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Abstract

Subdifferential calculus and separation theorems play a crucial role for applications of clas-
sical convex analysis to global optimization. More precisely, they allow the formulation of
conditions (necessary or sufficient) for the global minimum of some convex optimization
problems. The fheory of abstract convexity generalizes ideas of convex analysis by using
the notion of global supports and the global definition of subdifferential. In order to apply
this theory to optimization, we need to extend subdifferential calculus and separation prop-
erties into the area of abstract convexity. This is the main objective of the present thesis.

First, we consider two particular cases. We examine global subdifferentials for convex-
along-rays (CAR) functions with respect to different sets of elementary functions and give
conditions, which guarantee the non-emptiness of these subdifferentials. The results ob-
tained can be applied for the global minimization of some CAR functions over subsets of
IR™ by using numerical methods. We also investigate the weak separability of two star-
shaped sets and derive conditions for the global minimum of the so-called star-shaped dis-
tance. This is a “best approximation -like” problem.

Then we take a general approach to subdifferential calculus and separation properties
in the theory of abstract convexity. We show that the equivalence between local and global
definitions of abstract subdifferential can provide certain calculus rules for such subdif-
ferentials. We also investigate the notion of N-connectedness of a topological space with
respect to a convexity on this space and investigate separation properties via such type of
connectedness.

At the end of the thesis, we generalize the notion of a duality between two complete
lattices, to arbitrary partially ordered sets. We introduce and examine conjugations and
abstract subdifferentials corresponding to such type of dualities. Conditions for the global

minimum in terms of these subdifferentials are given.
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Chapter 1

Introduction

1.1 Overview

The first monograph on abstract convexity ( [29]) by Kutateladze and Rubinov was pub-
lished in 1976 in Russian. The theory of abstract convexity arises naturally from the convex
analysis and is mainly driven by applications to optimization, namely global optimization.

It is a well known fact that every local minimum of a convex function over a convex set
coincides with the global one. So we can say that in the convex case there are no differences
between local and global optimization.

The structure of the subdifferential in convex analysis has two aspects. On the one
hand, every subgradient (that is an element of the subdifferential) allows us to construct
a local approximation of a convex function near a given point. Such approximations can
give us information about local minimizers. On the other hand, subdifferential as a global
notion provides a necessary and sufficient condition for the global minimum. Existence
of subdifferential calculus can help to find global minimum of some complicated convex
functions.

There are two ways for generalizations of ideas of convex analysis. One of them uses
the notion of local approximation and forms nonsmooth analysis, which solves problems of
local optimization. The second way leads to the so-called abstract convexity and exploits
the notion of global supports and the global definition of subdifferential.

We know that each lower semicontinuous convex function f is the upper envelope of a
certain set of affine functions. So the set of all affine minorants of f (the so-called support

sef) contains complete information about the initial function f. Hence conditions for a
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minimum can be easily reformulated in terms of the support set. Such reformulation can
be very convenient. From this point of view it is not important what kind of functions
we consider. We can get the same constructions for an arbitrary set H of functions (not
necessarily affine). Then we will work with upper envelopes of subsets of H instead of
lower semicontinuous convex functions.

On the whole, abstract convex analysis deals with the so-called closure structures and
generalizes the outer definition of convexity for closed sets, which is based on the separation
property.

The main results on abstract convexity and its applications can be found in the books by
Pallaschke and Rolewicz [37], Singer [57] and Rubinov [41]. Some applications to global
optimization (namely, investigation of various dual problems and a survey of numerical
methods) are mainly concentrated in [41].

In this thesis we focus on global subdifferentials and separation properties in the frame-
work of abstract convexity. Chapters 2, 3, 4, 6 and the first half of Chapter 5 are based on
the corresponding papers [45,46,53-55].

1.2 Abstract convex functions and sets

In this section we consider some knotions, which have a central place in the theory of abstract
convexity. All definitions presented here can be found in [41].

We begin with the definition of abstract convex functions defined on a set X, which
have values in the extended real line IR = IR U {+o00} U {—o00}. A more general case of

functions with values in an upper complete semilattice is considered in Chapter 6.

Definition 1.1 Let H be a set of functions defined on X. A function f : X — IR is called
abstract convex with respect to H (shortly H-convex) if there exists a set U C H such that

f is the upper envelope of this set:
f(z) =sup{h(z): heU} forallz e X.

Functions 4 € H from the above definition are usually called elementary. The set H of all

elementary functions is called a supremal generator of the set of all H-convex functions.

Definition 1.2 Let Y be a set of functions f : X — IR. A subset H C Y is called a

supremal generator of V' if each function f € Y is H-convex.
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There are two main problems that arise in view of these definitions. The first one: how
to describe H-convex functions if the set H of elementary functions is given. The second
problem: how to find a sufficiently small and simple (in a certain sense) supremal generator
H of the given set Y. Unfortunately, there is no good technique for solving these problems
in the general case. Nevertheless, there are some results in this direction. The first problem
is examined in Section 5.6 in a special case. An attempt to solve the second problem was
undertaken in [51].

Recall that a set Y of functions f defined on X is called an upper complete semilattice
if a pointwise supremum sup . f belongs to Y for every subset I C Y. If we talk about
functions f € Y as H-convex functions then the assumption that Y is an upper complete
semilattice seems very natural. Recall also that a subset ' of Y is called a chain if for any
f,9 € F we have either f(z) < g(z) Vz € X or f(z) > g(z) Vz € X. Denote by H(Y)
the set of all functions h € Y, for which there exists a point z° = z9(h) € X such that for
any f € Y the conditions

(@) = h(z%), f(z) <h(z) forallz € X

imply the equality
f(z) = h(z) forallz € X.

The following assertions are valid.

Proposition 1.1 (/51], Theorem 6.1) Let Y be an upper complete semilattice of functions
f: X — R. If a poimtwise infimum inf{f(z) : f € F} belongs to'Y for every chain
F CY then H(Y) is a supremal generator of Y .

Proposition 1.2 (/51], Theorem 6.2) Let Y be an upper complete semilattice of functions
f: X — IR If H is a supremal generator of Y then for any function h € H(Y) there

exists a sequence {h,} C H such that

hz) = lim h,(z) forall z € X.

n=00
So under conditions of Proposition 1.1 the set H(Y') is a supremal generator of Y and it is
the smallest in the sense of Proposition 1.2. Unfortunately, as a rule, it is a difficult task to
describe H(Y) for a given upper complete semilattice Y.

A classical example of H-convex functions is the usual convex case: every convex lower

semicontinuous function f : R* — IR ., = (—o0,+00] is H-convex with respect to the
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set of all affine functions (i.e., linear functions plus constants). If H contains only linear
functions then f is H-convex if and only if it is lower semicontinuous and sublinear.

Many investigations were devoted to positively homogeneous functions. Various kinds
of generalized derivatives used in nonsmooth analysis are positively homogeneous of degree
one, and representations of such functions as upper envelopes of some sets of sufficiently
simple functions can be very useful.

For instance, it was shown in [10] that each continuous positively homogeneous of
degree one function f defined on the Euclidean space can be represented as the supremum
of a subset of the set H = {h: h(z) = —al||z|| + [u,z]; a > 0, u € R"} (here || - || is the
Euclidean norm and [u, z] is the inner product of vectors u and z).

Supremal generators for the set of all symmetric positively homogeneous of degree two
functions (these functions arise in nonsmooth analysis as approximations of the second or-
der) were considered in [16] and [17] for finite-dimensional and Banach spaces respectively.

Another area, where abstract convexity is applicable, is the so-called monotonic analy-
sis. Abstract convexity is a convenient tool for investigation of various classes of monotonic
functions. Monotonicity arises in many areas of mathematics and its applications. In par-
ticular, production, utility and cost functions, which describe the behaviour of economic
agents, are monotonic with respect to the coordinate-wise order relation (see, for exam-
ple, [19]). There are some works on this theme, where monotonic functions are studied in a
very general setting (see [14], [15], [42]). Monotonicity was understood there with respect

to a certain order relation induced by a solid closed convex cone K C X:
z<y <<= y—-zekK (z,y € X).

Here we consider only the results related to increasing functions defined on R’} | = {z €

IR": z; > 0V3}. A function f : IR}, — IR, is called increasing if
(z,y e R}, z<y) = f(z) < f(y),

where the inequality z < y means that z; < y; for all ¢ = 1,...,n. Four classes of
increasing functions defined on IR}, were studied in the framework of abstract convexity:
increasing positively homogeneous (IPH), increasing radiant (InR), increasing co-radiant
(ICR) and increasing convex-along-rays (ICAR).

Recall that a function f : R?, — IRy = [0, +o0] is called radiant if f(Az) < Af(z)
forall z € R?, and A € (0,1). A function f : IR}, — IR, is said to be co-radiant if
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fQz) 2 AMf(z)Vz € R}, VA € (0,1). A function f : R}, — IR, is convex-along-
rays provided for each z € IR’} the function f,(t) = f(tx) is convex on (0, +0c0). Note
that the sets of all IPH, InR, ICR and ICAR functions are upper complete semilattices.

The following min-type functions play a key role in the study of these classes of increas-
ing functions:

z)=(l,z) = l__I_Ilnnn Lz, L,z e RY,). (1.1)

Let us describe supremal generators of the sets (for [IPH, ICR and ICAR they can be found
in [41]; for the set InR see [51]).

A function f : R} — IR, is IPH if and only if it is L-convex with respect to the set
L=A{l: l(z)=(l,z), L e R}, } U {0}

A function f : R}, — IR, is InR if and only if it is H-convex, where H = {h :
h(z) = cpi(z), 1 € RY,, ¢ > 0} and the functions ; are defined on IR} | by

oo =pr={ O Tl 12)
(l,zy, if(l,z)>1.
A function f : R}, — IR, is ICR if and only if it is H-convex, where H = {h : h(z) =
min({/,z),c), l € R}, ¢ > 0}.
At last, a function f : R}, — IR} is ICAR if and only if it is H-convex with respect
totheset H = {h: h(z) =1l(z) —¢, L € L, c€ R}.
One of interesting immediate applications of supremal generators is the following Prin-

ciple of Preservation of Inequalities ( [28]).

Proposition 1.3 Let Y be a set of functions defined on a set X and equipped with the
natural order relation. Let H be a supremal generator of Y. Furthermore, let 1) be an

increasing functional defined on'Y and let x € X. Then

(M(z) <9(h)forall k€ H) <= (f(z) <y(f)forall f€Y).

So if we have a set of elementary functions H and a certain inequality holds for all
h € H then the same inequality holds for each H-convex function f. A classical example
of increasing functional 1) defined on a set of functions is the integral. Hermite-Hadamard

inequality states that for any convex function f : [a,b] — R

a+b 1[0 1
(58) =52, [ 1@< i@ + 50 B
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The inequality in the left-hand side of (1.3) is obvious for affine functions f. Hence, by the

Principle of Preservation of Inequalities, it holds for convex functions as well. There are

many generalizations of Hermite-Hadamard inequalities for different classes of nonconvex

functions (see, for example, [12], [38] and the references therein). Consider some of them.
Let f : [a,b] — IR be integrable on [a, b] and such that

fOz+(1-Ny) < @ + lf—(_g% forall z,y € [a,b], A € (0,1).

b 4 [P
f(a;_ )Sb_a/Gf(x)da:

and the constant 4 in this inequality is sharp.

Then ( [13])

If f : [0,1] — IR is a nonnegative quasiconvex function then for any v € (0,1) the
following inequality holds ( [41])

Let f be an ICAR function defined on R%, = {(z,y) € R*: z > 0, y > 0}. Let
D C IR%, be a closed domain (i.e., a bounded set such that clint D = D). Denote by
A(D) the area of D. Let (Z,%) € D be a point such that

5 Jyn (5:5)
——— | min| —=,= | dzdy =1.
A(D) Jp Y

£(@,79) < ﬁ /D £ () dzdy,

Then ([11])

and this inequality is sharp.
If f : R?, — IR, is an increasing radiant function and D C IR}, is a closed domain

(in topology of IR , ) then we have the inequality ([52])

3 1
1@ < 055 /D f(z)ds

for all points T € D satisfying the equality

o () e

where the function ¢ is defined by (1.2) and 1/ = (1/Z1,...,1/Z,).

Now consider further notions related to abstract convexity.
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Definition 1.3 Let f : X — IR. The set

supp (f,H) ={he H: h< f)} (1.4)

of all H-minorants of f is called the support set of the function f with respect to the set of
elementary functions H.

Here h < f means that h(z) < f(z) forall z € X. The definition of H-convex functions
can be reformulated as follows: a function f : X — IR is H-convex if and only if its
support set supp (f, H) is not empty and f(x) = sup{h(z) : h € supp (f, H)} Vz e X.
A general approach of abstract convex analysis to global optimization problems is based
on the calculation of support sets. Namely, we need to have a description of the following
sets: 7 |
Oufly)={he€ H: hesuwp(f,H), hly)=f(y)}. (1.5)

Sufficient condition for the global minimum of the function f over X can be formulated in
terms of the set 8 f(y): if there exists a function h € 8}; f(y) such that h(y) = inf,cx h(z)
then f(y) = inf,cx f(z). If H contains all constants then we have a necessary and suf-
ficient condition: f(y) = inf.cx f(x) if and only if the set 8% f(y) contains the constant
fw).

At the same time, in some numerical methods (see ( [41], Chapter 9) and the references
therein), it is sufficient to know for each y € X at least one elementary function h €
supp (f, H) such that h(y) = f(y). For example, in the so-called ®-bundle method, which
was studied in detail by Pallaschke and Rolewicz in [37], a global minimizer of f over X
is represented as a limit point of a sequence of solutions of auxiliary global minimization
problems. In order to construct these auxiliary problems we need to have for each y € X
at least one function ~ < f with h(y) = f(y).

Support sets can be useful also in the study of some constrained problems. A dual
characterization of the problem of global minimization of an objective function subject to
some inequality constraints can be given in terms of support sets (see, for example, [44]).

Methods of abstract convex analysis are mostly adapted for needs of global optimiza-
tion. Nevertheless, they are applicable for problems of local optimization as well. In gen-
eral, we have the following condition for the global minimum over a subset Z C X: if
there exists a function h € 9% f(y) such that h(y) = inf,cz h(z) then f(y) = inf,cz f(z).

For example, the problem of global minimization of IPH functions over the unit simplex
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was examined in [1]. In particular, if Z is a neighbourhood of y then we get: if there exists

a function h € 9% f(y) such that h attains at y its local minimum then v is also a local

minimizer of f.

Definition 1.4 Let f : X — IR. Assume that the support set supp (f, H) is not empty.
Then the function coy f defined by

cog f(z) =sup{h(z): hesupp(f,H)}, (z € X) (1.6)

is called the H-convex hull of the function f.

It is clear that H-convex hull of a function f coincides with the greatest H-convex function

which minorizes f. So a function f : X — IR is H-convex if and only if f = coy f.

Definition 1.5 A set U C H is called abstract convex with respect to X (or (H, X )-convex)
if there exists a function f : X — IR such that U = supp (f, H).

In other words, a set U C H is called (H, X )-convex if
U={he H: h(z) < fu(z) Vz € X},

where

fu(z) = supu(z) (1.7)

uelU

is the support function of the set U.
If U’ is a (H, X)-convex set then for any nonempty subset U of H the following asser-

tions are equivalent

U cl) <= (fv < fu)

Every H-convex function f gives us its support set U = supp (f, H) (which is (H, X )-
convex) and coincides with the support function fy of this set: f = fy. Conversely, each
(H, X)-convex set U determines its support function fy (which is /-convex) and coincides
with the support set supp (fy, H) of this function: U = supp (fy, H). This one-to-one

correspondence between abstract convex functions and sets is called the Minkowski duality.

Definition 1.6 The intersection of all (H, X )-convex sets containing a set U C H is called
the abstract convex hull or (H, X )-convex hull of the set U. This hull is denoted by com,xU
(or shortly cogU).
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It is easy to see that for any set U C H its (H, X)-convex hull cogU is equal to the support

set of its support function:
cogU = supp (fy, H). (1.8)

Indeed, due to the Minkowski duality

cogU = ﬂ{U’: U'is (H, X)-convex, U C U’}
= ﬂ{supp (f,H): fis H-convex, U C supp (f,H)}
= ﬂ{supp (f,H): fis H-convex, fy < f}
= {h€ H: h< fforall H-convex functions f such that f;; < f }

= {h€H: h< fy}=supp(fy,H).

Thus, abstract convex sets are exactly the support sets of their support functions. Since
optimality conditions can be formulated in terms of support sets then it is very important to
have a description of abstract convex sets. For example, if (hy+hy) € Hforall hy,hy € H
then for any H-convex functions fi, f; the following holds (see [41])

supp (f1 + f2, H) = cog(supp (f1, H) + supp (fo, H)).

Hence, if the set (supp (f1, H) + supp (f2, H)) is (H, X)-convex then we deduce that the
support set of the sum coincides with the sum of support sets. Note also that the maxi-
mum of two abstract convex functions is always abstract convex, and the support set of
the maximum coincides with the abstract convex hull of the union of support sets of given
functions:

supp (max(f1, fa), H) = cog(supp (f1, H) U supp (fo, H)).

Consequently the problem of describing abstract convex hull of the union of abstract convex
sets is of exceptional importance.

As a rule, describing abstract convex functions is much easier than describing abstract
convex sets. In Chapter 5 we derive some conditions, which guarantee a description of both
abstract convex functions and sets. We also give a description of the abstract convex hull of
a finite union of abstract convex sets.

Consider two examples of abstract convex sets.

If H consists of all linear functions h : R™ — R thenasetU C H = R"is (H,IR")-

convex if and only if it is closed (in the topological space IR™) and convex.



Introduction 10

If H consists of all min-type functions defined by (1.1) thenasetU C H = R%, is
(H, IR} ,)-convex if and only if it is closed and normal. The latter property means that U

contains every u' € H such that «' < w for certain u € U.

1.3 Abstract subdifferential and conjugation

In this section we discuss classical versions of conjugation and abstract subdifferential for
real-valued abstract convex functions. Some more general types of conjugations and sub-
differentials based on the notion of duality are examined in [57] for functions with values
in a complete lattice. In Chapter 6 we generalize the notion of duality and investigate cor-
responding conjugation and subdifferential for functions with values in an upper complete
semilattice and a partially ordered set respectively.

Let L be a set of finite functions / : X — IR. Denote by H, the set of all functions
h(z) = l(z) — c defined on X, where | € L and ¢ € IR. Here we are interested in H-
convex functions. Note that the set H, is closed under vertical shifts, that is, (h + ¢) € H,
for all h € Hp and ¢ € IR. This property of the set of elementary functions allows one to
investigate abstract convex functions via the notions of a conjugate function and abstract

subdifferential.
Definition 1.7 Let f : X — IR. The function f; : L — IR defined by
fi() = Su}lg(l(i’?) - f(z), (€l (1.9)
zE

is called the Fenchel-Moreau L-conjugate of f.
The Fenchel-Moreau second L-conjugate f;* : X — IR is defined as follows:

(@) =sup(l(e) - i), (z € X). (1.10)

leL

We see that for any function f : X — IR its second L-conjugate f;* is either H-convex or
identically equal to —oo (if f; = +00). Sinceinf{h(z) : h € Hy} = —oo thenit is natural
to accept the following: if a function f : X — IR has empty support set supp (f, Hy) =
then its H-convex hull coy, f is identical —oo.

The Fenchel-Moreau theorem (see, for example, [57]) states that for an arbitrary func-

tion f : X — IR its second L-conjugate coincides with the H-convex hull: f;* = cog, f.
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In particular, we get the following characterization of H-convexity: a function f : X —
IR ;o is Hp-convex if and only if f=1I.

Another important property of the Fenchel-Moreau conjugation is related to the notion
of support set. For more convenience we will identify every pair (I,c) € L x IR with the
function h(z) = I(z) — c. Then for any function f : X — IR its support set supp (f, Hy)
with respect to H, coincides with the epigraph epi f; = {(I,c) € L x R : f}(l) < c} of
the function f;. Indeed,

supp (f,Hr) = {(lLe)eLxR: l(z)—c< f(z)Vz € X}
= {(l,c) € LxR: sup(l(z) — f(z)) < c} = epi f}.

zeX
Thus, if we have a calculus of conjugate functions then a calculus of support sets is known

as well, and vice versa.
Definition 1.8 Let f : X — IR, and y € X be such that f(y) < +o0. The set

Ofly)={lel: z)—1l(y) < f(z) - fly) Vz € X} (1.11)

is called the abstract subdifferential (or L-subdifferential) of the function f at the point y.

Elements of L-subdifferential are called L-subgradients.

It is easy to see that the subdifferential 9y, f(y) consists of all functions [ € L such that
the supremum in (1.9) is attained at the point y. Thus, the notions of L-conjugate function
and L-subdifferential are related.

It follows from (1.11) that there is a one-to-one correspondence between the subdiffer-
ential dy, f (y) and the set 83, f(y) ={h € Hy: h €supp(f,Hr), h(y) = f(y)}. Every
abstract subgradient | € 9y, f(y) forms the elementary function h(z) = I(z) — l(y) + f(y)
which belongs to the support set supp (f, Hy,) and coincides with f at the point y: h(y) =
f(y). On the other hand, if (z) = I(z) —c (! € L), h(y) = f(y) and b < f then
h(z) = l(x) — l(y) + f(y) and | € O, f(y). Thus, we have

Oy, fly) =f{h e Hy: h(z)=1(z) = l(y) + f(y), L€0f(y)}- (1.12)

In particular, for a finite function f : X — IR, nonemptiness of all L-subdifferentials
&, f(y) implies that f is Hy-convex. This means that the notion of L-subdifferential is
a natural tool for examination of H-convex functions. It should be mentioned that the

reverse statement is not true in general.
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In the previous section we considered conditions for the global minimum of a function
[ interms of the set 9%, f (y). Formula (1.12) shows that, if the set of elementary functions is
closed under vertical shifts, then the notion of abstract subdifferential allows one to simplify
the description of the set 9}, f(y). Indeed, to ensure that a function h € H, belongs to
0%, f(y) we need to check the equality h(y) = f(y) and the inequality b < f. In contrast
to the set 93, f(y), the definition of L-subdifferential contains only the inequality b < f
with the elementary function h € Hj, defined by h(z) = I(z) — I(y) + f(y). Therefore
the description of abstract subdifferential is easier than description of the set 9}, f(y). In
view of (1.12), the conditions for global minimum can be easily reformulated in terms of
subdifferentials.

First, assume that L contains identical zero. Then the abstract subdifferential provides
the following necessary and sufficient condition for the global minimum of a function f :

X — R, over X:

fly) = 1161)f( f(z) ifandonlyif 0€dLf(y). (1.13)

If L does not contain identical zero then we can use the following sufficient condition:
if a function | € 31 f(y) exists such that I(y) = inf,ex {(z) then f(y) = infex f(2).

It is convenient to consider also the set Dy, f(y) along with the L-subdifferential 9y, f (y)
(see [41] p. 364, where this set was denoted by Df(y)):

Dif(y)={h € Hy: hz) =Uz) —l(y), L€ df(y)}- (1.14)

Then the above statement takes the form: if Dy, f(y) contains a nonnegative function then y
is a global minimizer of f over X.

In order to apply these optimality conditions, we need to have a calculus of abstract
subdifferentials. There are two approaches to this problem. The first one means immediate
calculation of subdifferentials for some abstract convex functions. The second approach is
based on finding certain calculus rules, which allow to describe subdifferentials of some
combinations of abstract convex functions via subdifferentials of given functions. For ex-
ample, the maximum of abstract convex functions is always abstract convex with respect
to the same set of elementary functions. So the question “How is the subdifferential of

the maximum of some functions via the subdifferentials of given functions expressed?” is

natural.
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As a rule it is a difficult task to describe the whole subdifferential, and we have only
some abstract subgradients. Then only numerical methods and sufficient conditions for a
minimum are applicable. For example, in Chapter 2 we have a situation, when obtaining
the description of the whole subdifferential seems unlikely.

It seems there is still no general theory of subdifferential calculus for abstract convex
functions. We try to fill this gap in Chapter 4 based on the recent paper [53]. We use there an
approximation function, which is a little bit different from that in [53]. In order to get some
calculus rules it is assumed that the set H, has the so-called strong globalization property.

Nevertheless, there have been separate investigations of abstract subdifferentials for
different classes of abstract convex functions. They allow to derive conditions for global
optimality of some particular problems (see, for example, [21,22,61]).

Moreover, in some cases we can get exact and sufficiently simple formulas for the L-
subdifferentials. Consider one nonconvex example. Let L be the collection of all min-type
functions defined by (1.1). Let p be a proper (that is finite and non-zero) IPH function
defined on IR"} | and y € IR’} . Then ( [41], Theorem 2.4)

6Lp(y)={l: lzz%), p(%)=1},

where p(y)/y = (p(¥) /1, - - -, P(y)/yn) and 1/l = (1/ls,. .., 1/ln).
If a function f is ICAR and strictly increasing aty € IR" . (this means that f(z) < f(y)

for each z < y) then (see [43])

Oufly) ={t/y: t€df,(D}

where f,(a) = f(ay) fora > 0and 8f,(1) = {t > 0: ta—t < fy(a)— f,(1) Ya > 0}.

1.4 Separation properties in axiomatic and abstract con-
vexity

Axiomatic convexity deals with families of sets, which have some properties of usual con-
vex sets. A general theory of convex structures can be found, for example, in [58] and [60].
Here we use the following definition (see [60], p. 3).

A collection G of subsets of a set X is called a convexity on X if

(HD,Xeg
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2)(NAeGforevery ACG

(3) U A € G whenever A C G is a chain with respect to the inclusion.

Members of G are called convex sets and the pair (X, G) is called a convexity space. For
any subset A C X its convex hull convg A is defined by convgA = N{G € G: A C G}.

Along with convexity spaces consider also the so-called closure spaces ( [60], p. 4).
The pair (X, G) is a closure space provided that ), X € G and G is stable with respect to
intersections, that is, [).A € G for every A C G. Members of G are called closed sets and G
is called a protopology (Moore family) on X . Closure spaces go back to Moore [35]. They
have a central place in lattice theory ( [4]).

Abstract convex analysis deals with such closure spaces. Indeed, the intersection of any
family of epigraphs of abstract convex functions is also the epigraph of an abstract convex
function, and the intersection of any family of abstract convex sets is abstract convex as
well.

Note that each convexity space (X,G) is also a closure space. As a rule, in abstract
convex analysis we are interested in closure spaces, which are not convexity spaces. For
example, in classical convex case the convexity space consists of all convex sets. At the
same time, in the framework of abstract convexity, it is convenient to investigate only closed
convex sets.

Separation properties in axiomatic and abstract convexity are based on separation of
complicated sets by sufficiently simple sets. Here we consider a strong version of separa-
bility for disjoint sets. Let A, B,H C X. We say that H separates A from B provided
that A ¢ H and B C X\H. The following two cases are the most interesting: A and B
are convex sets; A is convex and B is one-point set. It is important that the convex set H,
which separates A from B, should be simple enough.

Consider an interesting example of convexity on I x IR, where I C IR is an interval.

Example 1.1 Let F be a family of continuous functions ¢ : I — IR. Assume that F is a
two-parameter family (see [2]). Last means that for any two points (z1,41), (z2,92) € IXR
with z; # z there exists exactly one ¢ € F such that (1) = y1 and p(z2) = yo. Let
P(zy.1)(@2,v2) DE the function determined by the point (z1, 1) and (z2, y2)-

Beckenbach [2] introduced the notion of generalized convex functions in the following way:

a function f : I — IR is said to be F-convex if for any z,, z2 € I, 7, < zy

f(x) < ‘p(zhf(zl))(zz,f(zz))(I)’ Ty < T < T
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Note that this definition does not coincide with the Definition 1.1. Namely, each F-convex
in the sense of Definition 1.1 function f : I — IR is F-convex in the sense of Beckenbach.
The reverse is not true.

Using a similar idea, Krzyszkowski [26] introduced the notion of generalized convex sets.

First, for each a = (z1,41),b = (z2,32) € I x IR define the generalized segment [a, b] C
I x1R:

[2,8] = {(2, P@1,01)(22,02) (7)) : min{zy, 72} < 2z < max{zy, 22}},  if 21 # 2

and
[a,b] = {(z1,y) : min{y1,y2} <y < max{y1,y2}}, if z; =z,

Then a set A C I x IR is said to be F-convex (see [26]) if for any a,b € A we have
[a,b] C A. Ttis easy to check that the collection of all F-convex sets is a convexity on
I x IR.

