

Take a function / G F. Then for any Z G L and u G V 

fl(l)<v <=> $(x, Z,/(a;)) < v V x G X <=> §'(x,l,v) < f(x) Vx G X 

<=• A ' ( ^ ) < f ^=> A(f) < ^ <=• A(f)(l) < v. 

This leads to the equality A(/) = /£. The same arguments show that A'(y) = gx for all 

• 
9 eG. 
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Note that, under conditions of Proposition 6.12, the duality A is defined only for / G F. 

At the same time, the notion of L-conjugation is applicable to every function / : X -*U. 

So w e can extend the mapping A : F -> G on the whole space Ux by the formula A(/) = 

/£. And, by Proposition 6.11, this extension is also a duality. 

Remark 6.4 If F = Ux and G = VL then the functions (6.29) have the following simple 

form: 

_̂,_(y) = < Uy x v~x ^lv(t) __ J
 V) l L~ ' 

[ Umax, lff^X ( Vmax, ift^l 

where Umax = supue[/ u and V ^ = sup,,-v v. 

Proposition 6.13 Let A : F —> G be a bijective duality. Consider the mappings <_> and 

<&' defined by (6.30) and (6.31). Then a function f : X —> U is H^'-convex if and only if 

f e F; a function g : L —>V is Hx-convex if and only ifg G G. 

Proof: We prove our statement for the set F. Since ipijV G G and $'(x, I, v) — A'(^i:V)(x) 

then for each fixed Z G L, v G V the function Zi(x) = $'(a;, Z, t») belongs to F. Therefore 

the set Hf' is a subset of F. Since F is upper complete semilattice then every H f -convex 

function / : X —> Z7 belongs to F. Conversely, let / G F. Since the duality A : F —> G 

is bijective then (see (6.16) and (6.32)) / = A'A(f) = /**. Hence the function / is 

Hf'-convex. P 

Since each duality A : F —»• G is a conjugation then support sets of functions / G F 

can be described via A(/) (see Proposition 6.8). 

Indeed, let A : F -> G be a duality and A' be the dual of A. Then, by Proposition 6.12, 

for every function / G F 

A(/)(Z) = fl(l) = sup$(x,Z,/(x)) VZ G L, 
„ex 

where $ is defined by (6.30). Proposition 6.8 implies that for every Z G L and v e V we 

have the following equivalence 

$'(-, Z,v)e supp (/,Hf) ^ AC/XOf-t;, 

where $' is defined by (6.31). 



Conclusion 

Throughout the entire thesis we talked about various issues related to abstract subdiffer

entials and separation properties. Our main aim was to find possible approaches to some 

global optimization problems. First w e examined abstract subdifferentials and separation 

properties in two particular cases. Then w e considered the problems of subdifferential cal

culus and separation of sets from a general point of view. Finally, w e investigated optimality 

conditions via generalized subdifferentials for non-real-valued functions. 

In Chapter 2 w e examined abstract subdifferentials of C A R (convex-along-rays) func

tions defined on B n with respect to special sets of elementary functions. W e took various 

approaches to the calculation of abstract subgradients (i.e, the elements of abstract subdif

ferential) of C A R functions. In particular, w e gave some conditions, which guarantee the 

existence of abstract subdifferential of C A R functions and therefore allow one to describe 

certain abstract subgradients. The results obtained can be applied for the global minimiza

tion of some C A R functions over subsets of ]Rn by using numerical methods. 

In Chapter 3 w e discussed the weak separability of two star-shaped sets by a collection 

of linear functions. The main result of this chapter is the characterization of a solution of 

a "best approximation -like" problem for star-shaped sets. W e introduced a notion of a 

star-shaped distance and gave necessary and sufficient conditions for its global minimum 

over a radiant set in terms of weak separability of star-shaped sets. Note that the class of 

such problems is quite broad. However the description of separating collections of linear 

functions is very complicated. Thus, in order to apply this result in practice, a further 

research is required. W e need to describe separation collections at least for some simple 

star-shaped sets. 

Chapter 4 takes a general approach to the problem of subdifferential calculus for abstract 

convex functions. A s used here the subdifferential calculus means the existence of some 

calculus rules. Such rules allow the description of subdifferentials of some combinations 
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of abstract convex functions via subdifferentials of given functions. Since conditions for 

the global minimum of an abstract convex function can be given in terms of the abstract 

subdifferential then the existence of calculus rules is very important. 

It turned out, that the so-called strong globalization property can provide subdifferential 

calculus for different combinations of abstract convex functions, including the maximum. 

Namely, w e proved that, if the set of elementary functions has the strong globalization 

property, then subdifferential calculus can be expressed in terms of special functions that 

in a sense approximate the given functions. If, moreover, these approximation functions 

possess certain equalities, then w e get exact calculus rales. 

W e considered some examples, which demonstrate that there are a lot of sets of nonconvex 

functions having the strong globalization property. This means that the results obtained can 

find applications in a broad range of global optimization problems. 

In Chapter 5 w e investigated separation properties via a special type of connectedness of 

a topological space with respect to a convexity on this space. W e chose a way based on the 

separation of convex sets by elements of a fixed subbase. In order to get efficient results, we 

required some restrictions on the choice of a subbase in terms of the connectedness. This 

approach leads to a weak separation property for arbitrary convex sets and to a stronger one 

for closed convex sets. 

First w e indicated the cases, when the convexity is of finite arity. This gives a description of 

convex sets. Moreover, in view of Theorem 1.3, w e can use this result for further research 

in order to get the separation property 64 (see Section 1.4). 

Then w e provided some conditions, which guarantee a description of closed convex sets 

and the following property: each closed convex set and each point in its complement can be 

separated by an element of the subbase. As a particular case, this result implies a description 

of abstract convex functions and sets. 

W e also proved that each two disjoint convex sets, one of them being closed and the other 

one compact, can be separated by an element of the subbase. This can be applied for a 

characterization of solutions of some "best approximation -like" problems. 

A n important issue is the description of the abstract convex hull of a finite union of abstract 

convex sets. Our results about this can be applied to the formula, which was obtained in 

Chapter 4, for the subdifferential of the maximum of a finite collection of abstract convex 

functions. Furthermore, this gives a description of the support set of the maximum of 
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abstract convex functions. Thus, we can express conditions for the global minimum of the 

m a x i m u m of a finite collection of abstract convex functions in terms of subdifferentials (or 

support sets) of given functions. 

Note that the main assumptions in Chapters 4 and 5 are also valid for usual convex 

functions and sets. Thus, w e picked out some essential properties of the classical convexity 

and used them for generalization of subdifferential calculus and separation theorems. 

In Chapter 6 w e introduced generalized conjugations and subdifferentials for functions 

with values in an upper complete semilattice and a partially ordered set respectively. They 

are based on the notion of a duality between two partially ordered sets, which generalizes 

corresponding notion considered in [57] for pairs of complete lattices. The main feature of 

such broadly defined subdifferentials is that they provide conditions not only for a global 

minimum, but also for a global minimal element. W e also proved that each duality of 

two upper complete semilattices of functions is a conjugation. This implies that global 

optimality conditions can be formulated in terms of dualities. Consequently, an further 

investigation of these dualities is of importance. 
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