Such type of generalized convex functions and sets possesses strong separation properties.
Here we present only the result for sets, which was proved in [36]. Let A, B C I x R be
disjoint F-convex sets. Then there exists an F-convex set H which separates A from B

and such that its complement (I x IR)\ H is also F-convex.

Let us consider separation properties in abstract convex analysis. If a function f : Y —
IR is L-convex then for any (y,c) & epi f a function [ € L exists such that epi f C epil
and (y,c) & epil. Ifaset U C Lis (L,Y)-convex and a function [ € L does not belong
to U then a point y € Y exists such that [(y) > sup,cy u(y). Hence U C H and [ € H,
where H is an (L, Y)-convex set defined by H = {h € L : h(y) < c} and c is a number
such that [(y) > ¢ > sup,y u(y). In order to use these separation properties efficiently we
need a description of abstract convex functions and sets. This is the main problem related
to separability in abstract convex analysis.

It appears that, in the framework of the notions of abstract convex functions and sets,
we usually deal with the separation of a set from a point in its complement. However, in
some cases, which refer to abstract convexity, the separation property (in a certain sense)
is also valid for pairs of sets. Separability of two sets can be very useful for formulation
of optimality conditions of special global optimization problems. Namely, this finds ap-

plications in some best approximation problems (see, for example, [31-34,47,48, 56]). In
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Chapter 3 we discuss the weak separability of two star-shaped sets and derive conditions
for the global minimum of the so-called star-shaped distance.

Now consider some general results from axiomatic convexity. We begin with the sepa-
ration theorem of Kubis$ [27] concerning two arbitrary convexities on a set. This result is a

common generalization of results of Ellis [18] and Chepoi [6].

Theorem 1.1 (/27], Theorem 3.1) Let G and 'H be two convexities on a set X. The follow-

ing conditions are equivalent:

(a) For every z,y,z € X and finite sets S,T C X such that z € convg({z} U S) and
y € convy({z} UT) it holds that convg({y} U S) N convy({z} UT) # 0.

(b) If A € G and B € 'H are disjoint then there exist disjoint sets G € G and H € H
suchthat AC G, BC HandGUH = X.

Equalities G N H =  and GU H = X in condition (b) mean that H = X\G. So we
have that G is convex in convexity G and its complement is convex in convexity H. This
allows to hope that H and G are sufficiently simple.

In the classical convex case (see [24]) two disjoint convex sets in a real vector space
can be separated by a halfspace (i.e, a convex set with the convex complement). We can
generalize the notion of a halfspace in the following natural way: a subset H C X of
convexity space (X, G) is called a halfspace provided H € G and (X\H) € G. There are
some separation properties of convexity spaces formulated in terms of such halfspaces. We

consider the following separation axioms due to Jamison [20]:

S3: If A C X is convex and z € X\ A then there is a halfspace H of X with A C H and
¢ H.

Ss: If A, B C X are disjoint convex sets then there is a halfspace H of X with A C H
and B C X\H.

The next theorem gives a characterization of properties .S; and .S via screening of poly-
topes (i.e., convex hulls of finite sets) by convex sets. Recall that two sets A, B C X are
said to be screened by C, D c X if A C C\D, BC D\Cand CU D = X (cf. [59]). It
is easy to see that screening by two convex sets is a weaker property than separation by a
halfspace. Indeed, if a halfspace H separates A from B then A and B are screened by the
convex sets H and X\ H.
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Theorem 1.2 ([60], Theorem 3.8) (Polytope Screening Characterization)

1.) A convexity space satisfies Ss if and only if each polytope and each point in its
complement can be screened by convex sets.

2.) A convexity space satisfies Sy if and only if each pair of disjoint polytopes can be

screened by convex sets.

The situation becomes easier if the convexity is of finite arity. Let N be a positive integer
and (X, G) be a convexity space. Then G is called N-ary (or of arity N) (see [60]) provided

that a set A C X is convex if and only if convg{as,...,ay} C Aforall ay,...,an € A.

Theorem 1.3 (/27], Theorem 4.2) Let (X, G) be a convexity space. If G is N-ary then the

following conditions are equivalent:
(i) Every two disjoint convex sets can be separated by a halfspace.
(i1) Every two disjoint N-polytopes can be separated by a halfspace.
(111) Every two disjoint N-polytopes can be screened by convex sets.

(iv) If x € convg{c,a1,...,an_1} andy € convg{c,b,...,by_1} then
convg{y,as,...,an_1} ﬂcoan{:r, bi,...,bn_1} # 0.

Note that Theorems 1.1 and 1.2 do not imply any description of convex sets. On the
other hand, if such a description is given by definition of considered convexity, then there
is no clear description of halfspaces and sets G € G with (X\G) € H. Moreover, con-
dition (a) in Theorem 1.1 and the polytope screening in Theorem 1.2 are complicated for
verification, because they involve arbitrary finite subsets of X.

Theorem 1.3 gives an easier characterization of the separation property .S4, however this
theorem (as well as Theorem 1.2) does not imply exact description of the collection of all
halfspaces. Therefore we have no sufficient information about the sets, which can separate
two convex sets.

Thus, there are two main problems concerning separability in axiomatic convexity the-
ory, namely the description of convex sets and the description of collections of sufficiently

simple convex sets, which can separate arbitrary convex sets.
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In abstract convex analysis we usually deal with the situation, when the collection of
elementary sets is given. Then we need to get a description of sets, which can be represented
as the intersection of a subfamily of this collection.

It seems there is no solution of these problems in the general case. Hence we need
some restrictions. In Chapter 5, as a sort of such restriction, we choose a special type of
connectedness of a topological space with respect to a convexity on this space. Although
separation properties in axiomatic and abstract convexity have no distinctions in kind, we
can say that Theorems 5.4 and 5.5 relate to abstract convexity while all results of Section
5.2 are in the framework of axiomatic convexity. As an application, we give a description

of abstract convex functions and sets.



Chapter 2

Subdifferentials of convex-along-rays

functions

In this chapter we study lower semicontinuous convex-along-rays (briefly, CAR) functions
defined on an Euclidian space IR™ and mapping into semi-extended real line R, := IR U
{+00}. These functions were introduced and examined in [49], see also [41]. Here we
examine the existence of abstract subgradients of CAR functions with respect to different

sets of elementary functions.

2.1 CAR functions and abstract convexity

First we recall some definitions and results from [41], which are required in the current
chapter.

A function f : R™ — IR, is called convex-along-rays if its restriction f, on the ray
R, = {\z : A > 0} is a convex function for each z € IR™. In other words, f is CAR if the
function f; : [0, +00) — R defined by f;(A) = f(Az) is convex for each z € R™.

A function f : R® — IR, is called convex-along-lines (CAL) if its restriction f on
the line L, = {A\z : A € R} is a convex function for each z € IR". This special case of
CAR functions was investigated in [9].

Positively homogeneous of degree one (briefly, PH) functions are CAR and they are of
special interest in this chapter. Recall that [ : R™ — R is PH if [(Az) = Al(z) for all
z € IR" and A > 0. If p is PH and p(0) < oo then p(0) = 0.

CAR functions can be studied by the methods of abstract convexity. We examine here

19
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abstract subdifferentials of CAR functions.

Let L be a family of PH functions  : IR* — IR and H;, = {h; : | € L, c € IR}, where
hio(z) = l(z) — c. Consider an Hy-convex function f. It is easy to check and well-known
that the subdifferential Oy, f (y) is not empty if and only if there exists h € Hj, such that
h(z) < f(z) forall z € IR™ and h(y) = f(y).

If p is PH then (see [41]), p is H-convex if and only if p is L-convex and

Op(y) ={l e L:1<p,l(y) =p(y)}.

In this chapter we consider the sets L := L, of functions ¢ defined on IR™ by

¢(z) = min [;, z], z € R", 2.1

i=1,...,8

where s is a positive integer and [/, z] stands for the inner product of vectors [ and z. As
a rule we assume that either s = n + 1 or s = n. The function £ defined by (2.1) is
PH. It is known (see [41]), that a lower semicontinuous (briefly, Isc) CAR function f with
0 € domf := {z € R" : f(z) < +oo}is Hg,,-convex. Some Isc CAR functions are
H -convex.

We examine conditions that guarantee the non-emptiness of L, ;-subdifferentials for
CAR functions f with 0 € dom f and L, -subdifferentials for CAR functions that H -
convex.

We start with the existence of £,-subgradients. This question was investigated in [41],
pp. 220-223 for s = n + 1. Unfortunately some of the results presented in [41] are not

correct. We present a revised version of these results in Section 2.3.

2.2 L,-convexity and L;-subdifferentiability of positively
homogeneous functions

Positively homogeneous of degree one functions form the simplest class of CAR functions.

So we shall start with 1sc PH functions.

Theorem 2.1 (see Theorems 5.14 and 5.15 in [41]) A function f : R™ — R is Lny1-
convex if and only if this function is PH and Isc. Let f : R" — R be a lsc and PH
function and zo € dom f, o # 0. Then the subdifferential Or.,.,, f (o) is not empty if and
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only if f is calm of degree one at x,, that is

i ||z — o]

We now consider nonnegative PH functions p with 0 € domp. These functions are L~
convex. In order to study them we need the following well-known definitions (see, for
example, [41], Chapter 5).

Let U C IR™ be a set. The set

kemU ={ueU:u+Az—u)eU forall z€U and € [0,1]} 2.2)

is called the kernel of U. A set U is called star-shaped if kern U # @. A star-shaped set U is
called radiant if 0 € kern U. If U is a star-shaped set and v € kemn U then U — u is radiant.
Let U C IR" be a radiant set. The function

pu(z) =inf{\ > 0:z € \U} (2.3)

is called the Minkowski gauge of a radiant set U. (It is assumed here that the inf ) =
+00, supf® = 0.) The Minkowski gauge of a closed radiant set U is a Isc nonnegative
positively homogeneous function. It can be proved that each Isc nonnegative positively
homogeneous function p : IR™ — [0, +o00] coincides with the Minkowski gauge pyy of the
set U = {& € R" : p(z) < 1}. It follows from the presented geometric interpretation of
nonnegative PH functions that each proper nonnegative Isc PH function is £,-convex (see
Theorem 5.13 in [41]).

We can also use this geometric interpretation for examination of £,,-subdifferentials of

nonnegative PH functions. We need the following definition (see [41], Definition 5.21).

Definition 2.1 Let U C IR™ be a closed set and x € U,z # 0. A collection of linearly
independent vectors £ = (I1,...,1,) is called a support collection to U at z if [I;,z] =

1(z=1,...,m)and

, 1{1in [li,u]l <1 forall ueUu#ux. (2.4)

Equalities [l;,z] = ... = [l,, z] are used here only for normalization. It is important that

[L;,z] > O for all .
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Proposition 2.1 Let p be a nonnegative PH function and U = {z :p(z) < 1}. Let p(xo) =

1 and let there exist a support collection £ = (ly, ... 1) to U at zy. Then ! € Or.p(xo).

Proof: The equality #(z¢) = 1 = p(x,) holds. So we need to show that {(z) < p(z) for all
z. Clearly we can consider only z € domp. Let +00 > p(z) > 0. Then u = z/p(z) e U
and p(u) = 1, hence £(u) = min;_; nlli,u] < 1 = p(u). It follows from this that

.....

p(x) > £(z). If p(z) = 0 then Az € U for all A > 0, hence ¢(A\zx) < 1forall A > 0. This
means that £(z) < 0 = p(z). 0

A function p is called locally Lipschitz at z if the restriction of p to a neighborhood of
p is Lipschitz.

Theorem 2.2 Let p be a nonnegative PH function. Assume that p is locally Lipschitz at a
point o with p(zo) = 1 andlet U = {z : p(z) < 1}. Then there exists a support collection

fo the set U at the point x,.
The proof follows from Theorem 5.7 and Corollary 5.6 in [41].

Theorem 2.3 Let p be a nonnegative PH function. Assume that p is locally Lipschitz at
a point xg such that p(zo) > 0. Then O, p(xo) # 0. If p(xo) = 0 then 0 € O, p(ao).
Consequently O, p(xg) # 0.

Proof: Let p(z) > 0. It is easy to check that ., p(z) = 8, p(A\x) for A > 0, so we can
assume without loss of generality that p(zo) = 1. Then the result follows from Proposition

2.1 and Theorem 2.2. If p(zo) = O then the inclusion 0 € 8, p(zo) is trivial. 0

2.3 Lower affine approximations and L -subdifferentials
of convex-along-rays functions

Our goal is to extend the results that are known for positively homogeneous functions, to the
case of Isc CAR functions with 0 € dom f. For this purpose we need the notion of lower
affine approximation of a Isc CAR function corresponding to a number a < f(0). This
notion was introduced in [49], (see also [41]) for arbitrary Isc CAR functions, in particular
for functions with f(0) = +oco, and it was assumed there that a < f(0). However, we can

accept a = f(0) if f(0) < +oco. Many results from [41,49] related to the case a < f(0)
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are also valid if a = f(0). First we need to consider the quantity

b*(z) = inf fo(@) —a (2.5)

a>0 (6%
Note that b* is a PH function. Let a = f(0). Since f(0) = f,(0) and f, is a convex function
then

po(a) = ing 2O = LO) _ ) L =LO) _pig o)

a>0 « a—+0 (8%

Definition 2.2 Let f be a Isc CAR function and 0 € dom f. Leta < f(0). Then the

function g*(z) = a+ b*(z) is called a lower affine approximation of f, corresponding to a.

If a = f(0) then g*(z) = f(0) + f'(0, ). Since b* is PH it follows that g* is affine at each
ray starting from zero. It is easy to see that g%(z) < f(z) foralla < f(0) (see [41], p. 213
where the case a < f(0) was considered). Each Isc CAR function is the upper envelope of
its lower affine approximations (see [41], Lemma 5.5). It can be shown that for a Isc CAR
function f with f(0) < +oo the functions b® are Isc for all a < f(0) (this is the contents
of the proof of Theorem 5.16 in [41]). It follows from this result and Theorem 2.1 that the

following result holds.
Theorem 2.4 Each Isc CAR function f : R" — R with f(0) < 4+o0 is H.,,,,-convex.

Assume now that f is a Isc CAR function such that f(0) = min,egr~ f(z). Then for each
a < f(0) we have

b%(z) = inf fleaw)—a 10— _y (2.6)

a>0 « a>0 (0%

Since b° is a nonnegative Isc PH function we can apply ( [41], Theorem 5.13) which shows

that b® is £,,-convex. This leads to the following statement.

Theorem 2.5 Each Isc CAR function f : R® — R with f(0) = mingern f(z) is H., -

convex.

We study relations between ., f (o) and O, b*(xo) where b® is defined by (2.5). Here

s is an arbitrary integer, however the results are of interest only when the s-subdifferentials

of b® are nonempty.

Proposition 2.2 Let f be a Isc CAR function and o € intdom f. Letv € 0f,,(1) and
a = f(zo) —v. Thena < f(0) and 3, b%(z0) C or, f(z9).
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Proof: This proposition is of interest only if the set d,6%(zo) is nonempty. We assume

that this is the case. First we show that the number a is well-defined, that is 91, (1) # 0.

Indeed this follows from zy € intdom f. Letv € 9f,,(1) and a = f(zo) — v = fr(1) —

v. For all o > 0 we have f,,(a) — fz,(1) > va — vl. In particular if & = 0 we get

fzo(0) — fz,(1) > —wv that can be rewritten as a < f(0). (Si)nce v € 9fy(1) we have
foola) —a

fzo(@) —va > fz,(1) —v = a for all @ > 0, therefore ———— > v = f, (1) —a. It
a
follows from this that

b(20) = foo(1) —a=1v. 2.7)

Since a < f(0) we conclude that g*(z) = a + b*(z) is a lower affine approximation of f.

Let £ € O,,b%(x0). Since g* is a minorant of f and b*(zo) = f(x¢) — a we have
f(z) = f(z0) = g%(2) — f(m0) = b*(2) — (f(z0) — a) = b*(z) — b*(0) = £(x) — £(z0)-
Thus the result follows. m]

Proposition 2.3 Let f be a Isc CAR function and xy € dom f. Assume that the Oc, f(xo) is
not empty. Then for each | € Oy, f (xo) there exists a < f(0) such that | € 0,,b%(xo).

Proof: Let£ € Or, f(x0) and a = f(zo) — £(zo). Then for each z € IR™ and o > 0 we have
ol(z) = blaz) < U(xzo) + fo(a) — f(z0) = fola) —a. (2.8)

Setting o = 0 we get from (2.8) that a < f(0). It follows from (2.8) that

a _ ffc(a) —a
() = int (D205
and b%(zo) = £(xo). This means that £ € 9,,b%(zo). O

It follows from Propositions 2.2 and 2.3 that calculation of the £,-subdifferential for
CAR functions can be reduced to the calculation of the £,-subdifferential for PH functions.
We also can study the non-emptiness of £,-subdifferential for CAR functions using results
known for PH functions.

We need the following definition (see [41,49], Definition 5.23):

Definition 2.3 A Isc CAR function f is called totally Isc if for all z with ||z|| = 1 we have

im 29 o g 7)) 2.9)

a—=00 « T’ —x, x—+00 o
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It is clear that always

lim f(ax)z lim inf f(ax’)

a——4-00 [0 /' >z, a—+00 (61
so the inequality in (2.9) can be replaced by the equality. The following assertion has been

proved in [41] (Lemma 5.8) for a < f(0). It is easy to check that the proof holds for
a = f(0) as well.

Lemma 2.1 Let f be a totally Isc CAR function. Then the lower affine approximation g° is
Isc for each a < f(0).

We also need the following definition:

Definition 2.4 (see [41], p. 220) A function f : R™ — IR, is called locally Lipschitz on
the ray R;, = {axo : a > 0} if there exists a number § > 0 such that for each r > 0 there

exists a number L., satisfying

|f(az) — flazo)| < Lrojz — zol, (2.10)
whenever ||z — zo|| < dand 0 < o < .

Lemma 2.2 Let f be a totally Isc CAR function with 0 € dom f. Let xo € domf, zy # 0.
Suppose that f is locally Lipschitz on the ray R, and

im 19 _ o 2.11)

z—x0, x—400 (s

Leta = f(zy) —v wherev € 0f,,(1). Then the function b® is locally Lipschitz at x,.

Proof: Tt was shown in the proof of Proposition 2.2 (see (2.7)) that b*(z) = f(zo) — a. Let
v > b%(xp). In view of (2.10) we conclude that f is continuous at zo hence v > f(z) — a
for z close to xy. Therefore b%(z) < f(z) — a < - for such z. It follows from (2.11) that

there exist numbers § > 0 and r > 0 such that

flaz) —a

> 7, if ||z — 1zl <6, a>r
%

Since b%(z) < +y for z close to zy we conclude that
flaz)—a v >bz), if ||z —xzo| <6, a >
a

In view of the definition of b* we have for = with ||z — || < ¢:

b(e) = e LD =9 (2.12)

O<a<r [0
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Assume that § so small that (2.10) is valid. Then there exists a number L, such that

floz)—a  flazs) —a lf(aw) ~ J(agy)

(8 «

< Lr”x - -TOH

whenever ||z — z9|| < § and 0 < o < 7. Due to (2.12) for each > 0 there is a number

’ —_—
o' < r such that M < v*(z) + 7. Then
o
o od'rg)—a .,
b (ze) < LED 28 <o) 4 Lo — o).

Since 7 > 0 is arbitrary we get b*(zo) < b*(z) + L, ||z — zo]|- The similar argument shows
that b*(z) < b*(zo) + L,||z — zo||. Hence

b°() — b°(eo)| < Lolle — zoll,  if [z — ol <. 2.13)

O

We now use Proposition 2.2 and Lemma 2.2 for the examination of the non-emptiness

of L,-subdifferential for totally Isc CAR functions.

Proposition 2.4 Let conditions of Lemma 2.2 hold. Then O,,,, f(z0) # 0. If f(0) =
mian]Rn f(.’l?) then 8Enf(l'0) 76 0

Proof: Leta = f(xy) — v where v € 9f,,(1). It follows from Lemma 2.1 that lower affine
approximation g° is Isc. Since b*(z) = ¢g*(z) — a we conclude that b* is also Isc. Theorem

2.1 and Lemma 2.2 imply that 9., b*(xo) # 0. Applying Proposition 2.2 we conclude that

8En+1f(l‘0) 7& 0
Assume now that f(0) < f(z) for all z € IR". Then (see (2.6)) b* is a nonnegative PH

function. It follows from Lemma 2.2 that b® is locally Lipschitz at zo. In view of Theorem
2.3 we conclude that 9., b%(zo) # 0. Proposition 2.2 demonstrates that 9, f(zo) # 0. O

We now show that condition (2.11) can be weakened.

Theorem 2.6 Let f be a totally Isc CAR function and o, € dom f. Suppose that f is
locally Lipschitz on the ray Ra,, where xo # 0. If there exist a neighborhood U of z, and

numbers \ > 1, € > 0 such that
f(z) = f'(Az,x) + € < f(zo) — f'(z0,20) Vz €U, (2.14)

then the subdifferential O, f(xo) is nonempty.
If, in addition, f(0) = minger~ f(z) then O, f (zo) is nonempty.
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Proof: We construct an auxiliary functions for which conditions of Proposition 2.4 hold
and then we use this proposition. For the sake of definiteness we consider only £,4:-
subdifferentials. The proof for £,,-subdifferentials is similar.

Let U be an open neighborhood of the point z such that (2.14) holds. Let k be a large
enough number. Consider the function f, : R® — R, , defined by:

f@ +|zl|2—k x€Conel, |z|? >k
fulz) =

f(z) otherwise.

It is easy to check that f, is a totally Isc function therefore conditions of Proposition 2.4
hold for f,. In view of this Proposition, 9., ., f.(%o) is not empty. Let £, € O, f+(20o).
Then

£u(z) = £u(z0) < fu(2) = fulzo)  Vz e R,

Let
ha(@) = f(z) = FO2) + (A = 1)f (A, ).
Since f is a CAR function then
02 = fi LOTOD=109) o FOTOD =10 31105000
hence
ha(z) < (F(z) = Af(Az) + (A = 1) F (A + 1)z)). (2.15)

Since f is locally Lipschitz on the ray R, and x, # O then there exists a neighborhood U
of o such that sup, ., (f(z) — Af(Az) + (A = 1) f((A + 1)z)) < +oo. It follows from this
and (2.15) that

sup hy(z) < +o0.
zelU

Let

1
K:max{)\, —suph,\(a:)+1}sup||x||, (2.16)
€ zeU zel

where ) and ¢ as in (2.14). Assume that k > K2 and consider a function £ € 0,,, f.(%o)-
We show that £ € 8p,,, (o), that is £(z) — £(zo) < f(z) — f(zo) forall z € IR". We
need to prove this inequality only for z € Cone U such that |z||* > k. Let 2 = ay, where

y € U, a > 0. Then
el K K

= > 2 ;
Iyl = Nyl ~— sup,ev l2ll
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50 due to (2.16) the following inequalities hold:
a> A ela—1)>hy(z) VzeUl. (2.17)

Sincey € U then [y||* < N (sup,eq [|2I1)* < K < kand fu(y) — fu(z0) = f(y) — f(o),

therefore
(x) — £(mo) + f(z0) = £lay) — £(zo) + f(zo)
= a((y) — £(z0)) + (o — 1)(z0) + f(xo)
< a(f(y) — f(@0)) + (a — 1)é(zo) + f(zo).

Let t > 0 be a number such that (1 + ¢)z, € U, then

th(zo) = £((1 + t)z0)) — L) < f((1 + t)z0) — f (o).

Hence

E(IE()) S tE%}i_ f(xO + th;)) B f(-’lfo) — f/(xO; xO)-

We have
b(z) — £(zo) + f(zo) < a(f(y) — f(20)) + (o — 1) f (2o, %0) + f (o)
= af(y) — (a—1)(f(z0) — f(zo, 20)).

Inequality (2.14) implies

£(z) — £(zo) + f(z0) < af(y) —(a—=1)(fly) — f'(\y,y) +¢)
f@) + (=1 f' Ay, y) —e(a—1).

Using (2.17) we get

Ue) - bao) + flzo) < f@)+(@— D Ou)— ) - F09) + (A= D F Ow,))
= f)+ (=N f(y,y).

We need to check that f(Ay) + (o — N\ f'(Ay,y) < flay) = f(z). Since « > X and f is
CAR function then

FOy.y) = inf J(A+y) = [Oy) _ flay) = FO)

=
t>0 t a— A

fO) + (a=Nf'(My,y) < flay).

Thus, we have a function £ which belongs to 9, , f(zo). O
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Corollary 2.1 Let f be a totally Isc CAR function and let xy € dom f. Suppose that f is

locally Lipschitz on the ray R, xo # 0. If there exist a neighborhood U of xo and numbers
A > 1, e > 0such that

'Oz, z) > f(zo,20) + € Vz e U, (2.18)
then the subdifferential O, f (o) is not empty.

Proof: Since f is locally Lipschitz on the ray R, then there exists a neighborhood U (o)
of zy such that f(z) — f(zo) < £/2, hence

f(z) — f'Ox,x) + -;1 < f(zo) — f'(z0, zo) Ve U(zy)NU,
where U is from (2.18). Thus we conclude that condition (2.14) holds. a

We now show that the class of functions for which (2.14) holds is broad enough. Let
7o # 0 and let F, be the class of totaly Isc CAR functions with the properties:
1) f islocally Lipschitz on the ray R, and
2) for each X > 1 there exists a neighborhood of z such that the function z — f'(\z, z)

is Isc in this neighborhood.

Let f € F,,. Then the function f,, is convex, hence its right derivative f; (o) is an
increasing function. There are two possibilities:
1) f,(X) is constant for A > 1, hence f,, is affine on [1, +00) (this means that f(A\zq) =
3’80(1))\ + f(zo) — ;o(l) for A > 1).
2) there exists A > 1 such that f; (\) > f;, (1), in other words

f'(Axo, o) > f'(0, T0)- (2.19)

Assume that (2.19) holds. Since f € F, then there exists a neighborhood U of x¢ and
¢ > 0 such that (2.18) holds.

2.4 Geometric interpretations

We now present geometric interpretations of the L£,-subdifferential for nonnegative PH
functions and L, 1-subdifferential for nonpositive PH functions. Using these interpreta-

tions we can easily calculate £;-subgradients (members of L,-subdifferentials) in some
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cases. We also show that £,-subdifferentials 9, f(x) are very large sets whenever they are
nonempty.

Some special classes of L,-subdifferentials for nonnegative PH functions have been
described in Section 2.2 in terms of support collections. First we present a geometric inter-
pretation of a support collection Z.

For each collection £ = {l;,...,1,} of n linearly independent vectors consider the cone
T = {y : [li,y] > 0,i =1,... ,n}. Then ¢ is the support collection if and only if
UN(z+T% ={z}and[l;,z] =1forall; =1,... n.

It can be proved (see, for example, Proposition 5.32 in [41]) that for each convex cone Q
with int Q) # § and for each z € int(Q there exists a collection ¢ of 1 linearly independent
vectors £ = (I3,...,1,) suchthatintQ > 7% and [I},z] = 1,7 =1, ..., n. Putting Q = T*
we obtain the following result from here: for each support collection £ there exists a support
collection ¢ such that 7% C intT*. Consider the set L(z, U) of all support collections to a
set U at the point z with the order relation >. We say that £ > ¢/ if T¢ > T?.

Letp : R* — IR be a nonnegative Isc PH function and U = {z € R" : p(z) < 1}.
Then p = uy. Let p(zy) = 1 and there exists a support collection ¢ = (Iy,...,1,) to
U at zy. It follows from Proposition 2.1 that £ € 9. p(xp). If £ < £ then ¢ is also a
support collection, hence ¢ € O, p(xo). Thus the subdifferential &, p(x,) contains a very
broad set of all collections £ < £. Let p(zg) := A > 0 and zf, = zo/A. Then p(z}) = 1
and 9, p(xo) = \Oc, p(x}), so we can use the described construction for the examination
of 9, p(xo). This construction can be used for the examination only of 8., -subgradients
¢=(ly,...,1,) with the additional properties [l1,z] = [l2,z] = ... = [l,, 2] > 0.

The results obtained can be extended for the description of £,,-subgradients for some not
necessarily nonnegative PH functions, namely functions p for which there exists a vector
[ such that p(z) > [l,z]. Indeed in such a case the function p'(z) = p(z) — [, z] is
nonnegative. It is clear that £ = (I, ...,l,) is a J,, -subgradient of p if and only if ({; —
l,...,l,—1)isad, -subgradient of p'.

Now we give a geometric interpretation of £, ;-subdifferentials for nonpositive PH
functions by using their support sets with respect to L, 1.

Let g be a nonpositive PH function and £ = (ly, ..., l,11). We have: £ € supp (¢, Ln41)
if and only if min;—; _,11[l, z] < ¢(z) forall z € IR”. Then £ € 0, ,9(xo) if and only
if £ € Supp (g, Loy1) and mini_y,_ni1lli, 3] = g(zo). Let p(z) = —g(~z). Then pis a
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nonnegative PH function. Clearly, £ € supp (g, £,,,1) if and only if

‘ ma;cﬂ[li, z] > p(z), T € R" (2.20)

.....

aeey

We establish the following result:

Proposition 2.5 Let q be a nonpositive Isc PH function, p(z) = —q(—x) and
U={z:p(z) <1} = {z:g(-2) > —1}.

ThenintU # O and £ = (y,...,l,11) € supp (q, Lny1) if and only if
(0 € cofly, ... lnw1};
(ii) the set Sy = {x € R" : [l;,2] <1, i=1,...,n+ 1} is contained in U.
Let p(zo) = 1, that is q(—x9) = —1 and £ € supp (q, L11). Then £ € 8, ,,q(—=0) if
and only if
(iii) zg € S,.

Proof: Let £ = (ly,...,l,41) be a collection of vectors. Note that 0 € int.S, where S; is
defined in (ii). We show that (i) is equivalent to

‘ max+1[li,a:] >0, z € R" (2.21)

Indeed let py(z) = max;—1,_n+1[li,z]. Then p, is a sublinear function and 9p,(0) =
co{l1,...,ln41}. It is well known that a sublinear function is nonnegative if and only if
zero belongs to its subdifferential at zero. This leads to the equivalency of (i) and (2.21).
The set S; is a radiant and S, = N;S; where S; = {z : [l;,z] < 1}. It is easy to check
that ps.(z) = max(0, [l;, z]). Since the Minkowski gauge of the intersection is equal to the

maximum of Minkowski gauges, we get using (2.21):
ps,(z) = max max([l;, z],0) = max (miax[li, z], 0) = miax[li, z]. (2.22)
The inclusion S, C U is equivalent to
miax[li,a:] >p(z), ze€lR" (2.23)
Since the support set supp (g, £,+1) of a Isc PH function g is not empty and

m1n+1[li,a:] <q(z) forall z <

i=1,... i=1,...,
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we conclude that there exists ¢ such that S, C U. This implies int U # (.

Assume that £ € supp (¢, Ln+1). Then (2.23) is valid. Since p is nonnegative we get
from (2.23) that (2.21), which is equivalent to (i), is valid. It was also mentioned that (2.23)
implies (ii). Assume now that both (i) and (ii) holds. In view of (i) we get (2.22) that
together with (2.23) implies £ € supp (g, Ln11)-

Let both (i) and (ii) hold and z, be an element such that g(—zy) = —1 (in other words,
p(zo) = 1). Then max[l;, zo] > p(x¢) = 1. The inclusion z, € S, is equivalent to
s, (zo) = max[l;, zo] < 1, so max;[l;,zg] = 1. This is equivalent to min;[l;, ~zo] =
—1 = g(—=¢). Thus £ € O, ,q(—xo) if and only if z¢ € S,. O

Remark 2.1 1) Let g(—x) < 0 that is p(zy) > 0. Using element zo/p(x,) we can present
a geometric interpretation of d. ., g(—x) in this case.

2) Let ¢ be a PH function such that g(z) < [l, z] for a vector [ and all z € IR". Then the
function ¢'(z) = ¢(z) — [, z] is nonpositive and supp (¢, L,.+1) consists of all collections
0 =y —1,... 0hy; — 1) where £ = (I3,...,1,) € supp(q,Lnys1), SO We can give a
geometric interpretation of £, ;-support sets and £,,,;-subdifferentials in this case.

3) Let ¢ : R®™ — IR be a superlinear function. Then there exists | such that [l,z] >
g(x) for all z, so the results obtained can be used for a geometric interpretation of L, 1-

subdifferentials of q.



Chapter 3

Star-shaped separability with

applications

We study the weak separability of star-shaped sets by finite collections of linear functions.
One of the main goals of this chapter is to indicate some areas of research, where the
star-shaped separability can be used. In particular, we examine a “best approximation -
like” problem for star-shaped sets: we introduce a star-shaped distance and consider the
minimization of this distance over a star-shaped set. This is a non-convex optimization

problem.

3.1 Support collections and weak separability

Separability of two convex sets is one of the fundamental facts of convex analysis that can
be considered as a geometrical form of Hanh-Banach theorem. Some attempts to extend
the notion of separability to star-shaped sets were undertaken in [56] and [41]. (Recall that
a set is star-shaped if it can be represented as the union of a family of convex sets (U; )ier,
such that (. U; # 0.) The support collection of linear functions at a regular boundary
point z of a star-shaped set U C IR™ was defined there and the existence of this collection
was proved. A separability of two star-shaped sets by means of m linearly independent
linear functions (the so-called weak separability) was also defined and studied. Here we
introduce also the notion of a conical support collection and discuss some propeniés of
conical collections and weak separability. We also examine some applications of these

notions (Sections 3.2 - 3.4).

33
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One of the most challenging questions that arise in modern optimization is the develop-
ment of a theory of global minimization for some broad classes of non-convex optimization
problems. The theory of local optimization is based on calculus and its sophisticated gen-
eralizations. Different tools should be used in global optimization. Since separability by a
liner function has found applications in convex programming, it is natural to apply separa-
bility by a collection of linear functions in star-shaped optimization.

From a certain point of view, classical best approximation problems are the simplest
convex nonlinear problems. Similarly, star-shaped best approximation problems are the
simplest star-shaped optimization problems, so we start with best approximation. We show
that characterization of best approximation can be done in terms of weak separability of
star-shaped sets. A challenging problem is to describe separation collections of linear func-
tions at least in simple cases. This is the topic of the further research.

So,letU C IR" be asetand x € U. Recall the Bouligand tangent cone I'(z, U) consists
of all vectors z such that for each oy > 0 and € > 0 there exist v and o > 0 such that
lv—=z2|| <eg,a<apandz+av e U.

Let U, be a totality of all radiant sets U C IR™ that are nontrivial in the sense that
U # {0}. (Definitions of radiant and star-shaped sets can be found in Section 2.2.) For
U € U, consider the set

AU)={z €U :puy(z)=1 and z ¢ I(z,U)}, (3.1)

where the Minkowski gauge py is defined by (2.3). It is easy to see that uy(z) = 1 if and
only if z € bdU and Az ¢ U forall A > 1. (Here and below bd U stands for the boundary
of a set U.) Thus, the inclusion A(u) C bdU holds. A point z € U is called a regular
boundary point of U if z € A(U).

Remark 3.1 It is known ( [41]) that 0 € intkern U if and only if uy is Lipschitz (for
the definition of kernel see (2.2)). In such a case (see [41], Propositions 5.15 and 5.17)
bdU = {z € R™: py(x) = 1} and (see [41], Corollary 5.6) « ¢ I'(z,U) forallz € bd U.
Hence A(U) = bd (U).

The notion of a support collection was defined in Chapter 2 (see Definition 2.1). The

following result holds.

Theorem 3.1 (see [41], Theorem 5.7). Let U € U,, be a closed set and let x € A(U). Then

there exists a support collection £ = (13, .. .,1,) to the set U at the point .
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Sometimes it is convenient to consider a weaker object than a support collection. First

we recall the following definition.

Definition 3.1 Vectors Iy, ..., 1, € IR are said to be conically independent if conditions
arly + -+ apl, =0, a; 20 forall i=1,...,m

imply that oy =--- = @, = 0.

Conical independence of the collection ¢ = (ly,...,1L,) means that —I; does not belong to

the cone spanned by (I )x.; for all 4.

Definition 3.2 Let U C IR" be a closed set and z € U, z # 0. A collection of vectors

¢=(l1,...,ln) is called a conical support collection to U at = if l,z]=1(=1,...,m)

and
,_I{Iin [li,u] <1 forall weUu#z. (3.2)
A conical support collection £ = (I, .. ., I ) at = consists of conically independent vectors.

Indeed, let 3", o;l; = O where o; > 0 foralli = 1,...,m. Then Yool z] =
Y1 =0henceq; =0, i=1,...,m.

It is clear that each support collection is a conical support collection. It follows from
Definition 2.1, that a support collection cannot contain more than n vectors, on the other
hand a conical collection can contain an arbitrary finite number of vectors.

Let £ = (ly,...,lm) be a conical support collection and 7% = {y : [l;,y] > 0, i =
1,...,m} be a cone generated by this collection. Then int 7" is nonempty and contains the
cone {y : [l;,y] > 04 = 1,...,m}. It is known (see, for example, Proposition 5.32 and
Remark 5.12 in [41]) that for each convex cone @) with int ) # ) there exists a collection
¢ = (l,...,1) of n linearly independent vectors such that [I},z] = 1 foralli = 1,...,n
and T% C intQ. It follows from this that existence of a conical support collection to U at z
implies existence of a support collection to U at . However, the number of vectors in these

collections can be different.

We now discuss some properties of conical support collections.

Proposition 3.1 Let U be a closed radiant set, and xy € bdU. Let ¢ = (l3,...,ly) be a

conical support collection at xq and

U={z€U:[l;z]<1}=UNH,;, where H;={xeR":[l;,z] <1}. (3.3)
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ThenU;,  ,Ui=U and
1) for each i = 1,... m the set U, is a nonempty radiant set and kern U; O kern U N H;;
The Minkowski gauge py, of U; has the form

puy(z) = max(uy (x), [l;, z]); 34

2) For each z € U there exists i such that R, N\U C U; (here R, = {\z : X\ > 0});
3) Let

v= U,:Um( N H) (3.5)
ThenV € U,, and

pv (2) = max max(uy (z), (1, 7)) (3.6)

Proof: 1) Lety € kemU and [l;,y] < 1. Letu € Uj, thatis, u € U and [l;,u] < 1.
For each A € [0,1] we have Ay + (1 — A)u € U and [l;, \y + (1 — A\)u] < 1. This
means that y € kern U;. We showed that kern U; D kern U N H;. It follows from this that
0 € kern U;, hence U; is a nonempty radiant set. It is well-known (see, for example [41]) that
the Minkowski gauge of the intersection of a finite number of sets is equal to the maximum
of the Minkowski gauges of these sets. On the other hand, p g, (z) = max(0, [l;, z]), where
i, s the Minkowski gauge of the half-space H;. This implies (3.4) and also (3.6).
2)Letz € U and A, = sup{A > 0: Az € U}. If \, < 400 then A,z € U. Let ¢ be the
index such that A,z € U;. Then R, N[0, \;]Jz = R,NU C U;. Assume now that A, = +o0.
Then R,NU = R,. Foreachi = 1,...,mconsider the set A; = {\ > 0: Az € U;}. There
exists at least one 4 such that A; is unbounded. It easy to check that R, = {A\z : A € A;},
hence R, C U.

3) V is radiant as the intersection of radiant sets. Since [l;, zo] = 1 for all , it follows that
zo € V, therefore V # {0}. Hence V € U,,. O

We need the following definition (see [56] and also ( [41], Definition 5.17).

wery

independent vectors. The sets U, V' are said to be weakly separated by vectors (l;)iz1,..m if
for each pair u € U,v € V there exists 1 € I such that [I;,u] < [l;,v]. We say that U, V' are
conically weakly separated if there exists a collection ¢ of conically independent vectors

with the indicated property.
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Proposition 3.2 Let U and V be conically weakly separated by vectors (I;)™ | andintU
0. ThenintU NV = {.

Proof: First we show that U — V' # IR". Consider the superlinear function ¢(z) =

ueUweV.Letdg(0) = {l e R": [I,z] > q(z) forall z € IR™} be the superdifferential
of g at zero. Then 9g(0) coincides with convex hull S = =Yk al:a>00G=
1,...,m), 3L @i = 1} of vectors (I;)™,. Since these vectors are conically independent
we conclude that 0 ¢ .S. Then there exists z € IR” such that 0 < infjeg[l, 2] = g(x). This
means thatz ¢ U — V.,

Assume that there exists z € (intU) N'V. Let B.(z) C U be a neighborhood of z.

Then B.(z) ~ z C U — V is a neighborhood of zero. Since g is positive homogeneous and

q(z) < 0forx € U — V it follows that g(z) < 0 for all z € IR™, which is a contradiction.
O

Remark 3.2 Let (y,...,!l,, be a collection of vectors in IR™ such that 0 € co(ly,...,1,).

Then ¢(z) = min;—;,_m[l;,z] < 0forall z € IR"™. This implies the following assertion: let

U,V C IR™ be two arbitrary sets. Then for eachu € U,v € V there exists i € {1,...,m}
such that [I;,u] < [l;,v]. A collection £ = (I;)7, does not depend on sets U, V. Note that
there exist n + 1 vectors (I;)24 such that 0 € co(ly, . . ., lny1)-

For weak separability we consider collections (I;)7-; of no more than n vectors and
these vectors are linearly independent. It can be shown (see Proposition 3.3 below) that this
collection can be chosen as a support collection to a certain set Z at a certain point z. This
means that this collection enjoys an additional property: [l;,z] > 0,7 =1,...,m and also
that strict inequalities can be used instead of nonstrict ones.

A conical collection (I;)7, can contain more then n vectors. However, for such a col-

lection we have 0 ¢ co(ly,...,In).

Under some additional assumptions it can be proved that if (intU) NV = @ then U and V

can be weakly separated (see [41,56]).

Theorem 3.2 (see Theorem 5.8 in [41]). Let U and V be star-shaped sets such that
intkernU # @ and (intU) NV = 0. Then U and V are weakly separated.

Assume that U NV # (). The proof of this theorem is based on the following construction,

which is a modification of the construction from [56]. Let u € intkernU, v € kemn V.
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Consider the point z = v —u and the set Z = (U —u) — (V —v) = U — V + 2. Then
Z is a radiant set and 0 € intkern Z. It can be shown that either z ¢ ¢l Z or z € bdcl Z.
Since U NV # it follows that 0 € U — V, hence z € Z. This implies that z is a boundary
point of c1 Z. Since z € intkem Z it follows that 2 € A(Z). Then there exists a support
collection £ = (l,...,l,) to cl Z at the point 2. It is easy to check that £ weakly separates

U and V. It follows from the aforesaid that the following statement holds.

Proposition 3.3 Let U and V be star-shaped sets such that intkem U # 0, the set U NV
is nonempty and the set (intU) NV is empty. Let Z € kemV — intkemU and Z =
U — V + z. Then there exists a support collection £ = (l1,...,l), (m < n)to Z at Z and
this collection weakly separates the sets U and V. In other words, the following holds:
Dh,zl=...=[lm, 2] =1,

2) for each u € U,v € V with u # v there exists i such that [l;,u] < [l;, ).

We only comment the assertion 2). If u € U, v € V and u # v, then u — v + Z # Z, hence

there exists 4 such that [l;,u —v+ 2] <1=[l;, Z].

3.2 Star-shaped distance and its minimization

The following well-known corollary of Hahn-Banach theorem is a classical result of the
approximation theory. Let U be a convex subset of a normed space X and z ¢ U and let
7 € U be the best approximation of z by elements of U, that is, 7 := min{|lu — z| : u €
U} = ||& — x||. Then there exists a linear function [ such that {(u) < I(1) < [(v) for all
uweUandv € B(z,r) = {y : ||z — y|| <r}. We can present this result in the following
form. An element % € U is the best approximation of z if and only if there exists a linear

function [ such that
0 = (=1, )(a@,u) = min{(~1,{)(u,v) : (u,v) € U x B(z,r)}. (3.7)

Here, by definition, (—{,1)(u,v) = —l(x) + 1(v).
If U is strictly convex then in addition to (3.7) the following holds:

((u,v) € U x B(z,r), (u,v) # (4,18)) = (=1, D) (u,v) > 0. (3.8)

We now give a version of (3.7)- (3.8) for star-shaped sets in IR”. We assume that IR™ is

equipped with the topology of pointwise convergence. Let | - || be a norm in IR™.



Star-shaped separability with applications 39

Let U C IR™ be a star-shaped set and z ¢ U, let» = min{|ju — z|| : u € U}. Then the
intersection U N {v : ||z — v|| < r} is empty, so the sets U and {v : ||z — v|| < r} can be
weakly separated. We do not need to have exactly a norm in order to prove this result, so we
consider a more general situation. First consider a function p : R" xIR* — IR = [0, +00)
such that

plz,y+ alz —y)) < p(z,y), z,y € R",a €0,1]. (3.9)
It is easy to check that the function p enjoys this property if and only if the “balls” B(z,r) =

{y : p(z,y) < r} are star-shaped with z € kern B(z,r) for all » > 0. We need to have
star-shaped balls B(z,r) such that

(1) z € intkern B(z,r) for all r > 0.
(2) the inequality p(z,y) < r holds for interior points of B(z, ).

The following definition takes into account these requirements:

Definition 3.4 A function p : IR™ x IR™ — IR, is called a star-shaped distance if
() p(z,z) =0 forall z € R™ and p(z,y) > O forallz,y € R" z # y.
(ii) for each z € IR™ and r > 0 there exists a neighborhood V' of x such that

p(z,y+a(z’ —y)) < or+ (1 —a)p(z,y), yeR 2z e¢V,a€[0,1. (3.10)
(iii) for each z € IR™ the function p,(y) defined by

p=(y) = p(z,y), yeER" (3.11)

has no local maxima.

(iv) for each z € IR™ the function p, defined by (3.11) is continuous.

Note that star-shaped distance is not required to be a distance function in usual sense.

Let z,y € IR™ Then (3.10) with r = p(z,y) and &’ = @ implies (3.9), so sets
B(z,r) are star-shaped for all z € IR™ and > 0. On the other hand (3.10) implies
z € intkern B(z,7). Indeed, letr > 0, V is a neighborhood of z that is considered in
(3.10) and let p(z,y) < 7. Then

p(z, oz + (1 —a)y) <ar+ (1 —a)p(z,y) < or+(1- a)r =,
so V C kern B(z, 7). This means that & € intkern B(z, 7).

Proposition 3.4 Let p be a star-shaped distance. Then for each x € IR" andr > 0 we

have int B(z,r) = {v € R" : p(z,v) <7}.
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Proof: Since p, is continuous, the set {v : p(z,v) < r} is open. This implies that {v :
p(z,v) < r} C intB(z,r). Let p(z,v) = r and v € int B(z,r). Then there exists a
neighborhood V' of zero such that v+-V C int B(z, r). Forallv' € V we have p(z, v'+v) <
T = p(x,v). This means that v is a local maximum of p, which contradicts (iii). O

We now give an example of a star-shaped distance.

Proposition 3.5 Let (f;)icr be a uniformly continuous family of convex functions f, :
IR™ — Ry such that f,(0) = 0 and infier fi(z) > 0 for x # 0. Then the function
p(z,y) = infier fi(z — y) is a star-shaped distance in IR™.

Proof: We need to check that (i) — (iv) hold.

(i) It follows from properties of the family (f;):er that p(z,z) = 0 and p(z,y) > 0 for
z #y.

(ii) Let us check (3.10). Let z € IR™ and 7 > 0. Since (f;);er is uniformly continuous at
zero it follows that there exists a neighborhood V; of zero such that fi(v) < r forallv € V;

andt € T. Let V = z — V; be aneighborhood of z and ' € V. Then

plz,y+alz’ —y)) = inf filz —y a2’ —y))
inf f;((1 — a)(z —y) + a(z — ')

< nf((1 - )z —y) +afils — o)
< (inf(1 - 0)fulz — y)) +ar = (1 - )p(z,y) +or,

Thus (3.10) is valid.
(iii) We need to check that for each z,y € IR" and small ¢’ > 0 there exists a direction u

such that
pz,y +€'u) — p(z,y) > 0. (3.12)
Let z = z — y. Then p(z,y) = infier fi(z). If z = 0 then (3.12) trivially holds, so we
J

£ z
o thenl+e =1/(1—¢). Letu = T

assume that z # 0. Consider a number ¢ =

Then for each ¢ € T we have

fi(z2) = fil(1—eu) = fi((1 —e)u+e€0)

< (-9 < A0 e inf £ = (175 ) —ex

where x = inf,er fr(u) > 0. This implies the following:

p(z,y) = inf fi(2) < inf (1 +€)2) —ex < plz,y = €'z).
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Thus (3.12) holds.

(iv) Since the family ( f;):er is uniformly continuous it follows that p,(y) = inf.er fi(z—y)

1s continuous. O

Example 3.1 Consider a family (|| - ||s):er of norms such that there exist numbers 0 < ¢ <

C < +oo such that

dlzll« < llelle < Cllzl., (3.13)
for all t € T, where || - ||« is a fixed norm. The right-hand side inequality in (3.13) shows
that the family (]| - ||;)¢er is uniformly continuous, the left-hand side inequality shows that

infier ||z||¢ > 0 for all z # 0. Hence the function d(z,y) = infser ||z — y||; is a star-shaped

distance.

Theorem 3.3 Let p be a star-shaped distance on IR"™ and U C IR™ be a radiant set. Let
z¢ U, u€eUandr=p(x,u) Then

D) If r = minyey p(x,u) then there exist m linearly independent vectors l, . .., 1, such
that:
() [,z =...=[ln,z] =L

(ii) for each u € U and v € B(z,r) with u # v there exists an index i such that [l;,u] <
[li7 'U].
2) If there exist m conically independent vectors l; such that the condition (ii’) below holds

thenr := p(z,4) = minyey p(z,u). Here

(ii’) U x B(z,r) =, (U x B(z,r)); where
(U x B(z,7)); = {(u,v) € U x B(z,r) : [ls;u] < [l;,v]}-

(Condition (ii’) means that for every pair (u,v) withu € U andv € B(z, ) there exists an

i such that [l;,u] < [l;,v].)

Proof 1) Let r := p(z,%) = min,ey p(z,u). It follows from the properties of the star-
shaped distance that the set B(, r) is star-shaped and = € intkem B(z, 7). The intersection
U N B(z,r) contains &, hence nonempty. The intersection U N int B(z,r) = 0. Indeed,
in view of Proposition 3.4 we have int B(z,7) = {v : p(z,v) < r}. On the other hand
U cC{u:p(z,u) 27}

Consider the set Z = U — B(z,r). Since 0 € kemU and z € intkemn B(z,) it

follows that z := —z € kem U — intkern B(z, 7). Then (see Proposition 3.3) there exists
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m linearly independent vectors i1, ..., 1, such that [}, ~z] = ... = [I!_ —z] = 1 and for
eachu € U, v € B(z,r) with u # v there exists i such that [}, v] < [I}, u]. Thus (i) and (ii)
hold for [; = —I.

=1,...

qu—v) <0 forall uweU, ve B(z,r). (3.14)

We show that

U nNint B(z,r) = 0. (3.15)

Indeed, assume that there exists u € U and a neighborhood V' of zero such that u — V C
B(z,r). In view of (3.14) we get g(v) < 0 forall v € V. It follows from positive homo-
geneity of ¢ that ¢(z) < 0 forall z € IR", hence 0 € 6q = co{ly, - .., L, }. This contradicts

conical independence of vectors I1, . . ., 1,,.
Combining (3.15) and Proposition 3.4 we get U C {u € R" : p(z,u) > r}. Since
% € U and r = p(z, @) it follows that 7 = min,cy p(z, 7). O
Theorem 3.3 can be considered as a version of (3.7)- (3.8) for X = IR"™. If U is a convex
set and p(z,y) = ||z — y|| and we replace strict inequalities in (ii) with nonstrict ones, then

(3.7) follows from Theorem 3.3 with m = 1. We cannot take m = 1 for convex sets if we

use strict inequalities. However Theorem 3.3 holds with m = 1 for a strictly convex set U.

3.3 Star-shapedness and distance to a closed set

In this section we demonstrate that star-shapedness can be used in the study of arbitrary
(not necessarily star-shaped) sets.

First we consider an arbitrary closed subset U of IR™ with 0 € U. Let || - | be an arbitrary
pnorm in IR"™ and

dy(z) = inf{||z — u| : v € U}, z € R"

be the distance function generated by this norm. Let Gy be the function defined on X by
Bu(z) = l|lzl| — dy(z). (3.16)

Note that By (z) = ||z|| for z € U; if z ¢ U then 8(z) < ||z||. The sets {z € R" :
B(z) < c} = {z € R*: dy(z) > ||z|| — ¢}, ¢ > 0 can be useful for examination of the

distance function. We study these sets from the point of view of star-shapedness.
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We need some preliminaries.

A function f : X — IR, is called increasing-along-rays (IAR) if for each z # 0 the
function of one variable f,(t) = f(tz) is increasing (that is f;(t1) > f.(t2) fort; > ¢ on
[0, +00)). (The definition of the IAR function in a more general situation was introduced in
[8].) Note that f(0) = min,cx f(z) for an IAR function f. It has been proved in [62], (see
also [8]) that a function f is IAR if and only if its level sets S.(f) := {z € X : f(z) <7}
are radiant for all > f(0).

Let
(dU)}i(x,x) = limsup dy(z + av) — dy(z)

a—+0,v-z (87

be the Hadamard directional derivative of dy at a point z in the direction z. It is easy to
check that (dy)}, (x,z) < ||z||. Indeed, since the distance dy is Lipschitz continuous with

the Lipschitz constant L = 1 it follows that (dy) L (z, z) < limsup,_, [|[v]| = ||z|.

Theorem 3.4 Let z, € IR™ \ {0} be a point such that ||zl > (dp)} (o, o) and let
V ={z € R": ||z|| — dy(z) < ||zo|| — du(x0)}. Then there exist m linearly independent
vectors 1y, . .., 1, such that

Db, zo]l=... = [lm,20) =1,

2) for each x € V there exists an i such that [l;, ] < 1.

The sets V; = {z € V : [l;, z] < 1} are star-shaped for all .

Proof: First we show that the function Sy defined by (3.16) is increasing-along-rays. Let
z € X and A > p > 0. Then

dy(xe) = inf |\ —ul = inf |\ o+ pz =l O = e +do(pa),

hence

Bu(Az) = Ae|| — dv(Az) > pllzll - du(pz) = fulpa),

so By is IAR. Tt follows from this that level sets S, (fy) = {z : Bu(z) < r} of By are
radiant for all » > 3(0) = 0.
Let 7o € IR™ \ {0} be a given point and let 7 = B(x0) = [|zo|| — dy(xe) > 0. Then

V = 5.(8y) = {z € R™ : |jo]| — duy() < [z0]l - du(w0)) (3.17)

is a radiant set. Since z # 0 it follows that V' € U,,. We need to show that zg is a regularly
boundary point, that is, zo € A(V), where A(V) = {z € V : py(z) =1,z ¢ I'(z,V)}
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is the set defined for V = S,(8y) by (3.1). Let us calculate pv(Zo). The inclusion zg € V
implies py (zo) < 1. Let us check that pv (o) > 1 and hence py (z4) = 1.

Since V' is a radiant set and 0 # z, € V then it is sufficiently to check that Azy ¢ V for
A > 1.If Azg € V for some )\ > 1 then (zy + azg) € V forall a € (0, X — 1), that is

|70 + azoll — dy(zo + amo) < ||zo|| — dy(zo) forall e (0,)— 1).

This fact implies ||zo|| < (dy)}; (o, xo), which is impossible. Hence pv(zo) = 1.
Assume that zo € I'(z9, V). Then there exist sequences v, — zo and o, — 0 such that

Zo + axvg € V, that is

7o + axvr| — [|lzoll < dy (o + cxve) — dy(zo). (3.18)

Let p(z) = ||z||. Since p'(z,z) = ||z| it follows from (3.18) that ||zo|| < (dy)}(zo, 7o),
which is impossible. Hence z¢ ¢ I'(z, V).

Applying Theorem 3.1 and Proposition 3.1 we conclude that the desired result holds. O

We now consider bounded subsets of IR™.

Proposition 3.6 Let U be a bounded subset of R". Then the set hyp dy is star-shaped.
(Herehypdy = {(z,)) e R" x R : A < dy(z)}.)

Proof: Let ¢ > 0 be a number such that |[u|| < ¢ forall u € U. Show that (0, —c) €
kernhyp dy. Let t < dy(z) and o € (0,1). Then

—ac+ (1 —a)t < —ac+ (1 - a)dy(z)

= inf(|(1-a)z— (1 - a)u|| — ac)

uelU
= inf(|(1 — o)z — u+ ou] - ac)
< Inf([(1 — @)z —ul| + af|u] - ac)
< 125 |(1 =)z —ul| =dy((1 — a@)z).
Hence
a(0,—c) + (1 — a)(z,t) = ((1 — @)z, —ac+ (1 — a)t) € hypdy,
that means (0, —c) € kern hyp dy. 0

Corollary 3.1 Let U be a bounded subset of R™ and 0 € U. Then the sets epi || - ||, hyp du
are weakly separated. (Here epi || - || = {(z, ) : A > ||z||}.)
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Proof: Since 0 € U then dy(z) < ||z|, that is intepi || - || N hypdy = 0. It follows from

convexity of norm that intkern epi || - || = intepi || - | # . Thus we can apply Theorem 3.2.
(|

3.4 Degree of strict non-convexity

Consider a radiant set U, which is non strictly convex. It is interesting to classify its bound-

ary points in terms of their strict non-convexity. Conical support collections can be used for

such a classification.

Definition 3.5 A positive integer m is called the degree of strict non-convexity of a set
U € U, near a point z € A(U) if there exists a conical support collection ¢ that consists
of m conically independent vectors and there is no support collection of m — 1 conically

independent vectors. We denote the degree of strict non-convexity by nsc (z, U).

A point z € A(U) will be called a point of strict convexity of U if nsc (z,U) = 1. We now

present some simple illustrative examples.

Example 3.2 1) Let U C IR? be a polyhedron with 0 € intU. Then nsc (z,U) = 1 for

each vertex z of U and nsc (z, U') = 2 for a point z € U, which is not a vertex.

2) Let U = Uy U U,, where Uy and U, are circles:
U= {(z1,22) € R?: (z1 — 1)*+ 22 <1}, U= {(z1,22) : (m1 +1)® + 22 < 1}.

Then U is a radiant set. Consider all boundary points of U. Let z = (0, 0). Then uy (z) = 0,
so z ¢ A(U) and the degree of strict non-convexity is not defined at this point. Let z =
(z1, z5) be a boundary point of U with either z; < —1 or z; > 1. Thennsc (z,U) = 1, so
such points are points of strict convexity. Let z = (z1, ) be a boundary point with either

z; € [-1,0) or z; € (0,1]. Then nsc (z,U) = 2.

3)Let U = {z = (21, 72) € R? : |z125| < 1}. Then U is radiant and nsc (z,U) = 2
for each boundary point z of U.

The second example shows that degree of strict non-convexity of U at z is a global notion:
it is possible that nsc (z, U) > 1 and the intersection of a set U with a small neighborhood
of z is strictly convex (this means that U is locally strictly convex at ).

We now present a simple assertion about the degree of strict non-convexity.
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Proposition 3.7 Let Uy, . .., Uy, be strictly convex subsets of R" such that 0 € int U; for all
i. Let U =\J,U; and z € bdU. Thennsc (z,U) < k.

Proof: It easy to check that kern U D N;int U;, therefore O € int kerU. In view of Remark
3.1 we conclude that each boundary point of U belongs to A(U), therefore z € A(U).
Since z € bd U then z ¢ intU; for all ¢. It is well known from convex analysis that there
exist vectors [y, ...,l; € IR™\{0} such that [l;,u] < [l;,z] forall i and u € U; (u # x).
Since [; # 0 and 0 € int U; it follows that [l;, z] > 0 for all 5. Denote I} = I;/[;, z]. Then
[l},z] = 1 and [I,u] < 1foralliand u € U; (u # z). This implies min;[l},u] < 1 for all
u € U (u # x). a



Chapter 4

Subdifferential calculus for abstract

convex functions

Our main goal in this chapter is to show that the subdifferential calculus is not a privilege
of convex analysis only. We indicate some conditions, which guarantee the existence of
certain calculus rules in abstract convex case. We are concentrating mainly on the maximum
of a finite collection of functions. Subdifferential calculus is important for applications of
abstract convex analysis, so it is interesting to find conditions that provide the exact formula
for the subdifferential of the maximum. We show that such a formula can be given in
terms of abstract convex hull with respect to a certain subset of elementary functions (see

Corollary 4.1).

4.1 Subdifferential of the maximum of two abstract con-
vex functions

Let L be a set of functions [ : X — IR defined on a set X. Let H, be the set of all functions
h(z) = l(z)—c, where | € L and ¢ € R. Consider a function f : X — Rye = RU{+0c0}
and assume thaty € dom f = {z € X : f(z) < +oo}. In this chapter we work with the

set Dy f(y) defined by (1.14). It is clear that a function h € H|, belongs to D, f (y) if and

only if
h(y) =0 and h(z) < f(z)— fly) VzelX

Remark 4.1 For the sake of convenience we assume that for f(y) = +oo the sets 9., f(y)

47
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and Dy f(y) are defined as empty sets. So if we write “the set Dy f(y) is nonempty” then

we mean, in particular, that y € dom f.

We use H , to denote the collection of all h € Hy, such that h(y) = 0, thatis H, =

{l—1Il(y) : 1 € L}. The symbol f, also denotes the function f,(z) = f(z) — f(y) (here
y € dom f).

IfT C Hy, then the Hy ,-convex hull of T" is defined as follows

cog, T = {h € Hpy: h(z) <supt(x) Vz € X} : 4.1)

teT

It is more convenient to formulate all statements in terms of the set Dy, f(y). First we

present a general inclusion, which does not require additional assumptions.

Proposition 4.1 Let f, fo be Hy-convex functions and f1(y) = f2(y). Then

cor, ,(Prfi(y) UDLf2(y)) C Dr(max{fi, f2})(y)- (4.2)

Proof: If (1 — l(y)) € con, ,(Drfi(y) UDLfa(y)) then

l(z) - Uy) < sup h(z)
heDy f1(y)UDL f2(y)
= max sup (t(z) —t(y)), sup (t(z)— t(y))}
tedr f1(y) tedr f2(y)

< max{fi(z) — fi(¥), fo(z) — f2(¥)}
= max{fi(z), fo(z)} — max{fi(y), f2(¥)}.

So (I — I(y)) € Dr(max{f1, f2})(¥). H

For some special types of Hy-convex functions f;, f, we can get equality instead of the

inclusion in (4.2).

Proposition 4.2 Let fi1, f» be functions defined on X such that the functions fiy, fay are
Hy,-convex and fi(y) = fa(y)- Then

Dy (max{f1, f2})(y) = com,, (Prfi(y) U Prfa(y))- (4.3)

Proof If is clear that Dy, f (y) = supp (fy, H 1) for any function f. Since the functions fy,

and f,, are Hp y-convex then

supp (max{ fiy, foy}, Hy) = cOmry,, (supp (fiy, Hi,y) U supp (fay, Hiy)).
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Note also that (max{ f1, f2}), = max{ fiy, f2, } because f1(y) = f2(y). Hence

Dp(max{fi, f2})(y) = supp ((max{fs, fo})y, Hry) = supp (max{fyy, foy}, Hr )
= cog, ,(supp (fiy, Hry) Usupp (foy, Hry))
= cog,, (Drf1(y) UDLfa(y))-

O
The following example demonstrates that the equality (4.3) does not necessarily hold

for arbitrary H-convex functions fi, f> with fi(y) = f2(y).

Example 4.1 Let X = IR and L consists of all linear functions and the function [(z) = z2.
Consider the functions fi, fa:

Note that fi and f, are Hy-convex and f;(0) = f2(0). At the same time, both f;, and
f2y are not Hy ,-convex for y = 0. It is clear that Dy f1(0) = D f2(0) = {0}, hence
com, o(Drfi(0) U DL f2(0)) = {0}. But the function f(z) = max{fi(z), fo(z)} co-
incides with elementary function {(z) = z?, therefore | € Dy f(0). This means that

Dy (max{f1, f2})(0) # com, o(Drf1(0) U DL f2(0)).

Further, consider a multifunction A : X x 28z x 21 — 2Hr where 27¢ is the set of all

nonempty subsets of H.

Proposition 4.3 Lety € X. Assume that the inclusion

A(y,Drg1(y), Drg2(y)) C Dr(max{gi, g2})(y) (4.4)

holds for all Hy-convex functions g1, g such that the sets Dpg1 (y), Drg2(y) are nonempty
and g1(y) = g2(y). Let fi1, fo be Hy-convex functions such that the sets Dy, f1(y), Drfa(y)

are nonempty and f,(y) = f>(v). If

Ay, DLfi(y), Prfa(y)) = Drlmax{f1, })(¥)

then
Dy (max{f1, f2})() = com,, (Prfi(y) U DLf2(y)). (4.5,
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Proof: Let fi, f» be Hp-convex functions such that the sets Dy f(y) and Dy fo(y) are

nonempty, fi(y) = f2(y) and Ay, Drf1(y), Prf2(y)) = Dr(max{fi, f2})(y). Consider
the functions

g:i(z) = sup{h(z)+ fi(y) : h€Drfi(y)}
= sup{h(z): hy) = fi(y), h € supp (f;, Hr)}.

It is clear that g, (y) = f1(y) = f2(y) = g2(y) and g1y, g2y are Hy ,-convex. Proposition
4.2 implies the equality Dy, (max{g1, g2 })(y) = con, ,(Drg:1(y) U Drga(y)). Since

Drgi(y) = {h€Hry: h<gi—g:v)}

= {h € Hy,: h(z) < sup H(z) VzE X} =Dy fi(y)

h'eDy fi(y)

then A(y, Drg1(y), Prg2(y)) = Ay, Drf1(y), Drf2(y)). Hence

Dr(max{f1, L)) = A, Dfi(y),Drf2(v)) = Ay, Dr91(y), Prg2(y))
C Dr(max{g:, g2})(¥) = com,,(DPrgi(y) UDrga(y)) (4.6)
= cop,, (Drfily) UDLf2(y))-

Combining the above inclusion with Proposition 4.1 yields the equality

Dr(max{ f1, 2})(y) = com,,(Prfiy) U P f2(y))-

Proposition 4.4 Lety € X. Assume that

con, ,(Drfi(y) UDL2()) C AWy, DLfi(y), Dofa(y)) € Prlmax{fi, 1)

for all Hy-convex functions f1, f2 such that the sets Dpf1(y), Drf2(y) are nonempty and
F1(y) = f2(y). Then for all such functions f1, fe

Ay, Drf1(y), Drf2(y)) = com,, (DL (y) UDLf2(v))-

Proof: Using the same functions g; as in the proof of Proposition 4.3 we conclude that
Ay, Drfr(y), Drf2(y)) C com, (DLh (y) U DL f2(y)) (see (4.6)). However, by our as-
sumptions, cog,  (Prfi(y) U DL ) € Aly,Drhi(y), DL f2(y)). So we obtain the de-
sired equality. 0
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Example 4.1 and Proposition 4.3 show that, in general, the set Dy (max{ fi, f2})(y)
cannot be described in terms of the sets Dy, f1(y) and Dy fo(y).

At the same time the equality Dy (max{f1, f2})(¥) = con, ,(Drfi(y) U Drfa(y)) is
valid for broad classes of H-convex functions. However the mapping cog, , can be very

complicated.

Proposition 4.5 Let L be a set of functions defined on a set X. Let L consist of all functions
l(x) = max{l;(z),lo(x) + c}, where 11,1, € L and c € IR. Then

Dr(max{ f1, f2})(y) = con, ,(Drfi(y) UDLf2(y))

for all Hy-convex functions fi, fo and all pointsy € X such that the sets Dy, f1 (v), DL f2(y)
are nonempty and f1(y) = fa(y)-

Proof: Ttis clear that H; C Hy, and a function is H-convex if and only if it is H.-convex.
Let f; and f, be Hp-convex functions (then they are also H -convex). Lety € X be a
point such that the sets Dy, f1 (y) and Dy, f>(y) are nonempty and f, (y) = fa(y). First prove
that

sup{h;(z) : h; € Dpfi(y)} = filz) — fily) Ve € X Vi=1,2. 4.7)

For this purpose we only need to check that sup{h;(z) : hi € DL fi (y)} > filz) — fily)
For each i = 1,2 choose an arbitrary function h} € Dy fi(y). Since h; € Hy then h(x) =
max{l}(z), 2(z) + ¢} + ¢, where I1,1? € L and ¢;,¢; € IR. For the sake of definiteness

assume that }(y) = I(y) + ¢}, Then B3(y) + ¢ = 0 and I}(z) + ¢} < fi(x) — fily) for all
£ € X. For every t; € supp (f;, H.) consider the function hy, defined by

hy,(z) = max{l} (z) + &, t:(z) — fi(y)}-

We see that by, € Hp, hy,(y) = Oand s, (z) < fi(®)—fily) Yz € X, thatis hy, € D fi(y)-

Since f; is H-convex then
sup{t;(z) — fily): L € supp (fi, He)} = fi(z) — fily) Ve € X.

Hence

IV

sup{h,(z) : t; € supp (fi, He)}
> sup{ti(z) — fiy) : % € supp (fi He)}
= fi(z)— fily) Yz e X.

sup{h:(z) : hi € DLfi(y)}
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So the equalities (4.7) hold true. This means that

cou,, (Drfi(y) UDLfaly)) = {h€H,: hz)< max(fi(z) - fi(y)) Vz € X}
= Dr(max{fi, f2})(y).

|

Under the assumptions of Proposition 4.5, in order to describe the sets Dy, fi(y) and

Dy fa(y) we need to know all support functions of f; and f, with respect to H.. In other

words, we need to know the values of the functions f; and f, at each point z € X. These

sets can be very complicated, and therefore the set coy, (Drfi(y) U Drfa(y)) is also
complicated.

In the next section we consider one special case, when the subdifferential calculus is

possible. Namely, we assume that the subdifferential has local nature. This means that for

the description of a set D, f(y) we need to know the behaviour of the function f only in

a neighbourhood of the point y. This allows us to give a sufficiently simple description of

Drf(y).

4.2 Subdifferential calculus in the case when H; has the
strong globalization property

In the paper [39] Rolewicz introduced the notion of strong globalization property. He says
that a set ® of functions defined on a topological space X has the strong globalization prop-
erty if for every ®-convex function f and for every point y € X each local ®-subgradient of
f at y can be extended to a global one. Here, into the definition of the strong globalization
property, we put a more rigid condition. Namely, we require that each local subgradient is
also a global one. We show that in such a case subdifferential calculus can be expressed in
terms of special functions that in a sense approximate the given functions.

Let H be a set of functions defined on a topological space X. We say that H has the
strong globalization property if for any H-convex function f, for any point y € X and for

any h € H the following implication holds

(h(y) = f(y), h(z) < f(z) ina neighbourhood of y) = (h(z) < f(z) forall z € X).
(4.8)
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For instance, it was shown in [39] (see Example 4.7) that the set H of all continuous affine

functions defined on a topological linear space X has the strong globalization property.

Remark 4.2 Assume that H has the strong globalization property. Then every subset H C

H also has the strong globalization property since any H’-convex function is H-convex.

Now let L be a set of functions defined on X. As above, H; denotes the set of all
vertical shifts of functions [ € L. Assume that H;, has the strong globalization property.

Take an H-convex function f and a point y € X. Let U be a neighbourhood of y. Then
the following equality holds

Ouf(y)={leL: Uz)-Il(y) < fx) - fy) Vz € U}. (4.9)

Indeed, let [ € L and I(z) — I(y) < f(z) — f(y) Yz € U. Then the function h(z) =
I(z) — I(y) + f(y) belongs to Hy. Moreover, h(y) = f(y) and h(z) < f(z) Vz € U.
Hence h(z) < f(x) for all z € X. This implies { € 91 f(y).

Similarly, we have the equality for the set Dy f(y)

Dif(y) ={h € Hp: h(y) =0, h(z) < f(z) - fly) Vz € U}. (4.10)

For y € X let U(y) denote the set of all neighbourhoods of y. Let f be an Hp-convex

function. Then we can introduce the following function defined on X

app;,(z) = inf inf{p(z): pis Hr-convex, p(z) = f(z) Vz € U}. (4.11)
i Uel(y)

We will show that the function app;,, can be considered as an approximation of the
function f near the point y. In the classical convex case we can estimate this function using
e-subdifferentials (see Proposition 4.7 and Example 4.2).

Note that another approximation function was considered in [53] (see formula (17) in
[53]). It seems that the function (4.11) is more appropriate to our purposes.

First, it is clear that
app;, () = f(y),  appgy(a) < f(z)  VzEX (4.12)
Let us prove some properties of the function appy .

Proposition 4.6 Let y € X and f : X — IR, be an Hp-convex function such that

Dy f(y) # 0. Assume that Hy, has the strong globalization property. Then

Dy f(y) = Drlapp;,)(¥),
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and therefore

he;lig(y)(h(iv) + f(y)) <app;,(z) VzeX. (4.13)

If g is an H-convex function such that f(z) = g(z) in a neighbourhood of y then app fy =
appg’y'

Proof: IfU € U(y) and p is an H-convex function such that p(z) = f (z) forall z € U,
then, by (4.10), Dyp(y) = Dy f(y). Hence

Drf(y) = ﬂ{DLp(y) : U€lUl(y), pis Hr-convex, p(z) = f(2) Vz € U}
= {heHy: h(y) =0, h(z) <app;,(z) - app;,(y) Vz € X}
= Dr(appy,)(y).

In particular, we have

h;;ir;(y)(h(x) +f(y) = hEDL(saggf'y)(y)(h(x) +apps, (y)) < appsy(z) Vz € X

It follows directly from (4.11) that app,, = app,, whenever f and g are H-convex
and coincide in a neighbourhood of y. |

So if H}, has the strong globalization property and f is an Hp-convex function such
that Dy f(y) # 0 then, in view of (4.12) and Proposition 4.6, we can say that the function
app;,, approximates the function f near the point y i the following sense: the function
app;,, depends only on the local behaviour of f near y, coincides with f at the point y and
does not exceed f on the whole space X. The equality Dy (app;,)(y) = Drf(y) shows
that such an approximation is closely related to the notion of subdifferential. Note that the
function t(x) = suP,ep, ;) (h(x) + f(y)) enjoys all these properties as well. However,
due to the inequalities ¢(x) < app;,(z) < f(z) (see (4.13)), the approximation appy, (z)
is better than ¢(z).

Below we will be interested in conditions which guarantee that the approximations
app; () and t(z) = sup,ep, s(y)(A(z) + f(y)) coincide on X.

Assume that the space IR is equipped with the usual coordinate-wise order relation:
a < bifandonly ifa; < b; foralli = 1,...,n (a,b € R™). We will consider increasing
continuous mappings M : R® — IR. For example, the mappings M(a) = }_;a; and
M(a) = max; a; (@ = (ay, .. ., a,) € IR™)are increasing and continuous on IR". Moreover,
since the maximum of abstract convex functions is always abstract convex then the mapping

M (a) = max; a; satisfies the assumptions of Theorem 4.1 irrespective of the set H.
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If a mapping M : IR™ — IR is continuous and increasing then for any sets 4; C IR

G=1,...,n)

M (sup ai,..., sup an> = sup M(ay,...,an),
a1€A; an€An a;€A;

(4.14)
M(inf ai,..., inf an) = inf M(ay,...,a,).

a1€A; an€An a;€A;

(Here we assume that M (b, ..., bj, ..., bs) = limy_p, M(by,...,b,...,by) forb; = +00).

Theorem 4.1 Let M : R™ — IR be an increasing continuous mapping such that for
all hy,... hn € Hy the function M(hy(x),...,hn(z)) is Hp-convex. Lety € X and

f1s- .., frn be Hy-convex functions. If Hy, has the strong globalization property then

DrM(f1,-.., fa)(y) =DM (appfl,y, . ,appfmy) (v). (4.15)
Proof- If h € DM (appy, . - --,appy, ,) (y) then

h(z) < M (appy, ,(z), .- -,appy, , () — M (appy, ,(¥), - -- ,app;. ,(¥)) Ve X.

Since the mapping M is increasing then, due to (4.12),

hz) < M(fi(z), ..., ful@)) = ML), -, faly)) V2 EX,

hence h € DM (fi, ..., fn)W).
Conversely, let h € Dy M(f1,..., fa)y). LetUs,..., Uy € U(y) and py,...,p, be
H -convex functions such that p;(z) = fi(2) for all z € U;. Then

hz) < M(fi(2),-.., fa(2)) = M(fr(y),- -, fo(¥))
= M(pi(2), ., Pa(2)) = M(p1(y), - -, Pa(y)) VzeﬂUi- (4.16)

Since all functions p; are Hp-convex then, by (4.14),

M(pi(x),...,pa(z)) = M ( sup hi(z),..., sup hn(a:))

h1eSUPP (p1,HL) hn€SUPP (pn,HL)

= sup M(hl(.’r),...,hn(x)).
h;€SUPP (pi,HL)

By our assumptions, M (hy(z), . .., ha(x)) is Hy-convex for any h; € Hp. Hence the
function p(z) = M(p1(2),...,pa(x)) — M(P1(y), - -- . pa(y)) is Hy-convex as well. Since
H has the strong globalization property then it follows from (4.16) that

h(z) < M(pi(z), ..., pa()) = M(p1(y), -, Pa(v)) YEZEX
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Thus, we deduce that for every z € X

Mz) < inf  inf [M(pi(z),...,p0(2) = M(p1(y),- -, pn(¥))]

U;eld(y) pi€Ti(Us)
= inf inf M L opn(2)) -
L (p1(2), ..., palz)) — M(app;, ,(¥), - - -, apD;, ,(¥)),

where T;(Uj;) is the collection of all Hy-convex functions p; such that p;(z) = f;(z) for all
z € U;. Atlast, it follows from (4.14) that

h(z) < M(appy, (%), ..,appy, ,(z)) — M(appy, ,(v),---,appy, ,(y)) VzeX.

Therefore h € Dy, M (appfl,y, e aappfmy) (y)- H

Corollary 4.1 Assume that H;, has the strong globalization property. Let y € X and

fi,. .., fn be Hy-convex functions such that

appy,,(z) = sup (h(z) + fi(y)) forallz € X, 1=1,...,n.

heDy f:(y)
Fh) = = faly) then
Dy (max{fi, ., fr})w) = ons, _OIDLfi(y). @17)
If all functions f; are continuous aty then )
Dy(max{fy,-.., fa})(y) = con,, LJIDLfi(y)a (4.18)

where I = {i: fi(y) = max{fi(y), -, fa(¥)}}.

Proof: Let M(ay,...,a,) = max{ay,... ,a,}. Then M satisfies the conditions of Theo-
rem 4.1. Hence, by (4.15),

DL(ma’X{fl; ce fn})(y) = DL(maX{appfl,w s )appfn,y})(y)' (419)
Let fi(y) = -- = fa(y). Since appy, ,(y) = fi(y) (see (4.12)) then we have

max{app;, ,(z),...,app;, ,(z)} — max{appy, , (¥), - - -, app AW} =
= max sup (h(z)+ fi(y)) — max{fi(y), .., fu(¥)}

' heDLfi(y)
= max sup h(2).
' heDrfi(y)

So a function k' € Hp, belongs to Dy (max{appy, ,, - - -,apP 5.4 1) () if and only if

W(z) <max sup h(z) forallz e X.
t heDLfi(y)



Subdifferential calculus for abstract convex functions 57

In other words (see (4.1))

Dy (max{appy, ,, .-, app;, , ) (v) = con,, | JDLfi(w)-
=1

This and (4.19) give us the required equality (4.17).
If all functions f; are continuous at the point y then there exists a neighbourhood U of

y such that max{ fi(z),..., fa(z)} = max;c; fi(z) forall z € U. Since Hy, has the strong
globalization property then

Dy(maxd -, £u)0) = P () 1)

At the same time, f;(y) = f;(y) for any ¢, j € I. Then it follows from the first part of the

proof that
Dy, (II}Q}X fi) (y) = com, , iLEJIDLfi(?J)-
Thus the equality (4.18) holds true. O

Corollary 4.2 Lety € X and f1,. .., fn be Hi-convex functions such that

appy, ,(z) = hegﬁ(y)(h(w) +fily) forallzeX, i=1,...,n

Let M : R® — IR be an increasing continuous mapping such that M (hy, ..., hy) € Hf
for all h; € Hy. If Hy, has the strong globalization property then

DM (f1,-. ., o)) = com, , IM(DLfi(y) + fi(¥), - Drfaly) + fr(y)) —
- M(fl(y)"'afn(y))]a

where [M(Dpfi(y) + Ai®),-- . Dofaly) + fo(y)) — M(f1(), - - fn())] is the set of
all functions of the form

h(z) = M(hi(z) + 1), -, ha(@) + fu(¥)) = M(A®W),- - [a(¥)

with h; € D fi(y) foralli=1,...,n.

Proof: 1t is sufficient to note that, by our conditions, every function
h(z) = M(hi(@)+ i®), - ha(2) + o)) = M(f(¥), -, f(9))  With hs € Drfi()

belongs to Hy, .
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Due to (4.15) a function &’ € Hp,, belongs to Dy M(f1,. .., f»)(y) if and only if
W(z) < M(appy, ,(2),...,appy, () — M(appy, ,(¥), - --,appy, ,(¥))

= M ( sup (h(z)+ fi(y)),..., sup (h(x)—}—fn(y))) -

heDy, f1(y) heDy, fnly)

— M(A®W),- -, fay))
= sup [M(hi(z) + f1i(y), ..., ha(z) + fa(y)) —
hi€Dy fi(y)
- M(AW),... faly)] VeeX
The proof is completed. O

For example, if M (a1, . ..,a,) = a1+ - -+ a,, then, under the assumptions of Corollary

4.2, the sum (f; + - - - + f,,) of Hy-convex functions f; is Hy-convex as well and

Dr(fr+ -+ fu)y) =con, , (Prfi(y) + - + Drfa(y))-

Remark 4.3 An interesting approach to deriving subdifferential sum formula was taken
in [23]. Among other results, it was shown that additivity of the mapping supp (-,Hr)
implies additivity of the subdifferential. Namely, assume that (I;+12) € Lforallly,l; € L.

Then for any Hy-convex functions f1, f2 we have

supp (f1 + fa, Hr) = cog, (supp (f1, Hy) + supp (f2, Hr))-

If, moreover, Hy-convex functions f1, f» are such that (supp (f1, Hr) + supp (f2, Hy)) is

(Hp, X)-convex, i.e.

supp (f1 + fa, Hy) = supp (f1, Hp) + supp (f2, HL), (4.20)

then ( [23], Corollary 3.2)
A(fi + f2)(z) = O fi(z) +OLf2(w) Yz € dom fi N dom fo. 4.21)

It is clear that (4.21) holds if and only if Dr(f1 + f2)(y) = Drhi (y) + Dy fo(y) for all
z € dom fi Ndom f,.

Note that verification of the equality (4.20) is not easy, because we need to have a descrip-

tion of (Hy, X)-convex sets.

The main problem now is to find conditions which guarantee the equality app; (z) =

P s (&) + F(9)). Since app3, (+) = Subren, g (h(x) + (1) then we are inter-

ested in the inverse inequality. In the following proposition we estimate the function app; ,
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using e-subdifferentials. Let ¢ > 0. Recall that the set

Orefy)={leLl: Uz)-Uy) < flz)— fly)+e Vz e X}
is called the e-subdifferential of the function f at y with respect to L.

Proposition 4.7 Let y € X. Assume that for any Hj-convex function g the following

implication holds:

lim sup g(z) < +00 = g is continuous at y. (4.22)

r—Y

Let a function f be H-convex and continuous at y. Then

app;,(z) < lim  sup (l(z) —I(y) + f(y))  forallz € X. (4.23)
> e—+0 l€dy, e f(y)

Proof: First prove that for each ¢ > 0 a neighbourhood U, of the point y and a number
8 = §(e) > O exist such that

W(y) = U(z) + f(z) > fly) —e+8(e) forallz € U, | € Opp¢)f(2)- (4.24)

Assume it is not true. Then a number £ > 0 exists such that for any neighbourhood U of
the point y and for any § > 0 we can find z € U and | € O1,5f(2), for which the inequality
l(y) — U(z) + f(2) < f(y) — e+ ¢ holds.

Then consider the function

g(z) = il;}(f)) sup {l(z) —l(z) + f(z) — 6 :
z€ X, 1€8,5f(2), U(y) —U2) + f(2) < fly) —e + 6}

This function is Hy-convex, g(z) < f(z) for all z € X and g(y) < supsso(f(y) —
e+ 68 —68) = f(y) — . Moreover, due to our assumption, for any neighbourhood U
of the point y a point z € U exists such that g(z) > supsso(f(z) — 8) = f(z), hence
limsup,_,, g(2) > liminf,, f (2). Since f is continuous at the point y and g(y) < f(y)—¢
then limsup,_,, 9(z) > f(y) > fly) —¢ 2 g(y). Hence g is discontinuous at y and, by
(4.22), we conclude that limsup,_,,, g(z) = +oc0. On the other hand, since g < f and fis
continuous at y then limsup,_,, g(2) < limsup,_, f (z) = f(y) < +oo, which contradicts
the equality limsup,_,, g(z) = +00.

So for each ¢ > 0 a neighbourhood U, of y and a number 6(¢) > 0 exist such that (4.24)
holds. Then for any z € U, and l € 9, 5(c)f(2) we have

i(z) - Uy) = (z)—1(z) + f(2) = Uy) = 1(z) + f(2)
< (f@)+58(e) - (fly) —e+8(e) = f(z) = fly) +e VzeX.
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This implies that | € 9, .f(y) forall [ € Orse)f(z) with z € U,. Since 01 5f(2) C
OL6(e)f(2) forany 0 < 6 < é(e) then ! € Oy f(y) forall I € 8, 45f(z) with z € U, and
0 < 6 < 4(e). Therefore foralle > 0and 0 < § < 6(¢)

sup (Uz) =ly)+ fly) < sup (I(z)—I(y)+ f(y)) forallz € X. (4.25)
1€8y,,5f (%), z€Ue €0y, f(v)

At the same time, since (—[(z) + f(2)) < (—l(y) + f(y)) + & whenever | € 9, 5 f(z) then

sip (@) 1)+ fE) < s () —1@)+ @) +6 forallze X,
lE@Lygf(z),zEUe l€dy, 6 f (), z€U;
(4.26)

It follows from the inequalities (4.25) and (4.26) that foralle > 0 and 0 < § < §(¢)

sup  (Uz)=U(2)+f(2) < sup ({z)—l(y)+f(y))+d forallz € X. (4.27)
€8y, 5 f(2), z€Ue ledy,  f(y)

Since the function f is continuous at y then it is finite in a neighbourhood U’ of y. Since
f is Hp-convex then Op 5 f(z) # 0 for every z € U’ and § > 0. Hence for any ¢ > O the
function

p(z)= sup sup sup ({(z)—U(2)+ f(2) —9)
2€UNU’ §(e)>8>01€8y, 5 f(2)

is Hp-convex and coincides with f(xz) for all z € U, N U’. Thus, we deduce that

app;,(z) = Uierbl(f(y) inf{p(z) : pis Hy-convex, p(z) = f(z) Vz € U}

ig(f) inf{p(z) : pis Hy-convex, p(z) = f(z) Vz € U, NU'}

IA

IN

inf sup sup sup  (U(z) = 1(2) + f(2) =),
€20 ,eU.NU’ 8(e)>6>0 1€DL, 5 f (2)

and, due to (4.27),
app;,(z) < inf sup (I(z) —l(y) + f(y)) = lim sup (i(z) —I(y) + f(v))-
’ £>01c;, f(v) e=+0eo,  f(y)

O

Remark 4.4 Implication (4.22) means that every H-convex function g is continuous at y
whenever a neighbourhood U of y and a number ¢ € IR exist such that g(u) < c for all
u € U. Note that this implication can be false even in the case when all elements of Hj are
continuous. For example, let g : IR — IR be the function defined by: g(z) = 0if z < 0 and
g(z) = 1if z > 0. Then g can be represented as the supremum of a family of continuous

functions. We see that g is uniformly bounded on IR. However g is discontinuous at zero.
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Example 4.2 Let L be the set of all linear continuous functions defined on a normed space
X. Then every Hy-convex function is convex in the usual sense. It is well known (see,
for example, Proposition 2.2.6 in [7]) that a convex function g defined on X is Lipschitz
continuous at y € X provided that g is bounded above in a neighbourhood of y. Thus we

conclude that the condition (4.22) is valid in the classical convex case.

The other approach to examining the equality app; ,(z) = suPyep, 1) (h(x) + f(¥))
is based on a special property of the mapping D, f(-) at the point y. Let X and T be
topological spaces. We say that a mapping D : X — 27 enjoys property (*) aty € X
if, for any open set G C T such that D(y) C G, a neighbourhood U of y exists such that
D(u) NG # 0 for all u € U. Kuratowski [30] gives the following definition of upper
and lower semicontinuity of multifunction D : X — 27 (see also Borwein and Zhu [5],

Definition 5.1.15): D is upper (lower) semicontinuous at y provided that for any open set

Gin T with D(y) C G, (D(y) NG # D),
{zxeX: D(z)CG} ({zxe X: D(z)NG #0})

is an open set in X. Thus, if D(u) is nonempty for all u from a neighbourhood of y then

any semicontinuity (upper or lower) of D at y implies the property (x).

Proposition 4.8 Let H;, be equipped with the topology of pointwise convergence. Let [ be

an Hp-convex function andy € X. If f is upper semicontinuous at y and Dy f (-) enjoys

property (x) aty then app; ,(x) = SUPpep, 5y (h(z) + f(y)) for all z € X.

Proof: Takez € X ande > 0. Let G. = {h € Hy : 3g € Df(y) h(z) < g(z) +¢}-
Then G, is an open set and D1, f(y) C G.. Since the mapping D f(-) possesses property
(*) at the point y and f is upper semicontinuous at y then there is a neighbourhood U, of y

such that Dy, f(v) N G, # 0 and f(u) < f(y) + ¢ forall u € U,. Consider the function

pe(z) =sup sup (h(z)+ f(u) VzeX.

u€lUe heDy f(u)NGe

It is clear that p. is H-convex and p.(z) = f(2) forall z € U,. Hence

app;,(z) = Uég{y) inf{p(x) : pis Hy-convex, p(z) = f(2) Vz € U}
< infp.(z)=infsup sup (h(z)+ f(u))
>0 £>0 yeUe heDy f(W)NGe

= infsup sup [(h(z) + f(¥) + (f(w) = F(¥))]

€20 4eU, heDy f(u)NGe

< inf sup (g(z)+ f(y)+2)= sup (9(z) + f(v))-
€>0 a€DLf(y) 9€DLf(y)
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The reverse inequality suppep, ;) (h(%) + f(y)) < app;,(z) follows from Proposition
4.6. a

4.3 Examples

For beginning, we consider the case, when abstract convex functions are generalized convex

in the sense of Beckenbach [2].

Example 4.3 Let F be a two-parameter family of continuous functions defined on an
interval I C IR (see Example 1.1). It is easy to check that each F-convex function
f: I - IR U {+o0} possesses the inequality

f(@) € Py e @Ef@) (@), 1<z < T (4.28)

for every z1,z, € I such that f(z;) and f(z2) are finite. Let f : I — IR U {+oo} be
F-convex and z; € I. Let ¢ € F be such that p(z;) = f(z1) and ¢(z) < f(z) ina
neighbourhood of z;. We show that p(z) < f(z) for all z € I. Assume it is not true. Take
an arbitrary z, € I with (z3) > f(z2). For the sake of definiteness, let z, > z;. Since
Do, (m)) (@2.f (@2)) (B1) = [(@1) = 0(21) a0d Pz, (1)) (22, 1(22)) (F2) = f(72) < p(22) then

Do, (m)) (2,5 (a2)) () < () forall & € (z1,x2) (see [2]). Hence 9z, f(z1))(az.£(z2)) (%) <
f(z) forall z > z; close to z;, which contradicts (4.28).

Thus, the family F has the strong globalization property.

Let X and Y be topological spaces and w : X — Y be an open continuous mapping.
Let £ be a set of functions defined on w(X) = {w(z) : z € X}. Let L be the set of
all functions [(z) = #(w(z)) defined on X, where £ € L. Then the set of all H-convex

functions coincides with the set of functions f(z) = g(w(z)), where g is H-convex.

Proposition 4.9 If H, has the strong globalization property then also H|, has the strong
globalization property.
If g is an H-convex function, y = w(z) and
app,,(2) = sup (h(z)+9@y) VzewlX),
he€Drg(y)

then the following equality holds for the function f=gow

app;.(2) = he;\ilf)(x)(h(Z) +f(z) VzeX
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Proof: Assume that H has the strong globalization property, and let h € H L. Let f(z) =
g(w(z)) be an Hy-convex function such that

hMy)=f(y), hlz)<f(z) Vzel,

where U is a neighbourhood of y. Since h(z) = £(w(z)) — ¢ then £(w(y)) — ¢ = g(w(y)),
l(w(z)) — ¢ < g(w(z)) VYV € U. Since w is an open mapping then U’ = w(U) is a
neighbourhood of the point w(y). Because H, has the strong globalization property, we

have £(z) — ¢ < g(z) forall z € w(X) and h(z) < f(z) forall z € X. So we proved that
Hj, has the strong globalization property.

Let us prove the second part of proposition. Let g be H-convex, y = w(z) and

app,,(2) = SUPhep, o0 (P(2) + g(y)) for all z € w(X). Since every Hj-convex func-

tion p has the form p(z) = g(w(z)), where q is H-convex, then

app; ,(2) = Uérz}{m) inf{p(z) : pis Hy-convex, p(u) = f(u) Vu € U}
= UiILl(f(‘ )inf{q(w(z)) : qis He-convex, q(w(u)) = g(w(u)) Vu € U}.
cU(z

Since the mapping w is continuous and open then we get

apps,(z) = U’ELI%E(I)) inf{q(w(z)) : qis He-convex, gq(u') = g(u') Vu' € U’}
= app,,,(w(z)) = s )(h(w(Z)) +9(v))
= s () +gw@) = sw () + f(z).
heDg(w(z)) heDy f(z)
O

Note that, under the conditions of Proposition 4.9, we have a simple isomorphism be-
tween H c-convex and H-convex functions. If f = gow theninf,ex f(z) = infycu(x) 9(y).
So if H, has the strong globalization property but the elementary functions h € H, seem
difficult then we can use such isomorphism in order to get a more convenient equivalent

form of abstract convex functions.

Proposition 4.10 Let X and V be topological spaces. Let H be a set of functions h :
X — IR. Assume that for each two points z,y € X there exists a continuous mapping
w:V — X such that z,y € w(V) and H® has the strong globalization property, where
HY is the set of all functions b/ : V' — TR defined by I'(v) = h(w(v)), (h € H). Then H

has the strong globalization property.
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Proof: Let f : X — IR, be H-convex function. Let y € X and h € H be a function
such that A(y) = f(y) and h(z) < f(z) for all z from a neighbourhood U of the point y.
Take a point # € X and consider a mapping w : V — X, which satisfies the conditions of
our proposition for the points x,y. Let w(v;) = y and w(v,) = z. Consider the functions
h', f" defined on V' by the formulas: /'(v) = h(w(v)), f'(v) = f(w(v)). Then R’ belongs
to H*, and f’ is H“-convex. Since w is continuous then a neighbourhood U’ of the point
vy exists such that w(v) € U forallv € U’. Hence #'(v;) = h(y) = f(y) = f'(v1) and
K (v) = h(w(v)) < f(w()) = f'(v) forall v € U’. Since H* has the strong globalization
property then h'(v) < f'(v) forallv € V. In particular, h(z) = K (v) < f'(vp) = f(z). O

Now consider the simplest case X = IR.

Proposition 4.11 Let L be a set of continuous functions defined on IR. Assume that for any

Junctions ha, ho € Hy, and for any points z1,x, € X the following implication holds
(hl(l'l) = hz(l‘l), hl(l'z) = hz(l‘z), 1 7£ CL'Q) > (hl = hz) (429)

Lety € R and f be an Hy-convex function such that the sets Dy, f(z) are nonempty in a
neighbourhood U of y. Then for any h € H, implication (4.8) holds.

Proof: Let U be a neighbourhood of y such that Dy f(z) # (@ forall 2z € U. Let h € Hy, be
an elementary function such that h(y) = f(y) and h(z) < f(z) forall z € U’, where U’ is
a neighbourhood of y. We need to check that h(z) < f(z) forall z € IR.

First show that h(z) < f(z) forany z > y. Letz > y. Then a point z € U N U’
exists such that z > z > y. Since z € U then Dy f(z) # (). Take an arbitrary function
h, € Drf(z). Then h,(y) + f(2) < f(y) = h(y). Moreover, since z € U’ then h(z) <
f(2) = h,(2)+ f(2). Consider the function h'(t) = h,(t)+ f(z). Since H, is closed under
vertical shifts and h, € H; then ' € H;. So for these z,y and h, h’ € Hy, we have

z>y, K(y) <hy), h(z) <H(2). (4.30)

Note that, under our assumptions, H, consists of continuous functions. Then, due to (4.30),
a point ¢; € [y, 2| exists such that h'(t;) = h(t1).

Now suppose that h(z) > h'(z). This means, in particular, that A # h’. It follows
from (4.29) that h/(t) # h(t) for any ¢ # t;. Then, by (4.30), either A'(y) < h(y) or
h(z) < W(z). If h(z) < I/(z) then a point t; € (2, z) exists such that A'(t,) = h(t,), which

contradicts our assumption. Hence A'(y) < h(y) and y < t;. Take a positive number ¢ such
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thate < min{h(y) — K (y), h(z) —h'(z)} and consider the function h.(t) = A'(t) +¢. Then

he € Hy,. Moreover, the following inequalities hold

he(t) > h(ta), he(y) <hly), ho(z) < h(z). (4.31)

Since y < t; < z and the functions h. and A are continuous then, by (4.31), we can find
two different points a € (y,t;) and b € ({1, z) such that he(a) = h(a) and h.(b) = h(b).
Then, by (4.29), he = h, which contradicts (4.31).

So we conclude that h(z) < h'(z). Since ' (z) = h,(z) + f(2) and h, € D1 f(z) then
K (z) < f(z). Thus we have proved that h(z) < f(z) forany z > y.

The same arguments show that h(z) < f(z) forallz < y. O

Proposition 4.12 Let L be a set of continuous functions defined on IR such that (4.29) is
valid for Hy. Assume also that for any sequence {h;} C Hp, the following holds: if a
function h € Hy, and an interval (a,b) C R exist such that lim;_, ;o hi(x) = h(x) for all

z € (a,b) then lim;_, o hi(z) = h(z) for all z € R. Then Hy, has the strong globalization
property.

Proof: Let f be an H-convex function and y € IR. Let h € H, be an elementary function
such that h(y) = f(y) and h(z) < f(z) in a neighbourhood U of the point y. We need to
check that h(z) < f(x) for all z € IR. Here we show only that h(z) < f(z) forallz <y.
The proof of the inequality h(z) < f(z) for z > y is analogous.

First suppose that a sequence {y;} C IR exists such thaty; < y V1, limi 400 % = y and
h(y;) < f(y;) for all <. Since f is H.-convex then for each i a function h; € supp (f, Hr)
exists such that f(y;) > hi(ys) > h(y;). We have for each ¢

vi <y, hi(y)>h(w), hily) < fly) = hy). (4.32)

Since the functions h; and h are continuous then we can find a point ¢ € (i, y] such that
hi(t) = h(t). Assume that h;(x) < h(x) for certain z < y;. Then apoint t’ € (z,y;) exists
such that hy(t') = h(t'), and therefore, by (4.29), h; = h, which contradicts (4.32). Hence
h(z) < hi(z) < f(z) forall z < y;. Since y; — y then h(z) < f(z) forallz < y.

Now suppose that such a sequence {y; } does not exist. Since h(z) < f(z)forallz € U
then h(z) = f(z) forall z € [a,y], where a is a point from the neighbourhood U and a < y.

Assume that a point yo < a exists such that h(yo) > f(o)- We will get some contradictions
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for such a situation. So take a small enough € > 0 such that ~(yo) — f(yo) > 2¢. Let {¢;}
be a decreasing sequence of positive numbers and lim; ,, & = 0, e; = €. Since f is
Hp-convex and Hy, is closed under shifts then a sequence {h;} C supp (f, Hy) exists such
that h;(a) = f(a) — ¢; for each 1. Consider two cases:

1.) Letapointy’ € (a,y) and an index ¢ exist such that f(y') — hi(v') > f(a) — hi(a) = &;.
Choose a positive number ¢ such that min{ f(y') — h;(y'), 2¢;} > 6 > f(a) — hi(a)

;.

Then consider the function A'(z) = h;(x) + §. We have
W) =h)+0<f)=h),  K()="hla)+d> fla) =h(a),

R (yo) = hi(yo) + 6 < f(yo) + 2e: < f(yo) + 2e < h(yo)-

Since yo < a < ¥/, these inequalities contradict (4.29) and the continuity of the elementary
functions.
2) Let f(if') — hi(y") < f(a)—hi(a) =¢; foralliand y € (a,y). Since f(y') ~hi(y/) > 0
then

lim hi(z) = f(z) =h(z) forall z € (a,y).

i—+00
Due to the assumptions of this proposition lim; 1 hi(z) = h(z) forall z € X. Hence
h(yo) = lim; o0 hi(y0) < f(yo) because h; € supp (f, Hr). But this contradicts the
assumption h(yo) > f(yo)- O

Example 4.4 Letag > 0and X = IR. Let L be the set of all functions I(z) = —ao(z —a)?,
where a € IR. Then the conditions of Proposition 4.12 hold for H;, and therefore H,, has
the strong globalization property. But we do not have tools here for establishing necessary
or sufficient conditions for global minimum of H-convex functions, since H;, does not
contain any constant and each function h(z) = —ae(z — a)? — ¢ has no global minimum

over X.

So we should consider only examples where some elementary functions attain their
global minimum. In the following example zero belongs to L. Hence we have necessary

and sufficient condition for the global minimum.

Example 4.5 Let [;(z) and l,(z) be continuous strictly decreasing and strictly increasing

functions respectively (z € IR). Assume that L consists of all the functions aly(z), ala(x)
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with a > 0. It is easy to check that the set H, satisfies the assumptions of Proposition 4.12.

For example, we can take

We see that the set H; here is closed under horizontal and vertical shifts. Moreover, the
set of all Hy-convex functions is bigger than the set of all lower semicontinuous convex
functions defined on IR. Indeed, let t(z) = ax — ¢ be an affine function. If a = 0 then
t € Hy. If a > 0 then for each y € R we have that (—ae¥e™® + a + t(y)) < t(z) for any
z € IR, the function h(z) = —ae¥e™ + a+t(y) coincides with ¢ at the point i and belongs

to H;. The same can be done for a < 0. Hence every affine function is H-convex.

Example 4.6 Let!, ..., 0y, a1,...,an be strictly increasing continuous functions defined
on IR. Let L denote the set of all functions I}(z) = a;(¢)li(z) + -+ + am(t)lm(x) with
t € IR. Check that (4.29) is valid for Hy,. So let

hl(a:) = a3 (tl)ll (.’II)+ . -—I—am(tl)lm(a:)—cl, hg(:L‘) = (tg)ll (iL‘)+ . '+am(t2)lm($)—02.

Letz # y and hi(z) = ha(z), h1(y) = ha(y)- Then (h1(z) —h1(y)) — (ha(2) — h2(y)) = 0,
that is

(ar(tr) — a1(t2))(h(z) = h(@)) + - + (am(ts) — am(82))(m(2) = In(y)) = 0. (4.33)

Since z # y and the functions /; are strictly increasing then all the quantities (Li(z) — l:(y))
are not equal to zero and have the same sign. Since all g; are strictly increasing then the
equality (4.33) is possible only for t; = t;. It follows from the equality hi(y) = ho(y) that
¢; = ¢, hence hy = h,.

Now let the sequences {t;}, {¢x} and an interval (a, b) be such that

m

kli»I-Il—loo (i a;(te)li(z) — ck> = Z ai(to)li(z) —cp  forallz € (a,b).

i=1

Letz,y € (a,b) and > y. Then

kEElwf: a;(t)(Li(z) — l:(y) = Z ai(to) (Li(z) — l:()),
consequently ~
Jim > (@ilte) — ai(to)) (li(z) — Li(y)) = 0.

=1
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Since all the quantities ({;(z) — l;(y)) are positive and all the functions a; are continuous
and strictly increasing then limg_ o0 tx = to. The equality img_, ;00 ck = ¢o is valid as

well. Hence, due to Proposition 4.12, H, has the strong globalization property.
Now consider the usual convex functions defined on a topological linear space.

Example 4.7 Let L be the set of all linear continuous functions defined on a topological
linear space X. Let L be the set of all linear functions defined on IR. It follows from
Example 4.6 (with m = 1, a,(t) = ¢, l1(z) = ) that the set H of all affine functions
defined on IR has the strong globalization property. Take two arbitrary points z,y € X and
consider the function w : R — X defined by w(v) = vz + (1 — v)y. Then w(0) = y and
w(1) = z. Moreover, w is continuous and for any h € Hy, the function K (v) = h(w(v))
belongs to H. Indeed, if h(z) = I(z) + ¢ Vz € X, where | € L and ¢ € IR, then
K (v) = l(vz + (1 —v)y) + ¢ = v(l(z) — I(y)) + ({(y) + ¢). Thus, by Proposition 4.10 (see
also Remark 4.2), Hy, has the strong globalization property.



Chapter 5

Separation properties via connectedness

of topological convexity spaces

In this chapter we investigate separation of convex sets by elements of a subbase. In order to
get required results, we apply a restriction on the choice of a subbase in terms of a special
type of connectedness of topological convexity spaces. Among other results, we give a
description of convex sets, which can be represented as the intersection of a subfamily of
subbase (see Theorem 5.4). In particular, this allows to describe abstract convex functions
and sets. We also obtain a description of the abstract convex hull of a finite collection of

abstract convex sets.

3.1 Subbases for convexities and topologies

Recall that a collection G of subsets of a set X is called a convexity on X if

Mo, Xeqg

NA€Gforevery ACG

(3) U A € G whenever A C § is a chain with respect to the inclusion.

Members of G are called convex sets and the pair (X, G) is called a convexity space.
There are two main ways to introduce a convexity on a set. First, we can say that a set

G C X is convex if it satisfies certain properties. In this case we should require that the

collection G of all such sets G C X satisfies axioms (1)-(3). Another way is based on a

notion of a subbase for convexity.

It is clear that the intersection of any family of convexities on a given set X is a convex-

69
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ity as well. This fact allows us to talk about subbases for convexities. A set H C G is called
a subbase for the convexity G if G is the intersection of all convexities, which contain H
(we will say also that G is generated by H). Note that topologies enjoy the same property:
intersection of any family of topologies on a given set X is also a topology on X. So we
can consider subbases for topologies as well.

Let H be a subbase for topology 7. Then open sets can be described in the following
way. First we construct the collection 13 of all intersections of finite subfamilies of . Then
7 consists of the empty set, whole X and all unions of subfamilies of 3.

If A is a subset of X then its convex hull convg A with respect to the convexity G is

defined as follows:
convgA =G €G: ACG).
For any points z,y € X denote by [z, y]g their convex hull convg{z, y}. We will also use

symbol [A]<“ for the collection of all finite subsets of A.

Recall two results of axiomatic convexity. The following one is well known as the

finitary property.

Proposition 5.1 ( /60, p. 31, Proposition 2.1) Let (X,G) be a convexity space. Then for
every subset A C X

convgA = U convg F. 5.1
Fe[A]<v

Proposition 5.2 (/60], p. 10, Proposition 1.7.3) Let (X, G) be a convexity space. If H is a
subbase for the convexity G then for every finite subset ' C X

convgF = {HeH: FcCH} (5.2)

In the right-hand side of (5.2) it is assumed that the intersection over the empty set is
equal to X . In other words, if ' ¢ H for any H € H then we set convgF' = X.
It follows from the formulas (5.1) and (5.2) that for every A C X its convex hull convg A
can be described via elements of 7 in the following way:
comvgA= | ] ({HeH: FcH) (5.3)
FelA]<v
Due to Proposition 5.1, aset A C X is convex (belongs to convexity G) if and only if

A= U convg F.
FelA)<w
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This means that A € G whenever convgF' C A forall F € [A]<“.

The so-called N-ary convexities form one of the most important subclasses of convex-
ities. Let N be a positive integer. Let [A]>" denote the collection of all subsets F' C A,
which contain no more than N points. A convexity G is called N-ary (or of arity V)
(see [60]) if A € G whenever convgF C A for all F € [A]SY. Thus, if G is N-ary and the
number N is not very large then we have a sufficiently simple description of convex sets.

In this chapter we are concentrated on subbases for [N-ary convexities and separation of

convex sets by the elements of a subbase.

Let H be a collection of subsets of a set X. In this chapter we use the following nota-

tions:
o H' ={X\H : H € H} is the collection of all complements of sets H € H;
o H,={H€H: z€ H}foreveryz € X;
e H* is the collection of all sets H, with x € X;
e H* = {H\H, : z € X} is the collection of all complements of sets H, € H*.

We introduce the following convexities and topologies on X:

e G is the convexity on X generated by H;
e G is the convexity on X generated by the union H U H’;
e T is the topology on X generated by H;

e T is the topology on X generated by H.

Note that H* and H*' are collections of subsets of the set H. Hence we can introduce the

following:

e G* is the convexity on H generated by the union H* U H,
e 7T is the topology on H generated by H*;

e T, is the topology on H generated by H*.

Here we use the same definition of a subbase as above. For example, G* is the intersection
of all convexities, which contain H* U H*'.
We first give a description of convex hulls convg and convg. of finite subsets of X and

‘H respectively.
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Proposition 5.3 Let F be a finite subset of X. Then a point z € X belongs to convgF if
and only if for every set H € 'H the following implications hold

FCH = z€H,

reHd = FNH#.

Proof: Since H U H’ is a subbase for convexity G and F contains a finite number of points

of X then its convex hull convg F' can be described via elements of U7’ (see Proposition
5.2):

convgF = (ﬂ{H €EH: FcC H}) N (ﬂ{X\H c HeM, Fc (X\H)}) .
So a point z € X belongs to convg F' if and only if for any H € H

(x € H whenever F C H) and (z ¢ H whenever FNH =0).

H|
Proposition 5.4 Let £ be a finite subset of H. Then
convg—.gz{HeH-. ﬂEchUE}. (5.4)
Ee€ Ee€
Proof: Since € is a finite subset of H and H* U H*' is a subbase for G* then
convg.& = ﬂ{A : AeH*UHY, €C A} 55)
- (ﬂ{m: € X, 8CHz})ﬂ(ﬂ{ng z€ X, 5cH;}).
We have
ECH, <= z€()E, 8CH;<=>33§ZUE.
Eeé& Eet
Hence for every set H € H
He(Ho: z€X, ECH} = (|ECH,
Ee& (5.6)
He({H,: z€X, ECH,} « HC |JE
Ee€
Thus, the required formula (5.4) follows from (5.5) and (5.6). O

Let Y be a topological space. We will need the following interpretation of continuity of

a mapping w : Y — H in cases, when H is equipped with one of the topologies: 73 or 7;,.
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Proposition 5.5 Letyy € Y andw : Y — H be a mapping. If 'H is equipped with the
topology Ty then w is continuous at yo if and only if for each z € w(yo) a neighbourhood
U of yo exists such that € w(y) for all y € U. If H is equipped with the topology T}, then

w is continuous at yo if and only if for each x ¢ w(yo) a neighbourhood U of yq exists such

that x & w(y) forally € U.

Proof: Let ‘H be equipped with the topology 73, and assume that w is continuous at the
point yo. Take a point x € w(yg). Then w(yy) € H, € H* C T3. Hence the set H, is a
neighbourhood of w(yo). Since w is continuous at y, then we can find a neighbourhood U
of yo such that w(y) € H, forally € U. In other words, z € w(y) forally € U.

Conversely, assume that for each z € w(y,) a neighbourhood U of y, exists such that
r € w(y) forally € U. Let S be a neighbourhood of w(y). Since the topology Ty is
generated by H* then a finite collection {H,,, ..., Hy, } of elements of H* exists such that
w(yo) € MK, Ha, C S. This implies z; € w(yo) foralls = 1,... k. By our assumption,
there exist a neighbourhoods Uy, . . ., Uy of the point yo such that z; € w(y) forally € U;.
Then the set U = ﬂi;l U; is a neighbourhood of y and w(y) € ﬂle H,, C S for all
y € U. So the mapping w : Y — H is continuous at .

We omit the second part of the proof since all arguments are the same as in the first one.

A similar interpretation of continuity of a mapping w : ¥ — X is valid for the topolo-

gies Tx and 7.

Proposition 5.6 Let yo € Y andw : Y — X be a mapping. If X is equipped with the
topology Tx (Ty) then w is continuous at yo if and only if for each H € 'H such that
w(yo) € H (w(yo) & H) a neighbourhood U of y, exists such that w(y) € H (w(y) ¢ H)
forally € U.

Proof: The proof is straightforward. O

Remark 5.1 Let X be equipped with a topology 7. Then all sets H € H are open (closed)
in the topology 7 if and only if Tx C 7 (Zx C 7). As one can see from Proposition 5.5, it
is natural to apply the topology 77, in the case, when all sets H € H are open. At the same

time, the topology 77, on H can be suitable when all sets H € 7 are closed.
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5.2 Subbases for N-ary convexities

First we define /N-connectedness of a topological space with respect to a convexity on this

space.

Definition 5.1 Let (X, 7) be a topological space and G a convexity on X. We say that
(X,T) is N-connected with respect to G if NV subsets X;,...,Xny C X exist such that
X=X,U---UXpyandforeachi =1,..., N the following condition holds: for any two
points z,y € X; a continuous mapping w : [0,1] — [z,y]g exists such that w(0) = z and

w(1l) = y. We say that (X, T) is connected with respect to G in the case, when N = 1.

It should be mentioned that the number N above is not minimal possible. In other words,

if (X, 7T) is N-connected with respect to G then it is also n-connected for any n > N.

Remark 5.2 It is easy to see that N-connectedness of a topological space with respect to
a convexity on this space remains valid if the topology or the convexity decreases. This
means the following. Assume that (X,7) is N-connected with respect to G. Let 7; and
G: be a topology and a convexity on X such that 7; C T and G; C G. Then (X, 7;) is

N-connected with respect to G as well.

The following two theorems give important information about convex hulls of finite

subsets of X.

Theorem 5.1 Assume that one of the spaces (H, Tr) or (H, T};) is connected with respect
to the convexity G*. Let F be a finite subset of X. Then for any points T,y € F and for
each z € [z, y|g the following holds:

convg F = comvg({z} U (F\{e})) | Jeomvg({z} U(F\{g})). (5
Proof- Since the set F is finite then
convgF = ﬂ{H €eH: FCH} (5.8)

Let F; = {z} U (F\{z}) and F; = {z} U (F\{y}). Since z € [z,y]g C [=,ylg C convgF
then
convgF D convgF U convgF5.
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Now we need to check the inclusion convg F C convgF} | ) convg F,. We have

COI]VgFl UCOIlVgF2 = (ﬂ{Hl eEH: Fl C Hl}) U (ﬂ{Hg eEH: F2 - H?})
= ﬂ{H1 UH,: Hy,H,€H, Fy CHy, F,C H,)}.

If either {Hy : Hy € H, ; C Hi} = Qor{H, : H, € H, F, C Hy} =0
then convg F | J convg F; = X and the inclusion convg F' C convgFy | J convg F, becomes
trivial.

So we need to show that convgF® C H; U H, whenever F} C H; and F, C H,
(Hi,H,; € 'H). Consider such sets H; and H,. Since the space H is connected with
respect to the convexity G* then a continuous mapping w : [0,1] — [H), Ho)g- exists
such that w(0) = H; and w(l) = H,. If either H; D F or Hy D F then, due to (5.8),
convg ' C Hy U Hy. Assume that H;  Fand Hy 7 F. Thenz ¢ Hy and y ¢ H,.

Let H be equipped with the topology 77, Since y € H; = w(0) and the mapping w is
continuous then, by Proposition 5.5, a positive number ¢ exists such that y € w(t) for all
t <e.

Lett = sup{e € (0,1) : y € w(t) Vt € [0,6)}. Theny ¢ w(?). Indeed, if t = 1
then y € w(t) = H,. Ift € (0,1) and y € w(f) then a positive number ¢ exists such that
y € w(t) forall t € (f — 8, + J), which contradicts the definition of . Thus the point y
does not belong to w(?).

Since w(t) € [Hy, Ha)g~ then it follows from the formula (5.4) that H; N Hy C w().
This implies z € w(f) € H. Since z € [z,y|g then, due to the Proposition 5.3, {z,y} N
w(f) # 0. We proved before that y ¢ w(t). Hence z € w(f). Since £ > 0 then a positive
number § exists such that z € w(t) forallt € (f — §,%). Take an arbitrary ¢, € (£ — 6, 1)
and consider the set Hy = w(to) € H. Then z,y € Hy.

Since Hy € [Hy, Hy)g- then, due to (5.4), Hy N Hy C Hy C Hy U H,. Since z,y € Hy
and F\{z,y} C H1 N Hy C Hy then F' C Hy. This implies convgF' C Hy C Hy U Ha.

Now assume that H is equipped with the topology 73,. Since z ¢ H; = w(0) then,
by Proposition 5.5, a positive number ¢ exists such that z ¢ w(t) forallt < e. Let
#=sup{e € (0,1) : = & w(t) Vt € [0,¢)}. Then z € w(f). Indeed, if { = 1 then
z € w(f) = Hy. IfT € (0,1) and = & w(%) then a positive number § exists such thatz ¢ w(t)
forall t € (£ — 8, + &), which contradicts the definition of t. Since {z,y} Nw(t) # 0 for

anyt € [0,1] and z ¢ w(t) forall t < ¢theny € w(t) whenevert < t. Due to continuity of
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w, the point y belongs to w(t). Hence ' C w(t), and therefore convgF C w(t) C H; U H,.
O

Theorem 5.2 Assume that one of the spaces (H, Ty) or (H,T},) is connected with respect

to the convexity G*. Let X be equipped with a topology T such that

ﬂ convg(S U {z}) = convgS whenever S € [X]|~ and z; converges to a point in S.
i=1

(5.9)
Let F' be a finite subset of X andz,y € F. Letw : [0,1] — [z,ylg be a continuous mapping
such that w(0) = z and w(1) = y. Then

convgF = U convg({w(t)} U (F\{z,y}))- (5.10)
te(0,1]

Proof: Inclusion
U convg({w(t)} U (F\{z,y}) C convgF

t€[0,1]
is obvious because w(t) € [z,y]g C [z,y]g C convgF foreacht € [0, 1].

Let a € convgF. We need to find a number ¢ € [0, 1] such that

a € convg({w(B)} U (F\{z,y})). (5.11)

It follows from the Theorem 5.1 that

a € convg({w(t)}U(F\{z})) Ucoan({w(t)} U(F\{y})) foreach te[0,1]. (5.12)

Define a sequence of segments [c;, d;] C [0,1]. Let c; = 0 and d; = 1. We set:

e { (e +d)f2, ifaecomg(ul(etd)/DFURNED) g0
Ci, otherwise
o { (c+d)2, ifa€comg({w(le+ /DG .

d; otherwise
Then [ci41, dit1] C [¢i, d;] for any integer ¢ > 1. Moreover, due to (5.12), (diz1 — ¢i41) <
(d; — ¢;)/2. Hence there exists a unique point t € [0,1] such that {t} = [;[c;, di]. Since
the mapping w is continuous on [0, 1] then lim; e w(c;) = lim; oo w(d;) = w(t).

It is clear that forany ¢ > 1

a € convg({w(c)} U (F\{e})) [ )convg({w(di)} U (F\{y})). (5.15)
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Indeed, (5.15) is obvious for + = 1. Then, by induction, inclusion (5.15) follows from the
formulas (5.13) and (5.14). Since w(t) = lim;_, 0 w(c¢;) = lim;_,, w(d;) then, due to (5.9),

(eonvg({w(e)} U (F\{z})) < ("eonvg({w(e)} U{w®} U (F\{z}))

i>1 i>1

— comvg({w(®} U (F\{z}),

(eonvg({w(d)} U (F\{y})) C ()convg({w(di)} U {w(®)} U (F\{y}))

i>1 i>1

= convg({w(B)} U (F\{y}))-

Hence

a € convg({w(D)} U (F\{e})) [ convg({w(®)} U (F\{1})). (5.16)
Check the inclusion (5.11). Since {w(?)} U (F\{z,y}) is a finite subset of X then it is
sufficient to show that a € H whenever H € H and {w(?)} U (F\{z,y}) C H. So let
{w@}U (F\{z,y}) C H. Since w(f) € [r,y]g and w(f) € H then {z,y} N H # 0 (see
Proposition 5.3). If z € H then {w(f)} U (F\{y}) C H, and therefore convg({w(#)} U
(F\{y})) C H. Ify € H then convg({w(t)} U (F\{z})) C H. In any event the point a
belongs to H (see (5.16)). O

Now we can formulate the main result of this section.

Theorem 5.3 Assume that one of the spaces (H,T3;) or (H,T},) is connected with respect
to the convexity G*. Let T be a topology on X such that (5.9) holds true. Let N > 2.
Assume that the space (X, T) is N-connected with respect to the convexity G. Then the

convexity G is of arity N.

Proof- Let A be a subset of X such that convg " C A whenever I € [A]SY. We need to

check that A belongs to the convexity G. Due to Proposition 5.1, we have
A€ G < convgA C A <= (convgFF C A foreach F € [A]<).

Let F be a finite subset of A. If F € [A]<Y then the inclusion convgF" C A is valid.

Now assume that F consists of n different points of A and n > N. We need to show
that for each point a € convgF' a set F,_; € [A]=*~1) exists such that a € convgly 1.
Then, by induction, we can find a set Fy € [A] <N guch that a € convgFy. Therefore

convgF' C A.
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So take a point a € convgF. Since the space (X,7) is N-connected with respect to
G and F contains more than N points of A C X then a points z,y € F (r # y) and a
continuous function w : [0,1] — [x, y]g exist such that w(0) = z and w(1) = y. Then, by
Theorem 5.2, there is a number ¢ € [0, 1] with a € convg({w(?)} U (F\{z,y})).

Consider the set Fl,_; = {w(t)} U (F\{z,y}). Since w(f) € [z,9]s C [z,y]s and
{z,y} € [A]*? C [A]=Y then w(f) € A. This implies F,,_; € [A]s(D). O

Below we will show that the estimate of arity number in Theorem 5.3 is sharp (see

Example 5.3).

Remark 5.3 Recall that a convexity space (X, G) is called join-hull commutative (see [25])
provided for each finite set ' C X and for each z € X we have

comvg(FU{z}) = |J [z9s
yECONVg F

Assume that one of the spaces (H, Ty or (H, 7},) is connected with respect to the convexity
G*. Assume also that (X, 7) is connected with respect to G, where 7 is a topology on X,
which enjoys (5.9). Then the convexity space (X, G) is join-hull commutative.

Indeed, let F be a finite subset of X and z € X. Take an arbitrary a € convg(F U {z}).
Lety1,y, € F. Since (X, 7) is one-connected with respect to G then a continuous mapping
w : [0,1] — [y1, yo]g exists such that w(0) = y; and w(1) = y,. Theorem 5.2 implies that

convg(F U{z}) = |J comvg({w(®)} U {z} U (F\{y,42})).

t€[0,1]

Hence there is a point 7o € convg F such that a € convg({yo} U{z}U (F\{y1,¥2})). Since

F is finite then, by induction, we can find a point y € convgF with a € [z, y]g.

Since condition (5.9) is not easy for verification, we present a simpler condition, which

implies (5.9).
Proposition 5.7 Let T be a topology on X such that
ﬂ{E €H: ScintE}Cc H foreach HEH and Se€[H]™, (5.17)

where int E is the interior of E in topology T . Then condition (5.9) holds true for T.
In particular, (5.9) holds for any topology T such that all sets H € H are open in T .
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Proof* Let S be a finite subset of X and Z Z 2 € S. We need to check the inclusion

mcoan(S U {z}) C convgsS.

=1

It follows from (5.17) that

ﬂ{EEH: SCintE}Cﬂ{HEH: S C H} = convgS.

Let E € H be such that S C int E. Since z; Z . € S then a number & exists such that
SU{z} C Eforalli > k, and therefore convg(S U {2;}) C E for all 4 > k. Thus we

conclude that
ﬂcoan(SU {z}) C ﬂ{E €H: S CintE} C convgS.
i=1

If all sets E € H are open in topology 7 (i.e. int E = F) then (5.17) obviously holds. O

Corollary 5.1 Assume that (H,Ty,) is connected with respect to G* and (X, Tx) is N-

connected with respect to G, where N > 2. Then the convexity G is of arity N.

Proof: Tt follows from Proposition 5.7 that condition (5.9) is valid for the topology 7 = T
because all sets H € H are open in 7x. Then, by Theorem 5.3, G is of arity V. O
Unfortunately, condition (5.9) does not necessarily hold for the topology 7 = Ty. To

show this consider a simple example.

Example 5.1 Let X = IR. Let H be the collection of all segments [c, +-00) with ¢ € IR.
Since H’ is a subbase for the topology 7y then z; X z € R if and only if z; ¢ H for all
sufficiently large ¢ whenever H € H and z ¢ H. In other words,

7] _ .
2z 3 z <= (z < c for large i whenever z < ¢) <= limsupz < z.

1—00

For example, 0 X 1. At the same time, convg{0} = [0, +00) ¢ convg{1} = [1,+400). So,

condition (5.9) does not hold in this case.

However, it can be convenient to use a topology 7 on X, which possesses (5.9) and

contains the topology 7.



Separation properties via connectedness of topological convexity spaces 80

3.3 Some particular cases

In order to check the connectedness of a topological space with respect to a convexity on
this space we need to describe convex hulls of each two elements of this space, or at least
to indicate some points of these convex hulls. Here we consider two particular cases, where

the sets H € H are expressed via real-valued functions, and get some formulas for the

convex hulls in terms of these functions.

Subbases of level sets Sy(l) = {z € X : I(z) < 0}

Let L be a family of real-valued functions defined on a set X. Consider the collection
H of all sets So(l) = {z € X : l(z) <0}, wherel € L.

Let z1, o € X. Then, by Proposition 5.3, the set [z, 22]s consists of all points z € X

such that for any [ € L the following implications hold

max{l(z1),l(z2)} <0 = I(z) <0,
l(z) <0 = min{l(z1),{(z2)} <O0.

In particular, [z, z2]g contains all points z € X such that
min{l(x;),(z2)} < l(z) < max{l(z:1),(x2)} VIE€ L
Let l1,l, € L. Due to Proposition 5.4, we have
[So(l1), So(l2)]g= = {So(l) € H : So(l) N So(l2) C Sol) C So(lr) U So(l2)}-

In other words, the set [So(l1), So(l2)]g- consists of all Sy(I) such that for any z € X the

following implications hold

max{l1(z), l2(z)} <0 = I(x) <0,
I(z) <0 = min{li(z),l2(z)} <0.

In particular, [So(l), So(l2)]g- contains all Sy(l) such that
min{l;(z), l2(z)} < I(z) < max{li(z),l2(z)} Vze€X. (5.18)

Proposition 5.8 Assume that L is closed under vertical shifts (this means that for each

| € L and ¢ € R the function h(z) = l(z) + c belongs to L). Let 11, %2 € X. Then

[z, 2] ={z € X: min{l(z1), l{z2)} < l(z) < max{l(z1),l(z2)} Vi€ L} (519)
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If, moreover, X is equipped with a topology T such that

{z e X: l(z) <0} CintSp(l) Viel (5.20)

then condition (5.9) is valid for T .

Proof: First we check the equality (5.19). Let ¢ € [z1, 2. Take an arbitrary [ € L and
consider the number ¢ = max{l(x1),l(z2)}. Since L is closed under vertical shifts then
the function h(z) = I(z) — c belongs to L. It is easy to see that z1, x> € So(h). Since
z € |1, 345 then z € Sy(h), therefore h(z) = I(z) — max{l(z1),{(z2)} < 0.

In order to check the inequality min{l(z,), [(x2)} < I(z) consider the function h(z) =
I(z) —I(z). Since Sy(h) € H and z € So(h) then, by Proposition 5.3, {1, 12} M So(h) # .
Hence either A(z1) < 0 or h(zs) < 0. This means that min{l(z1), (z2)} < (z).

Let 7 be a topology on X, which enjoys (5.20). We show that (5.17) holds for 7. Then,
by Proposition 5.7, condition (5.9) holds as well. So let So(l) € H, where [ € L. Take
a positive number £ and consider the function he(z) = I(z) — €. Since L is closed under

vertical shifts then b, € L and, by (5.20),
{zeX: lz)<et={zeX: h(z)<0}C int Sp(he).
Hence So(l) C int Sy(h.) for any positive . We have

({(H eH: So(l) CintH} C (M So(he) = (o € X = U(z) < e} =So(l).

e>0 e>0

Thus we have proved even a stronger fact then that in (5. 17). O

Consider the classical convex case.

Proposition 5.9 Let (X, 7 ) bea topological linear space and L be the set of all continuous
affine functions | : X — IR. Let 'H be the collection of all level sets Sy(l) = {z € X :
I(z) < 0}, wherel € L (in other words, H consists of the empty set, whole X and all closed

half-spaces of X). Then the convexity G generated by H is of arity 2.

Proof: Let us prove that the space (H, T7,) is connected with respect to the convexity G*,
and (X, 7T) is connected with respect to G.

Let l,l, € L. Since l; and [ are continuous and affine then for every o € [0,1] the
function {(z) = (1 — @)l1(x) + alz(x) is also continuous and affine. Consider the mapping

w : [0,1] — H defined by

wla)={z e X: (1-a)(z)+al(z) < 0}. (5.21)
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Then w(0) = Sy(11) and w(1) = Sy(ly). Moreover, since for anyx € [0,1]andz € X
min{l;(z),l2(z)} < (1 — a)ly(z) + aly(z) < max{ly(z), lo(z)}

then, due to (5.18), w(a) € [So(l1), So(l2)]- for all o € [0, 1].

Assume that H is equipped with the topology 7;,. We need to check that w is continuous
on [0, 1]. Take an arbitrary og € [0,1] and z & w(ag). Then (1 — ap)ly(z) + agla(z) > 0
and we can find a sufficiently small number & > 0 such that (1 — a)li(z) + alz(z) > 0 for
all € [0,1] N (@ — €, ag + €). This implies continuity of w (see Proposition 5.5). Thus
the space (7, 7})) is connected with respect to the convexity G*.

Let z;,z; € X. Consider the mapping w : [0, 1] — X defined by
w(a) = (1 - a)z; + az,. (5.22)

Then w(0) = z; and w(l) = 2. Since I((1 — @)z1 + azy) = (1 — a)l(zy) + al(zs)

whenever [ is affine then
min{l(z1), (z2)} < l(w(e)) < max{l(z;),l(z2)} VIe L.

Hence, by (5.19), w(a) € [z, z2]g for any € [0, 1]. Since (X, T) is a topological linear
space then w is continuous on [0, 1]. So the space (X, 7) is connected with respect to the
convexity G.

Note that L is closed under vertical shifts, and all functions [ € L are continuous in
topology 7 (in particular, they enjoy (5.20)). Then, by Proposition 5.8, condition (5.9) is
valid for 7. At last, it follows from Theorem 5.3 that the convexity G generated by the
collection of all closed half-spaces of X is of arity 2. O

Now consider the case of affine functions defined on an arbitrary linear space.

Example 5.2 Let X be a linear space and L be the set of all affine functions / : X — IR.
As in Proposition 5.9, let H be the collection of all level sets Sp(l) = {z € X : I(z) < 0}
(I € L) and G the convexity on X generated by H. Then the space (H, 7};) is connected
with respect to the convexity G* and (X, 7%) is connected with respect to G. Indeed, for
any l1,l, € L the function (5.21) enjoys all required properties. For z;,z, € X we only
need to check that the function (5.22) is continuous on [0, 1] if X is equipped with the
topology 7x. Let ap € [0,1] and I € L be such that l[(w(ag)) > 0. Since [ is affine

then (1 — ao)l(z1) + aol(z2) = {(w(ap)) > O, hence a positive number ¢ exists such that
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Hw(a)) = (1 — a)l(z1) + al(zz) > 0 forall a € [0,1] N (g — €, g + €). This implies
continuity of w (see Proposition 5.6).

Since for any affine function [ the function —! is also affine then the set
{zeX: l(z)<0}={zeX: —l(z) >0} =X\So(-) e H

is open in the topology 7y for all [ € L. Hence (5.20) bolds true for 7 = 7y, and, by

Proposition 5.8, condition (5.9) is also valid. Thus, due to Theorem 5.3, the convexity G on

X is of arity 2.

The following example demonstrates that the estimate of arity number in Theorem 5.3

1s sharp.

Example 5.3 Let N > 2. Choose arbitrary vectors €',...,e" € RN~! such that every
(N — 1) of them are linearly independent and zero is a convex combination of all €' (for
example, we can take the usual orthogonal base of RN~ and vector (—1,...,—1)). Let
X = X,U---U Xy, where X; = {ae' : a > 0} foranyi = 1,...,N. Let L be
the set of all affine functions defined on IR™ ™! and H be the collection of all level sets
So(l) = {z € X : I(z) €0}, 1 € L. Then (H,7y) is connected with respect to G
and (X,7y) is N-connected with respect to G. Indeed, we can use the same functions
w:[0,1] = Handw : [0,1] — X as in the proof of Proposition 5.9 and Example 5.2.
Foreachi = 1,...,N we have: w(a) = (1 — o)z + oz, belongs to [£1, 2o]g for any
21,72 € X; and a € [0,1]. Condition (5.20) is also valid for the topology T = Ty. Then,
by Proposition 5.8 and Theorem 5.3, convexity G on X = X;U---U Xy generated by H is
of arity N. Now we show that G is not of arity N — 1. Consider the set A = {el,...,eN}
Then, due to our choice of vectors e, convgF = XNconvF = F' C Aforany F e [A]sV-1
(here conv F is the classical convex hull of F in IRY ). However, the set A does not belong

to G since 0 € convgA.

Subbases of epigraphs epi! = {(y,c) € Y x R I(y) < c}
Let L be a set of real-valued functions definedonasetY.Let X =Y x IR. Consider

the collection H of all epigraphs epil = {(y,c) € Y X IR: I(y) < c}, wherel € L.

Remark 5.4 Just note that each epigraph epil can be represented as a level set So(h) of the

function h(y, ¢) = l(y) — c defined on one higher dimension space Y X IR.
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Let (y1,c1), (y2,c2) € Y x IR. Then the set [(y1,c1), (y2, c2)]g consists of all points
(y,¢) € Y x IR such that for any | € L the following implications hold

max{l(y;) — ¢, (32) ~ 2} <0 = l(y) <«
lly)<c = min{l(y) ~ c1,1(y2) — 2} < 0.

In particular, [(y1,¢1), (y2, co)]g contains all (y, ¢) such that
min{l(y1) — c1,{(y2) — c2} < U(y) —c < max{l(y1) —c1,1(y2) —c2} Vi€ L. (523)

At the same time, we have a very easy description of the set [epil1, epils]g for every
ll, l2 € L:

[epily,epils)ge = {epil: 1 €L, (epiliNepily) Cepil C (epily Uepily)}

= {epil: le L, minl(y) <I(y) <maxl(y) Vy e Y}

Proposition 5.10 Assume that L is closed under vertical shifts. Let (y1,c¢1), (y2,¢2) €
Y x R. Then a point (y,c) € Y X R belongs fo [(yy,c¢1), (y2, c2)|g if and only if (5.23)
holds.

In other words,

[(yl)cl)v (y2,02)]g— = {(y>c) : f(y) <c< g(y)})

where the functions f and g are defined by

f(z) = sup(l(z) — max{l(y1) — c1,(y2) — c2}),

leL

g(z) = Pg%(l(x) —min{l(y1) — 1, U (y2) — c2})-

Let, moreover, Y x IR be equipped with a topology T such that
{(y,c): l(y) <c} Cintepil  VielL.
Then condition (5.9) is valid for T.

Proof: Let (y,¢) € [(y1,¢1), (2, c2)]g. Take an arbitrary ! € L and consider the following

functions defined on Y':

h(z) = U(z) — max{l(p) — o1, l(a) — 2}, H(2) =1(z) —Uy) +e.
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Since L is closed under vertical shifts then h, A’ € L. We have

h(y)) < e, hlye) <cp, Wy =c

Since (y,¢) € [(y1, 1), (y2, c2)]g then h(y) < cand min{h’(y;)—c1, ' (y2) —c2} < 0. This
means that [(y) —c < max{l(y1) —c1,(y2) — 2} and min{l(y1) —c1, L(y2) —c2} < U(y) —c.

Let 7 be a topology on Y X IR such as in the statement of proposition. Take an arbitrary
| € L. Then for any positive € the function h.(z) = [(z) — € belongs to L and

epil C {(y,¢): he(y) < c} C intepih,.

Thus we have

ﬂ{HE’H: epil Cint H} C mepihez ﬂ{(y,c) €Y xIR: l(y) <c+¢e} =epil.

e>0 e>0

- Proposition 5.7 implies that condition (5.9) is valid for 7. o

5.4 Separation theorems

In this section we investigate separation of convex sets by elements of a subbase. In general,
we have the following weak version of the separation property, which follows directly from
(5.3): if H is a subbase for convexity G and G € G then for every g ¢ G and for every finite
subset F C Gaset H € Hexistssuchthat F C Handg & H.

If the convexity G is N-ary and the number N is not very large (as a rule, we are
interested in the cases, when N = 2) then we have a sufficiently simple description of
convex sets. At the same time, if G is generated by H then our weak separation property
can be applied for every convex set G.

For example, if (H, 73) is connected with respect to G* and (X, 7x) is N-connected
with respectto G (N > 2), then for any G C X the following conditions are equivalent:

1.) forevery g ¢ Gand F € [G]<“ aset H € H exists with F C Hand g ¢ H,

2.) convg{gi,..-,gn} C G for all g1,...,98v €G.

Indeed, by Corollary 5.1, the convexity G is of arity N. Then conditions 1.) and 2.) are
equivalent because 1.) means that G € g.

In order to have a stronger version of the separation property, some additional assump-

tions are required. Namely, we need some topological properties of convex sets.
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Here we consider the case, when all sets H € H are closed. More precisely, we as-
sume that X is equipped with the topology 7% and H is equipped with the topology 7.
Moreover, one-connectedness of (X, 73) with respect to G (as well as one-connectedness
of (H, 7;,) with respect to G*) will be essential to get next results.

Let us begin with the following lemma.

Lemma S.1 Assume that (X,Ty) is connected with respect to G. Let z,y € X and
Hy,H, € H.

1)Ifz € Hi,y € Hyand [z,y]g C H1 U Hy then [z, ylg 0 Hy N Hy # 0.

2)Ifx & Hi, y & Hyand [z,y]g N Hi N Hy = (0 then [z,ylg ¢ Hi U H,.

Proof: Since (X, Ty ) is connected with respect to G then a continuous mapping w : [0, 1] —
[z, y]g exists such that w(0) = z and w(1) = y. We will use the interpretation of continuity

of w presented in Proposition 5.6.

1.) Assume that x € Hy,y € H; and [z,y]g C H; U Hy. Consider the number
t=sup{e >0: w(t) € HVt <¢e}.

Then w(t) € H; (otherwise, if w(t) ¢ H, then w(t) € H, for all ¢ from a neighbourhood
of ¢, which contradicts the definition of ). We need to check that w(?) € H, (then w(?) €
[z,y]lg N H1 N Hy). Assume it is not true, that is w(t) ¢ H,. Since w(1) € Hy then ¢ < 1.
By definition of ¢, for any 6 > 0 a number ¢t € (¢, + §) exists such that w(t) & H;.
At the same time, since w(t) ¢ H, then w(t) & H, for all ¢ from a neighbourhood of ¢.
Hence a number ¢ € (£, 1) exists such that w(t) & H; U Ha, which contradicts the inclusion
[z,yle € H1 U Ha.

2.) Now assume that z ¢ Hy, y € H and [z,y]g N Hy N Hy = (. If either z ¢ H; or
y & H, then [z,y|s ¢ Hi U Ha, because either x ¢ H; U Hy ory € Hy U Hj. So, assume
that z € H, and y € H;. Define the following number

t=sup{e > 0: w(t) € HVt < e}.

Since w is continuous and w(0) € H, then w(f) € H,. If = 1theny = w(f) € Hy,
which contradicts the assumption y ¢ H,. Hence £ < 1 and, by definition of ¢, for each
§ > 0 anumber t € ({,f+ J) exists such that w(t) ¢ H,. On the other hand, since
[z,ylg N Hi N Hy = 0 and w(?) € H, then w(?) ¢ H,, therefore w(t) ¢ H, for all ¢
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from a neighbourhood of £. Thus, for each § > 0 a number ¢ € (t,t + 4) exists such that
w(t) ¢ Hy U Hy. This implies that [z,y]5 ¢ H; U H,. O
For any G C X let co(x )G denote the set defined by:

cox)G=[{HeMH: GcCH). (5.24)

If G ¢ H forall H € H then we set cox )G = X.
The following separation theorem gives a description of sets G C X, which can be

represented as the intersection of a subfamily of 7.

Theorem 5.4 dssume that (H,T};) is connected with respect to G* and (X, T}) is con-
nected with respect to G. Let G C X.

1.) The following conditions are equivalent:
(i) For every g € X\G aset H € H exists such that G C H and g ¢ H.

(i) G is closed in topology T, and convex in convexity G.

(i) G is closed in topology Ty and [z,y|g C G forall z,y € G.

(iv) G is closed in topology Ty and [z,ylz C G for all z,y € G.
2)If|z,ylg C Gforall z,y € G then

cox, )G =clr,G, (5.25)

where cl 1, G is the closure of G in topology T.

Proof: We first prove (5.25). Since each set H € H is closed in topology 7y then ¢l 1; G C
co(x,7)G. In order to prove the inclusion cox )G C clz; G we will check that g ¢
co(x,1)G whenever g ¢ cl 1, G. Note that g € co(x,)G if and only if a set H € H exists
withg ¢ Hand G C H. Soletg & cl1; G.

Since the topology 7 is generated by H' = {X\H : H € H} then a finite collection
{H,,...,H,} C H exists such that g € [,(X\H;) C X\G. In other words, g & | J, H;
and G C |J, H;. If n = 1 then the set H; possesses required properties: G C H; and
g¢ Hy. Letn > 1.

We will prove that a set Hy € convg.{H,, Hz} exists such that G C Ui23 H; U H,.
Then, by induction, there is a set H € convg{Hi,...,H,} with G C H. Moreover,
g ¢ H because g ¢ |J; H; and H C |J, H; (see Proposition 5.4), hence g ¢ co(x,2)G.
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Since (H, T};) is connected with respect to G* then a continuous mapping w : [0,1] —

[Hy, Hy)g« exists such that w(0) = H; and w(1) = H,. Consider the number

fzsup{e €[0,1]: GC UH¢Uw(t) Vit Se}.
i>2

Prove the inclusion G C | J;5, Hi Uw(?). If £ = 0 then this inclusion is trivial. If £ > 0
and G ¢ |J;5, Hi Uw(t) then a point y € G exists such that y ¢ J,5, Hs and y & w(?).
Hence, by Proposition 5.5, y € w(t) forall t € (¢ — 4,t) with sufficiently small > 0. This
implies that G ¢ |;», Hi Uw(t) forall t € (t — 4,t), which contradicts definition of L.
Thus, we conclude that G C | J;5, Hi U w(?).

Let Hy = w(f). If { = 1 then Hy = Hy, therefore G C ;5o HiUw(?) = ;53 Hi U Ho.
Assume that £ < 1.

We need to check that G C |J;s3 H; U Ho. Assume it is not true. Since G C ;5y Hi U
w(t) then a point y € G N H, exists such that y ¢ w(t) andy ¢ H, forall¢ > 3. Since
f < 1landy ¢ w(f) then, due to Proposition 5.5, y & w(t) forallt € (t,T + ) with
sufficiently small § > 0. At the same time, by definition of t,G ¢ Ui22 H; Uw(t) for some
t € (£, T+ 6). Hence a number t € (f,£+ 8) and a point z € G exist such that z ¢ w(t) and
¢ ¢ H; for all ¢ > 2. This implies, in particular, that z € H;, because G C Ui21 H;. We
have

:I:,yGG, IE,y¢W(t), I;ngz V2231 IGHI) yGHz-

It follows from Proposition 5.3 that [z,y]g N w(t) = 0 and [z,y]g N H; = 0 for any
i > 3. On the other hand, [z,ylg C G C J;»; Hi. Therefore [z,y]lg C Hi1 U H;. Since
(X, T%) is connected with respect to G then, by Lemma 5.1, [z,ylg N H1 N Hy # 0. Since
w(t) € [Hy, Ha)g- then H1 N Hy C w(t). Hence [z,ylg N Hi N Hy Nw(t) # 0, which
contradicts the equality [z, y]g Nw(t) = 0.

Thus, (5.25) is valid. Now prove the equivalence of (i}(iv). Clearly condition (1) means
that G =({H € H: G C H} = coxxnG.

(i) => (i) Since all sets H € H are closed in topology 7 and convex in convexity G
then condition (ii) holds true.

(ii) = (iii) It is obvious because [z,y]g C G forallz,y € G whenever G € G.

(iii) = (iv) It is sufficient to note that [z,9]g C [z,y]g forallz,y € X.

(iv) = (i) Since G is closed in topology 7y then cl T)/(G’ = (5. Moreover, by (5.25),
co(x)G = cl 7y G because [z,y]g C G forall z,y € G. Hence cox)G =G. 0
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Remark 5.5 If (H,7/,) is connected with respect to G* and (X, 7y) is connected with
respect to G then for any G C X

cox,1)G = ¢l convgG. (5.26)

Indeed, equality co(x jyconvgG = clqjconvgG follows from (5.25) because [z,ylg C
convgG forall z,y € convgG. At the same time, since for every H € H inclusions G C H

and convgG C H are equivalent then co(x,convgG = co(x,1)G.

The next theorem states that, under some conditions, two convex sets, one of which is

closed in 7 and the other one is compact in 7y, can be separated by a set H € H.

Theorem 5.5 Assume that (H,T},) is connected with respect to G* and (X, Ty) is con-
nected with respect to G. Assume also that [H1, Halg- = [H1, Hg. U [H, Ha]g. whenever
H,, Hy, € Hand H € [Hy, H))g-. Let G, K C X be such that GNK = 0. Assume that
[z,9]6 C G Vz,y € Gand[z,ylg C K Y,y € K. IfG is closed in topology Ty and K
is compact in T}, then a set H € H exists with G C H and K C X\H.

Proof Since G and K are disjoint then, by Theorem 5.4, forevery g € Kaset H € H
exists such that G C H and g ¢ H. Hence K C | {X\H e H': G C H}. Since K
is compact in topology 7 and all sets X\H € ‘H’ are open in T then there exists a finite
collection {Hj, ..., H,} C Hsuchthat G C N, H; and

K c | Jx\H). (5.27)
i>1
Letn > 1.
We need to find a set Hy € convg.{ H1, Ha2}, which satisfies inclusion
K c | J(X\H:) U (X\Ho). (5.28)
>3
Due to Proposition 5.4, H; N H, C H, whenever Hy € convg-.{H 1, Hy}, therefore G C
N;>3 Hi 0 Ho. Then, by induction, there is aset H € H with G ¢ Hand K C X\H.
First, note that for any H € convg {H,, Hy} we have:
either K C | JOO\H)U(X\H)U(X\H1) or KC UJGOH) U (X\H)U (X \Ho).

>3 i>3

(5.29)
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Assume it is not true. Since K C | J;5,(X\H;) then there exist z,y € K such that
x,yEH, ZL',yEHi V’LZB, ZL'EX\Hl, yEX\HQ

Hence [z,y]g C H and [x,y)g C H; forany ¢ > 3. Since [z,y]g C K C |J;5; (X\H;) then
(z,y]g C (X\H1) U (X\H,). This means that [z,y]g N H1 N Hy = 0 and, due to Lemma
5.1, [z,ylg ¢ HyU H,, which contradicts [z, y]g C H, because H C H;U Hs. Thus, (5.29)
holds true for every H € convg.{H1, Ha}.

Since (H, T7,) is connected with respect to G* then a continuous mapping w : 0,1] —

[Hy, Hy)g- exists such that w(0) = Hy and w(1) = H,. Consider the following number

{ = sup {t €[0,1]: KC U(X\Hi) U (X\w(t))} :

i>2
Prove that

K < |J&X\H:) U (X\w(®) U (X\H)). (5.30)

>3
If — 1 then this inclusion is trivial. Assume it is not true for £ < 1. Then, by (5.29), K C
Uiz (X\H:) U (X\w (). Since w is continuous then z € X\w(t) whenever z € X\w(?)
and ¢ is close to £. Therefore X \w(t) C U,¢ sy X \w(t) and
Kc |J X\H)uX\w®).
i>2, te(B1)
Since K is compact then a finite collection T' C (£, 1) exists such that

Kc |J (X\H)UX\w®). (5.31)

i>2, teT
Check that for every t',t” € T
either K C () (XN\H)UX\w(t)) or KC L) (O\H:) U (X \w(t)).
1>2, teT\t/ >2, teT\t”
By conditions of theorem, [H1, Halg- = [Hy,w(t)]g U [w(t'), Halg-. Hence w(t") belongs
to the union [Hy,w(t)]g- U [w(t'), Ha]g--
Ifw(t”) € [Hi,w(t')]g- then w(t”) C Hy Uw(t'). This means that (X\H;) N (X\w(t)) C
X\w(t"), and, in view of inclusions (5.27) and (5.31), we get
Kc |J \H)uX\w(1):

i>2, teT\t
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If w(t") € [w(t'), Hy)g- then w(t') N Hy C w(t”), which is equivalent to X\w(t”) C
(X\w(t")) U (X\ Hy). This and (5.31) give the inclusion
Kc |J (X\H)u@X\w®).
22, teT\¢"
Since T is finite then, by induction, a number ¢ € T exists such that
K c | J\H:) U (X\w(t)).
i>2
This contradicts definition of ¢ because ¢ > t. So, we conclude that (5.30) is valid.
By definition of ¢, a sequence {¢;} C [0, ] exists such that t; — ¢ and for any j
K c | J(X\H) U (X\w(t;)). (5.32)
i>2
Since w is continuous and ¢; — ¢ then if follows from (5.30) that
Kc |J (X\H)U(X\w(t;) U (X\Hy).
>3, j>1
Since K is compact then a finite collection T = {t;,, .. .,t;,.} exists such that
K | (X\H)U (@) U (X\H).
i>3, teT
By repeating reasoning after formula (5.31) (with H; instead of H), we deduce that an
integer j exists, which enjoys the inclusion
K C | JXO\H:) U (X \w(t;)) U (X\Hy). (5.33)
i>3
At last, inclusions (5.32) and (5.33) imply that
K < | JOOH) U (X\w(t)),
>3

because (X\H;) N (X\Hs) C (X\w(t;)). Thus, (5.28) is valid for Ho = w(t;). O

5.5 Convex hull of a finite union of convex sets

Here we give a description of the convex hull convg U~, G;, where {G1, .. ., G} is a finite
collection of convex sets. Note that the set convg | Ji_, G can be described via convex
hulls of unions of two convex sets, because convg | J_; Gi = G", where G' = G, and

Gt = convg(G*PUG;) fori =2,...,n.
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Proposition 5.11 Assume that one of the spaces (H,T3;) or (H,T},) is connected with
respect to the convexity G*. Assume also that (X,T) is N-connected with respect to G,

where T is a topology on X, which enjoys (5.9). Then for any G4, ...,G, €G

convg LnJ G; = U convg LnJ F;. (5.34)

i=1 Fie[G;)sN =1

Proof: If F; € [G;]=" for alli then |, F; C |, G, hence convg | J; F; C convg |, Gi.

Now we need to check the inclusion

convg LnJ G; C U convg Ln) F;.

i=1 Fie[Gi]SN i=1
Let a € convg | J; G;. Then, by Proposition 5.1, there exists a finite subset /' C | J; G; with
a € convgF.
If FNG; € [Gi]<N foralls < n then a € convg |, F, where F; = F NG, € [Gi]=F.
Let F N G; & [G;]=V for certain 4. In other words, F' contains m different points of G;
and m > N. Since (X, T) is N-connected with respect to G then two points z,y € F N G;
and a continuous mapping w : [0,1] — [z,y]g exist such that w(0) = z and w(1) = y.

Theorem 5.2 implies that

convgF = U convg({w(t)} U (F\{z,y}))-

t€[0,1]
Therefore a € convg({w(t)} U (F\{z,y})) for certain ¢ € [0,1]. Since G; is convex and
2,y € G; then w(t) € G;. Hence the set {w(t)} U (F\{z,y}) contains (m — 1) points of
Gi.
By induction, there is a set F; € [G;]<" such thata € convg(F;U(F\G:)). By repeating
this process for each i = 1,...,7, we will find n sets F; € [Gi]SN with a € convg |, Fi.
0O

Now consider a description of the set co(x 1) UL, Gi, where G; € g.

Proposition 5.12 Let T be a topology on X such that T, C T and (5.9) is valid for T.

Assume that (H,T};) is connected with respect fo G* and (X, T) is connected with respect

to G. Thenforany Gi,...,Gn € g

CO(X.H) U Gi=clgy, (coan UGi> =clp ( U convg{g, .. ,gn}> : (5.35)

i=1 i=1 9:€G;
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Proof: Since (X, T') is connected with respect to G and 7, C 7 then (X, T%) is connected
with respect to G as well (see Remark 5.2). It follows from (5.26) that

CO(X,H) U Gi =cl T} (COI]Vg LnJ G1> ,

=1 =1

and, by Proposition 5.11 (with N = 1),

n
coanUGi = U convg{g1,.--,9n}
i=1

9:€G;

5.6 Description of abstract convex functions

Let L be a set of functions [ : Y — IR definedonaset Y. Let X =Y x IR and H be the
collection of all epigraphs epil = {(y,c) € Y x IR : [(y) < c} withl € L.

Some formulas for the segments [(y1, ¢1), (y2, ¢2)]g and [epi s, epi ls]g- in this case were
considered in Section 5.3. Below we give a description of L-convex functions by using

connectedness of X and H.

We begin with the description of L-convex functions on finite subsets of Y. Let Z be
a subset of Y. Recall (see [41]) that a function f : ¥ — IR ., = IR U {+o0} is called
L-convex on Z if a subfamily 7' C L exists such that f(z) = sup,cy {(z) forall z € Z.

Proposition 5.13 Let N > 2 and T be a topology on X, which enjoys (5.9). Assume that
(H,T;,) is connected with respect to G* and (X, T ) is N-connected with respect to G. Then
for any function f : Y — IR, the following conditions are equivalent:

1.) Forevery y,y1,...,yn €Y

fly) <sup{i(y): L €L, l(y) < fly) Vi=1,...,N} (5.36)
2.) [ is L-convex on every finite subset of Y .

Proof: Tt follows from Theorem 5.3 that the convexity G generated by H is of arity V.
1.) = 2.) Let a function f enjoys (5.36) for all y,1,...,y~ € Y. Thenits epigraph
epi f belongs to the convexity G. Indeed, since G is N-ary then epi f belongs to G if and

only if convg{(y1,c1), - - ., (yn,cn)} C epi f forany (y1,c1), -, (yn,cn) € epif. Solet
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(yl,cl), ceey (yN,cN) € epi f. Then we have

cowvg{(ys,c1), ..., (ynv,en)} = {(,0): sup{i(y): I(y;) < Vi< N} <}
< {9 sup{lly): 1w) < () Yi< N} <<}
C epif.
Let Z be a finite subset of Y. If f(z) = 00 for all z € Z then also sup,¢;, [(z) = +00

forall z € Z, and therefore f is L-convex on Z. Indeed, if f(z) = +o0 on Z then it follows
from (5.36) that for any z,y1,...,yxn € Z

supl(z) =sup{i(z): leL, l(y;) <400 Vi=1,...,N} > f(2) = +oo.
leL

Now assume that the set F' = {(z, f(2)) : z € Z, f(z) < +oo} is not empty. Since F is a
finite subset of ¥ x IR then due to (5.2)

convgF = {HeH: FCH}y=( {epil: l€L, I(z) < f(z) Vze Z}). (537)
Let T' be the collection of all functions [ € L such that I(z) < f(z) for any z € Z.
Since epi f € G and F' C epi f then convgF C epif. This means, in view of (5.37),
that T is nonempty (otherwise F° ¢ H for any H € 'H and, by Proposition 5.2, we have
convgFF =Y x IR ¢ epif) and f(y) < sup,er!(y) forall y € Y. On the other hand,
sup;er U(z) < f(z) for any z € Z by definition of 7. Hence f(z) = sup,cr{(2) Vz € Z.
In other words, f is L-convex on Z.

2.) = 1.) Let f be L-convex on every finite subsetof Y. Lety, y1,...,yn € Y. Since
f is L-convex on {y,v1,-..,yn } then

fly) = sup{l(y): leL, l(y) < fly), (w) < flys) Vi=1,...,N}
< sup{l(y): L€ L, Uy) < fly) YVi=1,...,N}.
[

Now consider the case, when (X, 7%) is connected (one-connected) with respect to G.

This allows us to give a description of L-convex functions on the whole set Y.

Proposition 5.14 Let L be the collection of all functions £(z) = miner l(z) with T €
[L]<¥, where [L]<“ is the collection of all finite subsets of L. Assume that (H,T},) is
connected with respect to G* and (X, T}) is connected with respect to G. Then a function

f:Y — Ry is L-convex if and only if it is L-convex and

Fly) <sup{l(y) : L€L, ly) < fly), Up) < fl2)} Yoy €Y. (5.38)
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Proof: If f is L-convex then inequalities (5.38) obviously hold. Moreover, since L C £
then f is £-convex as well.

Conversely, assume that f is £-convex and enjoys (5.38). It is clear that for every
¢ € L its epigraph epi/ is closed in topology 73 because it is union of a finite number of
epigraphs of functions [ € L. Since f is £-convex then the epigraph epi f is also closed in
topology 7. Moreover, inequalities (5.38) imply that [(y, 1), (y2, c2)]g C epi f for any

(y1,¢1), (Y2, c2) € epi f. Indeed, if (y1,c1), (y2, c2) € epi f and (y,¢) € [(y1, 1), (y2, 2)]g
then

fw)

IA

sup{l(y) : 1 € L, U(y1) < f(y1), Uy2) < fly2)}
sup{l(y) : 1€ L, l{y1) <1, Uya) < ¢z}
< sup{l(y): leL, l(y)<c}<c

IN

Due to Theorem 5.4, for each (y,c) ¢ epi f a set epil € H exists such that epi f C epil
and (y, ¢) ¢ epil. This means that f is L-convex. O
Next proposition shows that, in some cases, £-convexity of f can be interchanged with

the lower semicontinuity.

Proposition 5.15 Assume that L is closed under vertical shifis. Let Y be equipped with
a topology such that Y is compact and all functions | € L are continuous. Assume that
(H, T7,) is connected with respect to G* and (X, T) is connected with respect to G. Thena
function f : Y — IR o is L-convex if and only if it is lower semicontinuous and possesses

(5.38).

Proof: Since L consists of continuous functions then every L-convex function is lower
semicontinuous. Inequalities (5.38) for L-convex functions f are trivial.

Now assume that f is lower semicontinuous and possesses (5.38). Let us prove that f
is £-convex, where L is the collection of all minimums of finite subfamilies of L. Then, by
Proposition 5.14, f is L-convex.

Take an arbitrary y € Y. It follows from (5.38) that

Fly) <sup{l(y): L€ L, l{y) < fly), U(2) < f(2)} VzeY,

hence

fy)=sup{l(y): L€ L, ly) < f(y), U(z) < f(z)} VzeY. (5.39)
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Lete > 0. If f(y) < +oo then, by (5.39), for each z € Y a function [, € L exists such

that [,(z) < f(2) and f(y) — /2 < l,(y) < f(y). If f(y) = +ocothenforeachz € YV a
function I, € L exists such that [,(2z) < f(2) and 1/e < I,(y) < f(y). Since L is closed
under vertical shifts then every function h,(z) = l,(z) — €/2 belongs to L. We have:

ho(y) < fly) —€/2,  hi(2) < f(z) —€/2

and

fly) —e < h(y) if fly) <+oo,  1lle—e/2< hu(y) if f(y) = +oo.

Since f is lower semicontinuous, A, is continuous and h,(z) < f(z) then foreachz € Y a
neighbourhood U, of z exists such that h,(x) < f(z) for all z € U,. Due to compactness
of Y, there is a finite collection {21,...,2,} C Y with U, U...UU,, =Y. Consider
the function £(z) = min; h,,(z). Then £ € £ and £(z) < f(z) forall z € Y. Moreover,
fly) —e < £(y) if f(y) < +ooand 1/e — /2 < £y) if f(y) = +oo.

Thus, we have proved that, forany y € Y ande > 0, a function £ € supp (f, £) exists
such that f(y) — & < £(y) for f(y) < +ooand 1/e — e/2 < £(y) for f(y) = +oo. This

means that f is L-convex. O

5.7 Description of abstract convex sets

Let L be a set of functions defined on aset Y. Let X = L and H be the collection of all
subsets {{ € L : I(y) <c} C X, where (y,c) €Y xR,
Then for any l4,l; € L

lh,blg = [{HEH: b€ H}
= {le€L: l(y) <cwhenever max{l(y),l(y)} < c}

= {lel: l(y) <max{l(y), W)} Yy e}
Similarly,
Ll = {l € L+ min{Li(y), ()} < 1(y) < max{h(y), (y)} Vv € Y}

Let (y1,¢1), (¥2,¢2) € Y x Rand H; = {lel: Uy) <} (i = 1,2). Then, by
Proposition 5.4, [Hy,Holg- ={HeH: HiNH2 CHC H, U Hy}. In other words, a set
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H={leL: I(y) < c} belongs to [H,, Hy]g- if and only if for each [ € L the following

implications hold:

max{l(y1) — c1,{(y2) — 2} <0 = I(y) <ec,
lly) <c = min{l(y) — c1,(y2) — 2} <0.

Thus, our formulas for [I;, ;] and [H;, H,]g- coincide with the corresponding formulas
for [epily, epilz]g- and [(y1, c1), (2, c2)]g in the case, when X = Y x IR and H = {epil :
I € L} (see the second part of Section 5.3).

Recall that a set U C L is called (L, Y)-convex if U = co U, where co,U = {le L:

ly) < sup,eyu(y) Yy € Y}. Ttis easy to see that co,U = coixx)U, where cox U is
defined by (5.24). Indeed,

coxmlU = ({HeH: UcH}
= {leL: l(y) <cwheneveru(y) <c Vue U}

= {l € L: l(y) <supu(y) Yy € Y} =coyU.
uel

Proposition 5.16 Assume that (H,T},) is connected with respect to G* and (X, T}) is con-
nected with respect to G. Then aset U C Lis (L,Y)-convex if and only if it is closed in the

topology Ty, and

{te L: min{l(y),l(y)} <l(y) <max{li(y), ()} VyeY}CU Vi el
(5.40)

Proof: Let U C L = X. Theorem 5.4 states that U = co(x U if and only if U is closed
in topology 7% and [l1,lz]g C U for all [;,l; € U. Since coU = coxx)U then U is
(L, Y)-convex if and only if it is closed in topology 7 and possesses (5.40). ad

AsetU C Lisclosedifand only if it contains each [ € L such that every neighbourhood
of [ contains an element of U. Since the topology 7 is generated by the collection of all
sets {1 € L : I(y) > c} with (y,c) € Y xR, then U is closed in topology T if and only if
it contains all I € L such that for every finite subset F° C Y and for every € > 0 a function
u € U exists with u(y) > l(y) —e Yy € F.

Let 7 be the topology of pointwise convergence on L. Then (X, 7 ) is connected with
respect to G if and only if for any Iy, 1, € L a mapping w : [0, 1] x Y — IR exists such that

w(-,y) is continuous on [0, 1] for each fixed y € Y and the following holds:

(.U(t, ) €L Vte [0’ 1]) (.U(O, ) = ll; (.U(]., ) = 121
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min{l; (y),l2(y)} < w(t,y) < max{li(y),l(y)} YVt e [0,1], ye Y.

It is clear that condition (5.9) is valid for 7. Indeed, let U be a finite subset of L and l;

converges to an element I’ € U. This means that I;(y) converges to I'(y) for every y € Y.
Then

(Neonvg(UU{L}) = {z e L: I(y) < max {li(y),%laxu(y)} VyeY,i> 1}

i>1 €U

uelU

{l € L: l(y) <maxu(y) Vy € Y} = convgU.

Moreover, since every set H = {l € L : I(y) < ¢} € H is closed in topology 7 then
Ty CT.

Proposition 5.17 Assume that (H,T},) is connected with respect to G* and (X, T} ) is con-

nected with respect to G. If L is compact in the topology of poinwise convergence then a set

U C Lis (L,Y)-convex if and only if it is closed in T and
(lel: I(y) <max{lh(y), b)) YyeY)CU Vi,LeU (541

Proof: By Theorem 5.4, U is (L, Y )-convex if and only if it is closed in topology 7 and
[l1,l2]g C U forallly,l, € U.

Inclusions [I3,ly]g C U for ly,l, € U are equivalent to (5.41). If U is closed in topology
T, then it is closed in 7" as well, because 7y C 7.

Conversely, let U C L be closed in the topology of pointwise convergence and enjoy
(5.41). Assume that L is compact in 7. Then U is also compact in 7. We need to check
that U is closed in the topology 7. Let [ € L\U. It follows from (5.41) that for every
u € U apointy, € Y exists with [(y,) > u(yu). Let ey = (4(yu) +1(%))/2. Then for each
we Utheset {I' € L: I(y,) < cu} is a neighbourhood of v (i.e. it is open in topology
T and contains w), and [(y,) > c,. Since U is compact then there is a finite collection
{(y1,¢1), - (Yn» )} C Y x IR such that min;(u(y;) —¢;) <0 < min;({(y;) — ¢;) for all
we U. Hence l & |J, H; and U C |, H;, where H; = {U' € L: I'(y;) < ¢;} € H. This
means that [ does not belong to the closure cl 7 U, because [, H; is closed in topology 7.

Thus, U is closed in 7. O

Proposition 5.18 Assume that L is closed under vertical shifts. Let Y be equipped with a

topology such that Y is compact and all functions | € L are continuous on Y. Assume that
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(H, 7)) is connected with respect to G* and (X, T ) is connected with respect to G. Then a
setU C Lis (L,Y)-convex if and only if (5.41) holds and U contains every | € L such that
(l—¢€)eUforanye > 0.

Proof: If U is (L, Y')-convex then (5.41) is valid. Moreover, since I(y) = sup,.(l(y) — €)
then U contains every | € L suchthat (I —¢) € U foralle > 0.

Conversely, assume that U C L possesses (5.41)and ! € U whenever (I—¢) € U for all
g > 0. Letl € L be such that I(y) < sup,cy u(y) forally € Y. We show that (I —¢) € U
for any positive €. Then [ belongs to U as well, and therefore U is (L, Y')-convex.

Solete > 0. Since I(y) — ¢ < sup,yu(y) Yy € Y then for each y € Y a function
uy € U exists with [(y) —e < uy(y). Due to the continuity of functions [ and u,, [(z) —¢€ <
u,(2z) for all z from a neighbourhood of y. Then, by compactness of Y, a finite collection
{u1,...,u,} C U exists such that (y) — ¢ < max; u;(y) forally € Y.

Since the topology 7 enjoys condition (5.9) then, by Theorem 5.3, the convexity G is
of arity 2. It follows from (5.41) that [l;,ls]g C U for any l4,1l, € U. Hence U is convex.
This implies that convg{us, ..., u,} C U. In other words,

{u € L: u(y) <maxu;(y) Yy € Y} cU.

In particular, U contains the function A(y) = I(y) —e. 0

At last, we give a formula for the (L, Y')-convex hull of a finite union of (L, Y")-convex
sets. This is important for the description of the support set and the subdifferential of the
maximum of a finite collection of abstract convex functions. Indeed, for every L-convex

functions fi, ..., f, we have
supp (yllax fi,L> :coL| |supp (fi, L).
=1,...,n et

Subdifferential of the maximum of a finite collection of abstract convex functions have been

considered in Chapter 4 (see formulas (4.17) and (4.18)).

Proposition 5.19 Assume that (H, T},) is connected with respect to G* and (X, T) is con-

nected with respect to G. Then for any (L, Y )-convex sets Uy, ..., Un

coLOUi =clpy ( U {l e L: l(y) £ max w(y) Vy € Y}) : (5.42)

i=1,...,n
i=1 u; €U;
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Proof: Since Ty, C 7 and condition (5.9) is valid for 7 then we can apply Proposition 5.12.
Let Uy,...,U, C Lbe (L,Y)-convex. Then Uy, ..., U, € G and, by (5.39),

COp, O Ul = COXH) O Ul = le[)l( ( U COIlVg{’U,l, . ,’U,n}>
i=1 3

=1 u;€U;

= clp ( U {lel: Iy < igllaxnui(y) Vy € Y}) :

wevs b
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Chapter 6

On generalized conjugations and

subdifferentials

Applications of abstract convex analysis to global optimization problems are based on the
description of support sets or, at least, its maximal elements (see [41]). The most convenient
tools for this are the notions of a conjugate function and abstract subdifferential. In this
chapter we consider a type of conjugate functions, which is an evident generalization of the
notion of conjugation examined in [57]. We also consider abstract subdifferentials and give

conditions for the global minimum in terms of these subdifferentials.

6.1 Optimality conditions and the role of the abstract sub-
differential and conjugation

The notion of a support set of real-valued functions can be easily generalized for functions
with values in an arbitrary partially ordered set. Let H be a collection of functions o : X —

U, where X is a set and U is a partially ordered set. The set
supp (f,H)={h€ H: h(z) < f(z) Vz € X} (6.1)

of all H-minorants of f is called the support set of the function f with respect to H.

If, moreover, U is an upper complete semilattice then we can define also H-convex
functions. Namely, a function f : X — U is called abstract convex with respect to H
(or H-convex) if its support set supp (f, H) is not empty and f(z) = sup{h(z) : h €
supp (f, H)} Vz € X. If f : X — U is a function such that supp (f, H) # 0 then its

101
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H-convex hull coy f is defined by

coy f(x) = sup{h(z) : h € supp (f,H)} (z € X). (6.2)

Note that the family of all H-convex functions is an upper complete semilattice as well.

Let f : X — U, where U is a partially ordered set. For each point y € X define the

following set

Onf(y) ={he H: hesupp(f H), hly)=f(y)} (6.3)

Consider conditions for the global minimum and global minimal element in terms of the
set 05 f(y). Recall that an element @w € W of a partially ordered set W is called minimal
if there is no w € W such that w < @ (in other words, @ # w forall w € W). Let S be a

subset of X. The following statements are obvious.

1. If there exists a function h € 8% f(y) such that h(y) # h(z) for all z € S then
f(y) # fz) forallz € S.

2. If there exists a function h € 9% f(y) such that h(y) < h(z) for all z € S then
fly) < f(z) forallz € S.

3. Assume that H contains all constants. Then f(y) < f(z) forall z € X if and only if
the set 0 f (y) contains the constant f(y).

Let U = Rioo = RU {+0c0} and H be a set of functions h : X — IR.

First, assume that H is closed under vertical shifts. Then it is convenient to represent
Has H,={h: h(z) =1(z)—c, l €L, c€ R}, where L is a subset of H such that
(I — ¢) ¢ L whenever | € L and ¢ # 0. For any function f : X — R, we can define its

L-conjugate function f; and L-subdifferential 0y, f(y) in usual manner:

i) = ilel_g(l(x) - f(z)), (Lel) (6.4)
afy)={leL: U(z)—Ily) < flz) - fly) Vz € X} (6.5)

Then the support set of f with respect to H coincides with the epigraph of the conjugate
function f;. Thus, conjugate function accumulates whole information about the support set

of the initial function. Furthermore, as it was discussed in Section 1.3, the description of
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the abstract subdifferential is easier than the description of the set Oy, f(y). At the same

time, we have:

Opfly) =1{h: h(z)=1Uz) - Uy) + f(v), L €bLf(y)} (6.6)

So if H is closed under vertical Shifts then we can simplify the description of the set 8, f (v).
Moreover, conditions for global minimum can be easily reformulated in terms of subdiffer-
entials.

Now assume that H is not closed under vertical shifts and consider its extension H' =
{0 : HW(x) = h(z)+¢c, h € H, ce€ R} Define also the conjugation f; and the
subdifferential d; f(y) for this new set H’. Then both f; and 8. f(y) contain an excess
information about the function f. For example, the set 93, f(y) is in one-to-one corre-
spondence with Jy, f (y), while we need only the description of the set 8% f(y) C 35 f(y)-
Hence we have an excess complexity of f; and d; f(y). Moreover, if the functions h € H
are not real-valued (for example, if they have values in a nonlinear space) then the notions
of conjugate function (6.4) and subdifferential (6.5) are not applicable. This is the reason
why we need a generalization of these notions.

Some types of conjugations and subdifferentials for functions f : X — U, where U is
a complete lattice, were considered in [57]. Here we examine the case, when the set U is

either partially ordered or upper complete semilattice.

6.2 Involutions, subinvolutions and dualities

Definition 6.1 Let T be a partially ordered set. A mapping / : T — T is called an in-
volution of 7" if it is decreasing and I(I(t)) = t forall t € T. We will say that / is a
subinvolution of T if it is decreasing and (I (t)) < tforallt € T

The notion of involution can be found, e.g., in [4]. Consider a classical example.

Example 6.1 Let M be a set and T' be the collection of all subsets of M (including the
empty set and whole M). Assume that T is equipped with the following order relation:
t; <ty <= ti1 C tp. Then the mapping I(t) = M\t = {meM: m¢gt}isan

involution of 7.
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Remark 6.1 Equalities I(I(t)) = t in the definition of involution mean that I : T — T is
a bijective mapping and I~ = I. Indeed, since I(t) € T and I(I(t)) =t then I(T) = T.
If I(t1) = I(ty) then ty = I(I(t,)) = I(I(t3)) = t,. So, every involution is strictly

decreasing.

The following characterizations of involutions and subinvolutions can be usefil.

Proposition 6.1 Let T be a partially ordered set.
1.) A mapping I : T — T is a subinvolution of T if and only if for each ti,t, € T

I(tl) <ty <— I(tg) < t;. (67)
2.) A mapping I : T — T is an involution of T if and only if for each t,,t, € T
(I(tl) <ty <— I(tz) < tl) and (I(tl) =iy — I(tg) = tl). (68)

Proof: 1.) Let I be a subinvolution of T. Since I is decreasing and /(I(t)) < t then
inequality I(t) < t, implies that I(¢2) < I(I(t;)) < t;. Conversely, let (6.7) be valid. Let
t € T. If follows from (6.7) and the inequality /(t) < I(t) that I(I(t)) < ¢. Ift < ¢ then
I(I(t)) <t hence I(t') < I(t).

2.) If I is an involution of T" then [ is also a subinvolution and (6.7) is valid. If I(¢;) = ¢,
then I(t2) = I(I(t1)) = t1. So we get (6.8). Conversely, assume that (6.8) holds. Then [ is
decreasing on T'. Equality I(I(t)) = t follows from the right part of (6.8) and the equality
I(t) = I(t). O

The next proposition states that every subinvolution is an involution of its image.

Proposition 6.2 Let I : T — T be a subinvolution of T. Then its restriction I : I(T) —
I(T) on the image I(T) = {I(t) : t € T} is an involution of I(T). In particular,
I(I(1(t))) = I(t) forallt € T.

Proof* We only need to check that I(I(¢)) > t forallt’ € I(T). Solett = I(t),

where t € T. Since I is decreasing on T then the mapping I o I is increasing, hence

ITUUI®)) <I((t)) <t Dueto(6.7) wegett' = I(t) < I(I(I(t))) = I(I()). O
Recall two definitions from the book [57]. Let U and V' be complete lattices.
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Definition 6.2 ([57], Definition 5.1) A mapping A : U — V is called a duality if for each
nonempty subset S C U

A (ilelg u) = sup A(u) (6.9)

u€eS

and A(Upax) = Vinin, Where Upax is the maximal element of U and Vi, is the minimal

element of V.

Definition 6.3 ( [57], Definition 5.2) Let A : U — V be a mapping. Then the mapping
A" .V — U defined by

A'(w)=inf{lu e U: Au) < v} (6.10)
is called the dual of A. If {u € U : A(u) < v} = 0 then we set A’'(v) = Upax-

If A : U — V is a duality then its dual mapping A’ : V' — U is a duality as well and
A" = A, where A" = (A') : U — V (see [57], Theorem 5.3).

Here we show that dualities can be described via subinvolutions. At the same time,
involutions correspond to bijective dualities.

For complete lattices U and V' consider the following partially ordered set:
T = (U,1)U(V,2), (6.11)

where (U,1) = {(u,1) : w € U} and (V,2) = {(v,2) : v € V}. We assume that
(w,1) < (w', ) ifand only if7 = jand w < w' (bere (w, 1), (w',7) €T, 4,5 =1,2).

Proposition 6.3 Let U and V be two complete lattices and A : U — V. Consider the

mapping I : T — T defined by the formulas
I(w,1)) = (A(),2) VuelU, — I(v2)=(A)1) YveV, (6.12)

where T is defined by (6.11). Then
1.) I is a subinvolution of T if and only if A is a duality.
2.) I is an involution of T if and only if A is a bijective duality.

Proof: 1.)If I 1s subinvolution of 7" then, by Definition 6.1, A is decreasing and AA'(v) <
v forall v € V. Tt follows from ( [57], Proposition 5.3) that A is a duality. Conversely, let

A be a duality. Then, due to ([57], Corollary 5.3),

Aw) <v <= A@v)<u (welU, veV),
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and, by Proposition 6.1, I is subinvolution of 7.
2.) If I is involution of T then it is subinvolution, and therefore A is a duality. In view
of Remark 6.1 A is a bijective mapping. Conversely, let A : U — V be a bijective duality.

Then I is subinvolution of T'. Since A is bijective then Proposition 6.2 implies that I is

involution of 7. O

Now consider the case of arbitrary partially ordered sets U and V.

Proposition 6.4 Let U andV be two partially ordered sets and A : U — V. Let I, and I,
be subinvolutions of T, where T is defined by (6.11). If

ILi((u,1)) = I((»w,1)) = (A(w),2) YuelU

then I, = I.
Proof: Let Ay, As : V — U be the mappings defined by

(Al(v)’l) = ]1((’0,2)), (A2(U):1) = ]2((U’2))'
If I; and I, are subinvolutions of T" then, by Proposition 6.1, we get
A(v) €u <= Alu) <v <= Ay(v) <u.

Hence A, = A,. m)
Proposition 6.4 allows one to extend the notion of duality to arbitrary partially ordered
sets U and V.

Definition 6.4 Let U and V be two partially ordered sets. We will say that a mapping
A : U — V is a duality if there exists a subinvolution I of the set T' (see (6.11)) such that
I((u,1)) = (A(w),2) forallu € U. If A is a duality then the mapping A’ : V — U defined
by (A'(v),1) = I((v,2)) is called the dual of A.

In other words, a mapping A : U — V is called a duality if there exists a mapping
A’ - V — U such that
Alw) <v <= A@w) L (6.13)

If A is a duality then A’ is called the dual of A.



On generalized conjugations and subdifferentials 107

Proposition 6.5 Let U and V' be two partially ordered sets. If A : U — V isq duality then
its dual mapping N' : V — U is a duality as well, and A" = (A'Y = A. Moreover. both
mapping A and A’ are decreasing and

A'Alu) <u YueU, AN (v) <v VveV, (6.14)

ANA®W) =Au) YuelU,  NAN@)=A@) YveV. (6.15)

In particular, if A : U — V is a bijective duality then we have equalities
ANAu)=u YueUl, AN (v)y=v Vvevy, (6.16)
thatis A' = A1,

Proof: 1t follows from the Definitions 6.4 and 6.1 that the inequalities (6.14) hold and the
mappings A and A’ are decreasing. Due to equivalent definition of duality (see (6.13)) the
mapping A’ is duality and A” = A. Equalities (6.15) follow from the Proposition 6.2,
where the mapping [ : T — T is defined by (6.12). If A : U - V O

Remark 6.2 It is easy to see that Proposition 6.3 holds true for any partially ordered sets
UandV.

6.3 L-subdifferentials with respect to a mapping
O: XXLxU—-=YV

Let U and V be two partially ordered sets. Let X and L be sets.

Consider a mapping ® : X x L x U — V such that for each fixedz € X and [ € L the
mapping A, : U — V defined by A, ;(u) = ®(z, 1, u) is a duality. Denote by H$ the set
of all functions h : L — V defined by h(l) = ®(z,l,u), wherez € X andu € U.

Let® : X x L x V — U be the mapping defined by ®'(z,,v) = A} ,(v) (here A ; is
the dual of A, ;). By the symbol HE' we denote the set of all functions h : X — U defined
by h(z) = ®'(z,l,v), wherel € Landv € V.

We introduce L-subdifferentials of functions f : X — U in the following way (compare

it with the definition of the subdifferential considered in ([57], p. 359)).
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Definition 6.5 Let f : X — U and y € X. We say that the set

Oufly) ={leL: ®(z,i f(zx)) < 2(y,1,f(y)) Vz € X} (6.17)

is the L-subdifferential of the function f at the point y with respect to the mapping P.
Elements | € 9y, f (y) will be called L-subgradients of f at y with respect to P.

Since ®'(z,(,-) : V — U is the dual of ®(z,1,-) : U — V then, due to (6.13),

oz, f(2)) < 2y, L f()) <= @'(,1,2(y,L, f(v))) < f(z).

Therefore

bLf) = LLel: Loyl )< f@) VaeX).  (618)

Proposition 6.6 Let f : X — U andy € X. Let L-subgradient | € 3y f(y) be such that
the mapping ®(y,1,-) : U — V is bijective. Then the function h(z) = ®'(z,1, ®(y,1, f(¥)))
belongs to the set 0y ,, f(y) defined by

L

e /W) ={h € HY © h(y) = f(y), h € supp(f,HE)}.

Therefore, if ®(y,1,-) : U — V is bijective for all | € L then
) = (e @) = V(e L 8L fO)), L€ af)}.  (619)

Proof: Formula (6.18) implies that the function h(z) = ®'(z,l, 2(y,{, f(y))) belongs to
supp (f, H'). If the mapping ®(y,!,-) : U — V is bijective then, due to (6.16), we get

h(y) = f(y). Hence h € 3;12,, f(y).
Assume that ®(y,1,-) is bijective for all I € L. Take a function h(z) = ®'(z,l,v)

from the set G;Ig,f(y). Since &' (y,1,v) = h(y) = f(y) thenv = &(y,l,¥'(y,l,v))) =
®(y, 1, f(y)). Since h < f then h(z) = ®'(x,1, 2(y, 1, f(y))) < f(z) forall z € X, hence
l e GLf(y) W

Corollary 6.1 Assume that U is upper complete semilattice. Consider a Sfunction f : X —
U. Assume that for eachy € X and | € L the duality ®(y,l,-) : U — V is bijective. If all
subdifferentials O f (y) (y € X) are nonempty then the function f is HE' -convex.

Consider conditions for the global minimum and global minimal element in terms of

abstract subdifferentials defined in this section.



On generalized conjugations and subdifferentials 109

Denote by L, the following set

Ly={leL: (1,2, l,u)=u Vz,ye X, Vuc U}. (6.20)

For example, in the classical convex case we have: X = Y = R™. I/ = V — R

O(z,l,u) = &(z, l,u) = (z,1) — u. Therefore Ly = {0}.

Remark 6.3 If | € L, then ®(z,1,u) < ®(y,l,u) forall z,y € X, u € U, therefore we
get equalities ®(z,l,u) = ®(y,l,u) (z,y € X, u € V).

Proposition 6.7 Let f : X - U, ye€ X and S C X.
1.) Suppose that the set Ly is nonempty. Then

f) < fz) Yo € X ifandonlyif Lo COLf(y).

2.) If there exists a subgradient | € 9y, f (y) such that

f(y) < (bl(xJ? (b(y) l) f(y))) for all €8

then f(y) < f(z) forallz € S.
3.) If there exists a subgradient | € 9y f(y) such that

fy) # ¥z, 1,20y, f(y) forall xS
then f(y) # f(z)forallz € S.

Proof: The proof follows directly from the formula (6.18). 0O

6.4 Conjugate functions with respect to  and ¢’

Assume that U and V' are upper complete semilattices.

Definition 6.6 Let f : X — U. We say that the function f; : L — V defined by the

formula

fi(l) = sup @(z,1, f(z)) (6.21)
z€X

is the L-conjugate to f with respect to ®.
For a function g : L — V the function g% : X — U defined by
gx(z) =sup ®'(z,1,9(1)) (6.22)
leL

will be called the X -conjugate to g with respect to ¢’.
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So we define a conjugation for all functions f : X — U and g : L — V. Sometimes
for more convenience we will use the term “conjugate functions” for both cases (without
symbols L or X). Thus the term “second conjugate function” seems natural. The second

conjugate functions f** : X — U and ¢g** : L — V are defined as follows:

@) =(fx@=), g7 () =(g%)L D (6.23)

Proposition 6.8 Let f : X - Uandg: L —- V. Letz € X,l€e LLucUandv e V.
Then

®'(,1,0) € supp (f, HY ) <= fi(D) <,
(6.24)
®(z,-,u) € supp (9, Hy) = gx(z) <u.
Proof: Consider f : X — U. Since ®(z,l,-) : U — V is a duality then (see (6.13))
' (x,1,v) < f(z) Ve e X > ®(z,l,f(z)) <v VzeX <= fi(l)<w
Similarly, for a function g : L — V/, we have

®(z,lu) < g(l) VieL «— ¥(z,l,g(l)) <u VIEL < gk(z) <u

O
Since U and V are upper complete semilattices then we can define elements Umax =
max{u: u € U} and Vpax = max{v : v € V}. Since each function Agi(u) = @(z,l,u)
is a duality then
B(z,l,u) < Vipax VuEU = ®'(z,l, Vinax) S u Vu €U,
3 (2,1,0) < Upax VVEV = (2,1, Unax) Sv VYV E V.
Hence there exist elements Upyin € U and Viyin € V such that Upin < u Yu € U and

Viin < v Vv € V. We have equalities:
(I)(.’E, la Uma.x) = Vmin) @’(.’L‘, l, Vmax) - Uminv

Therefore for any functions f : X —» Uandg: L —V their support sets supp (f, HY') and

supp (9, H £ are nonempty, and abstract convex hulls co HY f and coyz g are well defined.

Proposition 6.9 Let f: X —Uandg: L — V. Then second conjugate functions f** and

g** coincide with H 2'_convex and H-convex hulls respectively:

f** — COHE’I f, g** = COH}Zg' (625)
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Proof: We consider only function /. We have:
() = (f1)x () = sup &'(x,1, f7 (1)) = sup &' (w L,sup ®(y, 1, f(y))> :
leL leL yeX
Since each function ®'(z,1,-) is decreasing and &’ (z,1,®(z,l,u)) < u (see Proposition

6.5) then
(@) < sup @'(z,1, 8(z, 1, f(2))) < f(x).

leL
Since the function f** : X — U is H}f"-convex then f** < coe f.
L

On the other hand, due to Proposition 6.8,

COHng(-T) = sup{@'(:z:,l,v) : (bl(’)l’v) € supp (f7 HLI)}

= sup{®'(z,,v): fi(l) <v} siggé’(w,l,fZ(l)) = [ ().

So a function f : X — U is HY -convex if and only if f = f**.
Now we present a formula for conjugation of elementary functions from the sets H}f'
and HY. Letz € X,l € L,u € U andv € V. Consider the following functions defined on

X and L respectively:

You(y) =sup{h(y) : h€ HY, h(z) <u}  (y€X),

(6.26)
Yio(t) =sup{h(t): h€ Hg, h(l) <v}  (teL).
Proposition 6.10 Letz € X,l € L,u € Uandv € V. Then
(2, W)y = You  and  (¥(,10))] =ty 6.27)

Proof Let us prove the second equality in (6.27). Let f(x) = ®'(z,,v). We need to check
the equality f* = 1, ,. Since the function f* is H$-convex then, due to (6.26),

P <ihy = ff()<v = ¥(z,1,P(z,l,v) Sv Vze X

Now we show that f* > .. Let ®(Z,-,4) € Hy be a function such that ®(z,l,17) < wv.

Then ®'(%,1,v) < @, and therefore forall ¢ € L

®(z,t,7) < ®(%,t,9'(z,l,v)) < sup &(z,t,d'(x,1,v)) = f*(1).

- zeX

Hence ¥, < f”.



On generalized conjugations and subdifferentials 112

Denote by F the set of all H} -convex functions f : X — U. By the symbol G we
denote the set of all H-convex functions g : L — V. Itis clear that F and G are upper

complete semilattices.

Consider the mapping A : UX — V' defined by A(f) = f7, where U is the set of all
functions f : X — U and V' is the set of all functions g : I, — V.

Proposition 6.11 The mapping A : UX — V¥ is a duality. Its dual duality ' - VE — UX
is defined by A'(g) = g%. The duality A : F — G is bijective with A=! = A/

Proof: Let f € UX and g € VL. Then

A(f)<g = il <g)Viel < ¥, f(z))<g) VzeX VieL
= P'(z,L,g()) < f(z) Ve e X VIEL <= gx < f

Hence A : UX — VI is a duality and A'(g) = g%.
Due to Proposition 6.9, the duality A : F' — G is bijective. Indeed, for any function
g € G we have g = ¢** = A(g¥), where g5 € F. This means that A(F) = G. If
A(f1) = A(f2) (f1, f2 € F) then fi = fI* = NA(f1) = AA(f2) = f3* = f2. Thus, the
mapping A : F' — G is bijective. O
Now assume that U and V are complete lattices. Let | € Ly, where Ly is defined by
(6.20). Then Remark 6.3 and Definition 6.2 imply that forany f : X - Uandy € X
i) = sup 8,1, S2) = sup 203, 1,1(0) = ® (1,1, 0t @)
So for arbitrary y € X and | € L, the following equality holds (see (6.20))
inf f(z) = & (y,z, o (1L, B @)) = PELEO. 629

zeX

6.5 Inverse results

Let U and V be two upper complete semilattices such that there exist elements Up;p, € U
and Vigin € V: Unin < u Yu € U, Viin < v Yv € V. Let F be an upper complete
semilattice of functions f : X — U and G be an upper complete semilattice of functions

g: L — V. Assume that Frni, € F and Gy, € G, where Fipin(2) = Unin and Grin(l) =
Vmin'
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Here we show that each duality A : F — G can be represented as a conjugation with

Tespect to a certain mapping ®. A similar results was obtained in ( [57], Theorem 7.3) in

the case, when U and V' are complete lattices.

Letzx € X,l € L,u € Uandv € V. Due to our assumptions we can define the
following functions

Yuu(y) =sup{h(y): hEF, h(z) < u} (y € X),

(6.29)
Yi0(t) =sup{h(t) : h e G, h) <} (tel).

Since F' and G are upper complete semilattices then ¢, ,, € F and ¢, € G.

Proposition 6.12 Let A : F — G be a duality. Consider the mapping® : X x LxU — V
defined by

Bz, 1, 1) = Ath) (D). (6:30)

Then for each fixed © € X andl € L the mapping ®(z,!,-) : U — V is a duality. The dual
duality ¥ (z,1,-) : V — U is defined by

(I),(x> l) ’U) = A,(¢l,v)(x)' (631)
Moreover, for any functions f € Fandg e G
Af) =1L, N9 =gk, (6.32)

where f; is the L-conjugate to [ with respect to ®, and g is the X-conjugate to g with

respect to @'
Proof: We have
A(¢x,u)(l) S v — A(¢z,u) S ¢l,v — A’(¢l,v) S ¢z,u — A,(¢l,v)(x) _<_ u.

This means that the mapping @ (x,1,-) : V' — U defined by (6.31) is the dual of ®(z,1,-).
Hence the mapping ®(z,[,-) : U — V is duality.
Take a function f € F. Then forany ! € Landv € V

)<y = &=l fx) SvVeeX < ' (x,l,v) < f(z) Vz e X
o AW < f = A St = ADD S

This leads to the equality A(f) = f;. The same arguments show that N'(g) = gk forall

géG. =
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Note that, under conditions of Proposition 6. 12, the duality A is defined only for f € F.
At the same time, the notion of L-conjugation is applicable to every function f : X — U.

So we can extend the mapping A : F — G on the whole space UX by the formula A(f) =
fI- And, by Proposition 6.11, this extension is also a duality.

Remark 6.4 If I = UX and G = V'* then the functions (6.29) have the following simple

form:
u, ify=z v, ift=1
Vouly) = , Yiu(t) =
Unax, ify#zx Vimax, 1ift#1

where Ui = SUP,cpy U and Vo = SUPyey V-

Proposition 6.13 Let A : F' — G be a bijective duality. Consider the mappings ® and
&’ defined by (6.30) and (6.31). Then a function f : X — U is HE -convex if and only if
f € F;afunctiong : L — V is HE-convex ifand only if g € G.

Proof: We prove our statement for the set F'. Since ¢;, € G and ¥'(z,1,v) = A (1) (z)
then for each fixed | € L, v € V the function h(z) = ®'(z, !, v) belongs to F. Therefore
the set HY' is a subset of F. Since F is upper complete semilattice then every HY -convex
function f : X — U belongs to . Conversely, let f € F. Since the duality A : F' — G
is bijective then (see (6.16) and (6.32)) f = A'A(f) = | f**. Hence the function f is
HY¥ -convex. O

Since each duality A : FF — G is a conjugation then support sets of functions f € F
can be described via A(f) (see Proposition 6.8).

Indeed, let A : F — G be a duality and A’ be the dual of A. Then, by Proposition 6.12,
for every function f € F

AN = 1) =sup &(, 1, f(z)) VIEL,

zeX
where @ is defined by (6.30). Proposition 6.8 implies that for every I € L andv € V we

have the following equivalence
®'(1,v) € supp (f, H ) <= AW <,

where &' is defined by (6.31).



Conclusion

Throughout the entire thesis we talked about various issues related to abstract subdiffer-
entials and separation properties. Our main aim was to find possible approaches to some
global optimization problems. First we examined abstract subdifferentials and separation
properties in two particular cases. Then we considered the problems of subdifferential cal-
culus and separation of sets from a general point of view. Finally, we investigated optimality
conditions via generalized subdifferentials for non-real-valued functions.

In Chapter 2 we examined abstract subdifferentials of CAR (convex-along-rays) func-
tions defined on IR™ with respect to special sets of elementary functions. We took various
approaches to the calculation of abstract subgradients (i.e, the elements of abstract subdif-
ferential) of CAR functions. In particular, we gave some conditions, which guarantee the
existence of abstract subdifferential of CAR functions and therefore allow one to describe
certain abstract subgradients. The results obtained can be applied for the global minimiza-
tion of some CAR functions over subsets of IR"™ by using numerical methods.

In Chapter 3 we discussed the weak separability of two star-shaped sets by a collection
of linear functions. The main result of this chapter is the characterization of a solution of
a “best approximation -like” problem for star-shaped sets. We introduced a notion of a
star-shaped distance and gave necessary and sufficient conditions for its global minimum
over a radiant set in terms of weak separability of star-shaped sets. Note that the class of
such problems is quite broad. However the description of separating collections of linear
functions is very complicated. Thus, in order to apply this result in practice, a further
research is required. We need to describe separation collections at least for some simple
star-shaped sets.

Chapter 4 takes a general approach to the problem of subdifferential calculus for abstract
convex functions. As used here the subdifferential calculus means the existence of some

calculus rules. Such rules allow the description of subdifferentials of some combinations
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of abstract convex functions via subdifferentials of given functions. Since conditions for
the global minimum of an abstract convex function can be given in terms of the abstract
subdifferential then the existence of calculus rules is very important.
It turned out, that the so-called strong globalization property can provide subdifferential
calculus for different combinations of abstract convex functions, including the maximum.
Namely, we proved that, if the set of elementary functions has the strong globalization
property, then subdifferential calculus can be expressed in terms of special functions that
in a sense approximate the given functions. If, moreover, these approximation functions
possess certain equalities, then we get exact calculus rules.
We considered some examples, which demonstrate that there are a lot of sets of nonconvex
functions having the strong globalization property. This means that the results obtained can
find applications in a broad range of global optimization problems.

In Chapter 5 we investigated separation properties via a special type of connectedness of
a topological space with respect to a convexity on this space. We chose a way based on the
separation of convex sets by elements of a fixed subbase. In order to get efficient results, we
required some restrictions on the choice of a subbase in terms of the connectedness. This
approach leads to a weak separation property for arbitrary convex sets and to a stronger one
for closed convex sets.
First we indicated the cases, when the convexity is of finite arity. This gives a description of
convex sets. Moreover, in view of Theorem 1.3, we can use this result for further research
in order to get the separation property S (see Section 1.4).
Then we provided some conditions, which guarantee a description of closed convex sets
and the following property: each closed convex set and each point in its complement can be
separated by an element of the subbase. As a particular case, this result implies a description
of abstract convex functions and sets.
We also proved that each two disjoint convex sets, one of them being closed and the other
one compact, can be separated by an element of the subbase. This can be applied for a
characterization of solutions of some “best approximation -like” problems.
An important issue is the description of the abstract convex hull of a finite union of abstract
convex sets. Our results about this can be applied to the formula, which was obtained in
Chapter 4, for the subdifferential of the maximum of a finite collection of abstract convex

functions. Furthermore, this gives a description of the support set of the maximum of
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abstract convex functions. Thus, we can express conditions for the global minimum of the
maximum of a finite collection of abstract convex functions in terms of subdifferentials (or
support sets) of given functions.

Note that the main assumptions in Chapters 4 and 5 are also valid for usual convex
functions and sets. Thus, we picked out some essential properties of the classical convexity
and used them for generalization of subdifferential calculus and separation theorems.

In Chapter 6 we introduced generalized conjugations and subdifferentials for functions
with values in an upper complete semilattice and a partially ordered set respectively. They
are based on the notion of a duality between two partially ordered sets, which generalizes
corresponding notion considered in [57] for pairs of complete lattices. The main feature of
such broadly defined subdifferentials is that they provide conditions not only for a global
minimum, but also for a global minimal element. We also proved that each duality of
two upper complete semilattices of functions is a conjugation. This implies that global
optimality conditions can be formulated in terms of dualities. Consequently, an further

investigation of these dualities is of importance.
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